WorldWideScience

Sample records for live attenuated recombinant

  1. Live recombinant BHV/BRSV vaccine

    NARCIS (Netherlands)

    Keil, G.M.; Rijsewijk, F.A.M.

    1998-01-01

    The present invention refers to synthetic Bovine Respiratory Syncytium virus genes. Also the invention relates to live attenuated Bovine Herpesvirus recombinants carrying such synthetic genes. Furthermore, the invention relates to vaccines based on these live attenuated recombinants, for the

  2. Live recombinant BHV/BRSV vaccine

    OpenAIRE

    Keil, G.M.; Rijsewijk, F.A.M.

    1998-01-01

    The present invention refers to synthetic Bovine Respiratory Syncytium virus genes. Also the invention relates to live attenuated Bovine Herpesvirus recombinants carrying such synthetic genes. Furthermore, the invention relates to vaccines based on these live attenuated recombinants, for the protection of cattle against both Bovine herpesvirus infection and against Bovine Respiratory Syncytium virus infection. Also the invention relates to methods for the preparation of such live attenuated r...

  3. Live Attenuated Recombinant Vaccine Protects Nonhuman Primates Against Ebola and Marburg Viruses

    National Research Council Canada - National Science Library

    Jones, Steven M; Feldmann, Heinz; Stroher, Ute; Geisbert, Joan B; Fernando, Lisa; Grolla, Allen; Klenk, Hans-Dieter; Sullivan, Nancy J; Volchkov, Viktor E; Fritz, Elizabeth A; Daddario, Kathleen M; Hensley, Lisa E; Jahrling, Peter B; Geisbert, Thomas W

    2005-01-01

    ...). Here, we developed replication-competent vaccines against EBOV and MARV based on attenuated recombinant vesicular stomatitis virus vectors expressing either the EBOV glycoprotein or MARV glycoprotein...

  4. Cross-Protection against Marburg Virus Strains by Using a Live, Attenuated Recombinant Vaccine

    National Research Council Canada - National Science Library

    Daddario-DiCaprio, Kathleen M; Geisbert, Thomas W; Geisbert, Joan B; Stroeher, Ute; Hensley, Lisa E; Grolla, Allen; Fritz, Elizabeth A; Feldmann, Friederike; Feldmann, Heinz; Jones, Steven M

    2006-01-01

    .... MARV is also considered to have potential as a biological weapon. Recently, we reported the development of a promising attenuated, replication-competent vaccine against MARV based on recombinant vesicular stomatitis virus (VSV...

  5. Exploratory re-encoding of Yellow Fever Virus genome: new insights for the design of live-attenuated viruses

    OpenAIRE

    Klitting, Raphaelle; Riziki, Toilhata; Moureau, Gregory; De Lamballerie, Xavier; Piorkowski, Geraldine

    2018-01-01

    Virus attenuation by genome re-encoding is a pioneering approach for generating live-attenuated vaccine candidates. Its core principle is to introduce a large number of slightly deleterious synonymous mutations into the viral genome to produce a stable attenuation of the targeted virus. The large number of mutations introduced is supposed to guarantee the stability of the attenuated phenotype by lowering the risks of reversion and recombination for re-encoded sequences. In this prospect, iden...

  6. Multiple antigens of Yersinia pestis delivered by live recombinant attenuated Salmonella vaccine strains elicit protective immunity against plague.

    Science.gov (United States)

    Sanapala, Shilpa; Rahav, Hannah; Patel, Hetal; Sun, Wei; Curtiss, Roy

    2016-05-05

    Based on our improved novel Salmonella vaccine delivery platform, we optimized the recombinant attenuated Salmonella typhimurium vaccine (RASV) χ12094 to deliver multiple Yersinia pestis antigens. These included LcrV196 (amino acids, 131-326), Psn encoded on pYA5383 and F1 encoded in the chromosome, their synthesis did not cause adverse effects on bacterial growth. Oral immunization with χ12094(pYA5383) simultaneously stimulated high antibody titers to LcrV, Psn and F1 in mice and presented complete protection against both subcutaneous (s.c.) and intranasal (i.n.) challenges with high lethal doses of Y. pestis CO92. Moreover, no deaths or other disease symptoms were observed in SCID mice orally immunized with χ12094(pYA5383) over a 60-day period. Therefore, the trivalent S. typhimurium-based live vaccine shows promise for a next-generation plague vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Attenuation of Recombinant Yellow Fever 17D Viruses Expressing Foreign Protein Epitopes at the Surface

    Science.gov (United States)

    Bonaldo, Myrna C.; Garratt, Richard C.; Marchevsky, Renato S.; Coutinho, Evandro S. F.; Jabor, Alfredo V.; Almeida, Luís F. C.; Yamamura, Anna M. Y.; Duarte, Adriana S.; Oliveira, Prisciliana J.; Lizeu, Jackeline O. P.; Camacho, Luiz A. B.; Freire, Marcos S.; Galler, Ricardo

    2005-01-01

    The yellow fever (YF) 17D vaccine is a live attenuated virus. Three-dimensional (3D) homology modeling of the E protein structure from YF 17D virus and its comparison with that from tick-borne encephalitis virus revealed that it is possible to accommodate inserts of different sizes and amino acid compositions in the flavivirus E protein fg loop. This is consistent with the 3D structures of both the dimeric and trimeric forms in which the fg loop lies exposed to solvents. We demonstrate here that YF 17D viruses bearing foreign humoral (17D/8) and T-cell (17D/13) epitopes, which vary in sequence and length, displayed growth restriction. It is hypothesized that interference with the dimer-trimer transition and with the formation of a ring of such trimers in order to allow fusion compromises the capability of the E protein to induce fusion of viral and endosomal membranes, and a slower rate of fusion may delay the extent of virus production. This would account for the lower levels of replication in cultured cells and of viremia in monkeys, as well as for the more attenuated phenotype of the recombinant viruses in monkeys. Testing of both recombinant viruses (17D/8 and 17D/13) for monkey neurovirulence also suggests that insertion at the 17D E protein fg loop does not compromise the attenuated phenotype of YF 17D virus, further confirming the potential use of this site for the development of new live attenuated 17D virus-based vaccines. PMID:15956601

  8. Rational design of human metapneumovirus live attenuated vaccine candidates by inhibiting viral mRNA cap methyltransferase.

    Science.gov (United States)

    Zhang, Yu; Wei, Yongwei; Zhang, Xiaodong; Cai, Hui; Niewiesk, Stefan; Li, Jianrong

    2014-10-01

    The paramyxoviruses human respiratory syncytial virus (hRSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (hPIV3) are responsible for the majority of pediatric respiratory diseases and inflict significant economic loss, health care costs, and emotional burdens. Despite major efforts, there are no vaccines available for these viruses. The conserved region VI (CR VI) of the large (L) polymerase proteins of paramyxoviruses catalyzes methyltransferase (MTase) activities that typically methylate viral mRNAs at positions guanine N-7 (G-N-7) and ribose 2'-O. In this study, we generated a panel of recombinant hMPVs carrying mutations in the S-adenosylmethionine (SAM) binding site in CR VI of L protein. These recombinant viruses were specifically defective in ribose 2'-O methylation but not G-N-7 methylation and were genetically stable and highly attenuated in cell culture and viral replication in the upper and lower respiratory tracts of cotton rats. Importantly, vaccination of cotton rats with these recombinant hMPVs (rhMPVs) with defective MTases triggered a high level of neutralizing antibody, and the rats were completely protected from challenge with wild-type rhMPV. Collectively, our results indicate that (i) amino acid residues in the SAM binding site in the hMPV L protein are essential for 2'-O methylation and (ii) inhibition of mRNA cap MTase can serve as a novel target to rationally design live attenuated vaccines for hMPV and perhaps other paramyxoviruses, such as hRSV and hPIV3. Human paramyxoviruses, including hRSV, hMPV, and hPIV3, cause the majority of acute upper and lower respiratory tract infections in humans, particularly in infants, children, the elderly, and immunocompromised individuals. Currently, there is no licensed vaccine available. A formalin-inactivated vaccine is not suitable for these viruses because it causes enhanced lung damage upon reinfection with the same virus. A live attenuated vaccine is the most promising

  9. Effective preexposure and postexposure prophylaxis of rabies with a highly attenuated recombinant rabies virus.

    Science.gov (United States)

    Faber, Milosz; Li, Jianwei; Kean, Rhonda B; Hooper, D Craig; Alugupalli, Kishore R; Dietzschold, Bernhard

    2009-07-07

    Rabies remains an important public health problem with more than 95% of all human rabies cases caused by exposure to rabid dogs in areas where effective, inexpensive vaccines are unavailable. Because of their ability to induce strong innate and adaptive immune responses capable of clearing the infection from the CNS after a single immunization, live-attenuated rabies virus (RV) vaccines could be particularly useful not only for the global eradication of canine rabies but also for late-stage rabies postexposure prophylaxis of humans. To overcome concerns regarding the safety of live-attenuated RV vaccines, we developed the highly attenuated triple RV G variant, SPBAANGAS-GAS-GAS. In contrast to most attenuated recombinant RVs generated thus far, SPBAANGAS-GAS-GAS is completely nonpathogenic after intracranial infection of mice that are either developmentally immunocompromised (e.g., 5-day-old mice) or have inherited deficits in immune function (e.g., antibody production or type I IFN signaling), as well as normal adult animals. In addition, SPBAANGAS-GAS-GAS induces immune mechanisms capable of containing a CNS infection with pathogenic RV, thereby preventing lethal rabies encephalopathy. The lack of pathogenicity together with excellent immunogenicity and the capacity to deliver immune effectors to CNS tissues makes SPBAANGAS-GAS-GAS a promising vaccine candidate for both the preexposure and postexposure prophylaxis of rabies.

  10. Recombinant canine distemper virus serves as bivalent live vaccine against rabies and canine distemper.

    Science.gov (United States)

    Wang, Xijun; Feng, Na; Ge, Jinying; Shuai, Lei; Peng, Liyan; Gao, Yuwei; Yang, Songtao; Xia, Xianzhu; Bu, Zhigao

    2012-07-20

    Effective, safe, and affordable rabies vaccines are still being sought. Attenuated live vaccine has been widely used to protect carnivores from canine distemper. In this study, we generated a recombinant canine distemper virus (CDV) vaccine strain, rCDV-RVG, expressing the rabies virus glycoprotein (RVG) by using reverse genetics. The recombinant virus rCDV-RVG retained growth properties similar to those of vector CDV in Vero cell culture. Animal studies demonstrated that rCDV-RVG was safe in mice and dogs. Mice inoculated intracerebrally or intramuscularly with rCDV-RVG showed no apparent signs of disease and developed a strong rabies virus (RABV) neutralizing antibody response, which completely protected mice from challenge with a lethal dose of street virus. Canine studies showed that vaccination with rCDV-RVG induced strong and long-lasting virus neutralizing antibody responses to RABV and CDV. This is the first study demonstrating that recombinant CDV has the potential to serve as bivalent live vaccine against rabies and canine distemper in animals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Live attenuated measles vaccine expressing HIV-1 Gag virus like particles covered with gp160ΔV1V2 is strongly immunogenic

    International Nuclear Information System (INIS)

    Guerbois, Mathilde; Moris, Arnaud; Combredet, Chantal; Najburg, Valerie; Ruffie, Claude; Fevrier, Michele; Cayet, Nadege; Brandler, Samantha; Schwartz, Olivier; Tangy, Frederic

    2009-01-01

    Although a live attenuated HIV vaccine is not currently considered for safety reasons, a strategy inducing both T cells and neutralizing antibodies to native assembled HIV-1 particles expressed by a replicating virus might mimic the advantageous characteristics of live attenuated vaccine. To this aim, we generated a live attenuated recombinant measles vaccine expressing HIV-1 Gag virus-like particles (VLPs) covered with gp160ΔV1V2 Env protein. The measles-HIV virus replicated efficiently in cell culture and induced the intense budding of HIV particles covered with Env. In mice sensitive to MV infection, this recombinant vaccine stimulated high levels of cellular and humoral immunity to both MV and HIV with neutralizing activity. The measles-HIV virus infected human professional antigen-presenting cells, such as dendritic cells and B cells, and induced efficient presentation of HIV-1 epitopes and subsequent activation of human HIV-1 Gag-specific T cell clones. This candidate vaccine will be next tested in non-human primates. As a pediatric vaccine, it might protect children and adolescents simultaneously from measles and HIV.

  12. [PERSPECTIVES OF DEVELOPMENT OF LIVE RECOMBINANT ANTHRAX VACCINES BASED ON OPPORTUNISTIC AND APATHOGENIC MICROORGANISMS].

    Science.gov (United States)

    Popova, P Yu; Mikshis, N I

    2016-01-01

    Live genetic engineering anthrax vaccines on the platform of avirulent and probiotic micro-organisms are a safe and adequate alternative to preparations based on attenuated Bacillus anthracis strains. Mucosal application results in a direct contact of the vaccine preparations with mucous membranes in those organs arid tissues of the macro-organisms, that are exposed to the pathogen in the first place, resulting in a development of local and systemic immune response. Live recombinant anthrax vaccines could be used both separately as well as in a prime-boost immunization scheme. The review focuses on immunogenic and protective properties of experimental live genetic engineering prearations, created based on members of geni of Salmonella, Lactobacillus and adenoviruses.

  13. Mutations within ICP4 acquired during in vitro attenuation do not alter virulence of recombinant Marek's disease viruses in vivo

    Directory of Open Access Journals (Sweden)

    Evin Hildebrandt

    2015-12-01

    Full Text Available Marek's disease (MD is a T-cell lymphoma of chickens caused by the oncogenic Marek's disease virus (MDV. MD is primarily controlled by live-attenuated vaccines generated by repeated in vitro serial passage. Previous efforts to characterize attenuated MDVs identified numerous mutations, particularly a convergence of high-frequency mutations around amino acids 60–63 within ICP4 (RS1, therefore, ICP4 was considered a candidate gene deserving further characterization. Recombinant MDVs were generated containing a single Q63H mutation or double Q63H + S1630P mutations. Despite the repetitive nature of mutations within ICP4, neither recombinant virus decreased virulence, although one mutant reduced in vivo replication and failed to transmit horizontally. Our results indicate that these mutations are insufficient to reduce disease incidence in infected birds, and suggest that variants in ICP4 do not directly alter virulence, but rather may enhance MDV replication rates in vitro, offering an explanation for the widespread occurrence of ICP4 mutations in a variety of attenuated herpesviruses.

  14. Recombination of Globally Circulating Varicella-Zoster Virus

    Science.gov (United States)

    Depledge, Daniel P.; Kundu, Samit; Atkinson, Claire; Brown, Julianne; Haque, Tanzina; Hussaini, Yusuf; MacMahon, Eithne; Molyneaux, Pamela; Papaevangelou, Vassiliki; Sengupta, Nitu; Koay, Evelyn S. C.; Tang, Julian W.; Underhill, Gillian S.; Grahn, Anna; Studahl, Marie; Breuer, Judith; Bergström, Tomas

    2015-01-01

    ABSTRACT Varicella-zoster virus (VZV) is a human herpesvirus, which during primary infection typically causes varicella (chicken pox) and establishes lifelong latency in sensory and autonomic ganglia. Later in life, the virus may reactivate to cause herpes zoster (HZ; also known as shingles). To prevent these diseases, a live-attenuated heterogeneous vaccine preparation, vOka, is used routinely in many countries worldwide. Recent studies of another alphaherpesvirus, infectious laryngotracheitis virus, demonstrate that live-attenuated vaccine strains can recombine in vivo, creating virulent progeny. These findings raised concerns about using attenuated herpesvirus vaccines under conditions that favor recombination. To investigate whether VZV may undergo recombination, which is a prerequisite for VZV vaccination to create such conditions, we here analyzed 115 complete VZV genomes. Our results demonstrate that recombination occurs frequently for VZV. It thus seems that VZV is fully capable of recombination if given the opportunity, which may have important implications for continued VZV vaccination. Although no interclade vaccine-wild-type recombinant strains were found, intraclade recombinants were frequently detected in clade 2, which harbors the vaccine strains, suggesting that the vaccine strains have already been involved in recombination events, either in vivo or in vitro during passages in cell culture. Finally, previous partial and complete genomic studies have described strains that do not cluster phylogenetically to any of the five established clades. The additional VZV strains sequenced here, in combination with those previously published, have enabled us to formally define a novel sixth VZV clade. IMPORTANCE Although genetic recombination has been demonstrated to frequently occur for other human alphaherpesviruses, herpes simplex viruses 1 and 2, only a few ancient and isolated recent recombination events have hitherto been demonstrated for VZV. In the

  15. Inhibitory effect of live-attenuated Listeria monocytogenes-based vaccines expressing MIA gene on malignant melanoma.

    Science.gov (United States)

    Qian, Yue; Zhang, Na; Jiang, Ping; Chen, Siyuan; Chu, Shujuan; Hamze, Firas; Wu, Yan; Luo, Qin; Feng, Aiping

    2012-08-01

    Listeria monocytogenes (LM), a Gram-positive facultative intracellular bacterium, can be used as an effective exogenous antigen expression vector in tumor-target therapy. But for successful clinical application, it is necessary to construct attenuated LM stain that is safe yet retains the potency of LM based on the full virulent pathogen. In this study, attenuated LM and recombinants of LM expressing melanoma inhibitory activity (MIA) were constructed successfully. The median lethal dose (LD(50)) and invasion efficiency of attenuated LM strains were detected. The recombinants were utilized for immunotherapy of animal model of B16F10 melanoma. The level of MIA mRNA expression in tumor tissue was detected by using real-time polymerase chain reaction (PCR) with specific sequence, meanwhile the anti-tumor immune response was assayed by flow cytometric analysis and enzyme-linked immunosorbent spot (ELISPOT) assay. The results showed the toxicity and invasiveness of attenuated LM were decreased as compared with LM, and attenuated LM expressing MIA, especially the double-genes attenuated LM recombinant, could significantly induce anti-tumor immune response and inhibit tumor growth. This study implicates attenuated LM may be a safer and more effective vector for immunotherapy of melanoma.

  16. The yellow fever 17D virus as a platform for new live attenuated vaccines.

    Science.gov (United States)

    Bonaldo, Myrna C; Sequeira, Patrícia C; Galler, Ricardo

    2014-01-01

    The live-attenuated yellow fever 17D virus is one of the most outstanding human vaccines ever developed. It induces efficacious immune responses at a low production cost with a well-established manufacture process. These advantages make the YF17D virus attractive as a vector for the development of new vaccines. At the beginning of vector development studies, YF17D was genetically manipulated to express other flavivirus prM and E proteins, components of the viral envelope. While these 17D recombinants are based on the substitution of equivalent YF17D genes, other antigens from unrelated pathogens have also been successfully expressed and delivered by recombinant YF17D viruses employing alternative strategies for genetic manipulation of the YF17D genome. Herein, we discuss these strategies in terms of possibilities of single epitope or larger sequence expression and the main properties of these replication-competent viral platforms.

  17. Evaluation of synthetic infection-enhancing lipopeptides as adjuvants for a live-attenuated canine distemper virus vaccine administered intra-nasally to ferrets.

    Science.gov (United States)

    Nguyen, D Tien; Ludlow, Martin; van Amerongen, Geert; de Vries, Rory D; Yüksel, Selma; Verburgh, R Joyce; Osterhaus, Albert D M E; Duprex, W Paul; de Swart, Rik L

    2012-07-20

    Inactivated paramyxovirus vaccines have been associated with hypersensitivity responses upon challenge infection. For measles and canine distemper virus (CDV) safe and effective live-attenuated virus vaccines are available, but for human respiratory syncytial virus and human metapneumovirus development of such vaccines has proven difficult. We recently identified three synthetic bacterial lipopeptides that enhance paramyxovirus infections in vitro, and hypothesized these could be used as adjuvants to promote immune responses induced by live-attenuated paramyxovirus vaccines. Here, we tested this hypothesis using a CDV vaccination and challenge model in ferrets. Three groups of six animals were intra-nasally vaccinated with recombinant (r) CDV(5804P)L(CCEGFPC) in the presence or absence of the infection-enhancing lipopeptides Pam3CSK4 or PHCSK4. The recombinant CDV vaccine virus had previously been described to be over-attenuated in ferrets. A group of six animals was mock-vaccinated as control. Six weeks after vaccination all animals were challenged with a lethal dose of rCDV strain Snyder-Hill expressing the red fluorescent protein dTomato. Unexpectedly, intra-nasal vaccination of ferrets with rCDV(5804P)L(CCEGFPC) in the absence of lipopeptides resulted in good immune responses and protection against lethal challenge infection. However, in animals vaccinated with lipopeptide-adjuvanted virus significantly higher vaccine virus loads were detected in nasopharyngeal lavages and peripheral blood mononuclear cells. In addition, these animals developed significantly higher CDV neutralizing antibody titers compared to animals vaccinated with non-adjuvanted vaccine. This study demonstrates that the synthetic cationic lipopeptides Pam3CSK4 and PHCSK4 not only enhance paramyxovirus infection in vitro, but also in vivo. Given the observed enhancement of immunogenicity their potential as adjuvants for other live-attenuated paramyxovirus vaccines should be considered

  18. A Reverse Genetics Approach for the Design of Methyltransferase-Defective Live Attenuated Avian Metapneumovirus Vaccines.

    Science.gov (United States)

    Zhang, Yu; Sun, Jing; Wei, Yongwei; Li, Jianrong

    2016-01-01

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and is associated with swollen head syndrome in chickens. aMPV belongs to the family Paramyxoviridae which includes many important human pathogens such as human respiratory syncytial virus (RSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (PIV3). The family also includes highly lethal emerging pathogens such as Nipah virus and Hendra virus, as well as agriculturally important viruses such as Newcastle disease virus (NDV). For many of these viruses, there is no effective vaccine. Here, we describe a reverse genetics approach to develop live attenuated aMPV vaccines by inhibiting the viral mRNA cap methyltransferase. The viral mRNA cap methyltransferase is an excellent target for the attenuation of paramyxoviruses because it plays essential roles in mRNA stability, efficient viral protein translation and innate immunity. We have described in detail the materials and methods used to generate recombinant aMPVs that lack viral mRNA cap methyltransferase activity. We have also provided methods to evaluate the genetic stability, pathogenesis, and immunogenicity of live aMPV vaccine candidates in turkeys.

  19. Development of a chimeric Zika vaccine using a licensed live-attenuated flavivirus vaccine as backbone.

    Science.gov (United States)

    Li, Xiao-Feng; Dong, Hao-Long; Wang, Hong-Jiang; Huang, Xing-Yao; Qiu, Ye-Feng; Ji, Xue; Ye, Qing; Li, Chunfeng; Liu, Yang; Deng, Yong-Qiang; Jiang, Tao; Cheng, Gong; Zhang, Fu-Chun; Davidson, Andrew D; Song, Ya-Jun; Shi, Pei-Yong; Qin, Cheng-Feng

    2018-02-14

    The global spread of Zika virus (ZIKV) and its unexpected association with congenital defects necessitates the rapid development of a safe and effective vaccine. Here we report the development and characterization of a recombinant chimeric ZIKV vaccine candidate (termed ChinZIKV) that expresses the prM-E proteins of ZIKV using the licensed Japanese encephalitis live-attenuated vaccine SA14-14-2 as the genetic backbone. ChinZIKV retains its replication activity and genetic stability in vitro, while exhibiting an attenuation phenotype in multiple animal models. Remarkably, immunization of mice and rhesus macaques with a single dose of ChinZIKV elicits robust and long-lasting immune responses, and confers complete protection against ZIKV challenge. Significantly, female mice immunized with ChinZIKV are protected against placental and fetal damage upon ZIKV challenge during pregnancy. Overall, our study provides an alternative vaccine platform in response to the ZIKV emergency, and the safety, immunogenicity, and protection profiles of ChinZIKV warrant further clinical development.

  20. Post-licensure, phase IV, safety study of a live attenuated Japanese encephalitis recombinant vaccine in children in Thailand.

    Science.gov (United States)

    Chotpitayasunondh, Tawee; Pruekprasert, Pornpimol; Puthanakit, Thanyawee; Pancharoen, Chitsanu; Tangsathapornpong, Auchara; Oberdorfer, Peninnah; Kosalaraksa, Pope; Prommalikit, Olarn; Tangkittithaworn, Suwimon; Kerdpanich, Phirangkul; Techasaensiri, Chonnamet; Korejwo, Joanna; Chuenkitmongkol, Sunate; Houillon, Guy

    2017-01-05

    Japanese encephalitis is a mosquito-borne viral disease endemic in most countries in Asia. A recombinant live, attenuated Japanese encephalitis virus vaccine, JE-CV, is licensed in 14 countries, including Thailand, for the prevention of Japanese encephalitis in adults and children. This was a prospective, phase IV, open-label, multicentre, safety study of JE-CV conducted from November 2013 to April 2015, to evaluate rare serious adverse events (AEs). JE-CV was administered to 10,000 healthy children aged 9months to vaccination. Serious AEs (SAEs), including AEs of special interest, up to 60days after administration were evaluated. Immediate Grade 3 systemic AEs up to 30min after JE-CV administration were also described. The median age of participants was 1.1years in Group 1 and 3.8years in Group 2. SAEs were reported in 204 (3.0%) participants in Group 1 and 59 (1.9%) participants in Group 2. Among a total of 294 SAEs in 263 participants, only three events occurring in two participants were considered related to vaccination. All three cases were moderate urticaria, none of which met the definition of AEs of special interest for hypersensitivity. AEs of special interest were reported in 28 (0.4%) participants in Group 1 and 4 (0.1%) participants in Group 2; none were considered related to vaccination. Febrile convulsion was the most frequently reported AE of special interest: 25 (0.4%) participants in Group 1; and 2 (vaccination. Our study did not identify any new safety concerns with JE-CV and confirms its good safety profile. This study was registered on www.clinicaltrials.gov (NCT01981967; Universal Trial Number: U1111-1127-7052). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. LIVE ATTENUATED VACCINES FOR THE IMMUNOPROPHYLAXIS

    Directory of Open Access Journals (Sweden)

    O. A. Shamsutdinova

    2017-01-01

    Full Text Available The review focuses on the history of the production of live antiviral vaccines and their use for the prevention of infectious diseases. It was noted that before the beginning of the 20th century, only three live vaccines were developed and put into practice — against smallpox, rabies, plague. The discovery of D. Enders, T.H. Weller and F.Ch. Robins of the ability of the polio virus, and then of a number of other viruses, to reproduce in vitro in cell cultures of various types, greatly expanded the studies on the production of attenuated strains of viruses for live vaccines. The historical stages of obtaining and introducing live vaccines for the prevention of smallpox, poliomyelitis, measles, rubella, and mumps are highlighted. Arguments in favor of the use of associated vaccine preparations for the prevention of viral infections are presented. Various variants of the strategy and tactics of using live vaccines, which are used for specific prevention of viral infections in different countries, are described. The review provides information on technological methods for obtaining antiviral vaccines. The publications testifying to the development of specific reactions in immunized vaccine strains of measles, mumps, poliomyelitis and rubella viruses, such as aseptic meningitis (vaccine strains of mumps virus, acute arthritis (vaccine rubella virus strains, temperature reactions, rash (vaccine strains of the virus Measles, vaccine-associated paralytic poliomyelitis (VAPP vaccine vaccine poliovirus. It is particularly noted that the long experience of vaccine prevention both in Russia and abroad convincingly shows that the risk of developing post-vaccination complications is incommensurably lower than the risk of causing harm to health from the corresponding infections. It is concluded that despite introduction of new third and fourth generation vaccines into practice, live attenuated vaccines do not lose their significance and are used in vaccine

  2. Construction and biological characterization of artificial recombinants between a wild type flavivirus (Kunjin) and a live chimeric flavivirus vaccine (ChimeriVax-JE).

    Science.gov (United States)

    Pugachev, Konstantin V; Schwaiger, Julia; Brown, Nathan; Zhang, Zhen-xi; Catalan, John; Mitchell, Frederick S; Ocran, Simeon W; Rumyantsev, Alexander A; Khromykh, Alexander A; Monath, Thomas P; Guirakhoo, Farshad

    2007-09-17

    Although the theoretical concern of genetic recombination has been raised related to the use of live attenuated flavivirus vaccines [Seligman, Gould, Lancet 2004;363:2073-5], it has little foundation [e.g., Monath TP, Kanesa-Thasan N, Guirakhoo F, Pugachev K, Almond J, Lang J, et al. Vaccine 2005;23:2956-8]. To investigate biological effects of recombination between a chimeric yellow fever (YF) 17D/Japanese encephalitis (JE) vaccine virus (ChimeriVax-JE) and a wild-type flavivirus Kunjin (KUN-cDNA), the prM-E envelope protein genes were swapped between the two viruses, resulting in new YF 17D/KUN(prM-E) and KUN/JE(prM-E) chimeras. The prM-E genes are easily exchangeable between flavivirues, and thus the exchange was expected to yield the most replication-competent chimeras, while other rationally designed recombinants would be more likely to be crippled or non-viable. The new chimeras proved highly attenuated in comparison with the KUN-cDNA parent, as judged by plaque size and growth kinetics in cell culture, low viremia in hamsters, and reduced neurovirulence/neuroinvasiveness in mice. These data provide strong experimental evidence that the potential of recombinants, should they ever emerge, to cause disease or spread (compete in nature with wild-type flaviviruses) would be indeed extremely low.

  3. Recombinant cold-adapted attenuated influenza A vaccines for use in children: molecular genetic analysis of the cold-adapted donor and recombinants.

    OpenAIRE

    Ghendon, Y Z; Polezhaev, F I; Lisovskaya, K V; Medvedeva, T E; Alexandrova, G I; Klimov, A I

    1984-01-01

    A previously described cold-adapted attenuated virus, A/Leningrad/134/17/57 (H2N2), was further modified by 30 additional passages in chicken embryos at 25 degrees C. This virus had a distinct temperature-sensitive (ts) phenotype, grew well in chicken embryos at 25 degrees C, and failed to recombine with reference ts mutants of fowl plague virus containing ts lesions in five genes coding for non-glycosylated proteins (genes 1, 2, 5, 7, and 8). Recombination of A/Leningrad/134/47/57 with wild-...

  4. Rational development of an attenuated recombinant cyprinid herpesvirus 3 vaccine using prokaryotic mutagenesis and in vivo bioluminescent imaging

    Science.gov (United States)

    Cyprinid herpesvirus 3 (CyHV-3) is causing severe economic losses worldwide in the carp industry, and a safe and efficacious attenuated vaccine compatible with mass vaccination is needed. We produced single deleted recombinants using prokaryotic mutagenesis. When producing a recombinant lacking open...

  5. Envelope exchange for the generation of live-attenuated arenavirus vaccines.

    Directory of Open Access Journals (Sweden)

    Andreas Bergthaler

    2006-06-01

    Full Text Available Arenaviruses such as Lassa fever virus cause significant mortality in endemic areas and represent potential bioterrorist weapons. The occurrence of arenaviral hemorrhagic fevers is largely confined to Third World countries with a limited medical infrastructure, and therefore live-attenuated vaccines have long been sought as a method of choice for prevention. Yet their rational design and engineering have been thwarted by technical limitations. In addition, viral genes had not been identified that are needed to cause disease but can be deleted or substituted to generate live-attenuated vaccine strains. Lymphocytic choriomeningitis virus, the prototype arenavirus, induces cell-mediated immunity against Lassa fever virus, but its safety for humans is unclear and untested. Using this virus model, we have developed the necessary methodology to efficiently modify arenavirus genomes and have exploited these techniques to identify an arenaviral Achilles' heel suitable for targeting in vaccine design. Reverse genetic exchange of the viral glycoprotein for foreign glycoproteins created attenuated vaccine strains that remained viable although unable to cause disease in infected mice. This phenotype remained stable even after extensive propagation in immunodeficient hosts. Nevertheless, the engineered viruses induced T cell-mediated immunity protecting against overwhelming systemic infection and severe liver disease upon wild-type virus challenge. Protection was established within 3 to 7 d after immunization and lasted for approximately 300 d. The identification of an arenaviral Achilles' heel demonstrates that the reverse genetic engineering of live-attenuated arenavirus vaccines is feasible. Moreover, our findings offer lymphocytic choriomeningitis virus or other arenaviruses expressing foreign glycoproteins as promising live-attenuated arenavirus vaccine candidates.

  6. Envelope Exchange for the Generation of Live-Attenuated Arenavirus Vaccines.

    Directory of Open Access Journals (Sweden)

    2006-06-01

    Full Text Available Arenaviruses such as Lassa fever virus cause significant mortality in endemic areas and represent potential bioterrorist weapons. The occurrence of arenaviral hemorrhagic fevers is largely confined to Third World countries with a limited medical infrastructure, and therefore live-attenuated vaccines have long been sought as a method of choice for prevention. Yet their rational design and engineering have been thwarted by technical limitations. In addition, viral genes had not been identified that are needed to cause disease but can be deleted or substituted to generate live-attenuated vaccine strains. Lymphocytic choriomeningitis virus, the prototype arenavirus, induces cell-mediated immunity against Lassa fever virus, but its safety for humans is unclear and untested. Using this virus model, we have developed the necessary methodology to efficiently modify arenavirus genomes and have exploited these techniques to identify an arenaviral Achilles' heel suitable for targeting in vaccine design. Reverse genetic exchange of the viral glycoprotein for foreign glycoproteins created attenuated vaccine strains that remained viable although unable to cause disease in infected mice. This phenotype remained stable even after extensive propagation in immunodeficient hosts. Nevertheless, the engineered viruses induced T cell-mediated immunity protecting against overwhelming systemic infection and severe liver disease upon wild-type virus challenge. Protection was established within 3 to 7 d after immunization and lasted for approximately 300 d. The identification of an arenaviral Achilles' heel demonstrates that the reverse genetic engineering of live-attenuated arenavirus vaccines is feasible. Moreover, our findings offer lymphocytic choriomeningitis virus or other arenaviruses expressing foreign glycoproteins as promising live-attenuated arenavirus vaccine candidates.

  7. Prior DNA vaccination does not interfere with the live-attenuated measles vaccine.

    Science.gov (United States)

    Premenko-Lanier, Mary; Rota, Paul; Rhodes, Gary; Bellini, William; McChesney, Michael

    2004-01-26

    The currently used live-attenuated measles vaccine is very effective although maternal antibody prevents its administration prior to 6 months of age. We are investigating the ability of a DNA vaccine encoding the measles viral hemagglutinin, fusion and nucleoprotein to protect newborn infants from measles. Here, we show that a measles DNA vaccine protects juvenile macaques from pathogenic measles virus challenge and that macaques primed and boosted with this DNA vaccine have anemnestic antibody and cell-mediated responses after vaccination with a live-attenuated canine distemper-measles vaccine. Therefore, this DNA vaccine administered to newborn infants may not hinder the subsequent use of live-attenuated measles vaccine.

  8. Immunity to Visceral Leishmaniasis Using Genetically Defined Live-Attenuated Parasites

    Directory of Open Access Journals (Sweden)

    Angamuthu Selvapandiyan

    2012-01-01

    Full Text Available Leishmaniasis is a protozoan parasitic disease endemic to the tropical and subtropical regions of the world, with three major clinical forms, self-healing cutaneous leishmaniasis (CL, mucocutaneous leishmaniasis (MCL, and visceral leishmaniasis (VL. Drug treatments are expensive and often result in the development of drug resistance. No vaccine is available against leishmaniasis. Subunit Leishmania vaccine immunization in animal models has shown some efficacy but little or none in humans. However, individuals who recover from natural infection are protected from reinfection and develop life-long protection, suggesting that infection may be a prerequisite for immunological memory. Thus, genetically altered live-attenuated parasites with controlled infectivity could achieve such memory. In this paper, we discuss development and characteristics of genetically altered, live-attenuated Leishmania donovani parasites and their possible use as vaccine candidates against VL. In addition, we discuss the challenges and other considerations in the use of live-attenuated parasites.

  9. Live attenuated S. Typhimurium vaccine with improved safety in immuno-compromised mice.

    Directory of Open Access Journals (Sweden)

    Balamurugan Periaswamy

    Full Text Available Live attenuated vaccines are of great value for preventing infectious diseases. They represent a delicate compromise between sufficient colonization-mediated adaptive immunity and minimizing the risk for infection by the vaccine strain itself. Immune defects can predispose to vaccine strain infections. It has remained unclear whether vaccine safety could be improved via mutations attenuating a vaccine in immune-deficient individuals without compromising the vaccine's performance in the normal host. We have addressed this hypothesis using a mouse model for Salmonella diarrhea and a live attenuated Salmonella Typhimurium strain (ssaV. Vaccination with this strain elicited protective immunity in wild type mice, but a fatal systemic infection in immune-deficient cybb(-/-nos2(-/- animals lacking NADPH oxidase and inducible NO synthase. In cybb(-/-nos2(-/- mice, we analyzed the attenuation of 35 ssaV strains carrying one additional mutation each. One strain, Z234 (ssaV SL1344_3093, was >1000-fold attenuated in cybb(-/-nos2(-/- mice and ≈100 fold attenuated in tnfr1(-/- animals. However, in wt mice, Z234 was as efficient as ssaV with respect to host colonization and the elicitation of a protective, O-antigen specific mucosal secretory IgA (sIgA response. These data suggest that it is possible to engineer live attenuated vaccines which are specifically attenuated in immuno-compromised hosts. This might help to improve vaccine safety.

  10. Rational development of an attenuated recombinant cyprinid herpesvirus 3 vaccine using prokaryotic mutagenesis and in vivo bioluminescent imaging.

    Science.gov (United States)

    Boutier, Maxime; Ronsmans, Maygane; Ouyang, Ping; Fournier, Guillaume; Reschner, Anca; Rakus, Krzysztof; Wilkie, Gavin S; Farnir, Frédéric; Bayrou, Calixte; Lieffrig, François; Li, Hong; Desmecht, Daniel; Davison, Andrew J; Vanderplasschen, Alain

    2015-02-01

    Cyprinid herpesvirus 3 (CyHV 3) is causing severe economic losses worldwide in common and koi carp industries, and a safe and efficacious attenuated vaccine compatible with mass vaccination is needed. We produced single deleted recombinants using prokaryotic mutagenesis. When producing a recombinant lacking open reading frame 134 (ORF134), we unexpectedly obtained a clone with additional deletion of ORF56 and ORF57. This triple deleted recombinant replicated efficiently in vitro and expressed an in vivo safety/efficacy profile compatible with use as an attenuated vaccine. To determine the role of the double ORF56-57 deletion in the phenotype and to improve further the quality of the vaccine candidate, a series of deleted recombinants was produced and tested in vivo. These experiments led to the selection of a double deleted recombinant lacking ORF56 and ORF57 as a vaccine candidate. The safety and efficacy of this strain were studied using an in vivo bioluminescent imaging system (IVIS), qPCR, and histopathological examination, which demonstrated that it enters fish via skin infection similar to the wild type strain. However, compared to the parental wild type strain, the vaccine candidate replicated at lower levels and spread less efficiently to secondary sites of infection. Transmission experiments allowing water contamination with or without additional physical contact between fish demonstrated that the vaccine candidate has a reduced ability to spread from vaccinated fish to naïve sentinel cohabitants. Finally, IVIS analyses demonstrated that the vaccine candidate induces a protective mucosal immune response at the portal of entry. Thus, the present study is the first to report the rational development of a recombinant attenuated vaccine against CyHV 3 for mass vaccination of carp. We also demonstrated the relevance of the CyHV 3 carp model for studying alloherpesvirus transmission and mucosal immunity in teleost skin.

  11. Induction of influenza-specific mucosal immunity by an attenuated recombinant Sendai virus.

    Directory of Open Access Journals (Sweden)

    Thuc-vy L Le

    2011-04-01

    Full Text Available Many pathogens initiate infection at the mucosal surfaces; therefore, induction of mucosal immune responses is a first level of defense against infection and is the most powerful means of protection. Although intramuscular injection is widely used for vaccination and is effective at inducing circulating antibodies, it is less effective at inducing mucosal antibodies.Here we report a novel recombinant, attenuated Sendai virus vector (GP42-H1 in which the hemagglutinin (HA gene of influenza A virus was introduced into the Sendai virus genome as an additional gene. Infection of CV-1 cells by GP42-H1 resulted in cell surface expression of the HA protein. Intranasal immunization of mice with 1,000 plaque forming units (pfu of GP42-H1 induced HA-specific IgG and IgA antibodies in the blood, bronchoalveolar lavage fluid, fecal pellet extracts and saliva. The HA-specific antibody titer induced by GP42-H1 closely resembles the titer induced by sublethal infection by live influenza virus; however, in contrast to infection by influenza virus, immunization with GP42-H1 did not result in disease symptoms or the loss of body weight. In mice that were immunized with GP42-H1 and then challenged with 5LD(50 (1250 pfu of influenza virus, no significant weight loss was observed and other visual signs of morbidity were not detected.These results demonstrate that the GP42-H1 Sendai virus recombinant is able to confer full protection from lethal infection by influenza virus, supporting the conclusion that it is a safe and effective mucosal vaccine vector.

  12. A novel live-attenuated vaccine candidate for mayaro Fever.

    Directory of Open Access Journals (Sweden)

    William J Weise

    2014-08-01

    Full Text Available Mayaro virus (MAYV is an emerging, mosquito-borne alphavirus that causes a dengue-like illness in many regions of South America, and which has the potential to urbanize. Because no specific treatment or vaccine is available for MAYV infection, we capitalized on an IRES-based approach to develop a live-attenuated MAYV vaccine candidate. Testing in infant, immunocompetent as well as interferon receptor-deficient mice demonstrated a high degree of attenuation, strong induction of neutralizing antibodies, and efficacy against lethal challenge. This vaccine strain was also unable to infect mosquito cells, a major safety feature for a live vaccine derived from a mosquito-borne virus. Further preclinical development of this vaccine candidate is warranted to protect against this important emerging disease.

  13. Protection of chickens against H5N1 highly pathogenic avian influenza virus infection by live vaccination with infectious laryngotracheitis virus recombinants expressing H5 hemagglutinin and N1 neuraminidase.

    Science.gov (United States)

    Pavlova, Sophia P; Veits, Jutta; Keil, Günther M; Mettenleiter, Thomas C; Fuchs, Walter

    2009-01-29

    Attenuated vaccine strains of the alphaherpesvirus causing infectious laryngotracheitis of chickens (ILTV, gallid herpesvirus 1) can be used for mass application. Previously, we showed that live virus vaccination with recombinant ILTV expressing hemagglutinin of highly pathogenic avian influenza viruses (HPAIV) protected chickens against ILT and fowl plague caused by HPAIV carrying the corresponding hemagglutinin subtypes [Lüschow D, Werner O, Mettenleiter TC, Fuchs W. Protection of chickens from lethal avian influenza A virus infection by live-virus vaccination with infectious laryngotracheitis virus recombinants expressing the hemagglutinin (H5) gene. Vaccine 2001;19(30):4249-59; Veits J, Lüschow D, Kindermann K, Werner O, Teifke JP, Mettenleiter TC, et al. Deletion of the non-essential UL0 gene of infectious laryngotracheitis (ILT) virus leads to attenuation in chickens, and UL0 mutants expressing influenza virus haemagglutinin (H7) protect against ILT and fowl plague. J Gen Virol 2003;84(12):3343-52]. However, protection against H5N1 HPAIV was not satisfactory. Therefore, a newly designed dUTPase-negative ILTV vector was used for rapid insertion of the H5-hemagglutinin, or N1-neuraminidase genes of a recent H5N1 HPAIV isolate. Compared to our previous constructs, protein expression was considerably enhanced by insertion of synthetic introns downstream of the human cytomegalovirus immediate-early promoter within the 5'-nontranslated region of the transgenes. Deletion of the viral dUTPase gene did not affect in vitro replication of the ILTV recombinants, but led to sufficient attenuation in vivo. After a single ocular immunization, all chickens developed H5- or N1-specific serum antibodies. Nevertheless, animals immunized with N1-ILTV died after subsequent H5N1 HPAIV challenge, although survival times were prolonged compared to non-vaccinated controls. In contrast, all chickens vaccinated with either H5-ILTV alone, or H5- and N1-ILTV simultaneously, survived

  14. Priming T-cell responses with recombinant measles vaccine vector in a heterologous prime-boost setting in non-human primates

    NARCIS (Netherlands)

    Bolton, Diane L.; Santra, Sampa; Swett-Tapia, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Mach, Linh; Naim, Hussein; Kozlowski, Pamela A.; Lifton, Michelle; Goudsmit, Jaap; Letvin, Norman; Roederer, Mario; Radošević, Katarina

    2012-01-01

    Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston

  15. Safety Overview of a Recombinant Live-Attenuated Tetravalent Dengue Vaccine: Pooled Analysis of Data from 18 Clinical Trials.

    Directory of Open Access Journals (Sweden)

    Sophia Gailhardou

    2016-07-01

    Full Text Available A recombinant live attenuated tetravalent dengue vaccine (CYD-TDV has been shown to be efficacious in preventing virologically-confirmed dengue disease, severe dengue disease and dengue hospitalization in children aged 2-16 years in Asia and Latin America. We analyzed pooled safety data from 18 phase I, II and III clinical trials in which the dengue vaccine was administered to participants aged 2-60 years, including long-term safety follow-up in three efficacy trials. The participants were analyzed according to their age at enrollment. The percentage of participants aged 2-60 years reporting ≥1 solicited injection-site or systemic reactions was slightly higher in the CYD-TDV group than in the placebo group. The most common solicited injection-site reactions were pain. Headache and malaise were the most common solicited systemic reactions. In both groups 0.3% of participants discontinued for safety reasons. The most common unsolicited adverse events were injection-site reactions, gastrointestinal disorders, and infections. Reactogenicity did not increase with successive doses of CYD-TDV. The frequency and nature of SAEs occurring within 28 days of any dose were similar in the CYD-TDV and placebo groups and were common medical conditions that could be expected as a function of age. Baseline dengue virus serostatus did not appear to influence the safety profile. No vaccine-related anaphylactic reactions, neurotropic events or viscerotropic events were reported. In year 3 after dose 1, an imbalance for dengue hospitalization, including for severe dengue, observed in participants aged <9 years in the CYD-TDV group compared with the placebo group was not observed for participants aged ≥9 years. In Year 4, this imbalance in participants aged <9 years was less marked, giving an overall lower risk of dengue hospitalization or severe dengue from dose 1 to Year 4 in the CYD-TDV group. These results have contributed to the definition of the target

  16. Live attenuated hepatitis A vaccines developed in China

    Science.gov (United States)

    Xu, Zhi-Yi; Wang, Xuan-Yi

    2014-01-01

    Two live, attenuated hepatitis A vaccines, H2 and LA-1 virus strains, were developed through serial passages of the viruses in cell cultures at 32 °C and 35 °C respectively. Both vaccines were safe and immunogenic, providing protection against clinical hepatitis A in 95% of the vaccinees, with a single dose by subcutaneous injection. The vaccine recipients were not protected from asymptomatic, subclinical hepatitis A virus (HAV) infection, which induced a similar antibody response as for unvaccinated subjects. A second dose caused anamnestic response and can be used for boosting. Oral immunization of human with H2 vaccine or of marmoset with LA-1 vaccine failed, and no evidence was found for person-to-person transmission of H2 strain or for marmoset-to-marmoset transmission of LA-1 strain by close contact. H2 strain was genetically stable when passaged in marmosets, humans or cell cultures at 37 °C; 3 consecutive passages of the virus in marmosets did not cause virulence mutation. The live vaccines offer the benefits of low cost, single dose injection, long- term protection, and increased duration of immunity through subclinical infection. Improved sanitation and administration of 150 million doses of the live vaccines to children had led to a 90% reduction in the annual national incidence rate of hepatitis A in China during the 16-year period, from 1991 to 2006. Hepatitis A (HA) immunization with both live and inactivated HA vaccines was implemented in the national routine childhood immunization program in 2008 and around 92% of the 16 million annual births received the affordable live, attenuated vaccines at 18 months of age. Near elimination of the disease was achieved in a county of China for 14 years following introduction of the H2 live vaccine into the Expanded Immunization Program (EPI) in 1992. PMID:24280971

  17. Recombinant cold-adapted attenuated influenza A vaccines for use in children: reactogenicity and antigenic activity of cold-adapted recombinants and analysis of isolates from the vaccinees.

    OpenAIRE

    Alexandrova, G I; Polezhaev, F I; Budilovsky, G N; Garmashova, L M; Topuria, N A; Egorov, A Y; Romejko-Gurko, Y R; Koval, T A; Lisovskaya, K V; Klimov, A I

    1984-01-01

    Reactogenicity and antigenic activity of recombinants obtained by crossing cold-adapted donor of attenuation A/Leningrad/134/47/57 with wild-type influenza virus strains A/Leningrad/322/79(H1N1) and A/Bangkok/1/79(H3N2) were studied. The recombinants were areactogenic when administered as an intranasal spray to children aged 3 to 15, including those who lacked or had only low titers of pre-existing anti-hemagglutinin and anti-neuraminidase antibody in their blood. After two administrations of...

  18. Live-Attenuated Bacterial Vectors: Tools for Vaccine and Therapeutic Agent Delivery

    Directory of Open Access Journals (Sweden)

    Ivan Y. C. Lin

    2015-11-01

    Full Text Available Genetically attenuated microorganisms, including pathogenic and commensal bacteria, can be engineered to carry and deliver heterologous antigens to elicit host immunity against both the vector as well as the pathogen from which the donor gene is derived. These live attenuated bacterial vectors have been given much attention due to their capacity to induce a broad range of immune responses including localized mucosal, as well as systemic humoral and/or cell-mediated immunity. In addition, the unique tumor-homing characteristics of these bacterial vectors has also been exploited for alternative anti-tumor vaccines and therapies. In such approach, tumor-associated antigen, immunostimulatory molecules, anti-tumor drugs, or nucleotides (DNA or RNA are delivered. Different potential vectors are appropriate for specific applications, depending on their pathogenic routes. In this review, we survey and summarize the main features of the different types of live bacterial vectors and discussed the clinical applications in the field of vaccinology. In addition, different approaches for using live attenuated bacterial vectors for anti-cancer therapy is discussed, and some promising pre-clinical and clinical studies in this field are outlined.

  19. Vaccinia virus recombinants expressing chimeric proteins of human immunodeficiency virus and gamma interferon are attenuated for nude mice.

    OpenAIRE

    Giavedoni, L D; Jones, L; Gardner, M B; Gibson, H L; Ng, C T; Barr, P J; Yilma, T

    1992-01-01

    We have developed a method for attenuating vaccinia virus recombinants by expressing a fusion protein of a lymphokine and an immunogen. Chimeric genes were constructed that coded for gamma interferon (IFN-gamma) and structural proteins of the human immunodeficiency virus type 1 (HIV-1). In this study, we describe the biological and immunological properties of vaccinia virus recombinants expressing chimeric genes of murine or human IFN-gamma with glycoprotein gp120, gag, and a fragment of gp41...

  20. Conditional live virus as a novel approach towards a safe live attenuated HIV vaccine

    NARCIS (Netherlands)

    Das, Atze T.; Zhou, Xue; Vink, Monique; Klaver, Bep; Berkhout, Ben

    2002-01-01

    To control the worldwide spread of HIV, a safe and effective prophylactic vaccine is urgently needed. Studies with the simian immunodeficiency virus demonstrated that a live attenuated virus can be effective as a vaccine, but serious concerns about the safety of such a vaccine virus have arisen. We

  1. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens

    OpenAIRE

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping; Schnell, Matthias J.; von Messling, Veronika

    2017-01-01

    The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant ...

  2. Principles underlying rational design of live attenuated influenza vaccines

    Science.gov (United States)

    Jang, Yo Han

    2012-01-01

    Despite recent innovative advances in molecular virology and the developments of vaccines, influenza virus remains a serious burden for human health. Vaccination has been considered a primary countermeasure for prevention of influenza infection. Live attenuated influenza vaccines (LAIVs) are particularly attracting attention as an effective strategy due to several advantages over inactivated vaccines. Cold-adaptation, as a classical means for attenuating viral virulence, has been successfully used for generating safe and effective donor strains of LAIVs against seasonal epidemics and occasional pandemics. Recently, the advent of reverse genetics technique expedited a variety of rational strategies to broaden the pool of LAIVs. Considering the breadth of antigenic diversity of influenza virus, the pool of LAIVs is likely to equip us with better options for controlling influenza pandemics. With a brief reflection on classical attenuating strategies used at the initial stage of development of LAIVs, especially on the principles underlying the development of cold-adapted LAIVs, we further discuss and outline other attenuation strategies especially with respect to the rationales for attenuation, and their practicality for mass production. Finally, we propose important considerations for a rational vaccine design, which will provide us with practical guidelines for improving the safety and effectiveness of LAIVs. PMID:23596576

  3. Use of the live attenuated Japanese Encephalitis vaccine SA 14-14-2 in children: A review of safety and tolerability studies.

    Science.gov (United States)

    Ginsburg, Amy Sarah; Meghani, Ankita; Halstead, Scott B; Yaich, Mansour

    2017-10-03

    Japanese encephalitis (JE) is the leading cause of viral neurological disease and disability in Asia. Some 50-80% of children with clinical JE die or have long-term neurologic sequelae. Since there is no cure, human vaccination is the only effective long-term control measure, and the World Health Organization recommends that at-risk populations receive a safe and effective vaccine. Four different types of JE vaccines are currently available: inactivated mouse brain-derived vaccines, inactivated Vero cell vaccines, live attenuated SA 14-14-2 vaccines and a live recombinant (chimeric) vaccine. With the rapidly increasing demand for and availability and use of JE vaccines, countries face an important decision in the selection of a JE vaccine. This article provides a comprehensive review of the available safety literature for the live attenuated SA 14-14-2 JE vaccine (LAJEV), the most widely used new generation JE vaccine. With well-established effectiveness data, a single dose of LAJEV protects against clinical JE disease for at least 5 years, providing a long duration of protection compared with inactivated mouse brain-derived vaccines. Since 1988, about 700 million doses of the LAJEV have been distributed globally. Our review found that LAJEV is well tolerated across a wide age range and can safely be given to children as young as 8 months of age. While serious adverse events attributable to LAJEV have been reported, independent experts have not found sufficient evidence for causality based on the available data.

  4. Safety and infectivity of two doses of live-attenuated recombinant cold-passaged human parainfluenza type 3 virus vaccine rHPIV3cp45 in HPIV3-seronegative young children.

    Science.gov (United States)

    Englund, Janet A; Karron, Ruth A; Cunningham, Coleen K; Larussa, Philip; Melvin, Ann; Yogev, Ram; Handelsman, Ed; Siberry, George K; Thumar, Bhavanji; Schappell, Elizabeth; Bull, Catherine V; Chu, Helen Y; Schaap-Nutt, Anne; Buchholz, Ursula; Collins, Peter L; Schmidt, Alexander C

    2013-11-19

    Human parainfluenza virus type 3 (HPIV3) is a common cause of upper and lower respiratory tract illness in infants and young children. Live-attenuated cold-adapted HPIV3 vaccines have been evaluated in infants but a suitable interval for administration of a second dose of vaccine has not been defined. HPIV3-seronegative children between the ages of 6 and 36 months were randomized 2:1 in a blinded study to receive two doses of 10⁵ TCID₅₀ (50% tissue culture infectious dose) of live-attenuated, recombinant cold-passaged human PIV3 vaccine (rHPIV3cp45) or placebo 6 months apart. Serum antibody levels were assessed prior to and approximately 4-6 weeks after each dose. Vaccine virus infectivity, defined as detection of vaccine-HPIV3 in nasal wash and/or a≥4-fold rise in serum antibody titer, and reactogenicity were assessed on days 3, 7, and 14 following immunization. Forty HPIV3-seronegative children (median age 13 months; range 6-35 months) were enrolled; 27 (68%) received vaccine and 13 (32%) received placebo. Infectivity was detected in 25 (96%) of 26 evaluable vaccinees following doses 1 and 9 of 26 subject (35%) following dose 2. Among those who shed virus, the median duration of viral shedding was 12 days (range 6-15 days) after dose 1 and 6 days (range 3-8 days) after dose 2, with a mean peak log₁₀ viral titer of 3.4 PFU/mL (SD: 1.0) after dose 1 compared to 1.5 PFU/mL (SD: 0.92) after dose 2. Overall, reactogenicity was mild, with no difference in rates of fever and upper respiratory infection symptoms between vaccine and placebo groups. rHPIV3cp45 was immunogenic and well-tolerated in seronegative young children. A second dose administered 6 months after the initial dose was restricted in those previously infected with vaccine virus; however, the second dose boosted antibody responses and induced antibody responses in two previously uninfected children. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Unique Safety Issues Associated with Virus Vectored Vaccines: Potential for and Theoretical Consequences of Recombination with Wild Type Virus Strains

    Science.gov (United States)

    Condit, Richard C.; Williamson, Anna-Lise; Sheets, Rebecca; Seligman, Stephen J.; Monath, Thomas P.; Excler, Jean-Louis; Gurwith, Marc; Bok, Karin; Robertson, James S.; Kim, Denny; Hendry, Michael; Singh, Vidisha; Mac, Lisa M.; Chen, Robert T.

    2016-01-01

    In 2003 and 2013, the World Health Organization convened informal consultations on characterization and quality aspects of vaccines based on live virus vectors. In the resulting reports, one of several issues raised for future study was the potential for recombination of virus-vectored vaccines with wild type pathogenic virus strains. This paper presents an assessment of this issue formulated by the Brighton Collaboration. To provide an appropriate context for understanding the potential for recombination of virus-vectored vaccines, we review briefly the current status of virus vectored vaccines, mechanisms of recombination between viruses, experience with recombination involving live attenuated vaccines in the field, and concerns raised previously in the literature regarding recombination of virus-vectored vaccines with wild type virus strains. We then present a discussion of the major variables that could influence recombination between a virus-vectored vaccine and circulating wild type virus and the consequences of such recombination, including intrinsic recombination properties of the parent virus used as a vector; sequence relatedness of vector and wild virus; virus host range, pathogenesis and transmission; replication competency of vector in target host; mechanism of vector attenuation; additional factors potentially affecting virulence; and circulation of multiple recombinant vectors in the same target population. Finally, we present some guiding principles for vector design and testing intended to anticipate and mitigate the potential for and consequences of recombination of virus-vectored vaccines with wild type pathogenic virus strains. PMID:27346303

  6. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates.

    Science.gov (United States)

    Govindarajan, Dhanasekaran; Guan, Liming; Meschino, Steven; Fridman, Arthur; Bagchi, Ansu; Pak, Irene; ter Meulen, Jan; Casimiro, Danilo R; Bett, Andrew J

    2016-01-01

    Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.

  7. MVA recombinants expressing the fusion and hemagglutinin genes of PPRV protects goats against virulent challenge.

    Science.gov (United States)

    Chandran, Dev; Reddy, Kolli Bhaktavatsala; Vijayan, Shahana Pallichera; Sugumar, Parthasarthy; Rani, Gudavalli Sudha; Kumar, Ponsekaran Santha; Rajendra, Lingala; Srinivasan, Villuppanoor Alwar

    2010-09-01

    Peste des Petits Ruminants (PPR) is a highly contagious animal disease caused by the Peste des Petits Ruminants virus (PPRV) belonging to the genus morbillivirus and family Paramyxoviridae. The disease results in high morbidity and mortality in goats, sheep and in some small wild ruminants. The presence of large number of small ruminants reared in endemic areas makes PPR a notorious disease threatening the livelihood of poor farmers. Conventional vaccination using a live, attenuated vaccine gives adequate protection but cannot be used in case of eradication of the disease due to difficulty in differentiation of infected animals from the vaccinated ones.In the present study, we constructed two recombinant viruses using attenuated Modified Vaccinia virus Ankara virus (MVA) namely MVA-F and MVA-H expressing the full length PPRV fusion (F) and hemagglutinin (H) glycoproteins, respectively. Goats were vaccinated intramuscularly with 105 plaque forming units (PFU) each of the recombinant viruses and a live attenuated vaccine (RAKSHA PPR) and challenged 4 months later with PPRV challenge virus (10(3) goat LD(50)). All goats were completely protected from the clinical disease. This study gave an indication that mass vaccination of small ruminants with either of the above or both recombinant inexpensive virus vaccines could help in possible eradication of PPRV from endemic countries like India and subsequent seromonitoring of the disease for differentiation of infected animals from vaccinated ones.

  8. Protection of macaques with diverse MHC genotypes against a heterologous SIV by vaccination with a deglycosylated live-attenuated SIV.

    Directory of Open Access Journals (Sweden)

    Chie Sugimoto

    Full Text Available HIV vaccine development has been hampered by issues such as undefined correlates of protection and extensive diversity of HIV. We addressed these issues using a previously established SIV-macaque model in which SIV mutants with deletions of multiple gp120 N-glycans function as potent live attenuated vaccines to induce near-sterile immunity against the parental pathogenic SIVmac239. In this study, we investigated the protective efficacy of these mutants against a highly pathogenic heterologous SIVsmE543-3 delivered intravenously to rhesus macaques with diverse MHC genotypes. All 11 vaccinated macaques contained the acute-phase infection with blood viral loads below the level of detection between 4 and 10 weeks postchallenge (pc, following a transient but marginal peak of viral replication at 2 weeks in only half of the challenged animals. In the chronic phase, seven vaccinees contained viral replication for over 80 weeks pc, while four did not. Neutralizing antibodies against challenge virus were not detected. Although overall levels of SIV specific T cell responses did not correlate with containment of acute and chronic viral replication, a critical role of cellular responses in the containment of viral replication was suggested. Emergence of viruses with altered fitness due to recombination between the vaccine and challenge viruses and increased gp120 glycosylation was linked to the failure to control SIV. These results demonstrate the induction of effective protective immune responses in a significant number of animals against heterologous virus by infection with deglycosylated attenuated SIV mutants in macaques with highly diverse MHC background. These findings suggest that broad HIV cross clade protection is possible, even in hosts with diverse genetic backgrounds. In summary, results of this study indicate that deglycosylated live-attenuated vaccines may provide a platform for the elucidation of correlates of protection needed for a

  9. Newcastle disease virus (NDV) recombinants expressing infectious laryngotracheitis virus (ILTV) glycoproteins gB and gD protect chickens against ILTV and NDV challenges.

    Science.gov (United States)

    Zhao, Wei; Spatz, Stephen; Zhang, Zhenyu; Wen, Guoyuan; Garcia, Maricarmen; Zsak, Laszlo; Yu, Qingzhong

    2014-08-01

    Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). The disease is controlled mainly through biosecurity and vaccination with live attenuated strains of ILTV and vectored vaccines based on turkey herpesvirus (HVT) and fowlpox virus (FPV). The current live attenuated vaccines (chicken embryo origin [CEO] and tissue culture origin [TCO]), although effective, can regain virulence, whereas HVT- and FPV-vectored ILTV vaccines are less efficacious than live attenuated vaccines. Therefore, there is a pressing need to develop safer and more efficacious ILTV vaccines. In the present study, we generated Newcastle disease virus (NDV) recombinants, based on the LaSota vaccine strain, expressing glycoproteins B (gB) and D (gD) of ILTV using reverse genetics technology. These recombinant viruses, rLS/ILTV-gB and rLS/ILTV-gD, were slightly attenuated in vivo yet retained growth dynamics, stability, and virus titers in vitro that were similar to those of the parental LaSota virus. Expression of ILTV gB and gD proteins in the recombinant virus-infected cells was detected by immunofluorescence assay. Vaccination of specific-pathogen-free chickens with these recombinant viruses conferred significant protection against virulent ILTV and velogenic NDV challenges. Immunization of commercial broilers with rLS/ILTV-gB provided a level of protection against clinical disease similar to that provided by the live attenuated commercial vaccines, with no decrease in body weight gains. The results of the study suggested that the rLS/ILTV-gB and -gD viruses are safe, stable, and effective bivalent vaccines that can be mass administered via aerosol or drinking water to large chicken populations. This paper describes the development and evaluation of novel bivalent vaccines against chicken infectious laryngotracheitis (ILT) and Newcastle disease (ND), two of the most economically important infectious

  10. [A case of orchitis following vaccination with freeze-dried live attenuated mumps vaccine].

    Science.gov (United States)

    Suzuki, Masayasu; Takizawa, Akitoshi; Furuta, Akira; Yanada, Shuichi; Iwamuro, Shinya; Tashiro, Kazuya

    2002-05-01

    In Japan, freeze-dried live attenuated mumps vaccine has been used optionally since 1981. The effectiveness of mumps vaccination has been established by worldwide research since 1971. On the other hand, because of it's live activity several untoward effects have been reported. Vaccination-related mumps orchitis is a rare adverse effect of mumps vaccine. Only 9 cases of vaccination-related mumps orchitis have been reported in Japan. We describe a case of orchitis following mumps vaccination in adolescence. A 16 years-old male has admitted because of acute orchitis with high fever and painful swelling of right testis. The patient had received vaccination with freeze-dried live attenuated mumps vaccine 16 days before admission. After admission, the bed-rest had completely relieved the symptoms on 6th hospital day. The impaired testis has maintained normal size and consistency 6 months after discharge.

  11. Attenuation and immunogenicity of host-range extended modified vaccinia virus Ankara recombinants.

    Science.gov (United States)

    Melamed, Sharon; Wyatt, Linda S; Kastenmayer, Robin J; Moss, Bernard

    2013-09-23

    Modified vaccinia virus Ankara (MVA) is being widely investigated as a safe smallpox vaccine and as an expression vector to produce vaccines against other infectious diseases and cancer. MVA was isolated following more than 500 passages in chick embryo fibroblasts and suffered several major deletions and numerous small mutations resulting in replication defects in human and most other mammalian cells as well as severe attenuation of pathogenicity. Due to the host range restriction, primary chick embryo fibroblasts are routinely used for production of MVA-based vaccines. While a replication defect undoubtedly contributes to safety of MVA, it is worth considering whether host range and attenuation are partially separable properties. Marker rescue transfection experiments resulted in the creation of recombinant MVAs with extended mammalian cell host range. Here, we characterize two host-range extended rMVAs and show that they (i) have acquired the ability to stably replicate in Vero cells, which are frequently used as a cell substrate for vaccine manufacture, (ii) are severely attenuated in immunocompetent and immunodeficient mouse strains following intranasal infection, (iii) are more pathogenic than MVA but less pathogenic than the ACAM2000 vaccine strain at high intracranial doses, (iv) do not form lesions upon tail scratch in mice in contrast to ACAM2000 and (v) induce protective humoral and cell-mediated immune responses similar to MVA. The extended host range of rMVAs may be useful for vaccine production. Published by Elsevier Ltd.

  12. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates.

    Directory of Open Access Journals (Sweden)

    Dhanasekaran Govindarajan

    Full Text Available Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.

  13. An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants.

    Science.gov (United States)

    Rose, N F; Marx, P A; Luckay, A; Nixon, D F; Moretto, W J; Donahoe, S M; Montefiori, D; Roberts, A; Buonocore, L; Rose, J K

    2001-09-07

    We developed an AIDS vaccine based on attenuated VSV vectors expressing env and gag genes and tested it in rhesus monkeys. Boosting was accomplished using vectors with glycoproteins from different VSV serotypes. Animals were challenged with a pathogenic AIDS virus (SHIV89.6P). Control monkeys showed a severe loss of CD4+ T cells and high viral loads, and 7/8 progressed to AIDS with an average time of 148 days. All seven vaccinees were initially infected with SHIV89.6P but have remained healthy for up to 14 months after challenge with low or undetectable viral loads. Protection from AIDS was highly significant (p = 0.001). VSV vectors are promising candidates for human AIDS vaccine trials because they propagate to high titers and can be delivered without injection.

  14. Evaluation of the infection and transmission of wild type and recombinant strains of Newcastle disease virus in Japanese Quail

    Science.gov (United States)

    Newcastle disease virus (NDV) causes a range of clinical disease ranging from asymptomatic infection to severe disease with high mortality. Vaccination for NDV is practiced almost worldwide in commercial chickens. Attenuated live vaccines are most commonly used, with recombinant vaccines becoming ...

  15. Attenuated Recombinant Influenza A Virus Expressing HPV16 E6 and E7 as a Novel Therapeutic Vaccine Approach.

    Directory of Open Access Journals (Sweden)

    Christoph Jindra

    Full Text Available Persistent infection with high-risk human papillomavirus (HPV types, most often HPV16 and HPV18, causes all cervical and most anal cancers, and a subset of vulvar, vaginal, penile and oropharyngeal carcinomas. Two prophylactic virus-like particle (VLPs-based vaccines, are available that protect against vaccine type-associated persistent infection and associated disease, yet have no therapeutic effect on existing lesions or infections. We have generated recombinant live-attenuated influenza A viruses expressing the HPV16 oncogenes E6 and E7 as experimental immunotherapeutic vaccine candidates. The influenza A virus life cycle lacks DNA intermediates as important safety feature. Different serotypes were generated to ensure efficient prime and boost immunizations. The immune response to vaccination in C57BL/6 mice was characterized by peptide ELISA and IFN-γ ELISpot, demonstrating induction of cell-mediated immunity to HPV16 E6 and E7 oncoproteins. Prophylactic and therapeutic vaccine efficacy was analyzed in the murine HPV16-positive TC-1 tumor challenge model. Subcutaneous (s.c. prime and boost vaccinations of mice with recombinant influenza A serotypes H1N1 and H3N2, followed by challenge with TC-1 cells resulted in complete protection or significantly reduced tumor growth as compared to control animals. In a therapeutic setting, s.c. vaccination of mice with established TC-1 tumors decelerated tumor growth and significantly prolonged survival. Importantly, intralesional vaccine administration induced complete tumor regression in 25% of animals, and significantly reduced tumor growth in 50% of mice. These results suggest recombinant E6E7 influenza viruses as a promising new approach for the development of a therapeutic vaccine against HPV-induced disease.

  16. Updated data on effective and safe immunizations with live-attenuated vaccines for children after living donor liver transplantation.

    Science.gov (United States)

    Shinjoh, Masayoshi; Hoshino, Ken; Takahashi, Takao; Nakayama, Tetsuo

    2015-01-29

    Although immunizations using live-attenuated vaccines are not recommended for children post-liver transplant due to their theoretical risks, they will inevitably encounter vaccine-preventable viral diseases upon returning to real-life situations. The window of opportunity for vaccination is usually limited prior to transplantation because these children often have unstable disease courses. Also, vaccine immunity does not always persist after transplantation. Beginning in 2002, subcutaneous immunizations with four individual live-attenuated vaccines (measles, rubella, varicella, and mumps) to pediatric patients following living donor liver transplantation (LDLT) were performed for those who fulfilled the clinical criteria, including humoral and cell-mediated immunity. Written informed consent was collected. We included the study on 70 immunizations for 18 cases that we reported in 2008 (Shinjoh et al., 2008). A total of 196 immunizations were administered to 48 pediatric post-LDLT recipients. Of these, 144 were first immunizations and 52 were repeated immunizations following LDLT. The seroconversion rates at the first dose for measles (AIK-C), rubella (TO-336), varicella (Oka), and mumps (Hoshino) were 100% (36/36), 100% (35/35), 70% (23/33), and 75% (24/32), respectively. Antibody levels did not fall over time in patients immunized with rubella vaccine. Three mild cases of breakthrough varicella were observed. Two cases with transient parotid gland swelling were observed after mumps immunization. Two admissions because of fever at 2-3 weeks after the measles vaccine were reported but the patients had no symptoms of measles. Immunizations using selected live-attenuated vaccines were safe and effective for post-LDLT children who were not severely immunosuppressed. However, with the exception of rubella, repeated immunization may be necessary. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The recombinant globular head domain of the measles virus hemagglutinin protein as a subunit vaccine against measles.

    Science.gov (United States)

    Lobanova, Liubov M; Eng, Nelson F; Satkunarajah, Malathy; Mutwiri, George K; Rini, James M; Zakhartchouk, Alexander N

    2012-04-26

    Despite the availability of live attenuated measles virus (MV) vaccines, a large number of measles-associated deaths occur among infants in developing countries. The development of a measles subunit vaccine may circumvent the limitations associated with the current live attenuated vaccines and eventually contribute to global measles eradication. Therefore, the goal of this study was to test the feasibility of producing the recombinant globular head domain of the MV hemagglutinin (H) protein by stably transfected human cells and to examine the ability of this recombinant protein to elicit MV-specific immune responses. The recombinant protein was purified from the culture supernatant of stably transfected HEK293T cells secreting a tagged version of the protein. Two subcutaneous immunizations with the purified recombinant protein alone resulted in the production of MV-specific serum IgG and neutralizing antibodies in mice. Formulation of the protein with adjuvants (polyphosphazene or alum) further enhanced the humoral immune response and in addition resulted in the induction of cell-mediated immunity as measured by the production of MV H-specific interferon gamma (IFN-γ) and interleukin 5 (IL-5) by in vitro re-stimulated splenocytes. Furthermore, the inclusion of polyphosphazene into the vaccine formulation induced a mixed Th1/Th2-type immune response. In addition, the purified recombinant protein retained its immunogenicity even after storage at 37°C for 2 weeks. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Influenza Vaccination Strategies: Comparing Inactivated and Live Attenuated Influenza Vaccines

    Directory of Open Access Journals (Sweden)

    Saranya Sridhar

    2015-04-01

    Full Text Available Influenza is a major respiratory pathogen causing annual outbreaks and occasional pandemics. Influenza vaccination is the major method of prophylaxis. Currently annual influenza vaccination is recommended for groups at high risk of complications from influenza infection such as pregnant women, young children, people with underlying disease and the elderly, along with occupational groups such a healthcare workers and farm workers. There are two main types of vaccines available: the parenteral inactivated influenza vaccine and the intranasal live attenuated influenza vaccine. The inactivated vaccines are licensed from 6 months of age and have been used for more than 50 years with a good safety profile. Inactivated vaccines are standardized according to the presence of the viral major surface glycoprotein hemagglutinin and protection is mediated by the induction of vaccine strain specific antibody responses. In contrast, the live attenuated vaccines are licensed in Europe for children from 2–17 years of age and provide a multifaceted immune response with local and systemic antibody and T cell responses but with no clear correlate of protection. Here we discuss the immunological immune responses elicited by the two vaccines and discuss future work to better define correlates of protection.

  19. Construction and characterization of recombinant flaviviruses bearing insertions between E and NS1 genes

    Directory of Open Access Journals (Sweden)

    Kubelka Claire F

    2007-10-01

    Full Text Available Abstract Background The yellow fever virus, a member of the genus Flavivirus, is an arthropod-borne pathogen causing severe disease in humans. The attenuated yellow fever 17D virus strain has been used for human vaccination for 70 years and has several characteristics that are desirable for the development of new, live attenuated vaccines. We described here a methodology to construct a viable, and immunogenic recombinant yellow fever 17D virus expressing a green fluorescent protein variant (EGFP. This approach took into account the presence of functional motifs and amino acid sequence conservation flanking the E and NS1 intergenic region to duplicate and fuse them to the exogenous gene and thereby allow the correct processing of the viral polyprotein precursor. Results YF 17D EGFP recombinant virus was grew in Vero cells and reached a peak titer of approximately 6.45 ± 0.4 log10 PFU/mL at 96 hours post-infection. Immunoprecipitation and confocal laser scanning microscopy demonstrated the expression of the EGFP, which was retained in the endoplasmic reticulum and not secreted from infected cells. The association with the ER compartment did not interfere with YF assembly, since the recombinant virus was fully competent to replicate and exit the cell. This virus was genetically stable up to the tenth serial passage in Vero cells. The recombinant virus was capable to elicit a neutralizing antibody response to YF and antibodies to EGFP as evidenced by an ELISA test. The applicability of this cloning strategy to clone gene foreign sequences in other flavivirus genomes was demonstrated by the construction of a chimeric recombinant YF 17D/DEN4 virus. Conclusion This system is likely to be useful for a broader live attenuated YF 17D virus-based vaccine development for human diseases. Moreover, insertion of foreign genes into the flavivirus genome may also allow in vivo studies on flavivirus cell and tissue tropism as well as cellular processes related

  20. Generation and Characterization of Live Attenuated Influenza A(H7N9 Candidate Vaccine Virus Based on Russian Donor of Attenuation.

    Directory of Open Access Journals (Sweden)

    Svetlana Shcherbik

    Full Text Available Avian influenza A (H7N9 virus has emerged recently and continues to cause severe disease with a high mortality rate in humans prompting the development of candidate vaccine viruses. Live attenuated influenza vaccines (LAIV are 6:2 reassortant viruses containing the HA and NA gene segments from wild type influenza viruses to induce protective immune responses and the six internal genes from Master Donor Viruses (MDV to provide temperature sensitive, cold-adapted and attenuated phenotypes.LAIV candidate A/Anhui/1/2013(H7N9-CDC-LV7A (abbreviated as CDC-LV7A, based on the Russian MDV, A/Leningrad/134/17/57 (H2N2, was generated by classical reassortment in eggs and retained MDV temperature-sensitive and cold-adapted phenotypes. CDC-LV7A had two amino acid substitutions N123D and N149D (H7 numbering in HA and one substitution T10I in NA. To evaluate the role of these mutations on the replication capacity of the reassortants in eggs, the recombinant viruses A(H7N9RG-LV1 and A(H7N9RG-LV2 were generated by reverse genetics. These changes did not alter virus antigenicity as ferret antiserum to CDC-LV7A vaccine candidate inhibited hemagglutination by homologous A(H7N9 virus efficiently. Safety studies in ferrets confirmed that CDC-LV7A was attenuated compared to wild-type A/Anhui/1/2013. In addition, the genetic stability of this vaccine candidate was examined in eggs and ferrets by monitoring sequence changes acquired during virus replication in the two host models. No changes in the viral genome were detected after five passages in eggs. However, after ten passages additional mutations were detected in the HA gene. The vaccine candidate was shown to be stable in the ferret model; post-vaccination sequence data analysis showed no changes in viruses collected in nasal washes present at day 5 or day 7.Our data indicate that the A/Anhui/1/2013(H7N9-CDC-LV7A reassortant virus is a safe and genetically stable candidate vaccine virus that is now available for

  1. Priming T-cell responses with recombinant measles vaccine vector in a heterologous prime-boost setting in non-human primates

    OpenAIRE

    Bolton, Diane L.; Santra, Sampa; Swett, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Kozlowski, Pamela A.; Letvin, Norman; Roederer, Mario; Radošević, Katarina

    2012-01-01

    Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston Zagreb vaccine strain was engineered to express simian immunodeficiency virus (SIV) Gag protein for the purpose of evaluating the immunogenicity of rMV as a vaccine vector in rhesus macaques. rMV-Gag...

  2. Live vaccinia-rabies virus recombinants, but not an inactivated rabies virus cell culture vaccine, protect B-lymphocyte-deficient A/WySnJ mice against rabies: considerations of recombinant defective poxviruses for rabies immunization of immunocompromised individuals.

    Science.gov (United States)

    Lodmell, Donald L; Esposito, Joseph J; Ewalt, Larry C

    2004-09-03

    Presently, commercially available cell culture rabies vaccines for humans and animals consist of the five inactivated rabies virus proteins. The vaccines elicit a CD4+ helper T-cell response and a humoral B-cell response against the viral glycoprotein (G) resulting in the production of virus neutralizing antibody. Antibody against the viral nucleoprotein (N) is also present, but the mechanism(s) of its protection is unclear. HIV-infected individuals with low CD4+ T-lymphocyte counts and individuals undergoing treatment with immunosuppressive drugs have an impaired neutralizing antibody response after pre- and post-exposure immunization with rabies cell culture vaccines. Here we show the efficacy of live vaccinia-rabies virus recombinants, but not a cell culture vaccine consisting of inactivated rabies virus, to elicit elevated levels of neutralizing antibody in B-lymphocyte deficient A/WySnJ mice. The cell culture vaccine also failed to protect the mice, whereas a single immunization of a vaccinia recombinant expressing the rabies virus G or co-expressing G and N equally protected the mice up to 18 months after vaccination. The data suggest that recombinant poxviruses expressing the rabies virus G, in particular replication defective poxviruses such as canarypox or MVA vaccinia virus that undergo abortive replication in non-avian cells, or the attenuated vaccinia virus NYVAC, should be evaluated as rabies vaccines in immunocompromised individuals.

  3. Biodistribution and safety of a live attenuated tetravalent dengue vaccine in the cynomolgus monkey.

    Science.gov (United States)

    Ravel, Guillaume; Mantel, Nathalie; Silvano, Jeremy; Rogue, Alexandra; Guy, Bruno; Jackson, Nicholas; Burdin, Nicolas

    2017-10-13

    The first licensed dengue vaccine is a recombinant, live, attenuated, tetravalent dengue virus vaccine (CYD-TDV; Sanofi Pasteur). This study assessed the biodistribution, shedding, and toxicity of CYD-TDV in a non-human primate model as part of the nonclinical safety assessment program for the vaccine. Cynomolgus monkeys were given one subcutaneous injection of either one human dose (5log 10 CCID 50 /serotype) of CYD-TDV or saline control. Study endpoints included clinical observations, body temperature, body weight, food consumption, clinical pathology, immunogenicity, and post-mortem examinations including histopathology. Viral load, distribution, persistence, and shedding in tissues and body fluids were evaluated by quantitative reverse transcriptase polymerase chain reaction. The subcutaneous administration of CYD-TDV was well tolerated. There were no toxicological findings other than expected minor local reactions at the injection site. A transient low level of CYD-TDV viral RNA was detected in blood and the viral genome was identified primarily at the injection site and in the draining lymph nodes following immunization. These results, together with other data from repeat-dose toxicity and neurovirulence studies, confirm the absence of toxicological concern with CYD-TDV and corroborate clinical study observations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens.

    Science.gov (United States)

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping; Schnell, Matthias J; von Messling, Veronika

    2017-04-15

    The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near-wild-type titers, and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone-inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment protein- and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were immunized with only a RABV expressing the attachment protein of CDV vaccine strain Onderstepoort succumbed to infection with a more recent wild-type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains. IMPORTANCE Rabies virus and canine distemper virus (CDV) cause high mortality rates and death in many carnivores. While rabies vaccines are inactivated and thus have an excellent safety profile and high stability, live-attenuated CDV vaccines can retain residual virulence in highly susceptible species. Here we generated recombinant inactivated rabies viruses that carry one of the CDV glycoproteins on their surface. Ferrets immunized twice with a mix of recombinant rabies viruses carrying the CDV fusion and attachment glycoproteins were protected from lethal CDV challenge, whereas all animals that received

  5. [Immune Response of Recombinant Pseudorabies Virus rPRV-VP2 Expressing VP2 Gene of Porcine Parvovirus in Mice].

    Science.gov (United States)

    Fu, Pengfei; Pan, Xinlong; Han, Qiao; Yang, Xingwu; Zhu, Qianlei; Guo, Xiaoqing; Zhang, Yu; Chen, Hongying

    2016-03-01

    In order to develop a combined live vaccine that will be used to prevent against porcine parvovirus (PPV) and Pseudorabies virus (PRV) infection, the VP2 gene of PPV was inserted into the transfer vector plasmid pG to produce the recombinant plasmid pGVP2. The plasmid pGVP2 and the genome of PRV HB98 attenuated vaccine were transfected by using lipofectamine into swine testis cells for the homologous recombination. The recombinant virus rPRV-VP2 was purified by selection of green fluorescence plaques for five cycles. 6-week-old female Kunming mice were immunized intramuscularly with attenuated PRV parent HB98 strain, commercial inactivated vaccine against PPV, recombinant virus, DMEM culture solution. The injections were repeated with an equivalent dose after 2 weeks in all of the groups, and then challenged with the virulent PRV NY strain at 7 weeks after the first immunization. The recombinant virus rPRV-VP2 was successfully generated, and the recombinant virus could effectively elicite anti-PPV and PRV antibody and significant cellular immune response as indicated by anti-PPV ELISA and HI, PRV-neutralizing assay and flow cytometry. The challenge assay indicated that recombinant virus could protect the mice against the virulent PRV challenge. These results demonstrated that the recombinant virus can be a candidate recombinant vaccine strain for the prevention of PRV and PPV.

  6. Temperature-sensitive mutations for live-attenuated Rift Valley fever vaccines: Implications from other RNA viruses

    Directory of Open Access Journals (Sweden)

    Shoko eNishiyama

    2015-08-01

    Full Text Available Rift Valley fever (RVF is a mosquito-borne zoonotic disease endemic to the African continent. RVF is characterized by high rate of abortions in ruminants and hemorrhagic fever, encephalitis or blindness in humans. RVF is caused by the Rift Valley fever virus (RVFV: genus Phlebovirus, family Bunyaviridae. Vaccination is the only known effective strategy to prevent the disease, but there are no licensed RVF vaccines available for humans. A live-attenuated vaccine candidate derived from the wild-type pathogenic Egyptian ZH548 strain, MP-12, has been conditionally licensed for veterinary use in the United States. MP-12 displays a temperature-sensitive (ts phenotype and does not replicate at 41oC. The ts mutation limits viral replication at a specific body temperature and may lead to an attenuation of the virus. Here we will review well-characterized ts mutations for RNA viruses, and further discuss the potential in designing novel live-attenuated vaccines for RVF.

  7. A review of immunogenicity and tolerability of live attenuated Hepatitis A vaccine in children

    Science.gov (United States)

    Rao, Sameer; Mao, J. S.; Motlekar, Salman; Fangcheng, Zhuang; Kadhe, Ganesh

    2016-01-01

    ABSTRACT Changing epidemiology of Hepatitis A virus (HAV) has led to an increased susceptibility of adolescents and adults to the infection. Vaccination can remarkably reduce the incidence and associated morbidity of HAV infection. This review is focused on the safety and efficacy of H2 strain derived live attenuated Hepatitis A vaccine. We found the vaccine to be highly immunogenic with minimal or negligible safety issues. Moreover, a single dose of live attenuated vaccine persists a long term immune response and can be a preferred option for developing countries. In 2014, Indian Academy of Paediatrics (IAP) also updated their recommendations for H2 vaccine as a single dose as against the previous 2 dose schedule. A focused approach to include the vaccine in national immunization program should be explored. PMID:27532370

  8. Live attenuated vaccines: Historical successes and current challenges

    Energy Technology Data Exchange (ETDEWEB)

    Minor, Philip D., E-mail: Philip.Minor@nibsc.org

    2015-05-15

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up in clinical use; the identification of the candidates is reviewed. - Highlights: • Live vaccines against human diseases caused by viruses have been very successful. • They have been developed by empirical clinical studies and problems identified in later use. • It can be difficult to balance ability to cause disease and ability to immunise for a strain. • There is currently no reliable basis for predicting success from pure virological studies. • Vaccinia, which eradicated smallpox, is the paradigm for all successes and issues.

  9. Live attenuated vaccines: Historical successes and current challenges

    International Nuclear Information System (INIS)

    Minor, Philip D.

    2015-01-01

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up in clinical use; the identification of the candidates is reviewed. - Highlights: • Live vaccines against human diseases caused by viruses have been very successful. • They have been developed by empirical clinical studies and problems identified in later use. • It can be difficult to balance ability to cause disease and ability to immunise for a strain. • There is currently no reliable basis for predicting success from pure virological studies. • Vaccinia, which eradicated smallpox, is the paradigm for all successes and issues

  10. Biomarkers of safety and immune protection for genetically modified live attenuated leishmania vaccines against visceral leishmaniasis - discovery and implications.

    Science.gov (United States)

    Gannavaram, Sreenivas; Dey, Ranadhir; Avishek, Kumar; Selvapandiyan, Angamuthu; Salotra, Poonam; Nakhasi, Hira L

    2014-01-01

    Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood-borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, subunit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in Leishmania donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters, and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines, e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen(-/-) in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal

  11. The Asd+-DadB+ Dual-Plasmid System Offers a Novel Means To Deliver Multiple Protective Antigens by a Recombinant Attenuated Salmonella Vaccine

    Science.gov (United States)

    Xin, Wei; Wanda, Soo-Young; Zhang, Xiangmin; Santander, Javier; Scarpellini, Giorgio; Ellis, Karen; Alamuri, Praveen

    2012-01-01

    We developed means to deliver multiple heterologous antigens on dual plasmids with non-antibiotic-resistance markers in a single recombinant attenuated vaccine strain of Salmonella enterica serotype Typhimurium. The first component of this delivery system is a strain of S. Typhimurium carrying genomic deletions in alr, dadB, and asd, resulting in obligate requirements for diaminopimelic acid (DAP) and d-alanine for growth. The second component is the Asd+-DadB+ plasmid pair carrying wild-type copies of asdA and dadB, respectively, to complement the mutations. To evaluate the protection efficacy of the dual-plasmid vaccine, S. Typhimurium strain χ9760 (a strain with multiple attenuating mutations: Δasd Δalr ΔdadB ΔrecF) was transformed with Asd+ and DadB+ plasmids specifying pneumococcal antigens PspA and PspC, respectively. Both plasmids were stable in χ9760 for 50 generations when grown in nonselective medium. This was significantly (P < 0.05) greater than the stability seen in its recF+ counterpart χ9590 and could be attributed to reduced interplasmid recombination in χ9760. Oral immunization of BALB/c mice with 1 × 109 CFU of χ9760 (carrying Asd+-PspA and DadB+-PspC plasmids) elicited a dominant Th1-type serum IgG response against both antigens and protected mice against intraperitoneal challenge with 200 50% lethal doses (LD50s) of virulent Streptococcus pneumoniae strain WU2 or intravenous challenge with 100 LD50s of virulent S. pneumoniae strain L81905 or intranasal challenge with a lethal dose of S. pneumoniae A66.1 in a pneumonia model. Protection offered by χ9760 was superior to that offered by the mixture of two strains, χ9828 (Asd+-PspA) and χ11026 (DadB+-PspC). This novel dual-plasmid system marks a remarkable improvement in the development of live bacterial vaccines. PMID:22868499

  12. The Asd(+)-DadB(+) dual-plasmid system offers a novel means to deliver multiple protective antigens by a recombinant attenuated Salmonella vaccine.

    Science.gov (United States)

    Xin, Wei; Wanda, Soo-Young; Zhang, Xiangmin; Santander, Javier; Scarpellini, Giorgio; Ellis, Karen; Alamuri, Praveen; Curtiss, Roy

    2012-10-01

    We developed means to deliver multiple heterologous antigens on dual plasmids with non-antibiotic-resistance markers in a single recombinant attenuated vaccine strain of Salmonella enterica serotype Typhimurium. The first component of this delivery system is a strain of S. Typhimurium carrying genomic deletions in alr, dadB, and asd, resulting in obligate requirements for diaminopimelic acid (DAP) and d-alanine for growth. The second component is the Asd(+)-DadB(+) plasmid pair carrying wild-type copies of asdA and dadB, respectively, to complement the mutations. To evaluate the protection efficacy of the dual-plasmid vaccine, S. Typhimurium strain χ9760 (a strain with multiple attenuating mutations: Δasd Δalr ΔdadB ΔrecF) was transformed with Asd(+) and DadB(+) plasmids specifying pneumococcal antigens PspA and PspC, respectively. Both plasmids were stable in χ9760 for 50 generations when grown in nonselective medium. This was significantly (P < 0.05) greater than the stability seen in its recF(+) counterpart χ9590 and could be attributed to reduced interplasmid recombination in χ9760. Oral immunization of BALB/c mice with 1 × 10(9) CFU of χ9760 (carrying Asd(+)-PspA and DadB(+)-PspC plasmids) elicited a dominant Th1-type serum IgG response against both antigens and protected mice against intraperitoneal challenge with 200 50% lethal doses (LD(50)s) of virulent Streptococcus pneumoniae strain WU2 or intravenous challenge with 100 LD(50)s of virulent S. pneumoniae strain L81905 or intranasal challenge with a lethal dose of S. pneumoniae A66.1 in a pneumonia model. Protection offered by χ9760 was superior to that offered by the mixture of two strains, χ9828 (Asd(+)-PspA) and χ11026 (DadB(+)-PspC). This novel dual-plasmid system marks a remarkable improvement in the development of live bacterial vaccines.

  13. Live Attenuated Influenza Vaccine Enhances Colonization of Streptococcus pneumoniae and Staphylococcus aureus in Mice

    Science.gov (United States)

    Mina, Michael J.; McCullers, Jonathan A.; Klugman, Keith P.

    2014-01-01

    ABSTRACT Community interactions at mucosal surfaces between viruses, like influenza virus, and respiratory bacterial pathogens are important contributors toward pathogenesis of bacterial disease. What has not been considered is the natural extension of these interactions to live attenuated immunizations, and in particular, live attenuated influenza vaccines (LAIVs). Using a mouse-adapted LAIV against influenza A (H3N2) virus carrying the same mutations as the human FluMist vaccine, we find that LAIV vaccination reverses normal bacterial clearance from the nasopharynx and significantly increases bacterial carriage densities of the clinically important bacterial pathogens Streptococcus pneumoniae (serotypes 19F and 7F) and Staphylococcus aureus (strains Newman and Wright) within the upper respiratory tract of mice. Vaccination with LAIV also resulted in 2- to 5-fold increases in mean durations of bacterial carriage. Furthermore, we show that the increases in carriage density and duration were nearly identical in all aspects to changes in bacterial colonizing dynamics following infection with wild-type (WT) influenza virus. Importantly, LAIV, unlike WT influenza viruses, had no effect on severe bacterial disease or mortality within the lower respiratory tract. Our findings are, to the best of our knowledge, the first to demonstrate that vaccination with a live attenuated viral vaccine can directly modulate colonizing dynamics of important and unrelated human bacterial pathogens, and does so in a manner highly analogous to that seen following wild-type virus infection. PMID:24549845

  14. Evaluation of live attenuated S79 mumps vaccine effectiveness in mumps outbreaks: a matched case-control study.

    Science.gov (United States)

    Fu, Chuan-xi; Nie, Jun; Liang, Jian-hua; Wang, Ming

    2009-02-05

    Mumps virus infection is a potentially serious viral infection of childhood and early adulthood. In China, live attenuated S(79) mumps vaccine has been licensed for pediatric use since 1990. The objective of this study was to determine the effectiveness of live attenuated S(79) mumps vaccine against clinical mumps in outbreaks. Cases were selected from mumps outbreaks in schools in Guangzhou between 2004 and 2005. Each case was matched by gender, age and classroom. Vaccination information was obtained from Children's EPI Administrative Computerized System. Vaccine effectiveness (VE) was calculated for 1 or 2 doses of S(79) vaccine with 95% confidence intervals (CI). One hundred and ninety-four cases and 194 controls were enrolled into the study. VE of the S(79) mumps vaccine for 1 dose versus 0 confer protection 80.4% (95% CI, 60.0%-90.4%) and VEs against mumps in outbreaks for 1 dose of mumps vaccine are similar among those children aged 4-9 years and aged over 10 years old. The live attenuated S(79) mumps vaccine can be effective in preventing clinical mumps outbreaks.

  15. Comparison of the live attenuated yellow fever vaccine 17D-204 strain to its virulent parental strain Asibi by deep sequencing.

    Science.gov (United States)

    Beck, Andrew; Tesh, Robert B; Wood, Thomas G; Widen, Steven G; Ryman, Kate D; Barrett, Alan D T

    2014-02-01

    The first comparison of a live RNA viral vaccine strain to its wild-type parental strain by deep sequencing is presented using as a model the yellow fever virus (YFV) live vaccine strain 17D-204 and its wild-type parental strain, Asibi. The YFV 17D-204 vaccine genome was compared to that of the parental strain Asibi by massively parallel methods. Variability was compared on multiple scales of the viral genomes. A modeled exploration of small-frequency variants was performed to reconstruct plausible regions of mutational plasticity. Overt quasispecies diversity is a feature of the parental strain, whereas the live vaccine strain lacks diversity according to multiple independent measurements. A lack of attenuating mutations in the Asibi population relative to that of 17D-204 was observed, demonstrating that the vaccine strain was derived by discrete mutation of Asibi and not by selection of genomes in the wild-type population. Relative quasispecies structure is a plausible correlate of attenuation for live viral vaccines. Analyses such as these of attenuated viruses improve our understanding of the molecular basis of vaccine attenuation and provide critical information on the stability of live vaccines and the risk of reversion to virulence.

  16. No evidence of murine leukemia virus-related viruses in live attenuated human vaccines.

    Directory of Open Access Journals (Sweden)

    William M Switzer

    Full Text Available The association of xenotropic murine leukemia virus (MLV-related virus (XMRV in prostate cancer and chronic fatigue syndrome reported in previous studies remains controversial as these results have been questioned by recent data. Nonetheless, concerns have been raised regarding contamination of human vaccines as a possible source of introduction of XMRV and MLV into human populations. To address this possibility, we tested eight live attenuated human vaccines using generic PCR for XMRV and MLV sequences. Viral metagenomics using deep sequencing was also done to identify the possibility of other adventitious agents.All eight live attenuated vaccines, including Japanese encephalitis virus (JEV (SA-14-14-2, varicella (Varivax, measles, mumps, and rubella (MMR-II, measles (Attenuvax, rubella (Meruvax-II, rotavirus (Rotateq and Rotarix, and yellow fever virus were negative for XMRV and highly related MLV sequences. However, residual hamster DNA, but not RNA, containing novel endogenous gammaretrovirus sequences was detected in the JEV vaccine using PCR. Metagenomics analysis did not detect any adventitious viral sequences of public health concern. Intracisternal A particle sequences closest to those present in Syrian hamsters and not mice were also detected in the JEV SA-14-14-2 vaccine. Combined, these results are consistent with the production of the JEV vaccine in Syrian hamster cells.We found no evidence of XMRV and MLV in eight live attenuated human vaccines further supporting the safety of these vaccines. Our findings suggest that vaccines are an unlikely source of XMRV and MLV exposure in humans and are consistent with the mounting evidence on the absence of these viruses in humans.

  17. Live attenuated vaccines: Historical successes and current challenges.

    Science.gov (United States)

    Minor, Philip D

    2015-05-01

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up in clinical use; the identification of the candidates is reviewed. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  18. Biomarkers of Safety and Immune Protection for Genetically Modified Live Attenuated Leishmania Vaccines Against Visceral Leishmaniasis – Discovery and Implications

    Science.gov (United States)

    Gannavaram, Sreenivas; Dey, Ranadhir; Avishek, Kumar; Selvapandiyan, Angamuthu; Salotra, Poonam; Nakhasi, Hira L.

    2014-01-01

    Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood-borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, subunit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in Leishmania donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters, and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines, e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen−/− in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal

  19. Biomarkers of safety and immune protection for genetically modified live attenuated Leishmania vaccines against visceral leishmaniasis-Discovery and implications

    Directory of Open Access Journals (Sweden)

    Sreenivas eGannavaram

    2014-05-01

    Full Text Available Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, sub-unit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in L. donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen1-/- in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated

  20. Oral vaccination with LcrV from Yersinia pestis KIM delivered by live attenuated Salmonella enterica serovar Typhimurium elicits a protective immune response against challenge with Yersinia pseudotuberculosis and Yersinia enterocolitica.

    Science.gov (United States)

    Branger, Christine G; Torres-Escobar, Ascención; Sun, Wei; Perry, Robert; Fetherston, Jacqueline; Roland, Kenneth L; Curtiss, Roy

    2009-08-27

    The use of live recombinant attenuated Salmonella vaccines (RASV) synthesizing Yersinia proteins is a promising approach for controlling infection by Yersinia species. In this study, we constructed attenuated Salmonella strains which synthesize a truncated form of LcrV, LcrV196 and evaluated the immune response and protective efficacy elicited by these strains in mice against two other major species of Yersinia: Yersinia pseudotuberculosis and Yersinia enterocolitica. Surprisingly, we found that the RASV strain alone was sufficient to afford nearly full protection against challenge with Y. pseudotuberculosis, indicating the likelihood that Salmonella produces immunogenic cross-protective antigens. In contrast, lcrV196 expression was required for protection against challenge with Y. enterocolitica strain 8081, but was not sufficient to achieve significant protection against challenge with Y. enterocolitica strain WA, which expressed a divergent form of lcrV. Nevertheless, we are encouraged by these findings to continue pursuing our long-term goal of developing a single vaccine to protect against all three human pathogenic species of Yersinia.

  1. CRISPR-Cas9, a tool to efficiently increase the development of recombinant African swine fever viruses.

    Science.gov (United States)

    Borca, Manuel V; Holinka, Lauren G; Berggren, Keith A; Gladue, Douglas P

    2018-02-16

    African swine fever virus (ASFV) causes a highly contagious disease called African swine fever. This disease is often lethal for domestic pigs, causing extensive losses for the swine industry. ASFV is a large and complex double stranded DNA virus. Currently there is no commercially available treatment or vaccine to prevent this devastating disease. Development of recombinant ASFV for producing live-attenuated vaccines or studying the involvement of specific genes in virus virulence has relied on the relatively rare event of homologous recombination in primary swine macrophages, causing difficulty to purify the recombinant virus from the wild-type parental ASFV. Here we present the use of the CRISPR-Cas9 gene editing system as a more robust and efficient system to produce recombinant ASFVs. Using CRISPR-Cas9 a recombinant virus was efficiently developed by deleting the non-essential gene 8-DR from the genome of the highly virulent field strain Georgia07 using swine macrophages as cell substrate.

  2. Development of live attenuated sparfloxacin-resistant Streptococcus agalactiae polyvalent vaccines to protect Nile tilapia

    Science.gov (United States)

    To develop attenuated bacteria as potential live vaccines, sparfloxacin was used in this study to modify 40 isolates of Streptococcus agalactiae. Majority of S. agalactiae used in this study were able to develop at least 80-fold resistance to sparfloxacin. When the virulence of the sparfloxacin-resi...

  3. Herpes Simplex Vaccines: Prospects of Live-attenuated HSV Vaccines to Combat Genital and Ocular infections

    Science.gov (United States)

    Stanfield, Brent; Kousoulas, Konstantin Gus

    2015-01-01

    Herpes simplex virus type-1 (HSV-1) and its closely related type-2 (HSV-2) viruses cause important clinical manifestations in humans including acute ocular disease and genital infections. These viruses establish latency in the trigeminal ganglionic and dorsal root neurons, respectively. Both viruses are widespread among humans and can frequently reactivate from latency causing disease. Currently, there are no vaccines available against herpes simplex viral infections. However, a number of promising vaccine approaches are being explored in pre-clinical investigations with few progressing to early phase clinical trials. Consensus research findings suggest that robust humoral and cellular immune responses may partially control the frequency of reactivation episodes and reduce clinical symptoms. Live-attenuated viral vaccines have long been considered as a viable option for generating robust and protective immune responses against viral pathogens. Varicella zoster virus (VZV) belongs to the same alphaherpesvirus subfamily with herpes simplex viruses. A live-attenuated VZV vaccine has been extensively used in a prophylactic and therapeutic approach to combat primary and recurrent VZV infection indicating that a similar vaccine approach may be feasible for HSVs. In this review, we summarize pre-clinical approaches to HSV vaccine development and current efforts to test certain vaccine approaches in human clinical trials. Also, we discuss the potential advantages of using a safe, live-attenuated HSV-1 vaccine strain to protect against both HSV-1 and HSV-2 infections. PMID:27114893

  4. Yellow fever live attenuated vaccine: A very successful live attenuated vaccine but still we have problems controlling the disease.

    Science.gov (United States)

    Barrett, Alan D T

    2017-10-20

    Yellow fever (YF) is regarded as the original hemorrhagic fever and has been a major public health problem for at least 250years. A very effective live attenuated vaccine, strain 17D, was developed in the 1930s and this has proved critical in the control of the disease. There is little doubt that without the vaccine, YF virus would be considered a biosafety level 4 pathogen. Significantly, YF is currently the only disease where an international vaccination certificate is required under the International Health Regulations. Despite having a very successful vaccine, there are occasional issues of supply and demand, such as that which occurred in Angola and Democratic Republic of Congo in 2016 when there was insufficient vaccine available. For the first time fractional dosing of the vaccine was approved on an emergency basis. Thus, continued vigilance and improvements in supply and demand are needed in the future. Copyright © 2017. Published by Elsevier Ltd.

  5. Effective preexposure and postexposure prophylaxis of rabies with a highly attenuated recombinant rabies virus

    OpenAIRE

    Faber, Milosz; Li, Jianwei; Kean, Rhonda B.; Hooper, D. Craig; Alugupalli, Kishore R.; Dietzschold, Bernhard

    2009-01-01

    Rabies remains an important public health problem with more than 95% of all human rabies cases caused by exposure to rabid dogs in areas where effective, inexpensive vaccines are unavailable. Because of their ability to induce strong innate and adaptive immune responses capable of clearing the infection from the CNS after a single immunization, live-attenuated rabies virus (RV) vaccines could be particularly useful not only for the global eradication of canine rabies but also for late-stage r...

  6. Preparation of live attenuated leishmania parasites by using laser technology

    Science.gov (United States)

    Hussain, Nabiha; Alkhouri, Hassan; Haddad, Shaden

    2018-05-01

    Leishmaniasis is a parasitic disease of humans, affecting the skin, mucosal and/or internal organs, caused by flagellate protozoa Leishmania of the Trypanosomatidae family. Leishmania would be one for which a vaccine could be developed with relative ease. Many studies mount an effective response that resolves the infection and confers solid immunity to reinfection and suggesting that infection may be a prerequisite for immunological memory. Genetically altered live attenuated parasites with controlled infectivity could achieve such immunological memory. Recent concepts include use of genetically modified live-attenuated Leishmania parasites, and proteomics approach for the search of a cross-protective leishmanial vaccine that would ideally protect against both cutaneous and visceral forms of the disease. No licensed vaccine is available till date against any form of leishmaniasis. The present study evaluated role of laser technology in development of a safe live Leishmania vaccine, a vaccine is a biological preparation that improves immunity to a particular disease, and is often made from weakened or killed forms of LPs. The parasite culture was expanded in RPMI 1640 medium with 10% fetal calf serum (FCS) and grown until stationary phase for experiments. 80 samples of leishmania promastigotes (Culture media of LPs) were exposed to Nd:YAG laser (wavelength 1064 nm, single spot or double) with different outputs powers (7w, 100 Hz, 99.03w/cm2, 0.99 J/cm2 and 8 w, 100 Hz, 113.18w/cm2 1.13J/cm2)) for suitable exposer times. The effect of semiconductor laser (wavelength 810 nm, 7w, 2000 Hz, 99.03w/cm2, 0.05 J/cm2) or (7 w, 500 Hz, 99.03 w/cm2, 0.2J/cm2) single spot or double with long exposure times. The viability of Leishmania parasites was measured using XTT method; viable parasites were decreased with long exposure times. XTT test referred both these wavelengths were effective in killing percentage of Leishmania promastigotes, the remaining were devoid flagellum that

  7. Preliminary development of a live attenuated canine parvovirus vaccine from an isolate of British origin.

    Science.gov (United States)

    Churchill, A E

    1987-04-04

    Canine parvovirus isolated from a case of haemorrhagic enteritis in a breeding kennel in England was passaged and cloned in cultured feline and canine cells. No significant evidence of pathogenicity was found during six serial passages of the modified virus back through young dogs. The attenuated virus was excreted by inoculated animals and spread rapidly to uninoculated animals held in contact. When high titre attenuated virus was given to the six-week-old offspring of a seropositive dam a prompt seroconversion was observed. When the attenuated virus was used as an experimental vaccine in 108 pups in an infected breeding colony a highly significant improvement was obtained in the accumulated morbidity and mortality compared with a parallel group vaccinated with modified live feline panleucopenia virus.

  8. Identification of sequence changes in live attenuated goose parvovirus vaccine strains developed in Asia and Europe.

    Science.gov (United States)

    Shien, J-H; Wang, Y-S; Chen, C-H; Shieh, H K; Hu, C-C; Chang, P-C

    2008-10-01

    Live attenuated vaccines have been used for control of the disease caused by goose parvovirus (GPV), but the mechanism involved in attenuation of GPV remains elusive. This report presents the complete nucleotide sequences of two live attenuated strains of GPV (82-0321V and VG32/1) that were independently developed in Taiwan and Europe, together with the parental strain of 82-0321V and a field strain isolated in Taiwan in 2006. Sequence comparisons showed that 82-0321V and VG32/1 had multiple deletions and substitutions in the inverted terminal repeats region when compared with their parental strain or the field virus, but these changes did not affect the formation of the hairpin structure essential for viral replication. Moreover, 82-0321V and VG32/1 had five amino acid changes in the non-structural protein, but these changes were located at positions distant from known functional motifs in the non-structural protein. In contrast, 82-0321V had nine changes and VG32/1 had 11 changes in their capsid proteins (VP1), and the majority of these changes occurred at positions close to the putative receptor binding sites of VP1, as predicted using the structure of adeno-associated virus 2 as the model system. Taken together, the results suggest that changes in sequence near the receptor binding sites of VP1 might be responsible for attenuation of GPV. This is the first report of complete nucleotide sequences of GPV other than the virulent B strain, and suggests a possible mechanism for attenuation of GPV.

  9. Immunogenicity and protective efficacy of a live attenuated H5N1 vaccine in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Shufang Fan

    2009-05-01

    Full Text Available The continued spread of highly pathogenic H5N1 influenza viruses among poultry and wild birds, together with the emergence of drug-resistant variants and the possibility of human-to-human transmission, has spurred attempts to develop an effective vaccine. Inactivated subvirion or whole-virion H5N1 vaccines have shown promising immunogenicity in clinical trials, but their ability to elicit protective immunity in unprimed human populations remains unknown. A cold-adapted, live attenuated vaccine with the hemagglutinin (HA and neuraminidase (NA genes of an H5N1 virus A/VN/1203/2004 (clade 1 was protective against the pulmonary replication of homologous and heterologous wild-type H5N1 viruses in mice and ferrets. In this study, we used reverse genetics to produce a cold-adapted, live attenuated H5N1 vaccine (AH/AAca that contains HA and NA genes from a recent H5N1 isolate, A/Anhui/2/05 virus (AH/05 (clade 2.3, and the backbone of the cold-adapted influenza H2N2 A/AnnArbor/6/60 virus (AAca. AH/AAca was attenuated in chickens, mice, and monkeys, and it induced robust neutralizing antibody responses as well as HA-specific CD4+ T cell immune responses in rhesus macaques immunized twice intranasally. Importantly, the vaccinated macaques were fully protected from challenge with either the homologous AH/05 virus or a heterologous H5N1 virus, A/bar-headed goose/Qinghai/3/05 (BHG/05; clade 2.2. These results demonstrate for the first time that a cold-adapted H5N1 vaccine can elicit protective immunity against highly pathogenic H5N1 virus infection in a nonhuman primate model and provide a compelling argument for further testing of double immunization with live attenuated H5N1 vaccines in human trials.

  10. MicroRNA-Based Attenuation of Influenza Virus across Susceptible Hosts.

    Science.gov (United States)

    Waring, Barbara M; Sjaastad, Louisa E; Fiege, Jessica K; Fay, Elizabeth J; Reyes, Ismarc; Moriarity, Branden; Langlois, Ryan A

    2018-01-15

    Influenza A virus drives significant morbidity and mortality in humans and livestock. Annual circulation of the virus in livestock and waterfowl contributes to severe economic disruption and increases the risk of zoonotic transmission of novel strains into the human population, where there is no preexisting immunity. Seasonal vaccinations in humans help prevent infection and can reduce symptoms when infection does occur. However, current vaccination regimens available for livestock are limited in part due to safety concerns regarding reassortment/recombination with circulating strains. Therefore, inactivated vaccines are used instead of the more immunostimulatory live attenuated vaccines. MicroRNAs (miRNAs) have been used previously to generate attenuated influenza A viruses for use as a vaccine. Here, we systematically targeted individual influenza gene mRNAs using the same miRNA to determine the segment(s) that yields maximal attenuation potential. This analysis demonstrated that targeting of NP mRNA most efficiently ablates replication. We further increased the plasticity of miRNA-mediated attenuation of influenza A virus by exploiting a miRNA, miR-21, that is ubiquitously expressed across influenza-susceptible hosts. In order to construct this targeted virus, we used CRISPR/Cas9 to eliminate the universally expressed miR-21 from MDCK cells. miR-21-targeted viruses were attenuated in human, mouse, canine, and avian cells and drove protective immunity in mice. This strategy has the potential to enhance the safety of live attenuated vaccines in humans and zoonotic reservoirs. IMPORTANCE Influenza A virus circulates annually in both avian and human populations, causing significant morbidity, mortality, and economic burden. High incidence of zoonotic infections greatly increases the potential for transmission to humans, where no preexisting immunity or vaccine exists. There is a critical need for new vaccine strategies to combat emerging influenza outbreaks. Micro

  11. Recombinant vaccines and the development of new vaccine strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, I.P.; Leite, L.C.C. [Centro de Biotecnologia, Instituto Butantan, São Paulo, SP (Brazil)

    2012-09-07

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  12. Recombinant vaccines and the development of new vaccine strategies

    Directory of Open Access Journals (Sweden)

    I.P. Nascimento

    2012-12-01

    Full Text Available Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  13. Recombinant vaccines and the development of new vaccine strategies

    International Nuclear Information System (INIS)

    Nascimento, I.P.; Leite, L.C.C.

    2012-01-01

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks

  14. Complete Genome Sequence of the Goatpox Virus Strain Gorgan Obtained Directly from a Commercial Live Attenuated Vaccine

    Science.gov (United States)

    Mathijs, Elisabeth; Vandenbussche, Frank; Haegeman, Andy; Al-Majali, Ahmad; De Clercq, Kris

    2016-01-01

    This is a report of the complete genome sequence of the goatpox virus strain Gorgan, which was obtained directly from a commercial live attenuated vaccine (Caprivac, Jordan Bio-Industries Centre). PMID:27738031

  15. A trans-Complementing Recombination Trap Demonstrates a Low Propensity of Flaviviruses for Intermolecular Recombination▿

    Science.gov (United States)

    Taucher, Christian; Berger, Angelika; Mandl, Christian W.

    2010-01-01

    Intermolecular recombination between the genomes of closely related RNA viruses can result in the emergence of novel strains with altered pathogenic potential and antigenicity. Although recombination between flavivirus genomes has never been demonstrated experimentally, the potential risk of generating undesirable recombinants has nevertheless been a matter of concern and controversy with respect to the development of live flavivirus vaccines. As an experimental system for investigating the ability of flavivirus genomes to recombine, we developed a “recombination trap,” which was designed to allow the products of rare recombination events to be selected and amplified. To do this, we established reciprocal packaging systems consisting of pairs of self-replicating subgenomic RNAs (replicons) derived from tick-borne encephalitis virus (TBEV), West Nile virus (WNV), and Japanese encephalitis virus (JEV) that could complement each other in trans and thus be propagated together in cell culture over multiple passages. Any infectious viruses with intact, full-length genomes that were generated by recombination of the two replicons would be selected and enriched by end point dilution passage, as was demonstrated in a spiking experiment in which a small amount of wild-type virus was mixed with the packaged replicons. Using the recombination trap and the JEV system, we detected two aberrant recombination events, both of which yielded unnatural genomes containing duplications. Infectious clones of both of these genomes yielded viruses with impaired growth properties. Despite the fact that the replicon pairs shared approximately 600 nucleotides of identical sequence where a precise homologous crossover event would have yielded a wild-type genome, this was not observed in any of these systems, and the TBEV and WNV systems did not yield any viable recombinant genomes at all. Our results show that intergenomic recombination can occur in the structural region of flaviviruses

  16. Molecularly engineered live-attenuated chimeric West Nile/dengue virus vaccines protect rhesus monkeys from West Nile virus

    International Nuclear Information System (INIS)

    Pletnev, Alexander G.; St Claire, Marisa; Elkins, Randy; Speicher, Jim; Murphy, Brian R.; Chanock, Robert M.

    2003-01-01

    Two molecularly engineered, live-attenuated West Nile virus (WN) vaccine candidates were highly attenuated and protective in rhesus monkeys. The vaccine candidates are chimeric viruses (designated WN/DEN4) bearing the membrane precursor and envelope protein genes of WN on a backbone of dengue 4 virus (DEN4) with or without a deletion of 30 nucleotides (Δ30) in the 3' noncoding region of DEN4. Viremia in WN/DEN4- infected monkeys was reduced 100-fold compared to that in WN- or DEN4-infected monkeys. WN/DEN4-3'Δ30 did not cause detectable viremia, indicating that it is even more attenuated for monkeys. These findings indicate that chimerization itself and the presence of the Δ30 mutation independently contribute to the attenuation phenotype for nonhuman primates. Despite their high level of attenuation in monkeys, the chimeras induced a moderate-to-high titer of neutralizing antibodies and prevented viremia in monkeys challenged with WN. The more attenuated vaccine candidate, WN/DEN4-3'Δ30, will be evaluated first in our initial clinical studies

  17. Comparative immunological evaluation of recombinant Salmonella Typhimurium strains expressing model antigens as live oral vaccines.

    Science.gov (United States)

    Zheng, Song-yue; Yu, Bin; Zhang, Ke; Chen, Min; Hua, Yan-Hong; Yuan, Shuofeng; Watt, Rory M; Zheng, Bo-Jian; Yuen, Kwok-Yung; Huang, Jian-Dong

    2012-09-26

    Despite the development of various systems to generate live recombinant Salmonella Typhimurium vaccine strains, little work has been performed to systematically evaluate and compare their relative immunogenicity. Such information would provide invaluable guidance for the future rational design of live recombinant Salmonella oral vaccines. To compare vaccine strains encoded with different antigen delivery and expression strategies, a series of recombinant Salmonella Typhimurium strains were constructed that expressed either the enhanced green fluorescent protein (EGFP) or a fragment of the hemagglutinin (HA) protein from the H5N1 influenza virus, as model antigens. The antigens were expressed from the chromosome, from high or low-copy plasmids, or encoded on a eukaryotic expression plasmid. Antigens were targeted for expression in either the cytoplasm or the outer membrane. Combinations of strategies were employed to evaluate the efficacy of combined delivery/expression approaches. After investigating in vitro and in vivo antigen expression, growth and infection abilities; the immunogenicity of the constructed recombinant Salmonella strains was evaluated in mice. Using the soluble model antigen EGFP, our results indicated that vaccine strains with high and stable antigen expression exhibited high B cell responses, whilst eukaryotic expression or colonization with good construct stability was critical for T cell responses. For the insoluble model antigen HA, an outer membrane expression strategy induced better B cell and T cell responses than a cytoplasmic strategy. Most notably, the combination of two different expression strategies did not increase the immune response elicited. Through systematically evaluating and comparing the immunogenicity of the constructed recombinant Salmonella strains in mice, we identified their respective advantages and deleterious or synergistic effects. Different construction strategies were optimally-required for soluble versus

  18. Efficacy of Recombinant Canine Distemper Virus Expressing Leishmania Antigen against Leishmania Challenge in Dogs.

    Science.gov (United States)

    Miura, Ryuichi; Kooriyama, Takanori; Yoneda, Misako; Takenaka, Akiko; Doki, Miho; Goto, Yasuyuki; Sanjoba, Chizu; Endo, Yasuyuki; Fujiyuki, Tomoko; Sugai, Akihiro; Tsukiyama-Kohara, Kyoko; Matsumoto, Yoshitsugu; Sato, Hiroki; Kai, Chieko

    2015-01-01

    Canine distemper virus (CDV) vaccination confers long-term protection against CDV reinfection. To investigate the utility of CDV as a polyvalent vaccine vector for Leishmania, we generated recombinant CDVs, based on an avirulent Yanaka strain, that expressed Leishmania antigens: LACK, TSA, or LmSTI1 (rCDV-LACK, rCDV-TSA, and rCDV-LmSTI1, respectively). Dogs immunized with rCDV-LACK were protected against challenge with lethal doses of virulent CDV, in the same way as the parental Yanaka strain. To evaluate the protective effects of the recombinant CDVs against cutaneous leishmaniasis in dogs, dogs were immunized with one recombinant CDV or a cocktail of three recombinant CDVs, before intradermal challenge (in the ears) with infective-stage promastigotes of Leishmania major. Unvaccinated dogs showed increased nodules with ulcer formation after 3 weeks, whereas dogs immunized with rCDV-LACK showed markedly smaller nodules without ulceration. Although the rCDV-TSA- and rCDV-LmSTI1-immunized dogs showed little protection against L. major, the cocktail of three recombinant CDVs more effectively suppressed the progression of nodule formation than immunization with rCDV-LACK alone. These results indicate that recombinant CDV is suitable for use as a polyvalent live attenuated vaccine for protection against both CDV and L. major infections in dogs.

  19. Experimental oral immunization of ferret badgers (Melogale moschata) with a recombinant canine adenovirus vaccine CAV-2-E3Δ-RGP and an attenuated rabies virus SRV9.

    Science.gov (United States)

    Zhao, Jinghui; Liu, Ye; Zhang, Shoufeng; Fang, Lijun; Zhang, Fei; Hu, Rongliang

    2014-04-01

    Ferret badgers (Melogale moschata) are a major reservoir of rabies virus in southeastern China. Oral immunization has been shown to be a practical method for wildlife rabies management in Europe and North America. Two groups of 20 ferret badgers were given a single oral dose of a recombinant canine adenovirus-rabies vaccine, CAV-2-E3Δ-RGP, or an experimental attenuated rabies virus vaccine, SRV9. At 21 days, all ferret badgers had seroconverted, with serum virus-neutralizing antibodies ranging from 0.1 to 4.5 IU/mL. Titers were >0.50 IU/mL (an acceptable level) in 17/20 and 16/20 animals receiving CAV-2-E3Δ-RGP or SRV9, respectively. The serologic results indicate that the recombinant CAV-2-E3Δ-RGP is at least as effective as the attenuated rabies virus vaccine. Both may be considered for additional research as oral rabies vaccine candidates for ferret badgers.

  20. Generation of a novel live rabies vaccine strain with a high level of safety by introducing attenuating mutations in the nucleoprotein and glycoprotein.

    Science.gov (United States)

    Nakagawa, Keisuke; Nakagawa, Kento; Omatsu, Tsutomu; Katayama, Yukie; Oba, Mami; Mitake, Hiromichi; Okada, Kazuma; Yamaoka, Satoko; Takashima, Yasuhiro; Masatani, Tatsunori; Okadera, Kota; Ito, Naoto; Mizutani, Tetsuya; Sugiyama, Makoto

    2017-10-09

    The current live rabies vaccine SAG2 is attenuated by only one mutation (Arg-to-Glu) at position 333 in the glycoprotein (G333). This fact generates a potential risk of the emergence of a pathogenic revertant by a back mutation at this position during viral propagation in the body. To circumvent this risk, it is desirable to generate a live vaccine strain highly and stably attenuated by multiple mutations. However, the information on attenuating mutations other than that at G333 is very limited. We previously reported that amino acids at positions 273 and 394 in the nucleoprotein (N273/394) (Leu and His, respectively) of fixed rabies virus Ni-CE are responsible for the attenuated phenotype by enhancing interferon (IFN)/chemokine gene expressions in infected neural cells. In this study, we found that amino acid substitutions at N273/394 (Phe-to-Leu and Tyr-to-His, respectively) attenuated the pathogenicity of the oral live vaccine ERA, which has a virulent-type Arg at G333. Then we generated ERA-N273/394-G333 attenuated by the combination of the above attenuating mutations at G333 and N273/394, and checked its safety. Similar to the ERA-G333, which is attenuated by only the mutation at G333, ERA-N273/394-G333 did not cause any symptoms in adult mice after intracerebral inoculation, indicating a low level of residual pathogenicity of ERA-N273/394-G333. Further examination revealed that infection with ERA-N273/394-G333 induces IFN-β and CXCL10 mRNA expressions more strongly than ERA-G333 infection in a neuroblastoma cell line. Importantly, we found that the ERA-N273/394-G333 stain has a lower risk for emergence of a pathogenic revertant than does the ERA-G333. These results indicate that ERA-N273/394-G333 has a potential to be a promising candidate for a live rabies vaccine strain with a high level of safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Titration of individual strains in trivalent live-attenuated influenza vaccine without neutralization.

    Science.gov (United States)

    Sirinonthanawech, Naraporn; Surichan, Somchaiya; Namsai, Aphinya; Puthavathana, Pilaipan; Auewarakul, Prasert; Kongchanagul, Alita

    2016-11-01

    Formulation and quality control of trivalent live-attenuated influenza vaccine requires titration of infectivity of individual strains in the trivalent mix. This is usually performed by selective neutralization of two of the three strains and titration of the un-neutralized strain in cell culture or embryonated eggs. This procedure requires standard sera with high neutralizing titer against each of the three strains. Obtaining standard sera, which can specifically neutralize only the corresponding strain of influenza viruses and is able to completely neutralize high concentration of virus in the vaccine samples, can be a problem for many vaccine manufacturers as vaccine stocks usually have very high viral titers and complete neutralization may not be obtained. Here an alternative approach for titration of individual strain in trivalent vaccine without the selective neutralization is presented. This was done by detecting individual strains with specific antibodies in an end-point titration of a trivalent vaccine in cell culture. Similar titers were observed in monovalent and trivalent vaccines for influenza A H3N2 and influenza B strains, whereas the influenza A H1N1 strain did not grow well in cell culture. Viral interference among the vaccine strains was not observed. Therefore, providing that vaccine strains grow well in cell culture, this assay can reliably determine the potency of individual strains in trivalent live-attenuated influenza vaccines. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Screening for viral extraneous agents in live-attenuated avian vaccines by using a microbial microarray and sequencing

    DEFF Research Database (Denmark)

    Olesen, Majken Lindholm; Jørgensen, Lotte Leick; Blixenkrone-Møller, Merete

    2018-01-01

    The absence of extraneous agents (EA) in the raw material used for production and in finished products is one of the principal safety elements related to all medicinal products of biological origin, such as live-attenuated vaccines. The aim of this study was to investigate the applicability...... of the Lawrence Livermore Microbial detection array version 2 (LLMDAv2) combined with whole genome amplification and sequencing for screening for viral EAs in live-attenuated vaccines and specific pathogen-free (SPF) eggs.We detected positive microarray signals for avian endogenous retrovirus EAV-HP and several...... viruses belonging to the Alpharetrovirus genus in all analyzed vaccines and SPF eggs. We used a microarray probe mapping approach to evaluate the presence of intact retroviral genomes, which in addition to PCR analysis revealed that several of the positive microarray signals were most likely due to cross...

  3. A modified live canine parvovirus strain with novel plaque characteristics. I. Viral attenuation and dog response.

    Science.gov (United States)

    Carmichael, L E; Joubert, J C; Pollock, R V

    1981-10-01

    A canine parvovirus (CPV) strain (C-780916) was found attenuated for pups at 80, but not after 51 serial passages in dog kidney cell (DKC) cultures. A variant viral population ('large plaque') emerged after prolonged cultivation in DKC cultures that may be associated with reduced native virulence. Dogs vaccinated with modified CPV developed high hemagglutination-inhibiting (HI) antibody titers within 4 days of incoluation and antibody persisted. Vaccinated animals shed small amounts of virus in the feces that spread to contact dogs. After five back-passages in dogs the modified strain was not pathogenic for pups and the plaque characteristics of the virus isolated from the feces were typical of the attenuated strain. The modified live CPV did not cause infection of the fetus when inoculated parenterally into pregnant bitches at various stages of gestation. It was not pathogenic for neonatal pups. These results suggest that a safe and effective live homologous (CPV) vaccine has been developed which should aid substantially in controlling CPV infection.

  4. Evaluation of the thermal stability of a novel strain of live-attenuated mumps vaccine (RS-12 strain) lyophilized in different stabilizers.

    Science.gov (United States)

    Jamil, Razieh Kamali; Taqavian, Mohammad; Sadigh, Zohreh-Azita; Shahkarami, Mohammad-Kazem; Esna-Ashari, Fatemeh; Hamkar, Rasool; Hosseini, Seyedeh-Marzieh; Hatami, Alireza

    2014-04-01

    The stability of live-attenuated viral vaccines is important for immunization efficacy. Here, the thermostabilities of lyophilized live-attenuated mumps vaccine formulations in two different stabilizers, a trehalose dihydrate-based stabilizer and a stabilizer containing sucrose, human serum albumin and sorbitol were investigated using accelerated stability tests at 4°C, 25°C and 37°C at time points between 4h (every 4h for the first 24h) and 1 week. Even under the harshest storage conditions of 37°C for 1 week, the 50% cell culture infective dose (CCID50) determined from titrations in Vero cells dropped by less than 10-fold using each stabilizer formulation and thus complied with the World Health Organization's requirements for the potency of live-attenuated mumps vaccines. However, as the half-life of the RS-12 strain mumps virus infectivity was lengthened substantially at elevated temperatures using the trehalose dihydrate (TD)-based stabilizer, this stabilizer is recommended for vaccine use. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Efficacy of Recombinant Canine Distemper Virus Expressing Leishmania Antigen against Leishmania Challenge in Dogs.

    Directory of Open Access Journals (Sweden)

    Ryuichi Miura

    Full Text Available Canine distemper virus (CDV vaccination confers long-term protection against CDV reinfection. To investigate the utility of CDV as a polyvalent vaccine vector for Leishmania, we generated recombinant CDVs, based on an avirulent Yanaka strain, that expressed Leishmania antigens: LACK, TSA, or LmSTI1 (rCDV-LACK, rCDV-TSA, and rCDV-LmSTI1, respectively. Dogs immunized with rCDV-LACK were protected against challenge with lethal doses of virulent CDV, in the same way as the parental Yanaka strain. To evaluate the protective effects of the recombinant CDVs against cutaneous leishmaniasis in dogs, dogs were immunized with one recombinant CDV or a cocktail of three recombinant CDVs, before intradermal challenge (in the ears with infective-stage promastigotes of Leishmania major. Unvaccinated dogs showed increased nodules with ulcer formation after 3 weeks, whereas dogs immunized with rCDV-LACK showed markedly smaller nodules without ulceration. Although the rCDV-TSA- and rCDV-LmSTI1-immunized dogs showed little protection against L. major, the cocktail of three recombinant CDVs more effectively suppressed the progression of nodule formation than immunization with rCDV-LACK alone. These results indicate that recombinant CDV is suitable for use as a polyvalent live attenuated vaccine for protection against both CDV and L. major infections in dogs.

  6. Evaluation of the immune response in Shitou geese (Anser anser domesticus) following immunization with GPV-VP1 DNA-based and live attenuated vaccines.

    Science.gov (United States)

    Deng, Shu-xuan; Cai, Ming-sheng; Cui, Wei; Huang, Jin-lu; Li, Mei-li

    2014-01-01

    Goose parvovirus (GPV) is a highly contagious and deadly disease for goslings and Muscovy ducklings. To compare the differences in immune response of geese immunized with GPV-VP1 DNA-based and live attenuated vaccines. Shitou geese were immunized once with either 20 μg pcDNA-GPV-VP1 DNA gene vaccine by gene gun bombardment via intramuscular injection, or 300 μg by i.m. injection, or 300 μL live attenuated vaccine by i.m. injection, whereas 300 μg pcDNA3.1 (+) i.m. or 300 μL saline i.m. were used as positive and negative controls, respectively. Each group comprised 28 animals. Peripheral blood samples were collected from 2-210 days after immunization and the proliferation of T lymphocytes, the number of CD4(+) and CD8(+) T cells and the level of IgG assessed. Statistical analysis was performed using a one-way analysis of variance with group multiple comparisons via Tukey's test. The pcDNA-GPV-VP1 DNA and attenuated vaccine induced cellular and humoral responses, and there were no differences between the 20 and 300 μg group in the responses of proliferation of T lymphocyte and the CD8(+) T-cell. However, as to CD4(+) T-cell response and humoral immunity, the 20 μg group performed better than the 300 μg group, which induced better cellular and humoral immunity than live attenuated vaccine. This study showed that it is possible to induce both cellular and humoral response using DNA-based vaccines and that the pcDNA-GPV-VP1 DNA gene vaccine induced better cellular and humoral immunity than live attenuated vaccine.

  7. Live recombinant Salmonella Typhi vaccines constructed to investigate the role of rpoS in eliciting immunity to a heterologous antigen.

    Directory of Open Access Journals (Sweden)

    Huoying Shi

    2010-06-01

    Full Text Available We hypothesized that the immunogenicity of live Salmonella enterica serovar Typhi vaccines expressing heterologous antigens depends, at least in part, on its rpoS status. As part of our project to develop a recombinant attenuated S. Typhi vaccine (RASTyV to prevent pneumococcal diseases in infants and children, we constructed three RASTyV strains synthesizing the Streptococcus pneumoniae surface protein PspA to test this hypothesis. Each vector strain carried ten engineered mutations designed to optimize safety and immunogenicity. Two S. Typhi vector strains (chi9639 and chi9640 were derived from the rpoS mutant strain Ty2 and one (chi9633 from the RpoS(+ strain ISP1820. In chi9640, the nonfunctional rpoS gene was replaced with the functional rpoS gene from ISP1820. Plasmid pYA4088, encoding a secreted form of PspA, was moved into the three vector strains. The resulting RASTyV strains were evaluated for safety in vitro and for immunogenicity in mice. All three RASTyV strains were similar to the live attenuated typhoid vaccine Ty21a in their ability to survive in human blood and human monocytes. They were more sensitive to complement and were less able to survive and persist in sewage and surface water than their wild-type counterparts. Adult mice intranasally immunized with any of the RASTyV strains developed immune responses against PspA and Salmonella antigens. The RpoS(+ vaccines induced a balanced Th1/Th2 immune response while the RpoS(- strain chi9639(pYA4088 induced a strong Th2 immune response. Immunization with any RASTyV provided protection against S. pneumoniae challenge; the RpoS(+ strain chi9640(pYA4088 provided significantly greater protection than the ISP1820 derivative, chi9633(pYA4088. In the pre-clinical setting, these strains exhibited a desirable balance between safety and immunogenicity and are currently being evaluated in a Phase 1 clinical trial to determine which of the three RASTyVs has the optimal safety and

  8. Oral immunization using HgbA in a recombinant chancroid vaccine delivered by attenuated Salmonella typhimurium SL3261 in the temperature-dependent rabbit model.

    Science.gov (United States)

    Breau, Cathy; Cameron, D William; Desjardins, Marc; Lee, B Craig

    2012-01-31

    Chancroid, a sexually transmitted genital ulcer disease caused by the Gram-negative bacterium Haemophilus ducreyi, facilitates the acquisition and transmission of HIV. An effective vaccine against chancroid has not been developed. In this preliminary study, the gene encoding the H. ducreyi outer membrane hemoglobin receptor HgbA was cloned into the plasmid pTETnir15. The recombinant construct was introduced into the attenuated Salmonella typhimurium SL3261 strain and stable expression was induced in vitro under anaerobic conditions. The vaccine strain was delivered into the temperature-dependent rabbit model of chancroid by intragastric immunization as a single dose, or as three doses administered at two-weekly intervals. No specific antibody to HgbA was elicited after either dose schedule. Although the plasmid vector survived in vivo passage for up to 15 days following single oral challenge, HgbA expression was restricted to plasmid isolates recovered one day after immunization. Rabbits inoculated with the 3-dose booster regimen achieved no protective immunity from homologous challenge. These results emphasize that refinements in plasmid design to enhance a durable heterologous protein expression are necessary for the development of a live oral vaccine against chancroid. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. A single-dose live-attenuated vaccine prevents Zika virus pregnancy transmission and testis damage.

    Science.gov (United States)

    Shan, Chao; Muruato, Antonio E; Jagger, Brett W; Richner, Justin; Nunes, Bruno T D; Medeiros, Daniele B A; Xie, Xuping; Nunes, Jannyce G C; Morabito, Kaitlyn M; Kong, Wing-Pui; Pierson, Theodore C; Barrett, Alan D; Weaver, Scott C; Rossi, Shannan L; Vasconcelos, Pedro F C; Graham, Barney S; Diamond, Michael S; Shi, Pei-Yong

    2017-09-22

    Zika virus infection during pregnancy can cause congenital abnormities or fetal demise. The persistence of Zika virus in the male reproductive system poses a risk of sexual transmission. Here we demonstrate that live-attenuated Zika virus vaccine candidates containing deletions in the 3' untranslated region of the Zika virus genome (ZIKV-3'UTR-LAV) prevent viral transmission during pregnancy and testis damage in mice, as well as infection of nonhuman primates. After a single-dose vaccination, pregnant mice challenged with Zika virus at embryonic day 6 and evaluated at embryonic day 13 show markedly diminished levels of viral RNA in maternal, placental, and fetal tissues. Vaccinated male mice challenged with Zika virus were protected against testis infection, injury, and oligospermia. A single immunization of rhesus macaques elicited a rapid and robust antibody response, conferring complete protection upon challenge. Furthermore, the ZIKV-3'UTR-LAV vaccine candidates have a desirable safety profile. These results suggest that further development of ZIKV-3'UTR-LAV is warranted for humans.Zika virus infection can result in congenital disorders and cause disease in adults, and there is currently no approved vaccine. Here Shan et al. show that a single dose of a live-attenuated Zika vaccine prevents infection, testis damage and transmission to the fetus during pregnancy in different animal models.

  10. Stabilization of Live Attenuated Influenza Vaccines by Freeze Drying, Spray Drying, and Foam Drying.

    Science.gov (United States)

    Lovalenti, Phillip M; Anderl, Jeff; Yee, Luisa; Nguyen, Van; Ghavami, Behnaz; Ohtake, Satoshi; Saxena, Atul; Voss, Thomas; Truong-Le, Vu

    2016-05-01

    The goal of this research is to develop stable formulations for live attenuated influenza vaccines (LAIV) by employing the drying methods freeze drying, spray drying, and foam drying. Formulated live attenuated Type-A H1N1 and B-strain influenza vaccines with a variety of excipient combinations were dried using one of the three drying methods. Process and storage stability at 4, 25 and 37°C of the LAIV in these formulations was monitored using a TCID50 potency assay. Their immunogenicity was also evaluated in a ferret model. The thermal stability of H1N1 vaccine was significantly enhanced through application of unique formulation combinations and drying processes. Foam dried formulations were as much as an order of magnitude more stable than either spray dried or freeze dried formulations, while exhibiting low process loss and full retention of immunogenicity. Based on long-term stability data, foam dried formulations exhibited a shelf life at 4, 25 and 37°C of >2, 1.5 years and 4.5 months, respectively. Foam dried LAIV Type-B manufactured using the same formulation and process parameters as H1N1 were imparted with a similar level of stability. Foam drying processing methods with appropriate selection of formulation components can produce an order of magnitude improvement in LAIV stability over other drying methods.

  11. Infection and transmission of live recombinant Newcastle disease virus vaccines in Rock Pigeons, European House Sparrows, and Japanese Quail

    Science.gov (United States)

    In China and Mexico, engineered recombinant Newcastle disease virus (rNDV) strains are used as live vaccines for the control of Newcastle disease and as vectors to express the avian influenza virus hemagglutinin (HA) gene to control avian influenza in poultry. In this study, non-target species wer...

  12. Replacement of the Ectodomains of the Hemagglutinin-Neuraminidase and Fusion Glycoproteins of Recombinant Parainfluenza Virus Type 3 (PIV3) with Their Counterparts from PIV2 Yields Attenuated PIV2 Vaccine Candidates

    OpenAIRE

    Tao, Tao; Skiadopoulos, Mario H.; Davoodi, Fatemeh; Riggs, Jeffrey M.; Collins, Peter L.; Murphy, Brian R.

    2000-01-01

    We sought to develop a live attenuated parainfluenza virus type 2 (PIV2) vaccine strain for use in infants and young children, using reverse genetic techniques that previously were used to rapidly produce a live attenuated PIV1 vaccine candidate. The PIV1 vaccine candidate, designated rPIV3-1cp45, was generated by substituting the full-length HN and F proteins of PIV1 for those of PIV3 in the attenuated cp45 PIV3 vaccine candidate (T. Tao et al., J. Virol. 72:2955–2961, 1998; M. H. Skiadopoul...

  13. Cell biology of mitotic recombination

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2015-01-01

    Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules as w...

  14. A single immunization with a recombinant canine adenovirus expressing the rabies virus G protein confers protective immunity against rabies in mice

    International Nuclear Information System (INIS)

    Li Jianwei; Faber, Milosz; Papaneri, Amy; Faber, Marie-Luise; McGettigan, James P.; Schnell, Matthias J.; Dietzschold, Bernhard

    2006-01-01

    Rabies vaccines based on live attenuated rabies viruses or recombinant pox viruses expressing the rabies virus (RV) glycoprotein (G) hold the greatest promise of safety and efficacy, particularly for oral immunization of wildlife. However, while these vaccines induce protective immunity in foxes, they are less effective in other animals, and safety concerns have been raised for some of these vaccines. Because canine adenovirus 2 (CAV2) is licensed for use as a live vaccine for dogs and has an excellent efficacy and safety record, we used this virus as an expression vector for the RVG. The recombinant CAV2-RV G produces virus titers similar to those produced by wild-type CAV2, indicating that the RVG gene does not affect virus replication. Comparison of RVG expressed by CAV2-RV G with that of vaccinia-RV G recombinant virus (V-RG) revealed similar amounts of RV G on the cell surface. A single intramuscular or intranasal immunization of mice with CAV2-RVG induced protective immunity in a dose-dependent manner, with no clinical signs or discomfort from the virus infection regardless of the route of administration or the amount of virus

  15. Pressure for Pattern-Specific Intertypic Recombination between Sabin Polioviruses: Evolutionary Implications.

    Science.gov (United States)

    Korotkova, Ekaterina; Laassri, Majid; Zagorodnyaya, Tatiana; Petrovskaya, Svetlana; Rodionova, Elvira; Cherkasova, Elena; Gmyl, Anatoly; Ivanova, Olga E; Eremeeva, Tatyana P; Lipskaya, Galina Y; Agol, Vadim I; Chumakov, Konstantin

    2017-11-22

    Complete genomic sequences of a non-redundant set of 70 recombinants between three serotypes of attenuated Sabin polioviruses as well as location (based on partial sequencing) of crossover sites of 28 additional recombinants were determined and compared with the previously published data. It is demonstrated that the genomes of Sabin viruses contain distinct strain-specific segments that are eliminated by recombination. The presumed low fitness of these segments could be linked to mutations acquired upon derivation of the vaccine strains and/or may have been present in wild-type parents of Sabin viruses. These "weak" segments contribute to the propensity of these viruses to recombine with each other and with other enteroviruses as well as determine the choice of crossover sites. The knowledge of location of such segments opens additional possibilities for the design of more genetically stable and/or more attenuated variants, i.e., candidates for new oral polio vaccines. The results also suggest that the genome of wild polioviruses, and, by generalization, of other RNA viruses, may harbor hidden low-fitness segments that can be readily eliminated only by recombination.

  16. Live attenuated measles virus vaccine therapy for locally established malignant glioblastoma tumor cells

    Directory of Open Access Journals (Sweden)

    Al-Shammari AM

    2014-05-01

    Full Text Available Ahmed M Al-Shammari,1 Farah E Ismaeel,2 Shahlaa M Salih,2 Nahi Y Yaseen11Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Researches, Mustansiriya University, 2Departments of Biotechnology, College of Science, Al-Nahrain University, Baghdad, IraqAbstract: Glioblastoma multiforme is the most aggressive malignant primary brain tumor in humans, with poor prognosis. A new glioblastoma cell line (ANGM5 was established from a cerebral glioblastoma multiforme in a 72-year-old Iraqi man who underwent surgery for an intracranial tumor. This study was carried out to evaluate the antitumor effect of live attenuated measles virus (MV Schwarz vaccine strain on glioblastoma multiforme tumor cell lines in vitro. Live attenuated MV Schwarz strain was propagated on Vero, human rhabdomyosarcoma, and human glioblastoma-multiform (ANGM5 cell lines. The infected confluent monolayer appeared to be covered with syncytia with granulation and vacuolation, as well as cell rounding, shrinkage, and large empty space with cell debris as a result of cell lysis and death. Cell lines infected with virus have the ability for hemadsorption to human red blood cells after 72 hours of infection, whereas no hemadsorption of uninfected cells is seen. Detection of MV hemagglutinin protein by monoclonal antibodies in infected cells of all cell lines by immunocytochemistry assay gave positive results (brown color in the cytoplasm of infected cells. Cell viability was measured after 72 hours of infection by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Results showed a significant cytotoxic effect for MV (P≤0.05 on growth of ANGM5 and rhabdomyosarcoma cell lines after 72 hours of infection. Induction of apoptosis by MV was assessed by measuring mitochondrial membrane potentials in tumor cells after 48, 72, and 120 hours of infection. Apoptotic cells were counted, and the mean percentage of dead cells was significantly higher after 48, 72

  17. Pet ownership may attenuate loneliness among older adult primary care patients who live alone.

    Science.gov (United States)

    Stanley, Ian H; Conwell, Yeates; Bowen, Connie; Van Orden, Kimberly A

    2014-01-01

    Older adults who report feelings of loneliness are at increased risk for a range of negative physical and mental health outcomes, including early mortality. Identifying potential sources of social connectedness, such as pet ownership, could add to the understanding of how to promote health and well-being in older adults. The aim of this study is to describe the association of pet ownership and loneliness. The current study utilizes cross-sectional survey data from a sample (N = 830) of older adult primary care patients (age ≥ 60 years). Pet owners were 36% less likely than non-pet owners to report loneliness, in a model controlling for age, living status (i.e., alone vs. not alone), happy mood, and seasonal residency (adjOR = 0.64, 95% CI = 0.41-0.98, p pet ownership and living status (b = -1.60, p pet was associated with the greatest odds of reporting feelings of loneliness. The findings suggest that pet ownership may confer benefits for well-being, including attenuating feelings of loneliness and its related sequelae, among older adults who live alone.

  18. The live attenuated chimeric vaccine rWN/DEN4Δ30 is well-tolerated and immunogenic in healthy flavivirus-naïve adult volunteers.

    Science.gov (United States)

    Durbin, Anna P; Wright, Peter F; Cox, Amber; Kagucia, Wangeci; Elwood, Daniel; Henderson, Susan; Wanionek, Kimberli; Speicher, Jim; Whitehead, Stephen S; Pletnev, Alexander G

    2013-11-19

    WNV has become the leading vector-borne cause of meningoencephalitis in the United States. Although the majority of WNV infections result in asymptomatic illness, approximately 20% of infections result in West Nile fever and 1% in West Nile neuroinvasive disease (WNND), which causes encephalitis, meningitis, or flaccid paralysis. The elderly are at particular risk for WNND, with more than half the cases occurring in persons older than sixty years of age. There is no licensed treatment for WNND, nor is there any licensed vaccine for humans for the prevention of WNV infection. The Laboratory of Infectious Diseases at the National Institutes of Health has developed a recombinant live attenuated WNV vaccine based on chimerization of the wild-type WNV NY99 genome with that of the live attenuated DENV-4 candidate vaccine rDEN4Δ30. The genes encoding the prM and envelope proteins of DENV-4 were replaced with those of WNV NY99 and the resultant virus was designated rWN/DEN4Δ30. The vaccine was evaluated in healthy flavivirus-naïve adult volunteers age 18-50 years in two separate studies, both of which are reported here. The first study evaluated 10³ or 10⁴ PFU of the vaccine given as a single dose; the second study evaluated 10⁵ PFU of the vaccine given as two doses 6 months apart. The vaccine was well-tolerated and immunogenic at all three doses, inducing seroconversion to WNV NY99 in 74% (10³ PFU), 75% (10⁴ PFU), and 55% (10⁵ PFU) of subjects after a single dose. A second 10⁵ PFU dose of rWN/DEN4Δ30 given 6 months after the first dose increased the seroconversion rate 89%. Based on the encouraging results from these studies, further evaluation of the candidate vaccine in adults older than 50 years of age is planned. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Attenuation and immunogenicity of recombinant yellow fever 17D-dengue type 2 virus for rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Galler R.

    2005-01-01

    Full Text Available A chimeric yellow fever (YF-dengue serotype 2 (dengue 2 virus was constructed by replacing the premembrane and envelope genes of the YF 17D virus with those from dengue 2 virus strains of Southeast Asian genotype. The virus grew to high titers in Vero cells and, after passage 2, was used for immunogenicity and attenuation studies in rhesus monkeys. Subcutaneous immunization of naive rhesus monkeys with the 17D-D2 chimeric virus induced a neutralizing antibody response associated with the protection of 6 of 7 monkeys against viremia by wild-type dengue 2 virus. Neutralizing antibody titers to dengue 2 were significantly lower in YF-immune animals than in YF-naive monkeys and protection against challenge with wild-type dengue 2 virus was observed in only 2 of 11 YF-immune monkeys. An anamnestic response to dengue 2, indicated by a sharp increase of neutralizing antibody titers, was observed in the majority of the monkeys after challenge with wild-type virus. Virus attenuation was demonstrated using the standard monkey neurovirulence test. The 17D-D2 chimera caused significantly fewer histological lesions than the YF 17DD virus. The attenuated phenotype could also be inferred from the limited viremias compared to the YF 17DD vaccine. Overall, these results provide further support for the use of chimeric viruses for the development of a new live tetravalent dengue vaccine.

  20. Pressure for Pattern-Specific Intertypic Recombination between Sabin Polioviruses: Evolutionary Implications

    Directory of Open Access Journals (Sweden)

    Ekaterina Korotkova

    2017-11-01

    Full Text Available Complete genomic sequences of a non-redundant set of 70 recombinants between three serotypes of attenuated Sabin polioviruses as well as location (based on partial sequencing of crossover sites of 28 additional recombinants were determined and compared with the previously published data. It is demonstrated that the genomes of Sabin viruses contain distinct strain-specific segments that are eliminated by recombination. The presumed low fitness of these segments could be linked to mutations acquired upon derivation of the vaccine strains and/or may have been present in wild-type parents of Sabin viruses. These “weak” segments contribute to the propensity of these viruses to recombine with each other and with other enteroviruses as well as determine the choice of crossover sites. The knowledge of location of such segments opens additional possibilities for the design of more genetically stable and/or more attenuated variants, i.e., candidates for new oral polio vaccines. The results also suggest that the genome of wild polioviruses, and, by generalization, of other RNA viruses, may harbor hidden low-fitness segments that can be readily eliminated only by recombination.

  1. Development and biological properties of a new live attenuated mumps vaccine.

    Science.gov (United States)

    Saika, Shizuko; Kidokoro, Minoru; Kubonoya, Hiroko; Ito, Kozo; Ohkawa, Tokitada; Aoki, Athuko; Nagata, Noriyo; Suzuki, Kazuyoshi

    2006-01-01

    To develop a new live attenuated mumps vaccine, a wild mumps Y7 strain isolated from a patient who developed mild parotitis was treated with nitrosoguanidine and ultraviolet, followed by selection of a temperature-sensitive clone. The selected clone, Y125, showed stable temperature-sensitivity in Vero cells. Intraspinal inoculation of marmosets with the Y125 produced only minimal histopathological changes, while intracerebral inoculation of neonatal rats revealed that the Y125 did not cause hydrocephalus. Both these effects of the Y125 were similar to those of the non-neurovirulent Jeryl Lynn strain. Furthermore, subcutaneous inoculation of the Y125 induced high levels of neutralizing antibodies in all Cercopithecus monkeys examined. Although the safety and immunogenicity should be confirmed in further field trials in humans, the present results indicate that the Y125 could be a promising vaccine candidate.

  2. Live attenuated Francisella novicida vaccine protects against Francisella tularensis pulmonary challenge in rats and non-human primates.

    Directory of Open Access Journals (Sweden)

    Ping Chu

    2014-10-01

    Full Text Available Francisella tularensis causes the disease tularemia. Human pulmonary exposure to the most virulent form, F. tularensis subsp. tularensis (Ftt, leads to high morbidity and mortality, resulting in this bacterium being classified as a potential biothreat agent. However, a closely-related species, F. novicida, is avirulent in healthy humans. No tularemia vaccine is currently approved for human use. We demonstrate that a single dose vaccine of a live attenuated F. novicida strain (Fn iglD protects against subsequent pulmonary challenge with Ftt using two different animal models, Fischer 344 rats and cynomolgus macaques (NHP. The Fn iglD vaccine showed protective efficacy in rats, as did a Ftt iglD vaccine, suggesting no disadvantage to utilizing the low human virulent Francisella species to induce protective immunity. Comparison of specific antibody profiles in vaccinated rat and NHP sera by proteome array identified a core set of immunodominant antigens in vaccinated animals. This is the first report of a defined live attenuated vaccine that demonstrates efficacy against pulmonary tularemia in a NHP, and indicates that the low human virulence F. novicida functions as an effective tularemia vaccine platform.

  3. Chimeric Recombinant Human Metapneumoviruses with the Nucleoprotein or Phosphoprotein Open Reading Frame Replaced by That of Avian Metapneumovirus Exhibit Improved Growth In Vitro and Attenuation In Vivo

    Science.gov (United States)

    Pham, Quynh N.; Biacchesi, Stéphane; Skiadopoulos, Mario H.; Murphy, Brian R.; Collins, Peter L.; Buchholz, Ursula J.

    2005-01-01

    Chimeric versions of recombinant human metapneumovirus (HMPV) were generated by replacing the nucleoprotein (N) or phosphoprotein (P) open reading frame with its counterpart from the closely related avian metapneumovirus (AMPV) subgroup C. In Vero cells, AMPV replicated to an approximately 100-fold-higher titer than HMPV. Surprisingly, the N and P chimeric viruses replicated to a peak titer that was 11- and 25-fold higher, respectively, than that of parental HMPV. The basis for this effect is not known but was not due to obvious changes in the efficiency of gene expression. AMPV and the N and P chimeras were evaluated for replication, immunogenicity, and protective efficacy in hamsters. AMPV was attenuated compared to HMPV in this mammalian host on day 5 postinfection, but not on day 3, and only in the nasal turbinates. In contrast, the N and P chimeras were reduced approximately 100-fold in both the upper and lower respiratory tract on day 3 postinfection, although there was little difference by day 5. The N and P chimeras induced a high level of neutralizing serum antibodies and protective efficacy against HMPV; AMPV was only weakly immunogenic and protective against HMPV challenge, reflecting antigenic differences. In African green monkeys immunized intranasally and intratracheally, the mean peak titer of the P chimera was reduced 100- and 1,000-fold in the upper and lower respiratory tracts, whereas the N chimera was reduced only 10-fold in the lower respiratory tract. Both chimeras were comparable to wild-type HMPV in immunogenicity and protective efficacy. Thus, the P chimera is a promising live HMPV vaccine candidate that paradoxically combines improved growth in vitro with attenuation in vivo. PMID:16306583

  4. Studies of parvovirus vaccination in the dog: the performance of live attenuated feline parvovirus vaccines.

    Science.gov (United States)

    Thompson, H; McCandlish, I A; Cornwell, H J; Macartney, L; Maxwell, N S; Weipers, A F; Wills, I R; Black, J A; Mackenzie, A C

    1988-04-16

    The performance of three live attenuated feline parvovirus vaccines licensed for use in the dog was studied. At the end of the primary vaccination course 67 per cent of dogs had inadequate antibody levels (less than or equal to 32) as measured by a haemagglutination inhibition test. Interference by maternal antibody accounted for some of the failures but the fact that there was no significant difference in performance between dogs vaccinated at 12 weeks or 16 weeks of age indicated that maternal antibody was not the only factor.

  5. Type III Interferon-Mediated Signaling Is Critical for Controlling Live Attenuated Yellow Fever Virus Infection In Vivo.

    Science.gov (United States)

    Douam, Florian; Soto Albrecht, Yentli E; Hrebikova, Gabriela; Sadimin, Evita; Davidson, Christian; Kotenko, Sergei V; Ploss, Alexander

    2017-08-15

    Yellow fever virus (YFV) is an arthropod-borne flavivirus, infecting ~200,000 people worldwide annually and causing about 30,000 deaths. The live attenuated vaccine strain, YFV-17D, has significantly contributed in controlling the global burden of yellow fever worldwide. However, the viral and host contributions to YFV-17D attenuation remain elusive. Type I interferon (IFN-α/β) signaling and type II interferon (IFN-γ) signaling have been shown to be mutually supportive in controlling YFV-17D infection despite distinct mechanisms of action in viral infection. However, it remains unclear how type III IFN (IFN-λ) integrates into this antiviral system. Here, we report that while wild-type (WT) and IFN-λ receptor knockout (λR -/- ) mice were largely resistant to YFV-17D, deficiency in type I IFN signaling resulted in robust infection. Although IFN-α/β receptor knockout (α/βR -/- ) mice survived the infection, mice with combined deficiencies in both type I signaling and type III IFN signaling were hypersusceptible to YFV-17D and succumbed to the infection. Mortality was associated with viral neuroinvasion and increased permeability of the blood-brain barrier (BBB). α/βR -/- λR -/- mice also exhibited distinct changes in the frequencies of multiple immune cell lineages, impaired T-cell activation, and severe perturbation of the proinflammatory cytokine balance. Taken together, our data highlight that type III IFN has critical immunomodulatory and neuroprotective functions that prevent viral neuroinvasion during active YFV-17D replication. Type III IFN thus likely represents a safeguard mechanism crucial for controlling YFV-17D infection and contributing to shaping vaccine immunogenicity. IMPORTANCE YFV-17D is a live attenuated flavivirus vaccine strain recognized as one of the most effective vaccines ever developed. However, the host and viral determinants governing YFV-17D attenuation and its potent immunogenicity are still unknown. Here, we analyzed the

  6. Suppressing active replication of a live attenuated simian immunodeficiency virus vaccine does not abrogate protection from challenge

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Benjamin; Fiebig, Uwe; Hohn, Oliver [Robert Koch-Institut, Berlin (Germany); Plesker, Roland; Coulibaly, Cheick; Cichutek, Klaus; Mühlebach, Michael D. [Paul-Ehrlich-Institut, Langen (Germany); Bannert, Norbert; Kurth, Reinhard [Robert Koch-Institut, Berlin (Germany); Norley, Stephen, E-mail: NorleyS@rki.de [Robert Koch-Institut, Berlin (Germany)

    2016-02-15

    Although safety concerns preclude the use of live attenuated HIV vaccines in humans, they provide a useful system for identifying the elusive correlates of protective immunity in the SIV/macaque animal model. However, a number of pieces of evidence suggest that protection may result from prior occupancy of susceptible target cells by the vaccine virus rather than the immune response. To address this, we developed a Nef-deletion variant of an RT-SHIV whose active replication could be shut off by treatment with RT-inhibitors. Groups of macaques were inoculated with the ∆Nef-RT-SHIV and immune responses allowed to develop before antiretroviral treatment and subsequent challenge with wild-type SIVmac239. Vaccinated animals either resisted infection fully or significantly controlled the subsequent viremia. However, there was no difference between animals undergoing replication of the vaccine virus and those without. This strongly suggests that competition for available target cells does not play a role in protection. - Highlights: • A Nef-deleted RT-SHIV was used as a live attenuated vaccine in macaques. • Vaccine virus replication was shut down to investigate its role in protection. • Ongoing vaccine virus replication did not appear to be necessary for protection. • An analysis of T- and B-cell responses failed to identify a correlate of protection.

  7. Suppressing active replication of a live attenuated simian immunodeficiency virus vaccine does not abrogate protection from challenge

    International Nuclear Information System (INIS)

    Gabriel, Benjamin; Fiebig, Uwe; Hohn, Oliver; Plesker, Roland; Coulibaly, Cheick; Cichutek, Klaus; Mühlebach, Michael D.; Bannert, Norbert; Kurth, Reinhard; Norley, Stephen

    2016-01-01

    Although safety concerns preclude the use of live attenuated HIV vaccines in humans, they provide a useful system for identifying the elusive correlates of protective immunity in the SIV/macaque animal model. However, a number of pieces of evidence suggest that protection may result from prior occupancy of susceptible target cells by the vaccine virus rather than the immune response. To address this, we developed a Nef-deletion variant of an RT-SHIV whose active replication could be shut off by treatment with RT-inhibitors. Groups of macaques were inoculated with the ∆Nef-RT-SHIV and immune responses allowed to develop before antiretroviral treatment and subsequent challenge with wild-type SIVmac239. Vaccinated animals either resisted infection fully or significantly controlled the subsequent viremia. However, there was no difference between animals undergoing replication of the vaccine virus and those without. This strongly suggests that competition for available target cells does not play a role in protection. - Highlights: • A Nef-deleted RT-SHIV was used as a live attenuated vaccine in macaques. • Vaccine virus replication was shut down to investigate its role in protection. • Ongoing vaccine virus replication did not appear to be necessary for protection. • An analysis of T- and B-cell responses failed to identify a correlate of protection.

  8. Correlation between live attenuated measles viral load and growth inhibition percentage in non-small cell lung cancer cell line

    Directory of Open Access Journals (Sweden)

    Rasha Fadhel Obaid

    2018-03-01

    Conclusion Live attenuated measles virus strain induced cytotoxic effect against human lung cancer cell line (A549 by induction of apoptosis as an important mechanism of anti-tumor activity, in addition, it indicates a correlation between the quantity of MV genomesand percentage of growth inhibition. This relation  has proved that measles virus had anticancer effect.

  9. aroA-Deficient Salmonella enterica Serovar Typhimurium Is More Than a Metabolically Attenuated Mutant

    Science.gov (United States)

    Frahm, Michael; Kocijancic, Dino; Rohde, Manfred; Eckweiler, Denitsa; Bielecka, Agata; Bueno, Emilio; Cava, Felipe; Abraham, Wolf-Rainer; Curtiss, Roy; Häussler, Susanne; Erhardt, Marc; Weiss, Siegfried

    2016-01-01

    ABSTRACT Recombinant attenuated Salmonella enterica serovar Typhimurium strains are believed to act as powerful live vaccine carriers that are able to elicit protection against various pathogens. Auxotrophic mutations, such as a deletion of aroA, are commonly introduced into such bacteria for attenuation without incapacitating immunostimulation. In this study, we describe the surprising finding that deletion of aroA dramatically increased the virulence of attenuated Salmonella in mouse models. Mutant bacteria lacking aroA elicited increased levels of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) after systemic application. A detailed genetic and phenotypic characterization in combination with transcriptomic and metabolic profiling demonstrated that ΔaroA mutants display pleiotropic alterations in cellular physiology and lipid and amino acid metabolism, as well as increased sensitivity to penicillin, complement, and phagocytic uptake. In concert with other immunomodulating mutations, deletion of aroA affected flagellin phase variation and gene expression of the virulence-associated genes arnT and ansB. Finally, ΔaroA strains displayed significantly improved tumor therapeutic activity. These results highlight the importance of a functional shikimate pathway to control homeostatic bacterial physiology. They further highlight the great potential of ΔaroA-attenuated Salmonella for the development of vaccines and cancer therapies with important implications for host-pathogen interactions and translational medicine. PMID:27601574

  10. Cell biology of homologous recombination in yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine Valerie; Rothstein, Rodney; Lisby, Michael

    2011-01-01

    Homologous recombination is an important pathway for error-free repair of DNA lesions, such as single- and double-strand breaks, and for rescue of collapsed replication forks. Here, we describe protocols for live cell imaging of single-lesion recombination events in the yeast Saccharomyces...

  11. Generation and Selection of Orf Virus (ORFV) Recombinants.

    Science.gov (United States)

    Rziha, Hanns-Joachim; Rohde, Jörg; Amann, Ralf

    2016-01-01

    Orf virus (ORFV) is an epitheliotropic poxvirus, which belongs to the genus Parapoxvirus. Among them the highly attenuated, apathogenic strain D1701-V is regarded as a promising candidate for novel virus vector vaccines. Our recent work demonstrated that those ORFV-based recombinants were able to induce protective, long-lasting immunity in various hosts that are non-permissive for ORFV. In this chapter we describe procedures for the generation, selection, propagation, and titration of ORFV recombinants as well as transgene detection by PCR or immunohistochemical staining.

  12. Priming T-cell responses with recombinant measles vaccine vector in a heterologous prime-boost setting in non-human primates.

    Science.gov (United States)

    Bolton, Diane L; Santra, Sampa; Swett-Tapia, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Mach, Linh; Naim, Hussein; Kozlowski, Pamela A; Lifton, Michelle; Goudsmit, Jaap; Letvin, Norman; Roederer, Mario; Radošević, Katarina

    2012-09-07

    Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston Zagreb vaccine strain was engineered to express simian immunodeficiency virus (SIV) Gag protein for the purpose of evaluating the immunogenicity of rMV as a vaccine vector in rhesus macaques. rMV-Gag immunization alone elicited robust measles-specific humoral and cellular responses, but failed to elicit transgene (Gag)-specific immune responses, following aerosol or intratracheal/intramuscular delivery. However, when administered as a priming vaccine to a heterologous boost with recombinant adenovirus serotype 5 expressing the same transgene, rMV-Gag significantly enhanced Gag-specific T lymphocyte responses following rAd5 immunization. Gag-specific humoral responses were not enhanced, however, which may be due to either the transgene or the vector. Cellular response priming by rMV against the transgene was highly effective even when using a suboptimal dose of rAd5 for the boost. These data demonstrate feasibility of using rMV as a priming component of heterologous prime-boost vaccine regimens for pathogens requiring strong cellular responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Immunization of Pigs by DNA Prime and Recombinant Vaccinia Virus Boost To Identify and Rank African Swine Fever Virus Immunogenic and Protective Proteins.

    Science.gov (United States)

    Jancovich, James K; Chapman, Dave; Hansen, Debra T; Robida, Mark D; Loskutov, Andrey; Craciunescu, Felicia; Borovkov, Alex; Kibler, Karen; Goatley, Lynnette; King, Katherine; Netherton, Christopher L; Taylor, Geraldine; Jacobs, Bertram; Sykes, Kathryn; Dixon, Linda K

    2018-04-15

    African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant vaccinia

  14. BXSB/long-lived is a recombinant inbred strain containing powerful disease suppressor loci.

    Science.gov (United States)

    Haywood, Michelle E K; Gabriel, Luisa; Rose, S Jane; Rogers, Nicola J; Izui, Shozo; Morley, Bernard J

    2007-08-15

    The BXSB strain of recombinant inbred mice develops a spontaneous pathology that closely resembles the human disease systemic lupus erythematosus. Six non-MHC loci, Yaa, Bxs1-4, and Bxs6, have been linked to the development of aspects of the disease while a further locus, Bxs5, may be a BXSB-derived disease suppressor. Disease development is delayed in a substrain of BXSB, BXSB/MpJScr-long-lived (BXSB/ll). We compared the genetic derivation of BXSB/ll mice to the original strain, BXSB/MpJ, using microsatellite markers and single nucleotide polymorphisms across the genome. These differences were clustered and included two regions known to be important in the disease-susceptibility of these mice, Bxs5 and 6, as well as regions on chromosomes 5, 6, 9, 11, 12, and 13. We compared BXSB/ll to >20 strains including the BXSB parental SB/Le and C57BL/6 strains. This revealed that BXSB/ll is a separate recombinant inbred line derived from SB/Le and C57BL/6, but distinctly different from BXSB, that most likely arose due to residual heterozygosity in the BXSB stock. Despite the continued presence of the powerful disease-susceptibility locus Bxs3, BXSB/ll mice do not develop disease. We propose that the disappearance of the disease phenotype in the BXSB/ll mice is due to the inheritance of one or more suppressor loci in the differentially inherited intervals between the BXSB/ll and BXSB strains.

  15. The High Degree of Sequence Plasticity of the Arenavirus Noncoding Intergenic Region (IGR) Enables the Use of a Nonviral Universal Synthetic IGR To Attenuate Arenaviruses.

    Science.gov (United States)

    Iwasaki, Masaharu; Cubitt, Beatrice; Sullivan, Brian M; de la Torre, Juan C

    2016-01-06

    Hemorrhagic fever arenaviruses (HFAs) pose important public health problems in regions where they are endemic. Concerns about human-pathogenic arenaviruses are exacerbated because of the lack of FDA-licensed arenavirus vaccines and because current antiarenaviral therapy is limited to an off-label use of ribavirin that is only partially effective. We have recently shown that the noncoding intergenic region (IGR) present in each arenavirus genome segment, the S and L segments (S-IGR and L-IGR, respectively), plays important roles in the control of virus protein expression and that this knowledge could be harnessed for the development of live-attenuated vaccine strains to combat HFAs. In this study, we further investigated the sequence plasticity of the arenavirus IGR. We demonstrate that recombinants of the prototypic arenavirus lymphocytic choriomeningitis virus (rLCMVs), whose S-IGRs were replaced by the S-IGR of Lassa virus (LASV) or an entirely nonviral S-IGR-like sequence (Ssyn), are viable, indicating that the function of S-IGR tolerates a high degree of sequence plasticity. In addition, rLCMVs whose L-IGRs were replaced by Ssyn or S-IGRs of the very distantly related reptarenavirus Golden Gate virus (GGV) were viable and severely attenuated in vivo but able to elicit protective immunity against a lethal challenge with wild-type LCMV. Our findings indicate that replacement of L-IGR by a nonviral Ssyn could serve as a universal molecular determinant of arenavirus attenuation. Hemorrhagic fever arenaviruses (HFAs) cause high rates of morbidity and mortality and pose important public health problems in regions where they are endemic. Implementation of live-attenuated vaccines (LAVs) will represent a major step to combat HFAs. Here we document that the arenavirus noncoding intergenic region (IGR) has a high degree of plasticity compatible with virus viability. This observation led us to generate recombinant LCMVs containing nonviral synthetic IGRs. These r

  16. Development and characterization of attenuated metabolic mutants of Bordetella bronchiseptica for applications in vaccinology.

    Science.gov (United States)

    Yevsa, Tetyana; Ebensen, Thomas; Fuchs, Barbara; Zygmunt, Beata; Libanova, Rimma; Gross, Roy; Schulze, Kai; Guzmán, Carlos A

    2013-01-01

    Bordetella bronchiseptica is an important pathogen causing a number of veterinary respiratory syndromes in agriculturally important and food-producing confinement-reared animals, resulting in great economic losses annually amounting to billions of euros worldwide. Currently available live vaccines are incompletely satisfactory in terms of efficacy and safety. An efficient vaccine for livestock animals would allow reducing the application of antibiotics, thereby preventing the massive release of pharmaceuticals into the environment. Here, we describe two new potential vaccine strains based on the BB7865 strain. Two independent attenuating mutations were incorporated by homologous recombination in order to make negligible the risk of recombination and subsequent reversion to the virulent phenotype. The mutations are critical for bacterial metabolism, resistance to oxidative stress, intracellular survival and in vivo persistence. The resulting double mutants BB7865 risA aroA and BB7865 risA dapE were characterized as promising vaccine candidates, which are able to confer protection against colonization of the lower respiratory tract after sublethal challenge with the wild-type strain. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  17. Comparison of immune persistence among inactivated and live attenuated hepatitis a vaccines 2 years after a single dose

    Science.gov (United States)

    Zhang, Xiaoshu; An, Jing; Tu, Aixia; Liang, Xuefeng; Cui, Fuqiang; Zheng, Hui; Tang, Yu; Liu, Jianfeng; Wang, Xuxia; Zhang, Ningjing; Li, Hui

    2016-01-01

    ABSTRACT Objective: Compare immune persistence from one dose of each of 3 different hepatitis A vaccines when given to school-age children: a domestic, live attenuated hepatitis A vaccine (H2 vaccine); a domestic inactivated hepatitis A vaccine (Healive®); and an imported, inactivated hepatitis A vaccine (Havrix®),.Methods: School-age children were randomized into 1 of 4 groups to receive a single dose of a vaccine: H2 vaccine, Healive®, Havrix®, or hepatitis B vaccine [control]. Serum samples were collected 12 and 24 months after vaccination for measurement of anti-HAV IgG using microparticle enzyme immunoassay. Seropositivity was defined as ≥ 20 mUI/ml. We compared groups on seropositivity and geometric mean concentration (GMC). Results: Seropositive rates for the H2, Healive®, Havrix®, and control groups were 64%, 94.4%, 73%, and 1.0%, respectively, 12-months post-vaccination; and 63%, 95.6%, 72%, and 1.0%, respectively 24-months post-vaccination. Seropositivity was greater for Healive® than for H2 and Havrix® at 12 months (p-values a single dose of inactivated hepatitis A vaccine and live attenuated hepatitis A vaccine. PMID:27494260

  18. Extended Preclinical Safety, Efficacy and Stability Testing of a Live-attenuated Chikungunya Vaccine Candidate.

    Directory of Open Access Journals (Sweden)

    Kenneth S Plante

    Full Text Available We recently described a new, live-attenuated vaccine candidate for chikungunya (CHIK fever, CHIKV/IRES. This vaccine was shown to be well attenuated, immunogenic and efficacious in protecting against CHIK virus (CHIKV challenge of mice and nonhuman primates. To further evaluate its preclinical safety, we compared CHIKV/IRES distribution and viral loads in interferon-α/β receptor-incompetent A129 mice to another CHIK vaccine candidate, 181/clone25, which proved highly immunogenic but mildly reactive in human Phase I/II clinical trials. Compared to wild-type CHIK virus, (wt-CHIKV, both vaccines generated lower viral loads in a wide variety of tissues and organs, including the brain and leg muscle, but CHIKV/IRES exhibited marked restrictions in dissemination and viral loads compared to 181/clone25, and was never found outside the blood, spleen and muscle. Unlike wt-CHIKV, which caused disrupted splenic architecture and hepatic lesions, histopathological lesions were not observed in animals infected with either vaccine strain. To examine the stability of attenuation, both vaccines were passaged 5 times intracranially in infant A129 mice, then assessed for changes in virulence by comparing parental and passaged viruses for footpad swelling, weight stability and survival after subcutaneous infection. Whereas strain 181/clone25 p5 underwent a significant increase in virulence as measured by weight loss (from 30% and mortality (from 0 to 100%, CHIKV/IRES underwent no detectible change in any measure of virulence (no significant weight loss and no mortality. These data indicate greater nonclinical safety of the CHIKV/IRES vaccine candidate compared to 181/clone25, further supporting its eligibility for human testing.

  19. Potency assay design for adjuvanted recombinant proteins as malaria vaccines.

    Science.gov (United States)

    Giersing, Birgitte K; Dubovsky, Filip; Saul, Allan; Denamur, Francoise; Minor, Philip; Meade, Bruce

    2006-05-15

    Many licensed vaccines are composed of live, attenuated or inactivated whole-cell microorganisms, or they comprise purified components from whole-cell extracts or culture supernatants. For some diseases, pathology is fairly well understood, and there may be known correlates of protection that provide obvious parameters for assessment of vaccine potency. However, this is not always the case, and some effective vaccines are routinely used even though the mechanisms or correlates of protection are unknown. Some more modern vaccine approaches employ purified recombinant proteins, based on molecules that appear on the surface of the pathogen. This is one of the strategies that has been adopted in the quest to develop a malaria vaccine. Use of these parasite antigens as vaccine candidates is supported by substantial epidemiological data, and some have demonstrated the ability to elicit protective responses in animal models of malaria infection. However, there is as yet no immunological correlate of protection and no functional assays or animal models that have demonstrated the ability to predict efficacy in humans. There is little precedence for the most appropriate and practical method for assessing potency of vaccines based on these recombinant molecules for malaria vaccines. This is likely because the majority of malaria vaccine candidates have only recently entered clinical evaluation. The PATH Malaria Vaccine Initiative (MVI) convened a panel with expertise in potency assay design from industry, governmental institutions, and regulatory bodies to discuss and review the rationale, available methods, and best approaches for assessing the potency of recombinant proteins, specifically for their use as malarial vaccines. The aim of this meeting was to produce a discussion document on the practical potency assessment of recombinant protein malaria vaccines, focusing on early phase potency assay development.

  20. Live Attenuated Tularemia Vaccines for Protection Against Respiratory Challenge With Virulent F. tularensis subsp. tularensis

    Science.gov (United States)

    Jia, Qingmei; Horwitz, Marcus A.

    2018-01-01

    Francisella tularensis is the causative agent of tularemia and a Tier I bioterrorism agent. In the 1900s, several vaccines were developed against tularemia including the killed “Foshay” vaccine, subunit vaccines comprising F. tularensis protein(s) or lipoproteins(s) in an adjuvant formulation, and the F. tularensis Live Vaccine Strain (LVS); none were licensed in the U.S.A. or European Union. The LVS vaccine retains toxicity in humans and animals—especially mice—but has demonstrated efficacy in humans, and thus serves as the current gold standard for vaccine efficacy studies. The U.S.A. 2001 anthrax bioterrorism attack spawned renewed interest in vaccines against potential biowarfare agents including F. tularensis. Since live attenuated—but not killed or subunit—vaccines have shown promising efficacy and since vaccine efficacy against respiratory challenge with less virulent subspecies holarctica or F. novicida, or against non-respiratory challenge with virulent subsp. tularensis (Type A) does not reliably predict vaccine efficacy against respiratory challenge with virulent subsp. tularensis, the route of transmission and species of greatest concern in a bioterrorist attack, in this review, we focus on live attenuated tularemia vaccine candidates tested against respiratory challenge with virulent Type A strains, including homologous vaccines derived from mutants of subsp. holarctica, F. novicida, and subsp. tularensis, and heterologous vaccines developed using viral or bacterial vectors to express F. tularensis immunoprotective antigens. We compare the virulence and efficacy of these vaccine candidates with that of LVS and discuss factors that can significantly impact the development and evaluation of live attenuated tularemia vaccines. Several vaccines meet what we would consider the minimum criteria for vaccines to go forward into clinical development—safety greater than LVS and efficacy at least as great as LVS, and of these, several meet the

  1. Human recombinant factor VIIa may improve heat intolerance in mice by attenuating hypothalamic neuronal apoptosis and damage.

    Science.gov (United States)

    Hsu, Chuan-Chih; Chen, Sheng-Hsien; Lin, Cheng-Hsien; Yung, Ming-Chi

    2014-10-01

    Intolerance to heat exposure is believed to be associated with hypothalamo-pituitary-adrenocortical (HPA) axis impairment [reflected by decreases in blood concentrations of both adrenocorticotrophic-hormone (ACTH) and corticosterone]. The purpose of this study was to determine the effect of human recombinant factor VIIa (rfVIIa) on heat intolerance, HPA axis impairment, and hypothalamic inflammation, ischemic and oxidative damage, and apoptosis in mice under heat stress. Immediately after heat stress (41.2 °C for 1 h), mice were treated with vehicle (1 mL/kg of body weight) or rfVIIa (65-270 µg/kg of body weight) and then returned to room temperature (26 °C). Mice still alive on day 4 of heat exposure were considered survivors. Cellular ischemia markers (e.g., glutamate, lactate-to-pyruvate ratio), oxidative damage markers (e.g., nitric oxide metabolite, hydroxyl radials), and pro-inflammatory cytokines (e.g., interleukin-6, interleukin-1β, tumor necrosis factor-α) in hypothalamus were determined. In addition, blood concentrations of both ACTH and corticosterone were measured. Hypothalamic cell damage was assessed by determing the neuronal damage scores, whereas the hypothalamic cell apoptosis was determined by assessing the numbers of cells stained with terminal deoxynucleotidyl transferase-mediated αUTP nick-end labeling, caspase-3-positive cells, and platelet endothelial cell adhesion molecula-1-positive cells in hypothalamus. Compared with vehicle-treated heated mice, rfVIIa-treated heated mice had significantly higher fractional survival (8/10 vs 1/10), lesser thermoregulatory deficit (34.1 vs 24.8 °C), lesser extents of ischemic, oxidative, and inflammatory markers in hypothalamus, lesser neuronal damage scores and apoptosis in hypothalamus, and lesser HPA axis impairment. Human recombinant factor VIIa appears to exert a protective effect against heatstroke by attenuating hypothalamic cell apoptosis (due to ischemic, inflammatory, and oxidative damage

  2. The Long-Term Safety, Public Health Impact, and Cost-Effectiveness of Routine Vaccination with a Recombinant, Live-Attenuated Dengue Vaccine (Dengvaxia): A Model Comparison Study.

    Science.gov (United States)

    Flasche, Stefan; Jit, Mark; Rodríguez-Barraquer, Isabel; Coudeville, Laurent; Recker, Mario; Koelle, Katia; Milne, George; Hladish, Thomas J; Perkins, T Alex; Cummings, Derek A T; Dorigatti, Ilaria; Laydon, Daniel J; España, Guido; Kelso, Joel; Longini, Ira; Lourenco, Jose; Pearson, Carl A B; Reiner, Robert C; Mier-Y-Terán-Romero, Luis; Vannice, Kirsten; Ferguson, Neil

    2016-11-01

    Large Phase III trials across Asia and Latin America have recently demonstrated the efficacy of a recombinant, live-attenuated dengue vaccine (Dengvaxia) over the first 25 mo following vaccination. Subsequent data collected in the longer-term follow-up phase, however, have raised concerns about a potential increase in hospitalization risk of subsequent dengue infections, in particular among young, dengue-naïve vaccinees. We here report predictions from eight independent modelling groups on the long-term safety, public health impact, and cost-effectiveness of routine vaccination with Dengvaxia in a range of transmission settings, as characterised by seroprevalence levels among 9-y-olds (SP9). These predictions were conducted for the World Health Organization to inform their recommendations on optimal use of this vaccine. The models adopted, with small variations, a parsimonious vaccine mode of action that was able to reproduce quantitative features of the observed trial data. The adopted mode of action assumed that vaccination, similarly to natural infection, induces transient, heterologous protection and, further, establishes a long-lasting immunogenic memory, which determines disease severity of subsequent infections. The default vaccination policy considered was routine vaccination of 9-y-old children in a three-dose schedule at 80% coverage. The outcomes examined were the impact of vaccination on infections, symptomatic dengue, hospitalised dengue, deaths, and cost-effectiveness over a 30-y postvaccination period. Case definitions were chosen in accordance with the Phase III trials. All models predicted that in settings with moderate to high dengue endemicity (SP9 ≥ 50%), the default vaccination policy would reduce the burden of dengue disease for the population by 6%-25% (all simulations: -3%-34%) and in high-transmission settings (SP9 ≥ 70%) by 13%-25% (all simulations: 10%- 34%). These endemicity levels are representative of the participating sites in

  3. The Long-Term Safety, Public Health Impact, and Cost-Effectiveness of Routine Vaccination with a Recombinant, Live-Attenuated Dengue Vaccine (Dengvaxia: A Model Comparison Study.

    Directory of Open Access Journals (Sweden)

    Stefan Flasche

    2016-11-01

    Full Text Available Large Phase III trials across Asia and Latin America have recently demonstrated the efficacy of a recombinant, live-attenuated dengue vaccine (Dengvaxia over the first 25 mo following vaccination. Subsequent data collected in the longer-term follow-up phase, however, have raised concerns about a potential increase in hospitalization risk of subsequent dengue infections, in particular among young, dengue-naïve vaccinees. We here report predictions from eight independent modelling groups on the long-term safety, public health impact, and cost-effectiveness of routine vaccination with Dengvaxia in a range of transmission settings, as characterised by seroprevalence levels among 9-y-olds (SP9. These predictions were conducted for the World Health Organization to inform their recommendations on optimal use of this vaccine.The models adopted, with small variations, a parsimonious vaccine mode of action that was able to reproduce quantitative features of the observed trial data. The adopted mode of action assumed that vaccination, similarly to natural infection, induces transient, heterologous protection and, further, establishes a long-lasting immunogenic memory, which determines disease severity of subsequent infections. The default vaccination policy considered was routine vaccination of 9-y-old children in a three-dose schedule at 80% coverage. The outcomes examined were the impact of vaccination on infections, symptomatic dengue, hospitalised dengue, deaths, and cost-effectiveness over a 30-y postvaccination period. Case definitions were chosen in accordance with the Phase III trials. All models predicted that in settings with moderate to high dengue endemicity (SP9 ≥ 50%, the default vaccination policy would reduce the burden of dengue disease for the population by 6%-25% (all simulations: -3%-34% and in high-transmission settings (SP9 ≥ 70% by 13%-25% (all simulations: 10%- 34%. These endemicity levels are representative of the

  4. Recombinant vaccines: experimental and applied aspects

    DEFF Research Database (Denmark)

    Lorenzen, Niels

    1999-01-01

    Development of vaccines for aquaculture fish represent an important applied functional aspect of fish immunology research. Particularly in the case of recombinant vaccines, where a single antigen is usually expected to induce immunity to a specific pathogen, knowledge of mechanisms involved...... in induction of a protective immune response may become vital. The few recombinant vaccines licensd so far, despite much research during the last decade, illustrate that this is not a straightforward matter. However, as vaccine technology as well as our knowledge of the fish immune system is steadily improved......, these fields will open up a number of interesting research objectives of mutual benefit. Recent aspects of recombinant protein vaccines, live recombinant vaccines and DNA vaccines are discussed....

  5. Development of Recombinant Newcastle Disease Viruses Expressing the Glycoprotein (G) of Avian Metapneumovirus as Bivalent Vaccines

    Science.gov (United States)

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, B or C, as bivalent vaccines. These recombinant viruses were slightly attenuated in vivo, yet maintaine...

  6. Immunogenicity of a Live Recombinant Salmonella enterica Serovar Typhimurium Vaccine Expressing pspA in Neonates and Infant Mice Born from Naïve and Immunized Mothers▿ †

    OpenAIRE

    Shi, Huoying; Wang, Shifeng; Roland, Kenneth L.; Gunn, Bronwyn M.; Curtiss, Roy

    2010-01-01

    We are developing a Salmonella vectored vaccine to prevent infant pneumonia and other diseases caused by Streptococcus pneumoniae. One prerequisite for achieving this goal is to construct and evaluate new recombinant attenuated Salmonella vaccine (RASV) strains suitable for use in neonates and infants. Salmonella enterica serovar Typhimurium strain χ9558(pYA4088) specifies delivery of the pneumococcal protective antigen PspA and can protect adult mice from challenge with S. pneumoniae. This s...

  7. Analysis of immune responses to recombinant proteins from strains of Mycoplasma mycoides subsp. mycoides, the causative agent of contagious bovine pleuropneumonia.

    Science.gov (United States)

    Perez-Casal, Jose; Prysliak, Tracy; Maina, Teresa; Wang, Yejun; Townsend, Hugh; Berverov, Emil; Nkando, Isabel; Wesonga, Hezron; Liljander, Anne; Jores, Joerg; Naessens, Jan; Gerdts, Volker; Potter, Andrew

    2015-11-15

    Current contagious bovine pleuropneumonia (CBPP) vaccines are based on live-attenuated strains of Mycoplasma mycoides subsp. mycoides (Mmm). These vaccines have shortcomings in terms of efficacy, duration of immunity and in some cases show severe side effects at the inoculation site; hence the need to develop new vaccines to combat the disease. Reverse vaccinology approaches were used and identified 66 candidate Mycoplasma proteins using available Mmm genome data. These proteins were ranked by their ability to be recognized by serum from CBPP-positive cattle and thereafter used to inoculate naïve cattle. We report here the inoculation of cattle with recombinant proteins and the subsequent humoral and T-cell-mediated immune responses to these proteins and conclude that a subset of these proteins are candidate molecules for recombinant protein-based subunit vaccines for CBPP control. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A bovine herpesvirus 5 recombinant defective in the thymidine kinase (TK gene and a double mutant lacking TK and the glycoprotein E gene are fully attenuated for rabbits

    Directory of Open Access Journals (Sweden)

    S.C. Silva

    2010-02-01

    Full Text Available Bovine herpesvirus 5 (BoHV-5, the agent of herpetic meningoencephalitis in cattle, is an important pathogen of cattle in South America and several efforts have been made to produce safer and more effective vaccines. In the present study, we investigated in rabbits the virulence of three recombinant viruses constructed from a neurovirulent Brazilian BoHV-5 strain (SV507/99. The recombinants are defective in glycoprotein E (BoHV-5gEΔ, thymidine kinase (BoHV-5TKΔ and both proteins (BoHV-5gEΔTKΔ. Rabbits inoculated with the parental virus (N = 8 developed neurological disease and died or were euthanized in extremis between days 7 and 13 post-infection (pi. Infectivity was detected in several areas of their brains. Three of 8 rabbits inoculated with the recombinant BoHV-5gEΔ developed neurological signs between days 10 and 15 pi and were also euthanized. A more restricted virus distribution was detected in the brain of these animals. Rabbits inoculated with the recombinants BoHV-5TKΔ (N = 8 or BoHV-5gEΔTKΔ (N = 8 remained healthy throughout the experiment in spite of variable levels of virus replication in the nose. Dexamethasone (Dx administration to rabbits inoculated with the three recombinants at day 42 pi did not result in viral reactivation, as demonstrated by absence of virus shedding and/or increase in virus neutralizing titers. Nevertheless, viral DNA was detected in the trigeminal ganglia or olfactory bulbs of all animals at day 28 post-Dx, demonstrating they were latently infected. These results show that recombinants BoHV-5TKΔ and BoHV-5gEΔTKΔ are attenuated for rabbits and constitute potential vaccine candidates upon the confirmation of this phenotype in cattle.

  9. [History of development of the live poliomyelitis vaccine from Sabin attenuated strains in 1959 and idea of poliomyelitis eradication].

    Science.gov (United States)

    Lashkevich, V A

    2013-01-01

    In 1958 Poliomyelitis Institute in Moscow and Institute of Experimental Medicine in St. Petersburg received from A. Sabin the attenuated strains of poliomyelitis virus. The characteristics of the strains were thoroughly studied by A. A. Smorodintsev and coworkers. They found that the virulence of the strains fluctuated slightly in 10 consecutive passages through the intestine of the non-immune children. A part of the Sabin material was used by A. A. Smorodintsev and M. P. Chumakov in the beginning of 1959 for immunizing approximately 40000 children in Estonia, Lithuania, and Latvia. Epidemic poliomyelitis rate in these republics decreased from approximately 1000 cases yearly before vaccination to less than 20 in the third quarter of 1959. This was a convincing proof of the efficacy and safety of the vaccine from the attenuated Sabin strains. In 1959, according to A. Sabin's recommendation, a technology of live vaccine production was developed at the Poliomyelitis Institute, and several experimental lots of vaccine were prepared. In the second part of 1959, 13.5 million children in USSR were immunized. The epidemic poliomyelitis rate decreased 3-5 times in different regions without paralytic cases, which could be attributed to the vaccination. These results were the final proof of high efficiency and safety of live poliomyelitis vaccine from the attenuated Sabin strains. Based on these results, A. Sabin and M. P. Chumakov suggested in 1960 the idea of poliomyelitis eradication using mass immunization of children with live vaccine. 72 million persons up to 20 years old were vaccinated in USSR in 1960 with a 5 times drop in the paralytic rate. 50-year-long use of live vaccine results in poliomyelitis eradication in almost all countries worldwide. More than 10 million children were rescued from the death and palsy. Poliomyelitis eradication in a few countries where it still exists depends not on medical services but is defined by the attitude of their leaders to fight

  10. Two novel porcine epidemic diarrhea virus (PEDV) recombinants from a natural recombinant and distinct subtypes of PEDV variants.

    Science.gov (United States)

    Chen, Nanhua; Li, Shuangjie; Zhou, Rongyun; Zhu, Meiqin; He, Shan; Ye, Mengxue; Huang, Yucheng; Li, Shuai; Zhu, Cong; Xia, Pengpeng; Zhu, Jianzhong

    2017-10-15

    Porcine epidemic diarrhea virus (PEDV) causes devastating impact on global pig-breeding industry and current vaccines have become not effective against the circulating PEDV variants since 2011. During the up-to-date investigation of PEDV prevalence in Fujian China 2016, PEDV was identified in vaccinated pig farms suffering severe diarrhea while other common diarrhea-associated pathogens were not detected. Complete genomes of two PEDV representatives (XM1-2 and XM2-4) were determined. Genomic comparison showed that these two viruses share the highest nucleotide identities (99.10% and 98.79%) with the 2011 ZMDZY strain, but only 96.65% and 96.50% nucleotide identities with the attenuated CV777 strain. Amino acid alignment of spike (S) proteins indicated that they have the similar mutation, insertion and deletion pattern as other Chinese PEDV variants but also contain several unique substitutions. Phylogenetic analysis showed that 2016 PEDV variants belong to the cluster of recombination strains but form a new branch. Recombination detection suggested that both XM1-2 and XM2-4 are inter-subgroup recombinants with breakpoints within ORF1b. Remarkably, the natural recombinant HNQX-3 isolate serves as a parental virus for both natural recombinants identified in this study. This up-to-date investigation provides the direct evidence that natural recombinants may serve as parental viruses to generate recombined PEDV progenies that are probably associated with the vaccination failure. Copyright © 2017. Published by Elsevier B.V.

  11. Recombinant infectious bronchitis virus (IBV) H120 vaccine strain expressing the hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) protects chickens against IBV and NDV challenge.

    Science.gov (United States)

    Yang, Xin; Zhou, Yingshun; Li, Jianan; Fu, Li; Ji, Gaosheng; Zeng, Fanya; Zhou, Long; Gao, Wenqian; Wang, Hongning

    2016-05-01

    Infectious bronchitis (IB) and Newcastle disease (ND) are common viral diseases of chickens, which are caused by infectious bronchitis virus (IBV) and Newcastle disease virus (NDV), respectively. Vaccination with live attenuated strains of IBV-H120 and NDV-LaSota are important for the control of IB and ND. However, conventional live attenuated vaccines are expensive and result in the inability to differentiate between infected and vaccinated chickens. Therefore, there is an urgent need to develop new efficacious vaccines. In this study, using a previously established reverse genetics system, we generated a recombinant IBV virus based on the IBV H120 vaccine strain expressing the haemagglutinin-neuraminidase (HN) protein of NDV. The recombinant virus, R-H120-HN/5a, exhibited growth dynamics, pathogenicity and viral titers that were similar to those of the parental IBV H120, but it had acquired hemagglutination activity from NDV. Vaccination of SPF chickens with the R-H120-HN/5a virus induced a humoral response at a level comparable to that of the LaSota/H120 commercial bivalent vaccine and provided significant protection against challenge with virulent IBV and NDV. In summary, the results of this study indicate that the IBV H120 strain could serve as an effective tool for designing vaccines against IB and other infectious diseases, and the generation of IBV R-H120-HN/5a provides a solid foundation for the development of an effective bivalent vaccine against IBV and NDV.

  12. Production and efficacy of an attenuated live vaccine against contagious ovine ecthyma

    Directory of Open Access Journals (Sweden)

    Attilio Pini

    2008-09-01

    Full Text Available Contagious ecthyma is caused by the orf virus, a member of the family Poxviridae, genus Parapoxvirus. Morbidity in affected sheep flocks is approximately 100%, while mortality varies between 1% and 10%. A live attenuated vaccine was produced by the Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’. Quality control was performed in accordance with the European Pharmacopoeia. A wild virus strain was attenuated through serial passages on primary chicken embryo fibroblast tissue cultures. The virus suspension was treated according to standard procedures and freeze dried. The immunising dose was 1 ml containing 104,5TCID50, administered intramuscularly. The safety of the vaccine was successfully tested by intramuscular inoculation of 20 susceptible sheep and 20 lambs with the routine dose, 10 times the immunising dose and two normal doses administered at seven-day intervals. The efficacy of the vaccine was tested using three groups of susceptible animals. The first group included 10 lambs and the second 10 adult sheep; the animals were immunised intramuscularly with 1 ml of the reconstituted vaccine. The third group, used as controls, included five sheep and five lambs. Serological reactivity was monitored by indirect enzyme-linked immunosorbent assay (ELISA. The animals were challenged 30 days later with a pathogenic strain administered intradermally along the labial area. Vaccinated animals did not show any clinical signs of disease, whereas all the controls developed typical signs of contagious ecthyma. To confirm the efficacy of the vaccine, a field trial was conducted in four flocks affected by the disease. The trial showed that the vaccine was able to block the normal course of the disease and induce rapid recovery.

  13. The model of recombination process in TlBr

    International Nuclear Information System (INIS)

    Grigorjeva, L.; Millers, D.

    2002-01-01

    The time-resolved luminescence was used as a tool in the study of recombination process in several undoped TlBr crystals. The spectra and decay kinetics observed under electron beam excitation were investigated. Observation of several luminescence bands with different decay rates shows that more than one recombination center is involved and the recombination process is quite complicated. The band at ∼2.5 eV is dominant under 10 ns excitation pulse (electron beam or nitrogen laser pulses). The results of short-lived absorption and luminescence are used for analysis of possible mechanisms of recombination processes in TlBr

  14. Oral Salmonella: malaria circumsporozoite recombinants induce specific CD8+ cytotoxic T cells

    OpenAIRE

    1990-01-01

    Oral immunization with an attenuated Salmonella typhimurium recombinant containing the full-length Plasmodium berghei circumsporozoite (CS) gene induces protective immunity against P. berghei sporozoite challenge in the absence of antibody. We found that this immunity was mediated through the induction of specific CD8+ T cells since in vivo elimination of CD8+ cells abrogated protection. In vitro studies revealed that this Salmonella-P. berghei CS recombinant induced class I- restricted CD8+ ...

  15. A live-attenuated and an inactivated chimeric porcine circovirus (PCV)1-2 vaccine are both effective at inducing a humoral immune response and reducing PCV2 viremia and intrauterine infection in female swine of breeding age.

    Science.gov (United States)

    Hemann, Michelle; Beach, Nathan M; Meng, Xiang-Jin; Wang, Chong; Halbur, Patrick G; Opriessnig, Tanja

    2014-01-01

    The objective of this pilot study was to determine the efficacy of inactivated (1 or 2 dose) and live-attenuated chimeric porcine circovirus (PCV)1-2 vaccines in sows using the PCV2-spiked semen model. Thirty-five sows were randomly divided into 6 groups: negative and positive controls, 1 dose inactivated PCV1-2 vaccine challenged (1-VAC-PCV2), 2 dose inactivated PCV1-2 vaccine challenged (2-VAC-PCV2), 1 dose live-attenuated PCV1-2 vaccine unchallenged (1-LIVE-VAC), and 1 dose live-attenuated PCV1-2 vaccine challenged (1-LIVE-VAC-PCV2). The inactivated PCV1-2 vaccine induced higher levels of PCV2-specific antibodies in dams. All vaccination strategies provided good protection against PCV2 viremia in dams, whereas the majority of the unvaccinated sows were viremic. Four of the 35 dams became pregnant: a negative control, a positive control, a 2-VAC-PCV2 sow, and a 1-LIVE-VAC-PCV2 sow. The PCV2 DNA was detected in 100%, 67%, and 29% of the fetuses obtained from the positive control, inactivated vaccinated, or live-attenuated vaccinated dams, respectively. The PCV2 antigen in hearts was only detectable in the positive control litter (23% of the fetuses). The PCV1-2 DNA was detected in 29% of the fetuses in the litter from the 1-LIVE-VAC-PCV2 dam. Under the conditions of this pilot study, both vaccines protected against PCV2 viremia in breeding age animals; however, vertical transmission was not prevented.

  16. [Construction and expression of a recombinant adenovirus with LZP3].

    Science.gov (United States)

    Chen, Bang-dang; Zhang, Fu-chun; Sun, Mei-yu; Li, Yi-jie; Ma, Zheng-hai

    2007-08-01

    To explore a new immunocontraceptive vaccine and construct an attenuated recombinant adenoviral vaccine against Lagurus lagurus zona pellucida 3(LZP3). LZP3 gene was subcloned into the shuttle vector pShuttle-CMV, and then a two-step transformation procedure was employed to construct a recombinant adenoviral plasmid with LZP3, which was digested with Pac I and transfected into HEK293 cells to package recombinant adenovirus particles. Finally, HeLa cells were infected by the recombinant adenovirus. LZP3 gene was detected from the recombinant virus by PCR, and its transcription and expression were analyzed by RT-PCR and Western blot. Recombinant adenovirus vector pAd-LZP3 with LZP3 gene was constructed by homologous recombination in E.coli, and a recombinant adenovirus was obtained by transfecting HEK293 cells with pAd-LZP3. PCR test indicated that LZP3 gene was successfully integrated into the adenoviral genome, and the titer of the recombinant adenovirus reached 1.2x10(10) pfu/L. The transcription and expression of LZP3 gene in the infected HeLa cells were confirmed by RT-PCR and Western blot. The recombinant adenovirus RAd-LZP3 can be successfully expressed in the infected HeLa cells, which lays the foundation for further researches into immunizing animals with RAd-LZP3.

  17. Human Transcriptome Response to Immunization with Live- Attenuated Venezuelan equine encephalitis Virus Vaccine (TC 83): Analysis of Whole Blood

    Science.gov (United States)

    2016-11-21

    natural killer cell 33 signaling, and B-cell development. Biomarkers were identified that differentiate between 34 vaccinees and control subjects...risk laboratory personnel.8 The first vaccine, 68 TC-83, is a live-attenuated virus developed in 1961 by serial passage of the virulent Trinidad 69...HSP90AA1), the ERK5 Signaling pathway 220 (e.g., IL6ST, NRAS, RRAS2, ATF2), the Natural Killer Cell Signaling pathway (e.g., KLRC2, 221 FYN, PRKC1

  18. Cold-adapted live attenuated influenza vaccines developed in Russia: Can they contribute to meeting the needs for influenza control in other countries?

    International Nuclear Information System (INIS)

    Kendal, Alan P.

    1997-01-01

    It is now more than 30 years since the first cold-adapted influenza viruses were developed in Russia as potential live, attenuated vaccines. In the past 15-20 years considerable experience has been gained from Russian and joint Russian-US laboratory and clinical studies with type A monovalent and bivalent vaccines prepared with genetic reassortant viruses derived from one of these cold-adapted viruses in particular, A/Leningrad/134/57. More recent experiences include use of trivalent cold-adapted vaccines with a type B component. The overall high level of safety of individual and combined vaccines in pre-school and school-aged children, with illness reductions in open field trials equivalent to that seen with inactivated vaccines, is such as to suggest that practical measures might now be justified to facilitate expansion of the use of these vaccines to other countries. It is proposed that further experimentation with the Russian cold-adapted live attenuated vaccines should be focused on issues that will relate to the public health perspective, i.e. selection of the single best candidate type A and B vaccines for intense study using as criteria their potential for meeting licensing requirements outside Russia, and documenting the clinical protective efficacy of a single vaccine dose compared to two doses as studied until now. Resolution of these issues is important to ensure that costs for future live vaccine production, control, and utilization will be kept at lowest levels so that expanded use of live vaccines will have maximum cost-benefit and affordability. To guide those interested in these issues, examples are given of populations for whom a licensed live cold-adapted vaccine might be considered, together with indications of extra data needed to fully validate each suggested use

  19. Recombinant lactic acid bacteria as delivery vectors of heterologous antigens: the future of vaccination?

    Science.gov (United States)

    Trombert, A

    2015-01-01

    Lactic acid bacteria (LABs) are good candidates for the development of new oral vaccines and are attractive alternatives to attenuated pathogens. This review focuses on the use of wild-type and recombinant lactococci and lactobacilli with emphasis on their molecular design, immunomodulation and treatment of bacterial infections. The majority of studies related to recombinant LABs have focused on Lactococcus lactis, however, molecular tools have been successfully used for Lactobacillus spp. Recombinant lactobacilli and lactococci have several health benefits, such as immunomodulation, restoration of the microbiota, synthesis of antimicrobial substances and inhibition of virulence factors. In addition, protective immune responses that are well tolerated are induced by the expression of heterologous antigens from recombinant probiotics.

  20. A live attenuated H7N7 candidate vaccine virus induces neutralizing antibody that confers protection from challenge in mice, ferrets and monkeys

    Science.gov (United States)

    A live attenuated H7N7 candidate vaccine virus was generated by reverse genetics using the modified hemagglutinin (HA) and neuraminidase (NA) genes of HP A/Netherlands/219/03 (NL/03) (H7N7) wild-type (wt) virus and the six internal protein genes of the cold-adapted (ca) A/Ann Arbor/6/60 ca (AA ca) (...

  1. Longitudinal study to assess the safety and efficacy of a live-attenuated SHIV vaccine in long term immunized rhesus macaques

    International Nuclear Information System (INIS)

    Yankee, Thomas M.; Sheffer, Darlene; Liu Zhengian; Dhillon, Sukhbir; Jia Fenglan; Chebloune, Yahia; Stephens, Edward B.; Narayan, Opendra

    2009-01-01

    Live-attenuated viruses derived from SIV and SHIV have provided the most consistent protection against challenge with pathogenic viruses, but concerns regarding their long-term safety and efficacy have hampered their clinical usefulness. We report a longitudinal study in which we evaluated the long-term safety and efficacy of ΔvpuSHIV PPC , a live virus vaccine derived from SHIV PPC . Macaques were administered two inoculations of ΔvpuSHIV PPC , three years apart, and followed for eight years. None of the five vaccinated macaques developed an AIDS-like disease from the vaccine. At eight years, macaques were challenged with pathogenic SIV and SHIV. None of the four macaques with detectable cellular-mediated immunity prior to challenge had detectable viral RNA in the plasma. This study demonstrates that multiple inoculations of a live vaccine virus can be used safely and can significantly extend the efficacy of the vaccine, as compared to a single inoculation, which is efficacious for approximately three years

  2. Genomic analysis of an attenuated Chlamydia abortus live vaccine strain reveals defects in central metabolism and surface proteins.

    Science.gov (United States)

    Burall, L S; Rodolakis, A; Rekiki, A; Myers, G S A; Bavoil, P M

    2009-09-01

    Comparative genomic analysis of a wild-type strain of the ovine pathogen Chlamydia abortus and its nitrosoguanidine-induced, temperature-sensitive, virulence-attenuated live vaccine derivative identified 22 single nucleotide polymorphisms unique to the mutant, including nine nonsynonymous mutations, one leading to a truncation of pmpG, which encodes a polymorphic membrane protein, and two intergenic mutations potentially affecting promoter sequences. Other nonsynonymous mutations mapped to a pmpG pseudogene and to predicted coding sequences encoding a putative lipoprotein, a sigma-54-dependent response regulator, a PhoH-like protein, a putative export protein, two tRNA synthetases, and a putative serine hydroxymethyltransferase. One of the intergenic mutations putatively affects transcription of two divergent genes encoding pyruvate kinase and a putative SOS response nuclease, respectively. These observations suggest that the temperature-sensitive phenotype and associated virulence attenuation of the vaccine strain result from disrupted metabolic activity due to altered pyruvate kinase expression and/or alteration in the function of one or more membrane proteins, most notably PmpG and a putative lipoprotein.

  3. Early protection events in swine immunized with an experimental live attenuated classical swine fever marker vaccine, FlagT4G.

    Directory of Open Access Journals (Sweden)

    Lauren G Holinka

    Full Text Available Prophylactic vaccination using live attenuated classical swine fever (CSF vaccines has been a very effective method to control the disease in endemic regions and during outbreaks in previously disease-free areas. These vaccines confer effective protection against the disease at early times post-vaccination although the mechanisms mediating the protection are poorly characterized. Here we present the events occurring after the administration of our in-house developed live attenuated marker vaccine, FlagT4Gv. We previously reported that FlagT4Gv intramuscular (IM administered conferred effective protection against intranasal challenge with virulent CSFV (BICv as early as 7 days post-vaccination. Here we report that FlagT4Gv is able to induce protection against disease as early as three days post-vaccination. Immunohistochemical testing of tissues from FlagT4Gv-inoculated animals showed that tonsils were colonized by the vaccine virus by day 3 post-inoculation. There was a complete absence of BICv in tonsils of FlagT4Gv-inoculated animals which had been intranasal (IN challenged with BICv 3 days after FlagT4Gv infection, confirming that FlagT4Gv inoculation confers sterile immunity. Analysis of systemic levels of 19 different cytokines in vaccinated animals demonstrated an increase of IFN-α three days after FlagT4Gv inoculation compared with mock infected controls.

  4. Live hot, die young: transmission distortion in recombination hotspots.

    Directory of Open Access Journals (Sweden)

    Graham Coop

    2007-03-01

    Full Text Available There is strong evidence that hotspots of meiotic recombination in humans are transient features of the genome. For example, hotspot locations are not shared between human and chimpanzee. Biased gene conversion in favor of alleles that locally disrupt hotspots is a possible explanation of the short lifespan of hotspots. We investigate the implications of such a bias on human hotspots and their evolution. Our results demonstrate that gene conversion bias is a sufficiently strong force to produce the observed lack of sharing of intense hotspots between species, although sharing may be much more common for weaker hotspots. We investigate models of how hotspots arise, and find that only models in which hotspot alleles do not initially experience drive are consistent with observations of rather hot hotspots in the human genome. Mutations acting against drive cannot successfully introduce such hotspots into the population, even if there is direct selection for higher recombination rates, such as to ensure correct segregation during meiosis. We explore the impact of hotspot alleles on patterns of haplotype variation, and show that such alleles mask their presence in population genetic data, making them difficult to detect.

  5. Development of a Live Attenuated Bivalent Oral Vaccine Against Shigella sonnei Shigellosis and Typhoid Fever.

    Science.gov (United States)

    Wu, Yun; Chakravarty, Sumana; Li, Minglin; Wai, Tint T; Hoffman, Stephen L; Sim, B Kim Lee

    2017-01-15

    Shigella sonnei and Salmonella Typhi cause significant morbidity and mortality. We exploited the safety record of the oral, attenuated S. Typhi vaccine (Ty21a) by using it as a vector to develop a bivalent oral vaccine to protect against S. sonnei shigellosis and typhoid fever. We recombineered the S. sonnei form I O-antigen gene cluster into the Ty21a chromosome to create Ty21a-Ss, which stably expresses S. sonnei form I O antigen. To enhance survivability in the acid environment of the stomach, we created an acid-resistant strain, Ty21a-AR-Ss, by inserting Shigella glutaminase-glutamate decarboxylase systems coexpressed with S. sonnei form I O-antigen gene. Mice immunized intranasally with Ty21a-AR-Ss produced antibodies against S. sonnei and S. Typhi, and survived lethal intranasal S. sonnei challenge. This paves the way for proposed good manufacturing practices manufacture and clinical trials intended to test the clinical effectiveness of Ty21a-AR-Ss in protecting against S. sonnei shigellosis and typhoid fever, as compared with the current Ty21a vaccine. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. A non-pathogenic live vector as an efficient delivery system in vaccine design for the prevention of HPV16 E7-overexpressing cancers.

    Science.gov (United States)

    Hosseinzadeh, Sahar; Bolhassani, Azam; Rafati, Sima; Taheri, Tahereh; Zahedifard, Farnaz; Daemi, Amin; Taslimi, Yasaman; Hashemi, Mehrdad; Memarnejadian, Arash

    2013-01-01

    The attenuated or non-pathogenic live vectors have been evolved specifically to deliver DNA into cells as efficient delivery tools in gene therapy. Recently, a non-pathogenic protozoan, Leishmania tarentolae (L.tar) has attracted a great attention. In current study, we used Leishmania expression system (LEXSY) for stable expression of HPV16 E7 linked to different mini-chaperones [N-/C-terminal of gp96] and compared their immunogenicity and protective effects in C57BL/6 mice against TC-1 challenge. TC-1 murine model is primary C57BL/6 mice lung epithelial cells co-transformed with HPV16 E6, HPV16 E7 and ras oncogenes. Our results showed that subcutaneous administration of mice with both the recombinant L.tar-E7-NT (gp96) and L.tar-E7-CT (gp96) led to enhance the levels of IFN-γ and also IgG2a before and after challenge with TC-1. Furthermore, L.tar-E7-CT (gp96) live vaccine indicated significant protective effects as compared to control groups as well as group vaccinated with L.tar-E7. Indeed, the recombinant live vector is capable of eliciting effective humoral and cellular immune responses in mice, but however, further studies are required to increase their efficacy.

  7. The yellow fever 17D vaccine virus as a vector for the expression of foreign proteins: development of new live flavivirus vaccines

    Directory of Open Access Journals (Sweden)

    Myrna C Bonaldo

    2000-01-01

    Full Text Available The Flaviviridae is a family of about 70 mostly arthropod-borne viruses many of which are major public health problems with members being present in most continents. Among the most important are yellow fever (YF, dengue with its four serotypes and Japanese encephalitis virus. A live attenuated virus is used as a cost effective, safe and efficacious vaccine against YF but no other live flavivirus vaccines have been licensed. The rise of recombinant DNA technology and its application to study flavivirus genome structure and expression has opened new possibilities for flavivirus vaccine development. One new approach is the use of cDNAs encopassing the whole viral genome to generate infectious RNA after in vitro transcription. This methodology allows the genetic mapping of specific viral functions and the design of viral mutants with considerable potential as new live attenuated viruses. The use of infectious cDNA as a carrier for heterologous antigens is gaining importance as chimeric viruses are shown to be viable, immunogenic and less virulent as compared to the parental viruses. The use of DNA to overcome mutation rates intrinsic of RNA virus populations in conjunction with vaccine production in cell culture should improve the reliability and lower the cost for production of live attenuated vaccines. The YF virus despite a long period ignored by researchers probably due to the effectiveness of the vaccine has made a come back, both in nature as human populations grow and reach endemic areas as well as in the laboratory being a suitable model to understand the biology of flaviviruses in general and providing new alternatives for vaccine development through the use of the 17D vaccine strain.

  8. Development of a human live attenuated West Nile infectious DNA vaccine: Suitability of attenuating mutations found in SA14-14-2 for WN vaccine design

    Energy Technology Data Exchange (ETDEWEB)

    Yamshchikov, Vladimir, E-mail: yaximik@gmail.com; Manuvakhova, Marina; Rodriguez, Efrain

    2016-01-15

    Direct attenuation of West Nile (WN) virus strain NY99 for the purpose of vaccine development is not feasible due to its high virulence and pathogenicity. Instead, we created highly attenuated chimeric virus W1806 with the serological identity of NY99. To further attenuate W1806, we investigated effects of mutations found in Japanese encephalitis virus vaccine SA14-14-2. WN viruses carrying all attenuating mutations lost infectivity in mammalian, but not in mosquito cells. No single reversion restored infectivity in mammalian cells, although increased infectivity in mosquito cells was observed. To identify a subset of mutations suitable for further attenuation of W1806, we analyzed effects of E{sub 138}K and K{sub 279}M changes on virulence, growth properties, and immunogenicity of derivatized W956, from which chimeric W1806 inherited its biological properties and attenuation profile. Despite strong dominant attenuating effect, introduction of only two mutations was not sufficient for attenuating W1806 to the safety level acceptable for human use. - Highlights: • Further attenuation of a WN vaccine precursor is outlined. • Effect of SA14-14-2 attenuating mutations is tested. • Mechanism of attenuation is proposed and illustrated. • The need for additional attenuating mutations is justified.

  9. Horizontal transmissible protection against myxomatosis and rabbit hemorrhagic disease by using a recombinant myxoma virus.

    Science.gov (United States)

    Bárcena, J; Morales, M; Vázquez, B; Boga, J A; Parra, F; Lucientes, J; Pagès-Manté, A; Sánchez-Vizcaíno, J M; Blasco, R; Torres, J M

    2000-02-01

    We have developed a new strategy for immunization of wild rabbit populations against myxomatosis and rabbit hemorrhagic disease (RHD) that uses recombinant viruses based on a naturally attenuated field strain of myxoma virus (MV). The recombinant viruses expressed the RHDV major capsid protein (VP60) including a linear epitope tag from the transmissible gastroenteritis virus (TGEV) nucleoprotein. Following inoculation, the recombinant viruses induced specific antibody responses against MV, RHDV, and the TGEV tag. Immunization of wild rabbits by the subcutaneous and oral routes conferred protection against virulent RHDV and MV challenges. The recombinant viruses showed a limited horizontal transmission capacity, either by direct contact or in a flea-mediated process, promoting immunization of contact uninoculated animals.

  10. Determinants of attenuation and temperature sensitivity in the type 1 poliovirus Sabin vaccine.

    OpenAIRE

    Bouchard, M J; Lam, D H; Racaniello, V R

    1995-01-01

    To identify determinants of attenuation in the poliovirus type 1 Sabin vaccine strain, a series of recombinant viruses were constructed by using infectious cDNA clones of the virulent type 1 poliovirus P1/Mahoney and the attenuated type 1 vaccine strain P1/Sabin. Intracerebral inoculation of these viruses into transgenic mice which express the human receptor for poliovirus identified regions of the genome that conferred reduced neurovirulence. Exchange of smaller restriction fragments and sit...

  11. The cold adapted and temperature sensitive influenza A/Ann Arbor/6/60 virus, the master donor virus for live attenuated influenza vaccines, has multiple defects in replication at the restrictive temperature

    International Nuclear Information System (INIS)

    Chan, Winnie; Zhou, Helen; Kemble, George; Jin Hong

    2008-01-01

    We have previously determined that the temperature sensitive (ts) and attenuated (att) phenotypes of the cold adapted influenza A/Ann Arbor/6/60 strain (MDV-A), the master donor virus for the live attenuated influenza A vaccines (FluMist), are specified by the five amino acids in the PB1, PB2 and NP gene segments. To understand how these loci control the ts phenotype of MDV-A, replication of MDV-A at the non-permissive temperature (39 deg. C) was compared with recombinant wild-type A/Ann Arbor/6/60 (rWt). The mRNA and protein synthesis of MDV-A in the infected MDCK cells were not significantly reduced at 39 deg. C during a single-step replication, however, vRNA synthesis was reduced and the nuclear-cytoplasmic export of viral RNP (vRNP) was blocked. In addition, the virions released from MDV-A infected cells at 39 deg. C exhibited irregular morphology and had a greatly reduced amount of the M1 protein incorporated. The reduced M1 protein incorporation and vRNP export blockage correlated well with the virus ts phenotype because these defects could be partially alleviated by removing the three ts loci from the PB1 gene. The virions and vRNPs isolated from the MDV-A infected cells contained a higher level of heat shock protein 70 (Hsp70) than those of rWt, however, whether Hsp70 is involved in thermal inhibition of MDV-A replication remains to be determined. Our studies demonstrate that restrictive replication of MDV-A at the non-permissive temperature occurs in multiple steps of the virus replication cycle

  12. Correlation of mutations and recombination with growth kinetics of poliovirus vaccine strains.

    Science.gov (United States)

    Pliaka, V; Kyriakopoulou, Z; Tsakogiannis, D; Ruether, I G A; Gartzonika, C; Levidiotou-Stefanou, S; Krikelis, A; Markoulatos, P

    2010-12-01

    Attenuated strains of Sabin poliovirus vaccine replicate in the human gut and, in rare cases, may cause vaccine-associated paralytic poliomyelitis (VAPP). The genetic instability of Sabin strains constitutes one of the main causes of VAPP, a disease that is most frequently associated with type 3 and type 2 Sabin strains, and more rarely with type 1 Sabin strains. In the present study, the growth phenotype of eight oral poliovirus vaccine (OPV) isolates (two non-recombinants and six recombinants), as well as of Sabin vaccine strains, was evaluated using two different assays, the reproductive capacity at different temperatures (Rct) test and the one-step growth curve test in Hep-2 cells at two different temperatures (37°C and 40°C). The growth phenotype of isolates was correlated with genomic modifications in order to identify the determinants and mechanisms of reversion towards neurovirulence. All of the recombinant OPV isolates showed a thermoresistant phenotype in the Rct test. Moreover, both recombinant Sabin-3 isolates showed significantly higher viral yield than Sabin 3 vaccine strain at 37°C and 40°C in the one-step growth curve test. All of the OPV isolates displayed mutations at specific sites of the viral genome, which are associated with the attenuated and temperature-sensitive phenotype of Sabin strains. The results showed that both mutations and recombination events could affect the phenotype traits of Sabin derivatives and may lead to the reversion of vaccinal strains to neurovirulent ones. The use of phenotypic markers along with the genomic analysis may shed additional light on the molecular determinants of the reversed neurovirulent phenotype of Sabin derivatives.

  13. Safety and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (IMOJEV®) in children.

    Science.gov (United States)

    Chokephaibulkit, K; Houillon, G; Feroldi, E; Bouckenooghe, A

    2016-01-01

    JE-CV (IMOJEV®, Sanofi Pasteur, France) is a live attenuated virus vaccine constructed by inserting coding sequences of the prM and E structural proteins of the Japanese encephalitis SA14-14-2 virus into the genome of yellow fever 17D virus. Primary immunization with JE-CV requires a single dose of the vaccine. This article reviews clinical trials of JE-CV in children aged up to 6 years conducted in countries across South-East Asia. Strong and persistent antibody responses were observed after single primary and booster doses, with 97% of children seroprotected up to five years after booster vaccination. Models of long-term antibody persistence predict a median duration of protection of approximately 30 years after a booster dose. The safety and reactogenicity profiles of JE-CV primary and booster doses are comparable to other widely used childhood vaccines.

  14. Comparison of the Effectiveness of Trivalent Inactivated Influenza Vaccine and Live, Attenuated Influenza Vaccine in Preventing Influenza-Like Illness among US Service Members, 2006-2009

    Science.gov (United States)

    2012-11-26

    controlled studies. Vaccine 2012; 30:886–92. 11. Piedra PA, Gaglani MJ, Kozinetz CA, et al. Trivalent live attenuated intranasal influenza vaccine...120:e553–64. 12. Halloran ME, Piedra PA, Longini IM Jr, et al. Efficacy of trivalent, cold-adapted, influenza virus vaccine against influenza A (Fujian

  15. Live Attenuated Pertussis Vaccine BPZE1 Protects Baboons Against Bordetella pertussis Disease and Infection

    Science.gov (United States)

    Papin, James F.; Lecher, Sophie; Debrie, Anne-Sophie; Thalen, Marcel; Solovay, Ken; Rubin, Keith; Mielcarek, Nathalie

    2017-01-01

    Abstract Evidence suggests that the resurgence of pertussis in many industrialized countries may result from the failure of current vaccines to prevent nasopharyngeal colonization by Bordetella pertussis, the principal causative agent of whooping cough. Here, we used a baboon model to test the protective potential of the novel, live attenuated pertussis vaccine candidate BPZE1. A single intranasal/intratracheal inoculation of juvenile baboons with BPZE1 resulted in transient nasopharyngeal colonization and induction of immunoglobulin G and immunoglobulin A to all antigens tested, while causing no adverse symptoms or leukocytosis. When BPZE1-vaccinated baboons were challenged with a high dose of a highly virulent B. pertussis isolate, they were fully protected against disease, whereas naive baboons developed illness (with 1 death) and leukocytosis. Total postchallenge nasopharyngeal virulent bacterial burden of vaccinated animals was substantially reduced (0.002%) compared to naive controls, providing promising evidence in nonhuman primates that BPZE1 protects against both pertussis disease and B. pertussis infection. PMID:28535276

  16. Vaccinating high-risk children with the intranasal live-attenuated influenza vaccine: the Quebec experience.

    Science.gov (United States)

    Quach, Caroline

    2014-12-01

    Given the burden of illness associated with influenza, vaccination is recommended for individuals at high risk of complications. The live-attenuated influenza vaccine (LAIV) is administered by intranasal spray, thus directly stimulating mucosal immunity. In this review, we aimed to provide evidence for its efficacy and safety in different paediatric populations. We also share the Quebec experience of LAIV use through a publicly funded vaccination program for children with chronic, high-risk conditions. from randomized controlled trials in healthy children and in asthmatics have demonstrated superior efficacy of LAIV over the injectable vaccine (IIV). LAIV is well tolerated: its administration is associated with runny nose and nasal congestion, but not with asthma exacerbations and is well tolerated in children with cystic fibrosis, when compared to IIV. The vaccine is well accepted by children and parents and can easily be part of vaccination clinics in paediatric tertiary care centres targeting children with chronic, high-risk conditions, not leading to immunosuppression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Safety and immunogenicity of a live attenuated mumps vaccine

    Science.gov (United States)

    Liang, Yan; Ma, Jingchen; Li, Changgui; Chen, Yuguo; Liu, Longding; Liao, Yun; Zhang, Ying; Jiang, Li; Wang, Xuan-Yi; Che, Yanchun; Deng, Wei; Li, Hong; Cui, Xiaoyu; Ma, Na; Ding, Dong; Xie, Zhongping; Cui, Pingfang; Ji, Qiuyan; Wang, Jingjing; Zhao, Yuliang; Wang, Junzhi; Li, Qihan

    2014-01-01

    Background: Mumps, a communicable, acute and previously well-controlled disease, has had recent and occasional resurgences in some areas. Methods: A randomized, double-blind, controlled and multistep phase I study of an F-genotype attenuated mumps vaccine produced in human diploid cells was conducted. A total of 300 subjects were enrolled and divided into 4 age groups: 16–60 years, 5–16 years, 2–5 years and 8–24 months. The groups were immunized with one injection per subject. Three different doses of the F-genotype attenuated mumps vaccine, A (3.5 ± 0.25 logCCID50), B (4.25 ± 0.25 logCCID50) and C (5.0 ± 0.25 logCCID50), as well as a placebo control and a positive control of a licensed A-genotype vaccine (S79 strain) were used. The safety and immunogenicity of this vaccine were compared with those of the controls. Results: The safety evaluation suggested that mild adverse reactions were observed in all groups. No serious adverse event (SAE) was reported throughout the trial. The immunogenicity test showed a similar seroconversion rate of the neutralizing and ELISA antibody in the 2- to 5-year-old and 8- to 24-month-old groups compared with the seroconversion rate in the positive control. The GMT of the neutralizing anti-F-genotype virus antibodies in the vaccine groups was slightly higher than that in the positive control group. Conclusions: The F-genotype attenuated mumps vaccine evaluated in this clinical trial was demonstrated to be safe and have effective immunogenicity vs. control. PMID:24614759

  18. Measured attenuation correction methods

    International Nuclear Information System (INIS)

    Ostertag, H.; Kuebler, W.K.; Doll, J.; Lorenz, W.J.

    1989-01-01

    Accurate attenuation correction is a prerequisite for the determination of exact local radioactivity concentrations in positron emission tomography. Attenuation correction factors range from 4-5 in brain studies to 50-100 in whole body measurements. This report gives an overview of the different methods of determining the attenuation correction factors by transmission measurements using an external positron emitting source. The long-lived generator nuclide 68 Ge/ 68 Ga is commonly used for this purpose. The additional patient dose from the transmission source is usually a small fraction of the dose due to the subsequent emission measurement. Ring-shaped transmission sources as well as rotating point or line sources are employed in modern positron tomographs. By masking a rotating line or point source, random and scattered events in the transmission scans can be effectively suppressed. The problems of measured attenuation correction are discussed: Transmission/emission mismatch, random and scattered event contamination, counting statistics, transmission/emission scatter compensation, transmission scan after administration of activity to the patient. By using a double masking technique simultaneous emission and transmission scans become feasible. (orig.)

  19. Recombinant proteins of Zaire ebolavirus induce potent humoral and cellular immune responses and protect against live virus infection in mice.

    Science.gov (United States)

    Lehrer, Axel T; Wong, Teri-Ann S; Lieberman, Michael M; Humphreys, Tom; Clements, David E; Bakken, Russell R; Hart, Mary Kate; Pratt, William D; Dye, John M

    2018-05-24

    Infections with filoviruses in humans are highly virulent, causing hemorrhagic fevers which result in up to 90% mortality. In addition to natural infections, the ability to use these viruses as bioterrorist weapons is of significant concern. Currently, there are no licensed vaccines or therapeutics available to combat these infections. The pathogenesis of disease involves the dysregulation of the host's immune system, which results in impairment of the innate and adaptive immune responses, with subsequent development of lymphopenia, thrombocytopenia, hemorrhage, and death. Questions remain with regard to the few survivors of infection, who manage to mount an effective adaptive immune response. These questions concern the humoral and cellular components of this response, and whether such a response can be elicited by an appropriate prophylactic vaccine. The data reported herein describe the production and evaluation of a recombinant subunit Ebola virus vaccine candidate consisting of insect cell expressed Zaire ebolavirus (EBOV) surface glycoprotein (GP) and the matrix proteins VP24 and VP40. The recombinant subunit proteins are shown to be highly immunogenic in mice, yielding both humoral and cellular responses, as well as highly efficacious, providing up to 100% protection against a lethal challenge with live virus. These results demonstrate proof of concept for such a recombinant non-replicating vaccine candidate in the mouse model of EBOV which helps to elucidate immune correlates of protection and warrants further development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Recombinant probiotic expressing Listeria adhesion protein attenuates Listeria monocytogenes virulence in vitro.

    Directory of Open Access Journals (Sweden)

    Ok Kyung Koo

    Full Text Available BACKGROUND: Listeria monocytogenes, an intracellular foodborne pathogen, infects immunocompromised hosts. The primary route of transmission is through contaminated food. In the gastrointestinal tract, it traverses the epithelial barrier through intracellular or paracellular routes. Strategies to prevent L. monocytogenes entry can potentially minimize infection in high-risk populations. Listeria adhesion protein (LAP aids L. monocytogenes in crossing epithelial barriers via the paracellular route. The use of recombinant probiotic bacteria expressing LAP would aid targeted clearance of Listeria from the gut and protect high-risk populations from infection. METHODOLOGY/PRINCIPAL FINDINGS: The objective was to investigate the ability of probiotic bacteria or LAP-expressing recombinant probiotic Lactobacillus paracasei (Lbp(LAP to prevent L. monocytogenes adhesion, invasion, and transwell-based transepithelial translocation in a Caco-2 cell culture model. Several wild type probiotic bacteria showed strong adhesion to Caco-2 cells but none effectively prevented L. monocytogenes infection. Pre-exposure to Lbp(LAP for 1, 4, 15, or 24 h significantly (P<0.05 reduced adhesion, invasion, and transepithelial translocation of L. monocytogenes in Caco-2 cells, whereas pre-exposure to parental Lb. paracasei had no significant effect. Similarly, Lbp(LAP pre-exposure reduced L. monocytogenes translocation by as much as 46% after 24 h. Lbp(LAP also prevented L. monocytogenes-mediated cell damage and compromise of tight junction integrity. Furthermore, Lbp(LAP cells reduced L. monocytogenes-mediated cell cytotoxicity by 99.8% after 1 h and 79% after 24 h. CONCLUSIONS/SIGNIFICANCE: Wild type probiotic bacteria were unable to prevent L. monocytogenes infection in vitro. In contrast, Lbp(LAP blocked adhesion, invasion, and translocation of L. monocytogenes by interacting with host cell receptor Hsp60, thereby protecting cells from infection. These data show promise

  1. FASEB Summer Research Conference. Genetic Recombination and Chromosome Rearrangements

    Energy Technology Data Exchange (ETDEWEB)

    Jinks-Robertson, Sue

    2002-02-01

    The 2001 meeting entitled ''Genetic Recombination and Genome Rearrangements'' was held July 21-26 in Snowmass, Colorado. The goal of the meeting was to bring together scientists using diverse approaches to study all aspects of genetic recombination. This goal was achieved by integrating talks covering the genetics, biochemistry and structural biology of homologous recombination, site-specific recombination, and nonhomologous recombination. The format of the meeting consisted of a keynote address on the opening evening, two formal plenary sessions on each of the four full meeting days, a single afternoon workshop consisting of short talks chosen from among submitted abstracts, and afternoon poster sessions on each of the four full meeting days. The eight plenary session were entitled: (1) Recombination Mechanisms, (2) Prokaryotic Recombination, (3) Repair and Recombination, (4) Site-specific Recombination and Transposition, (5) Eukaryotic Recombination I, (6) Genome Rearrangements, (7) Meiosis, and (8) Eukaryotic Recombination II. Each session included a mix of genetic, biochemical and structural talks; talks were limited to 20 minutes, followed by 10 minutes of very lively, general discussion. Much of the data presented in the plenary sessions was unpublished, thus providing attendees with the most up-to-date knowledge of this rapidly-moving field.

  2. Sequence evidence for RNA recombination in field isolates of avian coronavirus infectious bronchitis virus

    NARCIS (Netherlands)

    Kusters, J G; Jager, E J; Niesters, H G; van der Zeijst, B A

    1990-01-01

    Under laboratory conditions coronaviruses were shown to have a high frequency of recombination. In The Netherlands, vaccination against infectious bronchitis virus (IBV) is performed with vaccines that contain several life-attenuated virus strains. These highly effective vaccines may create ideal

  3. Protective efficacy of a live attenuated anti-coccidial vaccine administered to 1-day-old chickens.

    Science.gov (United States)

    Crouch, C F; Andrews, S J; Ward, R G; Francis, M J

    2003-06-01

    The efficacy of a live attenuated anti-coccidial vaccine, Paracox-5, administered to 1-day-old chicks was investigated by assessing protection against changes in weight gain following virulent challenge. Vaccinated birds were challenged independently 28 days later with each of the component species (Eimeria acervulina, Eimeria maxima, Eimeria mitis or Eimeria tenella), and protection was demonstrated against associated reduction in weight gain and lesion formation. In addition, an improvement in bird performance, in terms of feed conversion ratio, was also observed following vaccination. Furthermore, under conditions designed to more closely mimic those in the field and using hatchery spray administration, protection against a mixed virulent challenge introduced by 'seeder birds' was demonstrated evenly across a flock of broiler birds within 21 days after vaccination. These data demonstrate that Paracox-5 vaccine will protect broiler chickens against the adverse effects on performance induced by Eimeria spp.

  4. Immunogenicity of seven new recombinant yellow fever viruses 17D expressing fragments of SIVmac239 Gag, Nef, and Vif in Indian rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Mauricio A Martins

    Full Text Available An effective vaccine remains the best solution to stop the spread of human immunodeficiency virus (HIV. Cellular immune responses have been repeatedly associated with control of viral replication and thus may be an important element of the immune response that must be evoked by an efficacious vaccine. Recombinant viral vectors can induce potent T-cell responses. Although several viral vectors have been developed to deliver HIV genes, only a few have been advanced for clinical trials. The live-attenuated yellow fever vaccine virus 17D (YF17D has many properties that make it an attractive vector for AIDS vaccine regimens. YF17D is well tolerated in humans and vaccination induces robust T-cell responses that persist for years. Additionally, methods to manipulate the YF17D genome have been established, enabling the generation of recombinant (rYF17D vectors carrying genes from unrelated pathogens. Here, we report the generation of seven new rYF17D viruses expressing fragments of simian immunodeficiency virus (SIVmac239 Gag, Nef, and Vif. Studies in Indian rhesus macaques demonstrated that these live-attenuated vectors replicated in vivo, but only elicited low levels of SIV-specific cellular responses. Boosting with recombinant Adenovirus type-5 (rAd5 vectors resulted in robust expansion of SIV-specific CD8(+ T-cell responses, particularly those targeting Vif. Priming with rYF17D also increased the frequency of CD4(+ cellular responses in rYF17D/rAd5-immunized macaques compared to animals that received rAd5 only. The effect of the rYF17D prime on the breadth of SIV-specific T-cell responses was limited and we also found evidence that some rYF17D vectors were more effective than others at priming SIV-specific T-cell responses. Together, our data suggest that YF17D - a clinically relevant vaccine vector - can be used to prime AIDS virus-specific T-cell responses in heterologous prime boost regimens. However, it will be important to optimize rYF17D

  5. Rapid strategy for screening by pyrosequencing of influenza virus reassortants--candidates for live attenuated vaccines.

    Science.gov (United States)

    Shcherbik, Svetlana V; Pearce, Nicholas C; Levine, Marnie L; Klimov, Alexander I; Villanueva, Julie M; Bousse, Tatiana L

    2014-01-01

    Live attenuated influenza vaccine viruses (LAIVs) can be generated by classical reassortment of gene segments between a cold adapted, temperature sensitive and attenuated Master Donor Virus (MDV) and a seasonal wild-type (wt) virus. The vaccine candidates contain hemagglutinin (HA) and neuraminidase (NA) genes derived from the circulating wt viruses and the remaining six genes derived from the MDV strains. Rapid, efficient selection of the viruses with 6∶2 genome compositions from the large number of genetically different viruses generated during reassortment is essential for the biannual production schedule of vaccine viruses. This manuscript describes a new approach for the genotypic analysis of LAIV reassortant virus clones based on pyrosequencing. LAIV candidate viruses were created by classical reassortment of seasonal influenza A (H3N2) (A/Victoria/361/2011, A/Ohio/02/2012, A/Texas/50/2012) or influenza A (H7N9) (A/Anhui/1/2013) wt viruses with the MDV A/Leningrad/134/17/57(H2N2). Using strain-specific pyrosequencing assays, mixed gene variations were detected in the allantoic progenies during the cloning procedure. The pyrosequencing analysis also allowed for estimation of the relative abundance of segment variants in mixed populations. This semi-quantitative approach was used for selecting specific clones for the subsequent cloning procedures. The present study demonstrates that pyrosequencing analysis is a useful technique for rapid and reliable genotyping of reassortants and intermediate clones during the preparation of LAIV candidates, and can expedite the selection of vaccine virus candidates.

  6. Rapid strategy for screening by pyrosequencing of influenza virus reassortants--candidates for live attenuated vaccines.

    Directory of Open Access Journals (Sweden)

    Svetlana V Shcherbik

    Full Text Available BACKGROUND: Live attenuated influenza vaccine viruses (LAIVs can be generated by classical reassortment of gene segments between a cold adapted, temperature sensitive and attenuated Master Donor Virus (MDV and a seasonal wild-type (wt virus. The vaccine candidates contain hemagglutinin (HA and neuraminidase (NA genes derived from the circulating wt viruses and the remaining six genes derived from the MDV strains. Rapid, efficient selection of the viruses with 6∶2 genome compositions from the large number of genetically different viruses generated during reassortment is essential for the biannual production schedule of vaccine viruses. METHODOLOGY/PRINCIPAL FINDINGS: This manuscript describes a new approach for the genotypic analysis of LAIV reassortant virus clones based on pyrosequencing. LAIV candidate viruses were created by classical reassortment of seasonal influenza A (H3N2 (A/Victoria/361/2011, A/Ohio/02/2012, A/Texas/50/2012 or influenza A (H7N9 (A/Anhui/1/2013 wt viruses with the MDV A/Leningrad/134/17/57(H2N2. Using strain-specific pyrosequencing assays, mixed gene variations were detected in the allantoic progenies during the cloning procedure. The pyrosequencing analysis also allowed for estimation of the relative abundance of segment variants in mixed populations. This semi-quantitative approach was used for selecting specific clones for the subsequent cloning procedures. CONCLUSIONS/SIGNIFICANCE: The present study demonstrates that pyrosequencing analysis is a useful technique for rapid and reliable genotyping of reassortants and intermediate clones during the preparation of LAIV candidates, and can expedite the selection of vaccine virus candidates.

  7. Temperature dependence of binary and ternary recombination of H3+ ions with electrons

    International Nuclear Information System (INIS)

    Glosik, J.; Plasil, R.; Korolov, I.; Kotrik, T.; Novotny, O.; Hlavenka, P.; Dohnal, P.; Varju, J.; Kokoouline, V.; Greene, Chris H.

    2009-01-01

    We study binary and the recently discovered process of ternary He-assisted recombination of H 3 + ions with electrons in a low-temperature afterglow plasma. The experiments are carried out over a broad range of pressures and temperatures of an afterglow plasma in a helium buffer gas. Binary and He-assisted ternary recombination are observed and the corresponding recombination rate coefficients are extracted for temperatures from 77 to 330 K. We describe the observed ternary recombination as a two-step mechanism: first, a rotationally excited long-lived neutral molecule H 3 * is formed in electron-H 3 + collisions. Second, the H 3 * molecule collides with a helium atom that leads to the formation of a very long-lived Rydberg state with high orbital momentum. We present calculations of the lifetimes of H 3 * and of the ternary recombination rate coefficients for para- and ortho-H 3 + . The calculations show a large difference between the ternary recombination rate coefficients of ortho- and para-H 3 + at temperatures below 300 K. The measured binary and ternary rate coefficients are in reasonable agreement with the calculated values.

  8. Temperature dependence of binary and ternary recombination of H3+ ions with electrons

    Science.gov (United States)

    Glosík, J.; Plašil, R.; Korolov, I.; Kotrík, T.; Novotný, O.; Hlavenka, P.; Dohnal, P.; Varju, J.; Kokoouline, V.; Greene, Chris H.

    2009-05-01

    We study binary and the recently discovered process of ternary He-assisted recombination of H3+ ions with electrons in a low-temperature afterglow plasma. The experiments are carried out over a broad range of pressures and temperatures of an afterglow plasma in a helium buffer gas. Binary and He-assisted ternary recombination are observed and the corresponding recombination rate coefficients are extracted for temperatures from 77 to 330 K. We describe the observed ternary recombination as a two-step mechanism: first, a rotationally excited long-lived neutral molecule H3∗ is formed in electron- H3+ collisions. Second, the H3∗ molecule collides with a helium atom that leads to the formation of a very long-lived Rydberg state with high orbital momentum. We present calculations of the lifetimes of H3∗ and of the ternary recombination rate coefficients for para- and ortho- H3+ . The calculations show a large difference between the ternary recombination rate coefficients of ortho- and para- H3+ at temperatures below 300 K. The measured binary and ternary rate coefficients are in reasonable agreement with the calculated values.

  9. Live bacterial delivery systems for development of mucosal vaccines

    NARCIS (Netherlands)

    Thole, J.E.R.; Dalen, P.J. van; Havenith, C.E.G.; Pouwels, P.H.; Seegers, J.F.M.L.; Tielen, F.D.; Zee, M.D. van der; Zegers, N.D.; Shaw, M.

    2000-01-01

    By expression of foreign antigens in attenuated strains derived from bacterial pathogens and in non-pathogenic commensal bacteria, recombinant vaccines are being developed that aim to stimulate mucosal immunity. Recent advances in the pathogenesis and molecular biology of these bacteria have allowed

  10. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis

    Science.gov (United States)

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370

  11. The oral, live attenuated enterotoxigenic Escherichia coli vaccine ACE527 reduces the incidence and severity of diarrhea in a human challenge model of diarrheal disease.

    Science.gov (United States)

    Darsley, Michael J; Chakraborty, Subhra; DeNearing, Barbara; Sack, David A; Feller, Andrea; Buchwaldt, Charlotte; Bourgeois, A Louis; Walker, Richard; Harro, Clayton D

    2012-12-01

    An oral, live attenuated, three-strain recombinant bacterial vaccine, ACE527, was demonstrated to generate strong immune responses to colonization factor and toxin antigens of enterotoxigenic Escherichia coli (ETEC) in human volunteers. The vaccine was safe and well tolerated at doses of up to 10(11) CFU, administered in each of two doses given 21 days apart. These observations have now been extended in a phase 2b study with a total of 70 subjects. Fifty-six of these subjects were challenged 28 days after the second dose of vaccine with the highly virulent ETEC strain H10407 to obtain preliminary indicators of efficacy against disease and to support further development of the vaccine for both travelers and infants in countries where ETEC is endemic. The vaccine had a significant impact on intestinal colonization by the challenge strain, as measured by quantitative fecal culture 2 days after challenge, demonstrating the induction of a functional immune response to the CFA/I antigen. The incidence and severity of diarrhea were also reduced in vaccinees as measured by a number of secondary and ad hoc endpoints, although the 27% reduction seen in the primary endpoint, moderate to severe diarrhea, was not statistically significant. Together, these observations support the hypothesis that the ACE527 vaccine has a dual mode of action, targeting both colonization factors and the heat-labile enterotoxin (LT), and suggest that it should be further developed for more advanced trials to evaluate its impact on the burden of ETEC disease in field settings.

  12. Dose response and efficacy of a live, attenuated human rotavirus vaccine in Mexican infants.

    Science.gov (United States)

    Ruiz-Palacios, Guillermo M; Guerrero, M Lourdes; Bautista-Márquez, Aurora; Ortega-Gallegos, Hilda; Tuz-Dzib, Fernando; Reyes-González, Leticia; Rosales-Pedraza, Gustavo; Martínez-López, Julia; Castañón-Acosta, Erika; Cervantes, Yolanda; Costa-Clemens, SueAnn; DeVos, Beatrice

    2007-08-01

    Immunization against rotavirus has been proposed as the most cost-effective intervention to reduce the disease burden associated with this infection worldwide. The objective of this study was to determine the dose response, immunogenicity, and efficacy of 2 doses of an oral, attenuated monovalent G1[P8] human rotavirus vaccine in children from the same setting in Mexico, where the natural protection against rotavirus infection was studied. From June 2001 through May 2003, 405 healthy infants were randomly assigned to 1 of 3 vaccine groups (virus concentrations 10(4.7), 10(5.2), and 10(5.8) infectious units) and to a placebo group and were monitored to the age of 2 years. The vaccine/placebo was administered concurrently with diphtheria-tetanus toxoid-pertussis/hepatitis B/Haemophilus influenzae type b vaccine at 2 and 4 months of age. After the administration of the first vaccine/placebo dose, weekly home visits to collect information regarding infant health were conducted. Stool samples were collected during each gastroenteritis episode and tested for rotavirus antigen and serotype. The vaccine was well tolerated and induced a greater rate of seroconversion than observed in infants who received placebo. For the pooled vaccine groups, efficacy after 2 oral doses was 80% and 95% against any and severe rotavirus gastroenteritis, respectively. Efficacy was 100% against severe rotavirus gastroenteritis and 70% against severe gastroenteritis of any cause with the vaccine at the highest virus concentration (10(5.8) infectious units). The predominant infecting rotavirus serotype in this cohort was wild-type G1 (85%). Adverse events, including fever, irritability, loss of appetite, cough, diarrhea, and vomiting, were similar among vaccinees and placebo recipients. This new oral, live, attenuated human rotavirus vaccine was safe, immunogenic, and highly efficacious in preventing any and, more importantly, severe rotavirus gastroenteritis in healthy infants. This vaccine

  13. Development of live attenuated Streptococcus agalactiae vaccine for tilapia via continuous passage in vitro.

    Science.gov (United States)

    Li, L P; Wang, R; Liang, W W; Huang, T; Huang, Y; Luo, F G; Lei, A Y; Chen, M; Gan, X

    2015-08-01

    Fish Streptococcus agalactiae (S. agalactiae) seriously harms the world's aquaculture industry and causes huge economic losses. This study aimed to develop a potential live attenuated vaccine of S. agalactiae. Pre-screened vaccine candidate strain S. agalactiae HN016 was used as starting material to generate an attenuated strain S. agalactiae YM001 by continuous passage in vitro. The biological characteristics, virulence, and stability of YM001 were detected, and the protective efficacy of YM001 immunization in tilapia was also determined. Our results indicated that the growth, staining, characteristics of pulsed-field gel electrophoresis (PFGE) genotype, and virulence of YM001 were changed significantly as compared to the parental strain HN016. High doses of YM001 by intraperitoneal (IP) injection (1.0 × 10(9) CFU/fish) and oral gavage (1.0 × 10(10) CFU/fish) respectively did not cause any mortality and morbidity in tilapia. The relative percent survivals (RPSs) of fishes immunized with YM001 (1.0 × 10(8) CFU/fish, one time) via injection, immersion, and oral administration were 96.88, 67.22, and 71.81%, respectively, at 15 days, and 93.61, 60.56, and 53.16%, respectively, at 30 days. In all tests with 1-3 times of immunization in tilapia, the dosages at 1 × 10(8) and 1 × 10(9) CFU/fish displayed the similar best results, whereas the immunoprotection of the dosages at 1 × 10(6) and 1 × 10(7) CFU/fish declined significantly (P 0.05). The level of protective antibody elicited by oral immunization was significantly higher compared to that of the control group (P S. agalactiae strain YM001; oral immunization of tilapia with this strain produced a good immune protection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Clinical development and regulatory points for consideration for second-generation live attenuated dengue vaccines.

    Science.gov (United States)

    Vannice, Kirsten S; Wilder-Smith, Annelies; Barrett, Alan D T; Carrijo, Kalinka; Cavaleri, Marco; de Silva, Aravinda; Durbin, Anna P; Endy, Tim; Harris, Eva; Innis, Bruce L; Katzelnick, Leah C; Smith, Peter G; Sun, Wellington; Thomas, Stephen J; Hombach, Joachim

    2018-03-07

    Licensing and decisions on public health use of a vaccine rely on a robust clinical development program that permits a risk-benefit assessment of the product in the target population. Studies undertaken early in clinical development, as well as well-designed pivotal trials, allow for this robust characterization. In 2012, WHO published guidelines on the quality, safety and efficacy of live attenuated dengue tetravalent vaccines. Subsequently, efficacy and longer-term follow-up data have become available from two Phase 3 trials of a dengue vaccine, conducted in parallel, and the vaccine was licensed in December 2015. The findings and interpretation of the results from these trials released both before and after licensure have highlighted key complexities for tetravalent dengue vaccines, including concerns vaccination could increase the incidence of dengue disease in certain subpopulations. This report summarizes clinical and regulatory points for consideration that may guide vaccine developers on some aspects of trial design and facilitate regulatory review to enable broader public health recommendations for second-generation dengue vaccines. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Antigenic characterization of a formalin-inactivated poliovirus vaccine derived from live-attenuated Sabin strains.

    Science.gov (United States)

    Tano, Yoshio; Shimizu, Hiroyuki; Martin, Javier; Nishimura, Yorihiro; Simizu, Bunsiti; Miyamura, Tatsuo

    2007-10-10

    A candidate inactivated poliovirus vaccine derived from live-attenuated Sabin strains (sIPV), which are used in the oral poliovirus vaccine (OPV), was prepared in a large-production scale. The modification of viral antigenic epitopes during the formalin inactivation process was investigated by capture ELISA assays using type-specific and antigenic site-specific monoclonal antibodies (MoAbs). The major antigenic site 1 was modified during the formalin inactivation of Sabin 1. Antigenic sites 1-3 were slightly modified during the formalin inactivation of Sabin 2 strain. Sites 1 and 3 were altered on inactivated Sabin 3 virus. These alterations were different to those shown by wild-type Saukett strain, used in conventional IPV (cIPV). It has been previously reported that type 1 sIPV showed higher immunogenicity to type 1 cIPV whereas types 2 and 3 sIPV induced lower level of immunogenicity than their cIPV counterparts. Our results suggest that the differences in epitope structure after formalin inactivation may account, at least in part, for the observed differences in immunogenicity between Sabin and wild-type inactivated poliovaccines.

  16. Memory T-cell immune response in healthy young adults vaccinated with live attenuated influenza A (H5N2) vaccine.

    Science.gov (United States)

    Chirkova, T V; Naykhin, A N; Petukhova, G D; Korenkov, D A; Donina, S A; Mironov, A N; Rudenko, L G

    2011-10-01

    Cellular immune responses of both CD4 and CD8 memory/effector T cells were evaluated in healthy young adults who received two doses of live attenuated influenza A (H5N2) vaccine. The vaccine was developed by reassortment of nonpathogenic avian A/Duck/Potsdam/1402-6/68 (H5N2) and cold-adapted A/Leningrad/134/17/57 (H2N2) viruses. T-cell responses were measured by standard methods of intracellular cytokine staining of gamma interferon (IFN-γ)-producing cells and a novel T-cell recognition of antigen-presenting cells by protein capture (TRAP) assay based on the trogocytosis phenomenon, namely, plasma membrane exchange between interacting immune cells. TRAP enables the detection of activated trogocytosis-positive T cells after virus stimulation. We showed that two doses of live attenuated influenza A (H5N2) vaccine promoted both CD4 and CD8 T-memory-cell responses in peripheral blood of healthy young subjects in the clinical study. Significant differences in geometric mean titers (GMTs) of influenza A (H5N2)-specific IFN-γ(+) cells were observed at day 42 following the second vaccination, while peak levels of trogocytosis(+) T cells were detected earlier, on the 21st day after the second vaccination. The inverse correlation of baseline levels compared to postvaccine fold changes in GMTs of influenza-specific CD4 and CD8 T cells demonstrated that baseline levels of these specific cells could be considered a predictive factor of vaccine immunogenicity.

  17. Engineering and preclinical evaluation of attenuated nontyphoidal Salmonella strains serving as live oral vaccines and as reagent strains.

    Science.gov (United States)

    Tennant, Sharon M; Wang, Jin-Yuan; Galen, James E; Simon, Raphael; Pasetti, Marcela F; Gat, Orit; Levine, Myron M

    2011-10-01

    While nontyphoidal Salmonella (NTS) has long been recognized as a cause of self-limited gastroenteritis, it is becoming increasingly evident that multiple-antibiotic-resistant strains are also emerging as important causes of invasive bacteremia and focal infections, resulting in hospitalizations and deaths. We have constructed attenuated Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Enteritidis strains that can serve as live oral vaccines and as "reagent strains" for subunit vaccine production in a safe and economical manner. Prototype attenuated vaccine strains CVD 1921 and CVD 1941, derived from the invasive wild-type strains S. Typhimurium I77 and S. Enteritidis R11, respectively, were constructed by deleting guaBA, encoding guanine biosynthesis, and clpP, encoding a master protease regulator. The clpP mutation resulted in a hyperflagellation phenotype. An additional deletion in fliD yielded reagent strains CVD 1923 and CVD 1943, respectively, which export flagellin monomers. Oral 50% lethal dose (LD₅₀) analyses showed that the NTS vaccine strains were all highly attenuated in mice. Oral immunization with CVD 1921 or CVD 1923 protected mice against lethal challenge with wild-type S. Typhimurium I77. Immunization with CVD 1941 but not CVD 1943 protected mice against lethal infection with S. Enteritidis R11. Immune responses induced by these strains included high levels of serum IgG anti-lipopolysaccharide (LPS) and anti-flagellum antibodies, with titers increasing progressively during the immunization schedule. Since S. Typhimurium and S. Enteritidis are the most common NTS serovars associated with invasive disease, these findings can pave the way for development of a highly effective, broad-spectrum vaccine against invasive NTS.

  18. Use of a recombinant Salmonella enterica serovar Typhimurium strain expressing C-Raf for protection against C-Raf induced lung adenoma in mice

    International Nuclear Information System (INIS)

    Gentschev, Ivaylo; Fensterle, Joachim; Schmidt, Andreas; Potapenko, Tamara; Troppmair, Jakob; Goebel, Werner; Rapp, Ulf R

    2005-01-01

    Serine-threonine kinases of the Raf family (A-Raf, B-Raf, C-Raf) are central players in cellular signal transduction, and thus often causally involved in the development of cancer when mutated or over-expressed. Therefore these proteins are potential targets for immunotherapy and a possible basis for vaccine development against tumors. In this study we analyzed the functionality of a new live C-Raf vaccine based on an attenuated Salmonella enterica serovar Typhimurium aroA strain in two Raf dependent lung tumor mouse models. The antigen C-Raf has been fused to the C-terminal secretion signal of Escherichia coli α-hemolysin and expressed in secreted form by an attenuated aroA Salmonella enterica serovar Typhimurium strain via the α-hemolysin secretion pathway. The effect of the immunization with this recombinant C-Raf strain on wild-type C57BL/6 or lung tumor bearing transgenic BxB mice was analyzed using western blot and FACS analysis as well as specific tumor growth assays. C-Raf antigen was successfully expressed in secreted form by an attenuated Salmonella enterica serovar Typhimurium aroA strain using the E. coli hemolysin secretion system. Immunization of wild-type C57BL/6 or tumor bearing mice provoked specific C-Raf antibody and T-cell responses. Most importantly, the vaccine strain significantly reduced tumor growth in two transgenic mouse models of Raf oncogene-induced lung adenomas. The combination of the C-Raf antigen, hemolysin secretion system and Salmonella enterica serovar Typhimurium could form the basis for a new generation of live bacterial vaccines for the treatment of Raf dependent human malignancies

  19. A novel system for constructing a recombinant highly-attenuated vaccinia virus strain (LC16m8) expressing foreign genes and its application for the generation of LC16m8-based vaccines against herpes simplex virus 2.

    Science.gov (United States)

    Omura, Natsumi; Yoshikawa, Tomoki; Fujii, Hikaru; Shibamura, Miho; Inagaki, Takuya; Kato, Hirofumi; Egawa, Kazutaka; Harada, Shizuko; Yamada, Souichi; Takeyama, Haruko; Saijo, Masayuki

    2018-04-27

    A novel system was developed for generating a highly-attenuated vaccinia virus LC16m8 (m8, third generation smallpox vaccine) that expresses foreign genes. The innovations in this system are its excisable selection marker, specificity of the integration site of a gene of interest, and easy identification of clones with the fluorescent signal. Using this system, recombinant m8s, which expressed either herpes simplex virus 2 (HSV-2) glycoprotein B (gB)-, gD-, or both gB and gD (gB+gD) were developed, and their efficacy was evaluated. First, the induction of a specific IgG against these HSV-2 glycoproteins in mice infected with each of these recombinant m8s was confirmed with an immunofluorescence assay. Next, mice pre-infected with each of the recombinant m8s were infected with HSV-2 at the lethal dose to examine the vaccine efficacy. The fatality rate in mice pre-infected with either of the recombinant gB+gD- or gD-expressing m8s significantly decreased in comparison with that of the control. The survival rate in both male and female mice pre-infected with either of the recombinant gB+gD- and gD-expressing m8s increased to 100 % and 60 %, respectively, while most of the control mice died. In summary, this new system might be applicable for generating a novel m8-based vaccine.

  20. Enhancement of the safety of live influenza vaccine by attenuating mutations from cold-adapted hemagglutinin

    International Nuclear Information System (INIS)

    Lee, Yoon Jae; Jang, Yo Han; Kim, Paul; Lee, Yun Ha; Lee, Young Jae; Byun, Young Ho; Lee, Kwang-Hee; Kim, Kyusik; Seong, Baik Lin

    2016-01-01

    In our previous study, X-31ca-based H5N1 LAIVs, in particular, became more virulent in mice than the X-31ca MDV, possibly by the introduction of the surface antigens of highly pathogenic H5N1 influenza virus, implying that additional attenuation is needed in this cases to increase the safety level of the vaccine. In this report we suggest an approach to further increase the safety of LAIV through additional cold-adapted mutations in the hemagglutinin. The cold-adaptation of X-31 virus resulted in four amino acid mutations in the HA. We generated a panel of 7:1 reassortant viruses each carrying the hemagglutinins with individual single amino acid mutations. We examined their phenotypes and found a major attenuating mutation, N81K. This attenuation marker conferred additional temperature-sensitive and attenuation phenotype to the LAIV. Our data indicate that the cold-adapted mutation in the HA confers additional attenuation to the LAIV strain, without compromising its productivity and immune response. - Highlights: • Cold-adaptation process induced four amino acid mutations in the HA of X-31 virus. • The four mutations in the HA also contributed to attenuation of the X-31ca virus • N81K mutation was the most significant marker for the attenuation of X-31ca virus. • Introduction of N81K mutation into H3N2 LAIV further attenuated the vaccine. • This approach provides a useful guideline for enhancing the safety of the LAIVs.

  1. Enhancement of the safety of live influenza vaccine by attenuating mutations from cold-adapted hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Jae [Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of); Jang, Yo Han [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Kim, Paul; Lee, Yun Ha; Lee, Young Jae [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of); Byun, Young Ho; Lee, Kwang-Hee; Kim, Kyusik [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Seong, Baik Lin, E-mail: blseong@yonsei.ac.kr [Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of)

    2016-04-15

    In our previous study, X-31ca-based H5N1 LAIVs, in particular, became more virulent in mice than the X-31ca MDV, possibly by the introduction of the surface antigens of highly pathogenic H5N1 influenza virus, implying that additional attenuation is needed in this cases to increase the safety level of the vaccine. In this report we suggest an approach to further increase the safety of LAIV through additional cold-adapted mutations in the hemagglutinin. The cold-adaptation of X-31 virus resulted in four amino acid mutations in the HA. We generated a panel of 7:1 reassortant viruses each carrying the hemagglutinins with individual single amino acid mutations. We examined their phenotypes and found a major attenuating mutation, N81K. This attenuation marker conferred additional temperature-sensitive and attenuation phenotype to the LAIV. Our data indicate that the cold-adapted mutation in the HA confers additional attenuation to the LAIV strain, without compromising its productivity and immune response. - Highlights: • Cold-adaptation process induced four amino acid mutations in the HA of X-31 virus. • The four mutations in the HA also contributed to attenuation of the X-31ca virus • N81K mutation was the most significant marker for the attenuation of X-31ca virus. • Introduction of N81K mutation into H3N2 LAIV further attenuated the vaccine. • This approach provides a useful guideline for enhancing the safety of the LAIVs.

  2. Plasmodium knowlesi Sporozoite Antigen: Expression by Infectious Recombinant Vaccinia Virus

    Science.gov (United States)

    Smith, Geoffrey L.; Godson, G. Nigel; Nussenzweig, Victor; Nussenzweig, Ruth S.; Barnwell, John; Moss, Bernard

    1984-04-01

    The gene coding for the circumsporozoite antigen of the malaria parasite Plasmodium knowlesi was inserted into the vaccinia virus genome under the control of a defined vaccinia virus promoter. Cells infected with the recombinant virus synthesized polypeptides of 53,000 to 56,000 daltons that reacted with monoclonal antibody against the repeating epitope of the malaria protein. Furthermore, rabbits vaccinated with the recombinant virus produced antibodies that bound specifically to sporozoites. These data provide evidence for expression of a cloned malaria gene in mammalian cells and illustrate the potential of vaccinia virus recombinants as live malaria vaccines.

  3. A recombinant live attenuated tetravalent vaccine for the prevention of dengue.

    Science.gov (United States)

    Guy, Bruno; Noriega, Fernando; Ochiai, R Leon; L'azou, Maïna; Delore, Valentine; Skipetrova, Anna; Verdier, François; Coudeville, Laurent; Savarino, Stephen; Jackson, Nicholas

    2017-07-01

    Dengue is an important and still growing public health problem associated with substantial morbidity, as well as significant social and economic impact. The present review describes the main features and development of the first dengue vaccine (CYD-TDV, Dengvaxia®), which has been licensed by several dengue-endemic countries in Asia and Latin America for use in populations above 9 years of age. Areas covered: The review focuses on the large clinical development of CYD-TDV, which includes in particular two pivotal phase III efficacy trials conducted in Asia and Latin America and supported vaccine licensure. Based on these clinical data, the WHO Strategic Advisory Group of Experts (SAGE) on Immunization recommended considering introduction of the vaccine in geographic settings (national or subnational) with high burden of disease. Long-term safety follow-up studies of the efficacy trials are currently ongoing, and post-licensure studies will evaluate the vaccine effectiveness and safety in 'real-life' following vaccine introduction. Expert commentary: During vaccine development, a number of complexities were tackled, innovation pursued, and risk managed. These aspects, as well as the potential impact of CYD-TDV on public health are also discussed.

  4. Live Attenuated Yellow Fever 17D Vaccine: A Legacy Vaccine Still Controlling Outbreaks In Modern Day.

    Science.gov (United States)

    Collins, Natalie D; Barrett, Alan D T

    2017-03-01

    Live attenuated 17D vaccine is considered one of the safest and efficacious vaccines developed to date. This review highlights what is known and the gaps in knowledge of vaccine-induced protective immunity. Recently, the World Health Organization modifying its guidance from 10-year booster doses to one dose gives lifelong protection in most populations. Nonetheless, there are some data suggesting immunity, though protective, may wane over time in certain populations and more research is needed to address this question. Despite having an effective vaccine to control yellow fever, vaccine shortages were identified during outbreaks in 2016, eventuating the use of a fractional-dosing campaign in the Democratic Republic of the Congo. Limited studies hinder identification of the underlying mechanism(s) of vaccine longevity; however, concurrent outbreaks during 2016 provide an opportunity to evaluate vaccine immunity following fractional dosing and insights into vaccine longevity in populations where there is limited information.

  5. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene.

    Science.gov (United States)

    Choi, Eun-hye; Song, Min-Suk; Park, Su-Jin; Pascua, Philippe Noriel Q; Baek, Yun Hee; Kwon, Hyeok-il; Kim, Eun-Ha; Kim, Semi; Jang, Hyung-Kwan; Poo, Haryoung; Kim, Chul-Joong; Choi, Young Ki

    2015-07-01

    An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-β activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts.

  6. Production and characterization of guinea pig recombinant gamma interferon and its effect on macrophage activation.

    Science.gov (United States)

    Jeevan, A; McFarland, C T; Yoshimura, T; Skwor, T; Cho, H; Lasco, T; McMurray, D N

    2006-01-01

    Gamma interferon (IFN-gamma) plays a critical role in the protective immune responses against mycobacteria. We previously cloned a cDNA coding for guinea pig IFN-gamma (gpIFN-gamma) and reported that BCG vaccination induced a significant increase in the IFN-gamma mRNA expression in guinea pig cells in response to living mycobacteria and that the virulent H37Rv strain of Mycobacterium tuberculosis stimulated less IFN-gamma mRNA than did the attenuated H37Ra strain. In this study, we successfully expressed and characterized recombinant gpIFN-gamma with a histidine tag at the N terminus (His-tagged rgpIFN-gamma) in Escherichia coli. rgpIFN-gamma was identified as an 18-kDa band in the insoluble fraction; therefore, the protein was purified under denaturing conditions and renatured. N-terminal amino acid sequencing of the recombinant protein yielded the sequence corresponding to the N terminus of His-tagged gpIFN-gamma. The recombinant protein upregulated major histocompatibility complex class II expression in peritoneal macrophages. The antiviral activity of rgpIFN-gamma was demonstrated with a guinea pig fibroblast cell line (104C1) infected with encephalomyocarditis virus. Interestingly, peritoneal macrophages treated with rgpIFN-gamma did not produce any nitric oxide but did produce hydrogen peroxide and suppressed the intracellular growth of mycobacteria. Furthermore, rgpIFN-gamma induced morphological alterations in cultured macrophages. Thus, biologically active rgpIFN-gamma has been successfully produced and characterized in our laboratory. The study of rgpIFN-gamma will further increase our understanding of the cellular and molecular responses induced by BCG vaccination in the guinea pig model of pulmonary tuberculosis.

  7. Comparison of poliovirus recombinants: accumulation of point mutations provides further advantages.

    Science.gov (United States)

    Savolainen-Kopra, Carita; Samoilovich, Elena; Kahelin, Heidi; Hiekka, Anna-Kaisa; Hovi, Tapani; Roivainen, Merja

    2009-08-01

    The roles of recombination and accumulation of point mutations in the origin of new poliovirus (PV) characteristics have been hypothesized, but it is not known which are essential to evolution. We studied phenotypic differences between recombinant PV strains isolated from successive stool specimens of an oral PV vaccine recipient. The studied strains included three PV2/PV1 recombinants with increasing numbers of mutations in the VP1 gene, two of the three with an amino acid change I-->T in the DE-loop of VP1, their putative PV1 parent and strains Sabin 1 and 2. Growth of these viruses was examined in three cell lines: colorectal adenocarcinoma, neuroblastoma and HeLa. The main observation was a higher growth rate between 4 and 6 h post-infection of the two recombinants with the I-->T substitution. All recombinants grew at a higher rate than parental strains in the exponential phase of the replication cycle. In a temperature sensitivity test, the I-->T-substituted recombinants replicated equally well at an elevated temperature. Complete genome sequencing of the three recombinants revealed 12 (3), 19 (3) and 27 (3) nucleotide (amino acid) differences from Sabin. Mutations were located in regions defining attenuation, temperature sensitivity, antigenicity and the cis-acting replicating element. The recombination site was in the 5' end of 3D. In a competition assay, the most mutated recombinant beat parental Sabin in all three cell lines, strongly suggesting that this virus has an advantage. Two independent intertypic recombinants, PV3/PV1 and PV3/PV2, also showed similar growth advantages, but they also contained several point mutations. Thus, our data defend the hypothesis that accumulation of certain advantageous mutations plays a key role in gaining increased fitness.

  8. Viral Vectors for Use in the Development of Biodefense Vaccines

    National Research Council Canada - National Science Library

    Lee, John S; Hadjipanayis, Angela G; Parker, Michael D

    2005-01-01

    .... DNA vectors, live-attenuated viruses and bacteria, recombinant proteins combined with adjuvant, and viral- or bacterial-vectored vaccines have been developed as countermeasures against many potential...

  9. Productive Homologous and Non-homologous Recombination of Hepatitis C Virus in Cell Culture

    Science.gov (United States)

    Li, Yi-Ping; Mikkelsen, Lotte S.; Gottwein, Judith M.; Bukh, Jens

    2013-01-01

    Genetic recombination is an important mechanism for increasing diversity of RNA viruses, and constitutes a viral escape mechanism to host immune responses and to treatment with antiviral compounds. Although rare, epidemiologically important hepatitis C virus (HCV) recombinants have been reported. In addition, recombination is an important regulatory mechanism of cytopathogenicity for the related pestiviruses. Here we describe recombination of HCV RNA in cell culture leading to production of infectious virus. Initially, hepatoma cells were co-transfected with a replicating JFH1ΔE1E2 genome (genotype 2a) lacking functional envelope genes and strain J6 (2a), which has functional envelope genes but does not replicate in culture. After an initial decrease in the number of HCV positive cells, infection spread after 13–36 days. Sequencing of recovered viruses revealed non-homologous recombinants with J6 sequence from the 5′ end to the NS2–NS3 region followed by JFH1 sequence from Core to the 3′ end. These recombinants carried duplicated sequence of up to 2400 nucleotides. HCV replication was not required for recombination, as recombinants were observed in most experiments even when two replication incompetent genomes were co-transfected. Reverse genetic studies verified the viability of representative recombinants. After serial passage, subsequent recombination events reducing or eliminating the duplicated region were observed for some but not all recombinants. Furthermore, we found that inter-genotypic recombination could occur, but at a lower frequency than intra-genotypic recombination. Productive recombination of attenuated HCV genomes depended on expression of all HCV proteins and tolerated duplicated sequence. In general, no strong site specificity was observed. Non-homologous recombination was observed in most cases, while few homologous events were identified. A better understanding of HCV recombination could help identification of natural recombinants

  10. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence

    International Nuclear Information System (INIS)

    Papaneri, Amy B.; Wirblich, Christoph; Cann, Jennifer A.; Cooper, Kurt; Jahrling, Peter B.; Schnell, Matthias J.; Blaney, Joseph E.

    2012-01-01

    We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RVΔG-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RVΔG-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RVΔG-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RVΔG-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.

  11. PROTECTIVE ACTIVITY STUDY OF A CANDIDATE VACCINE AGAINST ROTAVIRUS INFECTION BASED ON RECOMBINANT PROTEIN FliCVP6VP8

    Directory of Open Access Journals (Sweden)

    I. V. Dukhovlinov

    2016-01-01

    Full Text Available Rotavirus infection is among leading causes of severe diarrhea which often leads to severe dehydration, especially, in children under 5 years old. In Russia, the incidence of rotavirus infection is constantly increased, due to higher rates of actual rotavirus infection cases and improved diagnostics of the disease. Immunity to rotavirus is unstable, thus causing repeated infections intra vitam. Anti-infectious resistance in reconvalescents is explained by induction of specific IgM, IgG, and, notably, IgA antibodies. Due to absence of market drugs with direct action against rotavirus, a rational vaccination is considered the most effective way to control the disease. Currently available vaccines for prevention of rotavirus infection are based on live attenuated rotavirus strains, human and/or animal origin, which replicate in human gut. Their implementation may result into different complications. Meanwhile, usage of vaccines based on recombinant proteins is aimed to avoid risks associated with introduction of a complete virus into humans. In this paper, we studied protective activity of candidate vaccines against rotavirus.In this work we studied protective activity of a candidate vaccine against rotavirus infection based on recombinant FliCVP6VP8 protein which includes VP6 and VP8, as well as components of Salmonella typhimurium flagellin (FliC as an adjuvant. Different components are joined by flexible bridges. Efficiency of the candidate vaccine was studied in animal model using Balb/c mice. We have shown high level of protection which occurs when the candidate vaccine is administered twice intramuscularly. Complete protection of animals against mouse rotavirus EDC after intramuscular immunization with a candidate vaccine was associated with arising rotavirus-specific IgA and IgG antibodies in serum and intestine of immunized animals. The efficacy of candidate vaccine based on recombinant protein FliCVP6VP8 against rotavirus infection was

  12. Recombinant human tissue factor pathway inhibitor exerts anticoagulant, anti-inflammatory and antimicrobial effects in murine pneumococcal pneumonia

    NARCIS (Netherlands)

    van den Boogaard, F. E.; Brands, X.; Schultz, M. J.; Levi, M. [=Marcel M.; Roelofs, J. J. T. H.; van 't Veer, C.; van der Poll, T.

    2011-01-01

    Background: Streptococcus (S.) pneumoniae is the most common causative pathogen in community-acquired pneumonia and a major cause of sepsis. Recombinant human tissue factor pathway inhibitor (rh-TFPI) attenuates sepsis-induced coagulation and has been evaluated in clinical trials involving patients

  13. Recombinant Production of Human Aquaporin-1 to an Exceptional High Membrane Density in Saccharomyces Cerevisiae

    DEFF Research Database (Denmark)

    Bomholt, Julie; Helix Nielsen, Claus; Scharff-Poulsen, Peter

    2014-01-01

    prevented Aquaporin1 mal-folding. Bioimaging of live yeast cells revealed that recombinant Aquaporin-1 accumulated in the yeast plasma membrane. A detergent screen for solubilization revealed that CYMAL-5 was superior in solubilizing recombinant Aquaporin-1 and generated a monodisperse protein preparation...

  14. Live-attenuated tetravalent dengue vaccines: The needs and challenges of post-licensure evaluation of vaccine safety and effectiveness.

    Science.gov (United States)

    Wichmann, Ole; Vannice, Kirsten; Asturias, Edwin J; de Albuquerque Luna, Expedito José; Longini, Ira; Lopez, Anna Lena; Smith, Peter G; Tissera, Hasitha; Yoon, In-Kyu; Hombach, Joachim

    2017-10-09

    Since December 2015, the first dengue vaccine has been licensed in several Asian and Latin American countries for protection against disease from all four dengue virus serotypes. While the vaccine demonstrated an overall good safety and efficacy profile in clinical trials, some key research questions remain which make risk-benefit-assessment for some populations difficult. As for any new vaccine, several questions, such as very rare adverse events following immunization, duration of vaccine-induced protection and effectiveness when used in public health programs, will be addressed by post-licensure studies and by data from national surveillance systems after the vaccine has been introduced. However, the complexity of dengue epidemiology, pathogenesis and population immunity, as well as some characteristics of the currently licensed vaccine, and potentially also future, live-attenuated dengue vaccines, poses a challenge for evaluation through existing monitoring systems, especially in low and middle-income countries. Most notable are the different efficacies of the currently licensed vaccine by dengue serostatus at time of first vaccination and by dengue virus serotype, as well as the increased risk of dengue hospitalization among young vaccinated children observed three years after the start of vaccination in one of the trials. Currently, it is unknown if the last phenomenon is restricted to younger ages or could affect also seronegative individuals aged 9years and older, who are included in the group for whom the vaccine has been licensed. In this paper, we summarize scientific and methodological considerations for public health surveillance and targeted post-licensure studies to address some key research questions related to live-attenuated dengue vaccines. Countries intending to introduce a dengue vaccine should assess their capacities to monitor and evaluate the vaccine's effectiveness and safety and, where appropriate and possible, enhance their surveillance

  15. Intraspecific bovine herpesvirus 1 recombinants carrying glycoprotein E deletion as a vaccine marker are virulent in cattle.

    Science.gov (United States)

    Muylkens, Benoît; Meurens, François; Schynts, Frédéric; Farnir, Frédéric; Pourchet, Aldo; Bardiau, Marjorie; Gogev, Sacha; Thiry, Julien; Cuisenaire, Adeline; Vanderplasschen, Alain; Thiry, Etienne

    2006-08-01

    Vaccines used in control programmes of Bovine herpesvirus 1 (BoHV-1) utilize highly attenuated BoHV-1 strains marked by a deletion of the glycoprotein E (gE) gene. Since BoHV-1 recombinants are obtained at high frequency in experimentally coinfected cattle, the consequences of recombination on the virulence of gE-negative BoHV-1 were investigated. Thus, gE-negative BoHV-1 recombinants were generated in vitro from several virulent BoHV-1 and one mutant BoHV-1 deleted in the gC and gE genes. Four gE-negative recombinants were tested in the natural host. All the recombinants were more virulent than the gE-negative BoHV-1 vaccine and the gC- and gE-negative parental BoHV-1. The gE-negative recombinant isolated from a BoHV-1 field strain induced the highest severe clinical score. Latency and reactivation studies showed that three of the recombinants were reexcreted. Recombination can therefore restore virulence of gE-negative BoHV-1 by introducing the gE deletion into a different virulence background.

  16. Vaccine platform recombinant measles virus.

    Science.gov (United States)

    Mühlebach, Michael D

    2017-10-01

    The classic development of vaccines is lengthy, tedious, and may not necessarily be successful as demonstrated by the case of HIV. This is especially a problem for emerging pathogens that are newly introduced into the human population and carry the inherent risk of pandemic spread in a naïve population. For such situations, a considerable number of different platform technologies are under development. These are also under development for pathogens, where directly derived vaccines are regarded as too complicated or even dangerous due to the induction of inefficient or unwanted immune responses causing considerable side-effects as for dengue virus. Among platform technologies are plasmid-based DNA vaccines, RNA replicons, single-round infectious vector particles, or replicating vaccine-based vectors encoding (a) critical antigen(s) of the target pathogens. Among the latter, recombinant measles viruses derived from vaccine strains have been tested. Measles vaccines are among the most effective and safest life-attenuated vaccines known. Therefore, the development of Schwarz-, Moraten-, or AIK-C-strain derived recombinant vaccines against a wide range of mostly viral, but also bacterial pathogens was quite straightforward. These vaccines generally induce powerful humoral and cellular immune responses in appropriate animal models, i.e., transgenic mice or non-human primates. Also in the recent first clinical phase I trial, the results have been quite encouraging. The trial indicated the expected safety and efficacy also in human patients, interestingly independent from the level of prevalent anti-measles immunity before the trial. Thereby, recombinant measles vaccines expressing additional antigens are a promising platform for future vaccines.

  17. Characterization of a vraG Mutant in a Genetically Stable Staphylococcus aureus Small-Colony Variant and Preliminary Assessment for Use as a Live-Attenuated Vaccine against Intrammamary Infections.

    Directory of Open Access Journals (Sweden)

    Julie Côté-Gravel

    Full Text Available Staphylococcus aureus is a leading cause of bovine intramammary infections (IMIs that can evolve into difficult-to-treat chronic mastitis. To date, no vaccine formulation has shown high protective efficacy against S. aureus IMI, partly because this bacterium can efficiently evade the immune system. For instance, S. aureus small colony variants (SCVs have intracellular abilities and can persist without producing invasive infections. As a first step towards the development of a live vaccine, this study describes the elaboration of a novel attenuated mutant of S. aureus taking advantage of the SCV phenotype. A genetically stable SCV was created through the deletion of the hemB gene, impairing its ability to adapt and revert to the invasive phenotype. Further attenuation was obtained through inactivation of gene vraG (SACOL0720 which we previously showed to be important for full virulence during bovine IMIs. After infection of bovine mammary epithelial cells (MAC-T, the double mutant (ΔvraGΔhemB was less internalized and caused less cell destruction than that seen with ΔhemB and ΔvraG, respectively. In a murine IMI model, the ΔvraGΔhemB mutant was strongly attenuated, with a reduction of viable counts of up to 5-log10 CFU/g of mammary gland when compared to the parental strain. A complete clearance of ΔvraGΔhemB from glands was observed whereas mortality rapidly (48h occurred with the wild-type strain. Immunization of mice using subcutaneous injections of live ΔvraGΔhemB raised a strong immune response as judged by the high total IgG titers measured against bacterial cell extracts and by the high IgG2a/IgG1 ratio observed against the IsdH protein. Also, ΔvraGΔhemB had sufficient common features with bovine mastitis strains so that the antibody response also strongly recognized strains from a variety of mastitis associated spa types. This double mutant could serve as a live-attenuated component in vaccines to improve cell-mediated immune

  18. A live attenuated cold-adapted influenza A H7N3 virus vaccine provides protection against homologous and heterologous H7 viruses in mice and ferrets

    International Nuclear Information System (INIS)

    Joseph, Tomy; McAuliffe, Josephine; Lu, Bin; Vogel, Leatrice; Swayne, David; Jin, Hong; Kemble, George; Subbarao, Kanta

    2008-01-01

    The appearance of human infections caused by avian influenza A H7 subtype viruses underscores their pandemic potential and the need to develop vaccines to protect humans from viruses of this subtype. A live attenuated H7N3 virus vaccine was generated by reverse genetics using the HA and NA genes of a low pathogenicity A/chicken/BC/CN-6/04 (H7N3) virus and the six internal protein genes of the cold-adapted A/Ann Arbor/6/60 ca (H2N2) virus. The reassortant H7N3 BC 04 ca vaccine virus was temperature sensitive and showed attenuation in mice and ferrets. Intranasal immunization with one dose of the vaccine protected mice and ferrets when challenged with homologous and heterologous H7 viruses. The reassortant H7N3 BC 04 ca vaccine virus showed comparable levels of attenuation, immunogenicity and efficacy in mice and ferret models. The safety, immunogenicity, and efficacy of this vaccine in mice and ferrets support the evaluation of this vaccine in clinical trials

  19. Live Attenuated Versus Inactivated Influenza Vaccine in Hutterite Children: A Cluster Randomized Blinded Trial.

    Science.gov (United States)

    Loeb, Mark; Russell, Margaret L; Manning, Vanessa; Fonseca, Kevin; Earn, David J D; Horsman, Gregory; Chokani, Khami; Vooght, Mark; Babiuk, Lorne; Schwartz, Lisa; Neupane, Binod; Singh, Pardeep; Walter, Stephen D; Pullenayegum, Eleanor

    2016-11-01

    Whether vaccinating children with intranasal live attenuated influenza vaccine (LAIV) is more effective than inactivated influenza vaccine (IIV) in providing both direct protection in vaccinated persons and herd protection in unvaccinated persons is uncertain. Hutterite colonies, where members live in close-knit, small rural communities in which influenza virus infection regularly occurs, offer an opportunity to address this question. To determine whether vaccinating children and adolescents with LAIV provides better community protection than IIV. A cluster randomized blinded trial conducted between October 2012 and May 2015 over 3 influenza seasons. (ClinicalTrials.gov: NCT01653015). 52 Hutterite colonies in Alberta and Saskatchewan, Canada. 1186 Canadian children and adolescents aged 36 months to 15 years who received the study vaccine and 3425 community members who did not. Children were randomly assigned according to community in a blinded manner to receive standard dosing of either trivalent LAIV or trivalent IIV. The primary outcome was reverse transcriptase polymerase chain reaction-confirmed influenza A or B virus in all participants (vaccinated children and persons who did not receive the study vaccine). Mean vaccine coverage among children in the LAIV group was 76.9% versus 72.3% in the IIV group. Influenza virus infection occurred at a rate of 5.3% (295 of 5560 person-years) in the LAIV group versus 5.2% (304 of 5810 person-years) in the IIV group. The hazard ratio comparing LAIV with IIV for influenza A or B virus was 1.03 (95% CI, 0.85 to 1.24). The study was conducted in Hutterite communities, which may limit generalizability. Immunizing children with LAIV does not provide better community protection against influenza than IIV. The Canadian Institutes for Health Research.

  20. Antigen-Specific lgA B Memory Cell Responses to Shigella Antigens Elicited in Volunteers Immunized with Live Attenuated Shigella flexneri 2a Oral Vaccine Candidates

    Science.gov (United States)

    2011-01-01

    167. [10] E.V. Oaks, T.L. Hale, S.B. Formal, Serum immune response to Shigella protein antigens in rhesus monkeys and humans infected with Shigella ...cell responses to Shigella antigens elicited in volunteers immunized with live attenuated Shigella flexneri 2a oral vaccine candidates J.K. Simona,b... Shigella ;. B cell memory; Immunoglobulin lgA; Mucosal immunity Abstract We studied the induction of antigen-specific lgA memory B cells (BM) in

  1. Recombinant Production of Human Aquaporin-1 to an Exceptional High Membrane Density in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Bomholt, Julie; Helix Nielsen, Claus; Scharff-Poulsen, Peter

    2013-01-01

    of the expression temperature to 15°C almost completely prevented Aquaporin-1 mal-folding. Bioimaging of live yeast cells revealed that recombinant Aquaporin-1 accumulated in the yeast plasma membrane. A detergent screen for solubilization revealed that CYMAL-5 was superior in solubilizing recombinant Aquaporin-1...

  2. Radiation induced time dependent attenuation in a fiber

    International Nuclear Information System (INIS)

    Kelly, R.E.; Lyons, P.B.; Looney, L.D.

    1985-01-01

    Characteristics describing the time dependent attenuation coefficient of an optical fiber during and following a very short and intense radiation pulse are analyzed. This problem is important for transmission applications when the fiber is subjected to gamma, electron, or neutron beams. Besides time, the attenuation coefficient is a function of temperature, dose rate, dose, nature of the radiation (n, e, γ), fiber composition and purity, pre-existing solid state defects, and wavelength of the transmitted signal. The peak attenuation for a given fiber is mainly determined by the dose rate and pulse length, but temperature and strain (or athermal) annealing also contribute to a partial recovery during the pulse duration. The peak attenuation per unit dose appears to be smaller at high doses, perhaps caused by particle track overlap, which produces a saturation effect. After pulse termination, the attenuation coefficient tends to recover towards its pre-radiation value at different rates, depending upon the factors mentioned above. In particular, ionized electrons relax back to the positive lattice ions at a rate which depends upon initial separation distance and temperature. The initial separation distance is a function of beam energy. Some electrons will encounter a trap in the lattice and may recombine by quantum mechanical tunneling or be removed by photons (hence, absorption). Besides ionization, radiation may induce lattice displacements which in turn produce additional absorption centers. The displacement contribution has a different time constant than that associated with ionization. These topics, as they influence fiber characteristics, are discussed, along with supporting experimental data

  3. Recombination of H3+ and D3+ ions with electrons in low temperature plasma

    International Nuclear Information System (INIS)

    Glosik, J; Plasil, R.; Pysanenko, A.; Poterya, V.; Kudrna, P.; Zakouril, P.

    2002-01-01

    From the decaying plasma (stationary afterglow) in the mixture of He, Ar and H 2 (or D 2 ) we determined the overall recombination rate constant (α eff ) of the recombination of H 3 + and D 3 + ions with electrons at thermal energies. We observed dependence of recombination rate coefficients on partial pressure of hydrogen (and deuterium), which indicates that observed recombination is the three-body process proceeding most probably via formation of long lived intermediate state. From the obtained data we conclude that binary dissociative recombination of H 3 + and D 3 + ions with electrons is very slow with rate coefficient α DR -9 cm 3 s -1 and α DR -9 cm 3 s -1 , respectively. (author)

  4. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence

    Energy Technology Data Exchange (ETDEWEB)

    Papaneri, Amy B. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States); Wirblich, Christoph [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Cann, Jennifer A.; Cooper, Kurt [Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702 (United States); Jahrling, Peter B. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States); Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702 (United States); Schnell, Matthias J., E-mail: matthias.schnell@jefferson.edu [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Blaney, Joseph E., E-mail: jblaney@niaid.nih.gov [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States)

    2012-12-05

    We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RV{Delta}G-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RV{Delta}G-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RV{Delta}G-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RV{Delta}G-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.

  5. Intramuscular Immunization of Mice with the Live-Attenuated Herpes Simplex Virus 1 Vaccine Strain VC2 Expressing Equine Herpesvirus 1 (EHV-1) Glycoprotein D Generates Anti-EHV-1 Immune Responses in Mice.

    Science.gov (United States)

    Liu, Shiliang A; Stanfield, Brent A; Chouljenko, Vladimir N; Naidu, Shan; Langohr, Ingeborg; Del Piero, Fabio; Ferracone, Jacqueline; Roy, Alma A; Kousoulas, Konstantin G

    2017-06-15

    Vaccination remains the best option to combat equine herpesvirus 1 (EHV-1) infection, and several different strategies of vaccination have been investigated and developed over the past few decades. Herein, we report that the live-attenuated herpes simplex virus 1 (HSV-1) VC2 vaccine strain, which has been shown to be unable to enter into neurons and establish latency in mice, can be utilized as a vector for the heterologous expression of EHV-1 glycoprotein D (gD) and that the intramuscular immunization of mice results in strong antiviral humoral and cellular immune responses. The VC2-EHV-1-gD recombinant virus was constructed by inserting an EHV-1 gD expression cassette under the control of the cytomegalovirus immediate early promoter into the VC2 vector in place of the HSV-1 thymidine kinase (UL23) gene. The vaccines were introduced into mice through intramuscular injection. Vaccination with both the VC2-EHV-1-gD vaccine and the commercially available vaccine Vetera EHV XP 1/4 (Vetera; Boehringer Ingelheim Vetmedica) resulted in the production of neutralizing antibodies, the levels of which were significantly higher in comparison to those in VC2- and mock-vaccinated animals ( P < 0.01 or P < 0.001). Analysis of EHV-1-reactive IgG subtypes demonstrated that vaccination with the VC2-EHV-1-gD vaccine stimulated robust IgG1 and IgG2a antibodies after three vaccinations ( P < 0.001). Interestingly, Vetera-vaccinated mice produced significantly higher levels of IgM than mice in the other groups before and after challenge ( P < 0.01 or P < 0.05). Vaccination with VC2-EHV-1-gD stimulated strong cellular immune responses, characterized by the upregulation of both interferon- and tumor necrosis factor-positive CD4 + T cells and CD8 + T cells. Overall, the data suggest that the HSV-1 VC2 vaccine strain may be used as a viral vector for the vaccination of horses as well as, potentially, for the vaccination of other economically important animals. IMPORTANCE A novel virus

  6. A live-attenuated HSV-2 ICP0 virus elicits 10 to 100 times greater protection against genital herpes than a glycoprotein D subunit vaccine.

    Directory of Open Access Journals (Sweden)

    William P Halford

    2011-03-01

    Full Text Available Glycoprotein D (gD-2 is the entry receptor of herpes simplex virus 2 (HSV-2, and is the immunogen in the pharmaceutical industry's lead HSV-2 vaccine candidate. Efforts to prevent genital herpes using gD-2 subunit vaccines have been ongoing for 20 years at a cost in excess of $100 million. To date, gD-2 vaccines have yielded equivocal protection in clinical trials. Therefore, using a small animal model, we sought to determine if a live-attenuated HSV-2 ICP0⁻ virus would elicit better protection against genital herpes than a gD-2 subunit vaccine. Mice immunized with gD-2 and a potent adjuvant (alum+monophosphoryl lipid A produced high titers of gD-2 antibody. While gD-2-immunized mice possessed significant resistance to HSV-2, only 3 of 45 gD-2-immunized mice survived an overwhelming challenge of the vagina or eyes with wild-type HSV-2 (MS strain. In contrast, 114 of 115 mice immunized with a live HSV-2 ICP0⁻ virus, 0ΔNLS, survived the same HSV-2 MS challenges. Likewise, 0ΔNLS-immunized mice shed an average 125-fold less HSV-2 MS challenge virus per vagina relative to gD-2-immunized mice. In vivo imaging demonstrated that a luciferase-expressing HSV-2 challenge virus failed to establish a detectable infection in 0ΔNLS-immunized mice, whereas the same virus readily infected naïve and gD-2-immunized mice. Collectively, these results suggest that a HSV-2 vaccine might be more likely to prevent genital herpes if it contained a live-attenuated HSV-2 virus rather than a single HSV-2 protein.

  7. Safety evaluation of a recombinant myxoma-RHDV virus inducing horizontal transmissible protection against myxomatosis and rabbit haemorrhagic disease.

    Science.gov (United States)

    Torres, J M; Ramírez, M A; Morales, M; Bárcena, J; Vázquez, B; Espuña, E; Pagès-Manté, A; Sánchez-Vizcaíno, J M

    2000-09-15

    We have recently developed a transmissible vaccine to immunize rabbits against myxomatosis and rabbit haemorrhagic disease based on a recombinant myxoma virus (MV) expressing the rabbit haemorrhagic disease virus (RHDV) capsid protein [Bárcena et al. Horizontal transmissible protection against myxomatosis and rabbit haemorragic disease using a recombinant myxoma virus. J. Virol. 2000;74:1114-23]. Administration of the recombinant virus protects rabbits against lethal RHDV and MV challenges. Furthermore, the recombinant virus is capable of horizontal spreading promoting protection of contact animals, thus providing the opportunity to immunize wild rabbit populations. However, potential risks must be extensively evaluated before considering its field use. In this study several safety issues concerning the proposed vaccine have been evaluated under laboratory conditions. Results indicated that vaccine administration is safe even at a 100-fold overdose. No undesirable effects were detected upon administration to immunosuppressed or pregnant rabbits. The recombinant virus maintained its attenuated phenotype after 10 passages in vivo.

  8. Evolutionary characteristics of morbilliviruses during serial passages in vitro: Gradual attenuation of virus virulence.

    Science.gov (United States)

    Liu, Fuxiao; Wu, Xiaodong; Li, Lin; Zou, Yanli; Liu, Shan; Wang, Zhiliang

    2016-08-01

    The genus Morbillivirus is classified into the family Paramyxoviridae, and is composed of 6 members, namely measles virus (MV), rinderpest virus (RPV), peste-des-petits-ruminants virus (PPRV), canine distemper virus (CDV), phocine distemper virus (PDV) and cetacean morbillivirus (CeMV). The MV, RPV, PPRV and CDV have been successfully attenuated through their serial passages in vitro for the production of live vaccines. It has been demonstrated that the morbilliviral virulence in animals was progressively attenuated with their consecutive passages in vitro. However, only a few reports were involved in explanation of an attenuation-related mechanism on them until many years after the establishment of a quasispecies theory. RNA virus quasispecies arise from rapid evolution of viruses with high mutation rate during genomic replication, and play an important role in gradual loss of viral virulence by serial passages. Here, we overviewed the development of live-attenuated vaccine strains against morbilliviruses by consecutive passages in vitro, and further discussed a related mechanism concerning the relationship between virulence attenuation and viral evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Vaccination against Canine Distemper Virus Infection in Infant Ferrets with and without Maternal Antibody Protection, Using Recombinant Attenuated Poxvirus Vaccines

    Science.gov (United States)

    Welter, Janet; Taylor, Jill; Tartaglia, James; Paoletti, Enzo; Stephensen, Charles B.

    2000-01-01

    Canine distemper virus (CDV) infection of ferrets is clinically and immunologically similar to measles, making this a useful model for the human disease. The model was used to determine if parenteral or mucosal immunization of infant ferrets at 3 and 6 weeks of age with attenuated vaccinia virus (NYVAC) or canarypox virus (ALVAC) vaccine strains expressing the CDV hemagglutinin (H) and fusion (F) protein genes (NYVAC-HF and ALVAC-HF) would induce serum neutralizing antibody and protect against challenge infection at 12 weeks of age. Ferrets without maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 5) or ALVAC-HF (n = 4) developed significant neutralizing titers (log10 inverse mean titer ± standard deviation of 2.30 ± 0.12 and 2.20 ± 0.34, respectively) by the day of challenge, and all survived with no clinical or virologic evidence of infection. Ferrets without maternal antibody that were vaccinated intranasally (i.n.) developed lower neutralizing titers, with NYVAC-HF producing higher titers at challenge (1.11 ± 0.57 versus 0.40 ± 0.37, P = 0.02) and a better survival rate (6/7 versus 0/5, P = 0.008) than ALVAC-HF. Ferrets with maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 7) and ALVAC-HF (n = 7) developed significantly higher antibody titers (1.64 ± 0.54 and 1.28 ± 0.40, respectively) than did ferrets immunized with an attenuated CDV vaccine (0.46 ± 0.59; n = 7) or the recombinant vectors expressing rabies glycoprotein (RG) (0.19 ± 0.32; n = 8, P = 7 × 10−6). The NYVAC vaccine also protected against weight loss, and both the NYVAC and attenuated CDV vaccines protected against the development of some clinical signs of infection, although survival in each of the three vaccine groups was low (one of seven) and not significantly different from the RG controls (none of eight). Combined i.n.-parenteral immunization of ferrets with maternal antibody using NYVAC-HF (n = 9) produced higher titers (1.63 ± 0

  10. Vaccination against canine distemper virus infection in infant ferrets with and without maternal antibody protection, using recombinant attenuated poxvirus vaccines.

    Science.gov (United States)

    Welter, J; Taylor, J; Tartaglia, J; Paoletti, E; Stephensen, C B

    2000-07-01

    Canine distemper virus (CDV) infection of ferrets is clinically and immunologically similar to measles, making this a useful model for the human disease. The model was used to determine if parenteral or mucosal immunization of infant ferrets at 3 and 6 weeks of age with attenuated vaccinia virus (NYVAC) or canarypox virus (ALVAC) vaccine strains expressing the CDV hemagglutinin (H) and fusion (F) protein genes (NYVAC-HF and ALVAC-HF) would induce serum neutralizing antibody and protect against challenge infection at 12 weeks of age. Ferrets without maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 5) or ALVAC-HF (n = 4) developed significant neutralizing titers (log(10) inverse mean titer +/- standard deviation of 2.30 +/- 0.12 and 2.20 +/- 0.34, respectively) by the day of challenge, and all survived with no clinical or virologic evidence of infection. Ferrets without maternal antibody that were vaccinated intranasally (i.n.) developed lower neutralizing titers, with NYVAC-HF producing higher titers at challenge (1.11 +/- 0.57 versus 0.40 +/- 0.37, P = 0.02) and a better survival rate (6/7 versus 0/5, P = 0.008) than ALVAC-HF. Ferrets with maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 7) and ALVAC-HF (n = 7) developed significantly higher antibody titers (1.64 +/- 0. 54 and 1.28 +/- 0.40, respectively) than did ferrets immunized with an attenuated CDV vaccine (0.46 +/- 0.59; n = 7) or the recombinant vectors expressing rabies glycoprotein (RG) (0.19 +/- 0.32; n = 8, P = 7 x 10(-6)). The NYVAC vaccine also protected against weight loss, and both the NYVAC and attenuated CDV vaccines protected against the development of some clinical signs of infection, although survival in each of the three vaccine groups was low (one of seven) and not significantly different from the RG controls (none of eight). Combined i.n.-parenteral immunization of ferrets with maternal antibody using NYVAC-HF (n = 9) produced higher titers (1

  11. Canine distemper virus (CDV) infection of ferrets as a model for testing Morbillivirus vaccine strategies: NYVAC- and ALVAC-based CDV recombinants protect against symptomatic infection.

    Science.gov (United States)

    Stephensen, C B; Welter, J; Thaker, S R; Taylor, J; Tartaglia, J; Paoletti, E

    1997-02-01

    Canine distemper virus (CDV) infection of ferrets causes an acute systemic disease involving multiple organ systems, including the respiratory tract, lymphoid system, and central nervous system (CNS). We have tested candidate CDV vaccines incorporating the fusion (F) and hemagglutinin (HA) proteins in the highly attenuated NYVAC strain of vaccinia virus and in the ALVAC strain of canarypox virus, which does not productively replicate in mammalian hosts. Juvenile ferrets were vaccinated twice with these constructs, or with an attenuated live-virus vaccine, while controls received saline or the NYVAC and ALVAC vectors expressing rabies virus glycoprotein. Control animals did not develop neutralizing antibody and succumbed to distemper after developing fever, weight loss, leukocytopenia, decreased activity, conjunctivitis, an erythematous rash typical of distemper, CNS signs, and viremia in peripheral blood mononuclear cells (as measured by reverse transcription-PCR). All three CDV vaccines elicited neutralizing titers of at least 1:96. All vaccinated ferrets survived, and none developed viremia. Both recombinant vaccines also protected against the development of symptomatic distemper. However, ferrets receiving the live-virus vaccine lost weight, became lymphocytopenic, and developed the erythematous rash typical of CDV. These data show that ferrets are an excellent model for evaluating the ability of CDV vaccines to protect against symptomatic infection. Because the pathogenesis and clinical course of CDV infection of ferrets is quite similar to that of other Morbillivirus infections, including measles, this model will be useful in testing new candidate Morbillivirus vaccines.

  12. Live Attenuated Recombinant Vaccine Protects Nonhuman Primates Against Ebola and Marburg Viruses

    National Research Council Canada - National Science Library

    Jones, Steven M; Feldmann, Heinz; Stroher, Ute; Geisbert, Joan B; Fernando, Lisa; Grolla, Allen; Klenk, Hans-Dieter; Sullivan, Nancy J; Volchkov, Viktor E; Fritz, Elizabeth A; Daddario, Kathleen M; Hensley, Lisa E; Jahrling, Peter B; Geisbert, Thomas W

    2005-01-01

    Vaccines and therapies are urgently needed to address public health needs stemming from emerging pathogens and biological threat agents such as the filoviruses Ebola virus (EBOV) and Marburg virus (MARV...

  13. Type III Interferon-Mediated Signaling Is Critical for Controlling Live Attenuated Yellow Fever Virus Infection In Vivo

    Directory of Open Access Journals (Sweden)

    Florian Douam

    2017-08-01

    Full Text Available Yellow fever virus (YFV is an arthropod-borne flavivirus, infecting ~200,000 people worldwide annually and causing about 30,000 deaths. The live attenuated vaccine strain, YFV-17D, has significantly contributed in controlling the global burden of yellow fever worldwide. However, the viral and host contributions to YFV-17D attenuation remain elusive. Type I interferon (IFN-α/β signaling and type II interferon (IFN-γ signaling have been shown to be mutually supportive in controlling YFV-17D infection despite distinct mechanisms of action in viral infection. However, it remains unclear how type III IFN (IFN-λ integrates into this antiviral system. Here, we report that while wild-type (WT and IFN-λ receptor knockout (λR−/− mice were largely resistant to YFV-17D, deficiency in type I IFN signaling resulted in robust infection. Although IFN-α/β receptor knockout (α/βR−/− mice survived the infection, mice with combined deficiencies in both type I signaling and type III IFN signaling were hypersusceptible to YFV-17D and succumbed to the infection. Mortality was associated with viral neuroinvasion and increased permeability of the blood-brain barrier (BBB. α/βR−/− λR−/− mice also exhibited distinct changes in the frequencies of multiple immune cell lineages, impaired T-cell activation, and severe perturbation of the proinflammatory cytokine balance. Taken together, our data highlight that type III IFN has critical immunomodulatory and neuroprotective functions that prevent viral neuroinvasion during active YFV-17D replication. Type III IFN thus likely represents a safeguard mechanism crucial for controlling YFV-17D infection and contributing to shaping vaccine immunogenicity.

  14. Major histocompatibility complex-linked immune response of young chickens vaccinated with an attenuated live infectious bursal disease virus vaccine followed by an infection

    DEFF Research Database (Denmark)

    Juul-Madsen, Helle; Nielsen, O.L.; Krogh-Maibom, T.

    2002-01-01

    The influence of the MHC on infectious bursal disease virus (IBDV) vaccine response in chickens was investigated in three different chicken lines containing four different MHC haplotypes. Two MHC haplotypes were present in all three lines with one haplotype (1319) shared between the lines. Line I...... further contains the BW1 haplotype isolated from a Red jungle Fowl. Line 131 further contains the B131 haplotype isolated from a meat-type chicken, Finally, Line 21 further contains the international B21 haplotype. The chickens were vaccinated with live attenuated commercial IBDV vaccine at 3 wk of age...

  15. Phenylbutyrate inhibits homologous recombination induced by camptothecin and methyl methanesulfonate.

    Science.gov (United States)

    Kaiser, Gitte S; Germann, Susanne M; Westergaard, Tine; Lisby, Michael

    2011-08-01

    Homologous recombination is accompanied by extensive changes to chromatin organization at the site of DNA damage. Some of these changes are mediated through acetylation/deacetylation of histones. Here, we show that recombinational repair of DNA damage induced by the anti-cancer drug camptothecin (CPT) and the alkylating agent methyl methanesulfonate (MMS) is blocked by sodium phenylbutyrate (PBA) in the budding yeast Saccharomyces cerevisiae. In particular, PBA suppresses CPT- and MMS-induced genetic recombination as well as DNA double-strand break repair during mating-type interconversion. Treatment with PBA is accompanied by a dramatic reduction in histone H4 lysine 8 acetylation. Live cell imaging of homologous recombination proteins indicates that repair of CPT-induced DNA damage is redirected to a non-recombinogenic pathway in the presence of PBA without loss in cell viability. In contrast, the suppression of MMS-induced recombination by PBA is accompanied by a dramatic loss in cell viability. Taken together, our results demonstrate that PBA inhibits DNA damage-induced homologous recombination likely by mediating changes in chromatin acetylation. Moreover, the combination of PBA with genotoxic agents can lead to different cell fates depending on the type of DNA damage inflicted. 2011 Elsevier B.V. All rights reserved.

  16. Polymer:Nonfullerene Bulk Heterojunction Solar Cells with Exceptionally Low Recombination Rates

    KAUST Repository

    Gasparini, Nicola; Salvador, Michael; Heumueller, Thomas; Richter, Moses; Classen, Andrej; Shrestha, Shreetu; Matt, Gebhard J.; Holliday, Sarah; Strohm, Sebastian; Egelhaaf, Hans-Joachim; Wadsworth, Andrew; Baran, Derya; McCulloch, Iain; Brabec, Christoph J.

    2017-01-01

    Organic semiconductors are in general known to have an inherently lower charge carrier mobility compared to their inorganic counterparts. Bimolecular recombination of holes and electrons is an important loss mechanism and can often be described by the Langevin recombination model. Here, the device physics of bulk heterojunction solar cells based on a nonfullerene acceptor (IDTBR) in combination with poly(3-hexylthiophene) (P3HT) are elucidated, showing an unprecedentedly low bimolecular recombination rate. The high fill factor observed (above 65%) is attributed to non-Langevin behavior with a Langevin prefactor (β/βL) of 1.9 × 10−4. The absence of parasitic recombination and high charge carrier lifetimes in P3HT:IDTBR solar cells inform an almost ideal bimolecular recombination behavior. This exceptional recombination behavior is explored to fabricate devices with layer thicknesses up to 450 nm without significant performance losses. The determination of the photoexcited carrier mobility by time-of-flight measurements reveals a long-lived and nonthermalized carrier transport as the origin for the exceptional transport physics. The crystalline microstructure arrangement of both components is suggested to be decisive for this slow recombination dynamics. Further, the thickness-independent power conversion efficiency is of utmost technological relevance for upscaling production and reiterates the importance of understanding material design in the context of low bimolecular recombination.

  17. Polymer:Nonfullerene Bulk Heterojunction Solar Cells with Exceptionally Low Recombination Rates

    KAUST Repository

    Gasparini, Nicola

    2017-09-01

    Organic semiconductors are in general known to have an inherently lower charge carrier mobility compared to their inorganic counterparts. Bimolecular recombination of holes and electrons is an important loss mechanism and can often be described by the Langevin recombination model. Here, the device physics of bulk heterojunction solar cells based on a nonfullerene acceptor (IDTBR) in combination with poly(3-hexylthiophene) (P3HT) are elucidated, showing an unprecedentedly low bimolecular recombination rate. The high fill factor observed (above 65%) is attributed to non-Langevin behavior with a Langevin prefactor (β/βL) of 1.9 × 10−4. The absence of parasitic recombination and high charge carrier lifetimes in P3HT:IDTBR solar cells inform an almost ideal bimolecular recombination behavior. This exceptional recombination behavior is explored to fabricate devices with layer thicknesses up to 450 nm without significant performance losses. The determination of the photoexcited carrier mobility by time-of-flight measurements reveals a long-lived and nonthermalized carrier transport as the origin for the exceptional transport physics. The crystalline microstructure arrangement of both components is suggested to be decisive for this slow recombination dynamics. Further, the thickness-independent power conversion efficiency is of utmost technological relevance for upscaling production and reiterates the importance of understanding material design in the context of low bimolecular recombination.

  18. A selectable and excisable marker system for the rapid creation of recombinant poxviruses.

    Directory of Open Access Journals (Sweden)

    Julia L Rintoul

    Full Text Available Genetic manipulation of poxvirus genomes through attenuation, or insertion of therapeutic genes has led to a number of vector candidates for the treatment of a variety of human diseases. The development of recombinant poxviruses often involves the genomic insertion of a selectable marker for purification and selection purposes. The use of marker genes however inevitably results in a vector that contains unwanted genetic information of no therapeutic value.Here we describe an improved strategy that allows for the creation of marker-free recombinant poxviruses of any species. The Selectable and Excisable Marker (SEM system incorporates a unique fusion marker gene for the efficient selection of poxvirus recombinants and the Cre/loxP system to facilitate the subsequent removal of the marker. We have defined and characterized this new methodological tool by insertion of a foreign gene into vaccinia virus, with the subsequent removal of the selectable marker. We then analyzed the importance of loxP orientation during Cre recombination, and show that the SEM system can be used to introduce site-specific deletions or inversions into the viral genome. Finally, we demonstrate that the SEM strategy is amenable to other poxviruses, as demonstrated here with the creation of an ectromelia virus recombinant lacking the EVM002 gene.The system described here thus provides a faster, simpler and more efficient means to create clinic-ready recombinant poxviruses for therapeutic gene therapy applications.

  19. Meiotic sister chromatid cohesion and recombination in two filamentous fungi

    NARCIS (Netherlands)

    Heemst, van D.

    2000-01-01

    Homologous recombination and sister chromatid cohesion play important roles in the maintenance of genome integrity and the fidelity of chromosome segregation in mitosis and meiosis. Within the living cell, the integrity of the DNA is threatened by various factors that cause DNA-lesions, of

  20. Recombinant Programming

    OpenAIRE

    Pawlak , Renaud; Cuesta , Carlos; Younessi , Houman

    2004-01-01

    This research report presents a promising new approach to computation called Recombinant Programming. The novelty of our approach is that it separates the program into two layers of computation: the recombination and the interpretation layer. The recombination layer takes sequences as inputs and allows the programmer to recombine these sequences through the definition of cohesive code units called extensions. The output of such recombination is a mesh that can be used by the interpretation la...

  1. Recombiner

    International Nuclear Information System (INIS)

    Kikuchi, Nobuo.

    1983-01-01

    Purpose: To shorten the pre-heating time for a recombiner and obtain a uniform temperature distribution for the charged catalyst layer in a BWR type reactor. Constitution: A pre-heating heater is disposed to the outer periphery of a vessel for a recombiner packed with catalysts for recombining hydrogen and oxygen in gases flowing through a radioactive gaseous wastes processing system. Heat pipes for transmitting the heat applied to said container to the catalyst are disposed vertically and horizontally within the container. Different length of the heat pipes are combined. In this way, pre-heating time for the recombiner before the operation start and before the system switching can be shortened and the uniform pre-heating for the inside of the recombiner is also made possible. Further, heater control in the pre-heating can be carried out effectively and with ease. (Moriyama, K.)

  2. Clinical protection against caprine herpesvirus 1 genital infection by intranasal administration of a live attenuated glycoprotein E negative bovine herpesvirus 1 vaccine

    Directory of Open Access Journals (Sweden)

    Meurens François

    2007-12-01

    Full Text Available Abstract Background Caprine herpesvirus 1 (CpHV-1 is responsible of systemic diseases in kids and genital diseases leading to abortions in goats. CpHV-1 is widespread and especially in Mediterranean countries as Greece, Italy and Spain. CpHV-1 is antigenically and genetically closely related to bovine herpesvirus 1 (BoHV-1. Taking into account the biological properties shared by these two viruses, we decided in the current study to assess the protection of a live attenuated glycoprotein E (gE negative BoHV-1 vaccine against a genital CpHV-1 infection in goats. Results The vaccine was inoculated intranasally twice three weeks apart followed by a subsequent CpHV-1 intravaginal challenge which is the natural route of infection in three goats. To analyse the safety and the efficacy of this marker vaccine, two groups of three goats served as controls: one immunised with a virulent CpHV-1 and one uninoculated until the challenge. Goats were clinically monitored and all sampling procedures were carried out in a blind manner. The vaccine did not induce any undesirable local or systemic reaction and goats did not excrete gE-negative BoHV-1. After challenge, a significant reduction in disease severity was observed in immunised goats. Moreover, goats immunised with either gE-negative BoHV-1 or CpHV-1 exhibited a significant reduction in the length and the peak of viral excretion. Antibodies neutralising both BoHV-1 and CpHV-1 were raised in immunised goats. Conclusion Intranasal application of a live attenuated gE-negative BoHV-1 vaccine is able to afford a clinical protection and a reduction of virus excretion in goats challenged by a CpHV-1 genital infection.

  3. The humoral immune response to recombinant nucleocapsid antigen of canine distemper virus in dogs vaccinated with attenuated distemper virus or DNA encoding the nucleocapsid of wild-type virus.

    Science.gov (United States)

    Griot-Wenk, M E; Cherpillod, P; Koch, A; Zurbriggen, R; Bruckner, L; Wittek, R; Zurbriggen, A

    2001-06-01

    This study compared the humoral immune response against the nucleocapsid-(N) protein of canine distemper virus (CDV) of dogs vaccinated with a multivalent vaccine against parvo-, adeno-, and parainfluenza virus and leptospira combined with either the attenuated CDV Onderstepoort strain (n = 15) or an expression plasmid containing the N-gene of CDV (n = 30). The vaccinations were applied intramuscularly three times at 2-week intervals beginning at the age of 6 weeks. None of the pre-immune sera recognized the recombinant N-protein, confirming the lack of maternal antibodies at this age. Immunization with DNA vaccine for CDV resulted in positive serum N-specific IgG response. However, their IgG (and IgA) titres were lower than those of CDV-vaccinated dogs. Likewise, DNA-vaccinated dogs did not show an IgM peak. There was no increase in N-specific serum IgE titres in either group. Serum titres to the other multivalent vaccine components were similar in both groups.

  4. Safety and immunogenicity of an oral DNA vaccine encoding Sip of Streptococcus agalactiae from Nile tilapia Oreochromis niloticus delivered by live attenuated Salmonella typhimurium.

    Science.gov (United States)

    Huang, L Y; Wang, K Y; Xiao, D; Chen, D F; Geng, Y; Wang, J; He, Y; Wang, E L; Huang, J L; Xiao, G Y

    2014-05-01

    Attenuated Salmonella typhimurium SL7207 was used as a carrier for a reconstructed DNA vaccine against Streptococcus agalactiae. A 1.02 kb DNA fragment, encoding for a portion of the surface immunogenic protein (Sip) of S. agalactiae was inserted into pVAX1. The recombinant plasmid pVAX1-sip was transfected in EPC cells to detect the transient expression by an indirect immunofluorescence assay, together with Western blot analysis. The pVAX1-sip was transformed by electroporation into SL7207. The stability of pVAX1-sip into Salmonella was over 90% after 50 generations with antibiotic selection in vitro while remained stable over 80% during 35 generations under antibiotic-free conditions. The LD50 of SL/pVAX1-sip was 1.7 × 10(11) CFU/fish by intragastric administration which indicated a quite low virulence. Tilapias were inoculated orally at 10(8) CFU/fish, the recombinant bacteria were found present in intestinal tract, spleens and livers and eventually eliminated from the tissues 4 weeks after immunization. Fish immunized at 10(7), 10(8) and 10(9) CFU/fish with different immunization times caused various levels of serum antibody and an effective protection against lethal challenge with the wild-type strain S. agalactiae. Integration studies showed that the pVAX1-sip did not integrate with tilapia chromosomes. The DNA vaccine SL/pVAX1-sip was proved to be safe and effective in protecting tilapias against S. agalactiae infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Development of a human live attenuated West Nile infectious DNA vaccine: Identification of a minimal mutation set conferring the attenuation level acceptable for a human vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Yamshchikov, Vladimir, E-mail: yaximik@gmail.com; Manuvakhova, Marina; Rodriguez, Efrain; Hébert, Charles

    2017-01-15

    ABSTRACT: For the development of a human West Nile (WN) infectious DNA (iDNA) vaccine, we created highly attenuated chimeric virus W1806 with the serological identity of highly virulent WN-NY99. Earlier, we attempted to utilize mutations found in the E protein of the SA14-14-2 vaccine to bring safety of W1806 to the level acceptable for human use (). Here, we analyzed effects of the SA14-14-2 changes on growth properties and neurovirulence of W1806. A set including the E138K, K279M, K439R and G447D changes was identified as the perspective subset for satisfying the target safety profile without compromising immunogenicity of the vaccine candidate. The genetic stability of the attenuated phenotype was found to be unsatisfactory being dependent on a subset of attenuating changes incorporated in W1806. Elucidation of underlying mechanisms influencing selection of pathways for restoration of the envelope protein functionality will facilitate resolution of the emerged genetic stability issue. - Highlights: •Effect of mutations in E on properties of WN1806 is determined. •A subset of attenuating mutations suitable for a human vaccine is defined. •Mechanism of attenuation is proposed and illustrated. •Underlying mechanisms of neurovirulence reversion are suggested.

  6. Revaccination of Guinea Pigs With the Live Attenuated Mycobacterium tuberculosis Vaccine MTBVAC Improves BCG's Protection Against Tuberculosis.

    Science.gov (United States)

    Clark, Simon; Lanni, Faye; Marinova, Dessislava; Rayner, Emma; Martin, Carlos; Williams, Ann

    2017-09-01

    The need for an effective vaccine against human tuberculosis has driven the development of different candidates and vaccination strategies. Novel live attenuated vaccines are being developed that promise greater safety and efficacy than BCG against tuberculosis. We combined BCG with the vaccine MTBVAC to evaluate whether the efficacy of either vaccine would be affected upon revaccination. In a well-established guinea pig model of aerosol infection with Mycobacterium tuberculosis, BCG and MTBVAC delivered via various prime-boost combinations or alone were compared. Efficacy was determined by a reduction in bacterial load 4 weeks after challenge. Efficacy data suggests MTBVAC-associated immunity is longer lasting than that of BCG when given as a single dose. Long and short intervals between BCG prime and MTBVAC boost resulted in improved efficacy in lungs, compared with BCG given alone. A shorter interval between MTBVAC prime and BCG boost resulted in improved efficacy in lungs, compared with BCG given alone. A longer interval resulted in protection equivalent to that of BCG given alone. These data indicate that, rather than boosting the waning efficacy of BCG, a vaccination schedule involving a combination of the 2 vaccines yielded stronger immunity to M. tuberculosis infection. This work supports development of MTBVAC use as a revaccination strategy to improve on the effects of BCG in vaccinated people living in tuberculosis-endemic countries. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  7. Coated microneedle arrays for transcutaneous delivery of live virus vaccines.

    Science.gov (United States)

    Vrdoljak, Anto; McGrath, Marie G; Carey, John B; Draper, Simon J; Hill, Adrian V S; O'Mahony, Conor; Crean, Abina M; Moore, Anne C

    2012-04-10

    Vaccines are sensitive biologics that require continuous refrigerated storage to maintain their viability. The vast majority of vaccines are also administered using needles and syringes. The need for cold chain storage and the significant logistics surrounding needle-and-syringe vaccination is constraining the success of immunization programs. Recombinant live viral vectors are a promising platform for the development of vaccines against a number of infectious diseases, however these viruses must retain infectivity to be effective. Microneedles offer an effective and painless method for delivery of vaccines directly into skin that in the future could provide solutions to current vaccination issues. Here we investigated methods of coating live recombinant adenovirus and modified vaccinia virus Ankara (MVA) vectors onto solid microneedle arrays. An effective spray-coating method, using conventional pharmaceutical processes, was developed, in tandem with suitable sugar-based formulations, which produces arrays with a unique coating of viable virus in a dry form around the shaft of each microneedle on the array. Administration of live virus-coated microneedle arrays successfully resulted in virus delivery, transcutaneous infection and induced an antibody or CD8(+) T cell response in mice that was comparable to that obtained by needle-and-syringe intradermal immunization. To our knowledge, this is the first report of successful vaccination with recombinant live viral vectored vaccines coated on microneedle delivery devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Coated microneedle arrays for transcutaneous delivery of live virus vaccines

    Science.gov (United States)

    Vrdoljak, Anto; McGrath, Marie G.; Carey, John B.; Draper, Simon J.; Hill, Adrian V.S.; O’Mahony, Conor; Crean, Abina M.; Moore, Anne C.

    2016-01-01

    Vaccines are sensitive biologics that require continuous refrigerated storage to maintain their viability. The vast majority of vaccines are also administered using needles and syringes. The need for cold chain storage and the significant logistics surrounding needle-and-syringe vaccination is constraining the success of immunization programs. Recombinant live viral vectors are a promising platform for the development of vaccines against a number of infectious diseases, however these viruses must retain infectivity to be effective. Microneedles offer an effective and painless method for delivery of vaccines directly into skin that in the future could provide solutions to current vaccination issues. Here we investigated methods of coating live recombinant adenovirus and modified vaccinia virus Ankara (MVA) vectors onto solid microneedle arrays. An effective spray-coating method, using conventional pharmaceutical processes, was developed, in tandem with suitable sugar-based formulations, which produces arrays with a unique coating of viable virus in a dry form around the shaft of each microneedle on the array. Administration of live virus-coated microneedle arrays successfully resulted in virus delivery, transcutaneous infection and induced an antibody or CD8+ T cell response in mice that was comparable to that obtained by needle-and-syringe intradermal immunization. To our knowledge, this is the first report of successful vaccination with recombinant live viral vectored vaccines coated on microneedle delivery devices. PMID:22245683

  9. Safety of live attenuated influenza vaccine in atopic children with egg allergy.

    Science.gov (United States)

    Turner, Paul J; Southern, Jo; Andrews, Nick J; Miller, Elizabeth; Erlewyn-Lajeunesse, Michel

    2015-08-01

    Live attenuated influenza vaccine (LAIV) is an intranasal vaccine recently incorporated into the United Kingdom immunization schedule. However, it contains egg protein and, in the absence of safety data, is contraindicated in patients with egg allergy. Furthermore, North American guidelines recommend against its use in asthmatic children. We sought to assess the safety of LAIV in children with egg allergy. We performed a prospective, multicenter, open-label, phase IV intervention study involving 11 secondary/tertiary centers in the United Kingdom. Children with egg allergy (defined as a convincing clinical reaction to egg within the past 12 months and/or >95% likelihood of clinical egg allergy as per published criteria) were recruited. LAIV was administered under medical supervision, with observation for 1 hour and telephone follow-up 72 hours later. Four hundred thirty-three doses were administered to 282 children with egg allergy (median, 4.9 years; range, 2-17 years); 115 (41%) had experienced prior anaphylaxis to egg. A physician's diagnosis of asthma/recurrent wheezing was noted in 67%, and 51% were receiving regular preventer therapy. There were no systemic allergic reactions (upper 95% CI for population, 1.3%). Eight children experienced mild self-limiting symptoms, which might have been due an IgE-mediated allergic reaction. Twenty-six (9.4%; 95% CI for population, 6.2% to 13.4%) children experienced lower respiratory tract symptoms within 72 hours, including 13 with parent-reported wheeze. None of these episodes required medical intervention beyond routine treatment. In contrast to current recommendations, LAIV appears to be safe for use in children with egg allergy. Furthermore, the vaccine appears to be well tolerated in children with a diagnosis of asthma or recurrent wheeze. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Genetically attenuated P36p-deficient Plasmodium berghei sporozoites confer long-lasting and partial cross-species protection

    NARCIS (Netherlands)

    Douradinha, Bruno; van Dijk, Melissa R.; Ataide, Ricardo; van Gemert, Geert-Jan; Thompson, Joanne; Franetich, Jean-Francois; Mazier, Dominique; Luty, Adrian J. F.; Sauerwein, Robert; Janse, Chris J.; Waters, Andrew P.; Mota, Maria M.

    2007-01-01

    Immunisation with live, radiation-attenuated sporozoites (RAS) or genetically attenuated sporozoites (GAS) of rodent plasmodial parasites protects against subsequent challenge infections. We recently showed that immunisation with Plasinodium berghei GAS that lack the microneme protein P36p protects

  11. Cost of production of live attenuated dengue vaccines: a case study of the Instituto Butantan, Sao Paulo, Brazil.

    Science.gov (United States)

    Mahoney, R T; Francis, D P; Frazatti-Gallina, N M; Precioso, A R; Raw, I; Watler, P; Whitehead, P; Whitehead, S S

    2012-07-06

    A vaccine to prevent dengue disease is urgently needed. Fortunately, a few tetravalent candidate vaccines are in the later stages of development and show promise. But, if the cost of these candidates is too high, their beneficial potential will not be realized. The price of a vaccine is one of the most important factors affecting its ultimate application in developing countries. In recent years, new vaccines such as those for human papilloma virus and pneumococcal disease (conjugate vaccine) have been introduced with prices in developed countries exceeding $50 per dose. These prices are above the level affordable by developing countries. In contrast, other vaccines such as those against Japanese encephalitis (SA14-14-2 strain vaccine) and meningitis type A have prices in developing countries below one dollar per dose, and it is expected that their introduction and use will proceed more rapidly. Because dengue disease is caused by four related viruses, vaccines must be able to protect against all four. Although there are several live attenuated dengue vaccine candidates under clinical evaluation, there remains uncertainty about the cost of production of these tetravalent vaccines, and this uncertainty is an impediment to rapid progress in planning for the introduction and distribution of dengue vaccines once they are licensed. We have undertaken a detailed economic analysis, using standard industrial methodologies and applying generally accepted accounting practices, of the cost of production of a live attenuated vaccine, originally developed at the US National Institutes of Health (National Institute of Allergy and Infectious Diseases), to be produced at the Instituto Butantan in Sao Paulo, Brazil. We determined direct costs of materials, direct costs of personnel and labor, indirect costs, and depreciation. These were analyzed assuming a steady-state production of 60 million doses per year. Although this study does not seek to compute the price of the final

  12. Photoionization and Recombination

    Science.gov (United States)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  13. Binary and ternary recombination of D3+ ions with electrons in He-D2 plasma

    International Nuclear Information System (INIS)

    Glosik, J.; Korolov, I.; Plasil, R.; Kotrik, T.; Dohnal, P.; Novotny, O.; Varju, J.; Roucka, S.; Greene, Chris H.; Kokoouline, V.

    2009-01-01

    An experimental study is reported about the recombination of D 3 + ions with electrons in a low-temperature plasma (200-300 K) consisting of He with a small admixture of D 2 . At several temperatures, the pressure dependence of the apparent binary recombination rate coefficient (α eff ) was measured over a broad range of helium pressures (200-2000 Pa). The binary and ternary recombination rate coefficients were obtained from measured pressure dependences of α eff . The binary recombination rate coefficient obtained α bin (300 K)=(2.7±0.9)x10 -8 cm 3 s -1 is in agreement with recent theory. The ternary recombination rate coefficient obtained is K He (300 K)=(1.8±0.6)x10 -25 cm 6 s -1 . In analogy with the recently described process of helium-assisted ternary recombination of H 3 + ions, it is suggested that the ternary helium-assisted recombination of D 3 + ions proceeds through the formation of a neutral long-lived highly excited Rydberg molecule D 3 followed by a collision with a He atom.

  14. Binary and ternary recombination of D3+ ions with electrons in He-D2 plasma

    Science.gov (United States)

    Glosík, J.; Korolov, I.; Plašil, R.; Kotrík, T.; Dohnal, P.; Novotný, O.; Varju, J.; Roučka, Š.; Greene, Chris H.; Kokoouline, V.

    2009-10-01

    An experimental study is reported about the recombination of D3+ ions with electrons in a low-temperature plasma (200-300 K) consisting of He with a small admixture of D2 . At several temperatures, the pressure dependence of the apparent binary recombination rate coefficient (αeff) was measured over a broad range of helium pressures (200-2000 Pa). The binary and ternary recombination rate coefficients were obtained from measured pressure dependences of αeff . The binary recombination rate coefficient obtained αbin(300K)=(2.7±0.9)×10-8cm3s-1 is in agreement with recent theory. The ternary recombination rate coefficient obtained is KHe(300K)=(1.8±0.6)×10-25cm6s-1 . In analogy with the recently described process of helium-assisted ternary recombination of H3+ ions, it is suggested that the ternary helium-assisted recombination of D3+ ions proceeds through the formation of a neutral long-lived highly excited Rydberg molecule D3 followed by a collision with a He atom.

  15. The Impact of Recombination Hotspots on Genome Evolution of a Fungal Plant Pathogen.

    Science.gov (United States)

    Croll, Daniel; Lendenmann, Mark H; Stewart, Ethan; McDonald, Bruce A

    2015-11-01

    Recombination has an impact on genome evolution by maintaining chromosomal integrity, affecting the efficacy of selection, and increasing genetic variability in populations. Recombination rates are a key determinant of the coevolutionary dynamics between hosts and their pathogens. Historic recombination events created devastating new pathogens, but the impact of ongoing recombination in sexual pathogens is poorly understood. Many fungal pathogens of plants undergo regular sexual cycles, and sex is considered to be a major factor contributing to virulence. We generated a recombination map at kilobase-scale resolution for the haploid plant pathogenic fungus Zymoseptoria tritici. To account for intraspecific variation in recombination rates, we constructed genetic maps from two independent crosses. We localized a total of 10,287 crossover events in 441 progeny and found that recombination rates were highly heterogeneous within and among chromosomes. Recombination rates on large chromosomes were inversely correlated with chromosome length. Short accessory chromosomes often lacked evidence for crossovers between parental chromosomes. Recombination was concentrated in narrow hotspots that were preferentially located close to telomeres. Hotspots were only partially conserved between the two crosses, suggesting that hotspots are short-lived and may vary according to genomic background. Genes located in hotspot regions were enriched in genes encoding secreted proteins. Population resequencing showed that chromosomal regions with high recombination rates were strongly correlated with regions of low linkage disequilibrium. Hence, genes in pathogen recombination hotspots are likely to evolve faster in natural populations and may represent a greater threat to the host. Copyright © 2015 by the Genetics Society of America.

  16. New vaccine strategies against enterotoxigenic Escherichia coli: II: Enhanced systemic and secreted antibody responses against the CFA/I fimbriae by priming with DNA and boosting with a live recombinant Salmonella vaccine

    Directory of Open Access Journals (Sweden)

    M.O. Lásaro

    1999-02-01

    Full Text Available The induction of systemic (IgG and mucosal (IgA antibody responses against the colonization factor I antigen (CFA/I of enterotoxigenic Escherichia coli (ETEC was evaluated in mice primed with an intramuscularly delivered CFA/I-encoding DNA vaccine followed by two oral immunizations with a live recombinant Salmonella typhimurium vaccine strain expressing the ETEC antigen. The booster effect induced by the oral immunization was detected two weeks and one year after the administration of the DNA vaccine. The DNA-primed/Salmonella-boosted vaccination regime showed a synergistic effect on the induced CFA/I-specific systemic and secreted antibody levels which could not be attained by either immunization strategy alone. These results suggest that the combined use of DNA vaccines and recombinant Salmonella vaccine strains can be a useful immunization strategy against enteric pathogens.

  17. Characterization of recombinant yellow fever-dengue vaccine viruses with human monoclonal antibodies targeting key conformational epitopes.

    Science.gov (United States)

    Lecouturier, Valerie; Berry, Catherine; Saulnier, Aure; Naville, Sophie; Manin, Catherine; Girerd-Chambaz, Yves; Crowe, James E; Jackson, Nicholas; Guy, Bruno

    2018-04-26

    The recombinant yellow fever-17D-dengue virus, live, attenuated, tetravalent dengue vaccine (CYD-TDV) is licensed in several dengue-endemic countries. Although the vaccine provides protection against dengue, the level of protection differs by serotype and warrants further investigation. We characterized the antigenic properties of each vaccine virus serotype using highly neutralizing human monoclonal antibodies (hmAbs) that bind quaternary structure-dependent epitopes. Specifically, we monitored the binding of dengue virus-1 (DENV-1; 1F4), DENV-2 (2D22) or DENV-3 (5J7) serotype-specific or DENV-1-4 cross-reactive (1C19) hmAbs to the four chimeric yellow fever-dengue vaccine viruses (CYD-1-4) included in phase III vaccine formulations using a range of biochemical and functional assays (dot blot, ELISA, surface plasmon resonance and plaque reduction neutralization assays). In addition, we used the "classic" live, attenuated DENV-2 vaccine serotype, immature CYD-2 viruses and DENV-2 virus-like particles as control antigens for anti-serotype-2 reactivity. The CYD vaccine serotypes were recognized by each hmAbs with the expected specificity, moreover, surface plasmon resonance indicated a high functional affinity interaction with the CYD serotypes. In addition, the hmAbs provided similar protection against CYD and wild-type dengue viruses in the in vitro neutralization assay. Overall, these findings demonstrate that the four CYD viruses used in clinical trials display key conformational and functional epitopes targeted by serotype-specific and/or cross-reactive neutralizing human antibodies. More specifically, we showed that CYD-2 displays serotype- specific epitopes present only on the mature virus. This indicates that the CYD-TDV has the ability to elicit antibody specificities which are similar to those induced by the wild type DENV. Future investigations will be needed to address the nature of CYD-TDV-induced responses after vaccine administration, and how these

  18. Targeted in vivo inhibition of specific protein-protein interactions using recombinant antibodies.

    Directory of Open Access Journals (Sweden)

    Matej Zábrady

    Full Text Available With the growing availability of genomic sequence information, there is an increasing need for gene function analysis. Antibody-mediated "silencing" represents an intriguing alternative for the precise inhibition of a particular function of biomolecules. Here, we describe a method for selecting recombinant antibodies with a specific purpose in mind, which is to inhibit intrinsic protein-protein interactions in the cytosol of plant cells. Experimental procedures were designed for conveniently evaluating desired properties of recombinant antibodies in consecutive steps. Our selection method was successfully used to develop a recombinant antibody inhibiting the interaction of ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 3 with such of its upstream interaction partners as the receiver domain of CYTOKININ INDEPENDENT HISTIDINE KINASE 1. The specific down-regulation of the cytokinin signaling pathway in vivo demonstrates the validity of our approach. This selection method can serve as a prototype for developing unique recombinant antibodies able to interfere with virtually any biomolecule in the living cell.

  19. Attenuation and efficacy of human parainfluenza virus type 1 (HPIV1 vaccine candidates containing stabilized mutations in the P/C and L genes

    Directory of Open Access Journals (Sweden)

    Skiadopoulos Mario H

    2007-07-01

    Full Text Available Abstract Background Two recombinant, live attenuated human parainfluenza virus type 1 (rHPIV1 mutant viruses have been developed, using a reverse genetics system, for evaluation as potential intranasal vaccine candidates. These rHPIV1 vaccine candidates have two non-temperature sensitive (non-ts attenuating (att mutations primarily in the P/C gene, namely CR84GHNT553A (two point mutations used together as a set and CΔ170 (a short deletion mutation, and two ts att mutations in the L gene, namely LY942A (a point mutation, and LΔ1710–11 (a short deletion, the last of which has not been previously described. The latter three mutations were specifically designed for increased genetic and phenotypic stability. These mutations were evaluated on the HPIV1 backbone, both individually and in combination, for attenuation, immunogenicity, and protective efficacy in African green monkeys (AGMs. Results The rHPIV1 mutant bearing the novel LΔ1710–11 mutation was highly ts and attenuated in AGMs and was immunogenic and efficacious against HPIV1 wt challenge. The rHPIV1-CR84G/Δ170HNT553ALY942A and rHPIV1-CR84G/Δ170HNT553ALΔ1710–11 vaccine candidates were highly ts, with shut-off temperatures of 38°C and 35°C, respectively, and were highly attenuated in AGMs. Immunization with rHPIV1-CR84G/Δ170HNT553ALY942A protected against HPIV1 wt challenge in both the upper and lower respiratory tracts. In contrast, rHPIV1-CR84G/Δ170HNT553ALΔ1710–11 was not protective in AGMs due to over-attenuation, but it is expected to replicate more efficiently and be more immunogenic in the natural human host. Conclusion The rHPIV1-CR84G/Δ170HNT553ALY942A and rHPIV1-CR84G/Δ170HNT553ALΔ1710–11 vaccine candidates are clearly highly attenuated in AGMs and clinical trials are planned to address safety and immunogenicity in humans.

  20. Live attenuated influenza vaccine use and safety in children and adults with asthma.

    Science.gov (United States)

    Duffy, Jonathan; Lewis, Melissa; Harrington, Theresa; Baxter, Roger; Belongia, Edward A; Jackson, Lisa A; Jacobsen, Steven J; Lee, Grace M; Naleway, Allison L; Nordin, James; Daley, Matthew F

    2017-04-01

    Live attenuated influenza vaccine (LAIV) might increase the risk of wheezing in persons with asthma or children younger than 5 years with a history of recurrent wheezing. To describe the use and assess the safety of LAIV in persons with asthma in the Vaccine Safety Datalink population. We identified persons with asthma using diagnosis codes and medication records in 7 health care organizations over 3 influenza seasons (2008-2009 through 2010-2011) and determined their influenza vaccination rates. Using the self-controlled risk interval method, we calculated the incidence rate ratio of medically attended respiratory events in the 14 days after LAIV compared with 29 to 42 days after vaccination in persons 2 through 49 years old. In our population of 6.3 million, asthma prevalence was 5.9%. Of persons with asthma, approximately 50% received any influenza vaccine but less than 1% received LAIV. The safety study included 12,354 LAIV doses (75% in children; 93% in those with intermittent or mild persistent asthma). The incidence rate ratio for inpatient and emergency department visits for lower respiratory events (including asthma exacerbation and wheezing) was 0.98 (95% confidence interval 0.63-1.51) and the incidence rate ratio for upper respiratory events was 0.94 (95% confidence interval 0.48-1.86). The risk of lower respiratory events was similar for intermittent and mild persistent asthma, across age groups, and for seasonal trivalent LAIV and 2009 H1N1 pandemic monovalent LAIV. LAIV use in asthma was mostly in persons with intermittent or mild persistent asthma. LAIV was not associated with an increased risk of medically attended respiratory adverse events. Published by Elsevier Inc.

  1. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells.

    Science.gov (United States)

    Fabrick, Jeffrey A; Hull, J Joe

    2017-04-20

    Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.

  2. Live, Attenuated Influenza A H5N1 Candidate Vaccines Provide Broad Cross-Protection in Mice and Ferrets

    Science.gov (United States)

    Mills, Kimberly L; Jin, Hong; Duke, Greg; Lu, Bin; Luke, Catherine J; Murphy, Brian; Swayne, David E; Kemble, George; Subbarao, Kanta

    2006-01-01

    Background Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic. Methods and Findings Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA) and a wild-type (wt) N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca) influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2), were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 106 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3) that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses. Conclusions The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans. PMID:16968127

  3. Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets.

    Directory of Open Access Journals (Sweden)

    Amorsolo L Suguitan

    2006-09-01

    Full Text Available Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic.Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA and a wild-type (wt N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2, were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 10(6 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3 that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses.The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans.

  4. Reversion of a live porcine reproductive and respiratory virus vaccine investigated by parallel mutations

    DEFF Research Database (Denmark)

    Nielsen, Henriette S.; Oleksiewicz, Martin B; Forsberg, R

    2001-01-01

    A live attenuated porcine reproductive and respiratory syndrome (PRRS) vaccine virus has been shown to revert to virulence under field conditions. In order to identify genetic virulence determinants, ORF1 from the attenuated vaccine virus and three Danish vaccine-derived field isolates was sequen......A live attenuated porcine reproductive and respiratory syndrome (PRRS) vaccine virus has been shown to revert to virulence under field conditions. In order to identify genetic virulence determinants, ORF1 from the attenuated vaccine virus and three Danish vaccine-derived field isolates...... in the vaccine virus sequence during cell-culture adaptation. Evaluation of the remaining mutations in the ORF1 sequence revealed stronger selective pressure for amino acid conservation during spread in pigs than during vaccine production. Furthermore, it was found that the selective pressure did not change...

  5. Investigation of multilayered nanocomposites as low energy X-Rays attenuators

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Liliane; Batista, Adriana S.M.; Nascimento, Jefferson P.; Furtado, Clascídia A.; Faria, Luiz O., E-mail: asfisica@gmail.com, E-mail: adriananuclear@yahoo.com.br, E-mail: farialo@cdtn.br, E-mail: nascimentopatricio@yahoo.com.br, E-mail: clas@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    The development of radiation attenuating materials has application in radioprotection and conditioning of short-lived waste. Polymeric materials can serve as a matrix for the dispersion of nanomaterials with good attenuation features, resulting in lightweight, conformable, flexible and easy-to-process materials. Thus, some well-known shielding materials could be used in low proportion for the formation of new materials. On the other hand, nanostructured carbon materials, such as graphene oxide (GO) and carbon nanotubes (NTCs), have been reported recently to show enhanced attenuation properties. In this sense, polymeric matrixes provide the necessary flexibility for use in various applications that require molding. For the present work, poly(vinylidene fluoride) [PVDF] homopolymers and its fluorinated copolymers were filled with nanosized metallic and graphene oxides in order to produce nanocomposites with increased low energy X-ray attenuation efficiency. Film samples of PVDF/reduced Graphene Oxide [PVDF/rGO] and Poly(vinylidene fluoride – tryfluorethylene)/Barium Oxide [P(VDF-TrFE)/BaO] were synthesized. In a second step, the samples were then sandwiched between Kapton® layers and exposed to X-rays source (8.5 keV). The samples were characterized with Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The attenuation coefficient was evaluated and compared with the attenuation of the individual constituents. It was observed an increase in the linear attenuation coefficient of the layered materials, justifying further investigation of these nanostructured composites as X-ray or gamma radiation attenuators. (author)

  6. Investigation of multilayered nanocomposites as low energy X-Rays attenuators

    International Nuclear Information System (INIS)

    Silva, Liliane; Batista, Adriana S.M.; Nascimento, Jefferson P.; Furtado, Clascídia A.; Faria, Luiz O.

    2017-01-01

    The development of radiation attenuating materials has application in radioprotection and conditioning of short-lived waste. Polymeric materials can serve as a matrix for the dispersion of nanomaterials with good attenuation features, resulting in lightweight, conformable, flexible and easy-to-process materials. Thus, some well-known shielding materials could be used in low proportion for the formation of new materials. On the other hand, nanostructured carbon materials, such as graphene oxide (GO) and carbon nanotubes (NTCs), have been reported recently to show enhanced attenuation properties. In this sense, polymeric matrixes provide the necessary flexibility for use in various applications that require molding. For the present work, poly(vinylidene fluoride) [PVDF] homopolymers and its fluorinated copolymers were filled with nanosized metallic and graphene oxides in order to produce nanocomposites with increased low energy X-ray attenuation efficiency. Film samples of PVDF/reduced Graphene Oxide [PVDF/rGO] and Poly(vinylidene fluoride – tryfluorethylene)/Barium Oxide [P(VDF-TrFE)/BaO] were synthesized. In a second step, the samples were then sandwiched between Kapton® layers and exposed to X-rays source (8.5 keV). The samples were characterized with Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The attenuation coefficient was evaluated and compared with the attenuation of the individual constituents. It was observed an increase in the linear attenuation coefficient of the layered materials, justifying further investigation of these nanostructured composites as X-ray or gamma radiation attenuators. (author)

  7. Complete protection of cats against feline panleukopenia virus challenge by a recombinant canine adenovirus type 2 expressing VP2 from FPV.

    Science.gov (United States)

    Yang, Songtao; Xia, Xianzhu; Qiao, Jun; Liu, Quan; Chang, Shuang; Xie, Zhijing; Ju, Huiyan; Zou, Xiaohuan; Gao, Yuwei

    2008-03-10

    Feline panleukopenia virus (FPV) is an important infectious pathogen of all members of the family Felidae. Here, we describe construction of a replication-competent recombinant canine adenovirus type 2 (CAV-2) expressing the VP2 protein of FPV (CAV-2-VP2) by transfection of MDCK cells with recombinant CAV-2 genome carrying a VP2 expression cassette. Ten 3-month-old cats were vaccinated with the recombinant virus with two boosters at 15-day intervals. All cats developed neutralizing antibodies of titers 1:16-1:32 by day 15 post-primary vaccination, increasing to 1:64-1:128 by day 45. Examination for clinical signs and viral presence, and total white blood cell counts in peripheral blood following FPV challenge, showed that all were completely protected. This recombinant virus appears to provide an effective alternative to attenuated and inactivated vaccines in immunizing cats against feline panleukopenia.

  8. Long-Term Safety and Immunogenicity of a Tetravalent Live-Attenuated Dengue Vaccine and Evaluation of a Booster Dose Administered to Healthy Thai Children.

    Science.gov (United States)

    Watanaveeradej, Veerachai; Simasathien, Sriluck; Mammen, Mammen P; Nisalak, Ananda; Tournay, Elodie; Kerdpanich, Phirangkul; Samakoses, Rudiwilai; Putnak, Robert J; Gibbons, Robert V; Yoon, In-Kyu; Jarman, Richard G; De La Barrera, Rafael; Moris, Philippe; Eckels, Kenneth H; Thomas, Stephen J; Innis, Bruce L

    2016-06-01

    We evaluated the safety and immunogenicity of two doses of a live-attenuated, tetravalent dengue virus vaccine (F17/Pre formulation) and a booster dose in a dengue endemic setting in two studies. Seven children (7- to 8-year-olds) were followed for 1 year after dose 2 and then given a booster dose (F17/Pre formulation), and followed for four more years (Child study). In the Infant study, 49 2-year-olds, vaccinated as infants, were followed for approximately 3.5 years after dose 2 and then given a booster dose (F17) and followed for one additional year. Two clinically notable events were observed, both in dengue vaccine recipients in the Infant study: 1 case of dengue approximately 2.7 years after dose 2 and 1 case of suspected dengue after booster vaccinations. The booster vaccinations had a favorable safety profile in terms of reactogenicity and adverse events reported during the 1-month follow-up periods. No vaccine-related serious adverse events were reported during the studies. Neutralizing antibodies against dengue viruses 1-4 waned during the 1-3 years before boosting, which elicited a short-lived booster response but did not provide a long-lived, multivalent antibody response in most subjects. Overall, this candidate vaccine did not elicit a durable humoral immune response. © The American Society of Tropical Medicine and Hygiene.

  9. Limited replication of yellow fever 17DD and 17D-Dengue recombinant viruses in rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Gisela F. Trindade

    2008-06-01

    Full Text Available For the development of safe live attenuated flavivirus vaccines one of the main properties to be established is viral replication. We have used real-time reverse transcriptase-polymerase chain reaction and virus titration by plaque assay to determine the replication of yellow fever 17DD virus (YFV 17DD and recombinant yellow fever 17D viruses expressing envelope proteins of dengue virus serotypes 2 and 4 (17D-DENV-2 and 17D-DENV-4. Serum samples from rhesus monkeys inoculated with YFV 17DD and 17D-DENV chimeras by intracerebral or subcutaneous route were used to determine and compare the viremia induced by these viruses. Viral load quantification in samples from monkeys inoculated by either route with YFV 17DD virus suggested a restricted capability of the virus to replicate reaching not more than 2.0 log10 PFU mL-1 or 3.29 log10 copies mL-1. Recombinant 17D-dengue viruses were shown by plaquing and real-time PCR to be as attenuated as YF 17DD virus with the highest mean peak titer of 1.97 log10 PFU mL-1 or 3.53 log10 copies mL-1. These data serve as a comparative basis for the characterization of other 17D-based live attenuated candidate vaccines against other diseases.Uma das principais propriedades a serem estabelecidas para o desenvolvimento de vacinas seguras e atenuadas de flavivirus,é a taxa de replicação viral. Neste trabalho, aplicamos a metodologia de amplificação pela reação em cadeia da polimerase em tempo real e titulação viral por plaqueamento para determinação da replicação do vírus 17DD (FA 17DD e recombinantes, expressando proteínas do envelope de dengue sorotipos 2 e 4 (17D-DENV-2 e 17D-DENV-4. As amostras de soros de macacos inoculados por via intracerebral ou subcutânea com FA 17DD ou 17D-DENV foram usadas para determinar e comparar a viremia induzida por estes vírus. A quantificação da carga viral em amostras de macacos inoculados por ambas as vias com FA 17DD sugere restrita capacidade de replicação com

  10. Cross-Protection against Marburg Virus Strains by Using a Live, Attenuated Recombinant Vaccine

    National Research Council Canada - National Science Library

    Daddario-DiCaprio, Kathleen M; Geisbert, Thomas W; Geisbert, Joan B; Stroeher, Ute; Hensley, Lisa E; Grolla, Allen; Fritz, Elizabeth A; Feldmann, Friederike; Feldmann, Heinz; Jones, Steven M

    2006-01-01

    Marburg virus (MARV) has been associated with sporadic episodes of hemorrhagic fever, including a recent highly publicized outbreak in Angola that produced severe disease and significant mortality in infected patients...

  11. A photoactivatable Cre-loxP recombination system for optogenetic genome engineering.

    Science.gov (United States)

    Kawano, Fuun; Okazaki, Risako; Yazawa, Masayuki; Sato, Moritoshi

    2016-12-01

    Genome engineering techniques represented by the Cre-loxP recombination system have been used extensively for biomedical research. However, powerful and useful techniques for genome engineering that have high spatiotemporal precision remain elusive. Here we develop a highly efficient photoactivatable Cre recombinase (PA-Cre) to optogenetically control genome engineering in vivo. PA-Cre is based on the reassembly of split Cre fragments by light-inducible dimerization of the Magnet system. PA-Cre enables sharp induction (up to 320-fold) of DNA recombination and is efficiently activated even by low-intensity illumination (∼0.04 W m -2 ) or short periods of pulsed illumination (∼30 s). We demonstrate that PA-Cre allows for efficient DNA recombination in an internal organ of living mice through noninvasive external illumination using a LED light source. The present PA-Cre provides a powerful tool to greatly facilitate optogenetic genome engineering in vivo.

  12. Heterogeneity within populations of recombinant Chinese hamster ovary cells expressing human interferon-gamma.

    Science.gov (United States)

    Coppen, S R; Newsam, R; Bull, A T; Baines, A J

    1995-04-20

    The Chinese hamster ovary (CHO) cell line has great commercial importance in the production of recombinant human proteins, especially those for therapeutic use. Much attention has been paid to CHO cell population physiology in order to define factors affecting product fidelity and yield. Such studies have revealed that recombinant proteins, including human interferon-gamma (IFN-gamma), can be heterogeneous both in glycosylation and in proteolytic processing. The type of heterogeneity observed depends on the growth physiology of the cell population, although the relationship between them is complex. In this article we report results of a cytological study of the CHO320 line which expresses recombinant human IFN-gamma. When grown in suspension culture, this cell line exhibited three types of heterogeneity: (1) heterogeneity of the production of IFN-gamma within the cell population, (2) heterogeneity of the number of nuclei and mitotic spindles in dividing cells, and (3) heterogeneity of cellular environment. The last of these arises from cell aggregates which form in suspension culture: Some cells are exposed to the culture medium; others are fully enclosed within the mass with little or no direct access to the medium. Thus, live cells producing IFN-gamma are heterogeneous in their environment, with variable access to O(2) and nutrients. Within the aggregates, it appears that live cells proliferate on a dead cell mass. The layer of live cells can be several cells deep. Specific cell-cell attachments are observed between the living cells in these aggregates. Two proteins, known to be required for the formation of certain types of intercellular junctions, spectrin and vinculin, have been localized to the regions of cell-cell contact. The aggregation of the cells appears to be an active process requiring protein synthesis. (c) 1995 John Wiley & Sons, Inc.

  13. Recombiner

    International Nuclear Information System (INIS)

    Osumi, Morimichi.

    1979-01-01

    Purpose: To provide a recombiner which is capable of converting hydrogen gas into water by use of high-frequency heating at comparatively low temperatures and is safe and cheap in cost. Constitution: Hydrogen gas is introduced from an outer pipeline to the main structure of a recombiner, and when it passes through the vicinity of the central part of the recombiner, it is reacted with copper oxide (CuO 2 ) heated to a temperature more than 300 0 C by a high-frequency heater, and converted gently into water by reduction operation (2H 2 + CuO 2 → Cu + 2H 2 O). The thus prepared water is exhausted through the outer pipeline to a suppression pool. A part of hydrogen gas which has not been converted completely into water by the reaction and is remaining as hydrogen is recovered through exhaust nozzles and again introduced into the main structure of the recombiner. (Yoshino, Y.)

  14. Hippocampal NPY gene transfer attenuates seizures without affecting epilepsy-induced impairment of LTP

    DEFF Research Database (Denmark)

    Sørensen, Andreas T; Nikitidou, Litsa; Ledri, Marco

    2009-01-01

    (TLE). However, our previous studies show that recombinant adeno-associated viral (rAAV)-NPY treatment in naive rats attenuates long-term potentiation (LTP) and transiently impairs hippocampal learning process, indicating that negative effect on memory function could be a potential side effect of NPY...... is significantly attenuated in vitro. Importantly, transgene NPY overexpression has no effect on short-term synaptic plasticity, and does not further compromise LTP in kindled animals. These data suggest that epileptic seizure-induced impairment of memory function in the hippocampus may not be further affected...... injected with rAAV-NPY, we show that rapid kindling-induced hippocampal seizures in vivo are effectively suppressed as compared to rAAV-empty injected (control) rats. Six to nine weeks later, basal synaptic transmission and short-term synaptic plasticity are unchanged after rapid kindling, while LTP...

  15. Reversion of a live porcine reproductive and respiratory syndrome virus vaccine investigated by parallel mutations

    DEFF Research Database (Denmark)

    Nielsen, Henriette S.; Oleksiewicz, M.B.; Forsberg, R.

    2001-01-01

    A live attenuated porcine reproductive and respiratory syndrome (PRRS) vaccine virus has been shown to revert to virulence under field conditions. In order to identify genetic virulence determinants, ORF1 from the attenuated vaccine virus and three Danish vaccine-derived field isolates was sequen......A live attenuated porcine reproductive and respiratory syndrome (PRRS) vaccine virus has been shown to revert to virulence under field conditions. In order to identify genetic virulence determinants, ORF1 from the attenuated vaccine virus and three Danish vaccine-derived field isolates...... in the vaccine virus sequence during cell-culture adaptation. Evaluation of the remaining mutations in the ORF1 sequence revealed stronger selective pressure for amino acid conservation during spread in pigs than during vaccine production. Furthermore, it was found that the selective pressure did not change...

  16. Potency Studies of live- Attenuated Viral Vaccines Administered in ...

    African Journals Online (AJOL)

    We critically carried out a potency study in 1992 and 1997 on measles and poliovirus vaccines administered at five different vaccination centers in the metropolitan Lagos, Nigeria. using WHO guidelines on titration of live- viral vaccines, our results revealed that only 6 (16.7%) of 36 measles vaccine (MV) vials and 11 ...

  17. Biological characterization of bovine herpesvirus 1 recombinants possessing the vaccine glycoprotein E negative phenotype.

    Science.gov (United States)

    Muylkens, Benoît; Meurens, François; Schynts, Frédéric; de Fays, Katalin; Pourchet, Aldo; Thiry, Julien; Vanderplasschen, Alain; Antoine, Nadine; Thiry, Etienne

    2006-03-31

    Intramolecular recombination is a frequent event during the replication cycle of bovine herpesvirus 1 (BoHV-1). Recombinant viruses frequently arise and survive in cattle after concomitant nasal infections with two BoHV-1 mutants. The consequences of this process, related to herpesvirus evolution, have to be assessed in the context of large use of live marker vaccines based on glycoprotein E (gE) gene deletion. In natural conditions, double nasal infections by vaccine and wild-type strains are likely to occur. This situation might generate virulent recombinant viruses inducing a serological response indistinguishable from the vaccine one. This question was addressed by generating in vitro BoHV-1 recombinants deleted in the gE gene from seven wild-type BoHV-1 strains and one mutant strain deleted in the genes encoding gC and gE. In vitro growth properties were assessed by virus production, one step growth kinetics and plaque size assay. Heterogeneity in the biological properties was shown among the investigated recombinant viruses. The results demonstrated that some recombinants, in spite of their gE minus phenotype, have biological characteristics close to wild-type BoHV-1.

  18. Conference Scene: Recent advancements in immunopotentiators for modern vaccines

    NARCIS (Netherlands)

    Harandi, A.M.; Schijns, V.E.J.C.

    2011-01-01

    Vaccines have proved to be the most successful preventive measure against a variety of infectious diseases. Owing to the potential safety concerns associated with the use of live-attenuated or killed pathogens, there is currently a drive to discover defined subunits of pathogens or recombinant

  19. Swine dysentery: protection of pigs by oral and parenteral immunisation with attenuated Treponema hyodysenteriae.

    Science.gov (United States)

    Hudson, M J; Alexander, T J; Lysons, R J; Prescott, J F

    1976-11-01

    An attenuated strain of Treponema hyodysenteriae was used to immunise 18 pigs in three experiments. Live attenuated spirochaetes were dosed orally and injected intra-peritoneally, and killed spirochaetes were injected intramuscularly with adjuvant. The vaccinated pigs, which developed high serum agglutination titres against T hyodysenteriae, and 18 unvaccinated litter-mates were repeatedly challenged with virulent T hyodysenteriae. Nine vaccinated pigs and 16 control pigs developed typical swine dysentery.

  20. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Mehdi Shahbazi

    Full Text Available Canine Visceral Leishmaniasis (CVL is a major veterinary and public health problem caused by Leishmania infantum (L. infantum in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL.

  1. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis

    Science.gov (United States)

    Shahbazi, Mehdi; Zahedifard, Farnaz; Taheri, Tahereh; Taslimi, Yasaman; Jamshidi, Shahram; Shirian, Sadegh; Mahdavi, Niousha; Hassankhani, Mehdi; Daneshbod, Yahya; Zarkesh-Esfahani, Sayyed Hamid; Papadopoulou, Barbara; Rafati, Sima

    2015-01-01

    Canine Visceral Leishmaniasis (CVL) is a major veterinary and public health problem caused by Leishmania infantum (L. infantum) in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE) and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL. PMID:26197085

  2. Predicted Attenuation Relation and Observed Ground Motion of Gorkha Nepal Earthquake of 25 April 2015

    Science.gov (United States)

    Singh, R. P.; Ahmad, R.

    2015-12-01

    A comparison of recent observed ground motion parameters of recent Gorkha Nepal earthquake of 25 April 2015 (Mw 7.8) with the predicted ground motion parameters using exitsing attenuation relation of the Himalayan region will be presented. The recent earthquake took about 8000 lives and destroyed thousands of poor quality of buildings and the earthquake was felt by millions of people living in Nepal, China, India, Bangladesh, and Bhutan. The knowledge of ground parameters are very important in developing seismic code of seismic prone regions like Himalaya for better design of buildings. The ground parameters recorded in recent earthquake event and aftershocks are compared with attenuation relations for the Himalayan region, the predicted ground motion parameters show good correlation with the observed ground parameters. The results will be of great use to Civil engineers in updating existing building codes in the Himlayan and surrounding regions and also for the evaluation of seismic hazards. The results clearly show that the attenuation relation developed for the Himalayan region should be only used, other attenuation relations based on other regions fail to provide good estimate of observed ground motion parameters.

  3. A simple and rapid approach to develop recombinant avian herpesvirus vectored vaccines using CRISPR/Cas9 system.

    Science.gov (United States)

    Tang, Na; Zhang, Yaoyao; Pedrera, Miriam; Chang, Pengxiang; Baigent, Susan; Moffat, Katy; Shen, Zhiqiang; Nair, Venugopal; Yao, Yongxiu

    2018-01-29

    Herpesvirus of turkeys (HVT) has been successfully used as live vaccine against Marek's disease (MD) worldwide for more than 40 years either alone or in combination with other serotypes. HVT is also widely used as a vector platform for generation of recombinant vaccines against a number of avian diseases such as infectious bursal disease (IBD), Newcastle disease (ND) and avian influenza (AI) using conventional recombination methods or recombineering tools on cloned viral genomes. In the present study, we describe the application of CRISPR/Cas9-based genome editing as a rapid and efficient method of generating HVT recombinants expressing VP2 protein of IBDV. This approach offers an efficient method to introduce other viral antigens into the HVT genome for rapid development of recombinant vaccines. Copyright © 2018 The Pirbright Institute. Published by Elsevier Ltd.. All rights reserved.

  4. Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: Engineering a recombination-resistant genome

    Science.gov (United States)

    Yount, Boyd; Roberts, Rhonda S.; Lindesmith, Lisa; Baric, Ralph S.

    2006-08-01

    Live virus vaccines provide significant protection against many detrimental human and animal diseases, but reversion to virulence by mutation and recombination has reduced appeal. Using severe acute respiratory syndrome coronavirus as a model, we engineered a different transcription regulatory circuit and isolated recombinant viruses. The transcription network allowed for efficient expression of the viral transcripts and proteins, and the recombinant viruses replicated to WT levels. Recombinant genomes were then constructed that contained mixtures of the WT and mutant regulatory circuits, reflecting recombinant viruses that might occur in nature. Although viable viruses could readily be isolated from WT and recombinant genomes containing homogeneous transcription circuits, chimeras that contained mixed regulatory networks were invariantly lethal, because viable chimeric viruses were not isolated. Mechanistically, mixed regulatory circuits promoted inefficient subgenomic transcription from inappropriate start sites, resulting in truncated ORFs and effectively minimize viral structural protein expression. Engineering regulatory transcription circuits of intercommunicating alleles successfully introduces genetic traps into a viral genome that are lethal in RNA recombinant progeny viruses. regulation | systems biology | vaccine design

  5. Recombinant Newcastle disease viral vector expressing hemagglutinin or fusion of canine distemper virus is safe and immunogenic in minks.

    Science.gov (United States)

    Ge, Jinying; Wang, Xijun; Tian, Meijie; Gao, Yuwei; Wen, Zhiyuan; Yu, Guimei; Zhou, Weiwei; Zu, Shulong; Bu, Zhigao

    2015-05-15

    Canine Distemper Virus (CDV) infects many carnivores and cause several high-mortality disease outbreaks. The current CDV live vaccine cannot be safely used in some exotic species, such as mink and ferret. Here, we generated recombinant lentogenic Newcastle disease virus (NDV) LaSota expressing either envelope glycoproyein, heamagglutinine (H) or fusion protein (F), named as rLa-CDVH and rLa-CDVF, respectively. The feasibility of these recombinant NDVs to serve as live virus-vectored CD vaccine was evaluated in minks. rLa-CDVH induced significant neutralization antibodies (NA) to CDV and provided solid protection against virulent CDV challenge. On the contrast, rLa-CDVF induced much lower NA to CDV and fail to protected mink from virulent CDV challenge. Results suggest that recombinant NDV expressing CDV H is safe and efficient candidate vaccine against CDV in mink, and maybe other host species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Conjugation of gold nanoparticles and recombinant human endostatin modulates vascular normalization via interruption of anterior gradient 2-mediated angiogenesis.

    Science.gov (United States)

    Pan, Fan; Yang, Wende; Li, Wei; Yang, Xiao-Yan; Liu, Shuhao; Li, Xin; Zhao, Xiaoxu; Ding, Hui; Qin, Li; Pan, Yunlong

    2017-07-01

    Several studies have revealed the potential of normalizing tumor vessels in anti-angiogenic treatment. Recombinant human endostatin is an anti-angiogenic agent which has been applied in clinical tumor treatment. Our previous research indicated that gold nanoparticles could be a nanoparticle carrier for recombinant human endostatin delivery. The recombinant human endostatin-gold nanoparticle conjugates normalized vessels, which improved chemotherapy. However, the mechanism of recombinant human endostatin-gold nanoparticle-induced vascular normalization has not been explored. Anterior gradient 2 has been reported to be over-expressed in many malignant tumors and involved in tumor angiogenesis. To date, the precise efficacy of recombinant human endostatin-gold nanoparticles on anterior gradient 2-mediated angiogenesis or anterior gradient 2-related signaling cohort remained unknown. In this study, we aimed to explore whether recombinant human endostatin-gold nanoparticles could normalize vessels in metastatic colorectal cancer xenografts, and we further elucidated whether recombinant human endostatin-gold nanoparticles could interrupt anterior gradient 2-induced angiogenesis. In vivo, it was indicated that recombinant human endostatin-gold nanoparticles increased pericyte expression while inhibit vascular endothelial growth factor receptor 2 and anterior gradient 2 expression in metastatic colorectal cancer xenografts. In vitro, we uncovered that recombinant human endostatin-gold nanoparticles reduced cell migration and tube formation induced by anterior gradient 2 in human umbilical vein endothelial cells. Treatment with recombinant human endostatin-gold nanoparticles attenuated anterior gradient 2-mediated activation of MMP2, cMyc, VE-cadherin, phosphorylation of p38, and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in human umbilical vein endothelial cells. Our findings demonstrated recombinant human endostatin-gold nanoparticles might normalize

  7. Non-specific Effect of Vaccines: Immediate Protection against Respiratory Syncytial Virus Infection by a Live Attenuated Influenza Vaccine

    Directory of Open Access Journals (Sweden)

    Young J. Lee

    2018-01-01

    Full Text Available The non-specific effects (NSEs of vaccines have been discussed for their potential long-term beneficial effects beyond direct protection against a specific pathogen. Cold-adapted, live attenuated influenza vaccine (CAIV induces local innate immune responses that provide a broad range of antiviral immunity. Herein, we examined whether X-31ca, a donor virus for CAIVs, provides non-specific cross-protection against respiratory syncytial virus (RSV. The degree of RSV replication was significantly reduced when X-31ca was administered before RSV infection without any RSV-specific antibody responses. The vaccination induced an immediate release of cytokines and infiltration of leukocytes into the respiratory tract, moderating the immune perturbation caused by RSV infection. The potency of protection against RSV challenge was significantly reduced in TLR3-/- TLR7-/- mice, confirming that the TLR3/7 signaling pathways are necessary for the observed immediate and short-term protection. The results suggest that CAIVs provide short-term, non-specific protection against genetically unrelated respiratory pathogens. The additional benefits of CAIVs in mitigating acute respiratory infections for which vaccines are not yet available need to be assessed in future studies.

  8. A Mixture Model and a Hidden Markov Model to Simultaneously Detect Recombination Breakpoints and Reconstruct Phylogenies

    Directory of Open Access Journals (Sweden)

    Bastien Boussau

    2009-06-01

    Full Text Available Homologous recombination is a pervasive biological process that affects sequences in all living organisms and viruses. In the presence of recombination, the evolutionary history of an alignment of homologous sequences cannot be properly depicted by a single bifurcating tree: some sites have evolved along a specific phylogenetic tree, others have followed another path. Methods available to analyse recombination in sequences usually involve an analysis of the alignment through sliding-windows, or are particularly demanding in computational resources, and are often limited to nucleotide sequences. In this article, we propose and implement a Mixture Model on trees and a phylogenetic Hidden Markov Model to reveal recombination breakpoints while searching for the various evolutionary histories that are present in an alignment known to have undergone homologous recombination. These models are sufficiently efficient to be applied to dozens of sequences on a single desktop computer, and can handle equivalently nucleotide or protein sequences. We estimate their accuracy on simulated sequences and test them on real data.

  9. A Mixture Model and a Hidden Markov Model to Simultaneously Detect Recombination Breakpoints and Reconstruct Phylogenies

    Directory of Open Access Journals (Sweden)

    Bastien Boussau

    2009-01-01

    Full Text Available Homologous recombination is a pervasive biological process that affects sequences in all living organisms and viruses. In the presence of recombination, the evolutionary history of an alignment of homologous sequences cannot be properly depicted by a single bifurcating tree: some sites have evolved along a specific phylogenetic tree, others have followed another path. Methods available to analyse recombination in sequences usually involve an analysis of the alignment through sliding-windows, or are particularly demanding in computational resources, and are often limited to nucleotide sequences. In this article, we propose and implement a Mixture Model on trees and a phylogenetic Hidden Markov Model to reveal recombination breakpoints while searching for the various evolutionary histories that are present in an alignment known to have undergone homologous recombination. These models are sufficiently efficient to be applied to dozens of sequences on a single desktop computer, and can handle equivalently nucleotide or protein sequences. We estimate their accuracy on simulated sequences and test them on real data.

  10. Poxvirus-vectored vaccines for rabies--a review.

    Science.gov (United States)

    Weyer, Jacqueline; Rupprecht, Charles E; Nel, Louis H

    2009-11-27

    Oral rabies vaccination of target reservoir species has proved to be one of the pillars of successful rabies elimination programs. The use of live attenuated rabies virus vaccines has been extensive but several limitations hamper its future use. A recombinant vaccinia-rabies vaccine has also been successfully used for the oral vaccination of several species. Nevertheless, its lack of efficacy in certain important rabies reservoirs and concerns on the use of this potent live virus as vaccine carrier (vector) impair the expansion of its use for new target species and new areas. Several attenuated and host-restricted poxvirus alternatives, which supposedly offer enhanced safety, have been investigated. Once again, efficacy in certain target species and innocuity through the oral route remain major limitations of these vaccines. Alternative recombinant vaccines using adenovirus as an antigen delivery vector have been extensively investigated and may provide an important addition to the currently available oral rabies vaccine repertoire, but are not the primary subject of this review.

  11. A therapeutic HIV vaccine using coxsackie-HIV recombinants: a possible new strategy.

    Science.gov (United States)

    Halim, S S; Collins, D N; Ramsingh, A I

    2000-10-10

    The ultimate goal in the treatment of HIV-infected persons is to prevent disease progression. A strategy to accomplish this goal is to use chemotherapy to reduce viral load followed by immunotherapy to stimulate HIV-specific immune responses that are observed in long-term asymptomatic individuals. An effective, live, recombinant virus, expressing HIV sequences, would be capable of inducing both CTL and CD4(+) helper T cell responses. To accomplish these goals, the viral vector must be immunogenic yet retain its avirulent phenotype in a T cell-deficient host. We have identified a coxsackievirus variant, CB4-P, that can induce protective immunity against a virulent variant. In addition, the CB4-P variant remains avirulent in mice lacking CD4(+) helper T cells, suggesting that CB4-P may be uniquely suited as a viral vector for a therapeutic HIV vaccine. Two strategies designed to elicit CTL and CD4(+) helper T cell responses were used to construct CB4-P/HIV recombinants. Recombinant viruses were viable, genetically stable, and retained the avirulent phenotype of the parental virus. In designing a viral vector for vaccine development, an issue that must be addressed is whether preexisting immunity to the vector would affect subsequent administration of the recombinant virus. Using a test recombinant, we showed that prior exposure to the parental CB4-P virus did not affect the ability of the recombinant to induce a CD4(+) T cell response against the foreign sequence. The results suggest that a "cocktail" of coxsackie/HIV recombinants may be useful as a therapeutic HIV vaccine.

  12. Comparison of the nucleotide sequence of wild-type hepatitis - A virus and its attenuated candidate vaccine derivative

    International Nuclear Information System (INIS)

    Cohen, J.I.; Rosenblum, B.; Ticehurst, J.R.; Daemer, R.; Feinstone, S.; Purcell, R.H.

    1987-01-01

    Development of attenuated mutants for use as vaccines is in progress for other viruses, including influenza, rotavirus, varicella-zoster, cytomegalovirus, and hepatitis-A virus (HAV). Attenuated viruses may be derived from naturally occurring mutants that infect human or nonhuman hosts. Alternatively, attenuated mutants may be generated by passage of wild-type virus in cell culture. Production of attenuated viruses in cell culture is a laborious and empiric process. Despite previous empiric successes, understanding the molecular basis for attenuation of vaccine viruses could facilitate future development and use of live-virus vaccines. Comparison of the complete nucleotide sequences of wild-type (virulent) and vaccine (attenuated) viruses has been reported for polioviruses and yellow fever virus. Here, the authors compare the nucleotide sequence of wild-type HAV HM-175 with that of a candidate vaccine derivative

  13. Safety and immunogenicity of a live attenuated mumps vaccine: a phase I clinical trial.

    Science.gov (United States)

    Liang, Yan; Ma, Jingchen; Li, Changgui; Chen, Yuguo; Liu, Longding; Liao, Yun; Zhang, Ying; Jiang, Li; Wang, Xuan-Yi; Che, Yanchun; Deng, Wei; Li, Hong; Cui, Xiaoyu; Ma, Na; Ding, Dong; Xie, Zhongping; Cui, Pingfang; Ji, Qiuyan; Wang, JingJing; Zhao, Yuliang; Wang, Junzhi; Li, Qihan

    2014-01-01

    Mumps, a communicable, acute and previously well-controlled disease, has had recent and occasional resurgences in some areas. A randomized, double-blind, controlled and multistep phase I study of an F-genotype attenuated mumps vaccine produced in human diploid cells was conducted. A total of 300 subjects were enrolled and divided into 4 age groups: 16-60 years, 5-16 years, 2-5 years and 8-24 months. The groups were immunized with one injection per subject. Three different doses of the F-genotype attenuated mumps vaccine, A (3.5 ± 0.25 logCCID50), B (4.25 ± 0.25 logCCID50) and C (5.0 ± 0.25 logCCID50), as well as a placebo control and a positive control of a licensed A-genotype vaccine (S79 strain) were used. The safety and immunogenicity of this vaccine were compared with those of the controls. The safety evaluation suggested that mild adverse reactions were observed in all groups. No serious adverse event (SAE) was reported throughout the trial. The immunogenicity test showed a similar seroconversion rate of the neutralizing and ELISA antibody in the 2- to 5-year-old and 8- to 24-month-old groups compared with the seroconversion rate in the positive control. The GMT of the neutralizing anti-F-genotype virus antibodies in the vaccine groups was slightly higher than that in the positive control group. The F-genotype attenuated mumps vaccine evaluated in this clinical trial was demonstrated to be safe and have effective immunogenicity vs. control.

  14. A recombinant canine distemper virus expressing a modified rabies virus glycoprotein induces immune responses in mice.

    Science.gov (United States)

    Li, Zhili; Wang, Jigui; Yuan, Daoli; Wang, Shuang; Sun, Jiazeng; Yi, Bao; Hou, Qiang; Mao, Yaping; Liu, Weiquan

    2015-06-01

    Canine distemper virus (CDV) and rabies virus (RV) are two important pathogens of the dog. CDV, a member of the morbillivirus genus, has shown promise as an expression vector. The glycoprotein from RV is a main contributor to protective immunity and capable of eliciting the production of virus-neutralizing antibodies. In this study, we recovered an attenuated strain of canine distemper virus and constructed a recombinant virus, rCDV-RV-G, expressing a modified (R333Q) rabies virus glycoprotein (RV-G) of RV Flury strain LEP. RV-G expression by the recombinant viruses was confirmed. Furthermore, G was proved to be incorporated into the surface of CDV particles. While replication of the recombinant virus was slightly reduced compared with the parental CDV, it stably expressed the RV-G over ten serial passages. Inoculation of mice induced specific neutralizing antibodies against both RV-G and CDV. Therefore, the rCDV-RV-G has the potential as a vaccine that may be used to control rabies virus infection in dogs and other animals.

  15. Coefficient of linear attenuation of beer for γ rays of 662 keV

    International Nuclear Information System (INIS)

    Ortiz A, M. D.; Cano S, D.; Vega C, H. R.

    2017-10-01

    The coefficient of linear attenuation of the beer was determined by means of a transmission experiment with a source of Cs 137 and a gamma ray spectrometer with a NaI(Tl) detector of 7.62 cm in diameter and 7.62 cm in height, using narrow geometry. The pulse height spectrum was accumulated for 1 minute of live time, 7 beer thicknesses (0.6 cm) were used. By means of linear regression by weighted squares we determined the linear attenuation coefficient whose value was μ = 0.0843 ± 0.0007 cm -1 . The coefficient of linear attenuation of water is 2.2% times greater than that of beer and to the geometry of the experimental arrangement. (Author)

  16. Genome-wide recombination rate variation in a recombination map of cotton.

    Science.gov (United States)

    Shen, Chao; Li, Ximei; Zhang, Ruiting; Lin, Zhongxu

    2017-01-01

    Recombination is crucial for genetic evolution, which not only provides new allele combinations but also influences the biological evolution and efficacy of natural selection. However, recombination variation is not well understood outside of the complex species' genomes, and it is particularly unclear in Gossypium. Cotton is the most important natural fibre crop and the second largest oil-seed crop. Here, we found that the genetic and physical maps distances did not have a simple linear relationship. Recombination rates were unevenly distributed throughout the cotton genome, which showed marked changes along the chromosome lengths and recombination was completely suppressed in the centromeric regions. Recombination rates significantly varied between A-subgenome (At) (range = 1.60 to 3.26 centimorgan/megabase [cM/Mb]) and D-subgenome (Dt) (range = 2.17 to 4.97 cM/Mb), which explained why the genetic maps of At and Dt are similar but the physical map of Dt is only half that of At. The translocation regions between A02 and A03 and between A04 and A05, and the inversion regions on A10, D10, A07 and D07 indicated relatively high recombination rates in the distal regions of the chromosomes. Recombination rates were positively correlated with the densities of genes, markers and the distance from the centromere, and negatively correlated with transposable elements (TEs). The gene ontology (GO) categories showed that genes in high recombination regions may tend to response to environmental stimuli, and genes in low recombination regions are related to mitosis and meiosis, which suggested that they may provide the primary driving force in adaptive evolution and assure the stability of basic cell cycle in a rapidly changing environment. Global knowledge of recombination rates will facilitate genetics and breeding in cotton.

  17. Lactobacillus rhamnosus GG and its SpaC pilus adhesin modulate inflammatory responsiveness and TLR-related gene expression in the fetal human gut

    Science.gov (United States)

    Ganguli, Kriston; Collado, Maria Carmen; Rautava, Jaana; Lu, Lei; Satokari, Reetta; von Ossowski, Ingemar; Reunanen, Justus; de Vos, Willem M.; Palva, Airi; Isolauri, Erika; Salminen, Seppo; Walker, W. Allan; Rautava, Samuli

    2015-01-01

    Background Bacterial contact in utero modulates fetal and neonatal immune responses. Maternal probiotic supplementation reduces the risk of immune-mediated disease in the infant. We investigated the immunomodulatory properties of live Lactobacillus rhamnosus GG and its SpaC pilus adhesin in human fetal intestinal models. Methods TNF-α mRNA expression was measured by qPCR in a human fetal intestinal organ culture model exposed to live L. rhamnosus GG and proinflammatory stimuli. Binding of recombinant SpaC pilus protein to intestinal epithelial cells was assessed in human fetal intestinal organ culture and the human fetal intestinal epithelial cell line H4 by immunohistochemistry and immunofluorescence, respectively. TLR-related gene expression in fetal ileal organ culture after exposure to recombinant SpaC was assessed by qPCR. Results Live L. rhamnosus GG significantly attenuates pathogen-induced TNF-α mRNA expression in the human fetal gut. Recombinant SpaC protein was found to adhere to the fetal gut and to modulate varying levels of TLR-related gene expression. Conclusion The human fetal gut is responsive to luminal microbes. L. rhamnosus GG significantly attenuates fetal intestinal inflammatory responses to pathogenic bacteria. The L. rhamnosus GG pilus adhesin SpaC binds to immature human intestinal epithelial cells and directly modulates intestinal epithelial cell innate immune gene expression. PMID:25580735

  18. Fine-Scale Recombination Maps of Fungal Plant Pathogens Reveal Dynamic Recombination Landscapes and Intragenic Hotspots.

    Science.gov (United States)

    Stukenbrock, Eva H; Dutheil, Julien Y

    2018-03-01

    Meiotic recombination is an important driver of evolution. Variability in the intensity of recombination across chromosomes can affect sequence composition, nucleotide variation, and rates of adaptation. In many organisms, recombination events are concentrated within short segments termed recombination hotspots. The variation in recombination rate and positions of recombination hotspot can be studied using population genomics data and statistical methods. In this study, we conducted population genomics analyses to address the evolution of recombination in two closely related fungal plant pathogens: the prominent wheat pathogen Zymoseptoria tritici and a sister species infecting wild grasses Z. ardabiliae We specifically addressed whether recombination landscapes, including hotspot positions, are conserved in the two recently diverged species and if recombination contributes to rapid evolution of pathogenicity traits. We conducted a detailed simulation analysis to assess the performance of methods of recombination rate estimation based on patterns of linkage disequilibrium, in particular in the context of high nucleotide diversity. Our analyses reveal overall high recombination rates, a lack of suppressed recombination in centromeres, and significantly lower recombination rates on chromosomes that are known to be accessory. The comparison of the recombination landscapes of the two species reveals a strong correlation of recombination rate at the megabase scale, but little correlation at smaller scales. The recombination landscapes in both pathogen species are dominated by frequent recombination hotspots across the genome including coding regions, suggesting a strong impact of recombination on gene evolution. A significant but small fraction of these hotspots colocalize between the two species, suggesting that hotspot dynamics contribute to the overall pattern of fast evolving recombination in these species. Copyright © 2018 Stukenbrock and Dutheil.

  19. Humoral immune responses of pregnant Guinea pigs Immunized with live attenuated Rhodococcus equi

    Directory of Open Access Journals (Sweden)

    Mawlood Abass Ali Al- Graibawi

    2018-02-01

    Full Text Available The potential to increase passive transfer of specific Rhodococcus equi (R.equi humoral immunity to newborn by preparturient vaccination of their dams was investigated in Pregnant Guinea pigs as a pilot study. Attenuated autogenous vaccine was prepared from a Congo red negative (CR- R.equi local isolate mixed with adjuvant (potassium alum sulphate, tested for sterility, safety and potency prior to vaccination .Two groups of pregnant G. pigs were used, the first group was vaccinated twice subcutaneously (S.C with the prepared vaccine at five and three weeks prior parturition, the second group was inoculated with adjuvant plus phosphate buffer saline (PBS twice s.c and kept as control. Offspring from the vaccinated dams had revealed high titers of specific R. equi antibody as detected by tube agglutination (TA and passive haemagglutination (PH test and showed protection against challenge dose. The results revealed that vaccination of pregnant G. pigs with the prepared attenuated vaccine was safe and efficient method to protect their offspring against experimental challenge with virulent R.equi. Vaccination was associated with increased humoral immune response in vaccinated group.

  20. Development and evaluation of novel recombinant adenovirus-based vaccine candidates for infectious bronchitis virus and Mycoplasma gallisepticum in chickens.

    Science.gov (United States)

    Zhang, Dongchao; Long, Yuqing; Li, Meng; Gong, Jianfang; Li, Xiaohui; Lin, Jing; Meng, Jiali; Gao, Keke; Zhao, Ruili; Jin, Tianming

    2018-04-01

    Avian infectious bronchitis caused by the infectious bronchitis virus (IBV), and mycoplasmosis caused by Mycoplasma gallisepticum (MG) are two major respiratory diseases in chickens that have resulted in severe economic losses in the poultry industry. We constructed a recombinant adenovirus that simultaneously expresses the S1 spike glycoprotein of IBV and the TM-1 protein of MG (pBH-S1-TM-1-EGFP). For comparison, we constructed two recombinant adenoviruses (pBH-S1-EGFP and pBH-TM-1-EGFP) that express either the S1 spike glycoprotein or the TM-1 protein alone. The protective efficacy of these three vaccine constructs against challenge with IBV and/or MG was evaluated in specific pathogen free chickens. Groups of seven-day-old specific pathogen free chicks were immunized twice, two weeks apart, via the oculonasal route with the pBH-S1-TM-1-EGFP, pBH-S1-EGFP, or pBH-TM-1-EGFP vaccine candidates or the commercial attenuated infectious bronchitis vaccine strain H52 and MG vaccine strain F-36 (positive controls), and challenged with virulent IBV or MG two weeks later. Interestingly, by days 7 and 14 after the booster immunization, pBH-S1-TM-1-EGFP-induced antibody titre was significantly higher (P attenuated commercial IBV vaccine; however, there was no significant difference between the pBH-S1-TM-1-EGFP and attenuated commercial MG vaccine groups (P > 0.05). The clinical signs, the gross, and histopathological lesions scores of the adenovirus vaccine constructs were not significantly different from that of the attenuated commercial IBV or MG vaccines (positive controls) (P > 0.05). These results demonstrate the potential of the bivalent pBH-S1-TM-1-EGFP adenovirus construct as a combination vaccine against IB and mycoplasmosis.

  1. Cost Effectiveness of Influenza Vaccine for U.S. Children: Live Attenuated and Inactivated Influenza Vaccine.

    Science.gov (United States)

    Shim, Eunha; Brown, Shawn T; DePasse, Jay; Nowalk, Mary Patricia; Raviotta, Jonathan M; Smith, Kenneth J; Zimmerman, Richard K

    2016-09-01

    Prior studies showed that live attenuated influenza vaccine (LAIV) is more effective than inactivated influenza vaccine (IIV) in children aged 2-8 years, supporting the Centers for Disease Control and Prevention (CDC) recommendations in 2014 for preferential LAIV use in this age group. However, 2014-2015 U.S. effectiveness data indicated relatively poor effectiveness of both vaccines, leading CDC in 2015 to no longer prefer LAIV. An age-structured model of influenza transmission and vaccination was developed, which incorporated both direct and indirect protection induced by vaccination. Based on this model, the cost effectiveness of influenza vaccination strategies in children aged 2-8 years in the U.S. was estimated. The base case assumed a mixed vaccination strategy where 33.3% and 66.7% of vaccinated children aged 2-8 years receive LAIV and IIV, respectively. Analyses were performed in 2014-2015. Using published meta-analysis vaccine effectiveness data (83% LAIV and 64% IIV), exclusive LAIV use would be a cost-effective strategy when vaccinating children aged 2-8 years, whereas IIV would not be preferred. However, when 2014-2015 U.S. effectiveness data (0% LAIV and 15% IIV) were used, IIV was likely to be preferred. The cost effectiveness of influenza vaccination in children aged 2-8 years is highly dependent on vaccine effectiveness; the vaccine type with higher effectiveness is preferred. In general, exclusive IIV use is preferred over LAIV use, as long as vaccine effectiveness is higher for IIV than for LAIV. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  2. The ATM signaling cascade promotes recombination-dependent pachytene arrest in mouse spermatocytes.

    Directory of Open Access Journals (Sweden)

    Sarai Pacheco

    2015-03-01

    Full Text Available Most mutations that compromise meiotic recombination or synapsis in mouse spermatocytes result in arrest and apoptosis at the pachytene stage of the first meiotic prophase. Two main mechanisms are thought to trigger arrest: one independent of the double-strand breaks (DSBs that initiate meiotic recombination, and another activated by persistent recombination intermediates. Mechanisms underlying the recombination-dependent arrest response are not well understood, so we sought to identify factors involved by examining mutants deficient for TRIP13, a conserved AAA+ ATPase required for the completion of meiotic DSB repair. We find that spermatocytes with a hypomorphic Trip13 mutation (Trip13mod/mod arrest with features characteristic of early pachynema in wild type, namely, fully synapsed chromosomes without incorporation of the histone variant H1t into chromatin. These cells then undergo apoptosis, possibly in response to the arrest or in response to a defect in sex body formation. However, TRIP13-deficient cells that additionally lack the DSB-responsive kinase ATM progress further, reaching an H1t-positive stage (i.e., similar to mid/late pachynema in wild type despite the presence of unrepaired DSBs. TRIP13-deficient spermatocytes also progress to an H1t-positive stage if ATM activity is attenuated by hypomorphic mutations in Mre11 or Nbs1 or by elimination of the ATM-effector kinase CHK2. These mutant backgrounds nonetheless experience an apoptotic block to further spermatogenic progression, most likely caused by failure to form a sex body. DSB numbers are elevated in Mre11 and Nbs1 hypomorphs but not Chk2 mutants, thus delineating genetic requirements for the ATM-dependent negative feedback loop that regulates DSB numbers. The findings demonstrate for the first time that ATM-dependent signaling enforces the normal pachytene response to persistent recombination intermediates. Our work supports the conclusion that recombination defects trigger

  3. Safety and tolerability of a live oral Salmonella typhimurium vaccine candidate in SIV-infected nonhuman primates.

    Science.gov (United States)

    Ault, Alida; Tennant, Sharon M; Gorres, J Patrick; Eckhaus, Michael; Sandler, Netanya G; Roque, Annelys; Livio, Sofie; Bao, Saran; Foulds, Kathryn E; Kao, Shing-Fen; Roederer, Mario; Schmidlein, Patrick; Boyd, Mary Adetinuke; Pasetti, Marcela F; Douek, Daniel C; Estes, Jacob D; Nabel, Gary J; Levine, Myron M; Rao, Srinivas S

    2013-12-02

    Nontyphoidal Salmonella (NTS) serovars are a common cause of acute food-borne gastroenteritis worldwide and can cause invasive systemic disease in young infants, the elderly, and immunocompromised hosts, accompanied by high case fatality. Vaccination against invasive NTS disease is warranted where the disease incidence and mortality are high and multidrug resistance is prevalent, as in sub-Saharan Africa. Live-attenuated vaccines that mimic natural infection constitute one strategy to elicit protection. However, they must particularly be shown to be adequately attenuated for consideration of immunocompromised subjects. Accordingly, we examined the safety and tolerability of an oral live attenuated Salmonella typhimurium vaccine candidate, CVD 1921, in an established chronic simian immunodeficiency virus (SIV)-infected rhesus macaque model. We evaluated clinical parameters, histopathology, and measured differences in mucosal permeability to wild-type and vaccine strains. Compared to the wild-type S. typhimurium strain I77 in both SIV-infected and SIV-uninfected nonhuman primate hosts, this live-attenuated vaccine shows reduced shedding and systemic spread, exhibits limited pathological disease manifestations in the digestive tract, and induces low levels of cellular infiltration in tissues. Furthermore, wild-type S. typhimurium induces increased intestinal epithelial damage and permeability, with infiltration of neutrophils and macrophages in both SIV-infected and SIV-uninfected nonhuman primates compared to the vaccine strain. Based on shedding, systemic spread, and histopathology, the live-attenuated S. typhimurium strain CVD 1921 appears to be safe and well-tolerated in the nonhuman primate model, including chronically SIV-infected rhesus macaques. Copyright © 2013. Published by Elsevier Ltd.

  4. Stability of live attenuated rotavirus vaccine with selected preservatives and primary containers.

    Science.gov (United States)

    Lal, Manjari; Jarrahian, Courtney; Zhu, Changcheng; Hosken, Nancy A; McClurkan, Chris L; Koelle, David M; Saxon, Eugene; Roehrig, Andrew; Zehrung, Darin; Chen, Dexiang

    2016-05-11

    Rotavirus infection, which can be prevented by vaccination, is responsible for a high burden of acute gastroenteritis disease in children, especially in low-income countries. An appropriate formulation, packaging, and delivery device for oral rotavirus vaccine has the potential to reduce the manufacturing cost of the vaccine and the logistical impact associated with introduction of a new vaccine, simplify the vaccination procedure, and ensure that the vaccine is safely and accurately delivered to children. Single-dose prefilled presentations can be easy to use; however, they are typically more expensive, can be a bottleneck during production, and occupy a greater volume per dose vis-à-vis supply chain storage and medical waste disposal, which is a challenge in low-resource settings. Multi-dose presentations used thus far have other issues, including increased wastage of vaccine and the need for separate delivery devices. In this study, the goals were to evaluate both the technical feasibility of using preservatives to develop a liquid multi-dose formulation and the primary packaging alternatives for orally delivered, liquid rotavirus vaccines. The feasibility evaluation included evaluation of commonly used preservatives for compatibility with rotavirus vaccines and stability testing of rotavirus vaccine in various primary containers, including Lameplast's plastic tubes, BD's oral dispenser version of Uniject™ (Uniject DP), rommelag's blow-fill-seal containers, and MEDInstill's multi-dose vial and pouch. These presentations were compared to a standard glass vial. The results showed that none of the preservatives tested were compatible with a live attenuated rotavirus vaccine because they had a detrimental effect on the viability of the virus. In the presence of preservatives, vaccine virus titers declined to undetectable levels within 1 month. The vaccine formulation without preservatives maintained a stability profile over 12 months in all primary containers

  5. Genetic Recombination

    Science.gov (United States)

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  6. Genetic recombination and Cryptosporidium hominis virulent subtype IbA10G2.

    Science.gov (United States)

    Li, Na; Xiao, Lihua; Cama, Vitaliano A; Ortega, Ynes; Gilman, Robert H; Guo, Meijin; Feng, Yaoyu

    2013-10-01

    Little is known about the emergence and spread of virulent subtypes of Cryptosporidium hominis, the predominant species responsible for human cryptosporidiosis. We conducted sequence analyses of 32 genetic loci of 53 C. hominis specimens isolated from a longitudinally followed cohort of children living in a small community. We identified by linkage disequilibrium and recombination analyses only limited genetic recombination, which occurred exclusively within the 60-kDa glycoprotein gene subtype IbA10G2, a predominant subtype for outbreaks in industrialized nations and a virulent subtype in the study community. Intensive transmission of virulent subtype IbA10G2 in the study area might have resulted in genetic recombination with other subtypes. Moreover, we identified selection for IbA10G2 at a 129-kb region around the 60-kDa glycoprotein gene in chromosome 6. These findings improve our understanding of the origin and evolution of C. hominis subtypes and the spread of virulent subtypes.

  7. Construction of a Streptococcus agalactiae phoB mutant and evaluation of its potential as an attenuated modified live vaccine in golden pompano, Trachinotus ovatus.

    Science.gov (United States)

    Cai, Xiaohui; Wang, Bei; Peng, Yinhui; Li, Yuan; Lu, Yishan; Huang, Yucong; Jian, Jichang; Wu, Zaohe

    2017-04-01

    Streptococcus agalactiae is a Gram-positive pathogen that can survive inside professional phagocytes and nonphagocytic cells to cause septicemia and meningoencephalitis in freshwater and marine fish. However, vaccines based on extracellular products (ECP) and formalin-killed whole S. agalactiae cells, as well as subunit vaccine are unable to protect fish from infection by variant serotypes S. agalactiae. The search for live attenuated vaccine with highly conserved and virulent-related genes is essential for producing a vaccine to help understand and control streptococcosis In this study, the phoB gene was cloned from pathogenic S. agalactiae TOS01 strain and the mutant strain SAΔphoB was constructed via allelic exchange mutagenesis. The results showed that the deduced amino acid of S. agalactiae TOS01 shares high similarities with other Streptococcus spp. and has high conserved response regulator receiver domain (REC) and DNA-binding effector domain of two-component system response regulators (Trans_reg_C). Cell adherence and invasion assays, challenge experiments and histopathological changes post-vaccination were performed and observed, the results showed that the mutant strain SAΔphoB has a lower adherence and invasion rate and less virulent than the wild type strain in golden pompano, and it doesn't induce clinical symptoms and obvious pathological changes in golden pompano, thereby indicating that the deletion of phoB affects the virulence and infectious capacity of S. agalactiae. Golden pompano vaccinated via intraperitoneal injection SAΔphoB had the relative percent survival value of 93.1% after challenge with TOS01, demonstrating its high potential as an effective attenuated live vaccine candidate. Real-time PCR assays showed that the SAΔphoB was able to enhance the expression of immune-related genes, including MHC-I, MyD88, IL-22 and IL-10 after vaccination, indicating that the SAΔphoB is able to induce humoral and cell-mediated immune response

  8. Reverse genetics of measles virus and resulting multivalent recombinant vaccines: applications of recombinant measles viruses.

    Science.gov (United States)

    Billeter, M A; Naim, H Y; Udem, S A

    2009-01-01

    An overview is given on the development of technologies to allow reverse genetics of RNA viruses, i.e., the rescue of viruses from cDNA, with emphasis on nonsegmented negative-strand RNA viruses (Mononegavirales), as exemplified for measles virus (MV). Primarily, these technologies allowed site-directed mutagenesis, enabling important insights into a variety of aspects of the biology of these viruses. Concomitantly, foreign coding sequences were inserted to (a) allow localization of virus replication in vivo through marker gene expression, (b) develop candidate multivalent vaccines against measles and other pathogens, and (c) create candidate oncolytic viruses. The vector use of these viruses was experimentally encouraged by the pronounced genetic stability of the recombinants unexpected for RNA viruses, and by the high load of insertable genetic material, in excess of 6 kb. The known assets, such as the small genome size of the vector in comparison to DNA viruses proposed as vectors, the extensive clinical experience of attenuated MV as vaccine with a proven record of high safety and efficacy, and the low production cost per vaccination dose are thus favorably complemented.

  9. Efficacy of Live-Attenuated H9N2 Influenza Vaccine Candidates Containing NS1 Truncations against H9N2 Avian Influenza Viruses

    Directory of Open Access Journals (Sweden)

    Sujuan Chen

    2017-06-01

    Full Text Available H9N2 avian influenza virus is a zoonotic agent with a broad host range that can contribute genetic information to H5 or H7N9 subtype viruses, which are significant threats to both humans and birds. Thus, there is a great need for a vaccine to control H9N2 avian influenza. Three mutant viruses of an H9N2 virus A/chicken/Taixing/10/2010 (rTX-NS1-73, rTX-NS1-100, and rTX-NS1-128 were constructed with different NS1 gene truncations and confirmed by western blot analysis. The genetic stability, pathogenicity, transmissibility, and host immune responses toward these mutants were evaluated. The mutant virus rTX-NS1-128 exhibited the most attenuated phenotype and lost transmissibility. The expression levels of interleukin 12 in the nasal and tracheal tissues from chickens immunized with rTX-NS1-128 were significantly upregulated on day 3 post-immunization and the IgA and IgG antibody levels were significantly increased on days 7, 14, and 21 post-immunization when compared to chickens that received an inactivated vaccine. rTX-NS1-128 also protected chickens from challenge by homologous and heterologous H9N2 avian influenza viruses. The results indicate that rTX-NS1-128 can be used as a potential live-attenuated vaccine against H9N2 avian influenza.

  10. Effects of attenuation map accuracy on attenuation-corrected micro-SPECT images

    NARCIS (Netherlands)

    Wu, C.; Gratama van Andel, H.A.; Laverman, P.; Boerman, O.C.; Beekman, F.J.

    2013-01-01

    Background In single-photon emission computed tomography (SPECT), attenuation of photon flux in tissue affects quantitative accuracy of reconstructed images. Attenuation maps derived from X-ray computed tomography (CT) can be employed for attenuation correction. The attenuation coefficients as well

  11. Development of Recombinant Vaccine Using Herpesvirus of Turkey (Hvt as Vector for Several Viral Diseases in Poultry Industry

    Directory of Open Access Journals (Sweden)

    Risza Hartawan

    2011-03-01

    Full Text Available Herpesvirus of turkey (HVT has been utilised as live vaccine against Marek’s disease in poultry industry world-wide for many years. However, the potency of HVT is not limited on the Marek’s disease only. Along with rapid development of recombinant technique, the potency of HVT can be broaden for other diseases. As naturally apathogenic virus, HVT is a suitable candidate as vector vaccine to express important antigens of viral pathogens. Several researches have been dedicated to design HVT recombinant vaccine by inserting gene of important virus, such as Marek’s disease virus (MDV, immuno bursal disease virus (IBDV, Newcastle disease virus (NDV and Avian Influenza virus (AIV. Therefore, the future recombinant of HVT has been expected to be better in performance along with the improvement of recombinant technique.

  12. Calcium measurements in living filamentous fungi expressing codon-optimized aequorin

    NARCIS (Netherlands)

    Nelson, G.; Kozlova-Zwinderman, O.; Collis, A.J.; Knight, M.R.; Fincham, J.R.S.; Stanger, C.P.; Renwick, A.; Hessing, J.G.M.; Punt, P.J.; Hondel, C.A.M.J.J. van den; Read, N.D.

    2004-01-01

    Calcium signalling is little understood in filamentous fungi largely because easy and routine methods for calcium measurement in living hyphae have previously been unavailable. We have developed the recombinant aequorin method for this purpose. High levels of aequorin expression were obtained in

  13. Genotyping assay for differentiation of wild-type and vaccine viruses in subjects immunized with live attenuated influenza vaccine.

    Directory of Open Access Journals (Sweden)

    Victoria Matyushenko

    Full Text Available Live attenuated influenza vaccines (LAIVs are considered as safe and effective tool to control influenza in different age groups, especially in young children. An important part of the LAIV safety evaluation is the detection of vaccine virus replication in the nasopharynx of the vaccinees, with special attention to a potential virus transmission to the unvaccinated close contacts. Conducting LAIV clinical trials in some geographical regions with year-round circulation of influenza viruses warrants the development of robust and reliable tools for differentiating vaccine viruses from wild-type influenza viruses in nasal pharyngeal wash (NPW specimens of vaccinated subjects. Here we report the development of genotyping assay for the detection of wild-type and vaccine-type influenza virus genes in NPW specimens of young children immunized with Russian-backbone seasonal trivalent LAIV using Sanger sequencing from newly designed universal primers. The new primer set allowed amplification and sequencing of short fragments of viral genes in NPW specimens and appeared to be more sensitive than conventional real-time RT-PCR protocols routinely used for the detection and typing/subtyping of influenza virus in humans. Furthermore, the new assay is capable of defining the origin of wild-type influenza virus through BLAST search with the generated sequences of viral genes fragments.

  14. [History of vaccination: from empiricism towards recombinant vaccines].

    Science.gov (United States)

    Guérin, N

    2007-01-01

    Two hundreds years after the discovery of the smallpox vaccine, immunization remains one of the most powerful tools of preventive medicine. Immunization was born with Jenner, then Pasteur and expanded during the 19th and 20th century. It started with the empirical observation of cross-immunity between two diseases, cowpox and smallpox. It became a real science, with pathogen isolation, culture and attenuation or inactivation, to prepare a vaccine. Together with clinical and biological efficacy studies and adverse events assessments, it constructed the concept of "vaccinology". Protein conjugation of polyosidic vaccines has made possible early immunisation of infants. Nowadays, recombinant, reassortant, or virus-like particles technologies open the road for new vaccines. Ongoing research opens the way for the development of new vaccines that will help to control transmittable diseases for which we are lacking antimicrobial agents.

  15. Genetic Diversity of Infectious Laryngotracheitis Virus during In Vivo Coinfection Parallels Viral Replication and Arises from Recombination Hot Spots within the Genome.

    Science.gov (United States)

    Loncoman, Carlos A; Hartley, Carol A; Coppo, Mauricio J C; Vaz, Paola K; Diaz-Méndez, Andrés; Browning, Glenn F; García, Maricarmen; Spatz, Stephen; Devlin, Joanne M

    2017-12-01

    Recombination is a feature of many alphaherpesviruses that infect people and animals. Infectious laryngotracheitis virus (ILTV; Gallid alphaherpesvirus 1 ) causes respiratory disease in chickens, resulting in significant production losses in poultry industries worldwide. Natural (field) ILTV recombination is widespread, particularly recombination between attenuated ILTV vaccine strains to create virulent viruses. These virulent recombinants have had a major impact on animal health. Recently, the development of a single nucleotide polymorphism (SNP) genotyping assay for ILTV has helped to understand ILTV recombination in laboratory settings. In this study, we applied this SNP genotyping assay to further examine ILTV recombination in the natural host. Following coinoculation of specific-pathogen-free chickens, we examined the resultant progeny for evidence of viral recombination and characterized the diversity of the recombinants over time. The results showed that ILTV replication and recombination are closely related and that the recombinant viral progeny are most diverse 4 days after coinoculation, which is the peak of viral replication. Further, the locations of recombination breakpoints in a selection of the recombinant progeny, and in field isolates of ILTV from different geographical regions, were examined following full-genome sequencing and used to identify recombination hot spots in the ILTV genome. IMPORTANCE Alphaherpesviruses are common causes of disease in people and animals. Recombination enables genome diversification in many different species of alphaherpesviruses, which can lead to the evolution of higher levels of viral virulence. Using the alphaherpesvirus infectious laryngotracheitis virus (ILTV), we performed coinfections in the natural host (chickens) to demonstrate high levels of virus recombination. Higher levels of diversity in the recombinant progeny coincided with the highest levels of virus replication. In the recombinant progeny, and in

  16. Genetic recombination is associated with intrinsic disorder in plant proteomes.

    Science.gov (United States)

    Yruela, Inmaculada; Contreras-Moreira, Bruno

    2013-11-09

    Intrinsically disordered proteins, found in all living organisms, are essential for basic cellular functions and complement the function of ordered proteins. It has been shown that protein disorder is linked to the G + C content of the genome. Furthermore, recent investigations have suggested that the evolutionary dynamics of the plant nucleus adds disordered segments to open reading frames alike, and these segments are not necessarily conserved among orthologous genes. In the present work the distribution of intrinsically disordered proteins along the chromosomes of several representative plants was analyzed. The reported results support a non-random distribution of disordered proteins along the chromosomes of Arabidopsis thaliana and Oryza sativa, two model eudicot and monocot plant species, respectively. In fact, for most chromosomes positive correlations between the frequency of disordered segments of 30+ amino acids and both recombination rates and G + C content were observed. These analyses demonstrate that the presence of disordered segments among plant proteins is associated with the rates of genetic recombination of their encoding genes. Altogether, these findings suggest that high recombination rates, as well as chromosomal rearrangements, could induce disordered segments in proteins during evolution.

  17. Development of live attenuated Streptococcus agalactiae as potential vaccines by selecting for resistance to sparfloxacin.

    Science.gov (United States)

    Pridgeon, Julia W; Klesius, Phillip H

    2013-05-31

    To develop attenuated bacteria as potential live vaccines, sparfloxacin was used in this study to modify 40 isolates of Streptococcus agalactiae. Majority of S. agalactiae used in this study were able to develop at least 80-fold resistance to sparfloxacin. When the virulence of the sparfloxacin-resistant S. agalactiae isolates were tested in 10-12g Nile tilapia by intraperitoneal injection at dose of 2×10(7)CFU/fish, 31 were found to be avirulent to fish. Of the 31 avirulent sparfloxacin-resistant S. agalactiae isolates, 30 provided 75-100% protection to 10-12g Nile tilapia against challenges with a virulent S. agalactiae isolate Sag 50. When the virulence of the 30 sparfloxacin-resistant S. agalactiae isolates was tested in 3-5g Nile tilapia by intraperitoneal injection at dose of 2×10(7)CFU/fish, six were found to be avirulent to 3-5g Nile tilapia. Of the six avirulent sparfloxacin-resistant S. agalactiae isolates, four provided 3-5g Nile tilapia 100% protection against challenges with homologous isolates, including Sag 97-spar isolate that was non-hemolytic. However, Sag 97-spar failed to provide broad cross-protection against challenges with heterologous isolates. When Nile tilapia was vaccinated with a polyvalent vaccine consisting of 30 sparfloxacin-resistant S. agalactiae isolates at dose of 2×10(6)CFU/fish, the polyvalent vaccine provided significant (PS. agalactiae. Taken together, our results suggest that a polyvalent vaccine consisting of various strains of S. agalactiae might be essential to provide broader protection to Nile tilapia against infections caused by S. agalactiae. Published by Elsevier Ltd.

  18. Long-lived, high-strength states of ICAM-1 bonds to beta2 integrin, II

    DEFF Research Database (Denmark)

    Kinoshita, Koji; Leung, Andrew; Simon, Scott

    2010-01-01

    Using single-molecule force spectroscopy to probe ICAM-1 interactions with recombinant alphaLbeta2 immobilized on microspheres and beta2 integrin on neutrophils, we quantified an impressive hierarchy of long-lived, high-strength states of the integrin bond, which start from basal levels with acti......Using single-molecule force spectroscopy to probe ICAM-1 interactions with recombinant alphaLbeta2 immobilized on microspheres and beta2 integrin on neutrophils, we quantified an impressive hierarchy of long-lived, high-strength states of the integrin bond, which start from basal levels......-out and outside-in signaling in neutrophils on the lifetimes and mechanical strengths of ICAM-1 bonds to beta2 integrin on the cell surface. Even though ICAM-1 bonds to recombinant alphaLbeta2 on microspheres in Mg2+ or Mn2+ can live for long periods of time under slow pulling, here we show that stimulation...... of neutrophils in Mg2+ plus the chemokine IL-8 (i.e., inside-out signaling) induces several-hundred-fold longer lifetimes for ICAM-1 attachments to LFA-1, creating strong bonds at very slow pulling speeds where none are perceived in Mg2+ or Mn2+ alone. Similar changes are observed with outside-in signaling, i...

  19. Concomitant or sequential administration of live attenuated Japanese encephalitis chimeric virus vaccine and yellow fever 17D vaccine: randomized double-blind phase II evaluation of safety and immunogenicity.

    Science.gov (United States)

    Nasveld, Peter E; Marjason, Joanne; Bennett, Sonya; Aaskov, John; Elliott, Suzanne; McCarthy, Karen; Kanesa-Thasan, Niranjan; Feroldi, Emmanuel; Reid, Mark

    2010-11-01

    A randomized, double-blind, study was conducted to evaluate the safety, tolerability and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) co-administered with live attenuated yellow fever vaccine (YF-17D strain; Stamaril®, Sanofi Pasteur) or administered successively. Participants (n = 108) were randomized to receive: YF followed by JE-CV 30 days later, JE followed by YF 30 days later, or the co-administration of JE and YF followed or preceded by placebo 30 days later or earlier. Placebo was used in a double-dummy fashion to ensure masking. Neutralizing antibody titers against JE-CV, YF-17D and selected wild-type JE strains was determined using a 50% serum-dilution plaque reduction neutralization test. Seroconversion was defined as the appearance of a neutralizing antibody titer above the assay cut-off post-immunization when not present pre-injection at day 0, or a least a four-fold rise in neutralizing antibody titer measured before the pre-injection day 0 and later post vaccination samples. There were no serious adverse events. Most adverse events (AEs) after JE vaccination were mild to moderate in intensity, and similar to those reported following YF vaccination. Seroconversion to JE-CV was 100% and 91% in the JE/YF and YF/JE sequential vaccination groups, respectively, compared with 96% in the co-administration group. All participants seroconverted to YF vaccine and retained neutralizing titers above the assay cut-off at month six. Neutralizing antibodies against JE vaccine were detected in 82-100% of participants at month six. These results suggest that both vaccines may be successfully co-administered simultaneously or 30 days apart.

  20. Binary and ternary recombination of [image omitted] and [image omitted] ions with electrons in low temperature plasma

    Science.gov (United States)

    Glosík, J.; Plašil, R.; Kotrík, T.; Dohnal, P.; Varju, J.; Hejduk, M.; Korolov, I.; Roučka, Š.; Kokoouline, V.

    2010-09-01

    Measurements of recombination rate coefficients of binary and ternary recombination of ? and ? ions with electrons in a low temperature plasma are described. The experiments were carried out in the afterglow plasma in helium with a small admixture of Ar and parent gas (H2 or D2). For both ions a linear increase of measured apparent binary recombination rate coefficients (αeff) with increasing helium density was observed: αeff = αBIN + K He[He]. From the measured dependencies, we have obtained for both ions the binary (αBIN) and the ternary (K He) rate coefficients and their temperature dependence. For the description of observed ternary recombination a mechanism with two subsequent rate determining steps is proposed. In the first step, in ? + e- (or ? + e-) collision, a rotationally excited long-lived Rydberg molecule ? (or ? ) is formed. In the following step ? (or ? ) collides with a He atom of the buffer gas and this collision prevents autoionization of ? (or ? ). Lifetimes of the formed ? (or ? ) and corresponding ternary recombination rate coefficients have been calculated. The theoretical and measured binary and ternary recombination rate coefficients obtained for ? and ? ions are in good agreement.

  1. EVALUATION OF TWO CANINE DISTEMPER VIRUS VACCINES IN CAPTIVE TIGERS (PANTHERA TIGRIS).

    Science.gov (United States)

    Sadler, Ryan A; Ramsay, Edward; McAloose, Denise; Rush, Robert; Wilkes, Rebecca P

    2016-06-01

    Canine distemper virus (CDV) has caused clinical disease and death in nondomestic felids in both captive settings and in the wild. Outbreaks resulting in high mortality rates in tigers (Panthera tigris) have prompted some zoos to vaccinate tigers for CDV. In this study, six tigers received a recombinant canarypox-vectored CDV vaccine (1 ml s.c.) and were revaccinated with 3 ml s.c. (mean) 39 days later. Blood collection for CDV antibody detection via serum neutralization was performed on (mean) days 0, 26, and 66 post-initial vaccination. No tigers had detectable antibodies at days 0 or 26, and only two tigers had low (16 and 32) antibody titers at day 66. Eight additional tigers received a live, attenuated CDV vaccine (1 ml s.c.) on day 0 and were revaccinated with 1 ml s.c. (mean) 171 days later. Blood collection for CDV antibody detection via serum neutralization was performed on (mean) days 0, 26, 171, and 196. Seven of eight tigers receiving the live, attenuated vaccine had no detectable titers prior to vaccination, but all animals had titers of >128 (range 128-1,024) at day 26. At 171 days, all tigers still had detectable titers (geometric mean 69.8, range 16-256), and at 196 days (2 wk post-revaccination) all but two showed an increase to >128 (range 32-512). To determine safety, an additional 41 tigers were vaccinated with 2 ml of a recombinant vaccine containing only CDV components, and an additional 38 tigers received 1 ml of the live, attenuated vaccine, administered either subcutaneously or intramuscularly; no serious adverse effects were noted. Although both vaccines appear safe, the live, attenuated vaccine produced a stronger and more consistent serologic response in tigers.

  2. Single-cycle immunodeficiency viruses provide strategies for uncoupling in vivo expression levels from viral replicative capacity and for mimicking live-attenuated SIV vaccines

    International Nuclear Information System (INIS)

    Kuate, Seraphin; Stahl-Hennig, Christiane; Haaft, Peter ten; Heeney, Jonathan; Ueberla, Klaus

    2003-01-01

    To reduce the risks associated with live-attenuated immunodeficiency virus vaccines, single-cycle immunodeficiency viruses (SCIVs) were developed by primer complementation and production of the vaccine in the absence of vif in a vif-independent cell line. After a single intravenous injection of SCIVs into rhesus monkeys, peak viral RNA levels of 10 3 to 10 4 copies/ml plasma were observed, indicating efficient expression of SCIV in the vaccinee. After booster immunizations with SCIVs, SIV-specific humoral and cellular immune responses were observed. Although the vaccine doses used in this pilot study could not protect vaccinees from subsequent intravenous challenge with pathogenic SIVmac239, our results demonstrate that the novel SCIV approach allows us to uncouple in vivo expression levels from the viral replicative capacity facilitating the analysis of the relationship between viral expression levels or viral genes and immune responses induced by SIV

  3. 78 FR 43219 - Prospective Grant of Exclusive License: Live Attenuated Dengue Tetravalent Vaccine Containing a...

    Science.gov (United States)

    2013-07-19

    ...) E-120-2001/0, Whitehead et al., ``Development of Mutations Useful for Attenuating Dengue Viruses and..., and (3) E-139-2006/0, Whitehead et al., ``Development of Dengue Vaccine Components'', Australian... August 15, 2007, Chinese Patent Application Number 200780031489.4, filed August 15, 2007, European Patent...

  4. Recombining without Hotspots: A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of Drosophila

    Science.gov (United States)

    Smukowski Heil, Caiti S.; Ellison, Chris; Dubin, Matthew; Noor, Mohamed A.F.

    2015-01-01

    Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human–chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms. PMID:26430062

  5. Deliberate reduction of hemagglutinin and neuraminidase expression of influenza virus leads to an ultraprotective live vaccine in mice.

    Science.gov (United States)

    Yang, Chen; Skiena, Steven; Futcher, Bruce; Mueller, Steffen; Wimmer, Eckard

    2013-06-04

    A long-held dogma posits that strong presentation to the immune system of the dominant influenza virus glycoprotein antigens neuraminidase (NA) and hemagglutinin (HA) is paramount for inducing protective immunity against influenza virus infection. We have deliberately violated this dogma by constructing a recombinant influenza virus strain of A/PR8/34 (H1N1) in which expression of NA and HA genes was suppressed. We down-regulated NA and HA expression by recoding the respective genes with suboptimal codon pair bias, thereby introducing hundreds of nucleotide changes while preserving their codon use and protein sequence. The variants PR8-NA(Min), PR8-HA(Min), and PR8-(NA+HA)(Min) (Min, minimal expression) were used to assess the contribution of reduced glycoprotein expression to growth in tissue culture and pathogenesis in BALB/c mice. All three variants proliferated in Madin-Darby canine kidney cells to nearly the degree as WT PR8. In mice, however, they expressed explicit attenuation phenotypes, as revealed by their LD50 values: PR8, 32 plaque-forming units (PFU); HA(Min), 1.7 × 10(3) PFU; NA(Min), 2.4 × 10(5) PFU; (NA+HA)(Min), ≥3.16 × 10(6) PFU. Remarkably, (NA+HA)(Min) was attenuated >100,000-fold, with NA(Min) the major contributor to attenuation. In vaccinated mice (NA+HA)(Min) was highly effective in providing long-lasting protective immunity against lethal WT challenge at a median protective dose (PD50) of 2.4 PFU. Moreover, at a PD50 of only 147 or 237, (NA+HA)(Min) conferred protection against heterologous lethal challenges with two mouse-adapted H3N2 viruses. We conclude that the suppression of HA and NA is a unique strategy in live vaccine development.

  6. Laser-induced electron--ion recombination used to study enhanced spontaneous recombination during electron cooling

    International Nuclear Information System (INIS)

    Schramm, U.; Wolf, A.; Schuess ler, T.; Habs, D.; Schwalm, D.; Uwira, O.; Linkemann, J.; Mueller, A.

    1997-01-01

    Spontaneous recombination of highly charged ions with free electrons in merged velocity matched electron and ion beams has been observed in earlier experiments to occur at rates significantly higher than predicted by theoretical estimates. To study this enhanced spontaneous recombination, laser induced recombination spectra were measured both in velocity matched beams and in beams with well defined relative velocities, corresponding to relative electron-ion detuning energies ranging from 1 meV up to 6.5 meV where the spontaneous recombination enhancement was found to be strongly reduced. Based on a comparison with simplified calculations, the development of the recombination spectra for decreasing detuning energies indicates additional contributions at matched velocities which could be related to the energy distribution of electrons causing the spontaneous recombination rate enhancement

  7. Effects of nuclear mutations for recombination and repair functions and of caffeine on mitochondrial recombination

    International Nuclear Information System (INIS)

    Fraenkel, A.H.M.

    1974-01-01

    Studies of both prokaryotic and eukaryotic organisms indicate that pathways governing repair of damage to nuclear DNA caused by x-ray or ultraviolet irradiation overlap with those controlling recombination. Fourteen nuclear mutants of Saccharomyces cerevisiae were tested in order to determine whether these mutant genes affected mitochondrial recombination. None of the mutations studied significantly affected mitochondrial recombination. The nuclear recombination and repair pathways studied do not overlap with the nuclear pathway which controls recombination of mitochondrial DNA. A second set of experiments was designed to test the effect of caffeine on both nuclear and mitochondrial recombination in Saccharomyces cerevisiae. (U.S.)

  8. A recombinant chimeric La Crosse virus expressing the surface glycoproteins of Jamestown Canyon virus is immunogenic and protective against challenge with either parental virus in mice or monkeys.

    Science.gov (United States)

    Bennett, R S; Gresko, A K; Nelson, J T; Murphy, B R; Whitehead, S S

    2012-01-01

    La Crosse virus (LACV) and Jamestown Canyon virus (JCV), family Bunyaviridae, are mosquito-borne viruses that are endemic in North America and recognized as etiologic agents of encephalitis in humans. Both viruses belong to the California encephalitis virus serogroup, which causes 70 to 100 cases of encephalitis a year. As a first step in creating live attenuated viral vaccine candidates for this serogroup, we have generated a recombinant LACV expressing the attachment/fusion glycoproteins of JCV. The JCV/LACV chimeric virus contains full-length S and L segments derived from LACV. For the M segment, the open reading frame (ORF) of LACV is replaced with that derived from JCV and is flanked by the untranslated regions of LACV. The resulting chimeric virus retained the same robust growth kinetics in tissue culture as observed for either parent virus, and the virus remains highly infectious and immunogenic in mice. Although both LACV and JCV are highly neurovirulent in 21 day-old mice, with 50% lethal dose (LD₅₀) values of 0.1 and 0.5 log₁₀ PFU, respectively, chimeric JCV/LACV is highly attenuated and does not cause disease even after intracerebral inoculation of 10³ PFU. Parenteral vaccination of mice with 10¹ or 10³ PFU of JCV/LACV protected against lethal challenge with LACV, JCV, and Tahyna virus (TAHV). The chimeric virus was infectious and immunogenic in rhesus monkeys and induced neutralizing antibodies to JCV, LACV, and TAHV. When vaccinated monkeys were challenged with JCV, they were protected against the development of viremia. Generation of highly attenuated yet immunogenic chimeric bunyaviruses could be an efficient general method for development of vaccines effective against these pathogenic viruses.

  9. Reverse Genetics Approaches for the Development of Influenza Vaccines

    Science.gov (United States)

    Nogales, Aitor; Martínez-Sobrido, Luis

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines. PMID:28025504

  10. A live-attenuated chimeric PCV2 vaccine based on subtype 2b is transmitted to contact pigs but is not upregulated by concurrent infection with PPV and PRRSV and is efficacious in a triple challenge co-infection model

    Science.gov (United States)

    The objective of this study was to determine the safety and efficacy of a new live-attenuated chimeric PCV1/2b vaccine. Forty-six, 21-day-old, PCV2-naïve pigs were randomly assigned to one of six groups (Negative controls, positive controls, Vac-0, Vac-0-PCV2, Contact-PCV2, Vac-28-PCV2). All pigs we...

  11. Recombining without Hotspots: A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of Drosophila.

    Science.gov (United States)

    Smukowski Heil, Caiti S; Ellison, Chris; Dubin, Matthew; Noor, Mohamed A F

    2015-10-01

    Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human-chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Therapeutic Recombinant Monoclonal Antibodies

    Science.gov (United States)

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  13. Increased volume of distribution for recombinant activated factor VII and longer plasma-derived factor VII half-life may explain their long lasting prophylactic effect.

    Science.gov (United States)

    Mathijssen, Natascha C J; Masereeuw, Rosalinde; Holme, Pal Andre; van Kraaij, Marian G J; Laros-van Gorkom, Britta A P; Peyvandi, Flora; van Heerde, Waander L

    2013-08-01

    Prophylaxis with plasma-derived or recombinant activated factor VII is beneficial in severe factor VII deficiency. To understand why prophylactic treatment with both products is efficacious, we conducted a pharmacokinetic study. Ten factor VII deficient patients were treated with either recombinant activated (20 μg/kg) or plasma-derived (25 IU/kg) factor VII in a cross-over design. Pharmacokinetic parameters were analyzed through activated factor VII activity, factor VII clotting activity, and factor VII antigen levels on depicted time points. Factor VII activity half-lifes, determined by non-compartmental and one-compartmental analysis (results in brackets), were shorter for recombinant activated (1.4h; 0.7h) than for plasma-derived factor VII (6.8h; 3.2h); both recombinant activated (5.1h; 2.1h and plasma-derived factor VII (5.8h; 3.2h) resulted in longer half-lives of factor VII antigen. Activated factor VII half-lives (based on activated factor VII activity levels) were significantly higher compared to factor VII clotting activity (1.6h; 0.9h). Volumes of distribution were significantly higher for activated factor VII (236 ml/kg; 175 ml/kg, measured by activated factor VII) as compared to plasma-derived factor VII (206 ml/kg; 64 ml/kg, measured by factor FVII activity), suggesting a plasma- and extracellular fluid distribution for recombinant activated factor VII. Recombinant activated factor VII showed significantly shorter half-lifes than plasma-derived factor VII. Volumes of distribution were significantly higher for treatment with recombinant activated factor VII. The longer half-life for plasma-derived factor VII, compared to recombinant activated factor VII, and the increased volume of distribution for recombinant activated factor VII, compared to plasma-derived factor VII may further elucidate the beneficial effect of prophylactic treatment of both products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Protection of chickens against infectious bronchitis by a recombinant fowlpox virus co-expressing IBV-S1 and chicken IFNgamma.

    Science.gov (United States)

    Wang, Yun-Feng; Sun, Yong-Ke; Tian, Zhan-Cheng; Shi, Xing-Ming; Tong, Guang-Zhi; Liu, Sheng-Wang; Zhi, Hai-Dong; Kong, Xian-Gang; Wang, Mei

    2009-11-23

    A fowlpox virus expressing the chicken infectious bronchitis virus (IBV) S1 gene of the LX4 strain (rFPV-IBVS1) and a fowlpox virus co-expressing the S1 gene and the chicken type II interferon gene (rFPV-IBVS1-ChIFNgamma) were constructed. These viruses were assessed for their immunological efficacy on specific-pathogen-free (SPF) chickens challenged with a virulent IBV. Although the antibody levels in the rFPV-IBVS1-ChIFNgamma-vaccinated group were lower than those in the attenuated live IB vaccine H120 group and the rFPV-IBVS1 group, the rFPV-IBVS1-ChIFNgamma provided the strongest protection against an IBV LX4 virus challenge (15 out of 16 chickens immunized with rFPV-IBVS1-ChIFNgamma were protected), followed by the attenuated live IB vaccine (13/16 protected) and the rFPV-IBVS1 (12/16 protected). Compared to those of the rFPV-IBVS1 and the attenuated live IB vaccine groups, chickens in the rFPV-IBVS1-ChIFNgamma group eliminated virus more quickly and decreased the presence of viral antigen more significantly in renal tissue. Examination of affected tissues revealed abnormalities in the liver, spleen, kidney, lung and trachea of chickens vaccinated with the attenuated live IB vaccine and the rFPV-IBVS1 vaccine. In rFPV-IBVS1-ChIFNgamma-vaccinated chickens, pathological changes were also observed in those organs, but were milder and lasted shorter. The lesions in the mock control group were the most severe and lasted for at least 20 days. This study demonstrated that chicken type II interferon increased the immunoprotective efficacy of rFPV-IBVS1-ChIFNgamma and normal weight gain in vaccinated chickens although it inhibited serum antibody production.

  15. Generation and characterization of koi herpesvirus recombinants lacking viral enzymes of nucleotide metabolism.

    Science.gov (United States)

    Fuchs, Walter; Fichtner, Dieter; Bergmann, Sven M; Mettenleiter, Thomas C

    2011-06-01

    Koi herpesvirus (KHV) causes a fatal disease in koi and common carp, but no reliable and genetically characterized vaccines are available up to now. Therefore, we generated KHV recombinants possessing deletions within the viral ribonucleotide reductase (RNR), thymidine kinase (TK), dUTPase, or TK and dUTPase genes, and their corresponding rescuants. All KHV mutants were replication competent in cultured cells. Whereas plaque sizes and titers of RNR-negative KHV were reduced, replication of the other mutants was not affected. Experimental infection of carp indicated attenuation of TK- or dUTPase-deleted KHV, and PCR analysis of tissue samples permitted differentiation of mutant from wild-type virus.

  16. Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA.

    Directory of Open Access Journals (Sweden)

    Matthew G Cottingham

    2008-02-01

    Full Text Available The production, manipulation and rescue of a bacterial artificial chromosome clone of Vaccinia virus (VAC-BAC in order to expedite construction of expression vectors and mutagenesis of the genome has been described (Domi & Moss, 2002, PNAS99 12415-20. The genomic BAC clone was 'rescued' back to infectious virus using a Fowlpox virus helper to supply transcriptional machinery. We apply here a similar approach to the attenuated strain Modified Vaccinia virus Ankara (MVA, now widely used as a safe non-replicating recombinant vaccine vector in mammals, including humans. Four apparently full-length, rescuable clones were obtained, which had indistinguishable immunogenicity in mice. One clone was shotgun sequenced and found to be identical to the parent. We employed GalK recombination-mediated genetic engineering (recombineering of MVA-BAC to delete five selected viral genes. Deletion of C12L, A44L, A46R or B7R did not significantly affect CD8(+ T cell immunogenicity in BALB/c mice, but deletion of B15R enhanced specific CD8(+ T cell responses to one of two endogenous viral epitopes (from the E2 and F2 proteins, in accordance with published work (Staib et al., 2005, J. Gen. Virol.86, 1997-2006. In addition, we found a higher frequency of triple-positive IFN-gamma, TNF-alpha and IL-2 secreting E3-specific CD8+ T-cells 8 weeks after vaccination with MVA lacking B15R. Furthermore, a recombinant vaccine capable of inducing CD8(+ T cells against an epitope from Plasmodium berghei was created using GalK counterselection to insert an antigen expression cassette lacking a tandem marker gene into the traditional thymidine kinase locus of MVA-BAC. MVA continues to feature prominently in clinical trials of recombinant vaccines against diseases such as HIV-AIDS, malaria and tuberculosis. Here we demonstrate in proof-of-concept experiments that MVA-BAC recombineering is a viable route to more rapid and efficient generation of new candidate mutant and recombinant

  17. Synthesis and characterization of recombinant abductin-based proteins.

    Science.gov (United States)

    Su, Renay S-C; Renner, Julie N; Liu, Julie C

    2013-12-09

    Recombinant proteins are promising tools for tissue engineering and drug delivery applications. Protein-based biomaterials have several advantages over natural and synthetic polymers, including precise control over amino acid composition and molecular weight, modular swapping of functional domains, and tunable mechanical and physical properties. In this work, we describe recombinant proteins based on abductin, an elastomeric protein that is found in the inner hinge of bivalves and functions as a coil spring to keep shells open. We illustrate, for the first time, the design, cloning, expression, and purification of a recombinant protein based on consensus abductin sequences derived from Argopecten irradians . The molecular weight of the protein was confirmed by mass spectrometry, and the protein was 94% pure. Circular dichroism studies showed that the dominant structures of abductin-based proteins were polyproline II helix structures in aqueous solution and type II β-turns in trifluoroethanol. Dynamic light scattering studies illustrated that the abductin-based proteins exhibit reversible upper critical solution temperature behavior and irreversible aggregation behavior at high temperatures. A LIVE/DEAD assay revealed that human umbilical vein endothelial cells had a viability of 98 ± 4% after being cultured for two days on the abductin-based protein. Initial cell spreading on the abductin-based protein was similar to that on bovine serum albumin. These studies thus demonstrate the potential of abductin-based proteins in tissue engineering and drug delivery applications due to the cytocompatibility and its response to temperature.

  18. Early treatment with laronidase improves clinical outcomes in patients with attenuated MPS I: a retrospective case series analysis of nine sibships

    OpenAIRE

    Al-Sannaa, Nouriya A.; Bay, Luisa; Barbouth, Deborah S.; Benhayoun, Youssef; Goizet, Cyril; Guelbert, Norberto; Jones, Simon A.; Kyosen, Sandra Obikawa; Martins, Ana Maria; Phornphutkul, Chanika; Reig, Celia; Pleat, Rebecca; Fallet, Shari; Ivanovska Holder, Iva

    2015-01-01

    Background Enzyme replacement therapy (ERT) with laronidase, (recombinant human α-L-iduronidase; Aldurazyme) is the primary treatment option for patients with attenuated mucopolysaccharidosis type I (MPS I). This study examined the effect of early ERT on clinical manifestations. Methods This multinational, retrospective case series abstracted data from records of 20 patients with Hurler-Scheie syndrome within nine sibships that included older siblings treated with laronidase after the develop...

  19. Recombination every day: abundant recombination in a virus during a single multi-cellular host infection.

    Directory of Open Access Journals (Sweden)

    Remy Froissart

    2005-03-01

    Full Text Available Viral recombination can dramatically impact evolution and epidemiology. In viruses, the recombination rate depends on the frequency of genetic exchange between different viral genomes within an infected host cell and on the frequency at which such co-infections occur. While the recombination rate has been recently evaluated in experimentally co-infected cell cultures for several viruses, direct quantification at the most biologically significant level, that of a host infection, is still lacking. This study fills this gap using the cauliflower mosaic virus as a model. We distributed four neutral markers along the viral genome, and co-inoculated host plants with marker-containing and wild-type viruses. The frequency of recombinant genomes was evaluated 21 d post-inoculation. On average, over 50% of viral genomes recovered after a single host infection were recombinants, clearly indicating that recombination is very frequent in this virus. Estimates of the recombination rate show that all regions of the genome are equally affected by this process. Assuming that ten viral replication cycles occurred during our experiment-based on data on the timing of coat protein detection-the per base and replication cycle recombination rate was on the order of 2 x 10(-5 to 4 x 10(-5. This first determination of a virus recombination rate during a single multi-cellular host infection indicates that recombination is very frequent in the everyday life of this virus.

  20. Promotion of BRCA2-Dependent Homologous Recombination by DSS1 via RPA Targeting and DNA Mimicry.

    Science.gov (United States)

    Zhao, Weixing; Vaithiyalingam, Sivaraja; San Filippo, Joseph; Maranon, David G; Jimenez-Sainz, Judit; Fontenay, Gerald V; Kwon, Youngho; Leung, Stanley G; Lu, Lucy; Jensen, Ryan B; Chazin, Walter J; Wiese, Claudia; Sung, Patrick

    2015-07-16

    The tumor suppressor BRCA2 is thought to facilitate the handoff of ssDNA from replication protein A (RPA) to the RAD51 recombinase during DNA break and replication fork repair by homologous recombination. However, we find that RPA-RAD51 exchange requires the BRCA2 partner DSS1. Biochemical, structural, and in vivo analyses reveal that DSS1 allows the BRCA2-DSS1 complex to physically and functionally interact with RPA. Mechanistically, DSS1 acts as a DNA mimic to attenuate the affinity of RPA for ssDNA. A mutation in the solvent-exposed acidic domain of DSS1 compromises the efficacy of RPA-RAD51 exchange. Thus, by targeting RPA and mimicking DNA, DSS1 functions with BRCA2 in a two-component homologous recombination mediator complex in genome maintenance and tumor suppression. Our findings may provide a paradigm for understanding the roles of DSS1 in other biological processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Glycoprotein from street rabies virus BD06 induces early and robust immune responses when expressed from a non-replicative adenovirus recombinant.

    Science.gov (United States)

    Wang, Shuchao; Sun, Chenglong; Zhang, Shoufeng; Zhang, Xiaozhuo; Liu, Ye; Wang, Ying; Zhang, Fei; Wu, Xianfu; Hu, Rongliang

    2015-09-01

    The rabies virus (RABV) glycoprotein (G) is responsible for inducing neutralizing antibodies against rabies virus. Development of recombinant vaccines using the G genes from attenuated strains rather than street viruses is a regular practice. In contrast to this scenario, we generated three human adenovirus type 5 recombinants using the G genes from the vaccine strains SRV9 and Flury-LEP, and the street RABV strain BD06 (nrAd5-SRV9-G, nrAd5-Flury-LEP-G, and nrAd5-BD06-G). These recombinants were non-replicative, but could grow up to ~10(8) TCID50/ml in helper HEK293AD cells. Expression of the G protein was verified by immunostaining, quantitative PCR and cytometry. Animal experiments revealed that immunization with nrAd5-BD06-G can induce a higher seroconversion rate, a higher neutralizing antibody level, and a longer survival time after rabies virus challenge in mice when compared with the other two recombinants. Moreover, the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) was significantly higher in mice immunized with nrAd5-BD06-G, which might also contribute to the increased protection. These results show that the use of street RABV G for non-replicative systems may be an alternative for developing effective recombinant rabies vaccines.

  2. Verification of photon attenuation characteristics for 3D printer based small animal lung model

    International Nuclear Information System (INIS)

    Lee, Se Ho; Lee, Seung Wook; Han, Su Chul; Park, Seung Woo

    2016-01-01

    Since it is difficult to measure absorbed dose to mice in vivo, replica mice are mostly used as alternative. In this study, realistic mouse phantom was fabricated by using 3D printer (object500 connex3, Stratasys, USA). Elemental inks as material of 3D printer were selected corresponding to mouse tissue. To represent lung, selected material was partially used with air layer. In order to verify material equivalent, super-flex bolus was simply compared to verify photon attenuation characteristics. In the case of lung, Hounsfield unit (HU) of the phantom were compared with a live mouse. In this study, we fabricated mouse phantom by using 3D printer, and practically verified photon attenuation characteristics. The fabricated phantom shows tissue equivalence as well as similar geometry with live mouse. As more and more growing of 3D printer technique, 3D printer based small preclinical animal phantom would increase reliability of verification of absorbed dose in small animal for preclinical study

  3. Verification of photon attenuation characteristics for 3D printer based small animal lung model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Se Ho; Lee, Seung Wook [Pusan National University, Busan (Korea, Republic of); Han, Su Chul; Park, Seung Woo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-05-15

    Since it is difficult to measure absorbed dose to mice in vivo, replica mice are mostly used as alternative. In this study, realistic mouse phantom was fabricated by using 3D printer (object500 connex3, Stratasys, USA). Elemental inks as material of 3D printer were selected corresponding to mouse tissue. To represent lung, selected material was partially used with air layer. In order to verify material equivalent, super-flex bolus was simply compared to verify photon attenuation characteristics. In the case of lung, Hounsfield unit (HU) of the phantom were compared with a live mouse. In this study, we fabricated mouse phantom by using 3D printer, and practically verified photon attenuation characteristics. The fabricated phantom shows tissue equivalence as well as similar geometry with live mouse. As more and more growing of 3D printer technique, 3D printer based small preclinical animal phantom would increase reliability of verification of absorbed dose in small animal for preclinical study.

  4. Inhibition of TNF-alpha production contributes to the attenuation of LPS-induced hypophagia by pentoxifylline.

    Science.gov (United States)

    Porter, M H; Hrupka, B J; Altreuther, G; Arnold, M; Langhans, W

    2000-12-01

    Cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) are assumed to mediate anorexia during bacterial infections. To improve our understanding of the role that these two cytokines serve in mediating infection during anorexia, we investigated the ability of pentoxifylline (PTX), a potent inhibitor of TNF-alpha production, to block the anorectic effects of the bacterial products lipopolysaccharide (LPS) and muramyl dipeptide (MDP) in rats. Intraperitoneally injected PTX (100 mg/kg body wt) completely eliminated the anorectic effect of intraperitoneally injected LPS (100 microg/kg body wt) and attenuated the anorectic effect of a higher dose of intraperitoneally injected LPS (250 microg/kg body wt). Concurrently, PTX pretreatment suppressed low-dose LPS-induced TNF-alpha production by more than 95% and IL-1beta production 39%, as measured by ELISA. Similarly, high-dose LPS-induced TNF-alpha production was reduced by approximately 90%. PTX administration also attenuated the tolerance that is normally observed with a second injection of LPS. In addition, PTX pretreatment attenuated the hypophagic effect of intraperitoneally injected MDP (2 mg/kg body wt) but had no effect on the anorectic response to intraperitoneally injected recombinant human TNF-alpha (150 ug/kg body wt). The results suggest that suppression of TNF-alpha production is sufficient to attenuate LPS- and MDP-induced anorexia. This is consistent with the hypothesis that TNF-alpha plays a major role in the anorexia associated with bacterial infection.

  5. Development of novel prime-boost strategies based on a tri-gene fusion recombinant L. tarentolae vaccine against experimental murine visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Noushin Saljoughian

    Full Text Available Visceral leishmaniasis (VL is a vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem in many countries. Although many antigens have been examined so far as protein- or DNA-based vaccines, none of them conferred complete long-term protection. The use of the lizard non-pathogenic to humans Leishmania (L. tarentolae species as a live vaccine vector to deliver specific Leishmania antigens is a recent approach that needs to be explored further. In this study, we evaluated the effectiveness of live vaccination in protecting BALB/c mice against L. infantum infection using prime-boost regimens, namely Live/Live and DNA/Live. As a live vaccine, we used recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinases (CPA and CPB without its unusual C-terminal extension (CPB(-CTE as a tri-fusion gene. For DNA priming, the tri-fusion gene was encoded in pcDNA formulated with cationic solid lipid nanoparticles (cSLN acting as an adjuvant. At different time points post-challenge, parasite burden and histopathological changes as well as humoral and cellular immune responses were assessed. Our results showed that immunization with both prime-boost A2-CPA-CPB(-CTE-recombinant L. tarentolae protects BALB/c mice against L. infantum challenge. This protective immunity is associated with a Th1-type immune response due to high levels of IFN-γ production prior and after challenge and with lower levels of IL-10 production after challenge, leading to a significantly higher IFN-γ/IL-10 ratio compared to the control groups. Moreover, this immunization elicited high IgG1 and IgG2a humoral immune responses. Protection in mice was also correlated with a high nitric oxide production and low parasite burden. Altogether, these results indicate the promise of the A2-CPA-CPB(-CTE-recombinant L. tarentolae as a safe live vaccine candidate against VL.

  6. Safety and efficacy of an attenuated Chinese QX-like infectious bronchitis virus strain as a candidate vaccine.

    Science.gov (United States)

    Zhao, Ye; Cheng, Jin-long; Liu, Xiao-yu; Zhao, Jing; Hu, Yan-xin; Zhang, Guo-zhong

    2015-10-22

    Infectious bronchitis (IB) is a highly contagious respiratory and urogenital disease of chickens caused by infectious bronchitis virus (IBV). This disease is of considerable economic importance and is primarily controlled through biosecurity and immunization with live attenuated and inactivated IB vaccines of various serotypes. In the present study, we tested the safety and efficacy of an attenuated predominant Chinese QX-like IBV strain. The results revealed that the attenuated strain has a clear decrease in pathogenicity for specific-pathogen-free (SPF) chickens compared with the parent strain. Strain YN-inoculated birds had clinical signs of varying severity with 30% mortality, while the attenuated group appeared healthy, with less tissue damage. The attenuated strain also had relatively low tissue replication rates and higher antibody levels. The superior protective efficacy of the attenuated strain was observed when vaccinated birds were challenged with a homologous or heterologous field IBV strain, indicating the potential of the attenuated YN (aYN) as a vaccine. Producing a vaccine targeting the abundant serotype in China is essential to reducing the economic impact of IB on the poultry industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. First identification of a recombinant form of hepatitis C virus in Austrian patients by full-genome next generation sequencing.

    Science.gov (United States)

    Stelzl, Evelyn; Haas, Bernhard; Bauer, Bernd; Zhang, Sherry; Fiss, Ellen H; Hillman, Grantland; Hamilton, Aaron T; Mehta, Rochak; Heil, Marintha L; Marins, Ed G; Santner, Brigitte I; Kessler, Harald H

    2017-01-01

    Hepatitis C virus (HCV) intergenotypic recombinant forms have been reported for various HCV genotypes/subtypes in several countries worldwide. In a recent study, four patients living in Austria had been identified to be possibly infected with a recombinant HCV strain. To clarify results and determine the point of recombination, full-genome next-generation sequencing using the Illumina MiSeq v2 300 cycle kit (Illumina, San Diego, CA, USA) was performed in the present study. Samples of all of the patients contained the recombinant HCV strain 2k/1b. The point of recombination was found to be within the HCV NS2 gene between nucleotide positions 3189-3200 based on H77 numbering. While three of four patients were male and had migration background from Chechnya (n = 2) and Azerbaijan (n = 1), the forth patient was a female born in Austria. Three of the four patients including the female had intravenous drug abuse as a risk factor for HCV transmission. While sequencing techniques are limited to a few specialized laboratories, a genotyping assay that uses both ends of the HCV genome should be employed to identify patients infected with a recombinant HCV strain. The correct identification of recombinant strains also has an impact considering the tailored choice of anti-HCV treatment.

  8. First identification of a recombinant form of hepatitis C virus in Austrian patients by full-genome next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Evelyn Stelzl

    Full Text Available Hepatitis C virus (HCV intergenotypic recombinant forms have been reported for various HCV genotypes/subtypes in several countries worldwide. In a recent study, four patients living in Austria had been identified to be possibly infected with a recombinant HCV strain. To clarify results and determine the point of recombination, full-genome next-generation sequencing using the Illumina MiSeq v2 300 cycle kit (Illumina, San Diego, CA, USA was performed in the present study. Samples of all of the patients contained the recombinant HCV strain 2k/1b. The point of recombination was found to be within the HCV NS2 gene between nucleotide positions 3189-3200 based on H77 numbering. While three of four patients were male and had migration background from Chechnya (n = 2 and Azerbaijan (n = 1, the forth patient was a female born in Austria. Three of the four patients including the female had intravenous drug abuse as a risk factor for HCV transmission. While sequencing techniques are limited to a few specialized laboratories, a genotyping assay that uses both ends of the HCV genome should be employed to identify patients infected with a recombinant HCV strain. The correct identification of recombinant strains also has an impact considering the tailored choice of anti-HCV treatment.

  9. THE ATTENUATING EFFECT OF EMPOWERMENT ON IPV-RELATED PTSD SYMPTOMS IN BATTERED WOMEN LIVING IN DOMESTIC VIOLENCE SHELTERS

    Science.gov (United States)

    Perez, Sara; Johnson, Dawn M.; Wright, Caroline Vaile

    2010-01-01

    Intimate partner violence (IPV) is associated with significant psychological distress, including posttraumatic stress disorder (PTSD). However, factors that attenuate the impact of IPV on PTSD remain largely unknown. Using hierarchical regression, this investigation explored the impact of resource acquisition and empowerment on the relationship between IPV and PTSD. Empowerment demonstrated greater relative importance over resource acquisition. Specifically, empowerment was found to attenuate the impact of IPV severity on PTSD at low and moderate levels of violence. The importance of fostering empowerment and addressing PTSD in addition to provision of resources in battered women is discussed. PMID:22411301

  10. Regulation of Meiotic Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  11. Rare natural type 3/type 2 intertypic capsid recombinant vaccine-related poliovirus isolated from a case of acute flaccid paralysis in Brazil, 2015.

    Science.gov (United States)

    Cassemiro, Klécia M S M; Burlandy, Fernanda M; da Silva, Edson E

    2016-07-01

    A natural type 3/type 2 intertypic capsid recombinant vaccine-related poliovirus was isolated from an acute flaccid paralytic case in Brazil. Genome sequencing revealed the uncommon location of the crossover site in the VP1 coding region (nucleotides 3251-3258 of Sabin 3 genome). The Sabin 2 donor sequence replaced the last 118 nt of VP1, resulting in the substitution of the complete antigenic site IIIa by PV2-specific amino acids. The low overall number of nucleotide substitutions in P1 region indicated that the predicted replication time of the isolate was about 8-9 weeks. Two of the principal determinants of attenuation in Sabin 3 genomes were mutated (U472C and C2493U), but the temperature-sensitive phenotype of the isolate was preserved. Our results support the theory that there exists a PV3/PV2 recombination hotspot site in the tail region of the VP1 capsid protein and that the recombination may occur soon after oral poliovirus vaccine administration.

  12. Peru-15 (Choleragarde(®)), a live attenuated oral cholera vaccine, is safe and immunogenic in human immunodeficiency virus (HIV)-seropositive adults in Thailand.

    Science.gov (United States)

    Ratanasuwan, W; Kim, Y H; Sah, B K; Suwanagool, S; Kim, D R; Anekthananon, A; Lopez, A L; Techasathit, W; Grahek, S L; Clemens, J D; Wierzba, T F

    2015-09-11

    Many areas with endemic and epidemic cholera report significant levels of HIV transmission. According to the World Health Organization (WHO), over 95% of reported cholera cases occur in Africa, which also accounts for nearly 70% of people living with HIV/AIDS globally. Peru-15, a promising single dose live attenuated oral cholera vaccine (LA-OCV), was previously found to be safe and immunogenic in cholera endemic areas. However, no data on the vaccine's safety among HIV-seropositive adults had been collected. This study was a double-blinded, individually randomized, placebo-controlled trial enrolling HIV-seropositive adults, 18-45 years of age, conducted in Bangkok, Thailand, to assess the safety of Peru-15 in a HIV-seropositive cohort. 32 HIV infected subjects were randomized to receive either a single oral dose of the Peru-15 vaccine with a buffer or a placebo (buffer only). No serious adverse events were reported during the follow-up period in either group. The geometric mean fold (GMF) rise in V. cholerae O1 El Tor specific antibody titers between baseline and 7 days after dosing was 32.0 (pcholerae was isolated from the stool of one vaccinee, and found to be genetically identical to the Peru-15 vaccine strain. There were no significant changes in HIV viral load or CD4 T-cell counts between vaccine and placebo groups. Peru-15 was shown to be safe and immunogenic in HIV-seropositive Thai adults. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Recombination of cluster ions

    Science.gov (United States)

    Johnsen, Rainer

    1993-01-01

    Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.

  14. In vivo production of recombinant proteins using occluded recombinant AcMNPV-derived baculovirus vectors.

    Science.gov (United States)

    Guijarro-Pardo, Eva; Gómez-Sebastián, Silvia; Escribano, José M

    2017-12-01

    Trichoplusia ni insect larvae infected with vectors derived from the Autographa californica multiple nucleopolyhedrovirus (AcMNPV), are an excellent alternative to insect cells cultured in conventional bioreactors to produce recombinant proteins because productivity and cost-efficiency reasons. However, there is still a lot of work to do to reduce the manual procedures commonly required in this production platform that limit its scalability. To increase the scalability of this platform technology, a current bottleneck to be circumvented in the future is the need of injection for the inoculation of larvae with polyhedrin negative baculovirus vectors (Polh-) because of the lack of oral infectivity of these viruses, which are commonly used for production in insect cell cultures. In this work we have developed a straightforward alternative to obtain orally infective vectors derived from AcMNPV and expressing recombinant proteins that can be administered to the insect larvae (Trichoplusia ni) by feeding, formulated in the insect diet. The approach developed was based on the use of a recombinant polyhedrin protein expressed by a recombinant vector (Polh+), able to co-occlude any recombinant Polh- baculovirus vector expressing a recombinant protein. A second alternative was developed by the generation of a dual vector co-expressing the recombinant polyhedrin protein and the foreign gene of interest to obtain the occluded viruses. Additionally, by the incorporation of a reporter gene into the helper Polh+ vector, it was possible the follow-up visualization of the co-occluded viruses infection in insect larvae and will help to homogenize infection conditions. By using these methodologies, the production of recombinant proteins in per os infected larvae, without manual infection procedures, was very similar in yield to that obtained by manual injection of recombinant Polh- AcMNPV-based vectors expressing the same proteins. However, further analyses will be required for a

  15. Outlook in the application of Chlamydomonas reinhardtii chloroplast as a platform for recombinant protein production.

    Science.gov (United States)

    Shamriz, Shabnam; Ofoghi, Hamideh

    Microalgae, also called microphytes, are a vast group of microscopic photosynthetic organisms living in aquatic ecosystems. Microalgae have attracted the attention of biotechnology industry as a platform for extracting natural products with high commercial value. During last decades, microalgae have been also used as cost-effective and easily scalable platform for the production of recombinant proteins with medical and industrial applications. Most progress in this field has been made with Chlamydomonas reinhardtii as a model organism mainly because of its simple life cycle, well-established genetics and ease of cultivation. However, due to the scarcity of existing infrastructure for commercial production and processing together with relatively low product yields, no recombinant products from C. reinhardtii have gained approval for commercial production and most of them are still in research and development. In this review, we focus on the chloroplast of C. reinhardtii as an algal recombinant expression platform and compare its advantages and disadvantages to other currently used expression systems. We then discuss the strategies for engineering the chloroplast of C. reinhardtii to produce recombinant cells and present a comprehensive overview of works that have used this platform for the expression of high-value products.

  16. Current status of flavivirus vaccines.

    Science.gov (United States)

    Barrett, A D

    2001-12-01

    Although there are approximately 68 flaviviruses recognized, vaccines have been developed to control very few human flavivirus diseases. Licensed live attenuated vaccines have been developed for yellow fever (strain 17D) and Japanese encephalitis (strain SA14-14-2) viruses, and inactivated vaccines have been developed for Japanese encephalitis and tick-borne encephalitis viruses. The yellow fever live attenuated 17D vaccine is one of the most efficacious and safe vaccines developed to date and has been used to immunize more than 300 million people. A number of experimental vaccines are being developed, most notably for dengue. Candidate tetravalent live attenuated dengue vaccines are undergoing clinical trials. Other vaccines are being developed using reverse genetics, DNA vaccines, and recombinant immunogens. In addition, the yellow fever 17D vaccine has been used as a backbone to generate chimeric viruses containing the premembrane and envelope protein genes from other flaviviruses. The "Chimerivax" platform has been used to construct chimeric Japanese encephalitis and dengue viruses that are in different phases of development. Similar strategies are being used by other laboratories.

  17. ASSESSING AEROBIC NATURAL ATTENUATION OF TRICHLOROETHENE AT FOUR DOE SITES

    International Nuclear Information System (INIS)

    Koelsch, Michael C.; Starr, Robert C.; Sorenson, Kent S. Jr.

    2005-01-01

    A 3-year Department of Energy Environmental Science Management Program (EMSP) project is currently investigating natural attenuation of trichloroethane (TCE) in aerobic groundwater. This presentation summarizes the results of a screening process to identify TCE plumes at DOE facilities that are suitable for assessing the rate of TCE cometabolism under aerobic conditions. In order to estimate aerobic degradation rates, plumes had to meet the following criteria: TCE must be present in aerobic groundwater, a conservative co-contaminant must be present and have approximately the same source as TCE, and the groundwater velocity must be known. A total of 127 TCE plumes were considered across 24 DOE sites. The four sites retained for the assessment were: (1) Brookhaven National Laboratory, OU III; (2) Paducah Gaseous Diffusion Plant, Northwest Plume; (3) Rocky Flats Environmental Technology Site, Industrialized Area--Southwest Plume and 903 Pad South Plume; and (4) Savannah River Site, A/M Area Plume. For each of these sites, a co-contaminant derived from the same source area as TCE was used as a nonbiodegrading tracer. The tracer determined the extent to which concentration decreases in the plume can be accounted for solely by abiotic processes such as dispersion and dilution. Any concentration decreases not accounted for by these processes must be explained by some other natural attenuation mechanism. Thus, ''half-lives'' presented herein are in addition to attenuation that occurs due to hydrologic mechanisms. This ''tracer-corrected method'' has previously been used at the DOE's Idaho National Engineering and Environmental Laboratory in conjunction with other techniques to document the occurrence of intrinsic aerobic cometabolism. Application of this method to other DOE sites is the first step to determining whether this might be a significant natural attenuation mechanism on a broader scale. Application of the tracer-corrected method to data from the Brookhaven

  18. Low Dose Vaccination with Attenuated Francisella tularensis Strain SchuS4 Mutants Protects against Tularemia Independent of the Route of Vaccination

    Science.gov (United States)

    Rockx-Brouwer, Dedeke; Chong, Audrey; Wehrly, Tara D.; Child, Robert; Crane, Deborah D.

    2012-01-01

    Tularemia, caused by the Gram-negative bacterium Francisella tularensis, is a severe, sometimes fatal disease. Interest in tularemia has increased over the last decade due to its history as a biological weapon. In particular, development of novel vaccines directed at protecting against pneumonic tularemia has been an important goal. Previous work has demonstrated that, when delivered at very high inoculums, administration of live, highly attenuated strains of virulent F. tularensis can protect against tularemia. However, lower vaccinating inoculums did not offer similar immunity. One concern of using live vaccines is that the host may develop mild tularemia in response to infection and use of high inoculums may contribute to this issue. Thus, generation of a live vaccine that can efficiently protect against tularemia when delivered in low numbers, e.g. tularemia when delivered at concentrations of approximately 50 or fewer bacteria. Attenuated strains for use as vaccines were selected by their inability to efficiently replicate in macrophages in vitro and impaired replication and dissemination in vivo. Although all strains were defective for replication in vitro within macrophages, protective efficacy of each attenuated mutant was correlated with their ability to modestly replicate and disseminate in the host. Finally, we demonstrate the parenteral vaccination with these strains offered superior protection against pneumonic tularemia than intranasal vaccination. Together our data provides proof of principle that low dose attenuated vaccines may be a viable goal in development of novel vaccines directed against tularemia. PMID:22662210

  19. Revaccination with Live Attenuated Vaccines Confer Additional Beneficial Nonspecific Effects on Overall Survival

    DEFF Research Database (Denmark)

    Benn, Christine S; Fisker, Ane B; Whittle, Hilton C

    2016-01-01

    BACKGROUND: Live vaccines against measles (MV), tuberculosis (BCG), polio (OPV) and smallpox reduce mortality more than explained by target-disease prevention. The beneficial nonspecific effects (NSEs) of MV are strongest when MV is given in presence of maternal antibodies. We therefore hypothesi......BACKGROUND: Live vaccines against measles (MV), tuberculosis (BCG), polio (OPV) and smallpox reduce mortality more than explained by target-disease prevention. The beneficial nonspecific effects (NSEs) of MV are strongest when MV is given in presence of maternal antibodies. We therefore...

  20. Recombination pattern reanalysis of some HIV-1 circulating recombination forms suggest the necessity and difficulty of revision.

    Directory of Open Access Journals (Sweden)

    Lei Jia

    Full Text Available Recombination is one of the major mechanisms underlying the generation of HIV-1 variability. Currently 61 circulating recombinant forms of HIV-1 have been identified. With the development of recombination detection techniques and accumulation of HIV-1 reference stains, more accurate mosaic structures of circulating recombinant forms (CRFs, like CRF04 and CRF06, have undergone repeated analysis and upgrades. Such revisions may also be necessary for other CRFs. Unlike previous studies, whose results are based primarily on a single recombination detection program, the current study was based on multiple recombination analysis, which may have produced more impartial results.Representative references of 3 categories of intersubtype recombinants were selected, including BC recombinants (CRF07 and CRF08, BG recombinants (CRF23 and CRF24, and BF recombinants (CRF38 and CRF44. They were reanalyzed in detail using both the jumping profile hidden Markov model and RDP3.The results indicate that revisions and upgrades are very necessary and the entire re-analysis suggested 2 types of revision: (i length of inserted fragments; and (ii number of inserted fragments. The reanalysis also indicated that determination of small regions of about 200 bases or fewer should be performed with more caution.Results indicated that the involvement of multiple recombination detection programs is very necessary. Additionally, results suggested two major challenges, one involving the difficulty of accurately determining the locations of breakpoints and the second involving identification of small regions of about 200 bases or fewer with greater caution. Both indicate the complexity of HIV-1 recombination. The resolution would depend critically on development of a recombination analysis algorithm, accumulation of HIV-1 stains, and a higher sequencing quality. With the changes in recombination pattern, phylogenetic relationships of some CRFs may also change. All these results may

  1. Construction of a Recombinant Allergen-Producing Probiotic Bacterial Strain: Introduction of a New Line for a Live Oral Vaccine Against Chenopodium album Pollen Allergy

    Directory of Open Access Journals (Sweden)

    Leila Roozbeh Nasiraie

    2013-10-01

    Full Text Available Background: During the last two decades, significant advances have been made in the fields of lactococcal genetics and protein expression. Lactococcus lactis (L. lactis is an effective vector for protein expression and can be used as an antigen delivery system. Hence, L. lactis is an ideal candidate for mucosal immunotherapy. Profilin (Che a 2, the major allergen in Chenopodium album, is one of the most important causes of allergic diseases in desert and semi-desert areas, especially in Iran, Saudi Arabia, and Kuwait that was cloned and expressed in L. lactis for the first time. Methods: To construct L. lactis that expressed Che a 2, a DNA sequence was cloned and used to transform bacteria. Expression of Che a 2 was analyzed via monitoring of related RNA and protein. Hydrophobicity, adherence to HT-29 cells, antibiotic resistance, resistance to gastrointestinal contents, pH, and bile salt in recombinant and native L. lactis were evaluated. Results: Immunoblot analyses demonstrated that recombinant Che a 2 is expressed as a 32 kDa dimeric protein immunological studies showed it can bind human IgE. Both native and recombinant bacteria were sensitive to low pH and simulated gastric conditions. Bacterial survival was reduced 80-100% after 2 h of exposure to pH 1.5-2. Both native and recombinant bacteria were able to grow in 0.3 and 2% bile salts. After incubation of recombinant L. lactis in simulated gastric and intestinal juices for one and two hours, respectively, cell survival was reduced by 100%. Adhesion capability in both strains was minimal and there were no significant differences in any of our tests between native and recombinant bacteria. Conclusion: Successfully recombinant L. lactis with capability of expression Che a 2 was produced and revealed it is sensitive to gastrointestinal contents.

  2. Natural attenuation, biostimulation and bioaugmentation of landfill leachate management

    Science.gov (United States)

    Er, X. Y.; Seow, T. W.; Lim, C. K.; Ibrahim, Z.

    2018-04-01

    Landfills used for solid waste management will lead to leachate production. Proper leachate management is highly essential to be paid attention to protect the environment and living organisms’ health and safety. In this study, the remedial strategies used for leachate management were natural attenuation, biostimulation and bioaugmentation. All treatment samples were treated via 42-days combined anaerobic-aerobic treatment and the treatment efficiency was studied by measuring the removal rate of COD and ammonia nitrogen. In this study, all remedial strategies showed different degrees of contaminants removal. Lowest contaminants removal rate was achieved via bioaugmentation of B. panacihumi strain ZB1, which were 39.4% of COD and 37.6% of ammonia nitrogen removed from the leachate sample. Higher contaminants removal rate was achieved via natural attenuation and biostimulation. Native microbial population was able to remove 41% of COD and 59% of ammonia nitrogen from the leachate sample. The removal efficiency could be further improved via biostimulation to trigger microbial growth and decontamination rate. Through biostimulation, 58% of COD and 51.8% of ammonia nitrogen were removed from the leachate sample. In conclusion, natural attenuation and biostimulation should be the main choice for leachate management to avoid any unexpected impacts due to introduction of exogenous species.

  3. Safety issues from a Phase 3 clinical trial of a live-attenuated chimeric yellow fever tetravalent dengue vaccine.

    Science.gov (United States)

    Halstead, Scott B

    2018-02-26

    A tetravalent live-attenuated 3-dose vaccine composed of chimeras of yellow fever 17D and the four dengue viruses (CYD, also called Dengvaxia) completed phase 3 clinical testing in over 35,000 children leading to a recommendation that vaccine be administered to >/ = 9 year-olds residing in highly dengue- endemic countries. When clinical trial results were assessed 2 years after the first dose, vaccine efficacy among seropositives was high, but among seronegatives efficacy was marginal. Breakthrough dengue hospitalizations of vaccinated children occurred continuously over a period of 4-5 years post 3rd dose in an age distribution suggesting these children had been vaccinated when seronegative. This surmise was validated recently when the manufacturer reported that dengue NS1 IgG antibodies were absent in sera from hospitalized vaccinated children, an observation consistent with their having received Dengvaxia when seronegative. Based upon published efficacy data and in compliance with initial published recommendations by the manufacturer and WHO the Philippine government undertook to vaccinate 800,000-plus 9 year-olds starting in April 2016. Eighteen months later, dengue hospitalizations and a deaths were reported among vaccinated children. The benefits of administering Dengvaxia predicted by the manufacturer, WHO and others derive from scoring dengue hospitalizations of vaccinated children as vaccine failures rather than as vaccine enhanced dengue disease. Recommended regimens for administration of Dengvaxia should have been structured to warn of and avoid serious adverse events.

  4. Electron-ion recombination in merged beams

    International Nuclear Information System (INIS)

    Wolf, A.; Habs, D.; Lampert, A.; Neumann, R.; Schramm, U.; Schuessler, T.; Schwalm, D.

    1993-01-01

    Detailed studies of recombination processes between electrons and highly charged ions have become possible by recent improvements of merged-beams experiments. We discuss in particular measurements with stored cooled ion beams at the Test Storage Ring (TSR) in Heidelberg. The cross section of dielectronic recombination was measured with high energy resolution for few-electron systems up to the nuclear charge of Cu at a relative energy up to 2.6 keV. At low energy (∼0.1 eV) total recombination rates of several ions were measured and compared with calculated radiative recombination rates. Laser-stimulated recombination of protons and of C 6+ ions was investigated as a function of the photon energy using visible radiation. Both the total recombination rates and the stimulated recombination spectra indicate that in spite of the short interaction time in merged beams, also collisional capture of electrons into weakly bound levels (related to three-body recombination) could be important

  5. Recombinant IgA Is Sufficient To Prevent Influenza Virus Transmission in Guinea Pigs

    Science.gov (United States)

    Seibert, Christopher W.; Rahmat, Saad; Krause, Jens C.; Eggink, Dirk; Albrecht, Randy A.; Goff, Peter H.; Krammer, Florian; Duty, J. Andrew; Bouvier, Nicole M.; García-Sastre, Adolfo

    2013-01-01

    A serum hemagglutination inhibition (HAI) titer of 40 or greater is thought to be associated with reduced influenza virus pathogenesis in humans and is often used as a correlate of protection in influenza vaccine studies. We have previously demonstrated that intramuscular vaccination of guinea pigs with inactivated influenza virus generates HAI titers greater than 300 but does not protect vaccinated animals from becoming infected with influenza virus by transmission from an infected cage mate. Only guinea pigs intranasally inoculated with a live influenza virus or a live attenuated virus vaccine, prior to challenge, were protected from transmission (A. C. Lowen et al., J. Virol. 83:2803–2818, 2009.). Because the serum HAI titer is mostly determined by IgG content, these results led us to speculate that prevention of viral transmission may require IgA antibodies or cellular immune responses. To evaluate this hypothesis, guinea pigs and ferrets were administered a potent, neutralizing mouse IgG monoclonal antibody, 30D1 (Ms 30D1 IgG), against the A/California/04/2009 (H1N1) virus hemagglutinin and exposed to respiratory droplets from animals infected with this virus. Even though HAI titers were greater than 160 1 day postadministration, Ms 30D1 IgG did not prevent airborne transmission to passively immunized recipient animals. In contrast, intramuscular administration of recombinant 30D1 IgA (Ms 30D1 IgA) prevented transmission to 88% of recipient guinea pigs, and Ms 30D1 IgA was detected in animal nasal washes. Ms 30D1 IgG administered intranasally also prevented transmission, suggesting the importance of mucosal immunity in preventing influenza virus transmission. Collectively, our data indicate that IgG antibodies may prevent pathogenesis associated with influenza virus infection but do not protect from virus infection by airborne transmission, while IgA antibodies are more important for preventing transmission of influenza viruses. PMID:23698296

  6. Multiple barriers to recombination between divergent HIV-1 variants revealed by a dual-marker recombination assay

    DEFF Research Database (Denmark)

    Nikolaitchik, Olga A; Galli, Andrea; Moore, Michael D

    2011-01-01

    Recombination is a major force for generating human immunodeficiency virus type 1 (HIV-1) diversity and produces numerous recombinants circulating in the human population. We previously established a cell-based system using green fluorescent protein gene (gfp) as a reporter to study the mechanisms...... of HIV-1 recombination. We now report an improved system capable of detecting recombination using authentic viral sequences. Frameshift mutations were introduced into the gag gene so that parental viruses do not express full-length Gag; however, recombination can generate a progeny virus that expresses...

  7. Particle-based vaccines for HIV-1 infection.

    Science.gov (United States)

    Young, Kelly R; Ross, Ted M

    2003-06-01

    The use of live-attenuated viruses as vaccines has been successful for the control of viral infections. However, the development of an effective vaccine against the human immunodeficiency virus (HIV) has proven to be a challenge. HIV infects cells of the immune system and results in a severe immunodeficiency. In addition, the ability of the virus to adapt to immune pressure and the ability to reside in an integrated form in host cells present hurdles for vaccinologists to overcome. A particle-based vaccine strategy has promise for eliciting high titer, long-lived, immune responses to a diverse number of viral epitopes from different HIV antigens. Live-attenuated viruses are effective at generating both cellular and humoral immunity, however, a live-attenuated vaccine for HIV is problematic. The possibility of a live-attenuated vaccine to revert to a pathogenic form or recombine with a wild-type or defective virus in an infected individual is a drawback to this approach. Therefore, these vaccines are currently only being tested in non-human primate models. Live-attenuated vaccines are effective in stimulating immunity, however challenged animals rarely clear viral infection and the degree of attenuation directly correlates with the protection of animals from disease. Another particle-based vaccine approach for HIV involves the use of virus-like particles (VLPs). VLPs mimic the viral particle without causing an immunodeficiency disease. HIV-like particles (HIV-LP) are defined as self-assembling, non-replicating, nonpathogenic, genomeless particles that are similar in size and conformation to intact virions. A variety of VLPs for both HIV and SIV are currently in pre-clinical and clinical trials. This review focuses on the current knowledge regarding the immunogenicity and safety of particle-based vaccine strategies for HIV-1.

  8. [Construction of a recombinant HVT virus expressing the HA gene of avian influenza virus H5N1 via Rde/ET recombination system].

    Science.gov (United States)

    Lan, Desong; Shi, Xingming; Wang, Yunfeng; Liu, Changjun; Wang, Mei; Cui, Hongyu; Tian, Guobin; Li, Jisong; Tong, Guangzhi

    2009-01-01

    In recent years,manipulation of large herpesvirus genomes has been facilitated by using bacterial artificial chromosome (BAC) vectors. We have previously reported the construction of the BAC clones (HVT BACs) of herpesvirus of turkey (HVT). With these BAC clones in hand,we manipulated the genome of HVT by utilizing Red/ET recombination system, and developed a biologically safe live vaccine based on the HVT BACs. In this two-step approach, we first transformed the plasmid pRedET into the DH10B competent cells that carried the HVT BACs,and added inducer L-arabinose into the cells. We prepared the cells into competent cells and electroporated the linear rpsL-neo counter-selection/selection cassette flanked by the 50 bp long homology arms into the cells. So the functional cassette was inserted into the U(S)2 locus. Only colonies carrying the modified BAC would survive Kanamycin selection on the agar plates. The successful integration of the rpsL-neo cassette was monitored by PCR and Streptomycin selection, for the insertion of rpsL-neo cassette cells will become Streptomycin sensitive. Secondly, in the same way, we replaced the rpsL-neo cassette with the hemagglutinin (HA) gene of (HPAIV) A/Goose/ Guangdong/1/96(H5N1) flanked by the same homology arms. Only colonies which lost the rpsL-neo cassette will grow on Streptomycin containing plates. Finally, we obtained many colonies of which the HA gene of the AIV was inserted into the U(S)2 locus to be modified of HVT. And we reconstituted one recombinant virus from transfecting one of these BAC clones DNA into chick embryo fibroblasts (CEFs). We achieved one rescued recombinant virus which designated as rHVT-HA3. The H5 subtype HA gene expression in this recombinant virus rHVT-HA3 was confirmed by immunofluorescence assay.

  9. Control algorithms for dynamic attenuators

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Scott S., E-mail: sshsieh@stanford.edu [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Pelc, Norbert J. [Department of Radiology, Stanford University, Stanford California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States)

    2014-06-15

    Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current

  10. Control algorithms for dynamic attenuators

    International Nuclear Information System (INIS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-01-01

    Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current

  11. Control algorithms for dynamic attenuators.

    Science.gov (United States)

    Hsieh, Scott S; Pelc, Norbert J

    2014-06-01

    The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not require a priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without

  12. Oxygen-hydrogen recombination system

    International Nuclear Information System (INIS)

    Sato, Shuichiro; Takejima, Masaki.

    1981-01-01

    Purpose: To avoid reduction in the performance of catalyst used for an oxygen-hydrogen recombiner in the off gas processing system of a nuclear reactor. Constitution: A thermometer is provided for the detection of temperature in an oxygen-hydrogen recombiner. A cooling pipe is provided in the recombiner and cooling medium is introduced externally. The cooling medium may be water or air. In accordance with the detection value from the thermometer, ON-OFF control is carried out for a valve to control the flow rate of the cooling medium thereby rendering the temperature in the recombiner to a predetermined value. This can prevent the catalyst from being exposed to high temperature and avoid the reduction in the performance of the catalyst. (Ikeda, J.)

  13. Post-marketing safety surveillance for inactivated and live-attenuated Japanese encephalitis vaccines in China, 2008-2013.

    Science.gov (United States)

    Wu, Wendi; Liu, Dawei; Li, Keli; Nuorti, J Pekka; Nohynek, Hanna M; Xu, Disha; Ye, Jiakai; Zheng, Jingshan; Wang, Huaqing

    2017-06-22

    Two types of Japanese encephalitis (JE) vaccines, inactivated JE vaccine (JE-I) and live-attenuated JE vaccine (JE-L), are available and used in China. In particular, one JE-L, produced by a domestic manufacturer in China, was prequalified by WHO in 2013. We assessed the safety of JE vaccines in China during 2008-2013 using the Chinese National Adverse Events Following Immunization Information System (CNAEFIS) data. We retrieved AEFI reporting data about JE vaccines from CNAEFIS, 2008-2013, examined demographic characteristics of AEFI cases, and used administrative data on vaccine doses as denominator to calculate and compare crude reporting rates. We also used disproportionality reporting analysis between JE-I and JE-L to assess potential safety signals. A total of 34,879 AEFIs related with JE-I and JE-L were reported, with a ratio of male to female as 1.3:1; 361 (1.0%) cases were classified as serious. JE vaccines were administered concurrently with one or more other vaccines in 13,592 (39.0%) of cases. The overall AEFI reporting rates were 214.4 per million vaccination doses for JE-L and 176.9 for JE-I (rate ratio [RR]: 1.2, 95% confidence interval [CI]: 1.1-1.3) in 2010-2013. Febrile convulsions (FC) following JE-I was found as a signal of disproportionate reporting (SDR). However, there was no significant difference between the reporting rates of FC of JE-I and JE-L (0.3 per million vaccination doses for JE-L, 0.4 for JE-I, p=0.05). While our analysis did not find apparent safety concern of JE vaccines in China, further study should consider JE-I vaccines and febrile convulsion, and taking more sensitive methods to detect signals. Copyright © 2017. Published by Elsevier Ltd.

  14. CANINE DISTEMPER VIRUS ANTIBODY TITERS IN DOMESTIC CATS AFTER DELIVERY OF A LIVE ATTENUATED VIRUS VACCINE.

    Science.gov (United States)

    Ramsay, Edward; Sadler, Ryan; Rush, Robert; Seimon, Tracie; Tomaszewicz, Ania; Fleetwood, Ellen A; McAloose, Denise; Wilkes, Rebecca P

    2016-06-01

    Three methods for delivering a live attenuated canine distemper virus (CDV) vaccine to domestic cats ( Felis catus ) were investigated, as models for developing vaccination protocols for tigers (Panthera tigris). Twenty domestic cats were randomly divided into four treatment groups: saline injection (negative controls); and oral, intranasal, and subcutaneous vaccinates. Cats were injected with saline or a CDV vaccine (Nobivac DP, Merck) at wk 0 and 4. Blood and nasal swabs were collected at wk 0 (prior to the initial vaccination) and weekly thereafter for 9 wk. Urine samples were collected on wk 1 to 9 after initial vaccination. Forty-nine weeks following the initial vaccination series, three cats from the subcutaneous group and three cats from the intranasal group were revaccinated. Blood was collected immediately prior, and 7 and 21 days subsequent to revaccination. Nasal swabs and urine samples were collected from each cat prior to wk 49 revaccination and daily for 7 days thereafter. Nasal swabs and urine were analyzed by quantitative PCR for vaccine virus presence. Sera were tested for CDV antibodies by virus neutralization. All cats were sero-negative for CDV antibodies at the beginning of the study, and saline-injected cats remained sero-negative throughout the study. A dramatic anamnestic response was seen following wk 4 subcutaneous vaccinations, with titers peaking at wk 6 (geometric mean = 2,435.5). Following wk 49 revaccination, subcutaneous vaccinates again mounted impressive titers (wk 52 geometric mean = 2,048). Revaccination of the intranasal group cats at wk 49 produced a small increase in titers (wk 52 geometric mean = 203). CDV viral RNA was detected in six nasal swabs but no urine samples, demonstrating low viral shedding postvaccination. The strong antibody response to subcutaneous vaccination and the lack of adverse effects suggest this vaccine is safe and potentially protective against CDV infection in domestic cats.

  15. Public health impact and cost-effectiveness of intranasal live attenuated influenza vaccination of children in Germany.

    Science.gov (United States)

    Damm, Oliver; Eichner, Martin; Rose, Markus Andreas; Knuf, Markus; Wutzler, Peter; Liese, Johannes Günter; Krüger, Hagen; Greiner, Wolfgang

    2015-06-01

    In 2011, intranasally administered live attenuated influenza vaccine (LAIV) was approved in the EU for prophylaxis of seasonal influenza in 2-17-year-old children. Our objective was to estimate the potential epidemiological impact and cost-effectiveness of an LAIV-based extension of the influenza vaccination programme to healthy children in Germany. An age-structured dynamic model of influenza transmission was developed and combined with a decision-tree to evaluate different vaccination strategies in the German health care system. Model inputs were based on published literature or were derived by expert consulting using the Delphi technique. Unit costs were drawn from German sources. Under base-case assumptions, annual routine vaccination of children aged 2-17 years with LAIV assuming an uptake of 50% would prevent, across all ages, 16 million cases of symptomatic influenza, over 600,000 cases of acute otitis media, nearly 130,000 cases of community-acquired pneumonia, nearly 1.7 million prescriptions of antibiotics and over 165,000 hospitalisations over 10 years. The discounted incremental cost-effectiveness ratio was 1,228 per quality-adjusted life year gained from a broad third-party payer perspective (including reimbursed direct costs and specific transfer payments), when compared with the current strategy of vaccinating primarily risk groups with the conventional trivalent inactivated vaccine. Inclusion of patient co-payments and indirect costs in terms of productivity losses resulted in discounted 10-year cost savings of 3.4 billion. In conclusion, adopting universal influenza immunisation of healthy children and adolescents would lead to a substantial reduction in influenza-associated disease at a reasonable cost to the German statutory health insurance system. On the basis of the epidemiological and health economic simulation results, a recommendation of introducing annual routine influenza vaccination of children 2-17 years of age might be taken into

  16. Chromate-reducing activity of Hansenula polymorpha recombinant cells over-producing flavocytochrome b₂.

    Science.gov (United States)

    Smutok, Oleh; Broda, Daniel; Smutok, Halyna; Dmytruk, Kostyantyn; Gonchar, Mykhailo

    2011-04-01

    In spite of the great interest to studies of the biological roles of chromium, as well as the toxic influence of Cr(VI)-species on living organisms, the molecular mechanisms of chromate bioremediation remain vague. A reductive pathway resulting in formation of less toxic Cr(III)-species is suggested to be the most important among possible mechanisms for chromate biodetoxification. The yeast l-lactate:cytochrome c-oxidoreductase (flavocytochrome b(2), FC b(2)) has absolute specificity for l-lactate, yet is non-selective with respect to its electron acceptor. These properties allow us to consider the enzyme as a potential candidate for chromate reduction by living cells in the presence of l-lactate. A recombinant strain of thermotolerant, methylotrophic yeast Hansenula polymorpha with sixfold increased FC b(2) enzyme activity (up to 3μmolmin(-1)mg(-1) protein in cell-free extract) compared to the parental strain was used for approval our suggestion. The recombinant cells, stored in dried state, as well as living yeast cells were tested for chromate-reducing activity in vitro in the presence of l-lactate (as an electron donor for chromate reduction) and different low molecular weight, redox-active mediators facilitating electron transfer from the reduced form of the enzyme to chromate (as a final electron acceptor): dichlorophenolindophenol (DCPIP), Methylene blue, Meldola blue, and Nile blue. It was shown that the highest chromate-reducing activity of the cells was achieved in the presence of DCPIP. The ability of chromate to catch electrons from the reduced flavocytochrome b(2) was confirmed using purified enzyme immobilized on the surface of a platinum electrode. The increasing concentration of Cr(VI) resulted in a decrease of enzyme-mediated current generated on the electrode during l-lactate oxidation. The shift and drop in amplitude of the peak in the cyclic voltammogram are indicative of Cr(VI)-dependent competition between reaction of chromate with reduced FC

  17. The Red Queen model of recombination hot-spot evolution: a theoretical investigation.

    Science.gov (United States)

    Latrille, Thibault; Duret, Laurent; Lartillot, Nicolas

    2017-12-19

    In humans and many other species, recombination events cluster in narrow and short-lived hot spots distributed across the genome, whose location is determined by the Zn-finger protein PRDM9. To explain these fast evolutionary dynamics, an intra-genomic Red Queen model has been proposed, based on the interplay between two antagonistic forces: biased gene conversion, mediated by double-strand breaks, resulting in hot-spot extinction, followed by positive selection favouring new PRDM9 alleles recognizing new sequence motifs. Thus far, however, this Red Queen model has not been formalized as a quantitative population-genetic model, fully accounting for the intricate interplay between biased gene conversion, mutation, selection, demography and genetic diversity at the PRDM9 locus. Here, we explore the population genetics of the Red Queen model of recombination. A Wright-Fisher simulator was implemented, allowing exploration of the behaviour of the model (mean equilibrium recombination rate, diversity at the PRDM9 locus or turnover rate) as a function of the parameters (effective population size, mutation and erosion rates). In a second step, analytical results based on self-consistent mean-field approximations were derived, reproducing the scaling relations observed in the simulations. Empirical fit of the model to current data from the mouse suggests both a high mutation rate at PRDM9 and strong biased gene conversion on its targets.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'. © 2017 The Authors.

  18. Hydrogen recombiner development at AECL

    International Nuclear Information System (INIS)

    Dewit, W.A.; Koroll, G.W.; Loesel Sitar, J.; Graham, W.R.C.

    1997-01-01

    Catalytic recombiners have been developed at AECL for the purpose of hydrogen removal in post-accident nuclear containment buildings. The recombiners are based on a particular catalyst designed by AECL which has extraordinary resistance to fouling from water and water vapour and a large thermodynamic range of operation. The catalysts were developed, originally, for the purpose of heavy water manufacturing by way of a catalytic exchange process. Application of these catalyst materials in recombiners for containment applications began in the late 1980's. The first application was a passive recombiner, qualified for use in control of radiolytic hydrogen in the headspace of a pool-type experimental reactor of AECL design in 1988. The passive, or natural convection recombiner concept has continued development to commercial stage for application in power reactor containments. This paper reviews the AECL recombiner development, describes the current model and shows results from tests of full-scale recombiners in the Large Scale Vented Combustion Test Facility at AECL-WL. The AECL recombiner is designed for compactness and ease of engineering into containment. The design is a simple, open-ended rectangular enclosure with catalyst elements arranged inside to promote optimum convective flow driven by heat of recombination at the catalyst surface. Self start, as evidenced by catalyst heating and initiation of flow, is achieved in less than 1% hydrogen, with available oxygen, at room temperature and 100% relative humidity. This low temperature start-up in condensing atmospheres is viewed as the most challenging condition for wet-proofing effectiveness. Cold start-up is a vital performance requirement in containments, such as CANDU, where engineered air-cooling systems are operating and where long-term hydrogen control is required, after containment atmospheres have cooled. Once started, the removal capacity scales linearly with the inlet cross-section area and the partial

  19. Low dose vaccination with attenuated Francisella tularensis strain SchuS4 mutants protects against tularemia independent of the route of vaccination.

    Directory of Open Access Journals (Sweden)

    Dedeke Rockx-Brouwer

    Full Text Available Tularemia, caused by the gram-negative bacterium Francisella tularensis, is a severe, sometimes fatal disease. Interest in tularemia has increased over the last decade due to its history as a biological weapon. In particular, development of novel vaccines directed at protecting against pneumonic tularemia has been an important goal. Previous work has demonstrated that, when delivered at very high inoculums, administration of live, highly attenuated strains of virulent F. tularensis can protect against tularemia. However, lower vaccinating inoculums did not offer similar immunity. One concern of using live vaccines is that the host may develop mild tularemia in response to infection and use of high inoculums may contribute to this issue. Thus, generation of a live vaccine that can efficiently protect against tularemia when delivered in low numbers, e.g. <100 organisms, may address this concern. Herein we describe the ability of three defined, attenuated mutants of F. tularensis SchuS4, deleted for FTT0369c, FTT1676, or FTT0369c and FTT1676, respectively, to engender protective immunity against tularemia when delivered at concentrations of approximately 50 or fewer bacteria. Attenuated strains for use as vaccines were selected by their inability to efficiently replicate in macrophages in vitro and impaired replication and dissemination in vivo. Although all strains were defective for replication in vitro within macrophages, protective efficacy of each attenuated mutant was correlated with their ability to modestly replicate and disseminate in the host. Finally, we demonstrate the parenteral vaccination with these strains offered superior protection against pneumonic tularemia than intranasal vaccination. Together our data provides proof of principle that low dose attenuated vaccines may be a viable goal in development of novel vaccines directed against tularemia.

  20. On the relict recombination lines

    International Nuclear Information System (INIS)

    Bershtejn, I.N.; Bernshtejn, D.N.; Dubrovich, V.K.

    1977-01-01

    Accurate numerical calculation of intensities and profiles of hydrogen recombination lines of cosmological origin is made. Relie radiation distortions stipulated by recombination quantum release at the irrevocable recombination are investigated. Mean number calculation is given for guantums educing for one irrevocably-lost electron. The account is taken of the educed quantums interraction with matter. The main quantum-matter interrraction mechanisms are considered: electronic blow broadening; free-free, free-bound, bound-bound absorptions Recombination dynamics is investigated depending on hydrogen density and total density of all the matter kinds in the Universe

  1. Mechanism of attenuation of a chimeric influenza A/B transfectant virus.

    Science.gov (United States)

    Luo, G; Bergmann, M; Garcia-Sastre, A; Palese, P

    1992-08-01

    The ribonucleoprotein transfection system for influenza virus allowed us to construct an influenza A virus containing a chimeric neuraminidase (NA) gene in which the noncoding sequence is derived from the NS gene of influenza B virus (T. Muster, E. K. Subbarao, M. Enami, B. P. Murphy, and P. Palese, Proc. Natl. Acad. Sci. USA 88:5177-5181, 1991). This transfectant virus is attenuated in mice and grows to lower titers in tissue culture than wild-type virus. Since such a virus has characteristics desirable for a live attenuated vaccine strain, attempts were made to characterize this virus at the molecular level. Our analysis suggests that the attenuation of the virus is due to changes in the cis signal sequences, which resulted in a reduction of transcription and replication of the chimeric NA gene. The major finding concerns a sixfold reduction in NA-specific viral RNA in the virion, causing a reduction in the ratio of infectious particles to physical particles compared with the ratio in wild-type virus. Although the NA-specific mRNA level is also reduced in transfectant virus-infected cells, it does not appear to contribute to the attenuation characteristics of the virus. The levels of the other RNAs and their expression appear to be unchanged for the transfectant virus. It is suggested that downregulation of the synthesis of one viral RNA segment leads to the generation of defective viruses during each replication cycle. We believe that this represents a general principle for attenuation which may be applied to other segmented viruses containing either single-stranded or double-stranded RNA.

  2. Photon attenuation by intensifying screens

    International Nuclear Information System (INIS)

    Holje, G.

    1983-01-01

    The photon attenuation by intensifying screens of different chemical composition has been determined. The attenuation of photons between 20 keV and 120 keV was measured by use of a multi-channel analyzer and a broad bremsstrahlung distribution. The attenuation by the intensifying screens was hereby determined simultaneously at many different monoenergetic photon energies. Experimentally determined attenuations were found to agree well with attenuation calculated from mass attenuation coefficients. The attenuation by the screens was also determined at various bremsstrahlung distributions, simulating those occurring behind the patient in various diagnostic X-ray examinations. The high attenuation in some of the intensifying screens form the basis for an analysis of the construction of asymmetric screen pairs. Single screen systems are suggested as a favourable alternative to thick screen pair systems. (Author)

  3. Temperature-sensitive mutants of influenza A virus. XIV. Production and evaluation of influenza A/Georgia/74-ts-1[E] recombinant viruses in human adults.

    Science.gov (United States)

    Richman, D D; Murphy, B R; Belshe, R B; Rusten, H M; Chanock, R M; Blacklow, N R; Parrino, T A; Rose, F B; Levine, M M; Caplan, E

    1977-08-01

    The two temperature-sensitive (ts) lesions present in influenza A/Hong Kong/68-ts-1[E] (H3N2 68) virus were transferred via genetic reassortment to influenza A/Georgia/74 (H3N2 74) wild-type virus. A recombinant clone possessing both ts lesions and the shutoff temperature of 38 C of the Hong Kong/68 ts donor and the two surface antigens of the Georgia/74 wild-type virus was administered to 32 seronegative adult volunteers. Thirty-one volunteers were infected, of whom only five experienced mild afebrile upper respiratory tract illness. The wild-type recipient virus was a cloned population that induced illness in five of six infected volunteers. Therfore, the attenuation exhibited by the Georgia/74-ts-1[E] virus could reasonably be assumed to be due to the acquisition of the two ts-1[E] lesions by the Georgia/74 wild-type virus. The serum and nasal wash antibody responses of the ts-1[E] vaccinees were equivalent to those of the volunteers who received wild-type virus. The two ts lesions present in the Hong Kong/68-ts-1[E] virus have now been transferred three times to a wild-type virus bearing a new hemagglutinin, and in each instance the new ts recombination exhibited a similar, satisfactory level of attenuation and antigenicity for adults. It seems likely that the transfer of the ts-1[E] lesions to any new influenza virus will regularly result in attenuation of a recombinat virus possessing the new surface antigens.

  4. Late replicating domains are highly recombining in females but have low male recombination rates: implications for isochore evolution.

    Directory of Open Access Journals (Sweden)

    Catherine J Pink

    Full Text Available In mammals sequences that are either late replicating or highly recombining have high rates of evolution at putatively neutral sites. As early replicating domains and highly recombining domains both tend to be GC rich we a priori expect these two variables to covary. If so, the relative contribution of either of these variables to the local neutral substitution rate might have been wrongly estimated owing to covariance with the other. Against our expectations, we find that sex-averaged recombination rates show little or no correlation with replication timing, suggesting that they are independent determinants of substitution rates. However, this result masks significant sex-specific complexity: late replicating domains tend to have high recombination rates in females but low recombination rates in males. That these trends are antagonistic explains why sex-averaged recombination is not correlated with replication timing. This unexpected result has several important implications. First, although both male and female recombination rates covary significantly with intronic substitution rates, the magnitude of this correlation is moderately underestimated for male recombination and slightly overestimated for female recombination, owing to covariance with replicating timing. Second, the result could explain why male recombination is strongly correlated with GC content but female recombination is not. If to explain the correlation between GC content and replication timing we suppose that late replication forces reduced GC content, then GC promotion by biased gene conversion during female recombination is partly countered by the antagonistic effect of later replicating sequence tending increase AT content. Indeed, the strength of the correlation between female recombination rate and local GC content is more than doubled by control for replication timing. Our results underpin the need to consider sex-specific recombination rates and potential covariates in

  5. Tracer attenuation in groundwater

    Science.gov (United States)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  6. Different levels of immunogenicity of two strains of Fowlpox virus as recombinant vaccine vectors eliciting T-cell responses in heterologous prime-boost vaccination strategies.

    Science.gov (United States)

    Cottingham, Matthew G; van Maurik, Andre; Zago, Manola; Newton, Angela T; Anderson, Richard J; Howard, M Keith; Schneider, Jörg; Skinner, Michael A

    2006-07-01

    The FP9 strain of F has been described as a more immunogenic recombinant vaccine vector than the Webster FPV-M (FPW) strain (R. J. Anderson et al., J. Immunol. 172:3094-3100, 2004). This study expands the comparison to include two separate recombinant antigens and multiple, rather than single, independent viral clones derived from the two strains. Dual-poxvirus heterologous prime-boost vaccination regimens using individual clones of recombinant FP9 or FPW in combination with recombinant modified V Ankara expressing the same antigen were evaluated for their ability to elicit T-cell responses against recombinant antigens from Plasmodium berghei (circumsporozoite protein) or human immunodeficiency virus type 1 (a Gag-Pol-Nef fusion protein). Gamma interferon enzyme-linked immunospot assay and fluorescence-activated cell sorting assays of the responses to specific epitopes confirmed the approximately twofold-greater cellular immunogenicity of FP9 compared to FPW, when given as the priming or boosting immunization. Equality of transgene expression in mouse cells infected with the two strains in vitro was verified by Western blotting. Directed partial sequence analysis and PCR analysis of FPW and comparison to available whole-genome sequences revealed that many loci that are mutated in the highly attenuated and culture-adapted FP9 strain are wild type in FPW, including the seven multikilobase deletions. These "passage-specific" alterations are hypothesized to be involved in determining the immunogenicity of fowlpox virus as a recombinant vaccine vector.

  7. White shrimp (Litopenaeus vannamei) recombinant lysozyme has antibacterial activity against Gram negative bacteria: Vibrio alginolyticus, Vibrio parahemolyticus and Vibrio cholerae.

    Science.gov (United States)

    de-la-Re-Vega, Enrique; García-Galaz, Alfonso; Díaz-Cinco, Martha E; Sotelo-Mundo, Rogerio R

    2006-03-01

    C-type lysozyme has been described as an antibacterial component of the shrimp innate defence system. We determined quantitatively the antibacterial activity of white shrimp (Litopenaeus vannamei) recombinant lysozyme against three Gram negative bacteria: Vibrio alginolyticus, Vibrio parahemolyticus and Vibrio cholerae, using a turbidimetric assay with live bacteria and differential bacterial viable count after interaction with the protein. In conclusion, the antibacterial activity of recombinant shrimp lysozyme against Vibrio sp. is at least equal to the values against the Gram positive M. luteus and more active against the shrimp pathogens V. alginolyticus and V. parahemolyticus.

  8. Working towards dengue as a vaccine-preventable disease: challenges and opportunities.

    Science.gov (United States)

    Shrivastava, Ambuj; Tripathi, Nagesh K; Dash, Paban K; Parida, Manmohan

    2017-10-01

    Dengue is an emerging viral disease that affects the human population around the globe. Recent advancements in dengue virus research have opened new avenues for the development of vaccines against dengue. The development of a vaccine against dengue is a challenging task because any of the four serotypes of dengue viruses can cause disease. The development of a dengue vaccine aims to provide balanced protection against all the serotypes. Several dengue vaccine candidates are in the developmental stages such as inactivated, live attenuated, recombinant subunit, and plasmid DNA vaccines. Area covered: The authors provide an overview of the progress made in the development of much needed dengue vaccines. The authors include their expert opinion and their perspectives for future developments. Expert opinion: Human trials of a live attenuated tetravalent chimeric vaccine have clearly demonstrated its potential as a dengue vaccine. Other vaccine candidate molecules such as DENVax, a recombinant chimeric vaccine andTetraVax, are at different stages of development at this time. The authors believe that the novel strategies for testing and improving the immune response of vaccine candidates in humans will eventually lead to the development of a successful dengue vaccine in future.

  9. Auger recombination in sodium iodide

    Science.gov (United States)

    McAllister, Andrew; Kioupakis, Emmanouil; Åberg, Daniel; Schleife, André

    2014-03-01

    Scintillators are an important tool used to detect high energy radiation - both in the interest of national security and in medicine. However, scintillator detectors currently suffer from lower energy resolutions than expected from basic counting statistics. This has been attributed to non-proportional light yield compared to incoming radiation, but the specific mechanism for this non-proportionality has not been identified. Auger recombination is a non-radiative process that could be contributing to the non-proportionality of scintillating materials. Auger recombination comes in two types - direct and phonon-assisted. We have used first-principles calculations to study Auger recombination in sodium iodide, a well characterized scintillating material. Our findings indicate that phonon-assisted Auger recombination is stronger in sodium iodide than direct Auger recombination. Computational resources provided by LLNL and NERSC. Funding provided by NA-22.

  10. Live Zika virus chimeric vaccine candidate based on a yellow fever 17-D attenuated backbone

    OpenAIRE

    Nougairede, Antoine; Klitting, Raphaelle; Aubry, Fabien; Gilles, Magali; Touret, Franck; De Lamballerie, Xavier

    2018-01-01

    Zika virus (ZIKV) recently dispersed throughout the tropics and sub-tropics causing epidemics associated with congenital disease and neurological complications. There is currently no commercial vaccine for ZIKV. Here we describe the initial development of a chimeric virus containing the prM/E proteins of a ZIKV epidemic strain incorporated into a yellow fever 17-D attenuated backbone. Using the versatile and rapid ISA (Infectious Subgenomic Amplicons) reverse genetics method, we compared diff...

  11. Protection of pigs against pandemic swine origin H1N1 influenza A virus infection by hemagglutinin- or neuraminidase-expressing attenuated pseudorabies virus recombinants.

    Science.gov (United States)

    Klingbeil, Katharina; Lange, Elke; Blohm, Ulrike; Teifke, Jens P; Mettenleiter, Thomas C; Fuchs, Walter

    2015-03-02

    Influenza is an important respiratory disease of pigs, and may lead to novel human pathogens like the 2009 pandemic H1N1 swine-origin influenza virus (SoIV). Therefore, improved influenza vaccines for pigs are required. Recently, we demonstrated that single intranasal immunization with a hemagglutinin (HA)-expressing pseudorabies virus recombinant of vaccine strain Bartha (PrV-Ba) protected pigs from H1N1 SoIV challenge (Klingbeil et al., 2014). Now we investigated enhancement of efficacy by prime-boost vaccination and/or intramuscular administration. Furthermore, a novel PrV-Ba recombinant expressing codon-optimized N1 neuraminidase (NA) was included. In vitro replication of this virus was only slightly affected compared to parental virus. Unlike HA, the abundantly expressed NA was efficiently incorporated into PrV particles. Immunization of pigs with the two PrV recombinants, either singly or in combination, induced B cell proliferation and the expected SoIV-specific antibodies, whose titers increased substantially after boost vaccination. After immunization of animals with either PrV recombinant H1N1 SoIV challenge virus replication was significantly reduced compared to PrV-Ba vaccinated or naïve controls. Protective efficacy of HA-expressing PrV was higher than of NA-expressing PrV, and not significantly enhanced by combination. Despite higher serum antibody titers obtained after intramuscular immunization, transmission of challenge virus to naïve contact animals was only prevented after intranasal prime-boost vaccination with HA-expressing PrV-Ba. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Regulation of homologous recombination in eukaryotes

    OpenAIRE

    Heyer, Wolf-Dietrich; Ehmsen, Kirk T.; Liu, Jie

    2010-01-01

    Homologous recombination is required for accurate chromosome segregation during the first meiotic division and constitutes a key repair and tolerance pathway for complex DNA damage including DNA double-stranded breaks, interstrand crosslinks, and DNA gaps. In addition, recombination and replication are inextricably linked, as recombination recovers stalled and broken replication forks enabling the evolution of larger genomes/replicons. Defects in recombination lead to genomic instability and ...

  13. Protective efficacy of a single immunization with capripoxvirus-vectored recombinant peste des petits ruminants vaccines in presence of pre-existing immunity.

    Science.gov (United States)

    Caufour, Philippe; Rufael, Tesfaye; Lamien, Charles Euloge; Lancelot, Renaud; Kidane, Menbere; Awel, Dino; Sertse, Tefera; Kwiatek, Olivier; Libeau, Geneviève; Sahle, Mesfin; Diallo, Adama; Albina, Emmanuel

    2014-06-24

    Sheeppox, goatpox and peste des petits ruminants (PPR) are highly contagious ruminant diseases widely distributed in Africa, the Middle East and Asia. Capripoxvirus (CPV)-vectored recombinant PPR vaccines (rCPV-PPR vaccines), which have been developed and shown to protect against both Capripox (CP) and PPR, would be critical tools in the control of these important diseases. In most parts of the world, these disease distributions overlap each other leaving concerns about the potential impact that pre-existing immunity against either disease may have on the protective efficacy of these bivalent rCPV-PPR vaccines. Currently, this question has not been indisputably addressed. Therefore, we undertook this study, under experimental conditions designed for the context of mass vaccination campaigns of small ruminants, using the two CPV recombinants (Kenya sheep-1 (KS-1) strain-based constructs) developed previously in our laboratory. Pre-existing immunity was first induced by immunization either with an attenuated CPV vaccine strain (KS-1) or the attenuated PPRV vaccine strain (Nigeria 75/1) and animals were thereafter inoculated once subcutaneously with a mixture of CPV recombinants expressing either the hemagglutinin (H) or the fusion (F) protein gene of PPRV (10(3) TCID50/animal of each). Finally, these animals were challenged with a virulent CPV strain followed by a virulent PPRV strain 3 weeks later. Our study demonstrated full protection against CP for vaccinated animals with prior exposure to PPRV and a partial protection against PPR for vaccinated animals with prior exposure to CPV. The latter animals exhibited a mild clinical form of PPR and did not show any post-challenge anamnestic neutralizing antibody response against PPRV. The implications of these results are discussed herein and suggestions made for future research regarding the development of CPV-vectored vaccines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Protective, restorative, and therapeutic properties of recombinant colony-stimulating factors

    International Nuclear Information System (INIS)

    Talmadge, J.E.; Tribble, H.; Pennington, R.; Bowersox, O.; Schneider, M.A.; Castelli, P.; Black, P.L.; Abe, F.

    1989-01-01

    Pretreatment of mice with recombinant murine (rM) colony-stimulating factor-granulocyte-macrophage (CSF-gm) or recombinant human (rH) CSF-g provides partial protection from the lethal effects of ionizing radiation or the alkylating agent cyclophosphamide (CTX). In addition, these agents can significantly prolong survival if administered following lethal doses of irradiation or CTX. To induce protective activity, cytokines were injected 20 hours before lethal irradiation or CTX administration. To accelerate recovery from lethal irradiation, the cytokines must be administered shortly following irradiation, and the induction of maximal levels of activity is dependent on chronic administration. In contrast, because of their longer half-lives, accelerated recovery from alkylating agents requires a delay of at least 24 to 48 hours to allow complete clearance of CTX before administration of a CSF. Studies quantitating peripheral blood leukocytes and bone marrow cellularity as well as colony-forming units per culture (CFU-C) frequency and CFU-C per femur revealed a significant correlation between these parameters and the ability to survive lethal irradiation

  15. RESPONSE OF VOLTA CHILDREN TO JET INOCULATION OF COMBINED LIVE MEASLES, SMALLPOX AND YELLOW FEVER VACCINES.

    Science.gov (United States)

    MEYER, H M; HOSTETLER, D D; BERNHEIN, B C; ROGERS, N G; LAMBIN, P; CHASSARY, A; LABUSQUIERE, R; SMADEL, J E

    1964-01-01

    An earlier study established that Upper Volta children respond to vaccination with the Enders live attenuated measles strain in the same general fashion as do children in the USA. The present report describes a second pilot project carried out in Ouagadougou, Upper Volta. During this investigation various mixtures of live measles, smallpox and 17D yellow fever vaccines were introduced into susceptible infants by jet injection. Combining the attenuated virus vaccines did not alter or accentuate the characteristic clinical reactions elicited by the individual components, nor was there evidence of significant immunological interference. From this experience it is concluded that combined vaccination with these agents may be safely and effectively employed in larger programmes as the need dictates.

  16. Recombination coefficients in extrinsic n-InSb

    International Nuclear Information System (INIS)

    Schneider, W.; Groh, H.; Huebner, K.

    1976-01-01

    The bulk recombination coefficients for linear recombination via recombination centers as well as for direct recombination have been determined measuring the conductivity decay after two-photon absorption with a CO 2 laser. The Suhl effect was applied to measure the surface recombination velocity. The corresponding literature is discussed and compared with our results. We conclude that two different kinds of recombination centers are possible in n-InSb, with energy levels (0.1-0.12)eV above the valence band, or (0.14-0.2)eV respectively. (orig.) [de

  17. Electron-ion recombination rates for merged-beams experiments

    International Nuclear Information System (INIS)

    Pajek, M.

    1994-01-01

    Energy dependence of the electron-ion recombination rates are studied for different recombination processes (radiative recombination, three-body recombination, dissociative recombination) for Maxwellian relative velocity distribution of arbitrary asymmetry. The results are discussed in context of the electron-ion merged beams experiments in cooling ion storage rings. The question of indication of a possible contribution of the three-body recombination to the measured recombination rates versus relative energy is particularly addressed. Its influence on the electron beam temperature derived from the energy dependence of recombination rate is discussed

  18. Living arrangements and mental health in Finland

    Science.gov (United States)

    Joutsenniemi, Kaisla; Martelin, Tuija; Martikainen, Pekka; Pirkola, Sami; Koskinen, Seppo

    2006-01-01

    Background Non‐married persons are known to have poor mental health compared with married persons. Health differences between marital status groups may largely arise from corresponding differences in interpersonal social bonds. However, official marital status mirrors the social reality of persons to a decreasing extent, and living arrangements may be a better measure of social bonds. Little is known about mental health in different living arrangement groups. This study aims to establish the extent and determinants of mental health differences by living arrangement in terms of psychological distress (GHQ) and DSM‐IV psychiatric disorders (CIDI). Methods Data were used from the nationally representative cross sectional health 2000 survey, conducted in 2000–1 in Finland. Altogether 4685 participants (80%) aged 30–64 years were included in these analyses; comprehensive information was available on measures of mental health and living arrangements. Living arrangements were measured as follows: married, cohabiting, living with other(s) than a partner, and living alone. Results Compared with the married, persons living alone and those living with other(s) than a partner were approximately twice as likely to have anxiety or depressive disorders. Cohabiters did not differ from the married. In men, psychological distress was similarly associated with living arrangements. Unemployment, lack of social support, and alcohol consumption attenuated the excess psychological distress and psychiatric morbidity of persons living alone and of those living with other(s) than a partner by about 10%–50% each. Conclusions Living arrangements are strongly associated with mental health, particularly among men. Information on living arrangements, social support, unemployment, and alcohol use may facilitate early stage recognition of poor mental health in primary health care. PMID:16698975

  19. Utilisation of ISA Reverse Genetics and Large-Scale Random Codon Re-Encoding to Produce Attenuated Strains of Tick-Borne Encephalitis Virus within Days.

    Science.gov (United States)

    de Fabritus, Lauriane; Nougairède, Antoine; Aubry, Fabien; Gould, Ernest A; de Lamballerie, Xavier

    2016-01-01

    Large-scale codon re-encoding is a new method of attenuating RNA viruses. However, the use of infectious clones to generate attenuated viruses has inherent technical problems. We previously developed a bacterium-free reverse genetics protocol, designated ISA, and now combined it with large-scale random codon-re-encoding method to produce attenuated tick-borne encephalitis virus (TBEV), a pathogenic flavivirus which causes febrile illness and encephalitis in humans. We produced wild-type (WT) and two re-encoded TBEVs, containing 273 or 273+284 synonymous mutations in the NS5 and NS5+NS3 coding regions respectively. Both re-encoded viruses were attenuated when compared with WT virus using a laboratory mouse model and the relative level of attenuation increased with the degree of re-encoding. Moreover, all infected animals produced neutralizing antibodies. This novel, rapid and efficient approach to engineering attenuated viruses could potentially expedite the development of safe and effective new-generation live attenuated vaccines.

  20. Electron-ion recombination at low energy

    International Nuclear Information System (INIS)

    Andersen, L.H.

    1993-01-01

    The work is based on results obtained with a merged-beams experiment. A beam of electronics with a well characterized density and energy distribution was merged with a fast, monoenergetic ion beam. Results have been obtained for radiative recombination and dielectronic recombination at low relative energies (0 to ∼70eV). The obtained energy resolution was improved by about a factor of 30. High vacuum technology was used to suppress interactions with electrons from the environments. The velocity distribution of the electron beam was determined. State-selective dielectronic-recombination measurements were performable. Recombination processes were studied. The theoretical background for radiative recombination and Kramers' theory are reviewed. The quantum mechanical result and its relation to the semiclassical theory is discussed. Radiative recombination was also measured with several different non-bare ions, and the applicability of the semiclassical theory to non-bare ions was investigated. The use of an effective charge is discussed. For dielectronic recombination, the standard theoretical approach in the isolated resonance and independent-processes approximation is debated. The applicability of this method was tested. The theory was able to reproduce most of the experimental data except when the recombination process was sensitive to couplings between different electronic configurations. The influence of external perturbing electrostatic fields is discussed. (AB) (31 refs.)

  1. Comparison of egg and high yielding MDCK cell-derived live attenuated influenza virus for commercial production of trivalent influenza vaccine: in vitro cell susceptibility and influenza virus replication kinetics in permissive and semi-permissive cells.

    Science.gov (United States)

    Hussain, Althaf I; Cordeiro, Melissa; Sevilla, Elizabeth; Liu, Jonathan

    2010-05-14

    Currently MedImmune manufactures cold-adapted (ca) live, attenuated influenza vaccine (LAIV) from specific-pathogen free (SPF) chicken eggs. Difficulties in production scale-up and potential exposure of chicken flocks to avian influenza viruses especially in the event of a pandemic influenza outbreak have prompted evaluation and development of alternative non-egg based influenza vaccine manufacturing technologies. As part of MedImmune's effort to develop the live attenuated influenza vaccine (LAIV) using cell culture production technologies we have investigated the use of high yielding, cloned MDCK cells as a substrate for vaccine production by assessing host range and virus replication of influenza virus produced from both SPF egg and MDCK cell production technologies. In addition to cloned MDCK cells the indicator cell lines used to evaluate the impact of producing LAIV in cells on host range and replication included two human cell lines: human lung carcinoma (A549) cells and human muco-epidermoid bronchiolar carcinoma (NCI H292) cells. The influenza viruses used to infect the indicators cell lines represented both the egg and cell culture manufacturing processes and included virus strains that composed the 2006-2007 influenza seasonal trivalent vaccine (A/New Caledonia/20/99 (H1N1), A/Wisconsin/67/05 (H3N2) and B/Malaysia/2506/04). Results from this study demonstrate remarkable similarity between influenza viruses representing the current commercial egg produced and developmental MDCK cell produced vaccine production platforms. MedImmune's high yielding cloned MDCK cells used for the cell culture based vaccine production were highly permissive to both egg and cell produced ca attenuated influenza viruses. Both the A549 and NCI H292 cells regardless of production system were less permissive to influenza A and B viruses than the MDCK cells. Irrespective of the indicator cell line used the replication properties were similar between egg and the cell produced

  2. Recombinant Innovation and Endogenous Transitions

    OpenAIRE

    Koen Frenken; Luis R. Izquierdo; Paolo Zeppini

    2012-01-01

    We propose a model of technological transitions based on two different types of innovations. Branching innovations refer to technological improvements along a particular path, while recombinant innovations represent fusions of multiple paths. Recombinant innovations create “short-cuts” which reduce switching costs allowing agents to escape a technological lock-in. As a result, recombinant innovations speed up technological progress allowing transitions that are impossible with only branching ...

  3. Interface recombination influence on carrier transport

    International Nuclear Information System (INIS)

    Konin, A

    2013-01-01

    A theory of interface recombination in the semiconductor–semiconductor junction is developed. The interface recombination rate dependence on the nonequilibrium carrier densities is derived on the basis of a model in which the interface recombination occurs through the mechanism of trapping. The general relation between the interface recombination parameters at small carrier density deviation from the equilibrium ones is obtained. The validity of this relation is proved considering the generation of the Hall electric field in the extrinsic semiconductor sample. The anomalous Hall electromotive force in a weak magnetic field was investigated and interpreted by means of a new interface recombination model. The experimental data corroborate the developed theory. (paper)

  4. Caenorhabditis briggsae recombinant inbred line genotypes reveal inter-strain incompatibility and the evolution of recombination.

    Directory of Open Access Journals (Sweden)

    Joseph A Ross

    2011-07-01

    Full Text Available The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes.

  5. Molecular requirements for radiation-activated recombination

    International Nuclear Information System (INIS)

    Stevens, Craig W.; Zeng Ming; Stamato, Thomas; Cerniglia, George

    1997-01-01

    Purpose/Objective: The major stumbling block to successful gene therapy today is poor gene transfer. We hypothesized that ionizing radiation might activate cellular recombination, and so improve stable gene transfer. We further hypothesized that known DNA-damage-repair proteins might also be important in radiation-activated recombination. Materials and Methods: The effect of irradiation on stable gene transfer efficiency was determined in human (A549 and 39F) and rodent (NIH/3T3) cell lines. Continuous low dose rate and multiple radiation fractions were also tested. Nuclear extracts were made and the effect of irradiation on inter-plasmid recombination/ligation determined. Multiple DNA damage-repair deficient cell lines were tested for radiation-activated recombination. Results: A significant radiation dose-dependent improvement in stable plasmid transfection (by as much as 1300 fold) is demonstrated in neoplastic and primary cells. An improvement in transient plasmid transfection is also seen, with as much as 85% of cells transiently expressing b-galactosidase (20-50 fold improvement). Stable transfection is only improved for linearized or nicked plasmids. Cells have improved gene transfer for at least 96 hours after irradiation. Both fractionated and continuous low dose rate irradiation are effective at improving stable gene transfer in mammalian cells, thus making relatively high radiation dose delivery clinically feasible. Inter-plasmid recombination is radiation dose dependent in nuclear extract assays, and the type of overhang (3', 5' or blunt end) significantly affects recombination efficiency and the type of product. The most common end-joining activity involves filling-in of the overhang followed by blunt end ligation. Adenovirus is a linear, double stranded DNA virus. We demonstrate that adenoviral infection efficiency is increased by irradiation. The duration of transgene expression is lengthened because the virus integrates with high efficiency (∼10

  6. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  7. Systemically administered DNA and fowlpox recombinants expressing four vaccinia virus genes although immunogenic do not protect mice against the highly pathogenic IHD-J vaccinia strain.

    Science.gov (United States)

    Bissa, Massimiliano; Pacchioni, Sole Maria; Zanotto, Carlo; De Giuli Morghen, Carlo; Illiano, Elena; Granucci, Francesca; Zanoni, Ivan; Broggi, Achille; Radaelli, Antonia

    2013-12-26

    The first-generation smallpox vaccine was based on live vaccinia virus (VV) and it successfully eradicated the disease worldwide. Therefore, it was not administered any more after 1980, as smallpox no longer existed as a natural infection. However, emerging threats by terrorist organisations has prompted new programmes for second-generation vaccine development based on attenuated VV strains, which have been shown to cause rare but serious adverse events in immunocompromised patients. Considering the closely related animal poxviruses that might also be used as bioweapons, and the increasing number of unvaccinated young people and AIDS-affected immunocompromised subjects, a safer and more effective smallpox vaccine is still required. New avipoxvirus-based vectors should improve the safety of conventional vaccines, and protect from newly emerging zoonotic orthopoxvirus diseases and from the threat of deliberate release of variola or monkeypox virus in a bioterrorist attack. In this study, DNA and fowlpox recombinants expressing the L1R, A27L, A33R and B5R genes were constructed and evaluated in a pre-clinical trial in mouse, following six prime/boost immunisation regimens, to compare their immunogenicity and protective efficacy against a challenge with the lethal VV IHD-J strain. Although higher numbers of VV-specific IFNγ-producing T lymphocytes were observed in the protected mice, the cytotoxic T-lymphocyte response and the presence of neutralising antibodies did not always correlate with protection. In spite of previous successful results in mice, rabbits and monkeys, where SIV/HIV transgenes were expressed by the fowlpox vector, the immune response elicited by these recombinants was low, and most of the mice were not protected. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Population inversion in recombining hydrogen plasma

    International Nuclear Information System (INIS)

    Furukane, Utaro; Yokota, Toshiaki; Oda, Toshiatsu.

    1978-11-01

    The collisional-radiative model is applied to a recombining hydrogen plasma in order to investigate the plasma condition in which the population inversion between the energy levels of hydrogen can be generated. The population inversion is expected in a plasma where the three body recombination has a large contribution to the recombining processes and the effective recombination rate is beyond a certain value for a given electron density and temperature. Calculated results are presented in figures and tables. (author)

  9. Weakly Deleterious Mutations and Low Rates of Recombination Limit the Impact of Natural Selection on Bacterial Genomes.

    Science.gov (United States)

    Price, Morgan N; Arkin, Adam P

    2015-12-15

    Free-living bacteria are usually thought to have large effective population sizes, and so tiny selective differences can drive their evolution. However, because recombination is infrequent, "background selection" against slightly deleterious alleles should reduce the effective population size (Ne) by orders of magnitude. For example, for a well-mixed population with 10(12) individuals and a typical level of homologous recombination (r/m = 3, i.e., nucleotide changes due to recombination [r] occur at 3 times the mutation rate [m]), we predict that Ne is selection should be sufficient to drive evolution if Ne × s is >1, where s is the selection coefficient. We found that this remains approximately correct if background selection is occurring or when population structure is present. Overall, we predict that even for free-living bacteria with enormous populations, natural selection is only a significant force if s is above 10(-7) or so. Because bacteria form huge populations with trillions of individuals, the simplest theoretical prediction is that the better allele at a site would predominate even if its advantage was just 10(-9) per generation. In other words, virtually every nucleotide would be at the local optimum in most individuals. A more sophisticated theory considers that bacterial genomes have millions of sites each and selection events on these many sites could interfere with each other, so that only larger effects would be important. However, bacteria can exchange genetic material, and in principle, this exchange could eliminate the interference between the evolution of the sites. We used simulations to confirm that during multisite evolution with realistic levels of recombination, only larger effects are important. We propose that advantages of less than 10(-7) are effectively neutral. Copyright © 2015 Price and Arkin.

  10. Mucosal immunization with live attenuated Francisella novicida U112ΔiglB protects against pulmonary F. tularensis SCHU S4 in the Fischer 344 rat model.

    Directory of Open Access Journals (Sweden)

    Aimee L Signarovitz

    Full Text Available The need for an efficacious vaccine against Francisella tularensis is a consequence of its low infectious dose and high mortality rate if left untreated. This study sought to characterize a live attenuated subspecies novicida-based vaccine strain (U112ΔiglB in an established second rodent model of pulmonary tularemia, namely the Fischer 344 rat using two distinct routes of vaccination (intratracheal [i.t.] and oral. Attenuation was verified by comparing replication of U112ΔiglB with wild type parental strain U112 in F344 primary alveolar macrophages. U112ΔiglB exhibited an LD(50>10(7 CFU compared to the wild type (LD(50 = 5 × 10(6 CFU i.t.. Immunization with 10(7 CFU U112ΔiglB by i.t. and oral routes induced antigen-specific IFN-γ and potent humoral responses both systemically (IgG2a>IgG1 in serum and at the site of mucosal vaccination (respiratory/intestinal compartment. Importantly, vaccination with U112ΔiglB by either i.t. or oral routes provided equivalent levels of protection (50% survival in F344 rats against a subsequent pulmonary challenge with ~25 LD(50 (1.25 × 10(4 CFU of the highly human virulent strain SCHU S4. Collectively, these results provide further evidence on the utility of a mucosal vaccination platform with a defined subsp. novicida U112ΔiglB vaccine strain in conferring protective immunity against pulmonary tularemia.

  11. Consequences of recombination on traditional phylogenetic analysis

    DEFF Research Database (Denmark)

    Schierup, M H; Hein, J

    2000-01-01

    We investigate the shape of a phylogenetic tree reconstructed from sequences evolving under the coalescent with recombination. The motivation is that evolutionary inferences are often made from phylogenetic trees reconstructed from population data even though recombination may well occur (mt......DNA or viral sequences) or does occur (nuclear sequences). We investigate the size and direction of biases when a single tree is reconstructed ignoring recombination. Standard software (PHYLIP) was used to construct the best phylogenetic tree from sequences simulated under the coalescent with recombination....... With recombination present, the length of terminal branches and the total branch length are larger, and the time to the most recent common ancestor smaller, than for a tree reconstructed from sequences evolving with no recombination. The effects are pronounced even for small levels of recombination that may...

  12. Microneedle array design determines the induction of protective memory CD8+ T cell responses induced by a recombinant live malaria vaccine in mice.

    Directory of Open Access Journals (Sweden)

    John B Carey

    Full Text Available Vaccine delivery into the skin has received renewed interest due to ease of access to the immune system and microvasculature, however the stratum corneum (SC, must be breached for successful vaccination. This has been achieved by removing the SC by abrasion or scarification or by delivering the vaccine intradermally (ID with traditional needle-and-syringes or with long microneedle devices. Microneedle patch-based transdermal vaccine studies have predominantly focused on antibody induction by inactivated or subunit vaccines. Here, our principal aim is to determine if the design of a microneedle patch affects the CD8(+ T cell responses to a malaria antigen induced by a live vaccine.Recombinant modified vaccinia virus Ankara (MVA expressing a malaria antigen was percutaneously administered to mice using a range of silicon microneedle patches, termed ImmuPatch, that differed in microneedle height, density, patch area and total pore volume. We demonstrate that microneedle arrays that have small total pore volumes induce a significantly greater proportion of central memory T cells that vigorously expand to secondary immunization. Microneedle-mediated vaccine priming induced significantly greater T cell immunity post-boost and equivalent protection against malaria challenge compared to ID vaccination. Notably, unlike ID administration, ImmuPatch-mediated vaccination did not induce inflammatory responses at the site of immunization or in draining lymph nodes.This study demonstrates that the design of microneedle patches significantly influences the magnitude and memory of vaccine-induced CD8(+ T cell responses and can be optimised for the induction of desired immune responses. Furthermore, ImmuPatch-mediated delivery may be of benefit to reducing unwanted vaccine reactogenicity. In addition to the advantages of low cost and lack of pain, the development of optimised microneedle array designs for the induction of T cell responses by live vaccines aids

  13. Oral immunization of BALB/c mice with Giardia duodenalis recombinant cyst wall protein inhibits shedding of cysts.

    Science.gov (United States)

    Larocque, R; Nakagaki, K; Lee, P; Abdul-Wahid, A; Faubert, G M

    2003-10-01

    The process of encystation is a key step in the Giardia duodenalis life cycle that allows this intestinal protozoan to survive between hosts during person-to-person, animal-to-person, waterborne, or food-borne transmission. The release of cysts from infected persons and animals is the main contributing factor to contamination of the environment. Genes coding for cyst wall proteins (CWPs), which could be used for developing a transmission-blocking vaccine, have been cloned. Since the immunogenicity of recombinant Giardia CWP is unknown, we have investigated the immunogenicity of recombinant CWP2 (rCWP2) and its efficacy in interfering with the phenomenon of encystation taking place in the small bowels of BALB/c mice vaccinated with the recombinant protein. Here we report that the immunization of BALB/c mice with rCWP2 stimulated the immune system in a manner comparable to that for a live infection with Giardia muris cysts. Fecal and serum anti-rCWP2 immunoglobulin A (IgA) antibodies were detected in the immunized mice. In addition, anti-rCWP2 IgG1 and IgG2a antibodies were detected in the serum. mRNAs coding for Th1 and Th2 types of cytokines were detected in spleen and Peyer's patch cells from immunized mice. When the vaccinated mice were challenged with live cysts, the animals shed fewer cysts. We conclude that rCWP2 is a possible candidate antigen for the development of a transmission-blocking vaccine.

  14. Modulation of allergic immune responses by mucosal application of recombinant lactic acid bacteria producing the major birch pollen allergen Bet v 1.

    Science.gov (United States)

    Daniel, C; Repa, A; Wild, C; Pollak, A; Pot, B; Breiteneder, H; Wiedermann, U; Mercenier, A

    2006-07-01

    Probiotic lactic acid bacteria (LAB) are able to modulate the host immune system and clinical trials have demonstrated that specific strains have the capacity to reduce allergic symptoms. Therefore, we aimed to evaluate the potential of recombinant LAB producing the major birch pollen allergen Bet v 1 for mucosal vaccination against birch pollen allergy. Recombinant Bet v 1-producing Lactobacillus plantarum and Lactococcus lactis strains were constructed. Their immunogenicity was compared with purified Bet v 1 by subcutaneous immunization of mice. Intranasal application of the live recombinant strains was performed to test their immunomodulatory potency in a mouse model of birch pollen allergy. Bet v 1 produced by the LAB was recognized by monoclonal anti-Bet v 1 and IgE antibodies from birch pollen-allergic patients. Systemic immunization with the recombinant strains induced significantly lower IgG1/IgG2a ratios compared with purified Bet v 1. Intranasal pretreatment led to reduced allergen-specific IgE vs enhanced IgG2a levels and reduced interleukin (IL)-5 production of splenocytes in vitro, indicating a shift towards non-allergic T-helper-1 (Th1) responses. Airway inflammation, i.e. eosinophils and IL-5 in lung lavages, was reduced using either Bet v 1-producing or control strains. Allergen-specific secretory IgA responses were enhanced in lungs and intestines after pretreatment with only the Bet v 1-producing strains. Mucosal vaccination with live recombinant LAB, leading to a shift towards non-allergic immune responses along with enhanced allergen-specific mucosal IgA levels offers a promising approach to prevent systemic and local allergic immune responses.

  15. A new approach for weed control in a cucurbit field employing an attenuated potyvirus-vector for herbicide resistance.

    Science.gov (United States)

    Shiboleth, Y M; Arazi, T; Wang, Y; Gal-On, A

    2001-12-14

    Expression of bar, a phosphinothricin acetyltransferase, in plant tissues, leads to resistance of these plants to glufosinate ammonium based herbicides. We have created a bar expressing, attenuated zucchini yellow mosaic potyvirus-vector, AGII-Bar, to enable herbicide use in cucurbit fields. The parental vector, ZYMV-AGII, has been rendered environmentally safe by both disease-symptom attenuation and aphid-assisted virus transmission abolishment. The recombinant AGII-Bar virus-encoding cDNA, when inoculated on diverse cucurbits was highly infectious, accumulated to similar levels as AGII, and elicited attenuated AGII-like symptoms. Potted cucurbits inoculated with AGII-Bar became herbicide resistant about a week post-inoculation. Herbicide resistance was sustained in squash over a period of at least 26 days and for at least 60 days in cucumber grown in a net-house under commercial conditions. To test the applicability of AGII-Bar use in a weed-infested field, a controlled experiment including more than 450 plants inoculated with this construct, was performed. Different dosages of glufosinate ammonium were sprayed, 2 weeks after planting, on the foliage of melons, cucumbers, squash, and watermelons. AGII-Bar provided protection to all inoculated plants, of every variety tested, at each dosage applied, including the highest doses that totally eradicated weeds. This study demonstrates that AGII-Bar can be utilized to facilitate weed control in cucurbits and exemplifies the practical potential of attenuated virus-vector use in agriculture.

  16. An attenuated herpes simplex virus type 1 (HSV1 encoding the HIV-1 Tat protein protects mice from a deadly mucosal HSV1 challenge.

    Directory of Open Access Journals (Sweden)

    Mariaconcetta Sicurella

    Full Text Available Herpes simplex virus types 1 and 2 (HSV1 and HSV2 are common infectious agents in both industrialized and developing countries. They cause recurrent asymptomatic and/or symptomatic infections, and life-threatening diseases and death in newborns and immunocompromised patients. Current treatment for HSV relies on antiviral medications, which can halt the symptomatic diseases but cannot prevent the shedding that occurs in asymptomatic patients or, consequently, the spread of the viruses. Therefore, prevention rather than treatment of HSV infections has long been an area of intense research, but thus far effective anti-HSV vaccines still remain elusive. One of the key hurdles to overcome in anti-HSV vaccine development is the identification and effective use of strategies that promote the emergence of Th1-type immune responses against a wide range of epitopes involved in the control of viral replication. Since the HIV1 Tat protein has several immunomodulatory activities and increases CTL recognition of dominant and subdominant epitopes of heterologous antigens, we generated and assayed a recombinant attenuated replication-competent HSV1 vector containing the tat gene (HSV1-Tat. In this proof-of-concept study we show that immunization with this vector conferred protection in 100% of mice challenged intravaginally with a lethal dose of wild-type HSV1. We demonstrate that the presence of Tat within the recombinant virus increased and broadened Th1-like and CTL responses against HSV-derived T-cell epitopes and elicited in most immunized mice detectable IgG responses. In sharp contrast, a similarly attenuated HSV1 recombinant vector without Tat (HSV1-LacZ, induced low and different T cell responses, no measurable antibody responses and did not protect mice against the wild-type HSV1 challenge. These findings strongly suggest that recombinant HSV1 vectors expressing Tat merit further investigation for their potential to prevent and/or contain HSV1

  17. An attenuated herpes simplex virus type 1 (HSV1) encoding the HIV-1 Tat protein protects mice from a deadly mucosal HSV1 challenge.

    Science.gov (United States)

    Sicurella, Mariaconcetta; Nicoli, Francesco; Gallerani, Eleonora; Volpi, Ilaria; Berto, Elena; Finessi, Valentina; Destro, Federica; Manservigi, Roberto; Cafaro, Aurelio; Ensoli, Barbara; Caputo, Antonella; Gavioli, Riccardo; Marconi, Peggy C

    2014-01-01

    Herpes simplex virus types 1 and 2 (HSV1 and HSV2) are common infectious agents in both industrialized and developing countries. They cause recurrent asymptomatic and/or symptomatic infections, and life-threatening diseases and death in newborns and immunocompromised patients. Current treatment for HSV relies on antiviral medications, which can halt the symptomatic diseases but cannot prevent the shedding that occurs in asymptomatic patients or, consequently, the spread of the viruses. Therefore, prevention rather than treatment of HSV infections has long been an area of intense research, but thus far effective anti-HSV vaccines still remain elusive. One of the key hurdles to overcome in anti-HSV vaccine development is the identification and effective use of strategies that promote the emergence of Th1-type immune responses against a wide range of epitopes involved in the control of viral replication. Since the HIV1 Tat protein has several immunomodulatory activities and increases CTL recognition of dominant and subdominant epitopes of heterologous antigens, we generated and assayed a recombinant attenuated replication-competent HSV1 vector containing the tat gene (HSV1-Tat). In this proof-of-concept study we show that immunization with this vector conferred protection in 100% of mice challenged intravaginally with a lethal dose of wild-type HSV1. We demonstrate that the presence of Tat within the recombinant virus increased and broadened Th1-like and CTL responses against HSV-derived T-cell epitopes and elicited in most immunized mice detectable IgG responses. In sharp contrast, a similarly attenuated HSV1 recombinant vector without Tat (HSV1-LacZ), induced low and different T cell responses, no measurable antibody responses and did not protect mice against the wild-type HSV1 challenge. These findings strongly suggest that recombinant HSV1 vectors expressing Tat merit further investigation for their potential to prevent and/or contain HSV1 infection and

  18. Oral vaccination of wildlife using a vaccinia-rabies-glycoprotein recombinant virus vaccine (RABORAL V-RG®): a global review.

    Science.gov (United States)

    Maki, Joanne; Guiot, Anne-Laure; Aubert, Michel; Brochier, Bernard; Cliquet, Florence; Hanlon, Cathleen A; King, Roni; Oertli, Ernest H; Rupprecht, Charles E; Schumacher, Caroline; Slate, Dennis; Yakobson, Boris; Wohlers, Anne; Lankau, Emily W

    2017-09-22

    RABORAL V-RG ® is an oral rabies vaccine bait that contains an attenuated ("modified-live") recombinant vaccinia virus vector vaccine expressing the rabies virus glycoprotein gene (V-RG). Approximately 250 million doses have been distributed globally since 1987 without any reports of adverse reactions in wildlife or domestic animals since the first licensed recombinant oral rabies vaccine (ORV) was released into the environment to immunize wildlife populations against rabies. V-RG is genetically stable, is not detected in the oral cavity beyond 48 h after ingestion, is not shed by vaccinates into the environment, and has been tested for thermostability under a range of laboratory and field conditions. Safety of V-RG has been evaluated in over 50 vertebrate species, including non-human primates, with no adverse effects observed regardless of route or dose. Immunogenicity and efficacy have been demonstrated under laboratory and field conditions in multiple target species (including fox, raccoon, coyote, skunk, raccoon dog, and jackal). The liquid vaccine is packaged inside edible baits (i.e., RABORAL V-RG, the vaccine-bait product) which are distributed into wildlife habitats for consumption by target species. Field application of RABORAL V-RG has contributed to the elimination of wildlife rabies from three European countries (Belgium, France and Luxembourg) and of the dog/coyote rabies virus variant from the United States of America (USA). An oral rabies vaccination program in west-central Texas has essentially eliminated the gray fox rabies virus variant from Texas with the last case reported in a cow during 2009. A long-term ORV barrier program in the USA using RABORAL V-RG is preventing substantial geographic expansion of the raccoon rabies virus variant. RABORAL V-RG has also been used to control wildlife rabies in Israel for more than a decade. This paper: (1) reviews the development and historical use of RABORAL V-RG; (2) highlights wildlife rabies control

  19. Production of cell culture (MDCK) derived live attenuated influenza vaccine (LAIV) in a fully disposable platform process.

    Science.gov (United States)

    George, Meena; Farooq, Masiha; Dang, Thi; Cortes, Bernadette; Liu, Jonathan; Maranga, Luis

    2010-08-15

    The majority of influenza vaccines are manufactured using embryonated hens' eggs. The potential occurrence of a pandemic outbreak of avian influenza might reduce or even eliminate the supply of eggs, leaving the human population at risk. Also, the egg-based production technology is intrinsically cumbersome and not easily scalable to provide a rapid worldwide supply of vaccine. In this communication, the production of a cell culture (Madin-Darby canine kidney (MDCK)) derived live attenuated influenza vaccine (LAIV) in a fully disposable platform process using a novel Single Use Bioreactor (SUB) is presented. The cell culture and virus infection was maintained in a disposable stirred tank reactor with PID control of pH, DO, agitation, and temperature, similar to traditional glass or stainless steel bioreactors. The application of this technology was tested using MDCK cells grown on microcarriers in proprietary serum free medium and infection with 2006/2007 seasonal LAIV strains at 25-30 L scale. The MDCK cell growth was optimal at the agitation rate of 100 rpm. Optimization of this parameter allowed the cells to grow at a rate similar to that achieved in the conventional 3 L glass stirred tank bioreactors. Influenza vaccine virus strains, A/New Caledonia/20/99 (H1N1 strain), A/Wisconsin/67/05 (H3N2 strain), and B/Malaysia/2506/04 (B strain) were all successfully produced in SUB with peak virus titers > or =8.6 log(10) FFU/mL. This result demonstrated that more than 1 million doses of vaccine can be produced through one single run of a small bioreactor at the scale of 30 L and thus provided an alternative to the current vaccine production platform with fast turn-around and low upfront facility investment, features that are particularly useful for emerging and developing countries and clinical trial material production.

  20. Pathogenesis of virulent and attenuated foot-and-mouth disease virus in cattle.

    Science.gov (United States)

    Arzt, Jonathan; Pacheco, Juan M; Stenfeldt, Carolina; Rodriguez, Luis L

    2017-05-02

    Understanding the mechanisms of attenuation and virulence of foot-and-mouth disease virus (FMDV) in the natural host species is critical for development of next-generation countermeasures such as live-attenuated vaccines. Functional genomics analyses of FMDV have identified few virulence factors of which the leader proteinase (L pro ) is the most thoroughly investigated. Previous work from our laboratory has characterized host factors in cattle inoculated with virulent FMDV and attenuated mutant strains with transposon insertions within L pro . In the current study, the characteristics defining virulence of FMDV in cattle were further investigated by comparing the pathogenesis of a mutant, attenuated strain (FMDV-Mut) to the parental, virulent virus from which the mutant was derived (FMDV-WT). The only difference between the two viruses was an insertion mutation in the inter-AUG region of the leader proteinase of FMDV-Mut. All cattle were infected by simulated-natural, aerosol inoculation. Both viruses were demonstrated to establish primary infection in the nasopharyngeal mucosa with subsequent dissemination to the lungs. Immunomicroscopic localization of FMDV antigens indicated that both viruses infected superficial epithelial cells of the nasopharynx and lungs. The critical differences between the two viruses were a more rapid establishment of infection by FMDV-WT and quantitatively greater virus loads in secretions and infected tissues compared to FMDV-Mut. The slower replicating FMDV-Mut established a subclinical infection that was limited to respiratory epithelial sites, whereas the faster replication of FMDV-WT facilitated establishment of viremia, systemic dissemination of infection, and clinical disease. The mutant FMDV was capable of achieving all the same early pathogenesis landmarks as FMDV-WT, but was unable to establish systemic infection. The precise mechanism of attenuation remains undetermined; but current data suggests that the impaired replication

  1. Density dependence of dielectronic recombination in selenium

    International Nuclear Information System (INIS)

    Hagelstein, P.L.; Rosen, M.D.; Jacobs, V.L.

    1986-01-01

    Dielectronic recombination has been found to be the dominant recombination process in the determination of the ionization balance of selenium near the Ne-like sequence under conditions relevant to the exploding-foil EUV laser plasmas. The dielectronic recombination process tends to populate excited levels, and these levels in turn are more susceptible to subsequent excitation and ionization than are the ground-state ions. If one defines an effective recombination rate which includes, in addition to the primary recombination, the subsequent excitation and ionization of the additional excited-state population due to the primary recombination, then this effective recombination rate can be density-sensitive at relatively low electron density. We present results for this effective dielectronic recombination rate at an electron density of 3 x 10/sup 20/ electrons/cm 3 for recombination from Ne-like to Na-like selenium and from F-like to Ne-like selenium. In the former case, the effective recombination rate coefficient is found to be 1.8 x 10/sup -11/ cm 3 /sec at 1.0 keV, which is to be compared with the zero-density value of 2.8 x 10/sup -11/ cm 3 /sec. In the latter case (F-like to Ne-like), the effective recombination rate coefficient is found to be 1.3 x 10/sup -11/ cm 3 /sec, which is substantially reduced from the zero-density result of 3.3 x 10/sup -11/ cm 3 /sec. We have examined the effects of dielectronic recombination on the laser gain of the dominant Ne-like 3p-3s transitions and have compared our results with those presented by Whitten et al. [Phys. Rev. A 33, 2171 (1986)

  2. Gain attenuation of gated framing camera

    International Nuclear Information System (INIS)

    Xiao Shali; Liu Shenye; Cao Zhurong; Li Hang; Zhang Haiying; Yuan Zheng; Wang Liwei

    2009-01-01

    The theoretic model of framing camera's gain attenuation is analyzed. The exponential attenuation curve of the gain along the pulse propagation time is simulated. An experiment to measure the coefficient of gain attenuation based on the gain attenuation theory is designed. Experiment result shows that the gain follows an exponential attenuation rule with a quotient of 0.0249 nm -1 , the attenuation coefficient of the pulse is 0.00356 mm -1 . The loss of the pulse propagation along the MCP stripline is the leading reason of gain attenuation. But in the figure of a single stripline, the gain dose not follow the rule of exponential attenuation completely, instead, there is a gain increase at the stripline bottom. That is caused by the reflection of the pulse. The reflectance is about 24.2%. Combining the experiment and theory, which design of the stripline MCP can improved the gain attenuation. (authors)

  3. A recombinant pseudorabies virus co-expressing capsid proteins precursor P1-2A of FMDV and VP2 protein of porcine parvovirus: a trivalent vaccine candidate.

    Science.gov (United States)

    Hong, Qi; Qian, Ping; Li, Xiang-Min; Yu, Xiao-Lan; Chen, Huan-Chun

    2007-11-01

    Pseudorabies (PR), foot-and-mouth disease (FMD), and porcine parvovirus disease are three important infectious diseases in swine worldwide. The gene-deleted pseudorabies virus (PRV) has been used as a live-viral vector to develop multivalent genetic engineering vaccine. In this study, a recombinant PRV, which could co-express protein precursor P1-2A of FMDV and VP2 protein of PPV, was constructed using PRV TK(-)/gE(-)/LacZ(+) mutant as the vector. After homologous recombination and plaque purification, recombinant virus PRV TK(-)/gE(-)/P1-2A-VP2 was acquired and identified. Immunogenicity, safety of the recombinant PRV and its protection against PRV were confirmed in a mouse model by indirect ELISA and serum neutralization test. The results show that the recombinant PRV is a candidate vaccine strain to develop a novel trivalent vaccine against PRV, FMDV and PPV in swine.

  4. Immunization with Live Attenuated Leishmania donovani Centrin−/− Parasites Is Efficacious in Asymptomatic Infection

    Directory of Open Access Journals (Sweden)

    Nevien Ismail

    2017-12-01

    Full Text Available Currently, there is no vaccine against visceral leishmaniasis (VL. Toward developing an effective vaccine, we have reported extensively on the immunogenicity of live attenuated LdCentrin−/− mutants in naive animal models. In VL endemic areas, asymptomatic carriers outnumber symptomatic cases of VL and are considered to be a reservoir of infection. Vaccination of asymptomatic cases represents a viable strategy to eliminate VL. Immunological correlates of protection thus derived might have limited applicability in conditions where the immunized host has prior exposure to virulent infection. To examine whether LdCen−/− parasites can induce protective immunity in experimental hosts that have low-level parasitemia from a previous exposure mimicking an asymptomatic condition, we infected C57Bl/6 mice with wild-type Leishmania donovani parasites expressing LLO epitope (LdWTLLO 103, i.v.. After 3 weeks, the mice with low levels of parasitemia were immunized with LdCen−/− parasites expressing 2W epitope (LdCen−/−2W 3 × 106 i.v. to characterize the immune responses in the same host. Antigen experienced CD4+ T cells from the asymptomatic (LdWTLLO infected LdCen−/−2W immunized, and other control groups were enriched using LLO- and 2W-specific tetramers, followed by Flow cytometric analysis. Our analysis showed that comparable CD4+ T cell proliferation and CD4+ memory T cell responses (TCM represented by CD62Lhi, CCR7+, and IL-7R+ T cell populations were induced with LdCen−/−2W in both asymptomatic and naive animals that received LdCen−/− immunization. Upon restimulation with peptide, TCM cells differentiated into effector T cells and there was no significant difference in the recall response in animals with asymptomatic infection. Following virulent challenge, comparable reduction in splenic parasite burden was observed in both asymptomatic and naive LdCen−/− immunized animals concomitant with the development of

  5. Deletion of the thymidine kinase gene induces complete attenuation of the Georgia isolate of African swine fever virus

    Science.gov (United States)

    African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal viral disease of domestic pigs. There are no vaccines to control Africa swine fever (ASF). Experimental vaccines have been developed using genetically modified live attenuated ASFVs obtained by specifically de...

  6. SequenceLDhot: detecting recombination hotspots.

    Science.gov (United States)

    Fearnhead, Paul

    2006-12-15

    There is much local variation in recombination rates across the human genome--with the majority of recombination occurring in recombination hotspots--short regions of around approximately 2 kb in length that have much higher recombination rates than neighbouring regions. Knowledge of this local variation is important, e.g. in the design and analysis of association studies for disease genes. Population genetic data, such as that generated by the HapMap project, can be used to infer the location of these hotspots. We present a new, efficient and powerful method for detecting recombination hotspots from population data. We compare our method with four current methods for detecting hotspots. It is orders of magnitude quicker, and has greater power, than two related approaches. It appears to be more powerful than HotspotFisher, though less accurate at inferring the precise positions of the hotspot. It was also more powerful than LDhot in some situations: particularly for weaker hotspots (10-40 times the background rate) when SNP density is lower (maths.lancs.ac.uk/~fearnhea/Hotspot.

  7. Experimental evolution across different thermal regimes yields genetic divergence in recombination fraction but no divergence in temperature associated plastic recombination.

    Science.gov (United States)

    Kohl, Kathryn P; Singh, Nadia D

    2018-04-01

    Phenotypic plasticity is pervasive in nature. One mechanism underlying the evolution and maintenance of such plasticity is environmental heterogeneity. Indeed, theory indicates that both spatial and temporal variation in the environment should favor the evolution of phenotypic plasticity under a variety of conditions. Cyclical environmental conditions have also been shown to yield evolved increases in recombination frequency. Here, we use a panel of replicated experimental evolution populations of D. melanogaster to test whether variable environments favor enhanced plasticity in recombination rate and/or increased recombination rate in response to temperature. In contrast to expectation, we find no evidence for either enhanced plasticity in recombination or increased rates of recombination in the variable environment lines. Our data confirm a role of temperature in mediating recombination fraction in D. melanogaster, and indicate that recombination is genetically and plastically depressed under lower temperatures. Our data further suggest that the genetic architectures underlying plastic recombination and population-level variation in recombination rate are likely to be distinct. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  8. Live Cell Analysis and Mathematical Modeling Identify Determinants of Attenuation of Dengue Virus 2'-O-Methylation Mutant.

    Directory of Open Access Journals (Sweden)

    Bianca Schmid

    2015-12-01

    Full Text Available Dengue virus (DENV is the most common mosquito-transmitted virus infecting ~390 million people worldwide. In spite of this high medical relevance, neither a vaccine nor antiviral therapy is currently available. DENV elicits a strong interferon (IFN response in infected cells, but at the same time actively counteracts IFN production and signaling. Although the kinetics of activation of this innate antiviral defense and the timing of viral counteraction critically determine the magnitude of infection and thus disease, quantitative and kinetic analyses are lacking and it remains poorly understood how DENV spreads in IFN-competent cell systems. To dissect the dynamics of replication versus antiviral defense at the single cell level, we generated a fully viable reporter DENV and host cells with authentic reporters for IFN-stimulated antiviral genes. We find that IFN controls DENV infection in a kinetically determined manner that at the single cell level is highly heterogeneous and stochastic. Even at high-dose, IFN does not fully protect all cells in the culture and, therefore, viral spread occurs even in the face of antiviral protection of naïve cells by IFN. By contrast, a vaccine candidate DENV mutant, which lacks 2'-O-methylation of viral RNA is profoundly attenuated in IFN-competent cells. Through mathematical modeling of time-resolved data and validation experiments we show that the primary determinant for attenuation is the accelerated kinetics of IFN production. This rapid induction triggered by mutant DENV precedes establishment of IFN-resistance in infected cells, thus causing a massive reduction of virus production rate. In contrast, accelerated protection of naïve cells by paracrine IFN action has negligible impact. In conclusion, these results show that attenuation of the 2'-O-methylation DENV mutant is primarily determined by kinetics of autocrine IFN action on infected cells.

  9. Attenuation correction for SPECT

    International Nuclear Information System (INIS)

    Hosoba, Minoru

    1986-01-01

    Attenuation correction is required for the reconstruction of a quantitative SPECT image. A new method for detecting body contours, which are important for the correction of tissue attenuation, is presented. The effect of body contours, detected by the newly developed method, on the reconstructed images was evaluated using various techniques for attenuation correction. The count rates in the specified region of interest in the phantom image by the Radial Post Correction (RPC) method, the Weighted Back Projection (WBP) method, Chang's method were strongly affected by the accuracy of the contours, as compared to those by Sorenson's method. To evaluate the effect of non-uniform attenuators on the cardiac SPECT, computer simulation experiments were performed using two types of models, the uniform attenuator model (UAM) and the non-uniform attenuator model (NUAM). The RPC method showed the lowest relative percent error (%ERROR) in UAM (11 %). However, 20 to 30 percent increase in %ERROR was observed for NUAM reconstructed with the RPC, WBP, and Chang's methods. Introducing an average attenuation coefficient (0.12/cm for Tc-99m and 0.14/cm for Tl-201) in the RPC method decreased %ERROR to the levels for UAM. Finally, a comparison between images, which were obtained by 180 deg and 360 deg scans and reconstructed from the RPC method, showed that the degree of the distortion of the contour of the simulated ventricles in the 180 deg scan was 15 % higher than that in the 360 deg scan. (Namekawa, K.)

  10. Coated microneedle arrays for transcutaneous delivery of live virus vaccines

    OpenAIRE

    Vrdoljak, Anto; McGrath, Marie G.; Carey, John B.; Draper, Simon J.; Hill, Adrian V.S.; O’Mahony, Conor; Crean, Abina M.; Moore, Anne C.

    2011-01-01

    Vaccines are sensitive biologics that require continuous refrigerated storage to maintain their viability. The vast majority of vaccines are also administered using needles and syringes. The need for cold chain storage and the significant logistics surrounding needle-and-syringe vaccination is constraining the success of immunization programs. Recombinant live viral vectors are a promising platform for the development of vaccines against a number of infectious diseases, however these viruses ...

  11. The Dengue Vaccine Dilemma: Balancing the Individual and Population Risks and Benefits

    OpenAIRE

    Flasche, Stefan; Jit, Mark; Rodr?guez-Barraquer, Isabel; Coudeville, Laurent; Recker, Mario; Koelle, Katia; Milne, George; Hladish, Thomas J.; Perkins, T. Alex; Cummings, Derek A. T.; Dorigatti, Ilaria; Laydon, Daniel J.; Espa?a, Guido; Kelso, Joel; Longini, Ira

    2016-01-01

    BACKGROUND: Large Phase III trials across Asia and Latin America have recently demonstrated the efficacy of a recombinant, live-attenuated dengue vaccine (Dengvaxia) over the first 25 mo following vaccination. Subsequent data collected in the longer-term follow-up phase, however, have raised concerns about a potential increase in hospitalization risk of subsequent dengue infections, in particular among young, dengue-na?ve vaccinees. We here report predictions from eight independent modelling ...

  12. Potential role of a new PEGylated recombinant factor VIII for hemophilia A

    Directory of Open Access Journals (Sweden)

    Wynn TT

    2016-06-01

    Full Text Available Tung Thanh Wynn,1 Burak Gumuscu,2,3 1Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Florida, Gainesville, FL, 2Pediatric Hematology-Oncology, Bon Secours Health System, St. Mary’s Hospital, Richmond, VA, 3Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Virginia, Charlottesville, VA, USA Abstract: Hemophilia A, a deficiency in the activity of coagulation factor (F VIII, is an X-linked bleeding disorder with an approximate incidence of one in 5,000 male infants. Bleeding-related complications often result in greater severity of disease, poor quality of life, surgical interventions for severe joint destruction, and shortened life span. With the availability of plasma-derived and recombinant FVIII products, the benefits of primary prophylaxis were demonstrated and is now the standard of care for patients with severe factor deficiencies. Current hemophilia research is focusing on the creation of new factor replacement therapies with longer half-lives; accessing alternative mechanisms to achieve desired hemostasis and enhance bypassing ­activity; and limiting the immunogenicity of the protein. PEGylation involves the covalent attachment of polyethylene glycol (PEG to a protein, peptide, or a small molecule drug. PEG effectively increases the molecular weight and size of the protein by creating a hydrophilic cloud around the molecule. This molecular change may reduce susceptibility of the molecule to proteolytic activity and degradation. It is also believed that PEGylation changes the surface charge of the protein that ultimately interferes with some receptor-mediated clearance processes. The half-life of PEGylated factor is more prolonged when compared to non-PEGylated full-length recombinant FVIII. The dawn of a new era in the care of hemophilia patients is upon us with the release of recombinant FVIII products with extended half-lives, and products with even more extended half

  13. The extent and importance of intragenic recombination

    Directory of Open Access Journals (Sweden)

    de Silva Eric

    2004-11-01

    Full Text Available Abstract We have studied the recombination rate behaviour of a set of 140 genes which were investigated for their potential importance in inflammatory disease. Each gene was extensively sequenced in 24 individuals of African descent and 23 individuals of European descent, and the recombination process was studied separately in the two population samples. The results obtained from the two populations were highly correlated, suggesting that demographic bias does not affect our population genetic estimation procedure. We found evidence that levels of recombination correlate with levels of nucleotide diversity. High marker density allowed us to study recombination rate variation on a very fine spatial scale. We found that about 40 per cent of genes showed evidence of uniform recombination, while approximately 12 per cent of genes carried distinct signatures of recombination hotspots. On studying the locations of these hotspots, we found that they are not always confined to introns but can also stretch across exons. An investigation of the protein products of these genes suggested that recombination hotspots can sometimes separate exons belonging to different protein domains; however, this occurs much less frequently than might be expected based on evolutionary studies into the origins of recombination. This suggests that evolutionary analysis of the recombination process is greatly aided by considering nucleotide sequences and protein products jointly.

  14. Recombination epoch revisited

    International Nuclear Information System (INIS)

    Krolik, J.H.

    1989-01-01

    Previous studies of cosmological recombination have shown that this process produces as a by-product a highly superthermal population of Ly-alpha photons which retard completion of recombination. Cosmological redshifting was thought to determine the frequency distribution of the photons, while two-photon decay of hydrogen's 2s state was thought to control their numbers. It is shown here that frequency diffusion due to photon scattering dominate the cosmological redshift in the frequency range near line center which fixes the ratio of ground state to excited state population, while incoherent scattering into the far-red damping wing effectively destroys Ly-alpha photons as a rate which is competitive with two-photon decay. The former effect tends to hold back recombination, while the latter tends to accelerate it; the net results depends on cosmological parameters, particularly the combination Omega(b) h/sq rt (2q0), where Omega(b) is the fraction of the critical density provided by baryons. 18 references

  15. BIOTECHNOLOGY OF RECOMBINANT HORMONES IN DOPING

    Directory of Open Access Journals (Sweden)

    Biljana Vitošević

    2011-09-01

    Full Text Available Recombinant DNA technology has allowed rapid progress in creating biosynthetic gene products for the treatment of many diseases. In this way it can produce large amounts of hormone, which is intended for the treatment of many pathological conditions. Recombinant hormones that are commonly used are insulin, growth hormone and erythropoietin. Precisely because of the availability of these recombinant hormones, it started their abuse by athletes. Experiments in animal models confirmed the potential effects of some of these hormones in increasing physical abilities, which attracted the attention of athletes who push the limits of their competitive capability by such manipulation. The risks of the use of recombinant hormones in doping include serious consequences for the health of athletes. Methods of detection of endogenous hormones from recombined based on the use of a monoclonal antibodies, capillary zone electrophoresis and protein biomarkers

  16. Recombinant Listeria monocytogenes as a Live Vaccine Vehicle for the Induction of Protective Anti-Viral Cell-Mediated Immunity

    Science.gov (United States)

    Shen, Hao; Slifka, Mark K.; Matloubian, Mehrdad; Jensen, Eric R.; Ahmed, Rafi; Miller, Jeff F.

    1995-04-01

    Listeria monocytogenes (LM) is a Gram-positive bacterium that is able to enter host cells, escape from the endocytic vesicle, multiply within the cytoplasm, and spread directly from cell to cell without encountering the extracellular milieu. The ability of LM to gain access to the host cell cytosol allows proteins secreted by the bacterium to efficiently enter the pathway for major histocompatibility complex class I antigen processing and presentation. We have established a genetic system for expression and secretion of foreign antigens by recombinant strains, based on stable site-specific integration of expression cassettes into the LM genome. The ability of LM recombinants to induce protective immunity against a heterologous pathogen was demonstrated with lymphocytic choriomeningitis virus (LCMV). LM strains expressing the entire LCMV nucleoprotein or an H-2L^d-restricted nucleoprotein epitope (aa 118-126) were constructed. Immunization of mice with LM vaccine strains conferred protection against challenge with virulent strains of LCMV that otherwise establish chronic infection in naive adult mice. In vivo depletion of CD8^+ T cells from vaccinated mice abrogated their ability to clear viral infection, showing that protective anti-viral immunity was due to CD8^+ T cells.

  17. Comparison of the protective efficacy between single and combination of recombinant adenoviruses expressing complete and truncated glycoprotein, and nucleoprotein of the pathogenic street rabies virus in mice.

    Science.gov (United States)

    Kim, Ha-Hyun; Yang, Dong-Kun; Nah, Jin-Ju; Song, Jae-Young; Cho, In-Soo

    2017-06-24

    Rabies is an important viral zoonosis that causes acute encephalitis and death in mammals. To date, several recombinant vaccines have been developed based on G protein, which is considered to be the main antigen, and these vaccines are used for rabies control in many countries. Most recombinant viruses expressing RABV G protein retain the G gene from attenuated RABV. Not enough is currently known about the protective effect against RABV of a combination of recombinant adenoviruses expressing the G and N proteins of pathogenic street RABV. We constructed a recombinant adenovirus (Ad-0910Gsped) expressing the signal peptide and ectodomain (sped) of G protein of the Korean street strain, and evaluated the immunological protection conferred by a single and combination of three kinds of recombinant adenoviruses (Ad-0910Gsped and Ad-0910G with or without Ad-0910 N) in mice. A combination of Ad-0910G and Ad-0910 N conferred improved immunity against intracranial challenge compared to single administration of Ad-0910G. The Ad-0910G virus, expressing the complete G protein, was more immunogenic than Ad-0910Gsped, which expressed a truncated G protein with the transmembrane and cytoplasmic domains removed. Additionally, oral vaccination using a combination of viruses led to complete protection. Our results suggest that this combination of viruses is a viable new intramuscular and oral vaccine candidate.

  18. Current status and future prospects of yellow fever vaccines.

    Science.gov (United States)

    Beck, Andrew S; Barrett, Alan D T

    2015-01-01

    Yellow fever 17D vaccine is one of the oldest live-attenuated vaccines in current use that is recognized historically for its immunogenic and safe properties. These unique properties of 17D are presently exploited in rationally designed recombinant vaccines targeting not only flaviviral antigens but also other pathogens of public health concern. Several candidate vaccines based on 17D have advanced to human trials, and a chimeric recombinant Japanese encephalitis vaccine utilizing the 17D backbone has been licensed. The mechanism(s) of attenuation for 17D are poorly understood; however, recent insights from large in silico studies have indicated particular host genetic determinants contributing to the immune response to the vaccine, which presumably influences the considerable durability of protection, now in many cases considered to be lifelong. The very rare occurrence of severe adverse events for 17D is discussed, including a recent fatal case of vaccine-associated viscerotropic disease.

  19. Current Status and Future Prospects of Yellow Fever Vaccines

    Science.gov (United States)

    Beck, Andrew S.; Barrett, Alan D.T.

    2017-01-01

    Summary Yellow fever 17D vaccine is one of the oldest live-attenuated vaccines in current use that is recognized for historically immunogenic and safe properties. These unique properties of 17D are presently exploited in rationally designed recombinant vaccines targeting not only flaviviral antigens but also other pathogens of public health concern. Several candidate vaccines based on 17D have advanced to human trials, and a chimeric recombinant Japanese encephalitis vaccine utilizing the 17D backbone has been licensed. The mechanism(s) of attenuation for 17D are poorly understood; however, recent insights from large in silico studies have indicated particular host genetic determinants contributing to the immune response to the vaccine, which presumably influences the considerable durability of protection, now in many cases considered to be life-long. The very rare occurrence of severe adverse events for 17D is discussed, including a recent fatal case of vaccine-associated viscerotropic disease. PMID:26366673

  20. Effectiveness of Japanese encephalitis SA 14-14-2 live attenuated vaccine among Indian children: Retrospective 1:4 matched case-control study.

    Science.gov (United States)

    Tandale, Babasaheb V; Khan, Siraj A; Kushwaha, Komal P; Rahman, Helina; Gore, Milind M

    2018-04-24

    We estimate the effectiveness of Japanese encephalitis (JE) SA 14-14-2 live-attenuated vaccination single dose campaign among children aged 1-15 years in India during 2006-07. Acute encephalitis syndrome (AES) cases hospitalized following vaccination campaigns during the years 2006-08 were investigated retrospectively. The laboratory-confirmed JE cases were detected from the surveillance laboratories based on anti-JE IgM antibody by ELISA or viral RNA detection by RT-PCR in sera or cerebrospinal fluid. Consent was sought from parents or guardians. Four community controls were chosen randomly per case during house-to-house survey employing individual matching on age, gender and residence during the risk period. Vaccination history was enquired from the child's guardian and verified from vaccination card at home or records at health centre. Conditional logistic regression was conducted on matched case-control sets. We studied 149 cases and matched 596 controls. Vaccination effectiveness was 43.8% (95% CI, 1.9-67.8) based on vaccination card or record. However, effectiveness was 72.2% (95% CI, 56.2-82.4) based on parental history or card/record. Vaccination effectiveness in Assam state was higher than in Uttar Pradesh state. We concluded that the single subcutaneous dose of SA 14-14-2 JE vaccine provided moderate effectiveness in Indian children. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Lipopolysaccharide-specific memory B cell responses to an attenuated live cholera vaccine are associated with protection against Vibrio cholerae infection.

    Science.gov (United States)

    Haney, Douglas J; Lock, Michael D; Gurwith, Marc; Simon, Jakub K; Ishioka, Glenn; Cohen, Mitchell B; Kirkpatrick, Beth D; Lyon, Caroline E; Chen, Wilbur H; Sztein, Marcelo B; Levine, Myron M; Harris, Jason B

    2018-05-11

    The single-dose live attenuated vaccine CVD 103-HgR protects against experimental Vibrio cholerae infection in cholera-naïve adults for at least 6 months after vaccination. While vaccine-induced vibriocidal seroconversion is associated with protection, vibriocidal titers decline rapidly from their peak 1-2 weeks after vaccination. Although vaccine-induced memory B cells (MBCs) might mediate sustained protection in individuals without detectable circulating antibodies, it is unknown whether oral cholera vaccination induces a MBC response. In a study that enrolled North American adults, we measured lipopolysaccharide (LPS)- and cholera toxin (CtxB)-specific MBC responses to PXVX0200 (derived from the CVD 103-HgR strain) and assessed stool volumes following experimental Vibrio cholerae infection. We then evaluated the association between vaccine-induced MBC responses and protection against cholera. There was a significant increase in % CT-specific IgG, % LPS-specific IgG, and % LPS-specific IgA MBCs which persisted 180 days after vaccination as well as a significant association between vaccine-induced increase in % LPS-specific IgA MBCs and lower post-challenge stool volume (r = -0.56, p < 0.001). Oral cholera vaccination induces antigen-specific MBC responses, and the anamnestic LPS-specific responses may contribute to long-term protection and provide correlates of the duration of vaccine-induced protection. NCT01895855. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Delayed recombination and cosmic parameters

    International Nuclear Information System (INIS)

    Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph

    2008-01-01

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n s , and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z * =1078±11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1σ to R=1.734±0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: ε α i <0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  3. Meiotic recombination in human oocytes.

    Directory of Open Access Journals (Sweden)

    Edith Y Cheng

    2009-09-01

    Full Text Available Studies of human trisomies indicate a remarkable relationship between abnormal meiotic recombination and subsequent nondisjunction at maternal meiosis I or II. Specifically, failure to recombine or recombination events located either too near to or too far from the centromere have been linked to the origin of human trisomies. It should be possible to identify these abnormal crossover configurations by using immunofluorescence methodology to directly examine the meiotic recombination process in the human female. Accordingly, we initiated studies of crossover-associated proteins (e.g., MLH1 in human fetal oocytes to analyze their number and distribution on nondisjunction-prone human chromosomes and, more generally, to characterize genome-wide levels of recombination in the human female. Our analyses indicate that the number of MLH1 foci is lower than predicted from genetic linkage analysis, but its localization pattern conforms to that expected for a crossover-associated protein. In studies of individual chromosomes, our observations provide evidence for the presence of "vulnerable" crossover configurations in the fetal oocyte, consistent with the idea that these are subsequently translated into nondisjunctional events in the adult oocyte.

  4. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders.

    Science.gov (United States)

    Moustafa, Dina A; Scarff, Jennifer M; Garcia, Preston P; Cassidy, Sara K B; DiGiandomenico, Antonio; Waag, David M; Inzana, Thomas J; Goldberg, Joanna B

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine.

  5. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders.

    Directory of Open Access Journals (Sweden)

    Dina A Moustafa

    Full Text Available Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine.

  6. Electron - ion recombination processes - an overview

    International Nuclear Information System (INIS)

    Hahn, Yukap

    1997-01-01

    Extensive theoretical and experimental studies have been carried out for the past 20 years on electron - ion recombination processes, as they are applied to the analysis of astrophysical and laboratory plasmas. We review the basic understanding gained through these efforts, with emphasis on some of the more recent progress made in recombination theory as the recombining system is affected by time-dependent electric fields and plasma particles at low temperature. Together with collisional ionization and excitation processes, recombination is important in determining ionization balance and excited-state population in non-equilibrium plasmas. The radiation emitted by plasmas is usually the principal medium with which to study the plasma condition, as it is produced mainly during the recombination and decay of excited states of ions inside the plasma. This is especially true when the plasma under study is not readily accessible by direct probes, as in astrophysical plasmas. Moreover, external probes may sometimes cause undesirable disturbances of the plasma. Electron-ion recombination proceeds in several different modes. The direct modes include three-body recombination (TBR) and one-step radiative recombination (RR), all to the ground- and singly-excited states of the target ions. By contrast, the indirect resonant mode is a two-step dielectronic recombination (DR), which proceeds first with the formation of doubly-excited states by radiationless excitation/capture. The resonant states thus formed may relax by autoionization and/or radiative cascades. For more exotic modes of recombination, we consider off-shell dielectronic recombination (radiative DR = RDR), in which an electron capture is accompanied by simultaneous radiative emission and excitation of the target ion. Some discussion on attachment of electrons to neutral atoms, resulting in the formation of negative ions, is also given. When resonance states involve one or more electrons in high Rydberg states

  7. Controlled Release from Recombinant Polymers

    Science.gov (United States)

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  8. Improvement of quantitation in SPECT: Attenuation and scatter correction using non-uniform attenuation data

    International Nuclear Information System (INIS)

    Mukai, T.; Torizuka, K.; Douglass, K.H.; Wagner, H.N.

    1985-01-01

    Quantitative assessment of tracer distribution with single photon emission computed tomography (SPECT) is difficult because of attenuation and scattering of gamma rays within the object. A method considering the source geometry was developed, and effects of attenuation and scatter on SPECT quantitation were studied using phantoms with non-uniform attenuation. The distribution of attenuation coefficients (μ) within the source were obtained by transmission CT. The attenuation correction was performed by an iterative reprojection technique. The scatter correction was done by convolution of the attenuation corrected image and an appropriate filter made by line source studies. The filter characteristics depended on μ and SPEC measurement at each pixel. The SPECT obtained by this method showed the most reasonable results than the images reconstructed by other methods. The scatter correction could compensate completely for a 28% scatter components from a long line source, and a 61% component for thick and extended source. Consideration of source geometries was necessary for effective corrections. The present method is expected to be valuable for the quantitative assessment of regional tracer activity

  9. First-principles study of Frenkel pair recombination in tungsten

    International Nuclear Information System (INIS)

    Qin, Shi-Yao; Jin, Shuo; Li, Yu-Hao; Zhou, Hong-Bo; Zhang, Ying; Lu, Guang-Hong

    2017-01-01

    The recombination of one Frenkel pair in tungsten has been investigated through first-principles simulation. Two different recombination types have been identified: instantaneous and thermally activated. The small recombination barriers for thermally activated recombination cases indicate that recombination can occur easily with a slightly increased temperature. For both of the two recombination types, recombination occurs through the self-interstitial atom moving towards the vacancy. The recombination process can be direct or through replacement sequences, depending on the vertical distance between the vacancy and the 〈1 1 1〉 line of self-interstitial atom pair.

  10. Containment air circulation for optimal hydrogen recombination

    International Nuclear Information System (INIS)

    Spinks, N.; Krause, M.

    1997-01-01

    An accepted first-line defense for hydrogen mitigation is to design for the hydrogen to be rapidly mixed with the containment atmosphere and diluted to below flammability concentrations. Then, as hydrogen continues to be produced in the longer term, recombiners can be used to remove hydrogen: recombiners can be located in forced-air ducts or passive recombiners can be distributed within containment and the heat of recombination used to promote local air circulation. However, this principle does not eliminate the possibility of high hydrogen concentrations at locations removed from the recombiners. An improvement on this strategy is to arrange for a specific, buoyancy-driven, overall circulation of the containment atmosphere such that the recombiners can be located within the recirculation flow, immediately downstream of the hydrogen source. This would make the mixing process more predictable and solve the mass-transfer problem associated with distributed recombiners. Ideally, the recombiners would be located just above the hydrogen source so that the heat of recombination would assist the overall circulation. In this way, the hydrogen would be removed as close as possible to the source, thereby minimizing the amount of hydrogen immediately downstream of the source and reducing the hydrogen concentration to acceptable levels at other locations. Such a strategy requires the containment volume to be divided into an upflow path, past the hydrogen source and the recombiner, and a downflow path to complete the circuit. The flow could be generated actively using fans or passively using buoyancy forces arising from the difference in density of gases in the upfiow and downflow paths; the gases in the downflow path being cooled at an elevated heat sink. (author)

  11. Recombination properties of dislocations in GaN

    Science.gov (United States)

    Yakimov, Eugene B.; Polyakov, Alexander Y.; Lee, In-Hwan; Pearton, Stephen J.

    2018-04-01

    The recombination activity of threading dislocations in n-GaN with different dislocation densities and different doping levels was studied using electron beam induced current (EBIC). The recombination velocity on a dislocation, also known as the dislocation recombination strength, was calculated. The results suggest that dislocations in n-GaN giving contrast in EBIC are charged and surrounded by a space charge region, as evidenced by the observed dependence of dislocation recombination strength on dopant concentration. For moderate (below ˜108 cm-2) dislocation densities, these defects do not primarily determine the average diffusion length of nonequilibrium charge carriers, although locally, dislocations are efficient recombination sites. In general, it is observed that the effect of the growth method [standard metalorganic chemical vapor deposition (MOCVD), epitaxial lateral overgrowth versions of MOCVD, and hydride vapor phase epitaxy] on the recombination activity of dislocations is not very pronounced, although the average diffusion lengths can widely differ for various samples. The glide of basal plane dislocations at room temperature promoted by low energy electron irradiation does not significantly change the recombination properties of dislocations.

  12. Dual miRNA targeting restricts host range and attenuates neurovirulence of flaviviruses.

    Directory of Open Access Journals (Sweden)

    Konstantin A Tsetsarkin

    2015-04-01

    Full Text Available Mosquito-borne flaviviruses are among the most significant arboviral pathogens worldwide. Vaccinations and mosquito population control programs remain the most reliable means for flavivirus disease prevention, and live attenuated viruses remain one of the most attractive flavivirus vaccine platforms. Some live attenuated viruses are capable of infecting principle mosquito vectors, as demonstrated in the laboratory, which in combination with their intrinsic genetic instability could potentially lead to a vaccine virus reversion back to wild-type in nature, followed by introduction and dissemination of potentially dangerous viral strains into new geographic locations. To mitigate this risk we developed a microRNA-targeting approach that selectively restricts replication of flavivirus in the mosquito host. Introduction of sequences complementary to a mosquito-specific mir-184 and mir-275 miRNAs individually or in combination into the 3'NCR and/or ORF region resulted in selective restriction of dengue type 4 virus (DEN4 replication in mosquito cell lines and adult Aedes mosquitos. Moreover a combined targeting of DEN4 genome with mosquito-specific and vertebrate CNS-specific mir-124 miRNA can silence viral replication in two evolutionally distant biological systems: mosquitoes and mouse brains. Thus, this approach can reinforce the safety of newly developed or existing vaccines for use in humans and could provide an additional level of biosafety for laboratories using viruses with altered pathogenic or transmissibility characteristics.

  13. Oligonucleotide recombination enabled site-specific mutagenesis in bacteria

    Science.gov (United States)

    Recombineering refers to a strategy for engineering DNA sequences using a specialized mode of homologous recombination. This technology can be used for rapidly constructing precise changes in bacterial genome sequences in vivo. Oligo recombination is one type of recombineering that uses ssDNA olig...

  14. Recombination: the good, the bad and the variable.

    Science.gov (United States)

    Stapley, Jessica; Feulner, Philine G D; Johnston, Susan E; Santure, Anna W; Smadja, Carole M

    2017-12-19

    Recombination, the process by which DNA strands are broken and repaired, producing new combinations of alleles, occurs in nearly all multicellular organisms and has important implications for many evolutionary processes. The effects of recombination can be good , as it can facilitate adaptation, but also bad when it breaks apart beneficial combinations of alleles, and recombination is highly variable between taxa, species, individuals and across the genome. Understanding how and why recombination rate varies is a major challenge in biology. Most theoretical and empirical work has been devoted to understanding the role of recombination in the evolution of sex-comparing between sexual and asexual species or populations. How recombination rate evolves and what impact this has on evolutionary processes within sexually reproducing organisms has received much less attention. This Theme Issue focusses on how and why recombination rate varies in sexual species, and aims to coalesce knowledge of the molecular mechanisms governing recombination with our understanding of the evolutionary processes driving variation in recombination within and between species. By integrating these fields, we can identify important knowledge gaps and areas for future research, and pave the way for a more comprehensive understanding of how and why recombination rate varies. © 2017 The Authors.

  15. CTRP3 attenuates diet-induced hepatic steatosis by regulating triglyceride metabolism.

    Science.gov (United States)

    Peterson, Jonathan M; Seldin, Marcus M; Wei, Zhikui; Aja, Susan; Wong, G William

    2013-08-01

    CTRP3 is a secreted plasma protein of the C1q family that helps regulate hepatic gluconeogenesis and is downregulated in a diet-induced obese state. However, the role of CTRP3 in regulating lipid metabolism has not been established. Here, we used a transgenic mouse model to address the potential function of CTRP3 in ameliorating high-fat diet-induced metabolic stress. Both transgenic and wild-type mice fed a high-fat diet showed similar body weight gain, food intake, and energy expenditure. Despite similar adiposity to wild-type mice upon diet-induced obesity (DIO), CTRP3 transgenic mice were strikingly resistant to the development of hepatic steatosis, had reduced serum TNF-α levels, and demonstrated a modest improvement in systemic insulin sensitivity. Additionally, reduced hepatic triglyceride levels were due to decreased expression of enzymes (GPAT, AGPAT, and DGAT) involved in triglyceride synthesis. Importantly, short-term daily administration of recombinant CTRP3 to DIO mice for 5 days was sufficient to improve the fatty liver phenotype, evident as reduced hepatic triglyceride content and expression of triglyceride synthesis genes. Consistent with a direct effect on liver cells, recombinant CTRP3 treatment reduced fatty acid synthesis and neutral lipid accumulation in cultured rat H4IIE hepatocytes. Together, these results establish a novel role for CTRP3 hormone in regulating hepatic lipid metabolism and highlight its protective function and therapeutic potential in attenuating hepatic steatosis.

  16. Vaccination of dogs with six different candidate leishmaniasis vaccines composed of a chimerical recombinant protein containing ribosomal and histone protein epitopes in combination with different adjuvants.

    Science.gov (United States)

    Poot, J; Janssen, L H M; van Kasteren-Westerneng, T J; van der Heijden-Liefkens, K H A; Schijns, V E J C; Heckeroth, A

    2009-07-16

    Chimerical protein "Q", composed of antigenic ribosomal and histone sequences, in combination with live BCG is a promising canine leishmaniasis vaccine candidate; one of the few vaccine candidates that have been tested successfully in dogs. Unfortunately, live BCG is not an appropriate adjuvant for commercial application due to safety problems in dogs. In order to find a safe adjuvant with similar efficacy to live BCG, muramyl dipeptide, aluminium hydroxide, Matrix C and killed Propionibacterium acnes in combination with either E. coli- or baculovirus-produced recombinant JPCM5_Q protein were tested. Groups of five or seven dogs were vaccinated with six different adjuvant-antigen combinations and challenged with a high dose intravenous injection of Leishmania infantum JPC strain promastigotes. All candidate vaccines proved to be safe, and both humoral and cellular responses to the recombinant proteins were detected at the end of the prime-boost vaccination scheme. However, clinical and parasitological data obtained during the 10 month follow-up period indicated that protection was not induced by either of the six candidate vaccines. Although no direct evidence was obtained, our data suggest that live BCG may have a significant protective effect against challenge with L. infantum in dogs.

  17. Genetic recombination of the hepatitis C virus: clinical implications.

    Science.gov (United States)

    Morel, V; Fournier, C; François, C; Brochot, E; Helle, F; Duverlie, G; Castelain, S

    2011-02-01

    Genetic recombination is a well-known feature of RNA viruses that plays a significant role in their evolution. Although recombination is well documented for Flaviviridae family viruses, the first natural recombinant strain of hepatitis C virus (HCV) was identified as recently as 2002. Since then, a few other natural inter-genotypic, intra-genotypic and intra-subtype recombinant HCV strains have been described. However, the frequency of recombination may have been underestimated because not all known HCV recombinants are screened for in routine practice. Furthermore, the choice of treatment regimen and its predictive outcome remain problematic as the therapeutic strategy for HCV infection is genotype dependent. HCV recombination also raises many questions concerning its mechanisms and effects on the epidemiological and physiopathological features of the virus. This review provides an update on recombinant HCV strains, the process that gives rise to recombinants and clinical implications of recombination. © 2010 Blackwell Publishing Ltd.

  18. Substitutions at residues 300 and 389 of the VP2 capsid protein serve as the minimal determinant of attenuation for canine parvovirus vaccine strain 9985-46.

    Science.gov (United States)

    Sehata, Go; Sato, Hiroaki; Yamanaka, Morimasa; Takahashi, Takuo; Kainuma, Risa; Igarashi, Tatsuhiko; Oshima, Sho; Noro, Taichi; Oishi, Eiji

    2017-11-01

    Identifying molecular determinants of virulence attenuation in live attenuated canine parvovirus (CPV) vaccines is important for assuring their safety. To this end, we identified mutations in the attenuated CPV 9985-46 vaccine strain that arose during serial passage in Crandell-Rees feline kidney cells by comparison with the wild-type counterpart, as well as minimal determinants of the loss of virulence. Four amino acid substitutions (N93K, G300V, T389N and V562L) in VP2 of strain 9985-46 significantly restricted infection in canine A72 cells. Using an infectious molecular clone system, we constructed isogenic CPVs of the parental virulent 9985 strain carrying single or double mutations. We observed that only a single amino acid substitution in VP2, G300V or T389N, attenuated the virulent parental virus. Combinations of these mutations further attenuated CPV to a level comparable to that of 9985-46. Strains with G300V/T389N substitutions did not induce clinical symptoms in experimentally infected pups, and their ability to infect canine cells was highly restricted. We found that another G300V/V562L double mutation decreased affinity of the virus for canine cells, although its pathogenicity to dogs was maintained. These results indicate that mutation of residue 300, which plays a critical role in host tropism, is not sufficient for viral attenuation in vivo, and that attenuation of 9985-46 strain is defined by at least two mutations in residues 300 and 389 of the VP2 capsid protein. This finding is relevant for quality control of the vaccine and provides insight into the rational design of second-generation live attenuated vaccine candidates.

  19. Live Attenuated Vaccine based on Duck Enteritis Virus against Duck Hepatitis A Virus Types 1 and 3

    Directory of Open Access Journals (Sweden)

    Zhong Zou

    2016-10-01

    Full Text Available As causative agents of duck viral hepatitis, duck hepatitis A virus type 1 (DHAV-1 and type 3 (DHAV-3 causes significant economic losses in the duck industry. However, a licensed commercial vaccine that simultaneously controls both pathogens is currently unavailable. Here, we generated DEV recombinants (rC-KCE-2VP1 containing both VP1 from DHAV-1 (VP1/DHAV-1 and VP1 from DHAV-3 (VP1/DHAV-3 between UL27 and UL26. A self-cleaving 2A-element of FMDV was inserted between the two different types of VP1, allowing production of both proteins from a single open reading frame. Immunofluorescence and Western blot analysis results demonstrated that both VP1 proteins were robustly expressed in rC-KCE-2VP1-infected chicken embryo fibroblasts. Ducks that received a single dose of rC-KCE-2VP1 showed potent humoral and cellular immune responses and were completely protected against challenges of both pathogenic DHAV-1 and DHAV-3 strains. The protection was rapid, achieved as early as three days after vaccination. Moreover, viral replication was fully blocked in vaccinated ducks as early as one week post-vaccination. These results demonstrated, for the first time, that recombinant rC-KCE-2VP1 is potential fast-acting vaccine against DHAV-1 and DHAV-3.

  20. Recombinant AAV8-mediated intrastriatal gene delivery of CDNF protects rats against methamphetamine neurotoxicity

    Science.gov (United States)

    Wang, Lizheng; Wang, Zixuan; Xu, Xiaoyu; Zhu, Rui; Bi, Jinpeng; Liu, Wenmo; Feng, Xinyao; Wu, Hui; Zhang, Haihong; Wu, Jiaxin; Kong, Wei; Yu, Bin; Yu, Xianghui

    2017-01-01

    Methamphetamine (METH) exerts significant neurotoxicity in experimental animals and humans when taken at high doses or abused chronically. Long-term abusers have decreased dopamine levels, and they are more likely to develop Parkinson's disease (PD). To date, few medications are available to treat the METH-induced damage of neurons. Glial cell line-derived neurotrophic factor (GDNF) has been previously shown to reduce the dopamine-depleting effects of neurotoxic doses of METH. However, the effect of cerebral dopamine neurotrophic factor (CDNF), which has been reported to be more specific and efficient than GDNF in protecting dopaminergic neurons against 6-OHDA toxicity, in attenuating METH neurotoxicity has not been determined. Thus, the present study aimed to evaluate the neuroprotective effect of CDNF against METH-induced damage to the dopaminergic system in vitro and in vivo. In vitro, CDNF protein increased the survival rate and reduced the tyrosine hydroxylase (TH) loss of METH-treated PC12 cells. In vivo, METH was administered to rats following human CDNF overexpression mediated by the recombinant adeno-associated virus. Results demonstrated that CDNF overexpression in the brain could attenuate the METH-induced dopamine and TH loss in the striatum but could not lower METH-induced hyperthermia. PMID:28553166

  1. Test tube systems with cutting/recombination operations

    Energy Technology Data Exchange (ETDEWEB)

    Freund, R. [Technische Universitaet Wien (Austria); Csuhaj-Varju, E. [Computer and Automation Institute, Budapest (Hungary); Wachtler, F. [Universitaet Wien (Austria)

    1996-12-31

    We introduce test tube systems based on operations that are closely related to the splicing operations, i.e. we consider the operations of cutting a string at a specific site into two pieces with marking them at the cut ends and of recombining two strings with specifically marked endings. Whereas in the splicing of two strings these strings are cut at specific sites and the cut pieces are recombined immediately in a crosswise way, in CR(cutting/recombination)-schemes cutting can happen independently from recombining the cut pieces. Test tube systems based on these operations of cutting and recombination turn out to have maximal generative power even if only very restricted types of input filters for the test tubes are used for the redistribution of the contents of the test tubes after a period of cuttings and recombinations in the test tubes. 10 refs.

  2. Atomic excitation and recombination in external fields

    International Nuclear Information System (INIS)

    Nayfeh, M.H.; Clark, C.W.

    1985-01-01

    This volume offers a timely look at Rydberg states of atoms in external fields and dielectronic recombination. Each topic provides authoritative coverage, presents a fresh account of a flourishing field of current atomic physics and introduces new opportunities for discovery and development. Topics considered include electron-atom scattering in external fields; observations of regular and irregular motion as exemplified by the quadratic zeeman effect and other systems; Rydberg atoms in external fields and the Coulomb geometry; crossed-field effects in the absorption spectrum of lithium in a magnetic field; precise studies of static electric field ionization; widths and shapes of stark resonances in sodium above the saddle point; studies of electric field effects and barium autoionizing resonances; autoionization and dielectronic recombination in plasma electric microfields; dielectronic recombination measurements on multicharged ions; merged beam studies of dielectronic recombination; Rydberg atoms and dielectronic recombination in astrophysics; and observations on dielectronic recombination

  3. Genetic evidence for inducibility of recombination competence in yeast

    International Nuclear Information System (INIS)

    Fabre, F.; Roman, H.

    1977-01-01

    Recombination between unirradiated chromosomes was induced by UV or x-ray irradiation of haploids followed by a mating with heteroallelic diploids of Saccharomyces cerevisiae. The selected event of intragenic recombination did not involve the participation of the irradiated chromosome and apparently was not caused by lesions introduced into the unirradiated chromosomes by some indirect process. The results favor the idea that recombination is repressed in the majority of vegetative cells and that one effect of radiation is the release of some factor(s) necessary for recombination. Consequently, the proportion of competent cells (i.e., cells able to recombine) in the population increases. This competent state seems necessary not only for the recombinational repair of radiation-induced lesions but also, since recombinants are produced in the absence of such lesions, for spontaneous recombination. Photoreactivation of the UV-irradiated haploids led to a decrease in the production of recombinants. Hence, lesions in the DNA appear to be responsible for the induction of the recombinational ability

  4. Three-body recombination of cold fermionic atoms

    International Nuclear Information System (INIS)

    Suno, H; Esry, B D; Greene, Chris H

    2003-01-01

    Recombination of identical, spin-polarized fermions in cold three-body collisions is investigated. We parametrize the mechanisms for recombination in terms of the 'scattering volume' V p and another length scale r 0 . Model two-body interactions were used within the framework of the adiabatic hyperspherical representation. We examine the recombination rate K 3 as a function of the collision energy E for various values of V p . Not only do we consider the dominant J Π = 1 + case, but also the next-leading order contributions from J Π = 1 - and 3 - . We discuss the behaviour near a two-body resonance and the expected universality of fermionic recombination. Comparisons with boson recombination are considered in detail

  5. Recombination Modulates How Selection Affects Linked Sites in Drosophila

    Science.gov (United States)

    McGaugh, Suzanne E.; Heil, Caiti S. S.; Manzano-Winkler, Brenda; Loewe, Laurence; Goldstein, Steve; Himmel, Tiffany L.; Noor, Mohamed A. F.

    2012-01-01

    One of the most influential observations in molecular evolution has been a strong association between local recombination rate and nucleotide polymorphisms across the genome. This is interpreted as evidence for ubiquitous natural selection. The alternative explanation, that recombination is mutagenic, has been rejected by the absence of a similar association between local recombination rate and nucleotide divergence between species. However, many recent studies show that recombination rates are often very different even in closely related species, questioning whether an association between recombination rate and divergence between species has been tested satisfactorily. To circumvent this problem, we directly surveyed recombination across approximately 43% of the D. pseudoobscura physical genome in two separate recombination maps and 31% of the D. miranda physical genome, and we identified both global and local differences in recombination rate between these two closely related species. Using only regions with conserved recombination rates between and within species and accounting for multiple covariates, our data support the conclusion that recombination is positively related to diversity because recombination modulates Hill–Robertson effects in the genome and not because recombination is predominately mutagenic. Finally, we find evidence for dips in diversity around nonsynonymous substitutions. We infer that at least some of this reduction in diversity resulted from selective sweeps and examine these dips in the context of recombination rate. PMID:23152720

  6. Recombinational repair: workshop summary

    International Nuclear Information System (INIS)

    Howard-Flanders, P.

    1983-01-01

    Recombinational repair may or may not be synonymous with postreplication repair. Considerable progress has been made in the study of the relevant enzymes, particularly those from bacteria. In this workshop we focus on the recombination enzyme RecA protein. What structural changes take place in the protein and in DNA during repair. How does homologous pairing take place. How is ATP hydrolysis coupled to the stand exchange reaction and the formation of heteroduplx DNA. Turning to another enzyme needed for certain kinds of bacterial recombination, we will ask whether the purified recB protein and recC protein complement each other and are sufficient for exonuclease V activity. In higher cells, we would like to know whether sister exchanges, which occur in bacteria after uv irradiation, are also seen in animal cells

  7. Recombinant nematode anticoagulant protein c2, an inhibitor of tissue factor/factor VIIa, attenuates coagulation and the interleukin-10 response in human endotoxemia

    NARCIS (Netherlands)

    de Pont, A. C. J. M.; Moons, A. H. M.; de Jonge, E.; Meijers, J. C. M.; Vlasuk, G. P.; Rote, W. E.; Büller, H. R.; van der Poll, T.; Levi, M. [=Marcel M.

    2004-01-01

    The tissue factor-factor (F)VIIa complex (TF/FVIIa) is responsible for the initiation of blood coagulation under both physiological and pathological conditions. Recombinant nematode anticoagulant protein c2 (rNAPc2) is a potent inhibitor of TF/FVIIa. mechanistically distinct from tissue factor

  8. Varicella-Zoster Virus-Specific Cellular Immune Responses to the Live Attenuated Zoster Vaccine in Young and Older Adults.

    Science.gov (United States)

    Weinberg, Adriana; Canniff, Jennifer; Rouphael, Nadine; Mehta, Aneesh; Mulligan, Mark; Whitaker, Jennifer A; Levin, Myron J

    2017-07-15

    The incidence and severity of herpes zoster (HZ) increases with age. The live attenuated zoster vaccine generates immune responses similar to HZ. We compared the immune responses to zoster vaccine in young and older to adults to increase our understanding of the immune characteristics that may contribute to the increased susceptibility to HZ in older adults. Young (25-40 y; n = 25) and older (60-80 y; n = 33) adults had similar magnitude memory responses to varicella-zoster virus (VZV) ex vivo restimulation measured by responder cell-frequency and flow cytometry, but the responses were delayed in older compared with young adults. Only young adults had an increase in dual-function VZV-specific CD4 + and CD8 + T cell effectors defined by coexpression of IFN-γ, IL-2, and CD107a after vaccination. In contrast, older adults showed marginal increases in VZV-specific CD8 + CD57 + senescent T cells after vaccination, which were already higher than those of young adults before vaccination. An increase in VZV-stimulated CD4 + CD69 + CD57 + PD1 + and CD8 + CD69 + CD57 + PD1 + T cells from baseline to postvaccination was associated with concurrent decreased VZV-memory and CD8 + effector responses, respectively, in older adults. Blocking the PD1 pathway during ex vivo VZV restimulation increased the CD4 + and CD8 + proliferation, but not the effector cytokine production, which modestly increased with TIM-3 blockade. We conclude that high proportions of senescent and exhausted VZV-specific T cells in the older adults contribute to their poor effector responses to a VZV challenge. This may underlie their inability to contain VZV reactivation and prevent the development of HZ. Copyright © 2017 by The American Association of Immunologists, Inc.

  9. A genetically engineered live-attenuated simian-human immunodeficiency virus that co-expresses the RANTES gene improves the magnitude of cellular immunity in rhesus macaques

    International Nuclear Information System (INIS)

    Shimizu, Yuya; Inaba, Katsuhisa; Kaneyasu, Kentaro; Ibuki, Kentaro; Himeno, Ai; Okoba, Masashi; Goto, Yoshitaka; Hayami, Masanori; Miura, Tomoyuki; Haga, Takeshi

    2007-01-01

    Regulated-on-activation-normal-T-cell-expressed-and-secreted (RANTES), a CC-chemokine, enhances antigen-specific T helper (Th) type-1 responses against HIV-1. To evaluate the adjuvant effects of RANTES against HIV vaccine candidate in SHIV-macaque models, we genetically engineered a live-attenuated SHIV to express the RANTES gene (SHIV-RANTES) and characterized the virus's properties in vivo. After the vaccination, the plasma viral loads were same in the SHIV-RANTES-inoculated monkeys and the parental nef-deleted SHIV (SHIV-NI)-inoculated monkeys. SHIV-RANTES provided some immunity in monkeys by remarkably increasing the antigen-specific CD4 + Th cell-proliferative response and by inducing an antigen-specific IFN-γ ELISpot response. The magnitude of the immunity in SHIV-RANTES-immunized animals, however, failed to afford greater protection against a heterologous pathogenic SHIV (SHIV-C2/1) challenge compared to control SHIV-NI-immunized animals. SHIV-RANTES immunized monkeys, elicited robust cellular CD4 + Th responses and IFN-γ ELISpot responses after SHIV-C2/1 challenge. These findings suggest that the chemokine RANTES can augment vaccine-elicited, HIV-specific CD4 + T cell responses

  10. Illuminating the Sites of Enterovirus Replication in Living Cells by Using a Split-GFP-Tagged Viral Protein

    NARCIS (Netherlands)

    van der Schaar, H M; Melia, C E; van Bruggen, J A C; Strating, J R P M; van Geenen, M E D; Koster, A J; Bárcena, M; van Kuppeveld, F J M

    2016-01-01

    Like all other positive-strand RNA viruses, enteroviruses generate new organelles (replication organelles [ROs]) with a unique protein and lipid composition on which they multiply their viral genome. Suitable tools for live-cell imaging of enterovirus ROs are currently unavailable, as recombinant

  11. The Association of Recombination Events in the Founding and Emergence of Subgenogroup Evolutionary Lineages of Human Enterovirus 71

    Science.gov (United States)

    McWilliam Leitch, E. C.; Cabrerizo, M.; Cardosa, J.; Harvala, H.; Ivanova, O. E.; Koike, S.; Kroes, A. C. M.; Lukashev, A.; Perera, D.; Roivainen, M.; Susi, P.; Trallero, G.; Evans, D. J.

    2012-01-01

    Enterovirus 71 (EV71) is responsible for frequent large-scale outbreaks of hand, foot, and mouth disease worldwide and represent a major etiological agent of severe, sometimes fatal neurological disease. EV71 variants have been classified into three genogroups (GgA, GgB, and GgC), and the latter two are further subdivided into subgenogroups B1 to B5 and C1 to C5. To investigate the dual roles of recombination and evolution in the epidemiology and transmission of EV71 worldwide, we performed a large-scale genetic analysis of isolates (n = 308) collected from 19 countries worldwide over a 40-year period. A series of recombination events occurred over this period, which have been identified through incongruities in sequence grouping between the VP1 and 3Dpol regions. Eleven 3Dpol clades were identified, each specific to EV71 and associated with specific subgenogroups but interspersed phylogenetically with clades of coxsackievirus A16 and other EV species A serotypes. The likelihood of recombination increased with VP1 sequence divergence; mean half-lives for EV71 recombinant forms (RFs) of 6 and 9 years for GgB and GgC overlapped with those observed for the EV-B serotypes, echovirus 9 (E9), E30, and E11, respectively (1.3 to 9.8 years). Furthermore, within genogroups, sporadic recombination events occurred, such as the linkage of two B4 variants to RF-W instead of RF-A and of two C4 variants to RF-H. Intriguingly, recombination events occurred as a founding event of most subgenogroups immediately preceding their lineage expansion and global emergence. The possibility that recombination contributed to their subsequent spread through improved fitness requires further biological and immunological characterization. PMID:22205739

  12. Foot-and-mouth disease virus type O specific mutations determine RNA-dependent RNA polymerase fidelity and virus attenuation.

    Science.gov (United States)

    Li, Chen; Wang, Haiwei; Yuan, Tiangang; Woodman, Andrew; Yang, Decheng; Zhou, Guohui; Cameron, Craig E; Yu, Li

    2018-05-01

    Previous studies have shown that the FMDV Asia1/YS/CHA/05 high-fidelity mutagen-resistant variants are attenuated (Zeng et al., 2014). Here, we introduced the same single or multiple-amino-acid substitutions responsible for increased 3D pol fidelity of type Asia1 FMDV into the type O FMDV O/YS/CHA/05 infectious clone. The rescued viruses O-DA and O-DAMM are lower replication fidelity mutants and showed an attenuated phenotype. These results demonstrated that the same amino acid substitution of 3D pol in different serotypes of FMDV strains had different effects on viral fidelity. In addition, nucleoside analogues were used to select high-fidelity mutagen-resistant type O FMDV variants. The rescued mutagen-resistant type O FMDV high-fidelity variants exhibited significantly attenuated fitness and a reduced virulence phenotype. These results have important implications for understanding the molecular mechanism of FMDV evolution and pathogenicity, especially in developing a safer modified live-attenuated vaccine against FMDV. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Recombinant production of human Aquaporin-1 to an exceptional high membrane density in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Julie Bomholt

    Full Text Available In the present paper we explored the capacity of yeast Saccharomyces cerevisiae as host for heterologous expression of human Aquaporin-1. Aquaporin-1 cDNA was expressed from a galactose inducible promoter situated on a plasmid with an adjustable copy number. Human Aquaporin-1 was C-terminally tagged with yeast enhanced GFP for quantification of functional expression, determination of sub-cellular localization, estimation of in vivo folding efficiency and establishment of a purification protocol. Aquaporin-1 was found to constitute 8.5 percent of total membrane protein content after expression at 15°C in a yeast host over-producing the Gal4p transcriptional activator and growth in amino acid supplemented minimal medium. In-gel fluorescence combined with western blotting showed that low accumulation of correctly folded recombinant Aquaporin-1 at 30°C was due to in vivo mal-folding. Reduction of the expression temperature to 15°C almost completely prevented Aquaporin-1 mal-folding. Bioimaging of live yeast cells revealed that recombinant Aquaporin-1 accumulated in the yeast plasma membrane. A detergent screen for solubilization revealed that CYMAL-5 was superior in solubilizing recombinant Aquaporin-1 and generated a monodisperse protein preparation. A single Ni-affinity chromatography step was used to obtain almost pure Aquaporin-1. Recombinant Aquaporin-1 produced in S. cerevisiae was not N-glycosylated in contrast to the protein found in human erythrocytes.

  14. Mitigating Mitochondrial Genome Erosion Without Recombination.

    Science.gov (United States)

    Radzvilavicius, Arunas L; Kokko, Hanna; Christie, Joshua R

    2017-11-01

    Mitochondria are ATP-producing organelles of bacterial ancestry that played a key role in the origin and early evolution of complex eukaryotic cells. Most modern eukaryotes transmit mitochondrial genes uniparentally, often without recombination among genetically divergent organelles. While this asymmetric inheritance maintains the efficacy of purifying selection at the level of the cell, the absence of recombination could also make the genome susceptible to Muller's ratchet. How mitochondria escape this irreversible defect accumulation is a fundamental unsolved question. Occasional paternal leakage could in principle promote recombination, but it would also compromise the purifying selection benefits of uniparental inheritance. We assess this tradeoff using a stochastic population-genetic model. In the absence of recombination, uniparental inheritance of freely-segregating genomes mitigates mutational erosion, while paternal leakage exacerbates the ratchet effect. Mitochondrial fusion-fission cycles ensure independent genome segregation, improving purifying selection. Paternal leakage provides opportunity for recombination to slow down the mutation accumulation, but always at a cost of increased steady-state mutation load. Our findings indicate that random segregation of mitochondrial genomes under uniparental inheritance can effectively combat the mutational meltdown, and that homologous recombination under paternal leakage might not be needed. Copyright © 2017 by the Genetics Society of America.

  15. Distribution of attenuated goose parvoviruses in Muscovy ducklings.

    Science.gov (United States)

    Takehara, K; Saitoh, M; Kiyono, M; Nakamura, M

    1998-03-01

    With a polymerase chain reaction (PCR) method, goose parvovirus (GPV) DNA was detected in Muscovy ducklings inoculated with attenuated GPV strains, IH and IHC. Strain IH that had been passed 20 times in Muscovy duck embryos could be detected in ducklings at 2- to 28-days after oral inoculation by PCR, however, a cell culture adapted strain IHC that had been passed 15 times in Muscovy duck embryos and then successively 50 times in Muscovy duck embryo fibroblasts could not be detected by 6 days postinoculation by the oral route, but via intramuscular inoculation the virus was detected from 6 dpi. With both strains Muscovy ducklings produced neutralizing antibodies against GPV, but GPV could be recovered from heart muscles even in birds that had high titer of neutralizing antibody. This means that GPV remains in birds for a long period under the presence of high titer of neutralizing antibody in the serum. Recovery of the virus was consistent with PCR results with one exception in which the bird had a neutralizing antibody titer of more than 100,000. After inoculation of these strains, no clinical signs were detected in ducklings. These results suggest that strains IH and IHC can be candidates for live attenuated vaccine for GPV infection.

  16. Long-lived tissue resident HIV-1 specific memory CD8+ T cells are generated by skin immunization with live virus vectored microneedle arrays

    OpenAIRE

    Zaric, Marija; Becker, Pablo Daniel; Hervouet, Catherine; Kalcheva, Petya; Ibarzo Yus, Barbara; Cocita, Clement; O'Neill, Lauren Alexandra; Kwon, Sung-Yun; Klavinskis, Linda Sylvia

    2017-01-01

    The generation of tissue resident memory (TRM) cells at the body surfaces to provide a front line defence against invading pathogens represents an important goal in vaccine development for a wide variety of pathogens. It has been widely assumed that local vaccine delivery to the mucosae is necessary to achieve that aim. Here we characterise a novel micro-needle array (MA) delivery system fabricated to deliver a live recombinant human adenovirus type 5 vaccine vector (AdHu5) encoding HIV-1 gag...

  17. Field Efficacy of an Attenuated Infectious Bronchitis Variant 2 Virus Vaccine in Commercial Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Mohamed A. Elhady

    2018-05-01

    Full Text Available Egyptian poultry suffer from frequent respiratory disease outbreaks associated with Infectious Bronchitis Virus (IBV variant 2 strains (Egy/VarII. Different vaccination programs using imported vaccines have failed to protect the flocks from field challenge. Recent studies confirmed a successful protection using homologous strains as live attenuated vaccines. In this study, a newly developed live attenuated IB-VAR2 vaccine representing the GI-23 Middle East IBV lineage was evaluated in day-old commercial broilers in an IBV-endemic area. A commercial broiler flock was vaccinated with the IB-VAR2 vaccine at day-old age followed by IB-H120 at day 16. The vaccinated flock was monitored on a weekly basis till the slaughter age. The health status and growth performance were monitored, and selected viral pathogen real-time RT-PCR (rRT-PCR detection was conducted on a weekly basis. Finally, the flock was compared to a nearby farm with only the classical IB-H120 vaccination program. Results showed that the IB-VAR2 vaccine was tolerable in day-old broiler chicks. The IBV virus rRT-PCR detection was limited to the trachea as compared to its nephropathogenic parent virus. Respiratory disease problems and high mortalities were reported in the IB-H120-only vaccinated flock. An exposure to a wild-type Egy/VarII strain was confirmed in both flocks as indicated by partial IBV S1 gene sequence. Even though the IB-VAR2-vaccinated flock performance was better than the flock that received only IB-H120, the IBV ELISA (enzyme-linked immunosorbent assay and log2 Haemagglutination inhibition (HI antibody mean titers remained high (3128 ± 2713 and ≥9 log2, respectively until the 28th day of age. The current study demonstrates the safety and effectiveness of IB-VAR2 as a live attenuated vaccine in day-old commercial broilers. Also, the combination of IB-VAR2 and classical IBV vaccines confers a broader protective immune response against IBV in endemic areas.

  18. The effect of a single recombination event

    DEFF Research Database (Denmark)

    Schierup, Mikkel Heide; Jensen, Thomas Mailund; Wiuf, Carsten

    We investigate the variance in how visible a single recombination event is in a SNP data set as a function of the type of recombination event and its age. Data is simulated under the coalescent with recombination and inference is by the popular composite likelihood methods. The major determinant...

  19. Lithium chloride inhibits the coronavirus infectious bronchitis virus in cell culture.

    OpenAIRE

    Harrison , Sally; Tarpey , Ian; Rothwell , Lisa; Kasier , Pete; Hiscox , Julian

    2007-01-01

    Abstract The avian coronavirus infectious bronchitis virus (IBV) is a major economic pathogen of domestic poultry which, despite vaccination, causes mortality and significant losses in production. During replication of the RNA genome there is a high frequency of mutation and recombination which has given rise to many strains of IBV and results in the potential for new and emerging strains. Currently the live-attenuated vaccine gives poor cross strain immunity. Effective antivira...

  20. Neuronal Damage Induced by Perinatal Asphyxia Is Attenuated by Postinjury Glutaredoxin-2 Administration

    Directory of Open Access Journals (Sweden)

    Juan Ignacio Romero

    2017-01-01

    Full Text Available The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifestation, progression, and recovery following hypoxic/ischemic damage. Here, we analyzed the neuroprotective effects of postinjury, exogenous administration of Grx2 and Trx1 in a neonatal hypoxia/ischemia model. P7 Sprague-Dawley rats were subjected to right common carotid ligation or sham surgery, followed by an exposure to nitrogen. 1 h later, animals were injected i.p. with saline solution, 10 mg/kg recombinant Grx2 or Trx1, and euthanized 72 h postinjury. Results showed that Grx2 administration, and to some extent Trx1, attenuated part of the neuronal damage associated with a perinatal hypoxic/ischemic damage, such as glutamate excitotoxicity, axonal integrity, and astrogliosis. Moreover, these treatments also prevented some of the consequences of the induced neural injury, such as the delay of neurobehavioral development. To our knowledge, this is the first study demonstrating neuroprotective effects of recombinant Trx proteins on the outcome of neonatal hypoxia/ischemia, implying clinical potential as neuroprotective agents that might counteract neonatal hypoxia/ischemia injury.

  1. Neuronal Damage Induced by Perinatal Asphyxia Is Attenuated by Postinjury Glutaredoxin-2 Administration.

    Science.gov (United States)

    Romero, Juan Ignacio; Holubiec, Mariana Inés; Tornatore, Tamara Logica; Rivière, Stéphanie; Hanschmann, Eva-Maria; Kölliker-Frers, Rodolfo Alberto; Tau, Julia; Blanco, Eduardo; Galeano, Pablo; Rodríguez de Fonseca, Fernando; Lillig, Christopher Horst; Capani, Francisco

    2017-01-01

    The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx) family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifestation, progression, and recovery following hypoxic/ischemic damage. Here, we analyzed the neuroprotective effects of postinjury, exogenous administration of Grx2 and Trx1 in a neonatal hypoxia/ischemia model. P7 Sprague-Dawley rats were subjected to right common carotid ligation or sham surgery, followed by an exposure to nitrogen. 1 h later, animals were injected i.p. with saline solution, 10 mg/kg recombinant Grx2 or Trx1, and euthanized 72 h postinjury. Results showed that Grx2 administration, and to some extent Trx1, attenuated part of the neuronal damage associated with a perinatal hypoxic/ischemic damage, such as glutamate excitotoxicity, axonal integrity, and astrogliosis. Moreover, these treatments also prevented some of the consequences of the induced neural injury, such as the delay of neurobehavioral development. To our knowledge, this is the first study demonstrating neuroprotective effects of recombinant Trx proteins on the outcome of neonatal hypoxia/ischemia, implying clinical potential as neuroprotective agents that might counteract neonatal hypoxia/ischemia injury.

  2. Landing gear noise attenuation

    Science.gov (United States)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  3. Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs.

    Science.gov (United States)

    Zhou, Ming; Wang, Lei; Zhou, Songqin; Wang, Zhao; Ruan, Juncheng; Tang, Lijun; Jia, Ziming; Cui, Min; Zhao, Ling; Fu, Zhen F

    2015-11-17

    Developing efficacious oral rabies vaccines is an important step to increase immunization coverage for stray dogs, which are not accessible for parenteral vaccination. Our previous studies have demonstrated that recombinant rabies virus (RABV) expressing cytokines/chemokines induces robust protective immune responses after oral immunization in mice by recruiting and activating dendritic cells (DCs) and B cells. To develop an effective oral rabies vaccine for dogs, a recombinant attenuated RABV expressing dog GM-CSF, designated as LBNSE-dGM-CSF was constructed and used for oral vaccination in a dog model. Significantly more DCs or B cells were activated in the peripheral blood of dogs vaccinated orally with LBNSE-dGM-CSF than those vaccinated with the parent virus LBNSE, particularly at 3 days post immunization (dpi). As a result, significantly higher levels of virus neutralizing antibodies (VNAs) were detected in dogs immunized with LBNSE-dGM-CSF than with the parent virus. All the immunized dogs were protected against a lethal challenge with 4500 MICLD50 of wild-type RABV SXTYD01. LBNSE-dGM-CSF was found to replicate mainly in the tonsils after oral vaccination as detected by nested RT-PCR and immunohistochemistry. Taken together, our results indicate that LBNSE-dGM-CSF could be a promising oral rabies vaccine candidate for dogs.

  4. Time-dependent mobility and recombination of the photoinduced charge carriers in conjugated polymer/fullerene bulk heterojunction solar cells

    Science.gov (United States)

    Mozer, A. J.; Dennler, G.; Sariciftci, N. S.; Westerling, M.; Pivrikas, A.; Österbacka, R.; Juška, G.

    2005-07-01

    Time-dependent mobility and recombination in the blend of poly[2-methoxy-5-(3,7-dimethyloctyloxy)-phenylene vinylene] (MDMO-PPV) and 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)- C61 (PCBM) is studied simultaneously using the photoinduced charge carrier extraction by linearly increasing voltage technique. The charge carriers are photogenerated by a strongly absorbed, 3 ns laser flash, and extracted by the application of a reverse bias voltage pulse after an adjustable delay time (tdel) . It is found that the mobility of the extracted charge carriers decreases with increasing delay time, especially shortly after photoexcitation. The time-dependent mobility μ(t) is attributed to the energy relaxation of the charge carriers towards the tail states of the density of states distribution. A model based on a dispersive bimolecular recombination is formulated, which properly describes the concentration decay of the extracted charge carriers at all measured temperatures and concentrations. The calculated bimolecular recombination coefficient β(t) is also found to be time-dependent exhibiting a power law dependence as β(t)=β0t-(1-γ) with increasing slope (1-γ) with decreasing temperatures. The temperature dependence study reveals that both the mobility and recombination of the photogenerated charge carriers are thermally activated processes with activation energy in the range of 0.1 eV. Finally, the direct comparison of μ(t) and β(t) shows that the recombination of the long-lived charge carriers is controlled by diffusion.

  5. Identification of nucleotides in the 5'UTR and amino acids substitutions that are essential for the infectivity of 5'UTR-NS5A recombinant of hepatitis C virus genotype 1b (strain Con1).

    Science.gov (United States)

    Li, Jinqian; Feng, Shengjun; Liu, Xi; Guo, Mingzhe; Chen, Mingxiao; Chen, Yiyi; Rong, Liang; Xia, Jinyu; Zhou, Yuanping; Zhong, Jin; Li, Yi-Ping

    2018-05-01

    Genotype 1b strain Con1 represents an important reference in the study of hepatitis C virus (HCV). Here, we aimed to develop an advanced infectious Con1 recombinant. We found that previously identified mutations A1226G/F1464L/A1672S/Q1773H permitted culture adaption of Con1 Core-NS5A (C-5A) recombinant containing 5'UTR and NS5B-3'UTR from JFH1 (genotype 2a), thus acquired additional mutations L725H/F886L/D2415G. C-5A containing all seven mutations (C-5A_7m) replicated efficiently in Huh7.5 and Huh7.5.1 cells and had an increased infectivity in SEC14L2-expressing Huh7.5.1 cells. Incorporation of Con1 NS5B was deleterious to C-5A_7m, however Con1 5'UTR was permissive but attenuated the virus. Nucleotides G1, A4, and G35 primarily accounted for the viral attenuation without affecting RNA translation. C-5A_7m was inhibited dose-dependently by simeprevir and daclatasvir, and substitutions at A4, A29, A34, and G35 conferred resistance to miR-122 antagonism. The novel Con1 5'UTR-NS5A recombinant, adaptive mutations, and critical nucleotides described here will facilitate future studies of HCV culture systems and virus-host interaction. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Recombination rate plasticity: revealing mechanisms by design

    Science.gov (United States)

    Sefick, Stephen; Rushton, Chase

    2017-01-01

    For over a century, scientists have known that meiotic recombination rates can vary considerably among individuals, and that environmental conditions can modify recombination rates relative to the background. A variety of external and intrinsic factors such as temperature, age, sex and starvation can elicit ‘plastic’ responses in recombination rate. The influence of recombination rate plasticity on genetic diversity of the next generation has interesting and important implications for how populations evolve. Further, many questions remain regarding the mechanisms and molecular processes that contribute to recombination rate plasticity. Here, we review 100 years of experimental work on recombination rate plasticity conducted in Drosophila melanogaster. We categorize this work into four major classes of experimental designs, which we describe via classic studies in D. melanogaster. Based on these studies, we highlight molecular mechanisms that are supported by experimental results and relate these findings to studies in other systems. We synthesize lessons learned from this model system into experimental guidelines for using recent advances in genotyping technologies, to study recombination rate plasticity in non-model organisms. Specifically, we recommend (1) using fine-scale genome-wide markers, (2) collecting time-course data, (3) including crossover distribution measurements, and (4) using mixed effects models to analyse results. To illustrate this approach, we present an application adhering to these guidelines from empirical work we conducted in Drosophila pseudoobscura. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109222

  7. L-Lactate-selective microbial sensor based on flavocytochrome b2-enriched yeast cells using recombinant and nanotechnology approaches.

    Science.gov (United States)

    Karkovska, Maria; Smutok, Oleh; Stasyuk, Nataliya; Gonchar, Mykhailo

    2015-11-01

    In the recent years, nanotechnology is the most developing branch due to a wide variety of potential applications in biomedical, biotechnological and agriculture fields. The binding nanoparticles with various biological molecules makes them attractive candidates for using in sensor technologies. The particularly actual is obtaining the bionanomembranes based on biocatalytic elements with improved sensing characteristics. The aim of this investigation is to study the properties of microbial L-lactate-selective sensor based on using the recombinant Hansenula polymorpha yeast cells overproducing flavocytochrome b2 (FC b2), as well as additionally enriched by the enzyme bound with gold nanoparticles (FC b2-nAu). Although, the high permeability of the living cells to nanoparticles is being intensively studied (mostly for delivery of drugs), the idea of using both recombinant technology and nanotechnology to increase the amount of the target enzyme in the biosensing layer is really novel. The FC b2-nAu-enriched living and permeabilized yeast cells were used for construction of a bioselective membrane of microbial L-lactate-selective amperometric biosensor. Phenazine methosulphate was served as a free defusing electron transfer mediator which provides effective electron transfer from the reduced enzyme to the electrode surface. It was shown that the output to L-lactate of FC b2-nAu-enriched permeabilized yeast cells is 2.5-fold higher when compared to the control cells. The obtained results confirm that additional enrichment of the recombinant yeast cell by the enzyme bound with nanoparticles improves the analytical parameters of microbial sensor. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Microneedle Array Design Determines the Induction of Protective Memory CD8+ T Cell Responses Induced by a Recombinant Live Malaria Vaccine in Mice

    Science.gov (United States)

    Carey, John B.; Pearson, Frances E.; Vrdoljak, Anto; McGrath, Marie G.; Crean, Abina M.; Walsh, Patrick T.; Doody, Timothy; O'Mahony, Conor; Hill, Adrian V. S.; Moore, Anne C.

    2011-01-01

    Background Vaccine delivery into the skin has received renewed interest due to ease of access to the immune system and microvasculature, however the stratum corneum (SC), must be breached for successful vaccination. This has been achieved by removing the SC by abrasion or scarification or by delivering the vaccine intradermally (ID) with traditional needle-and-syringes or with long microneedle devices. Microneedle patch-based transdermal vaccine studies have predominantly focused on antibody induction by inactivated or subunit vaccines. Here, our principal aim is to determine if the design of a microneedle patch affects the CD8+ T cell responses to a malaria antigen induced by a live vaccine. Methodology and Findings Recombinant modified vaccinia virus Ankara (MVA) expressing a malaria antigen was percutaneously administered to mice using a range of silicon microneedle patches, termed ImmuPatch, that differed in microneedle height, density, patch area and total pore volume. We demonstrate that microneedle arrays that have small total pore volumes induce a significantly greater proportion of central memory T cells that vigorously expand to secondary immunization. Microneedle-mediated vaccine priming induced significantly greater T cell immunity post-boost and equivalent protection against malaria challenge compared to ID vaccination. Notably, unlike ID administration, ImmuPatch-mediated vaccination did not induce inflammatory responses at the site of immunization or in draining lymph nodes. Conclusions/Significance This study demonstrates that the design of microneedle patches significantly influences the magnitude and memory of vaccine-induced CD8+ T cell responses and can be optimised for the induction of desired immune responses. Furthermore, ImmuPatch-mediated delivery may be of benefit to reducing unwanted vaccine reactogenicity. In addition to the advantages of low cost and lack of pain, the development of optimised microneedle array designs for the induction

  9. Recombination analysis based on the complete genome of bocavirus

    Directory of Open Access Journals (Sweden)

    Chen Shengxia

    2011-04-01

    Full Text Available Abstract Bocavirus include bovine parvovirus, minute virus of canine, porcine bocavirus, gorilla bocavirus, and Human bocaviruses 1-4 (HBoVs. Although recent reports showed that recombination happened in bocavirus, no systematical study investigated the recombination of bocavirus. The present study performed the phylogenetic and recombination analysis of bocavirus over the complete genomes available in GenBank. Results confirmed that recombination existed among bocavirus, including the likely inter-genotype recombination between HBoV1 and HBoV4, and intra-genotype recombination among HBoV2 variants. Moreover, it is the first report revealing the recombination that occurred between minute viruses of canine.

  10. Live Virus Vaccines Based on a Yellow Fever Vaccine Backbone: Standardized Template with Key Considerations for a Risk/Benefit Assessment*

    Science.gov (United States)

    Monath, Thomas P.; Seligman, Stephen J.; Robertson, James S.; Guy, Bruno; Hayes, Edward B.; Condit, Richard C.; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called “chimeric virus vaccines”). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were replaced by the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of

  11. Live virus vaccines based on a yellow fever vaccine backbone: standardized template with key considerations for a risk/benefit assessment.

    Science.gov (United States)

    Monath, Thomas P; Seligman, Stephen J; Robertson, James S; Guy, Bruno; Hayes, Edward B; Condit, Richard C; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called "chimeric virus vaccines"). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus, Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were exchanged for the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of

  12. Hadron Correlations and Parton Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: rjfries@comp.tamu.edu

    2007-02-15

    Parton recombination has been found to be an extremely useful model to understand hadron production at the Relativistic Heavy Ion Collider. It is particularly important to explore its connections with hard processes. This article reviews some of the aspects of the quark recombination model and places particular emphasis on hadron correlations.

  13. The aspartate-semialdehyde dehydrogenase of Edwardsiella ictaluri and its use as balanced-lethal system in fish vaccinology.

    Directory of Open Access Journals (Sweden)

    Javier Santander

    Full Text Available asdA mutants of gram-negative bacteria have an obligate requirement for diaminopimelic acid (DAP, which is an essential constituent of the peptidoglycan layer of the cell wall of these organisms. In environments deprived of DAP, i.e., animal tissues, they will undergo lysis. Deletion of the asdA gene has previously been exploited to develop antibiotic-sensitive strains of live attenuated recombinant bacterial vaccines. Introduction of an Asd(+ plasmid into a ΔasdA mutant makes the bacterial strain plasmid-dependent. This dependence on the Asd(+ plasmid vector creates a balanced-lethal complementation between the bacterial strain and the recombinant plasmid. E. ictaluri is an enteric gram-negative fish pathogen that causes enteric septicemia in catfish. Because E. ictaluri is a nasal/oral invasive intracellular pathogen, this bacterium is a candidate to develop a bath/oral live recombinant attenuated Edwardsiella vaccine (RAEV for the catfish aquaculture industry. As a first step to develop an antibiotic-sensitive RAEV strain, we characterized and deleted the E. ictaluri asdA gene. E. ictaluri ΔasdA01 mutants exhibit an absolute requirement for DAP to grow. The asdA gene of E. ictaluri was complemented by the asdA gene from Salmonella. Several Asd(+ expression vectors with different origins of replication were transformed into E. ictaluri ΔasdA01. Asd(+ vectors were compatible with the pEI1 and pEI2 E. ictaluri native plasmids. The balanced-lethal system was satisfactorily evaluated in vivo. Recombinant GFP, PspA, and LcrV proteins were synthesized by E. ictaluri ΔasdA01 harboring Asd(+ plasmids. Here we constructed a balanced-lethal system, which is the first step to develop an antibiotic-sensitive RAEV for the aquaculture industry.

  14. The aspartate-semialdehyde dehydrogenase of Edwardsiella ictaluri and its use as balanced-lethal system in fish vaccinology.

    Science.gov (United States)

    Santander, Javier; Xin, Wei; Yang, Zhao; Curtiss, Roy

    2010-12-29

    asdA mutants of gram-negative bacteria have an obligate requirement for diaminopimelic acid (DAP), which is an essential constituent of the peptidoglycan layer of the cell wall of these organisms. In environments deprived of DAP, i.e., animal tissues, they will undergo lysis. Deletion of the asdA gene has previously been exploited to develop antibiotic-sensitive strains of live attenuated recombinant bacterial vaccines. Introduction of an Asd(+) plasmid into a ΔasdA mutant makes the bacterial strain plasmid-dependent. This dependence on the Asd(+) plasmid vector creates a balanced-lethal complementation between the bacterial strain and the recombinant plasmid. E. ictaluri is an enteric gram-negative fish pathogen that causes enteric septicemia in catfish. Because E. ictaluri is a nasal/oral invasive intracellular pathogen, this bacterium is a candidate to develop a bath/oral live recombinant attenuated Edwardsiella vaccine (RAEV) for the catfish aquaculture industry. As a first step to develop an antibiotic-sensitive RAEV strain, we characterized and deleted the E. ictaluri asdA gene. E. ictaluri ΔasdA01 mutants exhibit an absolute requirement for DAP to grow. The asdA gene of E. ictaluri was complemented by the asdA gene from Salmonella. Several Asd(+) expression vectors with different origins of replication were transformed into E. ictaluri ΔasdA01. Asd(+) vectors were compatible with the pEI1 and pEI2 E. ictaluri native plasmids. The balanced-lethal system was satisfactorily evaluated in vivo. Recombinant GFP, PspA, and LcrV proteins were synthesized by E. ictaluri ΔasdA01 harboring Asd(+) plasmids. Here we constructed a balanced-lethal system, which is the first step to develop an antibiotic-sensitive RAEV for the aquaculture industry.

  15. Exceptionally high levels of recombination across the honey bee genome.

    Science.gov (United States)

    Beye, Martin; Gattermeier, Irene; Hasselmann, Martin; Gempe, Tanja; Schioett, Morten; Baines, John F; Schlipalius, David; Mougel, Florence; Emore, Christine; Rueppell, Olav; Sirviö, Anu; Guzmán-Novoa, Ernesto; Hunt, Greg; Solignac, Michel; Page, Robert E

    2006-11-01

    The first draft of the honey bee genome sequence and improved genetic maps are utilized to analyze a genome displaying 10 times higher levels of recombination (19 cM/Mb) than previously analyzed genomes of higher eukaryotes. The exceptionally high recombination rate is distributed genome-wide, but varies by two orders of magnitude. Analysis of chromosome, sequence, and gene parameters with respect to recombination showed that local recombination rate is associated with distance to the telomere, GC content, and the number of simple repeats as described for low-recombining genomes. Recombination rate does not decrease with chromosome size. On average 5.7 recombination events per chromosome pair per meiosis are found in the honey bee genome. This contrasts with a wide range of taxa that have a uniform recombination frequency of about 1.6 per chromosome pair. The excess of recombination activity does not support a mechanistic role of recombination in stabilizing pairs of homologous chromosome during chromosome pairing. Recombination rate is associated with gene size, suggesting that introns are larger in regions of low recombination and may improve the efficacy of selection in these regions. Very few transposons and no retrotransposons are present in the high-recombining genome. We propose evolutionary explanations for the exceptionally high genome-wide recombination rate.

  16. Three-particle recombination at low temperature: QED approach

    International Nuclear Information System (INIS)

    Bhattacharyya, S.; Roy, A.

    2001-01-01

    A theoretical study of three-body recombination of proton in presence of a spectator electron with electronic beam at near-zero temperature is presented using field theory and invariant Lorentz gauge. Contributions from the Feynman diagrams of different orders give an insight into the physics of the phenomena. Recombination rate coefficient is obtained for low lying principal quantum number n = 1 to 10. At a fixed ion beam temperature (300 K) recombination rate coefficient is found to increase in general with n, having a flat and a sharp peak at quantum states 3 to 5, respectively. In absence of any theoretical and experimental results for low temperature formation of H-atom by three-body recombination at low lying quantum states, we have presented the theoretical results of Stevefelt and group for three-body recombination of deuteron with electron along with the present results. Three-body recombination of antihydrogen in antiproton-positron plasma is expected to yield similar result as that for three-body recombination of hydrogen formation in proton-electron plasma. The necessity for experimental investigation of low temperature three-body recombination at low quantum states is stressed. (author)

  17. Innovative IPV from attenuated Sabin poliovirus or newly designed alternative seed strains.

    Science.gov (United States)

    Hamidi, Ahd; Bakker, Wilfried A M

    2012-11-01

    This article gives an overview of the patent literature related to innovative inactivated polio vaccine (i-IPV) based on using Sabin poliovirus strains and newly developed alternative recombinant poliovirus strains. This innovative approach for IPV manufacturing is considered to attribute to the requirement for affordable IPV in the post-polio-eradication era, which is on the horizon. Although IPV is a well-established vaccine, the number of patent applications in this field was seen to have significantly increased in the past decade. Currently, regular IPV appears to be too expensive for universal use. Future affordability may be achieved by using alternative cell lines, alternative virus seed strains, improved and optimized processes, dose sparing, or the use of adjuvants. A relatively short-term option to achieve cost-price reduction is to work on regular IPV, using wild-type poliovirus strains, or on Sabin-IPV, based on using attenuated poliovirus strains. This price reduction can be achieved by introducing efficiency in processing. There are also multiple opportunities to work on dose sparing, for example, by using adjuvants or fractional doses. Renewed interest in this field was clearly reflected in the number and diversity of patent applications. In a later stage, several innovative approaches may become even more attractive, for example the use of recombinant virus strains or even a totally synthetic vaccine. Currently, such work is mainly carried out by research institutes and universities and therefore clinical data are not available.

  18. Activated recombinant adenovirus proteinases

    Science.gov (United States)

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  19. Hadron correlations from recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-01-01

    Quark recombination is a successful model to describe the hadronization of a deconfined quark gluon plasma. Jet-like dihadron correlations measured at RHIC provide a challenge for this picture. We discuss how correlations between hadrons can arise from correlations between partons before hadronization. An enhancement of correlations through the recombination process, similar to the enhancement of elliptic flow is found. Hot spots from completely or partially quenched jets are a likely source of such parton correlations.

  20. X-ray- and TEM-induced mitotic recombination in Drosophila melanogaster: Unequal and sister-strand recombination

    International Nuclear Information System (INIS)

    Becker, H.J.

    1975-01-01

    Twin mosaic spots of dark-apricot and light-apricot ommatidia were found in the eyes of wsup(a)/wsup(a) females, of wsup(a) males, of females homozygous for In(1)sc 4 , wsup(a) and of attached-X females homozygous for wsup(a). The flies were raised from larvae which had been treated with 1,630 R of X-rays at the age of 48-52 hours. An additional group of wsup(a)/wsup(a) females and wsup(a) males came from larvae that had been fed with triethylene melamine (TEM) at the age of 22-24 hours. The twin spots apparently were the result of induced unequal mitotic recombination, i.e. from unequal sister-strand recombination in the males and from unequal sister-strand recombination as well as, possibly, unequal recombination between homologous strands in the females. That is, a duplication resulted in wsup(a)Dpwsup(a)/wsup(a) dark-apricto ommatidia and the corresponding deficiency in an adjacent area of wsup(a)/Dfwsup(a) light-apricot ommatidia. In an additional experiment sister-strand mitotic recombination in the ring-X chromosome of ring-X/rod-X females heterozygous for w and wsup(co) is believed to be the cause for X-ray induced single mosaic spots that show the phenotype of the rod-X marker. (orig.) [de