WorldWideScience

Sample records for lithium tantalate thin

  1. Temperature dependence of the thermoelectric coeffiicients of lithium niobate and lithium tantalate

    International Nuclear Information System (INIS)

    Khachaturyan, O.A.; Gabrielyan, A.I.; Kolesnik, S.P.

    1988-01-01

    Thermoelectric Zeebeck,Thomson, Peltier coefficients for LiNbO 3 and LiTaO 3 monocrystals and their dependence on temperature in 300-1400 K range were investigated. It is shown that Zeebeck (α) coefficient changes its sign, depending on temperature change - the higher is α, the higher is material conductivity in the corresponding temperature region. Thomson and Peltier coefficients were calculated analytically for lithium niobate and tantalate

  2. Shape of isolated domains in lithium tantalate single crystals at elevated temperatures

    International Nuclear Information System (INIS)

    Shur, V. Ya.; Akhmatkhanov, A. R.; Baturin, I. S.; Chezganov, D. S.; Lobov, A. I.; Smirnov, M. M.

    2013-01-01

    The shape of isolated domains has been investigated in congruent lithium tantalate (CLT) single crystals at elevated temperatures and analyzed in terms of kinetic approach. The obtained temperature dependence of the growing domain shape in CLT including circular shape at temperatures above 190 °C has been attributed to increase of relative input of isotropic ionic conductivity. The observed nonstop wall motion and independent domain growth after merging in CLT as opposed to stoichiometric lithium tantalate have been attributed to difference in wall orientation. The computer simulation has confirmed applicability of the kinetic approach to the domain shape explanation

  3. Material modifications in lithium niobate and lithium tantalate crystals by ion irradiation

    International Nuclear Information System (INIS)

    Raeth, Niels Lennart

    2017-01-01

    The artificially produced crystals lithium niobate (LiNbO 3 ) and the closely related lithium tantalate (LiTaO 3 ) are proven starting materials for producing active and passive devices that can guide, amplify, switch and process light. For this purpose, it is often necessary to be able to influence the refractive index of the substrate targeted, which is possible in addition to other methods by irradiation of the materials with fast light ions. In this work, lithium niobate and lithium tantalate crystals are irradiated with alpha particles, 3 He ions, deuterons, and protons at projectile energies of up to 14 MeV / nucleon. Energy and crystal thickness are chosen so that the projectiles penetrate the entire sample and are not implanted. All isotopes responsible for the unwanted nuclear activation of the crystals due to the irradiation are relatively short-lived and overall the activation decreases fast enough to allow the safe handling of the irradiated samples after a storage period of a few days to a few weeks. The refractive index changes produced in lithium niobate and lithium tantalate by irradiation with the different projectiles are determined interferometrically and can also be measured by suitable choice of the sample geometry as a function of the ion penetration depth: In LiNbO 3 the ordinary refractive index decreases, the extraordinary increases equally. In LiTaO 3 , both the ordinary and the extraordinary refractive indices decrease as a result of the irradiation; the ordinary refractive index change is many times stronger than the extraordinary one. There is an enormous long-term stability at room temperature for both crystal systems: Even after eleven (LiNbO 3 ) or three (LiTaO 3 ) years, no decrease in the ion beam-induced refractive index change can be observed. The ion beam-induced refractive index changes are probably the result of atomic displacements such as vacancies, defect clusters or ''latent tracks''. An explanation for

  4. Temperature and composition dependence of birefringence of lithium-tantalate crystals determined by holographic scattering

    International Nuclear Information System (INIS)

    Bastwoeste, K.; Schwalenberg, S.; Baeumer, Ch.; Kraetzig, E.

    2003-01-01

    Iron-doped lithium-tantalate samples with different compositions ranging from the congruently melting to the stoichiometric one are analyzed by anisotropic holographic scattering. The temperature dependence of the birefringence yields information on the composition of the crystals. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Temperature and composition dependence of birefringence of lithium-tantalate crystals determined by holographic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bastwoeste, K.; Schwalenberg, S.; Baeumer, Ch.; Kraetzig, E. [Fachbereich Physik, Universitaet Osnabrueck, D-49069 Osnabrueck (Germany)

    2003-09-01

    Iron-doped lithium-tantalate samples with different compositions ranging from the congruently melting to the stoichiometric one are analyzed by anisotropic holographic scattering. The temperature dependence of the birefringence yields information on the composition of the crystals. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate.

    Science.gov (United States)

    Meyn, J P; Fejer, M M

    1997-08-15

    We describe electric-field poling of fine-pitch ferroelectric domain gratings in lithium tantalate and characterization of nonlinear-optical properties by single-pass quasi-phase-matched second-harmonic generation (QPM SHG). With a 7.5-microm-period grating, the observed effective nonlinear coefficient for first-order QPM SHG of 532-nm radiation is 9 pm/V, whereas for a grating with a 2.625-microm period, 2.6 pm/V was observed for second-order QPM SHG of 325-nm radiation. These values are 100% and 55% of the theoretically expected values, respectively. We derive a temperature-dependent Sellmeier equation for lithium tantalate that is valid deeper into the UV than currently available results, based on temperature-tuning experiments at different QPM grating periods combined with refractive-index data in the literature.

  7. Lithium tantalate single crystal for pyroelectricity-based laser energy-meter: growth, application and phase transition study

    International Nuclear Information System (INIS)

    Bhaumik, Indranil; Ganesamoorthy, S.; Bhatt, R.; Karnal, A.K.; Gupta, P.K.

    2009-01-01

    Single crystals of lithium tantalate have been grown. Dielectric-spectroscopy study reveals phase transition in congruent lithium tantalate (CLT) single crystal is diffusive and frequency dependent in contrast to that in near stoichiometric lithium tantalate where it is sharper. The ac conductivity measurements show that the conductivity is lower for 0.5Mg-SLT as compared to 1.0Mg-SLT. This is explained in terms of a Li-vacancy model. Calculation of activation energy from the lnσ vs. 1000/T plot reveals that hopping of Li + ions becomes difficult for 0.5 Mg-SLT. The pyroelectric response of CLT for pulsed Nd:YAG laser output has been tested. (author)

  8. Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide

    NARCIS (Netherlands)

    Lobino, M.; Marshall, G.D.; Xiong, C.; Clark, A.S.; Bonneau, D.; Natarajan, C.M.; Tanner, M.G.; Hadfield, R.H.; Dorenbos, S.N.; Zijlstra, T.; Zwiller, V.; Marangoni, M.; Ramponi, R.; Thompson, M.G.; Eggleton, B.J.; O'Brien, J.L.

    2011-01-01

    We demonstrate photon-pair generation in a reverse proton exchanged waveguide fabricated on a periodically poled magnesium doped stoichiometric lithium tantalate substrate. Detected pairs are generated via a cascaded second order nonlinear process where a pump laser at wavelength of 1.55 ?m is first

  9. Phase Composition of Samarium Niobate and Tantalate Thin Films Prepared by Sol-Gel Method

    Science.gov (United States)

    Bruncková, H.; Medvecký, Ľ.; Múdra, E.; Kovalčiková, A.; Ďurišin, J.; Šebek, M.; Girman, V.

    2017-12-01

    Samarium niobate SmNbO4 (SNO) and tantalate SmTaO4 (STO) thin films ( 100 nm) were prepared by sol-gel/spin-coating process on alumina substrates with PZT interlayer and annealing at 1000°C. The precursors of films were synthesized using Nb or Ta tartrate complexes. The improvement of the crystallinity of monoclinic M'-SmTaO4 phase via heating was observed through the coexistence of small amounts of tetragonal T-SmTa7O19 phase in STO precursor at 1000°C. The XRD results of SNO and STO films confirmed monoclinic M-SmNbO4 and M'-SmTaO4 phases, respectively, with traces of orthorhombic O-SmNbO4 (in SNO). In STO film, the single monoclinic M'-SmTaO4 phase was revealed. The surface morphology and topography of thin films were investigated by SEM and AFM analysis. STO film was smoother with roughness 3.2 nm in comparison with SNO (6.3 nm). In the microstructure of SNO film, small spherical ( 50 nm) and larger cuboidal particles ( 100 nm) of the SmNbO4 phase were observed. In STO, compact clusters composed of fine spherical SmTaO4 particles ( 20-50 nm) were found. Effect of samarium can contribute to the formation different polymorphs of these films for the application to environmental electrolytic thin film devices.

  10. Preparation of potassium tantalate niobate thin films by chemical solution deposition and their characterization

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Železný, Vladimír; Vaněk, Přemysl

    2005-01-01

    Roč. 25, č. 12 (2005), s. 2151-2154 ISSN 0955-2219 R&D Projects: GA ČR GA202/02/0238; GA MŠk(CZ) LN00A028; GA MŠk OC 528.001 Institutional research plan: CEZ:AV0Z40320502 Keywords : films * tantalates * chemical solution deposition Subject RIV: CA - Inorganic Chemistry Impact factor: 1.567, year: 2005

  11. Thermal plasma fabricated lithium niobate-tantalate films on sapphire substrate

    International Nuclear Information System (INIS)

    Kulinich, S.A.; Yoshida, T.; Yamamoto, H.; Terashima, K.

    2003-01-01

    We report the deposition of LiNb 1-x Ta x O 3 (0≤x≤1) films on (001) sapphire substrates in soft vacuum using a radio frequency thermal plasma. The growth rate, crystallinity, c-axis orientation, and surface roughness were examined as functions of substrate temperature, precursor feed rate, and substrate surface condition. The film Nb/Ta ratio was well controlled by using an appropriate uniform mixture of lithium-niobium and lithium-tantalum alkoxide solutions. The epitaxy and crystallinity of the films were much improved when the film growth rate was raised from 20 to 180-380 nm/min, where the films with the (006) rocking curve full width at half maximum values as low as 0.12 deg. -0.2 deg. could be produced. The film roughness could be reduced by using a liquid precursor with higher metal concentrations, achieving the root-mean-square value on the order of 5 nm. The refractive indices of the films are in good correspondence with their composition and crystallinity

  12. Piezoelectric and ferroelectric properties of lead-free niobium-rich potassium lithium tantalate niobate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun, E-mail: lijuna@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Li, Yang [Department of chemistry, Harbin Institute of Technology, Harbin 150001 (China); Zhou, Zhongxiang [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Guo, Ruyan; Bhalla, Amar S. [Multifunctional Electronic Materials and Device Research Lab, Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio 78249 (United States)

    2014-01-01

    Graphical abstract: - Highlights: • Lead-free K{sub 0.95}Li{sub 0.05}Ta{sub 1−x}Nb{sub x}O{sub 3} single crystals were grown using the top-seeded melt growth method. • The piezoelectric and ferroelectric properties of as-grown crystals were systematically investigated. • The piezoelectric properties are very attractive, e.g. for x = 0.60 composition, k{sub t} ≈ 70%, k{sub 31} ≈ 70%, k{sub 33} ≈ 77%, d{sub 31} ≈ 230 pC/N, d{sub 33} ≈ 600 pC/N. • The coercive fields of P–E hysteresis loops are quite small, about or less than 1 kV/mm. - Abstract: Lead-free potassium lithium tantalate niobate single crystals with the composition of K{sub 0.95}Li{sub 0.05}Ta{sub 1−x}Nb{sub x}O{sub 3} (abbreviated as KLTN, x = 0.51, 0.60, 0.69, 0.78) were grown using the top-seeded melt growth method. Their piezoelectric and ferroelectric properties in as-grown crystals have been systematically investigated. The phase transitions and Curie temperatures were determined from dielectric and pyroelectric measurements. Piezoelectric coefficients and electromechanical coupling factors in thickness mode, length-extensional mode and longitudinal mode were obtained. The piezoelectric properties are very attractive, e.g. for x = 0.60 composition, k{sub t} ≈ 70%, k{sub 31} ≈ 70%, k{sub 33} ≈ 77%, d{sub 31} ≈ 230 pC/N, d{sub 33} ≈ 600 pC/N are comparable to the lead-based PZT composition. The polarization versus electric field hysteresis loops show saturated shapes. In short, lead-free niobium-rich KLTN system possesses comparable properties to those in important lead-based piezoelectric material nowadays.

  13. Material modifications in lithium niobate and lithium tantalate crystals by ion irradiation; Materialmodifikationen in Lithiumniobat- und Lithiumtantalat-Kristallen durch Ionenbestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Raeth, Niels Lennart

    2017-02-17

    The artificially produced crystals lithium niobate (LiNbO{sub 3}) and the closely related lithium tantalate (LiTaO{sub 3}) are proven starting materials for producing active and passive devices that can guide, amplify, switch and process light. For this purpose, it is often necessary to be able to influence the refractive index of the substrate targeted, which is possible in addition to other methods by irradiation of the materials with fast light ions. In this work, lithium niobate and lithium tantalate crystals are irradiated with alpha particles, {sup 3}He ions, deuterons, and protons at projectile energies of up to 14 MeV / nucleon. Energy and crystal thickness are chosen so that the projectiles penetrate the entire sample and are not implanted. All isotopes responsible for the unwanted nuclear activation of the crystals due to the irradiation are relatively short-lived and overall the activation decreases fast enough to allow the safe handling of the irradiated samples after a storage period of a few days to a few weeks. The refractive index changes produced in lithium niobate and lithium tantalate by irradiation with the different projectiles are determined interferometrically and can also be measured by suitable choice of the sample geometry as a function of the ion penetration depth: In LiNbO{sub 3} the ordinary refractive index decreases, the extraordinary increases equally. In LiTaO{sub 3}, both the ordinary and the extraordinary refractive indices decrease as a result of the irradiation; the ordinary refractive index change is many times stronger than the extraordinary one. There is an enormous long-term stability at room temperature for both crystal systems: Even after eleven (LiNbO{sub 3}) or three (LiTaO{sub 3}) years, no decrease in the ion beam-induced refractive index change can be observed. The ion beam-induced refractive index changes are probably the result of atomic displacements such as vacancies, defect clusters or ''latent tracks

  14. Are lithium niobate (LiNbO{sub 3}) and lithium tantalate (LiTaO{sub 3}) ferroelectrics bioactive?

    Energy Technology Data Exchange (ETDEWEB)

    Vilarinho, Paula Maria, E-mail: paula.vilarinho@ua.pt; Barroca, Nathalie; Zlotnik, Sebastian; Félix, Pedro; Fernandes, Maria Helena

    2014-06-01

    The use of functional materials, such as ferroelectrics, as platforms for tissue growth in situ or ex situ, is new and holds great promise. But the usage of materials in any bioapplication requires information on biocompatibility and desirably on bioactive behavior when bone tissue engineering is envisaged. Both requirements are currently unknown for many ferroelectrics. Herein the bioactivity of LiNbO{sub 3} and LiTaO{sub 3} is reported. The formation of apatite-like structures on the surface of LiNbO{sub 3} and LiTaO{sub 3} powders after immersion in simulated body fluid (SBF) for different soaking periods indicates their bioactive potential. The mechanism of apatite formation is suggested. In addition, the significant release of lithium ions from the ferroelectric powders in the very first minutes of soaking in SBF is examined and ways to overcome this likely hurdle addressed. - Highlights: • LiNbO{sub 3} and LiTaO{sub 3} are bioactive ferroelectrics. • Cauliflower apatite type structures indicative of in-vitro bioactivity of LiNbO{sub 3} and LiTaO{sub 3.} • Negative surface charges anchor Ca{sup 2+} to which PO{sub 4}{sup 3−} attracts forming apatite structure nuclei. • Use of ferroelectrics as platforms for tissue growth in situ or ex situ is new and holds great promise.

  15. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  16. Unactivated yttrium tantalate phosphor

    International Nuclear Information System (INIS)

    Reddy, V.B.; Cheung, H.K.

    1992-01-01

    This patent describes an unactivated yttrium tantalate phosphor having M prime monoclinic structure and containing one or more additives of Rb and Al in an amount of between about 0.001 to 0.1 moles per mole of yttrium tantalate to improve brightness under X-radiation. This patent also describes an unactivated yttrium tantalate phosphor having M prime monoclinic structure and containing additives of Sr in an amount of between 0.001 to 0.1 moles per mole of yttrium tantalate and one or more of Rb and Al in an amount of between 0.001 to 0.1 moles per mole of yttrium tantalate the phosphor exhibiting a greater brightness under X-radiation than the phosphor absent Rb and Al

  17. Studies on electrochemical lithium insertion in isostructural titanium niobate and tantalate phases with shear ReO3 structure

    International Nuclear Information System (INIS)

    Saritha, D.; Varadaraju, U.V.

    2013-01-01

    Graphical abstract: - Highlights: • Electrochemical lithium insertion into ReO 3 type phases TiNb 2 O 7 , TiTa 2 O 7 is feasible. • TiNb 2 O 7 exhibits good cycling behavior and high reversible capacity of 212 mAh g −1 . • TiTa 2 O 7 exhibits reversible capacity of 100 mAh g −1 . - Abstract: TiNb 2 O 7 and TiTa 2 O 7 phases are synthesized by solid-state reaction method and are investigated for electrochemical Li insertion/extraction. The electrochemical insertion of Li in these phases is characterized by both solid solution and two-phase regimes. The structure is stable toward Li insertion/extraction. The first cycle discharge capacity values are 307 mAh g −1 and 215 mAh g −1 in the voltage range of 3.0–1.0 V for TiNb 2 O 7 and TiTa 2 O 7 phases, respectively. The discharge capacities of TiNb 2 O 7 and TiTa 2 O 7 are 212 mAh g −1 and 100 mAh g −1 , respectively, after 20 cycles

  18. Comparative microstructure and electrical property studies of lead scandium tantalate thin films as prepared by LDCVD, sol-gel and sputtering techniques

    International Nuclear Information System (INIS)

    Huang, Z; Donohue, P P; Zhang, Q; Williams, D J; Anthony, C J; Whatmore, R W; Todd, M A

    2003-01-01

    Lead scandium tantalate (PST) thin films for uncooled infrared (IR) detector applications have been deposited by liquid delivery chemical vapour deposition (LDCVD), sputtering and sol-gel techniques. The sol-gel and sputtered films were deposited at low temperature into a non-ferroelectric phase with the required perovskite structure being formed using a high temperature rapid thermal anneal (RTA). In contrast to this, the LDCVD films were deposited at high temperature directly into the perovskite phase but were found to still require a high temperature RTA step to optimize their merit for IR detection. Detailed structural and electrical characterization of the PST films deposited by these different methods have revealed that there is no simple relationship between microstructure and electrical properties. The sol-gel and LDCVD techniques produce thin films with excellent microstructures, as determined by x-ray diffraction analysis and transmission electron microscopy, but inferior electrical properties and relatively low merit figures. By contrast, the sputtered and then rapid thermal annealed films have inferior microstructures, characterized by extensive voiding, but excellent electrical properties and high merit figures

  19. Lithium ion intercalation into thin film anatase

    International Nuclear Information System (INIS)

    Kundrata, I.; Froehlich, K.; Ballo, P.

    2015-01-01

    The aim of this work is to find the optimal parameters for thin film TiO 2 anatase grown by Atomic layer deposition (ALD) for use as electrode in lithium ion batteries. Two parameters, the optimal film thickness and growth conditions are aimed for. Optimal film thickness for achieving optimum between capacity gained from volume and capacity gained by changing of the intercalation constant and optimal growth conditions for film conformity on structured substrates with high aspect ratio. Here we presents first results from this ongoing research and discuss future outlooks. (authors)

  20. MultiLayer solid electrolyte for lithium thin film batteries

    Science.gov (United States)

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  1. Electron-stimulated desorption of lithium ions from lithium halide thin films

    International Nuclear Information System (INIS)

    Markowski, Leszek

    2007-01-01

    Electron-stimulated desorption of positive lithium ions from thin layers of lithium halides deposited onto Si(1 1 1) are investigated by the time-of-flight technique. The determined values of isotope effect of the lithium ( 6 Li + / 7 Li + ) are 1.60 ± 0.04, 1.466 ± 0.007, 1.282 ± 0.004, 1.36 ± 0.01 and 1.33 ± 0.01 for LiH, LiF, LiCl, LiBr and LiI, respectively. The observed most probable kinetic energies of 7 Li + are 1.0, 1.9, 1.1, 0.9 and 0.9 eV for LiH, LiF, LiCl, LiBr and LiI, respectively, and seem to be independent of the halide component mass. The values of lithium ion emission yield, lithium kinetic energy and lithium isotope effect suggest that the lattice relaxation is only important in the lithium ion desorption process from the LiH system. In view of possible mechanisms and processes involved into lithium ion desorption the obtained results indicate that for LiH, LiCl, LiBr and LiI the ions desorb in a rather classical way. However, for LiF, ion desorption has a more quantum character and the modified wave packet squeezing model has to be taken into account

  2. Issue and challenges facing rechargeable thin film lithium batteries

    International Nuclear Information System (INIS)

    Patil, Arun; Patil, Vaishali; Shin, Dong Wook; Choi, Ji-Won; Paik, Dong-Soo; Yoon, Seok-Jin

    2008-01-01

    New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium batteries are the systems of choice, offering high energy density, flexible, lightweight design and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based thin film rechargeable batteries highlight ongoing research strategies and discuss the challenges that remain regarding the discovery of nanomaterials as electrolytes and electrodes for lithium batteries also this article describes the possible evolution of lithium technology and evaluates the expected improvements, arising from new materials to cell technology. New active materials under investigation and electrode process improvements may allow an ultimate final energy density of more than 500 Wh/L and 200 Wh/kg, in the next 5-6 years, while maintaining sufficient power densities. A new rechargeable battery technology cannot be foreseen today that surpasses this. This report will provide key performance results for thin film batteries and highlight recent advances in their development

  3. Lithium battery electrodes with ultra-thin alumina coatings

    Science.gov (United States)

    Se-Hee, Lee; George, Steven M.; Cavanagh, Andrew S.; Yoon Seok, Jung; Dillon, Anne C.

    2015-11-24

    Electrodes for lithium batteries are coated via an atomic layer deposition process. The coatings can be applied to the assembled electrodes, or in some cases to particles of electrode material prior to assembling the particles into an electrode. The coatings can be as thin as 2 .ANG.ngstroms thick. The coating provides for a stable electrode. Batteries containing the electrodes tend to exhibit high cycling capacities.

  4. FY 1999 report on the results of R and D projects by local consortiums for immediate effects. R and D regarding high quality/high performance of lithium tantalate single crystal's solidifying growth and SAW wafer; 1999 nendo sankabutsu tankessho no ikusei to wafer no kohinshitsu konoritsuka ni kansuru kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    The R and D project has been implemented for establishing, e.g., methods for growing oxide single crystals (e.g., lithium tantalate, LiTaO{sub 3}) to have the large and/or long products, technologies for polishing/cleaing the wafer products, and technologies for evaluating device performance. For solidifying growth and production technologies for lithium tantalate single crystals, pulling-up of the single crystal, 154 mm in body length and 12.9 kg, is succeeded by reducing temperature gradient at the crystal solid-liquid interface, increasing oxygen concentration, and improving the seed-sustaining system. Bright prospects have been obtained for the automated crystal pulling-up system, and high-precision control of crystal weight. For technologies for polishing/cleaning the wafers, the investigated cleaning methods include ELID polishing, mechanochemical polishing, and supersonic cleaning which uses two frequency bands of multi-supersonic and megasonic waves. For development of the technologies for evaluation/examination of the highly functional devices, the non-contact type method has been developed, which can measure the absolute level of SAW speed at a high speed and precision. (NEDO)

  5. FY 1999 report on the results of R and D projects by local consortiums for immediate effects. R and D regarding high quality/high performance of lithium tantalate single crystal's solidifying growth and SAW wafer; 1999 nendo sankabutsu tankessho no ikusei to wafer no kohinshitsu konoritsuka ni kansuru kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    The R and D project has been implemented for establishing, e.g., methods for growing oxide single crystals (e.g., lithium tantalate, LiTaO{sub 3}) to have the large and/or long products, technologies for polishing/cleaing the wafer products, and technologies for evaluating device performance. For solidifying growth and production technologies for lithium tantalate single crystals, pulling-up of the single crystal, 154 mm in body length and 12.9 kg, is succeeded by reducing temperature gradient at the crystal solid-liquid interface, increasing oxygen concentration, and improving the seed-sustaining system. Bright prospects have been obtained for the automated crystal pulling-up system, and high-precision control of crystal weight. For technologies for polishing/cleaning the wafers, the investigated cleaning methods include ELID polishing, mechanochemical polishing, and supersonic cleaning which uses two frequency bands of multi-supersonic and megasonic waves. For development of the technologies for evaluation/examination of the highly functional devices, the non-contact type method has been developed, which can measure the absolute level of SAW speed at a high speed and precision. (NEDO)

  6. Reduction and radiation effects in lithium tantalate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Y.; Sweeney, K.L.; Halliburton, L.E.

    1984-01-16

    Single crystals of LiTaO/sub 3/ are reduced, in a vacuum at temperatures up to 1100 /sup 0/C, and are electron irradiated at 77 K. Electron spin resonance spectra of Fe/sup 3 +/, Cr/sup 3 +/, and Mn/sup 2 +/ impurity ions and the infrared absorption of OH/sup -/ molecules are monitored as a function of increasing vacuum-anneal temperature. Electron irradiation of oxidized samples produces a broad optical absorption band centered at 470 nm and a corresponding hole like ESR spectrum with g/sub c/ = 2.0224. These latter spectra become thermally unstable in the 100 to 200 K range. Differences between LiTaO/sub 3/ and LiNbO/sub 3/ are noted.

  7. Ultra-thin lithium micro-batteries. Performances and applications; Microaccumulateurs ultra minces au lithium. Performances et applications

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M.; Terrat, J.P. [Hydromecanique et frottement (HEF), 42 - Andrezieux Boutheon (France); Levasseur, A.; Vinatier, P.; Meunier, G. [Centre National de la Recherche Scientifique (CNRS), 33 - Talence (France). Institut de Chimie de la Matiere Condensee et Physique de Bordeaux

    1996-12-31

    This short paper (abstract) describes the characteristics and performances of prototypes of ultra-thin lithium micro-batteries (thickness < 0.2 mm) which can be incorporated into microelectronic circuits. (J.S.)

  8. Ultra-thin lithium micro-batteries. Performances and applications; Microaccumulateurs ultra minces au lithium. Performances et applications

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M; Terrat, J P [Hydromecanique et frottement (HEF), 42 - Andrezieux Boutheon (France); Levasseur, A; Vinatier, P; Meunier, G [Centre National de la Recherche Scientifique (CNRS), 33 - Talence (France). Institut de Chimie de la Matiere Condensee et Physique de Bordeaux

    1997-12-31

    This short paper (abstract) describes the characteristics and performances of prototypes of ultra-thin lithium micro-batteries (thickness < 0.2 mm) which can be incorporated into microelectronic circuits. (J.S.)

  9. Thin films of lithium manganese oxide spinel as cathode materials for secondary lithium batteries

    International Nuclear Information System (INIS)

    Shui, J.L.; Jiang, G.S.; Xie, S.; Chen, C.H.

    2004-01-01

    The miniaturization of rechargeable lithium-ion batteries requires high quality thin-film electrodes. Electrostatic spray deposition (ESD) technique was used to fabricate LiMn 2 O 4 thin-film electrodes with three different morphologies: sponge-like porous, fractal-like porous, and dense structures. X-ray diffraction (XRD) and scanning electron microscopy were used to analyze the structures of the electrodes. These electrodes were made into coin cells against metallic lithium for electrochemical characterization. Galvanostatic cycling of the cells revealed different rate capability for the cells with LiMn 2 O 4 electrodes of different morphologies. It is found that the cells with LiMn 2 O 4 electrodes of porous, especially the sponge-like porous, morphology better rate capability than those with dense LiMn 2 O 4 electrodes. Electrochemical impedance spectroscopy (EIS) study indicates that the large surface area of the porous electrodes should be attributed to the smaller interfacial resistance and better rate capability

  10. Monolithic acoustic graphene transistors based on lithium niobate thin film

    Science.gov (United States)

    Liang, J.; Liu, B.-H.; Zhang, H.-X.; Zhang, H.; Zhang, M.-L.; Zhang, D.-H.; Pang, W.

    2018-05-01

    This paper introduces an on-chip acoustic graphene transistor based on lithium niobate thin film. The graphene transistor is embedded in a microelectromechanical systems (MEMS) acoustic wave device, and surface acoustic waves generated by the resonator induce a macroscopic current in the graphene due to the acousto-electric (AE) effect. The acoustic resonator and the graphene share the lithium niobate film, and a gate voltage is applied through the back side of the silicon substrate. The AE current induced by the Rayleigh and Sezawa modes was investigated, and the transistor outputs a larger current in the Rayleigh mode because of a larger coupling to velocity ratio. The output current increases linearly with the input radiofrequency power and can be effectively modulated by the gate voltage. The acoustic graphene transistor realized a five-fold enhancement in the output current at an optimum gate voltage, outperforming its counterpart with a DC input. The acoustic graphene transistor demonstrates a paradigm for more-than-Moore technology. By combining the benefits of MEMS and graphene circuits, it opens an avenue for various system-on-chip applications.

  11. Analysis of Waveguides on Lithium Niobate Thin Films

    Directory of Open Access Journals (Sweden)

    Yiwen Wang

    2018-04-01

    Full Text Available Waveguides formed by etching, proton-exchange (PE, and strip-loaded on single-crystal lithium niobate (LN thin film were designed and simulated by a full-vectorial finite difference method. The single-mode condition, optical power distribution, and bending loss of these kinds of waveguides were studied and compared systematically. For the PE waveguide, the optical power distributed in LN layer had negligible change with the increase of PE thickness. For the strip-loaded waveguide, the relationships between optical power distribution in LN layer and waveguide thickness were different for quasi-TE (q-TE and quasi-TM (q-TM modes. The bending loss would decrease with the increase of bending radius. There was a bending loss caused by the electromagnetic field leakage when the neff of q-TM waveguide was smaller than that of nearby TE planar waveguide. LN ridge waveguides possessed a low bending loss even at a relatively small bending radius. This study is helpful for the understanding of waveguide structures as well as for the optimization and the fabrication of high-density integrated optical components.

  12. Structural and optical investigations of sol–gel derived lithium titanate thin films

    International Nuclear Information System (INIS)

    Łapiński, M.; Kościelska, B.; Sadowski, W.

    2012-01-01

    Highlights: ► Lithium titanate thin films were deposited on glass substrates by sol–gel method. ► After annealing at 550 °C samples had lithium titanate spinel structure. ► Above 80 h of annealing mixture of lithium titanate and titanium oxides was appeared. ► Optical transmittance decreased with increasing of annealing time. - Abstract: In this paper structural and optical studies of lithium titanate (LTO) thin films are presented. Nanocrystalline thin films with 800 nm thickness were prepared by sol–gel method. To examine the influence of the annealing time on as-prepared films crystallization, the coatings were heated at 550 °C for 10, 20 and 80 h. Structure of manufactured thin films was investigated using X-ray diffraction (XRD). The most visible lithium titanate phase was obtained after 20 h annealing. Increasing of annealing time over 20 h revealed appearance of titanium oxides phase. On the basis of transmission characteristic optical properties were calculated. It was found that transmission through the thin films was reduced and position of the fundamental absorption edge was shifted toward a longer wavelength with increasing of annealing time. The optical band gap was calculated for direct allowed and indirect allowed transitions from optical absorption spectra.

  13. Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Sun Qian; Fu Zhengwen

    2008-01-01

    Vanadium mononitride (VN) thin films have been successfully fabricated by magnetron sputtering. Its electrochemical behaviour with lithium was examined by galvanostatic cell cycling and cyclic voltammetry. The capacity of VN was found to be stable above 800 mAh g -1 after 50 cycles. By using ex situ X-ray diffraction, high-resolution transmission electron microscopy and selected area electron diffraction as well as in situ spectroelectrochemical measurements, the electrochemical reaction mechanism of VN with lithium was investigated. The reversible conversion reaction of VN into metal V and Li 3 N was revealed. The high reversible capacity and good stable cycle of VN thin film electrode made it a new promising lithium-ion storage material for future rechargeable lithium batteries

  14. Flexible lithium-ion planer thin-film battery

    KAUST Repository

    Kutbee, Arwa T.; Ghoneim, Mohamed T.; Hussain, Muhammad Mustafa

    2016-01-01

    Commercialization of wearable electronics requires miniaturized, flexible power sources. Lithium ion battery is a strong candidate as the next generation high performance flexible battery. The development of flexible materials for battery electrodes

  15. Flexible lithium-ion planer thin-film battery

    KAUST Repository

    Kutbee, Arwa T.

    2016-02-03

    Commercialization of wearable electronics requires miniaturized, flexible power sources. Lithium ion battery is a strong candidate as the next generation high performance flexible battery. The development of flexible materials for battery electrodes suffers from the limited material choices. In this work, we present a flexible inorganic lithium-ion battery with no restrictions on the materials used. The battery showed an enhanced normalized capacity of 146 ??Ah/cm2.

  16. Lithium-Ion (de)insertion reaction of Germanium thin-film electrodes : an electrochemical and in situ XRD study

    NARCIS (Netherlands)

    Baggetto, L.; Notten, P.H.L.

    2009-01-01

    Germanium is a promising negative electrode candidate for lithium-ion thin-film batteries because of its very high theoretical storage capacity. When assuming full conversion of the material into the room-temperature equilibrium lithium saturated germanium phase, a theoretical capacity of or of

  17. Electrochemical reaction of lithium with orthorhombic bismuth tungstate thin films fabricated by radio-frequency sputtering

    International Nuclear Information System (INIS)

    Li Chilin; Sun Ke; Yu Le; Fu Zhengwen

    2009-01-01

    Bi 2 WO 6 thin films with fast deposition rate have been fabricated by radio-frequency (R.F.) sputtering deposition, and are used as positive electrodes in rechargeable thin film lithium batteries. An initial discharge capacity of 113 μAh/cm 2 -μm is obtainable for Bi 2 WO 6 film electrode with good capacity reversibility. A multiple-center reactive mechanism associated with both Bi 3+ /Bi 0 and W 6+ /W x+ (x 2 WO 6 electrochemical performance with those of Bi 2 O 3 and WO 3 thin films. A possible explanation about smooth capacity loss of Bi 2 WO 6 after long-term cycling is suggested from the incomplete reaction of Bi component. The advantages of Bi 2 WO 6 thin films over the singer-center Bi 2 O 3 or WO 3 thin films are shown in both the aspects of volumetric capacity and cycling life.

  18. Influence of lithium doping on the structural and electrical characteristics of ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Johny, T. Anto [Centre for Materials for Electronics Technology (C-MET), (Department of Information Technology, Scientific Society, Ministry of Communication and Information Technology, Govt. of India), Athani - PO, Thrissur, 680 581 Kerala (India); Kumar, Viswanathan, E-mail: vkumar10@yahoo.com [Centre for Materials for Electronics Technology (C-MET), (Department of Information Technology, Scientific Society, Ministry of Communication and Information Technology, Govt. of India), Athani - PO, Thrissur, 680 581 Kerala (India); Imai, Hideyuki; Kanno, Isaku [Micro Engineering, Kyoto University, Kyoto 606-8501 (Japan)

    2012-06-30

    Thin films of undoped and lithium-doped Zinc oxide, (Zn{sub 1-x}Li{sub x})O; x = 0, 0.05, 0.10 and 0.20 were prepared by sol-gel method using spin-coating technique on silicon substrates [(111)Pt/Ti/SiO{sub 2}/Si)]. The influence of lithium doping on the structural, electrical and microstructural characteristics have been investigated by means of X-ray diffraction, leakage current, piezoelectric measurements and scanning electron microscopy. The resistivity of the ZnO film is found to increase markedly with low levels (x {<=} 0.05) of lithium doping thereby enhancing their piezoelectric applications. The transverse piezoelectric coefficient, e{sub 31}{sup Low-Asterisk} has been determined for the thin films having the composition (Zn{sub 0.95}Li{sub 0.05})O, to study their suitability for piezoelectric applications. - Highlights: Black-Right-Pointing-Pointer Preferentially c-axis oriented (Zn{sub 1-x}Li{sub x})O films were spin-coated on glass. Black-Right-Pointing-Pointer (Zn{sub 1-x}Li{sub x})O thin films exhibit dense columnar microstructure. Black-Right-Pointing-Pointer Low levels of lithium doping, increases the electrical resistivity of ZnO thin films. Black-Right-Pointing-Pointer (Zn{sub 1-x}Li{sub x})O thin films show high values of transverse piezoelectric coefficient, e{sup Low-Asterisk }{sub 31}.

  19. Structural and Electrochemical Properties of Lithium Nickel Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Gyu-bong Cho

    2014-01-01

    Full Text Available LiNiO2 thin films were fabricated by RF magnetron sputtering. The microstructure of the films was determined by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties were investigated with a battery cycler using coin-type half-cells. The LiNiO2 thin films annealed below 500°C had the surface carbonate. The results suggest that surface carbonate interrupted the Li intercalation and deintercalation during charge/discharge. Although the annealing process enhanced the crystallization of LiNiO2, the capacity did not increase. When the annealing temperature was increased to 600°C, the FeCrNiO4 oxide phase was generated and the discharge capacity decreased due to an oxygen deficiency in the LiNiO2 thin film. The ZrO2-coated LiNiO2 thin film provided an improved discharge capacity compared to bare LiNiO2 thin film suggesting that the improved electrochemical characteristic may be attributed to the inhibition of surface carbonate by ZrO2 coating layer.

  20. Plasma properties during magnetron sputtering of lithium phosphorous oxynitride thin films

    DEFF Research Database (Denmark)

    Christiansen, Ane Sælland; Stamate, Eugen; Thydén, Karl Tor Sune

    2015-01-01

    The nitrogen dissociation and plasma parameters during radio frequency sputtering of lithium phosphorus oxynitride thin films in nitrogen gas are investigated by mass appearance spectrometry, electrostatic probes and optical emission spectroscopy, and the results are correlated with electrochemical...... properties and microstructure of the films. Low pressure and moderate power are associated with lower plasma density, higher electron temperature, higher plasma potential and larger diffusion length for sputtered particles. This combination of parameters favors the presence of more atomic nitrogen, a fact...

  1. Thin-film Rechargeable Lithium Batteries for Implantable Devices

    Science.gov (United States)

    Bates, J. B.; Dudney, N. J.

    1997-05-01

    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001%/cycle or less. The reliability and performance of Li LiCoO{sub 2} thin film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

  2. Lithium

    Science.gov (United States)

    Bradley, Dwight C.; Stillings, Lisa L.; Jaskula, Brian W.; Munk, LeeAnn; McCauley, Andrew D.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Lithium, the lightest of all metals, is used in air treatment, batteries, ceramics, glass, metallurgy, pharmaceuticals, and polymers. Rechargeable lithium-ion batteries are particularly important in efforts to reduce global warming because they make it possible to power cars and trucks from renewable sources of energy (for example, hydroelectric, solar, or wind) instead of by burning fossil fuels. Today, lithium is extracted from brines that are pumped from beneath arid sedimentary basins and extracted from granitic pegmatite ores. The leading producer of lithium from brine is Chile, and the leading producer of lithium from pegmatites is Australia. Other potential sources of lithium include clays, geothermal brines, oilfield brines, and zeolites. Worldwide resources of lithium are estimated to be more than 39 million metric tons, which is enough to meet projected demand to the year 2100. The United States is not a major producer at present but has significant lithium resources.

  3. Periodic domain inversion in x-cut single-crystal lithium niobate thin film

    Energy Technology Data Exchange (ETDEWEB)

    Mackwitz, P., E-mail: peterm@mail.upb.de; Rüsing, M.; Berth, G.; Zrenner, A. [Department Physik, Universität Paderborn, 33095 Paderborn (Germany); Center for Optoelectronics and Photonics Paderborn, 33095 Paderborn (Germany); Widhalm, A.; Müller, K. [Department Physik, Universität Paderborn, 33095 Paderborn (Germany)

    2016-04-11

    We report the fabrication of periodically poled domain patterns in x-cut lithium niobate thin-film. Here, thin films on insulator have drawn particular attention due to their intrinsic waveguiding properties offering high mode confinement and smaller devices compared to in-diffused waveguides in bulk material. In contrast to z-cut thin film lithium niobate, the x-cut geometry does not require back electrodes for poling. Further, the x-cut geometry grants direct access to the largest nonlinear and electro-optical tensor element, which overall promises smaller devices. The domain inversion was realized via electric field poling utilizing deposited aluminum top electrodes on a stack of LN thin film/SiO{sub 2} layer/Bulk LN, which were patterned by optical lithography. The periodic domain inversion was verified by non-invasive confocal second harmonic microscopy. Our results show domain patterns in accordance to the electrode mask layout. The second harmonic signatures can be interpreted in terms of spatially, overlapping domain filaments which start their growth on the +z side.

  4. Investigations of Si Thin Films as Anode of Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingliu [Department of Chemical; Shi, Bing; Bareño, Javier; Liu, Yuzi; Maroni, Victor A.; Zhai, Dengyun; Dees, Dennis W.; Lu, Wenquan

    2018-01-22

    Amorphous silicon thin films having various thicknesses were investigated as a negative electrode material for lithium-ion batteries. Electrochemical characterization of the 20 nm thick thin silicon film revealed a very low first cycle Coulombic efficiency, which can be attributed to the silicon oxide layer formed on both the surface of the as-deposited Si thin film and the interface between the Si and the substrate. Among the investigated films, the 100 nm Si thin film demonstrated the best performance in terms of first cycle efficiency and cycle life. Observations from scanning electron microscopy demonstrated that the generation of cracks was inevitable in the cycled Si thin films, even as the thickness of the film was as little as 20 nm, which was not predicted by previous modeling work. However, the cycling performance of the 20 and 100 nm silicon thin films was not detrimentally affected by these cracks. The poor capacity retention of the 1 mu m silicon thin film was attributed to the delamination.

  5. Thin-film calorimetry. In-situ characterization of materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Omelcenko, Alexander; Wulfmeier, Hendrik; Albrecht, Daniel; Fritze, Holger [Clausthal Univ. of Technology, Goslar (Germany). Inst. of Energy Research and Physical Technologies; El Mofid, Wassima; Ivanov, Svetlozar; Bund, Andreas [Ilmenau Univ. of Technology (Germany). Dept. of Electrochemistry

    2017-11-15

    Thin-film calorimetry allows for qualitative and quantitative in-situ analysis of thermodynamic properties of thin films and thin-film systems from room temperature up to 1000 C. It is based on highly sensitive piezoelectric langasite resonators which serve simultaneously as planar temperature sensors and substrates for the films of interest. Generation or consumption of heat during phase transformations of the films cause deviations from the regular course of the resonance frequency. Thermodynamic data such as phase transformation temperatures and enthalpies are extracted from these deviations. Thin-film calorimetry on Sn and Al thin films is performed to prove the concept. The results demonstrate high reproducibility of the measurement approach and are in agreement with literature data obtained by established calorimetric techniques. The calibration of the system is done in different atmospheres by application of defined heat pulses via heating structures. The latter replace the films of interest and simulate phase transformations to provide detailed analysis of the heat transfer mechanisms occurring in the measurement system. Based on this analysis, a data evaluation concept is developed. Application-relevant studies are performed on thin films of the lithium-ion battery materials NMC(A), NCA, LMO, and MoS{sub 2}. Their phase transformation temperatures and enthalpies are evaluated in oxidizing and reducing atmospheres. Furthermore, their thermodynamic stability ranges are presented. Finally, measurements on all-solid-state thin-film batteries during electrochemical cycling are performed. They demonstrate the suitability of the system for in-situ investigations.

  6. Anomalous dielectric relaxation in lithium-potassium tantalate crystals

    Science.gov (United States)

    Doussineau, P.; Farssi, Y.; Frénois, C.; Levelut, A.; Toulouse, J.; Ziolkiewicz, S.

    1994-08-01

    In order to describe the unusual dielectric properties observed in Ki{1-χ}Li{χ}TaO3. crystals a new approchh is proposed. The dynamical Glauber theory, previously applied to spinglasses, is modifiéd by the introduction of the spectral distribution of the random interactions between the dipoles associated with the Li+ ions. Moreover, the dipole corrélations are taken into account by the Onsager réaction field. As a result, the calculated dielectric constant reproduces well the unusual features of the Argand diagrams and, in particular, their finite slope at low frequencies and infinite slope at high frequencies (strophoidal shape). The temperature dépendance of some parameters shows, however, the limits of a spin-glass type model in describing the collective behaviour of randomly distributed dipoles in a highly polarizable medium. Une nouvelle approche est présentée qui permet de décrire les propriétés diélectriques particulières de cristaux mixtes de Ki{1-χ}Li{χ}TaO3. Elle s'appuie sur la théorie dynamique de Glauber, déjà utilisée pour les verres de spins, et modifiée par l'introduction d'une distribution spectrale spécifique aux interactions aléatoires des dipôles électriques associés aux ions Li+. En outre, les corrélations entre dipôles sont prises en compte par le champ de réaction d'Onsager. II s'ensuit que la constante diélectrique complexe ainsi calculée reproduit fidèlement les particularités des diagrammes d'Argand, telles que la pente finie aux basses fréquences et la pente infinie aux hautes fréquences (forme strophoïdale). La dépendance en température de certains paramètres déterminés par le calcul montre les limites de l'analogie avec les verres de spins et met en évidence le rôle d'un réseau très polarisable dans le comportement collectif d'une assemblée de dipôles électriques.

  7. Mechanical measurements on lithium phosphorous oxynitride coated silicon thin film electrodes for lithium-ion batteries during lithiation and delithiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Obeidi, Ahmed, E-mail: alobeidi@mit.edu; Thompson, Carl V., E-mail: reiner.moenig@kit.edu, E-mail: cthomp@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Kramer, Dominik, E-mail: dominik.kramer@kit.edu; Mönig, Reiner, E-mail: reiner.moenig@kit.edu, E-mail: cthomp@mit.edu [Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstraße 11, 89081 Ulm (Germany); Boles, Steven T., E-mail: steven.t.boles@polyu.edu.hk [Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom (Hong Kong)

    2016-08-15

    The development of large stresses during lithiation and delithiation drives mechanical and chemical degradation processes (cracking and electrolyte decomposition) in thin film silicon anodes that complicate the study of normal electrochemical and mechanical processes. To reduce these effects, lithium phosphorous oxynitride (LiPON) coatings were applied to silicon thin film electrodes. Applying a LiPON coating has two purposes. First, the coating acts as a stable artificial solid electrolyte interphase. Second, it limits mechanical degradation by retaining the electrode's planar morphology during cycling. The development of stress in LiPON-coated electrodes was monitored using substrate curvature measurements. LiPON-coated electrodes displayed highly reproducible cycle-to-cycle behavior, unlike uncoated electrodes which had poorer coulombic efficiency and exhibited a continual loss in stress magnitude with continued cycling due to film fracture. The improved mechanical stability of the coated silicon electrodes allowed for a better investigation of rate effects and variations of mechanical properties during electrochemical cycling.

  8. Preparation of LiMn2O4 cathode thin films for thin film lithium secondary batteries by a mist CVD process

    International Nuclear Information System (INIS)

    Tadanaga, Kiyoharu; Yamaguchi, Akihiro; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro; Duran, Alicia; Aparacio, Mario

    2014-01-01

    Highlights: • LiMn 2 O 4 thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn 2 O 4 thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn 2 O 4 cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueous solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles

  9. Preparation of LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries by a mist CVD process

    Energy Technology Data Exchange (ETDEWEB)

    Tadanaga, Kiyoharu, E-mail: tadanaga@chem.osakafu-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531 (Japan); Yamaguchi, Akihiro; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531 (Japan); Duran, Alicia; Aparacio, Mario [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, Kelsen 5 (Campus de Cantoblanco), Madrid, 28049 (Spain)

    2014-05-01

    Highlights: • LiMn{sub 2}O{sub 4} thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn{sub 2}O{sub 4} thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueous solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles.

  10. The investigation on electrochemical reaction mechanism of CuF2 thin film with lithium

    International Nuclear Information System (INIS)

    Cui Yanhua; Xue Mingzhe; Zhou Yongning; Peng Shuming; Wang Xiaolin; Fu Zhengwen

    2011-01-01

    Crystalline CuF 2 thin films were prepared by pulsed laser deposition under room temperature. The physical and electrochemical properties of the as-deposited thin films have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic cycling and cyclic voltammetry (CV). Reversible capacity of 544 mAh g -1 was achieved in the potential range of 1.0-4.0 V. A reversible couple of redox peaks at 3.0 V and 3.7 V was firstly observed. By using ex situ XRD and TEM techniques, an insertion process followed by a fully conversion reaction to Cu and LiF was revealed in the lithium electrochemical reaction of CuF 2 thin film electrode. The reversible insertion reaction above 2.8 V could provide a capacity of about 125 mAh g -1 , which makes CuF 2 a potential cathode material for rechargeable lithium batteries.

  11. DC magnetron sputtering prepared Ag-C thin film anode for thin film lithium ion microbatteries

    International Nuclear Information System (INIS)

    Li, Y.; Tu, J.P.; Shi, D.Q.; Huang, X.H.; Wu, H.M.; Yuan, Y.F.; Zhao, X.B.

    2007-01-01

    An Ag-C thin film was prepared by DC magnetron co-sputtering, using pure silver and graphite as the targets. The microstructure and morphology of the deposited thin film were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Electrochemical performances of the Ag-C thin film anode were investigated by means of discharge/charge and cyclic voltammogram (CV) tests in model cells. The electrochemical impedance spectrum (EIS) characteristics and the chemical diffusion coefficient, D Li of the Ag-C thin film electrode at different discharging states were discussed. It was believed that the excellent cycling performance of the Ag-C electrode was ascribed to the good conductivity of silver and the volume stability of the thin film

  12. Ionic conductivities of lithium phosphorus oxynitride glasses, polycrystals, and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.; Bates, J.B.; Chakoumakos, B.C.; Sales, B.C.; Kwak, B.S.; Zuhr, R.A. [Oak Ridge National Lab., TN (United States); Robertson, J.D. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Chemistry

    1994-11-01

    Various lithium phosphorus oxynitrides have been prepared in the form of glasses, polycrystals, and thin films. The structures of these compounds were investigated by X-ray and neutron diffraction, X-ray photoelectron spectroscopy (XPS), and high-performance liquid chromatography (HPLC). The ac impedance measurements indicate a significant improvement of ionic conductivity as the result of incorporation of nitrogen into the structure. In the case of polycrystalline Li{sub 2.88}PO{sub 3.73}N{sub 0.14} with the {gamma}-Li{sub 3}PO{sub 4} structure, the conductivity increased by several orders of magnitude on small addition of nitrogen. The highest conductivities in the bulk glasses and thin films were found to be 3.0 {times} 10{sup -7} and 8.9 {times} 10{sup -7} S{center_dot}cm{sup -1} at 25{degrees}C, respectively.

  13. Ionic conductivities of lithium phosphorus oxynitride glasses, polycrystals, and thin films

    International Nuclear Information System (INIS)

    Wang, B.; Bates, J.B.; Chakoumakos, B.C.; Sales, B.C.; Kwak, B.S.; Zuhr, R.A.; Robertson, J.D.

    1994-11-01

    Various lithium phosphorus oxynitrides have been prepared in the form of glasses, polycrystals, and thin films. The structures of these compounds were investigated by X-ray and neutron diffraction, X-ray photoelectron spectroscopy (XPS), and high-performance liquid chromatography (HPLC). The ac impedance measurements indicate a significant improvement of ionic conductivity as the result of incorporation of nitrogen into the structure. In the case of polycrystalline Li 2.88 PO 3.73 N 0.14 with the γ-Li 3 PO 4 structure, the conductivity increased by several orders of magnitude on small addition of nitrogen. The highest conductivities in the bulk glasses and thin films were found to be 3.0 x 10 -7 and 8.9 x 10 -7 S·cm -1 at 25 degrees C, respectively

  14. Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

    2003-08-01

    Thin films of Cu2Sb, prepared on stainless steel and copper substrates with a pulsed laser deposition technique at room temperature, have been evaluated as electrodes in lithium cells. The electrodes operate by a lithium insertion/copper extrusion reaction mechanism, the reversibility of which is superior when copper substrates are used, particularly when electrochemical cycling is restricted to the voltage range 0.65-1.4 V vs. Li/Li+. The superior performance of Cu2Sb films on copper is attributed to the more active participation of the extruded copper in the functioning of the electrode. The continual and extensive extrusion of copper on cycling the cells leads to the isolation of Li3Sb particles and a consequent formation of Sb. Improved cycling stability of both types of electrodes was obtained when cells were cycled between 0.65 and 1.4 V. A low-capacity lithium-ion cell with Cu2Sb and LiNi0.8Co0.15Al0.05O2 electrodes, laminated from powders, shows excellent cycling stability over the voltage range 3.15 - 2.2 V, the potential difference corresponding to approximately 0.65-1.4 V for the Cu2Sb electrode vs. Li/Li+. Chemical self-discharge of lithiated Cu2Sb electrodes by reaction with the electrolyte was severe when cells were allowed to relax on open circuit after reaching a lower voltage limit of 0.1 V. The solid electrolyte interphase (SEI) layer formed on Cu2Sb electrodes after cells had been cycled between 1.4 and 0.65 V vs. Li/Li+ was characterized by Fourier-transform infrared spectroscopy; the SEI layer contributes to the large irreversible capacity loss on the initial cycle of these cells. The data contribute to a better understanding of the electrochemical behavior of intermetallic electrodes in rechargeable lithium batteries.

  15. The Gaia-ESO Survey: Lithium enrichment histories of the Galactic thick and thin disc

    Science.gov (United States)

    Fu, X.; Romano, D.; Bragaglia, A.; Mucciarelli, A.; Lind, K.; Delgado Mena, E.; Sousa, S. G.; Randich, S.; Bressan, A.; Sbordone, L.; Martell, S.; Korn, A. J.; Abia, C.; Smiljanic, R.; Jofré, P.; Pancino, E.; Tautvaišienė, G.; Tang, B.; Magrini, L.; Lanzafame, A. C.; Carraro, G.; Bensby, T.; Damiani, F.; Alfaro, E. J.; Flaccomio, E.; Morbidelli, L.; Zaggia, S.; Lardo, C.; Monaco, L.; Frasca, A.; Donati, P.; Drazdauskas, A.; Chorniy, Y.; Bayo, A.; Kordopatis, G.

    2018-02-01

    Lithium abundance in most of the warm metal-poor main sequence stars shows a constarnt plateau (A(Li) 2.2 dex) and then the upper envelope of the lithium vs. metallicity distribution increases as we approach solar metallicity. Meteorites, which carry information about the chemical composition of the interstellar medium (ISM) at the solar system formation time, show a lithium abundance A(Li) 3.26 dex. This pattern reflects the Li enrichment history of the ISM during the Galaxy lifetime. After the initial Li production in big bang nucleosynthesis, the sources of the enrichment include asymptotic giant branch (AGB) stars, low-mass red giants, novae, type II supernovae, and Galactic cosmic rays. The total amount of enriched Li is sensitive to the relative contribution of these sources. Thus different Li enrichment histories are expected in the Galactic thick and thin disc. We investigate the main sequence stars observed with UVES in Gaia-ESO Survey iDR4 catalogue and find a Li-anticorrelation independent of [Fe/H], Teff, and log(g). Since in stellar evolution different α enhancements at the same metallicity do not lead to a measurable Li abundance change, the anticorrelation indicates that more Li is produced during the Galactic thin disc phase than during the Galactic thick disc phase. We also find a correlation between the abundance of Li and s-process elements Ba and Y, and they both decrease above the solar metallicity, which can be explained in the framework of the adopted Galactic chemical evolution models. The full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A38

  16. Surfactant-assisted ultrasonic spray pyrolysis of nickel oxide and lithium-doped nickel oxide thin films, toward electrochromic applications

    Energy Technology Data Exchange (ETDEWEB)

    Denayer, Jessica [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Bister, Geoffroy [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Simonis, Priscilla [Laboratory LPS, University of Namur, rue de bruxelles 61, 5000 Namur (Belgium); Colson, Pierre; Maho, Anthony [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Aubry, Philippe [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Vertruyen, Bénédicte [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Henrist, Catherine, E-mail: catherine.henrist@ulg.ac.be [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Lardot, Véronique; Cambier, Francis [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Cloots, Rudi [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium)

    2014-12-01

    Highlights: • Surfactant-assisted USP: a novel and low cost process to obtain high quality nickel oxide films, with or without lithium dopant. • Increased uniformity and reduced light scattering thanks to the addition of a surfactant. • Improved electrochromic performance (coloration efficiency and contrast) for lithium-doped films by comparison with the undoped NiO film. - Abstract: Lithium-doped nickel oxide and undoped nickel oxide thin films have been deposited on FTO/glass substrates by a surfactant-assisted ultrasonic spray pyrolysis. The addition of polyethylene glycol in the sprayed solution has led to improved uniformity and reduced light scattering compared to films made without surfactant. Furthermore, the presence of lithium ions in NiO films has resulted in improved electrochromic performances (coloration contrast and efficiency), but with a slight decrease of the electrochromic switching kinetics.

  17. Factors influencing charge capacity of vanadium pentoxide thin films during lithium ion intercalation/deintercalation cycles

    International Nuclear Information System (INIS)

    Alamarguy, D.; Castle, J. E.; Ibris, N.; Salvi, A. M.

    2007-01-01

    The intercalation of vanadium pentoxide by lithium ions leads to a change in optical properties, a process that is of value in thin-film electrochromic devices. In this study, films of V 2 O 5 , deposited on indium tin oxide (ITO) glass coupons by a sol-gel process, were challenged by increasing numbers of charge-discharge cycles ranging from 72 to 589 full cycles. The samples were characterized by x-ray photoelectron spectroscopy (XPS) and then examined in the deintercalated state by time-of-flight secondary ion mass spectroscopy (SIMS). XPS enabled measurement of the thickness and composition of the solid-electrolyte interface and provided evidence of the residual V 4+ concentration within the top few nanometers of the surface. The SIMS profile gave direct information on the thickness of the films and on the thickness loss caused by rinsing the samples after the electrochemical exposure. Determination, by SIMS, of the concentration of lithium ions has enabled a correction to be made for the amount of inactive material within the electrochemically active region of the film. The SIMS depth profiles for lithium in the four samples are similar, with a marked buildup of Li at the interface with the ITO. This interphase zone had a thickness of ∼27 nm and was electrochemically inactive, enabling a further correction to be made. Thus, by means of the XPS and the SIMS results the chemistry and thickness of the films could be fully characterized. The remaining inconsistency between capacity (between 35% and 100% of the anticipated charge) and number of cycles is ascribed to edge effects arising from the method used for production of the coupons

  18. Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guang-hao; Bai, Yu-hang; Cui, Guo-xin; Li, Chen; Qiu, Xiang-biao; Wu, Di; Lu, Yan-qing, E-mail: yqlu@nju.edu.cn [National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Geng, De-qiang [Jinan Jingzheng Electronics Co., Ltd., Jinan 250100 (China)

    2016-07-15

    Ferroelectric domain inversion and its effect on the stability of lithium niobate thin films on insulator (LNOI) are experimentally characterized. Two sets of specimens with different thicknesses varying from submicron to microns are selected. For micron thick samples (∼28 μm), domain structures are achieved by pulsed electric field poling with electrodes patterned via photolithography. No domain structure deterioration has been observed for a month as inspected using polarizing optical microscopy and etching. As for submicron (540 nm) films, large-area domain inversion is realized by scanning a biased conductive tip in a piezoelectric force microscope. A graphic processing method is taken to evaluate the domain retention. A domain life time of 25.0 h is obtained and possible mechanisms are discussed. Our study gives a direct reference for domain structure-related applications of LNOI, including guiding wave nonlinear frequency conversion, nonlinear wavefront tailoring, electro-optic modulation, and piezoelectric devices.

  19. Homo-junction ferroelectric field-effect-transistor memory device using solution-processed lithium-doped zinc oxide thin films

    KAUST Repository

    Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Bhansali, Unnat. S.; Alshareef, Husam N.

    2012-01-01

    High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility

  20. Radiation hardness and charge collection efficiency of lithium irradiated thin silicon diodes

    CERN Document Server

    Boscardin, Maurizio; Bruzzi, Mara; Candelori, Andrea; Focardi, Ettore; Khomenkov, Volodymyr P; Piemonte, Claudio; Ronchin, S; Tosi, C; Zorzi, N

    2005-01-01

    Due to their low depletion voltage, even after high particle fluences, improved tracking precision and momentum resolution, and reduced material budget, thin substrates are one of the possible choices to provide radiation hard detectors for future high energy physics experiments. In the framework of the CERN RD50 Collaboration, we have developed PIN diode detectors on membranes obtained by locally thinning the silicon substrate by means of TMAH etching from the wafer backside. Diodes of different shapes and sizes have been fabricated on 50- mu m and 100- mu m thick membranes and tested, showing a low leakage current (of 300 nA/cm/sup 3/) and a very low depletion voltage (in the order of 1 V for the 50 mu m membrane) before irradiation. Radiation damage tests have been performed with 58 MeV lithium (Li) ions up to the fluence of 10/sup 14/ Li/cm/sup 2/ in order to determine the depletion voltage and leakage current density increase after irradiation. Charge collection efficiency tests carried out with a beta /...

  1. Compositionally graded SiCu thin film anode by magnetron sputtering for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Polat, B.D., E-mail: bpolat@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, Istanbul 34469 (Turkey); Eryilmaz, O.L. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Keleş, O., E-mail: ozgulkeles@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, Istanbul 34469 (Turkey); Erdemir, A. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Amine, K. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-12-01

    Compositionally graded and non-graded composite SiCu thin films were deposited by magnetron sputtering technique on Cu disks for investigation of their potentials in lithium ion battery applications. The compositionally graded thin film electrodes with 30 at.% Cu delivered a 1400 mAh g{sup −1} capacity with 80% Coulombic efficiency in the first cycle and still retained its capacity at around 600 mAh g{sup −1} (with 99.9% Coulombic efficiency) even after 100 cycles. On the other hand, the non-graded thin film electrodes with 30 at.% Cu exhibited 1100 mAh g{sup −1} as the first discharge capacity with 78% Coulombic efficiency but the cycle life of this film degraded very quickly, delivering only 250 mAh g{sup −1} capacity after 100th cycles. Not only the Cu content but also the graded film thickness were believed to be the main contributors to the much superior performance of the compositionally graded SiCu films. We also believe that the Cu-rich region of the graded film helped reduce internal stress build-up and thus prevented film delamination during cycling. In particular, the decrease of Cu content from interface region to the top of the coating reduced the possibility of stress build-up across the film during cycling, thus leading to a high electrochemical performance.b - Highlights: • Highly adherent SiCu films are deposited by magnetron sputtering. • Compositionally graded SiCu film is produced and characterized. • Decrease of Cu content diverted the propagation of stress in the anode. • Cu rich layer at the bottom improves the adherence of the film.

  2. Production of lithium positive ions from LiF thin films on the anode in PBFA II

    International Nuclear Information System (INIS)

    Green, T.A.; Stinnett, R.W.; Gerber, R.A.

    1995-09-01

    The production of positive lithium ions using a lithium-fluoride-coated stainless steel anode in the particle beam fusion accelerator PBFA II is considered from both the experimental and theoretical points of view. It is concluded that the mechanism of Li + ion production is electric field desorption from the tenth-micron-scale crystallites which compose the columnar growth of the LiF thin film. The required electric field is estimated to be of the order of 5 MV/cm. An essential feature of the mechanism is that the crystallites are rendered electronically conducting through electron-hole pair generation by MeV electron bombardment of the thin film during the operation of the diode. It is proposed that the ion emission mechanism is an electronic conductivity analogue to that discovered by Rollgen for lithium halide crystallites which were rendered ionically conducting by heating to several hundred degrees Celsius. Since an electric field desorption mechanism cannot operate if a surface flashover plasma has formed and reduced the anode electric field to low values, the possibility of flashover on the lithium fluoride coated anode of the PBFA II Li + ion source is studied theoretically. It is concluded with near certainty that flashover does not occur

  3. Iron doping of lithium niobate by thermal diffusion from thin film: study of the treatment effect

    Energy Technology Data Exchange (ETDEWEB)

    Ciampolillo, Maria Vittoria; Zaltron, Annamaria; Bazzan, Marco; Argiolas, Nicola; Sada, Cinzia [Universita di Padova (Italy); CNISM, Dipartimento di Fisica ' ' G. Galilei' ' , Padova (Italy); Mignoni, Sabrina; Fontana, Marc [Universite de Metz et Supelec, Laboratoire Materiaux Optiques, Photoniques et Systemes, UMR CNRS 7132, Metz (France)

    2011-07-15

    Thermal diffusion from thin film is one of the most widespread approaches to prepare iron doped regions in lithium niobate with limited size for photorefractive applications. In this work, we investigate the doping process with the aim of determining the best process conditions giving a doped region with the characteristics required for photorefractive applications. Six samples were prepared by changing the atmosphere employed in the diffusion treatment in order to obtain different combination of diffusion profiles and reduction degrees and also to check the effect of employing a wet atmosphere. The compositional, optical, and structural properties are then extensively characterized by combining Secondary ion Mass Spectrometry, UV, visible and IR spectrophotometry, High Resolution X-Rays Diffraction, and Micro-Raman Spectroscopy. Moreover, the sample topography was checked by Atomic Force Microscopy. An analysis of all our data shows that the best results are obtained performing a double step process, i.e. diffusion in oxidizing atmosphere and subsequent reduction at lower temperature in an hydrogen-containing atmosphere. (orig.)

  4. Comparative studies of laser annealing technique and furnace annealing by X-ray diffraction and Raman analysis of lithium manganese oxide thin films for lithium-ion batteries

    International Nuclear Information System (INIS)

    Pröll, J.; Weidler, P.G.; Kohler, R.; Mangang, A.; Heißler, S.; Seifert, H.J.; Pfleging, W.

    2013-01-01

    The structure and phase formations of radio frequency magnetron sputtered lithium manganese oxide thin films (Li 1.1 Mn 1.9 O 4 ) under ambient air were studied. The influence of laser annealing and furnace annealing, respectively, on the bulk structure and surface phases was compared by using ex-situ X-ray diffraction and Raman analysis. Laser annealing technique formed a dominant (440)-reflection, furnace annealing led to both, (111)- and (440)-reflections within a cubic symmetry (S.G. Fd3m (227)). Additionally, in-situ Raman and in-situ X-ray diffraction were applied for online detection of phase transformation temperatures. In-situ X-ray diffraction measurements clearly identified the starting temperature for the (111)- and (440)-reflections around 525 °C and 400 °C, respectively. The 2θ Bragg peak positions of the characteristic (111)- and (440)-reflections were in good agreement with those obtained through conventional furnace annealing. Laser annealing of lithium manganese oxide films provided a quick and efficient technique and delivered a dominant (440)-reflection which showed the expected electrochemical behavior of the well-known two-step de-/intercalation process of lithium-ions into the cubic spinel structure within galvanostatic testing and cyclic voltammetry. - Highlights: ► Formation of cubic spinel-like phase of Li–Mn–O thin films by rapid laser annealing ► Laser annealing at 680 °C and 100 s was demonstrated as quick crystallization method. ► 400 °C was identified as characteristic onset temperature for (440)-reflex formation

  5. On-Orbit Demonstration of a Lithium-Ion Capacitor and Thin-Film Multijunction Solar Cells

    Science.gov (United States)

    Kukita, Akio; Takahashi, Masato; Shimazaki, Kazunori; Kobayashi, Yuki; Sakai, Tomohiko; Toyota, Hiroyuki; Takahashi, Yu; Murashima, Mio; Uno, Masatoshi; Imaizumi, Mitsuru

    2014-08-01

    This paper describes an on-orbit demonstration of the Next-generation Small Satellite Instrument for Electric power systems (NESSIE) on which an aluminum- laminated lithium-ion capacitor (LIC) and a lightweight solar panel called KKM-PNL, which has space solar sheets using thin-film multijunction solar cells, were installed. The flight data examined in this paper covers a period of 143 days from launch. We verified the integrity of an LIC constructed using a simple and lightweight mounting method: no significant capacitance reduction was observed. We also confirmed that inverted metamorphic multijunction triple-junction thin-film solar cells used for evaluation were healthy at 143 days after launch, because their degradation almost matched the degradation predictions for dual-junction thin-film solar cells.

  6. Deposition and characterization of thin films of materials with application in cathodes for lithium rechargeable micro batteries

    International Nuclear Information System (INIS)

    Lopez I, J.

    2007-01-01

    In this thesis work is reported the deposition and characterization of thin films of materials of the type LiMO 2 , with M=Co and Ni, which have application in cathodes for micro-batteries of lithium ions. In the last years some investigators have reported that the electrochemical operation of the lithium ions batteries it can improve recovering the cathode, in bundle form, with some metal oxides as the Al 2 O 3 ; for that the study of the formation of thin films in bilayer form LiMO 2 /AI 2 O 3 is of interest in the development of lithium ions micro batteries. The thin films were deposited using the laser ablation technique studying the effect of some deposit parameters in the properties of the one formed material, as: laser fluence, substrate temperature and working atmosphere, with the purpose of optimizing it. In the case of the LiCoO 2 it was found that to use an inert atmosphere of argon allows to obtain the material with the correct composition. Additionally, with the use of a temperature in the substrate of 150 C is possible to obtain to the material with certain crystallinity grade that to the subjected being to a post-deposit thermal treatment at 300 C for three hours, it gives as result a totally crystalline material. In the case of the thin films of LiNiO 2 , it was necessary to synthesize the oxide starting from a reaction of solid state among nickel oxide (NiO) and lithium oxide (Li 2 O) obtaining stoichiometric LiNiO 2 . For the formation of the thin films of LiNiO 2 it was used an argon atmosphere and the laser fluence was varied, the deposits were carried out to two different substrates temperatures, atmosphere and 160 C. In both cases the material it was recovered with an alumina layer, found that this layer didn't modify the structural properties of the base oxide (LiCoO 2 and LiNiO 2 ). (Author)

  7. Lithium Batteries

    Science.gov (United States)

    National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional thin-film lithium batteries for a variety of technological applications. These batteries have high essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for

  8. Structural, microstructural and transport properties study of lanthanum lithium titanium perovskite thin films grown by Pulsed Laser Deposition

    International Nuclear Information System (INIS)

    Maqueda, O.; Sauvage, F.; Laffont, L.; Martinez-Sarrion, M.L.; Mestres, L.; Baudrin, E.

    2008-01-01

    Lanthanum lithium titanate thin films were grown by Pulsed Laser Deposition. La 0.57 Li 0.29 TiO 3 dense films with smooth surfaces were obtained after optimization of the growth parameters. Such films deposited at 700 deg. C under 15 Pa are nano-crystalline with domains corresponding to the cubic and tetragonal modifications of this phase. In relation to the measured conductivities/activation energy and to previous works, we clearly underlined that the films of practical interest, prepared at relatively low temperature, are predominantly formed from the tetragonal ordered phase

  9. Nanostructured sodium lithium niobate and lithium niobium tantalate solid solutions obtained by controlled crystallization of glass

    International Nuclear Information System (INIS)

    Radonjic, L.; Todorovic, M.; Miladinovic, J.

    2005-01-01

    Transparent, nanostructured glass ceramics based on ferroelectric solid solutions of the type Na 1-x Li x NbO 3 (in very narrow composition regions for x = 0.12 and 0.93) and LiNb 1-y Ta y O 3 (y = 0.5 unlimited solid solubility), can be obtained by controlled crystallization of glass. The parent glass samples were prepared by conventional melt-quenching technique. Heat-treatment of the parent glasses was performed at the various temperatures, for the same time. The glass structure evolution during the controlled crystallization was examined by FT-IR spectroscopy analysis. Crystalline phases were identified by X-ray diffraction analysis and SEM was used for microstructure characterization. Densities of the crystallized glasses were measured by Archimedean principle. The capacitance and dielectric loss tangent were measured at a frequency of 1 kHz, at the room temperature. It was found that in the all investigated systems crystallize solid solutions Na 1-x Li x NbO 3 and LiNb 1-y Ta y O 3 in the glassy matrix, have crystal size on nanoscale (less than 100 nm), which is one of requirements to get a transparent glass ceramic that could be a good ferroelectric material regarding to the measured properties

  10. Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer

    Science.gov (United States)

    Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying

    2017-03-01

    Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.

  11. Preparation and electrochemical performance of copper foam-supported amorphous silicon thin films for rechargeable lithium-ion batteries

    International Nuclear Information System (INIS)

    Li Haixia; Cheng Fangyi; Zhu Zhiqiang; Bai Hongmei; Tao Zhanliang; Chen Jun

    2011-01-01

    Research highlights: → Amorphous Si thin films have been deposited on copper foam substrate by radio-frequency (rf) magnetron sputtering. → The as-prepared Si/Cu films with interconnected 3-dimensional structure are employed as anode materials of rechargeable lithium-ion batteries, showing that the electrode properties are greatly affected by the deposition temperature. → The film electrode deposited at an optimum temperature of 300 deg. C delivers a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. → The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm 2 /s. → The combination of rf magnetron sputtering and cooper foam substrate is an efficient route to prepare amorphous Si films with high capacity and cyclability due to the efficient ionic diffusion and interface contact with a good conductive current collector. - Abstract: Amorphous Si thin films, which have been deposited on copper foam by radio-frequency (rf) magnetron sputtering, are employed as anode materials of rechargeable lithium-ion batteries. The morphologies and structures of the as-prepared Si thin films are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). Electrochemical performance of lithium-ion batteries with the as-prepared Si films as the anode materials is investigated by cyclic voltammetry and charge-discharge measurements. The results show that the electrode properties of the prepared amorphous Si films are greatly affected by the deposition temperature. The film electrode deposited at an optimum temperature of 300 deg. C can deliver a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm

  12. Electrodeposited Structurally Stable V2O5 Inverse Opal Networks as High Performance Thin Film Lithium Batteries.

    Science.gov (United States)

    Armstrong, Eileen; McNulty, David; Geaney, Hugh; O'Dwyer, Colm

    2015-12-09

    High performance thin film lithium batteries using structurally stable electrodeposited V2O5 inverse opal (IO) networks as cathodes provide high capacity and outstanding cycling capability and also were demonstrated on transparent conducting oxide current collectors. The superior electrochemical performance of the inverse opal structures was evaluated through galvanostatic and potentiodynamic cycling, and the IO thin film battery offers increased capacity retention compared to micron-scale bulk particles from improved mechanical stability and electrical contact to stainless steel or transparent conducting current collectors from bottom-up electrodeposition growth. Li(+) is inserted into planar and IO structures at different potentials, and correlated to a preferential exposure of insertion sites of the IO network to the electrolyte. Additionally, potentiodynamic testing quantified the portion of the capacity stored as surface bound capacitive charge. Raman scattering and XRD characterization showed how the IO allows swelling into the pore volume rather than away from the current collector. V2O5 IO coin cells offer high initial capacities, but capacity fading can occur with limited electrolyte. Finally, we demonstrate that a V2O5 IO thin film battery prepared on a transparent conducting current collector with excess electrolyte exhibits high capacities (∼200 mAh g(-1)) and outstanding capacity retention and rate capability.

  13. Adsorption of ethylene carbonate on lithium cobalt oxide thin films: A synchrotron-based spectroscopic study of the surface chemistry

    Science.gov (United States)

    Fingerle, Mathias; Späth, Thomas; Schulz, Natalia; Hausbrand, René

    2017-11-01

    The surface chemistry of cathodic lithium cobalt oxide (LiCoO2) in contact with the Li-ion battery solvent ethylene carbonate (EC) was studied via synchrotron based soft X-ray photoelectron spectroscopy (SXPS). By stepwise in-situ adsorption of EC onto an rf-magnetron sputtered LiCoO2 thin film and consecutive recording of SXPS spectra, the chemical and electronic properties of the interface were determined. EC partially decomposes and forms a predominantly organic adlayer. Prolonged exposure results in the formation of a condensed EC layer, demonstrating that the decomposition layer has passivating properties. Lithium ions deintercalate from the electrode and are dissolved in the adsorbate phase, without forming a large amount of Li-containing reaction products, indicating that electrolyte reduction remains limited. Due to a large offset between the LiCoO2 valence band and the EC HOMO, oxidation of EC molecules is unlikely, and should require energy level shifts due to interaction or double layer effects for real systems.

  14. Effects of lithium doping on microstructure, electrical properties, and chemical bonds of sol-gel derived NKN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Cheng [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Mathematic and Physical Sciences, R.O.C. Air Force Academy, Kaohsiung 820, Taiwan (China); Chen, Chan-Ching; Weng, Chung-Ming [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Chu, Sheng-Yuan, E-mail: chusy@mail.ncku.edu.tw [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Hong, Cheng-Shong [Department of Electronic Engineering, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Tsai, Cheng-Che [Department of Digital Game and Animation Design, Tung-Fang Design University, Kaohsiung 829, Taiwan (China)

    2015-02-28

    Highly (100/110) oriented lead-free Li{sub x}(Na{sub 0.5}K{sub 0.5}){sub 1−x}NbO{sub 3} (LNKN, x = 0, 0.02, 0.04, and 0.06) thin films are fabricated on Pt/Ti/SiO{sub 2}/Si substrates via a sol-gel processing method. The lithium (Li) dopants modify the microstructure and chemical bonds of the LNKN films, and therefore improve their electrical properties. The optimal values of the remnant polarization (P{sub r} = 14.3 μC/cm{sup 2}), piezoelectric coefficient (d{sub 33} = 48.1 pm/V), and leakage current (<10{sup −5} A/cm{sup 2}) are obtained for a lithium addition of x = 0.04 (i.e., 4 at. %). The observation results suggest that the superior electrical properties are the result of an improved crystallization, a larger grain size, and a smoother surface morphology. It is shown that the ion transport mechanism is dominated by an Ohmic behavior under low electric fields and the Poole-Frenkel emission effect under high electric fields.

  15. Effects of lithium doping on microstructure, electrical properties, and chemical bonds of sol-gel derived NKN thin films

    International Nuclear Information System (INIS)

    Lin, Chun-Cheng; Chen, Chan-Ching; Weng, Chung-Ming; Chu, Sheng-Yuan; Hong, Cheng-Shong; Tsai, Cheng-Che

    2015-01-01

    Highly (100/110) oriented lead-free Li x (Na 0.5 K 0.5 ) 1−x NbO 3 (LNKN, x = 0, 0.02, 0.04, and 0.06) thin films are fabricated on Pt/Ti/SiO 2 /Si substrates via a sol-gel processing method. The lithium (Li) dopants modify the microstructure and chemical bonds of the LNKN films, and therefore improve their electrical properties. The optimal values of the remnant polarization (P r  = 14.3 μC/cm 2 ), piezoelectric coefficient (d 33  = 48.1 pm/V), and leakage current (<10 −5 A/cm 2 ) are obtained for a lithium addition of x = 0.04 (i.e., 4 at. %). The observation results suggest that the superior electrical properties are the result of an improved crystallization, a larger grain size, and a smoother surface morphology. It is shown that the ion transport mechanism is dominated by an Ohmic behavior under low electric fields and the Poole-Frenkel emission effect under high electric fields

  16. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    Science.gov (United States)

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  17. Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide) on polysiloxane.

    Science.gov (United States)

    Li, Jie; Lin, Yue; Yao, Hehua; Yuan, Changfu; Liu, Jin

    2014-07-01

    A tunable polysiloxane thin-film electrolyte for all-solid-state lithium-ion batteries was developed. The polysiloxane was synthesized by hydrosilylation of polymethylhydrosiloxane with cyclic [(allyloxy)methyl]ethylene ester carbonic acid and vinyl tris(2-methoxyethoxy)silane. (1) H NMR spectroscopy and gel-permeation chromatography demonstrated that the bifunctional groups of the cyclic propylene carbonate (PC) and combed poly(ethylene oxide) (PEO) were well grafted on the polysiloxane. At PC/PEO=6:4, the polysiloxane-based electrolyte had an ionic conductivity of 1.55 × 10(-4) and 1.50 × 10(-3)  S cm(-1) at 25 and 100 °C, respectively. The LiFePO4 /Li batteries fabricated with the thin-film electrolyte presented excellent cycling performance in the temperature range from 25 to 100 °C with an initial discharge capacity at a rate of 1 C of 88.2 and 140 mA h g(-1) at 25 and 100 °C, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Rare-Earth Tantalates and Niobates Single Crystals: Promising Scintillators and Laser Materials

    Directory of Open Access Journals (Sweden)

    Renqin Dou

    2018-01-01

    Full Text Available Rare-earth tantalates, with high density and monoclinic structure, and niobates with monoclinic structure have been paid great attention as potential optical materials. In the last decade, we focused on the crystal growth technology of rare-earth tantalates and niobates and studied their luminescence and physical properties. A series of rare-earth tantalates and niobates crystals have been grown by the Czochralski method successfully. In this work, we summarize the research results on the crystal growth, scintillation, and laser properties of them, including the absorption and emission spectra, spectral parameters, energy levels structure, and so on. Most of the tantalates and niobates exhibit excellent luminescent properties, rich physical properties, and good chemical stability, indicating that they are potential outstanding scintillators and laser materials.

  19. Piezoelectric excitation of elastic waves in centrosymmetrical potassium tantalate crystal

    International Nuclear Information System (INIS)

    Smolenskij, G.A.; Lemanov, V.V.; Sotnikov, A.V.; Syrnikov, P.P.; Yushin, N.K.

    1981-01-01

    Experiment results on excitation of elastic oscillations in potassium tantalate crystals are considered. The experiment has been conducted by usual for supersonic measurements technique: an impulse of the variable electric field has been applied to one of plane-parallel sample end-faces, at the same end-face signals corresponding to elastic pulses propagating in the crystal have been detected. Basic radiopulses parameters: basic frequency 30 MHz, duration 1-2 μs, pulse recurrence frequency 500 Hz, power 10 W. The investigation carried out has shown that the application to the sample at T=80 K temperature of constant external electrical field parallel to direction of elastic wave propagation leads to hysteresis dependence of elastic waves amplitude on the external voltage value. With temperature increase the hysteresis loop is deformed. It has been found when investigating temperature dependence of elastic wave amplitude that in the absence of external constant electrical field in short-circuited by constant current samples the oxillation excitation effect disappears at T approximately equal to 200 K. An essential influence on the elastic wave amplitude value is exerted by illumination of the crystal surface by light with 360-630 nm wave length. At T 130 K bacaee of photovoltaic effect in illuminated samples [ru

  20. Homo-junction ferroelectric field-effect-transistor memory device using solution-processed lithium-doped zinc oxide thin films

    Science.gov (United States)

    Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Bhansali, Unnat. S.; Alshareef, H. N.

    2012-06-01

    High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility of 8.7 cm2/Vs was obtained along with an Ion/Ioff ratio of 106. The ferroelectric thin film transistors showed a low sub-threshold swing value of 0.19 V/dec and a significantly reduced device operating voltage (±4 V) compared to the reported hetero-junction ferroelectric transistors, which is very promising for low-power non-volatile memory applications.

  1. Homo-junction ferroelectric field-effect-transistor memory device using solution-processed lithium-doped zinc oxide thin films

    KAUST Repository

    Nayak, Pradipta K.

    2012-06-22

    High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility of 8.7 cm2/Vs was obtained along with an Ion/Ioff ratio of 106. The ferroelectric thin filmtransistors showed a low sub-threshold swing value of 0.19 V/dec and a significantly reduced device operating voltage (±4 V) compared to the reported hetero-junction ferroelectrictransistors, which is very promising for low-power non-volatile memory applications.

  2. Nanostructured Cu2O thin film electrodes prepared by electrodeposition for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Bijani, S.; Gabas, M.; Martinez, L.; Ramos-Barrado, J.R.; Morales, J.; Sanchez, L.

    2007-01-01

    Uniform films of Cu 2 O with thickness below 1 μm were prepared from a Cu(II) lactate solution. The deposits were compact and of high purity with the particle size varying from 60 to 400 nm. They were tested as electrodes in lithium batteries and their electrochemical response was consistent with the Cu 2 O + 2e - + 2Li + ↔ 2Cu + Li 2 O reaction. Nevertheless, the reversibility of this reaction was dependent on thickness. Kinetic factors associated with the poor electronic conductivity of Cu 2 O could account for the relevance of the influence of film thickness. The thinnest film, about 300 nm thick, exhibited the best electrochemical performance by sustaining a specific capacity as high as 350 Ah kg -1

  3. Micro-length anodic porous niobium oxide for lithium-ion thin film battery applications

    International Nuclear Information System (INIS)

    Yoo, Jeong Eun; Park, Jiyoung; Cha, Gihoon; Choi, Jinsub

    2013-01-01

    The anodization of niobium in an aqueous mixture of H 3 PO 4 and HF in the potential range from 2.5 to 30 V for 2 h at 5 °C was performed, demonstrating that anodic porous niobium oxide film with a thickness of up to 2000 nm, including a surface dissolution layer, can be obtained by controlling the applied potential and composition of the electrolytes. Specifically, surface dissolution-free porous niobium oxide film with a thickness of 800 nm can be prepared in a low electrolyte concentration. The surface dissolution is observed when the concentration ratio of HF (wt.%):H 3 PO 4 (M) was more than 2:1. The discontinuous layers in the niobium oxide film were observed when the thickness was higher than 500 nm, which was ascribed to the large volume expansion of the niobium oxide grown from the niobium metal. The anodic porous niobium oxide film was used as the cathode for lithium-ion batteries in the potential range from 1.2 to 3.0 V at a current density of 7.28 × 10 − 6 A cm −2 . The first discharge capacity of ca. 53 μA h cm − 2 was obtained in 800 nm thick niobium oxide without a surface dissolution layer. - Highlights: ► Anodic porous niobium oxide film with a thickness of 2000 nm was obtained. ► Surface dissolution-free porous niobium oxide film was prepared. ► The niobium oxide film was used as the cathode for lithium-ion batteries

  4. Three-dimensional thin film for lithium-ion batteries and supercapacitors.

    Science.gov (United States)

    Yang, Yang; Peng, Zhiwei; Wang, Gunuk; Ruan, Gedeng; Fan, Xiujun; Li, Lei; Fei, Huilong; Hauge, Robert H; Tour, James M

    2014-07-22

    Three-dimensional heterogeneously nanostructured thin-film electrodes were fabricated by using Ta2O5 nanotubes as a framework to support carbon-onion-coated Fe2O3 nanoparticles along the surface of the nanotubes. Carbon onion layers function as microelectrodes to separate the two different metal oxides and form a nanoscale 3-D sandwich structure. In this way, space-charge layers were formed at the phase boundaries, and it provides additional energy storage by charge separation. These 3-D nanostructured thin films deliver both excellent Li-ion battery properties (stabilized at 800 mAh cm(–3)) and supercapacitor (up to 18.2 mF cm(–2)) performance owing to the synergistic effects of the heterogeneous structure. Thus, Li-ion batteries and supercapacitors are successfully assembled into the same electrode, which is promising for next generation hybrid energy storage and delivery devices.

  5. Lithium intercalation in sputter deposited antimony-doped tin oxide thin films: Evidence from electrochemical and optical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Montero, J., E-mail: jose.montero@angstrom.uu.se; Granqvist, C. G.; Niklasson, G. A. [Department of Engineering Sciences, The A°ngström Laboratory, Uppsala University, P.O. Box 534, SE-751 21 Uppsala (Sweden); Guillén, C.; Herrero, J. [Department of Energy, Ciemat, Avda. Complutense 40, Ed. 42, E-28040 Madrid (Spain)

    2014-04-21

    Transparent conducting oxides are used as transparent electrical contacts in a variety of applications, including in electrochromic smart windows. In the present work, we performed a study of transparent conducting antimony-doped tin oxide (ATO) thin films by chronopotentiometry in a Li{sup +}-containing electrolyte. The open circuit potential vs. Li was used to investigate ATO band lineups, such as those of the Fermi level and the ionization potential, as well as the dependence of these lineups on the preparation conditions for ATO. Evidence was found for Li{sup +} intercalation when a current pulse was set in a way so as to drive ions from the electrolyte into the ATO lattice. Galvanostatic intermittent titration was then applied to determine the lithium diffusion coefficient within the ATO lattice. The electrochemical density of states of the conducting oxide was studied by means of the transient voltage recorded during the chronopotentiometry experiments. These measurements were possible because, as Li{sup +} intercalation took place, charge compensating electrons filled the lowest part of the conduction band in ATO. Furthermore, the charge insertion modified the optical properties of ATO according to the Drude model.

  6. Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Piccinini, M., E-mail: massimo.piccinini@enea.it; Ampollini, A.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Vincenti, M. A.; Montereali, R. M. [ENEA, C.R. Frascati, UTAPRAD, Technical Unit for Development and Applications of Radiations, Via E. Fermi 45, 00044 Frascati (Rome) (Italy); Ambrosini, F. [University Sapienza-Roma I, Piazzale Aldo Moro 5, 00185 Rome (Italy); Nichelatti, E. [ENEA, C.R. Casaccia, UTTMAT, Technical Unit for Materials Technologies, Via Anguillarese 301, 00123 S. Maria di Galeria (Rome) (Italy)

    2015-06-29

    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 10{sup 11} to 10{sup 15} protons/cm{sup 2}. The visible photoluminescence spectra of radiation-induced F{sub 2} and F{sub 3}{sup +} laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 10{sup 3} to about 10{sup 6 }Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping.

  7. Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    Science.gov (United States)

    Piccinini, M.; Ambrosini, F.; Ampollini, A.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Nichelatti, E.; Vincenti, M. A.; Montereali, R. M.

    2015-06-01

    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 1011 to 1015 protons/cm2. The visible photoluminescence spectra of radiation-induced F2 and F3+ laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 103 to about 106 Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping.

  8. Bottom-up Approach Design, Band Structure, and Lithium Storage Properties of Atomically Thin γ-FeOOH Nanosheets.

    Science.gov (United States)

    Song, Yun; Cao, Yu; Wang, Jing; Zhou, Yong-Ning; Fang, Fang; Li, Yuesheng; Gao, Shang-Peng; Gu, Qin-Fen; Hu, Linfeng; Sun, Dalin

    2016-08-24

    As a novel class of soft matter, two-dimensional (2D) atomic nanosheet-like crystals have attracted much attention for energy storage devices due to the fact that nearly all of the atoms can be exposed to the electrolyte and involved in redox reactions. Herein, atomically thin γ-FeOOH nanosheets with a thickness of ∼1.5 nm are synthesized in a high yield, and the band and electronic structures of the γ-FeOOH nanosheet are revealed using density-functional theory calculations for the first time. The rationally designed γ-FeOOH@rGO composites with a heterostacking structure are used as an anode material for lithium-ion batteries (LIBs). A high reversible capacity over 850 mAh g(-1) after 100 cycles at 200 mA g(-1) is obtained with excellent rate capability. The remarkable performance is attributed to the ultrathin nature of γ-FeOOH nanosheets and 2D heterostacking structure, which provide the minimized Li(+) diffusion length and buffer zone for volume change. Further investigation on the Li storage electrochemical mechanism of γ-FeOOH@rGO indicates that the charge-discharge processes include both conversion reaction and capacitive behavior. This synergistic effect of conversion reaction and capacitive behavior originating from 2D heterostacking structure casts new light on the development of high-energy anode materials.

  9. Checkerboard deposition of lithium manganese oxide spinel (LiMn2O4) by RF magnetron sputtering on a stainless steel in all-solid-state thin film battery

    Science.gov (United States)

    Hsueh, T. H.; Yu, Y. Q.; Jan, D. J.; Su, C. H.; Chang, S. M.

    2018-03-01

    All-solid-state thin film lithium batteries (TFLBs) are the most competitive low-power sources to be applied in various kinds of micro-electro-mechanical systems and have been draw a lot of attention in academic research. In this paper, the checkerboard deposition of all-solid-state TFLB was composed of thin film lithium metal anode, lithium phosphorus oxynitride (LiPON) solid electrolyte, and checkerboard deposition of lithium manganese oxide spinel (LiMn2O4) cathode. The LiPON and LiMn2O4 were deposited by a radio frequency magnetron sputtering system, and the lithium metal was deposited by a thermal evaporation coater. The electrochemical characterization of this lithium battery showed the first discharge capacity of 107.8 μAh and the capacity retention was achieved 95.5% after 150 charge-discharge cycles between 4.3V and 3V at a current density of 11 μA/cm2 (0.5C). Obviously, the checkerboard of thin film increased the charge exchange rate; also this lithium battery exhibited high C-rate performance, with better capacity retention of 82% at 220 μA/cm2 (10C).

  10. Titanium oxynitride thin films as high-capacity and high-rate anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Chiu, Kuo-Feng; Su, Shih-Hsuan; Leu, Hoang-Jyh; Hsia, Chen-Hsien

    2015-01-01

    Titanium oxynitride (TiO_xN_y) was synthesized by reactive magnetron sputtering in a mixed N_2/O_2/Ar gas at ambient temperature. TiO_xN_y thin films with various amounts of nitrogen contents were deposited by varying the N_2/O_2 ratios in the background gas. The synthesized TiO_xN_y films with different compositions (TiO_1_._8_3_7N_0_._0_6_0_, TiO_1_._8_9_0N_0_._0_6_8_, TiO_1_._8_6_5N_0_._0_7_3, and TiO_1_._8_8_2N_0_._1_6_3) all displayed anatase phase, except TiO_1_._8_8_2N_0_._1_6_3. The impedances and grain sizes showed obvious variations with the nitrogen contents. A wide potential window from 3.0 V to 0.05 V, high-rate charge–discharge testing, and long cycle testing were applied to investigate the performances of synthesized TiO_xN_y and pure TiO_2 as anodes for lithium-ion batteries. These TiO_xN_y anodes can be cycled under high rates of 125 μA/cm"2 (10 °C) because of the lower charge–transfer resistance compared with the TiO_2 anode. At 10 °C the discharge capacity of the optimal TiO_xN_y composition is 1.5 times higher than that of pure TiO_2. An unexpectedly large reversible capacity of ~ 300 μAh/cm"2 μm (~ 800 mAh/g) between 1.0 V and 0.05 V was recorded for the TiO_xN_y anodes. The TiO_xN_y anode was cycled (3.0 V to 0.05 V) at 10 °C over 300 times without capacity fading while delivering a capacity of ~ 150 μAh/cm"2 μm (~ 400 mAh/g). - Highlights: • Titanium oxynitride (TiO_xN_y) thin films as anode materials were studied. • TiO_xN_y thin films with various amounts of nitrogen contents were studied_. • High rate capability of TiO_xN_y was studied.

  11. Low-density silicon thin films for lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Demirkan, M.T., E-mail: tmdemirkan@ualr.edu [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Department of Materials Science and Engineering, Gebze Technical University, Kocaeli (Turkey); Trahey, L. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Karabacak, T. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States)

    2016-02-01

    Density of sputter deposited silicon (Si) thin films was changed by a simple working gas pressure control process, and its effects on the cycling performance of Si films in Li-ion batteries as anodes was investigated. Higher gas pressure results in reduced film densities due to a shadowing effect originating from lower mean free path of sputter atoms, which leads to a wider angular distribution of the incoming flux and formation of a porous film microstructure. Si thin film anodes of different densities ranging from 2.27 g/cm{sup 3} (film porosity ~ 3%) down to 1.64 g/cm{sup 3} (~ 30% porosity) were fabricated by magnetron sputtering at argon pressures varying from 0.2 Pa to 2.6 Pa, respectively. High density Si thin film anodes of 2.27 g/cm{sup 3} suffered from an unstable cycling behavior during charging/discharging depicted by a continuous reduction in specific down to ~ 830 mAh/g at the 100th cycle. Electrochemical properties of lower density films with 1.99 g/cm{sup 3} (~ 15% porosity) and 1.77 g/cm{sup 3} (~ 24% porosity) got worse resulting in only ~ 100 mAh/g capacity at 100th cycle. On the other hand, as the density of anode was further reduced down to about 1.64 g/cm{sup 3} (~ 30% porosity), cycling stability and capacity retention significantly improved resulting in specific capacity values ~ 650 mAh/g at 100th cycle with coulombic efficiencies of > 98%. Enhancement in our low density Si film anodes are believed to mainly originate from the availability of voids for volumetric expansion during lithiation and resulting compliant behavior that provides superior mechanical and electrochemical stability. - Highlights: • Low density Si thin films were studied as Li-ion battery anodes. • Low density Si films were fabricated by magnetron sputter deposition. • Density of Si films reduced down to as low as ~ 1.64 g/cm{sup 3} with a porosity of ~ 30% • Low density Si films presented superior mechanical properties during cycling.

  12. Structural evolution of bias sputtered LiNi0.5Mn1.5O4 thin film cathodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Su, Shih-Hsuan; Chiu, Kuo-Feng; Leu, Hoang-Jyh

    2014-01-01

    LiNi 0.5 Mn 1.5 O 4 (LNMO) thin films have been deposited on stainless steel substrates using radio frequency (f = 13.56 MHz) magnetron sputtering, followed by thermal annealing in ambient atmosphere. Various negative biases were applied on the substrates during deposition. The structural evolution of LNMO thin films under different negative biases has been investigated and characterized by X-ray diffraction. All of the deposited films exhibit a crystalline spinel structure with a space group of Fd-3m, which is a so-called disordered phase. The results also indicate that particle size decreases with increasing negative bias. The electrochemical properties of the LNMO thin films as cathode materials for lithium ion batteries were investigated. Two distinctive voltage plateaus at ∼ 4.7 V and at ∼ 4.0 V (vs. Li + /Li) can be observed in the discharge curves, corresponding to the reactions of the disordered phase. The capacity of LNMO thin film electrodes under suitable negative bias can be optimized. - Highlights: • LiNi 0.5 Mn 1.5 O 4 thin films have been deposited on stainless steel substrates. • Various negative biases were applied on the substrates during deposition. • The particle sizes of LNMO thin films decrease with increasing negative bias

  13. Search for memory and return to disorder in potassium-lithium tantalate crystals

    International Nuclear Information System (INIS)

    Doussineau, P.; Levelut, A.; Lacerda-Aroso, T. de

    2000-01-01

    Return to disorder, and less frequently memory, have been demonstrated in various disordered materials. In order to find the conditions necessary for the observation of these effects, the evolution of the real part ε' of the dielectric constant of two disordered paraelectric crystals K 1-x Li x TaO 3 (KLT) has been extensively studied by the means of the capacitance C (T, t) around the beginning and the end of a temperature plateau. The return to disorder and memory effects have not been seen in KTL, in contrast to what was recently observed in disordered ferroelectric crystals KTa 1-y Nb y O 3 of a similar family. The variations dC = P (T 0 , t 0 ) dT + Q (T 0 , t 0 ) dt in the vicinity of the point (T 0 , t 0 ) are split into a contribution depending on temperature only and an isothermal contribution only depending on time. All the results of such an analysis of the features observed in KLT can be explained by the domain wall model in its original form. (author)

  14. Antiphase inversion domains in lithium cobaltite thin films deposited on single-crystal sapphire substrates

    International Nuclear Information System (INIS)

    Zheng, S.J.; Fisher, C.A.J.; Hitosugi, T.; Kumatani, A.; Shiraki, S.; Ikuhara, Y.H.; Kuwabara, A.; Moriwake, H.; Oki, H.; Ikuhara, Y.

    2013-01-01

    Antiphase inversion domains in LiCoO 2 thin films prepared by pulsed laser deposition on sapphire single-crystal substrates are analyzed using a combination of (scanning) transmission electron microscopy and first-principles calculations. Domains form epitaxially on the substrates with orientation relationships of [112 ¯ 0] LiCoO 2 (0001) LiCoO 2 //[11 ¯ 00] α-Al 2 O 3 (0001) α-Al 2 O 3 and [1 ¯ 1 ¯ 20] LiCoO 2 (0001) LiCoO 2 //[11 ¯ 00] α-Al 2 O 3 (0001) α-Al 2 O 3 . In addition, substrate/film interfaces with the above orientation relationships always have the same stacking sequence of Al–O–Co–O–Li–O. This is confirmed to be the most energetically stable stacking arrangement according to first-principles calculations. Individual domains form as a result of steps one (0 0 0 1) O–Al–O spacing in height on the otherwise flat substrate surface. Because the orientation of adjacent (0 0 0 1) AlO 6 octahedra in Al 2 O 3 are rotated by 180°, while LiO 6 and CoO 6 octahedra in LiCoO 2 are all aligned in the same direction, substrate steps produce LiCoO 2 domains rotated 180° relative to their neighbors. The similar size of oxygen octahedra in the two materials also means that the step height is close to the layer spacing in LiCoO 2 , so that (0 0 0 1) Li and Co layers of adjacent domains are shifted by one layer relative to each other at each domain boundary, aligning Li layers with Co layers across the boundary. The combination of these two effects generates antiphase inversion domains. The domain boundaries effectively sever Li-ion diffusion pathways in the (0 0 0 1) planes between domains and thus are expected to have a detrimental effect on Li-ion conductivity

  15. Titanium oxynitride thin films as high-capacity and high-rate anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Kuo-Feng [Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China); Su, Shih-Hsuan, E-mail: minimono42@gmail.com [Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China); Leu, Hoang-Jyh [Master' s Program of Green Energy Science and Technology, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China); Hsia, Chen-Hsien [Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China)

    2015-12-01

    Titanium oxynitride (TiO{sub x}N{sub y}) was synthesized by reactive magnetron sputtering in a mixed N{sub 2}/O{sub 2}/Ar gas at ambient temperature. TiO{sub x}N{sub y} thin films with various amounts of nitrogen contents were deposited by varying the N{sub 2}/O{sub 2} ratios in the background gas. The synthesized TiO{sub x}N{sub y} films with different compositions (TiO{sub 1.837}N{sub 0.060,} TiO{sub 1.890}N{sub 0.068,} TiO{sub 1.865}N{sub 0.073}, and TiO{sub 1.882}N{sub 0.163}) all displayed anatase phase, except TiO{sub 1.882}N{sub 0.163}. The impedances and grain sizes showed obvious variations with the nitrogen contents. A wide potential window from 3.0 V to 0.05 V, high-rate charge–discharge testing, and long cycle testing were applied to investigate the performances of synthesized TiO{sub x}N{sub y} and pure TiO{sub 2} as anodes for lithium-ion batteries. These TiO{sub x}N{sub y} anodes can be cycled under high rates of 125 μA/cm{sup 2} (10 °C) because of the lower charge–transfer resistance compared with the TiO{sub 2} anode. At 10 °C the discharge capacity of the optimal TiO{sub x}N{sub y} composition is 1.5 times higher than that of pure TiO{sub 2}. An unexpectedly large reversible capacity of ~ 300 μAh/cm{sup 2} μm (~ 800 mAh/g) between 1.0 V and 0.05 V was recorded for the TiO{sub x}N{sub y} anodes. The TiO{sub x}N{sub y} anode was cycled (3.0 V to 0.05 V) at 10 °C over 300 times without capacity fading while delivering a capacity of ~ 150 μAh/cm{sup 2} μm (~ 400 mAh/g). - Highlights: • Titanium oxynitride (TiO{sub x}N{sub y}) thin films as anode materials were studied. • TiO{sub x}N{sub y} thin films with various amounts of nitrogen contents were studied{sub .} • High rate capability of TiO{sub x}N{sub y} was studied.

  16. Nitrogen-doped biomass-based ultra-thin carbon nanosheets with interconnected framework for High-Performance Lithium-Ion Batteries

    Science.gov (United States)

    Guo, Shasha; Chen, Yaxin; Shi, Liluo; Dong, Yue; Ma, Jing; Chen, Xiaohong; Song, Huaihe

    2018-04-01

    In this paper, a low-cost and environmental friendly synthesis strategy is proposed to fabricate nitrogen-doped biomass-based ultra-thin carbon nanosheets (N-CNS) with interconnected framework by using soybean milk as the carbon precursor and sodium chloride as the template. The interconnected porous nanosheet structure is beneficial for lithium ion transportation, and the defects introduced by pyridine nitrogen doping are favorable for lithium storage. When used as the anodes for lithium-ion batteries, the N-CNS electrode shows a high initial reversible specific capacity of 1334 mAh g-1 at 50 mA g-1, excellent rate performance (1212, 555 and 336 mAh g-1 at 0.05, 0.5 and 2 A g-1, respectively) and good cycling stability (355 mAh g-1 at 1 A g-1 after 1000 cycles). Furthermore, this study demonstrates the prospects of biomass and soybean milk, as the potential anode for the application of electrochemical energy storage devices.

  17. Development of thin film cathodes for lithium-ion batteries in the material system Li–Mn–O by r.f. magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J., E-mail: julian.fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Adelhelm, C.; Bergfeldt, T. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Chang, K. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 46 52074 Aachen (Germany); Ziebert, C.; Leiste, H.; Stüber, M.; Ulrich, S. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Music, D.; Hallstedt, B. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 46 52074 Aachen (Germany); Seifert, H.J. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2013-01-01

    Today most commercially available lithium ion batteries are still based on the toxic and expensive LiCoO{sub 2} as a standard cathode material. However, lithium manganese based cathode materials are cheaper and environmentally friendlier. In this work cubic-LiMn{sub 2}O{sub 4} spinel, monoclinic-Li{sub 2}MnO{sub 3} and orthorhombic-LiMnO{sub 2} thin films have been synthesized by non-reactive r.f. magnetron sputtering from two ceramic targets (LiMn{sub 2}O{sub 4}, LiMnO{sub 2}) in a pure argon discharge. The deposition parameters, namely target power and working gas pressure, were optimized in a combination with a post deposition heat treatment with respect to microstructure and electrochemical behavior. The chemical composition was determined using inductively coupled plasma optical emission spectroscopy and carrier gas hot extraction. The films' crystal structure, phase evolution and morphology were investigated by X-ray diffraction, micro Raman spectroscopy and scanning electron microscopy. Due to the fact that these thin films consist of the pure active material without any impurities, such as binders or conductive additives like carbon black, they are particularly well suited for measurements of the intrinsic physical properties, which is essential for fundamental understanding. The electrochemical behavior of the cubic and the orthorhombic films was investigated by galvanostatic cycling in half cells against metallic lithium. The cubic spinel films exhibit a maximum specific capacity of ∼ 82 mAh/g, while a specific capacity of nearly 150 mAh/g can be reached for the orthorhombic counterparts. These films are promising candidates for future all solid state battery applications. - Highlights: ► Synthesis of 3 Li–Mn–O structures by one up-scalable thin film deposition method ► Formation of o-LiMnO{sub 2} by r.f. magnetron sputtering in combination with post-annealing ► Discharge capacity with o-LiMnO{sub 2} cathodes twice as high as for c

  18. Development of thin film cathodes for lithium-ion batteries in the material system Li–Mn–O by r.f. magnetron sputtering

    International Nuclear Information System (INIS)

    Fischer, J.; Adelhelm, C.; Bergfeldt, T.; Chang, K.; Ziebert, C.; Leiste, H.; Stüber, M.; Ulrich, S.; Music, D.; Hallstedt, B.; Seifert, H.J.

    2013-01-01

    Today most commercially available lithium ion batteries are still based on the toxic and expensive LiCoO 2 as a standard cathode material. However, lithium manganese based cathode materials are cheaper and environmentally friendlier. In this work cubic-LiMn 2 O 4 spinel, monoclinic-Li 2 MnO 3 and orthorhombic-LiMnO 2 thin films have been synthesized by non-reactive r.f. magnetron sputtering from two ceramic targets (LiMn 2 O 4 , LiMnO 2 ) in a pure argon discharge. The deposition parameters, namely target power and working gas pressure, were optimized in a combination with a post deposition heat treatment with respect to microstructure and electrochemical behavior. The chemical composition was determined using inductively coupled plasma optical emission spectroscopy and carrier gas hot extraction. The films' crystal structure, phase evolution and morphology were investigated by X-ray diffraction, micro Raman spectroscopy and scanning electron microscopy. Due to the fact that these thin films consist of the pure active material without any impurities, such as binders or conductive additives like carbon black, they are particularly well suited for measurements of the intrinsic physical properties, which is essential for fundamental understanding. The electrochemical behavior of the cubic and the orthorhombic films was investigated by galvanostatic cycling in half cells against metallic lithium. The cubic spinel films exhibit a maximum specific capacity of ∼ 82 mAh/g, while a specific capacity of nearly 150 mAh/g can be reached for the orthorhombic counterparts. These films are promising candidates for future all solid state battery applications. - Highlights: ► Synthesis of 3 Li–Mn–O structures by one up-scalable thin film deposition method ► Formation of o-LiMnO 2 by r.f. magnetron sputtering in combination with post-annealing ► Discharge capacity with o-LiMnO 2 cathodes twice as high as for c-LiMn 2 O 4 ► Thin film deposition of m-Li 2 MnO 3 and

  19. Polar and chemical domain structures of lead scandium tantalate (PST)

    International Nuclear Information System (INIS)

    Peng, J.L.; Bursill, L.A.

    1993-01-01

    The local structure of chemical and polar domains and domain walls is determined directly by atomic resolution high-resolution electron microscopy. Thus the Pb, Ta and Sc atomic positions may be located in the images of very thin crystals. Furthermore the Pb cation displacements away from the ideal perovskite A-site have been measured directly for the first time. Local variations in polarization direction may be mapped directly off the images, provided certain electron optical conditions are met. The results are relevant to recent theories of polar-glass behaviour in relaxor-type complex oxide functional ceramics. 17 refs., 9 figs

  20. Performance improvements of pouch-type flexible thin-film lithium-ion batteries by modifying sequential screen-printing process

    International Nuclear Information System (INIS)

    Kang, Kun-Young; Lee, Young-Gi; Shin, Dong Ok; Kim, Jin-Chul; Kim, Kwang Man

    2014-01-01

    A pouch-type flexible thin-film lithium-ion battery is fabricated by sequential screen-printing (wet) processes to produce consecutive layers of a current collector, positive and negative electrodes, and a gel polymer electrolyte. Optimum conditions of each process are determined by adjusting the paste or slurry compositions to achieve lower surface resistance of each layer (current collector and electrodes) and higher ionic conductivity of the gel polymer electrolyte. The fabricated flexible thin-film lithium-ion battery (5.5 × 5.5 cm 2 , 325 μm thick) shows superior electrochemical performance, including an energy density of 292.3 Wh L −1 based on electrode size (4.0 × 4.0 cm 2 ), an initial discharge capacity of 2.5 mAh cm −2 per electrode area, and capacity retention ratio of over 68% at the 50th cycle. To further improve the battery performance, the wet processes are modified by adopting hybrid (dry-wet) processes, which mainly consist of the formation of metallic current collector layers (Al and Cu) using a thermal evaporator and another optimized gel polymer electrolyte, to achieve an energy density of 332.8 Wh L −1 and capacity retention ratio of 84% at the 50th cycle. Cell flexibility is also confirmed by stable open circuit voltages after the system is subjected to several hundred iterations of bending, stretching, and even folding. There is the possibility that the suggested wet and dry-wet processes can be expanded to a high-speed mass-production roll-to-roll process

  1. GeO2 Thin Film Deposition on Graphene Oxide by the Hydrogen Peroxide Route: Evaluation for Lithium-Ion Battery Anode.

    Science.gov (United States)

    Medvedev, Alexander G; Mikhaylov, Alexey A; Grishanov, Dmitry A; Yu, Denis Y W; Gun, Jenny; Sladkevich, Sergey; Lev, Ovadia; Prikhodchenko, Petr V

    2017-03-15

    A peroxogermanate thin film was deposited in high yield at room temperature on graphene oxide (GO) from peroxogermanate sols. The deposition of the peroxo-precursor onto GO and the transformations to amorphous GeO 2 , crystalline tetragonal GeO 2 , and then to cubic elemental germanium were followed by electron microscopy, XRD, and XPS. All of these transformations are influenced by the GO support. The initial deposition is explained in view of the sol composition and the presence of GO, and the different thermal transformations are explained by reactions with the graphene support acting as a reducing agent. As a test case, the evaluation of the different materials as lithium ion battery anodes was carried out revealing that the best performance is obtained by amorphous germanium oxide@GO with >1000 mAh g -1 at 250 mA g -1 (between 0 and 2.5 V vs Li/Li + cathode), despite the fact that the material contained only 51 wt % germanium. This is the first demonstration of the peroxide route to produce peroxogermanate thin films and thereby supported germanium and germanium oxide coatings. The advantages of the process over alternative methodologies are discussed.

  2. Li4Ti5O12 thin-film electrodes by in-situ synthesis of lithium alkoxide for Li-ion microbatteries

    International Nuclear Information System (INIS)

    Mosa, J.; Aparicio, M.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M.

    2014-01-01

    Rechargeable thin-film batteries have recently become the topic of widespread research for use as efficient energy storage devices. Spinel Li 4 Ti 5 O 12 has been considered as one of the most prospective anode materials for Li-ion batteries because of its excellent reversibility and long cycle life. We report here the sol–gel synthesis and coating preparation of spinel thin-film Li 4 Ti 5 O 12 electrodes for Li-ion microbatteries using lithium ethoxide produced in situ that reacts with titanium alkoxide to produce the precursor solution without particle precipitation. This synthesis procedure reduces the thermal treatment to obtain a pure phase at only 700 °C and 15 minutes. The physical and structural characterization of the 300 nm Li 4 Ti 5 O 12 coatings shows a very homogeneous distribution of elements and a pure spinel phase. Galvanostatic discharge-charge tests indicate maximum discharge capacities of 152 mA h g −1 when the material is treated at 700 °C for 15 minutes

  3. Growth of LiMn{sub 2}O{sub 4} thin films by pulsed-laser deposition and their electrochemical properties in lithium microbatteries

    Energy Technology Data Exchange (ETDEWEB)

    Julien, C. [Univ. Pierre et Marie Curie, Paris (France). LMDH; Haro-Poniatowski, E. [Laboratorio de Optica Cuantica, Universidad Autonoma Metropolitana Iztapalapa, Apdo. Postal 55-534, Mexico (Mexico); Camacho-Lopez, M.A. [LMDH, UMR 7603, Universite Pierre et Marie Curie, 4 place Jussieu, 75252, Paris (France); Escobar-Alarcon, L. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico (Mexico); Jimenez-Jarquin, J. [Laboratorio de Optica Cuantica, Universidad Autonoma Metropolitana Iztapalapa, Apdo. Postal 55-534, Mexico (Mexico)

    2000-03-01

    Films of LiMn{sub 2}O{sub 4} were grown by pulsed-laser deposition (PLD) onto silicon wafers using sintered targets which consisted in the mixture of LiMn{sub 2}O{sub 4} and Li{sub 2}O powders. The film formation has been studied as a function of the preparation conditions, i.e. composition of the target, substrate temperature, and oxygen partial pressure in the deposition chamber. Composition, morphology and structural properties of PLD films have been investigated using Rutherford backscattering spectroscopy, scanning electron microscopy, X-ray diffraction and Raman scattering spectroscopy. The films deposited from target LiMn{sub 2}O{sub 4}+15% Li{sub 2}O have an excellent crystallinity when deposited onto silicon substrate maintained at 300 C in an oxygen partial pressure of 100 mTorr. It is found that such a film crystallizes in the spinel structure (Fd3m symmetry) as evidenced by X-ray diffraction. Well-textured polycrystalline films exhibit crystallite size of 300 nm. Pulsed-laser deposited LiMn{sub 2}O{sub 4} thin films obtained with a polycrystalline morphology were successfully used as cathode materials in lithium microbatteries. The Li//LiMn{sub 2}O{sub 4} thin film cells have been tested by cyclic voltammetry and galvanostatic charge-discharge techniques in the potential range 3.0-4.2 V. Specific capacity as high as 120 mC/cm{sup 2} {mu}m was measured on polycrystalline films. The chemical diffusion coefficients for the Li{sub x}Mn{sub 2}O{sub 4} thin films appear to be in the range of 10{sup -11}-10{sup -12} cm{sup 2}/s. Electrochemical measurements show a good cycleability of PLD films when cells are charged-discharged at current densities of 5-25 {mu}A/cm{sup 2}. (orig.)

  4. Sandwiched Thin-Film Anode of Chemically Bonded Black Phosphorus/Graphene Hybrid for Lithium-Ion Battery.

    Science.gov (United States)

    Liu, Hanwen; Zou, Yuqin; Tao, Li; Ma, Zhaoling; Liu, Dongdong; Zhou, Peng; Liu, Hongbo; Wang, Shuangyin

    2017-09-01

    A facile vacuum filtration method is applied for the first time to construct sandwich-structure anode. Two layers of graphene stacks sandwich a composite of black phosphorus (BP), which not only protect BP from quickly degenerating but also serve as current collector instead of copper foil. The BP composite, reduced graphene oxide coated on BP via chemical bonding, is simply synthesized by solvothermal reaction at 140 °C. The sandwiched film anode used for lithium-ion battery exhibits reversible capacities of 1401 mAh g -1 during the 200th cycle at current density of 100 mA g -1 indicating superior cycle performance. Besides, this facile vacuum filtration method may also be available for other anode material with well dispersion in N-methyl pyrrolidone (NMP). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Monodispersed macroporous architecture of nickel-oxide film as an anode material for thin-film lithium-ion batteries

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Lin, Ya-Ping

    2011-01-01

    A nickel-oxide film with monodispersed open macropores was prepared on a stainless-steel substrate by electrophoretic deposition of a polystyrene-sphere monolayer followed by anodic electrodeposition of nickel oxy-hydroxide. The deposited films convert to cubic nickel oxide after annealing at 400 o C for 1 h. Galvanostatic charge and discharge results indicate that the nickel-oxide film with monodispersed open macropores is capable of delivering a higher capacity than the bare nickel-oxide film, especially in high-rate charge and discharge processes. The lithiation capacity of macroporous nickel oxide reaches 1620 mA h g -1 at 1 C current discharge and decreases to 990 mA h g -1 at 15 C current discharge. The presence of monodispersed open macropores in the nickel-oxide film might facilitate the electrolyte penetration, diffusion, and migration. Electrochemical reactions between nickel oxide and lithium ions are therefore markedly improved by this tailored film architecture.

  6. Effect of the processing parameters on the crystalline structure of lanthanide ortho tantalates

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Kisla P.F.; Dias, Anderson, E-mail: anderson_dias@iceb.ufop.br [Universidade Federal de Ouro Preto (UFOP), MG (Brazil). Dept. de Quimica

    2014-08-15

    The influence of the synthesis parameters on the crystalline structures of ortho tantalate ceramics has been investigated. Powder materials were prepared by the solid-state reaction route. X-ray diffraction and Raman scattering measurements were employed to investigate the crystal structure of the produced materials. In this work, we analyzed three different examples in which the temperature and time were decisive on the final crystal structure of LnTaO{sub 4} compounds besides the lanthanide ionic size. Firstly, the thermal evolution for NdTaO{sub 4} samples showed that mixed crystal phases are formed up to 1100 °C, while well-crystallized M-NdTaO{sub 4} (I2/a) materials are obtained in temperatures higher than 1200 °C. Also, the influence of the synthesis time was investigated for the LaTaO{sub 4} ceramics: it was necessary 14 h to obtain samples in the P2{sub 1}/c structure. Finally, two polymorphs could be obtained for the DyTaO{sub 4} ceramics: P2/a and I2/a space groups were obtained at 1300 °C and 1500 °C, respectively. This study indicated that the temperature, time and lanthanide size are directly correlated with the crystalline arrangement of the ortho tantalate materials.(author)

  7. Growth and decomposition of Lithium and Lithium hydride on Nickel

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane Hvolbæk

    2006-01-01

    In this paper we have investigated the deposition, structure and decomposition of lithium and lithium-hydride films on a nickel substrate. Using surface sensitive techniques it was possible to quantify the deposited Li amount, and to optimize the deposition procedure for synthesizing lithium......-hydride films. By only making thin films of LiH it is possible to study the stability of these hydride layers and compare it directly with the stability of pure Li without having any transport phenomena or adsorbed oxygen to obscure the results. The desorption of metallic lithium takes place at a lower...... temperature than the decomposition of the lithium-hydride, confirming the high stability and sintering problems of lithium-hydride making the storage potential a challenge. (c) 2006 Elsevier B.V. All rights reserved....

  8. Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells

    International Nuclear Information System (INIS)

    Morales, Julian; Sanchez, Luis; Martin, Francisco; Ramos-Barrado, Jose R.; Sanchez, Miguel

    2004-01-01

    Nanostructured CuO thin films were prepared by using a spray pyrolysis method, copper acetate as precursor and stainless steel as substrate. The textural and structural properties of the films were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed thorough coating of the substrate and thickness of 450-1250 nm; the average particle size as determined from the AFM images ranged from 30 to 160 nm. The XRD patterns revealed the formation of CuO alone and the XPS spectra confirmed the presence of Cu 2+ as the main oxidation state on the surface. The films were tested as electrodes in lithium cells and their electrochemical properties evaluated from galvanostatic and step potential electrochemical spectroscopy (SPES) measurements. The discharge STEP curves exhibited various peaks consistent with the processes CuO Cu 2 O Cu and with decomposition of the electrolyte, a reversible process in the light of the AFM images. The best electrode exhibited capacity values of 625 Ah kg -1 over more than 100 cycles. This value, which involves a CuO Cu reversible global reaction, is ca. 50% higher than that reported for bulk CuO. The nanosize of the particles and the good adherence of the active material to the substrate are thought to be the key factors accounting for the enhanced electrochemical activity found

  9. Lithium ion intercalation in thin crystals of hexagonal TaSe2 gated by a polymer electrolyte

    Science.gov (United States)

    Wu, Yueshen; Lian, Hailong; He, Jiaming; Liu, Jinyu; Wang, Shun; Xing, Hui; Mao, Zhiqiang; Liu, Ying

    2018-01-01

    Ionic liquid gating has been used to modify the properties of layered transition metal dichalcogenides (TMDCs), including two-dimensional (2D) crystals of TMDCs used extensively recently in the device work, which has led to observations of properties not seen in the bulk. The main effect comes from the electrostatic gating due to the strong electric field at the interface. In addition, ionic liquid gating also leads to ion intercalation when the ion size of the gate electrolyte is small compared to the interlayer spacing of TMDCs. However, the microscopic processes of ion intercalation have rarely been explored in layered TMDCs. Here, we employed a technique combining photolithography device fabrication and electrical transport measurements on the thin crystals of hexagonal TaSe2 using multiple channel devices gated by a polymer electrolyte LiClO4/Polyethylene oxide (PEO). The gate voltage and time dependent source-drain resistances of these thin crystals were used to obtain information on the intercalation process, the effect of ion intercalation, and the correlation between the ion occupation of allowed interstitial sites and the device characteristics. We found a gate voltage controlled modulation of the charge density waves and a scattering rate of charge carriers. Our work suggests that ion intercalation can be a useful tool for layered materials engineering and 2D crystal device design.

  10. Electrolytic Manganese Dioxide Coatings on High Aspect Ratio Micro-Pillar Arrays for 3D Thin Film Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yafa Zargouni

    2017-05-01

    Full Text Available In this work, we present the electrochemical deposition of manganese dioxide (MnO2 thin films on carbon-coated TiN/Si micro-pillars. The carbon buffer layer, grown by plasma enhanced chemical vapor deposition (PECVD, is used as a protective coating for the underlying TiN current collector from oxidation, during the film deposition, while improving the electrical conductivity of the stack. A conformal electrolytic MnO2 (EMD coating is successfully achieved on high aspect ratio C/TiN/Si pillar arrays by tailoring the deposition process. Lithiation/Delithiation cycling tests have been performed. Reversible insertion and extraction of Li+ through EMD structure are observed. The fabricated stack is thus considered as a good candidate not only for 3D micorbatteries but also for other energy storage applications.

  11. Electrolytic Manganese Dioxide Coatings on High Aspect Ratio Micro-Pillar Arrays for 3D Thin Film Lithium Ion Batteries.

    Science.gov (United States)

    Zargouni, Yafa; Deheryan, Stella; Radisic, Alex; Alouani, Khaled; Vereecken, Philippe M

    2017-05-27

    In this work, we present the electrochemical deposition of manganese dioxide (MnO₂) thin films on carbon-coated TiN/Si micro-pillars. The carbon buffer layer, grown by plasma enhanced chemical vapor deposition (PECVD), is used as a protective coating for the underlying TiN current collector from oxidation, during the film deposition, while improving the electrical conductivity of the stack. A conformal electrolytic MnO₂ (EMD) coating is successfully achieved on high aspect ratio C/TiN/Si pillar arrays by tailoring the deposition process. Lithiation/Delithiation cycling tests have been performed. Reversible insertion and extraction of Li⁺ through EMD structure are observed. The fabricated stack is thus considered as a good candidate not only for 3D micorbatteries but also for other energy storage applications.

  12. Transparent conductive p-type lithium-doped nickel oxide thin films deposited by pulsed plasma deposition

    Science.gov (United States)

    Huang, Yanwei; Zhang, Qun; Xi, Junhua; Ji, Zhenguo

    2012-07-01

    Transparent p-type Li0.25Ni0.75O conductive thin films were prepared on conventional glass substrates by pulsed plasma deposition. The effects of substrate temperature and oxygen pressure on structural, electrical and optical properties of the films were investigated. The electrical resistivity decreases initially and increases subsequently as the substrate temperature increases. As the oxygen pressure increases, the electrical resistivity decreases monotonically. The possible physical mechanism was discussed. And a hetero p-n junction of p-Li0.25Ni0.75O/n-SnO2:W was fabricated by depositing n-SnO2:W on top of the p-Li0.25Ni0.75O, which exhibits typical rectifying current-voltage characteristics.

  13. Transparent conductive p-type lithium-doped nickel oxide thin films deposited by pulsed plasma deposition

    International Nuclear Information System (INIS)

    Huang Yanwei; Zhang Qun; Xi Junhua; Ji Zhenguo

    2012-01-01

    Transparent p-type Li 0.25 Ni 0.75 O conductive thin films were prepared on conventional glass substrates by pulsed plasma deposition. The effects of substrate temperature and oxygen pressure on structural, electrical and optical properties of the films were investigated. The electrical resistivity decreases initially and increases subsequently as the substrate temperature increases. As the oxygen pressure increases, the electrical resistivity decreases monotonically. The possible physical mechanism was discussed. And a hetero p-n junction of p-Li 0.25 Ni 0.75 O/n-SnO 2 :W was fabricated by depositing n-SnO 2 :W on top of the p-Li 0.25 Ni 0.75 O, which exhibits typical rectifying current-voltage characteristics.

  14. The Effects of Film Thickness and Evaporation Rate on Si-Cu Thin Films for Lithium Ion Batteries.

    Science.gov (United States)

    Polat, B Deniz; Keles, Ozgul

    2015-12-01

    The reversible cyclability of Si based composite anodes is greatly improved by optimizing the atomic ratio of Si/Cu, the thickness and the evaporation rates of films fabricated by electron beam deposition method. The galvanostatic test results show that 500 nm thick flim, having 10%at. Cu-90%at. Si, deposited with a moderate evaporation rate (10 and 0.9 Å/s for Si and Cu respectively) delivers 2642.37 mAh g(-1) as the first discharge capacity with 76% Coulombic efficiency. 99% of its initial capacity is retained after 20 cycles. The electron conductive pathway and high mechanical tolerance induced by Cu atoms, the low electrical resistivity of the film due to Cu3Si particles, and the homogeneously distributed nano-sized/amorphous particles in the composite thin film could explain this outstanding electrochemical performance of the anode.

  15. Deposition and characterization of thin films of materials with application in cathodes for lithium rechargeable micro batteries; Deposito y caracterizacion de peliculas delgadas de materiales con aplicacion en catodos para microbaterias recargables de litio

    Energy Technology Data Exchange (ETDEWEB)

    Lopez I, J [UAEM, Facultad de Quimica, 50000 Toluca, Estado de Mexico (Mexico)

    2007-07-01

    In this thesis work is reported the deposition and characterization of thin films of materials of the type LiMO{sub 2}, with M=Co and Ni, which have application in cathodes for micro-batteries of lithium ions. In the last years some investigators have reported that the electrochemical operation of the lithium ions batteries it can improve recovering the cathode, in bundle form, with some metal oxides as the Al{sub 2}O{sub 3}; for that the study of the formation of thin films in bilayer form LiMO{sub 2}/AI{sub 2}O{sub 3} is of interest in the development of lithium ions micro batteries. The thin films were deposited using the laser ablation technique studying the effect of some deposit parameters in the properties of the one formed material, as: laser fluence, substrate temperature and working atmosphere, with the purpose of optimizing it. In the case of the LiCoO{sub 2} it was found that to use an inert atmosphere of argon allows to obtain the material with the correct composition. Additionally, with the use of a temperature in the substrate of 150 C is possible to obtain to the material with certain crystallinity grade that to the subjected being to a post-deposit thermal treatment at 300 C for three hours, it gives as result a totally crystalline material. In the case of the thin films of LiNiO{sub 2}, it was necessary to synthesize the oxide starting from a reaction of solid state among nickel oxide (NiO) and lithium oxide (Li{sub 2}O) obtaining stoichiometric LiNiO{sub 2}. For the formation of the thin films of LiNiO{sub 2} it was used an argon atmosphere and the laser fluence was varied, the deposits were carried out to two different substrates temperatures, atmosphere and 160 C. In both cases the material it was recovered with an alumina layer, found that this layer didn't modify the structural properties of the base oxide (LiCoO{sub 2} and LiNiO{sub 2}). (Author)

  16. Deposition and characterization of thin films of materials with application in cathodes for lithium rechargeable micro batteries; Deposito y caracterizacion de peliculas delgadas de materiales con aplicacion en catodos para microbaterias recargables de litio

    Energy Technology Data Exchange (ETDEWEB)

    Lopez I, J. [UAEM, Facultad de Quimica, 50000 Toluca, Estado de Mexico (Mexico)

    2007-07-01

    In this thesis work is reported the deposition and characterization of thin films of materials of the type LiMO{sub 2}, with M=Co and Ni, which have application in cathodes for micro-batteries of lithium ions. In the last years some investigators have reported that the electrochemical operation of the lithium ions batteries it can improve recovering the cathode, in bundle form, with some metal oxides as the Al{sub 2}O{sub 3}; for that the study of the formation of thin films in bilayer form LiMO{sub 2}/AI{sub 2}O{sub 3} is of interest in the development of lithium ions micro batteries. The thin films were deposited using the laser ablation technique studying the effect of some deposit parameters in the properties of the one formed material, as: laser fluence, substrate temperature and working atmosphere, with the purpose of optimizing it. In the case of the LiCoO{sub 2} it was found that to use an inert atmosphere of argon allows to obtain the material with the correct composition. Additionally, with the use of a temperature in the substrate of 150 C is possible to obtain to the material with certain crystallinity grade that to the subjected being to a post-deposit thermal treatment at 300 C for three hours, it gives as result a totally crystalline material. In the case of the thin films of LiNiO{sub 2}, it was necessary to synthesize the oxide starting from a reaction of solid state among nickel oxide (NiO) and lithium oxide (Li{sub 2}O) obtaining stoichiometric LiNiO{sub 2}. For the formation of the thin films of LiNiO{sub 2} it was used an argon atmosphere and the laser fluence was varied, the deposits were carried out to two different substrates temperatures, atmosphere and 160 C. In both cases the material it was recovered with an alumina layer, found that this layer didn't modify the structural properties of the base oxide (LiCoO{sub 2} and LiNiO{sub 2}). (Author)

  17. Lithium Oxysilicate Compounds Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Apblett, Christopher A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coyle, Jaclyn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    In this study, the structure and composition of lithium silicate thin films deposited by RF magnetron co-sputtering is investigated. Five compositions ranging from Li2Si2O5 to Li8SiO6 were confirmed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and structure analysis on the evolution of non-bridging oxygens in the thin films was conducted with fourier transform infrared (FTIR) spectroscopy. It was found that non-bridging oxygens (NBOs) increased as the silicate network breaks apart with increasing lithium content which agrees with previous studies on lithium silicates. Thin film impurities were examined with x-ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectroscopy (TOFSIMS) and traced back to target synthesis. This study utilizes a unique synthesis technique for lithium silicate thin films and can be referred to in future studies on the ionic conductivity of lithium silicates formed on the surface of silicon anodes in lithium ion batteries.

  18. Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells

    International Nuclear Information System (INIS)

    Morales, J.; Sanchez, L.; Martin, F.; Ramos-Barrado, J.R.; Sanchez, M.

    2005-01-01

    Nanostructured CuO thin films were prepared by spray pyrolysis of aqueous copper acetate solutions at temperatures over 200-300 deg C range. The textural and structural properties of the films were determined by scanning electron microscopy, atomic force microscopy, X-ray diffraction spectroscopy and X-ray photoelectron spectroscopy (XPS). Although the sole crystalline phase detected in the film was CuO, XPS spectra revealed a more complex surface structure due to the presence of undecomposed copper acetate that can be easily removed by Ar + ion sputtering. The heating temperature was found to have little limited effect on the particle size and thickness of the films, which, however, increased significantly increasing deposition time. The film with the smallest grain size exhibited an excellent electrochemical response in Li battery electrodes and was capable of supplying sustained specific capacity as high as 625 A h kg -1 (50% greater than that delivered by bulk CuO and close to the theoretical capacity for the CuO Cu reaction) upon extensive cycling

  19. Effects in a lithium tantalate waveguide structure exposed to radiation from a flash X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    West, R.H.; Dowling, S. [Royal Military Coll. of Science, Shrivenham (United Kingdom)

    1994-12-31

    The effects of radiation from a flash X ray machine on an optical waveguide formed in LiTaO{sub 3} are described. Transient induced losses are accompanied by effects of an electric field generated by the radiation. At low temperatures, radiation-induced photorefraction dominates the response. (author). 11 refs., 6 figs.

  20. Shock-wave compression of lithium niobate from 2.4 to 44 GPa

    International Nuclear Information System (INIS)

    Stanton, P.L.; Graham, R.A.

    1979-01-01

    Shock compression of lithium niobate above the Hugoniot elastic limit (about 2.5 GPa) reveals a succession of unusual features. Just above the Hugoniot elastic limit, the shock velocity is observed to be well below the bulk sound speed, indicative of a drastic reduction of shear strength. The shock velocity is observed to increase with particle velocity at an unusually large rate due to the reduction of strength in a very stiff material and an anomalously large pressure derivative of the bulk modulus. This later behavior may be due to the effects of localized shock heating resulting from heterogeneous shear deformation in ferroelectrics like lithium niobate and lithium tantalate in which increases in temperature are shown to have a strong effect on bulk modulus. A shock-induced polymorphic phase transition occurs at 13.9 GPa. Above the transition point the slope of the Hugoniot curve relating shock velocity and particle velocity is unusually low, indicative of a broad mixed phase region of undetermined extent. Limited work is reported on the isomorphous crystal, lithium tantalate, which exhibits features similar to lithium niobate with a Hugoniot elastic limit of 4 GPa and a phase transition in the vicinity of 19 GPa

  1. Lithium Intoxication

    Directory of Open Access Journals (Sweden)

    Sermin Kesebir

    2011-09-01

    Full Text Available Lithium has been commonly used for the treatment of several mood disorders particularly bipolar disorder in the last 60 years. Increased intake and decreased excretion of lithium are the main causes for the development of lithium intoxication. The influence of lithium intoxication on body is evaluated as two different groups; reversible or irreversible. Irreversible damage is usually related with the length of time passed as intoxicated. Acute lithium intoxication could occur when an overdose of lithium is received mistakenly or for the purpose of suicide. Patients may sometimes take an overdose of lithium for self-medication resulting in acute intoxication during chronic, while others could develop chronic lithium intoxication during a steady dose treatment due to a problem in excretion of drug. In such situations, it is crucial to be aware of risk factors, to recognize early clinical symptoms and to conduct a proper medical monitoring. In order to justify or exclude the diagnosis, quantitative evaluation of lithium in blood and toxicologic screening is necessary. Following the monitoring schedules strictly and urgent intervention in case of intoxication would definitely reduce mortality and sequela related with lithium intoxication. In this article, the etiology, frequency, definition, clinical features and treatment approaches to the lithium intoxication have been briefly reviewed.

  2. Synthesis of N-doped potassium tantalate perovskite material for environmental applications

    Science.gov (United States)

    Rao, Martha Purnachander; Nandhini, Vellangattupalayam Ponnusamy; Wu, Jerry J.; Syed, Asad; Ameen, Fuad; Anandan, Sambandam

    2018-02-01

    Nitrogen containing potassium tantalate perovskite material has been synthesized by the solvothermal method using urea (CH4N2O) as a nitrogen source. The as-prepared sample was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), diffuse reflectance spectroscopy (DRS), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The particle size of nitrogen containing KTaO3 observed from SEM images was found to be 100-150 nm. Doping KTaO3 with nitrogen causes reduction of band gap from 3.5 to 2.54 eV. The incorporation of Nitrogen into the crystal lattice of KTaO3 not only extended the absorption of light from UV (ultraviolet) region to visible region and also enhanced the photocatalytic activity. As prepared nitrogen containing KTaO3 samples exhibit cubic-like morphology and noticed efficient photocatalytic activity towards methylene blue dye degradation under visible light illumination. The intermediates formed during photodegradation were identified by mass spectrometry (GC-MS) and proposed suitable degradation pathway.

  3. Phenomenological theory of the dielectric response of lead magnesium niobate and lead scandium tantalate

    International Nuclear Information System (INIS)

    Qian, H.; Bursill, L.A.

    1997-01-01

    The influence of the random field effects originating from charges chemical defects and non-domain textures of the formation and dynamics of polar clusters is analyzed. The spatial distribution of the local fields is not totally random but contains some correlations in direction and strength. Polar clusters are classified to be dynamic or frozen according to their dynamic characteristics in the random fields. The relaxation formula of a dipolar moment in an anisotropic double-well potential is deduced. Two percolation models are introduced, one to account for frustration effects associated with multiple orientations of polar clusters, which results in a broad diffuse dielectric response and the second to account for the case whereby there may be a phase transition to a ferroelectric state. The dielectric permittivity and dissipation factor of the typical relaxors lead magnesium niobate and lead scandium tantalate are predicted as a function of both temperature and frequency, which results are in good agreement with the experimental measurements. 30 refs., 9 figs

  4. Study of LiNiVO{sub 4} thin films used as anodes in lithium micro-batteries; Etude de couches minces de type LiNiVO{sub 4} utilisables en tant qu'electrode negative dans des microbatteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, V.

    2003-03-01

    Since fifteen years, considerable effort has been invested in developing thin film solid state micro-batteries as possible integrated components in microelectronics. The recent technological improvement concerning miniaturized systems opens a large field of applications for the future use of micro-batteries. LiNiVO{sub 4} thin films are promising materials as anodes for lithium micro-batteries. All the thin films have been prepared by radio-frequency magnetron sputtering using a LiNiVO{sub 4} target. The discharge gas was either pure argon or a mixture of argon and oxygen. We have studied the influence of some experimental parameters such as the oxygen partial pressure, the sputtering power, the target-substrate distance, the total pressure and the substrate temperature on the composition, the microstructure and the electrochemical properties. The chemical composition of the thin films has been determined by Rutherford backscattering spectroscopy combined with nuclear reaction analysis. Among all experimental parameters investigated, only the partial pressure of oxygen has a considerable influence on the thin film composition. Auger spectroscopy has revealed a good homogeneity of the thin films. X-ray diffraction shows that the as-deposited thin films are amorphous. The near-stoichiometric composition Li{sub 1.12}NiV{sub 1.02}O{sub 4}.11 has highlighted good electrochemical properties in the potential range [3 V - 0.02 V]. This particular composition displays a high capacity of 1000 mAh/g which is enhanced when the film is annealed at 300 degrees C. (author)

  5. Lithium Poisoning

    DEFF Research Database (Denmark)

    Baird-Gunning, Jonathan; Lea-Henry, Tom; Hoegberg, Lotte C G

    2017-01-01

    Lithium is a commonly prescribed treatment for bipolar affective disorder. However, treatment is complicated by lithium's narrow therapeutic index and the influence of kidney function, both of which increase the risk of toxicity. Therefore, careful attention to dosing, monitoring, and titration...... is required. The cause of lithium poisoning influences treatment and 3 patterns are described: acute, acute-on-chronic, and chronic. Chronic poisoning is the most common etiology, is usually unintentional, and results from lithium intake exceeding elimination. This is most commonly due to impaired kidney...... function caused by volume depletion from lithium-induced nephrogenic diabetes insipidus or intercurrent illnesses and is also drug-induced. Lithium poisoning can affect multiple organs; however, the primary site of toxicity is the central nervous system and clinical manifestations vary from asymptomatic...

  6. Suitability of Cadmium Tantalate and Indium Tantalate as Control Materials for High-Temperature Reactors; Le Tantalate de Cadmium et le Tantalate d'Indium Comme Absorbants pour les Reacteurs a Haute Temperature; Vozmozhnosti ispol'zovaniya tantalatov kadmiya i indiya v kachestve kontrol'nogo materiala dlya vysokotemperaturnykh reaktorov; Empleo del Tantalato de Cadmio y del Tantalato de Indio Como Materiales de Control Para Reactores de Alta Temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Preisler, E.; Haessner, F.; Petzow, G. [Max-Planck-Institut fuer Metallforschung, Stuttgart, Federal Republic of Germany (Germany)

    1964-06-15

    Control materials for practical use in high-temperature reactors should, independently of the requirements of the individual case, have the following properties: (a ) high absorption cross-section for neutrons in a wide range of energies; (b ) high absorption capacity for neutrons; (c ) small sensitivity for radiation damage; (d) good thermal resistance; (e ) low reactivity with the environment; and ( f ) low costs and good availability. With these points and the avoidance of the disadvantages of n, {alpha} -reactions taken into consideration, attention should be paid chiefly to the elements cadmium, tungsten, indium and tantalum. It is important to combine a good thermal absorber with an epithermal absorber so that the resulting material is stable at elevated temperatures ( Greater-Than-Or-Equivalent-To 700 Degree-Sign C). For this purpose the double-oxides CdWO{sub 4}, Cd {sub 2}Ta{sub 2}O{sub 7} and CdIn{sub 2}O{sub 2} are suitable. Among these, cadmium tantalate has the highest thermal resistance. Another double-oxide which in combination with cadmium tantalate possesses an advantageous absorption spectrum for neutrons is indium tantalate. It has also good thermal resistance. Because ceramic absorber materials often have to be shaped by plastic deformation, they usually are used as cermets. Therefore, they must be compatible with metals. Cadmium tantalate is compatible with silver and copper and up to 700 Degree-Sign C with nickel; indium, tantalate is completely compatible with silver, copper and nickel and up to 700 Degree-Sign C with molybdenum also and to some degree with iron. These results are in agreement with thermodynamical calculations. For an estimation of the behaviour of the absorber materials under reactor conditions the daughter products originating from neutron absorption have to be considered. While Cd{sup 113} transforms into the stable Cd{sup 114}, tantalum transmutes into tungsten and indium into tin. Both daughter products can bind more

  7. Hydrogen-bonding-mediated synthesis of atomically thin TiO2 films with exposed (001) facets and applications in fast lithium insertion/extraction.

    Science.gov (United States)

    Zhang, Hongye; Yang, Zhenzhen; Gan, Wei; Zhao, Yanfei; Yu, Bo; Xu, Huanjun; Ma, Zhishuang; Hao, Leiduan; Chen, Dechao; Miao, Shiding; Liu, Zhimin

    2015-10-05

    Ultrathin two-dimensional (2D) crystalline materials show high specific surface area (SA) of high energy (HE) facets, imparting a significant improvement in their performances. Herein we report a novel route to synthesize TiO2 nanofilms (NFs) with atomic thickness (lithium insertion/extraction, demonstrating foreseeable applications in the energy storage. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Lithium neurotoxicity.

    Science.gov (United States)

    Suraya, Y; Yoong, K Y

    2001-09-01

    Inspite of the advent of newer antimanic drugs, lithium carbonate remains widely used in the treatment and prevention of manic-depressive illness. However care has to be exercised due to its low therapeutic index. The central nervous system and renal system are predominantly affected in acute lithium intoxication and is potentially lethal. The more common side effect involves the central nervous system. It occurs early and is preventable. We describe three cases of lithium toxicity admitted to Johor Bahru Hospital, with emphasis on its neurological preponderance.

  9. Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries.

    Science.gov (United States)

    Eshetu, Gebrekidan Gebresilassie; Judez, Xabier; Li, Chunmei; Bondarchuk, Oleksandr; Rodriguez-Martinez, Lide M; Zhang, Heng; Armand, Michel

    2017-11-27

    Of the various beyond-lithium-ion battery technologies, lithium-sulfur (Li-S) batteries have an appealing theoretical energy density and are being intensely investigated as next-generation rechargeable lithium-metal batteries. However, the stability of the lithium-metal (Li°) anode is among the most urgent challenges that need to be addressed to ensure the long-term stability of Li-S batteries. Herein, we report lithium azide (LiN 3 ) as a novel electrolyte additive for all-solid-state Li-S batteries (ASSLSBs). It results in the formation of a thin, compact and highly conductive passivation layer on the Li° anode, thereby avoiding dendrite formation, and polysulfide shuttling. It greatly enhances the cycling performance, Coulombic and energy efficiencies of ASSLSBs, outperforming the state-of-the-art additive lithium nitrate (LiNO 3 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Physical-chemical characterization and biological assessment of simple and lithium-doped biological-derived hydroxyapatite thin films for a new generation of metallic implants

    Science.gov (United States)

    Popescu, A. C.; Florian, P. E.; Stan, G. E.; Popescu-Pelin, G.; Zgura, I.; Enculescu, M.; Oktar, F. N.; Trusca, R.; Sima, L. E.; Roseanu, A.; Duta, L.

    2018-05-01

    We report on the synthesis by PLD of simple and lithium-doped biological-origin hydroxyapatite (HA) films. The role of doping reagents (Li2CO3, Li3PO4) on the morphology, structure, chemical composition, bonding strength and cytocompatibility of the films was investigated. SEM investigations of the films evidenced a surface morphology consisting of particles with mean diameters of (5-7) μm. GIXRD analyses demonstrated that the synthesized structures consisted of HA phase only, with different degrees of crystallinity, mainly influenced by the doping reagent type. After only three days of immersion in simulated body fluid, FTIR spectra showed a remarkable growth of a biomimetic apatitic film, indicative of a high biomineralization capacity of the coatings. EDS analyses revealed a quasi-stoichiometric target-to-substrate transfer, the values inferred for the Ca/P ratio corresponding to a biological apatite. All synthesized structures displayed a hydrophilic behavior, suitable for attachment of osteoblast cells. In vitro cell viability tests showed that the presence of Li2CO3 and Li3PO4 as doping reagents promoted the hMSC growth on film surfaces. Taking into consideration these enhanced characteristics, corroborated with a low fabrication cost generated by sustainable resources, one should consider the lithium-doped biological-derived materials as promising prospective solutions for a next generation of coated implants with rapid osteointegration.

  11. Dependence of the constitution, microstructure and electrochemical behaviour of magnetron sputtered Li-Ni-Mn-Co-O thin film cathodes for lithium-ion batteries on the working gas pressure and annealing conditions

    International Nuclear Information System (INIS)

    Strafela, Marc; Fischer, Julian; Leiste, Harald; Rinke, Monika; Bergfeldt, Thomas; Seifert, Hans Juergen; Ulrich, Sven; Music, Denis; Chang, Keke; Schneider, Jochen

    2017-01-01

    Li(Ni 1/3 Mn 1/3 Co 1/3 )O 2 as a cathode material for lithium ion batteries shows good thermal stability, high reversible capacity (290 mAh g -1 ), good rate capability and better results in terms of environmental friendliness. In this paper thin film cathodes in the material system Li-Ni-Mn-Co-O were deposited onto silicon and stainless steel substrates, by non-reactive r.f. magnetron sputtering from a ceramic Li 1.18 (Ni 0.39 Mn 0.19 Co 0.35 )O 1.97 target at various argon working gas pressures between 0.2 Pa and 20 Pa. A comprehensive study on the composition and microstructure was carried out. The results showed that the elemental composition varies depending on argon working gas pressure. The elemental composition was determined by inductively coupled plasma optical emission spectroscopy in combination with carrier gas hot extraction. The films showed different grain orientations depending argon working gas pressures. The degree of cation order in the lattice structure of the films deposited at 0.5 Pa and 7 Pa argon working gas pressure, was increased by annealing in an argon/oxygen atmosphere at different pressures for one hour. The microstructure of the films varies with annealing gas pressure and is characterized using X-ray diffraction and unpolarized micro-Raman spectroscopy at room temperature. Electrochemical characterization of as-deposited and annealed films was carried out by galvanostatic cycling in Li-Ni-Mn-Co-O half-cells against metallic lithium. Correlations between process parameters, constitution, microstructure and electrochemical behaviour are discussed in detail.

  12. Dependence of the constitution, microstructure and electrochemical behaviour of magnetron sputtered Li-Ni-Mn-Co-O thin film cathodes for lithium-ion batteries on the working gas pressure and annealing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Strafela, Marc; Fischer, Julian; Leiste, Harald; Rinke, Monika; Bergfeldt, Thomas; Seifert, Hans Juergen; Ulrich, Sven [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Applied Materials (IAM); Music, Denis; Chang, Keke; Schneider, Jochen [RWTH Aachen Univ. (Germany). Materials Chemistry

    2017-11-15

    Li(Ni{sub 1/3}Mn{sub 1/3}Co{sub 1/3})O{sub 2} as a cathode material for lithium ion batteries shows good thermal stability, high reversible capacity (290 mAh g{sup -1}), good rate capability and better results in terms of environmental friendliness. In this paper thin film cathodes in the material system Li-Ni-Mn-Co-O were deposited onto silicon and stainless steel substrates, by non-reactive r.f. magnetron sputtering from a ceramic Li{sub 1.18}(Ni{sub 0.39}Mn{sub 0.19}Co{sub 0.35})O{sub 1.97} target at various argon working gas pressures between 0.2 Pa and 20 Pa. A comprehensive study on the composition and microstructure was carried out. The results showed that the elemental composition varies depending on argon working gas pressure. The elemental composition was determined by inductively coupled plasma optical emission spectroscopy in combination with carrier gas hot extraction. The films showed different grain orientations depending argon working gas pressures. The degree of cation order in the lattice structure of the films deposited at 0.5 Pa and 7 Pa argon working gas pressure, was increased by annealing in an argon/oxygen atmosphere at different pressures for one hour. The microstructure of the films varies with annealing gas pressure and is characterized using X-ray diffraction and unpolarized micro-Raman spectroscopy at room temperature. Electrochemical characterization of as-deposited and annealed films was carried out by galvanostatic cycling in Li-Ni-Mn-Co-O half-cells against metallic lithium. Correlations between process parameters, constitution, microstructure and electrochemical behaviour are discussed in detail.

  13. Random-field Potts model for the polar domains of lead magnesium niobate and lead scandium tantalate

    Energy Technology Data Exchange (ETDEWEB)

    Qian, H.; Bursill, L.A

    1997-06-01

    A random filed Potts model is used to establish the spatial relationship between the nanoscale distribution of charges chemical defects and nanoscale polar domains for the perovskite-based relaxor materials lead magnesium niobate (PMN) and lead scandium tantalate (PST). The random fields are not set stochastically but are determined initially by the distribution of B-site cations (Mg, Nb) or (Sc, Ta) generated by Monte Carlo NNNI-model simulations for the chemical defects. An appropriate random field Potts model is derived and algorithms developed for a 2D lattice. It is shown that the local fields are strongly correlated with the chemical domain walls and that polar domains as a function of decreasing temperature is simulated for the two cases of PMN and PST. The dynamics of the polar clusters is also discussed. 33 refs., 9 figs.

  14. Highly Reversible Electrochemical Insertion of Lithium, Accompanied With a Marked Color Change, Occuring in Microcrystalline Lithium Nickel Oxide Films

    OpenAIRE

    Campet, G.; Portier, J.; Morel, B.; Ferry, D.; Chabagno, J. M.; Benotmane, L.; Bourrel, M.

    1992-01-01

    Thin films of lithium-nickel oxide, whose texture consists of microcrystallites with an average grain size of 50 Å, permit highly reversible electrochemical insertion of lithium ions in Li+ conducting electrolytes. Therefore, the corresponding materials would be of great interest for energy storage applications. In addition, the lithium insertion/extraction reactions in the nickel-based layers are accompanied with a marked color change, making these films of interest for the devel...

  15. Thin film rechargeable electrodes based on conductive blends of nanostructured olivine LiFePO4 and sucrose derived nanocarbons for lithium ion batteries.

    Science.gov (United States)

    Praveen, P; Jyothsna, U; Nair, Priya; Ravi, Soumya; Balakrishnan, A; Subramanian, K R V; Nair, A Sreekumaran; Nair, V Shantikumar; Sivakumar, N

    2013-08-01

    The present study provides the first reports of a novel approach of electrophoretic co-deposition technique by which titanium foils are coated with LiFePO4-carbon nanocomposites synthesized by sol gel route and processed into high-surface area cathodes for lithium ion batteries. The study elucidates how sucrose additions as carbon source can affect the surface morphology and the redox reaction behaviors underlying these cathodes and thereby enhance the battery performance. The phase and morphological analysis were done using XRD and XPS where the LiFePO4 formed was confirmed to be a high purity orthorhombic system. From the analysis of the relevant electrochemical parameters using cyclic voltammetry and electrochemical impedance spectroscopy, a 20% increment and 90% decrement in capacity and impedance values were observed respectively. The composite electrodes also exhibited a specific capacity of 130 mA h/g. It has been shown that cathodes based on such composite systems can allow significant room for improvement in the cycling performance at the electrode/electrolyte interface.

  16. Electrochemistry of V2ON with lithium

    International Nuclear Information System (INIS)

    Zhou Yongning; Liu Chang; Chen Huajun; Zhang Long; Li Wenjing; Fu Zhengwen

    2011-01-01

    Highlights: → We have prepared V 2 ON thin film by reactive dc sputtering method and annealing process. → We investigated for its electrochemistry with lithium. → V 2 ON thin films exhibit a large reversible specific capacity of 830 mAh g -1 with much less polarization than VN thin films. → The reversible transformation between nanocrystalline V 2 ON and well dispersed V, Li 2 O, Li 3 N nano-composites were revealed. - Abstract: V 2 ON thin film has been successfully fabricated by reactive dc sputtering method and annealing process and was investigated for its electrochemistry with lithium. The reversible discharge capacities of V 2 ON/Li cells cycled between 0.01 and 4.0 V were found in the range of 803-915 mAh g -1 during the first 50 cycles. By using ex situ scanning electron microscopy, transmission electron microscopy, selected-area electron diffraction and X-ray photoelectron spectroscopy measurements, the reversible transformation between nanocrystalline V 2 ON and well dispersed V, Li 2 O, Li 3 N nano-composites were revealed in the lithium electrochemical reaction. V 2 ON thin film exhibits high reversible capacity and good cycle performance with remarkable lower polarization than VN thin film.

  17. Operational Characteristics of Liquid Lithium Divertor in NSTX

    Science.gov (United States)

    Kaita, R.; Kugel, H.; Abrams, T.; Bell, M. G.; Bell, R. E.; Gerhardt, S.; Jaworski, M. A.; Kallman, J.; Leblanc, B.; Mansfield, D.; Mueller, D.; Paul, S.; Roquemore, A. L.; Scotti, F.; Skinner, C. H.; Timberlake, J.; Zakharov, L.; Maingi, R.; Nygren, R.; Raman, R.; Sabbagh, S.; Soukhanovskii, V.

    2010-11-01

    Lithium coatings on plasma-facing components (PFC's) have resulted in improved plasma performance on NSTX in deuterium H-mode plasmas with neutral beam heating.^ Salient results included improved electron confinement and ELM suppression. In CDX-U, the use of lithium-coated PFC's and a large-area liquid lithium limiter resulted in a six-fold increase in global energy confinement time. A Liquid Lithium Divertor (LLD) has been installed in NSTX for the 2010 run campaign. The LLD PFC consists of a thin film of lithium on a temperature-controlled substrate to keep the lithium liquefied between shots, and handle heat loads during plasmas. This capability was demonstrated when the LLD withstood a strike point on its surface during discharges with up to 4 MW of neutral beam heating.

  18. Influence of sintering parameters in the ferroelectric properties os strontium bismuth tantalate samples obtained by oxide mixture

    International Nuclear Information System (INIS)

    Souza, R.R. de; Pereira, A.S.; Sousa, V.C.; Egea, J.R.J.

    2012-01-01

    The family of compounds layered-type perovskite, know as Aurivilius presents great alternative not only by the absence of lead in the composition, but because the polarization retention, replacing PZT in FeRAM devices. The strontium bismuth tantalate (SrBi 2 Ta 2 O 9 ) or SBT is ferroelectric material that has attracted considerable interest, since it has high fatigue resistance, supporting high hysteresis loops, with the change in polarization.Checking polarization and depolarization currents stimulated by temperature it is possible to obtain, for example, information about the nature of charges and about the activation energy for the process of dielectric relaxation. For analysis of ferroelectric properties of this compound, it is essential to obtain specimens with a relative density around 95%. Thus, it is important the optimization of the sintering process in order to obtain a ceramic body with a high densification. The influence of sintering parameters to obtain SrBi 2 Ta 2 O 9 in the polarization properties and in the microstructure of sintered samples was investigated by thermostimulated currents and electronic microscopy, respectively. Results show that variation of these parameters may cause changes in the ferroelectric properties of the material. (author)

  19. CHARACTERISTICS OF LITHIUM LANTHANUM TITANATE THIN FILMS MADE BY ELECTRON BEAM EVAPORATION FROM NANOSTRUCTURED La0.67-xLi 3xTiO3 TARGET

    Directory of Open Access Journals (Sweden)

    Nguyen Nang Dinh

    2017-11-01

    Full Text Available Bulk nanostructured perovskites of La0.67-xLi3xTiO3 (LLTO were prepared by using thermally ball-grinding from compounds of La2O3, Li2CO3 and TiO2. From XRD analysis, it was found that LTTO materials were crystallized with nano-size grains of an average size of 30 nm. The bulk ionic conductivity was found strongly dependent on the Li+ composition, the samples with x = 0.11 (corresponding to a La0.56Li0.33TiO3 compound have the best ionic conductivity, which is ca. 3.2 x 10-3 S/cm at room temperature. The LLTO amorphous films were made by electron beam deposition. At room temperature the smooth films have ionic conductivity of 3.5 x 10-5  S/cm and transmittance of 80%. The optical bandgap of the films was found to be of 2.3 eV. The results have shown that the perovskite La0.56Li0.33TiO3  thin films can be used for a transparent solid electrolyte in ionic battery and in all-solid-state electrochromic devices, in particular.

  20. Development of lithium target for accelerator based neutron capture therapy

    International Nuclear Information System (INIS)

    Taskaev, Sergey; Bayanov, Boris; Belov, Victor; Zhoorov, Eugene

    2006-01-01

    Pilot innovative accelerator based neutron source for neutron capture therapy of cancer is now of the threshold of its operation at the BINP, Russia. One of the main elements of the facility is lithium target producing neutrons via threshold 7 Li(p,n) 7 Be reaction at 25 kW proton beam with energies 1.915 MeV or 2.5 MeV. The main problems of lithium target were determined to be: 7 Be radioactive isotope activation keeping lithium layer solid, presence of photons due to proton inelastic scattering on lithium nuclei, and radiation blistering. The results of thermal test of target prototype were presented as previous NCT Congress. It becomes clear that water is preferable for cooling the target, and that lithium target 10 cm in diameter is able to run before melting. In the present report, the conception of optimal target is proposed: thin metal disk 10 cm in diameter easy for detaching, with evaporated thin layer of pure lithium from the side of proton beam exposure, its back being intensively cooled with turbulent water flow to maintain lithium layer solid. Design of the target for the neutron source constructed at BINP is shown. The results of investigation of radiation blistering and lithium layer are presented. Target unit of facility is under construction now, and obtaining neutrons is expected in nearest future. (author)

  1. Multiferroic oxide thin films and heterostructures

    KAUST Repository

    Lu, Chengliang

    2015-05-26

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  2. A chemically stable PVD multilayer encapsulation for lithium microbatteries

    International Nuclear Information System (INIS)

    Ribeiro, J F; Sousa, R; Cunha, D J; Vieira, E M F; Goncalves, L M; Silva, M M; Dupont, L

    2015-01-01

    A multilayer physical vapour deposition (PVD) thin-film encapsulation method for lithium microbatteries is presented. Lithium microbatteries with a lithium cobalt oxide (LiCoO 2 ) cathode, a lithium phosphorous oxynitride (LiPON) electrolyte and a metallic lithium anode are under development, using PVD deposition techniques. Metallic lithium film is still the most common anode on this battery technology; however, it presents a huge challenge in terms of material encapsulation (lithium reacts with almost any materials deposited on top and almost instantly begins oxidizing in contact with atmosphere). To prove the encapsulation concept and perform all the experiments, lithium films were deposited by thermal evaporation technique on top of a glass substrate, with previously patterned Al/Ti contacts. Three distinct materials, in a multilayer combination, were tested to prevent lithium from reacting with protection materials and atmosphere. These multilayer films were deposited by RF sputtering and were composed of lithium phosphorous oxide (LiPO), LiPON and silicon nitride (Si 3 N 4 ). To complete the long-term encapsulation after breaking the vacuum, an epoxy was applied on top of the PVD multilayer. In order to evaluate oxidation state of lithium films, the lithium resistance was measured in a four probe setup (cancelling wires/contact resistances) and resistivity calculated, considering physical dimensions. A lithium resistivity of 0.16 Ω μm was maintained for more than a week. This PVD multilayer exonerates the use of chemical vapour deposition (CVD), glove-box chambers and sample manipulation between them, significantly reducing the fabrication cost, since battery and its encapsulation are fabricated in the same PVD chamber. (paper)

  3. A chemically stable PVD multilayer encapsulation for lithium microbatteries

    Science.gov (United States)

    Ribeiro, J. F.; Sousa, R.; Cunha, D. J.; Vieira, E. M. F.; Silva, M. M.; Dupont, L.; Goncalves, L. M.

    2015-10-01

    A multilayer physical vapour deposition (PVD) thin-film encapsulation method for lithium microbatteries is presented. Lithium microbatteries with a lithium cobalt oxide (LiCoO2) cathode, a lithium phosphorous oxynitride (LiPON) electrolyte and a metallic lithium anode are under development, using PVD deposition techniques. Metallic lithium film is still the most common anode on this battery technology; however, it presents a huge challenge in terms of material encapsulation (lithium reacts with almost any materials deposited on top and almost instantly begins oxidizing in contact with atmosphere). To prove the encapsulation concept and perform all the experiments, lithium films were deposited by thermal evaporation technique on top of a glass substrate, with previously patterned Al/Ti contacts. Three distinct materials, in a multilayer combination, were tested to prevent lithium from reacting with protection materials and atmosphere. These multilayer films were deposited by RF sputtering and were composed of lithium phosphorous oxide (LiPO), LiPON and silicon nitride (Si3N4). To complete the long-term encapsulation after breaking the vacuum, an epoxy was applied on top of the PVD multilayer. In order to evaluate oxidation state of lithium films, the lithium resistance was measured in a four probe setup (cancelling wires/contact resistances) and resistivity calculated, considering physical dimensions. A lithium resistivity of 0.16 Ω μm was maintained for more than a week. This PVD multilayer exonerates the use of chemical vapour deposition (CVD), glove-box chambers and sample manipulation between them, significantly reducing the fabrication cost, since battery and its encapsulation are fabricated in the same PVD chamber.

  4. Application of titanates, niobates, and tantalates to neutralized defense waste decontamination: materials properties, physical forms, and regeneration techniques. Final report

    International Nuclear Information System (INIS)

    Dosch, R.G.

    1981-01-01

    A study of the application of sodium titanate (ST) to the decontamination of neutralized defense waste has been completed. The work was directed at Sr removal from dissolved salt cake, simulated in this work with a 6.0 N NaNO 3 - 0.6 N NaOH solution. Three physical forms of the titanates were developed including powder, pellets, and titanate-loaded resin beads and all were found to be superior to conventional organic ion exchange in this application. When spent, the titanate materials can be calcined to an oxide from which is a stable waste form in itself or can be added directly to a glass melter to become part of a vitrified waste form. Radiation stability of titanate powder and resin forms was assessed in tests in which these materials were exposed to 60 Co radiation. The strontium exchange capacity of the powder remained constant through a dose of 3 x 10 7 rads and retained 50% capacity after a dose of 2 x 10 9 rads. The primary mechanism involved in loss of capacity was believed to be heating associated with the irradiation. The resin forms were unchanged through a dose of 5 x 10 8 rads and retained 30% capacity after a dose of 2 x 10 9 rads. The latter dose resulted in visible degradation of the resin matrix. Anion exchange resins loaded with sodium niobate and sodium tantalate were also prepared by similar methods and evaluated for this application. These materials had Sr sorption properties comparable to the titanate material; however, they would have to provide a significant improvement to justify their higher cost

  5. Realization of entirely solid lithium ion batteries; Realisation d`accumulateurs a ions lithium entierement solides

    Energy Technology Data Exchange (ETDEWEB)

    Brousse, T.; Marchand, R.; Fragnaud, P.; Schleich, D.M. [Laboratoire de Genie des Materiaux, ISITEM, 44 - Nantes (France); Bohnke, O. [Universite du Maine, 72 - Le Mans (France). Laboratoire des Fluorures; West, K. [Technical University of Denmark, Lyngby (Denmark). Dept. of Chemistry

    1996-12-31

    This paper presents a prototype of an entirely inorganic lithium ions battery cell. LiCoO{sub 2} thin film cathodes and Li{sub 4/3}Ti{sub 5/3}O{sub 4} thin film anodes have been deposited on Li{sub 3x}La{sub 2/3-x}TiO{sub 3} sintered solid electrolyte pellets and the performances of these battery cells have been tested. (J.S.) 5 refs.

  6. Realization of entirely solid lithium ion batteries; Realisation d`accumulateurs a ions lithium entierement solides

    Energy Technology Data Exchange (ETDEWEB)

    Brousse, T; Marchand, R; Fragnaud, P; Schleich, D M [Laboratoire de Genie des Materiaux, ISITEM, 44 - Nantes (France); Bohnke, O [Universite du Maine, 72 - Le Mans (France). Laboratoire des Fluorures; West, K [Technical University of Denmark, Lyngby (Denmark). Dept. of Chemistry

    1997-12-31

    This paper presents a prototype of an entirely inorganic lithium ions battery cell. LiCoO{sub 2} thin film cathodes and Li{sub 4/3}Ti{sub 5/3}O{sub 4} thin film anodes have been deposited on Li{sub 3x}La{sub 2/3-x}TiO{sub 3} sintered solid electrolyte pellets and the performances of these battery cells have been tested. (J.S.) 5 refs.

  7. Lithium batteries; Les accumulateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop on lithium batteries is divided into 4 sections dealing with: the design and safety aspects, the cycling, the lithium intercalation and its modeling, and the electrolytes. These 4 sections represent 19 papers and are completed by a poster session which corresponds to 17 additional papers. (J.S.)

  8. Lithium batteries; Les accumulateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop on lithium batteries is divided into 4 sections dealing with: the design and safety aspects, the cycling, the lithium intercalation and its modeling, and the electrolytes. These 4 sections represent 19 papers and are completed by a poster session which corresponds to 17 additional papers. (J.S.)

  9. Thin Film Microbatteries

    International Nuclear Information System (INIS)

    Dudney, Nancy J.

    2008-01-01

    Thin film batteries are built layer by layer by vapor deposition. The resulting battery is formed of parallel plates, much as an ordinary battery construction, just much thinner. The figure (Fig. 1) shows an example of a thin film battery layout where films are deposited symmetrically onto both sides of a supporting substrate. The full stack of films is only 10 to 15 (micro)m thick, but including the support at least doubles the overall battery thickness. When the support is thin, the entire battery can be flexible. At least six companies have commercialized or are very close to commercializing such all-solid-state thin film batteries and market research predicts a growing market and a variety of applications including sensors, RFID tags, and smarter cards. In principle with a large deposition system, a thin film battery might cover a square meter, but in practice, most development is targeting individual cells with active areas less than 25 cm 2 . For very small battery areas, 2 , microfabrication processes have been developed. Typically the assembled batteries have capacities from 0.1 to 5 mAh. The operation of a thin film battery is depicted in the schematic diagram (Fig. 2). Very simply, when the battery is allowed to discharge, a Li + ion migrates from the anode to the cathode film by diffusing through the solid electrolyte. When the anode and cathode reactions are reversible, as for an intercalation compound or alloy, the battery can be recharged by reversing the current. The difference in the electrochemical potential of the lithium determines the cell voltage. Most of the thin films used in current commercial variations of this thin film battery are deposited in vacuum chambers by RF and DC magnetron sputtering and by thermal evaporation onto unheated substrates. In addition, many publications report exploring a variety of other physical and chemical vapor deposition processes, such as pulsed laser deposition, electron cyclotron resonance sputtering, and

  10. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  11. Reduced Dimensionality Lithium Niobate Microsystems

    Energy Technology Data Exchange (ETDEWEB)

    Eichenfield, Matt [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    The following report describes work performed under the LDRD program at Sandia National Laboratories October 2014 and September 2016. The work presented demonstrates the ability of Sandia Labs to develop state-of-the-art photonic devices based on thin film lithium niobate (LiNbO3 ). Section 1 provides an introduction to integrated LiNbO3 devices and motivation for developing thin film nonlinear optical systems. Section 2 describes the design, fabrication, and photonic performance of thin film optical microdisks fabricated from bulk LiNbO3 using a bulk implantation method developed at Sandia. Sections 3 and 4 describe the development of similar thin film LiNbO3 structures fabricated from LiNbO3 on insulator (LNOI) substrates and our demonstration of optical frequency conversion with state-of-the-art efficiency. Finally, Section 5 describes similar microdisk resonators fabricated from LNOI wafers with a buried metal layer, in which we demonstrate electro-optic modulation.

  12. Enriched lithium collection from lithium plasma flow

    International Nuclear Information System (INIS)

    Karchevsky, A.I.; Laz'ko, V.S.; Muromkin, Y.A.; Pashkovsky, V.G.; Ustinov, A.L.; Dolgolenko, D.A.

    1994-01-01

    In order to understand the physical processes concerned with the selective heating by ion cyclotron resonance and with the subsequent collection of heated particles, experiments were carried out with the extraction of lithium samples, enriched with 6 Li isotopes. Probe and integral extractors allow to collect enriched Li at the end of the selective heating region. Surface density distribution on the collector and local isotopic content of lithium are measured, as a function of the screen height and the retarding potential. Dependence of the collected amount of lithium and of its isotopic content on the value of the magnetic field is also measured. 4 figs., 2 tabs., 5 refs

  13. Mechanical Design of the NSTX Liquid Lithium Divertor

    Energy Technology Data Exchange (ETDEWEB)

    R. Ellis, R. Kaita, H. Kugel, G. Paluzzi, M. Viola and R. Nygren

    2009-02-19

    The Liquid Lithium Divertor (LLD) on NSTX will be the first test of a fully-toroidal liquid lithium divertor in a high-power magnetic confinement device. It will replace part of the lower outboard divertor between a specified inside and outside radius, and ultimately provide a lithium surface exposed to the plasma with enough depth to absorb a significant particle flux. There are numerous technical challenges involved in the design. The lithium layer must be as thin as possible, and maintained at a temperature between 200 and 400 degrees Celsius to minimize lithium evaporation. This requirement leads to the use of a thick copper substrate, with a thin stainless steel layer bonded to the plasma-facing surface. A porous molybdenum layer is then plasma-sprayed onto the stainless steel, to provide a coating that facilitates full wetting of the surface by the liquid lithium. Other challenges include the design of a robust, vacuumcompatible heating and cooling system for the LLD. Replacement graphite tiles that provided the proper interface between the existing outer divertor and the LLD also had to be designed, as well as accommodation for special LLD diagnostics. This paper describes the mechanical design of the LLD, and presents analyses showing the performance limits of the LLD.

  14. Mechanical Design of the NSTX Liquid Lithium Divertor

    International Nuclear Information System (INIS)

    Ellis, R.; Kaita, R.; Kugel, H.; Paluzzi, G.; Viola, M.; Nygren, R.

    2009-01-01

    The Liquid Lithium Divertor (LLD) on NSTX will be the first test of a fully-toroidal liquid lithium divertor in a high-power magnetic confinement device. It will replace part of the lower outboard divertor between a specified inside and outside radius, and ultimately provide a lithium surface exposed to the plasma with enough depth to absorb a significant particle flux. There are numerous technical challenges involved in the design. The lithium layer must be as thin as possible, and maintained at a temperature between 200 and 400 degrees Celsius to minimize lithium evaporation. This requirement leads to the use of a thick copper substrate, with a thin stainless steel layer bonded to the plasma-facing surface. A porous molybdenum layer is then plasma-sprayed onto the stainless steel, to provide a coating that facilitates full wetting of the surface by the liquid lithium. Other challenges include the design of a robust, vacuum compatible heating and cooling system for the LLD. Replacement graphite tiles that provided the proper interface between the existing outer divertor and the LLD also had to be designed, as well as accommodation for special LLD diagnostics. This paper describes the mechanical design of the LLD, and presents analyses showing the performance limits of the LLD.

  15. Experimental lithium system experience

    International Nuclear Information System (INIS)

    Atwood, J.M.; Berg, J.D.; Kolowith, R.; Miller, W.C.

    1984-01-01

    The Experimental Lithium System is a test loop built to support design and operation of the Fusion Materials Irradiation Test Facility. ELS has achieved over 15,000 hours of safe and reliable operation. An extensive test program has demonstrated satisfactory performance of the system components, including an electromagnetic pump, lithium jet target, and vacuum system. Data on materials corrosion and behavior of lithium impurities are also presented. (author)

  16. Self-assembled, rare earth tantalate pyrochlore nanoparticles for superior flux pinning in YBa2Cu3O7-δ films

    International Nuclear Information System (INIS)

    Harrington, S A; Durrell, J H; Wimbush, S C; Kursumovic, A; MacManus-Driscoll, J L; Maiorov, B; Wang, H; Lee, J H

    2009-01-01

    Addition of pyrochlore rare earth tantalate phases, RE 3 TaO 7 (RTO, where RE = rare earth, Er, Gd and Yb) to YBa 2 Cu 3 O 7-δ (YBCO) is shown to vastly improve pinning, without being detrimental to the superconducting transition temperature. The closely lattice matched to RTO phase provides a lower interfacial energy with YBCO than BaZrO 3 (BZO) and produces very fine (∼5 nm) particles with high linearity in their self-assembly along c. Critical current densities of 0.86, 0.38 MA cm -2 at 1 and 3 T (for fields) parallel to the c axis were recorded at 77 K in 0.5-1.0 μm thick films and a transition temperature of 92 K was observed even in the highest level doped sample (8 mol%). (rapid communication)

  17. Effect of lithium PFC coatings on NSTX density control

    International Nuclear Information System (INIS)

    Kugel, H.W.; Bell, M.G.; Bell, R.; Bush, C.; Gates, D.; Gray, T.; Kaita, R.; Leblanc, B.; Maingi, R.; Majeski, R.; Mansfield, D.; Mueller, D.; Paul, S.; Raman, R.; Roquemore, A.L.; Sabbagh, S.; Skinner, C.H.; Soukhanovskii, V.; Stevenson, T.; Zakharov, L.

    2007-01-01

    Lithium coatings on the graphite plasma facing components (PFCs) in NSTX are being investigated as a tool for density profile control and reducing the recycling of hydrogen isotopes. Repeated lithium pellet injection into Center Stack Limited and Lower Single Null ohmic helium discharges were used to coat graphite surfaces that had been pre-conditioned with ohmic helium discharges of the same shape to reduce their contribution to hydrogen isotope recycling. The following deuterium NBI reference discharges exhibited a reduction in density by a factor of about 3 for limited and 2 for diverted plasmas, respectively, and peaked density profiles. Recently, a lithium evaporator has been used to apply thin coatings on conditioned and unconditioned PFCs. Effects on the plasma density and the impurities were obtained by pre-conditioning the PFCs with ohmic helium discharges, and performing the first deuterium NBI discharge as soon as possible after applying the lithium coating

  18. Lithium Battery Diaper Ulceration.

    Science.gov (United States)

    Maridet, Claire; Taïeb, Alain

    2016-01-01

    We report a case of lithium battery diaper ulceration in a 16-month-old girl. Gastrointestinal and ear, nose, and throat lesions after lithium battery ingestion have been reported, but skin involvement has not been reported to our knowledge. © 2015 Wiley Periodicals, Inc.

  19. The TFTR lithium blanket module program

    International Nuclear Information System (INIS)

    Jassby, D.L.; Bertone, P.C.; Creedon, R.L.; File, J.; Graumann, D.W.

    1985-01-01

    The Lithium Blanket Module (LBM) is an approximately 80X80X80 cm cubic module, representative of a helium-cooled lithium oxide fusion reactor blanket module, that will be installed on the TFTR (Tokamak Fusion Test Reactor) in late 1986. The principal objective of the LBM Program is to perform a series of neutron transport and tritium-breeding measurements throughout the LBM when it is exposed to the TFTR toroidal fusion neutron source, and to compare these data with the predictions of Monte Carlo (MCNP) neutronics codes. The LBM consists of 920 2.5-cm diameter breeder rods constructed of lithium oxide (Li 2 O) pellets housed in thin-walled stainless steel tubes. Procedures for mass-producing 25,000 Li 2 O pellets with satisfactory reproducibility were developed using purified Li 2 O powder, and fabrication of all the breeder rods was completed in early 1985. Tritium assay methods were investigated experimentally using both small lithium metal samples and LBM-type pellets. This work demonstrated that the thermal extraction method will be satisfactory for accurate evaluation of the minute concentrations of tritium expected in the LBM pellets (0.1-1nCi/g)

  20. Cathode material for lithium batteries

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  1. Startup of Experimental Lithium System

    International Nuclear Information System (INIS)

    McCauley, D.L.

    1980-06-01

    The Experimental Lithium System (ELS) is designed for full-scale testing of targets and other lithium system components for the Fusion Materials Irradiation Test (FMIT) Facility. The system also serves as a test bed for development of lithium purification and characterization equipment, provides experience in operation of large lithium systems, and helps guide FMIT design

  2. Lithium purity and characterization

    International Nuclear Information System (INIS)

    Meadows, G.E.; Keough, R.F.

    1981-02-01

    The accurate measurement of impurities in lithium is basic to the study of lithium compatibility with fusion reactor materials. In the last year the Hanford Engineering Development Laboratory (HEDL) has had the opportunity to develop sampling and analytical techniques and to apply them in support of the Experimental Lithium System (ELS) as a part of the Fusion Materials Irradiation Test Project. In this paper we present the analytical results from the fill, start-up and operation of the ELS. In addition, the analysis and purification of navy surplus ingot lithium which is being considered for use in a larger system will be discussed. Finally, the analytical techniques used in our laboratory will be summarized and the results of a recent round robin lithium analysis will be presented

  3. Lithium and Renal Impairment

    DEFF Research Database (Denmark)

    Nielsen, René Ernst; Kessing, Lars Vedel; Nolen, Willem A

    2018-01-01

    INTRODUCTION: Lithium is established as an effective treatment of mania, of depression in bipolar and unipolar disorder, and in maintenance treatment of these disorders. However, due to the necessity of monitoring and concerns about irreversible adverse effects, in particular renal impairment......, after long-term use, lithium might be underutilized. METHODS: This study reviewed 6 large observational studies addressing the risk of impaired renal function associated with lithium treatment and methodological issues impacting interpretation of results. RESULTS: An increased risk of renal impairment...... associated with lithium treatment is suggested. This increased risk may, at least partly, be a result of surveillance bias. Additionally, the earliest studies pointed toward an increased risk of end-stage renal disease associated with lithium treatment, whereas the later and methodologically most sound...

  4. Solid lithium ion conductors for battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Weppner, W.

    1985-01-15

    The phase equilibria and conductivities of the LiF-LiH, LiF-LiOH, LiF-Li/sub 2/O, Li/sub 2/S-Li/sub 2/O, Li/sub 2/S-LiCl and Li/sub 2/S-LiBr systems were investigated. All ternary single phases and two-phase mixtures are solid electrolytes which are thermodynamically stable in respect of reaction with elemental lithium (anode) and at practically useful, low lithium activities (cathode). The conductivity normally increases with decreasing thermodynamic stability and vice versa. The conductivity may be optimized in the case of solid solutions by selecting a composition with a decomposition voltage just above the value required by the cathode material employed. All materials are isotropic in structure and no dendrite formation was observed. This allows their use in rechargeable, thin film electrolyte batteries.

  5. Low pressure lithium condensation

    International Nuclear Information System (INIS)

    Wadkins, R.P.; Oh, C.H.

    1985-01-01

    A low pressure experiment to evaluate the laminar film condensation coefficients of lithium was conducted. Some thirty-six different heat transfer tests were made at system pressures ranging from 1.3 to 26 Pa. Boiled lithium was condensed on the inside of a 7.6-cm (ID), 409 stainless-steel pipe. Condensed lithium was allowed to reflux back to the pool boiling region below the condensing section. Fourteen chromel/alumel thermocouples were attached in various regions of the condensing section. The thermocouples were initially calibrated with errors of less than one degree Celsius

  6. Electrical insulation properties of RF-sputtered LiPON layers towards electrochemical stability of lithium batteries

    OpenAIRE

    Vieira, E. M. F.; Ribeiro, J. F.; Silva, Maria Manuela; Barradas, N. P.; Alves, E.; Alves, A.; Correia, M. R.; Gonçalves, L. M.

    2016-01-01

    Electrochemical stability, moderate ionic conductivity and low electronic conductivity make the lithium phosphorous oxynitride (LiPON) electrolyte suitable for micro and nanoscale lithium batteries. The electrical and electrochemical properties of thin-film electrolytes can seriously compromise full battery performance. Here, radio-frequency (RF)-sputtered LiPON thin films were fabricated in nitrogen plasma under different working pressure conditions. With a slight decrease in ...

  7. Research on extraction of lithium from dilute solution

    International Nuclear Information System (INIS)

    Takeuchi, Takeji

    1983-01-01

    Lithium has been used as the refrigerant for air conditioning, the additive for aluminum refining and catalyzer and for high performance grease and small batteries so far. The demand in these existing uses has grown on the average 8.8 % yearly, accordingly the cumulative consumption is estimated to be 0.8 x 10 9 kg by 2000. It is expected that the lithium resources of 1 x 10 9 kg available by 2000 will be used up before the practical use of fusion reactors. Lithium is indispensable for generating tritium in fusion reactors. The lithium concentration in sea water is as thin as 0.2 g/m 3 , therefore it is necessary to develop the method of effectively extracting lithium from a large quantity of sea water. As one of the methods, it was found that the corrosion product of metallic aluminum was able to be utilized. Namely, when metallic aluminum such as foils is immersed in sea water, the corrosion product adheres on the surface, and this corrosion product extracts lithium by cation exchange process preferentially. In this method, the process of making an extracting agent is not necessary, and it is also unnecessary to control the condition of sea water. (Kako, I.)

  8. Laser microstructuring and annealing processes for lithium manganese oxide cathodes

    International Nuclear Information System (INIS)

    Proell, J.; Kohler, R.; Torge, M.; Ulrich, S.; Ziebert, C.; Bruns, M.; Seifert, H.J.; Pfleging, W.

    2011-01-01

    It is expected that cathodes for lithium-ion batteries (LIB) composed out of nano-composite materials lead to an increase in power density of the LIB due to large electrochemically active surface areas but cathodes made of lithium manganese oxides (Li-Mn-O) suffer from structural instabilities due to their sensitivity to the average manganese oxidation state. Therefore, thin films in the Li-Mn-O system were synthesized by non-reactive radiofrequency magnetron sputtering of a spinel lithium manganese oxide target. For the enhancement of the power density and cycle stability, large area direct laser patterning using UV-laser radiation with a wavelength of 248 nm was performed. Subsequent laser annealing processes were investigated in a second step in order to set up a spinel-like phase using 940 nm laser radiation at a temperature of 680 deg. C. The interaction processes between UV-laser radiation and the material was investigated using laser ablation inductively coupled plasma mass spectroscopy. The changes in phase, structure and grain shape of the thin films due to the annealing process were recorded using Raman spectroscopy, X-ray diffraction and scanning electron microscopy. The structured cathodes were cycled using standard electrolyte and a metallic lithium anode. Different surface structures were investigated and a significant increase in cycling stability was found. Surface chemistry of an as-deposited as well as an electrochemically cycled thin film was investigated via X-ray photoelectron spectroscopy.

  9. APPARATUS FOR THE PRODUCTION OF LITHIUM METAL

    Science.gov (United States)

    Baker, P.S.; Duncan, F.R.; Greene, H.B.

    1961-08-22

    Methods and apparatus for the production of high-purity lithium from lithium halides are described. The apparatus is provided for continuously contacting a molten lithium halide with molten barium, thereby forming lithium metal and a barium halide, establishing separate layers of these reaction products and unreacted barium and lithium halide, and continuously withdrawing lithium and barium halide from the reaction zone. (AEC)

  10. Lithium niobate packaging challenges

    International Nuclear Information System (INIS)

    Murphy, E.J.; Holmes, R.J.; Jander, R.B.; Schelling, A.W.

    1988-01-01

    The use of lithium niobate integrated optic devices outside of the research laboratory is predicated on the development of a sound packaging method. The authors present a discussion of the many issues that face the development of a viable, robust packaging technology. The authors emphasize the interaction of lithium niobate's physical properties with available packaging materials and technologies. The broad range of properties (i.e. electro-optic, piezo-electric, pyro-electric, photorefractive...) that make lithium niobate an interesting material in many device applications also make it a packaging challenge. The package design, materials and packaging technologies must isolate the device from the environment so that lithium niobate's properties do not adversely affect the device performance

  11. Raman spectra of lithium compounds

    Science.gov (United States)

    Gorelik, V. S.; Bi, Dongxue; Voinov, Y. P.; Vodchits, A. I.; Gorshunov, B. P.; Yurasov, N. I.; Yurasova, I. I.

    2017-11-01

    The paper is devoted to the results of investigating the spontaneous Raman scattering spectra in the lithium compounds crystals in a wide spectral range by the fibre-optic spectroscopy method. We also present the stimulated Raman scattering spectra in the lithium hydroxide and lithium deuteride crystals obtained with the use of powerful laser source. The symmetry properties of the lithium hydroxide, lithium hydroxide monohydrate and lithium deuteride crystals optical modes were analyzed by means of the irreducible representations of the point symmetry groups. We have established the selection rules in the Raman and infrared absorption spectra of LiOH, LiOH·H2O and LiD crystals.

  12. Characterization lithium mineralized pegmatite

    International Nuclear Information System (INIS)

    Pereira, E.F.S.; Luz Ferreira, O. da; Cancado, R.Z.L.

    1986-01-01

    Lithium economic importance has increased in the last years. In Brazil its reserves, generally pegmatites bodies, are found in Itinga-Aracuai-MG. This study of characterization belongs to a global plan of lithium mineralized bodies research of 'Arqueana de Minerios e Metais Ltda', which purpose is to give subsidies for implementation of pegmatite unit, in order to make better use of them. (F.E.) [pt

  13. Lithium battery management system

    Science.gov (United States)

    Dougherty, Thomas J [Waukesha, WI

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  14. Nanotechnology in lithium niobate for integrated optic frequency conversion in the UV

    Science.gov (United States)

    Busacca, Alessandro C.; Santini, Claudia; Oliveri, Luigi; Riva-Sanseverino, Stefano; Parisi, Antonino; Cino, Alfonso C.; Assanto, Gaetano

    2017-11-01

    In the domain of Earth Explorer satellites nanoengineered nonlinear crystals can optimize UV tunable solid-state laser converters. Lightweight sources can be based on Lithium Niobate (LN) domain engineering by electric field poling and guided wave interactions. In this Communication we report the preliminary experimental results and the very first demonstration of UltraViolet second-harmonic generation by first-order quasi-phase-matching in a surface-periodically-poled proton-exchanged LN waveguide. The pump source was a Ti-Sapphire laser with a tunability range of 700- 980 nm and a 40 GHz linewidth. We have measured UV continuous-wave light at 390 nm by means of a lock-in amplifier and of a photodiode with enhanced response in the UV. Measured conversion efficiency was about 1%W-1cm-2. QPM experiments show good agreement with theory and pave the way for a future implementation of the technique in materials less prone to photorefractive damage and wider transparency in the UV, such as Lithium Tantalate.

  15. Solid Lithium Ion Conductors (SLIC) for Lithium Solid State Batteries

    Data.gov (United States)

    National Aeronautics and Space Administration — To identify the most lithium-ion conducting solid electrolytes for lithium solid state batteries from the emerging types of solid electrolytes, based on a...

  16. Lithium isotope effect accompanying electrochemical intercalation of lithium into graphite

    CERN Document Server

    Yanase, S; Oi, T

    2003-01-01

    Lithium has been electrochemically intercalated from a 1:2 (v/v) mixed solution of ethylene carbonate (EC) and methylethyl carbonate (MEC) containing 1 M LiClO sub 4 into graphite, and the lithium isotope fractionation accompanying the intercalation was observed. The lighter isotope was preferentially fractionated into graphite. The single-stage lithium isotope separation factor ranged from 1.007 to 1.025 at 25 C and depended little on the mole ratio of lithium to carbon of the lithium-graphite intercalation compounds (Li-GIC) formed. The separation factor increased with the relative content of lithium. This dependence seems consistent with the existence of an equilibrium isotope effect between the solvated lithium ion in the EC/MEC electrolyte solution and the lithium in graphite, and with the formation of a solid electrolyte interfaces on graphite at the early stage of intercalation. (orig.)

  17. Luminescence of yttrium niobium-tantalate doubly activated by europium and/or terbium under X-ray and electron beam excitation

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, I.D., E-mail: arellano@utp.edu.co [Department of Physics, Technological University of Pereira, Vereda La Julita, Pereira (Colombia); Nazarov, M.V. [Institute of Applied Physics, Academy of Sciences of Moldova, Republic of Moldova (Moldova, Republic of); School of Materials and Mineral Resources Engineering Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Cortes, J.A. [Department of Physics, Technological University of Pereira, Vereda La Julita, Pereira (Colombia); Ahmad Fauzi, M.N [School of Materials and Mineral Resources Engineering Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2012-09-15

    This paper reports the luminescence emission spectra of Y(Ta,Nb)O{sub 4} activated by rare earth ions such as Eu{sup 3+} and Tb{sup 3+}. The influence of these rare earth ions on the luminescence of yttrium niobium-tantalate phosphors was investigated. The luminescent properties were studied under X-ray and electron beam excitations. Under these excitations, the emission centers of the rare earth activators (Eu{sup 3+},Tb{sup 3+}) were found to contribute efficiently to the overall luminescence. Changing the mol concentration of the incorporated activators resulted in a broad variation of visible photoluminescence. Color cathodoluminescence images showed clearly the dependence of chromaticity on the different activators. With their various luminescence chromaticities, these rare earth activated phosphors are promising materials for solid-state lighting applications as well as for X-ray intensifying screens in medical diagnosis, providing a broad variation of visible photoluminescence from blue to red. - Highlights: Black-Right-Pointing-Pointer The Y(Ta,Nb)O{sub 4} phosphors were activated by rare earth ions such as Eu{sup 3+} and Tb{sup 3+}. Black-Right-Pointing-Pointer The phosphors were studied under X-ray and electron beam excitations. Black-Right-Pointing-Pointer The emission centers contribute efficiently to the overall luminescence. Black-Right-Pointing-Pointer Changing the concentration of the activators resulted in a broad luminescence.

  18. Hydrogen Outgassing from Lithium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  19. Lithium: for harnessing renewable energy

    Science.gov (United States)

    Bradley, Dwight; Jaskula, Brian W.

    2014-01-01

    Lithium, which has the chemical symbol Li and an atomic number of 3, is the first metal in the periodic table. Lithium has many uses, the most prominent being in batteries for cell phones, laptops, and electric and hybrid vehicles. Worldwide sources of lithium are broken down by ore-deposit type as follows: closed-basin brines, 58%; pegmatites and related granites, 26%; lithium-enriched clays, 7%; oilfield brines, 3%; geothermal brines, 3%; and lithium-enriched zeolites, 3% (2013 statistics). There are over 39 million tons of lithium resources worldwide. Of this resource, the USGS estimates there to be approximately 13 million tons of current economically recoverable lithium reserves. To help predict where future lithium supplies might be located, USGS scientists study how and where identified resources are concentrated in the Earth’s crust, and they use that knowledge to assess the likelihood that undiscovered resources also exist.

  20. Lithium-induced downbeat nystagmus.

    Science.gov (United States)

    Schein, Flora; Manoli, Pierre; Cathébras, Pascal

    2017-09-01

    We report the case of a 76-year old lady under lithium carbonate for a bipolar disorder who presented with a suspected optic neuritis. A typical lithium-induced downbeat nystagmus was observed. Discontinuation of lithium therapy resulted in frank improvement in visual acuity and disappearance of the nystagmus.

  1. Microfabrication process for patterning metallic lithium encapsulated electrodes

    International Nuclear Information System (INIS)

    Oukassi, Sami; Dunoyer, Nicolas; Salot, Raphael; Martin, Steve

    2009-01-01

    This work presents recent achievements concerning thin film encapsulation of metallic lithium negative electrode. In the context of this study, the encapsulation stack includes polymer and dielectric layers combined in such way to optimize barrier performances of the whole structure towards oxygen and water vapor permeation. The first part of this work is dedicated to the description of the barrier stack architecture and properties. A second part presents the application of a microfabrication process to the metallic lithium negative electrode and barrier stack so as to have very small features (100 μm x 100 μm patterns). The microfabrication process includes several steps of photolithography and etching (dry and wet) blocks, which allows us to reach the target critical dimensions. These results show a method of patterning functional metallic lithium. It demonstrates the feasibility of energy sources miniaturization which is an important issue in the field of autonomous and wireless sensor networks.

  2. Verification of the hydraulic design of the FMIT liquid lithium target

    International Nuclear Information System (INIS)

    Miles, R.R.; Annese, C.E.; Ingham, J.G.

    1983-01-01

    A liquid lithium target is being developed to generate a neutron flux for material testing in a fusion-like environment. The target consists of a thin, high speed, curved wall jet of lithium which is formed by an asymmetric nozzle. A prototype target was designed using potential flow analysis and was tested in water. Measurements of jet thickness and velocity in water and thickness in lithium were compared with isothermal design predictions and were shown to match within 1% for thickness and 5% for jet velocity

  3. Lithium extractive metallurgy

    International Nuclear Information System (INIS)

    Josa, J.M.; Merino, J.L.

    1985-01-01

    The Nuclear Fusion National Program depends on lithium supplies. Extractive metallurgy development is subordinate to the localization and evaluation of ore resources. Nowadays lithium raw materials usable with present technology consist of pegmatite ore and brine. The Instituto Geologico y Minero Espanol (IGME) found lepidolite, ambligonite and spodrimene in pegmatite ores in different areas of Spain. However, an evaluation of resources has not been made. Different Spanish surface and underground brines are to be sampled and analyzed. If none of these contain significant levels of lithium, the Junta de Energia Nuclear (JEN) will try an agreement with IGME for ENUSA (Empresa Nacional del Uranio, S.A.) to explore pegmatite-ore bodies from different locations. Different work stages, laboratory tests, pilots plants tests and commercial plant, are foreseen, if the deposits are found. (author)

  4. Large lithium loop experience

    International Nuclear Information System (INIS)

    Kolowith, R.; Owen, T.J.; Berg, J.D.; Atwood, J.M.

    1981-10-01

    An engineering design and operating experience of a large, isothermal, lithium-coolant test loop are presented. This liquid metal coolant loop is called the Experimental Lithium System (ELS) and has operated safely and reliably for over 6500 hours through September 1981. The loop is used for full-scale testing of components for the Fusion Materials Irradiation Test (FMIT) Facility. Main system parameters include coolant temperatures to 430 0 C and flow to 0.038 m 3 /s (600 gal/min). Performance of the main pump, vacuum system, and control system is discussed. Unique test capabilities of the ELS are also discussed

  5. Lithium Combustion: A Review

    Science.gov (United States)

    1990-12-01

    Rev. 2-89) Precribed by ANSI Std 239.18 298-102 UNCLASSIFIED SECURIT CLASSIRCTIO OF THIS PAGE (Whun Data Entered) Lade Form 296 ledk (Row. 2-49...did not burn spontaneously in water, and the hydrogen formed did not ignite in air. When a pea-sized piece of lithium was dropped into a container of...Lithium metal flowed through the cracks in the coating and started to burn brilliantly. The LiOH coating was initially protective; but, as it became

  6. Dissolution behavior of lithium compounds in ethanol

    Directory of Open Access Journals (Sweden)

    Tomohiro Furukawa

    2016-12-01

    Full Text Available In order to exchange the components which received irradiation damage during the operation at the International Fusion Materials Irradiation Facility, the adhered lithium, which is partially converted to lithium compounds such as lithium oxide and lithium hydroxide, should be removed from the components. In this study, the dissolution experiments of lithium compounds (lithium nitride, lithium hydroxide, and lithium oxide were performed in a candidate solvent, allowing the clarification of time and temperature dependence. Based on the results, a cleaning procedure for adhered lithium on the inner surface of the components was proposed.

  7. The liquid lithium limiter control system on FTU

    Energy Technology Data Exchange (ETDEWEB)

    Bertocchi, A. [EURATOM-ENEA Association, Frascati Research Center, Via E. Fermi 45, 00044 Frascati (Rome) (Italy)], E-mail: bertocchi@frascati.enea.it; Di Donna, M [Department of Informatics, Systems and Productions, University of Rome Tor Vergata, Rome (Italy); Panella, M; Vitale, V [EURATOM-ENEA Association, Frascati Research Center, Via E. Fermi 45, 00044 Frascati (Rome) (Italy)

    2007-10-15

    In the second half of 2005, a liquid lithium limiter (LLL) with capillary porous system (CPS) configuration was installed to test on Tokamak FTU. The liquid lithium flows through capillaries from a reservoir to the side faced to the plasma to form a thin lithium film as wall coating. The system includes three stainless steel cases, which contain two thermocouples each one. A heating system brings the Li temperature about 200 deg. C to allow the liquid to flow. This temperature, monitored by thermocouples, needs to be controlled. To carry out this experimental procedure, some new features have been introduced in the existent control system based on Opto22{sup TM} modules and a CORBA/PHP/MySQL software architecture. The historical data storage to keep the lithium temperature evolution has been added. Two graphical tools - developed in MATLAB{sup TM} and Java environments, respectively, to monitor the lithium temperature coming from thermocouples - have been also implemented. The LLL control system allows to regulate the heater temperature in each unit to reach operational conditions, where the temperature adjustment can be performed either automatically through a specific control law or manually by the operator. During the plasma shot the system switches off the limiter power supply to prevent instruments damage. Moreover, in the same experimental context, a first approach to automatically obtain executable code - starting from control laws designed by Simulink{sup TM} tool - has been realized.

  8. The liquid lithium limiter control system on FTU

    International Nuclear Information System (INIS)

    Bertocchi, A.; Di Donna, M.; Panella, M.; Vitale, V.

    2007-01-01

    In the second half of 2005, a liquid lithium limiter (LLL) with capillary porous system (CPS) configuration was installed to test on Tokamak FTU. The liquid lithium flows through capillaries from a reservoir to the side faced to the plasma to form a thin lithium film as wall coating. The system includes three stainless steel cases, which contain two thermocouples each one. A heating system brings the Li temperature about 200 deg. C to allow the liquid to flow. This temperature, monitored by thermocouples, needs to be controlled. To carry out this experimental procedure, some new features have been introduced in the existent control system based on Opto22 TM modules and a CORBA/PHP/MySQL software architecture. The historical data storage to keep the lithium temperature evolution has been added. Two graphical tools - developed in MATLAB TM and Java environments, respectively, to monitor the lithium temperature coming from thermocouples - have been also implemented. The LLL control system allows to regulate the heater temperature in each unit to reach operational conditions, where the temperature adjustment can be performed either automatically through a specific control law or manually by the operator. During the plasma shot the system switches off the limiter power supply to prevent instruments damage. Moreover, in the same experimental context, a first approach to automatically obtain executable code - starting from control laws designed by Simulink TM tool - has been realized

  9. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery.

    Science.gov (United States)

    Assegie, Addisu Alemayehu; Cheng, Ju-Hsiang; Kuo, Li-Ming; Su, Wei-Nien; Hwang, Bing-Joe

    2018-03-29

    The practical implementation of an anode-free lithium-metal battery with promising high capacity is hampered by dendrite formation and low coulombic efficiency. Most notably, these challenges stem from non-uniform lithium plating and unstable SEI layer formation on the bare copper electrode. Herein, we revealed the homogeneous deposition of lithium and effective suppression of dendrite formation using a copper electrode coated with a polyethylene oxide (PEO) film in an electrolyte comprising 1 M LiTFSI, DME/DOL (1/1, v/v) and 2 wt% LiNO3. More importantly, the PEO film coating promoted the formation of a thin and robust SEI layer film by hosting lithium and regulating the inevitable reaction of lithium with the electrolyte. The modified electrode exhibited stable cycling of lithium with an average coulombic efficiency of ∼100% over 200 cycles and low voltage hysteresis (∼30 mV) at a current density of 0.5 mA cm-2. Moreover, we tested the anode-free battery experimentally by integrating it with an LiFePO4 cathode into a full-cell configuration (Cu@PEO/LiFePO4). The new cell demonstrated stable cycling with an average coulombic efficiency of 98.6% and capacity retention of 30% in the 200th cycle at a rate of 0.2C. These impressive enhancements in cycle life and capacity retention result from the synergy of the PEO film coating, high electrode-electrolyte interface compatibility, stable polar oligomer formation from the reduction of 1,3-dioxolane and the generation of SEI-stabilizing nitrite and nitride upon lithium nitrate reduction. Our result opens up a new route to realize anode-free batteries by modifying the copper anode with PEO to achieve ever more demanding yet safe interfacial chemistry and control of dendrite formation.

  10. High rate lithium/thionyl chloride bipolar battery development

    Science.gov (United States)

    Russell, P. G.; Goebel, F.

    The lithium/thionyl chloride ( {Li}/{SOCl2}) electrochemistry is capable of providing high power and high specific power, especially under pulse discharge conditions, when cells containing thin components are arranged in a bipolar configuration. This paper describes recent work concerned with bipolar cell design, cathode evaluation, component manufacturing methods, and the assembly and testing of bipolar modules containing up to 150 cells for Sonobuoy application.

  11. High rate lithium-thionyl chloride bipolar battery development

    Energy Technology Data Exchange (ETDEWEB)

    Russell, P.G.; Goebel, F. [Yardney Technical Products, Inc., Pawcatuck, CT (United States)

    1994-12-31

    The lithium/thionyl chloride system is capable of providing both high power and high energy density when cells containing thin components are arranged in a bipolar configuration. Electrode current densities in excess of 300mA/cm{sup 2} are achieved during pulse discharge. The present work is concerned with bipolar cell design, cathode evaluation, component manufacturing methods, and the assembly and testing of bipolar modules containing up to 150 cells.

  12. High rate lithium/thionyl chloride bipolar battery development

    Energy Technology Data Exchange (ETDEWEB)

    Russell, P.G. [Yardney Technical Products, Inc., Pawcatuck, CT (United States); Goebel, F. [Yardney Technical Products, Inc., Pawcatuck, CT (United States)

    1995-04-01

    The lithium/thionyl chloride (Li/SOCl{sub 2}) electrochemistry is capable of providing high power and high specific power, especially under pulse discharge conditions, when cells containing thin components are arranged in a bipolar configuration. This paper describes recent work concerned with bipolar cell design, cathode evaluation, component manufacturing methods, and the assembly and testing of bipolar modules containing up to 150 cells for Sonobuoy application. (orig.)

  13. Lithium alloy negative electrodes

    Science.gov (United States)

    Huggins, Robert A.

    The 1996 announcement by Fuji Photo Film of the development of lithium batteries containing convertible metal oxides has caused a great deal of renewed interest in lithium alloys as alternative materials for use in the negative electrode of rechargeable lithium cells. The earlier work on lithium alloys, both at elevated and ambient temperatures is briefly reviewed. Basic principles relating thermodynamics, phase diagrams and electrochemical properties under near-equilibrium conditions are discussed, with the Li-Sn system as an example. Second-phase nucleation, and its hindrance under dynamic conditions plays an important role in determining deviations from equilibrium behavior. Two general types of composite microstructure electrodes, those with a mixed-conducting matrix, and those with a solid electrolyte matrix, are discussed. The Li-Sn-Si system at elevated temperatures, and the Li-Sn-Cd at ambient temperatures are shown to be examples of mixed-conducting matrix microstructures. The convertible oxides are an example of the solid electrolyte matrix type. Although the reversible capacity can be very large in this case, the first cycle irreversible capacity required to convert the oxides to alloys may be a significant handicap.

  14. Lithium thionyl chloride battery

    Energy Technology Data Exchange (ETDEWEB)

    Saathoff, D.J.; Venkatasetty, H.V.

    1982-10-19

    The discharge rate and internal conductivity of electrochemical cell including a lithium anode, and a cathode and an electrolyte including LiAlCl4 and SOC2 is improved by the addition of an amount of a mixture containing AlCl3 and butyl pyridinium chloride.

  15. Synthesis of lithium ceramics

    International Nuclear Information System (INIS)

    Cruz G, D.; Bulbulian, S.

    2001-01-01

    In this work, lithium silicates were synthesised by the combustion technique, the mixtures were prepared with different molar ratios and using urea as fuel. Its characterization was realized by means of X-ray diffraction (XRD) and the percentages of its sizes were determined measuring the area under curve of the peaks in the diffractogram. (Author)

  16. Solubility of lithium deuteride in liquid lithium

    International Nuclear Information System (INIS)

    Veleckis, E.; Yonco, R.M.; Maroni, V.A.

    1977-01-01

    The solubility of LiD in liquid lithium between the eutectic and monotectic temperatures was measured using a direct sampling method. Solubilities were found to range from 0.0154 mol.% LiD at 199 0 C to 3.32 mol.% LiD at 498 0 C. The data were used in the derivation of an expression for the activity coefficient of LiD as a function of temperature and composition and an equation relating deuteride solubility and temperature, thus defining the liquidus curve. Similar equations were also derived for the Li-LiH system using the existing solubility data. Extrapolation of the liquidus curves yielded the eutectic concentrations (0.040 mol.% LiH and 0.035 mol.% LiD) and the freezing point depressions (0.23 0 C for Li-LiH and 0.20 0 C for Li-LiD) at the eutectic point. The results are compared with the literature data for hydrogen and deuterium. The implications of the relatively high solubility of hydrogen isotopes in lithium just above the melting point are discussed with respect to the cold trapping of tritium in fusion reactor blankets. (Auth.)

  17. Approach to lithium burn-up effect in lithium ceramics

    International Nuclear Information System (INIS)

    Rasneur, B.

    1994-01-01

    The lithium burn-up in Li 2 ZrO 3 is simulated by removing lithium under Li 2 O form and trapping it in high specific surface area powder while heating during 15 days or 1 month at moderate temperature so that lithium mobility be large enough without causing any sintering neither of the specimens nor of the powder. In a first treatment at 775 deg C during 1 month. 30% of the lithium content could be removed inducing a lithium concentration gradient in the specimen and the formation of a lithium-free monoclinic ZrO 2 skin. Improvements led to similar results at 650 deg C and 600 deg C, the latter temperatures are closer to the operating temperature of the ceramic breeder blanket of a fusion reactor. (author) 4 refs.; 4 figs.; 1 tab

  18. Anomalous Lithium Adsorption Propensity of Monolayer ...

    Indian Academy of Sciences (India)

    longer life cycle, thus an ideal candidate to replace the conventional ... tion in the development of lithium ion batteries as they ... interaction of graphene with lithium based on density ... aromatic hydrocarbons.30 Lithium doping increases.

  19. Method of producing spherical lithium aluminate particles

    International Nuclear Information System (INIS)

    Yang, L.; Medico, R.R.; Baugh, W.A.

    1983-01-01

    Spherical particles of lithium aluminate are formed by initially producing aluminium hydroxide spheroids, and immersing the spheroids in a lithium ion-containing solution to infuse lithium ions into the spheroids. The lithium-infused spheroids are rinsed to remove excess lithium ion from the surface, and the rinsed spheroids are soaked for a period of time in a liquid medium, dried and sintered to form lithium aluminate spherical particles. (author)

  20. Process for recovery of lithium from spent lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kunugita, Eiichi; Jonghwa, Kim; Komasawa, Isao [Osaka Univ., Faculty of Engineering Science, Osaka, (Japan)

    1989-07-10

    An experimental study of the recovery and purification of lithium from spent lithium batteries was carried out, taking advantage of the characterisitics of lithium ion and its carbonate. More than 75% of the lithium contained in the whole battery or its anode component can be leached with sulfuric acid where the pH of the final pregnant liquor is 7.7 or higher, the other metals being left in the residue is their hydroxides. The extracted liquor is evaporated/concentrated, added with saturated sodium carbonate solution at around 100{sup 0}C to precipitate lithium as a carbonate. The coprecipitated sodium carbonate is washed/removed with a hotwater to give 99% pure lithium carbonate. Separation of lithium and sodium in the barren liquor is conducted with LIX 51, a chelating/extracting agent, and TOPO, a neutral organic phosphate, which have a synergic effect, to selectively extract lithium; the organic phase is reverse-extracted with a dilute hydrochloric acid to obtain lithium of 99% purity. 9 refs., 4 figs., 5 tabs.

  1. Experimental lithium system. Final report

    International Nuclear Information System (INIS)

    Kolowith, R.; Berg, J.D.; Miller, W.C.

    1985-04-01

    A full-scale mockup of the Fusion Materials Irradiation Test (FMIT) Facility lithium system was built at the Hanford Engineering Development Laboratory (HEDL). This isothermal mockup, called the Experimental Lithium System (ELS), was prototypic of FMIT, excluding the accelerator and dump heat exchanger. This 3.8 m 3 lithium test loop achieved over 16,000 hours of safe and reliable operation. An extensive test program demonstrated satisfactory performance of the system components, including the HEDL-supplied electromagnetic lithium pump, the lithium jet target, the purification and characterization hardware, as well as the auxiliary argon and vacuum systems. Experience with the test loop provided important information on system operation, performance, and reliability. This report presents a complete overview of the entire Experimental Lithium System test program and also includes a summary of such areas as instrumentation, coolant chemistry, vapor/aerosol transport, and corrosion

  2. Lithium clearance in chronic nephropathy

    DEFF Research Database (Denmark)

    Kamper, A L; Holstein-Rathlou, N H; Leyssac, P P

    1989-01-01

    1. Lithium clearance measurements were made in 72 patients with chronic nephropathy of different aetiology and moderate to severely reduced renal function. 2. Lithium clearance was strictly correlated with glomerular filtration rate, and there was no suggestion of distal tubular reabsorption...... of lithium or influence of osmotic diuresis. 3. Fractional reabsorption of lithium was reduced in most patients with glomerular filtration rates below 25 ml/min. 4. Calculated fractional distal reabsorption of sodium was reduced in most patients with glomerular filtration rates below 50 ml/min. 5. Lithium...... that lithium clearance may be a measure of the delivery of sodium and water from the renal proximal tubule. With this assumption it was found that adjustment of the sodium excretion in chronic nephropathy initially takes place in the distal parts of the nephron (loop of Henle, distal tubule and collecting duct...

  3. Preparation and properties of antimony thin film anode materials

    Institute of Scientific and Technical Information of China (English)

    SU Shufa; CAO Gaoshao; ZHAO Xinbing

    2004-01-01

    Metallic antimony thin films were deposited by magnetron sputtering and electrodeposition. Electrochemical properties of the thin film as anode materials for lithium-ion batteries were investigated and compared with those of antimony powder. It was found that both magnetron sputtering and electrodeposition are easily controllable processes to deposit antimony films with fiat charge/discharge potential plateaus. The electrochemical performances of antimony thin films, especially those prepared with magnetron sputtering, are better than those of antimony powder. The reversible capacities of the magnetron sputtered antimony thin film are above 400 mA h g-1 in the first 15 cycles.

  4. Membranes in Lithium Ion Batteries

    Science.gov (United States)

    Yang, Min; Hou, Junbo

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed. PMID:24958286

  5. Membranes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Junbo Hou

    2012-07-01

    Full Text Available Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  6. Recovery of lithium from seawater

    International Nuclear Information System (INIS)

    Ooi, Kenta; Miyai, Yoshitaka; Katoh, Shunsaku; Abe, Mitsuo.

    1989-01-01

    Lithium has been used for air conditioners, aluminum refining, ceramics, organic metal compounds, batteries and many other uses. Besides, attention is paid as the aluminum-lithium alloys as aircraft materials, and the raw materials for large capacity batteries and nuclear fusion reactors for the future. The amount of lithium resources has been estimated as 14 million tons, and is relatively abundant, but when the future increase of demand is considered, it is not necessarily sufficient. Japan lacks lithium resources, and the stable ensuring of the resources has become an important problem. Seawater contains lithium by 170 μg/l, and its total amount reaches 230 billion tons. The process of recovering lithium from seawater, geothermal water and natural gas brine has been actively researched since 10 years ago centering around Japan. At present, the search for the adsorbent that effectively collects lithium is the main subject. Also the recovery by coprecipitation has been investigated basically. The inorganic adsorbent for lithium is classified into aluminum type, compound antimonic acid type, layered compound type, ion sieve oxide type and others. Their lithium adsorption performance and adsorption mechanism are different remarkably, therefore, these of each group are described. (K.I.) 70 refs

  7. The Liquid Lithium Limiter control system on FTU

    International Nuclear Information System (INIS)

    Bertocchi, A.; Panella, M.; Vitale, V.; Sinibaldi, S.

    2006-01-01

    In the second half of 2005, a liquid lithium limiter (LLL) with capillary porous system configuration was installed for testing on the FTU tokamak. The liquid lithium flows through capillaries from a reservoir to the side facing the plasma to form a thin liquid lithium film. The system is composed of three stainless steel sections, which contain two thermocouples each. A heating system brings the Li temperature to about 200 o C allowing the liquid to flow. This temperature, monitored by thermocouples, needs to be controlled. [M. Apicella, G. Mazzitelli et al., First experiment with Lithium Limiter on FTU, 17 o International Conference on Plasma Surface Interaction in Controlled Fusion Devices, 22 - 26 May 2006, Hefei Anhui, China]. To carry out this experimental procedure, some new features have been introduced in the existent control system based on Opto22 TM modules and a CORBA/PHP/MySQL software architecture [A. Bertocchi, S. Podda, V. Vitale, Fusion Eng. Des. 74 (2005) 787-791]. The historical data storage to keep the lithium temperature evolution has been added. Two graphical tools - developed in MATLab and Java environments respectively to monitor the lithium temperature coming from thermocouples - have been also implemented. The control system allows regulating the heater temperature in each section of the LLL to reach operational conditions, where the temperature adjustment can be performed either automatically through a specific control law or manually by the operator. During plasma operations the system switches off the limiter power supply to prevent instruments damage. Moreover, in the same experimental context, a first approach to automatically obtain executable code - starting from control laws designed by Simulink TM tool - has been realized. (author)

  8. The Liquid Lithium Limiter control system on FTU

    Energy Technology Data Exchange (ETDEWEB)

    Bertocchi, A; Panella, M; Vitale, V [Associazione EURATOM- ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati (RM) (Italy); Sinibaldi, S [Rome University ' ' Tor Vergata ' ' , Informatics, Systems and Production Dept., Via del Politecnico 1, 00133 Rome (Italy)

    2006-07-01

    In the second half of 2005, a liquid lithium limiter (LLL) with capillary porous system configuration was installed for testing on the FTU tokamak. The liquid lithium flows through capillaries from a reservoir to the side facing the plasma to form a thin liquid lithium film. The system is composed of three stainless steel sections, which contain two thermocouples each. A heating system brings the Li temperature to about 200 {sup o}C allowing the liquid to flow. This temperature, monitored by thermocouples, needs to be controlled. [M. Apicella, G. Mazzitelli et al., First experiment with Lithium Limiter on FTU, 17{sup o} International Conference on Plasma Surface Interaction in Controlled Fusion Devices, 22 - 26 May 2006, Hefei Anhui, China]. To carry out this experimental procedure, some new features have been introduced in the existent control system based on Opto22{sup TM} modules and a CORBA/PHP/MySQL software architecture [A. Bertocchi, S. Podda, V. Vitale, Fusion Eng. Des. 74 (2005) 787-791]. The historical data storage to keep the lithium temperature evolution has been added. Two graphical tools - developed in MATLab and Java environments respectively to monitor the lithium temperature coming from thermocouples - have been also implemented. The control system allows regulating the heater temperature in each section of the LLL to reach operational conditions, where the temperature adjustment can be performed either automatically through a specific control law or manually by the operator. During plasma operations the system switches off the limiter power supply to prevent instruments damage. Moreover, in the same experimental context, a first approach to automatically obtain executable code - starting from control laws designed by Simulink{sup TM} tool - has been realized. (author)

  9. Lithium reserves and resources

    International Nuclear Information System (INIS)

    Evans, R.K.

    1978-01-01

    As a result of accelerating research efforts in the fields of secondary batteries and thermonuclear power generation, concern has been expressed in certain quarters regarding the availability, in sufficient quantities, of lithium. As part of a recent study by the National Research Council on behalf of the Energy Research and Development Administration, a subpanel was formed to consider the outlook for lithium. Principal areas of concern were reserves, resources and the 'surplus' available for energy applications after allowing for the growth in current lithium applications. Reserves and resources were categorized into four classes ranging from fully proved reserves to resources which are probably dependent upon the marketing of co-products to become economically attractive. Because of the proprietary nature of data on beneficiation and processing recoveries, the tonnages of available lithium are expressed in terms of plant feed. However, highly conservative assumptions have been made concerning mining recoveries and these go a considerable way to accounting for total losses. Western World reserves and resources of all classes are estimated at 10.6 million tonnes Li of which 3.5 million tonnes Li are located in the United States. Current United States capacity, virtually equivalent to Western World capacity, is 4700 tonnes Li and production in 1976 approximated to 3500 tonnes Li. Production for current applications is expected to grow to approx. 10,000 tonnes in year 2000 and 13,000 tonnes a decade later. The massive excess of reserves and resources over that necessary to support conventional requirements has limited the amount of justifiable exploration expenditures; on the last occasion, there was a a major increase in demand (by the USAEA) reserves and capacity were increased rapidly. There are no foreseeable reasons why this shouldn't happen again when the need is clear. (author)

  10. Electrochemical fabrication of nanoporous polypyrrole thin films

    International Nuclear Information System (INIS)

    Li Mei; Yuan Jinying; Shi Gaoquan

    2008-01-01

    Polypyrrole thin films with pores in nanometer scale were synthesized by direct electrochemical oxidation of pyrrole in a mixed electrolyte of isopropyl alcohol, boron trifluoride diethyl etherate, sodium dodecylsulfonate and poly(ethylene glycol) using well-aligned ZnO nanowires arrays as templates. The thin films exhibit high conductivity of ca. σ rt ∼ 20.5 s/cm and can be driven to bend during redox processes in 1.0 M lithium perchlorate aqueous solution. The movement rate of an actuator based on this nanoporous film was measured to be over 90 o /s at a driving potential of 0.8 V (vs. Ag/AgCl)

  11. Study on high speed lithium jet for neutron source of boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Kobayashi, Tooru; Zhang, Mingguang; Mak, Michael; Stefanica, Jiri; Dostal, Vaclav; Zhao Wei

    2012-01-01

    The feasibility study of a liquid lithium type proton beam target was performed for the neutron source of the boron neutron capture therapy (BNCT). As the candidates of the liquid lithium target, a thin sheet jet and a thin film flow on a concave wall were chosen, and a lithium flow experiment was conducted to investigate the hydrodynamic stability of the targets. The surfaces of the jets and film flows with a thickness of 0.5 mm and a width of 50 mm were observed by means of photography. It has been found that a stable sheet jet and a stable film flow on a concave wall can be formed up to certain velocities by using a straight nozzle and a curved nozzle with the concave wall, respectively. (author)

  12. The testing report of the development for the lithium grains and lithium rod automatic machine

    International Nuclear Information System (INIS)

    Qian Zongkui; Kong Xianghong; Huang Yong

    2008-06-01

    With the development of lithium industry, the lithium grains and lithium rod, as additive or catalyzer, having a big comparatively acreage and a strong activated feature, have a broad application. The lithium grains and lithium rod belong to the kind of final machining materials. The principle of the lithium grains and lithium rod that how to take shape through the procedures of extrusion, cutting, anti-conglutination, threshing and so on are analysed, A sort of lithium grains and lithium rod automatic machine is developed. (authors)

  13. thin films

    Indian Academy of Sciences (India)

    microscopy (SEM) studies, respectively. The Fourier transform ... Thin films; chemical synthesis; hydrous tin oxide; FTIR; electrical properties. 1. Introduction ... dehydrogenation of organic compounds (Hattori et al 1987). .... SEM images of (a) bare stainless steel and (b) SnO2:H2O thin film on stainless steel substrate at a ...

  14. Modeling the reduction of gross lithium erosion observed under high-flux deuterium bombardment

    NARCIS (Netherlands)

    Abrams, T.; Jaworski, M. A.; Kaita, R.; Nichols, J. H.; Stotler, D. P.; De Temmerman, G.; van den Berg, M. A.; van der Meiden, H. J.; Morgan, T. W.

    2015-01-01

    Abstract Both thin (<1 μm) and thick (∼500 μm) lithium films under high-flux deuterium and neon plasma bombardment were studied in the linear plasma device Magnum-PSI at ion fluxes >1024 m−2 s−1 and surface temperatures <700 °C.

  15. Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes

    KAUST Repository

    Ruffo, Riccardo; Wessells, Colin; Huggins, Robert A.; Cui, Yi

    2009-01-01

    .e., as the counter electrode. A commercial reference electrode is also present. Both the working and the counter electrodes have been prepared as thin layers on a metallic substrate using the procedures typical for the study of electrodes for lithium-ion batteries

  16. Mass spectrometric analysis of lithium

    International Nuclear Information System (INIS)

    Chitambar, S.A.; Kavimandan, V.D.; Aggarwal, S.K.; Ramasubramanian, P.A.; Shah, P.M.; Almoula, A.I.; Acharya, S.N.; Parab, A.R.; Jain, H.C.; Mathews, C.K.; Ramaniah, M.V.

    1978-01-01

    The details of investigations carried out on the isotopic analysis of lithium using surface ionisation mass spectrometry are presented. Various parameters affecting the precision in isotopic analysis of lithium are discussed. A precision of 1% is achieved in the relative isotope abundance measurement. (author)

  17. Electrolytic Preparation of High Dielectric Thin Films

    National Research Council Canada - National Science Library

    Hultquist, A. E; Sibert, M. E

    1966-01-01

    .... Some attention is devoted to zirconates, niobates, and tantalates. In addition to barium compounds, the comparable calcium, magnesium, strontium and potassium double oxides are evaluated by the appropriate electrolytic techniques...

  18. Multiferroic oxide thin films and heterostructures

    KAUST Repository

    Lu, Chengliang; Hu, Weijin; Tian, Yufeng; Wu, Tao

    2015-01-01

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex

  19. Metabolic Side Effects of Lithium

    Directory of Open Access Journals (Sweden)

    M. Cagdas Eker

    2010-04-01

    Full Text Available Lithium is an alkaline ion being used since 19th century. After its widespread use in psychiatric disorders, observed side effects caused skepticism about its therapeutic efficacy. Despite several disadvantages, lithium is one of the indispensible drugs used in affective disorders, especially in bipolar disorder. It became a necessity for physicians to recognize its side effects since lithium is still accepted as a gold standard in the treatment of bipolar disorder. Adverse effects of chronic administration of lithium on several organ systems are widely known. In this article metabolic effects of lithium on thyroid and parathyroid glands, body mass index and kidneys will be discussed along with their mechanisms, clinical findings, possible risk factors and treatment. One of the most common side effect of lithium is hypothyroidism. It has the same clinical and biochemical properties as primary hypothyroidism and observed as subclinical hypothyroidism in the first place. Hypothyroidism, even its subclinical form, may be associated with non-response or inadequate response and is indicated as a risk factor for development of rapid cycling bipolar disorder. Therefore, hypothyroidism should be screened no matter how severe it is and should be treated with thyroid hormone in the presence of clinical hypothyroidism. Weight gain due to lithium administration disturbs the compliance to treatment and negatively affects the course of the illness. Increased risk for diabetes, hypertension, ischemic heart disease and stroke because of weight gain constitute other centers of problem. Indeed, it is of importance to determine the risk factors before treatment, to follow up the weight, to re-organize nutritional habits and to schedule exercises. Another frequent problematic side effect of lithium treatment is renal dysfunction which clinically present as nephrogenic diabetes insipidus with the common symptoms of polyuria and polydipsia. Nephrogenic diabetes

  20. 77 FR 28259 - Mailings of Lithium Batteries

    Science.gov (United States)

    2012-05-14

    ... POSTAL SERVICE 39 CFR Part 111 Mailings of Lithium Batteries AGENCY: Postal Service TM . ACTION... international mailing of lithium batteries and devices containing lithium batteries. This prohibition also extends to the mailing of lithium batteries to and from an APO, FPO, or DPO location. However, this...

  1. Lithium in the barium stars

    International Nuclear Information System (INIS)

    Pinsonneault, M.H.; Sneden, C.

    1984-01-01

    New high-resolution spectra of the lithium resonance doublet have provided lithium abundances or upper limits for 26 classical and mild barium stars. The lithium lines always are present in the classical barium stars. Lithium abundances in these stars obey a trend with stellar masses consistent with that previously derived for ordinary K giants. This supports the notion that classical barium stars are post-core-He-flash or core-He-burning stars. Lithium contents in the mild barium stars, however, often are much smaller than those of the classical barium stars sometimes only upper limits may be determined. The cause for this difference is not easily understood, but may be related to more extensive mass loss by the mild barium stars. 45 references

  2. Therapeutic Drug Monitoring of Lithium

    DEFF Research Database (Denmark)

    Mose, Tina; Damkier, Per; Petersen, Magnus

    2015-01-01

    BACKGROUND: Serum lithium is monitored to ensure levels within the narrow therapeutic window. This study examines the interlaboratory variation and inaccuracy of lithium monitoring in Denmark. METHODS: In 16 samples consisting of (1) control materials (n = 4), (2) pooled patient serum (n = 5......), and (3) serum from individual patients (n = 7), lithium was measured in 19 laboratories using 20 different instruments. The lithium concentrations were targeted by a reference laboratory. Ion-selective electrode (n = 5), reflective spectrophotometric (RSM, n = 5), and spectrophotometric (n = 10) methods...... of >12%. Seven of these instruments had a systematic positive or negative bias and more so at lower lithium concentrations. Three poorly calibrated instruments were found in the ion-selective electrode group, 3 in the spectrophotometric group, and 2 in the RSM group. The instruments using reflectance...

  3. Positive electrode for a lithium battery

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2015-04-07

    A method for producing a lithium alkali transition metal oxide for use as a positive electrode material for lithium secondary batteries by a precipitation method. The positive electrode material is a lithium alkali transition metal composite oxide and is prepared by mixing a solid state mixed with alkali and transition metal carbonate and a lithium source. The mixture is thermally treated to obtain a small amount of alkali metal residual in the lithium transition metal composite oxide cathode material.

  4. Halo Star Lithium Depletion

    International Nuclear Information System (INIS)

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-01-01

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  5. Direct tritium measurement in lithium titanate for breeding blanket mock-up experiments with D-T neutrons

    International Nuclear Information System (INIS)

    Klix, A.; Ochiai, K.; Nishitani, T.; Takahashi, A.

    2004-01-01

    At Fusion Neutronics Source (FNS) of JAERI, tritium breeding experiments with blanket mock-ups consisting of advanced fusion reactor materials are in progress. The breeding zones are thin layers of lithium titanate which is one of the candidate tritium breeder materials for the DEMO fusion power reactor. It is anticipated that the application of small pellet-shaped lithium titanate detectors manufactured from the same material as the breeding layer will reduce experimental uncertainties arising from necessary corrections due to different isotopic lithium volume concentrations in breeding material and detector. Therefore, a method was developed to measure the local tritium production by means of lithium titanate pellet detectors and a liquid scintillation counting technique. The lithium titanate pellets were dissolved in concentrated hydrochloric acid solution and the resulting acidic solution was neutralized. Two ways of further processing were followed: direct incorporation into a liquid scintillation cocktail and distillation of the solution followed by mixing with liquid scintillator. Two types of lithium titanate pellets were investigated with different 6 Li enrichment and manufacturing procedure. It was found that lithium titanate is suitable for tritium production measurements. However some discrepancies in the measurement accuracy remained with one of the investigated pellet detectors when compared with a well-established lithium carbonate measurement technique and this issue needs further investigation

  6. Examination results on reaction of lithium

    International Nuclear Information System (INIS)

    Asada, Takashi

    2000-12-01

    Before the material corrosion tests in lithium, the reactions of lithium with air and ammonia that will be used for lithium cleaning were examined, and the results were as follows. 1. When lithium put into air, surface of lithium changes to black first but soon to white, and the white layer becomes gradually thick. The first black of lithium surface is nitride (Li 3 N) and it changes to white lithium hydroxide (LiOH) by reaction with water in air, and it grows. The growth rate of the lithium hydroxide is about 1/10 in the desiccator (humidity of about 10%) compare with in air. 2. When lithium put into nitrogen, surface of lithium changes to black, and soon changes to brown and cracks at surface. At the same time with this cracking, weight of lithium piece increases and nitridation progresses respectively rapidly. This nitridation completed during 1-2 days on lithium rod of 10 mm in diameter, and increase in weight stopped. 3. Lithium melts in liquid ammonia and its melting rate is about 2-3 hour to lithium of 1 g. The liquid ammonia after lithium melting showed dark brown. (author)

  7. High-throughput characterization methods for lithium batteries

    Directory of Open Access Journals (Sweden)

    Yingchun Lyu

    2017-09-01

    Full Text Available The development of high-performance lithium ion batteries requires the discovery of new materials and the optimization of key components. By contrast with traditional one-by-one method, high-throughput method can synthesize and characterize a large number of compositionally varying samples, which is able to accelerate the pace of discovery, development and optimization process of materials. Because of rapid progress in thin film and automatic control technologies, thousands of compounds with different compositions could be synthesized rapidly right now, even in a single experiment. However, the lack of rapid or combinatorial characterization technologies to match with high-throughput synthesis methods, limit the application of high-throughput technology. Here, we review a series of representative high-throughput characterization methods used in lithium batteries, including high-throughput structural and electrochemical characterization methods and rapid measuring technologies based on synchrotron light sources.

  8. Li Storage of Calcium Niobates for Lithium Ion Batteries.

    Science.gov (United States)

    Yim, Haena; Yu, Seung-Ho; Yoo, So Yeon; Sung, Yung-Eun; Choi, Ji-Won

    2015-10-01

    New types of niobates negative electrode were studied for using in lithium-ion batteries in order to alternate metallic lithium anodes. The potassium intercalated compound KCa2Nb3O10 and proton intercalated compound HCa2Nb3O10 were studied, and the electrochemical results showed a reversible cyclic voltammetry profile with acceptable discharge capacity. The as-prepared KCa2Nb3O10 negative electrode had a low discharge capacity caused by high overpotential, but the reversible intercalation and deintercalation reaction of lithium ions was activated after exchanging H+ ions for intercalated K+ ions. The initial discharge capacity of HCa2Nb3O10 was 54.2 mAh/g with 92.1% of coulombic efficiency, compared with 10.4 mAh/g with 70.2% of coulombic efficiency for KCa2Nb3O10 at 1 C rate. The improved electrochemical performance of the HCa2Nb3O10 was related to the lower bonding energy between proton cation and perovskite layer, which facilitate Li+ ions intercalating into the cation site, unlike potassium cation and perovskite layer. Also, this negative material can be easily exfoliated to Ca2Nb3O10 layer by using cation exchange process. Then, obtained two-dimensional nanosheets layer, which recently expected to be an advanced electrode material because of its flexibility, chemical stable, and thin film fabricable, can allow Li+ ions to diffuse between the each perovskite layer. Therefore, this new type layered perovskite niobates can be used not only bulk-type lithium ion batteries but also thin film batteries as a negative material.

  9. Lithium - no shortage in supply

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Over the last five years the face of the lithium industry has changed with new sources coming onto the market. The result of developments in supply is a buyers' market and, in the absence of major consumer developments, all things point to an increasing severely overcrowded market through the turn of the decade. As such lithium is likely to maintain charismatic appeal as developments unfold. This article provides an overview of the world's lithium industry and looks at the various market uses and potential. (author)

  10. Instrinsic defect energies of lithium hydride and lithium deuteride crystals

    International Nuclear Information System (INIS)

    Pandey, R.; Stoneham, A.M.

    1985-01-01

    A theoretical study has been made of the defect structure of lithium hydride and lithium deuteride. A potential model is obtained describing the statics and dynamics of these crystals. Intrinsic defect energies are calculated using the Harwell HADES program which is based on a generalised Mott-Littleton method. The results are in good agreement with the experimental data, and suggest that the vacancy and interstitial migration mechanisms of anions and cations are all comparable in their contribution to ionic conduction. (author)

  11. Equilibrium dissociation pressures of lithium hydride and lithium deuteride

    International Nuclear Information System (INIS)

    Smith, H.M.; Webb, R.E.

    1977-12-01

    The equilibrium dissociation pressures of plateau composition lithium hydride and lithium deuteride have been measured from 450 to 750 0 C. These data were used to derive the relationship of dissociation pressure with temperature over this range and to calculate several thermodynamic properties of these materials. Thermodynamic properties determined included the enthalpy, entropy, and free energy of formation; the enthalpy and entropy of fusion; and the melting points

  12. Lithium ion behavior in lithium oxide by neutron scattering studies

    International Nuclear Information System (INIS)

    Ishii, Yoshinobu; Morii, Yukio; Katano, Susumu; Watanabe, Hitoshi; Funahashi, Satoru; Ohno, Hideo; Nicklow, R.M.

    1992-01-01

    Lithium ion behavior in lithium oxide, Li 2 O, was studied in the temperature range from 293 K to 1120 K by the High-Resolution Powder Diffractometer (HRPD) installed in the JRR-3M. The diffraction patterns were analyzed with the RIETAN program. At room temperature, the thermal parameters related to the mean square of the amplitude of vibration of the lithium and the oxygen ions were 6 x 10 -21 m 2 and 4 x 10 -21 m 2 , respectively. AT 1120 K the thermal parameter of the lithium ion was 34 x 10 -21 m 2 . On the other hand, the parameter of the oxygen ion was 16 x 10 -21 m 2 . Inelastic neutron scattering studies for the lithium oxide single crystal were also carried out on the triple-axis neutron spectrometers installed at the JRR-2 and the HFIR. Although the value of a phonon energy of a transverse acoustic mode (Σ 3 ) at zone boundary was 30.6 meV at room temperature, this value was decreased to 25.1 meV at 700 K. This large softening was caused by anharmonicity of the crystal potential of lithium oxide. (author)

  13. Particle control and plasma performance in the Lithium Tokamak eXperiment

    Energy Technology Data Exchange (ETDEWEB)

    Majeski, R.; Abrams, T.; Boyle, D.; Granstedt, E.; Hare, J.; Jacobson, C. M.; Kaita, R.; Kozub, T.; LeBlanc, B.; Lundberg, D. P.; Lucia, M.; Merino, E.; Schmitt, J.; Stotler, D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Biewer, T. M.; Canik, J. M.; Gray, T. K.; Maingi, R.; McLean, A. G. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kubota, S. [University of California at Los Angeles, Los Angeles, California 90095 (United States); and others

    2013-05-15

    The Lithium Tokamak eXperiment is a small, low aspect ratio tokamak [Majeski et al., Nucl. Fusion 49, 055014 (2009)], which is fitted with a stainless steel-clad copper liner, conformal to the last closed flux surface. The liner can be heated to 350 °C. Several gas fueling systems, including supersonic gas injection and molecular cluster injection, have been studied and produce fueling efficiencies up to 35%. Discharges are strongly affected by wall conditioning. Discharges without lithium wall coatings are limited to plasma currents of order 10 kA, and discharge durations of order 5 ms. With solid lithium coatings discharge currents exceed 70 kA, and discharge durations exceed 30 ms. Heating the lithium wall coating, however, results in a prompt degradation of the discharge, at the melting point of lithium. These results suggest that the simplest approach to implementing liquid lithium walls in a tokamak—thin, evaporated, liquefied coatings of lithium—does not produce an adequately clean surface.

  14. Enhanced Flux Pinning and Critical Current Density via Incorporation of Self-Assembled Rare-Earth Barium Tantalate Nanocolumns within YBa2Cu3O7-δ Films

    Energy Technology Data Exchange (ETDEWEB)

    Wee, Sung Hun [ORNL; Goyal, Amit [ORNL; Specht, Eliot D [ORNL; Cantoni, Claudia [ORNL; Zuev, Yuri L [ORNL; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York; Cook, Sylvester W [ORNL

    2010-01-01

    We report rare earth barium tantalates, Ba2RETaO6 (BRETO, RE = rare earth elements) as a new class of additives for superior flux-pinning in YBa2Cu3O7- (YBCO) films. BRETO compounds have excellent chemical inertness to and large lattice mismatch with YBCO. This results in phase separation and strain minimization driven self-assembly of BRETO nanocolumns within YBCO films. YBCO+4 vol% Ba2GdTaO6 films show similar Tc to that of an un-doped film of ~ 88.3 K, a higher self-field Jc of 3.8 MA/cm2 at 77 K, and significantly improved in-field Jc higher by a factor of 1.5-6 over entire magnetic field and angular ranges.

  15. Reversible Lithium Neurotoxicity: Review of the Literature

    Science.gov (United States)

    Netto, Ivan

    2012-01-01

    Objective: Lithium neurotoxicity may be reversible or irreversible. Reversible lithium neurotoxicity has been defined as cases of lithium neurotoxicity in which patients recovered without any permanent neurologic sequelae, even after 2 months of an episode of lithium toxicity. Cases of reversible lithium neurotoxicity differ in clinical presentation from those of irreversible lithium neurotoxicity and have important implications in clinical practice. This review aims to study the clinical presentation of cases of reversible lithium neurotoxicity. Data Sources: A comprehensive electronic search was conducted in the following databases: MEDLINE (PubMed), 1950 to November 2010; PsycINFO, 1967 to November 2010; and SCOPUS (EMBASE), 1950 to November 2010. MEDLINE and PsycINFO were searched by using the OvidSP interface. Study Selection: A combination of the following search terms was used: lithium AND adverse effects AND central nervous system OR neurologic manifestation. Publications cited include articles concerned with reversible lithium neurotoxicity. Data Extraction: The age, sex, clinical features, diagnostic categories, lithium doses, serum lithium levels, precipitating factors, and preventive measures of 52 cases of reversible lithium neurotoxicity were extracted. Data Synthesis: Among the 52 cases of reversible lithium neurotoxicity, patients ranged in age from 10 to 80 years and a greater number were female (P = .008). Most patients had affective disorders, schizoaffective disorders, and/or depression (P lithium levels were less than or equal to 1.5 mEq/L (P lithium, underlying brain pathology, abnormal tissue levels, specific diagnostic categories, and elderly populations were some of the precipitating factors reported for reversible lithium neurotoxicity. The preventive measures were also described. Conclusions: Reversible lithium neurotoxicity presents with a certain clinical profile and precipitating factors for which there are appropriate

  16. Reversible lithium neurotoxicity: review of the literatur.

    Science.gov (United States)

    Netto, Ivan; Phutane, Vivek H

    2012-01-01

    Lithium neurotoxicity may be reversible or irreversible. Reversible lithium neurotoxicity has been defined as cases of lithium neurotoxicity in which patients recovered without any permanent neurologic sequelae, even after 2 months of an episode of lithium toxicity. Cases of reversible lithium neurotoxicity differ in clinical presentation from those of irreversible lithium neurotoxicity and have important implications in clinical practice. This review aims to study the clinical presentation of cases of reversible lithium neurotoxicity. A comprehensive electronic search was conducted in the following databases: MEDLINE (PubMed), 1950 to November 2010; PsycINFO, 1967 to November 2010; and SCOPUS (EMBASE), 1950 to November 2010. MEDLINE and PsycINFO were searched by using the OvidSP interface. A combination of the following search terms was used: lithium AND adverse effects AND central nervous system OR neurologic manifestation. Publications cited include articles concerned with reversible lithium neurotoxicity. The age, sex, clinical features, diagnostic categories, lithium doses, serum lithium levels, precipitating factors, and preventive measures of 52 cases of reversible lithium neurotoxicity were extracted. Among the 52 cases of reversible lithium neurotoxicity, patients ranged in age from 10 to 80 years and a greater number were female (P = .008). Most patients had affective disorders, schizoaffective disorders, and/or depression (P lithium levels were less than or equal to 1.5 mEq/L (P lithium, underlying brain pathology, abnormal tissue levels, specific diagnostic categories, and elderly populations were some of the precipitating factors reported for reversible lithium neurotoxicity. The preventive measures were also described. Reversible lithium neurotoxicity presents with a certain clinical profile and precipitating factors for which there are appropriate preventive measures. This recognition will help in early diagnosis and prompt treatment of

  17. Precipitation of lithium in germanium

    International Nuclear Information System (INIS)

    Masaik, M.; Furgolle, B.

    1969-01-01

    The precipitation of Lithium in Germanium was studied. Taking account of the interactions Ga LI, LiO, we calculated the oxygen content in germanium samples from the resistivity measurements. (authors)

  18. FTU cooled liquid lithium upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Iafrati, M., E-mail: matteo.iafrati@enea.it [Associazione Euratom-ENEA sulla Fusione, C. R. Frascati, C. P. 65-00044 Frascati, Rome (Italy); Apicella, M.L.; Boncagni, L. [Associazione Euratom-ENEA sulla Fusione, C. R. Frascati, C. P. 65-00044 Frascati, Rome (Italy); Lyublinski, I. [JSC “RED STAR”, Moscow (Russian Federation); Mazzitelli, G. [Associazione Euratom-ENEA sulla Fusione, C. R. Frascati, C. P. 65-00044 Frascati, Rome (Italy); Vertkov, A. [JSC “RED STAR”, Moscow (Russian Federation)

    2017-04-15

    In the framework of the liquid lithium limiter experiment in Frascati a new auxiliary system was developed in order to provide a better control of the energy fluid vector. The cooled liquid lithium system (CLL) was installed for the first time at the end of 2013, it uses overheated water to heat the lithium and to extract, at the same time, the heat from the metal surface when it gets wet by the plasma. A first version of the system, developed and presented in previous papers, has been modified to optimize the heat flux measurement on the liquid lithium surface. The changes include a new power supply logic for the heating system, new sensors and new read-out electronics compatible with the implementation of a real time control system. The prototype was updated with the aim of achieving a low cost and versatile control system.

  19. Probing quantum effects in lithium

    Science.gov (United States)

    Deemyad, Shanti; Zhang, Rong

    2018-05-01

    In periodic table lithium is the first element immediately after helium and the lightest metal. While fascinating quantum nature of condensed helium is suppressed at high densities, lithium is expected to adapt more quantum solid behavior under compression. This is due to the presence of long range interactions in metallic systems for which an increase in the de-Boer parameter (λ/σ, where σ is the minimum interatomic distance and λ is the de-Broglie wavelength) is predicted at higher densities [1,2]. Physics of dense lithium offers a rich playground to look for new emergent quantum phenomena in condensed matter and has been subject of many theoretical and experimental investigations. In this article recent progress in studying the quantum nature of dense lithium will be discussed.

  20. Lithium isotopic separation: preliminary studies

    International Nuclear Information System (INIS)

    Macedo, Sandra Helena Goulart de

    1998-01-01

    In order to get the separation of natural isotopes of lithium by electrolytic amalgamation, an electrolytic cell with a confined mercury cathode was used to obtain data for the design of a separation stage. The initial work was followed by the design of a moving mercury cathode electrolytic cell and three experiments with six batches stages were performed for the determination of the elementary separation factor. The value obtained, 1.053, was ill agreement: with the specialized literature. It was verified in all experiments that the lithium - 6 isotope concentrated in the amalgam phase and that the lithium - 7 isotope concentrated in the aqueous phase. A stainless-steel cathode for the decomposition of the lithium amalgam and the selective desamalgamation were also studied. In view of the results obtained, a five stages continuous scheme was proposed. (author)

  1. Does lithium protect against dementia?

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Forman, Julie Lyng; Andersen, Per Kragh

    2010-01-01

    OBJECTIVE: To investigate whether treatment with lithium in patients with mania or bipolar disorder is associated with a decreased rate of subsequent dementia. METHODS: Linkage of register data on prescribed lithium in all patients discharged from psychiatric health care service with a diagnosis...... exposed to lithium (50.4%), 1,781 to anticonvulsants (36.7%), 4,280 to antidepressants (88.1%), and 3,901 to antipsychotics (80.3%) during the study period. A total of 216 patients received a diagnosis of dementia during follow-up (103.6/10,000 person-years). During the period following the second...... prescription of lithium, the rate of dementia was decreased compared to the period following the first prescription. In contrast, the rates of dementia during multiple prescription periods with anticonvulsants, antidepressants, or antipsychotics, respectively, were not significantly decreased compared...

  2. Optimizing lithium dosing in hemodialysis

    DEFF Research Database (Denmark)

    Bjarnason, N H; Munkner, R; Kampmann, J P

    2006-01-01

    We studied a 62-year-old female hemodialysis patient during initiation and maintenance of lithium carbonate therapy. Three different methods were applied to estimate the regimen: a scenario based on volume of distribution (V(d)), a scenario based on glomerular filtration rate (GFR), and a scenario...... estimates. Furthermore, the maintenance dose estimated from the central compartment (V1) led to plasma concentrations within the therapeutic range. Thus, a regimen where 12.2 mmol lithium was given after each hemodialysis session resulted in stable between-dialysis plasma lithium concentrations...... in this patient with no residual kidney function. We did not observe adverse effects related to this regimen, which was monitored from 18 days to 8 months of therapy, and the patient experienced relief from her severe depressive disorder. In conclusion, dialysis patients may be treated with lithium administrated...

  3. Kleptomania, mood disorder and lithium

    Directory of Open Access Journals (Sweden)

    Fábio Lopes Rocha

    1992-12-01

    Full Text Available Kleptomania has been found in association with major depression in a fairly large number of reports in recent years. We describe a patient with concurrent DSM-III-R Bipolar Mood Disorder and Kleptomania, whose symptoms remitted completely, apparently in response to lithium therapy, which raised the possibility that pharmacological treatment may benefit kleptomania. Further studies are needed to establish the possible relationship between kleptomania, mood disorders and lithium therapy.

  4. The lithium air battery fundamentals

    CERN Document Server

    Imanishi, Nobuyuki; Bruce, Peter G

    2014-01-01

    Lithium air rechargeable batteries are the best candidate for a power source for electric vehicles, because of their high specific energy density. In this book, the history, scientific background, status and prospects of the lithium air system are introduced by specialists in the field. This book will contain the basics, current statuses, and prospects for new technologies. This book is ideal for those interested in electrochemistry, energy storage, and materials science.

  5. Kleptomania, mood disorder and lithium

    OpenAIRE

    Rocha, Fábio Lopes; Rocha, Maria Elizabete Guimarães

    1992-01-01

    Kleptomania has been found in association with major depression in a fairly large number of reports in recent years. We describe a patient with concurrent DSM-III-R Bipolar Mood Disorder and Kleptomania, whose symptoms remitted completely, apparently in response to lithium therapy, which raised the possibility that pharmacological treatment may benefit kleptomania. Further studies are needed to establish the possible relationship between kleptomania, mood disorders and lithium therapy. Os ...

  6. Kleptomania, mood disorder and lithium

    OpenAIRE

    Rocha,Fábio Lopes; Rocha,Maria Elizabete Guimarães

    1992-01-01

    Kleptomania has been found in association with major depression in a fairly large number of reports in recent years. We describe a patient with concurrent DSM-III-R Bipolar Mood Disorder and Kleptomania, whose symptoms remitted completely, apparently in response to lithium therapy, which raised the possibility that pharmacological treatment may benefit kleptomania. Further studies are needed to establish the possible relationship between kleptomania, mood disorders and lithium therapy.

  7. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  8. Extracorporeal Treatment for Lithium Poisoning

    DEFF Research Database (Denmark)

    Decker, Brian S; Goldfarb, David S; Dargan, Paul I

    2015-01-01

    The Extracorporeal Treatments in Poisoning Workgroup was created to provide evidence-based recommendations on the use of extracorporeal treatments in poisoning. Here, the EXTRIP workgroup presents its recommendations for lithium poisoning. After a systematic literature search, clinical and toxico......The Extracorporeal Treatments in Poisoning Workgroup was created to provide evidence-based recommendations on the use of extracorporeal treatments in poisoning. Here, the EXTRIP workgroup presents its recommendations for lithium poisoning. After a systematic literature search, clinical...... extraction of patient-level data. The workgroup concluded that lithium is dialyzable (Level of evidence=A) and made the following recommendations: Extracorporeal treatment is recommended in severe lithium poisoning (1D). Extracorporeal treatment is recommended if kidney function is impaired and the [Li...... treatment (1D), but continuous RRT is an acceptable alternative (1D). The workgroup supported the use of extracorporeal treatment in severe lithium poisoning. Clinical decisions on when to use extracorporeal treatment should take into account the [Li(+)], kidney function, pattern of lithium toxicity...

  9. Aqueous lithium air batteries

    Science.gov (United States)

    Visco, Steven J.; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Petrov, Alexei; Goncharenko, Nikolay

    2017-05-23

    Aqueous Li/Air secondary battery cells are configurable to achieve high energy density and prolonged cycle life. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. The aqueous catholyte comprises an evaporative-loss resistant and/or polyprotic active compound or active agent that partakes in the discharge reaction and effectuates cathode capacity for discharge in the acidic region. This leads to improved performance including one or more of increased specific energy, improved stability on open circuit, and prolonged cycle life, as well as various methods, including a method of operating an aqueous Li/Air cell to simultaneously achieve improved energy density and prolonged cycle life.

  10. New Solid Polymer Electrolytes for Improved Lithium Batteries

    Science.gov (United States)

    Hehemann, David G.

    2002-01-01

    The objective of this work was to identify, synthesize and incorporate into a working prototype, next-generation solid polymer electrolytes, that allow our pre-existing solid-state lithium battery to function better under extreme conditions. We have synthesized polymer electrolytes in which emphasis was placed on the temperature-dependent performance of these candidate electrolytes. This project was designed to produce and integrate novel polymer electrolytes into a lightweight thin-film battery that could easily be scaled up for mass production and adapted to different applications.

  11. Thin Places

    OpenAIRE

    Lockwood, Sandra Elizabeth

    2013-01-01

    This inquiry into the three great quests of the twentieth century–the South Pole, Mount Everest, and the Moon–examines our motivations to venture into these sublime, yet life-taking places. The Thin Place was once the destination of the religious pilgrim seeking transcendence in an extreme environment. In our age, the Thin Place quest has morphed into a challenge to evolve beyond the confines of our own physiology; through human ingenuity and invention, we reach places not meant to accommod...

  12. Lithium availability and future production outlooks

    International Nuclear Information System (INIS)

    Vikström, Hanna; Davidsson, Simon; Höök, Mikael

    2013-01-01

    Highlights: • Review of reserves, resources and key properties of 112 lithium deposits. • Discussions of widely diverging results from recent lithium supply estimates. • Forecasting future lithium production by resource-constrained models. • Exploring implications for future deployment of electric cars. - Abstract: Lithium is a highly interesting metal, in part due to the increasing interest in lithium-ion batteries. Several recent studies have used different methods to estimate whether the lithium production can meet an increasing demand, especially from the transport sector, where lithium-ion batteries are the most likely technology for electric cars. The reserve and resource estimates of lithium vary greatly between different studies and the question whether the annual production rates of lithium can meet a growing demand is seldom adequately explained. This study presents a review and compilation of recent estimates of quantities of lithium available for exploitation and discusses the uncertainty and differences between these estimates. Also, mathematical curve fitting models are used to estimate possible future annual production rates. This estimation of possible production rates are compared to a potential increased demand of lithium if the International Energy Agency’s Blue Map Scenarios are fulfilled regarding electrification of the car fleet. We find that the availability of lithium could in fact be a problem for fulfilling this scenario if lithium-ion batteries are to be used. This indicates that other battery technologies might have to be implemented for enabling an electrification of road transports

  13. Wetting properties of liquid lithium on lithium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Krat, S.A., E-mail: stepan.krat@gmail.com [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Popkov, A.S. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Gasparyan, Yu. M.; Pisarev, A.A. [National Research Nuclear University MEPhI, Moscow (Russian Federation); Fiflis, Peter; Szott, Matthew; Christenson, Michael; Kalathiparambil, Kishor; Ruzic, David N. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States)

    2017-04-15

    Highlights: • Contact angles of liquid lithium and Li{sub 3}N, Li{sub 2}O, Li{sub 2}CO{sub 3} were measured. • Liquid lithium wets lithium compounds at relatively low temperatures: Li{sub 3}N at 257 °C, Li{sub 2}O at 259 °C, Li{sub 2}CO{sub 3} at 323 °C. • Li wets Li{sub 2}O and Li{sub 3}N better than previously measured fusion-relevant materials (W, Mo, Ta, TZM, stainless steel). • Li wets Li{sub 2}CO{sub 3} better than most previously measured fusion-relevant materials (W, Mo, Ta). - Abstract: Liquid metal plasma facing components (LMPFC) have shown a potential to supplant solid plasma facing components materials in the high heat flux regions of magnetic confinement fusion reactors due to the reduction or elimination of concerns over melting, wall damage, and erosion. To design a workable LMPFC, one must understand how liquid metal interacts with solid underlying structures. Wetting is an important factor in such interaction, several designs of LMPFC require liquid metal to wet the underlying solid structures. The wetting of lithium compounds (lithium nitride, oxide, and carbonate) by 200 °C liquid lithium at various surface temperature from 230 to 330 °C was studied by means of contact angle measurements. Wetting temperatures, defined as the temperature above which the contact angle is less than 90°, were measured. The wetting temperature was 257 °C for nitride, 259 °C for oxide, and 323 °C for carbonate. Surface tensions of solid lithium compounds were calculated from the contact angle measurements.

  14. Grain Boundary Engineering of Lithium-Ion-Conducting Lithium Lanthanum Titanate for Lithium-Air Batteries

    Science.gov (United States)

    2016-01-01

    Titanate for Lithium-Air Batteries by Victoria L Blair, Claire V Weiss Brennan, and Joseph M Marsico Approved for public...Air Batteries by Victoria L Blair and Claire V Weiss Brennan Weapons and Materials Research Directorate, ARL Joseph M Marsico Rochester...Titanate for Lithium-Air Batteries 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Victoria L Blair, Claire V

  15. Thin book

    DEFF Research Database (Denmark)

    En lille bog om teater og organisationer, med bidrag fra 19 teoretikere og praktikere, der deltog i en "Thin Book Summit" i Danmark i 2005. Bogen bidrager med en state-of-the-art antologi om forskellige former for samarbejde imellem teater og organisationer. Bogen fokuserer både på muligheder og...

  16. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    International Nuclear Information System (INIS)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G.; Capece, A.; Koel, B.; Roszell, J.; Biewer, T. M.; Gray, T. K.; Kubota, S.; Beiersdorfer, P.

    2015-01-01

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started

  17. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Capece, A.; Koel, B.; Roszell, J. [Princeton University, Princeton, New Jersey 08544 (United States); Biewer, T. M.; Gray, T. K. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kubota, S. [University of California at Los Angeles, Los Angeles, California 90095 (United States); Beiersdorfer, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2015-05-15

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.

  18. Predictors of excellent response to lithium

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Hellmund, Gunnar; Andersen, Per Kragh

    2011-01-01

    The aim of this study was to identify sociodemographic and clinical predictors of excellent response, that is, 'cure' of future affective episodes, to lithium in monotherapy. We used nationwide registers to identify all patients with a diagnosis of bipolar disorder in psychiatric hospital settings...... who were prescribed lithium from 1995 to 2006 in Denmark (N=3762). Excellent lithium responders were defined as patients who after a stabilization lithium start-up period of 6 months, continued lithium in monotherapy without getting hospitalized. The rate of excellent response to lithium...... with somatic comorbidity had increased rates of non-response to lithium compared with patients without somatic comorbidity (HR=1.23, 95% CI: 1.00-1.52).It is concluded that the prevalence of excellent response to lithium monotherapy is low and such patients are characterized by few earlier psychiatric...

  19. Lithium Ion Battery Anode Aging Mechanisms

    Science.gov (United States)

    Agubra, Victor; Fergus, Jeffrey

    2013-01-01

    Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed. PMID:28809211

  20. LEVIS lithium ion source experiments on PBFA-II

    International Nuclear Information System (INIS)

    Renk, T.J.; Tisone, G.C.; Adams, R.G.; Lopez, M.; Clark, B.F.; Schroeder, J.; Bailey, J.E.; Filuk, A.B.; Carlson, A.L.

    1992-01-01

    PBFA-II is a pulsed power generator designed to apply up to a 25 MV, 20 ns pulse to a focusing 15 cm-radius Applied-B ion diode for inertial confinement fusion applications. Several different approaches have been pursued to produce a high-purity (> 90%), high-current density (5--10 kA/cm 2 ) singly ionized lithium ion source for acceleration in this diode. In addition to having high source purity, such a source should be active, i.e. the ions should be produced before the power pulse arrives, to provide better electrical coupling from the accelerator to the diode. In the LEVIS (Laser EVaporation Ion Source) process, energy from two lasers impinges on a thin (500 nm) lithium or lithium-bearing film on an insulating substrate. The authors will discuss a new series of LEVIS experiments, with a number of improvements: (1) the laser distribution cone was redesigned, resulting in a more uniform illumination of the 4 cm-tall Li-producing surface; (2) the anode surface is being slow-heated to 120--150 C to help drive off contaminants; and (3) they have expanded the number of source and beam diagnostics

  1. The crystallization and properties of sputter deposited lithium niobite

    Energy Technology Data Exchange (ETDEWEB)

    Shank, Joshua C.; Brooks Tellekamp, M.; Alan Doolittle, W., E-mail: alan.doolittle@ece.gatech.edu

    2016-06-30

    Sputter deposition of the thin film memristor material, lithium niobite (LiNbO{sub 2}) is performed by co-deposition from a lithium oxide (Li{sub 2}O) and a niobium target. Crystalline films that are textured about the (101) orientation are produced under room temperature conditions. This material displays memristive hysteresis and exhibits XPS spectra similar to MBE and bulk grown LiNbO{sub 2}. Various deposition parameters were investigated resulting in variations in the deposition rate, film crystallinity, oxygen to niobium ratio, and mean niobium oxidation state. The results of this study allow for the routine production of large area LiNbO{sub 2} films at low substrate temperature useful in hybrid-integration of memristor, optical, and energy storage applications. - Highlights: • Room temperature sputter deposition of crystalline lithium niobite (LiNbO{sub 2}) • Contrast with previous high temperature corrosive growth methods • Analysis of sputter deposition parameters on the chemical and physical properties of the deposited material.

  2. The crystallization and properties of sputter deposited lithium niobite

    International Nuclear Information System (INIS)

    Shank, Joshua C.; Brooks Tellekamp, M.; Alan Doolittle, W.

    2016-01-01

    Sputter deposition of the thin film memristor material, lithium niobite (LiNbO_2) is performed by co-deposition from a lithium oxide (Li_2O) and a niobium target. Crystalline films that are textured about the (101) orientation are produced under room temperature conditions. This material displays memristive hysteresis and exhibits XPS spectra similar to MBE and bulk grown LiNbO_2. Various deposition parameters were investigated resulting in variations in the deposition rate, film crystallinity, oxygen to niobium ratio, and mean niobium oxidation state. The results of this study allow for the routine production of large area LiNbO_2 films at low substrate temperature useful in hybrid-integration of memristor, optical, and energy storage applications. - Highlights: • Room temperature sputter deposition of crystalline lithium niobite (LiNbO_2) • Contrast with previous high temperature corrosive growth methods • Analysis of sputter deposition parameters on the chemical and physical properties of the deposited material

  3. Diode laser heat treatment of lithium manganese oxide films

    International Nuclear Information System (INIS)

    Pröll, J.; Kohler, R.; Mangang, A.; Ulrich, S.; Bruns, M.; Seifert, H.J.; Pfleging, W.

    2012-01-01

    The crystallization of lithium manganese oxide thin films prepared by radio frequency magnetron sputtering on stainless steel substrates under 10 Pa argon pressure is demonstrated by a laser annealing technique. Laser annealing processes were developed as a function of annealing time and temperature with the objective to form an electrochemically active lithium manganese oxide cathode. It is demonstrated, that laser annealing with 940 nm diode laser radiation and an annealing time of 2000 s at 600 °C delivers appropriate parameters for formation of a crystalline spinel-like phase. Characteristic features of this phase could be detected via Raman spectroscopy, showing the characteristic main Raman band at 627 cm -1 . Within cyclic voltammetric measurements, the two characteristic redox pairs for spinel lithium manganese oxide in the 4 V region could be detected, indicating that the film was well-crystallized and de-/intercalation processes were reversible. Raman post-analysis of a cycled cathode showed that the spinel-like structure was preserved within the cycling process but mechanical degradation effects such as film cracking were observed via scanning electron microscopy. Typical features for the formation of an additional surface reaction layer could be detected using X-ray photoelectron spectroscopy.

  4. Solid composite electrolytes for lithium batteries

    Science.gov (United States)

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  5. Phase transition in a rechargeable lithium battery

    NARCIS (Netherlands)

    Dreyer, W.; Gaberscek, M.; Guhlke, C.; Huth, R.; Jamnik, J.

    We discuss the lithium storage process within a single-particle cathode of a lithium-ion battery. The single storage particle consists of a crystal lattice whose interstitial lattice sites may be empty or reversibly filled with lithium atoms. The resulting evolution equations describe diffusion with

  6. Anode materials for lithium-ion batteries

    Science.gov (United States)

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  7. Lithium. Effects on excitable cell membranes

    NARCIS (Netherlands)

    Ploeger, Egbert Johan

    1974-01-01

    LITHIUM: Effects on excitable cell membranes. Lithium salts have been used in the treatment of manic-depressive psychosis for many years but their mechanism of action is not well understood. Many workers assume that the action of lithium on catecholamine metabolism and/or on electrolyte distribution

  8. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liang, Chu; Gao, Mingxia; Pan, Hongge; Liu, Yongfeng; Yan, Mi

    2013-01-01

    Highlights: •Progress in lithium alloys and metal oxides as anode materials for lithium-ion batteries is reviewed. •Electrochemical characteristics and lithium storage mechanisms of lithium alloys and metal oxides are summarized. •Strategies for improving electrochemical lithium storage properties of lithium alloys and metal oxides are discussed. •Challenges in developing lithium alloys and metal oxides as commercial anodes for lithium-ion batteries are pointed out. -- Abstract: Lithium alloys and metal oxides have been widely recognized as the next-generation anode materials for lithium-ion batteries with high energy density and high power density. A variety of lithium alloys and metal oxides have been explored as alternatives to the commercial carbonaceous anodes. The electrochemical characteristics of silicon, tin, tin oxide, iron oxides, cobalt oxides, copper oxides, and so on are systematically summarized. In this review, it is not the scope to retrace the overall studies, but rather to highlight the electrochemical performances, the lithium storage mechanism and the strategies in improving the electrochemical properties of lithium alloys and metal oxides. The challenges and new directions in developing lithium alloys and metal oxides as commercial anodes for the next-generation lithium-ion batteries are also discussed

  9. Structural and magneto-dielectric property of (1-x)SBT-xLSMO nanocomposite thin films

    International Nuclear Information System (INIS)

    Maity, Sarmistha; Bhattacharya, D.; Dhar, A.; Ray, S.K.

    2009-01-01

    Full text: In recent years, interest in multiferroic materials has been increasing due to their potential applications. As single-phase multiferroic materials have very low room temperature magnetoelectric coefficient, recent studies have been concentrated on the possibility of attaining a coupling between the two order parameters by designing composites with magnetostrictive and piezoelectric phases via stress mediation. Composite thin films with homogenous matrix, composition spread with terminal layers being ferromagnetic and ferroelectric, layer-by-layer growth, superlattices, as well as epitaxial growth of ferromagnetic and ferroelectric layers on suitable substrates are been currently considered. In the present work, a nanostructured composite thin film of strontium bismuth tantalate (SBT) (ferroelectric layer) and lanthanum strontium manganese oxide (LSMO) (ferromagnetic layer) were fabricated using pulsed laser deposition. Phase separated multiferroic thin films with thickness varying from 50nm to 150nm were deposited from composite target (1-x)SBT-xLSMO with x=0.2, 0.5, 0.8. Grazing angle X-ray diffraction study combined with photo electron spectroscopy with depth profiling was carried out to study the phase separation. Interface quality of the thin film on silicon substrate was studied by Rutherford backscattering spectroscopy. Influence of film thickness and composition (x) on the electrical property of film was examined using impedance spectroscopy. The composite films exhibited ferroelectric as well as ferromagnetic characteristics at room temperature. A small kink in the dielectric spectra near the Neel temperature of LSMO confirmed the magneto-electric effect in the nanocomposite films

  10. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Science.gov (United States)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-06-06

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  11. Control of internal and external short circuits in lithium batteries using a composite thermal switch

    Science.gov (United States)

    Mcdonald, Robert C.; Pickett, Jerome; Goebel, Franz

    1991-01-01

    A composite material has been developed, consisting of a blend of metal and fluorocarbon particles, which behaves as an electronic conductor at room temperature and which abruptly becomes an insulator at a predetermined temperature. This switching behavior results from the difference in thermal expansion coefficients between the conductive and non-conductive portions of the composite. This material was applied as a thin film between the carbon cathode in Li/SOCl2 cells, and the metallic cathode current collector. Using test articles incorporating this feature it was shown that lithium cells externally heated or internally heated during a short circuit lost rate capability and the ability to overheat well below the melting point of lithium (180 C). Thus, during an internal or external cell short circuit, the potential for thermal runaway involving reactions of molten lithium is avoided.

  12. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-12-26

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  13. Water vapor permeation and dehumidification performance of poly(vinyl alcohol)/lithium chloride composite membranes

    KAUST Repository

    Bui, Duc Thuan

    2015-10-09

    Thin and robust composite membranes comprising stainless steel scaffold, fine and porous TiO2 and polyvinyl alcohol/lithium chloride were fabricated and studied for air dehumidification application. Higher hydrophilicity, sorption and permeation were observed for membranes with increased lithium chloride content up to 50%. The permeation and sorption properties of the membranes were investigated under different temperatures. The results provided a deeper insight into the membrane water vapor permeation process. It was specifically noted that lithium chloride significantly reduces water diffusion energy barrier, resulting in the change of permeation energy from positive to negative values. Higher water vapor permeance was observed for the membrane with higher LiCl content at lower temperature. The isothermal air dehumidification tests show that the membrane is suitable for dehumidifying air in high humid condition. Additionally, results also indicate a trade-off between the humidity ratio drop with the water vapor removal rate when varying air flowrate.

  14. Further studies on the lithium phosphorus oxynitride solid electrolyte

    International Nuclear Information System (INIS)

    Pichonat, Tristan; Lethien, Christophe; Tiercelin, Nicolas; Godey, Sylvie; Pichonat, Emmanuelle; Roussel, Pascal; Colmont, Marie; Rolland, Paul Alain

    2010-01-01

    First step in the way to the fabrication of an all-solid microbattery for autonomous wireless sensor node, amorphous thin solid films of lithium phosphorus oxynitride (LiPON) were prepared by radio-frequency sputtering of a mixture target of P 2 O 5 /Li 2 O in ambient nitrogen atmosphere. The morphology, composition, and ionic conductivity were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and A.C. impedance spectroscopy. With a thickness of 1.4 μm, the obtained LiPON amorphous layer provided an ionic conductivity close to 6 x 10 -7 S cm -1 at room temperature. MicroRaman UV spectroscopy study was successfully carried out for the first time on LiPON thin films to complete the characterization and bring further information on LiPON structure.

  15. The lithium vapor box divertor

    International Nuclear Information System (INIS)

    Goldston, R J; Schwartz, J; Myers, R

    2016-01-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m −2 , implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma. (paper)

  16. Research, Development and Fabrication of Lithium Solar Cells, Part 2

    Science.gov (United States)

    Iles, P. A.

    1972-01-01

    The development and fabrication of lithium solar cells are discussed. Several single-step, lithium diffusion schedules using lower temperatures and times are described. A comparison was made using evaporated lithium metal as the lithium source, and greatly improved consistency in lithium concentrations was obtained. It was possible to combine all processing steps to obtain lithium doped cells of high output which also contained adequate lithium to ensure good recoverability.

  17. Mineral-deposit model for lithium-cesium-tantalum pegmatites

    Science.gov (United States)

    Bradley, Dwight C.; McCauley, Andrew D.; Stillings, Lisa L.

    2017-06-20

    derived by fractional crystallization. In cases where a parental granite pluton is not exposed, one is inferred to lie at depth. Lithium-cesium-tantalum LCT pegmatite melts are enriched in fluxing components including H2O, F, P, and B, which depress the solidus temperature, lower the density, and increase rates of ionic diffusion. This, in turn, enables pegmatites to form thin dikes and massive crystals despite having a felsic composition and temperatures that are significantly lower than ordinary granitic melts. Lithium-cesium-tantalum pegmatites crystallized at remarkably low temperatures (about 350–550 °C) in a remarkably short time (days to years).Lithium-cesium-tantalum pegmatites form in orogenic hinterlands as products of plate convergence. Most formed during collisional orogeny (for example, Kings Mountain district, North Carolina). Specific causes of LCT pegmatite-related magmatism could include: ordinary arc processes; over thickening of continental crust during collision or subduction; slab breakoff during or after collision; slab delamination before, during, or after collision; and late collisional extensional collapse and consequent decompression melting. Lithium-cesium-tantalum pegmatite deposits are present in all continents including Antarctica and in rocks spanning 3 billion years of Earth history. The global age distribution of LCT pegmatites is similar to those of common pegmatites, orogenic granites, and detrital zircons. Peak times of LCT pegmatite genesis at about 2640, 1800, 960, 485, and 310 Ma (million years before present) correspond to times of collisional orogeny and supercontinent assembly. Between these pulses were long intervals when few or no LCT pegmatites formed. These minima overlap with supercontinent tenures at ca. 2450–2225, 1625–1000, 875–725, and 250–200 Ma.Exploration and assessment for LCT pegmatites are guided by a number of observations. In frontier areas where exploration has been minimal at best, the key first

  18. Electrolytes for lithium and lithium-ion batteries

    CERN Document Server

    Jow, T Richard; Borodin, Oleg; Ue, Makoto

    2014-01-01

    Electrolytes for Lithium and Lithium-ion Batteries provides a comprehensive overview of the scientific understanding and technological development of electrolyte materials in the last?several years. This book covers key electrolytes such as LiPF6 salt in mixed-carbonate solvents with additives for the state-of-the-art Li-ion batteries as well as new electrolyte materials developed recently that lay the foundation for future advances.?This book also reviews the characterization of electrolyte materials for their transport properties, structures, phase relationships, stabilities, and impurities.

  19. Deuterium retention in liquid lithium

    International Nuclear Information System (INIS)

    Baldwin, M.J.; Doerner, R.P.; Luckhardt, S.C.; Conn, R.W.

    2002-01-01

    Measurements of deuterium retention in samples of lithium exposed in the liquid state to deuterium plasma are reported. Retention was measured as a function of plasma ion dose in the range 6x10 19 -4x10 22 D atoms and exposure temperature between 523 and 673 K using thermal desorption spectrometry. The results are consistent with the full uptake of all deuterium ions incident on the liquid metal surface and are found to be independent of the temperature of the liquid lithium over the range explored. Full uptake, consistent with very low recycling, continues until the sample is volumetrically converted to lithium deuteride. This occurs for exposure temperatures where the gas pressure during exposure was both below and slightly above the corresponding decomposition pressure for LiD in Li. (author)

  20. Nuclear spectroscopy with lithium ions

    International Nuclear Information System (INIS)

    Heiser, C.

    1977-02-01

    A survey of the state of nuclear spectroscopy with lithium ions is given. Proceeding from the physical and nuclear properties the specific topics arising by the acceleration of these ions are discussed. The results obtained from measurements of excitation functions of different lithium reactions, particularly of compound reactions, with several target nuclei are summarized. Besides compound reactions direct reactions are important, especially transfer reactions, elastic and inelastic scattering and exchange reactions. The results on high spin states obtained by in-beam gamma-spectroscopy are discussed in detail. Finally the possibilities are considered for accelerating lithium ions in the cyclotron U-120 and in the tandem generator EGP-10 of the ZfK. (author)

  1. Lithium-based neutron detectors

    International Nuclear Information System (INIS)

    Yursova, L.

    1977-01-01

    The problems of using scintillation lithium-based detectors (LiJ(Eu) and 6 LiJ(Eu)), as well as lithium glasses for neutron detection are described. As compared with the glasses the LiJ(Eu) monocrystal possesses substantially higher energy resolution, its luminescence yield is considerably higher (in some cases ten fold), its application makes possible gamma radiation discrimination with the energy approximately four times higher and its higher specific mass ensures better efficiency of gamma radiation counting. The only 6 LiJ(Eu) drawback is its high hydroscopicity as well as its possibility to be used only in a limited temperature range (maximum temperature +35 deg C). The lithium glass can be used (with the exception of spectrometric measurements and radiation mixed regions measurement) with more than 1 MeV gamma radiation energy in a wide temperature range, in agressive, corroding and acid media

  2. Optical characterization of niobium pentoxide thin films

    International Nuclear Information System (INIS)

    Pawlicka, A.

    1996-01-01

    Thin films of Nb 2 O 5 were obtained by sol-gel method using ultrasonic irradiation and deposited by dip-coating technique. After calcination at temperatures superior than 500 deg C these films (300 nm thick) were characterized by cyclic voltametry and cronoamperometry. The memory measurements, color efficiency, optical density as a function of wave number and applied potential were effectuated to determine their electrochromic properties. The study of electrochromic properties of these films shows that the insertion process of lithium is reversible and changes their coloration from transparent (T=80%) to dark blue (T=20%). (author)

  3. Scanning ion microscopy with low energy lithium ions

    International Nuclear Information System (INIS)

    Twedt, Kevin A.; Chen, Lei; McClelland, Jabez J.

    2014-01-01

    Using an ion source based on photoionization of laser-cooled lithium atoms, we have developed a scanning ion microscope with probe sizes of a few tens of nanometers and beam energies from 500 eV to 5 keV. These beam energies are much lower than the typical operating energies of the helium ion microscope or gallium focused ion beam systems. We demonstrate how low energy can be advantageous in ion microscopy when detecting backscattered ions, due to a decreased interaction volume and the potential for surface sensitive composition analysis. As an example application that demonstrates these advantages, we non-destructively image the removal of a thin residual resist layer during plasma etching in a nano-imprint lithography process. - Highlights: • We use an ion source based on photoionization of laser-cooled lithium atoms. • The ion source makes possible a low energy (500 eV to 5 keV) scanning ion microscope. • Low energy is preferred for ion microscopy with backscattered ions. • We use the microscope to image a thin resist used in nano-imprint lithography

  4. Problem of the lithium peroxide thermal stability

    International Nuclear Information System (INIS)

    Nefedov, R A; Ferapontov, Yu A; Kozlova, N P

    2016-01-01

    The behavior of lithium peroxide and lithium peroxide monohydrate samples under heating in atmospheric air was studied by the method of thermogravimetric analysis (TGA) and differential thermal analysis (DTA). It was found that in the temperature range of 32°C to 82°C the interaction of lithium peroxides and steam with the formation of lithium peroxide monohydrate occurs, which was confirmed chemically and by X-ray Single-qualitative analysis. It was experimentally found that lithium peroxide starts to decompose into the lithium oxide and oxygen in the temperature range of 340 ÷ 348°C. It was established that the resulting thermal decomposition of lithium oxide, lithium peroxide at the temperature of 422°C melts with lithium carbonate eutecticly. The manifestation of polymorphism was not marked(seen or noticed) under the heating of studied samples of lithium peroxide and lithium peroxide monohydrate in the temperature range of 25°C ÷ 34°C. (paper)

  5. Solid solution lithium alloy cermet anodes

    Science.gov (United States)

    Richardson, Thomas J.

    2013-07-09

    A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.

  6. 49 CFR 173.185 - Lithium cells and batteries.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Lithium cells and batteries. 173.185 Section 173... Class 7 § 173.185 Lithium cells and batteries. (a) Cells and batteries. A lithium cell or battery, including a lithium polymer cell or battery and a lithium-ion cell or battery, must conform to all of the...

  7. A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries

    Science.gov (United States)

    Zhu, Jinhui; Yang, Jun; Zhou, Jingjing; Zhang, Tao; Li, Lei; Wang, Jiulin; Nuli, Yanna

    2017-10-01

    A stable organic-inorganic hybrid layer (OIHL) is direct fabricated on lithium metal surface by the interfacial reaction of lithium metal foil with 1-chlorodecane and oxygen/carbon dioxide mixed gas. This favorable OIHL is approximately 30 μm thick and consists of lithium alkyl carbonate and lithium chloride. The lithium-oxygen batteries with OIHL protected lithium metal anode exhibit longer cycle life (340 cycles) than those with bare lithium metal anode (50 cycles). This desirable performance can be ascribed to the robust OIHL which prevents the growth of lithium dendrites and the corrosion of lithium metal.

  8. Magnetic propulsion of intense lithium streams in a tokamak magnetic field

    International Nuclear Information System (INIS)

    Zakharov, Leonid E.

    2003-01-01

    This paper describes the effect and gives the theory of magnetic propulsion which allows driving free surface plasma facing liquid lithium streams in tokamaks. In the approximation of a thin flowing layer the MHD equations are reduced to one integrodifferential equation which takes into account the propulsion effect, viscosity, and the drag force due to magnetic pumping and other interactions with the magnetic field. A stability criterion is obtained for stabilization of the 'sausage' instability of the streams by centrifugal force

  9. Synthesis of Lithium Fluoride from Spent Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Daniela S. Suarez

    2017-05-01

    Full Text Available Lithium (Li is considered a strategic element whose use has significantly expanded. Its current high demand is due to its use in lithium ion batteries for portable electronic devices, whose manufacture and market are extensively growing every day. These days there is a great concern about the final disposal of these batteries. Therefore, the possibility of developing new methodologies to recycle their components is of great importance, both commercially and environmentally. This paper presents results regarding important operational variables for the dissolution of the lithium and cobalt mixed-oxide (LiCoO2 cathodes from spent lithium ion batteries (LIBs with hydrofluoric acid. The recovery and synthesis of Co and Li compounds were also investigated. The dissolution parameters studied were: temperature, reaction time, solid-liquid ratio, stirring speed, and concentration of HF. The investigated recovery parameters included: pH, temperature, and time with and without stirring. The final precipitation of lithium fluoride was also examined. The results indicate that an increase in the HF concentration, temperature, and reaction time favors the leaching reaction of the LiCoO2. Dissolutions were close to 60%, at 75 °C and 120 min with a HF concentration of 25% (v/v. The recovery of Co and Li were 98% and 80%, respectively, with purities higher than 94%. Co and Li compounds, such as Co3O4 and LiF, were synthesized. Furthermore, it was possible to almost completely eliminate the F− ions as CaF2.

  10. Liquid lithium blanket processing studies

    International Nuclear Information System (INIS)

    Talbot, J.B.; Clinton, S.D.

    1979-01-01

    The sorption of tritium on yttrium from flowing molten lithium and the subsequent release of tritium from yttrium for regeneration of the metal sorbent were investigated to evaluate the feasibility of such a tritium-recovery process for a fusion reactor blanket of liquid lithium. In initial experiments with the forced convection loop, yttrium samples were contacted with lithium at 300 0 C. A mass transfer coefficient of 2.5 x 10 - cm/sec, which is more than an order of magnitude less than the value measured in earlier static experiments, was determined for the flowing lithium system. Rates of tritium release from yttrium samples were measured to evaluate possible thermal regeneration of the sorbent. Values for diffusion coefficients at 505, 800, and 900 0 C were estimated to be 1.1 x 10 -13 , 4.9 x 10 -12 , and 9.3 x 10 -10 cm 2 /sec, respectively. Tritium release from yttrium was investigated at higher temperatures and with hydrogen added to the argon sweep gas to provide a reducing atmosphere

  11. Interfacial reactions in lithium batteries

    International Nuclear Information System (INIS)

    Chen, Zonghai; Amine, Khalil; Amine, Rachid; Ma, Zi-Feng

    2017-01-01

    The lithium-ion battery was first commercially introduced by Sony Corporation in 1991 using LiCoO 2 as the cathode material and mesocarbon microbeads (MCMBs) as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage device for modern portable electronics, as well as for emerging applications for electric vehicles and smart grids. It is clear that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses parasitic reactions between the lithiated graphitic anodes and the carbonate-based non-aqueous electrolytes. Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for a rational design of high-energy-density lithium-ion batteries with extended cycle/calendar life. In this article, the physical model of the SEI, as well as recent research efforts to understand the nature and role of the SEI are summarized, and future perspectives on this important research field will also be presented. (topical review)

  12. Interfacial reactions in lithium batteries

    Science.gov (United States)

    Chen, Zonghai; Amine, Rachid; Ma, Zi-Feng; Amine, Khalil

    2017-08-01

    The lithium-ion battery was first commercially introduced by Sony Corporation in 1991 using LiCoO2 as the cathode material and mesocarbon microbeads (MCMBs) as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage device for modern portable electronics, as well as for emerging applications for electric vehicles and smart grids. It is clear that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses parasitic reactions between the lithiated graphitic anodes and the carbonate-based non-aqueous electrolytes. Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for a rational design of high-energy-density lithium-ion batteries with extended cycle/calendar life. In this article, the physical model of the SEI, as well as recent research efforts to understand the nature and role of the SEI are summarized, and future perspectives on this important research field will also be presented.

  13. Lithium target simulation in TECHNOFUSION

    International Nuclear Information System (INIS)

    Colomer, C.; Arino, X.; Reig, J.; Aleman, A.

    2010-01-01

    This project aims to build a facility where testing, under neutronic irradiation, the necessary materials for the construction of future fusion reactors. The intention is produced irradiation in a controlled way by deuterons bombing on a high speed lithium surface specially designed for that.

  14. Lithium inputs to subduction zones

    NARCIS (Netherlands)

    Bouman, C.; Elliott, T.R.; Vroon, P.Z.

    2004-01-01

    We have studied the sedimentary and basaltic inputs of lithium to subduction zones. Various sediments from DSDP and ODP drill cores in front of the Mariana, South Sandwich, Banda, East Sunda and Lesser Antilles island arcs have been analysed and show highly variable Li contents and δ

  15. Diffusion of iron in lithium niobate: a secondary ion mass spectrometry study

    Energy Technology Data Exchange (ETDEWEB)

    Ciampolillo, M.V.; Argiolas, N.; Zaltron, A.; Bazzan, M.; Sada, C. [University of Padova, Physics Department (Italy); CNISM, Padova (Italy)

    2011-10-15

    Iron-doped X-cut lithium niobate crystals were prepared by means of thermal diffusion from thin film varying in a systematic way the process parameters such as temperature and diffusion duration. Secondary Ion Mass Spectrometry was exploited to characterize the iron in-depth profiles. The evolution of the composition of the Fe thin film in the range between 600 C and 800 C was studied, and the diffusion coefficient at different temperatures in the range between 900 C and 1050 C and the activation energy of the diffusion process were estimated. (orig.)

  16. Electrochemical fabrication of nanoporous polypyrrole thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li Mei [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China); Yuan Jinying [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China)], E-mail: yuanjy@mail.tsinghua.edu.cn; Shi Gaoquan [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China)], E-mail: gshi@mail.tsinghua.edu.cn

    2008-04-30

    Polypyrrole thin films with pores in nanometer scale were synthesized by direct electrochemical oxidation of pyrrole in a mixed electrolyte of isopropyl alcohol, boron trifluoride diethyl etherate, sodium dodecylsulfonate and poly(ethylene glycol) using well-aligned ZnO nanowires arrays as templates. The thin films exhibit high conductivity of ca. {sigma}{sub rt} {approx} 20.5 s/cm and can be driven to bend during redox processes in 1.0 M lithium perchlorate aqueous solution. The movement rate of an actuator based on this nanoporous film was measured to be over 90{sup o}/s at a driving potential of 0.8 V (vs. Ag/AgCl)

  17. Control of Internal and External Short Circuits in Lithium Ion and Lithium Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified needs for compact high-energy-density primary and secondary batteries. Lithium and Lithium Ion cells, respectively, are meeting these needs for...

  18. Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries

    KAUST Repository

    Wessells, Colin; La Mantia, Fabio; Deshazer, Heather; Huggins, Robert A.; Cui, Yi

    2011-01-01

    Lithium-ion batteries that use aqueous electrolytes offer safety and cost advantages when compared to today's commercial cells that use organic electrolytes. The equilibrium reaction potential of lithium titanium phosphate is -0.5 V with respect

  19. Stability of high-speed lithium sheet jets for the neutron source in Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Nakagawa, Masamichi; Takahashi, Minoru; Aritomi, Masanori; Kobayashi, Toru

    2014-01-01

    The stability of high-speed liquid lithium sheet jets was analytically studied for the neutron source in Boron Neutron Capture Therapy (BNCT), which makes cancers and tumors curable with cell-level selections and hence high QOL. The object of our research is to realize the thin and high-speed plane sheet jets of liquid lithium in a high-vacuum as an accelerator target. Linear analysis approach is made to the stability on thin plane sheet jets of liquid lithium in a high-vacuum, and then our analytical results were compared with the previous experimental ones. We proved that the waves of surface tension on thin lithium sheet jets in a high-vacuum are of supercritical flows and neutral stable under about 17.4 m/s in flow velocity and that the fast non-dispersive anti-symmetric waves are more significant than the very slow dispersive symmetric waves. We also formulated the equation of shrinking angle in isosceles-triangularly or isosceles-trapezoidal shrinking sheet jets corresponding to the Mach angle of supersonic gas flows. This formula states universally the physical meaning of Weber number of sheet jets on the wave of surface tension in supercritical flows. We obtained satisfactory prospects (making choice of larger flow velocity U and larger thickness of sheet a) to materialize a liquid target of accelerator in BNCT. (author)

  20. Study on property-gradient polymer electrolyte for rechargeable lithium batteries; Lithium niji denchi no tame no keisha tokusei kobunshi denkaishitsu no sosei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kokumi, Z; Kanemura, S; Inaba, M; Takehara, Z; Yao, K; Uchimoto, Y [Kyoto University, Kyoto (Japan)

    1997-02-01

    This paper describes the fundamental experiments for creating property-gradient polymer electrolyte for rechargeable lithium batteries. The rechargeable lithium battery is composed of an anodic composite agent section with high ion conductivity, a separator equivalent section with high mechanical strength (high bridging degree), and a section surpressing the precipitation of metal lithium by contacting with it. The continuous property-gradient polymer electrolyte was tried to be synthesized by means of the plasma polymerization method. As a result, plasma polymerization electrolyte with high ion conductivity could be prepared from the liquid phase by using a monomer with low vapor pressure. Porous material simulating the anodic composite agent was impregnated by the monomer, which was plasma-polymerized. As a result, it was found that the bridging degree decreased from the surface towards the inside of the plasma-polymerized porous material. In addition, polymer was prepared using fluorine-base monomer. Thus, LiF thin film could be prepared through the reaction between the polymer and metal lithium. 3 figs.

  1. Extraction of lithium Carbonate from Petalite Ore (Momeik District, Myanmar)

    International Nuclear Information System (INIS)

    Tun Tun Moe

    2011-12-01

    The methods for preparing high purity lithium carbonate which can be used for pharmaceutical applications, electronic grade crystals of lithium or to prepare battery-grade lithium metal are disclosed. Lithium carbonate as commercially produced from mineral extraction, lithium containing brines or sea water. One method for the production of pure lithium carbonate from mineral source (petalite ore) obtained from Momeik District, Myanmar is disclosed. Method for mineral processing of ore concentrate is also disclosed.

  2. Measuring nanocurie quantities of tritium bred in metallic lithium and lithium oxide samples

    International Nuclear Information System (INIS)

    Bertone, P.C.

    1985-01-01

    The LBM program requires that nanocurie quantities of tritium, bred in both lithium oxide pellets and lithium samples, be measured with an uncertainty not exceeding + or - 6%. Two methods of accurately measuring nanocurie quantities of tritium bred in LBM lithium oxide pellets and one method of accurately measuring nanocurie quantities of tritium bred in lithium samples are described. Potential errors associated with these tritium measurement techniques are also discussed

  3. Explosion of lithium-thionyl-chloride battery due to presence of lithium nitride

    OpenAIRE

    Hennesø, E.; Hedlund, Frank Huess

    2015-01-01

    An explosion of a lithium–thionyl-chloride (Li–SOCl2) battery during production (assembly) leads to serious worker injury. The accident cell batch had been in a dry-air intermediate storage room for months before being readied with thionyl chloride electrolyte. Metallic lithium can react with atmospheric nitrogen to produce lithium nitride. Nodules of lithium nitride were found to be present on the lithium foil in other cells of the accident batch. The investigation attributed the explosion t...

  4. Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)-lithium triflate polymer electrolytes

    International Nuclear Information System (INIS)

    Ramesh, S.; Chai, M.F.

    2007-01-01

    Thin films of high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF 3 SO 3 ) salt were prepared by solution casting method. The ionic conductivity and dielectric measurements were carried out on these films over a wide frequency regime at various temperatures. The conductivity-temperature plots were found to obey classical Arrhenius relationship. The dielectric behavior was analysed using dielectric permittivity and dielectric modulus of the samples. FTIR studies show some simple overlapping and shift in peaks between high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF 3 SO 3 ) salt in the polymer electrolyte complexes

  5. Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)-lithium triflate polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, S. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)]. E-mail: ramesh@mail.utar.edu.my; Chai, M.F. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)

    2007-05-15

    Thin films of high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF{sub 3}SO{sub 3}) salt were prepared by solution casting method. The ionic conductivity and dielectric measurements were carried out on these films over a wide frequency regime at various temperatures. The conductivity-temperature plots were found to obey classical Arrhenius relationship. The dielectric behavior was analysed using dielectric permittivity and dielectric modulus of the samples. FTIR studies show some simple overlapping and shift in peaks between high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF{sub 3}SO{sub 3}) salt in the polymer electrolyte complexes.

  6. Ready fabrication of thin-film electrodes from building nanocrystals for micro-supercapacitors.

    Science.gov (United States)

    Chen, Zheng; Weng, Ding; Wang, Xiaolei; Cheng, Yanhua; Wang, Ge; Lu, Yunfeng

    2012-04-18

    Thin-film pseudocapacitor electrodes with ultrafast lithium storage kinetics, high capacitance and excellent cycling stability were fabricated from monodispersed TiO(2) building nanocrystals, providing a novel approach towards next-generation micro-supercapacitor applications. This journal is © The Royal Society of Chemistry 2012

  7. Lithium-aluminum-iron electrode composition

    Science.gov (United States)

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  8. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zu, Chenxi; Manthiram, Arumugam

    2014-08-07

    Lithium-metal anode degradation is one of the major challenges of lithium-sulfur (Li-S) batteries, hindering their practical utility as next-generation rechargeable battery chemistry. The polysulfide migration and shuttling associated with Li-S batteries can induce heterogeneities of the lithium-metal surface because it causes passivation by bulk insulating Li2S particles/electrolyte decomposition products on a lithium-metal surface. This promotes lithium dendrite formation and leads to poor lithium cycling efficiency with complicated lithium surface chemistry. Here, we show copper acetate as a surface stabilizer for lithium metal in a polysulfide-rich environment of Li-S batteries. The lithium surface is protected from parasitic reactions with the organic electrolyte and the migrating polysulfides by an in situ chemical formation of a passivation film consisting of mainly Li2S/Li2S2/CuS/Cu2S and electrolyte decomposition products. This passivation film also suppresses lithium dendrite formation by controlling the lithium deposition sites, leading to a stabilized lithium surface characterized by a dendrite-free morphology and improved surface chemistry.

  9. Lithium in drinking water and suicide mortality: The interplay with lithium prescriptions

    NARCIS (Netherlands)

    Helbich, M; Leitner, M; Kapusta, N

    Background Little is known about the effects of lithium intake through drinking water on suicide. This intake originates either from natural rock and soil elution and/or accumulation of lithium-based pharmaceuticals in ground water. Aims To examine the interplay between natural lithium in drinking

  10. Direct extraction of negative lithium ions from a lithium plasma

    International Nuclear Information System (INIS)

    Wada, M.; Tsuda, H.; Sasao, M.

    1990-01-01

    Negative lithium ions (Li - ) were directly extracted from a lithium plasma in a multiline cusp plasma container. A pair of permanent magnets mounted near the extractor electrode created the filter magnetic field that separated the extraction region plasma from the main discharge plasma. The plasma electrode facing the extraction region plasma was biased with respect to the other parts of the chamber wall, which acted as discharge anodes. The larger filter magnetic field resulted larger Li - current. When the bias to the plasma electrode was several volts positive against the anode potential, extracted Li - current took the maximum for a fixed strength of the filter field. These dependences of Li - upon the filter magnetic field and the plasma electrode bias are similar to the ones of negative hydrogen ions

  11. Electrode materials and lithium battery systems

    Science.gov (United States)

    Amine, Khalil [Downers Grove, IL; Belharouak, Ilias [Westmont, IL; Liu, Jun [Naperville, IL

    2011-06-28

    A material comprising a lithium titanate comprising a plurality of primary particles and secondary particles, wherein the average primary particle size is about 1 nm to about 500 nm and the average secondary particle size is about 1 .mu.m to about 4 .mu.m. In some embodiments the lithium titanate is carbon-coated. Also provided are methods of preparing lithium titanates, and devices using such materials.

  12. Secondary lithium solid polymer electrolyte cells

    International Nuclear Information System (INIS)

    Fix, K.A.; Sammells, A.F.

    1988-01-01

    A strategy for developing morphologically invariant lithium/solid polymer electrolyte interface is being investigated via the use of lithium intercalated electrodes. Emphasis is being placed upon the rutile material Li/sub x/WO/sub 2/ 0.1 < x < 1.0. An absence of shape change at this interface is expected to result in both long cycle life electrochemical cells and the simultaneous maintenance of small interelectrode spacing so that low IR losses can be maintained. During fabrication of cells investigated here both electrochemical and chemical lithium intercalation of WO/sub 2/ was pursued. In the case of larger WO/sub 2/ electrodes initially prepared for fully discharged state cells, electrochemical intercalation during cell charge was found to require significant time, and the reproducible achievement of complete uniform intercalation across the negative electrode became an issue. Emphasis was consequently placed upon cells fabricated using Li/sub x/WO/sub 2/ electrodes initially chemically intercalated by lithium prior to cell assembly. Previous work has demonstrated direct lithium intercalation of metal dichalcogenides using n-BuLi. Lithium activity in n-BuLi is, however, insufficient to achieve lithium intercalation of WO/sub 2//sup 4/. However, recent work has shown that WO/sub 2/ can be directly lithium intercalated upon immersion in lithium naphthalide. Li/sub x/WO/sub 2/ electrodes prepared in this work were intercalated using lithium naphthalide (0.8M) in 2MeTHF. Lithium intercalation was found to readily occur at room temperature, being initially rapid and slowing as bulk intercalation within the electrode proceeded. For electrodes intercalated in this manner, a relationship was identified between the degree of lithium intercalation and initial open-circuit potential in liquid non-aqueous electrolyte

  13. Abundance of lithium in Pleiades F stars

    International Nuclear Information System (INIS)

    Pilachowski, C.A.; Booth, J.; Hobbs, L.M.

    1987-01-01

    The abundance of lithium has been determined for 18 stars in the Pleiades cluster with spectral types from A7V to G0V. The pronounced dip in the lithium abundance among the mid-F stars which has been reported for other, older star clusters is not present in the Pleiades. The removal of lithium from the surfaces of middle-F dwarfs therefore occurs principally after about 100 Myr on the main sequence. 25 references

  14. Material Surface Characteristics and Plasma Performance in the Lithium Tokamak Experiment

    Science.gov (United States)

    Lucia, Matthew James

    The performance of a tokamak plasma and the characteristics of the surrounding plasma facing component (PFC) material surfaces strongly influence each other. Despite this relationship, tokamak plasma physics has historically been studied more thoroughly than PFC surface physics. The disparity is particularly evident in lithium PFC research: decades of experiments have examined the effect of lithium PFCs on plasma performance, but the understanding of the lithium surface itself is much less complete. This latter information is critical to identifying the mechanisms by which lithium PFCs affect plasma performance. This research focused on such plasma-surface interactions in the Lithium Tokamak Experiment (LTX), a spherical torus designed to accommodate solid or liquid lithium as the primary PFC. Surface analysis was accomplished via the novel Materials Analysis and Particle Probe (MAPP) diagnostic system. In a series of experiments on LTX, the MAPP x-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS) capabilities were used for in vacuo interrogation of PFC samples. This represented the first application of XPS and TDS for in situ surface analysis of tokamak PFCs. Surface analysis indicated that the thin (dLi ˜ 100nm) evaporative lithium PFC coatings in LTX were converted to Li2O due to oxidizing agents in both the residual vacuum and the PFC substrate. Conversion was rapid and nearly independent of PFC temperature, forming a majority Li2O surface within minutes and an entirely Li2O surface within hours. However, Li2O PFCs were still capable of retaining hydrogen and sequestering impurities until the Li2 O was further oxidized to LiOH, a process that took weeks. For hydrogen retention, Li2O PFCs retained H+ from LTX plasma discharges, but no LiH formation was observed. Instead, results implied that H+ was only weakly-bound, such that it almost completely outgassed as H 2 within minutes. For impurity sequestration, LTX plasma performance

  15. Spectral emission measurements of lithium on the lithium tokamak experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gray, T. K.; Biewer, T. M.; Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Boyle, D. P.; Granstedt, E. M.; Kaita, R.; Majeski, R. P. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2012-10-15

    There has been a long-standing collaboration between ORNL and PPPL on edge and boundary layer physics. As part of this collaboration, ORNL has a large role in the instrumentation and interpretation of edge physics in the lithium tokamak experiment (LTX). In particular, a charge exchange recombination spectroscopy (CHERS) diagnostic is being designed and undergoing staged testing on LTX. Here we present results of passively measured lithium emission at 5166.89 A in LTX in anticipation of active spectroscopy measurements, which will be enabled by the installation of a neutral beam in 2013. Preliminary measurements are made in transient LTX plasmas with plasma current, I{sub p} < 70 kA, ohmic heating power, P{sub oh}{approx} 0.3 MW and discharge lifetimes of 10-15 ms. Measurements are made with a short focal length spectrometer and optics similar to the CHERS diagnostics on NSTX [R. E. Bell, Rev. Sci. Instrum. 68(2), 1273-1280 (1997)]. These preliminary measurements suggest that even without the neutral beam for active spectroscopy, there is sufficient passive lithium emission to allow for line-of-sight profile measurements of ion temperature, T{sub i}; toroidal velocity and v{sub t}. Results show peak T{sub i} = 70 eV and peak v{sub t} = 45 km/s were reached 10 ms into the discharge.

  16. Electrode nanomaterials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yaroslavtsev, A B; Kulova, T L; Skundin, A M

    2015-01-01

    The state-of-the-art in the field of cathode and anode nanomaterials for lithium-ion batteries is considered. The use of these nanomaterials provides higher charge and discharge rates, reduces the adverse effect of degradation processes caused by volume variations in electrode materials upon lithium intercalation and deintercalation and enhances the power and working capacity of lithium-ion batteries. In discussing the cathode materials, attention is focused on double phosphates and silicates of lithium and transition metals and also on vanadium oxides. The anode materials based on nanodispersions of carbon, silicon, certain metals, oxides and on nanocomposites are also described. The bibliography includes 714 references

  17. Lithium-ion batteries fundamentals and applications

    CERN Document Server

    Wu, Yuping

    2015-01-01

    Lithium-Ion Batteries: Fundamentals and Applications offers a comprehensive treatment of the principles, background, design, production, and use of lithium-ion batteries. Based on a solid foundation of long-term research work, this authoritative monograph:Introduces the underlying theory and history of lithium-ion batteriesDescribes the key components of lithium-ion batteries, including negative and positive electrode materials, electrolytes, and separatorsDiscusses electronic conductive agents, binders, solvents for slurry preparation, positive thermal coefficient (PTC) materials, current col

  18. Lithium-Oxygen Batteries: At a Crossroads?

    DEFF Research Database (Denmark)

    Vegge, Tejs; García Lastra, Juan Maria; Siegel, Donald Jason

    2017-01-01

    In this current opinion, we critically review and discuss some of the most important recent findings in the field of rechargeable lithium-oxygen batteries. We discuss recent discoveries like the evolution of reactive singlet oxygen and the use of organic additives to bypass reactive LiO2 reaction...... intermediates, and their possible implications on the potential for commercialization of lithium-oxygen batteries. Finally, we perform a critical assessment of lithium-superoxide batteries and the reversibility of lithium-hydroxide batteries....

  19. Solid polymer electrolyte lithium batteries

    Science.gov (United States)

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  20. Electrolytes for lithium ion batteries

    Science.gov (United States)

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  1. Lithium aluminates and tritium production

    International Nuclear Information System (INIS)

    Carrera G, L.M.; Palacios G, O.; Bosch G, P.

    1997-01-01

    In this work it is studied the crystalline structure of lithium aluminates prepared by three different methods, namely: solid state reaction, humid reaction and sol-gel reaction. The analysis methods are the X-ray diffractometry and the scanning and transmission electron microscopy. This study is realized as in original materials as in irradiated materials at the TRIGA Mark reactor, to correlate the synthesis method with response of these materials to the mixed irradiation of nuclear reactor. (Author)

  2. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  3. Lithium ion storage between graphenes

    Directory of Open Access Journals (Sweden)

    Chan Yue

    2011-01-01

    Full Text Available Abstract In this article, we investigate the storage of lithium ions between two parallel graphene sheets using the continuous approximation and the 6-12 Lennard-Jones potential. The continuous approximation assumes that the carbon atoms can be replaced by a uniform distribution across the surface of the graphene sheets so that the total interaction potential can be approximated by performing surface integrations. The number of ion layers determines the major storage characteristics of the battery, and our results show three distinct ionic configurations, namely single, double, and triple ion forming layers between graphenes. The number densities of lithium ions between the two graphenes are estimated from existing semi-empirical molecular orbital calculations, and the graphene sheets giving rise to the triple ion layers admit the largest storage capacity at all temperatures, followed by a marginal decrease of storage capacity for the case of double ion layers. These two configurations exceed the maximum theoretical storage capacity of graphite. Further, on taking into account the charge-discharge property, the double ion layers are the most preferable choice for enhanced lithium storage. Although the single ion layer provides the least charge storage, it turns out to be the most stable configuration at all temperatures. One application of the present study is for the design of future high energy density alkali batteries using graphene sheets as anodes for which an analytical formulation might greatly facilitate rapid computational results.

  4. Lithium actinide recycle process demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.K.; Pierce, R.D.; McPheeters, C.C. [Argonne National Laboratory, IL (United States)

    1995-10-01

    Several pyrochemical processes have been developed in the Chemical Technology Division of Argonne Laboratory for recovery of actinide elements from LWR spent fuel. The lithium process was selected as the reference process from among the options. In this process the LWR oxide spent fuel is reduced by lithium at 650{degrees}C in the presence of molten LiCl. The Li{sub 2}O formed during the reduction process is soluble in the salt. The spent salt and lithium are recycled after the Li{sub 2}O is electrochemically reduced. The oxygen is liberated as CO{sub 2} at a carbon anode or oxygen at an inert anode. The reduced metal components of the LWR spent fuel are separated from the LiCL salt phase and introduced into an electrorefiner. The electrorefining step separates the uranium and transuranium (TRU) elements into two product streams. The uranium product, which comprises about 96% of the LWR spent fuel mass, may be enriched for recycle into the LWR fuel cycle, stored for future use in breeder reactors, or converted to a suitable form for disposal as waste. The TRU product can be recycled as fast reactor fuel or can be alloyed with constituents of the LWR cladding material to produce a stable waste form.

  5. Role of perfluoropolyether-based electrolytes in lithium metal batteries: Implication for suppressed Al current collector corrosion and the stability of Li metal/electrolytes interfaces

    Science.gov (United States)

    Cong, Lina; Liu, Jia; Armand, Michel; Mauger, Alain; Julien, Christian M.; Xie, Haiming; Sun, Liqun

    2018-03-01

    The development of safe and high performance lithium metal batteries represents a major technological challenge for this new century. Historically, intrinsic instabilities of conventional liquid organic electrolytes induced battery failures and safety issues that hinder the practical utilization of advanced rechargeable lithium metal batteries. Herein, we report a multifunctional perfluoropolyether-based liquid polymer electrolyte (PFPE-MC/LiTFSI), presenting a unique "anion-solvent" interaction. This interaction optimizes the interfacial chemistry of lithium metal batteries, which effectively inhibits the corrosion of aluminum current collectors, suppresses lithium dendrite growth, and also facilitates the formation of a thin and stable SEI layer on Li anode. Even at a high current density of 0.7 mA cm-2, the lithium dendrites do not form after 1360 h of continuous operation. The LiFePO4|PFPE-MC/LiTFSI|Li cell delivers a stable cycling performance with over 99.9% columbic efficiency either at ambient temperature or high temperature, which is significantly superior to those using traditional carbonate electrolytes. In addition, PFPE-MC/LiTFSI electrolyte also possesses eye-catching properties, such as being non-flammable, non-volatile, non-hygroscopic, and existing in the liquid state between -90 °C and 200 °C, which further ensures the high safety of the lithium metal batteries, making this electrolyte promising for the development of high energy lithium metal batteries.

  6. Lithium Pharmacogenetics: Where Do We Stand?

    Science.gov (United States)

    Pisanu, Claudia; Melis, Carla; Squassina, Alessio

    2016-11-01

    Preclinical Research Bipolar disorder (BPD) is a chronic and disabling psychiatric disorder with a prevalence of 0.8-1.2% in the general population. Although lithium is considered the first-line treatment, a large percentage of patients do not respond sufficiently. Moreover, lithium can induce severe side effects and has poor tolerance and a narrow therapeutic index. The genetics of lithium response has been largely investigated, but findings have so far failed to identify reliable biomarkers to predict clinical response. This has been largely determined by the highly complex phenotipic and genetic architecture of lithium response. To this regard, collaborative initiatives hold the promise to provide robust and standardized methods to disantenagle this complexity, as well as the capacity to collect large samples of patietnts, a crucial requirement to study the genetics of complex phenotypes. The International Consortium on Lithium Genetics (ConLiGen) has recently published the largest study so far on lithium response reporting significant associations for two long noncoding RNAs (lncRNAs). This result provides relevant insights into the pharmacogenetics of lithium supporting the involvement of the noncoding portion of the genome in modulating clinical response. Although a vast body of research is engaged in dissecting the genetic bases of response to lithium, the several drawbacks of lithium therapy have also stimulated multiple efforts to identify new safer treatments. A drug repurposing approach identified ebselen as a potential lithium mimetic, as it shares with lithium the ability to inhibit inositol monophosphatase. Ebselen, an antioxidant glutathione peroxidase mimetic, represents a valid and promising example of new potential therapeutic interventions for BD, but the paucity of data warrant further investigation to elucidate its potential efficacy and safety in the management of BPD. Nevertheless, findings provided by the growing field of pharmacogenomic

  7. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  8. Modulation of solid electrolyte interphase of lithium-ion batteries by LiDFOB and LiBOB electrolyte additives

    Science.gov (United States)

    Huang, Shiqiang; Wang, Shuwei; Hu, Guohong; Cheong, Ling-Zhi; Shen, Cai

    2018-05-01

    Solid-electrolyte interphase (SEI) layer is an organic-inorganic composite layer that allows Li+ transport across but blocks electron flow across and prevents solvent diffusing to electrode surface. Morphology, thickness, mechanical and chemical properties of SEI are important for safety and cycling performance of lithium-ion batteries. Herein, we employ a combination of in-situ AFM and XPS to investigate the effects of two electrolyte additives namely lithium difluoro(oxalate)borate (LiDFOB) and lithium bis(oxalato)borate (LiBOB) on SEI layer. LiDFOB is found to result in a thin but hard SEI layer containing more inorganic species (LiF and LiCO3); meanwhile LiBOB promotes formation of a thick but soft SEI layer containing more organic species such as ROCO2Li. Findings from present study will help development of electrolyte additives that promote formation of good SEI layer.

  9. Practical use of lithium borate in thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Chavaudra, J.; Nguyen, J.; Marinello, G.; Brule, A.M.

    1976-01-01

    The functional principles of thermoluminescent dosimeters are recalled: heating, apparatus for measuring the emitted light, circulation of nitrogen, reference source. The essential role played by the circulation of nitrogen over the dosimeters which equilibrates the temperature of the photomultiplier, reduces the emission of unwanted light, prevents the combustion of dust or other possible impurities and finally improves the accuracy of the measurements even for high doses, is underlined. Lithium borate is taken as an example and a simple method for finding the optimum working conditions for the heating apparatus of the planchette in the most simple T.L.D. readers and in those where the heating apparatus of the planchette has a pre-heating phase is proposed. The dosimetric properties of lithium borate incorporated in thin teflon discs (type DLB. 0.13 and 0.4) are studied. This shows itself to be very interesting for certain uses because it is a solid dosimeter which does not require annealing between two measurements. The accuracy of the measurements obtained with this material, the stability of the response relative to the delay between radiation and reading (fading), the response relative to the absorbed dose plus the nature and the energy of the rays, are presented with the usual reservations made for this type of dosimetry [fr

  10. Improved liquid-lithium target for the FMIT facility

    International Nuclear Information System (INIS)

    Miles, R.R.; Greenwell, R.K.; Hassberger, J.A.; Ingham, J.G.

    1982-11-01

    An improved target for the Fusion Materials Irradiation Testing Facility was designed. The purpose of the target is to produce a high neutron flux (10 19 n/m 2 sec) for testing of candidate first wall materials for fusion reactors. The neutrons are produced through a Li(d,n) stripping reaction between accelerated deuterons (35 MeV, 0.1A) and a thin jet of flowing liquid lithium. The target consists of a high speed (approx. 17 m/s), free surface wall jet which is exposed to the high (10 -4 Pa) accelerator vacuum. The energy deposited by the deuteron beam in the lithium is sufficient to heat the jet internally to a maximum temperature of roughly 740 0 C, 430 0 C greater than the saturation temperature at the jet free surface. For this reason, the jet flows along a curved wall which provides the pressurization required to prevent sperheat internal to the jet. Supporting hardware for the jet and a drain line which controls the jet beyond the beam intercept region

  11. Graphene-based integrated electrodes for flexible lithium ion batteries

    International Nuclear Information System (INIS)

    Shi, Ying; Wen, Lei; Zhou, Guangmin; Chen, Jing; Pei, Songfeng; Huang, Kun; Cheng, Hui-Ming; Li, Feng

    2015-01-01

    We have prepared flexible free-standing electrodes with anode and cathode active materials deposited on a highly conductive graphene membrane by a two-step filtration method. Compared with conventional electrodes using metal as current collectors, these electrodes have displayed stronger adhesion, superior electrochemical performance, higher energy density, and better flexibility. A full lithium ion battery assembled by adopting these graphene-based electrodes has showed high rate capability and long cyclic life. We have also assembled a thin, lightweight, and flexible lithium ion battery with poly-(dimethyl siloxane) sheets as packaging material to light a red light-emitting diode. This flexible battery can be easily bent without structural failure or performance loss and operated well under a bent state. The fabrication process of these graphene-based integrated electrodes only has two filtration steps; thus it is easy to scale up. These results suggest great potential for these graphene-based flexible batteries in lightweight, bendable, and wearable electronic devices. (paper)

  12. Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries.

    Science.gov (United States)

    Kalluri, Sujith; Yoon, Moonsu; Jo, Minki; Liu, Hua Kun; Dou, Shi Xue; Cho, Jaephil; Guo, Zaiping

    2017-12-01

    Cathode material degradation during cycling is one of the key obstacles to upgrading lithium-ion and beyond-lithium-ion batteries for high-energy and varied-temperature applications. Herein, we highlight recent progress in material surface-coating as the foremost solution to resist the surface phase-transitions and cracking in cathode particles in mono-valent (Li, Na, K) and multi-valent (Mg, Ca, Al) ion batteries under high-voltage and varied-temperature conditions. Importantly, we shed light on the future of materials surface-coating technology with possible research directions. In this regard, we provide our viewpoint on a novel hybrid surface-coating strategy, which has been successfully evaluated in LiCoO 2 -based-Li-ion cells under adverse conditions with industrial specifications for customer-demanding applications. The proposed coating strategy includes a first surface-coating of the as-prepared cathode powders (by sol-gel) and then an ultra-thin ceramic-oxide coating on their electrodes (by atomic-layer deposition). What makes it appealing for industry applications is that such a coating strategy can effectively maintain the integrity of materials under electro-mechanical stress, at the cathode particle and electrode- levels. Furthermore, it leads to improved energy-density and voltage retention at 4.55 V and 45 °C with highly loaded electrodes (≈24 mg.cm -2 ). Finally, the development of this coating technology for beyond-lithium-ion batteries could be a major research challenge, but one that is viable. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Lithium-drifted silicon detector with segmented contacts

    Science.gov (United States)

    Tindall, Craig S.; Luke, Paul N.

    2006-06-13

    A method and apparatus for creating both segmented and unsegmented radiation detectors which can operate at room temperature. The devices include a metal contact layer, and an n-type blocking contact formed from a thin layer of amorphous semiconductor. In one embodiment the material beneath the n-type contact is n-type material, such as lithium compensated silicon that forms the active region of the device. The active layer has been compensated to a degree at which the device may be fully depleted at low bias voltages. A p-type blocking contact layer, or a p-type donor material can be formed beneath a second metal contact layer to complete the device structure. When the contacts to the device are segmented, the device is capable of position sensitive detection and spectroscopy of ionizing radiation, such as photons, electrons, and ions.

  14. A consideration of lithium cell safety

    Science.gov (United States)

    Tobishima, Shin-ichi; Yamaki, Jun-ichi

    The safety characteristics of commercial lithium ion cells are examined in relation to their use as batteries for cellular phones. This report describes a theoretical approach to an understanding of cell safety, example results of safety tests that we performed on lithium ion cells, and also presents our views regarding cell safety.

  15. Atomic lithium vapor laser isotope separation

    CERN Document Server

    Olivares, I E

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the sup 6 LiD sub 2 and the sup 7 LiD sub 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  16. Atomic lithium vapor laser isotope separation

    International Nuclear Information System (INIS)

    Olivares, I.E.; Rojas, C.

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the 6 LiD 2 and the 7 LiD 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  17. Cationic flotation of some lithium ores

    International Nuclear Information System (INIS)

    Valadao, G.E.S.; Peres, A.E.C.; Silva, H.C. da

    1984-01-01

    The cationic flotation of some lithium ores (spodumene, amblygonite, petalite, lepidolite) is studied by the measure of zeta potential and micro-flotation tests in Hallimond tube. The effect of some modifier agents (corn starch, meta sodium silicate) on the lithium flotation is studied. (M.A.C.) [pt

  18. RECOVERY OF LITHIUM FROM WASTE MATERIALS

    Directory of Open Access Journals (Sweden)

    JITKA JANDOVÁ

    2012-03-01

    Full Text Available In this study, processes based on roasting-leaching-crystallization steps and condensation-precipitation steps for Li2CO3 separation from spent Li/MnO2 batteries and lithium-containing wastewaters were developed and verified on a laboratory scale. Spent Li/MnO2 batteries were roasted under reduced pressure at 650°C, which split the castings and deactivated the batteries by reduction of LiMnO2 and MnO2 with residual lithium metal and graphite to form MnO and Li2CO3. The resultant lithium carbonate was selectively solubilised in water with manganese remaining in the leach residue. Li2CO3 of 99.5 % purity was obtained after evaporation of 95 % water. Processing of lithium-containing alkaline wastewaters from the production of liquid rubber comprises condensation up to lithium concentration of 12-13 g/l Li and a two-step precipitation of lithium carbonate using CO2 as a precipitation agent. Sparingly soluble Li2CO3 was produced in the second step at 95°C, whilst most impurities remain in the solution. Obtained lithium carbonate products contained on average more than 99.5 % Li2CO3. The lithium precipitation efficiency was about 90 %.

  19. Lithium and sodium batteries with polysulfide electrolyte

    KAUST Repository

    Li, Mengliu; Ming, Jun; Li, Lain-Jong

    2017-01-01

    A battery comprising: at least one cathode, at least one anode, at least one battery separator, and at least one electrolyte disposed in the separator, wherein the anode is a lithium metal or lithium alloy anode or an anode adapted for intercalation

  20. The lithium-ion accumulators in Japan

    International Nuclear Information System (INIS)

    Lazzari, O.

    2006-07-01

    This document takes stock on the different technologies of lithium based batteries developed in Japan as the materials used to produce their different elements. The today tendencies of the japanese researches are discussed. The applications of the lithium-ion are presented. A list of the main public and private laboratories in the domain and the research programs is provided. (A.L.B.)

  1. Lithium use and the risk of fractures

    NARCIS (Netherlands)

    Wilting, Ingeborg; de Vries, Frank; Thio, Brahm M. K. S.; Cooper, Cyrus; Heerdink, Eibert R.; Leutkens, Hubert G. M.; Nolen, Willem A.; Egberts, Antoine C. G.; van Staa, Tjeerd P.

    A recent study reported a decreased risk of fractures among lithium users. We conducted a case-control study within the UK General Practice Research Database, comparing never, ever, current, recent and past lithium use in 231,778 fracture cases to matched controls. In addition, the risk of fractures

  2. Treatment of lithium induced tremor with atenolol.

    Science.gov (United States)

    Davé, M

    1989-03-01

    This is the first report on the successful treatment of one patient with lithium induced tremor with hydrophilic atenolol, which is a relatively selective beta 1 adrenergic receptor blocker. Atenolol's advantages over lipophilic beta blockers in the treatment of lithium induced tremor are discussed.

  3. Patterns and clinical outcomes of lithium treatment

    NARCIS (Netherlands)

    Wilting, I.

    2008-01-01

    Patterns and consequences of lithium use’. In chapter 2.1 we studied lithium use patterns in out-patients within the last decade. In line with the increase in alternatives and the Dutch guidelines, we observed an increase in use of atypical antipsychotics and valproic acid and a decrease in use

  4. Desorption/ablation of lithium fluoride induced by extreme ultraviolet laser radiation

    Directory of Open Access Journals (Sweden)

    Blejchař Tomáš

    2016-06-01

    Full Text Available The availability of reliable modeling tools and input data required for the prediction of surface removal rate from the lithium fluoride targets irradiated by the intense photon beams is essential for many practical aspects. This study is motivated by the practical implementation of soft X-ray (SXR or extreme ultraviolet (XUV lasers for the pulsed ablation and thin film deposition. Specifically, it is focused on quantitative description of XUV laser-induced desorption/ablation from lithium fluoride, which is a reference large band-gap dielectric material with ionic crystalline structure. Computational framework was proposed and employed here for the reconstruction of plume expansion dynamics induced by the irradiation of lithium fluoride targets. The morphology of experimentally observed desorption/ablation craters were reproduced using idealized representation (two-zone approximation of the laser fluence profile. The calculation of desorption/ablation rate was performed using one-dimensional thermomechanic model (XUV-ABLATOR code taking into account laser heating and surface evaporation of the lithium fluoride target occurring on a nanosecond timescale. This step was followed by the application of two-dimensional hydrodynamic solver for description of laser-produced plasma plume expansion dynamics. The calculated plume lengths determined by numerical simulations were compared with a simple adiabatic expansion (blast-wave model.

  5. 77 FR 68069 - Outbound International Mailings of Lithium Batteries

    Science.gov (United States)

    2012-11-15

    ... POSTAL SERVICE 39 CFR Part 20 Outbound International Mailings of Lithium Batteries AGENCY: Postal... primary and secondary lithium cells or lithium batteries internationally, or to and from an APO, FPO, or... prohibited the mailing of lithium batteries and cells internationally and when sent to and from any Army Post...

  6. 76 FR 55799 - Outbound International Mailings of Lithium Batteries

    Science.gov (United States)

    2011-09-09

    ... POSTAL SERVICE 39 CFR Part 20 Outbound International Mailings of Lithium Batteries AGENCY: Postal... would incorporate new maximum limits for the outbound mailing of lithium batteries to international, or... equipment with lithium metal or lithium-ion batteries that were to be effective October 3, 2011. These...

  7. 75 FR 1302 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2010-01-11

    ... of Lithium Batteries AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT... transportation of lithium cells and batteries, including lithium cells and batteries packed with or contained in equipment. The proposed changes are intended to enhance safety by ensuring that all lithium batteries are...

  8. Synthesis of lithium niobate and monocrystal growth by Czochralski method

    International Nuclear Information System (INIS)

    Balzuweit, K.

    1988-01-01

    The qualitative analysis of lithium niobate by x-ray analysis and optical microscopy is presented. The lithium niobate compound was obtained by synthesis using niobium oxides and lithium carbonates. The lithium niobate monocrystal growth was done by Czochralski method. (M.C.K.)

  9. A lithium-oxygen battery based on lithium superoxide.

    Science.gov (United States)

    Lu, Jun; Lee, Yun Jung; Luo, Xiangyi; Lau, Kah Chun; Asadi, Mohammad; Wang, Hsien-Hau; Brombosz, Scott; Wen, Jianguo; Zhai, Dengyun; Chen, Zonghai; Miller, Dean J; Jeong, Yo Sub; Park, Jin-Bum; Fang, Zhigang Zak; Kumar, Bijandra; Salehi-Khojin, Amin; Sun, Yang-Kook; Curtiss, Larry A; Amine, Khalil

    2016-01-21

    Batteries based on sodium superoxide and on potassium superoxide have recently been reported. However, there have been no reports of a battery based on lithium superoxide (LiO2), despite much research into the lithium-oxygen (Li-O2) battery because of its potential high energy density. Several studies of Li-O2 batteries have found evidence of LiO2 being formed as one component of the discharge product along with lithium peroxide (Li2O2). In addition, theoretical calculations have indicated that some forms of LiO2 may have a long lifetime. These studies also suggest that it might be possible to form LiO2 alone for use in a battery. However, solid LiO2 has been difficult to synthesize in pure form because it is thermodynamically unstable with respect to disproportionation, giving Li2O2 (refs 19, 20). Here we show that crystalline LiO2 can be stabilized in a Li-O2 battery by using a suitable graphene-based cathode. Various characterization techniques reveal no evidence for the presence of Li2O2. A novel templating growth mechanism involving the use of iridium nanoparticles on the cathode surface may be responsible for the growth of crystalline LiO2. Our results demonstrate that the LiO2 formed in the Li-O2 battery is stable enough for the battery to be repeatedly charged and discharged with a very low charge potential (about 3.2 volts). We anticipate that this discovery will lead to methods of synthesizing and stabilizing LiO2, which could open the way to high-energy-density batteries based on LiO2 as well as to other possible uses of this compound, such as oxygen storage.

  10. Novel lithium iron phosphate materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Jelena

    2011-06-15

    Conventional energy sources are diminishing and non-renewable, take million years to form and cause environmental degradation. In the 21st century, we have to aim at achieving sustainable, environmentally friendly and cheap energy supply by employing renewable energy technologies associated with portable energy storage devices. Lithium-ion batteries can repeatedly generate clean energy from stored materials and convert reversely electric into chemical energy. The performance of lithium-ion batteries depends intimately on the properties of their materials. Presently used battery electrodes are expensive to be produced; they offer limited energy storage possibility and are unsafe to be used in larger dimensions restraining the diversity of application, especially in hybrid electric vehicles (HEVs) and electric vehicles (EVs). This thesis presents a major progress in the development of LiFePO4 as a cathode material for lithium-ion batteries. Using simple procedure, a completely novel morphology has been synthesized (mesocrystals of LiFePO4) and excellent electrochemical behavior was recorded (nanostructured LiFePO4). The newly developed reactions for synthesis of LiFePO4 are single-step processes and are taking place in an autoclave at significantly lower temperature (200 deg. C) compared to the conventional solid-state method (multi-step and up to 800 deg. C). The use of inexpensive environmentally benign precursors offers a green manufacturing approach for a large scale production. These newly developed experimental procedures can also be extended to other phospho-olivine materials, such as LiCoPO4 and LiMnPO4. The material with the best electrochemical behavior (nanostructured LiFePO4 with carbon coating) was able to deliver a stable 94% of the theoretically known capacity.

  11. Size effects in lithium ion batteries

    International Nuclear Information System (INIS)

    Yao Hu-Rong; Yin Ya-Xia; Guo Yu-Gao

    2016-01-01

    Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discovered lithium storage mechanisms, are reviewed. Complementary experimental and computational investigations of the use of the size effects to modify electrodes and electrolytes for lithium ion batteries are enumerated and discussed together. Size differences in the materials in lithium ion batteries lead to a variety of exciting phenomena. Smaller-particle materials with highly connective interfaces and reduced diffusion paths exhibit higher rate performance than the corresponding bulk materials. The thermodynamics is also changed by the higher surface energy of smaller particles, affecting, for example, secondary surface reactions, lattice parameter, voltage, and the phase transformation mechanism. Newly discovered lithium storage mechanisms that result in superior storage capacity are also briefly highlighted. (topical review)

  12. Tritium recovery from lithium oxide pellets

    International Nuclear Information System (INIS)

    Bertone, P.C.; Jassby, D.L.

    1984-01-01

    The TFTR Lithium Blanket Module is an assembly containing 650 kg of lithium oxide that will be used to test the ability of neutronics codes to model the tritium breeding characteristics of limited-coverage breeding zones in a tokamak. It is required that tritium concentrations as low as 0.1 nCi/g bred in both metallic lithium samples and lithium oxide pellets be measured with an uncertainty not exceeding +- 6%. A tritium assay technique for the metallic samples which meets this criterion has been developed. Two assay techniques for the lithium oxide pellets are being investigated. In one, the pellets are heated in a flowing stream of hydrogen, while in the other, the pellets are dissolved in 12 M hydrochloric acid

  13. Operation of the lithium pellet injector

    International Nuclear Information System (INIS)

    Khlopenkov, K.V.; Sudo, S.; Sergeev, V.Yu.

    1996-05-01

    A lithium pellet injection requires an accurate handling with lithium and special technique of loading the pellets. Thus, the technology for this has been developed based on the following conditions: 1) Because of chemical activity of lithium it is necessary to operate in a glove-box with the noble gas atmosphere (He, Ar, etc.). 2) A special procedure of replacing the glove-box atmosphere allows to achieve high purity of the noble gas. 3) When making the pellets it is better to keep the clean lithium in the liquid hexane so as to maintain lithium purity. 4) The pressure of the accelerating gas for Li pellets should be not less than 30 atm. (author)

  14. A lithium deposition system for tokamak devices*

    Science.gov (United States)

    Graziul, Christopher; Majeski, Richard; Kaita, Robert; Hoffman, Daniel; Timberlake, John; Card, David

    2002-11-01

    The production of a lithium deposition system using commercially available components is discussed. This system is intended to provide a fresh lithium wall coating between discharges in a tokamak. For this purpose, a film 100-200 Å thick is sufficient to ensure that the plasma interacts solely with the lithium. A test system consisting of a lithium evaporator and a deposition monitor has been designed and constructed to investigate deposition rates and coverage. A Thermionics 3kW e-gun is used to rapidly evaporate small amounts of solid lithium. An Inficon XTM/2 quartz deposition monitor then measures deposition rate at varying distances, positions and angles relative to the e-gun crucible. Initial results from the test system will be presented. *Supported by US DOE contract #DE-AC02-76CH-03073

  15. Module of lithium divertor for KTM tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lyublinski, I., E-mail: yublinski@yandex.ru [FSUE ' Red Star' , Moscow (Russian Federation); Vertkov, A.; Evtikhin, V.; Balakirev, V.; Ionov, D.; Zharkov, M. [FSUE ' Red Star' , Moscow (Russian Federation); Tazhibayeva, I. [IAE NNC RK, Kurchatov (Kazakhstan); Mirnov, S. [TRINITI, Troitsk, Moscow Region (Russian Federation); Khomiakov, S.; Mitin, D. [OJSC Dollezhal Institute, Moscow (Russian Federation); Mazzitelli, G. [ENEA RC Frascati (Italy); Agostini, P. [ENEA RC Brasimone (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Black-Right-Pointing-Pointer Capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. Black-Right-Pointing-Pointer Lithium divertor module for KTM tokamak is under development. Black-Right-Pointing-Pointer Lithium filled tungsten felt is offered as the base plasma facing material of divertor. Black-Right-Pointing-Pointer Results of this project addresses to the progress in the field of fusion neutrons source and fusion energy source creation. - Abstract: Activity on projects of ITER and DEMO reactors has shown that solution of problems of divertor target plates and other plasma facing elements (PFEs) based on the solid plasma facing materials cause serious difficulties. Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Application of lithium will allow to create a self-renewal and MHD stable liquid metal surface of the in-vessel devices possessing practically unlimited service life; to reduce power flux due to intensive re-irradiation on lithium atoms in plasma periphery that will essentially facilitate a problem of heat removal from PFE; to reduce Z{sub eff} of plasma to minimally possible level close to 1; to exclude tritium accumulation, that is provided with absence of dust products and an opportunity of the active control of the tritium contents in liquid lithium. Realization of these advantages is based on use of so-called lithium capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. The progress in development of lithium technology and also activity in lithium experiments in the tokamaks TFTR, T-11M, T-10, FTU, NSTX, HT-7 and stellarator TJ II permits of solving the problems in development of

  16. Reactivity of lithium exposed graphite surface

    International Nuclear Information System (INIS)

    Harilal, S.S.; Allain, J.P.; Hassanein, A.; Hendricks, M.R.; Nieto-Perez, M.

    2009-01-01

    Lithium as a plasma-facing component has many attractive features in fusion devices. We investigated chemical properties of the lithiated graphite surfaces during deposition using X-ray photoelectron spectroscopy and low-energy ion scattering spectroscopy. In this study we try to address some of the known issues during lithium deposition, viz., the chemical state of lithium on graphite substrate, oxide layer formation mechanisms, Li passivation effects over time, and chemical change during exposure of the sample to ambient air. X-ray photoelectron studies indicate changes in the chemical composition with various thickness of lithium on graphite during deposition. An oxide layer formation is noticed during lithium deposition even though all the experiments were performed in ultrahigh vacuum. The metal oxide is immediately transformed into carbonate when the deposited sample is exposed to air.

  17. Lithium ion batteries based on nanoporous silicon

    Science.gov (United States)

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  18. A Lithium Vapor Box Divertor Similarity Experiment

    Science.gov (United States)

    Cohen, Robert A.; Emdee, Eric D.; Goldston, Robert J.; Jaworski, Michael A.; Schwartz, Jacob A.

    2017-10-01

    A lithium vapor box divertor offers an alternate means of managing the extreme power density of divertor plasmas by leveraging gaseous lithium to volumetrically extract power. The vapor box divertor is a baffled slot with liquid lithium coated walls held at temperatures which increase toward the divertor floor. The resulting vapor pressure differential drives gaseous lithium from hotter chambers into cooler ones, where the lithium condenses and returns. A similarity experiment was devised to investigate the advantages offered by a vapor box divertor design. We discuss the design, construction, and early findings of the vapor box divertor experiment including vapor can construction, power transfer calculations, joint integrity tests, and thermocouple data logging. Heat redistribution of an incident plasma-based heat flux from a typical linear plasma device is also presented. This work supported by DOE Contract No. DE-AC02-09CH11466 and The Princeton Environmental Institute.

  19. Properties of lithium and its handling

    International Nuclear Information System (INIS)

    Asada, Takashi; Kano, Shigeki; Tachi, Toshiaki; Kawai, Masataka

    2000-09-01

    Lithium is one of good coolants because of high boiling point (1317degC), small specific gravity (0.47 at 600degC) and large specific heat (1 cal/g/degC). Therefore if lithium will be used in fast reactor for coolant, the heat efficiency of reactor will largely increase. Here the fundamental properties of lithium and the results of examination on chemical reaction, combustion and extinction are shown. These examinations were also carried out on sodium to compare with lithium. The differences between both are that lithium reacts more moderately with water, not explosive, and is not combustible but after ignition burns at higher temperature and longer. (author)

  20. Suicide risk in patients treated with lithium

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Søndergård, Lars; Kvist, Kajsa

    2005-01-01

    CONTEXT: Prior observational studies suggest that treatment with lithium may be associated with reduced risk of suicide in bipolar disorder. However, these studies are biased toward patients with the most severe disorders, and the relation to sex and age has seldom been investigated. OBJECTIVE......: To investigate whether treatment with lithium reduces the risk of suicide in a nationwide study. DESIGN: An observational cohort study with linkage of registers of all prescribed lithium and recorded suicides in Denmark during a period from January 1, 1995, to December 31, 1999. SETTING: All patients treated...... with lithium in Denmark, ie, within community psychiatry, private specialist practice settings, and general practice. PARTICIPANTS: A total of 13 186 patients who purchased at least 1 prescription of lithium and 1.2 million subjects from the general population. MAIN OUTCOME MEASURE: All suicides identified...

  1. Determination of reduction yield of lithium metal reduction process

    International Nuclear Information System (INIS)

    Choi, In Kyu; Cho, Young Hwan; Kim, Taek Jin; Jee, Kwang Young

    2004-01-01

    Metal reduction of spent oxide fuel is the first step for the effective storage of spent fuel in Korea as well as transmutation purpose of long-lived radio-nuclides. During the reduction of uranium oxide by lithium metal to uranium metal, lithium oxide is stoichiometrically produced. By determining the concentration of lithium oxide in lithium chloride, we can estimate that how much uranium oxide is converted to uranium metal. Previous method to determine the lithium oxide concentration in lithium chloride is tedious and timing consuming. This paper describe the on-line monitoring method of lithium oxide during the reduction process

  2. Tracking Lithium Ions via Widefield Fluorescence Microscopy for Battery Diagnostics.

    Science.gov (United States)

    Padilla, Nicolas A; Rea, Morgan T; Foy, Michael; Upadhyay, Sunil P; Desrochers, Kyle A; Derus, Tyler; Knapper, Kassandra A; Hunter, Nathanael H; Wood, Sharla; Hinton, Daniel A; Cavell, Andrew C; Masias, Alvaro G; Goldsmith, Randall H

    2017-07-28

    Direct tracking of lithium ions with time and spatial resolution can provide an important diagnostic tool for understanding mechanisms in lithium ion batteries. A fluorescent indicator of lithium ions, 2-(2-hydroxyphenyl)naphthoxazole, was synthesized and used for real-time tracking of lithium ions via widefield fluorescence microscopy. The fluorophore can be excited with visible light and was shown to enable quantitative determination of the lithium ion diffusion constant in a microfluidic model system for a plasticized polymer electrolyte lithium battery. The use of widefield fluorescence microscopy for in situ tracking of lithium ions in batteries is discussed.

  3. Lithium uptake and the corrosion of zirconium alloys in aqueous lithium hydroxide solutions

    International Nuclear Information System (INIS)

    Ramasubramanian, N.

    1991-01-01

    This paper reports on corrosion films on zirconium alloys that were analyzed for lithium by Atomic Absorption Spectroscopy (AAS), Secondary Ion Mass Spectrometry (SIMS), and Infrared Reflection Absorption Spectroscopy (IRAS). The oxides grown in reactor in dilute lithium hydroxide solution, specimens cut from Zircaloy, and Zr-2.5Nb alloy pressure tubes removed from CANDU (Canada Deuterium Uranium, Registered Trademark) reactors showed low concentrations of lithium (4 to 50 ppm). The lithium was not leachable in a warm dilute acid. 6 Li undergoes transmutation by the 6 Li(n,t) 4 He reaction. However, SIMS profiles for d 7 Li were identical through the bulk oxide and the isotopic ratio was close to the natural abundance value. The lithium in the oxide, existing as adsorbed lithium on the surface, has been in dynamic equilibrium with lithium in the coolant, and, in spite of many Effective Full Power Years (EFPY) of operation, lithium added to the CANDU coolant at ∼2.5 ppm is not concentrating in the oxides. On the other hand, corrosion films grown in the laboratory in concentrated lithium hydroxide solutions were very porous and contained hundreds of ppm of lithium in the oxide

  4. Lithium treatment of manio-depressive disorder. Two examples of treatment regimes with varying serum lithium concentration curves

    International Nuclear Information System (INIS)

    Veimer Jensen, H.

    1998-07-01

    The importance of serum lithium profile in lithium maintenance treatment of manic-depressive disorder was studied by comparing pro-phylactic efficacy, side-effects and brain lithium level in patients on daily or alternate-day lithium dosing schedules. The aim of the study was to determine firstly, whether it is only necessary for the serum lithium concentration to periodically reach a certain level in order to ensure good prophylactic efficacy, and secondly, whether periodical lowering of the serum lithium level diminishes lithium-related side-effects. This was examined by extending the interval between lithium doses from 1 to 2 days, while maintaining the 12-h serum lithium concentration unchanged so as to achieve an unchanged serum lithium profile during the first 24-h period after lithium intake. The 12-h brain lithium concentration measured by 7 Li-magnetic resonance spectroscopy seemed to be independent of lithium dosing schedule, but correlated significantly with the 12-h serum lithium concentration, suggesting that at identical 12-h serum lithium concentrations, the 12-h brain lithium concentration is similar with both treatment regimens. (EG)

  5. Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries

    International Nuclear Information System (INIS)

    Wang, Biqiong; Liu, Jian; Sun, Qian; Li, Ruying; Sun, Xueliang; Sham, Tsun-Kong

    2014-01-01

    Atomic layer deposition (ALD) has been shown as a powerful technique to build three-dimensional (3D) all-solid-state microbattery, because of its unique advantages in fabricating uniform and pinhole-free thin films in 3D structures. The development of solid-state electrolyte by ALD is a crucial step to achieve the fabrication of 3D all-solid-state microbattery by ALD. In this work, lithium phosphate solid-state electrolytes were grown by ALD at four different temperatures (250, 275, 300, and 325 °C) using two precursors (lithium tert-butoxide and trimethylphosphate). A linear dependence of film thickness on ALD cycle number was observed and uniform growth was achieved at all four temperatures. The growth rate was 0.57, 0.66, 0.69, and 0.72 Å/cycle at deposition temperatures of 250, 275, 300, and 325 °C, respectively. Furthermore, x-ray photoelectron spectroscopy confirmed the compositions and chemical structures of lithium phosphates deposited by ALD. Moreover, the lithium phosphate thin films deposited at 300 °C presented the highest ionic conductivity of 1.73 × 10 −8 S cm −1 at 323 K with ∼0.51 eV activation energy based on the electrochemical impedance spectroscopy. The ionic conductivity was calculated to be 3.3 × 10 −8 S cm −1 at 26 °C (299 K). (paper)

  6. Numerical investigation of a non-aqueous lithium-oxygen battery based on lithium superoxide as the discharge product

    International Nuclear Information System (INIS)

    Tan, Peng; Ni, Meng; Shao, Zongping; Chen, Bin; Kong, Wei

    2017-01-01

    Highlights: •A macroscopic model for Li-O 2 batteries based on LiO 2 is developed. •The electrode and electrolyte properties on discharge behaviors are investigated. •A thin cathode with a large porosity is favorable for a high specific capacity. •A high catalytic activity can lead to a high discharge voltage. •The oxygen solubility has larger impacts on the discharge performance. -- Abstract: It is reported lithium superoxide as the discharge product can largely decrease the charge voltage and enable a high round-trip efficiency of lithium-oxygen (Li-O 2 ) batteries. Here, we conduct a numerical investigation of the discharge behaviors of such batteries with LiO 2 as the discharge product. A mathematical model considering the mass transport and electrochemical reaction processes is first developed, which gives good agreement of the simulated discharge voltage with the experimental data. Then, with this model, the effects of electrode and electrolyte properties on the discharge performance are detailedly investigated. It is found that a thin cathode with a large porosity is favorable for a high specific capacity, and a high catalytic activity can lead to a high discharge voltage. For the cathode with different geometrical properties, it is found that the oxygen solubility and diffusivity have similar impacts on discharge capacities, but the oxygen solubility has a larger impact on energy densities. Besides, the limitations and further developments of the present model are also discussed. The results obtained from this work may give useful guidance for the discharge performance improvements of non-aqueous Li-O 2 batteries, and provide implications for other energy storage systems with solid product formation such as Na-O 2 batteries and Li-S batteries.

  7. Progress of the BT-EdF-CEA project. The lithium polymer battery; Avancees du projet BT-EdF-CEA. Batterie lithium polymere

    Energy Technology Data Exchange (ETDEWEB)

    Marginedes, D.; Majastre, H. [Bollore Technologies, 29 - Quimper (France); Baudry, P.; Lascaud, S. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Bloch, D.; Lebrun, N. [CEA Grenoble, CEREM, 38 (France)

    1996-12-31

    The lithium-polymer energy storage technology requires the production of thin films of huge surface. The BT-EdF-CEA consortium has studied the various manufacturing techniques of these films and their assembly. The process was chosen according to its productivity, low expensiveness, ecological impact and energy performances with capacities reaching 40 Ah. This paper explains: the objectives and specifications of the project, the advantage of the consortium and the role of the different partners, the results (coating, dry extrusion and battery element manufacturing techniques), and the electrochemical performances of the elements. (J.S.)

  8. Progress of the BT-EdF-CEA project. The lithium polymer battery; Avancees du projet BT-EdF-CEA. Batterie lithium polymere

    Energy Technology Data Exchange (ETDEWEB)

    Marginedes, D; Majastre, H [Bollore Technologies, 29 - Quimper (France); Baudry, P; Lascaud, S [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Bloch, D; Lebrun, N [CEA Grenoble, CEREM, 38 (France)

    1997-12-31

    The lithium-polymer energy storage technology requires the production of thin films of huge surface. The BT-EdF-CEA consortium has studied the various manufacturing techniques of these films and their assembly. The process was chosen according to its productivity, low expensiveness, ecological impact and energy performances with capacities reaching 40 Ah. This paper explains: the objectives and specifications of the project, the advantage of the consortium and the role of the different partners, the results (coating, dry extrusion and battery element manufacturing techniques), and the electrochemical performances of the elements. (J.S.)

  9. Process for recovering tritium from molten lithium metal

    Science.gov (United States)

    Maroni, Victor A.

    1976-01-01

    Lithium tritide (LiT) is extracted from molten lithium metal that has been exposed to neutron irradiation for breeding tritium within a thermonuclear or fission reactor. The extraction is performed by intimately contacting the molten lithium metal with a molten lithium salt, for instance, lithium chloride - potassium chloride eutectic to distribute LiT between the salt and metal phases. The extracted tritium is recovered in gaseous form from the molten salt phase by a subsequent electrolytic or oxidation step.

  10. Optimizing lithium dosing in hemodialysis

    DEFF Research Database (Denmark)

    Bjarnason, N H; Munkner, R; Kampmann, J P

    2006-01-01

    in which we developed an algorithm based on a 2-compartment distribution without elimination. The GFR estimate led to plasma concentrations 3-4 times lower than those anticipated. In contrast, the estimates based on V(d) and the algorithm derived from pharmacokinetic modeling led to comparable loading dose...... in this patient with no residual kidney function. We did not observe adverse effects related to this regimen, which was monitored from 18 days to 8 months of therapy, and the patient experienced relief from her severe depressive disorder. In conclusion, dialysis patients may be treated with lithium administrated...

  11. Lithium concentration dependence of implanted helium retention in lithium silicates

    Energy Technology Data Exchange (ETDEWEB)

    Szocs, D.E., E-mail: szocsd@rmki.kfki.h [KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Szilagyi, E.; Bogdan, Cs.; Kotai, E. [KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Horvath, Z.E. [Research Institute for Technical Physics and Materials Science, H-1525 Budapest, P.O. Box 49 (Hungary)

    2010-06-15

    Helium ions of 500 keV were implanted with a fluence of 1.4 x 10{sup 17} ion/cm{sup 2} into various lithium silicates to investigate whether a threshold level of helium retention exists in Li-containing silicate ceramics similar to that found in SiO{sub x} in previous work. The composition and phases of the as prepared lithium silicates were determined by proton backscattering spectrometry (p-BS) and X-ray diffraction (XRD) methods with an average error of {+-}10%. Electrostatic charging of the samples was successfully eliminated by wrapping the samples in Al foil. The amounts of the retained helium within the samples were determined by subtracting the non-implanted spectra from the implanted ones. The experimental results show a threshold in helium retention depending on the Li concentration. Under 20 at.% all He is able to escape from the material; at around 30 at.% nearly half of the He, while over 65 at.% all implanted He is retained. With compositions expressed in SiO{sub 2} volume percentages, a trend similar to those reported of SiO{sub x} previously is found.

  12. Layered titanium disilicide stabilized by oxide coating for highly reversible lithium insertion and extraction.

    Science.gov (United States)

    Zhou, Sa; Simpson, Zachary I; Yang, Xiaogang; Wang, Dunwei

    2012-09-25

    The discovery of new materials has played an important role in battery technology development. Among the newly discovered materials, those with layered structures are often of particular interest because many have been found to permit highly repeatable ionic insertion and extraction. Examples include graphite and LiCoO(2) as anode and cathode materials, respectively. Here we report C49 titanium disilicide (TiSi(2)) as a new layered anode material, within which lithium ions can react with the Si-only layers. This result is enabled by the strategy of coating a thin (lithium-ion storage capacity of TiSi(2) is a result of its layered structure is expected to have major fundamental and practical implications.

  13. Corrosion of an Fe-12 Cr-1 Mo VW steel in thermally-convective lithium

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1983-01-01

    A thermal-convection loop of Fe-12 Cr-1 Mo VW steel circulated pure lithium between 500 and 350 0 C for 10,088 h. Periodic weighings of coupons at different temperatures around the loop revealed small weight losses and corrosion rates. Surface analysis showed a relatively thin corrosion layer with an underlying carbide-free zone and some depletion of chromium from the hottest specimen. While some mass transfer of chromium and nickel was detected, this mechanism did not strongly influence the weight loss process as it does with austenitic steels. Therefore, it appeared that reactions with carbon and nitrogen must be the dominant corrosion processes such that weight loss was maximized at the lowest temperature (350 0 C). Overall, the lithium-steel reactions in the temperature range of this experiment were relatively sluggish and the corrosion was not severe

  14. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium?sulfur battery design

    OpenAIRE

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi

    2016-01-01

    Lithium?sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understandin...

  15. Explosion of lithium-thionyl-chloride battery due to presence of lithium nitride

    DEFF Research Database (Denmark)

    Hennesø, E.; Hedlund, Frank Huess

    2015-01-01

    An explosion of a lithium–thionyl-chloride (Li–SOCl2) battery during production (assembly) leads to serious worker injury. The accident cell batch had been in a dry-air intermediate storage room for months before being readied with thionyl chloride electrolyte. Metallic lithium can react...... with atmospheric nitrogen to produce lithium nitride. Nodules of lithium nitride were found to be present on the lithium foil in other cells of the accident batch. The investigation attributed the explosion to the formation of porous lithium nitride during intermediate storage and a violent exothermal...... decomposition with the SOCl2–LiAlCl4 electrolyte triggered by welding. The literature is silent on hazards of explosion of Li–SOCl2 cells associated with the presence of lithium nitride. The silence is intriguing. Possible causes may be that such explosions are very rare, that explosions go unpublished...

  16. Lithium technologies for edge plasma control

    International Nuclear Information System (INIS)

    Sergeev, Vladimir Yu.; Kuteev, Boris V.; Bykov, Aleksey S.; Krylov, Sergey V.; Skokov, Viacheslav G.; Timokhin, Vladimir M.

    2012-01-01

    Highlights: ► We have investigated two new modes of operation been in T-10 limiter tokamak experiments with a novel rotary feeder of lithium dust. ► The observed decreases of bolometer and D β signals, with increase of the electron density during the lithium dust injection, reveal the effects of the first wall conditioning. ► The lithium technology may provide inherent safety mission for major disruption mitigation in a tokamak reactor, which requires demonstration in contemporary tokamak experiments. - Abstract: We have investigated two new modes of operation been in T-10 limiter tokamak experiments with a novel rotary feeder of lithium dust. Quasi steady-state mode I and pulse mode II of dust delivery were realized in both OH and OH + ECRH disruption free plasmas at the lithium flow rate up to 2 × 10 21 atoms/s. A higher flow rate in mode II with injection rate of ∼5 × 10 21 atoms/s caused a series of minor disruptions, which was completed by discharge termination after the major disruption. The observed decreases of bolometer and D β signals, with increase of the electron density during the lithium dust injection, reveal the effects of the first wall conditioning. The lithium technology may provide inherent safety pathway for major disruption mitigation in a tokamak reactor, which requires demonstration in contemporary tokamak experiments.

  17. Lithium-mediated protection against ethanol neurotoxicity

    Directory of Open Access Journals (Sweden)

    Jia Luo

    2010-06-01

    Full Text Available Lithium has long been used as a mood stabilizer in the treatment of manic-depressive (bipolar disorder. Recent studies suggest that lithium has neuroprotective properties and may be useful in the treatment of acute brain injuries such as ischemia and chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis. One of the most important neuroprotective properties of lithium is its anti-apoptotic action. Ethanol is a neuroteratogen and fetal alcohol spectrum disorders (FASD are caused by maternal ethanol exposure during pregnancy. FASD is the leading cause of mental retardation. Ethanol exposure causes neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. Excessive alcohol consumption is also associated with Wernicke–Korsakoff syndrome and neurodegeneration in the adult brain. Recent in vivo and in vitro studies indicate that lithium is able to ameliorate ethanol-induced neuroapoptosis. Lithium is an inhibitor of glycogen synthase kinase 3 (GSK3 which has recently been identified as a mediator of ethanol neurotoxicity. Lithium’s neuroprotection may be mediated by its inhibition of GSK3. In addition, lithium also affects many other signaling proteins and pathways that regulate neuronal survival and differentiation. This review discusses the recent evidence of lithium-mediated protection against ethanol neurotoxicity and potential underlying mechanisms.

  18. Lithium protects ethanol-induced neuronal apoptosis

    International Nuclear Information System (INIS)

    Zhong Jin; Yang Xianlin; Yao Weiguo; Lee Weihua

    2006-01-01

    Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15 min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3β, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3β (ser9). In addition, the selective GSK-3β inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits

  19. Aligned carbon nanotube-silicon sheets: a novel nano-architecture for flexible lithium ion battery electrodes.

    Science.gov (United States)

    Fu, Kun; Yildiz, Ozkan; Bhanushali, Hardik; Wang, Yongxin; Stano, Kelly; Xue, Leigang; Zhang, Xiangwu; Bradford, Philip D

    2013-09-25

    Aligned carbon nanotube sheets provide an engineered scaffold for the deposition of a silicon active material for lithium ion battery anodes. The sheets are low-density, allowing uniform deposition of silicon thin films while the alignment allows unconstrained volumetric expansion of the silicon, facilitating stable cycling performance. The flat sheet morphology is desirable for battery construction. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Molecular Beam Epitaxy Growth of High Crystalline Quality LiNbO3

    Science.gov (United States)

    Tellekamp, M. Brooks; Shank, Joshua C.; Goorsky, Mark S.; Doolittle, W. Alan

    2016-12-01

    Lithium niobate is a multi-functional material with wide reaching applications in acoustics, optics, and electronics. Commercial applications for lithium niobate require high crystalline quality currently limited to bulk and ion sliced material. Thin film lithium niobate is an attractive option for a variety of integrated devices, but the research effort has been stagnant due to poor material quality. Both lattice matched and mismatched lithium niobate are grown by molecular beam epitaxy and studied to understand the role of substrate and temperature on nucleation conditions and material quality. Growth on sapphire produces partially coalesced columnar grains with atomically flat plateaus and no twin planes. A symmetric rocking curve shows a narrow linewidth with a full width at half-maximum (FWHM) of 8.6 arcsec (0.0024°), which is comparable to the 5.8 arcsec rocking curve FWHM of the substrate, while the film asymmetric rocking curve is 510 arcsec FWHM. These values indicate that the individual grains are relatively free of long-range disorder detectable by x-ray diffraction with minimal measurable tilt and twist and represents the highest structural quality epitaxial material grown on lattice mismatched sapphire without twin planes. Lithium niobate is also grown on lithium tantalate producing high quality coalesced material without twin planes and with a symmetric rocking curve of 193 arcsec, which is nearly equal to the substrate rocking curve of 194 arcsec. The surface morphology of lithium niobate on lithium tantalate is shown to be atomically flat by atomic force microscopy.

  1. CRITIC-I: Instrumented lithium oxide irradiation: Part 1, Lithium oxide fabrication and characteristics

    International Nuclear Information System (INIS)

    Applegate, D.S.; Poeppel, R.B.

    1987-06-01

    Fine-grained, sinterable lithium oxide powder was prepared by high-temperature vacuum calcination of molten lithium carbonate. The product was ball milled, cold pressed, and fired in an oxygen atmosphere. The fired density, grain size, and surface roughness varied widely with firing schedule. Most variations were attributed to moisture content. Rings of high-density, sintered lithium oxide will be used in an in-reactor experiment to measure tritium release. 2 refs., 8 figs., 1 tab

  2. Stemming the obesity epidemic : a tantalizing prospect

    NARCIS (Netherlands)

    Veerman, J Lennert; Barendregt, Jan J; van Beeck, Ed F; Seidell, Jacob C; Mackenbach, Johan P

    OBJECTIVE: Obesity is a growing problem worldwide, but there are no good methods to assess the future course of the epidemic and the potential influence of interventions. We explore the behavior change needed to stop the obesity epidemic in the U.S. RESEARCH METHODS AND PROCEDURES: We modeled the

  3. Thermochemical investigation of lithium-vanadium bronzes

    International Nuclear Information System (INIS)

    Filippova, S.E.; Kesler, Ya.A.; Tret'yakov, Yu.D.; Gordeev, I.V.

    1979-01-01

    A thermochemical investigation was carried out of lithium-vanadium bronzes. The enthalpies of solution and the standard enthalpies of formation of the bronzes β-Lisub(x)Vsub(2)Osub(5) were determined. Investigated was the dependence of the enthalpy of mixing bronzes on the composition; a linear character of the dependence evidences of negligibly small, as compared to the experimental error, energy variations of the matrix V 2 O 5 on introduction of lithium. The variation was calculated of the partial molar enthalpy of lithium in the formation of β-Lisub(x)Vsub(2)Osub(5)

  4. Design of liquid lithium pumps for FMIT

    International Nuclear Information System (INIS)

    Adkins, H.E.

    1983-01-01

    In the Fusion Materials Irradiation Test (FMIT) facility, a jet of liquid lithium is bombarded by accelerated deuterons to generate high energy neutrons for materials testing. The lithium system will include two electromagnetic pumps, a 750 gpm main pump and a 10 gpm auxiliary pump. The larger pump was designed and built in 1982, following extensive testing of a similar pump in the Experimental Lithium System. Design of the auxiliary pump has been completed, but fabrication has not started. This paper discusses the design considerations leading to selection of the Annular Linear Induction Pump (ALIP) concept for these applications. Design parameters, fabrication procedures, and results of pump testing are also reviewed

  5. Lithium-ion batteries advances and applications

    CERN Document Server

    Pistoia, Gianfranco

    2014-01-01

    Lithium-Ion Batteries features an in-depth description of different lithium-ion applications, including important features such as safety and reliability. This title acquaints readers with the numerous and often consumer-oriented applications of this widespread battery type. Lithium-Ion Batteries also explores the concepts of nanostructured materials, as well as the importance of battery management systems. This handbook is an invaluable resource for electrochemical engineers and battery and fuel cell experts everywhere, from research institutions and universities to a worldwi

  6. Lithium batteries advanced technologies and applications

    CERN Document Server

    Scrosati, Bruno; Schalkwijk, Walter A van; Hassoun, Jusef

    2013-01-01

    Explains the current state of the science and points the way to technological advances First developed in the late 1980s, lithium-ion batteries now power everything from tablet computers to power tools to electric cars. Despite tremendous progress in the last two decades in the engineering and manufacturing of lithium-ion batteries, they are currently unable to meet the energy and power demands of many new and emerging devices. This book sets the stage for the development of a new generation of higher-energy density, rechargeable lithium-ion batteries by advancing battery chemistry and ident

  7. Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes.

    Science.gov (United States)

    Zhang, Xue-Qiang; Chen, Xiang; Cheng, Xin-Bing; Li, Bo-Quan; Shen, Xin; Yan, Chong; Huang, Jia-Qi; Zhang, Qiang

    2018-05-04

    Safe and rechargeable lithium metal batteries have been difficult to achieve because of the formation of lithium dendrites. Herein an emerging electrolyte based on a simple solvation strategy is proposed for highly stable lithium metal anodes in both coin and pouch cells. Fluoroethylene carbonate (FEC) and lithium nitrate (LiNO 3 ) were concurrently introduced into an electrolyte, thus altering the solvation sheath of lithium ions, and forming a uniform solid electrolyte interphase (SEI), with an abundance of LiF and LiN x O y on a working lithium metal anode with dendrite-free lithium deposition. Ultrahigh Coulombic efficiency (99.96 %) and long lifespans (1000 cycles) were achieved when the FEC/LiNO 3 electrolyte was applied in working batteries. The solvation chemistry of electrolyte was further explored by molecular dynamics simulations and first-principles calculations. This work provides insight into understanding the critical role of the solvation of lithium ions in forming the SEI and delivering an effective route to optimize electrolytes for safe lithium metal batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electrolytic method for the production of lithium using a lithium-amalgam electrode

    Science.gov (United States)

    Cooper, John F.; Krikorian, Oscar H.; Homsy, Robert V.

    1979-01-01

    A method for recovering lithium from its molten amalgam by electrolysis of the amalgam in an electrolytic cell containing as a molten electrolyte a fused-salt consisting essentially of a mixture of two or more alkali metal halides, preferably alkali metal halides selected from lithium iodide, lithium chloride, potassium iodide and potassium chloride. A particularly suitable molten electrolyte is a fused-salt consisting essentially of a mixture of at least three components obtained by modifying an eutectic mixture of LiI-KI by the addition of a minor amount of one or more alkali metal halides. The lithium-amalgam fused-salt cell may be used in an electrolytic system for recovering lithium from an aqueous solution of a lithium compound, wherein electrolysis of the aqueous solution in an aqueous cell in the presence of a mercury cathode produces a lithium amalgam. The present method is particularly useful for the regeneration of lithium from the aqueous reaction products of a lithium-water-air battery.

  9. Recovery of Lithium from Geothermal Brine with Lithium-Aluminum Layered Double Hydroxide Chloride Sorbents.

    Science.gov (United States)

    Paranthaman, Mariappan Parans; Li, Ling; Luo, Jiaqi; Hoke, Thomas; Ucar, Huseyin; Moyer, Bruce A; Harrison, Stephen

    2017-11-21

    We report a three-stage bench-scale column extraction process to selectively extract lithium chloride from geothermal brine. The goal of this research is to develop materials and processing technologies to improve the economics of lithium extraction and production from naturally occurring geothermal and other brines for energy storage applications. A novel sorbent, lithium aluminum layered double hydroxide chloride (LDH), is synthesized and characterized with X-ray powder diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis. Each cycle of the column extraction process consists of three steps: (1) loading the sorbent with lithium chloride from brine; (2) intermediate washing to remove unwanted ions; (3) final washing for unloading the lithium chloride ions. Our experimental analysis of eluate vs feed concentrations of Li and competing ions demonstrates that our optimized sorbents can achieve a recovery efficiency of ∼91% and possess excellent Li apparent selectivity of 47.8 compared to Na ions and 212 compared to K ions, respectively in the brine. The present work demonstrates that LDH is an effective sorbent for selective extraction of lithium from brines, thus offering the possibility of effective application of lithium salts in lithium-ion batteries leading to a fundamental shift in the lithium supply chain.

  10. Maximum Recommended Dosage of Lithium for Pregnant Women Based on a PBPK Model for Lithium Absorption

    Directory of Open Access Journals (Sweden)

    Scott Horton

    2012-01-01

    Full Text Available Treatment of bipolar disorder with lithium therapy during pregnancy is a medical challenge. Bipolar disorder is more prevalent in women and its onset is often concurrent with peak reproductive age. Treatment typically involves administration of the element lithium, which has been classified as a class D drug (legal to use during pregnancy, but may cause birth defects and is one of only thirty known teratogenic drugs. There is no clear recommendation in the literature on the maximum acceptable dosage regimen for pregnant, bipolar women. We recommend a maximum dosage regimen based on a physiologically based pharmacokinetic (PBPK model. The model simulates the concentration of lithium in the organs and tissues of a pregnant woman and her fetus. First, we modeled time-dependent lithium concentration profiles resulting from lithium therapy known to have caused birth defects. Next, we identified maximum and average fetal lithium concentrations during treatment. Then, we developed a lithium therapy regimen to maximize the concentration of lithium in the mother’s brain, while maintaining the fetal concentration low enough to reduce the risk of birth defects. This maximum dosage regimen suggested by the model was 400 mg lithium three times per day.

  11. Prismatic lithium/thionyl chloride cells, EP series''. Kakugata enka thionylter dot lithium denchi EP series''

    Energy Technology Data Exchange (ETDEWEB)

    Kogure, M.; Ide, M.; Mizutani, M. (Japan Storage Battery Co. Ltd., Kyoto (Japan))

    1990-06-25

    This paper reports on a new type lithium-thionyl chloride cell of high safety. Its structure and characteristics are summerized as follows: first, a porous solid of carbon black, that is the positive electrode, including electrolyte solution of SOCl {sub 2} occupies central part of the interio of a prismatic case made of a stainless steel plate, that is the negative electrode, and a thin plate of lithium covers the inner surface of the steel plate, a glass fibre layer being placed in between the lithium plate and the carbon black solid; second, the cell continues to discharge at constant voltage (3.6V) until its life finishes, for instance, for over 10 years when connected to a risistor of 150k {omega}, third, the cell is effectively used at temperatures between {minus} 55 and 85 centigrade; fourth, the cell is preserved for a long duration without scarcely suffering in its efficiency, its capacity decrea-sing at the rate of 0.5 - 1.0% per year; fifth, the cell does not burst, catch fire or explode even if it is short-circuited, swing violently and then fallen from a height of 1.9m to concrete floor, crushed and, in particular, heated in various ways (it is so de-vised that SOCl {sub 2} vapor escapes through the glass seal adjacent to the positive terminal at temperatures about 160 centigrade). 2 refs., 10 figs.

  12. Lithium-Based High Energy Density Flow Batteries

    Science.gov (United States)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  13. Starting lithium prophylaxis early v. late in bipolar disorder

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Vradi, Eleni; Andersen, Per Kragh

    2014-01-01

    BACKGROUND: No study has investigated when preventive treatment with lithium should be initiated in bipolar disorder. AIMS: To compare response rates among patients with bipolar disorder starting treatment with lithium early v. late. METHOD: Nationwide registers were used to identify all patients...... with a diagnosis of bipolar disorder in psychiatric hospital settings who were prescribed lithium during the period 1995-2012 in Denmark (n = 4714). Lithium responders were defined as patients who, following a stabilisation lithium start-up period of 6 months, continued lithium monotherapy without being admitted...... to hospital. Early v. late intervention was defined in two ways: (a) start of lithium following first contact; and (b) start of lithium following a diagnosis of a single manic/mixed episode. RESULTS: Regardless of the definition used, patients who started lithium early had significantly decreased rates of non...

  14. Electrochemical reactivity of Co-Li2S nanocomposite for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhou, Yongning; Wu, Changliang; Zhang, Hua; Wu, Xiaojing; Fu, Zhengwen

    2007-01-01

    The fabrication of Co-Li 2 S nanocomposite thin film is reported by pulsed laser deposition (PLD) for the first time. Li 2 S-Co nanocomposite thin film is used as storing Li electrodes that have led to promising electrochemical activity and good electrochemical performance. The releasing Li process from the as-deposited Li 2 S-Co nanocomposite thin films is confirmed by the ex situ high resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED) measurements and may come from the decomposition of Li 2 S with and without the interaction of metal Co into CoS 2 and S. The electrochemical reaction mechanism of Co-Li 2 S nanocomposite film electrode involving both the formation and decomposition of Li 2 S and the lithium extraction/insertion of CoS 2 after the initial charging process is proposed. Our results demonstrate the advantages of using Co-Li 2 S nanocomposite in storage lithium materials

  15. LITHIUM TOXICITY IN ELDERLY-A CASE REPORT AND DISCUSSION

    Directory of Open Access Journals (Sweden)

    Mariana D. Arnaoudova

    2014-07-01

    Full Text Available Background: The therapeutic effect of Lithium as a mono therapy or as an augmenting agent in a variety of medical and psychiatric disorders is under doubt. However, lithium is associated with a number of adverse effects. Method and objective: A review of the literature on lithium use in older adults and a case report presentation. Summary of results: The literature, concerning current uses of Lithium in older patients, especially for patients with neurologic or cognitive impairments is limited due to the lack of well-designed, large clinical trials. Elderly patients are at higher risk to develop neurotoxicity in the course of lithium therapy. We present a case of 66 years old female patient, suffering bipolar disorder, who developed lithium toxicity and was admitted at the gerontopsychiatric department due to a confusional state, tremor and gait abnormality. Lithium toxicity was suspected when sufficient information about previous medical history of lithium therapy has been obtained. Lithium level found to be 1.69mmol/L. The patient has developed intoxication during maintenance therapy with a lithium dosage which had been unchanged for months. Conclusion: Elderly patients require lower doses of Lithium to achieve similar serum concentrations as those in younger adults. Neurotoxicity could be suspected at serum lithium levels which are considered therapeutic in younger adults. When prescribing lithium agents in elderly we should consider age-related changes in pharmacokinetics. The best way to prevent lithium toxicity is to control the serum concentration regularly during therapy.

  16. SELECTIVE SODIUM REMOVAL FROM LITHIUM CHLORIDE ...

    African Journals Online (AJOL)

    Preferred Customer

    regression coefficient value of above 0.99. ... The powdered pattern of the sample was determined by X-ray ... brines and supplied by the Qinghai Lithium Co. ... Flame atomic absorption spectrophotometer (FAAS) (GBC-932 AAS, Australia).

  17. NSTX Plasma Response to Lithium Coated Divertor

    Energy Technology Data Exchange (ETDEWEB)

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  18. Lithium batteries: Status, prospects and future

    International Nuclear Information System (INIS)

    Scrosati, Bruno; Garche, Juergen

    2010-01-01

    Lithium batteries are characterized by high specific energy, high efficiency and long life. These unique properties have made lithium batteries the power sources of choice for the consumer electronics market with a production of the order of billions of units per year. These batteries are also expected to find a prominent role as ideal electrochemical storage systems in renewable energy plants, as well as power systems for sustainable vehicles, such as hybrid and electric vehicles. However, scaling up the lithium battery technology for these applications is still problematic since issues such as safety, costs, wide operational temperature and materials availability, are still to be resolved. This review focuses first on the present status of lithium battery technology, then on its near future development and finally it examines important new directions aimed at achieving quantum jumps in energy and power content. (author)

  19. Rechargeable Lithium Metal Cell, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — PSI proposes to develop a rechargeable lithium metal cell with energy density >400Wh/kg. This represents a >70% increase as compared to similarly constructed...

  20. Catastrophic event modeling. [lithium thionyl chloride batteries

    Science.gov (United States)

    Frank, H. A.

    1981-01-01

    A mathematical model for the catastrophic failures (venting or explosion of the cell) in lithium thionyl chloride batteries is presented. The phenomenology of the various processes leading to cell failure is reviewed.

  1. Lithium thionyl chloride high rate discharge

    Science.gov (United States)

    Klinedinst, K. A.

    1980-04-01

    Improvements in high rate lithium thionyl chloride power technology achieved by varying the electrolyte composition, operating temperature, cathode design, and cathode composition are discussed. Discharge capacities are plotted as a function of current density, cell voltage, and temperature.

  2. Lithium diffusion in silver vanadium oxide

    International Nuclear Information System (INIS)

    Takeuchi, E.S.; Thiebolt, W.C. III

    1989-01-01

    Lithium/silver vanadium oxide (SVO) batteries have been developed to power implantable devices. The voltage of Li/SVO cells decreases with discharge allowing state of charge assessment by accurate determination of the cells' open circuit voltage. The open circuit voltage recovery of Li/SVO cells was monitored during intermittent high rate discharge. It was found that the voltage does not recover at the same rate or magnitude at all depths of discharge. The authors describe lithium diffusion in SVO studied by low scan rate voltammetry where utilization of SVO at various scan rates was used to determine the diffusion rate of lithium. A pulse technique was also used where the rate of lithium diffusion was measured at various depths of discharge

  3. Lithium converter of reactor neutrinos in antineutrino

    International Nuclear Information System (INIS)

    Lyutostanskij, Yu.S.; Lyashuk, V.I.

    1989-01-01

    The questions of developing lithium converter of the reactor neutrons in antineutrino operating at dynamic regime in the scheme with the cycle circulation of the high-purified lithium (by 7 Li isotope) through the converter are considered. The scheme allows to localize the 8 Li β-decay (T 1/2 =0.84 s) in the reservoir near the detector and so to design the hard-spectrum lithium ν-tilde e -source (E max ≅13 MeV) at the distance from the active zone being the soft-spectrum ν-tilde e -source. The expressions for the lithium ν-tilde e flux from the converter, reservoir and conveyance channel are obtained. 9 refs.; 8 figs.; 1 tab

  4. NSTX plasma response to lithium coated divertor

    International Nuclear Information System (INIS)

    Kugel, H.W.; Bell, M.G.; Allain, J.P.; Bell, R.E.; Ding, S.; Gerhardt, S.P.; Jaworski, M.A.; Kaita, R.; Kallman, J.; Kaye, S.M.; LeBlanc, B.P.; Maingi, Rajesh; Majeski, R.; Maqueda, R.J.; Mansfield, D.K.; Mueller, D.; Nygren, R.E.; Paul, S.F.; Raman, R.; Roquemore, A.L.; Sabbagh, S.A.; Schneider, H.; Skinner, C.H.; Soukhanovskii, V.A.; Taylor, C.N.; Timberlake, J.; Wampler, W.R.; Zakharov, L.E.; Zweben, S.J.

    2011-01-01

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma-facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Z(eff) and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, < 0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  5. A study about lithium - the Brazilian situation

    International Nuclear Information System (INIS)

    Ribeiro, G.F.

    1984-01-01

    A geoeconomical analysis of lithium is carried out, from its natural occurrence to its final application as a commercial product. General geological aspects such as the most important lithium mines, their minerals and their world distribution are taken into account. Also discussed is the viewpoint of enterprises regarding the various economical sectors associated with the production, consumption, marketing, installed industrial capacity, preparation of new products, development programs and installation of new plants. The applications of lithium, its several alloys and other chemical compounds are considered. Conclusions from these studies and from the data acquired are drawn, regarding the present Brazilian situation and its perspectives towards a future demand for lithium. (C.L.B.) [pt

  6. Lithium and sodium batteries with polysulfide electrolyte

    KAUST Repository

    Li, Mengliu

    2017-12-28

    A battery comprising: at least one cathode, at least one anode, at least one battery separator, and at least one electrolyte disposed in the separator, wherein the anode is a lithium metal or lithium alloy anode or an anode adapted for intercalation of lithium ion, wherein the cathode comprises material adapted for reversible lithium extraction from and insertion into the cathode, and wherein the separator comprises at least one porous, electronically conductive layer and at least one insulating layer, and wherein the electrolyte comprises at least one polysulfide anion. The battery provides for high energy density and capacity. A redox species is introduced into the electrolyte which creates a hybrid battery. Sodium metal and sodium-ion batteries also provided.

  7. The Lithium Battery: assessing the neurocognitive profile of lithium in bipolar disorder.

    Science.gov (United States)

    Malhi, Gin S; McAulay, Claire; Gershon, Samuel; Gessler, Danielle; Fritz, Kristina; Das, Pritha; Outhred, Tim

    2016-03-01

    The aim of the present study was to characterize the neurocognitive effects of lithium in bipolar disorder to inform clinical and research approaches for further investigation. Key words pertaining to neurocognition in bipolar disorder and lithium treatment were used to search recognized databases to identify relevant literature. The authors also retrieved gray literature (e.g., book chapters) known to them and examined pertinent articles from bibliographies. A limited number of studies have examined the effects of lithium on neurocognition in bipolar disorder and, although in some domains a consistent picture emerges, in many domains the findings are mixed. Lithium administration appears to reshape key components of neurocognition - in particular, psychomotor speed, verbal memory, and verbal fluency. Notably, it has a sophisticated neurocognitive profile, such that while lithium impairs neurocognition across some domains, it seemingly preserves others - possibly those vulnerable to the effects of bipolar disorder. Furthermore, its effects are likely to be direct and indirect (via mood, for example) and cumulative with duration of treatment. Disentangling the components of neurocognition modulated by lithium in the context of a fluctuating and complex illness such as bipolar disorder is a significant challenge but one that therefore demands a stratified and systematic approach, such as that provided by the Lithium Battery. In order to delineate the effects of lithium therapy on neurocognition in bipolar disorder within both research and clinical practice, a greater understanding and measurement of the relatively stable neurocognitive components is needed to examine those that indeed change with lithium treatment. In order to achieve this, we propose a Lithium Battery-Clinical and a Lithium Battery-Research that can be applied to these respective settings. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Nitrogen Recovery by Fe-Ti Alloy from Molten Lithium at High Temperatures

    International Nuclear Information System (INIS)

    Juro Yagi; Akihiro Suzuki; Takayuki Terai; Takeo Muroga

    2006-01-01

    Molten lithium will be used as a beam target of IFMIF (International Fusion Materials Irradiation Facility), and is also expected as a self-cooling and tritium breeding material in fusion reactors. Since tritium is generated in both cases, tritium recovery is required from viewpoints of safety and a feasible fuel cycle. Nitrogen impurity in the lithium, however, not only enhance corrosion to tubing materials, but also promote nitride contamination on a surface of yttrium, which is considered to be a tritium gettering candidate. In our previous study, nitrogen recovery by hot trap method with Fe + 5%Ti alloy as a gettering material showed a higher nitrogen reduction capacity than that with Ti or Cr metal. In this study, high temperature recovery of nitrogen with Fe-Ti alloy was examined to achieve more efficient recovery and higher recovery rate coefficient. Fe - 4%Ti alloy are fabricated by electron beam melting, and its thin plates (40 mm x 10 mm x 1 mm) are used in our experiments. The Fe - 4%Ti alloy plates were immersed into 25 g of liquid lithium in Mo crucible under Ar atmosphere. The crucible was put in a SUS316 stainless steel pot heated at 600, 700, or 800 o C up to 100 hours. A small portion of the liquid lithium in the crucible was sampled out with adequate time interval, and the nitrogen concentrations in the sampled lithium were observed by changing nitrogen to ammonia. Experiments using lithium containing about 100 wt. ppm of nitrogen at the beginning show that the nitrogen reduction became faster with temperature and the minimum achieved nitrogen concentration was less than 20 wppm in case of 800 C. SEM-EDS analysis on the plates after experiment shows a Ti-rich surface layer of tens of micrometers on the alloy immersed in lithium at 800 C, and XPS analysis indicates the surface layer is TiN, while no Ti-rich layer nor TiN were observed on the alloys immersed at 600 o C and 700 o C. By increasing temperature from 600 o C to 800 o C, the diffusion

  9. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  10. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  11. Principles and applications of lithium secondary batteries

    CERN Document Server

    Park, Jung-Ki

    2012-01-01

    Lithium secondary batteries have been key to mobile electronics since 1990. Large-format batteries typically for electric vehicles and energystorage systems are attracting much attention due to current energy and environmental issues. Lithium batteries are expected to play a centralrole in boosting green technologies. Therefore, a large number of scientists and engineers are carrying out research and development onlithium secondary batteries.The book is written in a straightforward fashion suitable for undergraduate and graduate students, as well as scientists, and engineer

  12. Towards Safer Lithium-Ion Batteries

    OpenAIRE

    Herstedt, Marie

    2003-01-01

    Surface film formation at the electrode/electrolyte interface in lithium-ion batteries has a crucial impact on battery performance and safety. This thesis describes the characterisation and treatment of electrode interfaces in lithium-ion batteries. The focus is on interface modification to improve battery safety, in particular to enhance the onset temperature for thermally activated reactions, which also can have a negative influence on battery performance. Photoelectron Spectroscopy (PES) ...

  13. Multiphoton Ionization of Laser Cooled Lithium

    OpenAIRE

    Steinmann, Jochen

    2007-01-01

    Reaction microscopes enable kinematically complete measurements of atomic and molecular fragmentation. An ultracold atomic target is usually provided by a supersonic gas jet. The apparatus developed in the course of this thesis for the first time combines the principle of the reaction microscope with a magneto-optical trap. This allows for the preparation of lithium atoms in the sub-mK range. Being a three-electron system, its simple atomic structure makes lithium a model system of great topi...

  14. Recovery of lithium from waste materials

    Czech Academy of Sciences Publication Activity Database

    Jandová, J.; Dvořák, P.; Kondás, J.; Havlák, Lubomír

    2012-01-01

    Roč. 56, č. 1 (2012), s. 50-54 ISSN 0862-5468 Institutional research plan: CEZ:AV0Z10100520 Keywords : alkaline wastewater * laboratory scale * lithium carbonates * lithium metal s * precipitation efficiency * reduced pressure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.418, year: 2012 http://www.ceramics-silikaty.cz/2012/pdf/2012_01_50.pdf

  15. A Cable-Shaped Lithium Sulfur Battery.

    Science.gov (United States)

    Fang, Xin; Weng, Wei; Ren, Jing; Peng, Huisheng

    2016-01-20

    A carbon nanostructured hybrid fiber is developed by integrating mesoporous carbon and graphene oxide into aligned carbon nanotubes. This hybrid fiber is used as a 1D cathode to fabricate a new cable-shaped lithium-sulfur battery. The fiber cathode exhibits a decent specific capacity and lifespan, which makes the cable-shaped lithium-sulfur battery rank far ahead of other fiber-shaped batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  17. Lithium in the treatment of aggression.

    Science.gov (United States)

    Sheard, M H

    1975-02-01

    Lithium has become a widely accepted treatment for manic-depressive psychosis. It is dramatically effective for many cases of mania and is useful in the prevention of manic and depressive episodes. Hyperaggressiveness and hypersexuality are frequent components of manic-depressive illness and abate under the influence of lithium. A brief review is presented of the behavioral and biochemical pharmacology of lithium. This documents the inhibitory role which lithium can play in several examples of animal aggressive behavior including pain-elicited aggression, mouse killing in rats, isolation-induced aggression in mice, p-chlorophenylalanine-induced aggression in rats, and hypothalamically induced aggression in cats. The use of lithium to control human aggressive behavior has resulted in controversial findings. In epileptic conditions, improvement has been reported in interseizure aggressivity, but other reports indicate the possibility of increased seizures. Improvement in aggressive behavior in childhood has occasionally been reported as well as in emotionally unstable character disorders in young female patients. Te was a single blind study and the other a large but uncontrolled study. Both studies reported an improvement in aggressiveness as indicated by fewer recorded reports (tickets) for fighting. The final study reported is a study of 12 male delinquents age 16 to 23. They received lithium or placebo for 4 months inside an institution and then a trial of lithium for 1 to 12 months on an outpatient basis. Analysis of results in terms of the number of aggressive antisocial acts showed fewer serious aggressive episodes when the lithium level was between 0.6 and 1 meq/liter than when it was between 0.0 and 0.6 meq/liter. These results must be viewed with caution and are only suggestive since the study was not double blind.

  18. Characterization of lithium evaporators for LTX

    Science.gov (United States)

    Nieto-Perez, M.; Majeski, R.; Timberlake, J.; Lundberg, D.; Kaita, R.; Arevalo-Torres, B.

    2010-11-01

    The presence of lithium on the internal components of fusion devices has proven to be beneficial for reactor performance. The Lithium Tokamak Experiment (LTX) will be the first experimental fusion device operating with a significant portion of its internal surface coated with lithium. One of the key capabilities in the device is the reliable production of lithium films inside the reactor. This task is accomplished with the use of lithium evaporators, specially designed for LTX using resistively heated yttria crucibles. In the present work, results from the operation of one of these evaporators on a separate test stand are presented. Deposition measurements at different power levels were performed using a quartz crystal deposition monitor, and temperature distributions in the evaporator crucible and its content were obtained using an infrared camera and a dip-in thermocouple probe. Modeling of the evaporation cloud was done with the raytracing software OptiCAD, and comparisons between the computations and the temperature and flux measurements were performed, in order to accurately predict spatial lithium deposition rates in different locations of the LTX device.

  19. Applications of lithium in nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Oliviera, Glaucia A.C. de; Bustillos, José O.V.; Ferreira, João C.; Bergamaschi, Vanderlei S.; Moraes, Rafaeli M. de; Gimenez, Maíse P.; Miyamoto, Flavia K.; Seneda, José A., E-mail: glaucia.oliveira@ipen.br, E-mail: ovega@ipen.br, E-mail: jcferrei@ipen.br, E-mail: vsberga@ipen.br, E-mail: rafaeli.medeiros.moraes@gmail.com, E-mail: maisepastore@hotmail.com, E-mail: fla.kimiyamoto@gmail.com, E-mail: jaseneda@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), Paulo, SP (Brazil)

    2017-07-01

    Lithium is a material of great interest in the world, it is found in different minerals on Earth's crust (spodumene, lepidolite, amblygonite and petalite) also in salt pans. This element belongs to alkaline group and has two natural isotopes: Li-6 and Li-7. In the nuclear field, lithium isotopes are used for different purposes. The Li-6 is applied in the production of energy, because its section of shock is larger than the other isotope. The Li-7 regulates the pH in refrigerant material in the primary circuits of the Pressurized Water Nuclear Reactor (PWR). In nuclear reactor, lithium is used as a heat transfer due its boiling temperature (1342°C), making it an excellent thermal conductor. However, to reach all these applications, lithium must have high purity (> 99%). The main processes to reach a high purity level of lithium employee a combination of solvent extraction and ion exchange process, to obtain its salts or ending with chemical electrolysis of its chlorides to obtain its pure metal. This work presents a review of new applications of Lithium in Nuclear Energy and its purification and enrichment processes. (author)

  20. Applications of lithium in nuclear energy

    International Nuclear Information System (INIS)

    Oliviera, Glaucia A.C. de; Bustillos, José O.V.; Ferreira, João C.; Bergamaschi, Vanderlei S.; Moraes, Rafaeli M. de; Gimenez, Maíse P.; Miyamoto, Flavia K.; Seneda, José A.

    2017-01-01

    Lithium is a material of great interest in the world, it is found in different minerals on Earth's crust (spodumene, lepidolite, amblygonite and petalite) also in salt pans. This element belongs to alkaline group and has two natural isotopes: Li-6 and Li-7. In the nuclear field, lithium isotopes are used for different purposes. The Li-6 is applied in the production of energy, because its section of shock is larger than the other isotope. The Li-7 regulates the pH in refrigerant material in the primary circuits of the Pressurized Water Nuclear Reactor (PWR). In nuclear reactor, lithium is used as a heat transfer due its boiling temperature (1342°C), making it an excellent thermal conductor. However, to reach all these applications, lithium must have high purity (> 99%). The main processes to reach a high purity level of lithium employee a combination of solvent extraction and ion exchange process, to obtain its salts or ending with chemical electrolysis of its chlorides to obtain its pure metal. This work presents a review of new applications of Lithium in Nuclear Energy and its purification and enrichment processes. (author)

  1. Positron confinement in embedded lithium nanoclusters

    Science.gov (United States)

    van Huis, M. A.; van Veen, A.; Schut, H.; Falub, C. V.; Eijt, S. W.; Mijnarends, P. E.; Kuriplach, J.

    2002-02-01

    Quantum confinement of positrons in nanoclusters offers the opportunity to obtain detailed information on the electronic structure of nanoclusters by application of positron annihilation spectroscopy techniques. In this work, positron confinement is investigated in lithium nanoclusters embedded in monocrystalline MgO. These nanoclusters were created by means of ion implantation and subsequent annealing. It was found from the results of Doppler broadening positron beam analysis that approximately 92% of the implanted positrons annihilate in lithium nanoclusters rather than in the embedding MgO, while the local fraction of lithium at the implantation depth is only 1.3 at. %. The results of two-dimensional angular correlation of annihilation radiation confirm the presence of crystalline bulk lithium. The confinement of positrons is ascribed to the difference in positron affinity between lithium and MgO. The nanocluster acts as a potential well for positrons, where the depth of the potential well is equal to the difference in the positron affinities of lithium and MgO. These affinities were calculated using the linear muffin-tin orbital atomic sphere approximation method. This yields a positronic potential step at the MgO||Li interface of 1.8 eV using the generalized gradient approximation and 2.8 eV using the insulator model.

  2. Electrode for a lithium cell

    Science.gov (United States)

    Thackeray, Michael M [Naperville, IL; Vaughey, John T [Elmhurst, IL; Dees, Dennis W [Downers Grove, IL

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  3. Electroplating lithium transition metal oxides

    Science.gov (United States)

    Zhang, Huigang; Ning, Hailong; Busbee, John; Shen, Zihan; Kiggins, Chadd; Hua, Yuyan; Eaves, Janna; Davis, Jerome; Shi, Tan; Shao, Yu-Tsun; Zuo, Jian-Min; Hong, Xuhao; Chan, Yanbin; Wang, Shuangbao; Wang, Peng; Sun, Pengcheng; Xu, Sheng; Liu, Jinyun; Braun, Paul V.

    2017-01-01

    Materials synthesis often provides opportunities for innovation. We demonstrate a general low-temperature (260°C) molten salt electrodeposition approach to directly electroplate the important lithium-ion (Li-ion) battery cathode materials LiCoO2, LiMn2O4, and Al-doped LiCoO2. The crystallinities and electrochemical capacities of the electroplated oxides are comparable to those of the powders synthesized at much higher temperatures (700° to 1000°C). This new growth method significantly broadens the scope of battery form factors and functionalities, enabling a variety of highly desirable battery properties, including high energy, high power, and unprecedented electrode flexibility. PMID:28508061

  4. The cosmological lithium problem revisited

    International Nuclear Information System (INIS)

    Bertulani, C. A.; Mukhamedzhanov, A. M.; Shubhchintak

    2016-01-01

    After a brief review of the cosmological lithium problem, we report a few recent attempts to find theoretical solutions by our group at Texas A&M University (Commerce & College Station). We will discuss our studies on the theoretical description of electron screening, the possible existence of parallel universes of dark matter, and the use of non-extensive statistics during the Big Bang nucleosynthesis epoch. Last but not least, we discuss possible solutions within nuclear physics realm. The impact of recent measurements of relevant nuclear reaction cross sections for the Big Bang nucleosynthesis based on indirect methods is also assessed. Although our attempts may not able to explain the observed discrepancies between theory and observations, they suggest theoretical developments that can be useful also for stellar nucleosynthesis.

  5. The cosmological lithium problem revisited

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, C. A., E-mail: carlos.bertulani@tamuc.edu [Department of Physics and Astronomy, Texas A& M University-Commerce, Commerce, TX 75429 (United States); Department of Physics and Astronomy, Texas A& M University, College Station, TX 75429 (United States); Mukhamedzhanov, A. M., E-mail: akram@comp.tamu.edu [Department of Physics and Astronomy, Texas A& M University, College Station, TX 75429 (United States); Shubhchintak, E-mail: shub.shubhchintak@tamuc.edu [Department of Physics and Astronomy, Texas A& M University-Commerce, Commerce, TX 75429 (United States)

    2016-07-07

    After a brief review of the cosmological lithium problem, we report a few recent attempts to find theoretical solutions by our group at Texas A&M University (Commerce & College Station). We will discuss our studies on the theoretical description of electron screening, the possible existence of parallel universes of dark matter, and the use of non-extensive statistics during the Big Bang nucleosynthesis epoch. Last but not least, we discuss possible solutions within nuclear physics realm. The impact of recent measurements of relevant nuclear reaction cross sections for the Big Bang nucleosynthesis based on indirect methods is also assessed. Although our attempts may not able to explain the observed discrepancies between theory and observations, they suggest theoretical developments that can be useful also for stellar nucleosynthesis.

  6. Study of cerium diffusion in undoped lithium-6 enriched glass with Rutherford backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: xzhang39@utk.edu [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Hayward, Jason P. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Oak Ridge National Lab, Oak Ridge, TN 37831 (United States)

    2016-07-01

    Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick’s second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.

  7. Study of cerium diffusion in undoped lithium-6 enriched glass with Rutherford backscattering spectrometry

    Science.gov (United States)

    Zhang, Xiaodong; Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D.; Hayward, Jason P.

    2016-07-01

    Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick's second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.

  8. Radiation damage in lithium orthosilicate

    Energy Technology Data Exchange (ETDEWEB)

    Noda, K.; Nakazawa, T.; Ishii, Y.; Fukai, K.; Watanabe, H. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment); Matsui, H.; Vollath, D.

    1993-11-01

    Radiation damage in lithium orthosilicate (Li[sub 4]SiO[sub 4]) and Al-doped Li[sub 4]SiO[sub 4] (Li[sub 3.7]Al[sub 0.1]SiO[sub 4]) irradiated with oxygen ions was studied with ionic conductivity measurements, Raman spectroscopy, Fourier transform infrared photo-acoustic spectroscopy (FT-IR PAS) and transmission electron microscopy. It was seen from the ionic conductivity measurements that lithium-ion vacancies were introduced as irradiation defects for Li-ions sites in both materials due to the irradiation. By the Raman spectroscopy, oxygen atoms in SiO[sub 4] tetrahedra were considered to be preferentially displaced due to the irradiation for Li[sub 4]SiO[sub 4], although only a decrease of the number of SiO[sub 4] tetrahedra occurred for Li[sub 3.7]Al[sub 0.1]SiO[sub 4] by displacement of both silicon and oxygen atoms. Decomposition of SiO[sub 4] tetrahedra and formation of some new phases having Si-O-Si and Si-O bonds were found to take place for both Li[sub 4]SiO[sub 4] and Li[sub 3.7]Al[sub 0.1]SiO[sub 4] by FT-IR PAS. In the electron microscopy, damage microstructure consisting of many voids or cavities and amorphization were observed for Li[sub 4]SiO[sub 4] irradiated with oxygen ions. The recovery behavior of radiation damage mentioned above was also investigated. (author).

  9. The lithium-ion accumulators in Japan; Les accumulateurs lithium-ion au Japon

    Energy Technology Data Exchange (ETDEWEB)

    Lazzari, O

    2006-07-15

    This document takes stock on the different technologies of lithium based batteries developed in Japan as the materials used to produce their different elements. The today tendencies of the japanese researches are discussed. The applications of the lithium-ion are presented. A list of the main public and private laboratories in the domain and the research programs is provided. (A.L.B.)

  10. Interactions of liquid lithium with various atmospheres, concretes, and insulating materials; and filtration of lithium aerosols

    International Nuclear Information System (INIS)

    Jeppson, D.W.

    1979-06-01

    This report describes the facilities and experiments and presents test results of a program being conducted at the hanford Engineering Development Laboratory (HEDL) in support of the fusion reactor development effort. This experimental program is designed to characterize the interaction of liquid lithium with various atmospheres, concretes, and insulating materials. Lithium-atmosphere reaction tests were conducted in normal humidity air, pure nitrogen, and carbon dioxide. These tests are described and their results, such as maximum temperatures, aerosol generated, and reaction rates measured, are reported. Initial lithium temperatures for these tests ranged between 224 0 C and 843 0 C. A lithium-concrete reaction test, using 10 kg of lithium at 327 0 C, and lithium-insulating materials reaction tests, using a few grams of lithium at 350 0 C and 600 0 C, are also described and results are presented. In addition, a lithium-aerosol filter loading test was conducted to determine the mass loading capacity of a commercial high efficiency particulate air (HEPA) filter. The aerosol was characterized, and the loading-capacity-versus-pressure-buildup across the filter is reported

  11. In 2015 Lithium Price Tripled,Lithium Battery is In a Draught of the Industry

    Institute of Scientific and Technical Information of China (English)

    2017-01-01

    According to'Report on Market Demand Forecast and Investment Strategy Analysis of China Power Lithium Battery Industry'of the Qianzhan Industry Institute,currently lithium demand is mainly concentrated in mobile battery and glass,lubricating oil markets,whose percentage is up to 85%,market share of electric vehicle and ESS energy backup system

  12. An improved lithium-vanadium pentoxide cell and comparison with a lithium-thionyl chloride cell

    Science.gov (United States)

    Voorn, G.

    1985-03-01

    This paper describes a programme of experiments conducted to assess the effects of: (a) diluting the electrolyte in lithium-vanadium pentoxide cells; (b) optimizing the volume of electrolyte per unit cathode mass. This programme led to the development of an improved cell, the performance of which is compared with that of a lithium-thionyl chloride cell of similar configuration.

  13. Improved lithium-vanadium pentoxide cell and comparison with a lithium-thionyl chloride cell

    Energy Technology Data Exchange (ETDEWEB)

    Voorn, G.

    1985-01-15

    This paper describes a programme of experiments conducted to assess the effects of: (a) diluting the electrolyte in lithium-vanadium pentoxide cells; (b) optimizing the volume of electrolyte per unit cathode mass. This programme led to the development of an improved cell, the performance of which is compared with that of a lithium-thionyl chloride cell of similar configuration.

  14. Novel iron-cobalt derivatised lithium iron phosphate nanocomposite for lithium ion battery cathode

    CSIR Research Space (South Africa)

    Ikpo, CO

    2013-01-01

    Full Text Available Described herein is the electrochemical study conducted on lithium ion battery cathode material consisting of composite of lithium iron phosphate (LiFePO(sub4), iron-cobalt derivatised carbon nanotubes (FeCo-CNT) and polyaniline (PA) nanomaterials...

  15. Lithium deposits hosted in intracontinental rhyolite calderas

    Science.gov (United States)

    Benson, T. R.; Coble, M. A.; Mahood, G. A.

    2017-12-01

    Lithium (Li) is classified as a technology-critical element due to the increasing demand for Li-ion batteries, which have a high power density and a relatively low cost that make them optimal for energy storage in mobile electronics, the electrical power grid, and hybrid and electric vehicles. Given that many projections for Li demand exceed current economic reserves and the market is dominated by Australia and Chile, discovery of new domestic Li resources will help diversify the supply chain and keep future technology costs down. Here we show that lake sediments preserved within intracontinental rhyolite calderas have the potential to host Li deposits on par with some of the largest Li brine deposits in the world. We compare Li concentrations of rhyolite magmas formed in a variety of tectonic settings using in situ SHRIMP-RG measurements of homogenized quartz-hosted melt inclusions. Rhyolite magmas that formed within thick, felsic continental crust (e.g., Yellowstone and Hideaway Park, United States) display moderate to extreme Li enrichment (1,500 - 9,000 ppm), whereas magmas formed in thin crust or crust comprised of accreted arc terranes (e.g., Pantelleria, Italy and High Rock, Nevada) contain Li concentrations less than 500 ppm. When the Li-enriched magmas erupt to form calderas, the cauldron depression serves as an ideal catchment within which meteoric water that leached Li from intracaldera ignimbrite, nearby outflow ignimbrite, and caldera-related lavas can accumulate. Additional Li is concentrated in the system through near-neutral, low-temperature hydrothermal fluids circulated along ring fractures as remnant magma solidifies and degasses. Li-bearing hectorite and illite clays form in this alteration zone, and when preserved in the geological record, can lead to a large Li deposit like the 2 Mt Kings Valley Li deposit in the McDermitt Caldera, Nevada. Because more than 100 large Cenozoic calderas occur in the western United States that formed on eruption

  16. Hydrogen storage capacity of lithium-doped KOH activated carbons

    International Nuclear Information System (INIS)

    Minoda, Ai; Oshima, Shinji; Iki, Hideshi; Akiba, Etsuo

    2014-01-01

    Highlights: • The hydrogen adsorption of lithium-doped KOH activated carbons has been studied. • Lithium doping improves their hydrogen adsorption affinity. • Lithium doping is more effective for materials with micropores of 0.8 nm or smaller. • Lithium reagent can alter the pore structure, depending on the raw material. • Optimizing the pore size and functional group is needed for better hydrogen uptake. - Abstract: The authors have studied the hydrogen adsorption performance of several types of lithium-doped KOH activated carbons. In the case of activated cokes, lithium doping improves their hydrogen adsorption affinity from 5.02 kg/m 3 to 5.86 kg/m 3 at 303 K. Hydrogen adsorption density increases by around 17% after lithium doping, likely due to the fact that lithium doping is more effective for materials with micropores of 0.8 nm or smaller. The effects of lithium on hydrogen storage capacity vary depending on the raw material, because the lithium reagent can react with the material and alter the pore structure, indicating that lithium doping has the effect of plugging or filling the micropores and changing the structures of functional groups, resulting in the formation of mesopores. Despite an observed decrease in hydrogen uptake, lithium doping was found to improve hydrogen adsorption affinity. Lithium doping increases hydrogen uptake by optimizing the pore size and functional group composition

  17. Lithium

    Science.gov (United States)

    ... interest in life, and strong or inappropriate emotions), disorders of impulse control (inability to resist the urge to perform a harmful action), and certain mental illnesses in children. Talk to your doctor ... for other uses; ask your doctor or pharmacist for more information.

  18. Effect of impurities on the performance of lithium intended for lithium/thionyl chloride battery manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, W P; Hampson, N A; Packer, R K

    1988-09-01

    The elemental impurities in four different, commercially-available lithium samples have been determined. Cells consisting of these lithium samples as anodes and pressed acetylene black as cathodes were discharged at 20 C and at 70 C at a rate of 50 mA/sq cm. The passivating films remaining on the lithium surface after discharge were examined using electron microscopy and their elemental compositions determined using the surface sensitive technique of X-ray photoelectron spectroscopy. Performance characteristics (voltage and capacity) of test cells consisting, in part, of the different lithium samples are discussed in terms of impurity concentrations determined by secondary ion mass spectrometry and atomic absorption spectroscopy. The permeability and electronic conductivity of the LiCl passivating films are adduced as two possible reasons for the variations in capacity and on-load voltage of the different lithium samples. 25 references.

  19. Application of neutron radiography to visualize the distribution of lithium in lithium batteries

    International Nuclear Information System (INIS)

    Kamata, Masahiro; Esaka, Takao; Fujine, Sigenori; Yoneda, Kenji; Kanda, Keiji.

    1995-01-01

    The authors have tried to visualize the motion of lithium ions in lithium ion conductors such as Li 1.33 Ti 1.67 O 4 at high temperatures using neutron radiography (NR) technique and confirmed that NR is very effective to the 6 Li containing systems. This means NR may be used as a non-destructive investigating method to study the electrode reactions and the mass transfer in lithium batteries. Here in this work, it was tried to visualize the distribution of lithium in commercial lithium batteries before and after discharge using NR technique. Obtained NR images will be presented with brief explanation on NR method. Further explanations on the principle of NR and on the NR facilities were presented elsewhere. (J.P.N.)

  20. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shulei; Zheng, Shili; Wang, Zheming; Cui, Wenwen; Zhang, Hailin; Yang, Liangrong; Zhang, Yi; Li, Ping

    2018-01-01

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li2TiO3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x0.15, Fe-doping led to grain shrinkage as compared to Li2TiO3 and at the same time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g-1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH 2 solutions (1.8 g L-1 Li, pH 12) reached 53.3 mg g-1 within 24 h, which was higher than that of pristine Li2TiO3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.

  1. Lithium Resources for the 21st Century

    Science.gov (United States)

    Kesler, S.; Gruber, P.; Medina, P.; Keolian, G.; Everson, M. P.; Wallington, T.

    2011-12-01

    Lithium is an important industrial compound and the principal component of high energy-density batteries. Because it is the lightest solid element, these batteries are widely used in consumer electronics and are expected to be the basis for battery electric vehicles (BEVs), hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs) for the 21st century. In view of the large incremental demand for lithium that will result from expanded use of various types of EVs, long-term estimates of lithium demand and supply are advisable. For GDP growth rates of 2 to 3% and battery recycling rates of 90 to 100%, total demand for lithium for all markets is expected to be a maximum of 19.6 million tonnes through 2100. This includes 3.2 million tonnes for industrial compounds, 3.6 million tonnes for consumer electronics, and 12.8 million tonnes for EVs. Lithium-bearing mineral deposits that might supply this demand contain an estimated resource of approximately 39 million tonnes, although many of these deposits have not been adequately evaluated. These lithium-bearing mineral deposits are of two main types, non-marine playa-brine deposits and igneous deposits. Playa-brine deposits have the greatest immediate resource potential (estimated at 66% of global resources) and include the Salar de Atacama (Chile), the source of almost half of current world lithium production, as well as Zabuye (China/Tibet) and Hombre Muerto (Argentina). Additional important playa-brine lithium resources include Rincon (Argentina), Qaidam (China), Silver Peak (USA) and Uyuni (Bolivia), which together account for about 35% of the estimated global lithium resource. Information on the size and continuity of brine-bearing aquifers in many of these deposits is limited, and differences in chemical composition of brines from deposit to deposit require different extraction processes and yield different product mixes of lithium, boron, potassium and other elements. Numerous other brines in playas

  2. Improving lithium therapeutics by crystal engineering of novel ionic cocrystals.

    Science.gov (United States)

    Smith, Adam J; Kim, Seol-Hee; Duggirala, Naga K; Jin, Jingji; Wojtas, Lukasz; Ehrhart, Jared; Giunta, Brian; Tan, Jun; Zaworotko, Michael J; Shytle, R Douglas

    2013-12-02

    Current United States Food and Drug Administration (FDA)-approved lithium salts are plagued with a narrow therapeutic window. Recent attempts to find alternative drugs have identified new chemical entities, but lithium's polypharmacological mechanisms for treating neuropsychiatric disorders are highly debated and are not yet matched. Thus, re-engineering current lithium solid forms in order to optimize performance represents a low cost and low risk approach to the desired therapeutic outcome. In this contribution, we employed a crystal engineering strategy to synthesize the first ionic cocrystals (ICCs) of lithium salts with organic anions. We are unaware of any previous studies that have assessed the biological efficacy of any ICCs, and encouragingly we found that the new speciation did not negatively affect established bioactivities of lithium. We also observed that lithium ICCs exhibit modulated pharmacokinetics compared to lithium carbonate. Indeed, the studies detailed herein represent an important advancement in a crystal engineering approach to a new generation of lithium therapeutics.

  3. Lithium Resources and Production: Critical Assessment and Global Projections

    Directory of Open Access Journals (Sweden)

    Steve H. Mohr

    2012-03-01

    Full Text Available This paper critically assesses if accessible lithium resources are sufficient for expanded demand due to lithium battery electric vehicles. The ultimately recoverable resources (URR of lithium globally were estimated at between 19.3 (Case 1 and 55.0 (Case 3 Mt Li; Best Estimate (BE was 23.6 Mt Li. The Mohr 2010 model was modified to project lithium supply. The Case 1 URR scenario indicates sufficient lithium for a 77% maximum penetration of lithium battery electric vehicles in 2080 whereas supply is adequate to beyond 2200 in the Case 3 URR scenario. Global lithium demand approached a maximum of 857 kt Li/y, with a 100% penetration of lithium vehicles, 3.5 people per car and 10 billion population.

  4. Lithium- an update on the mechanisms of action

    African Journals Online (AJOL)

    Adele

    rons depending on the level of their activity.4 Lithium thus seems to .... clear that MARCKS is crucial in neuronal growth and brain ... lithium's activity is predominantly confined to the left fron- ... This ranges from neurotransmitter production right.

  5. Lithium Insertion In Silicon Nanowires: An ab Initio Study

    KAUST Repository

    Zhang, Qianfan; Zhang, Wenxing; Wan, Wenhui; Cui, Yi; Wang, Enge

    2010-01-01

    The ultrahigh specific lithium ion storage capacity of Si nanowires (SiNWs) has been demonstrated recently and has opened up exciting opportunities for energy storage. However, a systematic theoretical study on lithium insertion in SiNWs remains a

  6. Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries

    KAUST Repository

    Tu, Zhengyuan; Nath, Pooja; Lu, Yingying; Tikekar, Mukul D.; Archer, Lynden A.

    2015-01-01

    © 2015 American Chemical Society. ConspectusSecondary batteries based on lithium are the most important energy storage technology for contemporary portable devices. The lithium ion battery (LIB) in widespread commercial use today is a compromise

  7. Lithium-ion batteries having conformal solid electrolyte layers

    Science.gov (United States)

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  8. Lithium batteries, anodes, and methods of anode fabrication

    KAUST Repository

    Li, Lain-Jong; Wu, Feng-Yu; Kumar, Pushpendra; Ming, Jun

    2016-01-01

    Prelithiation of a battery anode carried out using controlled lithium metal vapor deposition. Lithium metal can be avoided in the final battery. This prelithiated electrode is used as potential anode for Li- ion or high energy Li-S battery

  9. Nanoporous Polymer-Ceramic Composite Electrolytes for Lithium Metal Batteries

    KAUST Repository

    Tu, Zhengyuan; Kambe, Yu; Lu, Yingying; Archer, Lynden A.

    2013-01-01

    A nanoporous composite material that offers the unique combination of high room-temperature ionic conductivity and high mechanical modulus is reported. When used as the separator/electrolyte in lithium batteries employing metallic lithium as anode

  10. Synthesis and characterization of high performance electrode materials for lithium ion batteries

    Science.gov (United States)

    Hong, Jian

    Lithium-ion batteries have revolutionized portable electronics. Electrode reactions in these electrochemical systems are based on reversible intercalation of Li+ ions into the host electrode material with a concomitant addition/removal of electrons into the host. If such batteries are to find a wider market such as the automotive industry, less expensive and higher capacity electrode materials will be required. The olivine phase lithium iron phosphate has attracted the most attention because of its low cost and safety (high thermal and chemical stability). However, it is an intriguing fundamental problem to understand the fast electrochemical response from the poorly electronic conducting two-phase LiFePO4/FePO 4 system. This thesis focuses on determining the rate-limit step of LiFePO4. First, a LiFePO4 material, with vanadium substituting on the P-site, was synthesized, and found that the crystal structure change may cause high lithium diffusivity. Since an accurate Li diffusion coefficient cannot be measured by traditional electrochemical method in a three-electrode cell due to the phase transformation during measurement, a new method to measure the intrinsic electronic and ionic conductivity of mixed conductive LiFePO 4 was developed. This was based on the conductivity measurements of mixed conductive solid electrolyte using electrochemical impedance spectroscopy (EIS) and blocking electrode. The effects of ionic/electronic conductivity and phase transformation on the rate performance of LiFePO4 were also first investigated by EIS and other electrochemical technologies. Based on the above fundamental kinetics studies, an optimized LiFePO4 was used as a target to deposit 1mum LiFePO4 thin film at Oak Ridge National Laboratory using radio frequency (RF) magnetron sputtering. Similar to the carbon coated LiFePO4 powder electrode, the carbon-contained RF LiFePO4 film with no preferential orientation showed excellent capacity and rate capability both at 25°C and -20

  11. High performance sandwich structured Si thin film anodes with LiPON coating

    Science.gov (United States)

    Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao

    2018-04-01

    The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solidelectrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.

  12. Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhao Bote; Cai Rui; Jiang Simin; Sha Yujing; Shao Zongping

    2012-01-01

    There is increasing interest in flexible, safe, high-power thin-film lithium-ion batteries which can be applied to various modern devices. Although TiO 2 in rutile phase is highly attractive as an anode material of lithium-ion batteries for its high thermal stability and theoretical capacity of 336 mA h g −1 and low price, its inflexibility and sluggish lithium intercalation kinetics of bulk phase strongly limit its practical application for particular in thin-film electrode. Here we show a simple way to prepare highly flexible self-standing thin-film electrodes composed of mesoporous rutile TiO 2 /C nanofibers with low carbon content ( 2 in as-fabricated nanofibers. Big size (10 cm × 4 cm), flexible thin film is obtained after heat treatment under 10%H 2 –Ar at 900 °C for 3 h. After optimization, the diameter of fibers can reach as small as ∼110 nm, and the as-prepared rutile TiO 2 films show high initial electrochemical activity with the first discharge capacity as high as 388 mA h g −1 . What is more, very stable reversible capacities of ∼122, 92, and 70 mA h g −1 are achieved respectively at 1, 5 and 10 C rates with negligible decay rate within 100 cycling times.

  13. Methods for making lithium vanadium oxide electrode materials

    Science.gov (United States)

    Schutts, Scott M.; Kinney, Robert J.

    2000-01-01

    A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

  14. 3D Printing of Flexible Electrodes Towards Wearable Lithium Ion Battery

    Directory of Open Access Journals (Sweden)

    WANG Yi-bo

    2018-03-01

    Full Text Available A novel method to fabricate flexible free-standing electrodes with textile structure for lithium-ion batteries was provided by applying extrusion-based three-dimensional (3D printing technology. Meanwhile, highly concentrated poly(vinylidene fluoride (PVDF is used as viscosity modifier, carbon nanotube (CNT as conducting additive, and lithium iron phosphate (LFP or lithium titanium oxide (LTO as cathode or anode active materials respectively to develop printable inks with obvious shear-thinning behavior, and with the apparent viscosity and storage modulus platform value of over 105Pa·s, which is beneficial to the printability and enable complex 3D structures solidification. The electrochemical test shows that both printed electrodes have similar charge and discharge specific capacities under current density of 50mA·g-1. To explore the feasibility of the printed electrodes, a pouch cell with as-printed LFP and LTO electrode as cathode and anode respectively is assembled. The pouch cell without deformation delivers discharge specific capacities of approximately 108mAh·g-1, and there is a tiny increase in discharge specific capacities of around 111mAh·g-1 for bended pouch cell.

  15. Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes

    KAUST Repository

    Ruffo, Riccardo

    2009-02-01

    Despite the large number of studies on the behavior of LiCoO2 in organic electrolytes and its recent application as a positive electrode in rechargeable water battery prototypes, a little information is available about the lithium intercalation reaction in this layered compound in aqueous electrolytes. This work shows that LiCoO2 electrodes can be reversibly cycled in LiNO3 aqueous electrolytes for tens of cycles at remarkably high rates with impressive values specific capacity higher than 100 mAh/g, and with a coulomb efficiency greater than 99.7%. Stable and reproducible cycling measurements have been made using a simple cell design that can be easily applied to the study of other intercalation materials, assuming that they are stable in water and that their intercalation potential range matches the electrochemical stability window of the aqueous electrolyte. The experimental arrangement uses a three-electrode flooded cell in which another insertion compound acts as a reversible source and sink of lithium ions, i.e., as the counter electrode. A commercial reference electrode is also present. Both the working and the counter electrodes have been prepared as thin layers on a metallic substrate using the procedures typical for the study of electrodes for lithium-ion batteries in organic solvent electrolytes. © 2008 Elsevier B.V. All rights reserved.

  16. Lithium titanate hybridized with trace amount of graphene used as an anode for a high rate lithium ion battery

    International Nuclear Information System (INIS)

    Dong, Hai-Yong; He, Yan-Bing; Li, Baohua; Zhang, Chen; Liu, Ming; Su, Fangyuan; Lv, Wei; Kang, Feiyu; Yang, Quan-Hong

    2014-01-01

    A novel Li 4 Ti 5 O 12 (LTO) electrode with a hierarchical carbon-based conducting network has been developed for high rate lithium ion battery. The unique network is constructed by graphene sheets (GS) that are not only dispersed among (inter-) but also inside (intra-) LTO particles, together with a thin carbon layer wrapping around the LTO particles. The intraparticle GS promotes the electron transfer inside LTO particles while the interparticle GS together with carbon coating bridges the particles guaranteeing fast electron transfer among LTO particles, which construct a highway throughout the whole electrode sheet. Quantitatively, only a trace amount of GS (∼ 0.4 wt%) synergistic with carbon coating (∼0.8 wt%) contributes to a more effective conducting network in the produced LTO electrode and as a result much better performance as compared to the LTO case with similar carbon coating but free of GS. Due to the effectiveness of the conducting network, even with a tap density as high as ∼1.0 g cm −3 , the novel LTO possesses both excellent rate performance and cycling behaviors. The capacity of 123.5 mA h g −1 is obtained at a charge/discharge rate as high as 30 C and a very high capacity of 144.8 mAh g −1 is maintained even after 100 cycles at 10 C. Due to such a low fraction of carbon and a high tape density, the novel LTO electrode has a great practical application value in both the power and energy storage lithium ion batteries

  17. Further study of the intrinsic safety of internally shorted lithium and lithium-ion cells within methane-air.

    Science.gov (United States)

    Dubaniewicz, Thomas H; DuCarme, Joseph P

    2014-11-01

    National Institute for Occupational Safety and Health (NIOSH) researchers continue to study the potential for lithium and lithium-ion battery thermal runaway from an internal short circuit in equipment for use in underground coal mines. Researchers conducted cell crush tests using a plastic wedge within a 20-L explosion-containment chamber filled with 6.5% CH 4 -air to simulate the mining hazard. The present work extends earlier findings to include a study of LiFePO 4 cells crushed while under charge, prismatic form factor LiCoO 2 cells, primary spiral-wound constructed LiMnO 2 cells, and crush speed influence on thermal runaway susceptibility. The plastic wedge crush was a more severe test than the flat plate crush with a prismatic format cell. Test results indicate that prismatic Saft MP 174565 LiCoO 2 and primary spiral-wound Saft FRIWO M52EX LiMnO 2 cells pose a CH 4 -air ignition hazard from internal short circuit. Under specified test conditions, A123 systems ANR26650M1A LiFePO 4 cylindrical cells produced no chamber ignitions while under a charge of up to 5 A. Common spiral-wound cell separators are too thin to meet intrinsic safety standards provisions for distance through solid insulation, suggesting that a hard internal short circuit within these cells should be considered for intrinsic safety evaluation purposes, even as a non-countable fault. Observed flames from a LiMnO 2 spiral-wound cell after a chamber ignition within an inert atmosphere indicate a sustained exothermic reaction within the cell. The influence of crush speed on ignitions under specified test conditions was not statistically significant.

  18. Secondary electron emission from lithium and lithium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Capece, A. M., E-mail: capecea@tcnj.edu [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Department of Physics, The College of New Jersey, Ewing, New Jersey 08628 (United States); Patino, M. I.; Raitses, Y. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Koel, B. E. [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540 (United States)

    2016-07-04

    In this work, measurements of electron-induced secondary electron emission (SEE) yields of lithium as a function of composition are presented. The results are particularly relevant for magnetic fusion devices such as tokamaks, field-reversed configurations, and stellarators that consider Li as a plasma-facing material for improved plasma confinement. SEE can reduce the sheath potential at the wall and cool electrons at the plasma edge, resulting in large power losses. These effects become significant as the SEE coefficient, γ{sub e}, approaches one, making it imperative to maintain a low yield surface. This work demonstrates that the yield from Li strongly depends on chemical composition and substantially increases after exposure to oxygen and water vapor. The total yield was measured using a retarding field analyzer in ultrahigh vacuum for primary electron energies of 20–600 eV. The effect of Li composition was determined by introducing controlled amounts of O{sub 2} and H{sub 2}O vapor while monitoring film composition with Auger electron spectroscopy and temperature programmed desorption. The results show that the energy at which γ{sub e} = 1 decreases with oxygen content and is 145 eV for a Li film that is 17% oxidized and drops to less than 25 eV for a fully oxidized film. This work has important implications for laboratory plasmas operating under realistic vacuum conditions in which oxidation significantly alters the electron emission properties of Li walls.

  19. Secondary electron emission from lithium and lithium compounds

    International Nuclear Information System (INIS)

    Capece, A. M.; Patino, M. I.; Raitses, Y.; Koel, B. E.

    2016-01-01

    In this work, measurements of electron-induced secondary electron emission (SEE) yields of lithium as a function of composition are presented. The results are particularly relevant for magnetic fusion devices such as tokamaks, field-reversed configurations, and stellarators that consider Li as a plasma-facing material for improved plasma confinement. SEE can reduce the sheath potential at the wall and cool electrons at the plasma edge, resulting in large power losses. These effects become significant as the SEE coefficient, γ e , approaches one, making it imperative to maintain a low yield surface. This work demonstrates that the yield from Li strongly depends on chemical composition and substantially increases after exposure to oxygen and water vapor. The total yield was measured using a retarding field analyzer in ultrahigh vacuum for primary electron energies of 20–600 eV. The effect of Li composition was determined by introducing controlled amounts of O 2 and H 2 O vapor while monitoring film composition with Auger electron spectroscopy and temperature programmed desorption. The results show that the energy at which γ e  = 1 decreases with oxygen content and is 145 eV for a Li film that is 17% oxidized and drops to less than 25 eV for a fully oxidized film. This work has important implications for laboratory plasmas operating under realistic vacuum conditions in which oxidation significantly alters the electron emission properties of Li walls.

  20. Lithium conducting ionic liquids based on lithium borate salts

    Energy Technology Data Exchange (ETDEWEB)

    Zygadlo-Monikowska, E.; Florjanczyk, Z.; Sluzewska, K.; Ostrowska, J.; Langwald, N.; Tomaszewska, A. [Warsaw University of Technology, Faculty of Chemistry, ul. Noakowskiego 3, 00-664 Warsaw (Poland)

    2010-09-15

    The simple reaction of trialkoxyborates with butyllithium resulted in the obtaining of new lithium borate salts: Li{l_brace}[CH{sub 3}(OCH{sub 2}CH{sub 2}){sub n}O]{sub 3}BC{sub 4}H{sub 9}{r_brace}, containing oxyethylene substituents (EO) of n=1, 2, 3 and 7. Salts of n {>=} 2 show properties of room temperature ionic liquid (RTIL) of low glass transition temperature, T{sub g} of the order from -70 to -80 C. The ionic conductivity of the salts depends on the number of EO units, the highest conductivity is shown by the salt with n = 3; in bulk its ambient temperature conductivity is 2 x 10{sup -5} S cm{sup -1} and in solution in cyclic propylene sulfite or EC/PC mixture, conductivity increases by an order of magnitude. Solid polymer electrolytes with borate salts over a wide concentration range, from 10 to 90 mol.% were obtained and characterized. Three types of polymeric matrices: poly(ethylene oxide) (PEO), poly(trimethylene carbonate) (PTMC) and two copolymers of acrylonitrile and butyl acrylate p(AN-BuA) were used in them as polymer matrices. It has been found that for systems of low salt concentration (10 mol.%) the best conducting properties were shown by solid polymer electrolytes with PEO, whereas for systems of high salt concentration, of the polymer-in-salt type, good results were achieved for PTMC as polymer matrix. (author)

  1. Oxide materials as positive electrodes of lithium-ion batteries

    International Nuclear Information System (INIS)

    Makhonina, Elena V; Pervov, Vladislav S; Dubasova, Valeriya S

    2004-01-01

    The published data on oxide materials as positive electrodes for lithium-ion batteries are described systematically. The mechanisms of structural changes in cathode materials occurring during the operation of lithium-ion batteries and the problems concerned with their selection are discussed. Modern trends in optimising cathode materials and lithium-ion batteries on the whole are considered.

  2. Obtainment of lithium metal by electrolysis of molten salts

    International Nuclear Information System (INIS)

    Silva Costa, M.A.Z. da.

    1988-04-01

    The obtainment metallic lithium through KCL + LiCl, using a stainless steel cathode and a graphite anode is studied. The applications of lithium on nuclear energy, aerospatial program, metalurgy and as refining and degassing agent are also presented. The purification of lithium is still mentioned. (C.G.C.) [pt

  3. Stable lithium electrodeposition in salt-reinforced electrolytes

    KAUST Repository

    Lu, Yingying; Tu, Zhengyuan; Shu, Jonathan; Archer, Lynden A.

    2015-01-01

    © 2015 Elsevier B.V. Development of high-energy lithium-based batteries that are safe remains a challenge due to the non-uniform lithium electrodeposition during repeated charge and discharge cycles. We report on the effectiveness of lithium bromide

  4. 76 FR 53056 - Outbound International Mailings of Lithium Batteries

    Science.gov (United States)

    2011-08-25

    ... POSTAL SERVICE 39 CFR Part 20 Outbound International Mailings of Lithium Batteries AGENCY: Postal... incorporate new maximum limits for the outbound mailing of lithium batteries. This is consistent with [email protected] , with a subject line of ``International Lithium Batteries.'' Faxed comments are not...

  5. 75 FR 9147 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2010-03-01

    ...: Transportation of Lithium Batteries AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT... transport of lithium cells and batteries. PHMSA and FAA will hold a public meeting on March 5, 2010, in... will be attending the Lithium Battery Public Meeting and wait to be escorted to the Conference Center...

  6. NREL's Advanced Atomic Layer Deposition Enables Lithium-Ion Battery

    Science.gov (United States)

    Battery Technology News Release: NREL's Advanced Atomic Layer Deposition Enables Lithium-Ion Battery increasingly demanding needs of any battery application. These lithium-ion batteries feature a hybrid solid further customized lithium-ion battery materials for high performance devices by utilizing our patented

  7. Lithium in older patients: treatment patterns and somatic adverse effects

    NARCIS (Netherlands)

    van Melick, E.J.M.

    2014-01-01

    Lithium has been used in psychiatry for over 60 years and is still one of the first-line treatments in bipolar disorder. It is also used as augmentation to antidepressants in treatment resistant depression. Age-dependent changes in lithium pharmacokinetics and pharmacodynamics may influence lithium

  8. SBIR reports on the chemistry of lithium battery technology

    Science.gov (United States)

    Kilroy, W. P.

    1989-11-01

    The following contents are included: Identification of an Improved Mixed Solvent Electrolyte for a Lithium Secondary Battery; Catalyzed Cathodes for Lithium-Thionyl Chloride Batteries; Improved Lithium/Thionyl Chloride Cells Using New Electrolyte Salts; Development of Calcium Primary Cells With Improved Anode Stability and Energy Density.

  9. 131I therapy of Graves' disease using lithium

    International Nuclear Information System (INIS)

    Sato, Kenshi

    1983-01-01

    Lithium is known to cause goiter and hypothyroidism. In the mechanism of goitrogenesis, there is general agreement that lithium inhibits the release of the thyroid hormones from the thyroid gland without significantly impairing other thyroid functions. The present study was undertaken, therefore, to investigate the usefulness of lithium in the radioiodine treatment of Graves' disease. Nine patients with Graves' disease who were all, except one, previously treated with antithyroid drugs were studied. 600 mg of lithium carbonate were administered daily to investigate the effects on thyroidal 131 I uptake, disappearance rate of 131 I from the prelabeled thyroid and the serum concentrations of thyroid hormones. Lithium showed no significant effect on the thyroidal 131 I uptake when the 24 hour thyroidal 131 I uptakes were determined both before and during lithium treatment in the five cases. On the other hand, lithium clearly prolonged the mean value of effective half-lives of 131 I to approximately 8 days vs. 5.1 days before lithium treatment (p 4 and T 3 levels significantly decreased during lithium treatment, from 21.3 to 12.4μg/dl (n=9, p 131 I for the Graves' disease can be reduced by using lithium, the radiation exposure to the total body is decreased. Moreover, it is possible to perform the 131 I therapy while improving the thyrotoxicosis with lithium. Finally, it is concluded that lithium is a very useful drug to be combined with the 131 I therapy of Graves' disease. (author)

  10. Synthesis of Microspherical LiFePO4-Carbon Composites for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Maria-Magdalena Titirici

    2013-07-01

    Full Text Available This paper reports an “all in one” procedure to produce mesoporous, micro-spherical LiFePO4 composed of agglomerated crystalline nanoparticles. Each nanoparticle is individually coated with a thin glucose-derived carbon layer. The main advantage of the as-synthesized materials is their good performance at high charge-discharge rates. The nanoparticles and the mesoporosity guarantee a short bulk diffusion distance for both lithium ions and electrons, as well as additional active sites for the charge transfer reactions. At the same time, the thin interconnected carbon coating provides a conductive framework capable of delivering electrons to the nanostructured LiFePO4.

  11. Integration Strategy for Free-form Lithium Ion Battery: Material, Design to System level Applications

    KAUST Repository

    Kutbee, Arwa T.

    2017-10-31

    Power supply in any electronic system is a crucial necessity. Especially so in fully compliant personalized advanced healthcare electronic self-powered systems where we envision seamless integration of sensors and actuators with data management components in a single freeform platform to augment the quality of our healthcare, smart living and sustainable future. However, the status-quo energy storage (battery) options require packaging to protect the indwelling toxic materials against harsh physiological environment and vice versa, compromising its mechanical flexibility, conformability and wearability at the highest electrochemical performance. Therefore, clean and safe energy storage solutions for wearable and implantable electronics are needed to replace the commercially used unsafe lithium-ion batteries. This dissertation discusses a highly manufacturable integration strategy for a free-form lithium-ion battery towards a genuine mechanically compliant wearable system. We sequentially start with the optimization process for the preparation of all solid-state material comprising a ‘’Lithium-free’’ lithium-ion microbattery with a focus on thin film texture optimization of the cathode material. State of the art complementary metal oxide semiconductor technology was used for the thin film based battery. Additionally, this thesis reports successful development of a transfer-less scheme for a flexible battery with small footprint and free form factor in a high yield production process. The reliable process for the flexible lithium-ion battery achieves an enhanced energy density by three orders of magnitude compared to the available rigid ones. Interconnection and bonding procedures of the developed batteries are discussed for a reliable back end of line process flexible, stretchable and stackable modules. Special attention is paid to the advanced bonding, handling and packaging strategies of flexible batteries towards system-level applications. Finally, this

  12. Performances of a lithium-carbon ``lithium ion``battery for electric powered vehicle; Performances d`un accumulateur au lithium-carbone ``Lithium Ion`` pour vehicule electrique

    Energy Technology Data Exchange (ETDEWEB)

    Broussely, M.; Planchat, J.P.; Rigobert, G.; Virey, D.; Sarre, G. [SAFT, Advanced and Industrial Battery Group, 86 - Poitiers (France)

    1996-12-31

    The lithium battery, also called `lithium-carbon` or `lithium ion`, is today the most promising candidate that can reach the expected minimum traction performances of electric powered vehicles. Thanks to a more than 20 years experience on lithium generators and to a specific research program on lithium batteries, the SAFT company has developed a 100 Ah electrochemical system, and full-scale prototypes have been manufactured for this application. These prototypes use the Li{sub x}NiO{sub 2} lithiated graphite electrochemical pair and were tested in terms of their electrical performances. Energy characteristics of 125 Wh/kg and 265 Wh/dm{sup 3} could be obtained. The possibility of supplying a power greater than 200 W/kg, even at low temperature (-10 deg. C) has been demonstrated with these elements. A full battery set of about 20 kWh was built and its evaluation is in progress. It comprises the electronic control systems for the optimum power management during charge and output. (J.S.) 9 refs.

  13. Safety assessment of a lithium target

    International Nuclear Information System (INIS)

    Burgazzi, Luciano; Roberta, Ferri; Barbara, Giannone

    2006-01-01

    This paper addresses the safety assessment of the lithium target of the International Fusion Materials Irradiation Facility (IFMIF) through evaluating the most important risk factors related to system operation and verifying the fulfillment of the safety criteria. The hazard assessment is based on using a well-structured Failure Mode and Effect Analysis (FMEA) procedure by detailing on a component-by-component basis all the possible failure modes and identifying their effects on the plant. Additionally, a systems analysis, applying the fault tree technique, is performed in order to evaluate, from a probabilistic standpoint, all the relevant and possible failures of each component required for safe system operation and assessing the unavailability of the lithium target system. The last task includes the thermal-hydraulic transient analysis of the target lithium loop, including operational and accident transients. A lithium target loop model is developed, using the RELAP5/Mod3.2 thermal-hydraulic code, which has been modified to include specific features of IFMIF itself. The main conclusions are that target safety is fulfilled, the hazards associated with lithium operation are confined within the IFMIF security boundaries, the environmental impact is negligible, and the plant responds to the simulated transients by being able to reach steady conditions in a safety situation

  14. Evaporated Lithium Surface Coatings in NSTX

    International Nuclear Information System (INIS)

    Kugel, H.W.; Mansfield, D.; Maingi, Rajesh; Bell, M.G.; Bell, R.E.; Allain, J.P.; Gates, D.; Gerhardt, S.P.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.P.; Majeski, R.; Menard, J.; Mueller, D.; Ono, M.; Paul, S.; Raman, R.; Roquemore, A.L.; Ross, P.W.; Sabbagh, S.A.; Schneider, H.; Skinner, C.H.; Soukhanovskii, V.; Stevenson, T.; Timberlake, J.; Wampler, W.R.; Wilgen, John B.; Zakharov, L.E.

    2009-01-01

    Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: (1) plasma density reduction as a result of lithium deposition; (2) suppression of ELMs; (3) improvement of energy confinement in a low-triangularity shape; (4) improvement in plasma performance for standard, high-triangularity discharges: (5) reduction of the required HeGDC time between discharges; (6) increased pedestal electron and ion temperature; (7) reduced SOL plasma density; and (8) reduced edge neutral density.

  15. Performances of a lithium-carbon ``lithium ion``battery for electric powered vehicle; Performances d`un accumulateur au lithium-carbone ``Lithium Ion`` pour vehicule electrique

    Energy Technology Data Exchange (ETDEWEB)

    Broussely, M; Planchat, J P; Rigobert, G; Virey, D; Sarre, G [SAFT, Advanced and Industrial Battery Group, 86 - Poitiers (France)

    1997-12-31

    The lithium battery, also called `lithium-carbon` or `lithium ion`, is today the most promising candidate that can reach the expected minimum traction performances of electric powered vehicles. Thanks to a more than 20 years experience on lithium generators and to a specific research program on lithium batteries, the SAFT company has developed a 100 Ah electrochemical system, and full-scale prototypes have been manufactured for this application. These prototypes use the Li{sub x}NiO{sub 2} lithiated graphite electrochemical pair and were tested in terms of their electrical performances. Energy characteristics of 125 Wh/kg and 265 Wh/dm{sup 3} could be obtained. The possibility of supplying a power greater than 200 W/kg, even at low temperature (-10 deg. C) has been demonstrated with these elements. A full battery set of about 20 kWh was built and its evaluation is in progress. It comprises the electronic control systems for the optimum power management during charge and output. (J.S.) 9 refs.

  16. Evaporated Lithium Surface Coatings in NSTX

    International Nuclear Information System (INIS)

    Kugel, H.W.; Mansfield, D.; Maingi, R.; Bel, M.G.; Bell, R.E.; Allain, J.P.; Gates, D.; Gerhardt, S.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.; Majeski, R.; Menard, J.; Mueller, D.; Ono, M.

    2009-01-01

    Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: (1) plasma density reduction as a result of lithium deposition; (2) suppression of ELMs; (3) improvement of energy confinement in a low-triangularity shape; (4) improvement in plasma performance for standard, high-triangularity discharges; (5) reduction of the required HeGDC time between discharges; (6) increased pedestal electron and ion temperature; (7) reduced SOL plasma density; and (8) reduced edge neutral density

  17. Lithium-Ion Cell Charge Control Unit

    Science.gov (United States)

    Reid, Concha; Button, Robert; Manzo, Michelle; McKissock, Barbara; Miller, Thomas; Gemeiner, Russel; Bennett, William; Hand, Evan

    2006-01-01

    Life-test data of Lithium-Ion battery cells is critical in order to establish their performance capabilities for NASA missions and Exploration goals. Lithium-ion cells have the potential to replace rechargeable alkaline cells in aerospace applications, but they require a more complex charging scheme than is typically required for alkaline cells. To address these requirements in our Lithium-Ion Cell Test Verification Program, a Lithium-Ion Cell Charge Control Unit was developed by NASA Glenn Research Center (GRC). This unit gives researchers the ability to test cells together as a pack, while allowing each cell to charge individually. This allows the inherent cell-to-cell variations to be addressed on a series string of cells and results in a substantial reduction in test costs as compared to individual cell testing. The Naval Surface Warfare Center at Crane, Indiana developed a power reduction scheme that works in conjunction with the Lithium-Ion Cell Charge Control Unit. This scheme minimizes the power dissipation required by the circuitry to prolong circuit life and improve its reliability.

  18. Lithium mass transport in ceramic breeder materials

    International Nuclear Information System (INIS)

    Blackburn, P.E.; Johnson, C.E.

    1990-01-01

    The objective of this activity is to measure the lithium vaporization from lithium oxide breeder material under differing temperature and moisture partial pressure conditions. Lithium ceramics are being investigated for use as tritium breeding materials. The lithium is readily converted to tritium after reacting with a neutron. With the addition of 1000 ppM H 2 to the He purge gas, the bred tritium is readily recovered from the blanket as HT and HTO above 400 degree C. Within the solid, tritium may also be found as LiOT which may transport lithium to cooler parts of the blanket. The pressure of LiOT(g), HTO(g), or T 2 O(g) above Li 2 O(s) is the same as that for reactions involving hydrogen. In our experiments we were limited to the use of hydrogen. The purpose of this work is to investigate the transport of LiOH(g) from the blanket material. 8 refs., 1 fig., 3 tabs

  19. Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction

    Science.gov (United States)

    Conder, Joanna; Bouchet, Renaud; Trabesinger, Sigita; Marino, Cyril; Gubler, Lorenz; Villevieille, Claire

    2017-06-01

    In the on going quest towards lithium-battery chemistries beyond the lithium-ion technology, the lithium-sulfur system is emerging as one of the most promising candidates. The major outstanding challenge on the route to commercialization is controlling the so-called polysulfide shuttle, which is responsible for the poor cycling efficiency of the current generation of lithium-sulfur batteries. However, the mechanistic understanding of the reactions underlying the polysulfide shuttle is still incomplete. Here we report the direct observation of lithium polysulfides in a lithium-sulfur cell during operation by means of operando X-ray diffraction. We identify signatures of polysulfides adsorbed on the surface of a glass-fibre separator and monitor their evolution during cycling. Furthermore, we demonstrate that the adsorption of the polysulfides onto SiO2 can be harnessed for buffering the polysulfide redox shuttle. The use of fumed silica as an electrolyte additive therefore significantly improves the specific charge and Coulombic efficiency of lithium-sulfur batteries.

  20. Method for fabricating carbon/lithium-ion electrode for rechargeable lithium cell

    Science.gov (United States)

    Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    The method includes steps for forming a carbon electrode composed of graphitic carbon particles adhered by an ethylene propylene diene monomer binder. An effective binder composition is disclosed for achieving a carbon electrode capable of subsequent intercalation by lithium ions. The method also includes steps for reacting the carbon electrode with lithium ions to incorporate lithium ions into graphitic carbon particles of the electrode. An electrical current is repeatedly applied to the carbon electrode to initially cause a surface reaction between the lithium ions and to the carbon and subsequently cause intercalation of the lithium ions into crystalline layers of the graphitic carbon particles. With repeated application of the electrical current, intercalation is achieved to near a theoretical maximum. Two differing multi-stage intercalation processes are disclosed. In the first, a fixed current is reapplied. In the second, a high current is initially applied, followed by a single subsequent lower current stage. Resulting carbon/lithium-ion electrodes are well suited for use as an anode in a reversible, ambient temperature, lithium cell.

  1. Separative analyses of a chromatographic column packed with a core-shell adsorbent for lithium isotope separation

    International Nuclear Information System (INIS)

    Sugiyama, T.; Sugura, K.; Enokida, Y.; Yamamoto, I.

    2015-01-01

    Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one and established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)

  2. Lithium control during normal operation

    International Nuclear Information System (INIS)

    Suryanarayan, S.; Jain, D.

    2010-01-01

    Periodic increases in lithium (Li) concentrations in the primary heat transport (PHT) system during normal operation are a generic problem at CANDU® stations. Lithiated mixed bed ion exchange resins are used at stations for pH control in the PHT system. Typically tight chemistry controls including Li concentrations are maintained in the PHT water. The reason for the Li increases during normal operation at CANDU stations such as Pickering was not fully understood. In order to address this issue a two pronged approach was employed. Firstly, PNGS-A data and information from other available sources was reviewed in an effort to identify possible factors that may contribute to the observed Li variations. Secondly, experimental studies were carried out to assess the importance of these factors in order to establish reasons for Li increases during normal operation. Based on the results of these studies, plausible mechanisms/reasons for Li increases have been identified and recommendations made for proactive control of Li concentrations in the PHT system. (author)

  3. Lithium-thionyl chloride battery

    Science.gov (United States)

    Wong, D.; Bowden, W.; Hamilton, N.; Cubbison, D.; Dey, A. N.

    1981-04-01

    The main objective is to develop, fabricate, test, and deliver safe high rate lithium-thionyl chloride batteries for various U.S. Army applications such as manpack ratios and GLLD Laser Designators. We have devoted our efforts in the following major areas: (1) Optimization of the spirally wound D cell for high rate applications, (2) Development of a 3 inch diameter flat cylindrical cell for the GLLD laser designator application, and (3) Investigation of the reduction mechanism of SOCl2. The rate capability of the spirally wound D cell previously developed by us has been optimized for both the manpack radio (BA5590) battery and GLLD laser designator battery application in this program. A flat cylindrical cell has also been developed for the GLLD laser designator application. It is 3 inches in diameter and 0.9 inch in height with extremely low internal cell impedance that minimizes cell heating and polarization on the GLLD load. Typical cell capacity was found to be 18.0-19.0 Ahr with a few cells delivering up to about 21.0 Ahr on the GLLD test load. Study of the reduction mechanism of SOCl2 using electrochemical and spectroscopic techniques has also been carried out in this program which may be directly relevant to the intrinsic safety of the system.

  4. Technology roadmap for lithium ion batteries 2030; Technologie-Roadmap Lithium-Ionen-Batterien 2030

    Energy Technology Data Exchange (ETDEWEB)

    Thielmann, Axel; Isenmann, Ralf; Wietschel, Martin [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany)

    2010-07-01

    The technology roadmap for lithium ion batteries 2030 presents a graphical representation of the cell components, cell types and cell characteristics of lithium ion batteries and their connection with the surrounding technology field from today through 2030. This is a farsighted orientation on the way into the future and an implementation of the ''Roadmap: Batterieforschung Deutschland'' of the BMBF (Federal Ministry of Education and Science). The developments in lithium ion batteries are identified through 2030 form today's expert view in battery development and neighbouring areas. (orig.)

  5. Heteroaromatic-based electrolytes for lithium and lithium-ion batteries

    Science.gov (United States)

    Cheng, Gang; Abraham, Daniel P.

    2017-04-18

    The present invention provides an electrolyte for lithium and/or lithium-ion batteries comprising a lithium salt in a liquid carrier comprising heteroaromatic compound including a five-membered or six-membered heteroaromatic ring moiety selected from the group consisting of a furan, a pyrazine, a triazine, a pyrrole, and a thiophene, the heteroaromatic ring moiety bearing least one carboxylic ester or carboxylic anhydride substituent bound to at least one carbon atom of the heteroaromatic ring. Preferred heteroaromatic ring moieties include pyridine compounds, pyrazine compounds, pyrrole compounds, furan compounds, and thiophene compounds.

  6. Lithium-aluminum-magnesium electrode composition

    Science.gov (United States)

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  7. Efficient Electrolytes for Lithium-Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Natarajan eAngulakshmi

    2015-05-01

    Full Text Available This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium-sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium-sulfur batteries. The electrolytes for lithium-sulfur batteries are broadly classified as (i non-aqueous liquid electrolytes, (ii ionic liquids, (iii solid polymer and (iv glass-ceramic electrolytes. This article presents the properties, advantages and limitations of each type of electrolytes. Also the importance of electrolyte additives on the electrochemical performance of Li-S cells is discussed.

  8. Methods of tritium recovery from molten lithium

    International Nuclear Information System (INIS)

    Farookhi, R.; Rogers, J.E.

    1968-01-01

    It is important to keep the tritium inventory in a blanket of a thermonuclear reactor at a low level both to eliminate possible hydriding of structural components and to reduce inventory cost. Removing the tritium from a lithium blanket by fractional distillation, flash vaporization, and fractional crystallization was investigated. No definitive data are available either on the vapor-liquid equilibrium between lithium and tritium at low T 2 concentrations, or on the rate of formation and decomposition of lithium tritide. The final distinction between the recovery systems discussed in this report will depend on such data, but presently distillation appears to be the best alternate to the diffusion scheme proposed by A.P. Fraas. The capital cost of equipment necessary to remove tritium by distillation appears to be greater than 10 million dollars for a 5000 MW system, whereas the capital cost associated with the diffusion process has been estimated to be 4 million dollars

  9. Identification and modelling of Lithium ion battery

    International Nuclear Information System (INIS)

    Tsang, K.M.; Sun, L.; Chan, W.L.

    2010-01-01

    A universal battery model for the charging process has been identified for Lithium ion battery working at constant temperature. Mathematical models are fitted to different collected charging profiles using the least squares algorithm. With the removal of the component which is related to the DC resistance of the battery, a universal model can be fitted to predict profiles of different charging rates after time scaling. Experimental results are included to demonstrate the goodness of fit of the model at different charging rates and for batteries of different capacities. Comparison with standard electrical-circuit model is also presented. With the proposed model, it is possible to derive more effective way to monitor the status of Lithium ion batteries, and to develop a universal quick charger for different capacities of batteries to result with a more effective usage of Lithium ion batteries.

  10. Determination of lithium in rocks by distillation

    Science.gov (United States)

    Fletcher, M.H.

    1949-01-01

    A method for the quantitative extraction and recovery of lithium from rocks is based on a high temperature volatilization procedure. The sample is sintered with a calcium carbonate-calcium chloride mixture at 1200?? C. for 30 minutes in a platinum ignition tube, and the volatilization product is collected in a plug of Pyrex glass wool in a connecting Pyrex tube. The distillate, which consists of the alkali chlorides with a maximum of 5 to 20 mg. of calcium oxide and traces of a few other elements, is removed from the apparatus by dissolving in dilute hydrochloric acid and subjected to standard analytiaal procedures. The sinter residues contained less than 0.0005% lithium oxide. Lithium oxide was recovered from synthetic samples with an average error of 1.1%.

  11. Interest in broadband dielectric spectroscopy to study the electronic transport in materials for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Badot, Jean-Claude, E-mail: jc.badot@chimie-paristech.fr [Institut de Recherche de Chimie Paris, UMR CNRS 8247, Réseau sur le Stockage Electrochimique de l' Energie (RS2E), Chimie Paris Tech, PSL*, 11 rue P. et M. Curie, 75231 Cedex 05 Paris (France); Lestriez, Bernard [Institut des Matériaux Jean Rouxel, UMR CNRS 6502, Université de Nantes, 2 rue de la Houssinière, BP32229, 44322 Nantes (France); Dubrunfaut, Olivier [GeePs | Group of electrical engineering – Paris, UMR CNRS 8507, CentraleSupélec, Univ. Paris-Sud, Université Paris-Saclay, Sorbonne Universités, UPMC Univ Paris 06, 3 & 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette CEDEX, Paris (France)

    2016-11-15

    Highlights: • Broadband dielectric spectroscopy measures the multiscale electronic conductivity from macroscopic to interatomic sizes. • There is an influence of the surface states on the electronic transfer of powdered materials (e.g. thin insulating layer of Li{sub 2}CO{sub 3} on LiNiO{sub 2} and carbon coating on LiFePO{sub 4}). • Electrical relaxations resulting from the interfacial polarizations at the different scales of the carbon black network are evidenced. - Abstract: Broadband dielectric spectroscopy (BDS) is used to measure complex permittivity and conductivity of conducting materials for lithium batteries at frequencies from a few Hz to several GHz with network and impedance analysers. Under the influence of an electric field, there will be charge density fluctuations in the conductor mainly due to electronic transfer. These fluctuations result in dielectric relaxations for frequencies below 100 GHz. The materials are compacted powders in which each element (particles, agglomerates of particles) can have different sizes and morphologies. In the present review, studies are reported on the influence of surface states in LiNiO{sub 2} (ageing and degradation in air) and LiFePO{sub 4} (carbon coating thin layer), and on a composite electrode based on the lithium trivanadate (Li{sub 1.1}V{sub 3}O{sub 8}) active material. The results have shown that the BDS technique is very sensitive to the different scales of materials architectures involved in electronic transport, from interatomic distances to macroscopic sizes.

  12. The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery

    International Nuclear Information System (INIS)

    Zhao, Rui; Liu, Jie; Gu, Junjie

    2015-01-01

    Highlights: • A coupling model is developed to study the behaviors of Li-ion batteries. • Thick electrode battery (CEB) has high temperature response during discharge. • Thin electrode battery has a relative lower capacity fading rate. • Less heat is generated in thin electrode battery with even heat distribution. • CEBs underutilize active materials and stop discharge early at high rates. - Abstract: Lithium ion (Li-ion) battery, consisting of multiple electrochemical cells, is a complex system whose high electrochemical and thermal stability is often critical to the well-being and functional capabilities of electric devices. Considering any change in the specifications may significantly affect the overall performance and life of a battery, an investigation on the impacts of electrode thickness on the electrochemical and thermal properties of lithium-ion battery cells based on experiments and a coupling model composed of a 1D electrochemical model and a 3D thermal model is conducted in this work. In-depth analyses on the basis of the experimental and simulated results are carried out for one cell of different depths of discharge as well as for a set of cells with different electrode thicknesses. Pertinent results have demonstrated that the electrode thickness can significantly influence the battery from many key aspects such as energy density, temperature response, capacity fading rate, overall heat generation, distribution and proportion of heat sources

  13. Lithium Thiophosphate Compounds as Stable High Rate Li-Ion Separators

    Energy Technology Data Exchange (ETDEWEB)

    Apblett, Christopher A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Battery separators based upon lithium thiophosphate (LiPS4) have previously been demonstrated at UC Boulder, but the thickness of the separators was too high to be of practical use in a lithium ion battery. The separators are solid phase, which makes them intrinsically less prone to thermal runaway and thereby improves safety. Results of attempting to develop sputtered thin film layers of this material by starting with targets of pure Li, Li2S, and P2S5 are reported. Sputtering rates and film quality and composition are discussed, along with efforts to use Raman spectroscopy to determine quantitative film composition. The latter is a rate limiting step in the investigation of these films, as they are typically thin and require long times to get to sufficient thickness to be analyzed using traditional methods, whereas Raman is particularly well suited to this analysis, if it can be made quantitative. The final results of the film deposition methods are reported, and a path towards new films is discussed. Finally, it should be noted that this program originally began with one graduate student working on the program, but this student ultimately chose to not continue with a PhD. A second student took over in the middle of the effort, and a new program has been proposed with a significantly altered chemistry to take the program in a new direction.

  14. Interest in broadband dielectric spectroscopy to study the electronic transport in materials for lithium batteries

    International Nuclear Information System (INIS)

    Badot, Jean-Claude; Lestriez, Bernard; Dubrunfaut, Olivier

    2016-01-01

    Highlights: • Broadband dielectric spectroscopy measures the multiscale electronic conductivity from macroscopic to interatomic sizes. • There is an influence of the surface states on the electronic transfer of powdered materials (e.g. thin insulating layer of Li_2CO_3 on LiNiO_2 and carbon coating on LiFePO_4). • Electrical relaxations resulting from the interfacial polarizations at the different scales of the carbon black network are evidenced. - Abstract: Broadband dielectric spectroscopy (BDS) is used to measure complex permittivity and conductivity of conducting materials for lithium batteries at frequencies from a few Hz to several GHz with network and impedance analysers. Under the influence of an electric field, there will be charge density fluctuations in the conductor mainly due to electronic transfer. These fluctuations result in dielectric relaxations for frequencies below 100 GHz. The materials are compacted powders in which each element (particles, agglomerates of particles) can have different sizes and morphologies. In the present review, studies are reported on the influence of surface states in LiNiO_2 (ageing and degradation in air) and LiFePO_4 (carbon coating thin layer), and on a composite electrode based on the lithium trivanadate (Li_1_._1V_3O_8) active material. The results have shown that the BDS technique is very sensitive to the different scales of materials architectures involved in electronic transport, from interatomic distances to macroscopic sizes.

  15. Theoretical study of adsorption of lithium atom on carbon nanotube

    Directory of Open Access Journals (Sweden)

    Masato Senami

    2011-12-01

    Full Text Available We investigate the adsorption of lithium atoms on the surface of the (12,0 single wall carbon nanotube (SWCNT by using ab initio quantum chemical calculations. The adsorption of one lithium atom on the inside of this SWCNT is favored compared to the outside. We check this feature by charge transfer and regional chemical potential density. The adsorption of multiple lithium atoms on the interior of the SWCNT is studied in terms of adsorption energy and charge transfer. We show that repulsive force between lithium atoms destabilizes a system for the large number of lithium atoms.

  16. Lithium - An impurity of interest in radiation effects of silicon.

    Science.gov (United States)

    Naber, J. A.; Horiye, H.; Passenheim, B. C.

    1971-01-01

    Study of the introduction and annealing of defects produced in lithium-diffused float-zone n-type silicon by 30-MeV electrons and fission neutrons. The introduction rate of recombination centers produced by electron irradiation is dependent on lithium concentration and for neutron irradiation is independent of lithium concentration. The introduction rate of Si-B1 centers also depends on the lithium concentration. The annealing of electron- and neutron-produced recombination centers, Si-B1 centers, and Si-G7 centers in lithium-diffused silicon occurs at much lower temperatures than in nondiffused material.

  17. Lithium-thionyl chloride batteries - past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    McCartney, J.F.; Lund, T.J.; Sturgeon, W.J.

    1980-02-01

    Lithium based batteries have the highest theoretical energy density of known battery types. Of the lithium batteries, the lithium-thionyl chloride electrochemistry has the highest energy density of those which have been reduced to practice. The characteristics, development status, and performance of lithium-thionyl chloride batteries are treated in this paper. Safety aspects of lithium-thionyl chloride batteries are discussed along with impressive results of hazard/safety tests of these batteries. An orderly development plan of a minimum family of standard cells to avoid a proliferation of battery sizes and discharge rates is presented.

  18. Effect of catalysts on lithium passivation in thionyl chloride electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kanevskii, L.S.; Avdalyan, M.B.; Kulova, T.L. [Frumkin Institute of Electrochemistry, Moscow (Russian Federation)

    1995-04-01

    The effect that various catalysts added to the electrolyte or the cathode of lithium-thionyl chloride cells for promoting the cathodic process exert on lithium anodes is studied. It is shown that, in the presence of platinum, the lithium anode is subjected to intense corrosion, and this leads to the appearance of a great voltage delay. Macrocyclic complexes activate lithium electrodes. Impedance measurements showed that the introduction of such complexes in the system is accompanied by changes in the passive film characteristics, and this leads to a decrease in the corrosion rate of lithium and a noticeable reduction of the voltage delay.

  19. Electronic properties of lithium titanate ceramic

    International Nuclear Information System (INIS)

    Padilla-Campos, Luis; Buljan, Antonio

    2001-01-01

    Research on tritium breeder material is fundamental to the development of deuterium-tritium type fusion reactors for producing clean, non contaminating, electrical energy, since only energy and helium, a harmless gas, are produced from the fusion reaction. Lithium titanate ceramic is one of the possible candidates for the tritium breeder material. This last material is thought to form part of the first wall of the nucleus of the reactor which will provide the necessary tritium for the fusion and will also serve as a shield. Lithium titanate has advantageous characteristics compared to other materials. Some of these are low activation under the irradiation of neutrons, good thermal stability, high density of lithium atoms and relatively fast tritium release at low temperatures. However, there are still several physical and chemical properties with respect to the tritium release mechanism and mechanical properties that have not been studied at all. This work presents a theoretical study of the electronic properties of lithium titanate ceramic and the corresponding tritiated material. Band calculations using the Extended H kel Tight-Binding approach were carried out. Results show that after substituting lithium for tritium atoms, the electronic states for the latter appear in the middle of prohibited band gap which it is an indication that the tritiated material should behave as a semiconductor, contrary to Li 2 TiO 3 which is a dielectric isolator. A study was also carried out to determine the energetically most favorable sites for the substitution of lithium for tritium atoms. Additionally, we analyzed possible pathways for the diffusion of a tritium atom within the crystalline structure of the Li 2 TiO 3

  20. Effect of amides on lithium tetraborate solubility

    Energy Technology Data Exchange (ETDEWEB)

    Tsekhanskij, R S; Skvortsov, V C; Molodkin, A K; Sadetdi-pov, Sh V [Chuvashskij Gosudarstvennyj Pedagogicheskij Inst., Cheboksary (USSR); Universitet Druzhby Narodov, Moscow (USSR))

    1983-03-01

    Using the methods of solubility, densi- and refractometry at 25 deg C, it has been established that the systems lithium tetraborate-formamide (acetamide, dimethyl-formamide)-water are of a simple eutonic type. Amides decrease the salt solubility. Lyotropic effect, as calculated for molar concentrations (-Lsub(M)) relative to the absolute value, increases from formamide to dimethyl-formamide. The sequence is determined by the fact that, when there is one or two hydrophilic methyl groups in amide molecules which are in contact with tetraborate, they decrease the hydration energy of lithium cations.