WorldWideScience

Sample records for lithocholic acid-induced liver

  1. Reduction of 3 alpha-hydroxy-5 beta-chol-6-en-24-oic acid to lithocholic acid in rats

    International Nuclear Information System (INIS)

    Kimura, K.; Ogura, M.

    1988-01-01

    After [24- 14 C]delta 6-lithocholic acid was injected into the cecum of rats, [ 14 C]lithocholic acid was identified as a metabolite in feces. When the labeled delta 6-bile acid was injected intraperitoneally into bile-fistula rats, radioactivity excreted in bile was contained most abundantly in the taurine-conjugated fraction of bile acids. In the fraction, taurine conjugate of [ 14 C]delta 6-lithocholic acid but of neither [ 14 C]lithocholic acid nor other bile acids was found. The results showed that [24- 14 C]delta 6-lithocholic acid was reduced to [ 14 C]lithocholic acid by the intestinal flora but not by the liver, which, however, was capable of conjugating delta 6-lithocholic acid with taurine

  2. Long-Term Ursodeoxycholic Acid Therapy Does Not Alter Lithocholic Acid Levels in Patients with Cystic Fibrosis with Associated Liver Disease.

    Science.gov (United States)

    Colombo, Carla; Crosignani, Andrea; Alicandro, Gianfranco; Zhang, Wujuan; Biffi, Arianna; Motta, Valentina; Corti, Fabiola; Setchell, Kenneth D R

    2016-10-01

    To evaluate the fasting and postprandial serum bile acid composition in patients with cystic fibrosis-associated liver disease (CFLD) after chronic administration of ursodeoxycholic acid (UDCA) (20 mg/kg/day). The aim was to specifically focus on the extent of biotransformation of UDCA to its hepatotoxic metabolite, lithocholic acid, because of recent concerns regarding the safety of long-term, high-dose UDCA treatment for CFLD. Twenty patients with CFLD (median age 16 years, range: 2.4-35.0) prescribed UDCA therapy for at least 2 years were studied. Total and individual serum bile acids were measured by stable-isotope dilution mass spectrometry, in fasting and 2-hour postprandial samples taken during chronic UDCA (20 mg/kg/day) administration. During chronic UDCA administration (median duration 8 years, IQR: 6-16), UDCA became the predominant serum bile acid in all patients (median, IQR: 3.17, 1.25-5.56 μmol/L) and chenodeoxycholic acid concentrations were greater than cholic acid (1.86, 1.00-4.70 μmol/L vs 0.40, 0.24-2.71 μmol/L). The secondary bile acids, deoxycholate and lithocholate, were present in very low concentrations in fasted serum (acid significantly increased (P acid concentrations were observed. These data do not support recent suggestions that enhanced biotransformation of UDCA to the hepatotoxic secondary bile acid lithocholic occurs when patients with CFLD are treated with relatively high doses of UDCA. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon.

    Science.gov (United States)

    Ward, Joseph B J; Lajczak, Natalia K; Kelly, Orlaith B; O'Dwyer, Aoife M; Giddam, Ashwini K; Ní Gabhann, Joan; Franco, Placido; Tambuwala, Murtaza M; Jefferies, Caroline A; Keely, Simon; Roda, Aldo; Keely, Stephen J

    2017-06-01

    Ward JB, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, Ní Gabhann J, Franco P, Tambuwala MM, Jefferies CA, Keely S, Roda A, Keely SJ. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol 312: G550-G558, 2017. First published March 30, 2017; doi:10.1152/ajpgi.00256.2016.-Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1β, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic

  4. Effect of dietary fiber on serum bile acids in patients with chronic cholestatic liver disease under ursodeoxycholic acid therapy

    NARCIS (Netherlands)

    Sauter, G.; Beuers, U.; Paumgartner, G.

    1995-01-01

    During ursodeoxycholic acid therapy for chronic cholestatic liver disease, the serum levels of lithocholic acid increase about twofold. Lithocholic acid has been shown to be hepatotoxic in some animal species. Administration of psyllium hydrophilic mucilloid (PHM), a dietary fiber, has been reported

  5. Microenvironment of Breast Tissue: Lithocholic Acid and Other Intestinal Steroids

    National Research Council Canada - National Science Library

    Javitt, Norman

    1997-01-01

    Although it is known that bile acids including lithocholic acid are present in breast cyst fluid, analysis by gas-liquid chromatography-mass spectrometry requires the preparation of volatile derivatives...

  6. Mechanisms Underlying the Anti-Aging and Anti-Tumor Effects of Lithocholic Bile Acid

    Directory of Open Access Journals (Sweden)

    Anthony Arlia-Ciommo

    2014-09-01

    Full Text Available Bile acids are cholesterol-derived bioactive lipids that play essential roles in the maintenance of a heathy lifespan. These amphipathic molecules with detergent-like properties display numerous beneficial effects on various longevity- and healthspan-promoting processes in evolutionarily distant organisms. Recent studies revealed that lithocholic bile acid not only causes a considerable lifespan extension in yeast, but also exhibits a substantial cytotoxic effect in cultured cancer cells derived from different tissues and organisms. The molecular and cellular mechanisms underlying the robust anti-aging and anti-tumor effects of lithocholic acid have emerged. This review summarizes the current knowledge of these mechanisms, outlines the most important unanswered questions and suggests directions for future research.

  7. Reverse of Acute and Chronic Morphine Tolerance by Lithocholic Acid via Down-regulating UGT2B7

    Directory of Open Access Journals (Sweden)

    Zizhao Yang

    2016-11-01

    Full Text Available Lithocholic acid (LCA deposited in human livers always induces drastic pains which need analgesic drug, like morphine to release. Our research showed that LCA can effectively inhibit uridine 5'-diphospho-glucuronosyltransferase 2B7 (UGT2B7 in morphine tolerance-like human normal liver cells, HL-7702, then increase μ-opioid receptor (MOR and calcium-calmodulin dependent protein kinase IIα (CaMKIIα expression. In vivo assay, UGT2B7 was significantly repressed in the livers of acute or chronic morphine tolerance mice pretreated with LCA (10, 50 and 100 mg/kg, p.o.. To investigate the connections between LCA function performance and changes of UGT2B7 enzymatic activity in mice livers, two morphine metabolites, morphine-3-glucuronide (M3G and morphine-6-glucuronide (M6G were quantified by solid phase extraction (SPE-HPLC-MS/MS. The result indicated no matter in acute or chronic morphine tolerance, the concentrations of M3G and M6G were all decreased, the later one fell even more. Besides that, 50mg/kg of LCA administration can prevent auto-phosphorylation of CaMKIIα at Thr286 in acute or chronic morphine tolerance mice prefrontal cortexes (mPFCs due to synthesis increase of cyclic adenosine monophosphate (cAMP. As a consequence, UGT2B7 depression mediated by LCA can affect its selective catalysis ability to morphine, that may be responsible to acute or chronic morphine tolerance alleviation. These findings might assist to modify antinociception of morphine in clinic.

  8. Metabolism of lithocholic and chenodeoxycholic acids in the squirrel monkey

    International Nuclear Information System (INIS)

    Suzuki, H.; Hamada, M.; Kato, F.

    1985-01-01

    Metabolism of lithocholic acid (LCA) and chenodeoxycholic acid (CDCA) was studied in the squirrel monkey to clarify the mechanism of the lack of toxicity of CDCA in this animal. Radioactive LCA was administered to squirrel monkeys with biliary fistula. Most radioactivity was excreted in the bile in the form of unsulfated lithocholyltaurine. The squirrel monkey thus differs from humans and chimpanzees, which efficiently sulfate LCA, and is similar to the rhesus monkey and baboon in that LCA is poorly sulfated. When labeled CDCA was orally administered to squirrel monkeys, less than 20% of the dosed radioactivity was recovered as LCA and its further metabolites in feces over 3 days, indicating that bacterial metabolism of CDCA into LCA is strikingly less than in other animals and in humans. It therefore appears that LCA, known as a hepatotoxic secondary bile acid, is not accumulated in the squirrel monkey, not because of its rapid turnover through sulfation, but because of the low order of its production

  9. Lithocholic acid is an Eph-ephrin ligand interfering with Eph-kinase activation.

    Directory of Open Access Journals (Sweden)

    Carmine Giorgio

    Full Text Available Eph-ephrin system plays a central role in a large variety of human cancers. In fact, alterated expression and/or de-regulated function of Eph-ephrin system promotes tumorigenesis and development of a more aggressive and metastatic tumour phenotype. In particular EphA2 upregulation is correlated with tumour stage and progression and the expression of EphA2 in non-transformed cells induces malignant transformation and confers tumorigenic potential. Based on these evidences our aim was to identify small molecules able to modulate EphA2-ephrinA1 activity through an ELISA-based binding screening. We identified lithocholic acid (LCA as a competitive and reversible ligand inhibiting EphA2-ephrinA1 interaction (Ki =  49 µM. Since each ephrin binds many Eph receptors, also LCA does not discriminate between different Eph-ephrin binding suggesting an interaction with a highly conserved region of Eph receptor family. Structurally related bile acids neither inhibited Eph-ephrin binding nor affected Eph phosphorylation. Conversely, LCA inhibited EphA2 phosphorylation induced by ephrinA1-Fc in PC3 and HT29 human prostate and colon adenocarcinoma cell lines (IC(50  = 48 and 66 µM, respectively without affecting cell viability or other receptor tyrosine-kinase (EGFR, VEGFR, IGFR1β, IRKβ activity. LCA did not inhibit the enzymatic kinase activity of EphA2 at 100 µM (LANCE method confirming to target the Eph-ephrin protein-protein interaction. Finally, LCA inhibited cell rounding and retraction induced by EphA2 activation in PC3 cells. In conclusion, our findings identified a hit compound useful for the development of molecules targeting ephrin system. Moreover, as ephrin signalling is a key player in the intestinal cell renewal, our work could provide an interesting starting point for further investigations about the role of LCA in the intestinal homeostasis.

  10. Obeticholic acid protects mice against lipopolysaccharide-induced liver injury and inflammation.

    Science.gov (United States)

    Xiong, Xi; Ren, Yuqian; Cui, Yun; Li, Rui; Wang, Chunxia; Zhang, Yucai

    2017-12-01

    Cholestasis, as a main manifestation, induces liver injury during sepsis. The farnesoid X receptor (FXR) plays an important role in regulating bile acid homeostasis. Whether FXR activation by its agonist obeticholic acid (OCA) is contributed to improve sepsis-induced liver injury remains unknown. The aim of the present study was to investigate the effect of OCA on lipopolysaccharide (LPS)-induced acute liver injury in mice. 8-week old male C57BL/6J mice were randomly divided into control group, LPS group, oral OCA group and LPS plus oral OCA (LPS + OCA) group. The serum and livers were collected for further analysis. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bile acid (TBA) and total bilirubin (TBIL) were measured at indicated time after LPS administration. Liver sections were stained with hematoxylin & eosin (H&E). Orally OCA pretreatment stimulated the expression of FXR and BSEP in livers and protected mice from LPS-induced hepatocyte apoptosis and inflammatory infiltration. Consistently, LPS-induced higher serum levels of ALT, AST, TBA and TBIL were significantly reversed by OCA administration. Meanwhile, the mRNA levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α) and IL-6 were decreased in livers of mice in LPS + OCA group compared with LPS group. Further investigation indicated that the higher expression of ATF4 and LC3II/I were associated with the protective effect of OCA on LPS-induced liver injury. Orally OCA pretreatment protects mice from LPS-induced liver injury possibly contributed by improved bile acid homeostasis, decreased inflammatory factors and ATF4-mediated autophagy activity in hepatocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Decreased C-reactive protein induces abnormal vascular structure in a rat model of liver dysfunction induced by bile duct ligation

    Directory of Open Access Journals (Sweden)

    Ji Hye Jun

    2016-09-01

    Full Text Available Background/Aims Chronic liver disease leads to liver fibrosis, and although the liver does have a certain regenerative capacity, this disease is associated with dysfunction of the liver vessels. C-reactive protein (CRP is produced in the liver and circulated from there for metabolism. CRP was recently shown to inhibit angiogenesis by inducing endothelial cell dysfunction. The objective of this study was to determine the effect of CRP levels on angiogenesis in a rat model of liver dysfunction induced by bile duct ligation (BDL. Methods The diameter of the hepatic vein was analyzed in rat liver tissues using hematoxylin and eosin (H&E staining. The expression levels of angiogenic factors, albumin, and CRP were analyzed by real-time PCR and Western blotting. A tube formation assay was performed to confirm the effect of CRP on angiogenesis in human umbilical vein endothelial cells (HUVECs treated with lithocholic acid (LCA and siRNA-CRP. Results The diameter of the hepatic portal vein increased significantly with the progression of cirrhosis. The expression levels of angiogenic factors were increased in the cirrhotic liver. In contrast, the expression levels of albumin and CRP were significantly lower in the liver tissue obtained from the BDL rat model than in the normal liver. The CRP level was correlated with the expression of albumin in hepatocytes treated with LCA and siRNA-CRP. Tube formation was significantly decreased in HUVECs when they were treated with LCA or a combination of LCA and siRNA-CRP. Conclusion CRP seems to be involved in the abnormal formation of vessels in hepatic disease, and so it could be a useful diagnostic marker for hepatic disease.

  12. Decreased C-reactive protein induces abnormal vascular structure in a rat model of liver dysfunction induced by bile duct ligation.

    Science.gov (United States)

    Jun, Ji Hye; Choi, Jong Ho; Bae, Si Hyun; Oh, Seh Hoon; Kim, Gi Jin

    2016-09-01

    Chronic liver disease leads to liver fibrosis, and although the liver does have a certain regenerative capacity, this disease is associated with dysfunction of the liver vessels. C-reactive protein (CRP) is produced in the liver and circulated from there for metabolism. CRP was recently shown to inhibit angiogenesis by inducing endothelial cell dysfunction. The objective of this study was to determine the effect of CRP levels on angiogenesis in a rat model of liver dysfunction induced by bile duct ligation (BDL). The diameter of the hepatic vein was analyzed in rat liver tissues using hematoxylin and eosin (H&E) staining. The expression levels of angiogenic factors, albumin, and CRP were analyzed by real-time PCR and Western blotting. A tube formation assay was performed to confirm the effect of CRP on angiogenesis in human umbilical vein endothelial cells (HUVECs) treated with lithocholic acid (LCA) and siRNA-CRP. The diameter of the hepatic portal vein increased significantly with the progression of cirrhosis. The expression levels of angiogenic factors were increased in the cirrhotic liver. In contrast, the expression levels of albumin and CRP were significantly lower in the liver tissue obtained from the BDL rat model than in the normal liver. The CRP level was correlated with the expression of albumin in hepatocytes treated with LCA and siRNA-CRP. Tube formation was significantly decreased in HUVECs when they were treated with LCA or a combination of LCA and siRNA-CRP. CRP seems to be involved in the abnormal formation of vessels in hepatic disease, and so it could be a useful diagnostic marker for hepatic disease.

  13. Protective effect of bile acid derivatives in phalloidin-induced rat liver toxicity

    International Nuclear Information System (INIS)

    Herraez, Elisa; Macias, Rocio I.R.; Vazquez-Tato, Jose; Hierro, Carlos; Monte, Maria J.; Marin, Jose J.G.

    2009-01-01

    Phalloidin causes severe liver damage characterized by marked cholestasis, which is due in part to irreversible polymerization of actin filaments. Liver uptake of this toxin through the transporter OATP1B1 is inhibited by the bile acid derivative BALU-1, which does not inhibit the sodium-dependent bile acid transporter NTCP. The aim of the present study was to investigate whether BALU-1 prevents liver uptake of phalloidin without impairing endogenous bile acid handling and hence may have protective effects against the hepatotoxicity induced by this toxin. In anaesthetized rats, i.v. administration of BALU-1 increased bile flow more than taurocholic acid (TCA). Phalloidin administration decreased basal (- 60%) and TCA-stimulated bile flow (- 55%) without impairing bile acid output. Phalloidin-induced cholestasis was accompanied by liver necrosis, nephrotoxicity and haematuria. In BALU-1-treated animals, phalloidin-induced cholestasis was partially prevented. Moreover haematuria was not observed, which was consistent with histological evidences of BALU-1-prevented injury of liver and kidney tissue. HPLC-MS/MS analysis revealed that BALU-1 was secreted in bile mainly in non-conjugated form, although a small proportion ( TCA > DHCA > UDCA. In conclusion, BALU-1 is able to protect against phalloidin-induced hepatotoxicity, probably due to an inhibition of the liver uptake and an enhanced biliary secretion of this toxin.

  14. Effects of Fatty Liver Induced by Excess Orotic Acid on B-Group Vitamin Concentrations of Liver, Blood, and Urine in Rats.

    Science.gov (United States)

    Shibata, Katsumi; Morita, Nobuya; Kawamura, Tomoyo; Tsuji, Ai; Fukuwatari, Tsutomu

    2015-01-01

    Fatty liver is caused when rats are given orotic acid of the pyrimidine base in large quantities. The lack of B-group vitamins suppresses the biosynthesis of fatty acids. We investigated how orotic acid-induced fatty liver affects the concentrations of liver, blood, and urine B-group vitamins in rats. The vitamin B6 and B12 concentrations of liver, blood, and urine were not affected by orotic acid-induced fatty liver. Vitamin B2 was measured only in the urine, but was unchanged. The liver, blood, and urine concentrations of niacin and its metabolites fell dramatically. Niacin and its metabolites in the liver, blood, and urine were affected as expected. Although the concentrations of vitamin B1, pantothenic acid, folate, and biotin in liver and blood were decreased by orotic acid-induced fatty liver, these urinary excretion amounts showed a specific pattern toward increase. Generally, as for the typical urinary excretion of B-group vitamins, these are excreted when the body is saturated. However, the ability to sustain vitamin B1, pantothenic acid, folate, and biotin decreased in fatty liver, which is hypothesized as a specific phenomenon. This metabolic response might occur to prevent an abnormally increased biosynthesis of fatty acids by orotic acid.

  15. Molecular Mechanisms of Ursodeoxycholic Acid Toxicity & Side Effects: Ursodeoxycholic Acid Freezes Regeneration & Induces Hibernation Mode

    Science.gov (United States)

    Kotb, Magd A.

    2012-01-01

    Ursodeoxycholic acid (UDCA) is a steroid bile acid approved for primary biliary cirrhosis (PBC). UDCA is reported to have “hepato-protective properties”. Yet, UDCA has “unanticipated” toxicity, pronounced by more than double number of deaths, and eligibility for liver transplantation compared to the control group in 28 mg/kg/day in primary sclerosing cholangitis, necessitating trial halt in North America. UDCA is associated with increase in hepatocellular carcinoma in PBC especially when it fails to achieve biochemical response (10 and 15 years incidence of 9% and 20% respectively). “Unanticipated” UDCA toxicity includes hepatitis, pruritus, cholangitis, ascites, vanishing bile duct syndrome, liver cell failure, death, severe watery diarrhea, pneumonia, dysuria, immune-suppression, mutagenic effects and withdrawal syndrome upon sudden halt. UDCA inhibits DNA repair, co-enzyme A, cyclic AMP, p53, phagocytosis, and inhibits induction of nitric oxide synthatase. It is genotoxic, exerts aneugenic activity, and arrests apoptosis even after cellular phosphatidylserine externalization. UDCA toxicity is related to its interference with drug detoxification, being hydrophilic and anti-apoptotic, has a long half-life, has transcriptional mutational abilities, down-regulates cellular functions, has a very narrow difference between the recommended (13 mg/kg/day) and toxic dose (28 mg/kg/day), and it typically transforms into lithocholic acid that induces DNA strand breakage, it is uniquely co-mutagenic, and promotes cell transformation. UDCA beyond PBC is unjustified. PMID:22942741

  16. Molecular Mechanisms of Ursodeoxycholic Acid Toxicity & Side Effects: Ursodeoxycholic Acid Freezes Regeneration & Induces Hibernation Mode

    Directory of Open Access Journals (Sweden)

    Magd A. Kotb

    2012-07-01

    Full Text Available Ursodeoxycholic acid (UDCA is a steroid bile acid approved for primary biliary cirrhosis (PBC. UDCA is reported to have “hepato-protective properties”. Yet, UDCA has “unanticipated” toxicity, pronounced by more than double number of deaths, and eligibility for liver transplantation compared to the control group in 28 mg/kg/day in primary sclerosing cholangitis, necessitating trial halt in North America. UDCA is associated with increase in hepatocellular carcinoma in PBC especially when it fails to achieve biochemical response (10 and 15 years incidence of 9% and 20% respectively. “Unanticipated” UDCA toxicity includes hepatitis, pruritus, cholangitis, ascites, vanishing bile duct syndrome, liver cell failure, death, severe watery diarrhea, pneumonia, dysuria, immune-suppression, mutagenic effects and withdrawal syndrome upon sudden halt. UDCA inhibits DNA repair, co-enzyme A, cyclic AMP, p53, phagocytosis, and inhibits induction of nitric oxide synthatase. It is genotoxic, exerts aneugenic activity, and arrests apoptosis even after cellular phosphatidylserine externalization. UDCA toxicity is related to its interference with drug detoxification, being hydrophilic and anti-apoptotic, has a long half-life, has transcriptional mutational abilities, down-regulates cellular functions, has a very narrow difference between the recommended (13 mg/kg/day and toxic dose (28 mg/kg/day, and it typically transforms into lithocholic acid that induces DNA strand breakage, it is uniquely co-mutagenic, and promotes cell transformation. UDCA beyond PBC is unjustified.

  17. Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the Vitamin D receptor.

    Science.gov (United States)

    Pols, Thijs W H; Puchner, Teresa; Korkmaz, H Inci; Vos, Mariska; Soeters, Maarten R; de Vries, Carlie J M

    2017-01-01

    Bile acids are established signaling molecules next to their role in the intestinal emulsification and uptake of lipids. We here aimed to identify a potential interaction between bile acids and CD4+ Th cells, which are central in adaptive immune responses. We screened distinct bile acid species for their potency to affect T cell function. Primary human and mouse CD4+ Th cells as well as Jurkat T cells were used to gain insight into the mechanism underlying these effects. We found that unconjugated lithocholic acid (LCA) impedes Th1 activation as measured by i) decreased production of the Th1 cytokines IFNγ and TNFαα, ii) decreased expression of the Th1 genes T-box protein expressed in T cells (T-bet), Stat-1 and Stat4, and iii) decreased STAT1α/β phosphorylation. Importantly, we observed that LCA impairs Th1 activation at physiological relevant concentrations. Profiling of MAPK signaling pathways in Jurkat T cells uncovered an inhibition of ERK-1/2 phosphorylation upon LCA exposure, which could provide an explanation for the impaired Th1 activation. LCA induces these effects via Vitamin D receptor (VDR) signaling since VDR RNA silencing abrogated these effects. These data reveal for the first time that LCA controls adaptive immunity via inhibition of Th1 activation. Many factors influence LCA levels, including bile acid-based drugs and gut microbiota. Our data may suggest that these factors also impact on adaptive immunity via a yet unrecognized LCA-Th cell axis.

  18. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation

    International Nuclear Information System (INIS)

    Zhang, Da-Gang; Zhang, Cheng; Wang, Jun-Xian; Wang, Bi-Wei; Wang, Hua; Zhang, Zhi-Hui; Chen, Yuan-Hua; Lu, Yan; Tao, Li; Wang, Jian-Qing; Chen, Xi; Xu, De-Xiang

    2017-01-01

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl 4 )-induced acute liver injury. Mice were intraperitoneally injected with CCl 4 (0.15 ml/kg). In CCl 4 + OCA group, mice were orally with OCA (5 mg/kg) 48, 24 and 1 h before CCl 4 . As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl 4 -induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatment inhibited CCl 4 -induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl 4 -induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl 4 -induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl 4 -induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl 4 -induced acute liver injury. These results suggest that OCA protects against CCl 4 -induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. - Highlights: • OCA pretreatment activates hepatic FXR. • FXR activation protects against CCl 4 -induced acute liver injury. • FXR activation inhibits hepatocyte apoptosis during CCl 4 -induced liver injury. • FXR activation differentially regulates hepatic inflammatory genes. • Synthetic FXR agonists are effective antidotes for acute liver injury.

  19. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Da-Gang [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Zhang, Cheng [Department of Toxicology, Anhui Medical University, Hefei 230032 (China); Wang, Jun-Xian [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Wang, Bi-Wei; Wang, Hua; Zhang, Zhi-Hui; Chen, Yuan-Hua [Department of Toxicology, Anhui Medical University, Hefei 230032 (China); Lu, Yan; Tao, Li; Wang, Jian-Qing [Second Affiliated Hospital, Anhui Medical University, Hefei 230601 (China); Chen, Xi [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Xu, De-Xiang, E-mail: xudex@126.com [Department of Toxicology, Anhui Medical University, Hefei 230032 (China)

    2017-01-01

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl{sub 4})-induced acute liver injury. Mice were intraperitoneally injected with CCl{sub 4} (0.15 ml/kg). In CCl{sub 4} + OCA group, mice were orally with OCA (5 mg/kg) 48, 24 and 1 h before CCl{sub 4}. As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl{sub 4}-induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatment inhibited CCl{sub 4}-induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl{sub 4}-induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl{sub 4}-induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl{sub 4}-induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl{sub 4}-induced acute liver injury. These results suggest that OCA protects against CCl{sub 4}-induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. - Highlights: • OCA pretreatment activates hepatic FXR. • FXR activation protects against CCl{sub 4}-induced acute liver injury. • FXR activation inhibits hepatocyte apoptosis during CCl{sub 4}-induced liver injury. • FXR activation differentially regulates hepatic inflammatory genes. • Synthetic FXR agonists are effective antidotes for acute liver injury.

  20. Experimental Protoporphyria: Effect of Bile Acids on Liver Damage Induced by Griseofulvin

    Directory of Open Access Journals (Sweden)

    María del Carmen Martinez

    2015-01-01

    Full Text Available The effect of bile acids administration to an experimental mice model of Protoporphyria produced by griseofulvin (Gris was investigated. The aim was to assess whether porphyrin excretion could be accelerated by bile acids treatment in an attempt to diminish liver damage induced by Gris. Liver damage markers, heme metabolism, and oxidative stress parameters were analyzed in mice treated with Gris and deoxycholic (DXA, dehydrocholic (DHA, chenodeoxycholic, or ursodeoxycholic (URSO. The administration of Gris alone increased the activities of glutathione reductase (GRed, superoxide dismutase (SOD, alkaline phosphatase (AP, gamma glutamyl transpeptidase (GGT, and glutathione-S-transferase (GST, as well as total porphyrins, glutathione (GSH, and cytochrome P450 (CYP levels in liver. Among the bile acids studied, DXA and DHA increased PROTO IX excretion, DXA also abolished the action of Gris, reducing lipid peroxidation and hepatic GSH and CYP levels, and the activities of GGT, AP, SOD, and GST returned to control values. However, porphyrin accumulation was not prevented by URSO; instead this bile acid reduced ALA-S and the antioxidant defense enzymes system activities. In conclusion, we postulate that DXA acid would be more effective to prevent liver damage induced by Gris.

  1. Perfluoroalkyl acids-induced liver steatosis: Effects on genes controlling lipid homeostasis

    International Nuclear Information System (INIS)

    Das, Kaberi P.; Wood, Carmen R.; Lin, Mimi T.; Starkov, Anatoly A.; Lau, Christopher; Wallace, Kendall B.; Corton, J. Christopher; Abbott, Barbara D.

    2017-01-01

    Highlights: • Structurally diverse PFAAs induced fatty liver and increased TG accumulation in mouse. • Genes of lipid synthesis and degradation were increased after exposure to PFAAs. • PFAAs did not inhibit either mitochondrial fatty acid transport or β-oxidation directly. - Abstract: Persistent presence of perfluoroalkyl acids (PFAAs) in the environment is due to their extensive use in industrial and consumer products, and their slow decay. Biochemical tests in rodent demonstrated that these chemicals are potent modifiers of lipid metabolism and cause hepatocellular steatosis. However, the molecular mechanism of PFAAs interference with lipid metabolism remains to be elucidated. Currently, two major hypotheses are that PFAAs interfere with mitochondrial beta-oxidation of fatty acids and/or they affect the transcriptional activity of peroxisome proliferator-activated receptor α (PPARα) in liver. To determine the ability of structurally-diverse PFAAs to cause steatosis, as well as to understand the underlying molecular mechanisms, wild-type (WT) and PPARα-null mice were treated with perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), or perfluorohexane sulfonate (PFHxS), by oral gavage for 7 days, and their effects were compared to that of PPARα agonist WY-14643 (WY), which does not cause steatosis. Increases in liver weight and cell size, and decreases in DNA content per mg of liver, were observed for all compounds in WT mice, and were also seen in PPARα-null mice for PFOA, PFNA, and PFHxS, but not for WY. In Oil Red O stained sections, WT liver showed increased lipid accumulation in all treatment groups, whereas in PPARα-null livers, accumulation was observed after PFNA and PFHxS treatment, adding to the burden of steatosis observed in control (untreated) PPARα-null mice. Liver triglyceride (TG) levels were elevated in WT mice by all PFAAs and in PPARα-null mice only by PFNA. In vitro β-oxidation of palmitoyl carnitine by isolated rat

  2. Bile acid changes after high-dose ursodeoxycholic acid treatment in primary sclerosing cholangitis: relation to disease progression

    Science.gov (United States)

    Sinakos, Emmanouil; Marschall, Hanns-Ulrich; Kowdley, Kris V.; Befeler, Alex; Keach, Jill; Lindor, Keith

    2010-01-01

    High-dose (28-30mg/kg/day) ursodeoxycholic acid (UDCA) treatment improves serum liver tests in patients with primary sclerosing cholangitis (PSC) but does not improve survival and is associated with increased rates of serious adverse events. The mechanism for the latter undesired effect remains unclear. High-dose UDCA could result in the production of hepatotoxic bile acids, such as lithocholic acid (LCA), due to limited small bowel absorption of UDCA and conversion of UDCA by bacteria in the colon. We determined the serum bile acid composition in 56 patients with PSC previously enrolled in a randomized, double-blind controlled trial of high dose UDCA versus placebo. Samples for analysis were obtained at baseline and at the end of treatment. The mean changes in UDCA (16.86 vs 0.05 μmol/L) and total bile acid (17.21 vs −0.55 μmol/L) levels were significantly higher in the UDCA group (n=29) compared to placebo (n=27) when pretreatment levels were compared (pacid (CA), deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA). Patients (n=9) in the UDCA group who reached clinical endpoints of disease progression (development of cirrhosis, varices, liver transplantation or death) tend to have greater increase in their post-treatment total bile acid levels (34.99 vs 9.21 μmol/L) (pacid pool including lithocholic acid. PMID:20564380

  3. Sulfur Amino Acids in Diet-induced Fatty Liver: A New Perspective Based on Recent Findings

    Directory of Open Access Journals (Sweden)

    John I. Toohey

    2014-06-01

    Full Text Available The relationship of sulfur amino acids to diet-induced fatty liver was established 80 years ago, with cystine promoting the condition and methionine preventing it. This relationship has renewed importance today because diet-induced fatty liver is relevant to the current epidemics of obesity, non-alcoholic fatty liver disease, metabolic syndrome, and type 2 diabetes. Two recent papers provide the first evidence linking sulfane sulfur to diet-induced fatty liver opening a new perspective on the problem. This review summarizes the early data on sulfur amino acids in fatty liver and correlates that data with current knowledge of sulfur metabolism. Evidence is reviewed showing that the lipotropic effect of methionine may be mediated by sulfane sulfur and that the hepatosteatogenic effect of cystine may be related to the removal of sulfane sulfur by cysteine catabolites. Possible preventive and therapeutic strategies are discussed.

  4. Uridine prevents fenofibrate-induced fatty liver.

    Directory of Open Access Journals (Sweden)

    Thuc T Le

    Full Text Available Uridine, a pyrimidine nucleoside, can modulate liver lipid metabolism although its specific acting targets have not been identified. Using mice with fenofibrate-induced fatty liver as a model system, the effects of uridine on liver lipid metabolism are examined. At a daily dosage of 400 mg/kg, fenofibrate treatment causes reduction of liver NAD(+/NADH ratio, induces hyper-acetylation of peroxisomal bifunctional enzyme (ECHD and acyl-CoA oxidase 1 (ACOX1, and induces excessive accumulation of long chain fatty acids (LCFA and very long chain fatty acids (VLCFA. Uridine co-administration at a daily dosage of 400 mg/kg raises NAD(+/NADH ratio, inhibits fenofibrate-induced hyper-acetylation of ECHD, ACOX1, and reduces accumulation of LCFA and VLCFA. Our data indicates a therapeutic potential for uridine co-administration to prevent fenofibrate-induced fatty liver.

  5. Chlorpromazine-induced perturbations of bile acids and free fatty acids in cholestatic liver injury prevented by the Chinese herbal compound Yin-Chen-Hao-Tang.

    Science.gov (United States)

    Yang, Qiaoling; Yang, Fan; Tang, Xiaowen; Ding, Lili; Xu, Ying; Xiong, Yinhua; Wang, Zhengtao; Yang, Li

    2015-04-16

    Yin-Chen-Hao-Tang (YCHT), a commonly used as a traditional chinese medicine for liver disease. Several studies indicated that YCHT may improving hepatic triglyceride metabolism and anti-apoptotic response as well as decreasing oxidative stress .However, little is known about the role of YCHT in chlorpromazine (CPZ) -induced chlolestatic liver injury. Therefore, we aimed to facilitate the understanding of the pathogenesis of cholestatic liver injury and evaluate the effect of Yin-Chen-Hao-Tang (YCHT) on chlorpromazine (CPZ)-induced cholestatic liver injury in rats based on the change of bile acids (BAs) and free fatty acids (FFAs) alone with the biochemical indicators and histological examination. We conducted an experiment on CPZ-induced cholestatic liver injury in Wistar rats with and without YCHT for nine consecutive days. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), total bilirubin (TBIL), total cholesterol (TC), triglycerides (TG), low density lipoprotein-cholesterol (LDL-C) were measured to evaluate the protective effect of YCHT against chlorpromazine (CPZ)-induced cholestatic liver injury. Histopathology of the liver tissue showed that pathological injuries were relieved after YCHT pretreatment. In addition, ultra-performance lipid chromatography coupled with quadrupole mass spectrometry (UPLC-MS) and gas chromatography coupled with mass spectrometry (GC-MS) was applied to determine the content of bile acids, free fatty acids, respectively. Obtained data showed that YCHT attenuated the effect of CPZ-induced cholestatic liver injury, which was manifested by the serum biochemical parameters and histopathology of the liver tissue. YCHT regulated the lipid levels as indicated by the reversed serum levels of TC, TG, and LDL-C. YCHT also regulated the disorder of BA and FFA metabolism by CPZ induction. Results indicated that YCHT exerted a protective effect on CPZ-induced cholestasis liver injury. The variance of

  6. Perturbation of bile acid homeostasis is an early pathogenesis event of drug induced liver injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Makoto; Miyake, Manami; Sato, Hiroko; Masutomi, Naoya; Tsutsui, Naohisa [Mitsubishi Tanabe Pharma Corporation, Kisarazu, Chiba 292-0818 (Japan); Adam, Klaus-Peter; Alexander, Danny C.; Lawton, Kay A.; Milburn, Michael V.; Ryals, John A.; Wulff, Jacob E. [Metabolon Inc., 617 Davis Drive, Suite 400, Durham, NC 27713 (United States); Guo, Lining, E-mail: lguo@metabolon.com [Metabolon Inc., 617 Davis Drive, Suite 400, Durham, NC 27713 (United States)

    2013-04-01

    Drug-induced liver injury (DILI) is a significant consideration for drug development. Current preclinical DILI assessment relying on histopathology and clinical chemistry has limitations in sensitivity and discordance with human. To gain insights on DILI pathogenesis and identify potential biomarkers for improved DILI detection, we performed untargeted metabolomic analyses on rats treated with thirteen known hepatotoxins causing various types of DILI: necrosis (acetaminophen, bendazac, cyclosporine A, carbon tetrachloride, ethionine), cholestasis (methapyrilene and naphthylisothiocyanate), steatosis (tetracycline and ticlopidine), and idiosyncratic (carbamazepine, chlorzoxasone, flutamide, and nimesulide) at two doses and two time points. Statistical analysis and pathway mapping of the nearly 1900 metabolites profiled in the plasma, urine, and liver revealed diverse time and dose dependent metabolic cascades leading to DILI by the hepatotoxins. The most consistent change induced by the hepatotoxins, detectable even at the early time point/low dose, was the significant elevations of a panel of bile acids in the plasma and urine, suggesting that DILI impaired hepatic bile acid uptake from the circulation. Furthermore, bile acid amidation in the hepatocytes was altered depending on the severity of the hepatotoxin-induced oxidative stress. The alteration of the bile acids was most evident by the necrosis and cholestasis hepatotoxins, with more subtle effects by the steatosis and idiosyncratic hepatotoxins. Taking together, our data suggest that the perturbation of bile acid homeostasis is an early event of DILI. Upon further validation, selected bile acids in the circulation could be potentially used as sensitive and early DILI preclinical biomarkers. - Highlights: ► We used metabolomics to gain insights on drug induced liver injury (DILI) in rats. ► We profiled rats treated with thirteen hepatotoxins at two doses and two time points. ► The toxins decreased the

  7. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); College of Food Safety, Guizhou Medical University, Guiyang 550025 (China); Ruan, Zheng, E-mail: ruanzheng@ncu.edu.cn [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Zhou, Lili; Shu, Xugang [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Sun, Xiaohong [College of Food Safety, Guizhou Medical University, Guiyang 550025 (China); Mi, Shumei; Yang, Yuhui [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Yin, Yulong, E-mail: yinyulong@isa.ac.cn [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China)

    2016-01-22

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. - Highlights: • Dietary supplementation with chlorogenic acid (CGA) improved endotoxin-induced liver injury. • Chlorogenic acid enhances ATP increase and shifts energy metabolism, which is correlated with up-regulation AMPK and PGC-1α. • The possible mechanism of CGA on mitochondrial biogenesis was correlated with up-regulation AMPK and PGC-1α.

  8. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation

    International Nuclear Information System (INIS)

    Zhou, Yan; Ruan, Zheng; Zhou, Lili; Shu, Xugang; Sun, Xiaohong; Mi, Shumei; Yang, Yuhui; Yin, Yulong

    2016-01-01

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. - Highlights: • Dietary supplementation with chlorogenic acid (CGA) improved endotoxin-induced liver injury. • Chlorogenic acid enhances ATP increase and shifts energy metabolism, which is correlated with up-regulation AMPK and PGC-1α. • The possible mechanism of CGA on mitochondrial biogenesis was correlated with up-regulation AMPK and PGC-1α.

  9. Anti-inflammatory and ameliorative effects of gallic acid on fluoxetine-induced oxidative stress and liver damage in rats.

    Science.gov (United States)

    Karimi-Khouzani, Omid; Heidarian, Esfandiar; Amini, Sayed Asadollah

    2017-08-01

    Fluoxetine-induced liver damage is a cause of chronic liver disease. In the present study the hepatoprotective effects of gallic acid against fluoxetine-induced liver damage were examined. Forty-eight male rats were divided into six groups as follow: group 1, the control group; group 2, rats receiving fluoxetine (24mg/kg bw daily, po) without treatment; group 3, rats receiving 24mg/kg bw fluoxetine, treated with 50mg/kg bw silymarin and groups 4, 5, and 6 in which gallic acid (50, 100, and 200mg/kg bw, po, respectively) was prescribed after the consumption of fluoxetine. The histopathological changes of hepatic tissues were checked out. Fluoxetine caused a significant increase in the levels of serum glutamate oxaloacetate transaminase (GOT), serum glutamate pyruvate transaminase (GPT), lipid profiles, urea, fasting blood sugar (FBS), creatinine (Cr), protein carbonyl (PC) content, malondialdehyde (MDA), and liver TNF-α as an inflammatory element. Also, the obtained results of group 2 revealed a significant decline in ferric reducing ability of plasma (FRAP), liver catalase (CAT), superoxide dismutase (SOD), and vitamin C levels. The treatment with gallic acid showed significant ameliorations in abnormalities of fluoxetine-induced liver injury as represented by the improvement of hepatic CAT, SOD activities, vitamin C levels, serum biochemical parameters, and histopathological changes, in addition to the recovery of antioxidant defense system status. Gallic acid has inhibitory effects on fluoxetine-induced liver damage. The effect of gallic acid is derived from free radical scavenging properties and the anti-inflammatory effect related to TNF-α. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  10. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver.

    Science.gov (United States)

    Lanaspa, Miguel A; Sanchez-Lozada, Laura G; Choi, Yea-Jin; Cicerchi, Christina; Kanbay, Mehmet; Roncal-Jimenez, Carlos A; Ishimoto, Takuji; Li, Nanxing; Marek, George; Duranay, Murat; Schreiner, George; Rodriguez-Iturbe, Bernardo; Nakagawa, Takahiko; Kang, Duk-Hee; Sautin, Yuri Y; Johnson, Richard J

    2012-11-23

    Uric acid is an independent risk factor in fructose-induced fatty liver, but whether it is a marker or a cause remains unknown. Hepatocytes exposed to uric acid developed mitochondrial dysfunction and increased de novo lipogenesis, and its blockade prevented fructose-induced lipogenesis. Rather than a consequence, uric acid induces fatty liver Hyperuricemic people are more prone to develop fructose-induced fatty liver. Metabolic syndrome represents a collection of abnormalities that includes fatty liver, and it currently affects one-third of the United States population and has become a major health concern worldwide. Fructose intake, primarily from added sugars in soft drinks, can induce fatty liver in animals and is epidemiologically associated with nonalcoholic fatty liver disease in humans. Fructose is considered lipogenic due to its ability to generate triglycerides as a direct consequence of the metabolism of the fructose molecule. Here, we show that fructose also stimulates triglyceride synthesis via a purine-degrading pathway that is triggered from the rapid phosphorylation of fructose by fructokinase. Generated AMP enters into the purine degradation pathway through the activation of AMP deaminase resulting in uric acid production and the generation of mitochondrial oxidants. Mitochondrial oxidative stress results in the inhibition of aconitase in the Krebs cycle, resulting in the accumulation of citrate and the stimulation of ATP citrate lyase and fatty-acid synthase leading to de novo lipogeneis. These studies provide new insights into the pathogenesis of hepatic fat accumulation under normal and diseased states.

  11. Ethosuximide: liver enzyme induction and D-glucaric acid excretion.

    Science.gov (United States)

    Gilbert, J C; Scott, A K; Galloway, D B; Petrie, J C

    1974-06-01

    1 A study has been carried out to determine if ethosuximide induces liver enzymes. 2 Ethosuximide did not affect the urinary excretion of D-glucaric acid by healthy adult subjects nor was the mean daily D-glucaric acid excretion of three epileptic children on long term ethosuximide therapy different from that of three matched controls. 3 Ethosuximide (10 mg/kg or 50 mg/kg daily) did not influence D-glucaric acid excretion or liver microsomal protein and cytochrome P450 contents of guinea pigs but at a dose of 100 mg/kg daily in rats it increased liver microsomal protein and cytochrome P450 without altering D-glucaric acid excretion. 4 These results suggest that at anticonvulsant doses ethosuximide is unlikely to induce liver enzymes. The precise relationship between D-glucaric acid excretion and liver enzyme induction remains in doubt.

  12. ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis

    DEFF Research Database (Denmark)

    DeZwaan-McCabe, Diane; Sheldon, Ryan D; Gorecki, Michelle C

    2017-01-01

    advantage of enhanced hepatic and renal steatosis in mice lacking the ER stress sensor ATF6α. We found that impaired fatty acid oxidation contributed to the early development of steatosis in the liver but not the kidney, while anorexia-induced lipolysis promoted late triglyceride and free fatty acid...

  13. ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis

    Directory of Open Access Journals (Sweden)

    Diane DeZwaan-McCabe

    2017-05-01

    Full Text Available The unfolded protein response (UPR, induced by endoplasmic reticulum (ER stress, regulates the expression of factors that restore protein folding homeostasis. However, in the liver and kidney, ER stress also leads to lipid accumulation, accompanied at least in the liver by transcriptional suppression of metabolic genes. The mechanisms of this accumulation, including which pathways contribute to the phenotype in each organ, are unclear. We combined gene expression profiling, biochemical assays, and untargeted lipidomics to understand the basis of stress-dependent lipid accumulation, taking advantage of enhanced hepatic and renal steatosis in mice lacking the ER stress sensor ATF6α. We found that impaired fatty acid oxidation contributed to the early development of steatosis in the liver but not the kidney, while anorexia-induced lipolysis promoted late triglyceride and free fatty acid accumulation in both organs. These findings provide evidence for both direct and indirect regulation of peripheral metabolism by ER stress.

  14. ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis.

    Science.gov (United States)

    DeZwaan-McCabe, Diane; Sheldon, Ryan D; Gorecki, Michelle C; Guo, Deng-Fu; Gansemer, Erica R; Kaufman, Randal J; Rahmouni, Kamal; Gillum, Matthew P; Taylor, Eric B; Teesch, Lynn M; Rutkowski, D Thomas

    2017-05-30

    The unfolded protein response (UPR), induced by endoplasmic reticulum (ER) stress, regulates the expression of factors that restore protein folding homeostasis. However, in the liver and kidney, ER stress also leads to lipid accumulation, accompanied at least in the liver by transcriptional suppression of metabolic genes. The mechanisms of this accumulation, including which pathways contribute to the phenotype in each organ, are unclear. We combined gene expression profiling, biochemical assays, and untargeted lipidomics to understand the basis of stress-dependent lipid accumulation, taking advantage of enhanced hepatic and renal steatosis in mice lacking the ER stress sensor ATF6α. We found that impaired fatty acid oxidation contributed to the early development of steatosis in the liver but not the kidney, while anorexia-induced lipolysis promoted late triglyceride and free fatty acid accumulation in both organs. These findings provide evidence for both direct and indirect regulation of peripheral metabolism by ER stress. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie, E-mail: JLiu@kumc.edu [University of Kansas Medical Center, Kansas City, KS 66160 (United States); Zunyi Medical College, Zunyi 563003 (China); Lu, Yuan-Fu [University of Kansas Medical Center, Kansas City, KS 66160 (United States); Zunyi Medical College, Zunyi 563003 (China); Zhang, Youcai; Wu, Kai Connie [University of Kansas Medical Center, Kansas City, KS 66160 (United States); Fan, Fang [Cytopathology, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Klaassen, Curtis D. [University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2013-11-01

    Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by liver histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. - Highlights: • Oleanolic acid at higher doses and long-term use may produce liver injury. • Oleanolic acid increased serum ALT, ALP, bilirubin and bile acid concentrations. • OA produced feathery degeneration, inflammation and cell death in the liver. • OA altered bile acid homeostasis, affecting bile acid synthesis and transport.

  16. An iso-α-acid-rich extract from hops (Humulus lupulus) attenuates acute alcohol-induced liver steatosis in mice.

    Science.gov (United States)

    Hege, Marianne; Jung, Finn; Sellmann, Cathrin; Jin, Chengjun; Ziegenhardt, Doreen; Hellerbrand, Claus; Bergheim, Ina

    2018-01-01

    Results of in vitro and in vivo studies suggest that consumption of beer is less harmful for the liver than consumption of spirits. It also has been suggested that secondary plant compounds derived from hops such as xanthohumol or iso-α-acids may have beneficial effects on the development of liver diseases of various etiologies. The aim of this study was to determine whether iso-α-acids consumed in doses achieved by "normal" beer consumption have beneficial effects on health. Female C57 Bl/6 J mice, pretreated for 4 d with an iso-α-acid-rich extract (∼30% iso-α-acids from hops, 0.75 mg/kg body weight), were fed one bolus of ethanol (6 g/kg body weight intragastric) or an iso-caloric maltodextrin solution. Markers of liver damage, toll-like receptor-4 signaling, and lipid peroxidation were determined. Furthermore, the effect of isohumulone on the lipopolysaccharide-dependent activation of J774 A.1 macrophages, used as a model of Kupffer cells, was determined. In the liver, acute ethanol administration led to a significant accumulation of fat (∼10-fold), which was accompanied by significantly higher inducible nitric oxide synthase protein level, elevated nitric oxide production, and increased plasminogen activator inhibitor 1 protein concentration when compared to controls. In mice pretreated with iso-α-acids, these effects of alcohol were markedly attenuated. Pretreatment of J774 A.1 macrophages with isohumulone significantly attenuated lipopolysaccharide-induced mRNA expression of inducible nitric oxide synthase and interleukin-6 as well as the release of nitric oxide. Taken together, iso-α-acids markedly attenuated the development of acute alcohol-induced damage in mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Role of 3-Hydroxy Fatty Acid-Induced Hepatic Lipotoxicity in Acute Fatty Liver of Pregnancy

    Directory of Open Access Journals (Sweden)

    Sathish Kumar Natarajan

    2018-01-01

    Full Text Available Acute fatty liver of pregnancy (AFLP, a catastrophic illness for both the mother and the unborn offspring, develops in the last trimester of pregnancy with significant maternal and perinatal mortality. AFLP is also recognized as an obstetric and medical emergency. Maternal AFLP is highly associated with a fetal homozygous mutation (1528G>C in the gene that encodes for mitochondrial long-chain hydroxy acyl-CoA dehydrogenase (LCHAD. The mutation in LCHAD results in the accumulation of 3-hydroxy fatty acids, such as 3-hydroxy myristic acid, 3-hydroxy palmitic acid and 3-hydroxy dicarboxylic acid in the placenta, which are then shunted to the maternal circulation leading to the development of acute liver injury observed in patients with AFLP. In this review, we will discuss the mechanistic role of increased 3-hydroxy fatty acid in causing lipotoxicity to the liver and in inducing oxidative stress, mitochondrial dysfunction and hepatocyte lipoapoptosis. Further, we also review the role of 3-hydroxy fatty acids in causing placental damage, pancreatic islet β-cell glucolipotoxicity, brain damage, and retinal epithelial cells lipoapoptosis in patients with LCHAD deficiency.

  18. Role of 3-Hydroxy Fatty Acid-Induced Hepatic Lipotoxicity in Acute Fatty Liver of Pregnancy

    Science.gov (United States)

    Ibdah, Jamal A.

    2018-01-01

    Acute fatty liver of pregnancy (AFLP), a catastrophic illness for both the mother and the unborn offspring, develops in the last trimester of pregnancy with significant maternal and perinatal mortality. AFLP is also recognized as an obstetric and medical emergency. Maternal AFLP is highly associated with a fetal homozygous mutation (1528G>C) in the gene that encodes for mitochondrial long-chain hydroxy acyl-CoA dehydrogenase (LCHAD). The mutation in LCHAD results in the accumulation of 3-hydroxy fatty acids, such as 3-hydroxy myristic acid, 3-hydroxy palmitic acid and 3-hydroxy dicarboxylic acid in the placenta, which are then shunted to the maternal circulation leading to the development of acute liver injury observed in patients with AFLP. In this review, we will discuss the mechanistic role of increased 3-hydroxy fatty acid in causing lipotoxicity to the liver and in inducing oxidative stress, mitochondrial dysfunction and hepatocyte lipoapoptosis. Further, we also review the role of 3-hydroxy fatty acids in causing placental damage, pancreatic islet β-cell glucolipotoxicity, brain damage, and retinal epithelial cells lipoapoptosis in patients with LCHAD deficiency. PMID:29361796

  19. Edaravone, a free radical scavenger, protects liver against valproic acid induced toxicity

    Directory of Open Access Journals (Sweden)

    Cakmak Neziha Hacihasanoglu

    2015-01-01

    Full Text Available Valproic acid (VPA, is a well established anticonvulsant drug that has been increasingly used in the treatment of many forms of generalized epilepsy. Edaravone (EDA; 3-methyl-1-phenyl-2-pyrazoline-5-one is a potent free radical scavenger. In this study, we aimed to investigate the effects of EDA on VPA-induced hepatic damage. Male Sprague Dawley rats were divided into four groups. Group I was control animals. Group II was control rats given valproic acid (500 mg kg-1 day for seven days. Group III was given only EDA (30 mg kg-1day for seven days. Group IV was given VPA+EDA (in same dose and time. EDA and VPA were given intraperitoneally. On the 8th day of experiment, blood samples and liver tissue were taken. Serum aspartate and alanine aminotransferase, alkaline phosphatase and bilirubin levels, liver myeloperoxidase, xanthine oxidase, adenosine deaminase, Na+/K+ATPase, sorbitol dehydrogenase, glutamate dehydrogenase, DT-diaphorase, arginase and thromboplastic activities, lipid peroxidation, protein carbonyl levels were increased whereas paraoxonase, biotinidase activities and glutathione levels were decreased in VPA group. Application of EDA with VPA protected against VPA-induced effects. These results demonstrated that administration of EDA is a potentially beneficial agent to reduce hepatic damage in VPA induced hepatotoxicity, probably by decreasing oxidative stress.

  20. Enhanced Amelioration of High-Fat Diet-Induced Fatty Liver by Docosahexaenoic Acid and Lysine Supplementations

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Lin

    2014-01-01

    Full Text Available Fatty liver disease is the most common pathological condition in the liver. Here, we generated high-fat diet-(HFD- induced nonalcoholic fatty liver disease (NAFLD in mice and tested the effects of docosahexaenoic acid (DHA and lysine during a four-week regular chow (RCfeeding. Our results showed that 1% lysine and the combination of 1% lysine + 1% DHA reduced body weight. Moreover, serum triglyceride levels were reduced by 1% DHA and 1% lysine, whereas serum alanine transaminase activity was reduced by 1% DHA and 1% DHA + 0.5% lysine. Switching to RC reduced hepatic lipid droplet accumulation, which was further reduced by the addition of DHA or lysine. Furthermore, the mRNA expressions of hepatic proinflammatory cytokines were suppressed by DHA and combinations of DHA + lysine, whereas the mRNA for the lipogenic gene, acetyl-CoA carboxylase 1 (ACC1, was suppressed by DHA. In the gonadal adipose tissues, combinations of DHA and lysine inhibited mRNA expression of lipid metabolism-associated genes, including ACC1, fatty acid synthase, lipoprotein lipase, and perilipin. In conclusion, the present study demonstrated that, in conjunction with RC-induced benefits, supplementation with DHA or lysine further ameliorated the high-fat diet-induced NAFLD and provided an alternative strategy to treat, and potentially prevent, NAFLD.

  1. Individual bile acids have differential effects on bile acid signaling in mice

    International Nuclear Information System (INIS)

    Song, Peizhen; Rockwell, Cheryl E.; Cui, Julia Yue; Klaassen, Curtis D.

    2015-01-01

    Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In the liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and

  2. Individual bile acids have differential effects on bile acid signaling in mice

    Energy Technology Data Exchange (ETDEWEB)

    Song, Peizhen, E-mail: songacad@gmail.com; Rockwell, Cheryl E., E-mail: rockwelc@msu.edu; Cui, Julia Yue, E-mail: juliacui@uw.edu; Klaassen, Curtis D., E-mail: curtisklaassenphd@gmail.com

    2015-02-15

    Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In the liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and

  3. Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity.

    Directory of Open Access Journals (Sweden)

    Esther M Verhaag

    Full Text Available Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis.To investigate the mechanisms that underlie the hormetic response that protect hepatocytes against experimental cholestatic conditions.HepG2.rNtcp cells were preconditioned (24 h with sub-apoptotic concentrations (0.1-50 μM of various bile acids, the superoxide donor menadione, TNF-α or the Farsenoid X Receptor agonist GW4064, followed by a challenge with the apoptosis-inducing bile acid glycochenodeoxycholic acid (GCDCA; 200 μM for 4 h, menadione (50 μM, 6 h or cytokine mixture (CM; 6 h. Levels of apoptotic and necrotic cell death, mRNA expression of the bile salt export pump (ABCB11 and bile acid sensors, as well as intracellular GCDCA levels were analyzed.Preconditioning with the pro-apoptotic bile acids GCDCA, taurocholic acid, or the protective bile acids (tauroursodeoxycholic acid reduced GCDCA-induced caspase-3/7 activity in HepG2.rNtcp cells. Bile acid preconditioning did not induce significant levels of necrosis in GCDCA-challenged HepG2.rNtcp cells. In contrast, preconditioning with cholic acid, menadione or TNF-α potentiated GCDCA-induced apoptosis. GCDCA preconditioning specifically reduced GCDCA-induced cell death and not CM- or menadione-induced apoptosis. The hormetic effect of GCDCA preconditioning was concentration- and time-dependent. GCDCA-, CDCA- and GW4064- preconditioning enhanced ABCB11 mRNA levels, but in contrast to the bile acids, GW4064 did not significantly reduce GCDCA-induced caspase-3/7 activity. The GCDCA challenge strongly increased intracellular levels of this bile acid, which was not lowered by GCDCA

  4. Mechanisms of bile acid mediated inflammation in the liver.

    Science.gov (United States)

    Li, Man; Cai, Shi-Ying; Boyer, James L

    2017-08-01

    Bile acids are synthesized in the liver and are the major component in bile. Impaired bile flow leads to cholestasis that is characterized by elevated levels of bile acid in the liver and serum, followed by hepatocyte and biliary injury. Although the causes of cholestasis have been extensively studied, the molecular mechanisms as to how bile acids initiate liver injury remain controversial. In this chapter, we summarize recent advances in the pathogenesis of bile acid induced liver injury. These include bile acid signaling pathways in hepatocytes as well as the response of cholangiocytes and innate immune cells in the liver in both patients with cholestasis and cholestatic animal models. We focus on how bile acids trigger the production of molecular mediators of neutrophil recruitment and the role of the inflammatory response in this pathological process. These advances point to a number of novel targets where drugs might be judged to be effective therapies for cholestatic liver injury. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Citrulline and Nonessential Amino Acids Prevent Fructose-Induced Nonalcoholic Fatty Liver Disease in Rats.

    Science.gov (United States)

    Jegatheesan, Prasanthi; Beutheu, Stéphanie; Ventura, Gabrielle; Nubret, Esther; Sarfati, Gilles; Bergheim, Ina; De Bandt, Jean-Pascal

    2015-10-01

    Fructose induces nonalcoholic fatty liver disease (NAFLD). Citrulline (Cit) may exert a beneficial effect on steatosis. We compared the effects of Cit and an isonitrogenous mixture of nonessential amino acids (NEAAs) on fructose-induced NAFLD. Twenty-two male Sprague Dawley rats were randomly assigned into 4 groups (n = 4-6) to receive for 8 wk a 60% fructose diet, either alone or supplemented with Cit (1 g · kg(-1) · d(-1)), or an isonitrogenous amount of NEAAs, or the same NEAA-supplemented diet with starch and maltodextrin instead of fructose (controls). Nutritional and metabolic status, liver function, and expression of genes of hepatic lipid metabolism were determined. Compared with controls, fructose led to NAFLD with significantly higher visceral fat mass (128%), lower lean body mass (-7%), insulin resistance (135%), increased plasma triglycerides (TGs; 67%), and altered plasma amino acid concentrations with decreased Arg bioavailability (-27%). This was corrected by both NEAA and Cit supplementation. Fructose caused a 2-fold increase in the gene expression of fatty acid synthase (Fas) and 70% and 90% decreases in that of carnitine palmitoyl-transferase 1a and microsomal TG transfer protein via a nearly 10-fold higher gene expression of sterol regulatory element-binding protein-1c (Srebp1c) and carbohydrate-responsive element-binding protein (Chrebp), and a 90% lower gene expression of peroxisome proliferator-activated receptor α (Ppara). NEAA or Cit supplementation led to a Ppara gene expression similar to controls and decreased those of Srebp1c and Chrebp in the liver by 50-60%. Only Cit led to Fas gene expression and Arg bioavailability similar to controls. In our rat model, Cit and NEAAs effectively prevented fructose-induced NAFLD. On the basis of literature data and our findings, we propose that NEAAs may exert their effects specifically on the liver, whereas Cit presumably acts at both the hepatic and whole-body level, in part via improved

  6. Fasting-induced liver GADD45β restrains hepatic fatty acid uptake and improves metabolic health.

    Science.gov (United States)

    Fuhrmeister, Jessica; Zota, Annika; Sijmonsma, Tjeerd P; Seibert, Oksana; Cıngır, Şahika; Schmidt, Kathrin; Vallon, Nicola; de Guia, Roldan M; Niopek, Katharina; Berriel Diaz, Mauricio; Maida, Adriano; Blüher, Matthias; Okun, Jürgen G; Herzig, Stephan; Rose, Adam J

    2016-06-01

    Recent studies have demonstrated that repeated short-term nutrient withdrawal (i.e. fasting) has pleiotropic actions to promote organismal health and longevity. Despite this, the molecular physiological mechanisms by which fasting is protective against metabolic disease are largely unknown. Here, we show that, metabolic control, particularly systemic and liver lipid metabolism, is aberrantly regulated in the fasted state in mouse models of metabolic dysfunction. Liver transcript assays between lean/healthy and obese/diabetic mice in fasted and fed states uncovered "growth arrest and DNA damage-inducible" GADD45β as a dysregulated gene transcript during fasting in several models of metabolic dysfunction including ageing, obesity/pre-diabetes and type 2 diabetes, in both mice and humans. Using whole-body knockout mice as well as liver/hepatocyte-specific gain- and loss-of-function strategies, we revealed a role for liver GADD45β in the coordination of liver fatty acid uptake, through cytoplasmic retention of FABP1, ultimately impacting obesity-driven hyperglycaemia. In summary, fasting stress-induced GADD45β represents a liver-specific molecular event promoting adaptive metabolic function. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  7. Effect of specific amino acids on hepatic lipid metabolism in fructose-induced non-alcoholic fatty liver disease.

    Science.gov (United States)

    Jegatheesan, Prasanthi; Beutheu, Stéphanie; Ventura, Gabrielle; Sarfati, Gilles; Nubret, Esther; Kapel, Nathalie; Waligora-Dupriet, Anne-Judith; Bergheim, Ina; Cynober, Luc; De-Bandt, Jean-Pascal

    2016-02-01

    Fructose diets have been shown to induce insulin resistance and to alter liver metabolism and gut barrier function, ultimately leading to non-alcoholic fatty liver disease. Citrulline, Glutamine and Arginine may improve insulin sensitivity and have beneficial effects on gut trophicity. Our aim was to evaluate their effects on liver and gut functions in a rat model of fructose-induced non-alcoholic fatty liver disease. Male Sprague-Dawley rats (n = 58) received a 4-week fructose (60%) diet or standard chow with or without Citrulline (0.15 g/d) or an isomolar amount of Arginine or Glutamine. All diets were made isonitrogenous by addition of non-essential amino acids. At week 4, nutritional and metabolic status (plasma glucose, insulin, cholesterol, triglycerides and amino acids, net intestinal absorption) was determined; steatosis (hepatic triglycerides content, histological examination) and hepatic function (plasma aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, bilirubin) were assessed; and gut barrier integrity (myeloperoxidase activity, portal endotoxemia, tight junction protein expression and localization) and intestinal and hepatic inflammation were evaluated. We also assessed diets effects on caecal microbiota. In these experimental isonitrogenous fructose diet conditions, fructose led to steatosis with dyslipidemia but without altering glucose homeostasis, liver function or gut permeability. Fructose significantly decreased Bifidobacterium and Lactobacillus and tended to increase endotoxemia. Arginine and Glutamine supplements were ineffective but Citrulline supplementation prevented hypertriglyceridemia and attenuated liver fat accumulation. While nitrogen supply alone can attenuate fructose-induced non-alcoholic fatty liver disease, Citrulline appears to act directly on hepatic lipid metabolism by partially preventing hypertriglyceridemia and steatosis. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition

  8. Citric acid effects on brain and liver oxidative stress in lipopolysaccharide-treated mice.

    Science.gov (United States)

    Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Morsy, Safaa M Youssef; Omara, Enayat A; Sleem, Amany A

    2014-05-01

    Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1-2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1-2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1-2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation.

  9. Ethylenediaminetetraacetic acid induces antioxidant and anti-inflammatory activities in experimental liver fibrosis.

    Science.gov (United States)

    González-Cuevas, J; Navarro-Partida, J; Marquez-Aguirre, A L; Bueno-Topete, M R; Beas-Zarate, C; Armendáriz-Borunda, J

    2011-01-01

    Experimental liver fibrosis induced by carbon tetrachloride (CCl(4)) is associated with oxidative stress, lipid peroxidation, and inflammation. This work was focused on elucidating the anti-inflammatory and antioxidant effects of ethylenediaminetetraacetic acid (EDTA) in this model of hepatotoxicity. Wistar male rats were treated with CCl(4) and EDTA (60, 120, or 240 mg/kg). Morphometric analyses were carried out in Masson's stained liver sections to determine fibrosis index. Coagulation tests prothrombin time (PT) and partial thromboplastin time (PTT) were also determined. Gene expression for transforming growth factor beta (TGF-beta1), alpha1(I) procollagen gene (alpha1 Col I), tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), and superoxide dismutase (SOD) was monitored by real-time PCR. Antioxidant effect of EDTA was measured by its effects on lipid peroxidation; biological activity of ceruloplasmin (Cp), SOD, and catalase (Cat) were analyzed by zymography assays. Animals with CCl(4)-hepatic injury that received EDTA showed a decrement in fibrosis (20%) and lipid peroxidation (22%). The mRNA expression for TNF-alpha (55%), TGF-beta1 (50%), IL-6 (52%), and alpha1 Col I (60%) was also decreased. This group of animals showed increased Cp (62%) and SOD (25%) biological activities. Coagulation blood tests, Cat activity, and gene expression for SOD were not modified by EDTA treatment. This study demonstrates that EDTA treatment induces the activity of antioxidant enzymes, decreases lipid peroxidation, hepatic inflammation, and fibrosis in experimental liver fibrosis induced by CCl(4).

  10. Polyamine and amino acid content, and activity of polyamine-synthesizing decarboxylases, in liver of streptozotocin-induced diabetic and insulin-treated diabetic rats

    OpenAIRE

    Brosnan, Margaret E.; Roebothan, Barbara V.; Hall, Douglas E.

    1980-01-01

    1. Concentrations of polyamines, amino acids, glycogen, nucleic acids and protein, and activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase, were measured in livers from control, streptozotocin-diabetic and insulin-treated diabetic rats. 2. Total DNA per liver and protein per mg of DNA were unaffected by diabetes, whereas RNA per mg of DNA and glycogen per g of liver were decreased. Insulin treatment of diabetic rats induced both hypertrophy and hyperplasia, as indicat...

  11. A permeability transition in liver mitochondria and liposomes induced by α,ω-dioic acids and Ca(2+).

    Science.gov (United States)

    Dubinin, Mikhail V; Samartsev, Victor N; Astashev, Maxim E; Kazakov, Alexey S; Belosludtsev, Konstantin N

    2014-11-01

    The article examines the molecular mechanism of the Ca(2+)-dependent cyclosporin A (CsA)-insensitive permeability transition in rat liver mitochondria induced by α,ω-dioic acids. The addition of α,ω-hexadecanedioic acid (HDA) to Ca(2+)-loaded liver mitochondria was shown to induce a high-amplitude swelling of the organelles, a drop of membrane potential and the release of Ca(2+) from the matrix, the effects being insensitive to CsA. The experiments with liposomes loaded with sulforhodamine B (SRB) revealed that, like palmitic acid (PA), HDA was able to cause permeabilization of liposomal membranes. However, the kinetics of HDA- and PA-induced release of SRB from liposomes was different, and HDA was less effective than PA in the induction of SRB release. Using the method of ultrasound interferometry, we also showed that the addition of Ca(2+) to HDA-containing liposomes did not change the phase state of liposomal membranes-in contrast to what was observed when Ca(2+) was added to PA-containing vesicles. It was suggested that HDA/Ca(2+)- and PA/Ca(2+)-induced permeability transition occurs by different mechanisms. Using the method of dynamic light scattering, we further revealed that the addition of Ca(2+) to HDA-containing liposomes induced their aggregation/fusion. Apparently, these processes result in a partial release of SRB due to the formation of fusion pores. The possibility that this mechanism underlies the HDA/Ca(2+)-induced permeability transition of the mitochondrial membrane is discussed.

  12. Docosahexaenoic acid prevents trans-10, cis-12 conjugated linoleic acid-induced non-alcoholic fatty liver disease in mice by altering expression of hepatic genes regulating fatty acid synthesis and oxidation

    Science.gov (United States)

    Background: Concomitant supplementation with docosahexaenoic acid (22:6 n-3; DHA) prevented t10, c12- conjugated linoleic acid (CLA)-induced non-alcoholic fatty liver disease (NAFLD) and insulin resistance. Effective dose of DHA and mechanisms involved are poorly understood. Methods: We examined abi...

  13. Protective Efficacy of Alpha-lipoic Acid against AflatoxinB1-induced Oxidative Damage in the Liver

    Directory of Open Access Journals (Sweden)

    Y. Li

    2014-06-01

    Full Text Available Alpha-lipoic acid (α-LA is not only involved in energy metabolism, but is also a powerful antioxidant that can protect against hepatic oxidative stress induced by some drugs, toxins, or under various physiological and pathophysiological conditions. Here, we investigated the effect of α-LA against liver oxidative damage in broilers exposed to aflatoxin B1 (AFB1. Birds were randomly divided into four groups and assigned different diets: basal diet, 300 mg/kg α-LA supplementation in basal diet, diet containing 74 μg/kg AFB1, and 300 mg/kg α-LA supplementation in diet containing 74 μg/kg AFB1, for 3 weeks. The results revealed that the addition of 300 mg/kg α-LA protected against the liver function damage of broilers induced by chronic low dose of AFB1 as estimated by a significant (p<0.05 change in levels of plasma total protein, albumin, alkaline phosphatase and the activities of liver glutamic-oxalacetic transaminase and glutamic-pyruvic transaminase. The histopathological analysis also showed that liver tissues were injured in the AFB1 diet, but this effect was alleviated by the addition of 300 mg/kg α-LA. Additionally, AFB1 induced a profound elevation of oxidative stress in birds, as indicated by an increase in malondialdehyde level, a decrease in glutathione peroxidase activity and a depletion of the glutathione content in the liver. All of these negative effects were inhibited by treatment with α-LA. Our results suggest that the inhibition of AFB1-induced excess production of lipid peroxides and the maintenance of intracellular antioxidant status may play important roles in the protective effects of α-LA against AFB1-induced oxidative damage in the liver.

  14. Effect of L-ascorbic acid on nickel-induced alterations in serum lipid profiles and liver histopathology in rats.

    Science.gov (United States)

    Das, Kusal K; Gupta, Amrita Das; Dhundasi, Salim A; Patil, Ashok M; Das, Swastika N; Ambekar, Jeevan G

    2006-01-01

    Nickel exposure greatly depletes intracellular ascorbate and alters ascorbate-cholesterol metabolism. We studied the effect of the simultaneous oral treatment with L-ascorbic acid (50 mg/100 g body weight (BW) and nickel sulfate (2.0 mg/100 g BW, i.p) on nickelinduced changes in serum lipid profiles and liver histopathology. Nickel-treated rats showed a significant increase in serum low-density lipoprotein-cholesterol, total cholesterol, triglycerides, and a significant decrease in serum high-density lipoprotein-cholesterol. In the liver, nickel sulfate caused a loss of normal architecture, fatty changes, extensive vacuolization in hepatocytes, eccentric nuclei, and Kupffer cell hypertrophy. Simultaneous administration of L-ascorbic acid with nickel sulfate improved both the lipid profile and liver impairments when compared with rats receiving nickel sulfate only. The results indicate that L-ascorbic acid is beneficial in preventing nickel-induced lipid alterations and hepatocellular damage.

  15. Melatonin protects against taurolithocholic-induced oxidative stress in rat liver.

    Science.gov (United States)

    Fuentes-Broto, Lorena; Miana-Mena, Francisco J; Piedrafita, Eduardo; Berzosa, César; Martínez-Ballarín, Enrique; García-Gil, Francisco A; Reiter, Russel J; García, Joaquín J

    2010-08-01

    Cholestasis, encountered in a variety of clinical disorders, is characterized by intracellular accumulation of toxic bile acids in the liver. Furthermore, oxidative stress plays an important role in the pathogenesis of bile acids. Taurolithocholic acid (TLC) was revealed in previous studies as the most pro-oxidative bile acid. Melatonin, a well-known antioxidant, is a safe and widely used therapeutic agent. Herein, we investigated the hepatoprotective role of melatonin on lipid and protein oxidation induced by TLC alone and in combination with FeCl(3) and ascorbic acid in rat liver homogenates and hepatic membranes. The lipid peroxidation products, malondialdehyde and 4-hydroxyalkenals (MDA + 4-HDA), and carbonyl levels were quantified as indices of oxidative damage to hepatic lipids and proteins, respectively. In the current study, the rise in MDA + 4-HDA levels induced by TLC was inhibited by melatonin in a concentration-dependent manner in both liver homogenates and in hepatic membranes. Melatonin also had protective effects against structural damage to proteins induced by TLC in membranes. These results suggest that the indoleamine melatonin may potentially act as a protective agent in the therapy of those diseases that involve bile acid toxicity. Published 2010 Wiley-Liss, Inc.

  16. Nordihydroguaiaretic acid protects against high-fat diet-induced fatty liver by activating AMP-activated protein kinase in obese mice

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Su; Kim, Daeyoung; Jo, Keunae [Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Hwang, Jae-Kwan, E-mail: jkhwang@yonsei.ac.kr [Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Translational Research Center for Protein Function Control, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2010-10-08

    Research highlights: {yields} NDGA decreases high-fat diet-induced body weight gain and adiposity. {yields} NDGA reduces high-fat diet-induced triglyceride accumulation in liver. {yields} NDGA improves lipid storage in vitro through altering lipid regulatory proteins. {yields} Inhibition of lipid storage in vivo and in vitro is mediated by AMPK activation. -- Abstract: Nonalcoholic fatty liver disease, one of the most common causes of chronic liver disease, is strongly associated with metabolic syndrome. Nordihydroguaiaretic acid (NDGA) has been reported to inhibit lipoprotein lipase; however, the effect of NDGA on hepatic lipid metabolism remains unclear. We evaluated body weight, adiposity, liver histology, and hepatic triglyceride content in high-fat diet (HFD)-fed C57BL/6J mice treated with NDGA. In addition, we characterized the underlying mechanism of NDGA's effects in HepG2 hepatocytes by Western blot and RT-PCR analysis. NDGA (100 or 200 mg/kg/day) reduced weight gain, fat pad mass, and hepatic triglyceride accumulation, and improved serum lipid parameters in mice fed a HFD for 8 weeks. NDGA significantly increased AMP-activated protein kinase (AMPK) phosphorylation in the liver and in HepG2 hepatocytes. NDGA downregulated the level of mature SREBP-1 and its target genes (acetyl-CoA carboxylase and fatty acid synthase), but, it upregulated expression of genes involved in fatty acid oxidation, such as peroxisome proliferator-activated receptor (PPAR){alpha}, PPAR{gamma} coactivator-1, carnitine palmitoyl transferase-1, and uncoupling protein-2. The specific AMPK inhibitor compound C attenuated the effects of NDGA on expression of lipid metabolism-related proteins in HepG2 hepatocytes. The beneficial effects of NDGA on HFD-induced hepatic triglyceride accumulation are mediated through AMPK signaling pathways, suggesting a potential target for preventing NAFLD.

  17. Nordihydroguaiaretic acid protects against high-fat diet-induced fatty liver by activating AMP-activated protein kinase in obese mice

    International Nuclear Information System (INIS)

    Lee, Myoung-Su; Kim, Daeyoung; Jo, Keunae; Hwang, Jae-Kwan

    2010-01-01

    Research highlights: → NDGA decreases high-fat diet-induced body weight gain and adiposity. → NDGA reduces high-fat diet-induced triglyceride accumulation in liver. → NDGA improves lipid storage in vitro through altering lipid regulatory proteins. → Inhibition of lipid storage in vivo and in vitro is mediated by AMPK activation. -- Abstract: Nonalcoholic fatty liver disease, one of the most common causes of chronic liver disease, is strongly associated with metabolic syndrome. Nordihydroguaiaretic acid (NDGA) has been reported to inhibit lipoprotein lipase; however, the effect of NDGA on hepatic lipid metabolism remains unclear. We evaluated body weight, adiposity, liver histology, and hepatic triglyceride content in high-fat diet (HFD)-fed C57BL/6J mice treated with NDGA. In addition, we characterized the underlying mechanism of NDGA's effects in HepG2 hepatocytes by Western blot and RT-PCR analysis. NDGA (100 or 200 mg/kg/day) reduced weight gain, fat pad mass, and hepatic triglyceride accumulation, and improved serum lipid parameters in mice fed a HFD for 8 weeks. NDGA significantly increased AMP-activated protein kinase (AMPK) phosphorylation in the liver and in HepG2 hepatocytes. NDGA downregulated the level of mature SREBP-1 and its target genes (acetyl-CoA carboxylase and fatty acid synthase), but, it upregulated expression of genes involved in fatty acid oxidation, such as peroxisome proliferator-activated receptor (PPAR)α, PPARγ coactivator-1, carnitine palmitoyl transferase-1, and uncoupling protein-2. The specific AMPK inhibitor compound C attenuated the effects of NDGA on expression of lipid metabolism-related proteins in HepG2 hepatocytes. The beneficial effects of NDGA on HFD-induced hepatic triglyceride accumulation are mediated through AMPK signaling pathways, suggesting a potential target for preventing NAFLD.

  18. Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekeeping longevity assurance processes.

    Science.gov (United States)

    Goldberg, Alexander A; Richard, Vincent R; Kyryakov, Pavlo; Bourque, Simon D; Beach, Adam; Burstein, Michelle T; Glebov, Anastasia; Koupaki, Olivia; Boukh-Viner, Tatiana; Gregg, Christopher; Juneau, Mylène; English, Ann M; Thomas, David Y; Titorenko, Vladimir I

    2010-07-01

    In chronologically aging yeast, longevity can be extended by administering a caloric restriction (CR) diet or some small molecules. These life-extending interventions target the adaptable target of rapamycin (TOR) and cAMP/protein kinase A (cAMP/PKA) signaling pathways that are under the stringent control of calorie availability. We designed a chemical genetic screen for small molecules that increase the chronological life span of yeast under CR by targeting lipid metabolism and modulating housekeeping longevity pathways that regulate longevity irrespective of the number of available calories. Our screen identifies lithocholic acid (LCA) as one of such molecules. We reveal two mechanisms underlying the life-extending effect of LCA in chronologically aging yeast. One mechanism operates in a calorie availability-independent fashion and involves the LCA-governed modulation of housekeeping longevity assurance pathways that do not overlap with the adaptable TOR and cAMP/PKA pathways. The other mechanism extends yeast longevity under non-CR conditions and consists in LCA-driven unmasking of the previously unknown anti-aging potential of PKA. We provide evidence that LCA modulates housekeeping longevity assurance pathways by suppressing lipid-induced necrosis, attenuating mitochondrial fragmentation, altering oxidation-reduction processes in mitochondria, enhancing resistance to oxidative and thermal stresses, suppressing mitochondria-controlled apoptosis, and enhancing stability of nuclear and mitochondrial DNA.

  19. Acetaminophen-induced Liver Injury is Attenuated in Transgenic fat-1 Mice Endogenously Synthesizing Long-chain n-3 Fatty Acids.

    Science.gov (United States)

    Feng, Ruibing; Wang, Yang; Liu, Conghui; Yan, Chunyan; Zhang, Hang; Su, Huanxing; Kang, Jing X; Shang, Chang-Zhen; Wan, Jian-Bo

    2018-04-18

    Acetaminophen (APAP) overdose-caused hepatotoxicity is the most commonly cause of drugs-induced liver failurecharacterized by oxidative stress, mitochondrial dysfunction, and cell damage. Therapeutic efficacy of omega-3 polyunsaturated fatty acids (n-3 PUFAs) in several models of liver disease is well documented. However, the impacts of n-3 PUFA on APAP hepatotoxicity are not adequately addressed. In this study, the fat-1 transgenic mice that synthesize endogenous n-3 PUFA and wild type (WT) littermates were injected intraperitoneally with APAP at the dose of 400 mg/kg to induce liver injury, and euthanized at 0 h, 2 h, 4 h and 6 h post APAP injection for sampling. APAP overdose caused severe liver injury in WT mice as indicated by serum parameters, histopathological changes and hepatocyte apoptosis, which were remarkably ameliorated in fat-1 mice. These protective effects of n-3 PUFA were associated with regulation of the prolonged JNK activation via inhibition of apoptosis signal-regulating kinase 1 (ASK1) / mitogen-activated protein kinase kinase 4 (MKK4) pathway. Additionally, the augment of endogenous n-3 PUFA reduced nuclear factor kappa B (NF-κB) - mediated inflammation response induced by APAP treatment in the liver. These findings indicate that n-3 PUFA has potent protective effects against APAP-induced acute liver injury, suggesting that n-3 dietary supplement with n-3 PUFA may be a potential therapeutic strategy for the treatment of hepatotoxicity induced by APAP overdose. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Radiosynthesis of N-¹¹C-Methyl-Taurine-Conjugated Bile Acids and Biodistribution Studies in Pigs by PET/CT.

    Science.gov (United States)

    Schacht, Anna Christina; Sørensen, Michael; Munk, Ole Lajord; Frisch, Kim

    2016-04-01

    During cholestasis, accumulation of conjugated bile acids may occur in the liver and lead to hepatocellular damage. Inspired by our recent development of N-(11)C-methyl-glycocholic acid-that is, (11)C-cholylsarcosine-a tracer for PET of the endogenous glycine conjugate of cholic acid, we report here a radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids and biodistribution studies in pigs by PET/CT. A radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids was developed and used to prepare N-(11)C-methyl-taurine conjugates derived from cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic acid. The lipophilicity of these new tracers was determined by reversed-phase thin-layer chromatography. The effect of lipophilicity and structure on the biodistribution was investigated in pigs by PET/CT using the tracers derived from cholic acid (3α-OH, 7α-OH, 12α-OH), ursodeoxycholic acid (3α-OH, 7β-OH), and lithocholic acid (3α-OH). The radiosyntheses of the N-(11)C-methyl-taurine-conjugated bile acids proceeded with radiochemical yields of 61% (decay-corrected) or greater and radiochemical purities greater than 99%. PET/CT in pigs revealed that the tracers were rapidly taken up by the liver and secreted into bile. There was no detectable radioactivity in urine. Significant reflux of N-(11)C-methyl-taurolithocholic acid into the stomach was observed. We have successfully developed a radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids. These tracers behave in a manner similar to endogenous taurine-conjugated bile acids in vivo and are thus promising for functional PET of patients with cholestatic diseases. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  1. The Hepatoprotection Provided by Taurine and Glycine against Antineoplastic Drugs Induced Liver Injury in an Ex Vivo Model of Normothermic Recirculating Isolated Perfused Rat Liver

    Directory of Open Access Journals (Sweden)

    Reza Heidari

    2016-03-01

    Full Text Available Taurine (2-aminoethane sulfonic acid is a non-protein amino acid found in high concentration in different tissues. Glycine (Amino acetic acid is the simplest amino acid incorporated in the structure of proteins. Several investigations indicate the hepatoprotective properties of these amino acids. On the other hand, antineoplastic agents-induced serum transaminase elevation and liver injury is a clinical complication. The current investigation was designed to screen the possible hepatoprotective properties of taurine and glycine against antineoplastic drugs-induced hepatic injury in an ex vivo model of isolated perfused rat liver. Rat liver was perfused with different concentration (10 μM, 100 μM and 1000 μM of antineoplastic drugs (Mitoxantrone, Cyclophosphamide, Cisplatin, 5 Fluorouracil, Doxorubicin and Dacarbazine via portal vein. Taurine and glycine were administered to drug-treated livers and liver perfusate samples were collected for biochemical measurements (ALT, LDH, AST, and K+. Markers of oxidative stress (reactive oxygen species formation, lipid peroxidation, total antioxidant capacity and glutathione were also assessed in liver tissue. Antineoplastic drugs caused significant pathological changes in perfusate biochemistry. Furthermore, markers of oxidative stress were significantly elevated in drug treated livers. It was found that taurine (5 and 10 mM and glycine (5 and 10 mM administration significantly mitigated the biomarkers of liver injury and attenuated drug induced oxidative stress. Our data indicate that taurine and glycine supplementation might help as potential therapeutic options to encounter anticancer drugs-induced liver injury.

  2. Perfluorodecanoic acid enhances the formation of oleic acid in rat liver.

    Science.gov (United States)

    Yamamoto, A; Kawashima, Y

    1997-01-01

    The feeding of perfluorodecanoic acid (PFDA) to male rats at a dietary concentration of 0.005% (w/w) for 7 days resulted in a marked increase in the activity of microsomal stearoyl-CoA desaturation in the liver. This increase in the overall desaturation activity was due to the induction of terminal desaturase among the components comprising the desaturation system. In contrast, PFDA inhibited desaturation in vitro, seemingly due to interference with electron transport through the desaturation system. Accordingly, PFDA can be an inducer and also an inhibitor of delta9-desaturation. PFDA feeding enhanced the conversion of radioactive stearic acid into oleic acid in the liver in vivo, indicating that the induction of delta9-desaturase by PFDA functions in vivo. PFDA feeding increased the mass of octadecenoic acid (C18:1) in the liver and the proportion of C18:1 in microsomal lipid. A highly significant linear correlation existed between the microsomal desaturase activity and the proportion of C18:1 in microsomal lipid when compared using rats in five different physiological states: control, PFDA-fed, p-chlorophenoxyisobutyric acid (clofibric acid)-fed, starved and starved/refed. These results suggest that the increase in the hepatic level of C18:1 caused by feeding of PFDA to rats can be explained by the common concept of regulation, i.e. the hepatic level of C18:1 is under the control of delta9-desaturase. The dietary administration of PFDA also increased the content of cytochrome P-450 and the activity of 7-ethoxycoumarin O-de-ethylase in the liver. PMID:9230124

  3. Perfluorooctanoic acid exposure induces endoplasmic reticulum stress in the liver and its effects are ameliorated by 4-phenylbutyrate.

    Science.gov (United States)

    Yan, Shengmin; Zhang, Hongxia; Wang, Jianshe; Zheng, Fei; Dai, Jiayin

    2015-10-01

    Perfluoroalkyl acids (PFAAs) are a group of widely used anthropogenic compounds. As one of the most dominant PFAAs, perfluorooctanoic acid (PFOA) has been suggested to induce hepatotoxicity and several other toxicological effects. However, details on the mechanisms for PFOA-induced hepatotoxicity still need to be elucidated. In this study, we observed the occurrence of endoplasmic reticulum (ER) stress in mouse livers and HepG2 cells after PFOA exposure using several familiar markers for the unfolded protein response (UPR). ER stress in HepG2 cells after PFOA exposure was not significantly influenced by autophagy inhibition or stimulation. The antioxidant defense system was significantly disturbed in mouse livers after PFOA exposure, and reactive oxygen species (ROS) were increased in cells exposed to PFOA for 24 h. However, N-acetyl-L-cysteine (NAC) pretreatment did not satisfactorily alleviate the UPR in cells exposed to PFOA even though the increase of ROS was less evident. Furthermore, exposure of HepG2 cells to PFOA in the presence of sodium 4-phenylbutyrate (4-PBA), a chemical chaperone and ER stress inhibitor, suggested that 4-PBA alleviated the UPR and autophagosome accumulation induced by PFOA in cells. In addition, several toxicological effects attributed to PFOA exposure, including cell cycle arrest, proteolytic activity impairment, and neutral lipid accumulation, were also improved by 4-PBA cotreatment in cells. In vivo study demonstrated that PFOA-induced lipid metabolism perturbation and liver injury were partially ameliorated by 4-PBA in mice after 28 days of exposure. These findings demonstrated that PFOA-induced ER stress leading to UPR might play an important role in PFOA-induced hepatotoxic effects, and chemical chaperone 4-PBA could ameliorate the effects. Copyright © 2015. Published by Elsevier Inc.

  4. Aspects of the regulation of long-chain fatty acid oxidation in bovine liver

    International Nuclear Information System (INIS)

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-01-01

    Factors involved in regulation of bovine hepatic fatty acid oxidation were examined using liver slices. Fatty acid oxidation was measured as the conversion of l-[ 14 C] palmitate to 14 CO 2 and total [ 14 C] acid-soluble metabolites. Extended (5 to 7 d) fasting of Holstein cows had relatively little effect on palmitate oxidation to acid-soluble metabolites by liver slices, although oxidation to CO 2 was decreased. Feeding a restricted roughage, high concentrate ration to lactating cows resulted in inhibition of palmitate oxidation. Insulin, glucose, and acetate inhibited palmitate oxidation by bovine liver slices. The authors suggest the regulation of bovine hepatic fatty acid oxidation may be less dependent on hormonally induced alterations in enzyme activity as observed in rat liver and more dependent upon action of rumen fermentation products or their metabolites on enzyme systems involved in fatty acid oxidation

  5. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD.

    Science.gov (United States)

    Jiao, Na; Baker, Susan S; Chapa-Rodriguez, Adrian; Liu, Wensheng; Nugent, Colleen A; Tsompana, Maria; Mastrandrea, Lucy; Buck, Michael J; Baker, Robert D; Genco, Robert J; Zhu, Ruixin; Zhu, Lixin

    2017-08-03

    Bile acids are regulators of lipid and glucose metabolism, and modulate inflammation in the liver and other tissues. Primary bile acids such as cholic acid and chenodeoxycholic acid (CDCA) are produced in the liver, and converted into secondary bile acids such as deoxycholic acid (DCA) and lithocholic acid by gut microbiota. Here we investigated the possible roles of bile acids in non-alcoholic fatty liver disease (NAFLD) pathogenesis and the impact of the gut microbiome on bile acid signalling in NAFLD. Serum bile acid levels and fibroblast growth factor 19 (FGF19), liver gene expression profiles and gut microbiome compositions were determined in patients with NAFLD, high-fat diet-fed rats and their controls. Serum concentrations of primary and secondary bile acids were increased in patients with NAFLD. In per cent, the farnesoid X receptor (FXR) antagonistic DCA was increased, while the agonistic CDCA was decreased in NAFLD. Increased mRNA expression for cytochrome P450 7A1, Na + -taurocholate cotransporting polypeptide and paraoxonase 1, no change in mRNA expression for small heterodimer partner and bile salt export pump, and reduced serum FGF19 were evidence of impaired FXR and fibroblast growth factor receptor 4 (FGFR4)-mediated signalling in NAFLD. Taurine and glycine metabolising bacteria were increased in the gut of patients with NAFLD, reflecting increased secondary bile acid production. Similar changes in liver gene expression and the gut microbiome were observed in high-fat diet-fed rats. The serum bile acid profile, the hepatic gene expression pattern and the gut microbiome composition consistently support an elevated bile acid production in NAFLD. The increased proportion of FXR antagonistic bile acid explains, at least in part, the suppression of hepatic FXR-mediated and FGFR4-mediated signalling. Our study suggests that future NAFLD intervention may target the components of FXR signalling, including the bile acid converting gut microbiome. © Article

  6. Screening for biomarkers of liver injury induced by Polygonum multiflorum: a targeted metabolomic study

    Directory of Open Access Journals (Sweden)

    Qin eDong

    2015-10-01

    Full Text Available Heshouwu (HSW, the dry roots of Polygonum multiflorum, a classical traditional Chinese medicine is used as a tonic for a wide range of conditions,particularly those associated with aging. However, it tends to be taken overdose or long term in these years, which has resulted in liver damage reported in many countries. In this study, the indicative roles of nine bile acids (BAs were evaluated to offer potential biomarkers for HSW induced liver injury. Nine BAs including cholic acid (CA and chenodeoxycholic acid (CDCA, taurocholic acid (TCA, glycocholic acid (GCA, glycochenodeoxycholic acid (GCDCA, deoxycholic acid (DCA, glycodeoxycholic acid (GDCA, ursodeoxycholic acid (UDCA and hyodeoxycholic acid (HDCA in rat bile and serum were detected by a developed LC-MS method after 42 days treatment. Partial least square-discriminate analysis (PLS-DA was applied to evaluate the indicative roles of the nine BAs, and metabolism of the nine BAs was summarized. Significant change was observed for the concentrations of nine BAs in treatment groups compared with normal control; In the PLS-DA plots of nine BAs in bile, normal control and raw HSW groups were separately clustered and could be clearly distinguished, GDCA was selected as the distinguished components for raw HSW overdose treatment group. In the PLS-DA plots of nine BAs in serum, the normal control and raw HSW overdose treatment group were separately clustered and could be clearly distinguished, and HDCA was selected as the distinguished components for raw HSW overdose treatment group. The results indicated the perturbation of nine BAs was associated with HSW induced liver injury; GDCA in bile, as well as HDCA in serum could be selected as potential biomarkers for HSW induced liver injury; it also laid the foundation for the further search on the mechanisms of liver injury induced by HSW .

  7. Bile Acid Metabolism in Liver Pathobiology

    Science.gov (United States)

    Chiang, John Y. L.; Ferrell, Jessica M.

    2018-01-01

    Bile acids facilitate intestinal nutrient absorption and biliary cholesterol secretion to maintain bile acid homeostasis, which is essential for protecting liver and other tissues and cells from cholesterol and bile acid toxicity. Bile acid metabolism is tightly regulated by bile acid synthesis in the liver and bile acid biotransformation in the intestine. Bile acids are endogenous ligands that activate a complex network of nuclear receptor farnesoid X receptor and membrane G protein-coupled bile acid receptor-1 to regulate hepatic lipid and glucose metabolic homeostasis and energy metabolism. The gut-to-liver axis plays a critical role in the regulation of enterohepatic circulation of bile acids, bile acid pool size, and bile acid composition. Bile acids control gut bacteria overgrowth, and gut bacteria metabolize bile acids to regulate host metabolism. Alteration of bile acid metabolism by high-fat diets, sleep disruption, alcohol, and drugs reshapes gut microbiome and causes dysbiosis, obesity, and metabolic disorders. Gender differences in bile acid metabolism, FXR signaling, and gut microbiota have been linked to higher prevalence of fatty liver disease and hepatocellular carcinoma in males. Alteration of bile acid homeostasis contributes to cholestatic liver diseases, inflammatory diseases in the digestive system, obesity, and diabetes. Bile acid-activated receptors are potential therapeutic targets for developing drugs to treat metabolic disorders. PMID:29325602

  8. Studies on lipids and fatty acids in rats with streptozotocin-induced insulin deficiency II. Incorporation of 1-(14)C-sodium acetate into lipids and fatty acids of liver slices and whole blood cells

    OpenAIRE

    三宅,寛治

    1988-01-01

    In order to study the lipid and fatty acid metabolism in the insulin deficient state, the in vitro incorporation of 1-(14)C-sodium acetate into major lipid fractions and fatty acids of liver slices and whole blood cells was determined. Rats were studied one week, one month and three months after insulin deficiency was induced by administration of streptozotocin.The net incorporation of (14)C into lipid fractions and total fatty acids of liver slices significantly decreased after one week. On ...

  9. Evaluation of amino acids changes in liver and serum during the recovery from gamma-irradiation in rats

    International Nuclear Information System (INIS)

    Elkashef, H.S.; Saada, H.N.; Roushdy, H.M.; Abdelsamie, M.A.

    1989-01-01

    Recovery from radiation induced changes in glutamic and aspartic acids in both liver and serum was evaluated in rats treated with a mixture of testosterone and vitamin E and subjected to whole body gamma irradiation of 5.5 Gy. The intraperitoneal injection of the mixture 10 days before exposing the rat gamma radiation improved the recovery process from radiation induced changes in the level of aspartic and glutamic acid. The recovery occurred in liver two weeks after irradiation in injected irradiated rats, while in irradiated rats self recovery was noticed on the third week after irradiation for aspartic acid but this mixture has no protective effect on the radiation induced changes in the liver glutamic acid. With respect to changes in blood serum, recovery was recorded in the first week after irradiation in the case of aspartic acid while recovery in glutamic acid was attained latter, in the second week. The results suggested that blood serum is more sensitive to the radiation dose 5.5 Gy than the liver of whole body gamma-irradiated rats. Also, it could be suggested that glutamic acid and aspartic acid have different susceptibility to this radiation dose.2 tab

  10. Antioxidant, antiapoptotic and amino acid balance regulating activities of 1,7-dihydroxy-3,4,8-trimethoxyxanthone against dimethylnitrosamine-induced liver fibrosis.

    Directory of Open Access Journals (Sweden)

    Xi-Yuan Zheng

    Full Text Available Liver fibrosis represents the consequences of a sustained wound healing response to chronic liver injury which could be caused by viral, autoimmune, drugs, and so on. Unfortunately, there was no effective therapy available for liver fibrosis in clinic. In this study, we identified the anti-fibrotic effects of 1,7-dihydroxy-3,4,8-trimethoxyxanthone (ZYC-1 on the dimethylnitrosamine (DMN-induced rat model. ZYC-1 was isolated from Swertia punicea Hemsl and was administrated to DMN-induced rat model. ZYC decreased the hyaluronic acid (HA, type IV collagen (CIV and hydroxyproline (Hyp levels and inhibited the expression of α smooth muscle actin (α-SMA and transforming growth factor beta 1 (TGF-1β. The anti-fibrotic effect of ZYC-1 was also confirmed by Sirius Red staining. Finally, we identified 42 differentially expressed proteins by using proteomics analysis after ZYC-1 treatment, of which 17 were up-regulated and 25 were down-regulated. These Most of the 42 proteins are involved in the oxidative stress pathway, the mitochondrial-mediated apoptotic pathway and the amino acid metabolism pathway. Our study presented the first elucidated mechanisms of xanthone on liver fibrosis in vivo. This study pointed out that ZYC-1 may be used as a lead compound for hepatofibrosis treatment.

  11. Protective effect of bicyclol on tetracycline-induced fatty liver in mice

    International Nuclear Information System (INIS)

    Yu, Hong-Yan; Wang, Bao-Lian; Zhao, Jing; Yao, Xiao-Min; Gu, Yu; Li, Yan

    2009-01-01

    Peroxisome proliferators-activated receptor α (PPARα) and oxidative stress are two important pathological factors in non-alcoholic fatty liver disease (NAFLD). Tetracycline-induced fatty liver was partly due to the disturbance of mitochondrial fatty acids β-oxidation regulated by PPARα. Bicyclol was found to protect against high fat diet-induced fatty liver through modulating PPARα and clearing reactive oxygen species (ROS). The present study was performed to further investigate the effect of bicyclol on tetracycline-induced fatty liver and related mechanism in mice. Bicyclol (75, 150, 300 mg/kg) was given orally three times in two consecutive days. Tetracycline (200 mg/kg) was injected intraperitoneally 1 h after the last administration of bicyclol. Oxidative stress, mitochondrial function, PPARα and its target genes were evaluated by biochemical and RT-PCR analysis. The activity of CYP4A was assessed by liquid chromatography/mass spectrometry (LC/MS) method. Bicyclol significantly protected against tetracycline-induced fatty liver by reducing the accumulation of hepatic lipids and elevation of serum aminotransferase. In addition, bicyclol remarkably alleviated the over-production of thiobarbituric acid-reactive substance. The reduced activity of mitochondrial respiratory chain (MRC) complexes I and IV and mitochondrial permeability transition (MPT) were also improved by bicyclol. Furthermore, bicyclol inhibited the decrease of PPARα expression and its target genes, including long-chain acyl CoA dehydrogenase (LCAD), acetyl CoA oxidase (AOX) and CYP4A at mRNA and enzyme activity level. Bicyclol protected against tetracycline-induced fatty liver mainly through modulating the disturbance of PPARα pathway and ameliorating mitochondrial function.

  12. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Steven D Kunkel

    Full Text Available Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II, blood vessel recruitment (Vegfa and autocrine/paracrine IGF-I signaling (Igf1. As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness.

  13. Dietary intake of ain-93 standard diet induces Fatty liver with altered hepatic fatty acid profile in Wistar rats.

    Science.gov (United States)

    Farias Santos, Juliana; Suruagy Amaral, Monique; Lima Oliveira, Suzana; Porto Barbosa, Júnia; Rego Cabral, Cyro; Sofia Melo, Ingrid; Bezerra Bueno, Nassib; Duarte Freitas, Johnatan; Goulart Sant'ana, Antônio; Rocha Ataíde, Terezinha

    2015-05-01

    There are several standard diets for animals used in scientific research, usually conceived by scientific institutions. The AIN-93 diet is widely used, but there are some reports of fatty liver in Wistar rats fed this diet. We aimed to evaluate the hepatic repercussions of the AIN-93 diet intake in Wistar rats. Forty newly-weaned 21-day-old male Wistar rats were fed either the AIN-93 diet or a commercial diet for either 1 month or 4 months. Weight gain, serum biochemistry, hepatic histology, and hepatic fatty acid profile were analyzed. Hepatic steatosis was observed, especially in the group fed the AIN-93 diet. Serum blood glucose, absolute and relative liver weight and hepatic levels of oleic, palmitoleic, stearic, and palmitic fatty acids were related to the observed steatosis, while lipidogram and serum markers of liver function and injury were not. AIN-93 diet induced acute hepatic steatosis in Wistar rats, which may compromise its use as a standard diet for experimental studies with rodents. The hepatic fatty acid profile was associated with steatosis, with possible implications for disease prognosis. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  14. Long-chain α,ω-dioic acids as inducers of cyclosporin A-insensitive nonspecific permeability of the inner membrane of liver mitochondria loaded with calcium or strontium ions.

    Science.gov (United States)

    Dubinin, M V; Adakeeva, S I; Samartsev, V N

    2013-04-01

    Long-chain saturated monocarboxylic fatty acids can induce nonspecific permeability of the inner membrane (open pores) of liver mitochondria loaded with Ca2+ or Sr(2+) by the mechanism insensitive to cyclosporin A. In this work we investigated the effect of their metabolites - α,ω-dioic (dicarboxylic) acids - as potential inducers of pore opening by a similar mechanism. It was established that the addition of α,ω-hexadecanedioic acid (HDA) at a concentration of 10-30 µM to liver mitochondria loaded with Ca2+ or Sr(2+) leads to swelling of the organelles and release of these ions from the matrix. The maximum effect of HDA is observed at 50 µM Ca2+ concentration. Cyclosporin A at a concentration of 1 µM, previously added to the mitochondria, did not inhibit the observed processes. The calcium uniporter inhibitor ruthenium red, which blocks influx of Ca2+ and Sr(2+) to the matrix of mitochondria, prevented HDA-induced swelling. The effect of HDA as inducer of swelling of mitochondria was compared with similar effects of α,ω-tetradecanedioic and α,ω-dodecanedioic acids whose acyl chains are two and four carbon atoms shorter than HDA, respectively. It was found that the efficiency of these α,ω-dioic acids decreases with reducing number of carbon atoms in their acyl chains. It was concluded that in the presence of Ca2+ or Sr(2+) long-chain saturated α,ω-dioic acids can induce a cyclosporin A-insensitive permeability of the inner membrane (open pores) of liver mitochondria as well as their monocarboxylic analogs.

  15. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Zidong Donna [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160 (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160 (United States)

    2013-12-15

    Previous studies showed glucose and insulin signaling can regulate bile acid (BA) metabolism during fasting or feeding. However, limited knowledge is available on the effect of calorie restriction (CR), a well-known anti-aging intervention, on BA homeostasis. To address this, the present study utilized a “dose–response” model of CR, where male C57BL/6 mice were fed 0, 15, 30, or 40% CR diets for one month, followed by BA profiling in various compartments of the enterohepatic circulation by UPLC-MS/MS technique. This study showed that 40% CR increased the BA pool size (162%) as well as total BAs in serum, gallbladder, and small intestinal contents. In addition, CR “dose-dependently” increased the concentrations of tauro-cholic acid (TCA) and many secondary BAs (produced by intestinal bacteria) in serum, such as tauro-deoxycholic acid (TDCA), DCA, lithocholic acid, ω-muricholic acid (ωMCA), and hyodeoxycholic acid. Notably, 40% CR increased TDCA by over 1000% (serum, liver, and gallbladder). Interestingly, 40% CR increased the proportion of 12α-hydroxylated BAs (CA and DCA), which correlated with improved glucose tolerance and lipid parameters. The CR-induced increase in BAs correlated with increased expression of BA-synthetic (Cyp7a1) and conjugating enzymes (BAL), and the ileal BA-binding protein (Ibabp). These results suggest that CR increases BAs in male mice possibly through orchestrated increases in BA synthesis and conjugation in liver as well as intracellular transport in ileum. - Highlights: • Dose response effects of short-term CR on BA homeostasis in male mice. • CR increased the BA pool size and many individual BAs. • CR altered BA composition (increased proportion of 12α-hydroxylated BAs). • Increased mRNAs of BA enzymes in liver (Cyp7a1 and BAL) and ileal BA binding protein.

  16. Influence of diet or intrarectal bile acid injections on colon epithelial cell proliferation in rats previously injected with 1,2-dimethylhydrazine

    International Nuclear Information System (INIS)

    Glauert, H.P.; Bennink, M.R.

    1983-01-01

    The effects of varying colon bile acid concentrations on rat colon epithelial cell proliferation were studied. Bile acid concentrations were altered by intrarectally injecting either deoxycholic or lithocholic acid for 4 weeks or by increasing the dietary fat or fiber (wheat bran, agar, or carrageenan) intake for 4 weeks. 1,2-Dimethylhydrazine (DMH) was s.c. injected into half of the rats 1 week before treatments began. Colon epithelial cell proliferation was measured by [ 3 H]thymidine autoradiography of colon crypts. Rats injected with DMH had more DNA-synthesizing cells per crypt. Neither bile acid injection nor any of the diets altered the number of DNA-synthesizing cells per crypt. DMH injections, deoxycholic and lithocholic acid intrarectal injections, and dietary agar and wheat bran all increased the total number of cells per crypt. High fat diets and dietary carrageenan did not affect cell number. All diets containing fiber lowered total fecal bile acid concentrations, but increasing the fat content of the diet did not affect them. These results indicate that the bile acid injections and dietary agar and wheat bran induce a slight hyperplasia in the colon

  17. Acid sphingomyelinase deficiency in Western diet-fed mice protects against adipocyte hypertrophy and diet-induced liver steatosis.

    Science.gov (United States)

    Sydor, Svenja; Sowa, Jan-Peter; Megger, Dominik A; Schlattjan, Martin; Jafoui, Sami; Wingerter, Lena; Carpinteiro, Alexander; Baba, Hideo A; Bechmann, Lars P; Sitek, Barbara; Gerken, Guido; Gulbins, Erich; Canbay, Ali

    2017-05-01

    Alterations in sphingolipid and ceramide metabolism have been associated with various diseases, including nonalcoholic fatty liver disease (NAFLD). Acid sphingomyelinase (ASM) converts the membrane lipid sphingomyelin to ceramide, thereby affecting membrane composition and domain formation. We investigated the ways in which the Asm knockout (Smpd1 -/- ) genotype affects diet-induced NAFLD. Smpd1 -/- mice and wild type controls were fed either a standard or Western diet (WD) for 6 weeks. Liver and adipose tissue morphology and mRNA expression were assessed. Quantitative proteome analysis of liver tissue was performed. Expression of selected genes was quantified in adipose and liver tissue of obese NAFLD patients. Although Smpd1 -/- mice exhibited basal steatosis with normal chow, no aggravation of NAFLD-type injury was observed with a Western diet. This protective effect was associated with the absence of adipocyte hypertrophy and the increased expression of genes associated with brown adipocyte differentiation. In white adipose tissue from obese patients with NAFLD, no expression of these genes was detectable. To further elucidate which pathways in liver tissue may be affected by Smpd1 -/- , we performed an unbiased proteome analysis. Protein expression in WD-fed Smpd1 -/- mice indicated a reduction in Rictor (mTORC2) activity; this reduction was confirmed by diminished Akt phosphorylation and altered mRNA expression of Rictor target genes. These findings indicate that the protective effect of Asm deficiency on diet-induced steatosis is conferred by alterations in adipocyte morphology and lipid metabolism and by reductions in Rictor activation.

  18. Uric Acid Stimulates Fructokinase and Accelerates Fructose Metabolism in the Development of Fatty Liver

    Science.gov (United States)

    Lanaspa, Miguel A.; Sanchez-Lozada, Laura G.; Cicerchi, Christina; Li, Nanxing; Roncal-Jimenez, Carlos A.; Ishimoto, Takuji; Le, Myphuong; Garcia, Gabriela E.; Thomas, Jeffrey B.; Rivard, Christopher J.; Andres-Hernando, Ana; Hunter, Brandi; Schreiner, George; Rodriguez-Iturbe, Bernardo; Sautin, Yuri Y.; Johnson, Richard J.

    2012-01-01

    Excessive dietary fructose intake may have an important role in the current epidemics of fatty liver, obesity and diabetes as its intake parallels the development of these syndromes and because it can induce features of metabolic syndrome. The effects of fructose to induce fatty liver, hypertriglyceridemia and insulin resistance, however, vary dramatically among individuals. The first step in fructose metabolism is mediated by fructokinase (KHK), which phosphorylates fructose to fructose-1-phosphate; intracellular uric acid is also generated as a consequence of the transient ATP depletion that occurs during this reaction. Here we show in human hepatocytes that uric acid up-regulates KHK expression thus leading to the amplification of the lipogenic effects of fructose. Inhibition of uric acid production markedly blocked fructose-induced triglyceride accumulation in hepatocytes in vitro and in vivo. The mechanism whereby uric acid stimulates KHK expression involves the activation of the transcription factor ChREBP, which, in turn, results in the transcriptional activation of KHK by binding to a specific sequence within its promoter. Since subjects sensitive to fructose often develop phenotypes associated with hyperuricemia, uric acid may be an underlying factor in sensitizing hepatocytes to fructose metabolism during the development of fatty liver. PMID:23112875

  19. Prospective evaluation of ursodeoxycholic acid withdrawal in patients with primary sclerosing cholangitis.

    Science.gov (United States)

    Wunsch, Ewa; Trottier, Jocelyn; Milkiewicz, Malgorzata; Raszeja-Wyszomirska, Joanna; Hirschfield, Gideon M; Barbier, Olivier; Milkiewicz, Piotr

    2014-09-01

    Ursodeoxycholic acid (UDCA) is no longer recommended for management of adult patients with primary sclerosing cholangitis (PSC). We undertook a prospective evaluation of UDCA withdrawal in a group of consecutive patients with PSC. Twenty six patients, all treated with UDCA (dose range: 10-15 mg/kg/day) were included. Paired blood samples for liver biochemistry, bile acids, and fibroblast growth factor 19 (FGF19) were collected before UDCA withdrawal and 3 months later. Liquid chromatography/tandem mass spectrometry was used for quantification of 29 plasma bile acid metabolites. Pruritus and health-related quality of life (HRQoL) were assessed with a 10-point numeric rating scale, the Medical Outcomes Study Short Form-36 (SF-36), and PBC-40 questionnaires. UDCA withdrawal resulted in a significant deterioration in liver biochemistry (increase of alkaline phosphatase of 75.6%; Pacid analysis revealed a significant decrease in lithocholic acid and its derivatives after UDCA withdrawal, but no effect on concentrations of primary bile acids aside from an increased accumulation of their taurine conjugates. After UDCA removal cholestatic parameters, taurine species of cholic acid and chenodeoxycholic acid correlated with serum FGF19 levels. No significant effect on HRQoL after UDCA withdrawal was observed; however, 42% of patients reported a deterioration in their pruritus. At 3 months, discontinuation of UDCA in patients with PSC causes significant deterioration in liver biochemistry and influences concentrations of bile acid metabolites. A proportion of patients report increased pruritus, but other short-term markers of quality of life are unaffected. © 2014 by the American Association for the Study of Liver Diseases.

  20. ω-3 Fatty acids reverse lipotoxity through induction of autophagy in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Chen, Yi; Xu, Chengfu; Yan, Tianlian; Yu, Chaohui; Li, Youming

    2015-01-01

    The aim of this study was to evaluate the effect of ω-3 fatty acids on nonalcoholic fatty liver disease concerning hepatocyte lipid accumulation as well as apoptosis induced by free fatty acids (FFAs) and to explore the underlying mechanism involving autophagy. Hepatocytes were incubated with a mixture of free fatty acids (FFAs) to mimic in vitro lipotoxicity in the pathogenesis of nonalcoholic fatty liver disease, presented by lipid accumulation and cellular apoptosis. Chemical inhibitor or inducer of autophagy and genetic deficit cells, as well as ω-3 fatty acids were used as intervention. The autophagic role of ω-3 fatty acids was investigated using Western blot and immunofluorescence. The underlying mechanism of ω-3 fatty acids involving autophagy was preliminarily explored by quantitative real-time polymerase chain reaction and Western blot. FFAs induce lipid accumulation and apoptosis in hepatocytes. Inhibition or genetic defect of autophagy increases lipid accumulation induced by FFA, whereas induction acts inversely. ω-3 Fatty acids reduced lipid accumulation and inhibited apoptosis induced by FFA. ω-3 Fatty acids induced autophagy by downregulating stearoyl-CoA desaturase 1 expression in hepatocytes. ω-3 Fatty acids exert protective effects on hepatocytes against lipotoxicity through induction of autophagy, as demonstrated by inhibition of lipid accumulation and apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Angiotensin II protects primary rat hepatocytes against bile salt-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Golnar Karimian

    Full Text Available UNLABELLED: Angiotensin II (AT-II is a pro-fibrotic compound that acts via membrane-bound receptors (AT-1R/AT-2R and thereby activates hepatic stellate cells (HSCs. AT-II receptor blockers (ARBs are thus important candidates in the treatment of liver fibrosis. However, multiple case reports suggest that AT-1R blockers may induce hepatocyte injury. Therefore, we investigated the effect of AT-II and its receptor blockers on cytokine-, oxidative stress- and bile salt-induced cell death in hepatocytes. Primary rat hepatocytes were exposed to TNF-α/Actinomycin D, the ROS-generating agent menadione or the bile salts: glycochenodeoxycholic acid (GCDCA and tauro-lithocholic acid-3 sulfate (TLCS, to induce apoptosis. AT-II (100 nmol/L was added 10 minutes prior to the cell death-inducing agent. AT-1R antagonists (Sartans and the AT-2R antagonist PD123319 were used at 1 µmol/L. Apoptosis (caspase-3 activity, acridine orange staining and necrosis (Sytox green staining were quantified. Expression of CHOP (marker for ER stress and AT-II receptor mRNAs were quantified by Q-PCR. AT-II dose-dependently reduced GCDCA-induced apoptosis of hepatocytes (-50%, p<0.05 without inducing necrosis. In addition, AT-II reduced TLCS-induced apoptosis of hepatocytes (-50%, p<0.05. However, AT-II did not suppress TNF/Act-D and menadione-induced apoptosis. Only the AT-1R antagonists abolished the protective effect of AT-II against GCDCA-induced apoptosis. AT-II increased phosphorylation of ERK and a significant reversal of the protective effect of AT-II was observed when signaling kinases, including ERK, were inhibited. Moreover, AT-II prevented the GCDCA-induced expression of CHOP (the marker of the ER-mediated apoptosis. CONCLUSION: Angiotensin II protects hepatocytes from bile salt-induced apoptosis through a combined activation of PI3-kinase, MAPKs, PKC pathways and inhibition of bile salt-induced ER stress. Our results suggest a mechanism for the observed hepatocyte

  2. Fenofibrate, a peroxisome proliferator-activated receptor α ligand, prevents abnormal liver function induced by a fasting–refeeding process

    International Nuclear Information System (INIS)

    Lee, Joon No; Dutta, Raghbendra Kumar; Kim, Seul-Gi; Lim, Jae-Young; Kim, Se-Jin; Choe, Seong-Kyu; Yoo, Kyeong-Won; Song, Seung Ryel; Park, Do-Sim; So, Hong-Seob; Park, Raekil

    2013-01-01

    Highlights: •A fasting–refeeding high fat diet (HDF) model mimics irregular eating habit. •A fasting–refeeding HFD induces liver ballooning injury. •A fasting–refeeding HDF process elicits hepatic triglyceride accumulation. •Fenofibrate, PPARα ligand, prevents liver damage induced by refeeding HFD. -- Abstract: Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, is an anti-hyperlipidemic agent that has been widely used in the treatment of dyslipidemia. In this study, we examined the effect of fenofibrate on liver damage caused by refeeding a high-fat diet (HFD) in mice after 24 h fasting. Here, we showed that refeeding HFD after fasting causes liver damage in mice determined by liver morphology and liver cell death. A detailed analysis revealed that hepatic lipid droplet formation is enhanced and triglyceride levels in liver are increased by refeeding HFD after starvation for 24 h. Also, NF-κB is activated and consequently induces the expression of TNF-α, IL1-β, COX-2, and NOS2. However, treating with fenofibrate attenuates the liver damage and triglyceride accumulation caused by the fasting–refeeding HFD process. Fenofibrate reduces the expression of NF-κB target genes but induces genes for peroxisomal fatty acid oxidation, peroxisome biogenesis and mitochondrial fatty acid oxidation. These results strongly suggest that the treatment of fenofibrate ameliorates the liver damage induced by fasting–refeeding HFD, possibly through the activation of fatty acid oxidation

  3. Fenofibrate, a peroxisome proliferator-activated receptor α ligand, prevents abnormal liver function induced by a fasting–refeeding process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon No; Dutta, Raghbendra Kumar; Kim, Seul-Gi; Lim, Jae-Young; Kim, Se-Jin; Choe, Seong-Kyu [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Yoo, Kyeong-Won [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Immune-network Pioneer Research Center, Department of Biochemistry, College of Medicine, Dong-A University, Busan (Korea, Republic of); Song, Seung Ryel [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Park, Do-Sim [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Department of Laboratory of Medicine, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); So, Hong-Seob [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Park, Raekil [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of)

    2013-12-06

    Highlights: •A fasting–refeeding high fat diet (HDF) model mimics irregular eating habit. •A fasting–refeeding HFD induces liver ballooning injury. •A fasting–refeeding HDF process elicits hepatic triglyceride accumulation. •Fenofibrate, PPARα ligand, prevents liver damage induced by refeeding HFD. -- Abstract: Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, is an anti-hyperlipidemic agent that has been widely used in the treatment of dyslipidemia. In this study, we examined the effect of fenofibrate on liver damage caused by refeeding a high-fat diet (HFD) in mice after 24 h fasting. Here, we showed that refeeding HFD after fasting causes liver damage in mice determined by liver morphology and liver cell death. A detailed analysis revealed that hepatic lipid droplet formation is enhanced and triglyceride levels in liver are increased by refeeding HFD after starvation for 24 h. Also, NF-κB is activated and consequently induces the expression of TNF-α, IL1-β, COX-2, and NOS2. However, treating with fenofibrate attenuates the liver damage and triglyceride accumulation caused by the fasting–refeeding HFD process. Fenofibrate reduces the expression of NF-κB target genes but induces genes for peroxisomal fatty acid oxidation, peroxisome biogenesis and mitochondrial fatty acid oxidation. These results strongly suggest that the treatment of fenofibrate ameliorates the liver damage induced by fasting–refeeding HFD, possibly through the activation of fatty acid oxidation.

  4. Acid sphingomyelinase deficiency in Western diet-fed mice protects against adipocyte hypertrophy and diet-induced liver steatosis

    Directory of Open Access Journals (Sweden)

    Svenja Sydor

    2017-05-01

    Full Text Available Objective: Alterations in sphingolipid and ceramide metabolism have been associated with various diseases, including nonalcoholic fatty liver disease (NAFLD. Acid sphingomyelinase (ASM converts the membrane lipid sphingomyelin to ceramide, thereby affecting membrane composition and domain formation. We investigated the ways in which the Asm knockout (Smpd1−/− genotype affects diet-induced NAFLD. Methods: Smpd1−/− mice and wild type controls were fed either a standard or Western diet (WD for 6 weeks. Liver and adipose tissue morphology and mRNA expression were assessed. Quantitative proteome analysis of liver tissue was performed. Expression of selected genes was quantified in adipose and liver tissue of obese NAFLD patients. Results: Although Smpd1−/− mice exhibited basal steatosis with normal chow, no aggravation of NAFLD-type injury was observed with a Western diet. This protective effect was associated with the absence of adipocyte hypertrophy and the increased expression of genes associated with brown adipocyte differentiation. In white adipose tissue from obese patients with NAFLD, no expression of these genes was detectable. To further elucidate which pathways in liver tissue may be affected by Smpd1−/−, we performed an unbiased proteome analysis. Protein expression in WD-fed Smpd1−/− mice indicated a reduction in Rictor (mTORC2 activity; this reduction was confirmed by diminished Akt phosphorylation and altered mRNA expression of Rictor target genes. Conclusion: These findings indicate that the protective effect of Asm deficiency on diet-induced steatosis is conferred by alterations in adipocyte morphology and lipid metabolism and by reductions in Rictor activation. Keywords: Ceramide, NAFLD, Rictor, Western diet

  5. Nonacetaminophen Drug-Induced Acute Liver Failure.

    Science.gov (United States)

    Thomas, Arul M; Lewis, James H

    2018-05-01

    Acute liver failure of all causes is diagnosed in between 2000 and 2500 patients annually in the United States. Drug-induced acute liver failure is the leading cause of acute liver failure, accounting for more than 50% of cases. Nonacetaminophen drug injury represents 11% of all cases in the latest registry from the US Acute Liver Failure Study Group. Although rare, acute liver failure is clinically dramatic when it occurs, and requires a multidisciplinary approach to management. In contrast with acetaminophen-induced acute liver failure, non-acetaminophen-induced acute liver failure has a more ominous prognosis with a lower liver transplant-free survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Chromium-induced membrane damage: protective role of ascorbic acid.

    Science.gov (United States)

    Dey, S K; Nayak, P; Roy, S

    2001-07-01

    Importance of chromium as environmental toxicant is largely due to impact on the body to produce cellular toxicity. The impact of chromium and their supplementation with ascorbic acid was studied on plasma membrane of liver and kidney in male Wistar rats (80-100 g body weight). It has been observed that the intoxication with chromium (i.p.) at the dose of 0.8 mg/100 g body weight per day for a period of 28 days causes significant increase in the level of cholesterol and decrease in the level of phospholipid of both liver and kidney. The alkaline phosphatase, total ATPase and Na(+)-K(+)-ATPase activities were significantly decreased in both liver and kidney after chromium treatment, except total ATPase activity of kidney. It is suggested that chromium exposure at the present dose and duration induce for the alterations of structure and function of both liver and kidney plasma membrane. Ascorbic acid (i.p. at the dose of 0.5 mg/100 g body weight per day for period of 28 days) supplementation can reduce these structural changes in the plasma membrane of liver and kidney. But the functional changes can not be completely replenished by the ascorbic acid supplementation in response to chromium exposure. So it is also suggested that ascorbic acid (nutritional antioxidant) is useful free radical scavenger to restrain the chromium-induced membrane damage.

  7. Hepatitis B Virus X Protein Induces Hepatic Steatosis by Enhancing the Expression of Liver Fatty Acid Binding Protein.

    Science.gov (United States)

    Wu, Yun-Li; Peng, Xian-E; Zhu, Yi-Bing; Yan, Xiao-Li; Chen, Wan-Nan; Lin, Xu

    2016-02-15

    Hepatitis B virus (HBV) has been implicated as a potential trigger of hepatic steatosis although molecular mechanisms involved in the pathogenesis of HBV-associated hepatic steatosis still remain elusive. Our prior work has revealed that the expression level of liver fatty acid binding protein 1 (FABP1), a key regulator of hepatic lipid metabolism, was elevated in HBV-producing hepatoma cells. In this study, the effects of HBV X protein (HBx) mediated FABP1 regulation on hepatic steatosis and the underlying mechanism were determined. mRNA and protein levels of FABP1 were measured by quantitative RT-PCR (qPCR) and Western blotting. HBx-mediated FABP1 regulation was evaluated by luciferase assay, coimmunoprecipitation, and chromatin immunoprecipitation. Hepatic lipid accumulation was measured by using Oil-Red-O staining and the triglyceride level. It was found that expression of FABP1 was increased in HBV-producing hepatoma cells, the sera of HBV-infected patients, and the sera and liver tissues of HBV-transgenic mice. Ectopic overexpression of HBx resulted in upregulation of FABP1 in HBx-expressing hepatoma cells, whereas HBx abolishment reduced FABP1 expression. Mechanistically, HBx activated the FABP1 promoter in an HNF3β-, C/EBPα-, and PPARα-dependent manner, in which HBx increased the gene expression of HNF3β and physically interacted with C/EBPα and PPARα. On the other hand, knockdown of FABP1 remarkably blocked lipid accumulation both in long-chain free fatty acids treated HBx-expressing HepG2 cells and in a high-fat diet-fed HBx-transgenic mice. Therefore, FABP1 is a key driver gene in HBx-induced hepatic lipid accumulation via regulation of HNF3β, C/EBPα, and PPARα. FABP1 may represent a novel target for treatment of HBV-associated hepatic steatosis. Accumulating evidence from epidemiological and experimental studies has indicated that chronic HBV infection is associated with hepatic steatosis. However, the molecular mechanism underlying HBV-induced

  8. Iodine 123-17-iodoheptadecanoic acid for metabolic liver studies in humans

    International Nuclear Information System (INIS)

    Hoeck, A.S.; Spohr, G.; Schmitz, M.; Notohamiprodjo, G.; Porschen, R.; Vyska, K.; Freundlieb, C.; Shreeve, W.W.; Feinendegen, L.E.

    1986-01-01

    (17- 123 I)-Iodoheptadecanoic acid ([ 123 I]HA) was used for dynamic planar scintigraphy of the liver in normal individuals (control I), in patients without liver disease but with elevated serum cholesterol and/or triglycerides (control II), and in patient groups with alcohol-induced fatty liver (PG I), fatty liver not due to alcohol (PG II), alcohol-induced liver cirrhosis (PG III), or liver cirrhosis of the posthepatitic type (PG IV). Tracer uptake and elimination time were assayed in different liver regions; mean elimination time was expressed for total liver. In control I, tracer uptake was homogeneous, and mean elimination time was 20.7 +/- 5.3 min without significant local variations. In control II, tracer uptake was reduced but homogeneous and mean elimination time was 59.4 +/- 35.8 min with some local variations. In PG I, uptake was reduced and inhomogeneous and elimination time was the same as in control I, irrespective of cholesterol and triglyceride values. In PG II, uptake was the same as in PG I but mean elimination time was 48 +/- 8.1 min with some local variations. In PG III, uptake was extremely reduced and spotty and elimination time correlated with the severity of disease from 19 to 881 min in different liver regions

  9. Low-ω3 Fatty Acid and Soy Protein Attenuate Alcohol-Induced Fatty Liver and Injury by Regulating the Opposing Lipid Oxidation and Lipogenic Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Karina Reyes-Gordillo

    2016-01-01

    Full Text Available Chronic ethanol-induced downregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α and upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC1β affect hepatic lipid oxidation and lipogenesis, respectively, leading to fatty liver injury. Low-ω3 fatty acid (Low-ω3FA that primarily regulates PGC1α and soy protein (SP that seems to have its major regulatory effect on PGC1β were evaluated for their protective effects against ethanol-induced hepatosteatosis in rats fed with Lieber-deCarli control or ethanol liquid diets with high or low ω3FA fish oil and soy protein. Low-ω3FA and SP opposed the actions of chronic ethanol by reducing serum and liver lipids with concomitant decreased fatty liver. They also prevented the downregulation of hepatic Sirtuin 1 (SIRT1 and PGC1α and their target fatty acid oxidation pathway genes and attenuated the upregulation of hepatic PGC1β and sterol regulatory element-binding protein 1c (SREBP1c and their target lipogenic pathway genes via the phosphorylation of 5′ adenosine monophosphate-activated protein kinase (AMPK. Thus, these two novel modulators attenuate ethanol-induced hepatosteatosis and consequent liver injury potentially by regulating the two opposing lipid oxidation and lipogenic pathways.

  10. Protective effects of rosmarinic acid on sepsis-induced DNA damage in the liver of Wistar albino rats

    Directory of Open Access Journals (Sweden)

    Hatice Gul Goktas

    2015-06-01

    Full Text Available Sepsis is an imbalance between pro and anti-inflammatory responses. Sepsis induced multiple organ failure that is associated with mortality is characterized by liver, renal, cardiovascular and pulmonary dysfunction and reactive oxygen species (ROS are believed to be involved in the development of sepsis. Plant polyphenols may act as antioxidants by different mechanisms such as free radical scavenging, metal chelation and protein binding. Data indicates possible beneficial effects of plant derived phenolic compounds against sepsis. Rosmarinic acid (RA (α-O-caffeoyl-3,4-dihydroxyphenyllactic acid is a phenolic compound commonly found in various plants such as Rosmarinus officinalis (rosemary, Origanum vulgare (oregano, Thymus vulgaris (thyme, Mentha spicata (spearmint, Perilla frutescens (perilla, Ocimum basilicum (sweet basil and several other medicinal plants. It has been shown that RA has many biological activities including antioxidant, anti-inflammatory, antiallergic, anticancer and actimicrobial and is widely used in cosmetic and food industry. In the present study, we aimed to determine the protective effects of RA against the oxidative DNA damage induced by sepsis in Wistar albino rats. The rats were divided into four groups; sham, sepsis induced, RA-treated, RA treated and sepsis induced groups. Wistar rats were subjected to sepsis by cecal ligation puncture. The liver tissues were carefully dissected from their attachments and totally excised. The concentrations of the hepatic tissue cells were adjusted to approximately 2 x 106 cells/ml. Standard and formamidopyrimidine-DNA glycosylase (Fpg modified comet assay described by Singh et al were used. There were no statistically significant differences in terms of tail length, tail intensity and tail moment between the sham group and the RA-treated groups (p>0.05. The DNA damage was found significantly higher in the sepsis-induced group compared to the sham group (p0.05, and the DNA damage

  11. Role of glucuronidation for hepatic detoxification and urinary elimination of toxic bile acids during biliary obstruction.

    Directory of Open Access Journals (Sweden)

    Martin Perreault

    Full Text Available Biliary obstruction, a severe cholestatic condition, results in a huge accumulation of toxic bile acids (BA in the liver. Glucuronidation, a conjugation reaction, is thought to protect the liver by both reducing hepatic BA toxicity and increasing their urinary elimination. The present study evaluates the contribution of each process in the overall BA detoxification by glucuronidation. Glucuronide (G, glycine, taurine conjugates, and unconjugated BAs were quantified in pre- and post-biliary stenting urine samples from 12 patients with biliary obstruction, using liquid chromatography-tandem mass spectrometry (LC-MS/MS. The same LC-MS/MS procedure was used to quantify intra- and extracellular BA-G in Hepatoma HepG2 cells. Bile acid-induced toxicity in HepG2 cells was evaluated using MTS reduction, caspase-3 and flow cytometry assays. When compared to post-treatment samples, pre-stenting urines were enriched in glucuronide-, taurine- and glycine-conjugated BAs. Biliary stenting increased the relative BA-G abundance in the urinary BA pool, and reduced the proportion of taurine- and glycine-conjugates. Lithocholic, deoxycholic and chenodeoxycholic acids were the most cytotoxic and pro-apoptotic/necrotic BAs for HepG2 cells. Other species, such as the cholic, hyocholic and hyodeoxycholic acids were nontoxic. All BA-G assayed were less toxic and displayed lower pro-apoptotic/necrotic effects than their unconjugated precursors, even if they were able to penetrate into HepG2 cells. Under severe cholestatic conditions, urinary excretion favors the elimination of amidated BAs, while glucuronidation allows the conversion of cytotoxic BAs into nontoxic derivatives.

  12. Keap1-knockdown decreases fasting-induced fatty liver via altered lipid metabolism and decreased fatty acid mobilization from adipose tissue.

    Directory of Open Access Journals (Sweden)

    Jialin Xu

    Full Text Available AIMS: The purpose of this study was to determine whether Nrf2 activation, via Keap1-knockdown (Keap1-KD, regulates lipid metabolism and mobilization induced by food deprivation (e.g. fasting. METHODS AND RESULTS: Male C57BL/6 (WT and Keap1-KD mice were either fed ad libitum or food deprived for 24 hours. After fasting, WT mice exhibited a marked increase in hepatic lipid accumulation, but Keap1-KD mice had an attenuated increase of lipid accumulation, along with reduced expression of lipogenic genes (acetyl-coA carboxylase, stearoyl-CoA desaturase-1, and fatty acid synthase and reduced expression of genes related to fatty acid transport, such as fatty acid translocase/CD36 (CD36 and Fatty acid transport protein (FATP 2, which may attribute to the reduced induction of Peroxisome proliferator-activated receptor (Ppar α signaling in the liver. Additionally, enhanced Nrf2 activity by Keap1-KD increased AMP-activated protein kinase (AMPK phosphorylation in liver. In white adipose tissue, enhanced Nrf2 activity did not change the lipolysis rate by fasting, but reduced expression of fatty acid transporters--CD36 and FATP1, via a PPARα-dependent mechanism, which impaired fatty acid transport from white adipose tissue to periphery circulation system, and resulted in increased white adipose tissue fatty acid content. Moreover, enhanced Nrf2 activity increased glucose tolerance and Akt phosphorylation levels upon insulin administration, suggesting Nrf2 signaling pathway plays a key role in regulating insulin signaling and enhanced insulin sensitivity in skeletal muscle. CONCLUSION: Enhanced Nrf2 activity via Keap1-KD decreased fasting-induced steatosis, pointing to an important function of Nrf2 on lipid metabolism under the condition of nutrient deprivation.

  13. Ursodeoxycholic Acid Suppresses Lipogenesis in Mouse Liver: Possible Role of the Decrease in β-Muricholic Acid, a Farnesoid X Receptor Antagonist.

    Science.gov (United States)

    Fujita, Kyosuke; Iguchi, Yusuke; Une, Mizuho; Watanabe, Shiro

    2017-04-01

    The farnesoid X receptor (FXR) is a major nuclear receptor of bile acids; its activation suppresses sterol regulatory element-binding protein 1c (SREBP1c)-mediated lipogenesis and decreases the lipid contents in the liver. There are many reports showing that the administration of ursodeoxycholic acid (UDCA) suppresses lipogenesis and reduces the lipid contents in the liver of experimental animals. Since UDCA is not recognized as an FXR agonist, these effects of UDCA cannot be readily explained by its direct activation of FXR. We observed that the dietary administration of UDCA in mice decreased the expression levels of SREBP1c and its target lipogenic genes. Alpha- and β-muricholic acids (MCA) and cholic acid (CA) were the major bile acids in the mouse liver but their contents decreased upon UDCA administration. The hepatic contents of chenodeoxycholic acid and deoxycholic acid (DCA) were relatively low but were not changed by UDCA. UDCA did not show FXR agonistic or antagonistic potency in in vitro FXR transactivation assay. Taking these together, we deduced that the above-mentioned change in hepatic bile acid composition induced upon UDCA administration might cause the relative increase in the FXR activity in the liver, mainly by the reduction in the content of β-MCA, a farnesoid X receptor antagonist, which suggests a mechanism by which UDCA suppresses lipogenesis and decreases the lipid contents in the mouse liver.

  14. Biochemical and radio-immunological studies on HCV-induced liver fibrosis

    International Nuclear Information System (INIS)

    Abdel-Mageed, M.E.A.

    2010-01-01

    Hepatitis C virus infection is now becoming a common health problem in Egypt. Liver biopsy is the gold standard for this diagnosis. However, liver biopsy is invasive and is associated with complications with chronic hepatitis C patients. There is a clinical need for noninvasive measurement of liver fibrosis. Noninvasive bio markers such as Collagen III was identified in serum samples of patients with HCV induced liver fibrosis at 70 kDa using SDS-PAGE and western blot, measured by ELISA and purified using electro elution . Hyaluronic acid also can be used to differentiate between liver fibrosis patients and healthy individuals using radioimmunoassay .we have developed noninvasive diagnosis that can be applied to patients who either have contraindications or refuse liver biopsy for the management of their HCV infection.

  15. Specific bile acid radioimmunoassays for separate determinations of unconjugated cholic acid, conjugated cholic acid and conjugated deoxycholic acid in serum and their clinical application

    International Nuclear Information System (INIS)

    Matern, S.; Gerok, W.

    1977-01-01

    Specific radioimmunoassays for separate determinations of serum unconjugated cholic, conjugated cholic and conjugated deoxycholic acids have been developed. Prior to the radioimmunoassay, extraction of serum bile acids was performed with Amberlite XAD-2. Unconjugated cholic acid was separated from glyco- and taurocholic acids by thin-layer chromatography. At 50% displacement of bound labeled glyco[ 3 H]cholic acid using antiserum obtained after immunization with cholic acid-bovine serum albumin-conjugate the cross-reactivity of taurocholic acid was 100%, cholic acid 80%, glycochenodeoxycholic acid 10%, chenodeoxycholic acid 7%, conjugated deoxycholic acid 3%, and conjugated lithocholic acid 3 H]cholic acid was linear on a logit-log plot from 5 to 80 pmol of unlabeled glycocholic acid. Fasting serum conjugated cholic acid in healthy subjects was 0.68 +- 0.34 μmol/l. Unconjugated cholic acid was determined by a solid phase radioimmunoassay using the cholic acid antibody chemically bound to Sepharose. The displacement curve of [ 3 H]cholic acid in the solid phase radioimmunoassay was linear on a logit-log plot from 5 to 200 pmol of unlabeled cholic acid. The coefficient of variation between samples was 5%. Fasting serum conjugated deoxycholic acid concentrations in 10 healthy subjects ranged from 0.18 to 0.92 μmol/l determined by a radioimmunoassay using antiserum obtained after immunization with deoxycholic acid-bovine serum albumin-conjugate. The clinical application of these bile acid radioimmunoassays is shown by an 'oral cholate tolerance test' as a sensitive indicator of liver function and by an 'oral cholyglycine tolerance test' as a useful test for bile acid absorption. (orig.) [de

  16. Curcumin improves alcoholic fatty liver by inhibiting fatty acid biosynthesis.

    Science.gov (United States)

    Guo, Chang; Ma, Jingfan; Zhong, Qionghong; Zhao, Mengyuan; Hu, Tianxing; Chen, Tong; Qiu, Longxin; Wen, Longping

    2017-08-01

    Alcoholic fatty liver is a threat to human health. It has been long known that abstinence from alcohol is the most effective therapy, other effective therapies are not available for the treatment in humans. Curcumin has a great potential for anti-oxidation and anti-inflammation, but the effect on metabolic reconstruction remains little known. Here we performed metabolomic analysis by gas chromatography/mass spectrometry and explored ethanol pathogenic insight as well as curcumin action pattern. We identified seventy-one metabolites in mouse liver. Carbohydrates and lipids were characteristic categories. Pathway analysis results revealed that ethanol-induced pathways including biosynthesis of unsaturated fatty acids, fatty acid biosynthesis and pentose and glucuronate interconversions were suppressed by curcumin. Additionally, ethanol enhanced galactose metabolism and pentose phosphate pathway. Glyoxylate and dicarboxylate metabolism and pyruvate metabolism were inhibited in mice fed ethanol diet plus curcumin. Stearic acid, oleic acid and linoleic acid were disease biomarkers and therapical biomarkers. These results reflect the landscape of hepatic metabolism regulation. Our findings illustrate ethanol pathological pathway and metabolic mechanism of curcumin therapy. Copyright © 2017. Published by Elsevier Inc.

  17. Effects of parsley (Petroselinum crispum) extract versus glibornuride on the liver of streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Ozsoy-Sacan, Ozlem; Yanardag, Refiye; Orak, Haci; Ozgey, Yasemin; Yarat, Aysen; Tunali, Tugba

    2006-03-08

    Parsley (Petroselinum crispum) is one of the medicinal herbs used by diabetics in Turkey. The aim of this study is to investigate the effects of parsley (2g/kg) and glibornuride (5mg/kg) on the liver tissue of streptozotocin-induced diabetic rats. Swiss albino rats were divided into six groups: control; control+parsley; control+glibornuride; diabetic; diabetic+parsley; diabetic+glibornuride. Diabetes was induced by intraperitoneal injection of 65 mg/kg streptozotocin (STZ). Parsley extract and glibornuride were given daily to both diabetic and control rats separately, until the end of the experiment, at day 42. The drugs were administered to one diabetic and one control group from days 14 to 42. On day 42, liver tissues were taken from each rat. In STZ-diabetic group, blood glucose levels, serum alkaline phosphatase activity, uric acid, sialic acid, sodium and potassium levels, liver lipid peroxidation (LPO), and non-enzymatic glycosylation (NEG) levels increased, while liver glutathione (GSH) levels and body weight decreased. In the diabetic group given parsley, blood glucose, serum alkaline phosphatase activity, sialic acid, uric acid, potassium and sodium levels, and liver LPO and NEG levels decreased, but GSH levels increased. The diabetic group, given glibornuride, blood glucose, serum alkaline phosphatase activity, serum sialic acid, uric acid, potassium, and liver NEG levels decreased, but liver LPO, GSH, serum sodium levels, and body weight increased. It was concluded that probably, due to its antioxidant property, parsley extract has a protective effect comparable to glibornuride against hepatotoxicity caused by diabetes.

  18. Lipocalin-2 in Fructose-Induced Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Jessica Lambertz

    2017-11-01

    Full Text Available The intake of excess dietary fructose most often leads to non-alcoholic fatty liver disease (NAFLD. Fructose is metabolized mainly in the liver and its chronic consumption results in lipogenic gene expression in this organ. However, precisely how fructose is involved in NAFLD progression is still not fully understood, limiting therapy. Lipocalin-2 (LCN2 is a small secreted transport protein that binds to fatty acids, phospholipids, steroids, retinol, and pheromones. LCN2 regulates lipid and energy metabolism in obesity and is upregulated in response to insulin. We previously discovered that LCN2 has a hepatoprotective effect during hepatic insult, and that its upregulation is a marker of liver damage and inflammation. To investigate if LCN2 has impact on the metabolism of fructose and thereby arising liver damage, we fed wild type and Lcn2−/− mice for 4 or 8 weeks on diets that were enriched in fructose either by adding this sugar to the drinking water (30% w/v, or by feeding a chow containing 60% (w/w fructose. Body weight and daily intake of food and water of these mice was then measured. Fat content in liver sections was visualized using Oil Red O stain, and expression levels of genes involved in fat and sugar metabolism were measured by qRT-PCR and Western blot analysis. We found that fructose-induced steatosis and liver damage was more prominent in female than in male mice, but that the most severe hepatic damage occurred in female mice lacking LCN2. Unexpectedly, consumption of elevated fructose did not induce de novo lipogenesis or fat accumulation. We conclude that LCN2 acts in a lipid-independent manner to protect the liver against fructose-induced damage.

  19. Fish oil prevents sucrose-induced fatty liver but exacerbates high-safflower oil-induced fatty liver in ddy mice.

    Science.gov (United States)

    Yamazaki, Tomomi; Nakamori, Akiko; Sasaki, Eriko; Wada, Satoshi; Ezaki, Osamu

    2007-12-01

    Diets high in sucrose/fructose or fat can result in hepatic steatosis (fatty liver). We analyzed the effects of dietary fish oil on fatty liver induced by sucrose, safflower oil, and butter in ddY mice. In experiment I, mice were fed a high-starch diet [70 energy% (en%) starch] plus 20% (wt/wt) sucrose in the drinking water or fed a high-safflower oil diet (60 en%) for 11 weeks. As a control, mice were fed a high-starch diet with drinking water. Fish oil (10 en%) was either supplemented or not. Mice supplemented with sucrose or fed safflower oil showed a 1.7-fold or 2.2-fold increased liver triglyceride content, respectively, compared with that of control mice. Fish oil completely prevented sucrose-induced fatty liver, whereas it exacerbated safflower oil-induced fatty liver. Sucrose increased SREBP-1c and target gene messenger RNAs (mRNAs), and fish oil completely inhibited these increases. In experiment II, mice were fed a high-safflower oil or a high-butter diet, with or without fish oil supplementation. Fish oil exacerbated safflower oil-induced fatty liver but did not affect butter-induced fatty liver. Fish oil increased expression of peroxisome proliferator-activated receptor gamma (PPARgamma) and target CD36 mRNA in safflower oil-fed mice. These increases were not observed in sucrose-supplemented or butter-fed mice. The effects of dietary fish oil on fatty liver differ according to the cause of fatty liver; fish oil prevents sucrose-induced fatty liver but exacerbates safflower oil-induced fatty liver. The exacerbation of fatty liver may be due, at least in part, to increased expression of liver PPARgamma.

  20. Chronic Uridine Administration Induces Fatty Liver and Pre-Diabetic Conditions in Mice.

    Directory of Open Access Journals (Sweden)

    Yasuyo Urasaki

    Full Text Available Uridine is a pyrimidine nucleoside that exerts restorative functions in tissues under stress. Short-term co-administration of uridine with multiple unrelated drugs prevents drug-induced liver lipid accumulation. Uridine has the ability to modulate liver metabolism; however, the precise mechanism has not been delineated. In this study, long-term effects of uridine on liver metabolism were examined in both HepG2 cell cultures and C57BL/6J mice. We report that uridine administration was associated with O-GlcNAc modification of FOXO1, increased gluconeogenesis, reduced insulin signaling activity, and reduced expression of a liver-specific fatty acid binding protein FABP1. Long-term uridine feeding induced systemic glucose intolerance and severe liver lipid accumulation in mice. Our findings suggest that the therapeutic potentials of uridine should be designed for short-term acute administration.

  1. Bile acids for liver-transplanted patients

    DEFF Research Database (Denmark)

    Poropat, Goran; Giljaca, Vanja; Stimac, Davor

    2010-01-01

    Liver transplantation has become a widely accepted form of treatment for numerous end-stage liver diseases. Bile acids may decrease allograft rejection after liver transplantation by changing the expression of major histocompatibility complex class molecules in bile duct epithelium and central vein...

  2. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    International Nuclear Information System (INIS)

    Lake, April D.; Novak, Petr; Shipkova, Petia; Aranibar, Nelly; Robertson, Donald; Reily, Michael D.; Lu, Zhenqiang; Lehman-McKeeman, Lois D.; Cherrington, Nathan J.

    2013-01-01

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids

  3. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Lake, April D. [University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ 85721 (United States); Novak, Petr [Biology Centre ASCR, Institute of Plant Molecular Biology, Ceske Budejovice 37001 (Czech Republic); Shipkova, Petia; Aranibar, Nelly; Robertson, Donald; Reily, Michael D. [Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543 (United States); Lu, Zhenqiang [The Arizona Statistical Consulting Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Lehman-McKeeman, Lois D. [Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543 (United States); Cherrington, Nathan J., E-mail: cherrington@pharmacy.arizona.edu [University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ 85721 (United States)

    2013-04-15

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids

  4. Ursodeoxycholic Acid Can Improve Liver Transaminase Quantities in Children with Anticonvulsant Drugs Hepatotoxicity: a Pilot Study.

    Directory of Open Access Journals (Sweden)

    Masoumeh Asgarshirazi

    2015-06-01

    Full Text Available The present study has been directed to investigate Ursodeoxycholic Acid (UDCA effect in children, to reduce the high Liver transaminases induced by Anticonvulsant drugs (drug induced hepatitis. This idea has been driven from Cytoprotective and antioxidant properties of UDCA to be used in drug induced inflammation in Liver. Twenty two epileptic patients aged between 4 mo - 3 yr whom were under anticonvulsant therapy with drugs such as valperoic acid, primidone, levetiracetam, Phenobarbital or any combination of them and had shown Liver transaminases rise , after rule out of Viral-Autoimmune, Metabolic and Anatomic causes, have been prescribed UDCA in dose of 10-15 mg/kg/day, at least for 6 months. Any patient who have shown confusing factors such as genetic disorders with liver involvement or spontaneous decline in enzymes or had not treatment compliance has been excluded from the study. Transaminases range changes as well as Probable side effects of the drug have been monitored. The results indicated that UDCA is effective and well tolerable in the children with drug induced hyper transaminasemia. No side effect has been seen and recorded in this study. Based on this study and its results, we recommend UDCA as a safe and effective choice in drug induced hepatotoxicities.

  5. Metformin protects rat hepatocytes against bile acid-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Titia E Woudenberg-Vrenken

    Full Text Available BACKGROUND: Metformin is used in the treatment of Diabetes Mellitus type II and improves liver function in patients with non-alcoholic fatty liver disease (NAFLD. Metformin activates AMP-activated protein kinase (AMPK, the cellular energy sensor that is sensitive to changes in the AMP/ATP-ratio. AMPK is an inhibitor of mammalian target of rapamycin (mTOR. Both AMPK and mTOR are able to modulate cell death. AIM: To evaluate the effects of metformin on hepatocyte cell death. METHODS: Apoptotic cell death was induced in primary rat hepatocytes using either the bile acid glycochenodeoxycholic acid (GCDCA or TNFα in combination with actinomycin D (actD. AMPK, mTOR and phosphoinositide-3 kinase (PI3K/Akt were inhibited using pharmacological inhibitors. Apoptosis and necrosis were quantified by caspase activation, acridine orange staining and Sytox green staining respectively. RESULTS: Metformin dose-dependently reduces GCDCA-induced apoptosis, even when added 2 hours after GCDCA, without increasing necrotic cell death. Metformin does not protect against TNFα/ActD-induced apoptosis. The protective effect of metformin is dependent on an intact PI3-kinase/Akt pathway, but does not require AMPK/mTOR-signaling. Metformin does not inhibit NF-κB activation. CONCLUSION: Metformin protects against bile acid-induced apoptosis and could be considered in the treatment of chronic liver diseases accompanied by inflammation.

  6. 1-methylmalate from camu-camu (Myrciaria dubia) suppressed D-galactosamine-induced liver injury in rats.

    Science.gov (United States)

    Akachi, Toshiyuki; Shiina, Yasuyuki; Kawaguchi, Takumi; Kawagishi, Hirokazu; Morita, Tatsuya; Sugiyama, Kimio

    2010-01-01

    To evaluate the protective effects of fruit juices against D-galactosamine (GalN)-induced liver injury, lyophilized fruit juices (total 12 kinds) were fed to rats for 7 d, and then we evoked liver injury by injecting GalN. The juice of camu-camu (Myrciaria dubia) significantly suppressed GalN-induced liver injury when the magnitude of liver injury was assessed by plasma alanine aminotransferase and aspartate aminotransferase activities, although some other juices (acerola, dragon fruit, shekwasha, and star fruit) also tended to have suppressive effects. An active compound was isolated from camu-camu juice by solvent fractionation and silica gel column chromatography. The structure was determined to be 1-methylmalate. On the other hand, malate, 1,4-dimethylmalate, citrate, and tartrate had no significant effect on GalN-induced liver injury. It is suggested that 1-methylmalate might be a rather specific compound among organic acids and their derivatives in fruit juices in suppressing GalN-induced liver injury.

  7. Impact of dietary fatty acids on muscle composition, liver lipids, milt composition and sperm performance in European eel

    DEFF Research Database (Denmark)

    Butts, Ian; Baeza, R.; Støttrup, Josianne

    2015-01-01

    of dietary regime on muscle composition, and liver lipids prior to induced maturation, and the resulting sperm composition and performance. To accomplish this fish were reared on three "enhanced" diets and one commercial diet, each with different levels of fatty acids, arachidonic acid (ARA......), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Neutral lipids from the muscle and liver incorporated the majority of the fatty acid profile, while phospholipids incorporated only certain fatty acids. Diet had an effect on the majority of sperm fatty acids, on the total volume of extractable milt...... induced medium milt volumes but had the highest sperm motility. EPA also seems important for sperm quality parameters since diets with higher EPA percentages had a higher volume of milt and higher sperm motility. In conclusion, dietary fatty acids had an influence on fatty acids in the tissues of male eel...

  8. Clofibric acid increases the formation of oleic acid in endoplasmic reticulum of the liver of rats.

    Science.gov (United States)

    Hirose, Akihiko; Yamazaki, Tohru; Sakamoto, Takeshi; Sunaga, Katsuyoshi; Tsuda, Tadashi; Mitsumoto, Atsushi; Kudo, Naomi; Kawashima, Yoichi

    2011-01-01

    The effects of 2-(4-chlorophenoxy)-2-methylpropionic acid (clofibric acid) on the formation of oleic acid (18:1) from stearic acid (18:0) and utilization of the 18:1 formed for phosphatidylcholine (PC) formation in endoplasmic reticulum in the liver of rats were studied in vivo. [¹⁴C]18:0 was intravenously injected into control Wistar male rats and rats that had been fed on a diet containing 0.5% (w/w) clofibric acid for 7 days; and the distribution of radiolabeled fatty acids among subcellular organelles, microsomes, peroxisomes, and mitochondria, was estimated on the basis of correction utilizing the yields from homogenates of marker enzymes for these organelles. The radioactivity was mostly localized in microsomes and the radiolabeled fatty acids present in microsomes were significantly increased by the treatment of rats with clofibric acid. The formation of radiolabeled 18:1 in microsomes markedly increased and incorporations of the formed [¹⁴C]18:1 into PC and phosphatidylethanolamine in microsomes were augmented in response to clofibric acid. The [¹⁴C]18:1 incorporated into PC was mostly located at the C-2 position, but not the C-1 position, of PC, and the radioactivity in 18:1 at the C-2 position of PC was strikingly increased by clofibric acid. These results obtained from the in vivo experiments directly link the findings that clofibric acid treatment induces microsomal stearoyl-CoA desaturase and 1-acylglycerophosphocholine acyltransferase in the liver and the findings that the treatment with the drug elevated absolute mass and mass proportion of 18:1 at the C-2 position, but not the C-1 position, of PC in the liver together.

  9. Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity

    NARCIS (Netherlands)

    Verhaag, Esther M.; Buist-Homan, Manon; Koehorst, Martijn; Groen, Albert K.; Moshage, Han; Faber, Klaas Nico

    2016-01-01

    Introduction Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This

  10. Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity

    NARCIS (Netherlands)

    Verhaag, Esther M.; Buist-Homan, Manon; Koehorst, Martijn; Groen, Albert K.; Moshage, Han; Faber, Klaas Nico

    2016-01-01

    Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be

  11. Branched-chain amino acids alleviate hepatic steatosis and liver injury in choline-deficient high-fat diet induced NASH mice.

    Science.gov (United States)

    Honda, Takashi; Ishigami, Masatoshi; Luo, Fangqiong; Lingyun, Ma; Ishizu, Yoji; Kuzuya, Teiji; Hayashi, Kazuhiko; Nakano, Isao; Ishikawa, Tetsuya; Feng, Guo-Gang; Katano, Yoshiaki; Kohama, Tomoya; Kitaura, Yasuyuki; Shimomura, Yoshiharu; Goto, Hidemi; Hirooka, Yoshiki

    2017-04-01

    For successful treatment for nonalcoholic steatohepatitis (NASH), it may be important to treat the individual causative factors. At present, however, there is no established treatment for this disease. Branched-chain amino acids (BCAAs) have been used to treat patients with decompensated cirrhosis. In order to elucidate the mechanisms responsible for the effects of BCAAs on hepatic steatosis and disease progression, we investigated the effects of BCAA supplementation in mice fed a choline-deficient high-fat diet (CDHF), which induces NASH. Male mice were divided into four groups that received (1) choline-sufficient high fat (HF) diet (HF-control), (2) HF plus 2% BCAA in drinking water (HF-BCAA), (3) CDHF diet (CDHF-control), or (4) CDHF-BCAA for 8weeks. We monitored liver injury, hepatic steatosis and cholesterol, gene expression related to lipid metabolism, and hepatic fat accumulation. Serum alanine aminotransferase (ALT) levels and hepatic triglyceride (TG) were significantly elevated in CDHF-control relative to HF-control. Liver histopathology revealed severe steatosis, inflammation, and pericellular fibrosis in CDHF-control, confirming the NASH findings. Serum ALT levels and hepatic TG and lipid droplet areas were significantly lower in CDHF-BCAA than in CDHF-control. Gene expression and protein level of fatty acid synthase (FAS), which catalyzes the final step in fatty acid biosynthesis, was significantly decreased in CDHF-BCAA than in CDHF-control (PBCAA was significantly lower than those of CDHF-control. BCAA can alleviate hepatic steatosis and liver injury associated with NASH by suppressing FAS gene expression and protein levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Changes of liver function and serum hepatic fibrosis markers levels in patients with trichloroethylene induced drugrash-like dermatitis

    International Nuclear Information System (INIS)

    Li Senhua; Xie Guoqiang; Zeng Zeming

    2004-01-01

    Objective: To investigate the liver function damage and serum hepatic fibrosis markers levels changes in patients suffering from trichloroethylene induced drugrash-like dermatitis. Methods: Serum hyaluronic acid (HA), laminin (LN), procollagen type III (PC III), type IV collagen ( IV C) levels (with RIA), mono-amine oxidase (MAO) activity (with chemo-colorimetry) and liver function tests (including ALT, AGT, total protein, albumin, total bile acid, with automated biochemical analysis system) were determined in 30 controls and 30 patients with trichloroethylene induced drugrash-like dermatitis. Results: Severe liver function damage was demonstrated in all the patients. The serum hepatic fibrosis markers levels were significantly increased (vs controls, P<0.01) and correlated well with the degree of hepatic damage. Conclusion: Liver damage occurred early in patients with trichloroethylene induced dermatitis, accompanied with laboratory evidence of hepatic fibrosis. (authors)

  13. Preventive effects of dexmedetomidine on the liver in a rat model of acid-induced acute lung injury.

    Science.gov (United States)

    Sen, Velat; Güzel, Abdulmenap; Şen, Hadice Selimoğlu; Ece, Aydın; Uluca, Unal; Söker, Sevda; Doğan, Erdal; Kaplan, İbrahim; Deveci, Engin

    2014-01-01

    The aim of this study was to examine whether dexmedetomidine improves acute liver injury in a rat model. Twenty-eight male Wistar albino rats weighing 300-350 g were allocated randomly to four groups. In group 1, normal saline (NS) was injected into the lungs and rats were allowed to breathe spontaneously. In group 2, rats received standard ventilation (SV) in addition to NS. In group 3, hydrochloric acid was injected into the lungs and rats received SV. In group 4, rats received SV and 100 µg/kg intraperitoneal dexmedetomidine before intratracheal HCl instillation. Blood samples and liver tissue specimens were examined by biochemical, histopathological, and immunohistochemical methods. Acute lung injury (ALI) was found to be associated with increased malondialdehyde (MDA), total oxidant activity (TOA), oxidative stress index (OSI), and decreased total antioxidant capacity (TAC). Significantly decreased MDA, TOA, and OSI levels and significantly increased TAC levels were found with dexmedetomidine injection in group 4 (P < 0.05). The highest histologic injury scores were detected in group 3. Enhanced hepatic vascular endothelial growth factor (VEGF) expression and reduced CD68 expression were found in dexmedetomidine group compared with the group 3. In conclusion, the presented data provide the first evidence that dexmedetomidine has a protective effect on experimental liver injury induced by ALI.

  14. Effects of Perfluorooctanoic Acid on Metabolic Profiles in Brain and Liver of Mouse Revealed by a High-throughput Targeted Metabolomics Approach

    Science.gov (United States)

    Yu, Nanyang; Wei, Si; Li, Meiying; Yang, Jingping; Li, Kan; Jin, Ling; Xie, Yuwei; Giesy, John P.; Zhang, Xiaowei; Yu, Hongxia

    2016-04-01

    Perfluorooctanoic acid (PFOA), a perfluoroalkyl acid, can result in hepatotoxicity and neurobehavioral effects in animals. The metabolome, which serves as a connection among transcriptome, proteome and toxic effects, provides pathway-based insights into effects of PFOA. Since understanding of changes in the metabolic profile during hepatotoxicity and neurotoxicity were still incomplete, a high-throughput targeted metabolomics approach (278 metabolites) was used to investigate effects of exposure to PFOA for 28 d on brain and liver of male Balb/c mice. Results of multivariate statistical analysis indicated that PFOA caused alterations in metabolic pathways in exposed individuals. Pathway analysis suggested that PFOA affected metabolism of amino acids, lipids, carbohydrates and energetics. Ten and 18 metabolites were identified as potential unique biomarkers of exposure to PFOA in brain and liver, respectively. In brain, PFOA affected concentrations of neurotransmitters, including serotonin, dopamine, norepinephrine, and glutamate in brain, which provides novel insights into mechanisms of PFOA-induced neurobehavioral effects. In liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of PFOA to cause inflammation response in liver. These results provide insight into the mechanism and biomarkers for PFOA-induced effects.

  15. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats.

    Science.gov (United States)

    Li, Songtao; Liao, Xilu; Meng, Fanyu; Wang, Yemei; Sun, Zongxiang; Guo, Fuchuan; Li, Xiaoxia; Meng, Man; Li, Ying; Sun, Changhao

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA), an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD)-induced obese non-alcoholic fatty liver disease (NAFLD) rat model. Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR)-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.

  16. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats.

    Directory of Open Access Journals (Sweden)

    Songtao Li

    Full Text Available BACKGROUND: Non-alcoholic fatty liver disease (NAFLD is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA, an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD-induced obese non-alcoholic fatty liver disease (NAFLD rat model. METHODOLOGY/PRINCIPAL FINDINGS: Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. CONCLUSIONS/SIGNIFICANCE: These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.

  17. Protective effects of glycyrrhizic acid against non-alcoholic fatty liver disease in mice.

    Science.gov (United States)

    Sun, Xue; Duan, Xingping; Wang, Changyuan; Liu, Zhihao; Sun, Pengyuan; Huo, Xiaokui; Ma, Xiaodong; Sun, Huijun; Liu, Kexin; Meng, Qiang

    2017-07-05

    Non-alcoholic fatty liver disease (NAFLD) has become a predictive factor of death from many diseases. The purpose of the present study is to investigate the protective effect of glycyrrhizic acid (GA), a natural triterpene glycoside, on NAFLD induced by a high-fat diet (HFD) in mice, and further to elucidate the mechanisms underlying GA protection. GA treatment significantly reduced the relative liver weight, serum ALT, AST activities, levels of serum lipid, blood glucose and insulin. GA suppressed lipid accumulation in liver. Further mechanism investigation indicated that GA reduced hepatic lipogenesis via downregulating SREBP-1c, FAS and SCD1 expression, increased fatty acids β-oxidation via an increase in PPARα, CPT1α and ACADS, and promoted triglyceride metabolism through inducing LPL activity. Furthermore, GA reduced gluconeogenesis through repressing PEPCK and G6Pase, and increased glycogen synthesis through an induction in gene expression of PDase and GSK3β. In addition, GA increased insulin sensitivity through upregulating phosphorylation of IRS-1 and IRS-2. In conclusion, GA produces protective effect against NAFLD, due to regulation of genes involved in lipid, glucose homeostasis and insulin sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Role of dietary fatty acids in liver injury caused by vinyl chloride metabolites in mice

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Lisanne C [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Department of Medicine, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Yeo, Heegook; Kaelin, Brenna R; Lang, Anna L; Bushau, Adrienne M; Douglas, Amanda N [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Cave, Matt [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Department of Medicine, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Hepatobiology and Toxicology Program, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Diabetes and Obesity Center, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Robley Rex Louisville VAMC, Louisville, KY 40206 (United States); Arteel, Gavin E [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Hepatobiology and Toxicology Program, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); McClain, Craig J [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Department of Medicine, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Hepatobiology and Toxicology Program, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Diabetes and Obesity Center, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Robley Rex Louisville VAMC, Louisville, KY 40206 (United States); and others

    2016-11-15

    Background: Vinyl chloride (VC) causes toxicant-associated steatohepatitis at high exposure levels. Recent work by this group suggests that underlying liver disease may predispose the liver to VC hepatotoxicity at lower exposure levels. The most common form of underlying liver disease in the developed world is non-alcoholic fatty liver disease (NAFLD). It is well-known that the type of dietary fat can play an important role in the pathogenesis of NAFLD. However, whether the combination of dietary fat and VC/metabolites promotes liver injury has not been studied. Methods: Mice were administered chloroethanol (CE - a VC metabolite) or vehicle once, 10 weeks after being fed diets rich in saturated fatty acids (HSFA), rich in poly-unsaturated fatty acids (HPUFA), or the respective low-fat control diets (LSFA; LPUFA). Results: In control mice, chloroethanol caused no detectable liver injury, as determined by plasma transaminases and histologic indices of damage. In HSFA-fed mice, chloroethanol increased HSFA-induced liver damage, steatosis, infiltrating inflammatory cells, hepatic expression of proinflammatory cytokines, and markers of endoplasmic reticulum (ER) stress. Moreover, markers of inflammasome activation were increased, while markers of inflammasome inhibition were downregulated. In mice fed HPUFA all of these effects were significantly attenuated. Conclusions: Chloroethanol promotes inflammatory liver injury caused by dietary fatty acids. This effect is far more exacerbated with saturated fat, versus poly-unsaturated fat; and strongly correlates with a robust activation of the NLRP3 inflammasome in the saturated fed animals only. Taken together these data support the hypothesis that environmental toxicant exposure can exacerbate the severity of NAFLD/NASH. - Highlights: • CE promotes inflammatory liver injury caused by dietary fatty acids. • This effect is stronger with saturated than with unsaturated fatty acids. • Damage caused by saturated fat and CE

  19. Role of dietary fatty acids in liver injury caused by vinyl chloride metabolites in mice

    International Nuclear Information System (INIS)

    Anders, Lisanne C; Yeo, Heegook; Kaelin, Brenna R; Lang, Anna L; Bushau, Adrienne M; Douglas, Amanda N; Cave, Matt; Arteel, Gavin E; McClain, Craig J

    2016-01-01

    Background: Vinyl chloride (VC) causes toxicant-associated steatohepatitis at high exposure levels. Recent work by this group suggests that underlying liver disease may predispose the liver to VC hepatotoxicity at lower exposure levels. The most common form of underlying liver disease in the developed world is non-alcoholic fatty liver disease (NAFLD). It is well-known that the type of dietary fat can play an important role in the pathogenesis of NAFLD. However, whether the combination of dietary fat and VC/metabolites promotes liver injury has not been studied. Methods: Mice were administered chloroethanol (CE - a VC metabolite) or vehicle once, 10 weeks after being fed diets rich in saturated fatty acids (HSFA), rich in poly-unsaturated fatty acids (HPUFA), or the respective low-fat control diets (LSFA; LPUFA). Results: In control mice, chloroethanol caused no detectable liver injury, as determined by plasma transaminases and histologic indices of damage. In HSFA-fed mice, chloroethanol increased HSFA-induced liver damage, steatosis, infiltrating inflammatory cells, hepatic expression of proinflammatory cytokines, and markers of endoplasmic reticulum (ER) stress. Moreover, markers of inflammasome activation were increased, while markers of inflammasome inhibition were downregulated. In mice fed HPUFA all of these effects were significantly attenuated. Conclusions: Chloroethanol promotes inflammatory liver injury caused by dietary fatty acids. This effect is far more exacerbated with saturated fat, versus poly-unsaturated fat; and strongly correlates with a robust activation of the NLRP3 inflammasome in the saturated fed animals only. Taken together these data support the hypothesis that environmental toxicant exposure can exacerbate the severity of NAFLD/NASH. - Highlights: • CE promotes inflammatory liver injury caused by dietary fatty acids. • This effect is stronger with saturated than with unsaturated fatty acids. • Damage caused by saturated fat and CE

  20. Dietary saturated and monounsaturated fats protect against acute acetaminophen hepatotoxicity by altering fatty acid composition of liver microsomal membrane in rats

    Directory of Open Access Journals (Sweden)

    Shim Eugene

    2011-10-01

    Full Text Available Abstract Background Dietary polyunsaturated fats increase liver injury in response to ethanol feeding. We evaluated the effect of dietary corn oil (CO, olive oil (OO, and beef tallow (BT on fatty acid composition of liver microsomal membrane and acute acetaminophen hepatotoxicity. Methods Male Sprague-Dawley rats were fed 15% (wt/wt CO, OO or BT for 6 weeks. After treatment with acetaminophen (600 mg/kg, samples of plasma and liver were taken for analyses of the fatty acid composition and toxicity. Results Treatment with acetaminophen significantly elevated levels of plasma GOT and GPT as well as hepatic TBARS but reduced hepatic GSH levels in CO compared to OO and BT groups. Acetaminophen significantly induced protein expression of cytochrome P450 2E1 in the CO group. In comparison with the CO diet, lower levels of linoleic acid, higher levels of oleic acids and therefore much lower ratios of linoleic to oleic acid were detected in rats fed OO and BT diets. Conclusions Dietary OO and BT produces similar liver microsomal fatty acid composition and may account for less severe liver injury after acetaminophen treatment compared to animals fed diets with CO rich in linoleic acid. These findings imply that types of dietary fat may be important in the nutritional management of drug-induced hepatotoxicity.

  1. Loss of Hepatic Mitochondrial Long-Chain Fatty Acid Oxidation Confers Resistance to Diet-Induced Obesity and Glucose Intolerance

    Directory of Open Access Journals (Sweden)

    Jieun Lee

    2017-07-01

    Full Text Available The liver has a large capacity for mitochondrial fatty acid β-oxidation, which is critical for systemic metabolic adaptations such as gluconeogenesis and ketogenesis. To understand the role of hepatic fatty acid oxidation in response to a chronic high-fat diet (HFD, we generated mice with a liver-specific deficiency of mitochondrial long-chain fatty acid β-oxidation (Cpt2L−/− mice. Paradoxically, Cpt2L−/− mice were resistant to HFD-induced obesity and glucose intolerance with an absence of liver damage, although they exhibited serum dyslipidemia, hepatic oxidative stress, and systemic carnitine deficiency. Feeding an HFD induced hepatokines in mice, with a loss of hepatic fatty acid oxidation that enhanced systemic energy expenditure and suppressed adiposity. Additionally, the suppression in hepatic gluconeogenesis was sufficient to improve HFD-induced glucose intolerance. These data show that inhibiting hepatic fatty acid oxidation results in a systemic hormetic response that protects mice from HFD-induced obesity and glucose intolerance.

  2. Toyocamycin attenuates free fatty acid-induced hepatic steatosis and apoptosis in cultured hepatocytes and ameliorates nonalcoholic fatty liver disease in mice.

    Science.gov (United States)

    Takahara, Ikuko; Akazawa, Yuko; Tabuchi, Maiko; Matsuda, Katsuya; Miyaaki, Hisamitsu; Kido, Youko; Kanda, Yasuko; Taura, Naota; Ohnita, Ken; Takeshima, Fuminao; Sakai, Yusuke; Eguchi, Susumu; Nakashima, Masahiro; Nakao, Kazuhiko

    2017-01-01

    A high serum level of saturated free fatty acids (FFAs) is associated with the development of nonalcoholic fatty liver disease (NAFLD). X-box binding protein-1 (XBP-1) is activated by FFA treatment upon splicing. XBP-1 is a transcription factor induced by the endoplasmic reticulum (ER) stress sensor endoribonuclease inositol-requiring enzyme 1 alpha (IRE1α). However, the role of XBP-1 in NAFLD remains relatively unexplored. Toyocamycin was recently reported to attenuate the activation of XBP-1, possibly by inducing a conformational change in IRE1α. In this study, we examined the effect of toyocamycin on hepatocyte lipoapoptosis and steatosis. We also explored the effects of toyocamycin in a mouse model of NAFLD. Huh-7 cells and isolated rat primary hepatocytes were treated with palmitic acid (PA), which is a saturated FFA, in the presence or absence of toyocamycin. In addition, male C57BL/6J mice were fed a diet rich in saturated fat, fructose, and cholesterol (FFC) for 4 months, after which the effect of toyocamycin was assessed. Toyocamycin attenuated FFA-induced steatosis. It also significantly reduced PA-induced hepatocyte lipoapoptosis. In addition, toyocamycin reduced the expression of cytosine-cytosine-adenosine-adenosine-thymidine enhancer-binding protein homologous protein (CHOP), which is a key player in ER stress-mediated apoptosis, as well as its downstream cell death modulator, death receptor 5. In the in vivo study, toyocamycin ameliorated the liver injury caused by FFC-induced NAFLD. It also reduced hepatic steatosis and the expression of lipogenic genes. The data we obtained suggest that toyocamycin attenuates hepatocyte lipogenesis and ameliorates NAFLD in vivo and may therefore be beneficial in the treatment of NAFLD in humans.

  3. Liver fatty acid binding protein is the mitosis-associated polypeptide target of a carcinogen in rat hepatocytes

    International Nuclear Information System (INIS)

    Bassuk, J.A.; Tsichlis, P.N.; Sorof, S.

    1987-01-01

    Hepatocytes in normal rat liver were found previously to contain a cytoplasmic 14,000-dalton polypeptide (p14) that is associated with mitosis and is the principal early covalent target of activated metabolites of the carcinogen N-2-fluorenylacetamide (2-acetylaminofluorene). The level of immunohistochemically detected p14 was low when growth activity of hepatocytes was low, was markedly elevated during mitosis in normal and regenerating livers, but was very high throughout interphase during proliferation of hyperplastic and malignant hepatocytes induced in rat liver by a carcinogen (N-2-fluorenylacetamide or 3'-methyl-4-dimethylaminoazobenzene). The authors report here that p14 is the liver fatty acid binding protein. The nucleotide sequence of p14 cDNA clones, isolated by screening a rat liver cDNA library in bacteriophage λgt11 using p14 antiserum, was completely identical to part of the sequence reported for liver fatty acid binding protein. Furthermore, the two proteins shared the following properties: size of mRNA, amino acid composition, molecular size according to NaDodSO 4 gel electrophoresis, and electrophoretic mobilities in a Triton X-100/acetic acid/urea gel. The two polypeptides bound oleic acid similarly. Finally, identical elevations of cytoplasmic immunostain were detected specifically in mitotic hepatocytes with either antiserum. The collected findings are suggestive that liver fatty acid binding protein may carry ligands that promote hepatocyte division and may transport certain activated chemical carcinogens

  4. Valproic Acid Induced Hyperammonaemic Encephalopathy

    International Nuclear Information System (INIS)

    Amanat, S.; Shahbaz, N.; Hassan, Y.

    2013-01-01

    Objective: To observe clinical and laboratory features of valproic acid-induced hyperammonaemic encephalopathy in patients taking valproic acid. Methods: Observational study was conducted at the Neurology Department, Dow University of Health Sciences, Civil Hospital, Karachi, from February 26, 2010 to March 20, 2011. Ten patients on valproic acid therapy of any age group with idiopathic or secondary epilepsy, who presented with encephalopathic symptoms, were registered and followed up during the study. Serum ammonia level, serum valproic acid level, liver function test, cerebrospinal fluid examination, electroencephalogram and brain imaging of all the patients were done. Other causes of encephalopathy were excluded after clinical and appropriate laboratory investigations. Microsoft Excel 2007 was used for statistical analysis. Results: Hyperammonaemia was found in all patients with encephalopathic symptoms. Rise in serum ammonia was independent of dose and serum level of valproic acid. Liver function was also found to be normal in 80% (n=8) of the patients. Valproic acid was withdrawn in all patients. Three (30%) patients improved only after the withdrawal of valproic acid. Six (60%) patients improved after L-Carnitine replacement, one (10%) after sodium benzoate. On followup, serum ammonia had reduced to normal in five (50%) patients and to more than half of the baseline level in two (20%) patients. Three (30%) patients were lost to followup after complete clinical improvement. Conclusion: Within therapeutic dose and serum levels, valproic acid can cause symptomatic hyperammonaemia resulting in encephalopathy. All patients taking valproic acid presenting with encephalopathic symptoms must be monitored for the condition. (author)

  5. Ameliorative effects of tannic acid on carbon tetrachloride-induced liver fibrosis in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Xi Chu

    2016-01-01

    Full Text Available We investigated the ameliorative effects and potential mechanisms of tannic acid (TA in carbon tetrachloride (CCl4-intoxicated mice and hepatic stellate cells (HSCs. Liver fibrosis was observed in CCl4 (800 ml/kg-induced mice, and high viability was observed in CCl4 (10 mM-intoxicated HSCs. Pre-treatment of mice with TA (25 or 50 g/kg/day significantly ameliorated hepatic morphology and coefficient values and reduced the activities of aspartate aminotransferase (AST and alanine aminotransferase (ALT, the concentrations of malondialdehyde (MDA and serum levels of endothelin-1 (ET-1. In addition, TA increased the activities of superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GSH-Px, and endothelial nitric oxide synthase (eNOS and the serum level of NO. Moreover, TA reduced the expression of angiotensin II receptor-1 (ATR-1, interleukin-1β (IL-1β, tumor necrosis factor-α (TNF-α, transforming growth factor-β (TGF-β, caspase-3, c-fos, c-jun, the ratio of Bax/bcl-2, tissue inhibitor of metalloproteinase-1 (TIMP-1 and TA increased matrix metal proteinase-9 (MMP-9, matrix metalloproteinase-1 (MMP-1. Furthermore, TA (0.01 μM, 0.1 μM or 1 μM decreased the TIMP-1/MMP-1 ratio and reduced the viability of HSCs. These results indicated that TA exerts significant liver-protective effects in mice with CCl4-induced liver fibrosis. The potential mechanism may rely on the inhibition of collagen accumulation, oxidative stress, inflammation and apoptosis.

  6. Abacavir-induced liver toxicity

    Directory of Open Access Journals (Sweden)

    Maria Diletta Pezzani

    2016-09-01

    Full Text Available Abacavir-induced liver toxicity is a rare event almost exclusively occurring in HLA B*5701-positive patients. Herein, we report one case of abnormal liver function tests occurring in a young HLA B*5701-negative woman on a stable nevirapine-based regimen with no history of liver problems or alcohol abuse after switching to abacavir from tenofovir. We also investigated the reasons for abacavir discontinuation in a cohort of patients treated with abacavir-lamivudine-nevirapine.

  7. An Update on Drug-induced Liver Injury.

    Science.gov (United States)

    Devarbhavi, Harshad

    2012-09-01

    Idiosyncratic drug-induced liver injury (DILI) is an important cause of morbidity and mortality following drugs taken in therapeutic doses. Hepatotoxicity is a leading cause of attrition in drug development, or withdrawal or restricted use after marketing. No age is exempt although adults and the elderly are at increased risk. DILI spans the entire spectrum ranging from asymptomatic elevation in transaminases to severe disease such as acute hepatitis leading to acute liver failure. The liver specific Roussel Uclaf Causality Assessment Method is the most validated and extensively used for determining the likelihood that an implicated drug caused DILI. Asymptomatic elevation in liver tests must be differentiated from adaptation. Drugs producing DILI have a signature pattern although no single pattern is characteristic. Antimicrobial and central nervous system agents including antiepileptic drugs are the leading causes of DILI worldwide. In the absence of a diagnostic test or a biomarker, the diagnosis rests on the evidence of absence of competing causes such as acute viral hepatitis, autoimmune hepatitis and others. Recent studies show that antituberculosis drugs given for active or latent disease are still a major cause of drug-induced liver injury in India and the West respectively. Presence of jaundice signifies a severe disease and entails a worse outcome. The pathogenesis is unclear and is due to a mix of host, drug metabolite and environmental factors. Research has evolved from incriminating candidate genes to genome wide analysis studies. Immediate cessation of the drug is key to prevent or minimize progressive damage. Treatment is largely supportive. N-acetylcysteine is the antidote for paracetamol toxicity. Carnitine has been tried in valproate injury whereas steroids and ursodeoxycholic acid may be used in DILI associated with hypersensitivity or cholestatic features respectively. This article provides an overview of the epidemiology, the patterns of

  8. Curcumin Attenuates N-Nitrosodiethylamine-Induced Liver Injury in Mice by Utilizing the Method of Metabonomics.

    Science.gov (United States)

    Qiu, Peiyu; Sun, Jiachen; Man, Shuli; Yang, He; Ma, Long; Yu, Peng; Gao, Wenyuan

    2017-03-08

    N-Nitrosodiethylamine (DEN) exists as a food additive in cheddar cheese, processed meats, beer, water, and so forth. It is a potent hepatocarcinogen in animals and humans. Curcumin as a natural dietary compound decreased DEN-induced hepatocarcinogenesis in this research. According to the histopathological examination of liver tissues and biomarker detection in serum and livers, it was demonstrated that curcumin attenuated DEN-induced hepatocarcinogenesis through parts of regulating the oxidant stress enzymes (T-SOD and CAT), liver function (ALT and AST) and LDHA, AFP level, and COX-2/PGE2 pathway. Furthermore, curcumin attenuated metabolic disorders via increasing concentration of glucose and fructose, and decreasing levels of glycine and proline, and mRNA expression of GLUT1, PKM and FASN. Docking study indicated that curcumin presented strong affinity with key metabolism enzymes such as GLUT1, PKM, FASN and LDHA. There were a number of amino acid residues involved in curcumin-targeting enzymes of hydrogen bonds and hydrophobic interactions. All in all, curcumin exhibited a potent liver protective agent inhibiting chemically induced liver injury through suppressing liver cellular metabolism in the prospective application.

  9. Montelukast induced acute hepatocellular liver injury

    Directory of Open Access Journals (Sweden)

    Harugeri A

    2009-01-01

    Full Text Available A 46-year-old male with uncontrolled asthma on inhaled albuterol and formoterol with budesonide was commenced on montelukast. He developed abdominal pain and jaundice 48 days after initiating montelukast therapy. His liver tests showed an increase in serum total bilirubin, conjugated bilirubin, aspartate aminotranferase, alanine aminotranferase, and alkaline phosphatase. The patient was evaluated for possible non-drug related liver injury. Montelukast was discontinued suspecting montelukast induced hepatocellular liver injury. Liver tests began to improve and returned to normal 55 days after drug cessation. Causality of this adverse drug reaction by the Council for International Organizations of Medical Sciences or Roussel Uclaf Causality Assessment Method (CIOMS or RUCAM and Naranjo′s algorithm was ′probable′. Liver tests should be monitored in patients receiving montelukast and any early signs of liver injury should be investigated with a high index of suspicion for drug induced liver injury.

  10. Drug-induced Liver Disease in Patients with Diabetes Mellitus

    OpenAIRE

    Iryna, Klyarytskaya; Helen, Maksymova; Elena, Stilidi

    2016-01-01

    The study presented here was accomplished to assess the course of drug-induced liver diseases in patient’s rheumatoid arthritis receiving long-term methotrexate therapy. Diabetes mellitus was revealed as the most significant risk factor. The combination of diabetes mellitus with other risk factors (female sex) resulted in increased hepatic fibrosis, degree of hepatic encephalopathy and reduction of hepatic functions. The effectiveness and safety of ursodeoxycholic acid and cytolytic type-with...

  11. Effects of olive oil and its fractions on oxidative stress and the liver's fatty acid composition in 2,4-Dichlorophenoxyacetic acid-treated rats

    Directory of Open Access Journals (Sweden)

    Ellouz Meriem

    2010-10-01

    Full Text Available Abstract Background Olive oil's beneficial effects are not only related to its high content of oleic acid, but also to the antioxidant potential of its polyphenols. In this study, we assess the effects of virgin olive oil and its fractions on 2,4-D- induced oxidative damage in the liver of rats. Methods Male Wistar rats were randomly divided into eight groups of ten each: (C a control group, (D group that received 2,4-D (5 mg/kg b.w., (D/EVOO group treated with 2,4-D plus extra virgin olive oil, (D/OOHF group that received 2,4-D plus hydrophilic fraction, (D/OOLF group treated with 2,4-D plus lipophilic fraction, (EVOO group that received only extra virgin olive oil, (OOHF group given hydrophilic fraction and (OOLF group treated with lipophilic fraction. These components were daily administered by gavage for 4 weeks. Results A significant liver damage was observed in rats treated with 2,4-D via increased serum levels of transaminases and alkaline phosphatase, hepatic lipid peroxidation and decreased hepatic antioxidant enzyme activities, namely, superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. The liver's fatty acid composition was also significantly modified with 2,4-D exposure. However, extra virgin olive oil and hydrophilic fraction intake during 2,4-D treatment induced a significant increase in the antioxidant enzyme activities and a decrease in the conjugated dienes (CD and thiobarbituric acid-reactive substances (TBARs levels in the liver. The lipophilic fraction supplemented to 2,4-D- treated rats did not show any improvement in the liver oxidative status while a marked improvement was detected in the hepatic fatty acid composition of rats supplemented with olive oil and the two fractions. Conclusion We concluded that the protective effect of olive oil against oxidative damage induced by 2,4-D is mainly related to the antioxidant potential of its hydrophilic fraction.

  12. Mice Lacking Free Fatty Acid Receptor 1 (GPR40/FFAR1) are Protected Against Conjugated Linoleic Acid-Induced Fatty Liver but Develop Inflammation and Insulin Resistance in the Brain.

    Science.gov (United States)

    Sartorius, Tina; Drescher, Andrea; Panse, Madhura; Lastovicka, Petr; Peter, Andreas; Weigert, Cora; Kostenis, Evi; Ullrich, Susanne; Häring, Hans-Ulrich

    2015-01-01

    Conjugated linoleic acids (CLAs) affect body fat distribution, induce insulin resistance and stimulate insulin secretion. The latter effect is mediated through the free fatty acid receptor-1 (GPR40/FFAR1). This study examines whether GPR40/FFAR1 interacts with tissue specific metabolic changes induced by CLAs. After chronic application of CLAs C57BL/6J wild type (WT) and GPR40/FFAR1 (Ffar1(-/-)) knockout mice developed insulin resistance. Although CLAs accumulated in liver up to 46-fold genotype-independently, hepatic triglycerides augmented only in WT mice. This triglyceride deposition was not associated with increased inflammation. In contrast, in brain of CLA fed Ffar1(-/-) mice mRNA levels of TNF-α were 2-fold higher than in brain of WT mice although CLAs accumulated genotype-independently in brain up to 4-fold. Concomitantly, Ffar1(-/-) mice did not respond to intracerebroventricular (i.c.v.) insulin injection with an increase in cortical activity while WT mice reacted as assessed by radiotelemetric electrocorticography (ECoG) measurements. In vitro incubation of primary murine astrocytes confirmed that CLAs stimulate neuronal inflammation independent of GPR40/FFAR1. This study discloses that GPR40/FFAR1 indirectly modulates organ-specific effects of CLAs: the expression of functional GPR40/FFAR1 counteracts CLA-induced inflammation and insulin resistance in the brain, but favors the development of fatty liver. © 2015 S. Karger AG, Basel.

  13. Subchronic effects of valproic acid on gene expression profiles for lipid metabolism in mouse liver

    International Nuclear Information System (INIS)

    Lee, Min-Ho; Kim, Mingoo; Lee, Byung-Hoon; Kim, Ju-Han; Kang, Kyung-Sun; Kim, Hyung-Lae; Yoon, Byung-Il; Chung, Heekyoung; Kong, Gu; Lee, Mi-Ock

    2008-01-01

    Valproic acid (VPA) is used clinically to treat epilepsy, however it induces hepatotoxicity such as microvesicular steatosis. Acute hepatotoxicity of VPA has been well documented by biochemical studies and microarray analysis, but little is known about the chronic effects of VPA in the liver. In the present investigation, we profiled gene expression patterns in the mouse liver after subchronic treatment with VPA. VPA was administered orally at a dose of 100 mg/kg/day or 500 mg/kg/day to ICR mice, and the livers were obtained after 1, 2, or 4 weeks. The activities of serum liver enzymes did not change, whereas triglyceride concentration increased significantly. Microarray analysis revealed that 1325 genes of a set of 32,996 individual genes were VPA responsive when examined by two-way ANOVA (P 1.5). Consistent with our previous results obtained using an acute VPA exposure model (Lee et al., Toxicol Appl Pharmacol. 220:45-59, 2007), the most significantly over-represented biological terms for these genes included lipid, fatty acid, and steroid metabolism. Biological pathway analysis suggests that the genes responsible for increased biosynthesis of cholesterol and triglyceride, and for decreased fatty acid β-oxidation contribute to the abnormalities in lipid metabolism induced by subchronic VPA treatment. A comparison of the VPA-responsive genes in the acute and subchronic models extracted 15 commonly altered genes, such as Cyp4a14 and Adpn, which may have predictive power to distinguish the mode of action of hepatotoxicants. Our data provide a better understanding of the molecular mechanisms of VPA-induced hepatotoxicity and useful information to predict steatogenic hepatotoxicity

  14. Preventive Effects of Dexmedetomidine on the Liver in a Rat Model of Acid-Induced Acute Lung Injury

    Directory of Open Access Journals (Sweden)

    Velat Şen

    2014-01-01

    Full Text Available The aim of this study was to examine whether dexmedetomidine improves acute liver injury in a rat model. Twenty-eight male Wistar albino rats weighing 300–350 g were allocated randomly to four groups. In group 1, normal saline (NS was injected into the lungs and rats were allowed to breathe spontaneously. In group 2, rats received standard ventilation (SV in addition to NS. In group 3, hydrochloric acid was injected into the lungs and rats received SV. In group 4, rats received SV and 100 µg/kg intraperitoneal dexmedetomidine before intratracheal HCl instillation. Blood samples and liver tissue specimens were examined by biochemical, histopathological, and immunohistochemical methods. Acute lung injury (ALI was found to be associated with increased malondialdehyde (MDA, total oxidant activity (TOA, oxidative stress index (OSI, and decreased total antioxidant capacity (TAC. Significantly decreased MDA, TOA, and OSI levels and significantly increased TAC levels were found with dexmedetomidine injection in group 4 (P<0.05. The highest histologic injury scores were detected in group 3. Enhanced hepatic vascular endothelial growth factor (VEGF expression and reduced CD68 expression were found in dexmedetomidine group compared with the group 3. In conclusion, the presented data provide the first evidence that dexmedetomidine has a protective effect on experimental liver injury induced by ALI.

  15. Alpha-Lipoic acid counteracts the promoted oxidative DNA damage in the liver of septic rats

    International Nuclear Information System (INIS)

    Abd-Allah, Adel R.A.

    2006-01-01

    Viral, parasitic infections and chemical carcinogens are among the etiological factors of liver cancer. It seems important to study the initiating and promoting agents to evaluate the etiology and prevention of such life threatening disease. Intestine-derived bacteria product, lipopolysaccharide (LPS), is mainly detoxified by the liver. It has shown to induce a state of oxidative DNA damage is not fully investigated. Increased oxidative DNA damage and rate of cell proliferation may initiate or even promote cancer. In the present work, the capability of LPS to induce 8-hydroxydeoxyguanosine (8-HDG), a specific DNA adduct for oxidative DNA damage, in rat livers is tested. Furthermore, a possible protective effect of alpha lipoic acid (ALA) is also assessed. Investigated parameters are liver contents of glutathione (GSH), lipid peroxides (MDA), nitric oxide (NO) and 8-HDG in the liver-extracted DNA. Serum activities of ALT, AST and GGT as liver-function markers as well as IL2 are assessed. Moreover, liver histology is examined. LPS was given doses of 1, 3, 5, 7 and 9 mg/kg once i.p. while, the rat mortality was examined 24 hours later. ALA was given in doses of 50, 100 and 200 mg/kg once i.p. 3h before LPS is found to be 5mg/kg. LPS increased the level of 8-HDG, MDA and NO in the liver. It also induced acute liver necrosis and inflammatory cell infiltration as shown in liver-histopathology and in the significant increase in the activities of ALT, AST and GGT. LPS increased the serum level of IL2 as well. The dose 200mg/kg of ALA revealed a 100% protection against LPS-induced lethality. It also, prevented the LPS-induced increase in 8-HDG in liver extracted DNA, the liver contents of MDA and NO. ALA also rescued the LPS-induced GSH depletion. It corrected the liver function as shown by the prevention of increases in the activity of ALT, AST and GGT with a remarkable improvement in the liver histology. Moreover, it prevented the increase in serum level of IL2. These

  16. Preventive effect of halofuginone on concanavalin A-induced liver fibrosis.

    Directory of Open Access Journals (Sweden)

    Jie Liang

    Full Text Available Halofuginone (HF is an active component of extracts derived from the plant alkaloid febrifugine and has shown therapeutic promise in animal models of fibrotic disease. Our main objectives were to clarify the suppressive effect of HF on concanavalin A (ConA-induced liver fibrosis. ConA injection into the tail vein caused a great increase in the serum aspartate aminotransferase (AST and alanine aminotransferase (ALT levels, while orally administration of HF significantly decreased the levels of the transaminases. In addition, the levels of hyaluronic acid (HA, procollagen III (PCIII and TGF-β1 in the serum and collagen I, α-SMA, tissue inhibitors of metalloproteinase 2 (TIMP2 and Smad3 in the liver tissue were significantly lowered with the treatment of HF. Histological examination also demonstrated that HF significantly reduced the severity of liver fibrosis. Since ConA-induced liver fibrosis is caused by the repeated activation of T cells, immunomodulatory substances might be responsible for the suppressive effect of HF. We found that the production of nuclear factor (NF-kB in the serum was increased in ConA-treated group, while decreased significantly with the treatment of HF. The changes of inflammatory cytokines tumor necrosis factor (TNF-α, IL-6 and IL-1β in the serum followed the same rhythm. All together, our findings indicate that orally administration HF (10ppm would attenuate the liver fibrosis by suppressing the synthesis of collagen I and inflammation-mediated liver injury.

  17. The Fatty Acid Synthase Inhibitor Platensimycin Improves Insulin Resistance without Inducing Liver Steatosis in Mice and Monkeys.

    Directory of Open Access Journals (Sweden)

    Sheo B Singh

    Full Text Available Platensimycin (PTM is a natural antibiotic produced by Streptomyces platensis that selectively inhibits bacterial and mammalian fatty acid synthase (FAS without affecting synthesis of other lipids. Recently, we reported that oral administration of PTM in mouse models (db/db and db/+ with high de novo lipogenesis (DNL tone inhibited DNL and enhanced glucose oxidation, which in turn led to net reduction of liver triglycerides (TG, reduced ambient glucose, and improved insulin sensitivity. The present study was conducted to explore translatability and the therapeutic potential of FAS inhibition for the treatment of diabetes in humans.We tested PTM in animal models with different DNL tones, i.e. intrinsic synthesis rates, which vary among species and are regulated by nutritional and disease states, and confirmed glucose-lowering efficacy of PTM in lean NHPs with quantitation of liver lipid by MRS imaging. To understand the direct effect of PTM on liver metabolism, we performed ex vivo liver perfusion study to compare FAS inhibitor and carnitine palmitoyltransferase 1 (CPT1 inhibitor.The efficacy of PTM is generally reproduced in preclinical models with DNL tones comparable to humans, including lean and established diet-induced obese (eDIO mice as well as non-human primates (NHPs. Similar effects of PTM on DNL reduction were observed in lean and type 2 diabetic rhesus and lean cynomolgus monkeys after acute and chronic treatment of PTM. Mechanistically, PTM lowers plasma glucose in part by enhancing hepatic glucose uptake and glycolysis. Teglicar, a CPT1 inhibitor, has similar effects on glucose uptake and glycolysis. In sharp contrast, Teglicar but not PTM significantly increased hepatic TG production, thus caused liver steatosis in eDIO mice.These findings demonstrate unique properties of PTM and provide proof-of-concept of FAS inhibition having potential utility for the treatment of diabetes and related metabolic disorders.

  18. Dietary fructose augments ethanol-induced liver pathology.

    Science.gov (United States)

    Thomes, Paul G; Benbow, Jennifer H; Brandon-Warner, Elizabeth; Thompson, Kyle J; Jacobs, Carl; Donohue, Terrence M; Schrum, Laura W

    2017-05-01

    Certain dietary components when combined with alcohol exacerbate alcohol-induced liver injury (ALI). Here, we tested whether fructose, a major ingredient of the western diet, enhances the severity of ALI. We fed mice ethanol for 8 weeks in the following Lieber-DeCarli diets: (a) Regular (contains olive oil); (b) corn oil (contains corn oil); (c) fructose (contains fructose and olive oil) and (d) corn+fructose (contains fructose and corn oil). We compared indices of metabolic function and liver pathology among the different groups. Mice fed fructose-free and fructose-containing ethanol diets exhibited similar levels of blood alcohol, blood glucose and signs of disrupted hepatic insulin signaling. However, only mice given fructose-ethanol diets showed lower insulin levels than their respective controls. Compared with their respective pair-fed controls, all ethanol-fed mice exhibited elevated levels of serum ALT; the inflammatory cytokines TNF-α, MCP-1 and MIP-2; hepatic lipid peroxides and triglycerides. All the latter parameters were significantly higher in mice given fructose-ethanol diets than those fed fructose-free ethanol diets. Mice given fructose-free or fructose-containing ethanol diets each had higher levels of hepatic lipogenic enzymes than controls. However, the level of the lipogenic enzyme fatty acid synthase (FAS) was significantly higher in livers of mice given fructose control and fructose-ethanol diets than in all other groups. Our findings indicate that dietary fructose exacerbates ethanol-induced steatosis, oxidant stress, inflammation and liver injury, irrespective of the dietary fat source, to suggest that inclusion of fructose in or along with alcoholic beverages increases the risk of more severe ALI in heavy drinkers. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. NRF2 Protection against Liver Injury Produced by Various Hepatotoxicants

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2013-01-01

    Full Text Available To investigate the role of Nrf2 as a master defense against the hepatotoxicity produced by various chemicals, Nrf2-null, wild-type, Keap1-knock down (Keap1-Kd and Keap1-hepatocyte knockout (Keap1-HKO mice were used as a “graded Nrf2 activation” model. Mice were treated with 14 hepatotoxicants at appropriate doses, and blood and liver samples were collected thereafter (6 h to 7 days depending on the hepatotoxicant. Graded activation of Nrf2 offered a Nrf2-dependent protection against the hepatotoxicity produced by carbon tetrachloride, acetaminophen, microcystin, phalloidin, furosemide, cadmium, and lithocholic acid, as evidenced by serum alanine aminotransferase (ALT activities and by histopathology. Nrf2 activation also offered moderate protection against liver injury produced by ethanol, arsenic, bromobenzene, and allyl alcohol but had no effects on the hepatotoxicity produced by D-galactosamine/endotoxin and the Fas ligand antibody Jo-2. Graded Nrf2 activation reduced the expression of inflammatory genes (MIP-2, mKC, IL-1β, IL-6, and TNFα, oxidative stress genes (Ho-1, Egr1, ER stress genes (Gadd45 and Gadd153, and genes encoding cell death (Noxa, Bax, Bad, and caspase3. Thus, this study demonstrates that Nrf2 prevents the liver from many, but not all, hepatotoxicants. The Nrf2-mediated protection is accompanied by induction of antioxidant genes, suppression of inflammatory responses, and attenuation of oxidative stress.

  20. Loss of Hepatic Mitochondrial Long-Chain Fatty Acid Oxidation Confers Resistance to Diet-Induced Obesity and Glucose Intolerance.

    Science.gov (United States)

    Lee, Jieun; Choi, Joseph; Selen Alpergin, Ebru S; Zhao, Liang; Hartung, Thomas; Scafidi, Susanna; Riddle, Ryan C; Wolfgang, Michael J

    2017-07-18

    The liver has a large capacity for mitochondrial fatty acid β-oxidation, which is critical for systemic metabolic adaptations such as gluconeogenesis and ketogenesis. To understand the role of hepatic fatty acid oxidation in response to a chronic high-fat diet (HFD), we generated mice with a liver-specific deficiency of mitochondrial long-chain fatty acid β-oxidation (Cpt2 L-/- mice). Paradoxically, Cpt2 L-/- mice were resistant to HFD-induced obesity and glucose intolerance with an absence of liver damage, although they exhibited serum dyslipidemia, hepatic oxidative stress, and systemic carnitine deficiency. Feeding an HFD induced hepatokines in mice, with a loss of hepatic fatty acid oxidation that enhanced systemic energy expenditure and suppressed adiposity. Additionally, the suppression in hepatic gluconeogenesis was sufficient to improve HFD-induced glucose intolerance. These data show that inhibiting hepatic fatty acid oxidation results in a systemic hormetic response that protects mice from HFD-induced obesity and glucose intolerance. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Soluble FGFR4 extracellular domain inhibits FGF19-induced activation of FGFR4 signaling and prevents nonalcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiang [State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen (China); The First Affiliated Hospital of Xiamen University, Xiamen (China); Jiang, Yuan; An, Yuan; Zhao, Na; Zhao, Yang [State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen (China); Yu, Chundong, E-mail: cdyu@xmu.edu.cn [State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen (China)

    2011-06-17

    Highlights: {yields} Soluble FGFR4 extracellular domain (FGFR4-ECD) was effectively expressed. {yields} FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling. {yields} FGFR4-ECD reduced palmitic acid-induced steatosis of HepG2 cells. {yields} FGFR4-ECD reduced tetracycline-induced fatty liver in mice. {yields} FGFR4-ECD partially restored tetracycline-repressed PPAR{alpha} expression. -- Abstract: Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane tyrosine kinase receptor that plays a crucial role in the regulation of hepatic bile acid and lipid metabolism. FGFR4 underlies high-fat diet-induced hepatic steatosis, suggesting that inhibition of FGFR4 activation may be an effective way to prevent or treat nonalcoholic fatty liver disease (NAFLD). To determine whether neutralization of FGFR4 ligands by soluble FGFR4 extracellular domain (FGFR4-ECD) can inhibit the activation of FGFR4, we constructed FGFR4-ECD expression vector and showed that FGFR4-ECD was effectively expressed in cells and secreted into culture medium. FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling and reduced steatosis of HepG2 induced by palmitic acid in vitro. Furthermore, in a tetracycline-induced fatty liver model, expression of FGFR4-ECD in mouse liver reduced the accumulation of hepatic lipids and partially restored the expression of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}), which promotes the mitochondrial fatty acid beta-oxidation but is repressed by tetracycline. Taken together, these results demonstrate that FGFR4-ECD can block FGFR4 signaling and prevent hepatic steatosis, highlighting the potential value of inhibition of FGFR4 signaling as a method for therapeutic intervention against NAFLD.

  2. Soluble FGFR4 extracellular domain inhibits FGF19-induced activation of FGFR4 signaling and prevents nonalcoholic fatty liver disease

    International Nuclear Information System (INIS)

    Chen, Qiang; Jiang, Yuan; An, Yuan; Zhao, Na; Zhao, Yang; Yu, Chundong

    2011-01-01

    Highlights: → Soluble FGFR4 extracellular domain (FGFR4-ECD) was effectively expressed. → FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling. → FGFR4-ECD reduced palmitic acid-induced steatosis of HepG2 cells. → FGFR4-ECD reduced tetracycline-induced fatty liver in mice. → FGFR4-ECD partially restored tetracycline-repressed PPARα expression. -- Abstract: Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane tyrosine kinase receptor that plays a crucial role in the regulation of hepatic bile acid and lipid metabolism. FGFR4 underlies high-fat diet-induced hepatic steatosis, suggesting that inhibition of FGFR4 activation may be an effective way to prevent or treat nonalcoholic fatty liver disease (NAFLD). To determine whether neutralization of FGFR4 ligands by soluble FGFR4 extracellular domain (FGFR4-ECD) can inhibit the activation of FGFR4, we constructed FGFR4-ECD expression vector and showed that FGFR4-ECD was effectively expressed in cells and secreted into culture medium. FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling and reduced steatosis of HepG2 induced by palmitic acid in vitro. Furthermore, in a tetracycline-induced fatty liver model, expression of FGFR4-ECD in mouse liver reduced the accumulation of hepatic lipids and partially restored the expression of peroxisome proliferator-activated receptor α (PPARα), which promotes the mitochondrial fatty acid beta-oxidation but is repressed by tetracycline. Taken together, these results demonstrate that FGFR4-ECD can block FGFR4 signaling and prevent hepatic steatosis, highlighting the potential value of inhibition of FGFR4 signaling as a method for therapeutic intervention against NAFLD.

  3. Ursodeoxycholic Acid in Treatment of Non-cholestatic Liver Diseases: A Systematic Review.

    Science.gov (United States)

    Reardon, Jillian; Hussaini, Trana; Alsahafi, Majid; Azalgara, Vladimir Marquez; Erb, Siegfried R; Partovi, Nilufar; Yoshida, Eric M

    2016-09-28

    Aims: To systematically evaluate the literature for evidence to support the use of bile acids in non-cholestatic liver conditions. Methods: Searches were conducted on the databases of Medline (1948-March 31, 2015), Embase (1980-March 31, 2015) and the Cochrane Central Register of Controlled Trials, and on Google and Google Scholar to identify articles describing ursodeoxycholic acid (UDCA) and its derivatives for non-cholestatic hepatic indications. Combinations of the following search terms were used: ursodeoxycholic acid, ursodiol, bile acids and/or salts, non alcoholic fatty liver, non alcoholic steatohepatitis, fatty liver, alcoholic hepatitis, alcohol, liver disease, autoimmune, autoimmune hepatitis, liver transplant, liver graft, transplant rejection, graft rejection, ischemic reperfusion injury, reperfusion injury, hepatitis B, hepatitis C, viral hepatitis, chronic hepatitis, acute hepatitis, transaminases, alanine transaminase, liver enzymes, aspartate aminotransferase, gamma-glutamyl transferase, gamma-glutamyl transpeptidase, bilirubin, alkaline phosphatase. No search limits were applied. Additionally, references of the included studies were reviewed to identify additional articles. Results: The literature search yielded articles meeting inclusion criteria for the following indications: non-alcoholic fatty liver disease (n = 5); alcoholic liver disease (n = 2); autoimmune hepatitis (n = 6), liver transplant (n = 2) and viral hepatitis (n = 9). Bile acid use was associated with improved normalization of liver biochemistry in non-alcoholic fatty liver disease, autoimmune hepatitis and hepatitis B and C infections. In contrast, liver biochemistry normalization was inconsistent in alcoholic liver disease and liver transplantation. The majority of studies reviewed showed that normalization of liver biochemistry did not correlate to improvement in histologic disease. In the prospective trials reviewed, adverse effects associated with the bile acids were limited

  4. Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy

    Directory of Open Access Journals (Sweden)

    Fuyang Zhang

    2016-11-01

    Full Text Available The Western meat-rich diet is both high in protein and fat. Although the hazardous effect of a high fat diet (HFD upon liver structure and function is well recognized, whether the co-presence of high protein intake contributes to, or protects against, HF-induced hepatic injury remains unclear. Increased intake of branched chain amino acids (BCAA, essential amino acids compromising 20% of total protein intake reduces body weight. However, elevated circulating BCAA is associated with non-alcoholic fatty liver disease and injury. The mechanisms responsible for this quandary remain unknown; the role of BCAA in HF-induced liver injury is unclear. Utilizing HFD or HFD + BCAA models, we demonstrated BCAA supplementation attenuated HFD-induced weight gain, decreased fat mass, activated mammalian target of rapamycin (mTOR, inhibited hepatic lipogenic enzymes, and reduced hepatic triglyceride content. However, BCAA caused significant hepatic damage in HFD mice, evidenced by exacerbated hepatic oxidative stress, increased hepatic apoptosis, and elevated circulation hepatic enzymes. Compared to solely HFD-fed animals, plasma levels of free fatty acids (FFA in the HFD + BCAA group are significantly further increased, due largely to AMPKα2-mediated adipocyte lipolysis. Lipolysis inhibition normalized plasma FFA levels, and improved insulin sensitivity. Surprisingly, blocking lipolysis failed to abolish BCAA-induced liver injury. Mechanistically, hepatic mTOR activation by BCAA inhibited lipid-induced hepatic autophagy, increased hepatic apoptosis, blocked hepatic FFA/triglyceride conversion, and increased hepatocyte susceptibility to FFA-mediated lipotoxicity. These data demonstrated that BCAA reduces HFD-induced body weight, at the expense of abnormal lipolysis and hyperlipidemia, causing hepatic lipotoxicity. Furthermore, BCAA directly exacerbate hepatic lipotoxicity by reducing lipogenesis and inhibiting autophagy in the hepatocyte.

  5. 1H NMR-based serum metabolomics reveals erythromycin-induced liver toxicity in albino Wistar rats

    Directory of Open Access Journals (Sweden)

    Atul Rawat

    2016-01-01

    Full Text Available Introduction: Erythromycin (ERY is known to induce hepatic toxicity which mimics other liver diseases. Thus, ERY is often used to produce experimental models of drug-induced liver-toxicity. The serum metabolic profiles can be used to evaluate the liver-toxicity and to further improve the understanding of underlying mechanism. Objective: To establish the serum metabolic patterns of Erythromycin induced hepatotoxicity in albino wistar rats using 1H NMR based serum metabolomics. Experimental: Fourteen male rats were randomly divided into two groups (n = 7 in each group: control and ERY treated. After 28 days of intervention, the metabolic profiles of sera obtained from ERY and control groups were analyzed using high-resolution 1D 1H CPMG and diffusion-edited nuclear magnetic resonance (NMR spectra. The histopathological and SEM examinations were employed to evaluate the liver toxicity in ERY treated group. Results: The serum metabolic profiles of control and ERY treated rats were compared using multivariate statistical analysis and the metabolic patterns specific to ERY-induced liver toxicity were established. The toxic response of ERY was characterized with: (a increased serum levels of Glucose, glutamine, dimethylamine, malonate, choline, phosphocholine and phospholipids and (b decreased levels of isoleucine, leucine, valine, alanine, glutamate, citrate, glycerol, lactate, threonine, circulating lipoproteins, N-acetyl glycoproteins, and poly-unsaturated lipids. These metabolic alterations were found to be associated with (a decreased TCA cycle activity and enhanced fatty acid oxidation, (b dysfunction of lipid and amino acid metabolism and (c oxidative stress. Conclusion and Recommendations: Erythromycin is often used to produce experimental models of liver toxicity; therefore, the established NMR-based metabolic patterns will form the basis for future studies aiming to evaluate the efficacy of anti-hepatotoxic agents or the hepatotoxicity of new

  6. The bile acid composition of crane gallbladder bile

    Science.gov (United States)

    Serafin, J.A.

    1983-01-01

    1. The biliary bile acids of the whooping crane (Grus americana) and the Florida sandhill crane (G. canadensis pratensis) have been examined.2. Cholic acid (CA), chenodeoxycholic acid (CDOCA) and lithocholic acid were found in bile from both species of these North American cranes.3. CDOCA and CA were the primary bile acids in both species, together constituting 70% or more of the bile acids by weight.4. The primary bile acids of cranes appear to be the same as those that have been identified in other avian species.

  7. Dietary Omega-3 polyunsaturated fatty acids promote colon carcinoma metastasis in rat liver

    NARCIS (Netherlands)

    Griffini, P.; Fehres, O.; Klieverik, L.; Vogels, I. M.; Tigchelaar, W.; Smorenburg, S. M.; van Noorden, C. J.

    1998-01-01

    The effects of Ohm-3 polyunsaturated fatty acids (PUFAs) and Ohm-6 PUFAs on the development of experimentally induced colon carcinoma metastasis in rat liver were investigated quantitatively in vivo. Rats mere kept on either a lon-fat diet or on a fish oil (Ohm-3 PUFAs) or safflower oil (Ohm-6

  8. Effect of WeiJia on carbon tetrachloride induced chronic liver injury

    Science.gov (United States)

    Cheung, Pik-Yuen; Zhang, Qi; Zhang, Ya-Ou; Bai, Gan-Rong; Lin, Marie Chia-Mi; Chan, Bernard; Fong, Chi-Chun; Shi, Lin; Shi, Yue-Feng; Chun, Jay; Kung, Hsiang-Fu; Yang, Mengsu

    2006-01-01

    AIM: To study the effect of WeiJia on chronic liver injury using carbon tetrachloride (CCl4) induced liver injury animal model. METHODS: Wistar rats weighing 180-220g were randomly divided into three groups: normal control group (Group A), CCl4 induced liver injury control group (Group B) and CCl4 induction with WeiJia treatment group (Group C). Each group consisted of 14 rats. Liver damage and fibrosis was induced by subcutaneous injection with 40% CCl4 in olive oil at 3 mL/kg body weight twice a week for eight weeks for Groups B and C rats whereas olive oil was used for Group A rats. Starting from the third week, Group C rats also received daily intraperitoneal injection of WeiJia at a dose of 1.25 μg/kg body weight. Animals were sacrificed at the fifth week (4 male, 3 female), and eighth week (4 male, 3 female) respectively. Degree of fibrosis were measured and serological markers for liver fibrosis and function including hyaluronic acid (HA), type IV collagen (CIV), γ-glutamyl transferase (γ-GT), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined. Alpha smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) immunohistochemistry were also performed. RESULTS: CCl4 induction led to the damage of liver and development of fibrosis in Group B and Group C rats when compared to Group A rats. The treatment of WeiJia in Group C rats could reduce the fibrosis condition significantly compared to Group B rats. The effect could be observed after three weeks of treatment and was more obvious after eight weeks of treatment. Serum HA, CIV, ALT, AST and γ-GT levels after eight weeks of treatment for Group C rats were 58±22 µg/L (P0.05) respectively, similar to normal control group (Group A), but significantly different from CCl4 induced liver injury control group (Group B). An increase in PCNA and decrease in α-SMA expression level was also observed. CONCLUSION: WeiJia could improve liver function and reduce liver

  9. Molecular Pathogenesis of Liver Steatosis Induced by Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Cheng Jun

    2012-09-01

    Full Text Available Liver steatosis is a pathological hallmark in patients with chronic hepatitis C (CHC. Increased lipid uptake, decreased lipid secretion, increased lipid synthesis and decreased lipid degradation are all involved in pathogenesis of steatosis induced by hepatitic C virus (HCV infection. Level of low density lipoprotein receptor (LDL-R and activity of peroxisome proliferator-activated receptor (PPAR α is related to liver uptake of lipid from circulation, and affected by HCV. Secretion via microsomal triglyceride transfer protein (MTTP, and formation of very low density lipoprotein (VLDL have been hampered by HCV infection. Up-regulation of lipid synthesis related genes, such as sterol regulatory element-binding protein (SREBP-1, SREBP-2, SREBP-1c, fatty acid synthase (FASN, HMG CoA reductase (HMGCR, liver X receptor (LXR, acetyl-CoA carboxylase 1 (ACC1, hepatic CB (1 receptors, retinoid X receptor (RXR α, were the main stay of liver steatosis pathogenesis. Degradation of lipid in liver is decreased in patients with CHC. There is strong evidence that heterogeneity of HCV core genes of different genotypes affect their effects of liver steatosis induction. A mechanism in which steatosis is involved in HCV life cycle is emerging.

  10. Changes of α-glycerophosphate dehydrogenase activity in fatty liver of rats by amino acid imbalance

    International Nuclear Information System (INIS)

    Ogura, Masaji; Katsunuma, Eiichi; Akabane, Tomoko; Ogawa, Seiichi

    1976-01-01

    The previous study on the lipogenesis in the fatty livers of rats, which was induced by feeding the diet with imbalanced amino acid, revealed that the induction of this type of fatty livers was due mainly to the acceleration of triglyceride synthesis by the increase in both synthesis and esterification of fatty acid in the livers. Although many studies have been carried out on the dietary control of α-glycerophosphate dehydrogenase activity in rat livers, the enzyme change in amino acid imbalance has not been reported. In the present study, in order to elucidate the difference in the supply of glycerol moiety of triglyceride due to the imbalance, the change of the α-glycerophosphate dehydrogenase activity in livers was investigated. The experimental diets were 8% casein basal diet and basal + 0.3% DL-methionine imbalanced diet. 5 rats of each group were killed after 0.5 and 10 days on the diet, and the analysis of the lipid content in the livers and the determination of the α-glycerophosphate dehydrogenase activity were carried out. The linear response of the enzyme activity to time and protein concentration was obtained. The development of fatty livers was observed in the imbalanced diet group in the feeding period of 10 days. It was found that the specific activity of the imbalanced diet group increased significantly in 5 and 10 days as compared with that of the basal diet group. The elevation in the enzyme activity may suggest that the supply of α-glycerophosphate for triglyceride synthesis is also increased in this type of fatty livers. (Kako, I.)

  11. Putrescine treatment reverses α-tocopherol-induced desynchronization of polyamine and retinoid metabolism during rat liver regeneration

    Directory of Open Access Journals (Sweden)

    Lourdes Sánchez-Sevilla

    2016-10-01

    Full Text Available Abstract Background The pre-treatment with α-tocopherol inhibits progression of rat liver proliferation induced by partial hepatectomy (PH, by decreasing and/or desynchronizing cyclin D1 expression and activation into the nucleus, activation and nuclear translocation of STAT-1 and -3 proteins and altering retinoid metabolism. Interactions between retinoic acid and polyamines have been reported in the PH-induced rat liver regeneration. Therefore, we evaluated the effect of low dosage of α-tocopherol on PH-induced changes in polyamine metabolism. Methods This study evaluated the participation of polyamine synthesis and metabolism during α-tocopherol-induced inhibition of rat liver regeneration. In PH-rats (Wistar treated with α-tocopherol and putrescine, parameters indicative of cell proliferation, lipid peroxidation, ornithine decarboxylase expression (ODC, and polyamine levels, were determined. Results Pre-treatment with α-tocopherol to PH-animals exerted an antioxidant effect, shifting earlier the increased ODC activity and expression, temporally affecting polyamine synthesis and ornithine metabolism. Whereas administration of putrescine induced minor changes in PH-rats, the concomitant treatment actually counteracted most of adverse actions exerted by α-tocopherol on the remnant liver, restituting its proliferative potential, without changing its antioxidant effect. Putrescine administration to these rats was also associated with lower ODC expression and activity in the proliferating liver, but the temporally shifting in the amount of liver polyamines induced by α-tocopherol, was also “synchronized” by the putrescine administration. The latter is supported by the fact that a close relationship was observed between fluctuations of polyamines and retinoids. Conclusions Putrescine counteracted most adverse actions exerted by α-tocopherol on rat liver regeneration, restoring liver proliferative potential and restituting the decreased

  12. Drug-induced liver injury

    DEFF Research Database (Denmark)

    Nielsen, Mille Bækdal; Ytting, Henriette; Skalshøi Kjær, Mette

    2017-01-01

    OBJECTIVE: The idiosyncratic subtype of drug-induced liver injury (DILI) is a rare reaction to medical treatment that in severe cases can lead to acute liver failure and death. The aim of this study was to describe the presentation and outcome of DILI and to identify potential predictive factors...... that DILI may be severe and run a fatal course, and that bilirubin and INR levels may predict poor outcome....

  13. Regulation by carbohydrate and clofibric acid of palmitoyl-CoA chain elongation in the liver of rats.

    Science.gov (United States)

    Kudo, Naomi; Toyama, Tomoaki; Mitsumoto, Atsushi; Kawashima, Yoichi

    2003-05-01

    Regulation of palmitoyl-CoA chain elongation (PCE) and its contribution to oleic acid formation were investigated in rat liver in comparison with stearoyl-CoA desaturase (SCD). Hepatic PCE activity was induced by the administration of 20% wt/vol glucose or fructose in the drinking water of normal rats. In streptozotocin-induced diabetic rats, the activities of both PCE and SCD were suppressed, and fructose, but not glucose, feeding caused an increase in the activities of both enzymes. Treatment of normal rats with clofibric acid in combination with carbohydrate further increased PCE, but not SCD, activity. FA analysis of hepatic lipids revealed that the proportion of oleic acid (18:1 n-9) increased upon administration of carbohydrate or clofibric acid. The treatment of rats with clofibric acid in combination with carbohydrate greatly increased the proportion of 18:1 n-9. A significant correlation was observed between PCE activity and the hepatic proportion of 18:1 n-9 (r2 = 0.874, P 0.05). Taken together, these results suggest that carbohydrate induces PCE as well as SCD activity to increase the hepatic 18:1 content in rat liver, and the increased PCE activity seems to be responsible for the further increase in 18:1 n-9 when carbohydrate is administered in combination with clofibric acid.

  14. Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy.

    Science.gov (United States)

    Zhang, Fuyang; Zhao, Shihao; Yan, Wenjun; Xia, Yunlong; Chen, Xiyao; Wang, Wei; Zhang, Jinglong; Gao, Chao; Peng, Cheng; Yan, Feng; Zhao, Huishou; Lian, Kun; Lee, Yan; Zhang, Ling; Lau, Wayne Bond; Ma, Xinliang; Tao, Ling

    2016-11-01

    The Western meat-rich diet is both high in protein and fat. Although the hazardous effect of a high fat diet (HFD) upon liver structure and function is well recognized, whether the co-presence of high protein intake contributes to, or protects against, HF-induced hepatic injury remains unclear. Increased intake of branched chain amino acids (BCAA, essential amino acids compromising 20% of total protein intake) reduces body weight. However, elevated circulating BCAA is associated with non-alcoholic fatty liver disease and injury. The mechanisms responsible for this quandary remain unknown; the role of BCAA in HF-induced liver injury is unclear. Utilizing HFD or HFD+BCAA models, we demonstrated BCAA supplementation attenuated HFD-induced weight gain, decreased fat mass, activated mammalian target of rapamycin (mTOR), inhibited hepatic lipogenic enzymes, and reduced hepatic triglyceride content. However, BCAA caused significant hepatic damage in HFD mice, evidenced by exacerbated hepatic oxidative stress, increased hepatic apoptosis, and elevated circulation hepatic enzymes. Compared to solely HFD-fed animals, plasma levels of free fatty acids (FFA) in the HFD+BCAA group are significantly further increased, due largely to AMPKα2-mediated adipocyte lipolysis. Lipolysis inhibition normalized plasma FFA levels, and improved insulin sensitivity. Surprisingly, blocking lipolysis failed to abolish BCAA-induced liver injury. Mechanistically, hepatic mTOR activation by BCAA inhibited lipid-induced hepatic autophagy, increased hepatic apoptosis, blocked hepatic FFA/triglyceride conversion, and increased hepatocyte susceptibility to FFA-mediated lipotoxicity. These data demonstrated that BCAA reduces HFD-induced body weight, at the expense of abnormal lipolysis and hyperlipidemia, causing hepatic lipotoxicity. Furthermore, BCAA directly exacerbate hepatic lipotoxicity by reducing lipogenesis and inhibiting autophagy in the hepatocyte. Copyright © 2016. Published by Elsevier

  15. Activation of liver X receptors prevents statin-induced death of 3T3-L1 preadipocytes

    DEFF Research Database (Denmark)

    Madsen, Lise; Petersen, Rasmus K; Steffensen, Knut R

    2008-01-01

    The biological functions of liver X receptors (LXRs) alpha and beta have primarily been linked to pathways involved in fatty acid and cholesterol homeostasis. Here we report a novel role of LXR activation in protecting cells from statin-induced death. When 3T3-L1 preadipocytes were induced...

  16. Maresin 1, a Proresolving Lipid Mediator, Mitigates Carbon Tetrachloride-Induced Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Ruidong Li

    2016-01-01

    Full Text Available Maresin 1 (MaR 1 was recently reported to have protective properties in several different animal models of acute inflammation by inhibiting inflammatory response. However, its function in acute liver injury is still unknown. To address this question, we induced liver injury in BALB/c mice with intraperitoneal injection of carbon tetrachloride with or without treatment of MaR 1. Our data showed that MaR 1 attenuated hepatic injury, oxidative stress, and lipid peroxidation induced by carbon tetrachloride, as evidenced by increased thiobarbituric acid reactive substances and reactive oxygen species levels were inhibited by treatment of MaR 1. Furthermore, MaR 1 increased activities of antioxidative mediators in carbon tetrachloride-treated mice liver. MaR 1 decreased indices of inflammatory mediators such as tumor necrosis factor-α, interleukin-6, interleukin-1β, monocyte chemotactic protein 1, myeloperoxidase, cyclooxygenase-2, and inducible nitric oxide synthase. Administration of MaR 1 inhibited activation of nuclear factor kappa B (NF-κb and mitogen-activated protein kinases (MAPKs in the liver of CCl4 treated mice. In conclusion, these results suggested the antioxidative, anti-inflammatory properties of MaR 1 in CCl4 induced liver injury. The possible mechanism is partly implicated in its abilities to inhibit ROS generation and activation of NF-κb and MAPK pathway.

  17. Metabolic profiles and bile acid extraction rate in the liver of cows with fasting-induced hepatic lipidosis.

    Science.gov (United States)

    Mohamed, T; Oikawa, S; Iwasaki, Y; Mizunuma, Y; Takehana, K; Endoh, D; Kurosawa, T; Sato, H

    2004-04-01

    This study was designed to monitor lipid profile in the portal and hepatic blood of cows with fasting-induced hepatic lipidosis, and to compare the results with those in the jugular blood. The work was also carried out to investigate bile acid (BA) in these vessels, and further to investigate BA extraction rate in the liver. Five cows were equipped with catheters in the portal, hepatic and jugular veins (day 0), fasted for 4 days (day 1-day 4) and then refed (day 5-day 11). Before morning feeding, blood was sampled before, during and after fasting from the catheterized vessels. In the portal blood, the concentration of non-esterified fatty acids (NEFA) showed a progressive increase and at day 5 there was an approximate twofold rise. Increased NEFA concentrations were also found similarly in the other two veins. At day 5, beta-hydroxybutyrate (BHBA) in the portal, hepatic and jugular blood rose to 197, 190 and 186% of the pre-fasting value, respectively. However, the concentrations of NEFA and BHBA in the three veins gradually returned to pre-fasting concentration during the refeeding period. Compared with the pre-fasting value at day 0, the content of liver triglyceride (TG) increased significantly at day 5 (P hepatic extraction rate of BA dropped from 3.1 times pre-fasting to 2.2 times during fasting. There were no significant differences in the concentrations of glucose, TG, total cholesterol, cholesterol esters, free cholesterol and phospholipids. The results of the current study show that metabolic alterations occur in the portal, hepatic and jugular veins during induction of hepatic lipidosis in cows, and mostly metabolites, with exception of BA concentration, run parallel. The decreased BA extraction rate in the liver of fasted cows was considered to reflect hepatic cell impairment caused by TG accumulation. Hopefully, the findings, at least in part, contribute to the explanation of the pathophysiology of hepatic lipidosis in dairy cows.

  18. Species of /sup 67/Ga-binding acid mucopolysaccharide in liver

    Energy Technology Data Exchange (ETDEWEB)

    Ando, A.; Ando, I.

    1985-01-01

    It was determined from measuring neutral saccharide in the structure that the principal /sup 67/Ga-binding acid mucopolysaccharide in liver was keratan sulfate and/or keratan polysulfate. On the other hand, it was clarified from the results of mucopolysaccharase treatment that the main /sup 67/Ga-binding acid mucopolysaccharide in liver was neither keratan sulfate, heparan sulfate, heparin, nor chondroitin sulfate A, B and C. Based on the present results, it was deduced that the main /sup 67/Ga-binding acid mucopolysaccharide in liver was keratan polysulfate.

  19. Hepatic overproduction of 13-HODE due to ALOX15 upregulation contributes to alcohol-induced liver injury in mice.

    Science.gov (United States)

    Zhang, Wenliang; Zhong, Wei; Sun, Qian; Sun, Xinguo; Zhou, Zhanxiang

    2017-08-21

    Chronic alcohol feeding causes lipid accumulation and apoptosis in the liver. This study investigated the role of bioactive lipid metabolites in alcohol-induced liver damage and tested the potential of targeting arachidonate 15-lipoxygenase (ALOX15) in treating alcoholic liver disease (ALD). Results showed that chronic alcohol exposure induced hepatocyte apoptosis in association with increased hepatic 13-HODE. Exposure of 13-HODE to Hepa-1c1c7 cells induced oxidative stress, ER stress and apoptosis. 13-HODE also perturbed proteins related to lipid metabolism. HODE-generating ALOX15 was up-regulated by chronic alcohol exposure. Linoleic acid, but not ethanol or acetaldehyde, induced ALOX15 expression in Hepa-1c1c7 cells. ALOX15 knockout prevented alcohol-induced liver damage via attenuation of oxidative stress, ER stress, lipid metabolic disorder, and cell death signaling. ALOX15 inhibitor (PD146176) treatment also significantly alleviated alcohol-induced oxidative stress, lipid accumulation and liver damage. These results demonstrated that activation of ALOX15/13-HODE circuit critically mediates the pathogenesis of ALD. This study suggests that ALOX15 is a potential molecular target for treatment of ALD.

  20. Disappearing or residual tiny (≤5 mm) colorectal liver metastases after chemotherapy on gadoxetic acid-enhanced liver MRI and diffusion-weighted imaging: Is local treatment required?

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo [Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul (Korea, Republic of); Cheonan Hospital, Department of Radiology, Soonchunhyang University College of Medicine, Cheonan-si, Chungcheongnam-do (Korea, Republic of); Song, Kyoung Doo; Kim, Young Kon [Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul (Korea, Republic of); Kim, Hee Cheol; Huh, Jung Wook [Sungkyunkwan University School of Medicine, Department of Surgery, Samsung Medical Center, Seoul (Korea, Republic of); Park, Young Suk; Park, Joon Oh; Kim, Seung Tae [Sungkyunkwan University School of Medicine, Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul (Korea, Republic of)

    2017-07-15

    To evaluate the clinical course of disappearing colorectal liver metastases (DLM) or residual tiny (≤5 mm) colorectal liver metastases (RTCLM) on gadoxetic acid-enhanced magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) in patients who had colorectal liver metastases (CLM) and received chemotherapy. Among 137 patients who received chemotherapy for CLM and underwent gadoxetic acid-enhanced MRI and DWI between 2010 and 2012, 43 patients with 168 DLMs and 48 RTCLMs were included. The cumulative in situ recurrence rate of DLM and progression rate of RTCLM and their predictive factors were evaluated. A total of 150 DLMs and 26 RTCLMs were followed up without additional treatment. At 1 and 2 years, respectively, the cumulative in situ recurrence rates for DLM were 10.9 % and 15.7 % and the cumulative progression rates for RTCLM were 27.2 % and 33.2 %. The in situ recurrence rate at 2 years was 4.9 % for the DLM group that did not show reticular hypointensity of liver parenchyma on hepatobiliary phase. DLM on gadoxetic acid-enhanced liver MRI and DWI indicates a high possibility of clinical complete response, especially in patients without chemotherapy-induced sinusoidal obstruction syndrome. Thirty-three percent of RTCLMs showed progression at 2 years. (orig.)

  1. Perilla Oil Supplementation Ameliorates High-Fat/High-Cholesterol Diet Induced Nonalcoholic Fatty Liver Disease in Rats via Enhanced Fecal Cholesterol and Bile Acid Excretion

    Directory of Open Access Journals (Sweden)

    Ting Chen

    2016-01-01

    Full Text Available Recent experimental studies and clinical trials have shown that hepatic cholesterol metabolic disorders are closely related to the development of nonalcoholic fatty liver disease (NAFLD. The main goal of this study was to investigate the efficacy of the perilla oil rich in alpha-linolenic acid (ALA against NASH and gain a deep insight into its potential mechanisms. Rats were fed a high-fat/high-cholesterol diet (HFD supplement with perilla oil (POH for 16 weeks. Routine blood biochemical tests and histological staining illustrated that the perilla oil administration improved HFD-induced hyperlipidemia, reduced hepatic steatosis, and inhibited hepatic inflammatory infiltration and fibrosis. Perilla oil also increased fecal bile acid and cholesterol excretion. Hepatic RNA-Seq analysis found that the long time perilla oil supplement notably modified the gene expression involved in cholesterol metabolism. Our results implicate that, after long-term high level dietary cholesterol feeding, rat liver endogenous synthesis of cholesterol and cholesterol-rich low density lipoprotein uptake was significantly inhibited, and perilla oil did not modulate expression of genes responsible for cholesterol synthesis but did increase cholesterol removed from hepatocytes by conversion to bile acids and increased fecal cholesterol excretion.

  2. Liver fibrosis in mice induced by carbon tetrachloride and its reversion by luteolin

    International Nuclear Information System (INIS)

    Domitrovic, Robert; Jakovac, Hrvoje; Tomac, Jelena; Sain, Ivana

    2009-01-01

    Hepatic fibrosis is effusive wound healing process in which excessive connective tissue builds up in the liver. Because specific treatments to stop progressive fibrosis of the liver are not available, we have investigated the effects of luteolin on carbon tetrachloride (CCl 4 )-induced hepatic fibrosis. Male Balb/C mice were treated with CCl 4 (0.4 ml/kg) intraperitoneally (i.p.), twice a week for 6 weeks. Luteolin was administered i.p. once daily for next 2 weeks, in doses of 10, 25, and 50 mg/kg of body weight. The CCl 4 control group has been observed for spontaneous reversion of fibrosis. CCl 4 -intoxication increased serum aminotransferase and alkaline phosphatase levels and disturbed hepatic antioxidative status. Most of these parameters were spontaneously normalized in the CCl 4 control group, although the progression of liver fibrosis was observed histologically. Luteolin treatment has increased hepatic matrix metalloproteinase-9 levels and metallothionein (MT) I/II expression, eliminated fibrinous deposits and restored architecture of the liver in a dose-dependent manner. Concomitantly, the expression of glial fibrillary acidic protein and α-smooth muscle actin indicated deactivation of hepatic stellate cells. Our results suggest the therapeutic effects of luteolin on CCl 4 -induced liver fibrosis by promoting extracellular matrix degradation in the fibrotic liver tissue and the strong enhancement of hepatic regenerative capability, with MTs as a critical mediator of liver regeneration.

  3. Adrenic acid as an inflammation enhancer in non-alcoholic fatty liver disease.

    Science.gov (United States)

    Horas H Nababan, Saut; Nishiumi, Shin; Kawano, Yuki; Kobayashi, Takashi; Yoshida, Masaru; Azuma, Takeshi

    2017-06-01

    This study was designed to identify novel links between lipid species and disease progression in non-alcoholic fatty liver disease (NAFLD). We analyzed lipid species in the liver and plasma of db/db mice fed a choline-deficient l-amino acid-defined, high-fat diet (CDAHFD) using liquid chromatography/mass spectrometry (LC/MS). An in vitro experiment was performed using HepG2 cells stimulated with recombinant human TNFα or IL1β. The expression of steatosis-, inflammation-, and fibrosis-related genes were analyzed. Plasma samples from NAFLD patients were also analyzed by LC/MS. The CDAHFD-fed db/db mice with hepatic steatosis, inflammation, mild fibrosis, obesity, and hypercholesterolemia displayed significantly higher hepatic and plasma levels of free adrenic acid (p < 0.05). The accumulated adrenic acid in the CDAHFD-fed db/db mice was associated with increased expression of ELOVL2 and 5, and the suppression of the acyl-CoA oxidase 1 gene during peroxisomal β-oxidation. The pretreatment of HepG2 cells with adrenic acid enhanced their cytokine-induced cytokines and chemokines mRNA expression. In NAFLD patients, the group with the highest ALT levels exhibited higher plasma adrenic acid concentrations than the other ALT groups (p-value for trend <0.001). Data obtained demonstrated that adrenic acid accumulation contributes to disease progression in NAFLD. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Prospective randomized trial of enoxaparin, pentoxifylline and ursodeoxycholic acid for prevention of radiation-induced liver toxicity.

    Directory of Open Access Journals (Sweden)

    Max Seidensticker

    Full Text Available Targeted radiotherapy of liver malignancies has found to be effective in selected patients. A key limiting factor of these therapies is the relatively low tolerance of the liver parenchyma to radiation. We sought to assess the preventive effects of a combined regimen of pentoxifylline (PTX, ursodeoxycholic acid (UDCA and low-dose low molecular weight heparin (LMWH on focal radiation-induced liver injury (fRILI.Patients with liver metastases from colorectal carcinoma who were scheduled for local ablation by radiotherapy (image-guided high-dose-rate interstitial brachytherapy were prospectively randomized to receive PTX, UDCA and LMWH for 8 weeks (treatment or no medication (control. Focal RILI at follow-up was assessed using functional hepatobiliary magnetic resonance imaging (MRI. A minimal threshold dose, i.e. the dose to which the outer rim of the fRILI was formerly exposed to, was quantified by merging MRI and dosimetry data.Results from an intended interim-analysis made a premature termination necessary. Twenty-two patients were included in the per-protocol analysis. Minimal mean hepatic threshold dose 6 weeks after radiotherapy (primary endpoint was significantly higher in the study treatment-group compared with the control (19.1 Gy versus 14.6 Gy, p = 0.011. Qualitative evidence of fRILI by MRI at 6 weeks was observed in 45.5% of patients in the treatment versus 90.9% of the control group. No significant differences between the groups were observed at the 12-week follow-up.The post-therapeutic application of PTX, UDCA and low-dose LMWH significantly reduced the extent and incidence fRILI at 6 weeks after radiotherapy. The development of subsequent fRILI at 12 weeks (4 weeks after cessation of PTX, UDCA and LMWH during weeks 1-8 in the treatment group was comparable to the control group thus supporting the observation that the agents mitigated fRILI.EU clinical trials register 2008-002985-70 ClinicalTrials.gov NCT01149304.

  5. Different effects of ursodeoxycholic acid on intrahepatic cholestasis in acute and recovery stages induced by alpha-naphthylisothiocyanate in mice.

    Science.gov (United States)

    Zhang, Linlin; Su, Huizong; Li, Yue; Fan, Yujuan; Wang, Qian; Jiang, Jian; Hu, Yiyang; Chen, Gaofeng; Tan, Bo; Qiu, Furong

    2018-03-01

    The aim of this study was to determine the effect of ursodeoxycholic acid (UDCA) on the alpha-naphthylisothiocyanate (ANIT)-induced acute and recovery stage of cholestasis model mice. In the acute stage of model mice, pretreatment with UDCA (25, 50, and 100 mg·kg -1 , ig) for 12 days prior to ANIT administration (50 mg·kg -1 , ig) resulted in the dramatic increase in serum biochemistry, with aggrevation of bile infarcts and hepatocyte necrosis. The elevation of beta-muricholic acid (β-MCA), cholic acid (CA), and taurocholic acid (TCA) in serum and liver, and reduction of these bile acids (BAs) in bile was observed. In contrast, in the recovery stage of model mice, treatment with UDCA (25, 50, and 100 mg·kg -1 , ig) for 7 days after ANIT administration (50 mg·kg -1 , ig) resulted in the significant decrease in levels of serum alanine aminotransferase (ALT) and total bile acid (TBA). Liver injury was attenuated, and the levels of TBA, CA, TCA, and β-MCA in the liver were significantly decreased. Additionally, UDCA can upregulate expression of BSEP, but it cannot upregulate expression of AE2. UDCA, which induced BSEP to increase bile acid-dependent bile flow, aggravated cholestasis and liver injury when the bile duct was obstructed in the acute stage of injury in model mice. In contrast, UDCA alleviated cholestasis and liver injury induced by ANIT when the obstruction was improved in the recovery stage. Copyright © 2018. Published by Elsevier Inc.

  6. Kupffer cells activation promoted binge drinking-induced fatty liver by activating lipolysis in white adipose tissues.

    Science.gov (United States)

    Zhao, Yu-Ying; Yang, Rui; Xiao, Mo; Guan, Min-Jie; Zhao, Ning; Zeng, Tao

    2017-09-01

    Kupffer cells (KCs) have been suggested to play critical roles in chronic ethanol induced early liver injury, but the role of KCs in binge drinking-induced hepatic steatosis remains unclear. This study was designed to investigate the roles of KCs inhibitor (GdCl 3 ) and TNF-α antagonist (etanercept) on binge drinking-induced liver steatosis and to explore the underlying mechanisms. C57BL/6 mice were exposed to three doses of ethanol (6g/kg body weight) to mimic binge drinking-induced fatty liver. The results showed that both GdCl 3 and etanercept partially but significantly alleviated binge drinking-induced increase of hepatic triglyceride (TG) level, and reduced fat droplets accumulation in mice liver. GdCl 3 but not etanercept significantly blocked binge drinking-induced activation of KCs. However, neither GdCl 3 nor etanercept could affect binge drinking-induced decrease of PPAR-α, ACOX, FAS, ACC and SCD protein levels, or increase of the LC3 II/LC3 I ratio and p62 protein level. Interestingly, both GdCl 3 and etanercept significantly suppressed binge drinking-induced phosphorylation of HSL in epididymal adipose tissues. Results of in vitro studies with cultured epididymal adipose tissues showed that TNF-α could increase the phosphorylation of HSL in adipose tissues and upgrade the secretion of free fatty acid (FFA) in the culture medium. Taken together, KCs inhibitor and TNF-α antagonist could partially attenuate binge drinking-induced liver steatosis, which might be attributed to the suppression of mobilization of white adipose tissues. These results suggest that KCs activation may promote binge drinking-induced fatty liver by TNF-α mediated activation of lipolysis in white adipose tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Hepatoprotective and antioxidant activity of Phaseolus trilobus, Ait on bile duct ligation induced liver fibrosis in rats.

    Science.gov (United States)

    Fursule, R A; Patil, S D

    2010-06-16

    Phaseolus trilobus Ait (Fabaceae) is extensively used by tribal people of Nandurbar district (Maharashtra, India) in the treatment of Jaundice and other liver disorders. of the present study was to assess the medicinal claim of Phaseolus trilobus as hepatoprotective and antioxidant. The hepatoprotective activity of methanol and aqueous extract of Phaseolus trilobus was evaluated by bile duct ligation induced liver fibrosis and antioxidant activity was evaluated using in vitro and in vivo antioxidant models viz anti-lipid peroxidation assay, super oxide radical scavenging assay and glutathione estimation in liver. Liver function tests were carried out to detect hepatoprotective activity, which was further supported by histopathological examination. Methanol and aqueous extracts of Phaseolus trilobus reduced elevated level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), bilirubin and hydroxyproline significantly (pWistar rats, proving hepatoprotective activity comparable with Silymarin. Both the extracts were found to reduce the elevated levels of serum thiobarbituric acid reactive substance (TBARS) and elevate superoxide scavenging radical activity proving antioxidant activity comparable with ascorbic acid. The reduced level of glutathione was found to be elevated in liver proving antioxidant activity comparable with Silymarin. Phaseolus trilobus posses hepatoprotective property and is effective in oxidative stress induced cholestatic hepatic injury. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Drug-induced liver injury due to antibiotics.

    Science.gov (United States)

    Björnsson, Einar S

    Drug-induced liver injury (DILI) is an important differential diagnosis in patients with abnormal liver tests and normal hepatobiliary imaging. Of all known liver diseases, the diagnosis of DILI is probably one of the most difficult one to be established. In all major studies on DILI, antibiotics are the most common type of drugs that have been reported. The clinical phenotype of different types of antibiotics associated with liver injury is highly variable. Some widely used antibiotics such as amoxicillin-clavulanate have been shown to have a delayed onset on liver injury and recently cefazolin has been found to lead to liver injury 1-3 weeks after exposure of a single infusion. The other extreme is the nature of nitrofurantoin-induced liver injury, which can occur after a few years of treatment and lead to acute liver failure (ALF) or autoimmune-like reaction. Most patients with liver injury associated with use of antibiotics have a favorable prognosis. However, patients with jaundice have approximately 10% risk of death from liver failure and/or require liver transplantation. In rare instances, the hepatoxicity can lead to chronic injury and vanishing bile duct syndrome. Given, sometimes very severe consequences of the adverse liver reactions, it cannot be over emphasized that the indication for the different antibiotics should be evidence-based and symptoms and signs of liver injury from the drugs should lead to prompt cessation of therapy.

  9. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Panchal, Sunil K; Ward, Leigh; Brown, Lindsay

    2013-03-01

    Fruits and nuts may prevent or reverse common human health conditions such as obesity, diabetes and hypertension; together, these conditions are referred to as metabolic syndrome, an increasing problem. This study has investigated the responses to ellagic acid, present in many fruits and nuts, in a diet-induced rat model of metabolic syndrome. Eight- to nine-week-old male Wistar rats were divided into four groups for 16-week feeding with cornstarch diet (C), cornstarch diet supplemented with ellagic acid (CE), high-carbohydrate, high-fat diet (H) and high-carbohydrate, high-fat diet supplemented with ellagic acid (HE). CE and HE rats were given 0.8 g/kg ellagic acid in food from week 8 to 16 only. At the end of 16 weeks, cardiovascular, hepatic and metabolic parameters along with protein levels of Nrf2, NF-κB and CPT1 in the heart and the liver were characterised. High-carbohydrate, high-fat diet-fed rats developed cardiovascular remodelling, impaired ventricular function, impaired glucose tolerance, non-alcoholic fatty liver disease with increased protein levels of NF-κB and decreased protein levels of Nrf2 and CPT1 in the heart and the liver. Ellagic acid attenuated these diet-induced symptoms of metabolic syndrome with normalisation of protein levels of Nrf2, NF-κB and CPT1. Ellagic acid derived from nuts and fruits such as raspberries and pomegranates may provide a useful dietary supplement to decrease the characteristic changes in metabolism and in cardiac and hepatic structure and function induced by a high-carbohydrate, high-fat diet by suppressing oxidative stress and inflammation.

  10. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    Energy Technology Data Exchange (ETDEWEB)

    Woolbright, Benjamin L.; Dorko, Kenneth [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Antoine, Daniel J.; Clarke, Joanna I. [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Gholami, Parviz [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Li, Feng [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson [Department of Surgery, University of Kansas Medical Center, Kansas City, KS (United States); Fan, Fang [Department of Pathology, University of Kansas Medical Center, Kansas City, KS (United States); Jenkins, Rosalind E.; Park, B. Kevin [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Hagenbuch, Bruno [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Olyaee, Mojtaba [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2015-03-15

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  11. Traditional Chinese Medicine and Herb-induced Liver Injury: Comparison with Drug-induced Liver Injury.

    Science.gov (United States)

    Jing, Jing; Teschke, Rolf

    2018-03-28

    Cases of suspected herb-induced liver injury (HILI) caused by herbal Traditional Chinese Medicines (TCMs) and of drug-induced liver injury (DILI) are commonly published in the scientific literature worldwide. As opposed to the multiplicity of botanical chemicals in herbal TCM products, which are often mixtures of several herbs, conventional Western drugs contain only a single synthetic chemical. It is therefore of interest to study how HILI by TCM and DILI compare with each other, and to what extent results from each liver injury type can be transferred to the other. China is among the few countries with a large population using synthetic Western drugs as well as herbal TCM. Therefore, China is well suited to studies of liver injury comparing drugs with TCM herbs. Despite some concordance, recent analyses of liver injury cases with verified causality, using the Roussel Uclaf Causality Assessment Method, revealed major differences in HILI caused by TCMs as compared to DILI with respect to the following features: HILI cases are less frequently observed as compared to DILI, have a smaller proportion of females and less unintentional rechallenge events, and present a higher rate of hepatocellular injury features. Since many results were obtained among Chinese residents who had access to and had used Western drugs and TCM herbs, such ethnic homogeneity supports the contention that the observed differences of HILI and DILI in the assessed population are well founded.

  12. A cellular model to study drug-induced liver injury in nonalcoholic fatty liver disease: Application to acetaminophen

    Energy Technology Data Exchange (ETDEWEB)

    Michaut, Anaïs; Le Guillou, Dounia [INSERM, U991, Université de Rennes 1, Rennes (France); Moreau, Caroline [INSERM, U991, Université de Rennes 1, Rennes (France); Service de Biochimie et Toxicologie, CHU Pontchaillou, Rennes (France); Bucher, Simon [INSERM, U991, Université de Rennes 1, Rennes (France); McGill, Mitchell R. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Martinais, Sophie [INSERM, U991, Université de Rennes 1, Rennes (France); Gicquel, Thomas; Morel, Isabelle [INSERM, U991, Université de Rennes 1, Rennes (France); Service de Biochimie et Toxicologie, CHU Pontchaillou, Rennes (France); Robin, Marie-Anne [INSERM, U991, Université de Rennes 1, Rennes (France); Jaeschke, Hartmut [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Fromenty, Bernard, E-mail: bernard.fromenty@inserm.fr [INSERM, U991, Université de Rennes 1, Rennes (France)

    2016-02-01

    Obesity and nonalcoholic fatty liver disease (NAFLD) can increase susceptibility to hepatotoxicity induced by some xenobiotics including drugs, but the involved mechanisms are poorly understood. For acetaminophen (APAP), a role of hepatic cytochrome P450 2E1 (CYP2E1) is suspected since the activity of this enzyme is consistently enhanced during NAFLD. The first aim of our study was to set up a cellular model of NAFLD characterized not only by triglyceride accumulation but also by higher CYP2E1 activity. To this end, human HepaRG cells were incubated for one week with stearic acid or oleic acid, in the presence of different concentrations of insulin. Although cellular triglycerides and the expression of lipid-responsive genes were similar with both fatty acids, CYP2E1 activity was significantly increased only by stearic acid. CYP2E1 activity was reduced by insulin and this effect was reproduced in cultured primary human hepatocytes. Next, APAP cytotoxicity was assessed in HepaRG cells with or without lipid accretion and CYP2E1 induction. Experiments with a large range of APAP concentrations showed that the loss of ATP and glutathione was almost always greater in the presence of stearic acid. In cells pretreated with the CYP2E1 inhibitor chlormethiazole, recovery of ATP was significantly higher in the presence of stearate with low (2.5 mM) or high (20 mM) concentrations of APAP. Levels of APAP-glucuronide were significantly enhanced by insulin. Hence, HepaRG cells can be used as a valuable model of NAFLD to unveil important metabolic and hormonal factors which can increase susceptibility to drug-induced hepatotoxicity. - Highlights: • Nonalcoholic fatty liver disease (NAFLD) is frequent in obese individuals. • NAFLD can favor hepatotoxicity induced by some drugs including acetaminophen (APAP). • A model of NAFLD was set up by using HepaRG cells incubated with stearate or oleate. • Stearate-loaded HepaRG cells presented higher cytochrome P450 2E1 (CYP2E1

  13. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet.

    Science.gov (United States)

    Ma, Xiaoqing; Du, Wenhua; Shao, Shanshan; Yu, Chunxiao; Zhou, Lingyan; Jing, Fei

    2018-01-01

    Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD), high fat diet (HFD), and HFD administered with vildagliptin (50 mg/Kg) (V-HFD). After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission electron microscopy, real-time PCR for gene expression levels, and western blots for protein expression levels. ER stress was induced in HepG2 cells with palmitic acid and the effects of vildagliptin were investigated. Results. HFD mice showed increased liver weight/body weight (20.27%) and liver triglycerides (314.75%) compared to CD mice, but these decreased by 9.27% and 21.83%, respectively, in V-HFD mice. In the liver, HFD induced the expression of ER stress indicators significantly, which were obviously decreased by vildagliptin. In vitro, the expressions of molecular indicators of ER stress were reduced in HepG2 when vildagliptin was administered. Conclusions. Vildagliptin alleviates hepatic ER stress in a mouse high fat diet model. In HepG2 cells, vildagliptin directly reduced ER stress. Therefore, vildagliptin may be a potential agent for nonalcoholic fatty liver disease.

  14. Ectopic Liver Tissue Formation in Rats with Induced Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Bauyrzhan Umbayev

    2014-12-01

    Full Text Available Introduction: The possible alternative approach to whole-organ transplantation is a cell-based therapy, which can also be used as a "bridge" to liver transplantation.  However, morphological and functional changes in the liver of patients suffering from chronic liver fibrosis and cirrhosis restrict the effectiveness of direct cell transplantation. Therefore, extra hepatic sites for cell transplantation, including the spleen, pancreas, peritoneal cavity, and subrenal capsule, could be a useful therapeutic approach for compensation of liver functions. However, a method of transplantation of hepatocytes into ectopic sites is needed to improve hepatocyte engraftment. Previously published data has demonstrated that mouse lymph nodes can support the engraftment and proliferation of hepatocytes as ES and rescue Fah mice from lethal liver failure. Thus, the aim of the study was to evaluate the engraftment of i.p. injected allogeneic hepatocytes into extra hepatic sites in albino rats with chemically induced liver fibrosis (LF. Materials and methods: Albino rats were randomly divided into 4 groups: (1 intact group (n = 18; (2 rats with induced LF (n = 18; (3 rats with induced LF and transplanted with hepatocytes (n = 18; (4 as a control, rats were treated with cyclosporine A only (n = 18. In order to prevent an immune response, groups 2 and 3 were subjected to immunosuppression by cyclosporine A (25 mg/kg per day. LF was induced using N-nitrosodimethylamine (NDMA, i.p., 10 mg/kg, three times a week for 4 weeks and confirmed by histological analysis of the liver samples. Hepatocytes transplantation (HT was performed two days after NDMA exposure cessation by i.p. injection of 5×106 freshly isolated allogeneic hepatocytes. Liver function was assessed by quantifying blood biochemical parameters (ALT, AST, GGT, total protein, bilirubin, and albumin at 1 week, 1 month, and 2 months after hepatocytes transplantation (HT. To confirm a hepatocytes

  15. Ursodeoxycholic acid for cystic fibrosis-related liver disease.

    Science.gov (United States)

    Cheng, Katharine; Ashby, Deborah; Smyth, Rosalind L

    2017-09-11

    Abnormal biliary secretion leads to the thickening of bile and the formation of plugs within the bile ducts; the consequent obstruction and abnormal bile flow ultimately results in the development of cystic fibrosis-related liver disease. This condition peaks in adolescence with up to 20% of adolescents with cystic fibrosis developing chronic liver disease. Early changes in the liver may ultimately result in end-stage liver disease with people needing transplantation. One therapeutic option currently used is ursodeoxycholic acid. This is an update of a previous review. To analyse evidence that ursodeoxycholic acid improves indices of liver function, reduces the risk of developing chronic liver disease and improves outcomes in general in cystic fibrosis. We searched the Cochrane CF and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches, handsearches of relevant journals and abstract books of conference proceedings. We also contacted drug companies and searched online trial registries.Date of the most recent search of the Group's trials register: 09 April 2017. Randomised controlled trials of the use of ursodeoxycholic acid for at least three months compared with placebo or no additional treatment in people with cystic fibrosis. Two authors independently assessed trial eligibility and quality. The authors used GRADE to assess the quality of the evidence. Twelve trials have been identified, of which four trials involving 137 participants were included; data were only available from three of the trials (118 participants) since one cross-over trial did not report appropriate data. The dose of ursodeoxycholic acid ranged from 10 to 20 mg/kg/day for up to 12 months. The complex design used in two trials meant that data could only be analysed for subsets of participants. There was no significant difference in weight change, mean difference -0.90 kg (95% confidence interval -1.94 to 0.14) based on 30

  16. The reversed feto-maternal bile acid gradient in intrahepatic cholestasis of pregnancy is corrected by ursodeoxycholic acid.

    Directory of Open Access Journals (Sweden)

    Victoria Geenes

    Full Text Available Intrahepatic cholestasis of pregnancy (ICP is a pregnancy-specific liver disorder associated with an increased risk of adverse fetal outcomes. It is characterised by raised maternal serum bile acids, which are believed to cause the adverse outcomes. ICP is commonly treated with ursodeoxycholic acid (UDCA. This study aimed to determine the fetal and maternal bile acid profiles in normal and ICP pregnancies, and to examine the effect of UDCA treatment. Matched maternal and umbilical cord serum samples were collected from untreated ICP (n = 18, UDCA-treated ICP (n = 46 and uncomplicated pregnancy (n = 15 cases at the time of delivery. Nineteen individual bile acids were measured using HPLC-MS/MS. Maternal and fetal serum bile acids are significantly raised in ICP compared with normal pregnancy (p = <0.0001 and <0.05, respectively, predominantly due to increased levels of conjugated cholic and chenodeoxycholic acid. There are no differences between the umbilical cord artery and cord vein levels of the major bile acid species. The feto-maternal gradient of bile acids is reversed in ICP. Treatment with UDCA significantly reduces serum bile acids in the maternal compartment (p = <0.0001, thereby reducing the feto-maternal transplacental gradient. UDCA-treatment does not cause a clinically important increase in lithocholic acid (LCA concentrations. ICP is associated with significant quantitative and qualitative changes in the maternal and fetal bile acid pools. Treatment with UDCA reduces the level of bile acids in both compartments and reverses the qualitative changes. We have not found evidence to support the suggestion that UDCA treatment increases fetal LCA concentrations to deleterious levels.

  17. Dietary docosahexaenoic acid-induced generation of liver lipid peroxides is not suppressed further by elevated levels of glutathione in ODS rats.

    Science.gov (United States)

    Sekine, Seiji; Kubo, Kazuhiro; Tadokoro, Tadahiro; Saito, Morio

    2006-04-01

    We examined the effects of ascorbic acid (AsA) and glutathione (GSH; experiment 1) and of GSH in acetaminophen-fed rats (experiment 2) on dietary docosahexaenoic acid (DHA)-induced tissue lipid peroxidation. In experiment 1, AsA-requiring Osteogenic Disorder Shionogi/Shi-od/od (ODS) rats were fed soybean protein diets containing DHA (10.0% total energy) and AsA at 50 (low) or 300 (normal) mg/kg without (low) or with (normal) methionine at 2 g/kg for 32 d. In experiment 2, ODS rats were fed diets containing DHA (7.8% total energy) and acetaminophen (4 g/kg) with different levels of dietary methionine (low, moderate, high, and excessive at 0, 3, 6, and 9 g/kg, respectively) for 30 d. Tissue lipid peroxides and antioxidant levels were determined. In experiment 1, liver lipid peroxide levels in the low-AsA group were lower than those in the normal-AsA group, but kidney and testis lipid peroxide levels in the low-AsA group were higher than those in the normal-AsA group. Dietary methionine tended to decrease tissue lipid peroxide levels but did not decrease vitamin E (VE) consumption. In experiment 2, a high level of methionine (6 g/kg) decreased liver lipid peroxide levels and VE consumption. However, generation of tissue lipid peroxides and VE consumption were not decreased further by a higher dose of methionine (9 g/kg). Higher than normal levels of dietary methionine are not necessarily associated with decreased dietary DHA-induced generation of tissue lipid peroxides and VE consumption except that the GSH requirement is increased in a condition such as acetaminophen feeding.

  18. A natural antioxidant, tannic acid mitigates iron-overload induced hepatotoxicity in Swiss albino mice through ROS regulation.

    Science.gov (United States)

    Basu, Tapasree; Panja, Sourav; Shendge, Anil Khushalrao; Das, Abhishek; Mandal, Nripendranath

    2018-05-01

    Tannic acid (TA), a water soluble natural polyphenol with 8 gallic acids groups, is abundantly present in various medicinal plants. Previously TA has been investigated for its antimicrobial and antifungal properties. Being a large polyphenol, TA chelates more than 1 metal. Hence TA has been explored for potent antioxidant activities against reactive oxygen species (ROS), reactive nitrogen species (RNS) and as iron chelator in vitro thereby mitigating iron-overload induced hepatotoxicity in vivo. Iron dextran was injected intraperitoneally in Swiss albino mice to induce iron-overload triggered hepatotoxicity, followed by oral administration of TA for remediation. After treatment, liver, spleen, and blood samples were processed from sacrificed animals. The liver iron, serum ferritin, serum markers, ROS, liver antioxidant status, and liver damage parameters were assessed, followed by histopathology and protein expression studies. Our results show that TA is a prominent ROS and RNS scavenger as well as iron chelator in vitro. It also reversed the ROS levels in vivo and restricted the liver damage parameters as compared to the standard drug, desirox. Moreover, this natural polyphenol exclusively ameliorates the histopathological and fibrotic changes in liver sections reducing the iron-overload, along with chelation of liver iron and normalization of serum ferritin. The protective role of TA against iron-overload induced apoptosis in liver was further supported by changed levels of caspase 3, PARP as well as Bax/BCl-2 ratio. Thus, TA can be envisaged as a better orally administrable iron chelator to reduce iron-overload induced hepatotoxicity through ROS regulation. © 2018 Wiley Periodicals, Inc.

  19. Hepatic regeneration and functional recovery following partial liver resection in an experimental model of hepatic steatosis treated with omega-3 fatty acids

    NARCIS (Netherlands)

    Marsman, H. A.; de Graaf, W.; Heger, M.; van Golen, R. F.; ten Kate, F. J. W.; Bennink, R.; van Gulik, T. M.

    2013-01-01

    Omega-3 fatty acids (FAs) have been shown to reduce experimental hepatic steatosis and protect the liver from ischaemia-reperfusion injury. The aim of this study was to examine the effects of omega-3 FAs on regeneration of steatotic liver. Steatosis was induced in rats by a 3-week

  20. Mesenchymal stem cell-conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells

    International Nuclear Information System (INIS)

    Chen Yixing; Zeng Zhaochong; Sun Jing; Huang Yan; Zhang Zhenyu; Zeng Haiying

    2015-01-01

    Current management of radiation-induced liver injury is limited. Sinusoidal endothelial cell (SEC) apoptosis and inflammation are considered to be initiating events in hepatic damage. We hypothesized that mesenchymal stem cells (MSCs) possess anti-apoptotic and anti-inflammatory actions during hepatic irradiation, acting via paracrine mechanisms. This study aims to examine whether MSC-derived bioactive components are protective against radiation-induced liver injury in rats. MSC-conditioned medium (MSC-CM) was generated from rat bone marrow–derived MSCs. The effect of MSC-CM on the viability of irradiated SECs was examined by flow cytometric analysis. Activation of the Akt and ERK pathways was analyzed by western blot. MSC-CM was also delivered to Sprague–Dawley rats immediately before receiving liver irradiation, followed by testing for pathological features, changes in serum hyaluronic acid, ALT, and inflammatory cytokine levels, and liver cell apoptosis. MSC-CM enhanced the viability of irradiated SECs in vitro and induced Akt and ERK phosphorylation in these cells. Infusion of MSC-CM immediately before liver irradiation provided a significant anti-apoptotic effect on SECs and improved the histopathological features of injury in the irradiated liver. MSC-CM also reduced the secretion and expression of inflammatory cytokines and increased the expression of anti-inflammatory cytokines. MSC-derived bioactive components could be a novel therapeutic approach for treating radiation-induced liver injury. (author)

  1. TWEAK induces liver progenitor cell proliferation

    Science.gov (United States)

    Jakubowski, Aniela; Ambrose, Christine; Parr, Michael; Lincecum, John M.; Wang, Monica Z.; Zheng, Timothy S.; Browning, Beth; Michaelson, Jennifer S.; Baestcher, Manfred; Wang, Bruce; Bissell, D. Montgomery; Burkly, Linda C.

    2005-01-01

    Progenitor (“oval”) cell expansion accompanies many forms of liver injury, including alcohol toxicity and submassive parenchymal necrosis as well as experimental injury models featuring blocked hepatocyte replication. Oval cells can potentially become either hepatocytes or biliary epithelial cells and may be critical to liver regeneration, particularly when hepatocyte replication is impaired. The regulation of oval cell proliferation is incompletely understood. Herein we present evidence that a TNF family member called TWEAK (TNF-like weak inducer of apoptosis) stimulates oval cell proliferation in mouse liver through its receptor Fn14. TWEAK has no effect on mature hepatocytes and thus appears to be selective for oval cells. Transgenic mice overexpressing TWEAK in hepatocytes exhibit periportal oval cell hyperplasia. A similar phenotype was obtained in adult wild-type mice, but not Fn14-null mice, by administering TWEAK-expressing adenovirus. Oval cell expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) was significantly reduced in Fn14-null mice as well as in adult wild-type mice with a blocking anti-TWEAK mAb. Importantly, TWEAK stimulated the proliferation of an oval cell culture model. Finally, we show increased Fn14 expression in chronic hepatitis C and other human liver diseases relative to its expression in normal liver, which suggests a role for the TWEAK/Fn14 pathway in human liver injury. We conclude that TWEAK has a selective mitogenic effect for liver oval cells that distinguishes it from other previously described growth factors. PMID:16110324

  2. Chemoprotective effect of omega-3 fatty acids on thioacetamide induced hepatic fibrosis in male rats

    Directory of Open Access Journals (Sweden)

    Atef M. Al-Attar

    2017-05-01

    Full Text Available The current study was designed to investigate the possible protective effect of omega-3 fatty acids from fish oil on hepatic fibrosis induced by thioacetamide (TAA in male rats. The experimental animals were divided into four groups. The first group was received saline solution and served as control. The second group was given 250 mg/kg body weight of TAA. The third group was treated with omega-3 fatty acids and TAA. The fourth group was given saline solution and supplemented with omega-3 fatty acids. Treatment of rats with TAA for three and six weeks resulted in a significant decrease in body weight gain, while the value of liver/body weight ratio was statistically increased. Furthermore, the levels of serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma glutamyl transferase and total bilirubin were significantly increased. After three weeks of exposure to only TAA, liver sections showed an abnormal morphology characterized by noticeable fibrosis with the extracellular matrix collagen contents and damage of liver cells’ structure. Liver sections from rats treated with only TAA for six weeks revealed an obvious increase in extracellular matrix collagen content and bridging fibrosis. Treating TAA-intoxicated rats with omega-3 fatty acids significantly attenuated the severe physiological and histopathological changes. Finally, the present investigation suggests that omega-3 fatty acids could act against hepatic fibrosis induced by TAA due to its antioxidant properties, thus supporting its use in hepatic fibrosis therapy.

  3. Acetaminophen-induced acute liver injury in HCV transgenic mice

    International Nuclear Information System (INIS)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U.; Tech, Katherine; Macdonald, Jeffrey M.; Boorman, Gary A.; Chatterjee, Saurabh; Mason, Ronald P.; Melnyk, Stepan B.; Tryndyak, Volodymyr P.; Pogribny, Igor P.; Rusyn, Ivan

    2013-01-01

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  4. Acetaminophen-induced acute liver injury in HCV transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U. [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Tech, Katherine; Macdonald, Jeffrey M. [Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Boorman, Gary A. [Covance, Chantilly, VA 20151 (United States); Chatterjee, Saurabh; Mason, Ronald P. [Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, RTP, NC 27713 (United States); Melnyk, Stepan B. [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72201 (United States); Tryndyak, Volodymyr P.; Pogribny, Igor P. [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2013-01-15

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  5. Pitavastatin suppresses diethylnitrosamine-induced liver preneoplasms in male C57BL/KsJ-db/db obese mice

    International Nuclear Information System (INIS)

    Shimizu, Masahito; Tanaka, Takuji; Moriwaki, Hisataka; Yasuda, Yoichi; Sakai, Hiroyasu; Kubota, Masaya; Terakura, Daishi; Baba, Atsushi; Ohno, Tomohiko; Kochi, Takahiro; Tsurumi, Hisashi

    2011-01-01

    Obesity and related metabolic abnormalities, including inflammation and lipid accumulation in the liver, play a role in liver carcinogenesis. Adipocytokine imbalances, such as decreased serum adiponectin levels, are also involved in obesity-related liver tumorigenesis. In the present study, we examined the effects of pitavastatin - a drug used for the treatment of hyperlipidemia - on the development of diethylnitrosamine (DEN)-induced liver preneoplastic lesions in C57BL/KsJ-db/db (db/db) obese mice. Male db/db mice were administered tap water containing 40 ppm DEN for 2 weeks and were subsequently fed a diet containing 1 ppm or 10 ppm pitavastatin for 14 weeks. At sacrifice, feeding with 10 ppm pitavastatin significantly inhibited the development of hepatic premalignant lesions, foci of cellular alteration, as compared to that in the untreated group by inducing apoptosis, but inhibiting cell proliferation. Pitavastatin improved liver steatosis and activated the AMPK-α protein in the liver. It also decreased free fatty acid and aminotransferases levels, while increasing adiponectin levels in the serum. The serum levels of tumor necrosis factor (TNF)-α and the expression of TNF-α and interleukin-6 mRNAs in the liver were decreased by pitavastatin treatment, suggesting attenuation of the chronic inflammation induced by excess fat deposition. Pitavastatin is effective in inhibiting the early phase of obesity-related liver tumorigenesis and, therefore, may be useful in the chemoprevention of liver cancer in obese individuals

  6. Determination of Selected Amino Acids in Serum of Patients with Liver Disease.

    Science.gov (United States)

    Kanďár, Roman; Drábková, Petra; Toiflová, Tereza; Čegan, Alexander

    2016-01-01

    The determination of amino acids can be a reliable approach for extended diagnosis of liver diseases. This is because liver disease can be a cause of impaired amino acid metabolism. Therefore, a method for the determination of serum amino acids, applicable for clinical purposes, is necessary. The aim of this study was to find differences in the levels of selected amino acids between patients with liver disease and a control group. Samples of peripheral venous blood were obtained from a group of patients with liver disease (n = 131, 59 women at an average age of 60 years and 72 men at an average age of 52 years) and a control group (n = 105, 47 women at an average age of 62 years and 58 men at an average age of 58 years). Before the separation, the amino acids were derivatized with naphthalene-2,3-dicarboxaldehyde. For the separation, reverse phase column was used. The effluent was monitored with a fluorescence detector. There were significant differences in the concentrations of some amino acids between the patients and the control group, but also between women and men. Correlations between some amino acids and markers of liver blood tests and lipid metabolism were observed. A simple, relatively rapid and selective HPLC method with fluorescence detection for the determination of selected amino acids in serum has been developed.

  7. Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats

    International Nuclear Information System (INIS)

    Miller, Desinia B.; Karoly, Edward D.; Jones, Jan C.; Ward, William O.; Vallanat, Beena D.; Andrews, Debora L.; Schladweiler, Mette C.; Snow, Samantha J.; Bass, Virginia L.; Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D.; Kodavanti, Urmila P.

    2015-01-01

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O 3 ) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O 3 exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O 3 at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O 3 , 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O 3 increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O 3 increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O 3 . In conclusion, short-term O 3 exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. - Highlights: • Ozone, an ubiquitous air pollutant induces acute systemic metabolic derangement. • Serum metabolomic approach provides novel insights in ozone-induced changes. • Ozone exposure induces leptinemia, hyperglycemia, and glucose intolerance

  8. Differentiation of human-induced pluripotent stem cell under flow conditions to mature hepatocytes for liver tissue engineering

    DEFF Research Database (Denmark)

    Starokozhko, Viktoriia; Hemmingsen, Mette; Larsen, Layla

    2018-01-01

    Hepatic differentiation of human-induced pluripotent stem cells (hiPSCs) under flow conditions in a 3D scaffold is expected to be a major step forward for construction of bioartificial livers. The aims of this study were to induce hepatic differentiation of hiPSCs under perfusion conditions...... and to perform functional comparisons with fresh human precision-cut liver slices (hPCLS), an excellent benchmark for the human liver in vivo. The majority of the mRNA expression of CYP isoenzymes and transporters and the tested CYP activities, Phase II metabolism, and albumin, urea, and bile acid synthesis...... in the hiPSC-derived cells reached values that overlap those of hPCLS, which indicates a higher degree of hepatic differentiation than observed until now. Differentiation under flow compared with static conditions had a strong inducing effect on Phase II metabolism and suppressed AFP expression but resulted...

  9. Role and mechanisms of autophagy in acetaminophen-induced liver injury.

    Science.gov (United States)

    Chao, Xiaojuan; Wang, Hua; Jaeschke, Hartmut; Ding, Wen-Xing

    2018-04-23

    Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure in the USA and many other countries. Although the metabolism and pathogenesis of APAP has been extensively investigated for decades, the mechanisms by which APAP induces liver injury are incompletely known, which hampers the development of effective therapeutic approaches to tackle this important clinical problem. Autophagy is a highly conserved intracellular degradation pathway, which aims at recycling cellular components and damaged organelles in response to adverse environmental conditions and stresses as a survival mechanism. There is accumulating evidence indicating that autophagy is activated in response to APAP overdose in specific liver zone areas, and pharmacological activation of autophagy protects against APAP-induced liver injury. Increasing evidence also suggests that hepatic autophagy is impaired in nonalcoholic fatty livers (NAFLD), and NAFLD patients are more susceptible to APAP-induced liver injury. Here, we summarized the current progress on the role and mechanisms of autophagy in protecting against APAP-induced liver injury. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Comparative Analysis of EPA/DHA-PL Forage and Liposomes in Orotic Acid-Induced Nonalcoholic Fatty Liver Rats and Their Related Mechanisms.

    Science.gov (United States)

    Chang, Mengru; Zhang, Tiantian; Han, Xiuqing; Tang, Qingjuan; Yanagita, Teruyoshi; Xu, Jie; Xue, Changhu; Wang, Yuming

    2018-02-14

    Nonalcoholic fatty liver disease (NAFLD) has become one predictive factor of death from various illnesses. The present study was to comparatively investigate the effects of eicosapentaenoic acid-enriched and docosahexaenoic acid-enriched phospholipids forage (EPA-PL and DHA-PL) and liposomes (lipo-EPA and lipo-DHA) on NAFLD and demonstrate the possible protective mechanisms involved. The additive doses of EPA-PL and DHA-PL in all treatment groups were 1% of total diets, respectively. The results showed that Lipo-EPA could significantly improve hepatic function by down-regulating orotic acid-induced serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels by 55.6% and 34.2%, respectively (p DHA could also significantly suppress hepatic lipid accumulation mainly by enhancement of hepatic lipolysis and cholesterol efflux. Furthermore, DHA-PL played a certain role in inhibiting hepatic lipogenesis and accelerating cholesterol efflux. The results obtained in this work might contribute to the understanding of the biological activities of EPA/DHA-PL and liposomes and further investigation on its potential application values for food supplements.

  11. Inducible arginase 1 deficiency in mice leads to hyperargininemia and altered amino acid metabolism.

    Directory of Open Access Journals (Sweden)

    Yuan Yan Sin

    Full Text Available Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1, which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing "floxed" Arg1 mice with CreER(T2 mice. The resulting mice (Arg-Cre die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency.

  12. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet

    Directory of Open Access Journals (Sweden)

    Xiaoqing Ma

    2018-01-01

    Full Text Available Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD, high fat diet (HFD, and HFD administered with vildagliptin (50 mg/Kg (V-HFD. After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission electron microscopy, real-time PCR for gene expression levels, and western blots for protein expression levels. ER stress was induced in HepG2 cells with palmitic acid and the effects of vildagliptin were investigated. Results. HFD mice showed increased liver weight/body weight (20.27% and liver triglycerides (314.75% compared to CD mice, but these decreased by 9.27% and 21.83%, respectively, in V-HFD mice. In the liver, HFD induced the expression of ER stress indicators significantly, which were obviously decreased by vildagliptin. In vitro, the expressions of molecular indicators of ER stress were reduced in HepG2 when vildagliptin was administered. Conclusions. Vildagliptin alleviates hepatic ER stress in a mouse high fat diet model. In HepG2 cells, vildagliptin directly reduced ER stress. Therefore, vildagliptin may be a potential agent for nonalcoholic fatty liver disease.

  13. Hepatoprotective effect of Forsythiae Fructus water extract against carbon tetrachloride-induced liver fibrosis in mice.

    Science.gov (United States)

    Zhang, Yi; Miao, Hui; Yan, Hongyu; Sheng, Yuchen; Ji, Lili

    2018-05-23

    The fruit of Forsythia suspensa (Thunb.) Vahl, named Forsythiae Fructus (Lian-Qiao), is a well-known traditional Chinese medicine (TCM) used for clearing away heat and toxic material, eliminating the mass and relieving swelling. This study aims to observe the attenuation of the water extract of Forsythiae Fructus (FSE) on carbon tetrachloride (CCl 4 )-induced hepatic fibrosis in male C57BL/6 mice. Hepatic fibrosis was induced in male C57BL/6 mice by intraperitoneal injection with 2 ml/kg CCl 4 (mixed 1: 3 in olive oil) twice a week for 4 weeks. At the same time, the mice were orally given with FSE (1, 2 g/kg) every day for 4 weeks. Serum biochemical parameters, gene and protein expression related to liver fibrosis were analyzed. The contents of forsythiaside A and forsythin in FSE were measured by high-performance liquid chromatography (HPLC). Results of serum alanine/aspartate aminotransferase (ALT/AST) activity and liver histological evaluation both showed the protection of FSE against CCl 4 -induced liver injury. Further, the anti-fibrotic effects of FSE was evidenced by the results of Masson's trichrome and Sirius red staining, liver hydroxyproline content, and serum amounts of hyaluronic acid, laminin, collagen Ⅳ and type III procollagen (PCIII). FSE also reduced the expression of α-smooth muscle actin (α-SMA) in livers from CCl 4 -injured mice. Additionally, FSE decreased the increased hepatic expression of fibroblast-specific protein 1 (FSP1) and vimentin induced by CCl 4 in mice. FSE attenuates CCl 4 -induced liver fibrosis in mice by inhibiting hepatic stellate cells (HSCs) activation, reducing hepatic extracellular matrix (ECM) disposition and reversing epithelial-mesenchymal transition (EMT). Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Antioxidant status, lipoprotein profile and liver lipids in rats fed on high-cholesterol diet containing currant oil rich in n-3 and n-6 polyunsaturated fatty acids.

    Science.gov (United States)

    Vecera, R; Skottová, N; Vána, P; Kazdová, L; Chmela, Z; Svagera, Z; Walterá, D; Ulrichová, J; Simánek, V

    2003-01-01

    Plant-based n-3 polyunsaturated fatty acids (PUFA) possess a prospective antiatherogenic potential. Currant oil from Ribes nigrum L. is one of the few plant oils containing PUFAn-3 (15.3 mol%) in addition to PUFAn-6 (60.5 mol%). This study was aimed at comparing the effects of currant oil with those of lard fat, rich in saturated (43.8 mol%) and monounsaturated (47.0 mol%) fatty acids, on antioxidant parameters, the lipoprotein profile and liver lipids in rats fed on 1 % (w/w) cholesterol diets containing either 10 % of currant oil (COD) or lard fat (LFD). After 3 weeks of feeding, the COD induced a significant decrease in blood glutathione (GSH) and an increase in Cu(2+) induced oxidizability of serum lipids, but did not affect liver GSH and t-butyl hydroperoxide-induced lipoperoxidation of liver microsomes. Although the COD did not cause accumulation of liver triacylglycerols as LFD, the lipoprotein profile (VLDL, LDL, HDL) was not significantly improved after COD. The consumption of PUFAn-3 was reflected in LDL as an increase in eicosapentaenoic and docosahexaenoic acid. These results suggest that currant oil affects positively the lipid metabolism in the liver, above all it does not cause the development of a fatty liver. However, adverse effects of currant oil on the antioxidant status in the blood still remain of concern.

  15. Alpha linolenic acid in maternal diet halts the lipid disarray due to saturated fatty acids in the liver of mice offspring at weaning.

    Science.gov (United States)

    Shomonov-Wagner, Limor; Raz, Amiram; Leikin-Frenkel, Alicia

    2015-02-26

    Alpha linolenic acid (ALA, 18:3) in maternal diets has been shown to attenuate obesity associated insulin resistance (IR) in adult offspring in mice. The objective in the present study was to detect the early effects of maternal dietary saturated fatty acids (SFA) and their partial substitution with ω-3 ALA, docosa hexenoic acid (DHA,22:6) and eicosapentenoic acid 20:5 (EPA,20:5) on the HOMA index, liver lipids and fatty acid desaturases in the offspring at weaning. 3 month old C57Bl6/J female mice were fed diets containing normal amount of calories but rich in SFA alone or partially replaced with ALA, DHA or EPA before mating, during pregnancy and lactation. Pregnant mice fed SFA produced offspring with the highest HOMA index, liver lipids and desaturase activities. ALA prevented SFA induced lipid increase but DHA and EPA only reduced it by 42% and 31% respectively. ALA, DHA and EPA decreased HOMA index by 84%, 75% and 83% respectively. ALA, DHA and EPA decreased Δ6 and SCD1 desaturase activities about 30%. SFA feeding to mothers predisposes their offspring to develop IR and liver lipid accumulation already at weaning. ω3 fatty acids reduce IR, ALA halts lipid accumulation whereas DHA and EPA only blunt it.ALA and DHA restore the increased SCD1 to normal. These studies suggest that ω-3 fatty acids have different potencies to preclude lipid accumulation in the offspring partially by affecting pathways associated to SCD1 modulation.

  16. Crystal structure of axolotl (Ambystoma mexicanum) liver bile acid-binding protein bound to cholic and oleic acid.

    Science.gov (United States)

    Capaldi, Stefano; Guariento, Mara; Perduca, Massimiliano; Di Pietro, Santiago M; Santomé, José A; Monaco, Hugo L

    2006-07-01

    The family of the liver bile acid-binding proteins (L-BABPs), formerly called liver basic fatty acid-binding proteins (Lb-FABPs) shares fold and sequence similarity with the paralogous liver fatty acid-binding proteins (L-FABPs) but has a different stoichiometry and specificity of ligand binding. This article describes the first X-ray structure of a member of the L-BABP family, axolotl (Ambystoma mexicanum) L-BABP, bound to two different ligands: cholic and oleic acid. The protein binds one molecule of oleic acid in a position that is significantly different from that of either of the two molecules that bind to rat liver FABP. The stoichiometry of binding of cholate is of two ligands per protein molecule, as observed in chicken L-BABP. The cholate molecule that binds buried most deeply into the internal cavity overlaps well with the analogous bound to chicken L-BABP, whereas the second molecule, which interacts with the first only through hydrophobic contacts, is more external and exposed to the solvent. (c) 2006 Wiley-Liss, Inc.

  17. Ethanol extract from portulaca oleracea L. attenuated acetaminophen-induced mice liver injury

    Science.gov (United States)

    Liu, Xue-Feng; Zheng, Cheng-Gang; Shi, Hong-Guang; Tang, Gu-Sheng; Wang, Wan-Yin; Zhou, Juan; Dong, Li-Wei

    2015-01-01

    Acetaminophen-induced liver injury represents the most frequent cause of drug-induced liver failure in the world. Portulaca oleracea L., a widely distributed weed, has been used as a folk medicine in many countries. Previously, we reported that the ethanol extracts of Portulaca oleracea L. (PO) exhibited significant anti-hypoxic activity. In the present study, we investigated the role of PO on acetaminophen (APAP) induced hepatotoxicity. The results demonstrated that PO was an effective anti-oxidative agent, which could, to some extent, reverse APAP-induced hepatotoxicity by regulating the reactive oxygen species (ROS) in the liver of mice. At the same time, PO treatment significantly decreased mice serum levels of IL-6 and TNFα and their mRNA expression in liver tissue IL-α and TNFα play an important role during APAP-induced liver injury. Furthermore, PO inhibited APAP and TNFα-induced activation of JNK, whose activation play an important effect during APAP induced liver injury. These findings suggested that administration of PO may be an effective strategy to prevent or treat liver injury induced by APAP. PMID:25901199

  18. Acute liver injury induced by weight-loss herbal supplements.

    Science.gov (United States)

    Chen, Gary C; Ramanathan, Vivek S; Law, David; Funchain, Pauline; Chen, George C; French, Samuel; Shlopov, Boris; Eysselein, Viktor; Chung, David; Reicher, Sonya; Pham, Binh V

    2010-11-27

    We report three cases of patients with acute liver injury induced by weight-loss herbal supplements. One patient took Hydroxycut while the other two took Herbalife supplements. Liver biopsies for all patients demonstrated findings consistent with drug-induced acute liver injury. To our knowledge, we are the first institute to report acute liver injury from both of these two types of weight-loss herbal supplements together as a case series. The series emphasizes the importance of taking a cautious approach when consuming herbal supplements for the purpose of weight loss.

  19. Irinotecan (CPT-11)-induced elevation of bile acids potentiates suppression of IL-10 expression

    International Nuclear Information System (INIS)

    Fang, Zhong-Ze; Zhang, Dunfang; Cao, Yun-Feng; Xie, Cen; Lu, Dan; Sun, Dong-Xue; Tanaka, Naoki; Jiang, Changtao; Chen, Qianming; Chen, Yu; Wang, Haina; Gonzalez, Frank J.

    2016-01-01

    Irinotecan (CPT-11) is a first-line anti-colon cancer drug, however; CPT-11-induced toxicity remains a key factor limiting its clinical application. To search for clues to the mechanism of CPT-11-induced toxicity, metabolomics was applied using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Intraperitoneal injection of 50 mg/kg of CPT-11 induced loss of body weight, and intestine toxicity. Changes in gallbladder morphology suggested alterations in bile acid metabolism, as revealed at the molecular level by analysis of the liver, bile, and ileum metabolomes between the vehicle-treated control group and the CPT-11-treated group. Analysis of immune cell populations further showed that CPT-11 treatment significantly decreased the IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes, but not in spleen or mesenteric lymph nodes. In vitro cell culture studies showed that the addition of bile acids deoxycholic acid and taurodeoxycholic acid accelerated the CPT-11-induced suppression of IL-10 secretion by activated CD4 + naive T cells isolated from mouse splenocytes. These results showed that CPT-11 treatment caused metabolic changes in the composition of bile acids that altered CPT-11-induced suppression of IL-10 expression. - Highlights: • CPT-11 is an effective anticancer drug, but induced toxicity limits its application in the clinic. • CPT-11 decreased IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes. • CPT-11 altered the composition of bile acid metabolites, notably DCA and TDCA in liver, bile and intestine. • DCA and TDCA potentiated CPT-11-induced suppression of IL-10 secretion by active CD4 + naive T cells.

  20. Irinotecan (CPT-11)-induced elevation of bile acids potentiates suppression of IL-10 expression

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhong-Ze [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin (China); Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian (China); Zhang, Dunfang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Cao, Yun-Feng [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian (China); Xie, Cen [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Lu, Dan [Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin (China); Sun, Dong-Xue; Tanaka, Naoki; Jiang, Changtao [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Chen, Qianming; Chen, Yu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Wang, Haina [School of Pharmaceutical Sciences, Shandong University, Jinan (China); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States)

    2016-01-15

    Irinotecan (CPT-11) is a first-line anti-colon cancer drug, however; CPT-11-induced toxicity remains a key factor limiting its clinical application. To search for clues to the mechanism of CPT-11-induced toxicity, metabolomics was applied using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Intraperitoneal injection of 50 mg/kg of CPT-11 induced loss of body weight, and intestine toxicity. Changes in gallbladder morphology suggested alterations in bile acid metabolism, as revealed at the molecular level by analysis of the liver, bile, and ileum metabolomes between the vehicle-treated control group and the CPT-11-treated group. Analysis of immune cell populations further showed that CPT-11 treatment significantly decreased the IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes, but not in spleen or mesenteric lymph nodes. In vitro cell culture studies showed that the addition of bile acids deoxycholic acid and taurodeoxycholic acid accelerated the CPT-11-induced suppression of IL-10 secretion by activated CD4{sup +} naive T cells isolated from mouse splenocytes. These results showed that CPT-11 treatment caused metabolic changes in the composition of bile acids that altered CPT-11-induced suppression of IL-10 expression. - Highlights: • CPT-11 is an effective anticancer drug, but induced toxicity limits its application in the clinic. • CPT-11 decreased IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes. • CPT-11 altered the composition of bile acid metabolites, notably DCA and TDCA in liver, bile and intestine. • DCA and TDCA potentiated CPT-11-induced suppression of IL-10 secretion by active CD4{sup +} naive T cells.

  1. Omega-3 polyunsaturated fatty acid and ursodeoxycholic acid have an additive effect in attenuating diet-induced nonalcoholic steatohepatitis in mice.

    Science.gov (United States)

    Kim, Ja Kyung; Lee, Kwan Sik; Lee, Dong Ki; Lee, Su Yeon; Chang, Hye Young; Choi, Junjeong; Lee, Jung Il

    2014-12-19

    Nonalcoholic steatohepatitis (NASH) can progress into liver cirrhosis; however, no definite treatment is available. Omega-3 polyunsaturated fatty acid (omega-3) has been reported to alleviate experimental NASH, although its beneficial effect was not evident when tested clinically. Thus, this study aimed to investigate the additive effect of omega-3 and ursodeoxycholic acid (UDCA) on diet-induced NASH in mice. C57BL/6 mice were given a high-fat diet (HFD) for 24 weeks, at which point the mice were divided into three groups and fed HFD alone, HFD with omega-3 or HFD with omega-3 in combination with UDCA for another 24 weeks. Feeding mice an HFD and administering omega-3 improved histologically assessed liver fibrosis, and UDCA in combination with omega-3 further attenuated this disease. The assessment of collagen α1(I) expression agreed with the histological evaluation. Omega-3 in combination with UDCA resulted in a significant attenuation of inflammation whereas administering omega-3 alone failed to improve histologically assessed liver inflammation. Quantitative analysis of tumor necrosis factor α showed an additive effect of omega-3 and UDCA on liver inflammation. HFD-induced hepatic triglyceride accumulation was attenuated by omega-3 and adding UDCA accentuated this effect. In accordance with this result, the expression of sterol regulatory binding protein-1c decreased after omega-3 administration and adding UDCA further diminished SREBP-1c expression. The expression of inducible nitric oxide synthase (iNOS), which may reflect oxidative stress-induced tissue damage, was suppressed by omega-3 administration and adding UDCA further attenuated iNOS expression. These results demonstrated an additive effect of omega-3 and UDCA for alleviating fibrosis, inflammation and steatosis in diet-induced NASH.

  2. Folic acid and melatonin ameliorate carbon tetrachloride-induced hepatic injury, oxidative stress and inflammation in rats

    Directory of Open Access Journals (Sweden)

    Ebaid Hossam

    2013-02-01

    Full Text Available Abstract This study investigated the protective effects of melatonin and folic acid against carbon tetrachloride (CCl4-induced hepatic injury in rats. Oxidative stress, liver function, liver histopathology and serum lipid levels were evaluated. The levels of protein kinase B (Akt1, interferon gamma (IFN-γ, programmed cell death-receptor (Fas and Tumor necrosis factor-alpha (TNF-α mRNA expression were analyzed. CCl4 significantly elevated the levels of lipid peroxidation (MDA, cholesterol, LDL, triglycerides, bilirubin and urea. In addition, CCl4 was found to significantly suppress the activity of both catalase and glutathione (GSH and decrease the levels of serum total protein and HDL-cholesterol. All of these parameters were restored to their normal levels by treatment with melatonin, folic acid or their combination. An improvement of the general hepatic architecture was observed in rats that were treated with the combination of melatonin and folic acid along with CCl4. Furthermore, the CCl4-induced upregulation of TNF-α and Fas mRNA expression was significantly restored by the three treatments. Melatonin, folic acid or their combination also restored the baseline levels of IFN-γ and Akt1 mRNA expression. The combination of melatonin and folic acid exhibited ability to reduce the markers of liver injury induced by CCl4 and restore the oxidative stability, the level of inflammatory cytokines, the lipid profile and the cell survival Akt1 signals.

  3. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsuneyama, Koichi [Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Sugitani, Toyama 930‐0194 (Japan); Endo, Shinya [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsukui, Tohru [Research Center for Genomic Medicine, Saitama Medical University, Yamane, Hidaka 350‐1241 (Japan); Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Yokoi, Tsuyoshi, E-mail: tyokoi@p.kanazawa-u.ac.jp [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan)

    2012-10-01

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression

  4. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    International Nuclear Information System (INIS)

    Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori; Tsuneyama, Koichi; Endo, Shinya; Tsukui, Tohru; Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2012-01-01

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression

  5. EFFECT OF THIOPROPANOL ON AMINO ACID TURNOVER AND REDOX STATUS IN ALLOXAN DIABETIC RAT LIVER

    Directory of Open Access Journals (Sweden)

    Vickram

    2016-07-01

    Full Text Available BACKGROUND Decreased cellular thiol levels seen in diabetes mellitus (DM may be in part attributed to increased free radical generation. The free radical mediated oxidative stress has been implicated in the pathogenesis of DM and its complications. The relative deficiency or non-availability of insulin in DM affects the metabolism of biomolecules, specifically the carbohydrate metabolism. The insulin-mimicking actions of various thiols have been studied. In our previous study, we have documented that 3-mercapto- 1-propanol (Thiopropanol, a low molecular weight thiol, at the dosage employed has increased glucose utilisation in alloxandiabetic rat liver tissue probably by favouring utilisation of glucose through glycolysis and HMP pathway. It is known that insulin inhibits gluconeogenesis by inhibiting the key enzymes of the same and by controlling the channelling of amino acids for the glucose biosynthesis through gluconeogenic pathway. A study was undertaken to assess the effects of thiopropanol (TP on amino acid turnover and the redox status in alloxan diabetic rat liver. METHODS Male albino rats weighing 150-250 g were used. Diabetes was induced using alloxan monohydrate. Rats were divided into normal and diabetic groups. Levels of amino acid nitrogen (AAN, alanine, total thiol (-SH groups, TBARS (Thiobarbituric acid reactive substances, and activities of alanine transaminase (ALT and aspartate transaminase (AST were estimated in liver specimens of normal, control-alloxan diabetic and TP-exposed-alloxan-diabetic rats. RESULTS The results showed a significant increase (p<0.001 in AAN levels, alanine levels, and total -SH groups concentration; and a significant decrease (p<0.001 in TBARS levels, ALT and AST activities in TP-exposed-alloxan diabetic liver slices as compared to control-alloxan diabetic liver slices. CONCLUSIONS Hence, it may be concluded that TP, at the concentration employed, inhibits gluconeogenesis from amino acids probably by

  6. Propylthiouracil-induced liver failure and artificial liver support systems: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Wu DB

    2017-01-01

    Full Text Available Dong-Bo Wu,1,2 En-Qiang Chen,1,2 Lang Bai,1,2 Hong Tang1,2 1Center of Infectious Diseases, West China Hospital of Sichuan University, 2Division of Molecular Biology of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, People’s Republic of China Background: Antithyroid drugs carry a potential risk of hepatotoxicity. Propylthiouracil (PTU is commonly prescribed for patients with hyperthyroidism. PTU, however, can induce liver injury, ranging from mild asymptomatic elevation of aminotransferases to acute liver failure (ALF.Case presentation: This case reports on a 16-year-old Chinese girl with hyperthyroidism, who was admitted to our hospital for jaundice, nausea, and fatigue associated with severe hyperbilirubinemia and coagulopathy. She had been prescribed PTU 5 months earlier. There was no history of hypersensitivity to drugs, viral liver diseases, blood transfusion, or surgery. On the basis of her symptoms and the clinical data, she was diagnosed with PTU-induced ALF. Due to the limited number of available donor organs for liver transplantation, she was started on treatment with artificial liver support system (ALSS. After four sessions of ALSS, her clinical signs and symptoms were found to be markedly improved, and she was discharged 25 days after admission. Four months later, her liver function normalized.Conclusion: Although PTU-induced liver failure is rare in clinical practice, liver function should be appropriately monitored during treatment with PTU. PTU-induced ALF in this patient was successfully managed with an ALSS, suggesting that the latter may be an alternative to liver transplantation. Keywords: propylthiouracil, liver injury, acute liver failure, artificial liver support systems 

  7. Diphenhydramine as a Cause of Drug-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Yunseok Namn

    2017-01-01

    Full Text Available Drug-induced liver injury (DILI is the most common cause of acute liver failure in the Unites States and accounts for 10% of acute hepatitis cases. We report the only known case of diphenhydramine-induced acute liver injury in the absence of concomitant medications. A 28-year-old man with history of 13/14-chromosomal translocation presented with fevers, vomiting, and jaundice. Aspartate-aminotransferase and alanine-aminotransferase levels peaked above 20,000 IU/L and 5,000 IU/L, respectively. He developed coagulopathy but without altered mental status. Patient reported taking up to 400 mg diphenhydramine nightly, without concomitant acetaminophen, for insomnia. He denied taking other medications, supplements, antibiotics, and herbals. A thorough workup of liver injury ruled out viral hepatitis (including A, B, C, and E, autoimmune, toxic, ischemic, and metabolic etiologies including Wilson’s disease. A liver biopsy was consistent with DILI without evidence of iron or copper deposition. Diphenhydramine was determined to be the likely culprit. This is the first reported case of diphenhydramine-induced liver injury without concomitant use of acetaminophen.

  8. Preventive effects of indole-3-carbinol against alcohol-induced liver injury in mice via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms: Role of gut-liver-adipose tissue axis.

    Science.gov (United States)

    Choi, Youngshim; Abdelmegeed, Mohamed A; Song, Byoung-Joon

    2018-05-01

    Indole-3-carbinol (I3C), found in Brassica family vegetables, exhibits antioxidant, anti-inflammatory, and anti-cancerous properties. Here, we aimed to evaluate the preventive effects of I3C against ethanol (EtOH)-induced liver injury and study the protective mechanism(s) by using the well-established chronic-plus-binge alcohol exposure model. The preventive effects of I3C were evaluated by conducting various histological, biochemical, and real-time PCR analyses in mouse liver, adipose tissue, and colon, since functional alterations of adipose tissue and intestine can also participate in promoting EtOH-induced liver damage. Daily treatment with I3C alleviated EtOH-induced liver injury and hepatocyte apoptosis, but not steatosis, by attenuating elevated oxidative stress, as evidenced by the decreased levels of hepatic lipid peroxidation, hydrogen peroxide, CYP2E1, NADPH-oxidase, and protein acetylation with maintenance of mitochondrial complex I, II, and III protein levels and activities. I3C also restored the hepatic antioxidant capacity by preventing EtOH-induced suppression of glutathione contents and mitochondrial aldehyde dehydrogenase-2 activity. I3C preventive effects were also achieved by attenuating the increased levels of hepatic proinflammatory cytokines, including IL1β, and neutrophil infiltration. I3C also attenuated EtOH-induced gut leakiness with decreased serum endotoxin levels through preventing EtOH-induced oxidative stress, apoptosis of enterocytes, and alteration of tight junction protein claudin-1. Furthermore, I3C alleviated adipose tissue inflammation and decreased free fatty acid release. Collectively, I3C prevented EtOH-induced liver injury via attenuating the damaging effect of ethanol on the gut-liver-adipose tissue axis. Therefore, I3C may also have a high potential for translational research in treating or preventing other types of hepatic injury associated with oxidative stress and inflammation. Copyright © 2017 Elsevier Inc. All

  9. Therapeutic Mechanisms of Bile Acids and Nor-Ursodeoxycholic Acid in Non-Alcoholic Fatty Liver Disease.

    Science.gov (United States)

    Steinacher, Daniel; Claudel, Thierry; Trauner, Michael

    2017-01-01

    Non-alcoholic fatty liver disease is one of the most rapidly rising clinical problems in the 21st century. So far no effective drug treatment has been established to cure this disease. Bile acids (BAs) have a variety of signaling properties, which can be used therapeutically for modulating hepatic metabolism and inflammation. A side-chain shorted derivative of ursodeoxycholic acid (UDCA) is 24 nor-ursodeoxycholic acid (NorUDCA) and it represents a new class of drugs for treatment of liver diseases. NorUDCA has unique biochemical and therapeutic properties, since it is relatively resistant to conjugation with glycine or taurine compared to UDCA. NorUDCA undergoes cholehepatic shunting, resulting in ductular targeting, bicarbonate-rich hypercholeresis, and cholangiocyte protection. Furthermore, it showed anti-fibrotic, anti-inflammatory, and anti-lipotoxic properties in several animal models. As such, NorUDCA is a promising new approach in the treatment of cholestatic and metabolic liver diseases. This review is a summary of current BA-based therapeutic approaches in the treatment of the fatty liver disease. © 2017 S. Karger AG, Basel.

  10. Non-invasive evaluation of liver stiffness after splenectomy in rabbits with CCl4-induced liver fibrosis.

    Science.gov (United States)

    Wang, Ming-Jun; Ling, Wen-Wu; Wang, Hong; Meng, Ling-Wei; Cai, He; Peng, Bing

    2016-12-14

    To investigate the diagnostic performance of liver stiffness measurement (LSM) by elastography point quantification (ElastPQ) in animal models and determine the longitudinal changes in liver stiffness by ElastPQ after splenectomy at different stages of fibrosis. Liver stiffness was measured in sixty-eight rabbits with CCl 4 -induced liver fibrosis at different stages and eight healthy control rabbits by ElastPQ. Liver biopsies and blood samples were obtained at scheduled time points to assess liver function and degree of fibrosis. Thirty-one rabbits with complete data that underwent splenectomy at different stages of liver fibrosis were then included for dynamic monitoring of changes in liver stiffness by ElastPQ and liver function according to blood tests. LSM by ElastPQ was significantly correlated with histologic fibrosis stage ( r = 0.85, P fibrosis, moderate fibrosis, and cirrhosis, respectively. Longitudinal monitoring of the changes in liver stiffness by ElastPQ showed that early splenectomy (especially F1) may delay liver fibrosis progression. ElastPQ is an available, convenient, objective and non-invasive technique for assessing liver stiffness in rabbits with CCl 4 -induced liver fibrosis. In addition, liver stiffness measurements using ElastPQ can dynamically monitor the changes in liver stiffness in rabbit models, and in patients, after splenectomy.

  11. Effects of gallic acid on delta - aminolevulinic dehydratase activity and in the biochemical, histological and oxidative stress parameters in the liver and kidney of diabetic rats.

    Science.gov (United States)

    de Oliveira, Lizielle Souza; Thomé, Gustavo Roberto; Lopes, Thauan Faccin; Reichert, Karine Paula; de Oliveira, Juliana Sorraila; da Silva Pereira, Aline; Baldissareli, Jucimara; da Costa Krewer, Cristina; Morsch, Vera Maria; Chitolina Schetinger, Maria Rosa; Spanevello, Roselia Maria

    2016-12-01

    Diabetes mellitus (DM) is characterised by hyperglycaemia associated with the increase of oxidative stress. Gallic acid has potent antioxidant properties. The aim of this study was to evaluate the effect of gallic acid on the biochemical, histological and oxidative stress parameters in the liver and kidney of diabetic rats. Male rats were divided in groups: control, gallic acid, diabetic and diabetic plus gallic acid. DM was induced in the animals by intraperitoneal injection of streptozotocin (65mg/kg). Gallic acid (30mg/kg) was administered orally for 21days. Our results showed an increase in reactive species levels and lipid peroxidation, and a decrease in activity of the enzymes superoxide dismutase and delta-aminolevulinic acid dehydratase in the liver and kidney of the diabetic animals (PGallic acid treatment showed protective effects in these parameters evaluated, and also prevented a decrease in the activity of catalase and glutathione S-transferase, and vitamin C levels in the liver of diabetic rats. In addition, gallic acid reduced the number of nuclei and increased the area of the core in hepatic tissue, and increased the glomerular area in renal tissue. These results indicate that gallic acid can protect against oxidative stress-induced damage in the diabetic state. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Combined gadoxetic acid and gadofosveset enhanced liver MRI for detection and characterization of liver metastases

    International Nuclear Information System (INIS)

    Bannas, Peter; Bookwalter, Candice A.; Ziemlewicz, Tim; Munoz del Rio, Alejandro; Potretzke, Theodora A.; Motosugi, Utaroh; Nagle, Scott K.; Reeder, Scott B.

    2017-01-01

    To compare gadoxetic acid alone and combined gadoxetic acid/gadofosveset trisodium-enhanced liver MRI for detection of metastases and differentiation of metastases from haemangiomas. Ninety-one patients underwent gadoxetic acid-enhanced liver MRI before and after additional injection of gadofosveset. First, two readers retrospectively identified metastases on gadoxetic acid alone enhanced delayed hepatobiliary phase T1-weighted images together with all other MR images (dynamic images, T2-weighted images, diffusion-weighted images). Second, readers assessed additional T1-weighted images obtained after administration of gadofosveset trisodium. For both interpretations, readers rated lesion conspicuity and confidence in differentiating metastases from haemangiomas. Results were compared using alternative free-response receiver-operating characteristic (AFROC) and conventional ROC methods. Histology and follow-up served as reference standard. There were 145 metastases and 16 haemangiomas. Both readers detected more metastases using combined gadoxetic acid/gadofosveset (reader 1 = 130; reader 2 = 124) compared to gadoxetic acid alone (reader 1 = 104; reader 2 = 103). Sensitivity of combined gadoxetic acid/gadofosveset (reader 1 = 90 %; reader 2 = 86 %) was higher than that of gadoxetic acid alone (reader 1 = 72 %; reader 2 = 71 %, both P < 0.01). AFROC-AUC was higher for the combined technique (0.92 vs. 0.86, P < 0.001). Sensitivity for correct differentiation of metastases from haemangiomas was higher for the combined technique (reader 1 = 98 %; reader 2 = 99 % vs. reader 1 = 86 %; reader 2 = 91 %, both P < 0.01). ROC-AUC was significantly higher for the combined technique (reader 1 = 1.00; reader 2 = 1.00 vs. reader 1 = 0.87; reader 2 = 0.92, both P < 0.01). Combined gadoxetic acid/gadofosveset-enhanced MRI improves detection and characterization of liver metastases compared to gadoxetic acid alone. (orig.)

  13. Combined gadoxetic acid and gadofosveset enhanced liver MRI for detection and characterization of liver metastases

    Energy Technology Data Exchange (ETDEWEB)

    Bannas, Peter [University of Wisconsin-Madison, Department of Radiology, Madison, WI (United States); University Medical Center Hamburg-Eppendorf, Department of Radiology, University Hospital, Hamburg (Germany); Bookwalter, Candice A.; Ziemlewicz, Tim; Munoz del Rio, Alejandro; Potretzke, Theodora A. [University of Wisconsin-Madison, Department of Radiology, Madison, WI (United States); Motosugi, Utaroh [University of Wisconsin-Madison, Department of Radiology, Madison, WI (United States); University of Yamanashi, Department of Radiology, Yamanashi (Japan); Nagle, Scott K. [University of Wisconsin-Madison, Department of Radiology, Madison, WI (United States); University of Wisconsin-Madison, Department of Medical Physics, Madison, WI (United States); University of Wisconsin-Madison, Department of Pediatrics, Madison, WI (United States); Reeder, Scott B. [University of Wisconsin-Madison, Department of Radiology, Madison, WI (United States); University of Wisconsin-Madison, Department of Medical Physics, Madison, WI (United States); University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, WI (United States); University of Wisconsin-Madison, Department of Medicine, Madison, WI (United States); University of Wisconsin-Madison, Department of Emergency Medicine, Madison, WI (United States)

    2017-01-15

    To compare gadoxetic acid alone and combined gadoxetic acid/gadofosveset trisodium-enhanced liver MRI for detection of metastases and differentiation of metastases from haemangiomas. Ninety-one patients underwent gadoxetic acid-enhanced liver MRI before and after additional injection of gadofosveset. First, two readers retrospectively identified metastases on gadoxetic acid alone enhanced delayed hepatobiliary phase T1-weighted images together with all other MR images (dynamic images, T2-weighted images, diffusion-weighted images). Second, readers assessed additional T1-weighted images obtained after administration of gadofosveset trisodium. For both interpretations, readers rated lesion conspicuity and confidence in differentiating metastases from haemangiomas. Results were compared using alternative free-response receiver-operating characteristic (AFROC) and conventional ROC methods. Histology and follow-up served as reference standard. There were 145 metastases and 16 haemangiomas. Both readers detected more metastases using combined gadoxetic acid/gadofosveset (reader 1 = 130; reader 2 = 124) compared to gadoxetic acid alone (reader 1 = 104; reader 2 = 103). Sensitivity of combined gadoxetic acid/gadofosveset (reader 1 = 90 %; reader 2 = 86 %) was higher than that of gadoxetic acid alone (reader 1 = 72 %; reader 2 = 71 %, both P < 0.01). AFROC-AUC was higher for the combined technique (0.92 vs. 0.86, P < 0.001). Sensitivity for correct differentiation of metastases from haemangiomas was higher for the combined technique (reader 1 = 98 %; reader 2 = 99 % vs. reader 1 = 86 %; reader 2 = 91 %, both P < 0.01). ROC-AUC was significantly higher for the combined technique (reader 1 = 1.00; reader 2 = 1.00 vs. reader 1 = 0.87; reader 2 = 0.92, both P < 0.01). Combined gadoxetic acid/gadofosveset-enhanced MRI improves detection and characterization of liver metastases compared to gadoxetic acid alone. (orig.)

  14. Activation of AMPK by berberine induces hepatic lipid accumulation by upregulation of fatty acid translocase CD36 in mice

    International Nuclear Information System (INIS)

    Choi, You-Jin; Lee, Kang-Yo; Jung, Seung-Hwan; Kim, Hyung Sik; Shim, Gayong; Kim, Mi-Gyeong; Oh, Yu-Kyoung; Oh, Seon-Hee; Jun, Dae Won; Lee, Byung-Hoon

    2017-01-01

    Emerging evidence has shown that berberine has a protective effect against metabolic syndrome such as obesity and type II diabetes mellitus by activating AMP-activated protein kinase (AMPK). AMPK induces CD36 trafficking to the sarcolemma for fatty acid uptake and oxidation in contracting muscle. However, little is known about the effects of AMPK on CD36 regulation in the liver. We investigated whether AMPK activation by berberine affects CD36 expression and fatty acid uptake in hepatocytes and whether it is linked to hepatic lipid accumulation. Activation of AMPK by berberine or transduction with adenoviral vectors encoding constitutively active AMPK in HepG2 and mouse primary hepatocytes increased the expression and membrane translocation of CD36, resulting in enhanced fatty acid uptake and lipid accumulation as determined by BODIPY-C16 and Nile red fluorescence, respectively. Activation of AMPK by berberine induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and subsequently induced CCAAT/enhancer-binding protein β (C/EBPβ) binding to the C/EBP-response element in the CD36 promoter in hepatocytes. In addition, hepatic CD36 expression and triglyceride levels were increased in normal diet-fed mice treated with berberine, but completely prevented when hepatic CD36 was silenced with adenovirus containing CD36-specific shRNA. Taken together, prolonged activation of AMPK by berberine increased CD36 expression in hepatocytes, resulting in fatty acid uptake via processes linked to hepatocellular lipid accumulation and fatty liver. - Highlights: • Berberine increases the expression and membrane translocation of CD36 in hepatocytes. • The increase of CD36 results in enhanced fatty acid uptake and lipid accumulation. • Berberine-induced fatty liver is mediated by AMPK-ERK-C/EBPβ pathway. • CD36-specific shRNA inhibited berberine-induced lipid accumulation in liver.

  15. Activation of AMPK by berberine induces hepatic lipid accumulation by upregulation of fatty acid translocase CD36 in mice

    Energy Technology Data Exchange (ETDEWEB)

    Choi, You-Jin; Lee, Kang-Yo; Jung, Seung-Hwan [College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyung Sik [School of Pharmacy, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shim, Gayong; Kim, Mi-Gyeong; Oh, Yu-Kyoung [College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of); Oh, Seon-Hee [The Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju 501-759 (Korea, Republic of); Jun, Dae Won [Internal Medicine, Hanyang University School of Medicine, Seoul 133-791 (Korea, Republic of); Lee, Byung-Hoon, E-mail: lee@snu.ac.kr [College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2017-02-01

    Emerging evidence has shown that berberine has a protective effect against metabolic syndrome such as obesity and type II diabetes mellitus by activating AMP-activated protein kinase (AMPK). AMPK induces CD36 trafficking to the sarcolemma for fatty acid uptake and oxidation in contracting muscle. However, little is known about the effects of AMPK on CD36 regulation in the liver. We investigated whether AMPK activation by berberine affects CD36 expression and fatty acid uptake in hepatocytes and whether it is linked to hepatic lipid accumulation. Activation of AMPK by berberine or transduction with adenoviral vectors encoding constitutively active AMPK in HepG2 and mouse primary hepatocytes increased the expression and membrane translocation of CD36, resulting in enhanced fatty acid uptake and lipid accumulation as determined by BODIPY-C16 and Nile red fluorescence, respectively. Activation of AMPK by berberine induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and subsequently induced CCAAT/enhancer-binding protein β (C/EBPβ) binding to the C/EBP-response element in the CD36 promoter in hepatocytes. In addition, hepatic CD36 expression and triglyceride levels were increased in normal diet-fed mice treated with berberine, but completely prevented when hepatic CD36 was silenced with adenovirus containing CD36-specific shRNA. Taken together, prolonged activation of AMPK by berberine increased CD36 expression in hepatocytes, resulting in fatty acid uptake via processes linked to hepatocellular lipid accumulation and fatty liver. - Highlights: • Berberine increases the expression and membrane translocation of CD36 in hepatocytes. • The increase of CD36 results in enhanced fatty acid uptake and lipid accumulation. • Berberine-induced fatty liver is mediated by AMPK-ERK-C/EBPβ pathway. • CD36-specific shRNA inhibited berberine-induced lipid accumulation in liver.

  16. Effects of vitamin A, C and E, or omega-3 fatty acid supplementation on the level of paraoxonase and arylesterase activity in streptozotocin-induced diabetic rats: an investigation of activities in plasma, and heart and liver homogenates.

    Science.gov (United States)

    Zarei, Mahnaz; Fakher, Shima; Tabei, Seyed Mohammad Bagher; Javanbakht, Mohammad Hassan; Derakhshanian, Hoda; Farahbakhsh-Farsi, Payam; Sadeghi, Mohammad Reza; Mostafavi, Ebrahim; Djalali, Mahmoud

    2016-03-01

    This study was designed and conducted to evaluate the effects of vitamin A, C and E supplementation, and omega-3 fatty acid supplementation on the activity of paraoxonase and arylesterase in an experimental model of diabetes mellitus. A total of 64 male Sprague Dawley® rats, each weighing 250 g, were randomly distributed into four groups: (a) normal control; (b) diabetic control; (c) diabetic with vitamin A, C and E supplementation; and (d) diabetic with omega-3 fatty acid supplementation. The animals were anaesthetised after four weeks of intervention, and paraoxonase and arylesterase activity in blood plasma, and liver and heart homogenates were measured. Arylesterase activity in the heart and liver homogenates was significantly lower in the diabetic control group than in the normal control group (p Vitamin A, C and E supplementation, and omega-3 fatty acid supplementation significantly increased liver arylesterase activity (p Vitamin A, C and E, or omega-3 fatty acid supplementation were found to increase liver arylesterase activity in streptozotocin-induced diabetic rats. These supplements may be potential agents for the treatment of diabetes mellitus complications. Copyright: © Singapore Medical Association.

  17. The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, Kevin M., E-mail: kbeggs2@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160 (United States); McGreal, Steven R., E-mail: smcgreal@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160 (United States); McCarthy, Alex [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160 (United States); Gunewardena, Sumedha, E-mail: sgunewardena@kumc.edu [Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, 2027 HLSIC, Kansas City, KS 66160 (United States); Lampe, Jed N., E-mail: jlampe@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160 (United States); Lau, Christoper, E-mail: lau.christopher@epa.gov [Developmental Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Apte, Udayan, E-mail: uapte@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160 (United States)

    2016-08-01

    Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), chemicals present in a multitude of consumer products, are persistent organic pollutants. Both compounds induce hepatotoxic effects in rodents, including steatosis, hepatomegaly and liver cancer. The mechanisms of PFOA- and PFOS-induced hepatic dysfunction are not completely understood. We present evidence that PFOA and PFOS induce their hepatic effects via targeting hepatocyte nuclear factor 4-alpha (HNF4α). Human hepatocytes treated with PFOA and PFOS at a concentration relevant to occupational exposure caused a decrease in HNF4α protein without affecting HNF4α mRNA or causing cell death. RNA sequencing analysis combined with Ingenuity Pathway Analysis of global gene expression changes in human hepatocytes treated with PFOA or PFOS indicated alterations in the expression of genes involved in lipid metabolism and tumorigenesis, several of which are regulated by HNF4α. Further investigation of specific HNF4α target gene expression revealed that PFOA and PFOS could promote cellular dedifferentiation and increase cell proliferation by down regulating positive targets (differentiation genes such as CYP7A1) and inducing negative targets of HNF4α (pro-mitogenic genes such as CCND1). Furthermore, in silico docking simulations indicated that PFOA and PFOS could directly interact with HNF4α in a similar manner to endogenous fatty acids. Collectively, these results highlight HNF4α degradation as novel mechanism of PFOA and PFOS-mediated steatosis and tumorigenesis in human livers. - Highlights: • PFOA and PFOS cause decreased HNF4α protein expression in human hepatocytes. • PFOA and PFOS promote changes associated with lipid metabolism and carcinogenesis. • PFOA and PFOS induced changes in gene expression associated with cellular dedifferentiation. • PFOA and PFOS induce expression of Nanog, a transcription factor involved in stem cell development.

  18. Exogenous FABP4 induces endoplasmic reticulum stress in HepG2 liver cells.

    Science.gov (United States)

    Bosquet, Alba; Guaita-Esteruelas, Sandra; Saavedra, Paula; Rodríguez-Calvo, Ricardo; Heras, Mercedes; Girona, Josefa; Masana, Lluís

    2016-06-01

    Fatty acid binding protein 4 (FABP4) is an intracellular fatty acid (FA) carrier protein that is, in part, secreted into circulation. Circulating FABP4 levels are increased in obesity, diabetes and other insulin resistance (IR) diseases. FAs contribute to IR by promoting endoplasmic reticulum stress (ER stress) and altering the insulin signaling pathway. The effect of FABP4 on ER stress in the liver is not known. The aim of this study was to investigate whether exogenous FABP4 (eFABP4) is involved in the lipid-induced ER stress in the liver. HepG2 cells were cultured with eFABP4 (40 ng/ml) with or without linoleic acid (LA, 200 μM) for 18 h. The expression of ER stress-related markers was determined by Western blotting (ATF6, EIF2α, IRE1 and ubiquitin) and real-time PCR (ATF6, CHOP, EIF2α and IRE1). Apoptosis was studied by flow cytometry using Annexin V-FITC and propidium iodide staining. eFABP4 increased the ER stress markers ATF6 and IRE1 in HepG2 cells. This effect led to insulin resistance mediated by changes in AKT and JNK phosphorylation. Furthermore, eFABP4 significantly induced both apoptosis, as assessed by flow cytometry, and CHOP expression, without affecting necrosis and ubiquitination. The presence of LA increased the ER stress response induced by eFABP4. eFABP4, per se, induces ER stress and potentiates the effect of LA in HepG2 cells, suggesting that FABP4 could be a link between obesity-associated metabolic abnormalities and hepatic IR mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Alternation of plasma fatty acids composition and desaturase activities in children with liver steatosis.

    Directory of Open Access Journals (Sweden)

    Man-Chin Hua

    Full Text Available The aim of this study was to investigate changes in plasma fatty acids proportions and estimated desaturase activities for variable grading of liver steatosis in children.In total, 111 schoolchildren (aged 8-18 years were included in the analysis from March 2015 to August 2016. Anthropometric evaluation, liver ultrasound examination and scoring for nonalcoholic fatty liver disease (NAFLD score = 0-6, and biochemical and plasma fatty acids analysis were performed. We compared the composition ratio of fatty acids between children with high-grade liver steatosis (NAFLD score = 4-6, low-grade liver steatosis (NAFLD score = 1-3, and healthy controls (NAFLD score = 0. In addition, correlation coefficients (r between NAFLD score, metabolic variables, and estimated activity of desaturase indices (stearoyl-coenzyme A desaturase-1 (SCD1, delta-5 and delta-6 desaturase were calculated.Compared with healthy controls, children with liver steatosis showed a higher proportion of monounsaturated fatty acids (21.16 ± 2.81% vs. 19.68 ± 2.71%, p = 0.024. In addition, children with high- grade liver steatosis exhibited higher proportions of palmitic acid (C16:0, palmitoleic acid (C16:1n-7, dihomo-γ-linolenic acid (C20:3n-6, adrenic acid (C22:4n-6, and docosapentaenoic acid (C22:5n-6; and lower proportions of eicosapentaenoic acid (C20:5n-3 (P< 0.05. In all subjects, the NAFLD score was positively correlated with body mass index (BMI (kg/m2 (r = 0.696, homeostasis model of assessment ratio-index (HOMA-IR (r = 0.510, SCD1(16 (r = 0.273, and the delta-6 index (r = 0.494; and inversely associated with the delta-5 index (r = -0.443.Our current data suggested that children with liver steatosis was highly associated with obesity, and insulin resistance. In addition, increased endogenous lipogenesis through altered desaturase activity may contribute to the progression of liver steatosis in children.

  20. Vitamin B2 content determination in liver paste by using acid and acid-enzyme hydrolysis

    Directory of Open Access Journals (Sweden)

    Basić Zorica

    2007-01-01

    Full Text Available Background/Aim. Vitamin B2 is available in foodstuff in the form of coenzyme and in free form. For its content determination a few procedures should be performed (deliberation from a complex, extraction of free and deliberated form and detection, identification and quantification. There is a particular problem in determination of vitamin B2 in the meat products. For a determination of total vitamin B2 content in liver paste two preparation procedures are compared: acid and acid-enzymatic hydrolysis. The aim of this study thus, was to compare the effectiveness of these two different procedures for vitamin B2 content determination in liver paste. Methods. High pressure liquid chromatography (HPLC method with fluorescence detector, as specific and adequately sensitive for the foodstuff of a complex composition with a natural vitamin content, was used for determination of vitamin B2 in liver paste. Acid hydrolysis was performed with the application 0.1 M hydrochloric acid in a pressure cooker, and enzymatic hydrolysis was performed with the 10% takadiastase on 45 ºC within four hours. Ten samples of liver paste from the supply of the Serbian Army were examined. Separation was performed on the analytical column Nucleosil 50−5 C18 with mobile phase 450 ml CH3OH + 20 ml 5 mM CH3COONH4, and detection on the fluorescent detector with the variable wave length. Both methods were validated: examining a detection limit, quantification limit, specificity (because of a possible B2 vitamin interference with reagents, linearity of a peak area and standard concentration of B2 vitamin ratio in the range from 0.05 μg/ml to 2 μg/ml, precision for the 0.05 μg/ml concentration and recovery. Results. All the previously examined parameters validated both methods as specific, precise and reproductive, with a high recovery (98.5% for acid and 98.2% for acid - enzymatic hydrolysis, as well as linearity in a range that significantly superseded the expected content in

  1. Bile acids for liver-transplanted patients. Protocol for a Cochrane Review

    DEFF Research Database (Denmark)

    Chen, W; Gluud, C

    2003-01-01

    Liver transplantation has become a widely accepted form of treatment for numerous end-stage liver diseases. Bile acids may decrease the degree of allograft rejection after liver transplantation by changing the expression of major histocompatibility complex class molecules in bile duct epithelium...

  2. Inhaled ozone (O{sub 3})-induces changes in serum metabolomic and liver transcriptomic profiles in rats

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Desinia B. [Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, NC (United States); Karoly, Edward D.; Jones, Jan C. [Metabolon Incorporation, Durham, NC (United States); Ward, William O.; Vallanat, Beena D.; Andrews, Debora L. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Schladweiler, Mette C.; Snow, Samantha J. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Bass, Virginia L. [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC (United States); Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, Urmila P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2015-07-15

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O{sub 3}) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O{sub 3} exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O{sub 3} at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O{sub 3}, 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O{sub 3} increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O{sub 3} increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O{sub 3}. In conclusion, short-term O{sub 3} exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. - Highlights: • Ozone, an ubiquitous air pollutant induces acute systemic metabolic derangement. • Serum metabolomic approach provides novel insights in ozone-induced changes. • Ozone exposure induces leptinemia

  3. Methionine sulfoxide reductase A deficiency exacerbates acute liver injury induced by acetaminophen

    International Nuclear Information System (INIS)

    Singh, Mahendra Pratap; Kim, Ki Young; Kim, Hwa-Young

    2017-01-01

    Acetaminophen (APAP) overdose induces acute liver injury via enhanced oxidative stress and glutathione (GSH) depletion. Methionine sulfoxide reductase A (MsrA) acts as a reactive oxygen species scavenger by catalyzing the cyclic reduction of methionine-S-sulfoxide. Herein, we investigated the protective role of MsrA against APAP-induced liver damage using MsrA gene-deleted mice (MsrA −/− ). We found that MsrA −/− mice were more susceptible to APAP-induced acute liver injury than wild-type mice (MsrA +/+ ). The central lobule area of the MsrA −/− liver was more impaired with necrotic lesions. Serum alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels were significantly higher in MsrA −/− than in MsrA +/+ mice after APAP challenge. Deletion of MsrA enhanced APAP-induced hepatic GSH depletion and oxidative stress, leading to increased susceptibility to APAP-induced liver injury in MsrA-deficient mice. APAP challenge increased Nrf2 activation more profoundly in MsrA −/− than in MsrA +/+ livers. Expression and nuclear accumulation of Nrf2 and its target gene expression were significantly elevated in MsrA −/− than in MsrA +/+ livers after APAP challenge. Taken together, our results demonstrate that MsrA protects the liver from APAP-induced toxicity. The data provided herein constitute the first in vivo evidence of the involvement of MsrA in hepatic function under APAP challenge. - Highlights: • MsrA deficiency increases APAP-induced liver damage. • MsrA deletion enhances APAP-induced hepatic GSH depletion and oxidative stress. • MsrA deficiency induces more profound activation of Nrf2 in response to APAP. • MsrA protects the liver from APAP-induced toxicity.

  4. Interaction of red pepper (Capsicum annum, Tepin) polyphenols with Fe(II)-induced lipid peroxidation in brain and liver

    Energy Technology Data Exchange (ETDEWEB)

    Oboh, G [Biochemistry Department, Federal University of Technology, Akure, Ondo State (Nigeria); [Departamento de Quimica, Universidade Federal de Santa Maria (UFSM), Campus Universitario - Camobi, Santa Maria RS (Brazil); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: goboh2001@yahoo.com; Rocha, J B.T. [Campus Universitario - Camobi, Santa Maria RS (Brazil)

    2006-03-15

    Polyphenols exhibit a wide range of biological effects because of their antioxidant properties. Several types of polyphenols (phenolic acids, hydrolyzable tannins, and flavonoids) show anticarcinogenic and antimutagenic effects. Comparative studies were carried on the protective ability of free and bound polyphenol extracts of red Capsicum annuum Tepin (CAT) on brain and liver - In vitro. Free polyphenols of red Capsicum annuum Tepin (CAT) were extracted with 80% acetone, while the bound polyphenols were extracted with ethyl acetate from acid and alkaline hydrolysis of the pepper residue from free polyphenols extract. The phenol content, Fe (II) chelating ability, OH radical scavenging ability and protective ability of the extract against Fe (II)-induced lipid peroxidation in brain and liver was subsequently determined. The results of the study revealed that the free polyphenols (218.2mg/100g) content of the pepper were significantly higher than the bound polyphenols (42.5mg/100g). Furthermore, the free polyphenol extract had a significantly higher (<0.05) Fe (II) chelating ability, OH radical scavenging ability than the bound polyphenols. In addition, both extracts significantly inhibited (P<0.05) basal and 25{mu}M Fe (II)- induced lipid peroxidation in Rat's brain and liver in a dose dependent. However, the free polyphenols caused a significantly higher inhibition in the MDA (Malondialdehyde) production in the brain and liver homogenates than the bound phenols. Furthermore, the polyphenols protected the liver more than the brain. In conclusion, free polyphenols from Capsicum annuum protects both the liver and brain from Fe{sup 2+} induced lipid peroxidation, and this is probably due to the higher Fe (II) chelating ability and OH radical scavenging ability of the free polyphenols from the pepper. (author)

  5. Role of IRAK-M in alcohol induced liver injury.

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    Full Text Available Increasing evidence suggests that innate immunity plays an important role in alcohol-induced liver injury and most studies have focused on positive regulation of innate immunity. The main objective of this study was to investigate the negative regulator of innate immunity, IL-1/Toll-like receptor (TLR signaling pathways and interleukin receptor-associated kinase-M (IRAK-M in alcoholic liver injury. We established an alcohol-induced liver injury model using wild type and IRAK-M deficient B6 mice and investigated the possible mechanisms. We found that in the absence of IRAK-M, liver damage by alcohol was worse with higher alanine transaminase (ALT, more immune cell infiltration and increased numbers of IFNγ producing cells. We also found enhanced phagocytic activity in CD68(+ cells. Moreover, our results revealed altered gut bacteria after alcohol consumption and this was more striking in the absence of IRAK-M. Our study provides evidence that IRAK-M plays an important role in alcohol-induced liver injury and IRAK-M negatively regulates the innate and possibly the adaptive immune response in the liver reacting to acute insult by alcohol. In the absence of IRAK-M, the hosts developed worse liver injury, enhanced gut permeability and altered gut microbiota.

  6. Effects of bile acids on human airway epithelial cells: implications for aerodigestive diseases

    Directory of Open Access Journals (Sweden)

    Adil Aldhahrani

    2017-03-01

    Full Text Available Gastro-oesophageal reflux and aspiration have been associated with chronic and end-stage lung disease and with allograft injury following lung transplantation. This raises the possibility that bile acids may cause lung injury by damaging airway epithelium. The aim of this study was to investigate the effect of bile acid challenge using the immortalised human bronchial epithelial cell line (BEAS-2B. The immortalised human bronchial epithelial cell line (BEAS-2B was cultured. A 48-h challenge evaluated the effect of individual primary and secondary bile acids. Post-challenge concentrations of interleukin (IL-8, IL-6 and granulocyte−macrophage colony-stimulating factor were measured using commercial ELISA kits. The viability of the BEAS-2B cells was measured using CellTiter-Blue and MTT assays. Lithocholic acid, deoxycholic acid, chenodeoxycholic acid and cholic acid were successfully used to stimulate cultured BEAS-2B cells at different concentrations. A concentration of lithocholic acid above 10 μmol·L−1 causes cell death, whereas deoxycholic acid, chenodeoxycholic acid and cholic acid above 30 μmol·L−1 was required for cell death. Challenge with bile acids at physiological levels also led to a significant increase in the release of IL-8 and IL6 from BEAS-2B. Aspiration of bile acids could potentially cause cell damage, cell death and inflammation in vivo. This is relevant to an integrated gastrointestinal and lung physiological paradigm of chronic lung disease, where reflux and aspiration are described in both chronic lung diseases and allograft injury.

  7. Imatinib-induced fulminant liver failure in chronic myeloid leukemia: role of liver transplant and second-generation tyrosine kinase inhibitors: a case report.

    Science.gov (United States)

    Nacif, Lucas Souto; Waisberg, Daniel R; Pinheiro, Rafael Soares; Lima, Fabiana Roberto; Rocha-Santos, Vinicius; Andraus, Wellington; D'Albuquerque, Luiz Carneiro

    2018-03-10

    There is a worldwide problem of acute liver failure and mortality associated with remaining on the waiting for a liver transplant. In this study, we highlight results published in recent years by leading transplant centers in evaluating imatinib-induced acute liver failure in chronic myeloid leukemia and follow-up in liver transplantation. A 36-year-old brown-skinned woman (mixed Brazilian race) diagnosed 1 year earlier with chronic myeloid leukemia was started after delivery of a baby and continued for 6 months with imatinib mesylate (selective inhibitor of Bcr-Abl tyrosine kinase), which induced liver failure. We conducted a literature review using the PubMed database for articles published through September 2017, and we demonstrate a role of liver transplant in this situation for imatinib-induced liver failure. We report previously published results and a successful liver transplant after acute liver failure due to imatinib-induced in chronic myeloid leukemia treatment. We report a case of a successful liver transplant after acute liver failure resulting from imatinib-induced chronic myeloid leukemia treatment. The literature reveals the importance of prompt acute liver failure diagnosis and treatment with liver transplant in selected cases.

  8. Fat content, fatty acid pattern and iron content in livers of turkeys with hepatic lipidosis.

    Science.gov (United States)

    Visscher, Christian; Middendorf, Lea; Günther, Ronald; Engels, Alexandra; Leibfacher, Christof; Möhle, Henrik; Düngelhoef, Kristian; Weier, Stefan; Haider, Wolfram; Radko, Dimitri

    2017-05-30

    The so-called "hepatic lipidosis" in turkeys is an acute progressive disease associated with a high mortality rate in a very short time. Dead animals show a massive fatty degeneration of the liver. The cause is still unclear. Previous findings suggest that there may be parallels to human non-alcoholic fatty liver disease. The object of the study was to examine the changes in the fat contents, the fatty acid composition and the iron content in livers of animals, which have died from hepatic lipidosis. The conspicuous livers (n = 85) were collected from 20 flocks where the phenomenon of massive increased animal losses accompanied by marked macroscopically visible pathological liver steatosis suddenly occurred. For comparison and as a reference, livers (n = 16) of two healthy flocks were taken. Healthy and diseased flocks were fed identical diets concerning official nutrient recommendations and were operating under standardized, comparable conventional conditions. Compared to livers of healthy animals, in the livers of turkeys died from hepatic lipidosis there were found massively increased fat levels (130 ± 33.2 vs. 324 ± 101 g/kg dry matter-DM). In all fatty livers, different fatty acids concentrations were present in significantly increased concentrations compared to controls (palmitic acid: 104 g/kg DM, +345%; palmitoleic acid: 18.0 g/kg DM, + 570%; oleic acid: 115 g/kg DM, +437%). Fatty acids concentrations relevant for liver metabolism and inflammation were significantly reduced (arachidonic acid: 2.92 g/kg DM, -66.6%; eicosapentaenoic acid: 0.141 g/kg DM, -78.3%; docosahexaenoic acid: 0.227 g/kg DM, -90.4%). The ratio of certain fatty acids to one another between control and case livers changed analogously to liver diseases in humans (e.g.: C18:0/C16:0 - 0.913 against 0.311; C16:1n7/C16:0 - 0.090 against 0.165; C18:1/C18:0 - 0.938 against 4.03). The iron content in the liver tissue also increased massively (271 ± 51.5 vs 712 ± 214 mg/kg DM). The hepatic

  9. Alisol B 23-acetate protects against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes involved in bile acid homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qiang; Chen, Xin-li; Wang, Chang-yuan; Liu, Qi; Sun, Hui-jun; Sun, Peng-yuan; Huo, Xiao-kui; Liu, Zhi-hao; Yao, Ji-hong; Liu, Ke-xin, E-mail: kexinliu@dlmedu.edu.cn

    2015-03-15

    Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp) and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes. - Highlights: • AB23A has at least three roles in protection against ANIT-induced liver injury. • AB23A decreases Ntcp, and increases Bsep, Mrp2 and Mdr2 expression. • AB23A represses Cyp7a1 and Cyp8b1 through inducing Shp and Fgf15 expression. • AB23A increases bile acid metabolism through inducing Sult2a1 expression. • FXR activation is involved

  10. Alisol B 23-acetate protects against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes involved in bile acid homeostasis

    International Nuclear Information System (INIS)

    Meng, Qiang; Chen, Xin-li; Wang, Chang-yuan; Liu, Qi; Sun, Hui-jun; Sun, Peng-yuan; Huo, Xiao-kui; Liu, Zhi-hao; Yao, Ji-hong; Liu, Ke-xin

    2015-01-01

    Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp) and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes. - Highlights: • AB23A has at least three roles in protection against ANIT-induced liver injury. • AB23A decreases Ntcp, and increases Bsep, Mrp2 and Mdr2 expression. • AB23A represses Cyp7a1 and Cyp8b1 through inducing Shp and Fgf15 expression. • AB23A increases bile acid metabolism through inducing Sult2a1 expression. • FXR activation is involved

  11. Fatty acid composition in serum correlates with that in the liver and non-alcoholic fatty liver disease activity scores in mice fed a high-fat diet.

    Science.gov (United States)

    Wang, Xing-He; Li, Chun-Yan; Muhammad, Ishfaq; Zhang, Xiu-Ying

    2016-06-01

    In this study, we investigated the correlation between the serum fatty acid composition and hepatic steatosis, inflammation, hepatocellular ballooning scores, and liver fatty acids composition in mice fed a high-fat diet. Livers were collected for non-alcoholic fatty liver disease score analysis. Fatty acid compositions were analysed by gas chromatography. Correlations were determined by Pearson correlation coefficient. Exposed to a high-fat diet, mice developed fatty liver disease with varying severity without fibrosis. The serum fatty acid variation became more severe with prolonged exposure to a high-fat diet. This variation also correlated significantly with the variation in livers, with the types of fatty acids corresponding to liver steatosis, inflammation, and hepatocellular ballooning scores. Results of this study lead to the following hypothesis: the extent of serum fatty acid variation may be a preliminary biomarker of fatty liver disease caused by high-fat intake. Copyright © 2016. Published by Elsevier B.V.

  12. Peroxisome proliferator-activated receptor alpha acts as a mediator of endoplasmic reticulum stress-induced hepatocyte apoptosis in acute liver failure

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2016-07-01

    Full Text Available Peroxisome proliferator-activated receptor α (PPARα is a key regulator to ameliorate liver injury in cases of acute liver failure (ALF. However, its regulatory mechanisms remain largely undetermined. Endoplasmic reticulum stress (ER stress plays an important role in a number of liver diseases. This study aimed to investigate whether PPARα activation inhibits ER stress-induced hepatocyte apoptosis, thereby protecting against ALF. In a murine model of D-galactosamine (D-GalN- and lipopolysaccharide (LPS-induced ALF, Wy-14643 was administered to activate PPARα, and 4-phenylbutyric acid (4-PBA was administered to attenuate ER stress. PPARα activation ameliorated liver injury, because pre-administration of its specific inducer, Wy-14643, reduced the serum aminotransferase levels and preserved liver architecture compared with that of controls. The protective effect of PPARα activation resulted from the suppression of ER stress-induced hepatocyte apoptosis. Indeed, (1 PPARα activation decreased the expression of glucose-regulated protein 78 (Grp78, Grp94 and C/EBP-homologous protein (CHOP in vivo; (2 the liver protection by 4-PBA resulted from the induction of PPARα expression, as 4-PBA pre-treatment promoted upregulation of PPARα, and inhibition of PPARα by small interfering RNA (siRNA treatment reversed liver protection and increased hepatocyte apoptosis; (3 in vitro PPARα activation by Wy-14643 decreased hepatocyte apoptosis induced by severe ER stress, and PPARα inhibition by siRNA treatment decreased the hepatocyte survival induced by mild ER stress. Here, we demonstrate that PPARα activation contributes to liver protection and decreases hepatocyte apoptosis in ALF, particularly through regulating ER stress. Therefore, targeting PPARα could be a potential therapeutic strategy to ameliorate ALF.

  13. SiRNA Crosslinked Nanoparticles for the Treatment of Inflammation-induced Liver Injury.

    Science.gov (United States)

    Tang, Yaqin; Zeng, Ziying; He, Xiao; Wang, Tingting; Ning, Xinghai; Feng, Xuli

    2017-02-01

    RNA interference mediated by small interfering RNA (siRNA) provides a powerful tool for gene regulation, and has a broad potential as a promising therapeutic strategy. However, therapeutics based on siRNA have had limited clinical success due to their undesirable pharmacokinetic properties. This study presents pH-sensitive nanoparticles-based siRNA delivery systems (PNSDS), which are positive-charge-free nanocarriers, composed of siRNA chemically crosslinked with multi-armed poly(ethylene glycol) carriers via acid-labile acetal linkers. The unique siRNA crosslinked structure of PNSDS allows it to have minimal cytotoxicity, high siRNA loading efficiency, and a stimulus-responsive property that enables the selective intracellular release of siRNA in response to pH conditions. This study demonstrates that PNSDS can deliver tumor necrosis factor alpha (TNF-α) siRNA into macrophages and induce the efficient down regulation of the targeted gene in complete cell culture media. Moreover, PNSDS with mannose targeting moieties can selectively accumulate in mice liver, induce specific inhibition of macrophage TNF-α expression in vivo, and consequently protect mice from inflammation-induced liver damages. Therefore, this novel siRNA delivering platform would greatly improve the therapeutic potential of RNAi based therapies.

  14. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon.

    Science.gov (United States)

    Lee, Ja-Young; Arai, Hisashi; Nakamura, Yusuke; Fukiya, Satoru; Wada, Masaru; Yokota, Atsushi

    2013-11-01

    Bile acid composition in the colon is determined by bile acid flow in the intestines, the population of bile acid-converting bacteria, and the properties of the responsible bacterial enzymes. Ursodeoxycholic acid (UDCA) is regarded as a chemopreventive beneficial bile acid due to its low hydrophobicity. However, it is a minor constituent of human bile acids. Here, we characterized an UDCA-producing bacterium, N53, isolated from human feces. 16S rDNA sequence analysis identified this isolate as Ruminococcus gnavus, a novel UDCA-producer. The forward reaction that produces UDCA from 7-oxo-lithocholic acid was observed to have a growth-dependent conversion rate of 90-100% after culture in GAM broth containing 1 mM 7-oxo-lithocholic acid, while the reverse reaction was undetectable. The gene encoding 7β-hydroxysteroid dehydrogenase (7β-HSDH), which facilitates the UDCA-producing reaction, was cloned and overexpressed in Escherichia coli. Characterization of the purified 7β-HSDH revealed that the kcat/Km value was about 55-fold higher for the forward reaction than for the reverse reaction, indicating that the enzyme favors the UDCA-producing reaction. As R. gnavus is a common, core bacterium of the human gut microbiota, these results suggest that this bacterium plays a pivotal role in UDCA formation in the colon.

  15. Chitosan nanoparticles from marine squid protect liver cells against N-diethylnitrosoamine-induced hepatocellular carcinoma.

    Science.gov (United States)

    Subhapradha, Namasivayam; Shanmugam, Vairamani; Shanmugam, Annaian

    2017-09-01

    Rationale of this study was framed to investigate the protective effect and anti-cancer property of nanoparticles based on chitosan isolated from squid, Sepioteuthis lessoniana, on hepatic cells in N-Nitrosodiethylamine-induced hepatocellular carcinoma in rats. The results conferred that the chitosan nanoparticle supplementation had a protective effect on liver cells by reducing the levels of marker enzymes and bilirubin and thus increasing the albumin levels. The level of reduced glutathione, ascorbic acid and α-tocopherol significantly increased in both post- and pre-treatment with chitosan nanoparticles. The levels of antioxidant enzymes were enhanced and lipid peroxidation products were diminished while treating nitrosodiethylamine-induced hepatocellular carcinoma with chitosan nanoparticles. Supplementation of chitosan nanoparticles had potent anti-hyperlipidemic property that was evidenced by monitoring the serum lipid levels and its components. Animals pre-treated with chitosan nanoparticles along with nitrosodiethylamine showed a significant reduction in the total cholesterol and triglycerides levels with increase in the levels of phospholipids and free fatty acids. Chitosan nanoparticles treated rats showed significant increment in high-density lipoprotein cholesterol and reduction in low-density lipoprotein and very low-density lipoprotein cholesterol when compared with levels in nitrosodiethylamine-induced hepatocellular carcinoma. Nitrosodiethylamine-induced carcinoma changes on circulation and hepatic antioxidant defense mechanism were regulated by chitosan nanoparticles, concluding that the chitosan nanoparticles have a potent protective effect on liver cells which might be due to its robust antioxidant and anti-lipidemic property. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Positional specificity of saturated and unsaturated fatty acids in phosphatidic acid from rat liver

    NARCIS (Netherlands)

    Possmayer, F.; Scherphof, G.L.; Dubbelman, T.M.A.R.; Golde, L.M.G. van; Deenen, L.L.M. van

    1969-01-01

    1. 1. The relative incorporation of a number of radioactive fatty acids into the different glycerolipids of rat liver microsomes has been investigated. 2. 2. Studies on the distribution of the radioactivity incorporated into phosphatidylcholine, phosphatidylethanolamine and phosphatidic acid

  17. CT-guided percutaneous acetic acid injection therapy for liver metastasis

    International Nuclear Information System (INIS)

    Yu Tongfu; Wang Dehang; Zhuang Zhenwu; Li Linxun; Shi Haibin

    2002-01-01

    Objective: To evaluate the efficacy of CT-guided percutaneous acetic acid injection (PAI) for liver metastasis. Methods: Thirty-five cases (40 lesions) with liver metastasis were treated with PAI. 4-10 ml of 30% acetic acid with 1 ml contrast media was injected into every lesion. PAI was performed twice a week, and repeated for 2 to 3 weeks. Results: The tumors shrunk in 23 lesions, and remained unchanged in 12 lesions. The efficiency was 87.5%. All cases were followed up for 3 months to 3 years. One year survival rates was 62.9% (22 cases), 2 years 40.0% (14 cases), and 3 years 22.9% (8 cases). Conclusion: PAI was an effective therapy for liver metastasis

  18. T cells infiltrate the liver and kill hepatocytes in HLA-B(∗)57:01-associated floxacillin-induced liver injury.

    Science.gov (United States)

    Wuillemin, Natascha; Terracciano, Luigi; Beltraminelli, Helmut; Schlapbach, Christoph; Fontana, Stefano; Krähenbühl, Stephan; Pichler, Werner J; Yerly, Daniel

    2014-06-01

    Drug-induced liver injury is a major safety issue. It can cause severe disease and is a common cause of the withdrawal of drugs from the pharmaceutical market. Recent studies have identified the HLA-B(∗)57:01 allele as a risk factor for floxacillin (FLUX)-induced liver injury and have suggested a role for cytotoxic CD8(+) T cells in the pathomechanism of liver injury caused by FLUX. This study aimed to confirm the importance of FLUX-reacting cytotoxic lymphocytes in the pathomechanism of liver injury and to dissect the involved mechanisms of cytotoxicity. IHC staining of a liver biopsy from a patient with FLUX-induced liver injury revealed periportal inflammation and the infiltration of cytotoxic CD3(+) CD8(+) lymphocytes into the liver. The infiltration of cytotoxic lymphocytes into the liver of a patient with FLUX-induced liver injury demonstrates the importance of FLUX-reacting T cells in the underlying pathomechanism. Cytotoxicity of FLUX-reacting T cells from 10 HLA-B(∗)57:01(+) healthy donors toward autologous target cells and HLA-B(∗)57:01-transduced hepatocytes was analyzed in vitro. Cytotoxicity of FLUX-reacting T cells was concentration dependent and required concentrations in the range of peak serum levels after FLUX administration. Killing of target cells was mediated by different cytotoxic mechanisms. Our findings emphasize the role of the adaptive immune system and especially of activated drug-reacting T cells in human leukocyte antigen-associated, drug-induced liver injury. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Ageing sensitized by iPLA2β deficiency induces liver fibrosis and intestinal atrophy involving suppression of homeostatic genes and alteration of intestinal lipids and bile acids.

    Science.gov (United States)

    Jiao, Li; Gan-Schreier, Hongying; Zhu, Xingya; Wei, Wang; Tuma-Kellner, Sabine; Liebisch, Gerhard; Stremmel, Wolfgang; Chamulitrat, Walee

    2017-12-01

    Ageing is a major risk factor for various forms of liver and gastrointestinal (GI) disease and genetic background may contribute to the pathogenesis of these diseases. Group VIA phospholipase A2 or iPLA 2 β is a homeostatic PLA 2 by playing a role in phospholipid metabolism and remodeling. Global iPLA 2 β -/- mice exhibit aged-dependent phenotypes with body weight loss and abnormalities in the bone and brain. We have previously reported the abnormalities in these mutant mice showing susceptibility for chemical-induced liver injury and colitis. We hypothesize that iPLA 2 β deficiency may sensitize with ageing for an induction of GI injury. Male wild-type and iPLA 2 β -/- mice at 4 and 20-22months of age were studied. Aged, but not young, iPLA 2 β -/- mice showed increased hepatic fibrosis and biliary ductular expansion as well as severe intestinal atrophy associated with increased apoptosis, pro-inflammation, disrupted tight junction, and reduced number of mucin-containing globlet cells. This damage was associated with decreased expression of intestinal endoplasmic stress XBP1 and its regulator HNF1α, FATP4, ACSL5, bile-acid transport genes as well as nuclear receptors LXRα and FXR. By LC/MS-MS profiling, iPLA 2 β deficiency in aged mice caused an increase of intestinal arachidonate-containing phospholipids concomitant with a decrease in ceramides. By the suppression of intestinal FXR/FGF-15 signaling, hepatic bile-acid synthesis gene expression was increased leading to an elevation of secondary and hydrophobic bile acids in liver, bile, and intestine. In conclusions, ageing sensitized by iPLA 2 β deficiency caused a decline of key intestinal homeostatic genes resulting in the development of GI disease in a gut-to-liver manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. 24-nor-ursodeoxycholic acid ameliorates inflammatory response and liver fibrosis in a murine model of hepatic schistosomiasis.

    Science.gov (United States)

    Sombetzki, Martina; Fuchs, Claudia D; Fickert, Peter; Österreicher, Christoph H; Mueller, Michaela; Claudel, Thierry; Loebermann, Micha; Engelmann, Robby; Langner, Cord; Sahin, Emine; Schwinge, Dorothee; Guenther, Nina D; Schramm, Christoph; Mueller-Hilke, Brigitte; Reisinger, Emil C; Trauner, Michael

    2015-04-01

    Intrahepatic granuloma formation and fibrosis characterize the pathological features of Schistosoma mansoni infection. Based on previously observed substantial anti-fibrotic effects of 24-nor-ursodeoxycholic acid (norUDCA) in Abcb4/Mdr2(-/-) mice with cholestatic liver injury and biliary fibrosis, we hypothesized that norUDCA improves inflammation-driven liver fibrosis in S. mansoni infection. Adult NMRI mice were infected with 50 S. mansoni cercariae and after 12 weeks received either norUDCA- or ursodeoxycholic acid (UDCA)-enriched diet (0.5% wt/wt) for 4 weeks. Bile acid effects on liver histology, serum biochemistry, key regulatory cytokines, hepatic hydroxyproline content as well as granuloma formation were compared to naive mice and infected controls. In addition, effects of norUDCA on primary T-cell activation/proliferation and maturation of the antigen-presenting-cells (dendritic cells, macrophages) were determined in vitro. UDCA as well as norUDCA attenuated the inflammatory response in livers of S. mansoni infected mice, but exclusively norUDCA changed cellular composition and reduced size of hepatic granulomas as well as TH2-mediated hepatic fibrosis in vivo. Moreover, norUDCA affected surface expression level of major histocompatibility complex (MHC) class II of macrophages and dendritic cells as well as activation/proliferation of T-lymphocytes in vitro, whereas UDCA had no effect. This study demonstrates pronounced anti-inflammatory and anti-fibrotic effects of norUDCA compared to UDCA in S. mansoni induced liver injury, and indicates that norUDCA directly represses antigen presentation of antigen presenting cells and subsequent T-cell activation in vitro. Therefore, norUDCA represents a promising drug for the treatment of this important cause of liver fibrosis. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  1. Effect of Whole-Body X-Irradiation of the Synthesis of Individual Fatty Acids in Liver Slices from Normal and Fasted Rats

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Hansen, Lisbeth Grænge; Faber, M.

    1965-01-01

    (1) Using (2-14C) acetate and (1-14C) butyrate as precursors, rat-liver fatty acids were synthesized in vitro and assayed by paper chromatography. (2) Whole-body x-irradiation induced a change in the synthetic pattern of hepatic fatty acids towards a relatively enhanced synthesis of palmitic acid....... (3) X-irradiation and fasting seem to have opposite effects on fatty-acid synthesis. X-irradiation counteracts the drop in total synthesis and the relatively enhanced synthesis of palmitoleic acid induced by fasting. The relative enhancement of palmitic-acid synthesis mentioned under (2) stands...... in contrast to the effect of fasting, which specifically decreases the hepatic synthesis of palmitic acid. (4) There is a general similarity between corresponding fatty-acid patterns based on synthesis from (2-14C) acetate and (1-14C) butyrate, respectively....

  2. Hypothalamic kappa opioid receptor mediates both diet-induced and melanin concentrating hormone-induced liver damage through inflammation and endoplasmic reticulum stress.

    Science.gov (United States)

    Imbernon, Monica; Sanchez-Rebordelo, Estrella; Romero-Picó, Amparo; Kalló, Imre; Chee, Melissa J; Porteiro, Begoña; Al-Massadi, Omar; Contreras, Cristina; Fernø, Johan; Senra, Ana; Gallego, Rosalia; Folgueira, Cintia; Seoane, Luisa M; van Gestel, Margriet; Adan, Roger A; Liposits, Zsolt; Dieguez, Carlos; López, Miguel; Nogueiras, Ruben

    2016-10-01

    The opioid system is widely known to modulate the brain reward system and thus affect the behavior of humans and other animals, including feeding. We hypothesized that the hypothalamic opioid system might also control energy metabolism in peripheral tissues. Mice lacking the kappa opioid receptor (κOR) and adenoviral vectors overexpressing or silencing κOR were stereotaxically delivered in the lateral hypothalamic area (LHA) of rats. Vagal denervation was performed to assess its effect on liver metabolism. Endoplasmic reticulum (ER) stress was inhibited by pharmacological (tauroursodeoxycholic acid) and genetic (overexpression of the chaperone glucose-regulated protein 78 kDa) approaches. The peripheral effects on lipid metabolism were assessed by histological techniques and western blot. We show that in the LHA κOR directly controls hepatic lipid metabolism through the parasympathetic nervous system, independent of changes in food intake and body weight. κOR colocalizes with melanin concentrating hormone receptor 1 (MCH-R1) in the LHA, and genetic disruption of κOR reduced melanin concentrating hormone-induced liver steatosis. The functional relevance of these findings was given by the fact that silencing of κOR in the LHA attenuated both methionine choline-deficient, diet-induced and choline-deficient, high-fat diet-induced ER stress, inflammation, steatohepatitis, and fibrosis, whereas overexpression of κOR in this area promoted liver steatosis. Overexpression of glucose-regulated protein 78 kDa in the liver abolished hypothalamic κOR-induced steatosis by reducing hepatic ER stress. This study reveals a novel hypothalamic-parasympathetic circuit modulating hepatic function through inflammation and ER stress independent of changes in food intake or body weight; these findings might have implications for the clinical use of opioid receptor antagonists. (Hepatology 2016;64:1086-1104). © 2016 The Authors. (Hepatology published by Wiley Periodicals, Inc., on

  3. Phytanic acid alpha-oxidation: decarboxylation of 2-hydroxyphytanoyl-CoA to pristanic acid in human liver

    NARCIS (Netherlands)

    Verhoeven, N. M.; Wanders, R. J.; Schor, D. S.; Jansen, G. A.; Jakobs, C.

    1997-01-01

    The degradation of the first intermediate in the alpha-oxidation of phytanic acid, 2-hydroxyphytanoyl-CoA, was investigated. Human liver homogenates were incubated with 2-hydroxyphytanoyl-CoA or 2-hydroxyphytanic acid, after which formation of 2-ketophytanic acid and pristanic acid were studied.

  4. An Overview on the Proposed Mechanisms of Antithyroid Drugs-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Reza Heidari

    2015-03-01

    Full Text Available Drug-induced liver injury (DILI is a major problem for pharmaceutical industry and drug development. Mechanisms of DILI are many and varied. Elucidating the mechanisms of DILI will allow clinicians to prevent liver failure, need for liver transplantation, and death induced by drugs. Methimazole and propylthiouracil (PTU are two convenient antithyroid agents which their administration is accompanied by hepatotoxicity as a deleterious side effect. Although several cases of antithyroid drugs-induced liver injury are reported, there is no clear idea about the mechanism(s of hepatotoxicity induced by these medications. Different mechanisms such as reactive metabolites formation, oxidative stress induction, intracellular targets dysfunction, and immune-mediated toxicity are postulated to be involved in antithyroid agents-induced hepatic damage. Due to the idiosyncratic nature of antithyroid drugs-induced hepatotoxicity, it is impossible to draw a specific conclusion about the mechanisms of liver injury. However, it seems that reactive metabolite formation and immune-mediated toxicity have a great role in antithyroids liver toxicity, especially those caused by methimazole. This review attempted to discuss different mechanisms proposed to be involved in the hepatic injury induced by antithyroid drugs.

  5. Glycyrrhizic Acid in the Treatment of Liver Diseases: Literature Review

    Directory of Open Access Journals (Sweden)

    Jian-yuan Li

    2014-01-01

    Full Text Available Glycyrrhizic acid (GA is a triterpene glycoside found in the roots of licorice plants (Glycyrrhiza glabra. GA is the most important active ingredient in the licorice root, and possesses a wide range of pharmacological and biological activities. GA coupled with glycyrrhetinic acid and 18-beta-glycyrrhetic acid was developed in China or Japan as an anti-inflammatory, antiviral, and antiallergic drug for liver disease. This review summarizes the current biological activities of GA and its medical applications in liver diseases. The pharmacological actions of GA include inhibition of hepatic apoptosis and necrosis; anti-inflammatory and immune regulatory actions; antiviral effects; and antitumor effects. This paper will be a useful reference for physicians and biologists researching GA and will open the door to novel agents in drug discovery and development from Chinese herbs. With additional research, GA may be more widely used in the treatment of liver diseases or other conditions.

  6. Liver function and bacteriology of organs in broiler inoculated with nalidixic acid-resistant Salmonella Typhimurium and treated with organic acids

    Directory of Open Access Journals (Sweden)

    Tatiane M. Rocha

    2013-07-01

    Full Text Available AbAns etxrpaecritment was carried out with 630 one-day-old chicks to evaluate the effects of organic acids when birds were experimentally inoculated with Salmonella Typhimurium. Liver damage and the persistence of the bacterium in the organs were evaluated as well. Broilers were distributed in a completely randomised experimental design in a 3×2 factorial arrangement of six treatments with seven replicates of 15 birds each. Birds were inoculated with saline solution or the bacterium via gavage at 1 day of age, or were offered a feed containing or not the organic acid blend for the period of 7 to 14 days of age. A dose of 5.0x102 colony-forming units (CFU/0.5 mL of Salmonella Typhimurium was used for inoculation both via gavage and feed. The parameters evaluated are weight, liver histopathology, liver and serum biochemistry, and bacteriological analyses of the caeca, crop, spleen, and liver and heart pool. At 21 and 28 days of age, the liver of the non-inoculated groups was significantly lighter as compared to the other treatments. Birds fed organic acids presented lower bacterial isolation rates in all organs tested. Birds inoculated in the crop and treated with organic acids presented lower E. coli CFU counts (P<0.05. Birds inoculated with Salmonella presented significant changes (P<0.05 in liver enzymes, as detected by serum biochemistry, and in liver histopathology. It was concluded that organic acids effectively controlled Salmonella Typhimurium and did not cause any liver damage.

  7. Liver gene expression profiles of rats treated with clofibric acid: comparison of whole liver and laser capture microdissected liver.

    Science.gov (United States)

    Michel, Cécile; Desdouets, Chantal; Sacre-Salem, Béatrice; Gautier, Jean-Charles; Roberts, Ruth; Boitier, Eric

    2003-12-01

    Clofibric acid (CLO) is a peroxisome proliferator (PP) that acts through the peroxisome proliferator activated receptor alpha, leading to hepatocarcinogenesis in rodents. CLO-induced hepatocarcinogenesis is a multi-step process, first transforming normal liver cells into foci. The combination of laser capture microdissection (LCM) and genomics has the potential to provide expression profiles from such small cell clusters, giving an opportunity to understand the process of cancer development in response to PPs. To our knowledge, this is the first evaluation of the impact of the successive steps of LCM procedure on gene expression profiling by comparing profiles from LCM samples to those obtained with non-microdissected liver samples collected after a 1 month CLO treatment in the rat. We showed that hematoxylin and eosin (H&E) staining and laser microdissection itself do not impact on RNA quality. However, the overall process of the LCM procedure affects the RNA quality, resulting in a bias in the gene profiles. Nonetheless, this bias did not prevent accurate determination of a CLO-specific molecular signature. Thus, gene-profiling analysis of microdissected foci, identified by H&E staining may provide insight into the mechanisms underlying non-genotoxic hepatocarcinogenesis in the rat by allowing identification of specific genes that are regulated by CLO in early pre-neoplastic foci.

  8. Uric Acid Induces Hepatic Steatosis by Generation of Mitochondrial Oxidative Stress

    Science.gov (United States)

    Lanaspa, Miguel A.; Sanchez-Lozada, Laura G.; Choi, Yea-Jin; Cicerchi, Christina; Kanbay, Mehmet; Roncal-Jimenez, Carlos A.; Ishimoto, Takuji; Li, Nanxing; Marek, George; Duranay, Murat; Schreiner, George; Rodriguez-Iturbe, Bernardo; Nakagawa, Takahiko; Kang, Duk-Hee; Sautin, Yuri Y.; Johnson, Richard J.

    2012-01-01

    Metabolic syndrome represents a collection of abnormalities that includes fatty liver, and it currently affects one-third of the United States population and has become a major health concern worldwide. Fructose intake, primarily from added sugars in soft drinks, can induce fatty liver in animals and is epidemiologically associated with nonalcoholic fatty liver disease in humans. Fructose is considered lipogenic due to its ability to generate triglycerides as a direct consequence of the metabolism of the fructose molecule. Here, we show that fructose also stimulates triglyceride synthesis via a purine-degrading pathway that is triggered from the rapid phosphorylation of fructose by fructokinase. Generated AMP enters into the purine degradation pathway through the activation of AMP deaminase resulting in uric acid production and the generation of mitochondrial oxidants. Mitochondrial oxidative stress results in the inhibition of aconitase in the Krebs cycle, resulting in the accumulation of citrate and the stimulation of ATP citrate lyase and fatty-acid synthase leading to de novo lipogeneis. These studies provide new insights into the pathogenesis of hepatic fat accumulation under normal and diseased states. PMID:23035112

  9. Non-invasive evaluation of liver stiffness after splenectomy in rabbits with CCl4-induced liver fibrosis

    OpenAIRE

    Wang, Ming-Jun; Ling, Wen-Wu; Wang, Hong; Meng, Ling-Wei; Cai, He; Peng, Bing

    2016-01-01

    AIM To investigate the diagnostic performance of liver stiffness measurement (LSM) by elastography point quantification (ElastPQ) in animal models and determine the longitudinal changes in liver stiffness by ElastPQ after splenectomy at different stages of fibrosis. METHODS Liver stiffness was measured in sixty-eight rabbits with CCl4-induced liver fibrosis at different stages and eight healthy control rabbits by ElastPQ. Liver biopsies and blood samples were obtained at scheduled time points...

  10. A Case of Montelukast-Induced Churg-Strauss Syndrome Associated with Liver Dysfunction

    Directory of Open Access Journals (Sweden)

    Keiji Matsui

    2011-01-01

    Full Text Available A 64-year-old woman was admitted to hospital due to protracted diarrhea and liver dysfunction. The patient was diagnosed as Churg-Strauss syndrome (CSS due to asthma, paranasal sinusitis, hypereosinophilia, and polyneuropathy. There was a history of taking montelukast, a leukotriene receptor antagonist (LTRA, which is thought to have some relationship with CSS. The liver biopsy specimen showed eosinophilic infiltration and centrolobular fatty change. In this paper, we review the relationship between LTRA and CSS. Several lines of evidence suggest that leukotriene plays an important role in maintaining neural tissues. We also review the potential relationship between centrolobular fatty change and pivoxil-containing antibiotics, which was prescribed for sinusitis before admission. Carnitine deficiency induced by pivoxil-containing agents may cause impaired fatty acid oxidation in mitochondria.

  11. Cytokine and acute phase protein gene expression in liver biopsies from dairy cows with a lipopolysaccharide - induced mastitis

    DEFF Research Database (Denmark)

    Vels, J; Røntved, Christine M.; Bjerring, Martin

    2009-01-01

    A minimally invasive liver biopsy technique was tested for its applicability to study the hepatic acute phase response (APR) in dairy cows with Escherichia coli lipopolysaccharide (LPS)-induced mastitis. The hepatic mRNA expression profiles of the inflammatory cytokines, tumor necrosis factor (TNF......, a minimally invasive liver biopsy technique can be used for studying the hepatic APR in diseased cattle. Lipopolysaccharide-induced mastitis resulted in a time-dependent production of inflammatory cytokines and SAA and Hp in the liver of dairy cows.......- ), IL-1β, IL-6, and IL-10, and the acute phase proteins serum amyloid A isoform 3 (SAA3), haptoglobin (Hp), and 1-acid glycoprotein (AGP) were determined by real-time reverse transcription-PCR. Fourteen primiparous cows in mid lactation were challenged with 200 µg of LPS (n = 8) or NaCl solution (n = 6...

  12. Protective Effects of Tormentic Acid, a Major Component of Suspension Cultures of Eriobotrya japonica Cells, on Acetaminophen-Induced Hepatotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    Wen-Ping Jiang

    2017-05-01

    Full Text Available An acetaminophen (APAP overdose can cause hepatotoxicity and lead to fatal liver damage. The hepatoprotective effects of tormentic acid (TA on acetaminophen (APAP-induced liver damage were investigated in mice. TA was intraperitoneally (i.p. administered for six days prior to APAP administration. Pretreatment with TA prevented the elevation of serum aspartate aminotransferase (AST, alanine aminotransferase (ALT, total bilirubin (T-Bil, total cholesterol (TC, triacylglycerol (TG, and liver lipid peroxide levels in APAP-treated mice and markedly reduced APAP-induced histological alterations in liver tissues. Additionally, TA attenuated the APAP-induced production of nitric oxide (NO, reactive oxygen species (ROS, tumor necrosis factor-alpha (TNF-α, interleukin-1beta (IL-1β, and IL-6. Furthermore, the Western blot analysis showed that TA blocked the protein expression of inducible NO synthase (iNOS and cyclooxygenase-2 (COX-2, as well as the inhibition of nuclear factor-kappa B (NF-κB and mitogen-activated protein kinases (MAPKs activation in APAP-injured liver tissues. TA also retained the superoxidase dismutase (SOD, glutathione peroxidase (GPx, and catalase (CAT in the liver. These results suggest that the hepatoprotective effects of TA may be related to its anti-inflammatory effect by decreasing thiobarbituric acid reactive substances (TBARS, iNOS, COX-2, TNF-α, IL-1β, and IL-6, and inhibiting NF-κB and MAPK activation. Antioxidative properties were also observed, as shown by heme oxygenase-1 (HO-1 induction in the liver, and decreases in lipid peroxides and ROS. Therefore, TA may be a potential therapeutic candidate for the prevention of APAP-induced liver injury by inhibiting oxidative stress and inflammation.

  13. Opposite Expression of SPARC between the Liver and Pancreas in Streptozotocin-Induced Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Kanikkai Raja Aseer

    Full Text Available Secreted protein acidic and rich in cysteine (SPARC is a matricellular protein that regulates several cellular events, including inflammation and tissue remodelling. In this study, we investigated the tissue-specific expression of SPARC in streptozotocin (STZ-induced diabetes, and found that SPARC was significantly up-regulated in the liver while down-regulated in the pancreas of STZ-induced diabetic rats. Chronic inflammation occurred in the diabetic pancreas accompanied by up-regulation of CCAAT/enhancer-binding protein beta (C/EBPβ and its targets (TNFα, Il6, CRP, and Fn1 as well as myeloperoxidase (Mpo and C-X-C chemokine receptor type 2 (Cxcr2. Diabetic liver showed significant up-regulation of Tgfb1 as well as moderately less up-regulated TNFα and reduced Fn1, resulting in elevated fibrogenesis. PARP-1 was not up-regulated during CD95-mediated apoptosis, resulting in restoration of high ATP levels in the diabetic liver. On the contrary, CD95-dependent apoptosis was not observed in the diabetic pancreas due to up-regulation of PARP-1 and ATP depletion, resulting in necrosis. The cytoprotective machinery was damaged by pancreatic inflammation, whereas adequate antioxidant capacity indicates low oxidative stress in the diabetic liver. High and low cellular insulin content was found in the diabetic liver and pancreas, respectively. Furthermore, we identified six novel interacting partner proteins of SPARC by co-immunoprecipitation in the diabetic liver and pancreas, and their interactions with SPARC were predicted by bioinformatics tools. Taken together, opposite expression of SPARC in the diabetic liver and pancreas may be related to inflammation and immune cell infiltration, degrees of apoptosis and fibrosis, cytoprotective machinery, and cellular insulin levels.

  14. Opposite Expression of SPARC between the Liver and Pancreas in Streptozotocin-Induced Diabetic Rats

    Science.gov (United States)

    Aseer, Kanikkai Raja; Kim, Sang Woo; Choi, Myung-Sook; Yun, Jong Won

    2015-01-01

    Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that regulates several cellular events, including inflammation and tissue remodelling. In this study, we investigated the tissue-specific expression of SPARC in streptozotocin (STZ)-induced diabetes, and found that SPARC was significantly up-regulated in the liver while down-regulated in the pancreas of STZ-induced diabetic rats. Chronic inflammation occurred in the diabetic pancreas accompanied by up-regulation of CCAAT/enhancer-binding protein beta (C/EBPβ) and its targets (TNFα, Il6, CRP, and Fn1) as well as myeloperoxidase (Mpo) and C-X-C chemokine receptor type 2 (Cxcr2). Diabetic liver showed significant up-regulation of Tgfb1 as well as moderately less up-regulated TNFα and reduced Fn1, resulting in elevated fibrogenesis. PARP-1 was not up-regulated during CD95-mediated apoptosis, resulting in restoration of high ATP levels in the diabetic liver. On the contrary, CD95-dependent apoptosis was not observed in the diabetic pancreas due to up-regulation of PARP-1 and ATP depletion, resulting in necrosis. The cytoprotective machinery was damaged by pancreatic inflammation, whereas adequate antioxidant capacity indicates low oxidative stress in the diabetic liver. High and low cellular insulin content was found in the diabetic liver and pancreas, respectively. Furthermore, we identified six novel interacting partner proteins of SPARC by co-immunoprecipitation in the diabetic liver and pancreas, and their interactions with SPARC were predicted by bioinformatics tools. Taken together, opposite expression of SPARC in the diabetic liver and pancreas may be related to inflammation and immune cell infiltration, degrees of apoptosis and fibrosis, cytoprotective machinery, and cellular insulin levels. PMID:26110898

  15. Lambda-cyhalothrin-induced biochemical and histopathological changes in the liver of rats: ameliorative effect of ascorbic acid.

    Science.gov (United States)

    Fetoui, Hamadi; Garoui, El Mouldi; Zeghal, Najiba

    2009-05-01

    Pyrethroid pesticides were used preferably over organochlorines and organophosphates due to their high effectiveness, low toxicity to non-target organisms and easy biodegrability. It has widespread applications in agriculture through the world and in Tunisia. The present study investigates lambda-cyhalothrin (LTC) effects on biochemical parameters, hepatotoxicity and their attenuation by vitamin C. Male Wistar rats were randomly divided into three groups of seven each: a control group (C) and two treated groups during 3 weeks with LTC administrated either alone in drinking water for LTC group or coadministred with vitamin C for LTC+vit C group. Lactate deshydrogenase (LDH) activity was significantly increased in liver (+51%, p<0.001) and in plasma (+40%, p<0.001) compared to those of control group. A significant increase of malondialdehyde (MDA) levels in liver (+53%; p<0.001) associated with a decrease in antioxidants enzyme activities and reduced glutathione (GSH) content was observed in LTC group compared to controls. The administration of vitamin C to LTC+vit C group improved all parameters studied. We conclude that LTC induces oxidative stress and modifies biochemical parameters and histological aspects of liver. Administration of vitamin C alleviates the toxicity induced by this synthetic pyrethroid insecticide.

  16. Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance.

    Science.gov (United States)

    Preidis, Geoffrey A; Kim, Kang Ho; Moore, David D

    2017-04-03

    The nuclear receptors PPARα (encoded by NR1C1) and farnesoid X receptor (FXR, encoded by NR1H4) are activated in the liver in the fasted and fed state, respectively. PPARα activation induces fatty acid oxidation, while FXR controls bile acid homeostasis, but both nuclear receptors also regulate numerous other metabolic pathways relevant to liver energy balance. Here we review evidence that they function coordinately to control key nutrient pathways, including fatty acid oxidation and gluconeogenesis in the fasted state and lipogenesis and glycolysis in the fed state. We have also recently reported that these receptors have mutually antagonistic impacts on autophagy, which is induced by PPARα but suppressed by FXR. Secretion of multiple blood proteins is a major drain on liver energy and nutrient resources, and we present preliminary evidence that the liver secretome may be directly suppressed by PPARα, but induced by FXR. Finally, previous studies demonstrated a striking deficiency in bile acid levels in malnourished mice that is consistent with results in malnourished children. We present evidence that hepatic targets of PPARα and FXR are dysregulated in chronic undernutrition. We conclude that PPARα and FXR function coordinately to integrate liver energy balance.

  17. Protective effect of Chlorogenic acid against methotrexate induced oxidative stress, inflammation and apoptosis in rat liver: An experimental approach.

    Science.gov (United States)

    Ali, Nemat; Rashid, Summya; Nafees, Sana; Hasan, Syed Kazim; Shahid, Ayaz; Majed, Ferial; Sultana, Sarwat

    2017-06-25

    Methotrexate (MTX) is a drug which is used to treat different types of cancers but hepatotoxicity limits its clinical use. Chlorogenic acid (CGA) is one of the most abundant naturally occurring polyphenols in the human diet. Here, we assessed the effect of CGA against MTX-induced hepatotoxicity and investigated the underlying possible mechanisms in Wistar Rats. Rats were pre-treated with CGA (50 or 100 mg kg/b.w) and administered a single dose of MTX (20 mg/kg, b.w.). MTX caused hepatotoxicity as evidenced by significant increase in serum toxicity markers, histopathological changes. decreased activities of anti-oxidant armory (SOD, CAT, GPx, GR) and GSH content. MTX significantly causes upregulation of iNOS, Cox-2, Bax and downregulation of Bcl-2 expressions, it causes higher caspase 3, 9 activities. However CGA pretreatment alleviates the hepatotoxicity by decreasing the oxidative stress. CGA inhibited Cox-2, iNOS, Bax, Bcl-2 and Caspases 3, 9 mediated inflammation and apoptosis, and improve the histology induced by MTX. Thus, these findings demonstrated the hepatoprotective nature of CGA by attenuating the pro-inflammatory and apoptotic mediators and improving antioxidant competence in hepatic tissue. These results imply that CGA has perfective effect against MTX-induced liver injury. Hence CGA supplementation might be helpful in abrogation of MTX toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Loss of 5‐lipoxygenase activity protects mice against paracetamol‐induced liver toxicity

    Science.gov (United States)

    Pu, Shiyun; Ren, Lin; Liu, Qinhui; Kuang, Jiangying; Shen, Jing; Cheng, Shihai; Zhang, Yuwei; Jiang, Wei; Zhang, Zhiyong; Jiang, Changtao

    2015-01-01

    Background and Purpose Paracetamol (acetaminophen) is the most widely used over‐the‐counter analgesic and overdosing with paracetamol is the leading cause of hospital admission for acute liver failure. 5‐Lipoxygenase (5‐LO) catalyses arachidonic acid to form LTs, which lead to inflammation and oxidative stress. In this study, we examined whether deletion or pharmacological inhibition of 5‐LO could protect mice against paracetamol‐induced hepatic toxicity. Experimental Approach Both genetic deletion and pharmacological inhibition of 5‐LO in C57BL/6J mice were used to study the role of this enzyme in paracetamol induced liver toxicity. Serum and tissue biochemistry, H&E staining, and real‐time PCR were used to assess liver toxicity. Key Results Deletion or pharmacological inhibition of 5‐LO in mice markedly ameliorated paracetamol‐induced hepatic injury, as shown by decreased serum alanine transaminase and aspartate aminotransferase levels and hepatic centrilobular necrosis. The hepatoprotective effect of 5‐LO inhibition was associated with induction of the antitoxic phase II conjugating enzyme, sulfotransferase2a1, suppression of the pro‐toxic phase I CYP3A11 and reduction of the hepatic transporter MRP3. In 5‐LO−/− mice, levels of GSH were increased, and oxidative stress decreased. In addition, PPAR α, a nuclear receptor that confers resistance to paracetamol toxicity, was activated in 5‐LO−/− mice. Conclusions and Implications The activity of 5‐LO may play a critical role in paracetamol‐induced hepatic toxicity by regulating paracetamol metabolism and oxidative stress. PMID:26398229

  19. Metabolic Circuit Involving Free Fatty Acids, microRNA 122, and Triglyceride Synthesis in Liver and Muscle Tissues.

    Science.gov (United States)

    Chai, Chofit; Rivkin, Mila; Berkovits, Liav; Simerzin, Alina; Zorde-Khvalevsky, Elina; Rosenberg, Nofar; Klein, Shiri; Yaish, Dayana; Durst, Ronen; Shpitzen, Shoshana; Udi, Shiran; Tam, Joseph; Heeren, Joerg; Worthmann, Anna; Schramm, Christoph; Kluwe, Johannes; Ravid, Revital; Hornstein, Eran; Giladi, Hilla; Galun, Eithan

    2017-11-01

    Effective treatments are needed for hepatic steatosis characterized by accumulation of triglycerides in hepatocytes, which leads to hepatocellular carcinoma. MicroRNA 122 (MIR122) is expressed only in the liver, where it regulates lipid metabolism. We investigated the mechanism by which free fatty acids (FFAs) regulate MIR122 expression and the effect of MIR122 on triglyceride synthesis. We analyzed MIR122 promoter activity and validated its target mRNAs by transfection of Luciferase reporter plasmids into Huh7, BNL-1ME, and HEK293 cultured cell lines. We measured levels of microRNAs and mRNAs by quantitative real-time PCR analysis of RNA extracted from plasma, liver, muscle, and adipose tissues of C57BL/6 mice given the FFA-inducer CL316243. MIR122 was inhibited using an inhibitor of MIR122. Metabolic profiles of mice were determined using metabolic chambers and by histologic analyses of liver tissues. We performed RNA sequence analyses to identify metabolic pathways involving MIR122. We validated human Agpat1 and Dgat1 mRNAs, involved in triglyceride synthesis, as targets of MIR122. FFAs increased MIR122 expression in livers of mice by activating the retinoic acid-related orphan receptor alpha, and induced secretion of MIR122 from liver to blood. Circulating MIR122 entered muscle and adipose tissues of mice, reducing mRNA levels of genes involved in triglyceride synthesis. Mice injected with an inhibitor of MIR122 and then given CL316243, accumulated triglycerides in liver and muscle tissues, and had reduced rates of β-oxidation. There was a positive correlation between level of FFAs and level of MIR122 in plasma samples from 6 healthy individuals, collected before and during fasting. In biochemical and histologic studies of plasma, liver, muscle, and adipose tissues from mice, we found that FFAs increase hepatic expression and secretion of MIR122, which regulates energy storage vs expenditure in liver and peripheral tissues. Strategies to reduce

  20. Amelioration of ionizing radiation induced lipid peroxidation in mouse liver by Moringa oleifera Lam. leaf extract

    International Nuclear Information System (INIS)

    Sinha, Mahuya; Das, Dipesh Kr; Dey, Sanjit; Datta, Sanjukta; Ghosh, Santinath

    2012-01-01

    Protective effect of Moringa oleifera leaf extract (MoLE) against radiation-induced lipid peroxidation has been investigated. Swiss albino mice, selected from an inbred colony, were administered with MoLE (300 mg/kg body wt) for 15 days before exposing to a single dose of 5 Gy 60 Co-gamma radiation. After treatments, animals were necropsied at different post irradiation intervals (days 1, 7 and 15) and hepatic lipid peroxidation and reduced glutathione (GSH) contents were estimated to observe the relative changes due to irradiation and its possible amelioration by MoLE. It was observed that, MoLE treatment restored GSH in liver and prevented radiation induced augmentation in hepatic lipid peroxidation. Phytochemical analysis showed that MoLE possess various phytochemicals such as ascorbic acid, phenolics (catechin, epicatechin, ferulic acid, ellagic acid, myricetin) etc., which may play the key role in prevention of hepatic lipid peroxidation by scavenging radiation induced free radicals. (author)

  1. PCSK9 Induces CD36 Degradation and Affects Long-Chain Fatty Acid Uptake and Triglyceride Metabolism in Adipocytes and in Mouse Liver.

    Science.gov (United States)

    Demers, Annie; Samami, Samaneh; Lauzier, Benjamin; Des Rosiers, Christine; Ngo Sock, Emilienne Tudor; Ong, Huy; Mayer, Gaetan

    2015-12-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes the degradation of the low-density lipoprotein receptor thereby elevating plasma low-density lipoprotein cholesterol levels and the risk of coronary heart disease. Thus, the use of PCSK9 inhibitors holds great promise to prevent heart disease. Previous work found that PCSK9 is involved in triglyceride metabolism, independently of its action on low-density lipoprotein receptor, and that other yet unidentified receptors could mediate this effect. Therefore, we assessed whether PCSK9 enhances the degradation of CD36, a major receptor involved in transport of long-chain fatty acids and triglyceride storage. Overexpressed or recombinant PCSK9 induced CD36 degradation in cell lines and primary adipocytes and reduced the uptake of the palmitate analog Bodipy FL C16 and oxidized low-density lipoprotein in 3T3-L1 adipocytes and hepatic HepG2 cells, respectively. Surface plasmon resonance, coimmunoprecipitation, confocal immunofluorescence microscopy, and protein degradation pathway inhibitors revealed that PCSK9 directly interacts with CD36 and targets the receptor to lysosomes through a mechanism involving the proteasome. Importantly, the level of CD36 protein was increased by >3-fold upon small interfering RNA knockdown of endogenous PCSK9 in hepatic cells and similarly increased in the liver and visceral adipose tissue of Pcsk9(-/-) mice. In Pcsk9(-/-) mice, increased hepatic CD36 was correlated with an amplified uptake of fatty acid and accumulation of triglycerides and lipid droplets. Our results demonstrate an important role of PCSK9 in modulating the function of CD36 and triglyceride metabolism. PCSK9-mediated CD36 degradation may serve to limit fatty acid uptake and triglyceride accumulation in tissues, such as the liver. © 2015 American Heart Association, Inc.

  2. Induction of time-dependent oxidative stress and related transcriptional effects of perfluorododecanoic acid in zebrafish liver

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yang [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Beijing 100101 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100080 (China); Wang Jianshe; Wei Yanhong; Zhang Hongxia; Xu Muqi [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Beijing 100101 (China); Dai Jiayin [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Beijing 100101 (China)], E-mail: daijy@ioz.ac.cn

    2008-09-29

    The effects of acute perfluorododecanoic acid (PFDoA) exposure on the induction of oxidative stress and alteration of mitochondrial gene expression were studied in the livers of female zebrafish (Danio rerio). Female zebrafish were exposed to PFDoA via a single intraperitoneal injection (0, 20, 40, or 80 {mu}g PFDoA/g body weight) and were then sacrificed 48 h, 96 h, or seven days post-PFDoA administration. PFDoA-treated fish exhibited histopathological liver damage, including swollen hepatocytes, vacuolar degeneration, and nuclei pycnosis. Glutathione (GSH) content and catalase (CAT) activity decreased significantly at 48 h post-injection while superoxide dismutase (SOD) activity was initially decreased at 48 h post-injection but was then elevated by seven days post-injection. The activity of glutathione peroxidase (GPx) increased at 48 h and seven days compared to control fish, although the increased level at seven days post-injection was decreased compared to the level at 48 h post-injection. Lipid peroxidation levels were increased at seven days post-injection, while no apparent induction was observed at 48 h or 96 h post-injection. The mRNA expression of medium-chain fatty acid dehydrogenase (MCAD) was induced, while the transcriptional expression of liver fatty acid binding protein (L-FABP), peroxisome proliferating activating receptor {alpha} (PPAR{alpha}), carnitine palmitoyl-transferase I (CPT-I), uncoupling protein 2 (UCP-2), and Bcl-2 were significantly inhibited. Furthermore, the transcriptional expression of peroxisomal fatty acyl-CoA oxidase (ACOX), very long-chain acyl-CoA dehydrogenase (VLCAD), long-chain acyl-CoA dehydrogenase (LCAD) did not exhibit significant changes following PFDoA treatment. No significant changes were noted in the transcriptional expression of genes involved in mitochondrial respiratory chain and ATP synthesis, including cytochrome c oxidase subunit I (COXI), NADH dehydrogenase subunit I (NDI), and ATP synthase F0 subunit 6

  3. Induction of time-dependent oxidative stress and related transcriptional effects of perfluorododecanoic acid in zebrafish liver

    International Nuclear Information System (INIS)

    Liu Yang; Wang Jianshe; Wei Yanhong; Zhang Hongxia; Xu Muqi; Dai Jiayin

    2008-01-01

    The effects of acute perfluorododecanoic acid (PFDoA) exposure on the induction of oxidative stress and alteration of mitochondrial gene expression were studied in the livers of female zebrafish (Danio rerio). Female zebrafish were exposed to PFDoA via a single intraperitoneal injection (0, 20, 40, or 80 μg PFDoA/g body weight) and were then sacrificed 48 h, 96 h, or seven days post-PFDoA administration. PFDoA-treated fish exhibited histopathological liver damage, including swollen hepatocytes, vacuolar degeneration, and nuclei pycnosis. Glutathione (GSH) content and catalase (CAT) activity decreased significantly at 48 h post-injection while superoxide dismutase (SOD) activity was initially decreased at 48 h post-injection but was then elevated by seven days post-injection. The activity of glutathione peroxidase (GPx) increased at 48 h and seven days compared to control fish, although the increased level at seven days post-injection was decreased compared to the level at 48 h post-injection. Lipid peroxidation levels were increased at seven days post-injection, while no apparent induction was observed at 48 h or 96 h post-injection. The mRNA expression of medium-chain fatty acid dehydrogenase (MCAD) was induced, while the transcriptional expression of liver fatty acid binding protein (L-FABP), peroxisome proliferating activating receptor α (PPARα), carnitine palmitoyl-transferase I (CPT-I), uncoupling protein 2 (UCP-2), and Bcl-2 were significantly inhibited. Furthermore, the transcriptional expression of peroxisomal fatty acyl-CoA oxidase (ACOX), very long-chain acyl-CoA dehydrogenase (VLCAD), long-chain acyl-CoA dehydrogenase (LCAD) did not exhibit significant changes following PFDoA treatment. No significant changes were noted in the transcriptional expression of genes involved in mitochondrial respiratory chain and ATP synthesis, including cytochrome c oxidase subunit I (COXI), NADH dehydrogenase subunit I (NDI), and ATP synthase F0 subunit 6 (ATPo6). These

  4. Radiation induced liver disease: A clinical update

    International Nuclear Information System (INIS)

    Benson, R.; Madan, R.; Chander, S.; Kilambi, R.

    2016-01-01

    Radiation-induced liver disease (RILD) or radiation hepatitis is a sub-acute form of liver injury due to radiation. It is one of the most dreaded complications of radiation which prevents radiation dose escalation and re irradiation for hepatobiliary or upper gastrointestinal malignancies. This complication should be kept in mind whenever a patient is planned for irradiation of these malignancies. Although, incidence of RILD is decreasing due to better knowledge of liver tolerance, improved investigation modalities and modern radiation delivery techniques, treatment options are still limited. In this review article, we have focussed on pathophysiology, risk factors, prevention and management of RILD

  5. Transcriptomic Changes in Liver of Young Bulls Caused by Diets Low in Mineral and Protein Contents and Supplemented with n-3 Fatty Acids and Conjugated Linoleic Acid.

    Directory of Open Access Journals (Sweden)

    Sara Pegolo

    Full Text Available The aim of the present study was to identify transcriptional modifications and regulatory networks accounting for physiological and metabolic responses to specific nutrients in the liver of young Belgian Blue × Holstein bulls using RNA-sequencing. A larger trial has been carried out in which animals were fed with different diets: 1] a conventional diet; 2] a low-protein/low-mineral diet (low-impact diet and 3] a diet enriched in n-3 fatty acids (FAs, conjugated linoleic acid (CLA and vitamin E (nutraceutical diet. The initial hypothesis was that the administration of low-impact and nutraceutical diets might influence the transcriptional profiles in bovine liver and the resultant nutrient fluxes, which are essential for optimal liver function and nutrient interconversion. Results showed that the nutraceutical diet significantly reduced subcutaneous fat covering in vivo and liver pH. Dietary treatments did not affect overall liver fat content, but significantly modified the liver profile of 33 FA traits (out of the total 89 identified by gas-chromatography. In bulls fed nutraceutical diet, the percentage of n-3 and CLA FAs increased around 2.5-fold compared with the other diets, whereas the ratio of n6/n3 decreased 2.5-fold. Liver transcriptomic analyses revealed a total of 198 differentially expressed genes (DEGs when comparing low-impact, nutraceutical and conventional diets, with the nutraceutical diet showing the greatest effects on liver transcriptome. Functional analyses using ClueGo and Ingenuity Pathway Analysis evidenced that DEGs in bovine liver were variously involved in energy reserve metabolic process, glutathione metabolism, and carbohydrate and lipid metabolism. Modifications in feeding strategies affected key transcription factors regulating the expression of several genes involved in fatty acid metabolism, e.g. insulin-induced gene 1, insulin receptor substrate 2, and RAR-related orphan receptor C. This study provides noteworthy

  6. Diet-induced metabolic hamster model of nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Bhathena J

    2011-06-01

    Full Text Available Jasmine Bhathena, Arun Kulamarva, Christopher Martoni, Aleksandra Malgorzata Urbanska, Meenakshi Malhotra, Arghya Paul, Satya PrakashBiomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Québec, CanadaBackground: Obesity, hypercholesterolemia, elevated triglycerides, and type 2 diabetes are major risk factors for metabolic syndrome. Hamsters, unlike rats or mice, respond well to diet-induced obesity, increase body mass and adiposity on group housing, and increase food intake due to social confrontation-induced stress. They have a cardiovascular and hepatic system similar to that of humans, and can thus be a useful model for human pathophysiology.Methods: Experiments were planned to develop a diet-induced Bio F1B Golden Syrian hamster model of dyslipidemia and associated nonalcoholic fatty liver disease in the metabolic syndrome. Hamsters were fed a normal control diet, a high-fat/high-cholesterol diet, a high-fat/high-cholesterol/methionine-deficient/choline-devoid diet, and a high-fat/high-cholesterol/choline-deficient diet. Serum total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, glucose, atherogenic index, and body weight were quantified biweekly. Fat deposition in the liver was observed and assessed following lipid staining with hematoxylin and eosin and with oil red O.Results: In this study, we established a diet-induced Bio F1B Golden Syrian hamster model for studying dyslipidemia and associated nonalcoholic fatty liver disease in the metabolic syndrome. Hyperlipidemia and elevated serum glucose concentrations were induced using this diet. Atherogenic index was elevated, increasing the risk for a cardiovascular event. Histological analysis of liver specimens at the end of four weeks showed increased fat deposition in the liver of animals fed

  7. Silibinin Capsules improves high fat diet-induced nonalcoholic fatty liver disease in hamsters through modifying hepatic de novo lipogenesis and fatty acid oxidation.

    Science.gov (United States)

    Cui, Chun-Xue; Deng, Jing-Na; Yan, Li; Liu, Yu-Ying; Fan, Jing-Yu; Mu, Hong-Na; Sun, Hao-Yu; Wang, Ying-Hong; Han, Jing-Yan

    2017-08-17

    Silibinin Capsules (SC) is a silybin-phospholipid complex with silybin as the bioactive component. Silybin accounts for 50-70% of the seed extract of Silybum marianum (L.) Gaertn.. As a traditional medicine, silybin has been used for treatment of liver diseases and is known to provide a wide range of hepatoprotective effects. High fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) is a worldwide health problem. This study was to investigate the role of SC in NAFLD with focusing on its underlying mechanism and likely target. Male hamsters (Cricetidae) received HFD for 10 weeks to establish NAFLD model. NAFLD was assessed by biochemical assays, histology and immunohistochemistry. Proton nuclear magnetic resonance spectroscopy and western blot were conducted to gain insight into the mechanism. Hamsters fed HFD for 10 weeks developed fatty liver accompanying with increased triglyceride (TG) accumulation, enhancing de novo lipogenesis, increase in fatty acid (FA) uptake and reducing FA oxidation and TG lipolysis, as well as a decrease in the expression of phospho-adenosine monophosphate activated protein kinase α (p-AMPKα) and Sirt 1. SC treatment at 50mg/kg silybin and 100mg/kg silybin for 8 weeks protected hamsters from development of fatty liver, reducing de novo lipogenesis and increasing FA oxidation and p-AMPKα expression, while having no effect on FA uptake and TG lipolysis. SC protected against NAFLD in hamsters by inhibition of de novo lipogenesis and promotion of FA oxidation, which was likely mediated by activation of AMPKα. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  8. Obstructive Sleep Apnea and Non-alcoholic Fatty Liver Disease: Is the Liver Another Target?

    Directory of Open Access Journals (Sweden)

    Aibek eMirrakhimov

    2012-10-01

    Full Text Available Obstructive sleep apnea (OSA is recurrent obstruction of the upper airway during sleep leading to intermittent hypoxia (IH. OSA has been associated with all components of the metabolic syndrome as well as with non-alcoholic fatty liver disease (NAFLD. NAFLD is a common condition ranging in severity from uncomplicated hepatic steatosis to steatohepatitis (NASH, liver fibrosis and cirrhosis. The gold standard for the diagnosis and staging of NAFLD is liver biopsy. Obesity and insulin resistance lead to liver steatosis, but the causes of the progression to NASH are not known. Emerging evidence suggests that OSA may play a role in the progression of hepatic steatosis and the development of NASH. Several cross-sectional studies showed that the severity of IH in patients with OSA predicted the severity of NAFLD on liver biopsy. However, neither prospective nor interventional studies with continuous positive airway pressure (CPAP treatment have been performed. Studies in a mouse model showed that IH causes triglyceride accumulation in the liver and liver injury as well as hepatic inflammation. The mouse model provided insight in the pathogenesis of liver injury showing that (1 IH accelerates the progression of hepatic steatosis by inducing adipose tissue lipolysis and increasing free fatty acids (FFA flux into the liver; (2 IH up-regulates lipid biosynthetic pathways in the liver; (3 IH induces oxidative stress in the liver; (4 IH up-regulates hypoxia inducible factor 1 alpha and possibly HIF-2 alpha, which may increase hepatic steatosis and induce liver inflammation and fibrosis. However, the role of FFA and different transcription factors in the pathogenesis of IH-induced NAFLD is yet to be established. Thus, multiple lines of evidence suggest that IH of OSA may contribute to the progression of NAFLD but definitive clinical studies and experiments in the mouse model have yet to be done.

  9. Arsenite induced oxidative damage in mouse liver is associated with increased cytokeratin 18 expression

    Energy Technology Data Exchange (ETDEWEB)

    Gonsebatt, M.E. [UNAM, Ciudad Universitaria, Dept. Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Mexico (Mexico); Razo, L.M. del; Sanchez-Pena, L.C. [Seccion de Toxicologia, CINVESTAV, Mexico (Mexico); Cerbon, M.A. [Facultad de Quimica, UNAM, Departamento de Biologia, Mexico (Mexico); Zuniga, O.; Ramirez, P. [Facultad de Estudios Superiores Cuautitlan, UNAM, Laboratorio de Toxicologia Celular, Coordinacion General de Estudios de Posgrado e Investigacion, Cuautitlan Izcalli, Estado de Mexico (Mexico)

    2007-09-15

    Cytokeratins (CK) constitute a family of cytoskeletal intermediate filament proteins that are typically expressed in epithelial cells. An abnormal structure and function are effects that are clearly related to liver diseases as non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. We have previously observed that sodium arsenite (SA) induced the synthesis of CK18 protein and promotes a dose-related disruption of cytoplasmic CK18 filaments in a human hepatic cell line. Both abnormal gene expression and disturbance of structural organization are toxic effects that are likely to cause liver disease by interfering with normal hepatocyte function. To investigate if a disruption in the CK18 expression pattern is associated with arsenite liver damage, we investigated CK18 mRNA and protein levels in liver slices treated with low levels of SA. Organotypic cultures were incubated with 0.01, 1 and 10 {mu}M of SA in the absence and presence of N-acetyl cysteine (NAC). Cell viability and inorganic arsenic metabolism were determined. Increased expression of CK18 was observed after exposure to SA. The addition of NAC impeded the oxidative effects of SA exposure, decreasing the production of thiobarbituric acid-reactive substances and significantly diminishing the up regulation of CK18 mRNA and protein. Liver arsenic levels correlated with increased levels of mRNA. Mice treated with intragastric single doses of 2.5 and 5 mg/kg of SA showed an increased expression of CK18. Results suggest that CK18 expression may be a sensible early biomarker of oxidative stress and damage induced by arsenite in vitro and in vivo. Then, during SA exposure, altered CK expression may compromise liver function. (orig.)

  10. Hepatoprotective Effects of Antrodia cinnamomea: The Modulation of Oxidative Stress Signaling in a Mouse Model of Alcohol-Induced Acute Liver Injury

    Directory of Open Access Journals (Sweden)

    Yange Liu

    2017-01-01

    Full Text Available In the present study, the components of A. cinnamomea (AC mycelia were systematically analyzed. Subsequently, its hepatoprotective effects and the underlying mechanisms were explored using a mouse model of acute alcohol-induced liver injury. AC contained 25 types of fatty acid, 16 types of amino acid, 3 types of nucleotide, and 8 types of mineral. The hepatoprotective effects were observed after 2 weeks of AC treatment at doses of 75 mg/kg, 225 mg/kg, and 675 mg/kg in the mouse model. These effects were indicated by the changes in the levels of aspartate aminotransferase, alanine aminotransferase, several oxidation-related factors, and inflammatory cytokines in serum and/or liver samples. AC reduced the incidence rate of necrosis, inflammatory infiltration, fatty droplets formation, and cell apoptosis in liver detecting via histological and TUNEL assay. In addition, AC reduced the expression of cleaved caspase-3, -8, and -9 and the levels of phosphor-protein kinase B (Akt and phosphor-nuclear factor-κB (NF-κB in the liver samples. Collectively, AC-mediated hepatoprotective effects in a mouse model of acute alcohol-induced liver injury are the result of reduction in oxidative stress. This may be associated with Akt/NF-κB signaling. These results provide valuable evidence to support the use of A. cinnamomea as a functional food and/or medicine.

  11. Protective effects of C-phycocyanin on alcohol-induced acute liver injury in mice

    Science.gov (United States)

    Xia, Dong; Liu, Bing; Luan, Xiying; Sun, Junyan; Liu, Nana; Qin, Song; Du, Zhenning

    2016-03-01

    Excessive alcohol consumption leads to liver disease. Extensive evidence suggests that C-phycocyanin (C-PC), a chromophore phycocyanobilin derived from Spirulina platensis, exerts protective effects against chemical-induced organ damage. In this study, we investigated whether C-PC could protect against ethanol-induced acute liver injury. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (CHOL), low-density lipoprotein (LDL), liver homogenate malondialdehyde (MDA), superoxide dismutase (SOD) content were measured, and pathological examination of liver sections were examined. C-PC showed obvious inhibitory effects on serum ALT, AST, TG, CHOL, LDL and MDA, and SOD content significantly increased in the liver. The structure of hepatic lobules was clear, liver sinus returned to normal, and liver cell cords were arranged in neat rows. Cloudiness, swelling, inflammatory cell infiltration and spotty necrosis of liver cells were significantly reduced. Therefore, C-PC can significantly protect against ethanol-induced acute liver injury.

  12. Ascorbic acid suppresses endotoxemia and NF-κB signaling cascade in alcoholic liver fibrosis in guinea pigs: A mechanistic approach

    Energy Technology Data Exchange (ETDEWEB)

    Abhilash, P.A.; Harikrishnan, R.; Indira, M., E-mail: indiramadambath@gmail.com

    2014-01-15

    Alcohol consumption increases the small intestinal bacterial overgrowth (SIBO) and intestinal permeability of endotoxin. The endotoxin mediated inflammatory signaling plays a major role in alcoholic liver fibrosis. We evaluated the effect of ascorbic acid (AA), silymarin and alcohol abstention on the alcohol induced endotoxemia and NF-κB activation cascade pathway in guinea pigs (Cavia porcellus). Guinea pigs were administered ethanol at a daily dose of 4 g/kg b.wt for 90 days. After 90 days, ethanol administration was stopped. The ethanol treated animals were divided into abstention, silymarin (250 mg/kg b.wt) and AA (250 mg/kg b.wt) supplemented groups and maintained for 30 days. The SIBO, intestinal permeability and endotoxin were significantly increased in the ethanol group. The mRNA expressions of intestinal proteins claudin, occludin and zona occludens-1 were significantly decreased in ethanol group. The mRNA levels of inflammatory receptors, activity of IKKβ and the protein expressions of phospho-IκBα, NF-κB, TNF-α, TGF-β{sub 1} and IL-6 were also altered in ethanol group. The expressions of fibrosis markers α-SMA, α{sub 1} (I) collagen and sirius red staining in the liver revealed the induction of fibrosis. But the supplementation of AA could induce greater reduction of ethanol induced SIBO, intestinal barrier defects, NF-κB activation and liver fibrosis than silymarin. The possible mechanism may be the inhibitory effect of AA on SIBO, intestinal barrier defect and IKKβ, which decreased the activation of NF-κB and synthesis of cytokines. This might have led to suppression of HSCs activation and liver fibrosis. - Highlights: • Alcohol increases intestinal bacterial overgrowth and permeability of endotoxin. • Endotoxin mediated inflammation plays a major role in alcoholic liver fibrosis. • Ascorbic acid reduces endotoxemia, NF-κB activation and proinflammatory cytokines. • AA's action is by inhibition of SIBO, IKKβ and alteration of

  13. Sex-specific metabolic interactions between liver and adipose tissue in MCD diet-induced non-alcoholic fatty liver disease.

    Science.gov (United States)

    Lee, Yun-Hee; Kim, Sou Hyun; Kim, Sang-Nam; Kwon, Hyun-Jung; Kim, Jeong-Dong; Oh, Ji Youn; Jung, Young-Suk

    2016-07-26

    Higher susceptibility to metabolic disease in male exemplifies the importance of sexual dimorphism in pathogenesis. We hypothesized that the higher incidence of non-alcoholic fatty liver disease in males involves sex-specific metabolic interactions between liver and adipose tissue. In the present study, we used a methionine-choline deficient (MCD) diet-induced fatty liver mouse model to investigate sex differences in the metabolic response of the liver and adipose tissue. After 2 weeks on an MCD-diet, fatty liver was induced in a sex-specific manner, affecting male mice more severely than females. The MCD-diet increased lipolytic enzymes in the gonadal white adipose tissue (gWAT) of male mice, whereas it increased expression of uncoupling protein 1 and other brown adipocyte markers in the gWAT of female mice. Moreover, gWAT from female mice demonstrated higher levels of oxygen consumption and mitochondrial content compared to gWAT from male mice. FGF21 expression was increased in liver tissue by the MCD diet, and the degree of upregulation was significantly higher in the livers of female mice. The endocrine effect of FGF21 was responsible, in part, for the sex-specific browning of gonadal white adipose tissue. Collectively, these data demonstrated that distinctively female-specific browning of white adipose tissue aids in protecting female mice against MCD diet-induced fatty liver disease.

  14. Nrf2 activation prevents cadmium-induced acute liver injury

    International Nuclear Information System (INIS)

    Wu, Kai C.; Liu, Jie J.; Klaassen, Curtis D.

    2012-01-01

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H 2 DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice were

  15. Nrf2 activation prevents cadmium-induced acute liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kai C. [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Liu, Jie J. [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States)

    2012-08-15

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H{sub 2}DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice

  16. Fasting exacerbates hepatic growth differentiation factor 15 to promote fatty acid β-oxidation and ketogenesis via activating XBP1 signaling in liver

    Directory of Open Access Journals (Sweden)

    Meiyuan Zhang

    2018-06-01

    Full Text Available Liver coordinates a series of metabolic adaptations to maintain systemic energy balance and provide adequate nutrients for critical organs, tissues and cells during starvation. However, the mediator(s implicated in orchestrating these fasting-induced adaptive responses and the underlying molecular mechanisms are still obscure. Here we show that hepatic growth differentiation factor 15 (GDF15 is regulated by IRE1α-XBP1s branch and promotes hepatic fatty acids β-oxidation and ketogenesis upon fasting. GDF15 expression was exacerbated in liver of mice subjected to long-term fasted or ketogenic diet feeding. Abrogation of hepatic Gdf15 dramatically attenuated hepatic β-oxidation and ketogenesis in fasted mice or mice with STZ-initiated type I diabetes. Further study revealed that XBP1s activated Gdf15 transcription via binding to its promoter. Elevated GDF15 in liver reduced lipid accumulation and impaired NALFD development in obese mice through enhancing fatty acids oxidation in liver. Therefore, our results demonstrate a novel and critical role of hepatic GDF15 activated by IRE1α-XBP1s branch in regulating adaptive responses of liver upon starvation stress. Keywords: Fasting, Fatty acid β-oxidation, Ketogenesis, GDF15, XBP1, NAFLD

  17. CD36 Mediated Fatty Acid-Induced Podocyte Apoptosis via Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Wei Hua

    Full Text Available Hyperlipidemia-induced apoptosis mediated by fatty acid translocase CD36 is associated with increased uptake of ox-LDL or fatty acid in macrophages, hepatocytes and proximal tubular epithelial cells, leading to atherosclerosis, liver damage and fibrosis in obese patients, and diabetic nephropathy (DN, respectively. However, the specific role of CD36 in podocyte apoptosis in DN with hyperlipidemia remains poorly investigated.The expression of CD36 was measured in paraffin-embedded kidney tissue samples (Ctr = 18, DN = 20 by immunohistochemistry and immunofluorescence staining. We cultured conditionally immortalized mouse podocytes (MPC5 and treated cells with palmitic acid, and measured CD36 expression by real-time PCR, Western blot analysis and immunofluorescence; lipid uptake by Oil red O staining and BODIPY staining; apoptosis by flow cytometry assay, TUNEL assay and Western blot analysis; and ROS production by DCFH-DA fluorescence staining. All statistical analyses were performed using SPSS 21.0 statistical software.CD36 expression was increased in kidney tissue from DN patients with hyperlipidemia. Palmitic acid upregulated CD36 expression and promoted its translocation from cytoplasm to plasma membrane in podocytes. Furthermore, palmitic acid increased lipid uptake, ROS production and apoptosis in podocytes, Sulfo-N-succinimidyloleate (SSO, the specific inhibitor of the fatty acid binding site on CD36, decreased palmitic acid-induced fatty acid accumulation, ROS production, and apoptosis in podocytes. Antioxidant 4-hydroxy-2,2,6,6- tetramethylpiperidine -1-oxyl (tempol inhibited the overproduction of ROS and apoptosis in podocytes induced by palmitic acid.CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress might participate in the process of DN.

  18. Developmental changes in rat liver branched-chain 2-oxo acid dehydrogenase.

    OpenAIRE

    May, E E; May, M E; Aftring, R P; Buse, M G

    1982-01-01

    Branched-chain 2-oxo acid dehydrogenase catalyses the first irreversible step in the degradation of the branched-chain amino acids leucine, isoleucine and valine. With specifically labelled 4-methyl-2-oxo[1-14C]pentanoate as substrate, the enzyme's activity was measured in rat liver homogenates. Activity (per g wet wL of liver or per mg of protein) increased most rapidly during the perinatal period (2 days before to 1 day after birth), reaching approximately adult values by the time of weanin...

  19. Determination of aluminium induced metabolic changes in mice liver: a Fourier transform infrared spectroscopy study.

    Science.gov (United States)

    Sivakumar, S; Sivasubramanian, J; Khatiwada, Chandra Prasad; Manivannan, J; Raja, B

    2013-06-01

    In this study, we made a new approach to evaluate aluminium induced metabolic changes in liver tissue of mice using Fourier transform infrared spectroscopy analysis taking one step further in correlation with strong biochemical evidence. This finding reveals the alterations on the major biochemical constituents, such as lipids, proteins, nucleic acids and glycogen of the liver tissues of mice. The peak area value of amide A significantly decrease from 288.278±3.121 to 189.872±2.012 between control and aluminium treated liver tissue respectively. Amide I and amide II peak area value also decrease from 40.749±2.052 to 21.170±1.311 and 13.167±1.441 to 8.953±0.548 in aluminium treated liver tissue respectively. This result suggests an alteration in the protein profile. The absence of olefinicCH stretching band and CO stretching of triglycerides in aluminium treated liver suggests an altered lipid levels due to aluminium exposure. Significant shift in the peak position of glycogen may be the interruption of aluminium in the calcium metabolism and the reduced level of calcium. The overall findings exhibit that the liver metabolic program is altered through increasing the structural modification in proteins, triglycerides and quantitative alteration in proteins, lipids, and glycogen. All the above mentioned modifications were protected in desferrioxamine treated mice. Histopathological results also revealed impairment of aluminium induced alterations in liver tissue. The results of the FTIR study were found to be in agreement with biochemical studies and which demonstrate FTIR can be used successfully to indicate the molecular level changes. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Fatty acid-binding protein in liver and small intestine of the preruminant calf

    International Nuclear Information System (INIS)

    Jenkins, K.J.

    1986-01-01

    Cytosol obtained from differential centrifugation of homogenates from liver and small intestine mucosa was incubated with 1-[ 14 C] oleic acid or 1-[ 14 C] palmitic acid and filtered through Sephadex G-75. Elution profiles for both tissues showed radioactivity in two main peaks, the first corresponding to binding of fatty acid to high molecular weight proteins and the second to a protein fraction with a molecular weight of approximately 12,000 daltons. The low molecular weight fraction had high fatty acid-binding activity, which was greater for oleic than palmitic acid. The findings demonstrate the presence of fatty acid-binding protein in liver and intestinal mucosa of the preruminant calf

  1. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon[S

    Science.gov (United States)

    Lee, Ja-Young; Arai, Hisashi; Nakamura, Yusuke; Fukiya, Satoru; Wada, Masaru; Yokota, Atsushi

    2013-01-01

    Bile acid composition in the colon is determined by bile acid flow in the intestines, the population of bile acid-converting bacteria, and the properties of the responsible bacterial enzymes. Ursodeoxycholic acid (UDCA) is regarded as a chemopreventive beneficial bile acid due to its low hydrophobicity. However, it is a minor constituent of human bile acids. Here, we characterized an UDCA-producing bacterium, N53, isolated from human feces. 16S rDNA sequence analysis identified this isolate as Ruminococcus gnavus, a novel UDCA-producer. The forward reaction that produces UDCA from 7-oxo-lithocholic acid was observed to have a growth-dependent conversion rate of 90–100% after culture in GAM broth containing 1 mM 7-oxo-lithocholic acid, while the reverse reaction was undetectable. The gene encoding 7β-hydroxysteroid dehydrogenase (7β-HSDH), which facilitates the UDCA-producing reaction, was cloned and overexpressed in Escherichia coli. Characterization of the purified 7β-HSDH revealed that the kcat/Km value was about 55-fold higher for the forward reaction than for the reverse reaction, indicating that the enzyme favors the UDCA-producing reaction. As R. gnavus is a common, core bacterium of the human gut microbiota, these results suggest that this bacterium plays a pivotal role in UDCA formation in the colon. PMID:23729502

  2. Free methionine supplementation limits alcohol-induced liver damage in rats

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Bode, C.; Bode, J.C.

    1998-01-01

    Alcohol feeding to rats that were submitted to a jejunoileal bypass operation has been shown to result in liver damage being comparable with alcohol-induced liver disease in man. In the present study, a striking effect of free methionine consumption on histological liver injury, triglyceride accu...

  3. Studies of single-walled carbon nanotubes-induced hepatotoxicity by NMR-based metabonomics of rat blood plasma and liver extracts

    Science.gov (United States)

    Lin, Bencheng; Zhang, Huashan; Lin, Zhiqing; Fang, Yanjun; Tian, Lei; Yang, Honglian; Yan, Jun; Liu, Huanliang; Zhang, Wei; Xi, Zhuge

    2013-05-01

    The toxicological effects of single-walled carbon nanotubes (SWCNTs) were investigated after intratracheal instillation in male Wistar rats over a 15-day period using metabonomic analysis of 1H (nuclear magnetic resonance) NMR spectra of blood plasma and liver tissue extracts. Concurrent liver histopathology examinations and plasma clinical chemistry analyses were also performed. Significant changes were observed in clinical chemistry features, including alkaline phosphatase, total protein, and total cholesterol, and in liver pathology, suggesting that SWCNTs clearly have hepatotoxicity in the rat. 1H NMR spectra and pattern recognition analyses from nanomaterial-treated rats showed remarkable differences in the excretion of lactate, trimethylamine oxide, bilineurin, phosphocholine, amylaceum, and glycogen. Indications of amino acid metabolism impairment were supported by increased lactate concentrations and decreased alanine concentrations in plasma. The rise in plasma and liver tissue extract concentrations of choline and phosphocholine, together with decreased lipids and lipoproteins, after SWCNTs treatment indicated a disruption of membrane fluidity caused by lipid peroxidation. Energy, amino acid, and fat metabolism appeared to be affected by SWCNTs exposure. Clinical chemistry and metabonomic approaches clearly indicated liver injury, which might have been associated with an indirect mechanism involving nanomaterial-induced oxidative stress.

  4. Drug-induced liver toxicity and prevention by herbal antioxidants: an overview

    Directory of Open Access Journals (Sweden)

    Divya eSingh

    2016-01-01

    Full Text Available The liver is the center for drug and xenobiotic metabolism, which is influenced most with medication/xenobiotic-mediated toxic activity. Drug-induced hepatotoxicity is common and its actual frequency is hard to determine due to underreporting, difficulties in detection or diagnosis, and incomplete observation of exposure. The death rate is high, up to about 10% for medication instigated liver danger. Endorsed medications (counting acetaminophen represented >50% of instances of intense liver failure in a study from the Acute Liver Failure Study Group (ALFSG of the patients admitted in 17 US healing facilities. Albeit different studies are accessible uncovering the mechanistic aspects of medication prompted hepatotoxicity, we are in the dilemma about the virtual story. The expanding prevalence and effectiveness of Ayurveda and herbal products in the treatment of various disorders led the investigators to look into their potential in countering drug-induced liver toxicity. Several plant products have been reported to date to mitigate the drug-induced toxicity. The dietary nature and less side reactions of the herbs provide them an extra edge over other candidates of supplementary medication. In this paper, we have discussed on the mechanism involved in drug-induced liver toxicity and the potential of herbal antioxidants as supplementary medication.

  5. Development of betulinic acid as an agonist of TGR5 receptor using a new in vitro assay

    Directory of Open Access Journals (Sweden)

    Lo SH

    2016-08-01

    increased by betulinic acid in cells transfected with TGR5. In NCI-H716 cells, which endogenously express TGR5, betulinic acid induces glucagon-like peptide secretion via increasing calcium levels. However, the actions of betulinic acid were markedly reduced in NCI-H716 cells that received TGR5-silencing treatment. Therefore, the present study demonstrates the activation of TGR5 by betulinic acid for the first time. Conclusion: Similar to the positive control lithocholic acid, which is the established agonist of TGR5, betulinic acid has been characterized as a useful agonist of TGR5 and can be used to activate TGR5 in the future. Keywords: CHO-K1 cell, lithocholic acid, NCI-H716 cell, transfection, siRNA

  6. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice

    Science.gov (United States)

    Yan, Shengmin; Zhang, Hongxia; Zheng, Fei; Sheng, Nan; Guo, Xuejiang; Dai, Jiayin

    2015-06-01

    Perfluoroalkyl acids (PFAAs) are widely used in many applications due to their unique physical and chemical characteristics. Because of the increasing prevalence of metabolic syndromes, including obesity, dyslipidemia and insulin resistance, concern has arisen about the roles of environmental pollutants in such diseases. Earlier epidemiologic studies showed a potential association between perfluorooctanoic acid (PFOA) and glucose metabolism, but how PFOA influences glucose homeostasis is still unknown. Here, we report on the modulation of the phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT) signaling pathway in the livers of mice after 28 d of exposure to PFOA. Compared with normal mice, PFOA exposure significantly decreased the expression of the phosphatase and tensin homologue (PTEN) protein and affected the PI3K-AKT signaling pathway in the liver. Tolerance tests further indicated that PFOA exposure induced higher insulin sensitivity and glucose tolerance in mice. Biochemical analysis revealed that PFOA exposure reduced hepatic glycogen synthesis, which might be attributed to gluconeogenesis inhibition. The levels of several circulating proteins were altered after PFOA exposure, including proteins potentially related to diabetes and liver disease. Our results suggest that PFOA affected glucose metabolism and induced insulin hypersensitivity in mice.

  7. Characterization of Chemically Induced Liver Injuries Using Gene Co-Expression Modules

    Science.gov (United States)

    2014-09-16

    evaluated the periportal fibrosis gene signature in the GEO dataset - GSE13747 [34]. In this dataset, liver fibrosis was induced by bile duct ...dataset, liver fibrosis was induced by bile duct ligation. Figure 10-D shows the observed correlation between log-ratios of periportal fibrosis...at 15 days of exposure obtained from TG-GATEs, and D) liver fibrosis produced by bile duct ligation obtained from GSE13747. doi:10.1371/journal.pone

  8. Role of farnesoid X receptor and bile acids in alcoholic liver disease

    Directory of Open Access Journals (Sweden)

    Sharon Manley

    2015-03-01

    Full Text Available Alcoholic liver disease (ALD is one of the major causes of liver morbidity and mortality worldwide. Chronic alcohol consumption leads to development of liver pathogenesis encompassing steatosis, inflammation, fibrosis, cirrhosis, and in extreme cases, hepatocellular carcinoma. Moreover, ALD may also associate with cholestasis. Emerging evidence now suggests that farnesoid X receptor (FXR and bile acids also play important roles in ALD. In this review, we discuss the effects of alcohol consumption on FXR, bile acids and gut microbiome as well as their impacts on ALD. Moreover, we summarize the findings on FXR, FoxO3a (forkhead box-containing protein class O3a and PPARα (peroxisome proliferator-activated receptor alpha in regulation of autophagy-related gene transcription program and liver injury in response to alcohol exposure.

  9. Liver BCATm transgenic mouse model reveals the important role of the liver in maintaining BCAA homeostasis.

    Science.gov (United States)

    Ananieva, Elitsa A; Van Horn, Cynthia G; Jones, Meghan R; Hutson, Susan M

    2017-02-01

    Unlike other amino acids, the branched-chain amino acids (BCAAs) largely bypass first-pass liver degradation due to a lack of hepatocyte expression of the mitochondrial branched-chain aminotransferase (BCATm). This sets up interorgan shuttling of BCAAs and liver-skeletal muscle cooperation in BCAA catabolism. To explore whether complete liver catabolism of BCAAs may impact BCAA shuttling in peripheral tissues, the BCATm gene was stably introduced into mouse liver. Two transgenic mouse lines with low and high hepatocyte expression of the BCATm transgene (LivTg-LE and LivTg-HE) were created and used to measure liver and plasma amino acid concentrations and determine whether the first two BCAA enzymatic steps in liver, skeletal muscle, heart and kidney were impacted. Expression of the hepatic BCATm transgene lowered the concentrations of hepatic BCAAs while enhancing the concentrations of some nonessential amino acids. Extrahepatic BCAA metabolic enzymes and plasma amino acids were largely unaffected, and no growth rate or body composition differences were observed in the transgenic animals as compared to wild-type mice. Feeding the transgenic animals a high-fat diet did not reverse the effect of the BCATm transgene on the hepatic BCAA catabolism, nor did the high-fat diet cause elevation in plasma BCAAs. However, the high-fat-diet-fed BCATm transgenic animals experienced attenuation in the mammalian target of rapamycin (mTOR) pathway in the liver and had impaired blood glucose tolerance. These results suggest that complete liver BCAA metabolism influences the regulation of glucose utilization during diet-induced obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Fatty acid composition and development of hepatic lipidosis during food deprivation--mustelids as a potential animal model for liver steatosis.

    Science.gov (United States)

    Nieminen, Petteri; Mustonen, Anne-Mari; Kärjä, Vesa; Asikainen, Juha; Rouvinen-Watt, Kirsti

    2009-03-01

    Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome characterized by asymptomatic hepatic steatosis. It is present in most cases of human obesity but also caused e.g., by rapid weight loss. The patients have decreased n-3 polyunsaturated fatty acid (PUFA) proportions with decreased percentages of 18:3(n-3), 20:5(n-3) and 22:6(n-3) and an increased n-6/n-3 PUFA ratio in liver and/or white adipose tissue (WAT). The present study examined a new experimental model to study liver steatosis with possible future applications to NAFLD. Ten European polecats (Mustela putorius), the wild form of the domestic ferret, were food-deprived for 5 days with 10 fed animals as controls. The food-deprived animals showed micro- and macrovesicular hepatic steatosis, decreased proportions of 20:5(n-3), 22:6(n-3) and total n-3 PUFA and increased n-6/n-3 PUFA ratios in liver and WAT. At the same time, the product/precursor ratios decreased in liver. The observed effects can be due to selective fatty acid mobilization preferring n-3 PUFA over n-6 PUFA, decreased Delta5 and Delta6 desaturase activities, oxidative stress, decreased arginine availability and activation of the endocannabinoid system. Hepatic lipidosis induced by food deprivation was manifested in the fatty acid composition of the polecat with similarities to human NAFLD despite the different principal etiologies.

  11. Extra Virgin Olive Oil Reduced Polyunsaturated Fatty Acid and Cholesterol Oxidation in Rodent Liver: Is This Accounted for Hydroxytyrosol-Fatty Acid Conjugation?

    Science.gov (United States)

    Lee, Yiu Yiu; Crauste, Céline; Wang, Hualin; Leung, Ho Hang; Vercauteren, Joseph; Galano, Jean-Marie; Oger, Camille; Durand, Thierry; Wan, Jennifer Man-Fan; Lee, Jetty Chung-Yung

    2016-10-17

    The effects of extra virgin olive oil (EVOO) and carbon tetrachloride (CCl 4 ) induced oxidative stress in rats were determined by the generation of isoprostanoids. These are known to be robust biomarkers to evaluate nonenzymatic and free radical related oxidation. Other oxidative stress biomarkers such as hydroxyeicosatetraenoic acid products (HETEs) and cholesterol oxidation products (COPs) were also determined. The rodents received a control diet, high-fat diet (20% w/w) composed of extra virgin olive oil (EVOO), corn oil (CO), or lard, and high-fat diets with CCl 4 insult throughout the experimental period. The EVOO diet was found to suppress the formation of isoprostanoids and COPs compared to that of the control. EVOO also had a high total phenolic content and antioxidant activity compared to those of CO and lard and may be contributed to by the hydroxytyrosol component conjugated to fatty acids (HT-FA). This is the first study to identify HT-FA in EVOO, and it was 4-fold higher than that of olive oil, whereas none was found in corn oil. Furthermore, the EVOO diet showed reduced liver lipid vesicles in CCl 4 treated rats compared to that of the control. However, liver toxicity measurements of AST (aspartate transaminase) and ALT (alanine transaminase) activities showed augmentation with CCl 4 treatment but were not alleviated by the diets given. Our findings suggest that EVOO is a daily functional food capable of enhancing the antioxidant system for liver protection; the effect is potentially attributed to the phenolic and lipophenolic (phenol conjugated by fatty acids) content.

  12. Diet-induced obesity associated with steatosis, oxidative stress, and inflammation in liver.

    Science.gov (United States)

    Peng, Yanhua; Rideout, Drew; Rakita, Steven; Lee, James; Murr, Michel

    2012-01-01

    Obesity induces steatosis and increases oxidative stress, as well as chronic inflammation in the liver. The balance between lipogenesis and lipolysis is disrupted in obese animals. At a cellular level, the changes in metabolic sensors and energy regulators are poorly understood. We hypothesized that diet-induced steatosis increases oxidative stress, inflammation, and changes the metabolic regulators to promote energy storage in mice. The setting was a university-affiliated basic science research laboratory. Four-week-old C57BL mice were fed a high-fat diet (n = 8) or regular chow (n = 8) for 7 weeks. The liver sections were stained for fat content and immunofluorescence. Liver homogenates were used for protein analysis by immunoblotting and mRNA analysis by reverse transcriptase-polymerase chain reaction. The gels were quantified using densitometry P ≤ .05 was considered significant. The high-fat diet upregulated protein kinase-C atypical isoforms ζ and λ and decreased glucose tolerance and the interaction of insulin receptor substrate 2 with phosphoinositide kinase-3. The high-fat diet increased the transcriptional factors liver X receptor (4321 ± 98 versus 2981 ± 80) and carbohydrate response element-binding protein (5132 ± 135 versus 3076 ± 91), the lipogenesis genes fatty acid binding protein 5, stearoyl-co-enzyme A desaturase-1, and acetyl-co-enzyme A carboxylase protein, and fatty acid synthesis. The high-fat diet decreased 5'-adenosine monophosphate-activated protein kinase (2561 ± 78 versus 1765 ± 65), glucokinase-3β (2.214 ± 34 versus 3356 ± 86), and SIRT1 (2015 ± 76 versus 3567 ± 104) and increased tumor necrosis factor-α (3415 ± 112 versus 2042 ± 65), nuclear factor kappa B (5123 ± 201 versus 2562 ± 103), cyclooxygenase-2 (4230 ± 113 versus 2473 ± 98), nicotinamide-adenine dinucleotide phosphate oxidase (3501 ± 106 versus 1600 ± 69) and reactive oxygen species production (all P high-fat diet impairs glucose tolerance and hepatic

  13. Cell-swelling-induced taurine release from isolated perfused rat liver

    NARCIS (Netherlands)

    Brand, H. S.; Meijer, A. J.; Gustafson, L. A.; Jörning, G. G.; Leegwater, A. C.; Maas, M. A.; Chamuleau, R. A.

    1994-01-01

    Astrocytes and lymphocytes are able to release significant amounts of taurine during periods of hypotonicity to reduce the increase in cell volume. To investigate this mechanism in the liver, we studied the release of free amino acids from isolated perfused rat liver during hypotonicity. The

  14. Effect of bullfrog (Rana catesbeiana oil administered by gavage on the fatty acid composition and oxidative stress of mouse liver

    Directory of Open Access Journals (Sweden)

    L.P. Silva

    2004-10-01

    Full Text Available The aim of the present study was to investigate the effects of daily intragastric administration of bullfrog oil (oleic, linoleic and palmitoleic acid-rich oil, corresponding to 0.4% of body weight for four weeks, on fatty acid composition and oxidative stress (lipid peroxidation and catalase activity in mouse liver. The activities of aspartate aminotransferase (AST, alkaline phosphatase (ALP, alanine aminotransferase (ALT, and gamma-glutamyltransferase (GGT, biomarkers of tissue injury, were determined in liver homogenates and serum. The proportions of 18:2n-6, 20:4n-6, 20:5n-3, and 22:6n-3 (polyunsaturated fatty acids, from 37 to 60% in the total fatty acid content were increased in the liver of the bullfrog oil-treated group (P < 0.05 compared to control. At the same time, a significant decrease in the relative abundance of 14:0, 16:0, and 18:0 (saturated fatty acids, from 49 to 25% was observed. The hepatic content of thiobarbituric acid reactive substances (TBARS was increased from 2.3 ± 0.2 to 12.3 ± 0.3 nmol TBA-MDA/mg protein and catalase activity was increased from 840 ± 32 to 1110 ± 45 µmol reduced H2O2 min-1 mg protein-1 in the treated group. Bullfrog oil administration increased AST and ALP activities in the liver (from 234.10 ± 0.12 to 342.84 ± 0.13 and 9.38 ± 0.60 to 20.06 ± 0.27 U/g, respectively and in serum (from 95.41 ± 6.13 to 120.32 ± 3.15 and 234.75 ± 11.5 to 254.41 ± 2.73 U/l, respectively, suggesting that this treatment induced tissue damage. ALT activity was increased from 287.28 ± 0.29 to 315.98 ± 0.34 U/g in the liver but remained unchanged in serum, whereas the GGT activity was not affected by bullfrog oil treatment. Therefore, despite the interesting modulation of fatty acids by bullfrog oil, a possible therapeutic use requires care since some adverse effects were observed in liver.

  15. Nebivolol and chrysin protect the liver against ischemia/reperfusion-induced injury in rats

    Directory of Open Access Journals (Sweden)

    Sayed M. Mizar

    2015-03-01

    Full Text Available Oxidative stress plays a key role in the pathogenesis of hepatic ischemia/reperfusion (I/R-induced injury, one of the leading causes of liver damage post-surgical intervention, trauma and transplantation. This study aimed to evaluate the protective effect of nebivolol and chrysin against I/R-induced liver injury via their vasodilator and antioxidant effects, respectively. Adult male Wister rats received nebivolol (5 mg/kg and/or chrysin (25 mg/kg by oral gavage daily for one week then subjected to ischemia via clamping the portal triad for 30 min then reperfusion for 30 min. Liver function enzymes, alanine transaminase (ALT and aspartate transaminase (AST, as well as hepatic Myeloperoxidase (MPO, total nitrate (NOx, glutathione (GSH and liver malondialdehyde (MDA were measured at the end of the experiment. Liver tissue damage was examined by histopathology. In addition, the expression levels of nitric oxide synthase (NOS subtypes, endothelial (eNOS and inducible (iNOS in liver samples were assessed by Western blotting and confirmed by immunohistochemical analysis. Both chrysin and nebivolol significantly counteracted I/R-induced oxidative stress and tissue damage biomarkers. The combination of these agents caused additive liver protective effect against I/R-induced damage via the up regulation of nitric oxide expression and the suppression of oxidative stress. Chrysin and nebivolol combination showed a promising protective effect against I/R-induced liver injury, at least in part, via decreasing oxidative stress and increasing nitric oxide levels.

  16. Identification of Differentially Expressed Proteins in Liver in Response to Subacute Ruminal Acidosis (SARA Induced by High-concentrate Diet

    Directory of Open Access Journals (Sweden)

    X. Y. Jiang

    2014-08-01

    Full Text Available The aim of this study was to evaluate protein expression patterns of liver in response to subacute ruminal acidosis (SARA induced by high-concentrate diet. Sixteen healthy mid-lactating goats were randomly divided into 2 groups and fed either a high-forage (HF diet or a high-concentrate (HC diet. The HC diet was expected to induce SARA. After ensuring the occurrence of SARA, liver samples were collected. Proteome analysis with differential in gel electrophoresis technology revealed that, 15 proteins were significantly modulated in liver in a comparison between HF and HC-fed goats. These proteins were found mainly associated with metabolism and energy transfer after identified by matrix-assisted laser desorption ionization/time of flight. The results indicated that glucose, lipid and protein catabolism could be enhanced when SARA occurred. It prompted that glucose, lipid and amine acid in the liver mainly participated in oxidation and energy supply when SARA occurred, which possibly consumed more precursors involved in milk protein and milk fat synthesis. These results suggest new candidate proteins that may contribute to a better understanding of the mechanisms that mediate liver adaptation to SARA.

  17. PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid -Hydroxylase (CYP4 Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    James P. Hardwick

    2009-01-01

    Full Text Available Fatty liver disease is a common lipid metabolism disorder influenced by the combination of individual genetic makeup, drug exposure, and life-style choices that are frequently associated with metabolic syndrome, which encompasses obesity, dyslipidemia, hypertension, hypertriglyceridemia, and insulin resistant diabetes. Common to obesity related dyslipidemia is the excessive storage of hepatic fatty acids (steatosis, due to a decrease in mitochondria -oxidation with an increase in both peroxisomal -oxidation, and microsomal -oxidation of fatty acids through peroxisome proliferator activated receptors (PPARs. How steatosis increases PPAR activated gene expression of fatty acid transport proteins, peroxisomal and mitochondrial fatty acid -oxidation and -oxidation of fatty acids genes regardless of whether dietary fatty acids are polyunsaturated (PUFA, monounsaturated (MUFA, or saturated (SFA may be determined by the interplay of PPARs and HNF4 with the fatty acid transport proteins L-FABP and ACBP. In hepatic steatosis and steatohepatitis, the -oxidation cytochrome P450 CYP4A gene expression is increased even with reduced hepatic levels of PPAR. Although numerous studies have suggested the role ethanol-inducible CYP2E1 in contributing to increased oxidative stress, Cyp2e1-null mice still develop steatohepatitis with a dramatic increase in CYP4A gene expression. This strongly implies that CYP4A fatty acid -hydroxylase P450s may play an important role in the development of steatohepatitis. In this review and tutorial, we briefly describe how fatty acids are partitioned by fatty acid transport proteins to either anabolic or catabolic pathways regulated by PPARs, and we explore how medium-chain fatty acid (MCFA CYP4A and long-chain fatty acid (LCFA CYP4F -hydroxylase genes are regulated in fatty liver. We finally propose a hypothesis that increased CYP4A expression with a decrease in CYP4F genes may promote the progression of steatosis to

  18. GPBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells.

    Directory of Open Access Journals (Sweden)

    Guiyu Lou

    Full Text Available GPBAR1/TGR5 is a novel plasma membrane-bound G protein-coupled bile acid (BA receptor. BAs are known to induce the expression of inflammatory cytokines in the liver with unknown mechanism. Here we show that without other external stimuli, TGR5 activation alone induced the expression of interleukin 1β (IL-1β and tumor necrosis factor-α (TNF-α in murine macrophage cell line RAW264.7 or murine Kupffer cells. The TGR5-mediated increase of pro-inflammatory cytokine expression was suppressed by JNK inhibition. Moreover, the induced pro-inflammatory cytokine expression in mouse liver by 1% cholic acid (CA diet was blunted in JNK-/- mice. TGR5 activation by its ligands enhanced the phosphorylation levels, DNA-binding and trans-activities of c-Jun and ATF2 transcription factors. Finally, the induced pro-inflammatory cytokine expression in Kupffer cells by TGR5 activation correlated with the suppression of Cholesterol 7α-hydroxylase (Cyp7a1 expression in murine hepatocytes. These results suggest that TGR5 mediates the BA-induced pro-inflammatory cytokine production in murine Kupffer cells through JNK-dependent pathway. This novel role of TGR5 may correlate to the suppression of Cyp7a1 expression in hepatocytes and contribute to the delicate BA feedback regulation.

  19. Brain and liver fatty acid composition changes upon consumption of Lactobacillus rhamnosus LA68.

    Science.gov (United States)

    Ivanovic, Nevena; Minic, Rajna; Djuricic, Ivana; Dimitrijevic, Ljiljana; Sobajic, Sladjana; Zivkovic, Irena; Djordjevic, Brizita

    2015-02-01

    Recent reports suggest that the metabolic activity of the enteric microbiota may influence the fatty acid composition of the host tissue. There are many studies dealing with the influence of lactobacilli on various pathological conditions, and some of the effects are strain-specific. This study was designed to test the effects of a particular Lactobacillus strain, Lactobacillus rhamnosus LA68 on fatty acid composition of the liver and the brain of C57BL/6 mice in the absence of an underlying pathological condition. Female mice were supplemented with live L. rhamnosus LA68 bacteria for the duration of 1 month. Serum biochemistry was analyzed and liver and brain fatty acid composition was assessed by gas-liquid chromatography. Significant changes in liver and brain fatty acid composition were detected. In the liver tissue we detected an increase in palmitoleic acid (p = 0.038), while in the brain compartment we found an increase in palmitic (p = 0.042), stearic (p = 0.017), arachidonic acid (p = 0.009) and docosahexaenoic acid (p = 0.004) for control versus experimental group. These results show discrete changes caused by LA68 strain consumption. Even short duration of administration of LA68 influences the fatty acid composition of the host which adds to the existing knowledge about Lactobacillus host interaction, and adds to the growing knowledge of metabolic intervention possibilities.

  20. Clinical Implications of 20-Hydroxyeicosatetraenoic Acid in the Kidney, Liver, Lung and Brain: An Emerging Therapeutic Target

    Directory of Open Access Journals (Sweden)

    Osama H. Elshenawy

    2017-02-01

    Full Text Available Cytochrome P450-mediated metabolism of arachidonic acid (AA is an important pathway for the formation of eicosanoids. The ω-hydroxylation of AA generates significant levels of 20-hydroxyeicosatetraenoic acid (20-HETE in various tissues. In the current review, we discussed the role of 20-HETE in the kidney, liver, lung, and brain during physiological and pathophysiological states. Moreover, we discussed the role of 20-HETE in tumor formation, metabolic syndrome and diabetes. In the kidney, 20-HETE is involved in modulation of preglomerular vascular tone and tubular ion transport. Furthermore, 20-HETE is involved in renal 19 ischemia/reperfusion (I/R injury and polycystic kidney diseases. The role of 20-HETE in the liver is not clearly understood although it represents 50%–75% of liver CYP-dependent AA metabolism, and it is associated with liver cirrhotic ascites. In the respiratory system, 20-HETE plays a role in pulmonary cell survival, pulmonary vascular tone and tone of the airways. As for the brain, 20-HETE is involved in cerebral I/R injury. Moreover, 20-HETE has angiogenic and mitogenic properties and thus helps in tumor promotion. Several inhibitors and inducers of the synthesis of 20-HETE as well as 20-HETE analogues and antagonists are recently available and could be promising therapeutic options for the treatment of many disease states in the future.

  1. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yi, E-mail: yi.luo@pfizer.com; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  2. Anchoring cationic amphiphiles for nucleotide delivery: significance of DNA release from cationic liposomes for transfection.

    Science.gov (United States)

    Hirashima, Naohide; Minatani, Kazuhiro; Hattori, Yoshifumi; Ohwada, Tomohiko; Nakanishi, Mamoru

    2007-06-01

    We have designed and synthesized lithocholic acid-based cationic amphiphile molecules as components of cationic liposomes for gene transfection (lipofection). To study the relationship between the molecular structures of those amphiphilic molecules, particularly the extended hydrophobic appendant (anchor) at the 3-hydroxyl group, and transfection efficiency, we synthesized several lithocholic and isolithocholic acid derivatives, and examined their transfection efficiency. We also compared the physico-chemical properties of cationic liposomes prepared from these derivatives. We found that isolithocholic acid derivatives exhibit higher transfection efficiency than the corresponding lithocholic acid derivatives. This result indicates that the orientation and extension of hydrophobic regions influence the gene transfection process. Isolithocholic acid derivatives showed a high ability to encapsulate DNA in a compact liposome-DNA complex and to protect it from enzymatic degradation. Isolithocholic acid derivatives also facilitated the release of DNA from the liposome-DNA complex, which is a crucial step for DNA entry into the nucleus. Our results show that the transfection efficiency is directly influenced by the ability of the liposome complex to release DNA, rather than by the DNA-encapsulating ability. Molecular modeling revealed that isolithocholic acid derivatives take relatively extended conformations, while the lithocholic acid derivatives take folded structures. Thus, the efficiency of release of DNA from cationic liposomes in the cytoplasm, which contributes to high transfection efficiency, appears to be dependent upon the molecular shape of the cationic amphiphiles.

  3. The antifibrinolytic drug tranexamic acid reduces liver injury and fibrosis in a mouse model of chronic bile duct injury.

    Science.gov (United States)

    Joshi, Nikita; Kopec, Anna K; Towery, Keara; Williams, Kurt J; Luyendyk, James P

    2014-06-01

    Hepatic fibrin deposition has been shown to inhibit hepatocellular injury in mice exposed to the bile duct toxicant α-naphthylisothiocyanate (ANIT). Degradation of fibrin clots by fibrinolysis controls the duration and extent of tissue fibrin deposition. Thus, we sought to determine the effect of treatment with the antifibrinolytic drug tranexamic acid (TA) and plasminogen activator inhibitor-1 (PAI-1) deficiency on ANIT-induced liver injury and fibrosis in mice. Plasmin-dependent lysis of fibrin clots was impaired in plasma from mice treated with TA (1200 mg/kg i.p., administered twice daily). Prophylactic TA administration reduced hepatic inflammation and hepatocellular necrosis in mice fed a diet containing 0.025% ANIT for 2 weeks. Hepatic type 1 collagen mRNA expression and deposition increased markedly in livers of mice fed ANIT diet for 4 weeks. To determine whether TA treatment could inhibit this progression of liver fibrosis, mice were fed ANIT diet for 4 weeks and treated with TA for the last 2 weeks. Interestingly, TA treatment largely prevented increased deposition of type 1 collagen in livers of mice fed ANIT diet for 4 weeks. In contrast, biliary hyperplasia/inflammation and liver fibrosis were significantly increased in PAI-1(-/-) mice fed ANIT diet for 4 weeks. Overall, the results indicate that fibrinolytic activity contributes to ANIT diet-induced liver injury and fibrosis in mice. In addition, these proof-of-principle studies suggest the possibility that therapeutic intervention with an antifibrinolytic drug could form a novel strategy to prevent or reduce liver injury and fibrosis in patients with liver disease.

  4. Metabolism of Oxo-Bile Acids and Characterization of Recombinant 12α-Hydroxysteroid Dehydrogenases from Bile Acid 7α-Dehydroxylating Human Gut Bacteria.

    Science.gov (United States)

    Doden, Heidi; Sallam, Lina A; Devendran, Saravanan; Ly, Lindsey; Doden, Greta; Daniel, Steven L; Alves, João M P; Ridlon, Jason M

    2018-05-15

    Bile acids are important cholesterol-derived nutrient signaling hormones, synthesized in the liver, that act as detergents to solubilize dietary lipids. Bile acid 7α-dehydroxylating gut bacteria generate the toxic bile acids deoxycholic acid and lithocholic acid from host bile acids. The ability of these bacteria to remove the 7-hydroxyl group is partially dependent on 7α-hydroxysteroid dehydrogenase (HSDH) activity, which reduces 7-oxo-bile acids generated by other gut bacteria. 3α-HSDH has an important enzymatic activity in the bile acid 7α-dehydroxylation pathway. 12α-HSDH activity has been reported for the low-activity bile acid 7α-dehydroxylating bacterium Clostridium leptum ; however, this activity has not been reported for high-activity bile acid 7α-dehydroxylating bacteria, such as Clostridium scindens , Clostridium hylemonae , and Clostridium hiranonis Here, we demonstrate that these strains express bile acid 12α-HSDH. The recombinant enzymes were characterized from each species and shown to preferentially reduce 12-oxolithocholic acid to deoxycholic acid, with low activity against 12-oxochenodeoxycholic acid and reduced activity when bile acids were conjugated to taurine or glycine. Phylogenetic analysis suggests that 12α-HSDH is widespread among Firmicutes , Actinobacteria in the Coriobacteriaceae family, and human gut Archaea IMPORTANCE 12α-HSDH activity has been established in the medically important bile acid 7α-dehydroxylating bacteria C. scindens , C. hiranonis , and C. hylemonae Experiments with recombinant 12α-HSDHs from these strains are consistent with culture-based experiments that show a robust preference for 12-oxolithocholic acid over 12-oxochenodeoxycholic acid. Phylogenetic analysis identified novel members of the gut microbiome encoding 12α-HSDH. Future reengineering of 12α-HSDH enzymes to preferentially oxidize cholic acid may provide a means to industrially produce the therapeutic bile acid ursodeoxycholic acid. In

  5. PROTECTIVE EFFECTS OF HYPOTHALAMIC BETA-ENDORPHIN NEURONS AGAINST ALCOHOL-INDUCED LIVER INJURIES AND LIVER CANCERS IN RAT ANIMAL MODELS

    Science.gov (United States)

    Murugan, Sengottuvelan; Boyadjieva, Nadka; Sarkar, Dipak K.

    2014-01-01

    Background Recently, retrograde tracing has provided evidence for an influence of hypothalamic β-endorphin (BEP) neurons on the liver, but functions of these neurons are not known. We evaluated the effect of BEP neuronal activation on alcohol-induced liver injury and hepatocellular cancer. Methods Male rats received either BEP neuron transplants or control transplants in the hypothalamus and randomly assigned to feeding alcohol-containing liquid diet or control liquid diet for 8 weeks or to treatment of a carcinogen diethylnitrosamine (DEN). Liver tissues of these animals were analyzed histochemically and biochemically for tissue injuries or cancer. Results Alcohol-feeding increased liver weight and induced several histopathological changes such as prominent microvesicular steatosis and hepatic fibrosis. Alcohol feeding also increased protein levels of triglyceride, hepatic stellate cell activation factors and catecholamines in the liver and endotoxin levels in the plasma. However, these effects of alcohol on the liver were reduced in animals with BEP neuron transplants. BEP neuron transplants also suppressed carcinogen-induced liver histopathologies such as extensive fibrosis, large focus of inflammatory infiltration, hepatocelluar carcinoma, collagen deposition, numbers of preneoplastic foci, levels of hepatic stellate cell activation factors and catecholamines, as well as inflammatory milieu and the levels of NK cell cytotoxic factors in the liver. Conclusion These findings are the first evidence for a role of hypothalamic BEP neurons in influencing liver functions. Additionally, the data identify that BEP neuron transplantation prevents hepatocellular injury and hepatocellular carcinoma formation possibly via influencing the immune function. PMID:25581653

  6. Correlation of secretory phospholipase-A2 activity and fatty acids in cerebrospinal fluid with liver enzymes tests

    Directory of Open Access Journals (Sweden)

    Sepideh Ghodoosifar

    2016-02-01

    Full Text Available Introduction: The aim was to determine whether secretory phospholipase-A2 (sPLA2 activity and fatty acids in cerebrospinal fluid (CSF are correlated with liver enzymes tests. Methods: CSF and serum samples were collected from 49 patients (age 18-65 as part of routine diagnostic testing. Along with serum liver enzymes aspartate aminotransferase (AST, alanine aminotransferase (ALT and alkaline phosphatase (ALP, the fatty acid composition of CSF was measured by gas liquid chromatography. CSF enzyme activities of sPLA2 were measured using the standard assay with diheptanoyl thio-phosphatidylcholin as substrate. Results: The saturated fatty acids (SFAs including palmitic acid and stearic acid were positively, and the unsaturated fatty acids including oleic acid and linoleic acid were negatively correlated with liver enzymes tests. In regression analysis with adjustment for body mass index (BMI, the elevated liver enzymes tests were positively associated with activity of sPLA2 (β > 0.31, P 0.38, P < 0.010 and negatively with total monounsaturated fatty acids (MUFAs (β < -0.40, P < 0.001 contents of CSF. Conclusion: CSF activity of sPLA2 and fatty acids may be linked to peripheral markers of liver function, suggesting an indirect impact of central fatty acids on hepatocytes function and metabolism.

  7. Synergistic interaction of fatty acids and oxysterols impairs mitochondrial function and limits liver adaptation during nafld progression

    Directory of Open Access Journals (Sweden)

    Francesco Bellanti

    2018-05-01

    Full Text Available The complete mechanism accounting for the progression from simple steatosis to steatohepatitis in nonalcoholic fatty liver disease (NAFLD has not been elucidated. Lipotoxicity refers to cellular injury caused by hepatic free fatty acids (FFAs and cholesterol accumulation. Excess cholesterol autoxidizes to oxysterols during oxidative stress conditions. We hypothesize that interaction of FAs and cholesterol derivatives may primarily impair mitochondrial function and affect biogenesis adaptation during NAFLD progression. We demonstrated that the accumulation of specific non-enzymatic oxysterols in the liver of animals fed high-fat+high-cholesterol diet induces mitochondrial damage and depletion of proteins of the respiratory chain complexes. When tested in vitro, 5α-cholestane-3β,5,6β-triol (triol combined to FFAs was able to reduce respiration in isolated liver mitochondria, induced apoptosis in primary hepatocytes, and down-regulated transcription factors involved in mitochondrial biogenesis. Finally, a lower protein content in the mitochondrial respiratory chain complexes was observed in human non-alcoholic steatohepatitis. In conclusion, hepatic accumulation of FFAs and non-enzymatic oxysterols synergistically facilitates development and progression of NAFLD by impairing mitochondrial function, energy balance and biogenesis adaptation to chronic injury.

  8. Total lipids and fatty acid profile in the liver of wild and farmed catla catla fish

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, M.; Shaihid chatha, S. A.; Tahira, I.; Hussain, B.

    2010-07-01

    This experimental work was aimed to study the moisture content, total lipids and fatty acid profile in the liver of wild and farmed freshwater major carp Catla catla of three different weight categories designated as W{sub 1} (601-900g), W{sub 2} (901- 1200)g and W{sub 3} (1201-1500g). Seven fish specimens of each of the three weight categories of wild and farmed Catla catla were obtained from Trimu Head, Jhang and Fish Hatchery, Satiana Road and Faisalabad, respectively. The fish were dissected to remove the liver and after weighing, liver samples were prepared and subjected to chemical analysis. Wild Catla catla liver had a significantly (p <0.05) higher moisture content as compared to the farmed species. Farmed Catla catla deposited significantly (p < 0.05) higher lipid contents in liver. Proportions of saturated fatty acids varied irregularly in the lipids of the liver from both wild and farmed Catla catla. Saturated fatty acids C12:0, C14:0, C16:0, C18:0, C20:0 and C22:0 were identified with considerable percentages in the liver of Catla catla from both habitats and monounsaturated fatty acid C18:1 was found in considerable amounts in the liver of both major carp. Polyunsaturated fatty acids such as C18:3 (n-6) and C20: 2 (n-6) were detected in the liver of the wild fish of W{sub 2} and W{sub 3} and was similar in the W{sub 3} weight category of the farmed species. (Author) 22 refs.

  9. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis

    International Nuclear Information System (INIS)

    Bai, Xupeng; Hong, Weipeng; Cai, Peiheng; Chen, Yibei; Xu, Chuncao; Cao, Di; Yu, Weibang; Zhao, Zhongxiang; Huang, Min; Jin, Jing

    2017-01-01

    Steatosis is the characteristic type of VPA-induced hepatotoxicity and may result in life-threatening hepatic lesion. Approximately 61% of patients treated with VPA have been diagnosed with hepatic steatosis through ultrasound examination. However, the mechanisms underlying VPA-induced intracellular fat accumulation are not yet fully understood. Here we demonstrated the involvement of fatty acid uptake and lipogenesis in VPA-induced hepatic steatosis in vitro and in vivo by using quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, fatty acid uptake assays, Nile Red staining assays, and Oil Red O staining assays. Specifically, we found that the expression of cluster of differentiation 36 (CD36), an important fatty acid transport, and diacylglycerol acyltransferase 2 (DGAT2) were significantly up-regulated in HepG2 cells and livers of C57B/6J mice after treatment with VPA. Furthermore, VPA treatment remarkably enhanced the efficiency of fatty acid uptake mediated by CD36, while this effect was abolished by the interference with CD36-specific siRNA. Also, VPA treatment significantly increased DGAT2 expression as a result of the inhibition of mitogen-activated protein kinase kinase (MEK) – extracellular regulated kinase (ERK) pathway; however, DGAT2 knockdown significantly alleviated VPA-induced intracellular lipid accumulation. Additionally, we also found that sterol regulatory element binding protein-1c (SREBP-1c)-mediated fatty acid synthesis may be not involved in VPA-induced hepatic steatosis. Overall, VPA-triggered over-regulation of CD36 and DGAT2 could be helpful for a better understanding of the mechanisms underlying VPA-induced hepatic steatosis and may offer novel therapeutic strategies to combat VPA-induced hepatotoxicity. - Highlights: • VPA induced hepatic steatosis and modulated genes associated with lipid metabolism. • CD36-mediated fatty acid uptake contributed to VPA-induced lipid accumulation. • PA increased the hepatic

  10. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xupeng; Hong, Weipeng; Cai, Peiheng; Chen, Yibei; Xu, Chuncao [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (China); Cao, Di [School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou (China); Yu, Weibang [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (China); Zhao, Zhongxiang [School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou (China); Huang, Min [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (China); Jin, Jing, E-mail: jinjing@mail.sysu.edu.cn [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (China)

    2017-06-01

    Steatosis is the characteristic type of VPA-induced hepatotoxicity and may result in life-threatening hepatic lesion. Approximately 61% of patients treated with VPA have been diagnosed with hepatic steatosis through ultrasound examination. However, the mechanisms underlying VPA-induced intracellular fat accumulation are not yet fully understood. Here we demonstrated the involvement of fatty acid uptake and lipogenesis in VPA-induced hepatic steatosis in vitro and in vivo by using quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, fatty acid uptake assays, Nile Red staining assays, and Oil Red O staining assays. Specifically, we found that the expression of cluster of differentiation 36 (CD36), an important fatty acid transport, and diacylglycerol acyltransferase 2 (DGAT2) were significantly up-regulated in HepG2 cells and livers of C57B/6J mice after treatment with VPA. Furthermore, VPA treatment remarkably enhanced the efficiency of fatty acid uptake mediated by CD36, while this effect was abolished by the interference with CD36-specific siRNA. Also, VPA treatment significantly increased DGAT2 expression as a result of the inhibition of mitogen-activated protein kinase kinase (MEK) – extracellular regulated kinase (ERK) pathway; however, DGAT2 knockdown significantly alleviated VPA-induced intracellular lipid accumulation. Additionally, we also found that sterol regulatory element binding protein-1c (SREBP-1c)-mediated fatty acid synthesis may be not involved in VPA-induced hepatic steatosis. Overall, VPA-triggered over-regulation of CD36 and DGAT2 could be helpful for a better understanding of the mechanisms underlying VPA-induced hepatic steatosis and may offer novel therapeutic strategies to combat VPA-induced hepatotoxicity. - Highlights: • VPA induced hepatic steatosis and modulated genes associated with lipid metabolism. • CD36-mediated fatty acid uptake contributed to VPA-induced lipid accumulation. • PA increased the hepatic

  11. Palmitoleic Acid Improves Metabolic Functions in Fatty Liver by PPARα-Dependent AMPK Activation.

    Science.gov (United States)

    de Souza, Camila O; Teixeira, Alexandre A S; Biondo, Luana A; Lima Junior, Edson A; Batatinha, Helena A P; Rosa Neto, Jose C

    2017-08-01

    Palmitoleic acid, since described as lipokine, increases glucose uptake by modulation of 5'AMP-activated protein kinase (AMPK), as well as increasing lipolysis by activation of peroxisome proliferator-activated receptor-α (PPARα), in adipose tissue. However, in liver, the effects of palmitoleic acid on glucose metabolism and the role of PPARα remain unknown. To investigate whether palmitoleic acid improved the hepatic insulin sensitivity of obese mice. C57BL6 and PPARα knockout (KO) mice were fed for 12 weeks with a standard diet (SD) or high-fat diet (HF), and in the last 2 weeks were treated with oleic or palmitoleic acid. Palmitoleic acid promoted a faster uptake of glucose in the body, associated with higher insulin concentration; however, even when stimulated with insulin, palmitoleic acid did not modulate the insulin pathway (AKT, IRS). Palmitoleic acid increased the phosphorylation of AMPK, upregulated glucokinase and downregulated SREBP-1. Regarding AMPK downstream, palmitoleic acid increased the production of FGF-21 and stimulated the expression of PPARα. Palmitoleic acid treatment did not increase AMPK phosphorylation, modulate glucokinase or increase FGF-21 in liver of PPARα KO mice. In mice fed with a high-fat diet, palmitoleic acid supplementation stimulated the uptake of glucose in liver through activation of AMPK and FGF-21, dependent on PPARα. J. Cell. Physiol. 232: 2168-2177, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats☆

    Science.gov (United States)

    Miller, Desinia B.; Karoly, Edward D.; Jones, Jan C.; Ward, William O.; Vallanat, Beena D.; Andrews, Debora L.; Schladweiler, Mette C.; Snow, Samantha J.; Bass, Virginia L.; Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D.; Kodavanti, Urmila P.

    2016-01-01

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O3) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O3 exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O3 at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O3, 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O3 increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O3 increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O3. In conclusion, short-term O3 exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. PMID:25838073

  13. Long-term prognosis for transplant-free survivors of paracetamol-induced acute liver failure

    DEFF Research Database (Denmark)

    Jepsen, P; Schmidt, L E; Larsen, F S

    2010-01-01

    The prognosis for transplant-free survivors of paracetamol-induced acute liver failure remains unknown.......The prognosis for transplant-free survivors of paracetamol-induced acute liver failure remains unknown....

  14. Symbiotic formulation in experimentally induced liver fibrosis in rats: intestinal microbiota as a key point to treat liver damage?

    Science.gov (United States)

    D'Argenio, Giuseppe; Cariello, Rita; Tuccillo, Concetta; Mazzone, Giovanna; Federico, Alessandro; Funaro, Annalisa; De Magistris, Laura; Grossi, Enzo; Callegari, Maria L; Chirico, Marilena; Caporaso, Nicola; Romano, Marco; Morelli, Lorenzo; Loguercio, Carmela

    2013-05-01

    Evidence indicates that intestinal microbiota may participate in both the induction and the progression of liver damage. The aim of our research was the detection and evaluation of the effects of chronic treatment with a symbiotic formulation on CCl4 -induced rat liver fibrosis. CCl4 significantly increased gastric permeability in respect to basal values, and the treatment with symbiotic significantly decreased it. CCl4 per se induced a decrease in intestinal permeability. This effect was also seen in fibrotic rats treated with symbiotic and was still evident when normal rats were treated with symbiotic alone (P symbiotic treatment normalized the plasma levels of TNF-α and significantly enhanced anti-inflammatory cytokine IL 10. TNF-α, TGF-β, TLR4, TLR2, iNOS and α-SMA mRNA expression in the liver were up-regulated in rats with CCl4 -induced liver fibrosis and down-regulated by symbiotic treatment. Moreover, IL-10 and eNOS mRNA levels were increased in the CCL4 (+) symbiotic group. Symbiotic treatment of fibrotic rats normalized serum ALT, AST and improved histology and liver collagen deposition. DGGE analysis of faecal samples revealed that CCl4 administration and symbiotic treatment either alone or in combination produced modifications in faecal profiles vs controls. Our results provide evidence that in CCl4 -induced liver fibrosis, significant changes in gastro-intestinal permeability and in faecal flora occur. Treatment with a specific symbiotic formulation significantly affects these changes, leading to improvement in both liver inflammation and fibrosis. © 2013 John Wiley & Sons A/S.

  15. Distinct cellular responses differentiating alcohol- and hepatitis C virus-induced liver cirrhosis

    Directory of Open Access Journals (Sweden)

    Boix Loreto

    2006-11-01

    Full Text Available Abstract Background Little is known at the molecular level concerning the differences and/or similarities between alcohol and hepatitis C virus induced liver disease. Global transcriptional profiling using oligonucleotide microarrays was therefore performed on liver biopsies from patients with cirrhosis caused by either chronic alcohol consumption or chronic hepatitis C virus (HCV. Results Global gene expression patterns varied significantly depending upon etiology of liver disease, with a greater number of differentially regulated genes seen in HCV-infected patients. Many of the gene expression changes specifically observed in HCV-infected cirrhotic livers were expectedly associated with activation of the innate antiviral immune response. We also compared severity (CTP class of cirrhosis for each etiology and identified gene expression patterns that differentiated ethanol-induced cirrhosis by class. CTP class A ethanol-cirrhotic livers showed unique expression patterns for genes implicated in the inflammatory response, including those related to macrophage activation and migration, as well as lipid metabolism and oxidative stress genes. Conclusion Stages of liver cirrhosis could be differentiated based on gene expression patterns in ethanol-induced, but not HCV-induced, disease. In addition to genes specifically regulating the innate antiviral immune response, mechanisms responsible for differentiating chronic liver damage due to HCV or ethanol may be closely related to regulation of lipid metabolism and to effects of macrophage activation on deposition of extracellular matrix components.

  16. Fatty acid biosynthesis VII. Substrate control of chain-length of products synthesised by rat liver fatty acid synthetase

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Carey, E.M.; Dils, R.

    1970-01-01

    - 1. Gas-liquid and paper chromatography have been used to determine the chain-lengths of fatty acids synthesised by purified rat liver fatty acid synthetase from [1-14C]acetyl-CoA, [1,3-14C2]malonyl-CoA and from [1-14C]acetyl-CoA plus partially purified rat liver acetyl-CoA carboxylase. - 2....... A wide range (C4:0–C18:0) of fatty acids was synthesised and the proportions were modified by substrate concentrations in the same manner as for purified rabbit mammary gland fatty acid synthetase. - 3. The relative amount of radioactivity incorporated from added acetyl-CoA and malonyl-CoA depended...... of long-chain fatty acids was synthesised from carboxylated acetyl-CoA than from added malonyl-CoA. - 5. It is suggested that acetyl-CoA carboxylase may carboxylate acetate bound to fatty acid synthetase....

  17. Ascorbic acid deficiency increases endotoxin influx to portal blood and liver inflammatory gene expressions in ODS rats.

    Science.gov (United States)

    Tokuda, Yuki; Miura, Natsuko; Kobayashi, Misato; Hoshinaga, Yukiko; Murai, Atsushi; Aoyama, Hiroaki; Ito, Hiroyuki; Morita, Tatsuya; Horio, Fumihiko

    2015-02-01

    The aim of this study was to determine whether ascorbic acid (AsA) deficiency-induced endotoxin influx into portal blood from the gastrointestinal tract contributes to the inflammatory changes in the liver. The mechanisms by which AsA deficiency provokes inflammatory changes in the liver were investigated in Osteogenic Disorder Shionogi (ODS) rats (which are unable to synthesize AsA). Male ODS rats (6-wk-old) were fed a diet containing sufficient (300 mg/kg) AsA (control group) or a diet without AsA (AsA-deficient group) for 14 or 18 d. On day 14, the hepatic mRNA levels of acute-phase proteins and inflammation-related genes were significantly higher in the AsA-deficient group than the control group, and these elevations by AsA deficiency were exacerbated on day 18. The serum concentrations of interleukin (IL)-1β and IL-6, which induce acute-phase proteins in the liver, were also significantly elevated on day 14 in the AsA-deficient group compared with the respective values in the control group. IL-1β mRNA levels in the liver, spleen, and lung were increased by AsA deficiency. Moreover, on both days 14 and 18, the portal blood endotoxin concentration was significantly higher in the AsA-deficient group than in the control group, and a significant correlation between serum IL-1β concentrations and portal endotoxin concentrations was found in AsA-deficient rats. In the histologic analysis of the ileum tissues, the number of goblet cells per villi was increased by AsA deficiency. These results suggest that AsA deficiency-induced endotoxin influx into portal blood from the gastrointestinal tract contributes to the inflammatory changes in the liver. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The primary structure of fatty-acid-binding protein from nurse shark liver. Structural and evolutionary relationship to the mammalian fatty-acid-binding protein family.

    Science.gov (United States)

    Medzihradszky, K F; Gibson, B W; Kaur, S; Yu, Z H; Medzihradszky, D; Burlingame, A L; Bass, N M

    1992-02-01

    The primary structure of a fatty-acid-binding protein (FABP) isolated from the liver of the nurse shark (Ginglymostoma cirratum) was determined by high-performance tandem mass spectrometry (employing multichannel array detection) and Edman degradation. Shark liver FABP consists of 132 amino acids with an acetylated N-terminal valine. The chemical molecular mass of the intact protein determined by electrospray ionization mass spectrometry (Mr = 15124 +/- 2.5) was in good agreement with that calculated from the amino acid sequence (Mr = 15121.3). The amino acid sequence of shark liver FABP displays significantly greater similarity to the FABP expressed in mammalian heart, peripheral nerve myelin and adipose tissue (61-53% sequence similarity) than to the FABP expressed in mammalian liver (22% similarity). Phylogenetic trees derived from the comparison of the shark liver FABP amino acid sequence with the members of the mammalian fatty-acid/retinoid-binding protein gene family indicate the initial divergence of an ancestral gene into two major subfamilies: one comprising the genes for mammalian liver FABP and gastrotropin, the other comprising the genes for mammalian cellular retinol-binding proteins I and II, cellular retinoic-acid-binding protein myelin P2 protein, adipocyte FABP, heart FABP and shark liver FABP, the latter having diverged from the ancestral gene that ultimately gave rise to the present day mammalian heart-FABP, adipocyte FABP and myelin P2 protein sequences. The sequence for intestinal FABP from the rat could be assigned to either subfamily, depending on the approach used for phylogenetic tree construction, but clearly diverged at a relatively early evolutionary time point. Indeed, sequences proximately ancestral or closely related to mammalian intestinal FABP, liver FABP, gastrotropin and the retinoid-binding group of proteins appear to have arisen prior to the divergence of shark liver FABP and should therefore also be present in elasmobranchs

  19. Clofibric Acid Increases the Formation of Oleic Acid in Endoplasmic Reticulum of the Liver of Rats

    OpenAIRE

    広瀬, 明彦; 山崎, 研; 坂本, 武史; 須永, 克佳; 津田, 整; 光本, 篤史; 工藤, なをみ; 川嶋, 洋一

    2011-01-01

    The effects of 2-(4-chlorophenoxy)-2-methylpropionic acid (clofibric acid) on the formation of oleic acid (18:1) from stearic acid (18:0) and utilization of the 18:1 formed for phosphatidylcholine (PC) formation in endoplasmic reticulum in the liver of rats were studied in vivo. [14C]18:0 was intravenously injected into control Wistar male rats and rats that had been fed on a diet containing 0.5% (w/w) clofibric acid for 7 days; and the distribution of radiolabeled fatty acids among subcellul...

  20. Arsenic induced apoptosis in rat liver following repeated 60 days exposure

    International Nuclear Information System (INIS)

    Bashir, Somia; Sharma, Yukti; Irshad, M.; Nag, T.C.; Tiwari, Monica; Kabra, M.; Dogra, T.D.

    2006-01-01

    Background: Accumulation of the wide spread environmental toxin arsenic in liver results in hepatotoxcity. Exposure to arsenite and other arsenicals has been previously shown to induce apoptosis in certain tumor cell lines at low (1-3 μM) concentration. Aim: The present study was focused to elucidate the role of free radicals in arsenic toxicity and to investigate the nature of in vivo sodium arsenite induced cell death in liver. Methods: Male wistar rats were exposed to arsenite at three different doses of 0.05, 2.5 and 5 mg/l for 60 days. Oxidative stress in liver was measured by estimating pro-oxidant and antioxidant activity in liver. Histopathological examination of liver was carried out by light and transmission electron microscopy. Analysis of DNA fragmentation by gel electrophoresis was used to identify apoptosis after the exposure. Terminal deoxy-nucleotidyl transferase mediated dUTP Nick end-labeling (TUNEL) assay was used to qualify and quantify apoptosis. Results: A significant increase in cytochrome-P450 and lipid peroxidation accompanied with a significant alteration in the activity of many of the antioxidants was observed, all suggestive of arsenic induced oxidative stress. Histopathological examination under light and transmission electron microscope suggested a combination of ongoing necrosis and apoptosis. DNA-TUNEL showed an increase in apoptotic cells in liver. Agarose gel electrophoresis of DNA of hepatocytes resulted in a characteristic ladder pattern. Conclusion: Chronic arsenic administration induces a specific pattern of apoptosis called post-mitotic apoptosis

  1. Nor-Ursodeoxycholic Acid as a Novel Therapeutic Approach for Cholestatic and Metabolic Liver Diseases.

    Science.gov (United States)

    Halilbasic, Emina; Steinacher, Daniel; Trauner, Michael

    2017-01-01

    Norursodeoxycholic acid (norUDCA) is a side-chain-shortened derivative of ursodeoxycholic acid with relative resistance to amidation, which enables its cholehepatic shunting. Based on its specific pharmacologic properties, norUDCA is a promising drug for a range of cholestatic liver and bile duct disorders. Recently, norUDCA has been successfully tested clinically in patients with primary sclerosing cholangitis (PSC) as first application in patients. Moreover, hepatic enrichment of norUDCA facilitates direct therapeutic effects on both parenchymal and non-parenchymal liver cells, thereby counteracting cholestasis, steatosis, hepatic inflammation and fibrosis, inhibiting hepatocellular proliferation, and promoting autophagy. This may open its therapeutic use to other non-cholestatic and metabolic liver diseases. This review article is a summary of a lecture given at the XXIV International Bile Acid Meeting (Falk Symposium 203) on "Bile Acids in Health and Disease" held in Düsseldorf, on June 17-18, 2016 and summarizes the recent progress of norUDCA as novel therapeutic approach in cholestatic and metabolic liver disorders with a specific focus on PSC. © 2017 S. Karger AG, Basel.

  2. A retinoic acid receptor β2 agonist reduces hepatic stellate cell activation in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Trasino, Steven E; Tang, Xiao-Han; Jessurun, Jose; Gudas, Lorraine J

    2016-10-01

    Hepatic stellate cells (HSCs) are an important cellular target for the development of novel pharmacological therapies to prevent and treat nonalcoholic fatty liver diseases (NAFLD). Using a high fat diet (HFD) model of NAFLD, we sought to determine if synthetic selective agonists for retinoic acid receptor β2 (RARβ2) and RARγ can mitigate HSC activation and HSC relevant signaling pathways during early stages of NAFLD, before the onset of liver injury. We demonstrate that the highly selective RARβ2 agonist, AC261066, can reduce the activation of HSCs, marked by decreased HSC expression of α-smooth muscle actin (α-SMA), in mice with HFD-induced NAFLD. Livers of HFD-fed mice treated with AC261066 exhibited reduced steatosis, oxidative stress, and expression of pro-inflammatory mediators, such as tumor necrosis factor-alpha (TNFα), interleukin 1β (IL-1β), and monocyte chemotactic protein-1 (MCP-1). Kupffer cell (macrophage) expression of transforming growth factor-β1 (TGF-β1), which plays a critical role in early HSC activation, was markedly reduced in AC261066-treated, HFD-fed mice. In contrast, HFD-fed mice treated with an RARγ agonist (CD1530) showed no decreases in steatosis, HSC activation, or Kupffer cell TGF-β1 levels. In conclusion, our data demonstrate that RARβ2 is an attractive target for development of NAFLD therapies. • Hepatic stellate cells (HSCs) are an important pharmacological target for the prevention of nonalcoholic fatty liver diseases (NAFLD). • Retinoids and retinoic acid receptors (RARs) possess favorable metabolic modulating properties. • We show that an agonist for retinoic acid receptor-β2 (RARβ2), but not RARγ, mitigates HSC activation and NAFLD.

  3. Ethanol and liver: Recent insights into the mechanisms of ethanol-induced fatty liver

    Science.gov (United States)

    Liu, Jinyao

    2014-01-01

    Alcoholic fatty liver disease (AFLD), a potentially pathologic condition, can progress to steatohepatitis, fibrosis, and cirrhosis, leading to an increased probability of hepatic failure and death. Alcohol induces fatty liver by increasing the ratio of reduced form of nicotinamide adenine dinucleotide to oxidized form of nicotinamide adenine dinucleotide in hepatocytes; increasing hepatic sterol regulatory element-binding protein (SREBP)-1, plasminogen activator inhibitor (PAI)-1, and early growth response-1 activity; and decreasing hepatic peroxisome proliferator-activated receptor-α activity. Alcohol activates the innate immune system and induces an imbalance of the immune response, which is followed by activated Kupffer cell-derived tumor necrosis factor (TNF)-α overproduction, which is in turn responsible for the changes in the hepatic SREBP-1 and PAI-1 activity. Alcohol abuse promotes the migration of bone marrow-derived cells (BMDCs) to the liver and then reprograms TNF-α expression from BMDCs. Chronic alcohol intake triggers the sympathetic hyperactivity-activated hepatic stellate cell (HSC) feedback loop that in turn activates the HSCs, resulting in HSC-derived TNF-α overproduction. Carvedilol may block this feedback loop by suppressing sympathetic activity, which attenuates the progression of AFLD. Clinical studies evaluating combination therapy of carvedilol with a TNF-α inhibitor to treat patients with AFLD are warranted to prevent the development of alcoholic liver disease. PMID:25356030

  4. Liver injury and fibrosis induced by dietary challenge in the Ossabaw miniature Swine.

    Science.gov (United States)

    Liang, Tiebing; Alloosh, Mouhamad; Bell, Lauren N; Fullenkamp, Allison; Saxena, Romil; Van Alstine, William; Bybee, Phelan; Werling, Klára; Sturek, Michael; Chalasani, Naga; Masuoka, Howard C

    2015-01-01

    Ossabaw miniature swine when fed a diet high in fructose, saturated fat and cholesterol (NASH diet) develop metabolic syndrome and nonalcoholic steatohepatitis (NASH) characterized by liver injury and fibrosis. This study was conducted to further characterize the development of NASH in this large animal model. Ossabaw swine were fed standard chow (control group; n = 6) or NASH diet (n = 6) for 24 weeks. Blood and liver tissue were collected and liver histology were characterized at 0, 8, 16 and 24 weeks of dietary intervention. Hepatic apoptosis and lipid levels were assessed at week 24. The NASH diet group developed metabolic syndrome and progressive histologic features of NASH including: (a) hepatocyte ballooning at 8 weeks which progressed to extensive ballooning (>90% hepatocytes), (b) hepatic fibrosis at week 16, which progressed to moderate fibrosis, and (c) Kupffer cell accumulation with vacuolization at 8 weeks which progressed through week 24. The NASH diet group showed increased hepatocyte apoptosis that correlated with hepatic total and free cholesterol and free fatty acids, but not esterified cholesterol or triglycerides. This report further characterizes the progression of diet-induced NASH in the Ossabaw swine model. In Ossabaw swine fed the NASH diet: (a) hepatocyte injury and fibrosis can occur without macrovesicular steatosis or excess triglyceride accumulation; (b) hepatocyte ballooning generally precedes the development of fibrosis; (c) there is increased hepatocyte apoptosis, and it is correlated more significantly with hepatic free cholesterol than hepatic free fatty acids and had no correlation with hepatic triglycerides.

  5. Moro orange juice prevents fatty liver in mice.

    Science.gov (United States)

    Salamone, Federico; Li Volti, Giovanni; Titta, Lucilla; Puzzo, Lidia; Barbagallo, Ignazio; La Delia, Francesco; Zelber-Sagi, Shira; Malaguarnera, Michele; Pelicci, Pier Giuseppe; Giorgio, Marco; Galvano, Fabio

    2012-08-07

    To establish if the juice of Moro, an anthocyanin-rich orange, may improve liver damage in mice with diet-induced obesity. Eight-week-old mice were fed a high-fat diet (HFD) and were administrated water or Moro juice for 12 wk. Liver morphology, gene expression of lipid transcription factors, and metabolic enzymes were assessed. Mice fed HFD displayed increased body weight, insulin resistance and dyslipidemia. Moro juice administration limited body weight gain, enhanced insulin sensitivity, and decreased serum triglycerides and total cholesterol. Mice fed HFD showed liver steatosis associated with ballooning. Dietary Moro juice markedly improved liver steatosis by inducing the expression of peroxisome proliferator-activated receptor-α and its target gene acylCoA-oxidase, a key enzyme of lipid oxidation. Consistently, Moro juice consumption suppressed the expression of liver X receptor-α and its target gene fatty acid synthase, and restored liver glycerol-3-phosphate acyltransferase 1 activity. Moro juice counteracts liver steatogenesis in mice with diet-induced obesity and thus may represent a promising dietary option for the prevention of fatty liver.

  6. Quercetin prevents pyrrolizidine alkaloid clivorine-induced liver injury in mice by elevating body defense capacity.

    Directory of Open Access Journals (Sweden)

    Lili Ji

    Full Text Available Quercetin is a plant-derived flavonoid that is widely distributed in nature. The present study is designed to analyze the underlying mechanism in the protection of quercetin against pyrrolizidine alkaloid clivorine-induced acute liver injury in vivo. Serum transaminases, total bilirubin analysis, and liver histological evaluation demonstrated the protection of quercetin against clivorine-induced liver injury. Terminal dUTP nick end-labeling assay demonstrated that quercetin reduced the increased amount of liver apoptotic cells induced by clivorine. Western-blot analysis of caspase-3 showed that quercetin inhibited the cleaved activation of caspase-3 induced by clivorine. Results also showed that quercetin reduced the increase in liver glutathione and lipid peroxidative product malondialdehyde induced by clivorine. Quercetin reduced the enhanced liver immunohistochemical staining for 4-hydroxynonenal induced by clivorine. Results of the Mouse Stress and Toxicity PathwayFinder RT2 Profiler PCR Array demonstrated that the expression of genes related with oxidative or metabolic stress and heat shock was obviously altered after quercetin treatment. Some of the alterations were confirmed by real-time PCR. Our results demonstrated that quercetin prevents clivorine-induced acute liver injury in vivo by inhibiting apoptotic cell death and ameliorating oxidative stress injury. This protection may be caused by the elevation of the body defense capacity induced by quercetin.

  7. Quercetin Prevents Pyrrolizidine Alkaloid Clivorine-Induced Liver Injury in Mice by Elevating Body Defense Capacity

    Science.gov (United States)

    Ji, Lili; Ma, Yibo; Wang, Zaiyong; Cai, Zhunxiu; Pang, Chun; Wang, Zhengtao

    2014-01-01

    Quercetin is a plant-derived flavonoid that is widely distributed in nature. The present study is designed to analyze the underlying mechanism in the protection of quercetin against pyrrolizidine alkaloid clivorine-induced acute liver injury in vivo. Serum transaminases, total bilirubin analysis, and liver histological evaluation demonstrated the protection of quercetin against clivorine-induced liver injury. Terminal dUTP nick end-labeling assay demonstrated that quercetin reduced the increased amount of liver apoptotic cells induced by clivorine. Western-blot analysis of caspase-3 showed that quercetin inhibited the cleaved activation of caspase-3 induced by clivorine. Results also showed that quercetin reduced the increase in liver glutathione and lipid peroxidative product malondialdehyde induced by clivorine. Quercetin reduced the enhanced liver immunohistochemical staining for 4-hydroxynonenal induced by clivorine. Results of the Mouse Stress and Toxicity PathwayFinder RT2 Profiler PCR Array demonstrated that the expression of genes related with oxidative or metabolic stress and heat shock was obviously altered after quercetin treatment. Some of the alterations were confirmed by real-time PCR. Our results demonstrated that quercetin prevents clivorine-induced acute liver injury in vivo by inhibiting apoptotic cell death and ameliorating oxidative stress injury. This protection may be caused by the elevation of the body defense capacity induced by quercetin. PMID:24905073

  8. Liver Gene Expression Profiles of Rats Treated with Clofibric Acid

    Science.gov (United States)

    Michel, Cécile; Desdouets, Chantal; Sacre-Salem, Béatrice; Gautier, Jean-Charles; Roberts, Ruth; Boitier, Eric

    2003-01-01

    Clofibric acid (CLO) is a peroxisome proliferator (PP) that acts through the peroxisome proliferator activated receptor α, leading to hepatocarcinogenesis in rodents. CLO-induced hepatocarcinogenesis is a multi-step process, first transforming normal liver cells into foci. The combination of laser capture microdissection (LCM) and genomics has the potential to provide expression profiles from such small cell clusters, giving an opportunity to understand the process of cancer development in response to PPs. To our knowledge, this is the first evaluation of the impact of the successive steps of LCM procedure on gene expression profiling by comparing profiles from LCM samples to those obtained with non-microdissected liver samples collected after a 1 month CLO treatment in the rat. We showed that hematoxylin and eosin (H&E) staining and laser microdissection itself do not impact on RNA quality. However, the overall process of the LCM procedure affects the RNA quality, resulting in a bias in the gene profiles. Nonetheless, this bias did not prevent accurate determination of a CLO-specific molecular signature. Thus, gene-profiling analysis of microdissected foci, identified by H&E staining may provide insight into the mechanisms underlying non-genotoxic hepatocarcinogenesis in the rat by allowing identification of specific genes that are regulated by CLO in early pre-neoplastic foci. PMID:14633594

  9. Concerted action of p62 and Nrf2 protects cells from palmitic acid-induced lipotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Su [Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kang, Dong Hoon [Department of Life Science and Ewha Research Center for Systems Biology (Korea, Republic of); The Research Center for Cell Homeostasis, Ewha Womans University, Seoul 127-750 (Korea, Republic of); Lee, Da Hyun [Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Bae, Soo Han, E-mail: soohanbae@yuhs.ac [Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)

    2015-10-09

    Nonalcoholic fatty liver disease (NAFLD), frequently associated with obesity and diabetes mellitus, is caused by the accumulation of excess fatty acids within liver cells. Palmitic acid (PA), a common saturated fatty acid found in mammals, induces the generation of reactive oxygen species (ROS) and elicits apoptotic cell death, known as lipotoxicity. However, protective mechanisms against PA-induced lipotoxicity have not been elucidated. In this study, we aimed to clarify the role of p62, an adapter protein in the autophagic process, as well as the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway, in protecting cells from PA-induced lipotoxicity. The Nrf2-Keap1 pathway is essential for the protection of cells from oxidative stress. p62 enhances its binding to Keap1 and leads to Nrf2 activation. Here, we show that PA potentiates Keap1 degradation and thereby activates the transcription of Nrf2 target genes partially through autophagy. Furthermore, this PA-mediated Keap1 degradation depends on p62. Correspondingly, a lack of p62 attenuates the PA-mediated Nrf2 activation and increases the susceptibility of cells to oxidative stress. These results indicate that p62 plays an important role in protecting cells against lipotoxicity through Keap1 degradation-mediated Nrf2 activation. - Highlights: • PA induces Keap1 downregulation and activates Nrf2 target gene transcription. • PA-induced Keap1 degradation is partly mediated by the autophagic pathway. • PA-induced Keap1 degradation depends on p62. • Ablation of p62 exacerbates PA-mediated apoptotic cell death.

  10. Concerted action of p62 and Nrf2 protects cells from palmitic acid-induced lipotoxicity

    International Nuclear Information System (INIS)

    Park, Jeong Su; Kang, Dong Hoon; Lee, Da Hyun; Bae, Soo Han

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD), frequently associated with obesity and diabetes mellitus, is caused by the accumulation of excess fatty acids within liver cells. Palmitic acid (PA), a common saturated fatty acid found in mammals, induces the generation of reactive oxygen species (ROS) and elicits apoptotic cell death, known as lipotoxicity. However, protective mechanisms against PA-induced lipotoxicity have not been elucidated. In this study, we aimed to clarify the role of p62, an adapter protein in the autophagic process, as well as the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway, in protecting cells from PA-induced lipotoxicity. The Nrf2-Keap1 pathway is essential for the protection of cells from oxidative stress. p62 enhances its binding to Keap1 and leads to Nrf2 activation. Here, we show that PA potentiates Keap1 degradation and thereby activates the transcription of Nrf2 target genes partially through autophagy. Furthermore, this PA-mediated Keap1 degradation depends on p62. Correspondingly, a lack of p62 attenuates the PA-mediated Nrf2 activation and increases the susceptibility of cells to oxidative stress. These results indicate that p62 plays an important role in protecting cells against lipotoxicity through Keap1 degradation-mediated Nrf2 activation. - Highlights: • PA induces Keap1 downregulation and activates Nrf2 target gene transcription. • PA-induced Keap1 degradation is partly mediated by the autophagic pathway. • PA-induced Keap1 degradation depends on p62. • Ablation of p62 exacerbates PA-mediated apoptotic cell death.

  11. Studies of liver-specific metabolic reactions with 15N. 1

    International Nuclear Information System (INIS)

    Hirschberg, K.; Jung, K.; Faust, H.; Matkowitz, R.

    1987-01-01

    The 15 N tracer technique was used to investigate liver-specific reactions (urea and hippurate synthesis) for studying the metabolism in the healthy and damaged pig liver. After [ 15 N]ammonium chloride administration the tracer distribution on non-protein compounds of serum and urine was followed. Blood samplings before and after liver passage rendered possible a direct analysis of the [ 15 N]ammonium metabolism. The thioacetamide-induced liver damage was used as model for an acute liver intoxication. The capacity for urea synthesis was not influenced by means of this noxious substance, but the metabolism of amino acids and hippuric acid. The considerably depressed excretion of [ 15 N]hippurate seems to be a suitable indicator of liver disfunction. (author)

  12. Mechanism of activation of liver glycogen synthase by swelling

    NARCIS (Netherlands)

    Meijer, A. J.; Baquet, A.; Gustafson, L.; van Woerkom, G. M.; Hue, L.

    1992-01-01

    The mechanism linking the stimulation of liver glycogen synthesis to swelling induced either by amino acids or hypotonicity was studied in hepatocytes, in gel-filtered liver extracts, and in purified preparations of particulate glycogen to which glycogen-metabolizing enzymes are bound. High

  13. Reversal of aflatoxin induced liver damage by turmeric and curcumin.

    Science.gov (United States)

    Soni, K B; Rajan, A; Kuttan, R

    1992-09-30

    The effect of certain food additives on aflatoxin production by Aspergillus parasiticus has been studied in vitro. Extracts of turmeric (Curcuma longa), garlic (Allium sativum) and asafoetida (Ferula asafoetida) inhibited the aflatoxin production considerably (more than 90%) at concentrations of 5-10 mg/ml. Similar results were also seen using butylated hydroxytoluene, butylated hydroxyanisole and ellagic acid at concentration 0.1 mM. Curcumin, the antioxidant principle from Curcuma longa did not have any effect on aflatoxin production. Turmeric and curcumin were also found to reverse the aflatoxin induced liver damage produced by feeding aflatoxin B1 (AFB1) (5 micrograms/day per 14 days) to ducklings. Fatty changes, necrosis and biliary hyperplasia produced by AFB1 were considerably reversed by these food additives.

  14. Proteomic profiling in incubation medium of mouse, rat and human precision-cut liver slices for biomarker detection regarding acute drug-induced liver injury

    NARCIS (Netherlands)

    van Swelm, Rachel P L; Hadi, Mackenzie; Laarakkers, Coby M M; Masereeuw, R.|info:eu-repo/dai/nl/155644033; Groothuis, Geny M M; Russel, Frans G M

    Drug-induced liver injury is one of the leading causes of drug withdrawal from the market. In this study, we investigated the applicability of protein profiling of the incubation medium of human, mouse and rat precision-cut liver slices (PCLS) exposed to liver injury-inducing drugs for biomarker

  15. Omega-3 fatty acids and non-alcoholic fatty liver disease: Evidence of efficacy and mechanism of action.

    Science.gov (United States)

    Scorletti, Eleonora; Byrne, Christopher D

    2018-03-22

    For many years it has been known that high doses of long chain omega-3 fatty acids are beneficial in the treatment of hypertriglyceridaemia. Over the last three decades, there has also been a wealth of in vitro and in vivo data that has accumulated to suggest that long chain omega-3 fatty acid treatment might be beneficial to decrease liver triacylglycerol. Several biological mechanisms have been identified that support this hypothesis; notably, it has been shown that long chain omega-3 fatty acids have a beneficial effect: a) on bioactive metabolites involved in inflammatory pathways, and b) on alteration of nuclear transcription factor activities such as peroxisome proliferator-activated receptors (PPARs), sterol regulatory element-binding protein 1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP), involved in inflammatory pathways and liver lipid metabolism. Since the pathogenesis of non alcoholic fatty liver disease (NAFLD) begins with the accumulation of liver lipid and progresses with inflammation and then several years later with development of fibrosis; it has been thought in patients with NAFLD omega-3 fatty acid treatment would be beneficial in treating liver lipid and possibly also in ameliorating inflammation. Meta-analyses (of predominantly dietary studies and small trials) have tended to support the assertion that omega-3 fatty acids are beneficial in decreasing liver lipid, but recent randomised controlled trials have produced conflicting data. These trials have suggested that omega-3 fatty acid might be beneficial in decreasing liver triglyceride (docosahexanoic acid also possibly being more effective than eicosapentanoic acid) but not in decreasing other features of steatohepatitis (or liver fibrosis). The purpose of this review is to discuss recent evidence regarding biological mechanisms by which long chain omega-3 fatty acids might act to ameliorate liver disease in NAFLD; to consider the recent evidence from randomised

  16. Ursodeoxycholic acid treatment is associated with improvement of liver stiffness in cystic fibrosis patients.

    Science.gov (United States)

    van der Feen, Cathelijne; van der Doef, Hubert P J; van der Ent, Cornelis K; Houwen, Roderick H J

    2016-11-01

    Ursodeoxycholic acid (UDCA) might prevent progression of cystic fibrosis liver disease, but objective parameters for its effect are lacking. We used liver stiffness measurements to evaluate the effect of Ursodeoxycholic acid. Paired measurements of liver stiffness were done in 73 patients without UDCA and in 32 patients with UDCA. In the latter group, 6 patients had cirrhosis; in 15 patients, UDCA was started based on Colombo criteria, and in 11 patients for other reasons. In patients without UDCA, liver stiffness increased: 0.19 (-0.03 to 0.59)kPa/year. Liver stiffness also increased in patients with cirrhosis: 4.6 (0.67-12.4)kPa/year. In patients who had UDCA based on Colombo criteria, a decrease of liver stiffness was observed: 0.70 (-1.6 to 0.55)kPa/year (P=0.01). In patients on UDCA for other reasons, liver stiffness increased: 0.23 (-0.20 to 0.51)kPa/year. UDCA reduced liver stiffness in patients with well-defined, mild liver disease. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  17. Ananas comosus L. Leaf Phenols and p-Coumaric Acid Regulate Liver Fat Metabolism by Upregulating CPT-1 Expression

    Directory of Open Access Journals (Sweden)

    Weidong Xie

    2014-01-01

    Full Text Available In this study, we aimed to investigate the effect and action mechanisms of pineapple leaf phenols (PLPs on liver fat metabolism in high-fat diet-fed mice. Results show that PLP significantly reduced abdominal fat and liver lipid accumulation in high-fat diet-fed mice. The effects of PLP were comparable with those of FB. Furthermore, at the protein level, PLP upregulated the expression of carnitine palmitoyltransferase 1 (CPT-1, whereas FB had no effects on CPT-1 compared with the HFD controls. Regarding mRNA expression, PLP mainly promoted the expression of CPT-1, PGC1a, UCP-1, and AMPK in the mitochondria, whereas FB mostly enhanced the expression of Ech1, Acox1, Acaa1, and Ehhadh in peroxisomes. PLP seemed to enhance fat metabolism in the mitochondria, whereas FB mainly exerted the effect in peroxisomes. In addition, p-coumaric acid (CA, one of the main components from PLP, significantly inhibited fat accumulation in oleic acid-induced HepG2 cells. CA also significantly upregulated CPT-1 mRNA and protein expressions in HepG2 cells. We, firstly, found that PLP enhanced liver fat metabolism by upregulating CPT-1 expression in the mitochondria and might be promising in treatment of fatty liver diseases as alternative natural products. CA may be one of the active components of PLP.

  18. Dansyl labeling to modulate the relative affinity of bile acids for the binding sites of human serum albumin.

    Science.gov (United States)

    Rohacova, Jana; Sastre, German; Marin, M Luisa; Miranda, Miguel A

    2011-09-08

    Binding of natural bile acids to human serum albumin (HSA) is an important step in enterohepatic circulation and provides a measure of liver function. In this article, we report on the use of four dansyl (Dns) derivatives of cholic acid (ChA) to demonstrate a regiodifferentiation in their relative affinity for the two binding sites of HSA. Using both steady-state and time-resolved fluorescence, formation of Dns-ChA@HSA complexes was confirmed; the corresponding binding constants were determined, and their distribution between bulk solution and HSA microenvironment was estimated. By means of energy transfer from Trp to the Dns moiety, donor-acceptor distances were estimated (21-25 Å) and found to be compatible with both site 1 and site 2 occupancies. Nevertheless, titration using warfarin and ibuprofen as specific displacement probes clearly indicated that 3α- and 3β-Dns-ChA bind to HSA at site 2, whereas their C-7 regioisomers bind to HSA at site 1. Furthermore, the C-3-labeled compounds are displaced by lithocholic acid, whereas they are insensitive to ChA, confirming the assumption that the former binds to HSA at site 2. Thus, Dns labeling provides a useful tool to modulate the relative affinity of ChA to the major binding sites of HSA and, in combination with other fluorescent ChA analogs, to mimic the binding behavior of natural bile acids.

  19. Preferential oxidation of linolenic acid compared to linoleic acid in the liver of catfish (Heteropneustes fossilis and Clarias batrachus)

    International Nuclear Information System (INIS)

    Bandyopadhyay, G.K.; Dutta, J.; Ghosh, S.

    1982-01-01

    The fate of [1(- 14 C] linoleic acid and [1( 14 C] linolenic acid in the liver slices and also in the liver tissues of live carnivorous catfish, Heteropneustes fossilis and Clarias batrachus, was studied. Incorporation of the fatty acids into different lipid classes in the live fish differed greatly from the tissue slices, indicating certain physiological control operative in vivo. The extent of desaturation and chain elongation of linoleic and linolenic acids into long-chain polyunsaturated fatty acids was low. Linolenic acid was oxidized (thus labeling the saturated fatty acid with liberated 14 C-acetyl-CoA) in preference to linoleic acid, and this oxidation also seemed to be under physiological control since both of the fatty acids were poorly oxidized in the tissue slices and in the killed fish. These fish can therefore recognize the difference in the acyl chain structures of linoleate and linolenate. The higher oxidation of linolenic acid and poor capacity for its conversion to longer chain, highly unsaturated derivatives indicates a higher demand for the dietary supply of these essential fatty acids in these two species

  20. Inhibition of lipid peroxidation induced by γ- radiation and AAPH in rat liver and brain mitochondria by mushrooms

    International Nuclear Information System (INIS)

    Lakshmi, B.; Janardhanan, K.K.; Tilak, J.C.; Devasagayam, T.P.A.; Adhikari, S.

    2005-01-01

    Exposure to radiation or 2.2' Azobis(2-amidopropane) dihydrochloride (AAPH) induces generation of reactive oxygen species (ROS) especially hydroxyl radical ( . OH) and peroxyl radical (ROO . ), which are capable of inducing lipid peroxidation. Our earlier studies have demonstrated that extracts of the medicinal and edible mushrooms Ganoderma lucidum, Pleurotus florida, Pleurotus sajor-caju and Phellinus rimosus possessed significant antioxidant activity, measured as radical scavenging. In the present study, we examined the protective effect of these mushroom extracts against radiation- and AAPH-induced lipid peroxidation using rat liver and brain mitochondria as model systems. The results obtained showed that the investigated mushroom extracts significantly inhibited the formation of lipid hydroperoxide and thiobarbituric acid reactive substances, indicating membrane protective effects. The finding suggests the profound protective effect of the extracts of the fruiting bodies of G. lucidum, P. florida, P. sajor-caju and P. rimosus against lipid peroxidation by two major forms of ROS capable of inducing this type of damage in a major organelle, the mitochondria from both rat liver and brain. This observation can possibly explain the health benefits of these mushrooms. (author)

  1. Isolation and characterization of fatty acid binding protein in the liver of the nurse shark, Ginglymostoma cirratum.

    Science.gov (United States)

    Bass, N M; Manning, J A; Luer, C A

    1991-01-01

    1. A 14.5 kDa fatty acid binding protein was isolated from the liver of the nurse shark, Ginglymostoma cirratum. 2. Purified shark liver FABP (pI = 5.4) bound oleic acid at a single site with an affinity similar to that of mammalian FABP. 3. The apparent size, pI and amino acid composition of shark liver FABP indicate a close structural relationship between this protein and mammalian heart FABP.

  2. Dexamethasone-induced haptoglobin release by calf liver parenchymal cells.

    Science.gov (United States)

    Higuchi, H; Katoh, N; Miyamoto, T; Uchida, E; Yuasa, A; Takahashi, K

    1994-08-01

    Parenchymal cells were isolated from the liver of male calves, and monolayer cultures formed were treated with glucocorticoids to examine whether haptoglobin, appearance of which is associated with hepatic lipidosis (fatty liver) in cattle, is induced by steroid hormones. Without addition of dexamethasone, only trace amounts of haptoglobin were detected in culture medium. With addition of dexamethasone (10(-12) to 10(-4) M), considerable amounts of haptoglobin were released into the medium. Maximal release was observed at concentrations of 10(-8) to 10(-6) M dexamethasone. Haptoglobin release was similarly induced by cortisol, although the effect was less potent than that of dexamethasone. Actinomycin D (a known protein synthesis inhibitor) dose-dependently reduced amounts of haptoglobin released in response to 10(-8) M dexamethasone. Dexamethasone also induced annexin I, which is known to be synthesized in response to glucocorticoids. Dexamethasone treatment resulted in reduced protein kinase C activity in the cell cytosol, which has been shown to be an early event in dexamethasone-treated cells. Other than glucocorticoids, estradiol induced haptoglobin release, whereas progesterone was less effective. The association of haptoglobin with hepatic lipidosis can be reasonably explained by the fact that haptoglobin production by the liver is induced by glucocorticoids and estradiol, and these steroid hormones are triggers for development of hepatic lipidosis in cattle.

  3. Protective Effect of Prosopis cineraria Against N-Nitrosodiethylamine Induced Liver Tumor by Modulating Membrane Bound Enzymes and Glycoproteins

    Directory of Open Access Journals (Sweden)

    Naina Mohamed Pakkir Maideen

    2012-06-01

    Full Text Available Purpose: The objective of the present study was to evaluate the protective effect of methanol extract of Prosopis cineraria (MPC against N-nitrosodiethylamine (DEN, 200mg/kg induced Phenobarbital promoted experimental liver tumors in male Wistar rats. Methods: The rats were divided into four groups, each group consisting of six animals. Group 1 served as control animals. Liver tumor was induced in group 2, 3, and 4 and Group 3 animals received MPC 200mg/kg and Group 4 animals received MPC 400mg/kg. Results: Administration of DEN has brought down the levels of membrane bound enzymes like Na+/ K+ ATPase, Mg2+ ATPase and Ca2+ATPase which were later found to be increased by the administration of Prosopis cineraria (200 and 400mg/kg in dose dependent manner. The MPC extract also suppressed the levels of glycoproteins like Hexose, Hexosamine and Sialic acid when compared to liver tumor bearing animals. Conclusions: Our study suggests that MPC may extend its protective role by modulating the levels of membrane bound enzymes and suppressing glycoprotein levels.

  4. Effects of Natural Products on Fructose-Induced Nonalcoholic Fatty Liver Disease (NAFLD

    Directory of Open Access Journals (Sweden)

    Qian Chen

    2017-01-01

    Full Text Available As a sugar additive, fructose is widely used in processed foods and beverages. Excessive fructose consumption can cause hepatic steatosis and dyslipidemia, leading to the development of metabolic syndrome. Recent research revealed that fructose-induced nonalcoholic fatty liver disease (NAFLD is related to several pathological processes, including: (1 augmenting lipogenesis; (2 leading to mitochondrial dysfunction; (3 stimulating the activation of inflammatory pathways; and (4 causing insulin resistance. Cellular signaling research indicated that partial factors play significant roles in fructose-induced NAFLD, involving liver X receptor (LXRα, sterol regulatory element binding protein (SREBP-1/1c, acetyl-CoA carboxylase (ACC, fatty acid synthase (FAS, stearoyl-CoA desaturase (SCD, peroxisome proliferator–activated receptor α (PPARα, leptin nuclear factor-erythroid 2-related factor 2 (Nrf2, nuclear factor kappa B (NF-κB, tumor necrosis factor α (TNF-α, c-Jun amino terminal kinase (JNK, phosphatidylinositol 3-kinase (PI3K and adenosine 5′-monophosphate (AMP-activated protein kinase (AMPK. Until now, a series of natural products have been reported as regulators of NAFLD in vivo and in vitro. This paper reviews the natural products (e.g., curcumin, resveratrol, and (−-epicatechin and their mechanisms of ameliorating fructose-induced NAFLD over the past years. Although, as lead compounds, natural products usually have fewer activities compared with synthesized compounds, it will shed light on studies aiming to discover new drugs for NAFLD.

  5. Acute alcohol-induced liver injury

    Directory of Open Access Journals (Sweden)

    Gavin Edward Arteel

    2012-06-01

    Full Text Available Alcohol consumption is customary in most cultures and alcohol abuse is common worldwide. For example, more than 50% of Americans consume alcohol, with an estimated 23.1% of Americans participating in heavy and/or binge drinking at least once a month. A safe and effective therapy for alcoholic liver disease (ALD in humans is still elusive, despite significant advances in our understanding of how the disease is initiated and progresses. It is now clear that acute alcohol binges not only can be acutely toxic to the liver, but also can contribute to the chronicity of ALD. Potential mechanisms by which acute alcohol causes damage include steatosis, dysregulated immunity and inflammation and altered gut permeability. Recent interest in modeling acute alcohol exposure has yielded new insights into potential mechanisms of acute injury, that also may well be relevant for chronic ALD. Recent work by this group on the role of PAI-1 and fibrin metabolism in mediating acute alcohol-induced liver damage serve as an example of possible new targets that may be useful for alcohol abuse, be it acute or chronic.

  6. Lack of ClC-2 Alleviates High Fat Diet-Induced Insulin Resistance and Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Dongxia Fu

    2018-03-01

    Full Text Available Background/Aims: Non-alcoholic fatty liver disease (NAFLD is the most common cause of chronic liver disease. This study aims to investigate whether chloride channel 2 (ClC-2 is involved in high fat diet (HFD-induced NAFLD and possible molecular mechanisms. Methods: ClC-2 expression was liver-specifically downregulated using adeno-associated virus in C57BL/6 mice treated with a chow diet or HFD for 12 weeks. Peripheral blood and liver tissues were collected for biochemical and pathological estimation respectively. Western blotting was applied to detect the protein expressions of lipid synthesis-related enzymes and the phosphorylated level of IRS-1, Akt and mTOR. Results: ClC-2 mRNA level was significantly increased in patients with non-alcoholic steatohepatitis, which positively correlated with the plasma levels of alanine transaminase (ALT, aspartate transaminase (AST and insulin. Knockdown of ClC-2 in liver attenuated HFD-induced weight gain, obesity, hepatocellular ballooning, and liver lipid accumulation and fibrosis, accompanied by reduced plasma free fatty acid (FFA, triglyceride (TG, total cholesterol (TC, ALT, AST, glucose and insulin levels and homeostasis model of insulin resistance (HOMA-IR value. Moreover, HFD-treated mice lacking ClC-2 showed inhibited hepatic lipid accumulation via regulating lipid metabolism through decreasing sterol regulatory element binding protein (SREBP-1c expression and its downstream targeting enzymes such as fatty acid synthase (FAS, HMG-CoA reductase (HMGCR and acetyl-Coenzyme A carboxylase (ACCα. In addition, in vivo and in vitro results demonstrated that ClC-2 downregulation in HFD-treated mice or HepG2 cells increased the sensitivity to insulin via activation of IRS-1/Akt/mTOR signaling pathway. Conclusion: Our present study reveals a critical role of ClC-2 in regulating metabolic diseases. Mice lacking ClC-2 are associated with a remarkably beneficial metabolic phenotype, suggesting that decreasing Cl

  7. A simple and sensitive method for the determination of fibric acids in the liver by liquid chromatography.

    Science.gov (United States)

    Karahashi, Minako; Fukuhara, Hiroto; Hoshina, Miki; Sakamoto, Takeshi; Yamazaki, Tohru; Mitsumoto, Atsushi; Kawashima, Yoichi; Kudo, Naomi

    2014-01-01

    Fibrates are used in biochemical and pharmacological studies as bioactive tools. Nevertheless, most studies have lacked information concerning the concentrations of fibric acids working inside tissues because a simple and sensitive method is not available for their quantitation. This study aimed to develop a simple and sensitive bioanalytical method for the quantitation of clofibric, bezafibric and fenofibric acids in samples of very small portions of tissues. Fibric acids were extracted into n-hexane-ethyl acetate from tissue homogenates (10 mg of liver, kidney or muscle) or serum (100 µL) and were derivatized with 4-bromomethyl-6,7-dimethoxycoumarin, followed by HPLC with fluorescence detection. These compounds were separated isocratically on a reversed phase with acetonitrile-water. Standard analytical curves were linear over the concentration range of 0.2-20 nmol/10 mg of liver. Precision and accuracy were within acceptable limits. Recovery from liver homogenates ranged from 93.03 to 112.29%. This method enabled the quantitation of fibric acids in 10 mg of liver from rats treated with clofibric acid, bezafibric acid or fenofibrate. From these analytical data, it became clear that there was no large difference in ratio of acyl-CoA oxidase 1 (Acox1) mRNA level to fibric acid content in the liver among the three fibric acids, suggesting that these three fibric acids have similar potency to increase expression of the Acox1 gene, which is a target of peroxisome proliferator-activated receptor α. Thus, the proposed method is a simple, sensitive and reliable tool for the quantitation of fibric acids working in vivo inside livers.

  8. DNA adduct formation and mutation induction by aristolochic acid in rat kidney and liver

    International Nuclear Information System (INIS)

    Mei, Nan; Arlt, Volker M.; Phillips, David H.; Heflich, Robert H.; Chen, Tao

    2006-01-01

    Aristolochic acid (AA) is a potent nephrotoxin and carcinogen and is the causative factor for Chinese herb nephropathy. AA has been associated with the development of urothelial cancer in humans, and kidney and forestomach tumors in rodents. To investigate the molecular mechanisms responsible for the tumorigenicity of AA, we determined the DNA adduct formation and mutagenicity of AA in the liver (nontarget tissue) and kidney (target tissue) of Big Blue rats. Groups of six male rats were gavaged with 0, 0.1, 1.0 and 10.0 mg AA/kg body weight five times/week for 3 months. The rats were sacrificed 1 day after the final treatment, and the livers and kidneys were isolated. DNA adduct formation was analyzed by 32 P-postlabeling and mutant frequency (MF) was determined using the λ Select-cII Mutation Detection System. Three major adducts (7-[deoxyadenosin-N 6 -yl]-aristolactam I, 7-[deoxyadenosin-N 6 -yl]-aristolactam II and 7-[deoxyguanosin-N 2 -yl]-aristolactam I) were identified. There were strong linear dose-responses for AA-induced DNA adducts in treated rats, ranging from 25 to 1967 adducts/10 8 nucleotides in liver and 95-4598 adducts/10 8 nucleotides in kidney. A similar trend of dose-responses for mutation induction also was found, the MFs ranging from 37 to 666 x 10 -6 in liver compared with the MFs of 78-1319 x 10 -6 that we previously reported for the kidneys of AA-treated rats. Overall, kidneys had at least two-fold higher levels of DNA adducts and MF than livers. Sequence analysis of the cII mutants revealed that there was a statistically significant difference between the mutation spectra in both kidney and liver of AA-treated and control rats, but there was no significant difference between the mutation spectra in AA-treated livers and kidneys. A:T → T:A transversion was the predominant mutation in AA-treated rats; whereas G:C → A:T transition was the main type of mutation in control rats. These results indicate that the AA treatment that eventually

  9. DNA adduct formation and mutation induction by aristolochic acid in rat kidney and liver

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Nan [Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079 (United States)]. E-mail: nan.mei@fda.hhs.gov; Arlt, Volker M. [Section of Molecular Carcinogenesis, Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG (United Kingdom); Phillips, David H. [Section of Molecular Carcinogenesis, Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG (United Kingdom); Heflich, Robert H. [Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079 (United States); Chen, Tao [Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079 (United States)

    2006-12-01

    Aristolochic acid (AA) is a potent nephrotoxin and carcinogen and is the causative factor for Chinese herb nephropathy. AA has been associated with the development of urothelial cancer in humans, and kidney and forestomach tumors in rodents. To investigate the molecular mechanisms responsible for the tumorigenicity of AA, we determined the DNA adduct formation and mutagenicity of AA in the liver (nontarget tissue) and kidney (target tissue) of Big Blue rats. Groups of six male rats were gavaged with 0, 0.1, 1.0 and 10.0 mg AA/kg body weight five times/week for 3 months. The rats were sacrificed 1 day after the final treatment, and the livers and kidneys were isolated. DNA adduct formation was analyzed by {sup 32}P-postlabeling and mutant frequency (MF) was determined using the {lambda} Select-cII Mutation Detection System. Three major adducts (7-[deoxyadenosin-N {sup 6}-yl]-aristolactam I, 7-[deoxyadenosin-N {sup 6}-yl]-aristolactam II and 7-[deoxyguanosin-N {sup 2}-yl]-aristolactam I) were identified. There were strong linear dose-responses for AA-induced DNA adducts in treated rats, ranging from 25 to 1967 adducts/10{sup 8} nucleotides in liver and 95-4598 adducts/10{sup 8} nucleotides in kidney. A similar trend of dose-responses for mutation induction also was found, the MFs ranging from 37 to 666 x 10{sup -6} in liver compared with the MFs of 78-1319 x 10{sup -6} that we previously reported for the kidneys of AA-treated rats. Overall, kidneys had at least two-fold higher levels of DNA adducts and MF than livers. Sequence analysis of the cII mutants revealed that there was a statistically significant difference between the mutation spectra in both kidney and liver of AA-treated and control rats, but there was no significant difference between the mutation spectra in AA-treated livers and kidneys. A:T {sup {yields}} T:A transversion was the predominant mutation in AA-treated rats; whereas G:C {sup {yields}} A:T transition was the main type of mutation in control

  10. Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis.

    Science.gov (United States)

    Koo, Seung-Hoi

    2013-09-01

    Liver plays a central role in the biogenesis of major metabolites including glucose, fatty acids, and cholesterol. Increased incidence of obesity in the modern society promotes insulin resistance in the peripheral tissues in humans, and could cause severe metabolic disorders by inducing accumulation of lipid in the liver, resulting in the progression of non-alcoholic fatty liver disease (NAFLD). NAFLD, which is characterized by increased fat depots in the liver, could precede more severe diseases such as non-alcoholic steatohepatitis (NASH), cirrhosis, and in some cases hepatocellular carcinoma. Accumulation of lipid in the liver can be traced by increased uptake of free fatty acids into the liver, impaired fatty acid beta oxidation, or the increased incidence of de novo lipogenesis. In this review, I would like to focus on the roles of individual pathways that contribute to the hepatic steatosis as a precursor for the NAFLD.

  11. Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage.

    Science.gov (United States)

    Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J; Korangy, Firouzeh; Greten, Tim F

    2014-01-01

    Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.

  12. Ursodeoxycholic acid inhibits hepatic cystogenesis in experimental models of polycystic liver disease.

    Science.gov (United States)

    Munoz-Garrido, Patricia; Marin, José J G; Perugorria, María J; Urribarri, Aura D; Erice, Oihane; Sáez, Elena; Úriz, Miriam; Sarvide, Sarai; Portu, Ainhoa; Concepcion, Axel R; Romero, Marta R; Monte, María J; Santos-Laso, Álvaro; Hijona, Elizabeth; Jimenez-Agüero, Raúl; Marzioni, Marco; Beuers, Ulrich; Masyuk, Tatyana V; LaRusso, Nicholas F; Prieto, Jesús; Bujanda, Luis; Drenth, Joost P H; Banales, Jesús M

    2015-10-01

    Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive biliary cystogenesis. Current therapies show short-term and/or modest beneficial effects. Cystic cholangiocytes hyperproliferate as a consequence of diminished intracellular calcium levels ([Ca(2+)]i). Here, the therapeutic value of ursodeoxycholic acid (UDCA) was investigated. Effect of UDCA was examined in vitro and in polycystic (PCK) rats. Hepatic cystogenesis and fibrosis, and the bile acid (BA) content were evaluated from the liver, bile, serum, and kidneys by HPLC-MS/MS. Chronic treatment of PCK rats with UDCA inhibits hepatic cystogenesis and fibrosis, and improves their motor behaviour. As compared to wild-type animals, PCK rats show increased BA concentration ([BA]) in liver, similar hepatic Cyp7a1 mRNA levels, and diminished [BA] in bile. Likewise, [BA] is increased in cystic fluid of PLD patients compared to their matched serum levels. In PCK rats, UDCA decreases the intrahepatic accumulation of cytotoxic BA, normalizes their diminished [BA] in bile, increases the BA secretion in bile and diminishes the increased [BA] in kidneys. In vitro, UDCA inhibits the hyperproliferation of polycystic human cholangiocytes via a PI3K/AKT/MEK/ERK1/2-dependent mechanism without affecting apoptosis. Finally, the presence of glycodeoxycholic acid promotes the proliferation of polycystic human cholangiocytes, which is inhibited by both UDCA and tauro-UDCA. UDCA was able to halt the liver disease of a rat model of PLD through inhibiting cystic cholangiocyte hyperproliferation and decreasing the levels of cytotoxic BA species in the liver, which suggests the use of UDCA as a potential therapeutic tool for PLD patients. Copyright © 2015 European Association for the Study of the Liver. All rights reserved.

  13. Hepatoprotective Effect of Citral on Acetaminophen-Induced Liver Toxicity in Mice

    Directory of Open Access Journals (Sweden)

    Nancy Sayuri Uchida

    2017-01-01

    Full Text Available High doses of acetaminophen (APAP lead to acute liver damage. In this study, we evaluated the effects of citral in a murine model of hepatotoxicity induced by APAP. The liver function markers alanine aminotransferase (ALT, aspartate aminotransferase (AST, alkaline phosphatase (ALP, and gamma-glutamyl transferase (γGT were determined to evaluate the hepatoprotective effects of citral. The livers were used to determine myeloperoxidase (MPO activity and nitric oxide (NO production and in histological analysis. The effect of citral on leukocyte migration and antioxidant activity was evaluated in vitro. Citral pretreatment decreased significantly the levels of ALT, AST, ALP, and γGT, MPO activity, and NO production. The histopathological analysis showed an improvement of hepatic lesions in mice after citral pretreatment. Citral inhibited neutrophil migration and exhibited antioxidant activity. Our results suggest that citral protects the liver against liver toxicity induced by APAP.

  14. Interaction of red pepper (Capsicum annum, Tepin) polyphenols with Fe(II)-induced lipid peroxidation in brain and liver

    International Nuclear Information System (INIS)

    Oboh, G.; Rocha, J.B.T.

    2006-03-01

    Polyphenols exhibit a wide range of biological effects because of their antioxidant properties. Several types of polyphenols (phenolic acids, hydrolyzable tannins, and flavonoids) show anticarcinogenic and antimutagenic effects. Comparative studies were carried on the protective ability of free and bound polyphenol extracts of red Capsicum annuum Tepin (CAT) on brain and liver - In vitro. Free polyphenols of red Capsicum annuum Tepin (CAT) were extracted with 80% acetone, while the bound polyphenols were extracted with ethyl acetate from acid and alkaline hydrolysis of the pepper residue from free polyphenols extract. The phenol content, Fe (II) chelating ability, OH radical scavenging ability and protective ability of the extract against Fe (II)-induced lipid peroxidation in brain and liver was subsequently determined. The results of the study revealed that the free polyphenols (218.2mg/100g) content of the pepper were significantly higher than the bound polyphenols (42.5mg/100g). Furthermore, the free polyphenol extract had a significantly higher ( 2+ induced lipid peroxidation, and this is probably due to the higher Fe (II) chelating ability and OH radical scavenging ability of the free polyphenols from the pepper. (author)

  15. Mouse Precision-Cut Liver Slices as an ex Vivo Model To Study Idiosyncratic Drug-Induced Liver Injury

    NARCIS (Netherlands)

    Hadi, Mackenzie; Chen, Yixi; Starokozhko, Viktoriia; Groothuis, Geny M. M.; Merema, M.T.

    Idiosyncratic drug-induced liver injury (IDILI) has been the top reason for withdrawing drugs from the market or for black box warnings. IDILI may arise from the interaction of a drug's reactive metabolite with a mild inflammation that renders the liver more sensitive to injury resulting in

  16. Rapamycin Induces Heme Oxygenase-1 in Liver but Inhibits Bile Flow Recovery after Ischemia

    NARCIS (Netherlands)

    Kist, Alwine; Wakkie, Joris; Madu, Max; Versteeg, Ruth; ten Berge, Judith; Nikolic, Andrej; Nieuwenhuijs, Vincent B.; Porte, Robert J.; Padbury, Robert T. A.; Barritt, Greg J.

    Background/Aims. Rapamycin, which is employed in the management of patients undergoing liver surgery, induces the synthesis of heme oxygenase-1 (HO-1) in some non-liver cell types. The aim was to investigate whether rapamycin can induce HO-1 expression in the liver, and to test the effects of

  17. Sun-drying diminishes the antioxidative potentials of leaves of Eugenia uniflora against formation of thiobarbituric acid reactive substances induced in homogenates of rat brain and liver.

    Science.gov (United States)

    Kade, Ige Joseph; Ibukun, Emmanuel Oluwafemi; Nogueira, Cristina Wayne; da Rocha, Joao Batista Teixeira

    2008-08-01

    Extracts from leaves of Pitanga cherry (Eugenia uniflora) are considered to be effective against many diseases, and are therefore used in popular traditional medicines. In the present study, the antioxidative effect of sun-dried (PCS) and air-dried (PCA) ethanolic extracts of Pitanga cherry leaves were investigated. The antioxidant effects were tested by measuring the ability of both PCS and PCA to inhibit the formation of thiobarbituric acid reactive species (TBARS) induced by prooxidant agents such as iron (II) and sodium nitroprusside (SNP) in rat brain and liver tissues. The results showed that while PCA significantly (P<0.0001) inhibited the formation of TBARS in both liver and brain tissues homogenates, PCS did not. Further investigation reveals that the phenolic content of the PCS was significantly (P<0.0001) lower compared to PCA. Since phenolics in plants largely contributed to the antioxidative potency of plants, we conclude that air-drying should be employed in the preparation of extracts of Pitanga cherry leaves before it is administered empirically as a traditional medicament, and hence this study serves a public awareness to traditional medical practitioners.

  18. Glycyrrhizic acid alleviates bleomycin-induced pulmonary fibrosis in rats

    Directory of Open Access Journals (Sweden)

    Lili eGao

    2015-10-01

    Full Text Available Idiopathic pulmonary fibrosis is a progressive and lethal form of interstitial lung disease that lacks effective therapies at present. Glycyrrhizic acid (GA, a natural compound extracted from a traditional Chinese herbal medicine Glycyrrhiza glabra, was recently reported to benefit lung injury and liver fibrosis in animal models, yet whether GA has a therapeutic effect on pulmonary fibrosis is unknown. In this study, we investigated the potential therapeutic effect of GA on pulmonary fibrosis in a rat model with bleomycin (BLM-induced pulmonary fibrosis. The results indicated that GA treatment remarkably ameliorated BLM-induced pulmonary fibrosis and attenuated BLM-induced inflammation, oxidative stress, epithelial-mesenchymal transition and activation of tansforming growth factor-beta signaling pathway in the lungs. Further, we demonstrated that GA treatment inhibited proliferation of 3T6 fibroblast cells, induced cell cycle arrest and promoted apoptosis in vitro, implying that GA-mediated suppression of fibroproliferation may contribute to the anti-fibrotic effect against BLM-induced pulmonary fibrosis. In summary, our study suggests a therapeutic potential of GA in the treatment of pulmonary fibrosis.

  19. Analysis of the liver lipidome reveals insights into the protective effect of exercise on high fat diet induced hepatosteatosis in mice

    DEFF Research Database (Denmark)

    Jordy, Andreas Børsting; Kraakman, Michael J; Gardner, Tim

    2015-01-01

    The accumulation of lipid at ectopic sites including the skeletal muscle and liver is a common consequence of obesity and is associated with tissue-specific and whole-body insulin resistance. Exercise is well known to improve insulin resistance by mechanisms not completely understood. We performe...... in fatty acid entry into hepatocytes. Given the important role of the liver in the regulation of whole body glucose homeostasis, hepatic lipid regression may be a key component by which exercise can improve metabolism.......The accumulation of lipid at ectopic sites including the skeletal muscle and liver is a common consequence of obesity and is associated with tissue-specific and whole-body insulin resistance. Exercise is well known to improve insulin resistance by mechanisms not completely understood. We performed...... lipidomic profiling via mass spectrometry in liver and skeletal muscle samples from exercise trained mice, to decipher the lipid changes associated with exercise-induced improvements in whole body glucose metabolism. Obesity and insulin resistance was induced in C57BL/6J mice by high fat feeding for four...

  20. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis.

    Science.gov (United States)

    Bai, Xupeng; Hong, Weipeng; Cai, Peiheng; Chen, Yibei; Xu, Chuncao; Cao, Di; Yu, Weibang; Zhao, Zhongxiang; Huang, Min; Jin, Jing

    2017-06-01

    Steatosis is the characteristic type of VPA-induced hepatotoxicity and may result in life-threatening hepatic lesion. Approximately 61% of patients treated with VPA have been diagnosed with hepatic steatosis through ultrasound examination. However, the mechanisms underlying VPA-induced intracellular fat accumulation are not yet fully understood. Here we demonstrated the involvement of fatty acid uptake and lipogenesis in VPA-induced hepatic steatosis in vitro and in vivo by using quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, fatty acid uptake assays, Nile Red staining assays, and Oil Red O staining assays. Specifically, we found that the expression of cluster of differentiation 36 (CD36), an important fatty acid transport, and diacylglycerol acyltransferase 2 (DGAT2) were significantly up-regulated in HepG2 cells and livers of C57B/6J mice after treatment with VPA. Furthermore, VPA treatment remarkably enhanced the efficiency of fatty acid uptake mediated by CD36, while this effect was abolished by the interference with CD36-specific siRNA. Also, VPA treatment significantly increased DGAT2 expression as a result of the inhibition of mitogen-activated protein kinase kinase (MEK) - extracellular regulated kinase (ERK) pathway; however, DGAT2 knockdown significantly alleviated VPA-induced intracellular lipid accumulation. Additionally, we also found that sterol regulatory element binding protein-1c (SREBP-1c)-mediated fatty acid synthesis may be not involved in VPA-induced hepatic steatosis. Overall, VPA-triggered over-regulation of CD36 and DGAT2 could be helpful for a better understanding of the mechanisms underlying VPA-induced hepatic steatosis and may offer novel therapeutic strategies to combat VPA-induced hepatotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Amiodarone-Induced Liver Injury and Cirrhosis.

    Science.gov (United States)

    Buggey, Jonathan; Kappus, Matthew; Lagoo, Anand S; Brady, Carla W

    2015-01-01

    We present a case report of an 80-year-old woman with volume overload thought initially to be secondary to heart failure, but determined to be amiodarone-induced acute and chronic liver injury leading to submassive necrosis and bridging fibrosis consistent with early cirrhosis. Her histopathology was uniquely absent of steatosis and phospholipidosis, which are commonly seen in AIC.

  2. Anti-Inflammatory Activities of Licorice Extract and Its Active Compounds, Glycyrrhizic Acid, Liquiritin and Liquiritigenin, in BV2 Cells and Mice Liver

    Directory of Open Access Journals (Sweden)

    Ji-Yeon Yu

    2015-07-01

    Full Text Available This study provides the scientific basis for the anti-inflammatory effects of licorice extract in a t-BHP (tert-butyl hydrogen peroxide-induced liver damage model and the effects of its ingredients, glycyrrhizic acid (GA, liquiritin (LQ and liquiritigenin (LG, in a lipopolysaccharide (LPS-stimulated microglial cell model. The GA, LQ and LG inhibited the LPS-stimulated elevation of pro-inflammatory mediators, such as inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, tumor necrosis factor (TNF-alpha, interleukin (IL-1beta and interleukin (IL-6 in BV2 (mouse brain microglia cells. Furthermore, licorice extract inhibited the expression levels of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6 in the livers of t-BHP-treated mice models. This result suggested that mechanistic-based evidence substantiating the traditional claims of licorice extract and its three bioactive components can be applied for the treatment of inflammation-related disorders, such as oxidative liver damage and inflammation diseases.

  3. Anabolic steroid-induced cardiomyopathy underlying acute liver failure in a young bodybuilder.

    Science.gov (United States)

    Bispo, Miguel; Valente, Ana; Maldonado, Rosário; Palma, Rui; Glória, Helena; Nóbrega, João; Alexandrino, Paula

    2009-06-21

    Heart failure may lead to subclinical circulatory disturbances and remain an unrecognized cause of ischemic liver injury. We present the case of a previously healthy 40-year-old bodybuilder, referred to our Intensive-Care Unit of Hepatology for treatment of severe acute liver failure, with the suspicion of toxic hepatitis associated with anabolic steroid abuse. Despite the absence of symptoms and signs of congestive heart failure at admission, an anabolic steroid-induced dilated cardiomyopathy with a large thrombus in both ventricles was found to be the underlying cause of the liver injury. Treatment for the initially unrecognized heart failure rapidly restored liver function to normal. To our knowledge, this is the first reported case of severe acute liver failure due to an unrecognized anabolic steroid-induced cardiomyopathy. Awareness of this unique presentation will allow for prompt treatment of this potentially fatal cause of liver failure.

  4. Hepatoprotective effect of Phytosome Curcumin against paracetamol-induced liver toxicity in mice

    Directory of Open Access Journals (Sweden)

    Bui Thanh Tung

    2017-04-01

    Full Text Available Abstract Curcuma longa, which contains curcumin as a major constituent, has been shown many pharmacological effects, but it is limited using in clinical due to low bioavailability. In this study, we developed a phytosome curcumin formulation and evaluated the hepatoprotective effect of phytosome curcumin on paracetamol induced liver damage in mice. Phytosome curcumin (equivalent to curcumin 100 and 200 mg/kg body weight and curcumin (200 mg/kg body weight were given by gastrically and toxicity was induced by paracetamol (500 mg/kg during 7 days. On the final day animals were sacrificed and liver function markers (ALT, AST, hepatic antioxidants (SOD, CAT and GPx and lipid peroxidation in liver homogenate were estimated. Our data showed that phytosome has stronger hepatoprotective effect compared to curcumin-free. Administration of phytosome curcumin effectively suppressed paracetamol-induced liver injury evidenced by a reduction of lipid peroxidation level, and elevated enzymatic antioxidant activities of superoxide dismutase, catalase, glutathione peroxidase in mice liver tissue. Our study suggests that phytosome curcumin has strong antioxidant activity and potential hepatoprotective effects.

  5. Antifibrinolytic amino acids for upper gastrointestinal bleeding in people with acute or chronic liver disease.

    Science.gov (United States)

    Martí-Carvajal, Arturo J; Solà, Ivan

    2015-06-09

    Upper gastrointestinal bleeding is one of the most frequent causes of morbidity and mortality in the course of liver cirrhosis. People with liver disease frequently have haemostatic abnormalities such as hyperfibrinolysis. Therefore, antifibrinolytic amino acids have been proposed to be used as supplementary interventions alongside any of the primary treatments for upper gastrointestinal bleeding in people with liver diseases. This is an update of this Cochrane review. To assess the beneficial and harmful effects of antifibrinolytic amino acids for upper gastrointestinal bleeding in people with acute or chronic liver disease. We searched The Cochrane Hepato-Biliary Controlled Trials Register (February 2015), Cochrane Central Register of Controlled Trials (CENTRAL) (Issue 2 of 12, 2015), MEDLINE (Ovid SP) (1946 to February 2015), EMBASE (Ovid SP) (1974 to February 2015), Science Citation Index EXPANDED (1900 to February 2015), LILACS (1982 to February 2015), World Health Organization Clinical Trials Search Portal (accessed 26 February 2015), and the metaRegister of Controlled Trials (accessed 26 February 2015). We scrutinised the reference lists of the retrieved publications. Randomised clinical trials irrespective of blinding, language, or publication status for assessment of benefits and harms. Observational studies for assessment of harms. We planned to summarise data from randomised clinical trials using standard Cochrane methodologies and assessed according to the GRADE approach. We found no randomised clinical trials assessing antifibrinolytic amino acids for treating upper gastrointestinal bleeding in people with acute or chronic liver disease. We did not identify quasi-randomised, historically controlled, or observational studies in which we could assess harms. This updated Cochrane review identified no randomised clinical trials assessing the benefits and harms of antifibrinolytic amino acids for upper gastrointestinal bleeding in people with acute or

  6. Interactions between fatty acid synthesis, oxidation, and esterification in the production of triglyceride-rich lipoproteins by the liver.

    Science.gov (United States)

    Fukuda, N; Ontko, J A

    1984-08-01

    In a series of experiments with male rat livers perfused with or without 5-tetradecyloxy-2-furoic acid (TOFA) in the presence and absence of oleate, the relationships between fatty acid synthesis, oxidation, and esterification from newly synthesized and exogenous fatty acid substrates have been examined. When livers from fed rats were perfused without exogenous fatty acid substrate, 20% of the triglyceride secreted was derived from de novo fatty acid synthesis. Addition of TOFA caused immediate and nearly complete inhibition of fatty acid synthesis, measured by incorporation of 3H2O into fatty acids. Concurrently, ketone body production increased 140% and triglyceride secretion decreased 84%. These marked reciprocal alterations in fatty acid synthesis and oxidation in the liver almost completely abolished the production of very low density lipoproteins (VLDL). Cholesterol synthesis was also depressed by TOFA, suggesting that this drug also inhibited lipid synthesis at a site other than acetyl-CoA carboxylase. When livers from fed rats were supplied with a continuous infusion of [1-14C]oleate as exogenous substrate, similar proportions, about 45-47%, of both ketone bodies and triglyceride in the perfusate were derived from the infused [1-14C]oleate. The production of ketone bodies was markedly increased by TOFA; the secretion of triglyceride and cholesterol were decreased. Altered conversion of [1-14C]oleate into these products occurred in parallel. While TOFA decreased esterification of oleate into triglyceride, incorporation of [1-14C]oleate into liver phospholipid was increased, indicating that TOFA also affected glycerolipid synthesis at the stage of diglyceride processing. The decreased secretion of triglyceride and cholesterol following TOFA treatment was localized almost exclusively in VLDL. The specific activities of 3H and of 14C fatty acids in triglyceride of the perfusate were greater than those of liver triglyceride, indicating preferential secretion of

  7. Biliary tract enhancement in gadoxetic acid-enhanced MRI correlates with liver function biomarkers

    International Nuclear Information System (INIS)

    Noda, Yoshifumi; Goshima, Satoshi; Kajita, Kimihiro; Kawada, Hiroshi; Kawai, Nobuyuki; Koyasu, Hiromi; Matsuo, Masayuki; Bae, Kyongtae T.

    2016-01-01

    Purpose: To evaluate the association between gadoxetic-acid-enhanced magnetic resonance (MR) imaging measurements and laboratory and clinical biomarkers of liver function and fibrosis. Materials and methods: One hundred thirty nine consecutive patients with suspected liver disease or liver tumor underwent gadoxetic-acid-enhanced MR imaging. MR imaging measurements during the hepatobiliary phase included biliary tract structure-to-muscle signal intensity ratio (SIR). These measurements were compared with Child-Pugh classification, end-stage liver disease (MELD) score, and aspartate aminotransferase-to-platelet ratio index (APRI). Results: The SIRs of cystic duct and common bile duct were significantly correlated with Child-Pugh classification (P = 0.012 for cystic duct and P < 0.0001 for common bile duct), MELD score (P = 0.0016 and P = 0.0033), and APRI (P = 0.0022 and P = 0.0015). The sensitivity, specificity, and area under the receiver-operating-characteristic curve were: (74%, 88%, 0.86) with the SIR of common bile duct for the detection of patients with Child-Pugh class B or C; (100%, 87%, 0.94) with the SIR of cystic duct for MELD score (>10); (65%, 76%, 0.70) with the SIR of common bile duct for APRI (>1.5). Conclusion: Gadoxetic-acid contrast enhancement of cystic duct and common bile duct could be used as biomarkers to assess liver function.

  8. Biliary tract enhancement in gadoxetic acid-enhanced MRI correlates with liver function biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Yoshifumi [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194 (Japan); Goshima, Satoshi, E-mail: gossy@par.odn.ne.jp [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194 (Japan); Kajita, Kimihiro [Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Kawada, Hiroshi; Kawai, Nobuyuki; Koyasu, Hiromi; Matsuo, Masayuki [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194 (Japan); Bae, Kyongtae T. [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2016-11-15

    Purpose: To evaluate the association between gadoxetic-acid-enhanced magnetic resonance (MR) imaging measurements and laboratory and clinical biomarkers of liver function and fibrosis. Materials and methods: One hundred thirty nine consecutive patients with suspected liver disease or liver tumor underwent gadoxetic-acid-enhanced MR imaging. MR imaging measurements during the hepatobiliary phase included biliary tract structure-to-muscle signal intensity ratio (SIR). These measurements were compared with Child-Pugh classification, end-stage liver disease (MELD) score, and aspartate aminotransferase-to-platelet ratio index (APRI). Results: The SIRs of cystic duct and common bile duct were significantly correlated with Child-Pugh classification (P = 0.012 for cystic duct and P < 0.0001 for common bile duct), MELD score (P = 0.0016 and P = 0.0033), and APRI (P = 0.0022 and P = 0.0015). The sensitivity, specificity, and area under the receiver-operating-characteristic curve were: (74%, 88%, 0.86) with the SIR of common bile duct for the detection of patients with Child-Pugh class B or C; (100%, 87%, 0.94) with the SIR of cystic duct for MELD score (>10); (65%, 76%, 0.70) with the SIR of common bile duct for APRI (>1.5). Conclusion: Gadoxetic-acid contrast enhancement of cystic duct and common bile duct could be used as biomarkers to assess liver function.

  9. Liver injury and fibrosis induced by dietary challenge in the Ossabaw miniature Swine.

    Directory of Open Access Journals (Sweden)

    Tiebing Liang

    Full Text Available Ossabaw miniature swine when fed a diet high in fructose, saturated fat and cholesterol (NASH diet develop metabolic syndrome and nonalcoholic steatohepatitis (NASH characterized by liver injury and fibrosis. This study was conducted to further characterize the development of NASH in this large animal model.Ossabaw swine were fed standard chow (control group; n = 6 or NASH diet (n = 6 for 24 weeks. Blood and liver tissue were collected and liver histology were characterized at 0, 8, 16 and 24 weeks of dietary intervention. Hepatic apoptosis and lipid levels were assessed at week 24.The NASH diet group developed metabolic syndrome and progressive histologic features of NASH including: (a hepatocyte ballooning at 8 weeks which progressed to extensive ballooning (>90% hepatocytes, (b hepatic fibrosis at week 16, which progressed to moderate fibrosis, and (c Kupffer cell accumulation with vacuolization at 8 weeks which progressed through week 24. The NASH diet group showed increased hepatocyte apoptosis that correlated with hepatic total and free cholesterol and free fatty acids, but not esterified cholesterol or triglycerides.This report further characterizes the progression of diet-induced NASH in the Ossabaw swine model. In Ossabaw swine fed the NASH diet: (a hepatocyte injury and fibrosis can occur without macrovesicular steatosis or excess triglyceride accumulation; (b hepatocyte ballooning generally precedes the development of fibrosis; (c there is increased hepatocyte apoptosis, and it is correlated more significantly with hepatic free cholesterol than hepatic free fatty acids and had no correlation with hepatic triglycerides.

  10. 17β-estradiol increases liver and serum docosahexaenoic acid in mice fed varying levels of α-linolenic acid.

    Science.gov (United States)

    Mason, Julie K; Kharotia, Shikhil; Wiggins, Ashleigh K A; Kitson, Alex P; Chen, Jianmin; Bazinet, Richard P; Thompson, Lilian U

    2014-08-01

    Docosahexaenoic acid (DHA) is considered to be important for cardiac and brain function, and 17β-estradiol (E2) appears to increase the conversion of α-linolenic acid (ALA) into DHA. However, the effect of varying ALA intake on the positive effect of E2 on DHA synthesis is not known. Therefore, the objective of this study was to investigate the effects of E2 supplementation on tissue and serum fatty acids in mice fed a low-ALA corn oil-based diet (CO, providing 0.6 % fatty acids as ALA) or a high ALA flaxseed meal-based diet (FS, providing 11.2 % ALA). Ovariectomized mice were implanted with a slow-release E2 pellet at 3 weeks of age and half the mice had the pellet removed at 7 weeks of age. Mice were then randomized onto either the CO or FS diet. After 4 weeks, the DHA concentration was measured in serum, liver and brain. A significant main effect of E2 was found for liver and serum DHA, corresponding to 25 and 15 % higher DHA in livers of CO and FS rats, respectively, and 19 and 13 % in serum of CO and FS rats, respectively, compared to unsupplemented mice. There was no effect of E2 on brain DHA. E2 results in higher DHA in serum and liver, at both levels of dietary ALA investigated presently, suggesting that higher ALA intake may result in higher DHA in individuals with higher E2 status.

  11. Hepatoprotective Effect of Essential Oils from Hyptis crenata in Sepsis-Induced Liver Dysfunction.

    Science.gov (United States)

    Lima, Glauber Cruz; Vasconcelos, Yuri de Abreu Gomes; de Santana Souza, Marilia Trindade; Oliveira, Alan Santos; Bomfim, Rangel Rodrigues; de Albuquerque Júnior, Ricardo Luiz Cavalcanti; Camargo, Enilton Aparecido; Portella, Viviane Gomes; Coelho-de-Souza, Andrelina Noronha; Diniz, Lúcio Ricardo Leite

    2018-02-28

    No specific therapeutics are available for the treatment of sepsis-induced liver dysfunction, a clinical complication strongly associated with the high mortality rate of septic patients. This study investigated the effect of the essential oil of Hyptis crenata (EOHc), a lamiaceae plant used to treat liver disturbances in Brazilian folk medicine, on liver function during early sepsis. Sepsis was induced by the cecal ligation and puncture (CLP) model. Rats were divided into four groups: Sham, Sham+EOHc, CLP, and CLP+EOHc. EOHc (300 mg/kg) was orally administered 12 and 24 h after surgery. The animals were sacrificed for blood collection and liver tissue samples 48 h after surgery. Hepatic function was evaluated by measuring serum bilirubin, alkaline phosphatase (ALP), aspartate aminotransferase, and alanine aminotransferase (ALT) levels. The levels of malondialdehyde and the activity of superoxide dismutase, catalase, and GSH peroxidase (GSH-Px) were measured for assessment of oxidative stress. Liver morphology was analyzed by hematoxylin and eosin staining. EOHc normalized serum ALP, ALT, and bilirubin levels and inhibited morphological changes. In addition, we observed that EOHc inhibited elevation in hepatic lipid peroxidation and reduction of the glutathione peroxidase activity induced by sepsis. Our data show that EOHc plays a protective effect against liver injury induced by sepsis.

  12. Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage.

    Directory of Open Access Journals (Sweden)

    Tobias Eggert

    Full Text Available Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL, while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.

  13. Piroxicam induced submassive necrosis of the liver.

    Science.gov (United States)

    Paterson, D; Kerlin, P; Walker, N; Lynch, S; Strong, R

    1992-01-01

    Several widely used non-steroidal anti-inflammatory drugs have been reported as causing severe hepatitis. Three cases of severe acute hepatitis have been reported in association with piroxicam. A fatal submassive necrosis that occurred in a 68 year old lady who had received piroxicam for 15 months is described. A 48 year old man who developed submassive hepatic necrosis six weeks after beginning piroxicam but was successfully treated with orthotopic liver transplantation is also reported. Piroxicam may induce submassive necrosis of the liver, probably as an idiosyncratic reaction. Images Figure 1 Figure 2 Figure 3 PMID:1446877

  14. Influence of dark chocolate administration on uric acid, liver ...

    African Journals Online (AJOL)

    Objective. To assess the influence of dark chocolate administration on uric acid, liver enzymes, glucose and lactate responses to summaximal exercise test in male swimmers. Subjects. Eleven competitive swimmers from the athletic club Academic, Sofia volunteered for the study. Design. A randomised study of two periods ...

  15. Inhibition of intestinal bile acid absorption improves cholestatic liver and bile duct injury in a mouse model of sclerosing cholangitis.

    Science.gov (United States)

    Baghdasaryan, Anna; Fuchs, Claudia D; Österreicher, Christoph H; Lemberger, Ursula J; Halilbasic, Emina; Påhlman, Ingrid; Graffner, Hans; Krones, Elisabeth; Fickert, Peter; Wahlström, Annika; Ståhlman, Marcus; Paumgartner, Gustav; Marschall, Hanns-Ulrich; Trauner, Michael

    2016-03-01

    Approximately 95% of bile acids (BAs) excreted into bile are reabsorbed in the gut and circulate back to the liver for further biliary secretion. Therefore, pharmacological inhibition of the ileal apical sodium-dependent BA transporter (ASBT/SLC10A2) may protect against BA-mediated cholestatic liver and bile duct injury. Eight week old Mdr2(-/-) (Abcb4(-/-)) mice (model of cholestatic liver injury and sclerosing cholangitis) received either a diet supplemented with A4250 (0.01% w/w) - a highly potent and selective ASBT inhibitor - or a chow diet. Liver injury was assessed biochemically and histologically after 4weeks of A4250 treatment. Expression profiles of genes involved in BA homeostasis, inflammation and fibrosis were assessed via RT-PCR from liver and ileum homogenates. Intestinal inflammation was assessed by RNA expression profiling and immunohistochemistry. Bile flow and composition, as well as biliary and fecal BA profiles were analyzed after 1week of ASBT inhibitor feeding. A4250 improved sclerosing cholangitis in Mdr2(-/-) mice and significantly reduced serum alanine aminotransferase, alkaline phosphatase and BAs levels, hepatic expression of pro-inflammatory (Tnf-α, Vcam1, Mcp-1) and pro-fibrogenic (Col1a1, Col1a2) genes and bile duct proliferation (mRNA and immunohistochemistry for cytokeratin 19 (CK19)). Furthermore, A4250 significantly reduced bile flow and biliary BA output, which correlated with reduced Bsep transcription, while Ntcp and Cyp7a1 were induced. Importantly A4250 significantly reduced biliary BA secretion but preserved HCO3(-) and biliary phospholipid secretion resulting in an increased HCO3(-)/BA and PL/BA ratio. In addition, A4250 profoundly increased fecal BA excretion without causing diarrhea and altered BA pool composition, resulting in diminished concentrations of primary BAs tauro-β-muricholic acid and taurocholic acid. Pharmacological ASBT inhibition attenuates cholestatic liver and bile duct injury by reducing biliary BA

  16. Protective Role of Alpha Lipoic Acid Against Disorders Induced by Gamma Radiation

    International Nuclear Information System (INIS)

    Abd El Azeem, Kh.N.M.

    2011-01-01

    Ionizing radiation interacts with living cells, causing a variety of biochemical changes depending on exposed and absorbed doses, duration of exposure, interval after exposure and susceptibility of tissues to ionizing radiation. So, it may increase the oxidative stress and damage of body organs. Alpha-lipoic acid (ALA-also known as thioctic acid) appears to be readily absorbed from an oral dose and converts easily to its reduced form, dihydro lipoic acid (DHLA), in many tissues of the body. ALA can neutralize free radicals in both fatty and watery regions of cells. The present study has been designed to evaluate the possible efficiency of ALA as antioxidant and radio-protector against radiation induced oxidative stress in different organs (liver, kidney and heart) in rats through estimation of the activity of markers of serum liver, kidney and heart function, in addition to the histopathological differentiation of these organs by light and electron microscope. Five equal groups were conducted for the study: control, ALA (30 mg/kg body wt), irradiated (each rat was exposed to 6 Gy as a fractionated dose of gamma (γ) radiation), irradiated plus ALA (each rat received ALA for 9 days simultaneously during exposure) and ALA plus irradiation plus ALA groups (each rat received ALA for a week pre-exposure plus 9 days during exposure). Radiation doses were fractionated dose levels of 2 Gy each 3 days to reach accumulative dose of 6 Gy. After 3 days of each exposure rats were sacrificed, except, those left for recovery test one month after last exposure. The results revealed that whole body γ-irradiation of rats induces oxidative stress in liver, kidney and heart obviously manifested by significant elevation in alanine and aspartate transaminase ( ALT and AST), alkaline phosphatase (ALP), urea, creatinine and creatine kinase (CK-MB). ALA treated-irradiated rats showed lower significantly values indicating remarkable improvement in all measured parameters and

  17. Differentiation of human-induced pluripotent stem cell under flow conditions to mature hepatocytes for liver tissue engineering

    DEFF Research Database (Denmark)

    Starokozhko, Viktoriia; Hemmingsen, Mette; Larsen, Layla

    2018-01-01

    and to perform functional comparisons with fresh human precision-cut liver slices (hPCLS), an excellent benchmark for the human liver in vivo. The majority of the mRNA expression of CYP isoenzymes and transporters and the tested CYP activities, Phase II metabolism, and albumin, urea, and bile acid synthesis...... in the hiPSC-derived cells reached values that overlap those of hPCLS, which indicates a higher degree of hepatic differentiation than observed until now. Differentiation under flow compared with static conditions had a strong inducing effect on Phase II metabolism and suppressed AFP expression but resulted...... in slightly lower activity of some of the Phase I metabolism enzymes. Gene expression data indicate that hiPSCs differentiated into both hepatic and biliary directions. In conclusion, the hiPSC differentiated under flow conditions towards hepatocytes express a wide spectrum of liver functions at levels...

  18. Possible gasoline-induced chronic liver injury due to occupational malpractice in a motor mechanic: a case report

    OpenAIRE

    Gunathilaka, Mahesh Lakmal; Niriella, Madunil Anuk; Luke, Nathasha Vihangi; Piyarathna, Chathura Lakmal; Siriwardena, Rohan Chaminda; De Silva, Arjuna Priyadarshin; de Silva, Hithanadura Janaka

    2017-01-01

    Background Hydrocarbon-induced occupational liver injury is a well-known clinical entity among petroleum industry workers. There are many types of hydrocarbon exposure, with inhalation being the most common. Hydrocarbon-induced occupational liver injury is a rarely suspected and commonly missed etiological agent for liver injury. We report a case of a non-petroleum industry worker with chronic liver disease secondary to hydrocarbon-induced occupational liver injury caused by chronic low-grade...

  19. Lipid homeostasis and oxidative stress in the liver of male rats exposed to perfluorododecanoic acid

    International Nuclear Information System (INIS)

    Zhang Hongxia; Shi Zhimin; Liu Yang; Wei Yanhong; Dai Jiayin

    2008-01-01

    Perfluorododecanoic acid (PFDoA), a perfluorinated carboxylic acid (PFCA) with twelve carbon atoms, has broad industrial applications and is widely distributed in both wildlife and the environment. Unlike other PFCAs with short carbon chain, however, limited studies have been performed to date on the toxic effects of PFDoA on animals. To determine the hepatotoxicity of PFDoA, male rats were orally dosed by gavage for 14 days with 0, 1, 5, or 10 mg PFDoA/kg/day. Absolute liver weights were diminished, but the relative liver weight was significantly increased in the 5 and 10 mg PFDoA/kg/day groups. Meanwhile, serum triglyceride (TG) concentrations were decreased significantly in rats dosed with 1 and 5 mg PFDoA/kg/day, while the liver lipid accumulation was observed in ultrastructure. The expression of peroxisome proliferator-activated receptor (PPAR)-α and its target genes, and to a lesser extent PPARγ, was induced by PFDoA. No significant changes in the expression of liver X receptor α (LXRα) or its target genes CYP7A1 and acetyl-CoA carboxylase 1 (ACC1) were noted, although the mRNA levels of several genes involved in lipogenesis and lipid transport were changed significantly in the certain of the experimental groups. In addition, superoxide dismutase (SOD) and catalase (CAT) activities were activated significantly in the 1 mg PFDoA/kg/day group and inhibited significantly with a concomitant increase of lipid peroxidation (LPO) levels in the 5 and 10 mg PFDoA/kg/day groups. Our results demonstrate that PFDoA exerts notable hepatotoxicity in male rats and that PPAR and its target genes, SOD and CAT activity, and LPO levels exhibited sensitivity to the toxicity of PFDoA

  20. Action of DTPA on hepatic plutonium. II. DTPA-induced removal of monomeric plutonium from mouse liver parenchymal cells

    International Nuclear Information System (INIS)

    Bhattacharyya, M.H.; Peterson, D.P.; Lindenbaum, A.

    1978-01-01

    Liver parenchymal cells were isolated 6 and 24 hr following the administration of diethylenetriaminepentaacetic acid (DTPA, 0.25 mmole/kg) to mice previously injected with 239 Pu-citrate (4.4 μCi/kg). Isolated parenchymal cells contained 440 dpm Pu/10 6 cells at 24 hr after Pu injection, just prior to DTPA administration. The PU content decreased to 330 dpm/10 6 cells at 6 hr and 140 dpm/10 6 cells at 24 hr after DTPA administration. Thus DTPA induced a striking decrease in the Pu content of isolated liver parenchymal cells. Parenchymal cells isolated from control mice not treated with DTPA changed little in Pu content from 24 to 48 hr after Pu injection. By 24 hr after DTPA treatment, the decrease in the Pu content of isolated liver parenchymal cells could account for the DTPA-induced release of Pu from the intact liver. Thus in the liver DTPA appears to act preferentially on the Pu associated with parenchymal cells. Liver parenchymal cells isolated 6 hr after DTPA administration and containing 330 dpm Pu/10 6 cells were incubated in vitro in the absence of added DTPA. After 18 hr of incubation the cells contained 130 dpm Pu/10 6 cells. This level corresponds to the level observed in cells isolated 24 hr after DTPA administration. Cells isolated from untreated mice lost only 15% of their Pu content during a similar in vitro incubation. Thus, by 6 hr after DTPA administration to the mouse, isolated liver parenchymal cells appeared to retain their ability to release Pu in vitro with no need for additional exposure to DTPA. The physiological significance of this finding is discussed

  1. Pertussis toxin, an inhibitor of G(αi PCR, inhibits bile acid- and cytokine-induced apoptosis in primary rat hepatocytes.

    Directory of Open Access Journals (Sweden)

    Golnar Karimian

    Full Text Available Excessive hepatocyte apoptosis is a common event in acute and chronic liver diseases leading to loss of functional liver tissue. Approaches to prevent apoptosis have therefore high potential for the treatment of liver disease. G-protein coupled receptors (GPCR play crucial roles in cell fate (proliferation, cell death and act through heterotrimeric G-proteins. G(αiPCRs have been shown to regulate lipoapoptosis in hepatocytes, but their role in inflammation- or bile acid-induced apoptosis is unknown. Here, we analyzed the effect of inhibiting G(αiPCR function, using pertussis toxin (PT, on bile acid- and cytokine-induced apoptosis in hepatocytes. Primary rat hepatocytes, HepG2-rNtcp cells (human hepatocellular carcinoma cells or H-4-II-E cells (rat hepatoma cells were exposed to glycochenodeoxycholic acid (GCDCA or tumor necrosis factor-α (TNFα/actinomycin D (ActD. PT (50-200 nmol/L was added 30 minutes prior to the apoptotic stimulus. Apoptosis (caspase-3 activity, acridine orange staining and necrosis (sytox green staining were assessed. PT significantly reduced GCDCA- and TNFα/ActD-induced apoptosis in rat hepatocytes (-60%, p<0.05 in a dose-dependent manner (with no shift to necrosis, but not in HepG2-rNtcp cells or rat H-4-II-E cells. The protective effect of pertussis toxin was independent of the activation of selected cell survival signal transduction pathways, including ERK, p38 MAPK, PI3K and PKC pathways, as specific protein kinase inhibitors did not reverse the protective effects of pertussis toxin in GCDCA-exposed hepatocytes.Pertussis toxin, an inhibitor of G(αiPCRs, protects hepatocytes, but not hepatocellular carcinoma cells, against bile acid- and cytokine-induced apoptosis and has therapeutic potential as primary hepatoprotective drug, as well as adjuvant in anti-cancer therapy.

  2. Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity.

    Science.gov (United States)

    Mueller, Michaela; Thorell, Anders; Claudel, Thierry; Jha, Pooja; Koefeler, Harald; Lackner, Carolin; Hoesel, Bastian; Fauler, Guenter; Stojakovic, Tatjana; Einarsson, Curt; Marschall, Hanns-Ulrich; Trauner, Michael

    2015-06-01

    Bile acids (BAs) are major regulators of hepatic BA and lipid metabolism but their mechanisms of action in non-alcoholic fatty liver disease (NAFLD) are still poorly understood. Here we aimed to explore the molecular and biochemical mechanisms of ursodeoxycholic acid (UDCA) in modulating the cross-talk between liver and visceral white adipose tissue (vWAT) regarding BA and cholesterol metabolism and fatty acid/lipid partitioning in morbidly obese NAFLD patients. In this randomized controlled pharmacodynamic study, we analyzed serum, liver and vWAT samples from 40 well-matched morbidly obese patients receiving UDCA (20 mg/kg/day) or no treatment three weeks prior to bariatric surgery. Short term UDCA administration stimulated BA synthesis by reducing circulating fibroblast growth factor 19 and farnesoid X receptor (FXR) activation, resulting in cholesterol 7α-hydroxylase induction mirrored by elevated C4 and 7α-hydroxycholesterol. Enhanced BA formation depleted hepatic and LDL-cholesterol with subsequent activation of the key enzyme of cholesterol synthesis 3-hydroxy-3-methylglutaryl-CoA reductase. Blunted FXR anti-lipogenic effects induced lipogenic stearoyl-CoA desaturase (SCD) in the liver, thereby increasing hepatic triglyceride content. In addition, induced SCD activity in vWAT shifted vWAT lipid metabolism towards generation of less toxic and more lipogenic monounsaturated fatty acids such as oleic acid. These data demonstrate that by exerting FXR-antagonistic effects, UDCA treatment in NAFLD patients strongly impacts on cholesterol and BA synthesis and induces neutral lipid accumulation in both liver and vWAT. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  3. Peroxisome proliferator-binding protein: identification and partial characterization of nafenopin-, clofibric acid-, and ciprofibrate-binding proteins from rat liver.

    Science.gov (United States)

    Lalwani, N D; Alvares, K; Reddy, M K; Reddy, M N; Parikh, I; Reddy, J K

    1987-01-01

    Peroxisome proliferators (PP) induce a highly predictable pleiotropic response in rat and mouse liver that is characterized by hepatomegaly, increase in peroxisome number in hepatocytes, and induction of certain peroxisomal enzymes. The PP-binding protein (PPbP) was purified from rat liver cytosol by a two-step procedure involving affinity chromatography and ion-exchange chromatography. Three PP, nafenopin and its structural analogs clofibric acid and ciprofibrate, were used as affinity ligands and eluting agents. This procedure yields a major protein with an apparent Mr of 70,000 on NaDodSO4/PAGE in the presence of reducing agent and Mr 140,000 (Mr 140,000-160,000) on gel filtration and polyacrylamide gradient gel electrophoresis under nondenaturing conditions, indicating that the active protein is a dimer. This protein has an acidic pI of 4.2 under nondenaturing conditions, which rises to 5.6 under denaturing conditions. The isolation of the same Mr 70,000 protein with three different, but structurally related, agents as affinity ligands and the immunological identity of the isolated proteins constitute strong evidence that this protein is the PPbP capable of recognizing PP that are structurally related to clofibrate. The PPbP probably plays an important role in the regulation of PP-induced pleiotropic response. Images PMID:3474650

  4. The effect of phytosterol protects rats against 4-nitrophenol-induced liver damage.

    Science.gov (United States)

    Chen, Jiaqin; Song, Meiyan; Li, Yansen; Zhang, Yonghui; Taya, Kazuyoshi; Li, ChunMei

    2016-01-01

    We investigated the effect of phytosterol (PS) in regard to liver damage induced by 4-nitrophenol (PNP). Twenty rats were randomly divided into four groups (Control, PS, PNP, and PNP+PS). The PS and PNP+PS groups were pretreated with PS for one week. The PNP and PNP+PS groups were injected subcutaneously with PNP for 28 days. The control group received a basal diet and was injected with vehicle alone. Treatment with PS prevented the elevation of the total bilirubin levels, as well as an increase in serum alkaline transaminase and aspartate transaminase, which are typically caused by PNP-induced liver damage. Histopathologically showed that liver damage was significantly mitigated by PS treatment. However, there was no significant change in antioxidant enzyme activities, and the Nrf2-antioxidant system was not activated after treatment with PS. These results suggest that PS could mitigate liver damage induced by PNP, but does not enhance antioxidant capacity. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Grape Seed Procyanidins and Cholestyramine Differentially Alter Bile Acid and Cholesterol Homeostatic Gene Expression in Mouse Intestine and Liver.

    Directory of Open Access Journals (Sweden)

    Rebecca M Heidker

    Full Text Available Bile acid (BA sequestrants, lipid-lowering agents, may be prescribed as a monotherapy or combination therapy to reduce the risk of coronary artery disease. Over 33% of adults in the United States use complementary and alternative medicine strategies, and we recently reported that grape seed procyanidin extract (GSPE reduces enterohepatic BA recirculation as a means to reduce serum triglyceride (TG levels. The current study was therefore designed to assess the effects on BA, cholesterol and TG homeostatic gene expression following co-administration with GSPE and the BA sequestrant, cholestyramine (CHY. Eight-week old male C57BL/6 mice were treated for 4 weeks with either a control or 2% CHY-supplemented diet, after which, they were administered vehicle or GSPE for 14 hours. Liver and intestines were harvested and gene expression was analyzed. BA, cholesterol, non-esterified fatty acid and TG levels were also analyzed in serum and feces. Results reveal that GSPE treatment alone, and co-administration with CHY, regulates BA, cholesterol and TG metabolism differently than CHY administration alone. Notably, GSPE decreased intestinal apical sodium-dependent bile acid transporter (Asbt gene expression, while CHY significantly induced expression. Administration with GSPE or CHY robustly induced hepatic BA biosynthetic gene expression, especially cholesterol 7α-hydroxylase (Cyp7a1, compared to control, while co-administration further enhanced expression. Treatment with CHY induced both intestinal and hepatic cholesterologenic gene expression, while co-administration with GSPE attenuated the CHY-induced increase in the liver but not intestine. CHY also induced hepatic lipogenic gene expression, which was attenuated by co-administration with GSPE. Consequently, a 25% decrease in serum TG levels was observed in the CHY+GSPE group, compared to the CHY group. Collectively, this study presents novel evidence demonstrating that GSPE provides additive and

  6. Omega-3 fatty acid deficiency selectively up-regulates delta6-desaturase expression and activity indices in rat liver: prevention by normalization of omega-3 fatty acid status.

    Science.gov (United States)

    Hofacer, Rylon; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Magrisso, I Jack; Benoit, Stephen C; McNamara, Robert K

    2011-09-01

    This study investigated the effects of perinatal dietary omega-3 (n-3) fatty acid depletion and subsequent repletion on the expression of genes that regulate long-chain (LC) polyunsaturated fatty acid biosynthesis in rat liver and brain. It was hypothesized that chronic n-3 fatty acid deficiency would increase liver Fads1 and Fads2 messenger RNA (mRNA) expression/activity and that n-3 fatty acid repletion would normalize this response. Adult rats fed the n-3-free diet during perinatal development exhibited significantly lower erythrocyte, liver, and frontal cortex LCn-3 fatty acid composition and reciprocal elevations in LC omega-6 (n-6) fatty acid composition compared with controls (CONs) and repleted rats. Liver Fads2, but not Fads1, Elovl2, or Elovl5, mRNA expression was significantly greater in n-3-deficient (DEF) rats compared with CONs and was partially normalized in repleted rats. The liver 18:3n-6/18:2n-6 ratio, an index of delta6-desturase activity, was significantly greater in DEF rats compared with CON and repleted rats and was positively correlated with Fads2 mRNA expression among all rats. The liver 18:3n-6/18:2n-6 ratio, but not Fads2 mRNA expression, was also positively correlated with erythrocyte and frontal cortex LCn-6 fatty acid compositions. Neither Fads1 or Fads2 mRNA expression was altered in brain cortex of DEF rats. These results confirm previous findings that liver, but not brain, delta6-desaturase expression and activity indices are negatively regulated by dietary n-3 fatty acids. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Increased serum levels of hyaluronic acid in pregnancies complicated by preeclampsia or hemolysis, elevated liver enzymes, and low platelets syndrome.

    Science.gov (United States)

    Osmers, R G; Schütz, E; Diedrich, F; Wehry, B; Krauss, T; Oellerich, M; Kuhn, W

    1998-02-01

    Fifteen percent of patients who later have hemolysis, elevated liver enzymes, and low platelets syndrome develop initially have nonspecific symptoms. Early diagnosis could ensure adequate obstetric management; however, prognostic biochemical tests are lacking. We hypothesized that elevated hyaluronic acid serum levels might be an early indicator of hemolysis, elevated liver enzymes, and low platelets syndrome because it is known to be a sensitive marker of liver cell function. Hyaluronic acid in serum was measured in patients with normal pregnancies (n = 109) and in those patients with pregnancies complicated by preeclampsia (n = 14) or hemolysis, elevated liver enzymes, and low platelets syndrome (n = 11). A significant increase in hyaluronic acid serum concentrations was observed in patients with hemolysis, elevated liver enzymes, and low platelets syndrome or with preeclampsia (p hyaluronic acid serum levels in hemolysis, elevated liver enzymes, and low platelets syndrome correlated with the clinical severity of the individual course of disease as measured by intensive care unit time (r = 0.72; p hyaluronic acid in preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome are significantly elevated and might play an important diagnostic and prognostic role in patients with hemolysis, elevated liver enzymes, and low platelets syndrome.

  8. Ursodeoxycholic acid alleviates cholestasis-induced histophysiological alterations in the male reproductive system of bile duct-ligated rats.

    Science.gov (United States)

    Saad, Ramadan A; Mahmoud, Yomna I

    2014-12-01

    Ursodeoxycholic acid is the most widely used drug for treating cholestatic liver diseases. However, its effect on the male reproductive system alterations associated with cholestasis has never been studied. Thus, this study aimed to investigate the effect of ursodeoxycholic acid on cholestasis-induced alterations in the male reproductive system. Cholestasis was induced by bile duct ligation. Bile duct-ligated rats had higher cholestasis biomarkers and lower levels of testosterone, LH and FSH than did the Sham rats. They also had lower reproductive organs weights, and lower sperm motility, density and normal morphology than those of Sham rats. Histologically, these animals suffered from testicular tubular atrophy, interstitial edema, thickening of basement membranes, vacuolation, and depletion of germ cells. After ursodeoxycholic acid administration, cholestasis-induced structural and functional alterations were significantly ameliorated. In conclusion, ursodeoxycholic acid can ameliorate the reproductive complications of chronic cholestasis in male patients, which represents an additional benefit to this drug. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Modulation of extracellular matrix by nutritional hepatotrophic factors in thioacetamide-induced liver cirrhosis in the rat

    Directory of Open Access Journals (Sweden)

    R.R. Guerra

    2009-11-01

    Full Text Available Nutritional substances associated to some hormones enhance liver regeneration when injected intraperitoneally, being denominated hepatotrophic factors (HF. Here we verified if a solution of HF (glucose, vitamins, salts, amino acids, glucagon, insulin, and triiodothyronine can revert liver cirrhosis and how some extracellular matrices are affected. Cirrhosis was induced for 14 weeks in 45 female Wistar rats (200 mg by intraperitoneal injections of thioacetamide (200 mg/kg. Twenty-five rats received intraperitoneal HF twice a day for 10 days (40 mL·kg-1·day-1 and 20 rats received physiological saline. Fifteen rats were used as control. The HF applied to cirrhotic rats significantly: a reduced the relative mRNA expression of the genes: Col-α1 (-53%, TIMP-1 (-31.7%, TGF-β1 (-57.7%, and MMP-2 (-41.6%, whereas Plau mRNA remained unchanged; b reduced GGT (-43.1%, ALT (-17.6%, and AST (-12.2% serum levels; c increased liver weight (11.3%, and reduced liver collagen (-37.1%, regenerative nodules size (-22.1%, and fibrous septum thickness. Progranulin protein (immunohistochemistry and mRNA (in situ hybridization were found in fibrous septa and areas of bile duct proliferation in cirrhotic livers. Concluding, HF improved the histology and serum biochemistry of liver cirrhosis, with an important reduction of interstitial collagen and increased extracelullar matrix degradation by reducing profibrotic gene expression.

  10. The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis.

    Science.gov (United States)

    Chow, Monica D; Lee, Yi-Horng; Guo, Grace L

    2017-08-01

    Nonalcoholic fatty liver disease is growing in prevalence worldwide. It is marked by the presence of macrosteatosis on liver histology but is often clinically asymptomatic. However, it can progress into nonalcoholic steatohepatitis which is a more severe form of liver disease characterized by inflammation and fibrosis. Further progression leads to cirrhosis, which predisposes patients to hepatocellular carcinoma or liver failure. The mechanism by which simple steatosis progresses to steatohepatitis is not entirely clear. However, multiple pathways have been proposed. A common link amongst many of these pathways is disruption of the homeostasis of bile acids. Other than aiding in the absorption of lipids and lipid-soluble vitamins, bile acids act as ligands. For example, they bind to farnesoid X receptor, which is critically involved in many of the pathways responsible for maintaining bile acid, glucose, and lipid homeostasis. Alterations to these pathways can lead to dysregulation of energy balance and increased inflammation and fibrosis. Repeated insults over time may be the key to development of steatohepatitis. For this reason, current drug therapies target aspects of these pathways to try to reduce and halt inflammation and fibrosis. This review will focus on the role of bile acids in these various pathways and how changes in these pathways may result in steatohepatitis. While there is no approved pharmaceutical treatment for either hepatic steatosis or steatohepatitis, this review will also touch upon the multitude of potential therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Ursodeoxycholic acid treatment in patients with cystic fibrosis at risk for liver disease.

    Science.gov (United States)

    Siano, Maria; De Gregorio, Fabiola; Boggia, Bartolo; Sepe, Angela; Ferri, Pasqualina; Buonpensiero, Paolo; Di Pasqua, Antonio; Raia, Valeria

    2010-06-01

    Meconium ileus has been detected as a risk factor for development of liver disease in cystic fibrosis, with influence on morbidity and mortality. To evaluate the effect of early treatment with ursodeoxycholic acid in patients with cystic fibrosis and meconium ileus to prevent chronic hepatic involvement and to explore the potential role of therapy on clinical outcomes. 26 cystic fibrosis patients with meconium ileus (16 M, mean age 8,4 years, range 3,5-9) were assigned to two groups: group 1 (14 patients) treated early with ursodeoxycholic acid (UDCAe); group 2 (12 patients) treated with ursodeoxycholic acid at the onset of cystic fibrosis liver disease (UDCAd). Anthropometric data, pulmonary function tests, pancreatic status, complications such as diabetes, hepatic involvement and Pseudomonas aeruginosa colonisation were compared among groups. A higher prevalence of cystic fibrosis chronic liver disease was observed in the UDCAd group with a statistically significant difference at 9 years of age (p<0.05). Chronic infection by P. aeruginosa was found in 7% of UDCAe and 33% of UDCAd (p<0.05). No differences were observed in nutritional status and other complications. Early treatment with ursodeoxycholic acid may be beneficial in patients at risk of developing cystic fibrosis chronic liver disease such as those with meconium ileus. Multicentre studies should be encouraged to confirm these data. Copyright 2009 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  12. Effect of sclerin on amino acid incorporation into mitochondria isolated from rat liver

    International Nuclear Information System (INIS)

    Yamaguchi, Masanori; Satomura, Yukio

    1975-01-01

    Though sclerin (SCL) stimulated amino acid incorporation into the protein fraction of post mitochondrial supernatant of rat liver homogenate, it had no effect on the incorporation into the isolated mitochondria at pH 7.2, despite of its stimulating effect on mitochondrial oxidative phosphorylation. SCL stimulated amino acid incorporation into the mitochondria at pH 6.1, and to some extent maintained the activity on that in mitochondria during aging in hypotonic Tris-HCl buffer (pH 7.2). Since SCL prevented leakage of amino acids from the mitochondria into these buffers, it was suggested that SCL may protect a structure of mitochondrial membrane which appeared to have a significance on transport of amino acids. In liver slices, SCL stimulated amino acid incorporation only into the extra-mitochondrial fraction for the first 3 min, but gradually turned to simulate incorporation into mitochondria within 30 min. (auth.)

  13. Effect of sclerin on amino acid incorporation into mitochondria isolated from rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, M; Satomura, Y [Osaka City Univ. (Japan). Faculty of Science

    1975-08-01

    Though sclerin (SCL) stimulated amino acid incorporation into the protein fraction of post mitochondrial supernatant of rat liver homogenate, it had no effect on the incorporation into the isolated mitochondria at pH 7.2, despite of its stimulating effect on mitochondrial oxidative phosphorylation. SCL stimulated amino acid incorporation into the mitochondria at pH 6.1, and to some extent maintained the activity on that in mitochondria during aging in hypotonic Tris-HCl buffer (pH 7.2). Since SCL prevented leakage of amino acids from the mitochondria into these buffers, it was suggested that SCL may protect a structure of mitochondrial membrane which appeared to have a significance on transport of amino acids. In liver slices, SCL stimulated amino acid incorporation only into the extra-mitochondrial fraction for the first 3 min, but gradually turned to simulate incorporation into mitochondria within 30 min.

  14. Increased expression of PPARγ in high fat diet-induced liver steatosis in mice

    International Nuclear Information System (INIS)

    Inoue, Mitsutaka; Ohtake, Takaaki; Motomura, Wataru; Takahashi, Nobuhiko; Hosoki, Yayoi; Miyoshi, Shigeki; Suzuki, Yasuaki; Saito, Hiroyuki; Kohgo, Yutaka; Okumura, Toshikatsu

    2005-01-01

    The present study was performed to examine a hypothesis that peroxisome proliferator-activated receptor γ (PPARγ) is implicated in high fat diet-induced liver steatosis. Mice were fed with control or high fat diet containing approximately 10% or 80% cholesterol, respectively. Macroscopic and microscopic findings demonstrated that lipid accumulation in the liver was observed as early as 2 weeks after high fat diet and that high fat diet for 12 weeks developed a fatty liver phenotype, establishing a novel model of diet-induced liver steatosis. Gene profiling with microarray and real-time PCR studies demonstrated that among genes involved in lipid metabolism, adipogenesis-related genes, PPARγ and its targeted gene, CD36 mRNA expression was specifically up-regulated in the liver by high fat diet for 2 weeks. Immunohistochemical study revealed that PPARγ protein expression is increased in the nuclei of hepatocytes by high fat diet. It was also shown that protein expression of cAMP response element-binding protein (CREB), an upstream molecule of PPARγ, in the liver was drastically suppressed by high fat diet. All these results suggest for the first time that the CREB-PPARγ signaling pathway may be involved in the high fat diet-induced liver steatosis

  15. Valproic acid-induced hyperammonemic encephalopathy - a potentially fatal adverse drug reaction.

    Science.gov (United States)

    Sousa, Carla

    2013-12-01

    A patient with an early diagnosed epilepsy Valproic acid is one of the most widely used antiepileptic drugs. Hyperammonemic encephalopathy is a rare, but potentially fatal, adverse drug reaction to valproic acid. A patient with an early diagnosed epilepsy, treated with valproic acid, experienced an altered mental state after 10 days of treatment. Valproic acid serum levels were within limits, hepatic function tests were normal but ammonia levels were above the normal range. Valproic acid was stopped and the hyperammonemic encephalopathy was treated with lactulose 15 ml twice daily, metronidazole 250 mg four times daily and L-carnitine 1 g twice daily. Monitoring liver function and ammonia levels should be recommended in patients taking valproic acid. The constraints of the pharmaceutical market had to be taken into consideration and limited the pharmacological options for this patient's treatment. Idiosyncratic symptomatic hyperammonemic encephalopathy is completely reversible, but can induce coma and even death, if not timely detected. Clinical pharmacists can help detecting adverse drug reactions and provide evidence based information for the treatment.

  16. Effects of Eleutherococcus senticosus Cortex on Recovery from the Forced Swimming Test and Fatty Acid β-Oxidation in the Liver and Skeletal Muscle of mice.

    Science.gov (United States)

    Sumiyoshi, Maho; Kimura, Yoshiyuki

    2016-03-01

    The root and stem barks of Eleutherococcus senticosus have been used to treat emotional and physical fatigue in China, Russia, Korea, and Japan. The effects of E. senticosus on recovery from physical fatigue and the expenditure of energy currently remain unclear. We herein examined the effects of E. senticosus extract on recovery from physical fatigue after the forced swimming test as well as fatty acid β-oxidation in the liver and skeletal muscle of mice. 1) Physical fatigue; E. senticosus extract (500 and 1000 mg/kg, twice daily) was administered orally to ICR male mice for 7 consecutive days. After swimming had been performed for 15 min, each mouse was placed on the cover of a 100-mm culture plate, and the time for each mouse to move away from the cover was measured. 2) Fatty acid β-oxidation in the liver and skeletal muscle; E. senticosus extract (500 and 1000 mg/kg) was administered orally twice daily to C57BL/6J male mice for 21 consecutive days. The initial and final body and liver weight were measured, and then fatty acid β-oxidation activity in the liver and skeletal muscle was measured by methods using [1- 14 C] palmitic acid. Recovery times after forced swimming were shorter in E. senticosus extract (500 and 1000 mg/kg)-treated mice than in vehicle-treated mice. The body and liver weight had no effect by the oral administration of E. senticosus extract, vitamin mixture and L-carnitine. Fatty acid β-oxidation activity in skeletal muscle was increased by E. senticosus extract (500 and 1000 mg/kg). E. senticosus may enhance recovery from physical fatigue induced by forced swimming by accelerating energy changes through fatty acid β-oxidation in skeletal muscle.

  17. Differential effects of experimental and cold-induced hyperthyroidism on factors inducing rat liver oxidative damage.

    Science.gov (United States)

    Venditti, P; Pamplona, R; Ayala, V; De Rosa, R; Caldarone, G; Di Meo, S

    2006-03-01

    Thyroid hormone-induced increase in metabolic rates is often associated with increased oxidative stress. The aim of the present study was to investigate the contribution of iodothyronines to liver oxidative stress in the functional hyperthyroidism elicited by cold, using as models cold-exposed and 3,5,3'-triiodothyronine (T3)- or thyroxine (T4)-treated rats. The hyperthyroid state was always associated with increases in both oxidative capacity and oxidative damage of the tissue. The most extensive damage to lipids and proteins was found in T3-treated and cold-exposed rats, respectively. Increase in oxygen reactive species released by mitochondria and microsomes was found to contribute to tissue oxidative damage, whereas the determination of single antioxidants did not provide information about the possible contribution of a reduced effectiveness of the antioxidant defence system. Indeed, liver oxidative damage in hyperthyroid rats was scarcely related to levels of the liposoluble antioxidants and activities of antioxidant enzymes. Conversely, other biochemical changes, such as the degree of fatty acid unsaturation and hemoprotein content, appeared to predispose hepatic tissue to oxidative damage associated with oxidative challenge elicited by hyperthyroid state. As a whole, our results confirm the idea that T3 plays a key role in metabolic changes and oxidative damage found in cold liver. However, only data concerning changes in glutathione peroxidase activity and mitochondrial protein content favour the idea that dissimilarities in effects of cold exposure and T3 treatment could depend on differences in serum levels of T4.

  18. CHEMICAL CHARACTERIZATION OF A HYPOGLYCEMIC EXTRACT FROM CUCURBITA FICIFOLIA BOUCHE THAT INDUCES LIVER GLYCOGEN ACCUMULATION IN DIABETIC MICE.

    Science.gov (United States)

    Jessica, Garcia Gonzalez; Mario, Garcia Lorenzana; Alejandro, Zamilpa; Cesar, Almanza Perez Julio; Ivan, Jasso Villagomez E; Ruben, Roman Ramos; Javier, Alarcon-Aguilar Francisco

    2017-01-01

    The aqueous extract of Cucurbita ficifolia ( C. ficifolia ) fruit has demonstrated hypoglycemic effect, which may be attributed to some components in the extract. However, the major secondary metabolites in this fruit have not yet been identified and little is known about its extra-pancreatic action, in particular, on liver carbohydrate metabolism. Therefore, in addition to the isolation and structural elucidation of the principal components in the aqueous extract of C. ficifolia , the aim of this study was to determine whether or not the hypoglycemic effect of the aqueous extract of Cucurbita ficifolia ( C. ficifolia ) fruit is due to accumulation of liver glycogen in diabetic mice. The aqueous extract from fruit of C. ficifolia was fractionated and its main secondary metabolites were purified and chemically characterized (NMR and GC-MS). Alloxan-induced diabetic mice received daily by gavage the aqueous extract (30 days). The liver glycogen content was quantified by spectroscopic method and by PAS stain; ALT and AST by spectrometric method; glycogen synthase, glycogen phosphorylase and GLUT2 by Western blot; the mRNA expression of GLUT2 and glucagon-receptor by RT-PCR; while serum insulin was quantified by ELISA method. A liver histological analysis was also performed by H&E stain. Chemical fingerprint showed five majoritarian compounds in the aqueous extract of C. ficifolia : p -coumaric acid, p-hydroxybenzoic acid, salicin, stigmast-7,2,2-dien-3-ol and stigmast-7-en-3-ol. The histological analysis showed accumulation of liver glycogen. Also, increased glycogen synthase and decreased glycogen phosphorylase were observed. Interestingly, the histological architecture evidenced a liver-protective effect due the extract. Five compounds were identified in C. ficifolia aqueous extract. The hypoglycemic effect of this extract may be partially explained by liver glycogen accumulation. The bioactive compound responsible for the hypoglycemic effect of this extract will be

  19. The fatty acid profile of rainbow trout liver cells modulates their tolerance to methylmercury and cadmium

    International Nuclear Information System (INIS)

    Ferain, Aline; Bonnineau, Chloé; Neefs, Ineke; Rees, Jean François; Larondelle, Yvan; Schamphelaere, Karel A.C.De; Debier, Cathy

    2016-01-01

    Highlights: • The phospholipid composition of rainbow trout liver cells was successfully changed. • Cell phospholipids influenced methylmercury (MeHg) and cadmium (Cd) toxicity. • Cells enriched in 18:3n-3, 20:5n-3 or 22:5n-6 were more resistant to MeHg and Cd. • Cell enrichment in 22:6n-3 increased resistance to Cd but not MeHg. - Abstract: The polyunsaturated fatty acid (PUFA) composition of fish tissues, which generally reflects that of the diet, affects various cellular properties such as membrane structure and fluidity, energy metabolism and susceptibility to oxidative stress. Since these cellular parameters can play an important role in the cellular response to organic and inorganic pollutants, a variation of the PUFA supply might modify the toxicity induced by such xenobiotics. In this work, we investigated whether the cellular fatty acid profile has an impact on the in vitro cell sensitivity to two environmental pollutants: methylmercury and cadmium. Firstly, the fatty acid composition of the rainbow trout liver cell line RTL-W1 was modified by enriching the growth medium with either alpha-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), linoleic acid (LA, 18:2n-6), arachidonic acid (AA, 20:4n-6) or docosapentaenoic acid (DPA, 22:5n-6). These modified cells and their control (no PUFA enrichment) were then challenged for 24 h with increasing concentrations of methylmercury or cadmium. We observed that (i) the phospholipid composition of the RTL-W1 cells was profoundly modulated by changing the PUFA content of the growth medium: major modifications were a high incorporation of the supplemented PUFA in the cellular phospholipids, the appearance of direct elongation and desaturation metabolites in the cellular phospholipids as well as a change in the gross phospholipid composition (PUFA and monounsaturated fatty acid (MUFA) levels and n-3/n-6 ratio); (ii) ALA, EPA and DPA enrichment significantly

  20. The fatty acid profile of rainbow trout liver cells modulates their tolerance to methylmercury and cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Ferain, Aline, E-mail: aline.ferain@uclouvain.be [Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve (Belgium); Bonnineau, Chloé [Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve (Belgium); Irstea, UR MALY, Centre de Lyon-Villeurbanne, rue de la Doua 5/32108, F-69616 Villeurbanne (France); Neefs, Ineke; Rees, Jean François; Larondelle, Yvan [Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve (Belgium); Schamphelaere, Karel A.C.De [Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium); Debier, Cathy [Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve (Belgium)

    2016-08-15

    Highlights: • The phospholipid composition of rainbow trout liver cells was successfully changed. • Cell phospholipids influenced methylmercury (MeHg) and cadmium (Cd) toxicity. • Cells enriched in 18:3n-3, 20:5n-3 or 22:5n-6 were more resistant to MeHg and Cd. • Cell enrichment in 22:6n-3 increased resistance to Cd but not MeHg. - Abstract: The polyunsaturated fatty acid (PUFA) composition of fish tissues, which generally reflects that of the diet, affects various cellular properties such as membrane structure and fluidity, energy metabolism and susceptibility to oxidative stress. Since these cellular parameters can play an important role in the cellular response to organic and inorganic pollutants, a variation of the PUFA supply might modify the toxicity induced by such xenobiotics. In this work, we investigated whether the cellular fatty acid profile has an impact on the in vitro cell sensitivity to two environmental pollutants: methylmercury and cadmium. Firstly, the fatty acid composition of the rainbow trout liver cell line RTL-W1 was modified by enriching the growth medium with either alpha-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), linoleic acid (LA, 18:2n-6), arachidonic acid (AA, 20:4n-6) or docosapentaenoic acid (DPA, 22:5n-6). These modified cells and their control (no PUFA enrichment) were then challenged for 24 h with increasing concentrations of methylmercury or cadmium. We observed that (i) the phospholipid composition of the RTL-W1 cells was profoundly modulated by changing the PUFA content of the growth medium: major modifications were a high incorporation of the supplemented PUFA in the cellular phospholipids, the appearance of direct elongation and desaturation metabolites in the cellular phospholipids as well as a change in the gross phospholipid composition (PUFA and monounsaturated fatty acid (MUFA) levels and n-3/n-6 ratio); (ii) ALA, EPA and DPA enrichment significantly

  1. TRAIL enhances paracetamol-induced liver sinusoidal endothelial cell death in a Bim- and Bid-dependent manner

    Science.gov (United States)

    Badmann, A; Langsch, S; Keogh, A; Brunner, T; Kaufmann, T; Corazza, N

    2012-01-01

    Paracetamol (acetaminophen, APAP) is a universally used analgesic and antipyretic agent. Considered safe at therapeutic doses, overdoses cause acute liver damage characterized by centrilobular hepatic necrosis. One of the major clinical problems of paracetamol-induced liver disease is the development of hemorrhagic alterations. Although hepatocytes represent the main target of the cytotoxic effect of paracetamol overdose, perturbations within the endothelium involving morphological changes of liver sinusoidal endothelial cells (LSECs) have also been described in paracetamol-induced liver disease. Recently, we have shown that paracetamol-induced liver damage is synergistically enhanced by the TRAIL signaling pathway. As LSECs are constantly exposed to activated immune cells expressing death ligands, including TRAIL, we investigated the effect of TRAIL on paracetamol-induced LSEC death. We here demonstrate for the first time that TRAIL strongly enhances paracetamol-mediated LSEC death with typical features of apoptosis. Inhibition of caspases using specific inhibitors resulted in a strong reduction of cell death. TRAIL appears to enhance paracetamol-induced LSEC death via the activation of the pro-apoptotic BH3-only proteins Bid and Bim, which initiate the mitochondrial apoptotic pathway. Taken together this study shows that the liver endothelial layer, mainly LSECs, represent a direct target of the cytotoxic effect of paracetamol and that activation of TRAIL receptor synergistically enhances paracetamol-induced LSEC death via the mitochondrial apoptotic pathway. TRAIL-mediated acceleration of paracetamol-induced cell death may thus contribute to the pathogenesis of paracetamol-induced liver damage. PMID:23254290

  2. The influence of bile acids homeostasis by cryptotanshinone ...

    African Journals Online (AJOL)

    The homeostasis of bile acids can be tightly regulated through feed-back and feed-forward regula- tion pathways. Bile acids exert their toxicity towards cells at high concentrations, and the accumulation of bile acids can induce the severe damage towards liver cells 2. Bile acids have been reported to induce cell injury.

  3. Ginger Essential Oil Ameliorates Hepatic Injury and Lipid Accumulation in High Fat Diet-Induced Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Lai, Yi-Syuan; Lee, Wan-Ching; Lin, Yu-En; Ho, Chi-Tang; Lu, Kuan-Hung; Lin, Shih-Hang; Panyod, Suraphan; Chu, Yung-Lin; Sheen, Lee-Yan

    2016-03-16

    The objective of this study was to investigate the hepatoprotective efficacy and mechanism of action of ginger essential oil (GEO) against the development of nonalcoholic fatty liver disease (NAFLD). Mice were maintained on either a control diet or high-fat diet (HFD) supplemented with GEO (12.5, 62.5, and 125 mg/kg) or citral (2.5 and 25 mg/kg) for 12 weeks. We demonstrated that GEO and its major component (citral) lowered HFD-induced obesity in a dose-dependent manner, accompanied by anti-hyperlipidemic effects by reducing serum free fatty acid, triglyceride, and total cholesterol levels. Moreover, liver histological results showed that administration of 62.5 and 125 mg/kg GEO and 25 mg/kg citral significantly reduced hepatic lipid accumulation. Further assessment by Western blotting and investigation of the lipid metabolism revealed that hepatic protein expression of sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and cytochrome P450 2E1 (CYP2E1) were down-regulated by GEO and citral, indicating that GEO and citral suppressed HFD-stimulated lipid biosynthesis and oxidative stress. Furthermore, GEO and citral effectively enhanced the antioxidant capacities and reduced inflammatory response in mouse liver, which exerted protective effects against steatohepatitis. Collectively, GEO and citral exhibited potent hepatoprotective effects against NAFLD induced by HFD in obese mice. Thus, GEO might be an effective dietary supplement to ameliorate NAFLD-related metabolic diseases, and citral could play a vital role in its management.

  4. Administration of Lactobacillus salivarius LI01 or Pediococcus pentosaceus LI05 improves acute liver injury induced by D-galactosamine in rats.

    Science.gov (United States)

    Lv, Long-Xian; Hu, Xin-Jun; Qian, Gui-Rong; Zhang, Hua; Lu, Hai-Feng; Zheng, Bei-Wen; Jiang, Li; Li, Lan-Juan

    2014-06-01

    This work investigated the effect of the intragastric administration of five lactic acid bacteria from healthy people on acute liver failure in rats. Sprague-Dawley rats were given intragastric supplements of Lactobacillus salivarius LI01, Lactobacillus salivarius LI02, Lactobacillus paracasei LI03, Lactobacillus plantarum LI04, or Pediococcus pentosaceus LI05 for 8 days. Acute liver injury was induced on the eighth day by intraperitoneal injection of 1.1 g/kg body weight D-galactosamine (D-GalN). After 24 h, samples were collected to determine the level of liver enzymes, liver function, histology of the terminal ileum and liver, serum levels of inflammatory cytokines, bacterial translocation, and composition of the gut microbiome. The results indicated that pretreatment with L. salivarius LI01 or P. pentosaceus LI05 significantly reduced elevated alanine aminotransferase and aspartate aminotransferase levels, prevented the increase in total bilirubin, reduced the histological abnormalities of both the liver and the terminal ileum, decreased bacterial translocation, increased the serum level of interleukin 10 and/or interferon-γ, and resulted in a cecal microbiome that differed from that of the liver injury control. Pretreatment with L. plantarum LI04 or L. salivarius LI02 demonstrated no significant effects during this process, and pretreatment with L. paracasei LI03 aggravated liver injury. To the best of our knowledge, the effects of the three species-L. paracasei, L. salivarius, and P. pentosaceus-on D-GalN-induced liver injury have not been previously studied. The excellent characteristics of L. salivarius LI01 and P. pentosaceus LI05 enable them to serve as potential probiotics in the prevention or treatment of acute liver failure.

  5. Role of docosahexaenoic acid treatment in improving liver histology in pediatric nonalcoholic fatty liver disease.

    Science.gov (United States)

    Nobili, Valerio; Carpino, Guido; Alisi, Anna; De Vito, Rita; Franchitto, Antonio; Alpini, Gianfranco; Onori, Paolo; Gaudio, Eugenio

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) is one of the most important causes of liver-related morbidity and mortality in children. Recently, we have reported the effects of docosahexaenoic acid (DHA), the major dietary long-chain polyunsaturated fatty acids, in children with NAFLD. DHA exerts a potent anti-inflammatory activity through the G protein-coupled receptor (GPR)120. Our aim was to investigate in pediatric NAFLD the mechanisms underlying the effects of DHA administration on histo-pathological aspects, GPR120 expression, hepatic progenitor cell activation and macrophage pool. 20 children with untreated NAFLD were included. Children were treated with DHA for 18 months. Liver biopsies before and after the treatment were analyzed. Hepatic progenitor cell activation, macrophage pool and GPR120 expression were evaluated and correlated with clinical and histo-pathological parameters. GPR120 was expressed by hepatocytes, liver macrophages, and hepatic progenitor cells. After DHA treatment, the following modifications were present: i) the improvement of histo-pathological parameters such as NAFLD activity score, ballooning, and steatosis; ii) the reduction of hepatic progenitor cell activation in correlation with histo-pathological parameters; iii) the reduction of the number of inflammatory macrophages; iv) the increase of GPR120 expression in hepatocytes; v) the reduction of serine-311-phosphorylated nuclear factor kappa B (NF-κB) nuclear translocation in hepatocytes and macrophages in correlation with serum inflammatory cytokines. DHA could modulate hepatic progenitor cell activation, hepatocyte survival and macrophage polarization through the interaction with GPR120 and NF-κB repression. In this scenario, the modulation of GPR120 exploits a novel crucial role in the regulation of the cell-to-cell cross-talk that drives inflammatory response, hepatic progenitor cell activation and hepatocyte survival.

  6. Role of docosahexaenoic acid treatment in improving liver histology in pediatric nonalcoholic fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Valerio Nobili

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is one of the most important causes of liver-related morbidity and mortality in children. Recently, we have reported the effects of docosahexaenoic acid (DHA, the major dietary long-chain polyunsaturated fatty acids, in children with NAFLD. DHA exerts a potent anti-inflammatory activity through the G protein-coupled receptor (GPR120. Our aim was to investigate in pediatric NAFLD the mechanisms underlying the effects of DHA administration on histo-pathological aspects, GPR120 expression, hepatic progenitor cell activation and macrophage pool.20 children with untreated NAFLD were included. Children were treated with DHA for 18 months. Liver biopsies before and after the treatment were analyzed. Hepatic progenitor cell activation, macrophage pool and GPR120 expression were evaluated and correlated with clinical and histo-pathological parameters.GPR120 was expressed by hepatocytes, liver macrophages, and hepatic progenitor cells. After DHA treatment, the following modifications were present: i the improvement of histo-pathological parameters such as NAFLD activity score, ballooning, and steatosis; ii the reduction of hepatic progenitor cell activation in correlation with histo-pathological parameters; iii the reduction of the number of inflammatory macrophages; iv the increase of GPR120 expression in hepatocytes; v the reduction of serine-311-phosphorylated nuclear factor kappa B (NF-κB nuclear translocation in hepatocytes and macrophages in correlation with serum inflammatory cytokines.DHA could modulate hepatic progenitor cell activation, hepatocyte survival and macrophage polarization through the interaction with GPR120 and NF-κB repression. In this scenario, the modulation of GPR120 exploits a novel crucial role in the regulation of the cell-to-cell cross-talk that drives inflammatory response, hepatic progenitor cell activation and hepatocyte survival.

  7. Binding of bile acids by pastry products containing bioactive substances during in vitro digestion.

    Science.gov (United States)

    Dziedzic, Krzysztof; Górecka, Danuta; Szwengiel, Artur; Smoczyńska, Paulina; Czaczyk, Katarzyna; Komolka, Patrycja

    2015-03-01

    The modern day consumer tends to choose products with health enhancing properties, enriched in bioactive substances. One such bioactive food component is dietary fibre, which shows a number of physiological properties including the binding of bile acids. Dietary fibre should be contained in everyday, easily accessible food products. Therefore, the aim of this study was to determine sorption capacities of primary bile acid (cholic acid - CA) and secondary bile acids (deoxycholic - DCA and lithocholic acids - LCA) by muffins (BM) and cookies (BC) with bioactive substances and control muffins (CM) and cookies (CC) in two sections of the in vitro gastrointestinal tract. Variations in gut flora were also analysed in the process of in vitro digestion of pastry products in a bioreactor. Enzymes: pepsin, pancreatin and bile salts: cholic acid, deoxycholic acid and lithocholic acid were added to the culture. Faecal bacteria, isolated from human large intestine, were added in the section of large intestine. The influence of dietary fibre content in cookies and concentration of bile acids in two stages of digestion were analysed. Generally, pastry goods with bioactive substances were characterized by a higher content of total fibre compared with the control samples. These products also differ in the profile of dietary fibre fractions. Principal Component Analysis (PCA) showed that the bile acid profile after two stages of digestion depends on the quality and quantity of fibre. The bile acid profile after digestion of BM and BC forms one cluster, and with the CM and CC forms a separate cluster. High concentration of H (hemicellulose) is positively correlated with LCA (low binding effect) and negatively correlated with CA and DCA contents. The relative content of bile acids in the second stage of digestion was in some cases above the content in the control sample, particularly LCA. This means that the bacteria introduced in the 2nd stage of digestion synthesize the LCA.

  8. Estimation of ellagic acid and/or repaglinide effects on insulin signaling, oxidative stress, and inflammatory mediators of liver, pancreas, adipose tissue, and brain in insulin resistant/type 2 diabetic rats.

    Science.gov (United States)

    Amin, Mohamed M; Arbid, Mahmoud S

    2017-02-01

    Even though ellagic acid has previously been valued in many models of cancer, so far its full mechanistic effect as a natural antiapoptotic agent in the prevention of type 2 diabetes complications has not been completely elucidated, which was the goal of this study. We fed albino rats a high-fat fructose diet (HFFD) for 2 months to induce insulin resistance/type 2 diabetes and then treated the rats with ellagic acid (10 mg/kg body weight, orally) and/or repaglinide (0.5 mg/kg body weight, orally) for 2 weeks. At the serum level, ellagic acid challenged the consequences of HFFD, significantly improving the glucose/insulin balance, liver enzymes, lipid profile, inflammatory cytokines, redox level, adipokines, ammonia, and manganese. At the tissue level (liver, pancreas, adipose tissue, and brain), ellagic acid significantly enhanced insulin signaling, autophosphorylation, adiponectin receptors, glucose transporters, inflammatory mediators, and apoptotic markers. Remarkably, combined treatment with both ellagic acid and repaglinide had a more pronounced effect than treatment with either alone. These outcomes give new insight into the promising molecular mechanisms by which ellagic acid modulates numerous factors induced in the progression of diabetes.

  9. Enhanced protective activity of nano formulated andrographolide against arsenic induced liver damage.

    Science.gov (United States)

    Das, Sujata; Pradhan, Goutam Kumar; Das, Subhadip; Nath, Debjani; Das Saha, Krishna

    2015-12-05

    Chronic exposure to arsenic over a period of time induces toxicity, primarily in liver but gradually in all systems of the body. Andrographolide (AG), a major diterpene lactone of Andrographis paniculata, shows a wide array of physiological functions including hepatoprotection. Therapeutic applications of AG are however seriously constrained because of its insolubility, poor bioavailability, and short plasma half-life. Nanoparticulation of AG is a possible solution to these problems. In the present study we investigated the effectiveness of polylactide co-glycolide (PLGA) nanocapsulated andrographolide (NA) against arsenic induced liver damage in mice. NA of average diameter 65.8 nm and encapsulation efficiency of 64% were prepared. Sodium arsenite at a dose of 40 mg/L supplied via drinking water in mice significantly raised the serum level of liver function markers such as AST, ALT, and ALP, and caused arsenic deposition in liver and ROS generation, though it did not show any lethality up to 30 days of exposure. However, even liver toxicity was not observed when mice were given AG and NA orally at doses up to 100 mg/kg bwt and 20 mg/kg bwt respectively on alternate days for one month. Treatment of non-toxic doses of AG or NA on alternate days along with arsenic significantly decreased the arsenic induced elevation of the serum level of ALT, AST and ALP, and arsenic deposition in liver. AG and NA increased the level of hepatic antioxidant enzymes such as superoxide dismutase (SOD), and catalase (CAT), and the level of reduced glutathione (GSH). Also, the ROS level was lowered in mice exposed to arsenic but treated with AG or NA. Protective efficiency of NA is about five times more than that of AG. Administration of NA to arsenic-treated mice caused signs of improvement in liver tissue architecture. In conclusion, the results of this study suggest that NA could be beneficial against arsenic-induced liver toxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights

  10. Metronidazole-induced encephalopathy in a patient with liver cirrhosis.

    Science.gov (United States)

    Cheong, Hyeong Cheol; Jeong, Taek Geun; Cho, Young Bum; Yang, Bong Joon; Kim, Tae Hyeon; Kim, Haak Cheoul; Cho, Eun-Young

    2011-06-01

    Encephalopathy is a disorder characterized by altered brain function, which can be attributed to various causes. Encephalopathy associated with metronidazole administration occurs rarely and depends on the cumulative metronidazole dose, and most patients with this condition recover rapidly after discontinuation of therapy. Because metronidazole is metabolized in the liver and can be transported by the cerebrospinal fluid and cross the blood-brain barrier, it may induce encephalopathy even at a low cumulative dose in patients with hepatic dysfunction. We experienced a patient who showed ataxic gait and dysarthric speech after receiving metronidazole for the treatment of hepatic encephalopathy that was not controlled by the administration of lactulose. The patient was diagnosed as metronidazole-induced encephalopathy, and stopping drug administration resulted in a complete recovery from encephalopathy. This case shows that caution should be exercised when administering metronidazole because even a low dose can induce encephalopathy in patients with liver cirrhosis.

  11. Odontella aurita-enriched diet prevents high fat diet-induced liver insulin resistance.

    Science.gov (United States)

    Amine, Hamza; Benomar, Yacir; Haimeur, Adil; Messaouri, Hafida; Meskini, Nadia; Taouis, Mohammed

    2016-01-01

    The beneficial effect of polyunsaturated omega-3 fatty acid (w-3 FA) consumption regarding cardiovascular diseases, insulin resistance and inflammation has been widely reported. Fish oil is considered as the main source of commercialized w-3 FAs, and other alternative sources have been reported such as linseed or microalgae. However, despite numerous reports, the underlying mechanisms of action of w-3 FAs on insulin resistance are still not clearly established, especially those from microalgae. Here, we report that Odontella aurita, a microalga rich in w-3 FAs eicosapentaenoic acid, prevents high fat diet-induced insulin resistance and inflammation in the liver of Wistar rats. Indeed, a high fat diet (HFD) increased plasma insulin levels associated with the impairment of insulin receptor signaling and the up-regulation of toll-like receptor 4 (TLR4) expressions. Importantly, Odontella aurita-enriched HFD (HFOA) reduces body weight and plasma insulin levels and maintains normal insulin receptor expression and responsiveness. Furthermore, HFOA decreased TLR4 expression, JNK/p38 phosphorylation and pro-inflammatory factors. In conclusion, we demonstrate for the first time, to our knowledge, that diet supplementation with whole Ondontella aurita overcomes HFD-induced insulin resistance through the inhibition of TLR4/JNK/p38 MAP kinase signaling pathways. © 2016 Society for Endocrinology.

  12. Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited

    NARCIS (Netherlands)

    Paumgartner, Gustav; Beuers, Ulrich

    2002-01-01

    Ursodeoxycholic acid (UCDA) is increasingly used for the treatment of cholestatic liver diseases. Experimental evidence suggests three major mechanisms of action: (1) protection of cholangiocytes against cytotoxicity of hydrophobic bile acids, resulting from modulation of the composition of mixed

  13. Protective Effects of Lemon Juice on Alcohol-Induced Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Tong Zhou

    2017-01-01

    Full Text Available Chronic excessive alcohol consumption (more than 40–80 g/day for males and more than 20–40 g/day for females could induce serious liver injury. In this study, effects of lemon juice on chronic alcohol-induced liver injury in mice were evaluated. The serum biochemical profiles and hepatic lipid peroxidation levels, triacylglycerol (TG contents, antioxidant enzyme activities, and histopathological changes were examined for evaluating the hepatoprotective effects of lemon juice in mice. In addition, the in vitro antioxidant capacities of lemon juice were determined. The results showed that lemon juice significantly inhibited alcohol-induced increase of alanine transaminase (ALT, aspartate transaminase (AST, hepatic TG, and lipid peroxidation levels in a dose-dependent manner. Histopathological changes induced by alcohol were also remarkably improved by lemon juice treatment. These findings suggest that lemon juice has protective effects on alcohol-induced liver injury in mice. The protective effects might be related to the antioxidant capacity of lemon juice because lemon juice showed in vitro antioxidant capacity.

  14. Evaluation of hepatoprotective effect of methanolic extract of Clitoria ternatea (Linn. flower against acetaminophen-induced liver damage

    Directory of Open Access Journals (Sweden)

    Kuppan Nithianantham

    2013-08-01

    Full Text Available Objective: To evaluate the hepatoprotective and antioxidant activity of Clitoria ternatea (C. ternatea flower extract against acetaminophen-induced liver toxicity. Methods: The antioxidant property of C. ternatea flower extract was investigated by employing established in vitro antioxidant assay. The C. ternatea flower extract was studied in this work for its hepatoprotective effect against acetaminophen-induced liver toxicity in mice. Activity was measured by monitoring the levels of aspartate aminotransferase, alanine aminotransferase, billirubin and glutathione with histopathological analysis. Results: The amount of total phenolics and flavonoids were estimated to be 105.40依2.47 mg/g gallic acid equivalent and 72.21依0.05 mg/g catechin equivalent respectively. The antioxidant activity of C. ternatea flower extract was 68.9% at a concentration of 1 mg/mL and was also concentration dependant, with an IC 50 value of 327.00 µg/mL. The results of acetaminophen-induced liver toxicity experiment showed that mice treated with the extract (200 mg/kg showed a significant decrease in alanine aminotransferase, aspartate aminotransferase, and bilirubin levels, which were all elevated in the paracetamol group (P<0.05. Meanwhile, the level of glutathione was found to be restored in extract treated animals compared to the groups treated with acetaminophen alone (P<0.05. Therapy of extract also showed its protective effect on histopathological alterations and supported the biochemical finding. Conclusion: The present work confirmed the hepatoprotective effect of C. ternatea flower against model hepatotoxicant acetaminophen.

  15. A meta-analysis of diffusion-weighted and gadoxetic acid-enhanced MR imaging for the detection of liver metastases

    Energy Technology Data Exchange (ETDEWEB)

    Vilgrain, Valerie; Ronot, Maxime [University Hospitals Paris Nord Val de Seine, Beaujon, Department of Radiology, Assistance Publique - Hopitaux de Paris, Clichy, Hauts-de-Seine (France); University Paris Diderot, Sorbonne Paris Cite, Paris (France); INSERM U1149, Centre de Recherche Biomedicale Bichat-Beaujon, CRB3, Paris (France); Esvan, Maxime; Caumont-Prim, Aurore [Hopital europeen Georges-Pompidou, Unite d' Epidemiologie et de Recherche Clinique, Paris (France); INSERM, Centre d' Investigation Clinique 1418, module Epidemiologie Clinique, Paris (France); Aube, Christophe [CHU d' Angers, Department of Radiology, Angers (France); Universite d' Angers, Laboratoire HIFIH, LUNAM, Angers (France); Chatellier, Gilles [Hopital europeen Georges-Pompidou, Unite d' Epidemiologie et de Recherche Clinique, Paris (France); INSERM, Centre d' Investigation Clinique 1418, module Epidemiologie Clinique, Paris (France); Universite Paris Descartes, Sorbonne Paris Cite, Faculte de Medecine, Paris (France)

    2016-12-15

    To obtain the diagnostic performance of diffusion-weighted (DW) and gadoxetic-enhanced magnetic resonance (MR) imaging in the detection of liver metastases. A comprehensive search (EMBASE, PubMed, Cochrane) was performed to identify relevant articles up to June 2015. Inclusion criteria were: liver metastases, DW-MR imaging and/or gadoxetic acid-enhanced MR imaging, and per-lesion statistics. The reference standard was histopathology, intraoperative observation and/or follow-up. Sources of bias were assessed using the QUADAS-2 tool. A linear mixed-effect regression model was used to obtain sensitivity estimates. Thirty-nine articles were included (1,989 patients, 3,854 metastases). Sensitivity estimates for DW-MR imaging, gadoxetic acid-enhanced MR imaging and the combined sequence for detecting liver metastases on a per-lesion basis was 87.1 %, 90.6 % and 95.5 %, respectively. Sensitivity estimates by gadoxetic acid-enhanced MR imaging and the combined sequence were significantly better than DW-MR imaging (p = 0.0001 and p < 0.0001, respectively), and the combined MR sequence was significantly more sensitive than gadoxetic acid-enhanced MR imaging (p < 0.0001). Similar results were observed in articles that compared the three techniques simultaneously, with only colorectal liver metastases and in liver metastases smaller than 1 cm. In patients with liver metastases, combined DW-MR and gadoxetic acid-enhanced MR imaging has the highest sensitivity for detecting liver metastases on a per-lesion basis. (orig.)

  16. Dietary Fisetin Supplementation Protects Against Alcohol-Induced Liver Injury in Mice.

    Science.gov (United States)

    Sun, Qian; Zhang, Wenliang; Zhong, Wei; Sun, Xinguo; Zhou, Zhanxiang

    2016-10-01

    Overproduction of reactive oxygen species is associated with the development of alcoholic liver disease (ALD). Plant polyphenols have been used as dietary interventions for multiple diseases including ALD. The objective of this study was to determine whether dietary supplementation with fisetin, a novel flavonoid, exerts beneficial effect on alcohol-induced liver injury. C57BL/6J mice were pair-fed with the Lieber-DeCarli control or ethanol (EtOH) diet for 4 weeks with or without fisetin supplementation at 10 mg/kg/d. Alcohol feeding induced lipid accumulation in the liver and increased plasma alanine aminotransferase and aspartate aminotransferase activities, which were attenuated by fisetin supplementation. The EtOH concentrations in the plasma and liver were significantly elevated by alcohol exposure but were reduced by fisetin supplementation. Although fisetin did not affect the protein expression of alcohol metabolism enzymes, the aldehyde dehydrogenase activities were significantly increased by fisetin compared to the alcohol alone group. In addition, fisetin supplementation remarkably reduced hepatic NADPH oxidase 4 levels along with decreased plasma hydrogen peroxide and hepatic superoxide and 4-hydroxynonenal levels after alcohol exposure. Alcohol-induced apoptosis and up-regulation of Fas and cleaved caspase-3 in the liver were prevented by fisetin. Moreover, fisetin supplementation attenuated alcohol-induced hepatic steatosis through increasing plasma adiponectin levels and hepatic protein levels of p-AMPK, ACOX1, CYP4A, and MTTP. This study demonstrated that the protective effect of fisetin on ALD is achieved by accelerating EtOH clearance and inhibition of oxidative stress. The data suggest that fisetin has a therapeutical potential for treating ALD. Copyright © 2016 by the Research Society on Alcoholism.

  17. UDP-Glucuronosyltransferase Expression in Mouse Liver Is Increased in Obesity- and Fasting-Induced Steatosis

    Science.gov (United States)

    Xu, Jialin; Kulkarni, Supriya R.; Li, Liya

    2012-01-01

    UDP-glucuronosyltransferases (Ugt) catalyze phase II conjugation reactions with glucuronic acid, which enhances chemical polarity and the elimination from the body. Few studies have addressed whether Ugt expression and activity are affected by liver disease, such as steatosis. The purpose of this study was to determine whether steatosis induced by obesity or fasting could affect liver Ugt mRNA expression and activity. Male C57BL/6J and Lepob/ob (ob/ob) mice were fed ad libitum or food was withheld for 24 h. In steatotic livers of ob/ob mice, Ugt1a1, -1a6, -1a9, -2a3, -3a1, and -3a2 mRNA expression increased. Fasting, which also induced steatosis, increased hepatic Ugt1a1, -1a6, -1a7, -1a9, -2b1, -2b5, -2a3, -3a1, and -3a2 mRNA expression in mouse liver. Likewise, acetaminophen glucuronidation increased by 47% in hepatic microsomes from ob/ob mice compared with that in C57BL/6J mice, but not after fasting. In both steatosis models, Ugt induction was accompanied by increased aryl hydrocarbon receptor, constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor (PPAR)-α, pregnane X receptor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and peroxisome proliferator-activated receptor-γ coactivator-1α mRNA expression. In addition, fasting increased CAR, PPAR, and Nrf2 binding activity. The work points to hepatic triglyceride concentrations corresponding with nuclear receptor and Ugt expression. The findings indicate that steatosis significantly alters hepatic Ugt expression and activity, which could have a significant impact on determining circulating hormone levels, drug efficacy, and environmental chemical clearance. PMID:22031624

  18. UDP-glucuronosyltransferase expression in mouse liver is increased in obesity- and fasting-induced steatosis.

    Science.gov (United States)

    Xu, Jialin; Kulkarni, Supriya R; Li, Liya; Slitt, Angela L

    2012-02-01

    UDP-glucuronosyltransferases (Ugt) catalyze phase II conjugation reactions with glucuronic acid, which enhances chemical polarity and the elimination from the body. Few studies have addressed whether Ugt expression and activity are affected by liver disease, such as steatosis. The purpose of this study was to determine whether steatosis induced by obesity or fasting could affect liver Ugt mRNA expression and activity. Male C57BL/6J and Lep(ob/ob) (ob/ob) mice were fed ad libitum or food was withheld for 24 h. In steatotic livers of ob/ob mice, Ugt1a1, -1a6, -1a9, -2a3, -3a1, and -3a2 mRNA expression increased. Fasting, which also induced steatosis, increased hepatic Ugt1a1, -1a6, -1a7, -1a9, -2b1, -2b5, -2a3, -3a1, and -3a2 mRNA expression in mouse liver. Likewise, acetaminophen glucuronidation increased by 47% in hepatic microsomes from ob/ob mice compared with that in C57BL/6J mice, but not after fasting. In both steatosis models, Ugt induction was accompanied by increased aryl hydrocarbon receptor, constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor (PPAR)-α, pregnane X receptor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and peroxisome proliferator-activated receptor-γ coactivator-1α mRNA expression. In addition, fasting increased CAR, PPAR, and Nrf2 binding activity. The work points to hepatic triglyceride concentrations corresponding with nuclear receptor and Ugt expression. The findings indicate that steatosis significantly alters hepatic Ugt expression and activity, which could have a significant impact on determining circulating hormone levels, drug efficacy, and environmental chemical clearance.

  19. Fasting-induced G0/G1 switch gene 2 and FGF21 expression in the liver are under regulation of adipose tissue derived fatty acids

    Science.gov (United States)

    Jaeger, Doris; Schoiswohl, Gabriele; Hofer, Peter; Schreiber, Renate; Schweiger, Martina; Eichmann, Thomas O.; Pollak, Nina M.; Poecher, Nadja; Grabner, Gernot F.; Zierler, Kathrin A.; Eder, Sandra; Kolb, Dagmar; Radner, Franz P.W.; Preiss-Landl, Karina; Lass, Achim; Zechner, Rudolf; Kershaw, Erin E.; Haemmerle, Guenter

    2015-01-01

    Background & Aims Adipose tissue (AT)-derived fatty acids (FAs) are utilized for hepatic triacylglycerol (TG) generation upon fasting. However, their potential impact as signaling molecules is not established. Herein we examined the role of exogenous AT-derived FAs in the regulation of hepatic gene expression by investigating mice with a defect in AT-derived FA supply to the liver. Methods Plasma FA levels, tissue TG hydrolytic activities and lipid content were determined in mice lacking the lipase co-activator comparative gene identification-58 (CGI-58) selectively in AT (CGI-58-ATko) applying standard protocols. Hepatic expression of lipases, FA oxidative genes, transcription factors, ER stress markers, hormones and cytokines were determined by qRT-PCR, Western blotting and ELISA. Results Impaired AT-derived FA supply upon fasting of CGI-58-ATko mice causes a marked defect in liver PPARα-signaling and nuclear CREBH translocation. This severely reduced the expression of respective target genes such as the ATGL inhibitor G0/G1 switch gene-2 (G0S2) and the endocrine metabolic regulator FGF21. These changes could be reversed by lipid administration and raising plasma FA levels. Impaired AT-lipolysis failed to induce hepatic G0S2 expression in fasted CGI-58-ATko mice leading to enhanced ATGL-mediated TG-breakdown strongly reducing hepatic TG deposition. On high fat diet, impaired AT-lipolysis counteracts hepatic TG accumulation and liver stress linked to improved systemic insulin sensitivity. Conclusions AT-derived FAs are a critical regulator of hepatic fasting gene expression required for the induction of G0S2-expression in the liver to control hepatic TG-breakdown. Interfering with AT-lipolysis or hepatic G0S2 expression represents an effective strategy for the treatment of hepatic steatosis. PMID:25733154

  20. Effect of alpha-lipoic acid on the removal of arsenic from arsenic-loaded isolated liver tissues of rat

    Directory of Open Access Journals (Sweden)

    Noor-E-Tabassum

    2006-06-01

    Full Text Available The patient of chronic arsenic toxicity shows oxidative stress. To overcome the oxidative stress, several antioxidants such as beta-carotene, ascorbic acid, α-tocopherol, zinc and selenium had been suggested in the treatment of chronic arsenic toxicity. In the present study universal antioxidant (both water and lipid soluble antioxidant α-lipoic acid was used to examine the effectiveness of reducing the amount of arsenic from arsenic-loaded isolated liver tissues of rat. Isolated liver tissues of Long Evans Norwegian rats were cut into small pieces and incubated first in presence or absence of arsenic and then with different concentrations of α-lipoic acid during the second incubation. α-Lipoic acid decreases the amount of arsenic and malondialdehyde (MDA in liver tissues as well as increases the reduced glutathione (GSH level in dose dependent manner. These results suggest that α-lipoic acid remove arsenic from arsenic-loaded isolated liver tissues of rat.

  1. Total Flavonoids from Mimosa Pudica Protects Carbon Tetrachloride -Induced Acute Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Zhen-qin QIU

    2015-03-01

    Full Text Available Objective: To observe the protective effect of total flavonoids from Mimosa pudica on carbon tetrachloride (CCl4-induced acute liver injury in mice. Methods: CCl4-induced acute liver injury model in mice was established. The activity of ALT and AST, the content of serum albumin (Alb and total antioxidant capacity (T-AOC were determined. The content of malondiadehyde (MDA was measured and the activity of superoxide dismutase (SOD was determined. The histopathological changes of liver were observed.Results: Compared with CCl4 modle group, each dose group of total flavonouida from Mimosa pudica couldreduced the activity of ALT and AST in mice obviously (P<0.01, indicating they had remarkably protective effect on CCl4-induced acute liver injury in mice. high and middle dose groups of total flavonouida from Mimosa pudica couldincrease the content of Alb in mice (P<0.01. Each dose group of total flavonouida from Mimosa pudica could enhance the level of T-AOC (P<0.01. each dose group of total flavonouida from Mimosa pudica could lower the content of liver homogenate MDA but enhance the activity of SOD in a dose-depended manner (P<0.01. Conclusion: Total flavones from Mimosa Pudica have obvious protective effect on CCl4-induced acute liver injury in mice.

  2. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice.

    Science.gov (United States)

    Christensen, Karen E; Mikael, Leonie G; Leung, Kit-Yi; Lévesque, Nancy; Deng, Liyuan; Wu, Qing; Malysheva, Olga V; Best, Ana; Caudill, Marie A; Greene, Nicholas D E; Rozen, Rima

    2015-03-01

    Increased consumption of folic acid is prevalent, leading to concerns about negative consequences. The effects of folic acid on the liver, the primary organ for folate metabolism, are largely unknown. Methylenetetrahydrofolate reductase (MTHFR) provides methyl donors for S-adenosylmethionine (SAM) synthesis and methylation reactions. Our goal was to investigate the impact of high folic acid intake on liver disease and methyl metabolism. Folic acid-supplemented diet (FASD, 10-fold higher than recommended) and control diet were fed to male Mthfr(+/+) and Mthfr(+/-) mice for 6 mo to assess gene-nutrient interactions. Liver pathology, folate and choline metabolites, and gene expression in folate and lipid pathways were examined. Liver and spleen weights were higher and hematologic profiles were altered in FASD-fed mice. Liver histology revealed unusually large, degenerating cells in FASD Mthfr(+/-) mice, consistent with nonalcoholic fatty liver disease. High folic acid inhibited MTHFR activity in vitro, and MTHFR protein was reduced in FASD-fed mice. 5-Methyltetrahydrofolate, SAM, and SAM/S-adenosylhomocysteine ratios were lower in FASD and Mthfr(+/-) livers. Choline metabolites, including phosphatidylcholine, were reduced due to genotype and/or diet in an attempt to restore methylation capacity through choline/betaine-dependent SAM synthesis. Expression changes in genes of one-carbon and lipid metabolism were particularly significant in FASD Mthfr(+/-) mice. The latter changes, which included higher nuclear sterol regulatory element-binding protein 1, higher Srepb2 messenger RNA (mRNA), lower farnesoid X receptor (Nr1h4) mRNA, and lower Cyp7a1 mRNA, would lead to greater lipogenesis and reduced cholesterol catabolism into bile. We suggest that high folic acid consumption reduces MTHFR protein and activity levels, creating a pseudo-MTHFR deficiency. This deficiency results in hepatocyte degeneration, suggesting a 2-hit mechanism whereby mutant hepatocytes cannot

  3. Effect of ursodeoxycholic acid on the kinetics of the major hydrophobic bile acids in health and in chronic cholestatic liver disease

    NARCIS (Netherlands)

    Beuers, U.; Spengler, U.; Zwiebel, F. M.; PAULETZKI, J.; Fischer, S.; Paumgartner, G.

    1992-01-01

    Beneficial effects of ursodeoxycholic acid in chronic cholestatic liver diseases have been attributed to displacement of hydrophobic bile acids from the endogenous bile acid pool. To test this hypothesis, we determined pool sizes, fractional turnover rates, synthesis/input rates and serum levels of

  4. Shanxi Aged Vinegar Protects against Alcohol-Induced Liver Injury via Activating Nrf2-Mediated Antioxidant and Inhibiting TLR4-Induced Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Ting Xia

    2018-06-01

    Full Text Available Shanxi aged vinegar (SAV is a typical fermented and antioxidant food, which has various health-promoting effects. This work aimed to explore the effects of SAV on alcohol-induced liver injury. A mice model of alcoholic liver injury was established to illuminate its potential mechanisms. All mice pretreated with SAV and then received an ethanol solution (50% w/v, 4.8 g/kg b.w.. The results showed that SAV ameliorated alcohol-induced histological changes and elevation of liver enzymes. SAV attenuated alcohol-induced oxidative stress by declining levels of hepatic oxidants, and restoring depletion of antioxidant enzyme activities in mice livers. Moreover, SAV alleviated alcohol-induced oxidative damage by activating nuclear factor erythroid-2-related factor 2 (Nrf2-mediated signal pathway. In addition, SAV prevented alcohol-induced inflammation by suppressing lipopolysaccharide (LPS level and activities of pro-inflammatory enzymes, and regulating inflammatory cytokines. SAV inhibited alcohol-induced inflammation through down-regulating the expression of Toll-like receptor 4 (TLR4-mediated inflammatory response. The findings provide crucial evidence for elucidating the hepatoprotective mechanisms of SAV and encourage the future application of SAV as a functional food for liver protection.

  5. Necrostatin-1 protects against reactive oxygen species (ROS-induced hepatotoxicity in acetaminophen-induced acute liver failure

    Directory of Open Access Journals (Sweden)

    Kenji Takemoto

    2014-01-01

    Full Text Available Excessive acetaminophen (APAP use is one of the most common causes of acute liver failure. Various types of cell death in the damaged liver are linked to APAP-induced hepatotoxicity, and, of these, necrotic cell death of hepatocytes has been shown to be involved in disease pathogenesis. Until recently, necrosis was commonly considered to be a random and unregulated form of cell death; however, recent studies have identified a previously unknown form of programmed necrosis called receptor-interacting protein kinase (RIPK-dependent necrosis (or necroptosis, which is controlled by the kinases RIPK1 and RIPK3. Although RIPK-dependent necrosis has been implicated in a variety of disease states, including atherosclerosis, myocardial organ damage, stroke, ischemia–reperfusion injury, pancreatitis, and inflammatory bowel disease. However its involvement in APAP-induced hepatocyte necrosis remains elusive. Here, we showed that RIPK1 phosphorylation, which is a hallmark of RIPK-dependent necrosis, was induced by APAP, and the expression pattern of RIPK1 and RIPK3 in the liver overlapped with that of CYP2E1, whose activity around the central vein area has been demonstrated to be critical for the development of APAP-induced hepatic injury. Moreover, a RIPK1 inhibitor ameliorated APAP-induced hepatotoxicity in an animal model, which was underscored by significant suppression of the release of hepatic enzymes and cytokine expression levels. RIPK1 inhibition decreased reactive oxygen species levels produced in APAP-injured hepatocytes, whereas CYP2E1 expression and the depletion rate of total glutathione were unaffected. Of note, RIPK1 inhibition also conferred resistance to oxidative stress in hepatocytes. These data collectively demonstrated a RIPK-dependent necrotic mechanism operates in the APAP-injured liver and inhibition of this pathway may be beneficial for APAP-induced fulminant hepatic failure.

  6. Effect of adoptive transfer or depletion of regulatory T cells on triptolide-induced liver injury

    Directory of Open Access Journals (Sweden)

    Xinzhi eWang

    2016-04-01

    Full Text Available ObjectiveThe aim of this study is to clarify the role of regulatory T cell (Treg in triptolide (TP-induced hepatotoxicity. MethodsFemale C57BL/6 mice received either adoptive transfer of Tregs or depletion of Tregs, then underwent TP administration and were sacrificed 24 hours after TP administration. Liver injury was determined according to ALT and AST levels in serum and histopathological change in liver tissue. Hepatic frequencies of Treg cells and the mRNA expression levles of transcription factor FoxP3 and RORγt, IL-10, SOCS and Notch/Notch ligand were investigated.ResultsDuring TP-induced liver injury, hepatic Treg and IL-10 decreased, while Th17 cell transcription factor RORγt, SOCS signaling and Notch signaling increased, accompanied with liver inflammation. Adoptive transfer of Tregs ameliorated the severity of TP-induced liver injury, accompanied with increased levels of hepatic Treg and IL-10. Adoptive transfer of Tregs remarkably inhibited the expression of RORγt, SOCS3, Notch1 and Notch3. On the contrary, depletion of Treg cells in TP-administered mice resulted in a notable increase of RORγt, SOCS1, SOCS3 and Notch3, while the Treg and IL-10 of liver decreased. Consistent with the exacerbation of liver injury, higher serum levels of ALT and AST were detected in Treg-depleted mice. ConclusionsThese results showed that adoptive transfer or depletion of Tregs attenuated or aggravated TP-induced liver injury, suggesting that Tregs could play important roles in the progression of liver injury. SOCS proteins and Notch signaling affected Tregs, which may contribute to the pathogenesis of TP-induced hepatotoxicity.

  7. Possible gasoline-induced chronic liver injury due to occupational malpractice in a motor mechanic: a case report.

    Science.gov (United States)

    Gunathilaka, Mahesh Lakmal; Niriella, Madunil Anuk; Luke, Nathasha Vihangi; Piyarathna, Chathura Lakmal; Siriwardena, Rohan Chaminda; De Silva, Arjuna Priyadarshin; de Silva, Hithanadura Janaka

    2017-07-03

    Hydrocarbon-induced occupational liver injury is a well-known clinical entity among petroleum industry workers. There are many types of hydrocarbon exposure, with inhalation being the most common. Hydrocarbon-induced occupational liver injury is a rarely suspected and commonly missed etiological agent for liver injury. We report a case of a non-petroleum industry worker with chronic liver disease secondary to hydrocarbon-induced occupational liver injury caused by chronic low-grade hydrocarbon ingestion due to occupational malpractice. A 23-year-old Sri Lankan man who was a motor mechanic presented to our hospital with decompensated cirrhosis. He had been chronically exposed to gasoline via inadvertent ingestion due to occupational malpractice. He used to remove gasoline from carburetors by sucking and failed to practice mouth washing thereafter. On evaluation, he had histologically proven established cirrhosis. A comprehensive history and workup ruled out other nonoccupational etiologies for cirrhosis. The patient's long-term occupational gasoline exposure and clinical course led us to a diagnosis of hydrocarbon-induced occupational liver injury leading to decompensated cirrhosis. Hydrocarbon-induced occupational liver injury should be considered as a cause when evaluating a patient with liver injury with possible exposure in relevant occupations.

  8. Effects of Parsley (Petroselinum crispum) and its Flavonol Constituents, Kaempferol and Quercetin, on Serum Uric Acid Levels, Biomarkers of Oxidative Stress and Liver Xanthine Oxidoreductase Aactivity inOxonate-Induced Hyperuricemic Rats.

    Science.gov (United States)

    Haidari, Fatemeh; Keshavarz, Seid Ali; Mohammad Shahi, Majid; Mahboob, Soltan-Ali; Rashidi, Mohammad-Reza

    2011-01-01

    Increased serum uric acid is known to be a major risk related to the development of several oxidative stress diseases. The aim of this study was to investigate the effect of parsley, quercetin and kaempferol on serum uric acid levels, liver xanthine oxidoreductase activity and two non-invasive biomarkers of oxidative stress (total antioxidant capacity and malondialdehyde concentration) in normal and oxonate-induced hyperuricemic rats. A total of 60 male Wistar rats were randomly divided into ten equal groups; including 5 normal groups (vehicle, parsley, quercetin, kaempferol and allopurinol) and 5 hyperuricemic groups (vehicle, parsley, quercetin, kaempferol and allopurinol). Parsley (5 g/Kg), quercetin (5 mg/Kg), kaempferol (5 mg/Kg) and allopurinol (5 mg/Kg) were administrated to the corresponding groups by oral gavage once a day for 2 weeks. The results showed that parsley and its flavonol did not cause any significant reduction in the serum uric acid levels in normal rats, but significantly reduced the serum uric acid levels of hyperuricemic rats in a time-dependent manner. All treatments significantly inhibited liver xanthine oxidoreductase activity. Parsley, kaempferol and quercetin treatment led also to a significant increase in total antioxidant capacity and decrease in malondialdehyde concentration in hyperuricemic rats. Although the hypouricemic effect of allopurinol was much higher than that of parsley and its flavonol constituents, it could not significantly change oxidative stress biomarkers. These features of parsley and its flavonols make them as a possible alternative for allopurinol, or at least in combination therapy to minimize the side effects of allopurinol to treat hyperuricemia and oxidative stress diseases.

  9. Liver Fatty Acid Composition and Inflammation in Mice Fed with High-Carbohydrate Diet or High-Fat Diet.

    Science.gov (United States)

    da Silva-Santi, Lorena Gimenez; Antunes, Marina Masetto; Caparroz-Assef, Silvana Martins; Carbonera, Fabiana; Masi, Laureane Nunes; Curi, Rui; Visentainer, Jesuí Vergílio; Bazotte, Roberto Barbosa

    2016-10-29

    Both high-carbohydrate diet (HCD) and high-fat diet (HFD) modulate liver fat accumulation and inflammation, however, there is a lack of data on the potential contribution of carbohydrates and lipids separately. For this reason, the changes in liver fatty acid (FA) composition in male Swiss mice fed with HCD or HFD were compared, at the time points 0 (before starting the diets), and after 7, 14, 28 or 56 days. Activities of stearoyl-CoA desaturase-1 (SCD-1), ∆-6 desaturase (D6D), elongases and de novo lipogenesis (DNL) were estimated. Liver mRNA expression of acetyl-CoA carboxylase 1 (ACC1) was evaluated as an additional indicator of the de novo lipogenesis. Myeloperoxidase activity, nitric oxide (NO) production, and mRNA expressions of F4/80, type I collagen, interleukin (IL)-6, IL-1β, IL-10, and tumor necrosis factor-α (TNF-α) were measured as indication of the liver inflammatory state. The HCD group had more intense lipid deposition, particularly of saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs). This group also showed higher DNL, SCD-1, and D6D activities associated with increased NO concentration, as well as myeloperoxidase activity. Livers from the HFD group showed higher elongase activity, stored more polyunsaturated fatty acids (PUFAs) and had a lower omega-6/omega-3 fatty acid ( n -6/ n -3) ratio. In conclusion, liver lipid accumulation, fatty acids (FA) composition and inflammation were modulated by the dietary composition of lipids and carbohydrates. The HCD group had more potent lipogenic and inflammatory effects in comparison with HFD.

  10. Liver Fatty Acid Composition and Inflammation in Mice Fed with High-Carbohydrate Diet or High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Lorena Gimenez da Silva-Santi

    2016-10-01

    Full Text Available Both high-carbohydrate diet (HCD and high-fat diet (HFD modulate liver fat accumulation and inflammation, however, there is a lack of data on the potential contribution of carbohydrates and lipids separately. For this reason, the changes in liver fatty acid (FA composition in male Swiss mice fed with HCD or HFD were compared, at the time points 0 (before starting the diets, and after 7, 14, 28 or 56 days. Activities of stearoyl-CoA desaturase-1 (SCD-1, ∆-6 desaturase (D6D, elongases and de novo lipogenesis (DNL were estimated. Liver mRNA expression of acetyl-CoA carboxylase 1 (ACC1 was evaluated as an additional indicator of the de novo lipogenesis. Myeloperoxidase activity, nitric oxide (NO production, and mRNA expressions of F4/80, type I collagen, interleukin (IL-6, IL-1β, IL-10, and tumor necrosis factor-α (TNF-α were measured as indication of the liver inflammatory state. The HCD group had more intense lipid deposition, particularly of saturated fatty acids (SFAs and monounsaturated fatty acids (MUFAs. This group also showed higher DNL, SCD-1, and D6D activities associated with increased NO concentration, as well as myeloperoxidase activity. Livers from the HFD group showed higher elongase activity, stored more polyunsaturated fatty acids (PUFAs and had a lower omega-6/omega-3 fatty acid (n-6/n-3 ratio. In conclusion, liver lipid accumulation, fatty acids (FA composition and inflammation were modulated by the dietary composition of lipids and carbohydrates. The HCD group had more potent lipogenic and inflammatory effects in comparison with HFD.

  11. Branched-chain amino acids and ammonia metabolism in liver disease: therapeutic implications.

    Science.gov (United States)

    Holecek, Milan

    2013-10-01

    The rationale for recommendation of branched-chain amino acids (BCAA; valine, leucine, and isoleucine) in treatment of liver failure is based on their unique pharmacologic properties, stimulatory effect on ammonia detoxification to glutamine (GLN), and decreased concentrations in liver cirrhosis. Multiple lines of evidence have shown that the main cause of the BCAA deficiency in liver cirrhosis is their consumption in skeletal muscle for synthesis of glutamate, which acts as a substrate for ammonia detoxification to GLN and that the BCAA administration to patients with liver failure may exert a number of positive effects that may be more pronounced in patients with marked depression of BCAA levels. On the other hand, due to the stimulatory effect of BCAA on GLN synthesis, BCAA supplementation may lead to enhanced ammonia production from GLN breakdown in the intestine and the kidneys and thus exert harmful effects on the development of hepatic encephalopathy. Therefore, to enhance therapeutic effectiveness of the BCAA in patients with liver injury, their detrimental effect on ammonia production, which is negligible in healthy people and/or patients with other disorders, should be avoided. In treatment of hepatic encephalopathy, simultaneous administration of the BCAA (to correct amino acid imbalance and promote ammonia detoxification to GLN) with α-ketoglutarate (to inhibit GLN breakdown to ammonia in enterocytes) and/or phenylbutyrate (to enhance GLN excretion by the kidneys) is suggested. Attention should be given to the type of liver injury, gastrointestinal bleeding, signs of inflammation, and the dose of BCAA. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Dynamic-contrast-enhanced magnetic resonance imaging of cirrhotic liver parenchyma: A comparison between gadolinium–diethylenetriamine pentaacetic acid and gadolinium–ethoxybenzyl–diethylenetriamine pentaacetic acid

    OpenAIRE

    Lin, Chun-Yi; Chang, Wei-Chou; Chou, Chen-Te; Chen, Ran-Chou

    2015-01-01

    Background: The newly developed magnetic-resonance-imaging (MRI) hepatocyte-specific contrast agent, gadolinium–ethoxybenzyl–diethylenetriamine pentaacetic acid (Gd–EOB–DTPA), has different excretion pathways from the conventional MRI contrast agent, gadolinium–diethylenetriamine pentaacetic acid (Gd–DTPA). In this study, we compare the enhancement effect of the liver and renal parenchyma between these two contrast agents for patients with liver cirrhosis. Methods: We retrospectively inclu...

  13. Lysosomal acid lipase deficiency in rats: Lipid analyses and lipase activities in liver and spleen

    International Nuclear Information System (INIS)

    Kuriyama, M.; Yoshida, H.; Suzuki, M.; Fujiyama, J.; Igata, A.

    1990-01-01

    We report the biological characterization of an animal model of a genetic lipid storage disease analogous to human Wolman's disease. Affected rats accumulated cholesteryl esters (13.3-fold), free cholesterol (2.8-fold), and triglycerides (5.4-fold) in the liver, as well as cholesteryl esters (2.5-fold) and free cholesterol (1.33-fold) in the spleen. Triglycerides did not accumulate, and the levels actually decreased in the spleen. Analysis of the fatty acid composition of the cholesteryl esters and triglycerides showed high percentages of linoleic acid (18:2) and arachidonic acid (20:4) in both organs, especially in the liver. No accumulation of phospholipids, neutral glycosphingolipids, or gangliosides was found in the affected rats. Acid lipase activity for [14C]triolein, [14C]cholesteryl oleate, and 4-methyl-umbelliferyl oleate was deficient in both the liver and spleen of affected rats. Lipase activity at neutral pH was normal in both liver and spleen. Heterozygous rats showed intermediate utilization of these substrates in both organs at levels between those for affected rats and those for normal controls, although they did not accumulate any lipids. These data suggest that these rats represent an animal counterpart of Wolman's disease in humans

  14. Modulation of O-GlcNAc Levels in the Liver Impacts Acetaminophen-Induced Liver Injury by Affecting Protein Adduct Formation and Glutathione Synthesis.

    Science.gov (United States)

    McGreal, Steven R; Bhushan, Bharat; Walesky, Chad; McGill, Mitchell R; Lebofsky, Margitta; Kandel, Sylvie E; Winefield, Robert D; Jaeschke, Hartmut; Zachara, Natasha E; Zhang, Zhen; Tan, Ee Phie; Slawson, Chad; Apte, Udayan

    2018-04-01

    Overdose of acetaminophen (APAP) results in acute liver failure. We have investigated the role of a posttranslational modification of proteins called O-GlcNAcylation, where the O-GlcNAc transferase (OGT) adds and O-GlcNAcase (OGA) removes a single β-D-N-acetylglucosamine (O-GlcNAc) moiety, in the pathogenesis of APAP-induced liver injury. Hepatocyte-specific OGT knockout mice (OGT KO), which have reduced O-GlcNAcylation, and wild-type (WT) controls were treated with 300 mg/kg APAP and the development of injury was studied over a time course from 0 to 24 h. OGT KO mice developed significantly lower liver injury as compared with WT mice. Hepatic CYP2E1 activity and glutathione (GSH) depletion following APAP treatment were not different between WT and OGT KO mice. However, replenishment of GSH and induction of GSH biosynthesis genes were significantly faster in the OGT KO mice. Next, male C57BL/6 J mice were treated Thiamet-G (TMG), a specific inhibitor of OGA to induce O-GlcNAcylation, 1.5 h after APAP administration and the development of liver injury was studied over a time course of 0-24 h. TMG-treated mice exhibited significantly higher APAP-induced liver injury. Treatment with TMG did not affect hepatic CYP2E1 levels, GSH depletion, APAP-protein adducts, and APAP-induced mitochondrial damage. However, GSH replenishment and GSH biosynthesis genes were lower in TMG-treated mice after APAP overdose. Taken together, these data indicate that induction in cellular O-GlcNAcylation exacerbates APAP-induced liver injury via dysregulation of hepatic GSH replenishment response.

  15. Ursolic acid and luteolin-7-glucoside improve lipid profiles and increase liver glycogen content through glycogen synthase kinase-3.

    Science.gov (United States)

    Azevedo, Marisa F; Camsari, Cagri; Sá, Carla M; Lima, Cristovao F; Fernandes-Ferreira, Manuel; Pereira-Wilson, Cristina

    2010-06-01

    In the present study, two phytochemicals - ursolic acid (UA) and luteolin-7-glucoside (L7G) - were assessed in vivo in healthy rats regarding effects on plasma glucose and lipid profile (total cholesterol, HDL and LDL), as well as liver glycogen content, in view of their importance in the aetiology of diabetes and associated complications. Both UA and L7G significantly decreased plasma glucose concentration. UA also significantly increased liver glycogen levels accompanied by phosphorylation of glycogen synthase kinase-3 (GSK3). The increase in glycogen deposition induced by UA (mediated by GSK3) could have contributed to the lower plasma glucose levels observed. Both compounds significantly lowered total plasma cholesterol and low-density lipoprotein levels, and, in addition, UA increased plasma high-density lipoprotein levels. Our results show that UA particularly may be useful in preventable strategies for people at risk of developing diabetes and associated cardiovascular complications by improving plasma glucose levels and lipid profile, as well as by promoting liver glycogen deposition.

  16. Involvement of immune-related factors in diclofenac-induced acute liver injury in mice

    International Nuclear Information System (INIS)

    Yano, Azusa; Higuchi, Satonori; Tsuneyama, Koichi; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2012-01-01

    Drug-induced liver injury (DILI) is a major safety concern in drug development and clinical drug therapy. However, the underlying mechanism of DILI is little known. It is difficult to predict DILI in humans due to the lack of experimental animal models. Diclofenac, a non-steroidal anti-inflammatory drug rarely causes severe liver injury in human, but there is some evidence for immunoallergic idiosyncratic reactions. In this study, the mechanism of diclofenac-induced liver injury in mice was investigated. First, we established the dosing condition for liver injury in normal mice. Plasma ALT and AST levels were significantly increased in diclofenac-administered (80 mg/kg, i.p.) mice in a dose- and time-dependent manner. Among several interleukins (ILs) and chemokines, mRNA expression of helper T (Th) 17 cell-mediated factors, such as retinoid orphan receptor (ROR)-γt, and signal transducers and activators of transcription factor (STAT) 3 in the liver, and the plasma IL-17 level were significantly increased. Neutralization of IL-17 tended to suppress the hepatotoxicity of diclofenac, suggesting that IL-17 was partly involved. Gadolinium chloride (GdCl 3 ) administration demonstrated that Kupffer cells are not likely to be involved in diclofenac hepatotoxicity. Hepatic expressions of IL-1β mRNA and plasma IL-1β were significantly increased soon after the diclofenac administration. Then, the results of an in vivo neutralization study of IL-1β suggested that IL-1β was involved early in the time of pathogenesis of the diclofenac-induced liver injury. In conclusion, we firstly developed a diclofenac-induced acute liver injury model in normal mice, and the involvement of IL-17 and IL-1β was clarified.

  17. Modeled Perfluorooctanoic Acid (PFOA) Exposure and Liver Function in a Mid-Ohio Valley Community.

    Science.gov (United States)

    Darrow, Lyndsey A; Groth, Alyx C; Winquist, Andrea; Shin, Hyeong-Moo; Bartell, Scott M; Steenland, Kyle

    2016-08-01

    Perfluorooctanoic acid (PFOA or C8) has hepatotoxic effects in animals. Cross-sectional epidemiologic studies suggest PFOA is associated with liver injury biomarkers. We estimated associations between modeled historical PFOA exposures and liver injury biomarkers and medically validated liver disease. Participants completed surveys during 2008-2011 reporting demographic, medical, and residential history information. Self-reported liver disease, including hepatitis, fatty liver, enlarged liver and cirrhosis, was validated with healthcare providers. Alanine aminotransferase (ALT), γ-glutamyltransferase (GGT) and direct bilirubin, markers of liver toxicity, were obtained from blood samples collected in the C8 Health Project (2005-2006). Historically modeled PFOA exposure, estimated using environmental fate and transport models and participant residential histories, was analyzed in relation to liver biomarkers (n = 30,723, including 1,892 workers) and liver disease (n = 32,254, including 3,713 workers). Modeled cumulative serum PFOA was positively associated with ALT levels (p for trend indicating possible liver toxicity. An increase from the first to the fifth quintile of cumulative PFOA exposure was associated with a 6% increase in ALT levels (95% CI: 4, 8%) and a 16% increased odds of having above-normal ALT (95% CI: odds ratio: 1.02, 1.33%). There was no indication of association with either elevated direct bilirubin or GGT; however, PFOA was associated with decreased direct bilirubin. We observed no evidence of an effect of cumulative exposure (with or without a 10-year lag) on all liver disease (n = 647 cases), nor on enlarged liver, fatty liver, and cirrhosis only (n = 427 cases). Results are consistent with previous cross-sectional studies showing association between PFOA and ALT, a marker of hepatocellular damage. We did not observe evidence that PFOA increases the risk of clinically diagnosed liver disease. Darrow LA, Groth AC, Winquist A, Shin HM, Bartell SM

  18. Role of hypoxia inducing factor-1β in alcohol-induced autophagy, steatosis and liver injury in mice.

    Directory of Open Access Journals (Sweden)

    Hong-Min Ni

    Full Text Available Chronic alcohol causes liver hypoxia and steatosis, which eventually develops into alcoholic liver disease (ALD. While it has been known that alcohol consumption activates hepatic hypoxia inducing factor-1α (HIF-1α, conflicting results regarding the role of HIF-1α in alcohol-induced liver injury and steatosis in mice have been reported. In the present study, we aimed to use hepatocyte-specific HIF-1β knockout mice to eliminate the possible compensatory effects of the single knockout of the 1α subunit of HIF to study the role of HIFs in ALD. C57BL/6 wild type mice were treated with acute ethanol to mimic human binge drinking. Matched wild-type and hepatocyte specific HIF-1β knockout mice were also subjected to a recently established Gao-binge alcohol model to mimic chronic plus binge conditions, which is quite common in human alcoholics. We found that acute alcohol treatment increased BNIP3 and BNIP3L/NIX expression in primary cultured hepatocytes and in mouse livers, suggesting that HIF may be activated in these models. We further found that hepatocyte-specific HIF-1β knockout mice developed less steatosis and liver injury following the Gao-binge model or acute ethanol treatment compared with their matched wild type mice. Mechanistically, protection against Gao-binge treatment-induced steatosis and liver injury was likely associated with increased FoxO3a activation and subsequent induction of autophagy in hepatocyte-specific HIF-1β knockout mice.

  19. Exploring BSEP Inhibition-Mediated Toxicity with a Mechanistic Model of Drug-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Jeffrey L Woodhead

    2014-11-01

    Full Text Available Inhibition of the bile salt export pump (BSEP has been linked to incidence of drug-induced liver injury (DILI, presumably by the accumulation of toxic bile acids in the liver. We have previously constructed and validated a model of bile acid disposition within DILIsym®, a mechanistic model of DILI. In this paper, we use DILIsym® to simulate the DILI response of the hepatotoxic BSEP inhibitors bosentan and CP-724,714 and the non-hepatotoxic BSEP inhibitor telmisartan in humans in order to explore whether we can predict that hepatotoxic BSEP inhibitors can cause bile acid accumulation to reach toxic levels. We also simulate bosentan in rats in order to illuminate potential reasons behind the lack of toxicity in rats compared to the toxicity observed in humans. DILIsym® predicts that bosentan, but not telmisartan, will cause mild hepatocellular ATP decline and serum ALT elevation in a simulated population of humans. The difference in hepatotoxic potential between bosentan and telmisartan is consistent with clinical observations. However, DILIsym® underpredicts the incidence of bosentan toxicity. DILIsym® also predicts that bosentan will not cause toxicity in a simulated population of rats, and that the difference between the response to bosentan in rats and in humans is primarily due to the less toxic bile acid pool in rats. Our simulations also suggest a potential synergistic role for bile acid accumulation and mitochondrial electron transport chain inhibition in producing the observed toxicity in CP-724,714, and suggest that CP-724,714 metabolites may also play a role in the observed toxicity. Our work also compares the impact of competitive and noncompetitive BSEP inhibition for CP-724,714 and demonstrates that noncompetitive inhibition leads to much greater bile acid accumulation and potential toxicity. Our research demonstrates the potential for mechanistic modeling to contribute to the understanding of how bile acid transport inhibitors

  20. Insights into the molecular mechanisms of Polygonum multiflorum Thunb-induced liver injury: a computational systems toxicology approach.

    Science.gov (United States)

    Wang, Yin-Yin; Li, Jie; Wu, Zeng-Rui; Zhang, Bo; Yang, Hong-Bin; Wang, Qin; Cai, Ying-Chun; Liu, Gui-Xia; Li, Wei-Hua; Tang, Yun

    2017-05-01

    An increasing number of cases of herb-induced liver injury (HILI) have been reported, presenting new clinical challenges. In this study, taking Polygonum multiflorum Thunb (PmT) as an example, we proposed a computational systems toxicology approach to explore the molecular mechanisms of HILI. First, the chemical components of PmT were extracted from 3 main TCM databases as well as the literature related to natural products. Then, the known targets were collected through data integration, and the potential compound-target interactions (CTIs) were predicted using our substructure-drug-target network-based inference (SDTNBI) method. After screening for hepatotoxicity-related genes by assessing the symptoms of HILI, a compound-target interaction network was constructed. A scoring function, namely, Ascore, was developed to estimate the toxicity of chemicals in the liver. We conducted network analysis to determine the possible mechanisms of the biphasic effects using the analysis tools, including BiNGO, pathway enrichment, organ distribution analysis and predictions of interactions with CYP450 enzymes. Among the chemical components of PmT, 54 components with good intestinal absorption were used for analysis, and 2939 CTIs were obtained. After analyzing the mRNA expression data in the BioGPS database, 1599 CTIs and 125 targets related to liver diseases were identified. In the top 15 compounds, seven with Ascore values >3000 (emodin, quercetin, apigenin, resveratrol, gallic acid, kaempferol and luteolin) were obviously associated with hepatotoxicity. The results from the pathway enrichment analysis suggest that multiple interactions between apoptosis and metabolism may underlie PmT-induced liver injury. Many of the pathways have been verified in specific compounds, such as glutathione metabolism, cytochrome P450 metabolism, and the p53 pathway, among others. Hepatitis symptoms, the perturbation of nine bile acids and yellow or tawny urine also had corresponding pathways

  1. The Protective Role of Zinc Sulphate on Ethanol -Induced Liver and Kidney Damages in Rats

    International Nuclear Information System (INIS)

    Al-Damegh, Mona Abdalla

    2007-01-01

    Around the world more and more people suffer from alcoholism. Addiction problems, alcoholism and excessive use of drugs both medical and nonmedical, are major causes of liver and kidney damage in adults. The purpose of this study was to investigate on the protective role of zinc sulphate on liver and kidney in rats with acute alcoholism. Wistar albino rats were divided into four groups. Group I; control group, group 2; given only Zinc Sulphate (100 mg/kg/day for 3days), group 3; rats given absolute ethanol (1 ml of absolute ethanol administrated by gavage technique to each rat), group 4 given Zinc sulphate prior to the administration of absolute ethanol. The results of this study revealed that acute ethanol exposure caused degenerative morphological changes in the liver and kidney. Significant difference were found in the levels of serum, liver, kidney super oxide dismutase(SOD), catalase (CAT), nitric oxide(NO), and malondialdehyde (MDA) in the ethanol group compared to the control group. Moreover ,serum urea, creatnine, uric acid, alkaline phoshpatase and transaminases activities (GOTand GPT) were increased in the ethanol group compared to the control group. On the other hand,administration of zinc sulphate in the ethanol group caused a significant decrease in the degenerative changes, lipid peroxidation, antioxidant enzymes, and nitric oxide in serum, liver, and kidney. It can be concluded that zinc Sulphate has a protective role on the ethanol induced liver and kidney injury. In addition ,nitric oxide is involved in the mechanism of acute alcohol intoxication. (author)

  2. Branched-Chain Amino Acids Ameliorate Fibrosis and Suppress Tumor Growth in a Rat Model of Hepatocellular Carcinoma with Liver Cirrhosis

    Science.gov (United States)

    Cha, Jung Hoon; Bae, Si Hyun; Kim, Hye Lim; Park, Na Ri; Choi, Eun Suk; Jung, Eun Sun; Choi, Jong Young; Yoon, Seung Kew

    2013-01-01

    Purpose Recent studies have revealed that branched-chain amino acids (BCAA) reduce the development of hepatocellular carcinoma (HCC) in patients with obesity and hepatitis C virus infection by improving insulin resistance (IR). The aim of this study was to examine the anti-cancer and anti-fibrotic effects of BCAA on the development of diethylnitrosamine (DEN)-induced HCC and liver cirrhosis in a rat model. Methods Male SD rats received weekly intraperitoneal injections of DEN (50 mg/kg of body weight) for 16 weeks to induce HCC. They were fed a diet containing 3% casein, 3% or 6% BCAA for 13 weeks beginning 6 weeks after DEN administration. DEN was used to induce HCC through stepwise development from cirrhosis to HCC. The effect of BCAA was evaluated in tumor tissues by histopathologic analyses, reverse transcription-polymerase chain reaction, and Western blotting. Results The mean area and number of dysplastic nodules (DNs) and tumors in the casein group tended to be larger than those in the BCAA group 16 weeks after DEN administration. The mean fibrotic area in the BCAA group was smaller than that in the casein group. The BCAA group showed decreased mRNA levels for markers of fibrosis, angiogenesis, and apoptosis inhibition. Compared with the casein group, the BCAA group had lower levels of α-smooth muscle actin, vascular endothelial growth factor, p-β-catenin, p-p38 mitogen-activated protein kinase, proliferating cell nuclear antigen, and caspase-3 protein expression, as well as a higher level of cleaved caspase-3 protein expression. Conclusions BCAA supplementation of the diet ameliorated liver fibrosis and HCC development in a DEN-induced rat model of HCC with liver cirrhosis, but not in the IR model. These results provide a rationale for anti-fibrosis and chemoprevention using BCAA treatment for HCC with liver cirrhosis, as well as decreasing the ammonia level. PMID:24223741

  3. Branched-chain amino acids ameliorate fibrosis and suppress tumor growth in a rat model of hepatocellular carcinoma with liver cirrhosis.

    Directory of Open Access Journals (Sweden)

    Jung Hoon Cha

    Full Text Available PURPOSE: Recent studies have revealed that branched-chain amino acids (BCAA reduce the development of hepatocellular carcinoma (HCC in patients with obesity and hepatitis C virus infection by improving insulin resistance (IR. The aim of this study was to examine the anti-cancer and anti-fibrotic effects of BCAA on the development of diethylnitrosamine (DEN-induced HCC and liver cirrhosis in a rat model. METHODS: Male SD rats received weekly intraperitoneal injections of DEN (50 mg/kg of body weight for 16 weeks to induce HCC. They were fed a diet containing 3% casein, 3% or 6% BCAA for 13 weeks beginning 6 weeks after DEN administration. DEN was used to induce HCC through stepwise development from cirrhosis to HCC. The effect of BCAA was evaluated in tumor tissues by histopathologic analyses, reverse transcription-polymerase chain reaction, and Western blotting. RESULTS: The mean area and number of dysplastic nodules (DNs and tumors in the casein group tended to be larger than those in the BCAA group 16 weeks after DEN administration. The mean fibrotic area in the BCAA group was smaller than that in the casein group. The BCAA group showed decreased mRNA levels for markers of fibrosis, angiogenesis, and apoptosis inhibition. Compared with the casein group, the BCAA group had lower levels of α-smooth muscle actin, vascular endothelial growth factor, p-β-catenin, p-p38 mitogen-activated protein kinase, proliferating cell nuclear antigen, and caspase-3 protein expression, as well as a higher level of cleaved caspase-3 protein expression. CONCLUSIONS: BCAA supplementation of the diet ameliorated liver fibrosis and HCC development in a DEN-induced rat model of HCC with liver cirrhosis, but not in the IR model. These results provide a rationale for anti-fibrosis and chemoprevention using BCAA treatment for HCC with liver cirrhosis, as well as decreasing the ammonia level.

  4. The bile acid sensor FXR protects against dyslipidemia and aortic plaques development induced by the HIV protease inhibitor ritonavir in mice.

    Directory of Open Access Journals (Sweden)

    Andrea Mencarelli

    Full Text Available BACKGROUND: Although human immunodeficiency virus (HIV-related morbidity and mortality rates in patients treated with a combination of high active antiretroviral therapy (HAART have declined, significant metabolic/vascular adverse effects associated with the long term use of HIV protease inhibitors (PIs have emerged as a significant side effect. Here we illustrate that targeting the bile acid sensor farnesoid X receptor (FXR protects against dyslipidemia and vascular injury induced HIV-PIs in rodents. METHODOLOGY/PRINCIPAL FINDINGS: Administration of the HIV PI ritonavir to wild type mice increased plasma triacylglycerols and cholesterol levels and this effect was exacerbated by dosing ritonavir to mice harbouring a disrupted FXR. Dyslipidemia induced by ritonavir associated with a shift in the liver expression of signature genes, Sterol Regulatory Element-Binding Protein (SREBP-1 and fatty acid synthase. Treating wild type mice with the FXR agonist (chenodeoxycholic acid, CDCA protected against development of dyslipidemia induced by ritonavir. Administration of ritonavir to ApoE(-/- mice, a strain that develop spontaneously atherosclerosis, increased the extent of aortic plaques without worsening the dyslipidemia. Treating these mice with CDCA reduced the extent of aortic plaques by 70% without changing plasma lipoproteins or the liver expression of signature genes. A beneficial effect on aortic plaques was also obtained by treating ApoE(-/- mice with gemfibrozil, a PPARα agonist. FXR activation counter-regulated induction of expression/activity of CD36 caused by HIV-PIs in circulating monocytes and aortic plaques. In macrophages cell lines, CDCA attenuated CD36 induction and uptake of acetylated LDL caused by ritonavir. Natural and synthetic FXR ligands reduced the nuclear translocation of SREBP1c caused by ritonavir. CONCLUSIONS/SIGNIFICANCE: Activation of the bile acid sensor FXR protects against dyslipidemia and atherosclerotic caused by

  5. Liver and Skin Histopathology in Adults with Acid Sphingomyelinase Deficiency (Niemann-Pick Disease Type B)

    OpenAIRE

    Thurberg, Beth L.; Wasserstein, Melissa P.; Schiano, Thomas; O’Brien, Fanny; Richards, Susan; Cox, Gerald F.; McGovern, Margaret M.

    2012-01-01

    Acid sphingomyelinase deficiency (ASMD) is a lysosomal storage disorder characterized by the pathologic accumulation of sphingomyelin in multiple cells types, and occurs most prominently within the liver, spleen and lungs, leading to significant clinical disease. Seventeen ASMD patients underwent a liver biopsy during baseline screening for a Phase 1 trial of recombinant human acid sphingomyelinase (rhASM) in adults with Niemann-Pick disease type B. Eleven of the 17 were enrolled in the trial...

  6. Ursodeoxycholic acid in advanced polycystic liver disease: A phase 2 multicenter randomized controlled trial.

    Science.gov (United States)

    D'Agnolo, Hedwig M A; Kievit, Wietske; Takkenberg, R Bart; Riaño, Ioana; Bujanda, Luis; Neijenhuis, Myrte K; Brunenberg, Ellen J L; Beuers, Ulrich; Banales, Jesus M; Drenth, Joost P H

    2016-09-01

    Ursodeoxycholic acid (UDCA) inhibits proliferation of polycystic human cholangiocytes in vitro and hepatic cystogenesis in a rat model of polycystic liver disease (PLD) in vivo. Our aim was to test whether UDCA may beneficially affect liver volume in patients with advanced PLD. We conducted an international, multicenter, randomized controlled trial in symptomatic PLD patients from three tertiary referral centers. Patients with PLD and total liver volume (TLV) ⩾2500ml were randomly assigned to UDCA treatment (15-20mg/kg/day) for 24weeks, or to no treatment. Primary endpoint was proportional change in TLV. Secondary endpoints were change in symptoms and health-related quality of life. We performed a post-hoc analysis of the effect of UDCA on liver cyst volume (LCV). We included 34 patients and were able to assess primary endpoint in 32 patients, 16 with autosomal dominant polycystic kidney disease (ADPKD) and 16 with autosomal dominant polycystic liver disease (ADPLD). Proportional TLV increased by 4.6±7.7% (mean TLV increased from 6697ml to 6954ml) after 24weeks of UDCA treatment compared to 3.1±3.8% (mean TLV increased from 5512ml to 5724ml) in the control group (p=0.493). LCV was not different after 24weeks between controls and UDCA treated patients (p=0.848). However, UDCA inhibited LCV growth in ADPKD patients compared to ADPKD controls (p=0.049). UDCA administration for 24weeks did not reduce TLV in advanced PLD, but UDCA reduced LCV growth in ADPKD patients. Future studies might explore whether ADPKD and ADPLD patients respond differently to UDCA treatment. Current therapies for polycystic liver disease are invasive and have high recurrence risks. Our trial showed that the drug, ursodeoxycholic acid, was not able to reduce liver volume in patients with polycystic liver disease. However, a subgroup analysis in patients that have kidney cysts as well showed that liver cyst volume growth was reduced in patients who received ursodeoxycholic acid in comparison

  7. Tauroursodeoxycholate Protects Rat Hepatocytes from Bile Acid-Induced Apoptosis via β1-Integrin- and Protein Kinase A-Dependent Mechanisms

    Directory of Open Access Journals (Sweden)

    Annika Sommerfeld

    2015-05-01

    Full Text Available Background/Aims: Ursodeoxycholic acid, which in vivo is rapidly converted into its taurine conjugate, is frequently used for the treatment of cholestatic liver disease. Apart from its choleretic effects, tauroursodeoxycholate (TUDC can protect hepatocytes from bile acid-induced apoptosis, but the mechanisms underlying its anti-apoptotic effects are poorly understood. Methods: These mechanisms were investigated in perfused rat liver and isolated rat hepatocytes. Results: It was found that TUDC inhibited the glycochenodeoxycholate (GCDC-induced activation of the CD95 death receptor at the level of association between CD95 and the epidermal growth factor receptor. This was due to a rapid TUDC-induced β1-integrin-dependent cyclic AMP (cAMP signal with induction of the dual specificity mitogen-activated protein (MAP kinase phosphatase 1 (MKP-1, which prevented GCDC-induced phosphorylation of mitogen-activated protein kinase kinase 4 (MKK4 and c-jun-NH2-terminal kinase (JNK activation. Furthermore, TUDC induced a protein kinase A (PKA-mediated serine/threonine phosphorylation of the CD95, which was recently identified as an internalization signal for CD95. Furthermore, TUDC inhibited GCDC-induced CD95 targeting to the plasma membrane in a β1-integrin-and PKA-dependent manner. In line with this, the β1-integrin siRNA knockdown in sodium taurocholate cotransporting polypeptide (Ntcp-transfected HepG2 cells abolished the protective effect of TUDC against GCDC-induced apoptosis. Conclusion: TUDC exerts its anti-apoptotic effect via a β1-integrin-mediated formation of cAMP, which prevents CD95 activation by hydrophobic bile acids at the levels of JNK activation and CD95 serine/threonine phosphorylation.

  8. MicroRNA-122 is involved in oxidative stress in isoniazid-induced liver injury in mice.

    Science.gov (United States)

    Song, L; Zhang, Z R; Zhang, J L; Zhu, X B; He, L; Shi, Z; Gao, L; Li, Y; Hu, B; Feng, F M

    2015-10-27

    Many studies have shown that the pathogenesis of liver injury includes oxidative stress. MicroRNA-122 may be a marker for the early diagnosis of drug-induced liver injury. However, the relationship between microRNA-122 and oxidative stress in anti-tuberculosis drug-induced liver injury remains unknown. We measured changes in tissue microRNA-122 levels and indices of oxidative stress during liver injury in mice after administration of isoniazid, a first-line anti-tuberculosis drug. We quantified microRNA-122 expression and indices of oxidative stress at 7 time points, including 1, 3, and 5 days and 1, 2, 3, and 4 weeks. The tissue microRNA-122 levels and oxidative stress significantly changed at 3 and 5 days, suggesting that isoniazid-induced liver injury reduces oxidative stress and microRNA-122 expression compared to in the control group (P microRNA-122, began to change at 5 days (P microRNA-122 profile may affect oxidative stress by regulating mitochondrial ribosome protein S11 gene during isoniazid-induced liver injury, which may contribute to the response mechanisms of microRNA-122 and oxidative stress.

  9. Salvianolic acid A preconditioning confers protection against concanavalin A-induced liver injury through SIRT1-mediated repression of p66shc in mice

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaomei; Hu, Yan; Zhai, Xiaohan; Lin, Musen [Department of Pharmacology, Dalian Medical University, Dalian 116044 (China); Chen, Zhao; Tian, Xiaofeng; Zhang, Feng [Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Gao, Dongyan; Ma, Xiaochi [Department of Pharmacology, Dalian Medical University, Dalian 116044 (China); Lv, Li, E-mail: lv_li@126.com [Department of Pharmacology, Dalian Medical University, Dalian 116044 (China); Yao, Jihong, E-mail: Yaojihong65@hotmail.com [Department of Pharmacology, Dalian Medical University, Dalian 116044 (China)

    2013-11-15

    Salvianolic acid A (SalA) is a phenolic carboxylic acid derivative extracted from Salvia miltiorrhiza. It has many biological and pharmaceutical activities. The purpose of this study was to investigate the effect of SalA on concanavalin A (ConA)-induced acute hepatic injury in Kunming mice and to explore the role of SIRT1 in such an effect. The results showed that in vivo pretreatment with SalA significantly reduced ConA-induced elevation in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and decreased levels of the hepatotoxic cytokines such as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Moreover, the SalA pretreatment ameliorated the increases in NF-κB and in cleaved caspase-3 caused by ConA exposure. Whereas, the pretreatment completely reversed expression of the B-cell lymphoma-extra large (Bcl-xL). More importantly, the SalA pretreatment significantly increased the expression of SIRT1, a NAD{sup +}-dependent deacetylase, which was known to attenuate acute hypoxia damage and metabolic liver diseases. In our study, the increase in SIRT1 was closely associated with down-regulation of the p66 isoform (p66shc) of growth factor adapter Shc at both protein and mRNA levels. In HepG2 cell culture, SalA pretreatment increased SIRT1 expression in a time and dose-dependent manner and such an increase was abrogated by siRNA knockdown of SIRT1. Additionally, inhibition of SIRT1 significantly reversed the decreased expression of p66shc, and attenuated SalA-induced p66shc down-regulation. Collectively, the present study indicated that SalA may be a potent activator of SIRT and that SalA can alleviate ConA-induced hepatitis through SIRT1-mediated repression of the p66shc pathway. - Highlights: • We report for the first time that SalA protects against ConA-induced hepatitis. • We find that SalA is a potential activator of SIRT1. • SalA's protection against hepatitis involves SIRT1-mediated repression of p

  10. Human liver phosphatase 2A: cDNA and amino acid sequence of two catalytic subunit isotypes

    International Nuclear Information System (INIS)

    Arino, J.; Woon, Chee Wai; Brautigan, D.L.; Miller, T.B. Jr.; Johnson, G.L.

    1988-01-01

    Two cDNA clones were isolated from a human liver library that encode two phosphatase 2A catalytic subunits. The two cDNAs differed in eight amino acids (97% identity) with three nonconservative substitutions. All of the amino acid substitutions were clustered in the amino-terminal domain of the protein. Amino acid sequence of one human liver clone (HL-14) was identical to the rabbit skeletal muscle phosphatase 2A cDNA (with 97% nucleotide identity). The second human liver clone (HL-1) is encoded by a separate gene, and RNA gel blot analysis indicates that both mRNAs are expressed similarly in several human clonal cell lines. Sequence comparison with phosphatase 1 and 2A indicates highly divergent amino acid sequences at the amino and carboxyl termini of the proteins and identifies six highly conserved regions between the two proteins that are predicted to be important for phosphatase enzymatic activity

  11. Liver phospholipids fatty acids composition in response to different types of diets in rats of both sexes.

    Science.gov (United States)

    Ranković, Slavica; Popović, Tamara; Martačić, Jasmina Debeljak; Petrović, Snježana; Tomić, Mirko; Ignjatović, Đurđica; Tovilović-Kovačević, Gordana; Glibetić, Maria

    2017-05-19

    Dietary intake influence changes in fatty acids (FA) profiles in liver which plays a central role in fatty acid metabolism, triacylglycerol synthesis and energy homeostasis. We investigated the effects of 4-weeks treatment with milk- and fish-based diet, on plasma biochemical parameters and FA composition of liver phospholipids (PL) in rats of both sexes. Adult, 4 months old, Wistar rats of both sexes, were fed with different types of diets: standard, milk-based and fish-based, during 4 weeks. Analytical characterization of different foods was done. Biochemical parameters in plasma were determined. Fatty acid composition was analyzed by gas-chromatography. Statistical significance of FA levels was tested with two-way analysis of variance (ANOVA) using the sex of animals and treatment (type of diet) as factors on logarithmic or trigonometric transformed data. Our results showed that both, milk- and fish-based diet, changed the composition and ratio of rat liver phospholipids FA, in gender-specific manner. Initially present sex differences appear to be dietary modulated. Although, applied diets changed the ratio of total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), and effects were gender specific. Milk-based diet lowered SFA and elevated MUFA in males and increased PUFA in females vs. standard diet. The same diet decreased n-3, increased n-6 and n-6/n-3 ratio in males. Fish-based diet increased n-3, decreased n-6 and n-6/n-3 ratio vs. standard and milk-based diet in females. However, the ratio of individual FA in liver PL was also dietary-influenced, but with gender specific manner. While in females fish-based diet decreased AA (arachidonic acid) increased level of EPA (eicosapentaenoic acid), DPA (docosapentaenoic acid) and DHA (docosahexaenoic acid), the same diet elevated only DHA levels in males. Gender related variations in FA composition of rat liver PL were observed, and results have shown that

  12. A novel 35 kDa frog liver acid metallophosphatase.

    Science.gov (United States)

    Szalewicz, A; Radomska, B; Strzelczyk, B; Kubicz, A

    1999-04-12

    The lower molecular weight (35 kDa) acid phosphatase from the frog (Rana esculenta) liver is a glycometalloenzyme susceptible to activation by reducing agents and displaying tartrate and fluoride resistance. Metal chelators (EDTA, 1,10-phenanthroline) inactivate the enzyme reversibly in a time- and temperature-dependent manner. The apoenzyme is reactivated by divalent transition metal cations, i. e. cobalt, zinc, ferrous, manganese, cadmium and nickel to 130%, 75%, 63%, 62%, 55% and 34% of the original activity, respectively. Magnesium, calcium, cupric and ferric ions were shown to be ineffective in this process. Metal analysis by the emission spectrometry method (inductively coupled plasma-atomic emission spectrometry) revealed the presence of zinc, iron and magnesium. The time course of the apoenzyme reactivation, the stabilization effect and the relatively high resistance to oxidizing conditions indicate that the zinc ion is crucial for the enzyme activity. The presence of iron was additionally confirmed by the visible absorption spectrum of the enzyme with a shoulder at 417 nm and by the electron paramagnetic resonance line of high spin iron(III) with geff of 2.4. The active center containing only zinc or both zinc and iron ions is proposed. The frog liver lower molecular weight acid phosphatase is a novel metallophosphatase of lower vertebrate origin, distinct from the mammalian tartrate-resistant, purple acid phosphatases.

  13. RORα Induces KLF4-Mediated M2 Polarization in the Liver Macrophages that Protect against Nonalcoholic Steatohepatitis

    Directory of Open Access Journals (Sweden)

    Yong-Hyun Han

    2017-07-01

    Full Text Available The regulation of M1/M2 polarization in liver macrophages is closely associated with the progression of nonalcoholic steatohepatitis (NASH; however, the mechanism involved in this process remains unclear. Here, we describe the orphan nuclear receptor retinoic-acid-related orphan receptor α (RORα as a key regulator of M1/M2 polarization in hepatic residential Kupffer cells (KCs and infiltrated monocyte-derived macrophages. RORα enhanced M2 polarization in KCs by inducing the kruppel-like factor 4. M2 polarization was defective in KCs and bone-marrow-derived macrophages of the myeloid-specific RORα null mice, and these mice were susceptible to HFD-induced NASH. We found that IL-10 played an important role in connecting the function of M2 KCs to lipid accumulation and apoptosis in hepatocytes. Importantly, M2 polarization was controlled by a RORα activator, JC1-40, which improved symptoms of NASH. Our results suggest that the M2-promoting effects of RORα in liver macrophages may provide better therapeutic strategies against NASH.

  14. Andrographis paniculata leaf extract prevents thioacetamide-induced liver cirrhosis in rats.

    Directory of Open Access Journals (Sweden)

    Daleya Abdulaziz Bardi

    Full Text Available This study investigated the hepatoprotective effects of ethanolic Andrographis paniculata leaf extract (ELAP on thioacetamide-induced hepatotoxicity in rats. An acute toxicity study proved that ELAP is not toxic in rats. To examine the effects of ELAP in vivo, male Sprague Dawley rats were given intraperitoneal injections of vehicle 10% Tween-20, 5 mL/kg (normal control or 200 mg/kg TAA thioacetamide (to induce liver cirrhosis three times per week. Three additional groups were treated with thioacetamide plus daily oral silymarin (50 mg/kg or ELAP (250 or 500 mg/kg. Liver injury was assessed using biochemical tests, macroscopic and microscopic tissue analysis, histopathology, and immunohistochemistry. In addition, HepG2 and WRL-68 cells were treated in vitro with ELAP fractions to test cytotoxicity. Rats treated with ELAP exhibited significantly lower liver/body weight ratios and smoother, more normal liver surfaces compared with the cirrhosis group. Histopathology using Hematoxylin and Eosin along with Masson's Trichrome stain showed minimal disruption of hepatic cellular structure, minor fibrotic septa, a low degree of lymphocyte infiltration, and minimal collagen deposition after ELAP treatment. Immunohistochemistry indicated that ELAP induced down regulation of proliferating cell nuclear antigen. Also, hepatic antioxidant enzymes and oxidative stress parameters in ELAP-treated rats were comparable to silymarin-treated rats. ELAP administration reduced levels of altered serum liver biomarkers. ELAP fractions were non-cytotoxic to WRL-68 cells, but possessed anti-proliferative activity on HepG2 cells, which was confirmed by a significant elevation of lactate dehydrogenase, reactive oxygen species, cell membrane permeability, cytochrome c, and caspase-8,-9, and, -3/7 activity in HepG2 cells. A reduction of mitochondrial membrane potential was also detected in ELAP-treated HepG2 cells. The hepatoprotective effect of 500 mg/kg of ELAP is proposed

  15. Andrographis paniculata leaf extract prevents thioacetamide-induced liver cirrhosis in rats.

    Science.gov (United States)

    Abdulaziz Bardi, Daleya; Halabi, Mohammed Farouq; Hassandarvish, Pouya; Rouhollahi, Elham; Paydar, Mohammadjavad; Moghadamtousi, Soheil Zorofchian; Al-Wajeeh, Nahla Saeed; Ablat, Abdulwali; Abdullah, Nor Azizan; Abdulla, Mahmood Ameen

    2014-01-01

    This study investigated the hepatoprotective effects of ethanolic Andrographis paniculata leaf extract (ELAP) on thioacetamide-induced hepatotoxicity in rats. An acute toxicity study proved that ELAP is not toxic in rats. To examine the effects of ELAP in vivo, male Sprague Dawley rats were given intraperitoneal injections of vehicle 10% Tween-20, 5 mL/kg (normal control) or 200 mg/kg TAA thioacetamide (to induce liver cirrhosis) three times per week. Three additional groups were treated with thioacetamide plus daily oral silymarin (50 mg/kg) or ELAP (250 or 500 mg/kg). Liver injury was assessed using biochemical tests, macroscopic and microscopic tissue analysis, histopathology, and immunohistochemistry. In addition, HepG2 and WRL-68 cells were treated in vitro with ELAP fractions to test cytotoxicity. Rats treated with ELAP exhibited significantly lower liver/body weight ratios and smoother, more normal liver surfaces compared with the cirrhosis group. Histopathology using Hematoxylin and Eosin along with Masson's Trichrome stain showed minimal disruption of hepatic cellular structure, minor fibrotic septa, a low degree of lymphocyte infiltration, and minimal collagen deposition after ELAP treatment. Immunohistochemistry indicated that ELAP induced down regulation of proliferating cell nuclear antigen. Also, hepatic antioxidant enzymes and oxidative stress parameters in ELAP-treated rats were comparable to silymarin-treated rats. ELAP administration reduced levels of altered serum liver biomarkers. ELAP fractions were non-cytotoxic to WRL-68 cells, but possessed anti-proliferative activity on HepG2 cells, which was confirmed by a significant elevation of lactate dehydrogenase, reactive oxygen species, cell membrane permeability, cytochrome c, and caspase-8,-9, and, -3/7 activity in HepG2 cells. A reduction of mitochondrial membrane potential was also detected in ELAP-treated HepG2 cells. The hepatoprotective effect of 500 mg/kg of ELAP is proposed to result from

  16. Fads1 and 2 are promoted to meet instant need for long-chain polyunsaturated fatty acids in goose fatty liver.

    Science.gov (United States)

    Osman, Rashid H; Liu, Long; Xia, Lili; Zhao, Xing; Wang, Qianqian; Sun, Xiaoxian; Zhang, Yihui; Yang, Biao; Zheng, Yun; Gong, Daoqing; Geng, Tuoyu

    2016-07-01

    Global prevalence of non-alcoholic fatty liver disease (NAFLD) constitutes a threat to human health. Goose is a unique model of NAFLD for discovering therapeutic targets as its liver can develop severe steatosis without overt injury. Fatty acid desaturase (Fads) is a potential therapeutic target as Fads expression and mutations are associated with liver fat. Here, we hypothesized that Fads was promoted to provide a protection for goose fatty liver. To test this, goose Fads1 and Fads2 were sequenced. Fads1/2/6 expression was determined in goose liver and primary hepatocytes by quantitative PCR. Liver fatty acid composition was also analyzed by gas chromatography. Data indicated that hepatic Fads1/2/6 expression was gradually increased with the time of overfeeding. In contrast, trans-C18:1n9 fatty acid (Fads inhibitor) was reduced. However, enhanced Fads capacity for long-chain polyunsaturated fatty acid (LC-PUFA) synthesis was not sufficient to compensate for the depleted LC-PUFAs in goose fatty liver. Moreover, cell studies showed that Fads1/2/6 expression was regulated by fatty liver-associated factors. Together, these findings suggest Fads1/2 as protective components are promoted to meet instant need for LC-PUFAs in goose fatty liver, and we propose this is required for severe hepatic steatosis without liver injury.

  17. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    Directory of Open Access Journals (Sweden)

    G.B. Peres

    2014-06-01

    Full Text Available It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old, while 26 age-matched controls received only vehicle. The livers were removed on either the 10th or the 30th day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA of cathepsins B and L was also decreased on the 10th, but not on the 30th day. Sulfatase decreased 30% on the 30th day, while glycosidases did not vary (or presented a transitory and slight decrease. There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver.

  18. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Peres, G.B. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Bioquímica, São Paulo, SP, Brasil, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Juliano, M.A. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Biofísica, São Paulo, SP, Brasil, Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Aguiar, J.A.K.; Michelacci, Y.M. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Bioquímica, São Paulo, SP, Brasil, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-05-09

    It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old), while 26 age-matched controls received only vehicle. The livers were removed on either the 10{sup th} or the 30{sup th} day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA) of cathepsins B and L was also decreased on the 10{sup th}, but not on the 30{sup th} day. Sulfatase decreased 30% on the 30{sup th} day, while glycosidases did not vary (or presented a transitory and slight decrease). There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver.

  19. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    International Nuclear Information System (INIS)

    Peres, G.B.; Juliano, M.A.; Aguiar, J.A.K.; Michelacci, Y.M.

    2014-01-01

    It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old), while 26 age-matched controls received only vehicle. The livers were removed on either the 10 th or the 30 th day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA) of cathepsins B and L was also decreased on the 10 th , but not on the 30 th day. Sulfatase decreased 30% on the 30 th day, while glycosidases did not vary (or presented a transitory and slight decrease). There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver

  20. Farnesoid X receptor, the bile acid sensing nuclear receptor, in liver regeneration

    Directory of Open Access Journals (Sweden)

    Guodong Li

    2015-03-01

    Full Text Available The liver is unique in regenerative potential, which could recover the lost mass and function after injury from ischemia and resection. The underlying molecular mechanisms of liver regeneration have been extensively studied in the past using the partial hepatectomy (PH model in rodents, where 2/3 PH is carried out by removing two lobes. The whole process of liver regeneration is complicated, orchestrated event involving a network of connected interactions, which still remain fully elusive. Bile acids (BAs are ligands of farnesoid X receptor (FXR, a nuclear receptor of ligand-activated transcription factor. FXR has been shown to be highly involved in liver regeneration. BAs and FXR not only interact with each other but also regulate various downstream targets independently during liver regeneration. Moreover, recent findings suggest that tissue-specific FXR also contributes to liver regeneration significantly. These novel findings suggest that FXR has much broader role than regulating BA, cholesterol, lipid and glucose metabolism. Therefore, these researches highlight FXR as an important pharmaceutical target for potential use of FXR ligands to regulate liver regeneration in clinic. This review focuses on the roles of BAs and FXR in liver regeneration and the current underlying molecular mechanisms which contribute to liver regeneration.

  1. Experimental evidence for therapeutic potential of taurine in the treatment of nonalcoholic fatty liver disease

    Science.gov (United States)

    Gentile, Christopher L.; Nivala, Angela M.; Gonzales, Jon C.; Pfaffenbach, Kyle T.; Wang, Dong; Wei, Yuren; Jiang, Hua; Orlicky, David J.; Petersen, Dennis R.; Maclean, Kenneth N.

    2011-01-01

    The incidence of obesity is now at epidemic proportions and has resulted in the emergence of nonalcoholic fatty liver disease (NAFLD) as a common metabolic disorder that can lead to liver injury and cirrhosis. Excess sucrose and long-chain saturated fatty acids in the diet may play a role in the development and progression of NAFLD. One factor linking sucrose and saturated fatty acids to liver damage is dysfunction of the endoplasmic reticulum (ER). Although there is currently no proven, effective therapy for NAFLD, the amino sulfonic acid taurine is protective against various metabolic disturbances, including alcohol-induced liver damage. The present study was undertaken to evaluate the therapeutic potential of taurine to serve as a preventative treatment for diet-induced NAFLD. We report that taurine significantly mitigated palmitate-mediated caspase-3 activity, cell death, ER stress, and oxidative stress in H4IIE liver cells and primary hepatocytes. In rats fed a high-sucrose diet, dietary taurine supplementation significantly reduced hepatic lipid accumulation, liver injury, inflammation, plasma triglycerides, and insulin levels. The high-sucrose diet resulted in an induction of multiple components of the unfolded protein response in the liver consistent with ER stress, which was ameliorated by taurine supplementation. Treatment of mice with the ER stress-inducing agent tunicamycin resulted in liver injury, unfolded protein response induction, and hepatic lipid accumulation that was significantly ameliorated by dietary supplementation with taurine. Our results indicate that dietary supplementation with taurine offers significant potential as a preventative treatment for NAFLD. PMID:21957160

  2. Role of nonalcoholic fatty liver disease as risk factor for drug-induced hepatotoxicity

    Science.gov (United States)

    Massart, Julie; Begriche, Karima; Moreau, Caroline; Fromenty, Bernard

    2017-01-01

    Background Obesity is often associated with nonalcoholic fatty liver disease (NAFLD), which refers to a large spectrum of hepatic lesions including fatty liver, nonalcoholic steatohepatitis (NASH) and cirrhosis. Different investigations showed or suggested that obesity and NAFLD are able to increase the risk of hepatotoxicity of different drugs. Some of these drugs could induce more frequently an acute hepatitis in obese individuals whereas others could worsen pre-existing NAFLD. Aim The main objective of the present review was to collect the available information regarding the role of NAFLD as risk factor for drug-induced hepatotoxicity. For this purpose, we performed a data-mining analysis using different queries including drug-induced liver injury (or DILI), drug-induced hepatotoxicity, fatty liver, nonalcoholic fatty liver disease (or NAFLD), steatosis and obesity. The main data from the collected articles are reported in this review and when available, some pathophysiological hypotheses are put forward. Relevance for patients Drugs that could pose a potential risk in obese patients include compounds belonging to different pharmacological classes such as acetaminophen, halothane, methotrexate, rosiglitazone, stavudine and tamoxifen. For some of these drugs, experimental investigations in obese rodents confirmed the clinical observations and unveiled different pathophysiological mechanisms which could explain why these pharmaceuticals are particularly hepatotoxic in obesity and NAFLD. Other drugs such as pentoxifylline, phenobarbital and omeprazole might also pose a risk but more investigations are required to determine whether this risk is significant or not. Because obese people often take several drugs for the treatment of different obesity-related diseases such as type 2 diabetes, hyperlipidemia and coronary heart disease, it is urgent to identify the main pharmaceuticals that can cause acute hepatitis on a fatty liver background or induce NAFLD worsening

  3. Serum Sialic Acid Concentration and Content in ApoB-Containing Lipoproteins in Liver Diseases.

    Science.gov (United States)

    Gudowska, Monika; Gruszewska, Ewa; Cylwik, Bogdan; Panasiuk, Anatol; Filisiak, Robert; Szmitkowski, Maciej; Chrostek, Lech

    2016-01-01

    The great significance for the metabolism of lipoproteins is the composition of carbohydrate chain of apolipoproteins, where sialic acid (SA) is located. In VILDL and LDL sialic acid is attached to apolipoprotein B. The sialylation of serum proteins including apolipoprotein B can be affected in the course of liver diseases. Therefore, the aim of this study was to assess the effect of liver diseases on the concentration and content of SA in ApoB-containing lipoproteins. The tested group consisted of 165 patients (118 males, 47 females) with liver diseases: alcoholic cirrhosis, non-alcoholic cirrhosis, chronic hepatitis, toxic hepatitis, chronic viral hepatitis, and liver cancer. ApoB-containing lipoproteins were isolated by a turbidimetric procedure and SA concentration was measured according to an enzymatic method. There was a significant increase in the serum concentration of SA in ApoB-containing lipoproteins in viral hepatitis. Although the serum concentration of ApoB was not significantly different between specific liver diseases, the serum levels of SA in ApoB-containing lipoproteins appeared to be different. There is an association between SA concentration and triglycerides in alcoholic cirrhosis and viral hepatitis. Also, in viral hepatitis SA concentration correlated negatively with HDL-cholesterol. The content of SA in ApoB-containing lipoproteins in alcoholic cirrhosis and viral hepatitis was significantly higher than that in the control group, but did not differ between diseases. This study may explain the variations in serum lipids and lipoproteins in liver diseases. It seems that the reason for these abnormalities is the changes in the concentration of sialic acid in ApoB-containing lipoproteins.

  4. Identification of Novel Translational Urinary Biomarkers for Acetaminophen-Induced Acute Liver Injury Using Proteomic Profiling in Mice

    NARCIS (Netherlands)

    van Swelm, Rachel P. L.; Laarakkers, Coby M. M.; van der Kuur, Ellen C.; Morava-Kozicz, Eva; Wevers, Ron A.; Augustijn, Kevin D.; Touw, Daan J.; Sandel, Maro H.; Masereeuw, Rosalinde; Russel, Frans G. M.

    2012-01-01

    Drug-induced liver injury (DILI) is the leading cause of acute liver failure. Currently, no adequate predictive biomarkers for DILI are available. This study describes a translational approach using proteomic profiling for the identification of urinary proteins related to acute liver injury induced

  5. Drug-Induced Liver Injury Associated with Complementary and Alternative Medicines

    Science.gov (United States)

    Takahashi, Koji; Kanda, Tatsuo; Yasui, Shin; Haga, Yuki; Kumagai, Junichiro; Sasaki, Reina; Wu, Shuang; Nakamoto, Shingo; Nakamura, Masato; Arai, Makoto; Yokosuka, Osamu

    2016-01-01

    A 24-year-old man was admitted due to acute hepatitis with unknown etiology. After his condition and laboratory data gradually improved with conservative therapy, he was discharged 1 month later. Two months after his discharge, however, liver dysfunction reappeared. After his mother accidentally revealed that he took complementary and alternative medicine, discontinuation of the therapy caused his condition to improve. Finally, he was diagnosed with a recurrent drug-induced liver injury associated with Japanese complementary and alternative medicine. It is important to take the medical history in detail and consider complementary and alternative medicine as a cause of liver disease. PMID:28100990

  6. Role of cholangiocyte bile Acid transporters in large bile duct injury after rat liver transplantation.

    Science.gov (United States)

    Cheng, Long; Zhao, Lijin; Li, Dajiang; Liu, Zipei; Chen, Geng; Tian, Feng; Li, Xiaowu; Wang, Shuguang

    2010-07-27

    The pathogenesis of nonanastomotic strictures with a patent hepatic artery remains to be investigated. This study focuses on the role of cholangiocyte bile acid transporters in bile duct injury after liver transplantation. Sprague-Dawley rats were divided into three groups (n=20 for each): the sham-operated group (Sham), the transplant group with 1-hr donor liver cold preservation (CP-1h), and the transplant group with 12-hr donor liver cold preservation (CP-12h). Bile was collected for biochemical analysis. The histopathologic evaluation of bile duct injury was performed and the cholangiocyte bile acid transporters apical sodium-dependent bile acid transporter (ASBT), ileal lipid binding protein (ILBP), and Ostalpha/Ostbeta were investigated. RESULTS.: The immunohistochemical assay suggested that ASBT and ILBP were expressed exclusively on large bile duct epithelial cells, whereas Ostalpha and Ostbeta were expressed on both small and large bile ducts. Western blot and quantitative polymerase chain reaction analysis showed that the expression levels of these transporters dramatically decreased after transplantation. It took seven to 14 days for ILBP, Ostalpha, and Ostbeta to recover, whereas ASBT recovered within 3 days and even reached a peak above the normal level seven days after operation. In the CP-12h group, the ratios of the ASBT/ILBP, ASBT/Ostalpha and ASBT/Ostbeta expression levels were correlated with the injury severity scores of large but not small bile ducts. The results suggest that the unparallel alteration of cholangiocyte bile acid transporters may play a potential role in large bile duct injury after liver transplantation with prolonged donor liver preservation.

  7. Bone morphogenetic protein 9 as a key regulator of liver progenitor cells in DDC-induced cholestatic liver injury.

    Science.gov (United States)

    Addante, Annalisa; Roncero, Cesáreo; Almalé, Laura; Lazcanoiturburu, Nerea; García-Álvaro, María; Fernández, Margarita; Sanz, Julián; Hammad, Seddik; Nwosu, Zeribe C; Lee, Se-Jin; Fabregat, Isabel; Dooley, Steven; Ten Dijke, Peter; Herrera, Blanca; Sánchez, Aránzazu

    2018-05-11

    Bone morphogenetic protein 9 (BMP9) interferes with liver regeneration upon acute injury, while promoting fibrosis upon carbon tetrachloride-induced chronic injury. We have now addressed the role of BMP9 in 3,5 diethoxicarbonyl-1,4 dihydrocollidine (DDC)-induced cholestatic liver injury, a model of liver regeneration mediated by hepatic progenitor cell (known as oval cell), exemplified as ductular reaction and oval cell expansion. WT and BMP9KO mice were submitted to DDC diet. Livers were examined for liver injury, fibrosis, inflammation and oval cell expansion by serum biochemistry, histology, RT-qPCR and western blot. BMP9 signalling and effects in oval cells were studied in vitro using western blot and transcriptional assays, plus functional assays of DNA synthesis, cell viability and apoptosis. Crosslinking assays and short hairpin RNA approaches were used to identify the receptors mediating BMP9 effects. Deletion of BMP9 reduces liver damage and fibrosis, but enhances inflammation upon DDC feeding. Molecularly, absence of BMP9 results in overactivation of PI3K/AKT, ERK-MAPKs and c-Met signalling pathways, which together with an enhanced ductular reaction and oval cell expansion evidence an improved regenerative response and decreased damage in response to DDC feeding. Importantly, BMP9 directly targets oval cells, it activates SMAD1,5,8, decreases cell growth and promotes apoptosis, effects that are mediated by Activin Receptor-Like Kinase 2 (ALK2) type I receptor. We identify BMP9 as a negative regulator of oval cell expansion in cholestatic injury, its deletion enhancing liver regeneration. Likewise, our work further supports BMP9 as an attractive therapeutic target for chronic liver diseases. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Nutritional Therapy in Liver Transplantation

    Directory of Open Access Journals (Sweden)

    Ahmed Hammad

    2017-10-01

    Full Text Available Protein-energy malnourishment is commonly encountered in patients with end-stage liver disease who undergo liver transplantation. Malnutrition may further increase morbidity, mortality and costs in the post-transplantation setting. The importance of carefully assessing the nutritional status during the work-up of patients who are candidates for liver replacement is widely recognized. The metabolic abnormalities induced by liver failure render the conventional assessment of nutritional status to be challenging. Preoperative loss of skeletal muscle mass, namely, sarcopenia, has a significant detrimental impact on post-transplant outcomes. It is essential to provide sufficient nutritional support during all phases of liver transplantation. Oral nutrition is preferred, but tube enteral nutrition may be required to provide the needed energy intake. Herein, the latest currently employed perioperative nutritional interventions in liver transplant recipients are thoroughly illustrated including synbiotics, micronutrients, branched-chain amino acid supplementation, immunonutrition formulas, fluid and electrolyte balance, the offering of nocturnal meals, dietary counselling, exercise and rehabilitation.

  9. Sida rhomboidea.Roxb extract alleviates pathophysiological changes in experimental in vivo and in vitro models of high fat diet/fatty acid induced non-alcoholic steatohepatitis.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Dandekar, Deven S; Devkar, Ranjitsinh V; Ramachandran, A V

    2012-03-01

    The present study was aim to evaluate protective role of Sida rhomboidea.Roxb (SR) extract against high fat diet/fatty acid induced pathophysiological alterations in experimental model of non-alcoholic steatohepatitis (NASH). Effect of SR extract on plasma levels of markers of hepatic damage, plasma and hepatic lipids, mitochondrial oxidative stress, status of enzymatic and non-enzymatic antioxidants and histopathological changes in liver tissue were evaluated in high fat diet fed C57BL/6J mice. Also, the effect of SR supplementation on lipid accumulation, lipid peroxidation, cytotoxicity and cell viability were evaluated in oleic acid treated HepG2 cells. Supplementation of NASH mice with SR extract prevented high fat diet induced elevation in plasma marker enzymes of liver damage, plasma and hepatic lipids, mitochondrial oxidative stress and compromised enzymatic and non-enzymatic antioxidant status. Further, addition of SR extract to in vitro HepG2 cells minimized oleic acid induced lipid accumulation, higher lipid peroxidation, cytotoxicity and reduced cell viability. These in vivo and in vitro studies suggest that SR extract has the potential of preventing high fat/fatty acid induced NASH mainly due to its hypolipidemic and antioxidant activities. Copyright © 2010 Elsevier GmbH. All rights reserved.

  10. Effect of Docosahexaenoic Acid Ingestion on Temporal Change in Urinary Excretion of Mercapturic Acid in ODS Rats.

    Science.gov (United States)

    Sekine, Seiji; Kubo, Kazuhiro; Tadokoro, Tadahiro; Saito, Morio

    2007-11-01

    We hypothesized a suppressive mechanism for docosahexaenoic acid (22:6n-3; DHA)-induced tissue lipid peroxidation in which the degradation products, especially aldehydic compounds, are conjugated with glutathione through catalysis by glutathione S-transferases, and then excreted into urine as mercapturic acids. In the present study, ascorbic acid-requiring ODS rats were fed a diet containing DHA (3.6% of total energy) for 31 days. Lipid peroxides including degradation products and their scavengers in the liver and kidney were determined, and the temporal change in the urinary excretion of mercapturic acids was also measured. The activity of aldehyde dehydrogenase, which catalyzes the oxidation and detoxification of aldehydes, tended to be higher in the liver of DHA-fed rats. The levels of lipid peroxides as measured by thiobarbituric acid-reactive substances and aldehydic compounds were higher and that of alpha-tocopherol was lower in the liver, and the pattern of temporal changes in the urinary excretion of mercapturic acids was also different between the n-6 linoleic acid and DHA-fed rats. Accordingly, we presume from these results that after dietary DHA-induced lipid peroxidation, a proportion of the lipid peroxidation-derived aldehydic degradation products is excreted into urine as mercapturic acids.

  11. Involvement of immune-related factors in diclofenac-induced acute liver injury in mice.

    Science.gov (United States)

    Yano, Azusa; Higuchi, Satonori; Tsuneyama, Koichi; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2012-03-11

    Drug-induced liver injury (DILI) is a major safety concern in drug development and clinical drug therapy. However, the underlying mechanism of DILI is little known. It is difficult to predict DILI in humans due to the lack of experimental animal models. Diclofenac, a non-steroidal anti-inflammatory drug rarely causes severe liver injury in human, but there is some evidence for immunoallergic idiosyncratic reactions. In this study, the mechanism of diclofenac-induced liver injury in mice was investigated. First, we established the dosing condition for liver injury in normal mice. Plasma ALT and AST levels were significantly increased in diclofenac-administered (80 mg/kg, i.p.) mice in a dose- and time-dependent manner. Among several interleukins (ILs) and chemokines, mRNA expression of helper T (Th) 17 cell-mediated factors, such as retinoid orphan receptor (ROR)-γt, and signal transducers and activators of transcription factor (STAT) 3 in the liver, and the plasma IL-17 level were significantly increased. Neutralization of IL-17 tended to suppress the hepatotoxicity of diclofenac, suggesting that IL-17 was partly involved. Gadolinium chloride (GdCl₃) administration demonstrated that Kupffer cells are not likely to be involved in diclofenac hepatotoxicity. Hepatic expressions of IL-1β mRNA and plasma IL-1β were significantly increased soon after the diclofenac administration. Then, the results of an in vivo neutralization study of IL-1β suggested that IL-1β was involved early in the time of pathogenesis of the diclofenac-induced liver injury. In conclusion, we firstly developed a diclofenac-induced acute liver injury model in normal mice, and the involvement of IL-17 and IL-1β was clarified. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Liver transcriptome profile in pigs with extreme phenotypes of intramuscular fatty acid composition

    Directory of Open Access Journals (Sweden)

    Ramayo-Caldas Yuliaxis

    2012-10-01

    Full Text Available Abstract Background New advances in high-throughput technologies have allowed for the massive analysis of genomic data, providing new opportunities for the characterization of the transcriptome architectures. Recent studies in pigs have employed RNA-Seq to explore the transcriptome of different tissues in a reduced number of animals. The main goal of this study was the identification of differentially-expressed genes in the liver of Iberian x Landrace crossbred pigs showing extreme phenotypes for intramuscular fatty acid composition using RNA-Seq. Results The liver transcriptomes of two female groups (H and L with phenotypically extreme intramuscular fatty acid composition were sequenced using RNA-Seq. A total of 146 and 180 unannotated protein-coding genes were identified in intergenic regions for the L and H groups, respectively. In addition, a range of 5.8 to 7.3% of repetitive elements was found, with SINEs being the most abundant elements. The expression in liver of 186 (L and 270 (H lncRNAs was also detected. The higher reproducibility of the RNA-Seq data was validated by RT-qPCR and porcine expression microarrays, therefore showing a strong correlation between RT-qPCR and RNA-Seq data (ranking from 0.79 to 0.96, as well as between microarrays and RNA-Seq (r=0.72. A differential expression analysis between H and L animals identified 55 genes differentially-expressed between groups. Pathways analysis revealed that these genes belong to biological functions, canonical pathways and three gene networks related to lipid and fatty acid metabolism. In concordance with the phenotypic classification, the pathways analysis inferred that linolenic and arachidonic acids metabolism was altered between extreme individuals. In addition, a connection was observed among the top three networks, hence suggesting that these genes are interconnected and play an important role in lipid and fatty acid metabolism. Conclusions In the present study RNA-Seq was used

  13. Induced expression of hepatic N-methyl-D-aspartate receptor 2C subunit gene during liver enlargement induced by lead nitrate, a hepatocellular mitogen.

    Science.gov (United States)

    Nemoto, Kiyomitsu; Ikeda, Ayaka; Hikida, Tokihiro; Kojima, Misaki; Degawa, Masakuni

    2013-02-01

    We previously demonstrated the super-induced expression of the Grin2c gene encoding the N-methyl-D-aspartate receptor 2C subunit during the development of liver enlargement with hepatocellular hypertrophy induced by phenobarbital, clofibrate, or piperonyl butoxide. In the present study, we assessed whether or not Grin2c gene expression was induced during the development of chemically induced liver enlargement with hyperplasia. Male Sprague-Dawley (SD) rats, stroke-prone spontaneously hypertensive rats (SHRSPs), and SHRSP's normotensive control, Wistar-Kyoto (WKY) rats, were administered lead nitrate (LN) (0.1 mmol/kg, single i.v.), a direct inducer of liver hyperplasia, and changes in the level of Grin2c mRNA in the liver were assessed by real-time RT-PCR. The level of hepatic Grin2c mRNA was significantly higher 6-48 hr after the injection in SD rats (about 30~40- and 70-fold over the control at 6~24 hr and 48 hr, respectively) and in WKY rats (about 20-fold over the control only at 12 hr), but was not significantly higher in SHRSPs. Such differences in LN-induced levels of Grin2c mRNA among SD rats, WKY rats, and SHRSPs were closely correlated with those in the previously reported increase in liver weight 48 hr after LN administration. The present findings suggest that the increase in the level of hepatic Grin2c mRNA relates to development of chemically induced liver enlargement with hyperplasia.

  14. Dendrobium huoshanense polysaccharide prevents ethanol-induced liver injury in mice by metabolomic analysis.

    Science.gov (United States)

    Wang, Xiao-Yu; Luo, Jian-Ping; Chen, Rui; Zha, Xue-Qiang; Pan, Li-Hua

    2015-01-01

    The prevalence of alcohol consumption has increased in modern dietary life and alcoholic liver injury can follow. Dendrobium huoshanense polysaccharide (DHP) is a homogeneous polysaccharide isolated from Dendrobium huoshanense, which possesses hepatoprotection function. In this study, we investigated the metabolic profiles of serum and liver tissues extracts from control, ethanol-treated and DHP\\ethanol-treated mice using a UHPLC/LTQ Orbitrap XL MS-based metabolomics approach. Our results indicated that DHP alleviated early steatosis and inflammation in liver histology and the metabolomic analysis of serum and hepatic tissue revealed that first, ethanol treatment mainly altered phosphatidylcholines (PCs) including PC (13:0) and phosphocholine, arachidonic acid metabolites including 20-ethyl PGF2α and amino acids including L-Proline; Second, DHP supplementation ameliorated the altered metabolic levels particularly involved in phosphocholine and L-Proline. These data suggested that DHP might restore the perturbed metabolism pathways by ethanol exposure to prevent the progression of alcoholic liver injury. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Comparative in vitro metabolism of 1-14C-oleic acid and 1-14C-erucic acid in liver, heart and skeletal muscles of rats

    International Nuclear Information System (INIS)

    Bhatia, I.S.; Sharma, A.K.; Ahuja, S.P.

    1978-01-01

    In vitro oxidation of 14 C-oleic and 1- 14 C-erucic acid and their incorporation into lipids by liver, heart and skeletal muscles from female albino rats were studied. These tissues were obtained from rats maintained for 120 days on low fat diet or diets containing 15% mustard oil or 15% groundnut oil. In all these tissues from rats on different types of diets, the oxidation of 1- 14 C-erucic acid was lower than that 1- 14 C-oleic acid. There was little accumulation of lipids in heart after 120 days of feeding mustard oil. Oxidation of 1- 14 C-erucic acid was enhanced in liver, heart and skeletal muscles of rats conditioned to the mustard oil diet supplying erucic acid. Oxidation of erucic acid was maximum in liver and least in heart, whereas there were no differences in the oxidation of 1- 14 C-oleic acid in these tissues. Incorporation of 1- 14 C-oleic acid into triglycerides and phospholipids was not affected by the type of diet or tissues Incorporation of 1- 14 C-erucic acid was mainly into triglycerides of heart and skeletal muscles of rats not accustomed to mustard oil diet whereas these tissues from rats accustomed to mustard oil diets incorporated 1- 14 C-erucic acid both into the triglycerides and phospholipids. (author)

  16. Dynamic Contrast-Enhanced Magnetic Resonance Imaging with Gd-EOB-DTPA for the Evaluation of Liver Fibrosis Induced by Carbon Tetrachloride in Rats.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available To investigate the utility of dynamic contrast-enhanced MRI (DCE-MRI with Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA for detecting liver fibrosis induced by carbon tetrachloride (CCl4 in rats.This study was approved by the institutional animal care and use committee. Liver fibrosis in rats was induced by intraperitoneal injection of 1 mL/kg 50% CCl4 twice a week for 4-13 weeks. Control rats were injected with saline. Liver fibrosis was graded using the Metaviar score: no fibrosis (F0, mild fibrosis (F1-F2 and advanced fibrosis (F3-F4. DCE-MRI with Gd-EOB-DTPA was performed for all rats. Ktrans, Kep, Ve and iAUC of the liver parenchyma were measured. Relative enhancement (RE value of the liver was calculated on T1-weighted images at 15, 20 and 25 min after Gd-EOB-DTPA administration.Thirty-five rats were included: no fibrosis (n=13, mild fibrosis (n=11 and advanced fibrosis (n=11. Ktrans and iAUC values were highest in advanced fibrosis group and lowest in no fibrosis group (P<0.05. The area under the receiver operating characteristic curve (AUROC for fibrosis (stages F1 and greater were 0.773 and 0.882 for Ktrans and iAUC, respectively. AUROC for advanced fibrosis were 0.835 and 0.867 for Ktrans and iAUC, respectively. Kep and RE values were not able to differentiate fibrosis stages (all P>0.05.Ktrans and iAUC obtained from DCE-MRI with Gd-EOB-DTPA are useful for the detection and staging of rat liver fibrosis induced by CCl4.

  17. Arsenic induces apoptosis in mouse liver is mitochondria dependent and is abrogated by N-acetylcysteine

    International Nuclear Information System (INIS)

    Santra, Amal; Chowdhury, Abhijit; Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna

    2007-01-01

    Arsenicosis, caused by arsenic contamination of drinking water supplies, is a major public health problem in India and Bangladesh. Chronic liver disease, often with portal hypertension occurs in chronic arsenicosis, contributes to the morbidity and mortality. The early cellular events that initiate liver cell injury due to arsenicosis have not been studied. Our aim was to identify the possible mechanisms related to arsenic-induced liver injury in mice. Liver injury was induced in mice by arsenic treatment. The liver was used for mitochondrial oxidative stress, mitochondrial permeability transition (MPT). Evidence of apoptosis was sought by TUNEL test, caspase assay and histology. Pretreatment with N-acetyl-L-cysteine (NAC) was done to modulate hepatic GSH level. Arsenic treatment in mice caused liver injury associated with increased oxidative stress in liver mitochondria and alteration of MPT. Altered MPT facilitated cytochrome c release in the cytosol, activation of caspase 9 and caspase 3 activities and apoptotic cell death. Pretreatment of NAC to arsenic-treated mice abrogated all these alteration suggesting a glutathione (GSH)-dependent mechanism. Oxidative stress in mitochondria and inappropriate MPT are important in the pathogenesis of arsenic induced apoptotic liver cell injury. The phenomenon is GSH dependent and supplementation of NAC might have beneficial effects

  18. The Effects of Syzygium samarangense, Passiflora edulis and Solanum muricatum on Alcohol-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Yu-Jie Zhang

    2016-09-01

    Full Text Available Previous studies have shown that fruits have different effects on alcohol metabolism and alcohol-induced liver injury. The present work selected three fruits and aimed at studying the effects of Syzygium samarangense, Passiflora edulis and Solanum muricatum on alcohol-induced liver injury in mice. The animals were treated daily with alcohol and fruit juices for fifteen days. Chronic treatment with alcohol increased the levels of aspartate transaminase (AST, alanine transaminase (ALT, total bilirubin (TBIL, triglyceride (TG, malondialdehyde (MDA, and decreased total protein (TP. Histopathological evaluation also showed that ethanol induced extensive fat droplets in hepatocyte cytoplasm. Syzygium samarangense and Passiflora edulis normalized various biochemical parameters. Solanum muricatum increased the level of ALT and induced infiltration of inflammatory cells in the liver. These results strongly suggest that treatment with Syzygium samarangense and Passiflora edulis could protect liver from the injury of alcohol, while Solanum muricatum could aggravate the damage.

  19. Adipose Tissue Dysfunction and Altered Systemic Amino Acid Metabolism Are Associated with Non-Alcoholic Fatty Liver Disease.

    Directory of Open Access Journals (Sweden)

    Sulin Cheng

    Full Text Available Fatty liver is a major cause of obesity-related morbidity and mortality. The aim of this study was to identify early metabolic alterations associated with liver fat accumulation in 50- to 55-year-old men (n = 49 and women (n = 52 with and without NAFLD.Hepatic fat content was measured using proton magnetic resonance spectroscopy (1H MRS. Serum samples were analyzed using a nuclear magnetic resonance (NMR metabolomics platform. Global gene expression profiles of adipose tissues and skeletal muscle were analyzed using Affymetrix microarrays and quantitative PCR. Muscle protein expression was analyzed by Western blot.Increased branched-chain amino acid (BCAA, aromatic amino acid (AAA and orosomucoid were associated with liver fat accumulation already in its early stage, independent of sex, obesity or insulin resistance (p<0.05 for all. Significant down-regulation of BCAA catabolism and fatty acid and energy metabolism was observed in the adipose tissue of the NAFLD group (p<0.001for all, whereas no aberrant gene expression in the skeletal muscle was found. Reduced BCAA catabolic activity was inversely associated with serum BCAA and liver fat content (p<0.05 for all.Liver fat accumulation, already in its early stage, is associated with increased serum branched-chain and aromatic amino acids. The observed associations of decreased BCAA catabolism activity, mitochondrial energy metabolism and serum BCAA concentration with liver fat content suggest that adipose tissue dysfunction may have a key role in the systemic nature of NAFLD pathogenesis.

  20. Liver injury from Herbals and Dietary Supplements in the US Drug Induced Liver Injury Network

    Science.gov (United States)

    Navarro, Victor J.; Barnhart, Huiman; Bonkovsky, Herbert L.; Davern, Timothy; Fontana, Robert J.; Grant, Lafaine; Reddy, K. Rajender; Seeff, Leonard B.; Serrano, Jose; Sherker, Averell H.; Stolz, Andrew; Talwalkar, Jayant; Vega, Maricruz; Vuppalanchi, Raj

    2014-01-01

    Background The Drug-Induced Liver Injury Network (DILIN) studies hepatotoxicity due to conventional medications as well as herbals and dietary supplements (HDS). Rationale To characterize hepatotoxicity and its outcomes from HDS versus medications, patients with hepatotoxicity attributed to medications or HDS were enrolled prospectively between 2004 and 2013. The study took place among eight US referral centers that are part of the DILIN. Consecutive patients with liver injury referred to a DILIN center were eligible. The final sample comprised 130 (15.5%) of all subjects enrolled (839) who were judged to have experienced liver injury due to HDS. Hepatotoxicity due to HDS was evaluated by expert opinion. Demographic and clinical characteristics and outcome assessments including death and liver transplantation were ascertained. Cases were stratified and compared according to the type of agent implicated in liver injury; 45 had injury due to bodybuilding HDS, 85 due to non-bodybuilding HDS, and 709 due to medications. Main Results Liver injury due to HDS increased from 7% to 20% (p Bodybuilding HDS caused prolonged jaundice (median 91 days) in young men but did not result in any fatalities or liver transplantation. The remaining HDS cases presented as hepatocellular injury, predominantly in middle-aged women and more frequently led to death or transplantation compared to injury from medications (13% vs. 3%, p bodybuilding HDS is more severe than from bodybuilding HDS or medications, as evidenced by differences in unfavorable outcomes; death and transplantation. PMID:25043597

  1. Protective effects of a polymethoxy flavonoids-rich Citrus aurantium peel extract on liver fibrosis induced by bile duct ligation in mice.

    Science.gov (United States)

    Lim, Seol-Wa; Lee, Dong-Ryung; Choi, Bong-Keun; Kim, Hong-Suk; Yang, Seung Hwan; Suh, Joo-Won; Kim, Kyung Soo

    2016-12-01

    To evaluate the possible protective effect of Citrus aurantium peel extract (CAE) against apoptosis in cholestatic liver fibrosis induced by bile duct ligation in mice. Male ICR mice were divided to 5 groups: 1) Control group (Sham-operated mice), 2) Cholestatic liver injury group induced by bile duct ligation (BDL), 3) BDL mice treated with silymarin (200 mg/kg) for 4 weeks, 4) BDL mice treated with 50 mg/kg CAE for 4 weeks, 5) BDL mice treated with 200 mg/kg CAE for 4 weeks. Mice were sacrificed and liver fibrosis was evaluated by serum and hepatic tissue biochemistry tests and liver histopathological examination. Effects of CAE on inflammation and apoptosis gene regulation were investigated through real-time PCR. CAE effect on lipid metabolism related signaling was determined by western blot analysis. In BDL mice, administration of CAE for 4 weeks markedly attenuated liver fibrosis based on histopathological alteration. Serum and hepatic tissue biochemistry results revealed that CAE (50 and 200 mg/kg) decreased the levels of alanine transaminase, aspartate transaminase, gamma-glutamyl transferase, total bilirubin, nitric oxide, and thiobarbituric acid reactive substances. Real-time PCR and western blot analysis showed that CAE regulated inflammation, apoptosis, and lipid metabolism factors increased by BDL. Interleukin family, tumor necrosis factor α, and related apoptosis factors mRNA levels were increased by BDL treatment. However, these increases were suppressed by CAE administration. In addition, CAE effectively increased phosphorylation of AMP-activated protein kinase, nuclear factor E2-related factor 2, and related cytoprotective proteins. CAE can efficiently regulate BDL-induced liver injury with antioxidant, anti-inflammatory, and anti-apoptotic activities. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  2. Polydatin attenuates d-galactose-induced liver and brain damage through its anti-oxidative, anti-inflammatory and anti-apoptotic effects in mice.

    Science.gov (United States)

    Xu, Lie-Qiang; Xie, You-Liang; Gui, Shu-Hua; Zhang, Xie; Mo, Zhi-Zhun; Sun, Chao-Yue; Li, Cai-Lan; Luo, Dan-Dan; Zhang, Zhen-Biao; Su, Zi-Ren; Xie, Jian-Hui

    2016-11-09

    Accumulating evidence has shown that chronic injection of d-galactose (d-gal) can mimic natural aging, with accompanying liver and brain injury. Oxidative stress and apoptosis play a vital role in the aging process. In this study, the antioxidant ability of polydatin (PD) was investigated using four established in vitro systems. An in vivo study was also conducted to investigate the possible protective effect of PD on d-gal-induced liver and brain damage. The results showed that PD had remarkable in vitro free radical scavenging activity on 2,2-diphenyl-1-picryl-hydrazyl (DPPH˙), 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS + ˙) radical ions, and hydroxyl and superoxide anions. Results in vivo indicated that, in a group treated with d-gal plus PD, PD remarkably decreased the depression of body weight and organ indexes, reduced the levels of the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and alleviated alterations in liver and brain histopathology. PD also significantly decreased the level of MDA and elevated SOD, GSH-Px, CAT activity and T-AOC levels in the liver and brain. In addition, the levels of inflammatory mediators, such as TNF-α, IL-1β and IL-6 in serum were markedly reduced after PD treatment. Western blotting results revealed that PD treatment noticeably attenuated the d-gal-induced elevation of Bcl-2/Bax ratio and caspase-3 protein expression in liver and brain. Overall, our findings indicate that PD treatment could effectively attenuate d-gal-induced liver and brain damage, and the mechanism might be associated with decreasing the oxidative stress, inflammation and apoptosis caused by d-gal. PD holds good potential for further development into a promising pharmaceutical candidate for the treatment of age-associated diseases.

  3. Carvacrol attenuates N-nitrosodiethylamine induced liver injury in experimental Wistar rats

    Directory of Open Access Journals (Sweden)

    Balan Rajan

    2015-06-01

    Full Text Available Carvacrol is a main constituent in the essential oils of countless aromatic plants including Origanum Vulgare and Thymus vulgari, which has been assessed for substantial pharmacological properties. In recent years, notable research has been embarked on to establish the biological actions of Carvacrol for its promising use in clinical applications. The present study is an attempt to reveal the protective role of Carvacrol against N-Nitrosodiethylamine (DEN induced hepatic injury in male Wistar albino rats. DEN is an egregious toxin, present in numerous environmental factors, which enhances chemical driven liver damage by inducing oxidative stress and cellular injury. Administration of DEN (200 mg/kg bodyweight, I.P to rats results in elevated marker enzymes (in both serum and tissue. Carvacrol (15 mg/kg body weight suppressed the elevation of marker enzymes (in both serum and tissue and augmented the antioxidants levels. The hoisted activities of Phase I enzymes and inferior activities of Phase II enzymes were observed in DEN-administered animals, whereas Carvacrol treated animals showed improved near normal activity. Histological observations also support the protective role of Carvacrol against DEN induced liver damage. Final outcome from our findings intimate that Carvacrol might be beneficial in attenuating toxin induced liver damage.

  4. Tocilizumab-Induced Acute Liver Injury in Adult Onset Still’s Disease

    Directory of Open Access Journals (Sweden)

    Michael Drepper

    2013-01-01

    Full Text Available Background. Tocilizumab, a monoclonal humanized anti-IL-6 receptor antibody, is used in treatment of refractory adult onset Still’s disease (AOSD. Mild to moderate liver enzyme elevation is a well-known side effect, but severe liver injury has only been reported in 3 cases in the literature. Case. A young female suffering from corticoid and methotrexate refractory AOSD was treated by tocilizumab. After 19 months of consecutive treatment, she developed acute severe liver injury. Liver biopsy showed extensive hepatocellular necrosis with ballooned hepatocytes, highly suggestive of drug-induced liver injury. No other relevant drug exposure beside tocilizumab was recorded. She recovered totally after treatment discontinuation and an initial 3-day course of intravenous N-acetylcysteine with normalization of liver function tests after 6 weeks. Conclusion. Acute severe hepatitis can be associated with tocilizumab as documented in this case. Careful monitoring of liver function tests is warranted during tocilizumab treatment.

  5. Saccharomyces boulardii Administration Changes Gut Microbiota and Attenuates D-Galactosamine-Induced Liver Injury

    OpenAIRE

    Yu, Lei; Zhao, Xue-ke; Cheng, Ming-liang; Yang, Guo-zhen; Wang, Bi; Liu, Hua-juan; Hu, Ya-xin; Zhu, Li-li; Zhang, Shuai; Xiao, Zi-wen; Liu, Yong-mei; Zhang, Bao-fang; Mu, Mao

    2017-01-01

    Growing evidence has shown that gut microbiome is a key factor involved in liver health. Therefore, gut microbiota modulation with probiotic bacteria, such as Saccharomyces boulardii, constitutes a promising therapy for hepatosis. In this study, we aimed to investigate the protective effects of S. boulardii on D-Galactosamine-induced liver injury in mice. Liver function test and histopathological analysis both suggested that the liver injury can be effectively attenuated by S. boulardii admin...

  6. Saccharomyces boulardii Administration Changes Gut Microbiota and Attenuates D-Galactosamine-Induced Liver Injury.

    Science.gov (United States)

    Yu, Lei; Zhao, Xue-Ke; Cheng, Ming-Liang; Yang, Guo-Zhen; Wang, Bi; Liu, Hua-Juan; Hu, Ya-Xin; Zhu, Li-Li; Zhang, Shuai; Xiao, Zi-Wen; Liu, Yong-Mei; Zhang, Bao-Fang; Mu, Mao

    2017-05-02

    Growing evidence has shown that gut microbiome is a key factor involved in liver health. Therefore, gut microbiota modulation with probiotic bacteria, such as Saccharomyces boulardii, constitutes a promising therapy for hepatosis. In this study, we aimed to investigate the protective effects of S. boulardii on D-Galactosamine-induced liver injury in mice. Liver function test and histopathological analysis both suggested that the liver injury can be effectively attenuated by S. boulardii administration. In the meantime, S. boulardii induced dramatic changes in the gut microbial composition. At the phylum level, we found that S. boulardii significantly increased in the relative abundance of Bacteroidetes, and decreased the relative abundance of Firmicutes and Proteobacteria, which may explain the hepatic protective effects of S. boulardii. Taken together, our results demonstrated that S. boulardii administration could change the gut microbiota in mice and alleviate acute liver failure, indicating a potential protective and therapeutic role of S. boulardii.

  7. Activation of Constitutive Androstane Receptor (CAR) in Mice Results in Maintained Biliary Excretion of Bile Acids Despite a Marked Decrease of Bile Acids in Liver.

    Science.gov (United States)

    Lickteig, Andrew J; Csanaky, Iván L; Pratt-Hyatt, Matthew; Klaassen, Curtis D

    2016-06-01

    Activation of Constitutive Androstane Receptor (CAR) protects against bile acid (BA)-induced liver injury. This study was performed to determine the effect of CAR activation on bile flow, BA profile, as well as expression of BA synthesis and transport genes. Synthetic CAR ligand 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) was administered to mice for 4 days. BAs were quantified by UPLC-MS/MS (ultraperformance liquid chromatography-tandem mass spectrometry). CAR activation decreases total BAs in livers of male (49%) and female mice (26%), largely attributable to decreases of the 12α-hydroxylated BA taurocholic acid (T-CA) (males (M) 65%, females (F) 45%). Bile flow in both sexes was increased by CAR activation, and the increases were BA-independent. CAR activation did not alter biliary excretion of total BAs, but overall BA composition changed. Excretion of muricholic (6-hydroxylated) BAs was increased in males (101%), and the 12α-OH proportion of biliary BAs was decreased in both males (37%) and females (28%). The decrease of T-CA in livers of males and females correlates with the decreased mRNA of the sterol 12α-hydroxylase Cyp8b1 in males (71%) and females (54%). As a response to restore BAs to physiologic concentrations in liver, mRNA of Cyp7a1 is upregulated following TCPOBOP (males 185%, females 132%). In ilea, mRNA of the negative feedback regulator Fgf15 was unaltered by CAR activation, indicating biliary BA excretion was sufficient to maintain concentrations of total BAs in the small intestine. In summary, the effects of CAR activation on BAs in male and female mice are quite similar, with a marked decrease in the major BA T-CA in the liver. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Liver lipid molecules induce PEPCK-C gene transcription and attenuate insulin action

    International Nuclear Information System (INIS)

    Chen Guoxun

    2007-01-01

    Cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) plays key roles in gluconeogenesis, glyceroneogenesis, and cataplerosis. Experiments were designed to examine the effects of endogenous lipid molecules from rat livers on the expression of PEPCK-C gene in primary rat hepatocytes. The lipid extracts prepared from livers of Zucker fatty, lean, and Wistar rats induced the expression levels of PEPCK-C transcripts. Insulin-mediated reduction of PEPCK-C gene expression was attenuated by the same treatment. The lipid extracts induced the relative luciferase activity of reporter gene constructs that contain a 2.2-kb 5' promoter fragment of PEPCK-C gene, but not the construct that contains only the 3' untranslated region (UTR) of its mRNA. The estimated half life of PEPCK-C transcripts in the presence of the lipid extract is the same as that in the absence of it. My results demonstrate for the first time that endogenous lipid molecules induce PEPCK-C gene transcription and attenuate insulin action in liver

  9. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    Energy Technology Data Exchange (ETDEWEB)

    Yannam, Govardhana Rao [Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska (United States); Han, Bing [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an, Shaanxi (China); Setoyama, Kentaro [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Yamamoto, Toshiyuki [Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska (United States); Ito, Ryotaro; Brooks, Jenna M. [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Guzman-Lepe, Jorge [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Department of Pathology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Galambos, Csaba [Department of Pathology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Fong, Jason V. [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Deutsch, Melvin; Quader, Mubina A. [Department of Radiation Oncology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Yamanouchi, Kosho [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York (United States); Kabarriti, Rafi; Mehta, Keyur [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Soto-Gutierrez, Alejandro [Department of Pathology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); and others

    2014-02-01

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.

  10. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    International Nuclear Information System (INIS)

    Yannam, Govardhana Rao; Han, Bing; Setoyama, Kentaro; Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro

    2014-01-01

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury

  11. Early effects of dietary orotic acid upon liver lipid synthesis and bile cholesterol secretion in rats

    International Nuclear Information System (INIS)

    Tokmakjian, S.D.; Haines, D.S.

    1985-01-01

    Dietary orotic acid is known to cause impaired fatty acid synthesis and increased cholesterol synthesis in rats. The authors found that the impaired fatty acid synthesis occurs during the first day of orotic acid feeding and, in studies with albumin-bound [1- 14 C]palmitic acid, an associated decrease in the rate of esterification of this fatty acid into triacylglycerol, phospholipid, and cholesteryl ester was observed. These changes may result from the known decreases in liver levels of adenine nucleotides or, as reported here, from decreased liver CoASH levels in orotic acid-fed rats. The increase in hepatic cholesterol synthesis occurred during the second day of orotic acid feeding. It was detected by increased incorporation of [1,2- 14 C]acetate into cholesterol by liver slices and by a 7-fold increase in HMG-CoA reductase activity. At the same time the biliary output of cholesterol was increased 2-fold and studies using 3 H 2 O revealed that the output of newly synthesized cholesterol in bile was increased 5-fold. The content of cholesteryl ester in hepatic microsomes decreased during orotic acid feeding but free cholesterol was unchanged. The findings are interpreted to suggest that the increased bile cholesterol secretion caused by orotic acid is a result of impaired hepatic cholesterol esterification and that the increase in HMG-CoA reductase activity is a result of diminished negative feedback due to the depleted content of cholesteryl ester in the hepatic microsomes

  12. Extra virgin olive oil reduces liver oxidative stress and tissue depletion of long-chain polyunsaturated fatty acids produced by a high saturated fat diet in mice

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, B.R.; Hernandez Rodas, M.C.; Espinosa, A.; Rincon Cervera, M.A.; Romero, N.; Barrera Vazquez, C.; Marambio, M.; Vivero, J.; Valenzuela, B.A.

    2016-07-01

    Long-chain polyunsaturated fatty acids (LCPUFA) which are synthesized mainly in the liver have relevant functions in the organism. A diet high in fat (HFD) generates an increase in the levels of fat and induces oxidative stress (lipo-peroxidation) in the liver, along with a reduction in tissue n-3 and n-6 LCPUFA. Extra virgin olive oil (EVOO) is rich in anti-oxidants (polyphenols and tocopherols) which help to prevent the development of oxidative stress. This study evaluated the role of EVOO in preventing the induction of fat deposition and oxidative stress in the liver and in the depletion of LCPUFA in the liver, erythrocytes and brain generated by a HFD in C57BL/6J mice. Four experimental groups (n = 10/group) were fed a control diet (CD) or a HFD for 12 weeks and were respectively supplemented with EVOO (100 mg/day). The group fed HFD showed a significant increase (p < 0.05) in fat accumulation and oxidative stress in the liver, accompanied by a reduction in the levels of n-3 and n-6 LCPUFA in the liver, erythrocytes and brain. Supplementation with EVOO mitigated the increase in fat and oxidative stress produced by HFD in the liver, along with a normalization of LCPUFA levels in the liver, erythrocytes and brain. It is proposed that EVOO supplementation protects against fat accumulation, and oxidative stress and normalizes n-3 and n-6 LCPUFA depletion induced in mice fed a HFD. (Author)

  13. Steatosis induced CCL5 contributes to early-stage liver fibrosis in nonalcoholic fatty liver disease progress.

    Science.gov (United States)

    Li, Bing-Hang; He, Fang-Ping; Yang, Xin; Chen, Yuan-Wen; Fan, Jian-Gao

    2017-02-01

    The rapidly increasing prevalence of nonalcoholic fatty liver disease (NAFLD) has become one of the major public health threats in China and worldwide. However, during the development of NAFLD, the key mechanism underlying the progression of related fibrosis remains unclear, which greatly impedes the development of optimal NAFLD therapy. In the current study, we were endeavored to characterize a proinflammatory cytokine, CCL5, as a major contributor for fibrosis in NAFLD. The results showed that CCL5 was highly expressed in fatty liver and NASH patients. In NAFLD rats induced by 8-week-HFD, CCL5 and its receptor, CCR5, were significantly up-regulated and liver fibrosis exclusively occurred in this group. In addition, we showed that hepatocytes are the major source contributing to this CCL5 elevation. Interestingly, a CCL5 inhibitor Met-CCL5, significantly decreased liver fibrosis but not hepatic steatosis. Using a cell model of hepatic steatosis, we found that the conditioned medium of lipid-overloaded hepatocytes (Fa2N-4 cells) which produced excessive CCL5 stimulated the profibrotic activities of hepatic stellate cells (LX-2) as manifested by increased migration rate, proliferation and collagen production of LX-2 cells. CCL5 knockdown in Fa2N-4 cells, Met-CCL5 or CCR5 antibody treatment on LX-2 cells all significantly inhibited the conditioned medium of FFA-treated Fa2N-4 cells to exert stimulatory effects on LX-2 cells. Consistently, the conditioned medium of Fa2N-4 cells with CCL5 over-expression significantly enhanced migration rate, cell proliferation and collagen production of LX-2 cells. All these results support that CCL5 produced by steatotic hepatocytes plays an essential role in fibrotic signaling machinery of NAFLD. In addition, we were able to identify C/EBP-β as the up-stream regulator of CCL5 gene transcription in hepatocytes treated with free fatty acid (FFA). Our data strongly supported that CCL5 plays a pivotal regulatory role in

  14. Alloxan-Induced Diabetes Causes Morphological and Ultrastructural Changes in Rat Liver that Resemble the Natural History of Chronic Fatty Liver Disease in Humans

    Directory of Open Access Journals (Sweden)

    Amanda Natália Lucchesi

    2015-01-01

    Full Text Available Purpose. This study evaluated the long-term effects of alloxan-induced diabetes in rat liver. Methods. Thirty nondiabetic control rats (NC and 30 untreated diabetic (UD rats were divided into three subgroups sacrificed after 6, 14, or 26 weeks. Clinical and laboratory parameters were assessed. Fresh liver weight and its relationship with body weight were obtained, and liver tissue was analyzed. Results. UD rats showed sustained hyperglycemia, high glycosylated hemoglobin, and low plasma insulin. High serum levels of AST and ALT were observed in UD rats after 2 weeks, but only ALT remained elevated throughout the experiment. Fresh liver weight was equal between NC and UD rats, but the fresh liver weight/body weight ratio was significantly higher in UD rats after 14 and 26 weeks. UD rats showed liver morphological changes characterized by hepatic sinusoidal enlargement and micro- and macrovesicular hepatocyte fatty degeneration with progressive liver structure loss, steatohepatitis, and periportal fibrosis. Ultrastructural changes of hepatocytes, such as a decrease in the number of intracytoplasmic organelles and degeneration of mitochondria, rough endoplasmic reticulum, and nuclei, were also observed. Conclusion. Alloxan-induced diabetes triggered liver morphological and ultrastructural changes that closely resembled human disease, ranging from steatosis to steatohepatitis and liver fibrosis.

  15. Diets Rich in Polyunsaturated Fatty Acids With Different Omega-6/Omega-3 Ratio Decrease Liver Content of Saturated Fatty Acids Across Generations of Wistar Rats

    Directory of Open Access Journals (Sweden)

    Simone Halfen

    Full Text Available Our study evaluated how the consumption of diets with low (LOW group - 0.4/1 or high (CON group - 13.6/1 omega-6/omega-3 ratio across generations (F1 and F2 can modulate liver fatty acid (FA profile and blood biomarkers. Liver content of α-linolenic acid was higher in animals always fed with LOW diet than animals that changed from CON to LOW diet, which by your time was higher than animals always fed with CON diet. Liver saturated FA concentration decreased in both groups from F1 to F2. In conclusion, both diets were efficient in decreasing the saturated FA liver content across generations, the LOW ratio diet was more effective in reducing blood triglycerides and non-esterified fatty acids, and there was a multigenerational effect of the LOW ratio diet, improving the FA profile even when the offspring start receiving the CON diet.

  16. Serum aminotransferases in nonalcoholic fatty liver disease are a signature of liver metabolic perturbations at the amino acid and Krebs cycle level.

    Science.gov (United States)

    Sookoian, Silvia; Castaño, Gustavo O; Scian, Romina; Fernández Gianotti, Tomas; Dopazo, Hernán; Rohr, Cristian; Gaj, Graciela; San Martino, Julio; Sevic, Ina; Flichman, Diego; Pirola, Carlos J

    2016-02-01

    Extensive epidemiologic studies have shown that cardiovascular disease and the metabolic syndrome (MetS) are associated with serum concentrations of liver enzymes; however, fundamental characteristics of this relation are currently unknown. We aimed to explore the role of liver aminotransferases in nonalcoholic fatty liver disease (NAFLD) and MetS. Liver gene- and protein-expression changes of aminotransferases, including their corresponding isoforms, were evaluated in a case-control study of patients with NAFLD (n = 42), which was proven through a biopsy (control subjects: n = 10). We also carried out a serum targeted metabolite profiling to the glycolysis, gluconeogenesis, and Krebs cycle (n = 48) and an exploration by the next-generation sequencing of aminotransferase genes (n = 96). An in vitro study to provide a biological explanation of changes in the transcriptional level and enzymatic activity of aminotransferases was included. Fatty liver was associated with a deregulated liver expression of aminotransferases, which was unrelated to the disease severity. Metabolite profiling showed that serum aminotransferase concentrations are a signature of liver metabolic perturbations, particularly at the amino acid metabolism and Krebs cycle level. A significant and positive association between systolic hypertension and liver expression levels of glutamic-oxaloacetic transaminase 2 (GOT2) messenger RNA (Spearman R = 0.42, P = 0.03) was observed. The rs6993 located in the 3' untranslated region of the GOT2 locus was significantly associated with features of the MetS, including arterial hypertension [P = 0.028; OR: 2.285 (95% CI: 1.024, 5.09); adjusted by NAFLD severity] and plasma lipid concentrations. In the context of an abnormal hepatic triglyceride accumulation, circulating aminotransferases rise as a consequence of the need for increased reactions of transamination to cope with the liver metabolic derangement that is associated with greater gluconeogenesis and

  17. Carrot Juice Administration Decreases Liver Stearoyl-CoA Desaturase 1 and Improves Docosahexaenoic Acid Levels, but Not Steatosis in High Fructose Diet-Fed Weanling Wistar Rats.

    Science.gov (United States)

    Mahesh, Malleswarapu; Bharathi, Munugala; Reddy, Mooli Raja Gopal; Kumar, Manchiryala Sravan; Putcha, Uday Kumar; Vajreswari, Ayyalasomayajula; Jeyakumar, Shanmugam M

    2016-09-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases associated with an altered lifestyle, besides genetic factors. The control and management of NAFLD mostly depend on lifestyle modifications, due to the lack of a specific therapeutic approach. In this context, we assessed the effect of carrot juice on the development of high fructose-induced hepatic steatosis. For this purpose, male weanling Wistar rats were divided into 4 groups, fed either a control (Con) or high fructose (HFr) diet of AIN93G composition, with or without carrot juice (CJ) for 8 weeks. At the end of the experimental period, plasma biochemical markers, such as triglycerides, alanine aminotransferase, and β-hydroxy butyrate levels were comparable among the 4 groups. Although, the liver injury marker, aspartate aminotransferase, levels in plasma showed a reduction, hepatic triglycerides levels were not significantly reduced by carrot juice ingestion in the HFr diet-fed rats (HFr-CJ). On the other hand, the key triglyceride synthesis pathway enzyme, hepatic stearoyl-CoA desaturase 1 (SCD1), expression at mRNA level was augmented by carrot juice ingestion, while their protein levels showed a significant reduction, which corroborated with decreased monounsaturated fatty acids (MUFA), particularly palmitoleic (C16:1) and oleic (C18:1) acids. Notably, it also improved the long chain n-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA; C22:6) content of the liver in HFr-CJ. In conclusion, carrot juice ingestion decreased the SCD1-mediated production of MUFA and improved DHA levels in liver, under high fructose diet-fed conditions. However, these changes did not significantly lower the hepatic triglyceride levels.

  18. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines.

    Science.gov (United States)

    Zong, L; Yu, Q H; Du, Y X; Deng, X M

    2014-02-01

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  19. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Zong, L. [Second Military Medical University, Changhai Hospital, Department of Anesthesiology, Shanghai, China, Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai (China); No. 82 Hospital of People' s Liberation Army, Department of Anesthesiology, Jiangsu, China, Department of Anesthesiology, No. 82 Hospital of People' s Liberation Army, Jiangsu (China); Yu, Q. H. [Second Military Medical University, Changhai Hospital, Department of Gastroenterology, Shanghai, China, Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai (China); Du, Y. X. [No. 82 Hospital of People' s Liberation Army, Department of Anesthesiology, Jiangsu, China, Department of Anesthesiology, No. 82 Hospital of People' s Liberation Army, Jiangsu (China); Deng, X. M. [Second Military Medical University, Changhai Hospital, Department of Anesthesiology, Shanghai, China, Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai (China)

    2014-03-03

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  20. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    International Nuclear Information System (INIS)

    Zong, L.; Yu, Q.H.; Du, Y.X.; Deng, X.M.

    2014-01-01

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis