WorldWideScience

Sample records for lithium borate glass

  1. Thermal property of holmium doped lithium lead borate glasses

    Science.gov (United States)

    Usharani, V. L.; Eraiah, B.

    2018-04-01

    The new glass system of holmium doped lithium lead borate glasses were prepared by conventional melt quenching technique. The thermal stability of the different compositions of Ho3+ ions doped lithium lead borate glasses were studied by using TG-DTA. The Tg values are ranging from 439 to 444 °C with respect to the holmium concentration. Physical parameters like polaron radius(rp), inter-nuclear distance (ri), field strength (F) and polarizability (αm) of oxide ions were calculated using appropriate formulae.

  2. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    International Nuclear Information System (INIS)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-01-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70–x) B 2 O 3 –30 Li 2 O–(x) Dy 2 O 3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5–5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy 2 O 3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD). - Highlights: • TL response of undoped and dysprosium doped lithium borate glass subjected to 6 MV photons irradiation at low dose range. • TL linear response of dysprosium doped lithium borate glass. • The sensitivity of dysprosium doped lithium borate glass is approximately 93 times higher than undoped glass

  3. Thermoluminescence properties of the Cu-doped lithium potassium borate glass

    International Nuclear Information System (INIS)

    Aboud, Haydar; Wagiran, H.; Hussin, R.; Ali, Hassan; Alajerami, Yasser; Saeed, M.A.

    2014-01-01

    Characteristics of lithium potassium borate glasses with various copper concentrations are reported. The glasses were prepared by the melt quenching method and irradiated with photons to doses in the 0.5–4.0 Gy range. Glowing curves, dose response curves, reproducibility of the response, dose threshold, thermal fading and optical bleaching were studied

  4. Isotope effect in glass-transition temperature and ionic conductivity of lithium-borate glasses

    International Nuclear Information System (INIS)

    Nagasaki, Takanori; Morishima, Ryuta; Matsui, Tsuneo

    2002-01-01

    The glass-transition temperature and the electrical conductivity of lithium borate (0.33Li 2 O-0.67B 2 O 3 ) glasses with various isotopic compositions were determined by differential thermal analysis and by impedance spectroscopy, respectively. The obtained glass-transition temperature as well as the vibrational frequency of B-O network structure was independent of lithium isotopic composition. This result indicates that lithium ions, which exist as network modifier, only weakly interact with B-O network structure. In addition, the glass-transition temperature increased with 10 B content although the reason has not been understood. The electrical conductivity, on the other hand, increased with 6 Li content. The ratio of the conductivity of 6 Li glass to that of 7 Li glass was found to be 2, being larger than the value (7/6) 1/2 calculated with the simple classical diffusion theory. This strong mass dependence could be explained by the dynamic structure model, which assumes local structural relaxation even far below the glass-transition temperature. Besides, the conductivity appeared to increase with the glass-transition temperature. Possible correlations between the glass-transition temperature and the electrical conductivity were discussed. (author)

  5. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    Science.gov (United States)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-07-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70-x) B2O3-30 Li2O-(x) Dy2O3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5-5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy2O3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD).

  6. Fragility Variation of Lithium Borate Glasses Studied by Temperature-Modulated DSC

    Science.gov (United States)

    Matsuda, Yu; Fukawa, Yasuteru; Kawashima, Mitsuru; Kojima, Seiji

    2008-02-01

    The fragility of lithium borate glass system has been investigated by Temperature-Modulated Differential Scanning Calorimetry (TMDSC). The frequency and temperature dependences of dynamic specific heat have been observed in the vicinity of a glass transition temperature Tg. It is shown that the value of the fragility index m can be determined from the temperature dependence of the α-relaxation times observed by TMDSC, when the raw phase angle is properly corrected. The composition dependence of the fragility has been also discussed.

  7. Complex Heat Capacity of Lithium Borate Glasses Studied by Modulated DSC

    Science.gov (United States)

    Matsuda, Yu; Matsui, Chihiro; Ike, Yuji; Kodama, Masao; Kojima, Seiji

    2006-05-01

    Complex heat capacity, Cp* = Cp' - iCp″, of lithium borate glasses Li2Oṡ(1-x)B2O3 (x = 0.00 - 0.33) has been investigated by Modulated DSC (MDSC). We have successfully observed the frequency dependent Cp* by MDSC in the frequency range 0.01 to 0.1 Hz, and the average relaxation time of glass transition has been determined as a function of temperature. Moreover, the composition dependence of the thermal properties has been investigated. The calorimetric glass transition temperatures become higher with the increase of concentration of Li2O and show the board maximum around x = 0.26-0.28. The width of glass transition region becomes narrower as Li2O increases. These results relate to the change of the fragility of the system. It has been proven that the complex heat capacity spectroscopy by MDSC is a powerful tool to investigate the glass transition phenomena.

  8. Effect of CeO2 addition on electrical and optical properties of lithium borate glasses

    International Nuclear Information System (INIS)

    Gedam, R.S.; Ramteke, D.D.

    2011-01-01

    Rare earth (RE) ions play an important role in modern technology as an active ion in many optical materials. RE-doped glasses were used in many optical devices because of abundant number of the absorption and emission bands arising from the transitions between the RE elements energy levels. Among all rare earth, glasses containing CeO 2 are extensively studied for scintillating applications. Radiation length of CeO 2 containing lithium silicate glasses decreases and absorption edge in transmittance shift towards longer wavelength. In the present study an attempt has been made to verify similar results in borate containing glasses. Therefore glass series 15Li 2 O-xCeO 2 -(85''x)B 2 O 3 where x= 0.25, 0.5, 0.75, 1 mol% was prepared by conventional melt quench technique. Their electrical and optical properties have been investigated. It is observed that the conductivity of these glasses decreases while density, glass transition temperature and refractive index increases with the addition of CeO 2 . The conductivity of the glasses is mostly controlled by the activation energy. Since the lithium fraction in the present series is kept constant, the decrease in conductivity for glasses may be attributed to the reduction in the number of available vacant sites for the mobile lithium ions when boron is substituted with CeO 2 . The radiation length was determined using density values and it was found to decrease with the addition of CeO 2 . The absorption coefficient a were determined near the absorption edge of different photon energy for all glass samples and plot of (αhν) 1/2 Vs. hν (Tauc's plot) is shown. It is observed that the optical band gap energy (E g Opt ) decreases with the addition of CeO 2

  9. Effect of SiO2 addition and gamma irradiation on the lithium borate glasses

    Science.gov (United States)

    Raut, A. P.; Deshpande, V. K.

    2018-01-01

    The physical properties like density, glass transition temperature (Tg), and ionic conductivity of lithium borate (LB) glasses with SiO2 addition were measured before and after gamma irradiation. Remarkable changes in properties have been obtained in the physical properties of LB glasses with SiO2 addition and after gamma irradiation. The increase in density and glass transition temperature of LB glasses with SiO2 addition has been explained with the help of increase in density of cross linking due to SiO4 tetrahedra formation. The increase in ionic conductivity with SiO2 addition was explained with the help of ‘mixed glass former effect’. The increase in density and Tg of LB glasses with SiO2 addition after gamma irradiation has been attributed to fragmentation of bigger ring structure into smaller rings, which increases the density of cross linking and hence compaction. The exposure of gamma irradiation has lead to decrease in ionic conductivity of LB glasses with SiO2 addition. The atomic displacement caused by gamma irradiation resulted in filling of interstices and decrease in trapping sites. This explains the obtained decrease in ionic conductivity after gamma irradiation of glasses. The obtained results of effect of SiO2 addition and gamma irradiation on the density, Tg and ionic conductivity has been supported by FTIR results.

  10. Study of Paramagnetic Species in γ-irradiated Lithium Borate Glasses Doped With Cu2+ Ions

    International Nuclear Information System (INIS)

    Mansour, A.; Abd-Allah, W.M.; El-Alaily, N.A.; Ezz-Eldin, F.M.

    2013-01-01

    Mixed alkali borate glasses doped with different concentration of Cu O ranging from (0.1-10) wt% have been prepared by the melt quenching technique. The prepared samples were studied by means of density, molar volume, infrared spectroscopy and electron paramagnetic resonance (EPR) measurements before and after successive gamma irradiation (50-200 kGy). The results showed that the density increase while molar volume decrease with the increase of CuO %. The infrared absorption studies revealed that structure of the glass network consists of BO 3 , BO 4 and B-O-Cu linkages. Gamma irradiation causes minor changes in the IR spectral bands which are related to the bond break of the B-O bond and formation non-bridging oxygen. Gamma irradiation causes irregular change in the intensities of the EPR spectra for samples doped with 0.1, 0.2 and 10 wt % of Cu O, however, no change in the EPR spectra of 2 and 5 wt % of Cu O for all absorbed doses (50-200 kGy). It is expected that the Cu-doped lithium borate glass 2 and 5 wt % of Cu O may be used for radiation shielding.

  11. Complex Heat Capacity of Lithium Borate Glasses Studied by Modulated DSC

    International Nuclear Information System (INIS)

    Matsuda, Yu; Ike, Yuji; Matsui, Chihiro; Kodama, Masao; Kojima, Seiji

    2006-01-01

    Complex heat capacity, C p * = C p ' - iC p '', of lithium borate glasses Li2O·(1-x)B2O3 (x = 0.00 - 0.33) has been investigated by Modulated DSC (MDSC). We have successfully observed the frequency dependent C p * by MDSC in the frequency range 0.01 to 0.1 Hz, and the average relaxation time of glass transition has been determined as a function of temperature. Moreover, the composition dependence of the thermal properties has been investigated. The calorimetric glass transition temperatures become higher with the increase of concentration of Li2O and show the board maximum around x = 0.26-0.28. The width of glass transition region becomes narrower as Li2O increases. These results relate to the change of the fragility of the system. It has been proven that the complex heat capacity spectroscopy by MDSC is a powerful tool to investigate the glass transition phenomena

  12. Structural influence of mixed transition metal ions on lithium bismuth borate glasses

    Science.gov (United States)

    Yadav, Arti; Dahiya, Manjeet S.; Hooda, A.; Chand, Prem; Khasa, S.

    2017-08-01

    Lithium bismuth borate glasses containing mixed transition metals having composition 7CoO·23Li2O·20Bi2O3·50B2O3 (CLBB), 7V2O5·23Li2O·20Bi2O3·50B2O3 (VLBB) and x(2CoO·V2O5)·(30 - x)Li2O·20Bi2O3·50B2O3 (x = 0.0 (LBB) and x = 2.0, 5.0, 7.0, 10.0 mol% (CVLBB1-4)) are synthesized via melt quench route. The synthesized compositions are investigated for their physical properties using density (D) and molar volume (Vm), thermal properties by analyzing DSC/TG thermo-graphs, structural properties using IR absorption spectra in the mid-IR range and optical properties using UV-Vis-NIR spectroscopy. The Electron Paramagnetic Resonance (EPR) spectra of vanadyl and cobalt ion have been analyzed to study compositional effects on spin-Hamiltonian parameters. The non linear variations in physical properties depict a strong structural influence of Co/V- oxides on the glassy matrix. The compositional variations in characteristic temperatures (glass transition temperature Tg, glass crystallization temperature Tp and glass melting temperature Tm) reveals that Tg for glass samples CLBB is relatively less than that of pure lithium bismuth borate (LBB) glass sample wherein Tg for sample VLBB is higher than that of LBB. The increase in Tg (as compared with LBB) with an enhanced substitution of mixed transition metal oxides (2CoO·V2O5) shows a progressive structure modification of bismuth borate matrix. These predictions are very well corroborated by corresponding compositional trends of Tp and Tm. FTIR studies reveal that Co2+& VO2+ ions lead to structural rearrangements through the conversion of three-coordinated boron into four coordinated boron and thereby reducing number of non-bridging oxygen atoms. Bismuth is found to exist in [BiO6] octahedral units only, whereas boroxol rings are not present in the glass network. The theoretical values of optical basicity (Λth) and corresponding oxide ion polarizability (αo2-) have also been calculated to investigate oxygen covalency of

  13. Thermoluminescence characteristics of Cu2O doped Calcium Lithium borate glass irradiated with the cobalt-60 gamma rays

    International Nuclear Information System (INIS)

    Rammadhan, Ismail; Taha, Saddon; Wagiran, H.

    2017-01-01

    The aim of this study is to prepare and investigate the thermoluminescence characteristics for the un-doped and Cu 2 O doped calcium lithium borate glass upon adding various Cu 2 O concentrations of 0.005% to 0.1 mol%. The glasses were prepared by melt quenching method and irradiated with 60 CO gamma-ray having different doses in the range of (0.5–4) Gy, (5–10) Gy, and (20–100) Gy. The amorphous phases were identified for optimization glass samples, effect of heating rate, glowing curves, linearity, sensitivity, fading, reproducibility of response and minimum detectable dose are also studied. The TL sample with 0.02 mol% Cu 2 O concentration has higher response compared to the other samples concentration for a delivered dose of 50 Gy, The recorded glow curves consist a dominant peak at 187 °C for a heating rate of 5 °C s −1 . However, the value of effective atomic number Z eff is 8.84 for 0.02Cu 2 O doped which are near to the atomic number of soft tissue. - Highlights: •We have prepared and investigate the crystalline structure for the un-doped and Cu 2 O doped calcium lithium borate glass are carried out. •Investigate the amorphous structure of calcium lithium borate glass. •Determine the best setting of annealing temperature, annealing time and heating rate for Cu 2 O doped calcium lithium borate glass. •The doping effects of Cu 2 O on the thermoluminescence properties of calcium lithium borate glass subjected gamma radiations. •The new dosimeter showed simple glow curve with single prominent peak centred at 187 °C and linear dose–response range 0.5–100 Gy, good reproducibility, the fading of the signal is relatively slow. •Effective atomic number for Cu 2 O doped Calcium lithium borate close to the effective atomic number of soft tissue.

  14. Thermoluminescence characteristics of Cu{sub 2}O doped Calcium Lithium borate glass irradiated with the cobalt-60 gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Rammadhan, Ismail, E-mail: ismail.rammadhan@koyauniversity.org [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Department of Physics, Faculty of Sciences and Health, Koya University, Danielle Mitterrand Boulevard, Koya 45, Kurdistan Region (Iraq); Taha, Saddon [Department of Physics, Faculty of Sciences and Health, Koya University, Danielle Mitterrand Boulevard, Koya 45, Kurdistan Region (Iraq); Wagiran, H. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

    2017-06-15

    The aim of this study is to prepare and investigate the thermoluminescence characteristics for the un-doped and Cu{sub 2}O doped calcium lithium borate glass upon adding various Cu{sub 2}O concentrations of 0.005% to 0.1 mol%. The glasses were prepared by melt quenching method and irradiated with {sup 60}CO gamma-ray having different doses in the range of (0.5–4) Gy, (5–10) Gy, and (20–100) Gy. The amorphous phases were identified for optimization glass samples, effect of heating rate, glowing curves, linearity, sensitivity, fading, reproducibility of response and minimum detectable dose are also studied. The TL sample with 0.02 mol% Cu{sub 2}O concentration has higher response compared to the other samples concentration for a delivered dose of 50 Gy, The recorded glow curves consist a dominant peak at 187 °C for a heating rate of 5 °C s{sup −1}. However, the value of effective atomic number Z{sub eff} is 8.84 for 0.02Cu{sub 2}O doped which are near to the atomic number of soft tissue. - Highlights: •We have prepared and investigate the crystalline structure for the un-doped and Cu{sub 2}O doped calcium lithium borate glass are carried out. •Investigate the amorphous structure of calcium lithium borate glass. •Determine the best setting of annealing temperature, annealing time and heating rate for Cu{sub 2}O doped calcium lithium borate glass. •The doping effects of Cu{sub 2}O on the thermoluminescence properties of calcium lithium borate glass subjected gamma radiations. •The new dosimeter showed simple glow curve with single prominent peak centred at 187 °C and linear dose–response range 0.5–100 Gy, good reproducibility, the fading of the signal is relatively slow. •Effective atomic number for Cu{sub 2}O doped Calcium lithium borate close to the effective atomic number of soft tissue.

  15. Appearance of small polaron hopping conduction in iron modified cobalt lithium bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Dahiya, M. S.; Khasa, S., E-mail: skhasa@yahoo.com; Yadav, Arti [Physics Department, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India-131039 (India); Agarwal, A. [Applied Physics Department, Guru Jambheshwara University of Science and Technology, Hisar, India-125001 (India)

    2016-05-23

    Lithium bismuth borate glasses containing different amounts of cobalt and iron oxides having chemical composition xFe{sub 2}O{sub 3}•(20-x)CoO•30Li{sub 2}O•10Bi{sub 2}O{sub 3}•40B{sub 2}O{sub 3} (x = 0, 5, 10, 15 and 20 mol% abbreviated as CFLBB1-5 respectively) prepared via melt quench technique have been investigated for their dc electrical conductivity. The amorphous nature of prepared glasses has been confirmed through X-ray diffraction measurements. The dc electrical conductivity has been analyzed by applying Mott’s small polaron hopping model. Activation energies corresponding to lower and higher temperature region have been evaluated. The iron ion concentration (N), mean spacing between iron ions (R) and polaron radius (R{sub p}) has been evaluated using the values of phonon radius (R{sub ph}) and Debye temperature (θ{sub D}). The glass sample without iron (CFLBB1) shows ionic conductivity but the incorporation of iron in the glass matrix results in the appearance of electronic conductivity.

  16. Ultrasonic relaxations in borate glasses

    International Nuclear Information System (INIS)

    D'Angelo, G.; Tripodo, G.; Carini, G.; Cosio, E.; Bartolotta, A.; Di Marco, G.

    2004-01-01

    The attenuation and velocity of ultrasonic waves of frequencies in the range from 10 to 70 MHz have been measured in M 2 O-B 2 O 3 borate glasses (M: Li or Ag) as a function of temperature between 15 and 350 K. The velocity of sound waves decreases with increasing temperature in all the glasses, the decrease as the temperature is increased is larger in glasses containing silver than in those with lithium. A broad relaxation peak characterises the attenuation behaviour of the lithium and silver borate glasses at temperatures below 100 K and is paralleled by a corresponding dispersive behaviour of the sound velocity. Above 100 K, the ultrasonic velocity shows a nearly linear behaviour regulated by the vibrational anharmonicity, which decreases with increasing content of modifier oxide and is smaller in lithium than in silver borates. These results suggest that the relaxation of structural defects and the anharmonicity of borate glasses are strongly affected by two parameters: the number of bridging bonds per network forming ion and the polarising power of network modifier ions which occupy sites in the existing interstices

  17. Spectroscopic properties of Pr{sup 3+} ions embedded in lithium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ramteke, D.D. [Department of Applied Physics, Visvesvaraya National Institute of Technology, Nagpur 440010 (India); Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Gedam, R.S., E-mail: rupesh_gedam@rediffmail.com [Department of Applied Physics, Visvesvaraya National Institute of Technology, Nagpur 440010 (India)

    2016-01-01

    A series of lithium borate glasses with different Pr{sup 3+} contents were prepared by the melt quench technique to explore the new material for solid state light applications. We found that the addition of Pr{sup 3+} ions in the glass matrix has a profound effect on the properties of the glasses. The presence of Pr{sup 3+} ions in the glass matrix created various absorption bands compared to the base glass. These bands were due to the ground state ({sup 3}H{sub 4}) of the Pr{sup 3+} to the various excited states. Optical energy band gap was calculated by Tauc's method which showed a decreasing trend with an increase in the Pr{sup 3+} content. This might be due to structural changes when the glass structure became rigid due to the Pr{sup 3+} ions and this was confirmed by the density results. Rigidity of the glass structure was further confirmed by the Fourier transformed infrared results. The excitation spectra showed bands at {sup 3}H{sub 4}→{sup 3}P{sub 2}, {sup 3}P{sub 1} and {sup 3}P{sub 0} nm. The {sup 3}H{sub 4}→{sup 3}P{sub 2} band was used to study the unresolved {sup 1}D{sub 2}→{sup 3}H{sub 4} and {sup 3}P{sub 0}→{sup 3}H{sub 6} transitions of the Pr{sup 3+} ions.

  18. Optical properties of lithium magnesium borate glasses doped with Dy3+ and Sm3+ ions

    International Nuclear Information System (INIS)

    Yasser Saleh Mustafa Alajerami; Suhairul Hashim; Wan Muhamad Saridan Wan Hassan; Ahmad Termizi Ramli; Azman Kasim

    2012-01-01

    Several studies showed the interesting properties of trivalent lanthanide ions when doped in various types of glasses. Optical and physical properties of lithium magnesium borate glasses doped with Dy 3+ then with Sm 3+ ions were determined by measuring their absorption and luminescence spectra in the visible region. The absorption spectra of Dy 3+ showed eight absorption bands with hypersensitive transition at 1265 nm ( 6 H 15/2 → 6 F 11/2 - 6 H 9/2 ) and three PL emission bands at 588 nm ( 4 F 9/2 → 6 H 15/2 ), 660 nm ( 4 F 9/2 → 6 H 13/2 ) and 775 nm ( 4 F 9/2 → 6 H 11/2 ). Regarding the Sm3 + , nine absorption bands were observed with hypersensitive transition at 1237 nm ( 6 H 5/2 - 6 F 7/2 ); the PL spectrum showed four prominent peaks at 4 G 5/2 → 6 H 5/2 (yellow color), 4 G 5/2 → 6 H 7/2 (bright orange color), 4 G 5/2 → 6 H 9/2 (orange reddish color) and 4 G 5/2 → 6 H 11/2 (red color), respectively. Finally, a series of physical parameters such as the oscillator strengths, refractive index, ions concentration, Polaron radius and other parameters were calculated for each dopant.

  19. Dysprosium lithium borate glass mircrospheres for radiation synovectomy: The in vitro and in vivo performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Di; Yu Jing [Institute of Bioengineering and Information Technology Materials, Center for Advanced Materials and Nano-Biomedicine, Tongji University, Shanghai, 200092 (China); Huang Wenhai, E-mail: whhuang@tongji.edu.cn [Institute of Bioengineering and Information Technology Materials, Center for Advanced Materials and Nano-Biomedicine, Tongji University, Shanghai, 200092 (China); Zhou Nai; Wang Deping [Institute of Bioengineering and Information Technology Materials, Center for Advanced Materials and Nano-Biomedicine, Tongji University, Shanghai, 200092 (China); Yin Wei [Institute of Isotope Research, Sinitic Academy of Atomic Energy, Beijing 102413 (China); Chen Yaqing [The Sixth People' s Hospital, Shanghai 200233 (China)

    2010-08-30

    The radioactive dysprosium lithium borate glass (DyLB) microspheres with different glass compositions were prepared for radiation synovectomy. The biodegradability and biocompatibility of these DyLB microspheres were evaluated in vitro and in vivo. The DyLB microspheres studied in this work were partially biodegradable in a simulated body fluid (SBF), with the final weight loss of the microspheres in the range of 24.6% and 55.0% (wt.%) after 8 days of immersion. The ICP results revealed that the dissolution of lithium significantly decreased from 100% to 53.7% with increasing content of Dy{sub 2}O{sub 3} in the microspheres from 18% to 22% (wt.%, from S-1 to S-3). However, for all of the three samples, nearly all of the dysprosium (> 99.997%, wt.%) remained in the microspheres, in the form of insoluble phosphates and carbonates, which was proved by the SEM and EDX analyses. The degradation of DyLB microspheres in SBF gradually decreased with immersion time and eventually reached equilibrium after 7 days of immersion. Compared to the other two samples, the S-3 sample with the lowest Dy{sup 3+} dissolution (about 0.002%) was considered more secure for clinical application. Furthermore, the S-3 DyLB microspheres exhibited good biocompatibility, since neither tissue damage nor inflammation was observed, after they were implanted in the liver of rat for two weeks. After neutron activation, the radionuclide purity of radioactive S-3 DyLB microspheres was 99.999%, which were suitable for radiation synovectomy.

  20. Thermoluminescence dosimetry properties and kinetic parameters of lithium potassium borate glass co-doped with titanium and magnesium oxides

    International Nuclear Information System (INIS)

    Hashim, S.; Alajerami, Y.S.M.; Ramli, A.T.; Ghoshal, S.K.; Saleh, M.A.; Abdul Kadir, A.B.; Saripan, M.I.; Alzimami, K.; Bradley, D.A.; Mhareb, M.H.A.

    2014-01-01

    Lithium potassium borate (LKB) glasses co-doped with TiO 2 and MgO were prepared using the melt quenching technique. The glasses were cut into transparent chips and exposed to gamma rays of 60 Co to study their thermoluminescence (TL) properties. The TL glow curve of the Ti-doped material featured a single prominent peak at 230 °C. Additional incorporation of MgO as a co-activator enhanced the TL intensity threefold. LKB:Ti,Mg is a low-Z material (Z eff =8.89) with slow signal fading. Its radiation sensitivity is 12 times lower that the sensitivity of TLD-100. The dose response is linear at doses up to 10 3 Gy. The trap parameters, such as the kinetics order, activation energy, and frequency factor, which are related to the glow peak, were determined using TolAnal software. - Highlights: • Lithium potassium borate glass doped with Ti and Mg was prepared. • The material is close to soft tissues in terms of Zeff. • The radiation sensitivity is about 12 times lower than that of TLD-100. • The signal fades about 8% in 10 days and 17% in 3 months

  1. Physical, thermal, structural and optical properties of Dy3+ doped lithium alumino-borate glasses for bright W-LED

    International Nuclear Information System (INIS)

    Pawar, P.P.; Munishwar, S.R.; Gautam, S.; Gedam, R.S.

    2017-01-01

    Rare earth (RE) doped glasses have potential applications due to their emission efficiencies of 4f–4 f and 4f–5d electronic transitions. Among all the rare earths, Dy 3+ doped glasses have drawn much interest among the researchers for their intense emission in the visible region from 470 to 500 nm and around 570 to 600 nm. The physical, thermal, structural and optical properties of Dy 3+ doped lithium alumino-borate glasses (LABD glasses) have been studied for white LED (W-LED) application. The glasses were synthesized by conventional melt quench technique. X-ray diffraction spectra revealed the amorphous nature of the glass sample. An FTIR spectrum was carried out to study the glass structure and various functional groups present in the LABD glasses. Optical absorption spectra were recorded by UV–vis-NIR spectrometer. Allowed direct and indirect band gaps were obtained by Tauc's plot. Thermal parameters like glass thermal stability (∆T), Hruby's parameter (K gl ), etc. were calculated by DTA graph. Photoluminescence excitation and emission spectra's were measured at room temperature. The emission spectra shows two intense emission bands at around 482 nm (blue) and 574 nm (yellow) corresponds to the 4 F 9/2 → 6 H 15/2 and 4 F 9/2 → 6 H 13/2 transitions respectively along with one feeble band at 662 nm (red) corresponds to 4 F 9/2 → 6 H 11/2 transition. The CIE chromaticity co-ordinates were calculated for all glass samples. CIE chromaticity diagram shows glass LABD-4 containing 0.5 mol% Dy 2 O 3 with colour co-ordinates X = 0.34 and Y = 0.38 have highest emission intensity. These glasses having emission in the white region and thus can be used for bright white LED.

  2. Dosimetric and kinetic parameters of lithium cadmium borate glasses doped with rare earth ions

    Directory of Open Access Journals (Sweden)

    J. Anjaiah

    2014-10-01

    Full Text Available Thermoluminescence (TL characteristics of X-ray irradiated pure and doped with four different rare earth ions (viz., Pr3+, Nd3+, Sm3+ and Eu3+ Li2O–Cdo–B2O3 glasses have been studied in the temperature range 303–573 K; the pure glass has exhibited single TL peak at 466 K. When this glass is doped with different rare earth ions no additional peaks are observed but the glow peak temperature of the existing glow peak shifted gradually towards higher temperatures with gain in intensity of TL light output. The area under the glow curve is found to be maximum for Eu3+ doped glasses. The trap depth parameters associated with the observed TL peaks have been evaluated using Chen's formulae. The possible use of these glasses in radiation dosimetry has been described. The result clearly showed that europium doped cadmium borate glass has a potential to be considered as the thermoluminescence dosimeter.

  3. Infrared luminescence and thermoluminescence of lithium borate glasses doped with Sm3+ ions

    Directory of Open Access Journals (Sweden)

    Anjaiah J.

    2015-03-01

    Full Text Available Thermoluminescence (TL characteristics of X-ray irradiated pure and doped with Sm3+ ions Li2O-MO-B2O3 (where MO=ZnO, CaO, CdO glasses have been studied in the temperature range of 303 to 573 K. All the pure glasses exhibited single TL peaks at 382 K, 424 K and 466 K. When these glasses were doped with Sm3+ ions no additional peaks have been observed but the glow peak temperature of the existing glow peak shifted gradually towards higher temperatures with gain in intensity of TL light output. The area under the glow curve was found to be maximum for Sm3+ doped glasses mixed with cadmium oxide as a modifier. The trap depth parameters associated with the observed TL peaks have been evaluated using Chen’s formulae. The possible use of these glasses in radiation dosimetry has been described. The results clearly showed that samarium doped cadmium borate glass has a potential to be considered as a thermoluminescence dosimeter.

  4. Effect of mixed transition metal ions on DC conductivity in lithium bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Khasa, S.; Yadav, Arti, E-mail: artidabhur@gmail.com; Dahiya, M. S.; Seema,; Ashima [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal-131039 (India); Agarwal, A. [Physics Department, G.J. University of science and technology, Hisar-125001 (India)

    2015-06-24

    The DC conductivities of glasses having composition x(2NiO·V{sub 2}O{sub 5})·(30-x)Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} (with x=0, 2, 5, 7 and 10, i.e. NVLBB glasses) and glass samples having composition 7NiO·23 Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} and 7V{sub 2}O{sub 5}·23Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} (NLBB and VLBB respectively) are investigated as a function of temperature. Conductivity for glasses containing higher percentage of lithium ions is predominantly ionic and in glasses containing higher percentage of transition metal (TM) ions is predominantly electronic. The observed increase in conductivity with x and peak-like behavior at x=7 in NVLBB glasses due to competitive transport of small polaron contributing to a significant structural change in NVLBB glasses. Variation of molar volume and density was also observed with x. In NVLBB glasses, as x increases density increases except a slight decrease at x=7. Also density increases in NLBB whereas in case of VLBB it decreases in comparison to NVLBB1 glass composition. Mott’s small polaron hopping (SPH) model has been applied to analyze the high temperature conductivity data and activation energy.

  5. Structural study and DC conductivity of vanadyl doped zinc lithium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Seema [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal-131039 (India); Physics Department, Baba Mast Nath University, Asthal Bohr, Rohtak-124001 (India); Khasa, S., E-mail: skhasa@rediff.com; Dahiya, M. S.; Yadav, Arti [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal-131039 (India); Agarwal, A. [Applied Physics Department, Guru Jambheshwar University of Science & Technology, Hisar-125001 (India); Dahiya, S. [Physics Department, Baba Mast Nath University, Asthal Bohr, Rohtak-124001 (India)

    2015-06-24

    Glasses with composition xZnO⋅(30 − x)⋅Li{sub 2}O⋅70B{sub 2}O{sub 3} containing 2 mol% of V{sub 2}O{sub 5} (x = 0, 2, 5, 7 and 10) were prepared by standard melt-quench technique. The amorphous nature of the glass samples was confirmed by using x-ray diffraction. The structural changes in these glasses have been investigated by employing IR spectroscopy in the mid-IR range. The infrared spectroscopic analysis confirms the presence of both triangular and tetraheldral coordinated boron units and absence of boroxol ring. It also shows that metal-oxide vibrations are present which are due to the bonding of lithium and zinc ions with oxygen. The dc conductivity was measured in the temperature range 353-523 K. The dc conductivity results show that conductivity decreases and activation energy increases when Li{sub 2}O is replaced by ZnO, keeping the concentration of B{sub 2}O{sub 3} constant. Decrease in conductivity and increase in activation energy shows that addition of ZnO to the glass matrix shows a “blocking effect” on the overall mobility of alkali ions, but at higher concentration the hopping effect was also observed.

  6. Structural properties of lithium borate glasses doped with rare earth ions

    Directory of Open Access Journals (Sweden)

    Thomazini D.

    2001-01-01

    Full Text Available This paper presents the study on lithium triborate glass (LBO in the system (1-x|3B2O3.Li2O| (xNb2O5 yPr3+ zYb3+ wNd3+ with 0 <= x <= 20 mol% (y, z and w in mol%. The samples were studied by Raman spectroscopy, infrared absorption and differential thermal analysis. Pr3+-doped LBO and Pr3+/Yb3+-doped LBO samples show an increase of the glass transition and crystallization temperatures and a decrease of the fusion temperature associated with the increase of the praseodymium concentration in the LBO matrix. For the Nd3+-doped LBO and Pr3+/Yb3+-doped (LBO+Nb2O5 samples, a decrease of the glass transition temperature of the samples was observed. The increase of the rare earth doping leads to an increase of the difference between the glass transition and the crystallization temperatures. From infrared analysis it was possible to identify all the modes associated to the B-O structure. The NbO6 octahedra was also identified by IR spectroscopy for samples with x=5, 10, 15 and 20 mol% and y=0.05, z=1.1 mol%. Raman spectroscopy shows the presence of boroxol rings, tetrahedral and triangular coordination for boron. For samples containing niobium, the Raman spectra show the vibrational mode associated with the Nb-O bond in the niobium octahedra (NbO6.

  7. Stability and electronic properties of groups IIB to VB metal ions in unusual oxidation states and the 2S /SUB 1/2/ electronic state in lithium borate glasses

    International Nuclear Information System (INIS)

    Aleksandrov, A.I.; Bubnov, N.N.; Kraevskii, S.L.; Prokof'ev, A.I.; Raspertova, Z.I.; Solinov, V.F.

    1986-01-01

    The authors study lithium borate glasses containing groups IIB to VB metal oxides. Chemically pure reagents were used to synthesize the glasses which were subjected to gamma-rays at 77 and 300 K with doses of up to 100 kR. The EST spectra were recorded on a Varian E-12 spectrometer in the 3 cm CW frequency region with a 100 kHz magnetic field modulation. It was established that after gamma-irradiation at 77 and 300 K of the lithium borate glass system containing up to 10% of cadmium, tin, thalium, and lead oxides, additional ESR lines arise in the free electron g factor region. The authors have determined the missing ESR spectra for nonactivated lithium borate glasses by studying glasses with additions of Zn, Ge, and Sb oxides

  8. Copper oxide content dependence of crystallization behavior, glass forming ability, glass stability and fragility of lithium borate glasses

    International Nuclear Information System (INIS)

    Soliman, A.A.; Kashif, I.

    2010-01-01

    Differential thermal analysis (DTA) and X-ray diffraction (XRD) have been employed to investigate the copper oxide content dependence of the glass transition temperatures data, activation energy for the glass transition E t , glass stability GS, fragility index Fi, the glass-forming ability (GFA) and crystallization behavior of {(100-x) mol% Li 2 B 4 O 7 -x mol% CuO} glass samples, where x=0-40 mol% CuO. From the dependence of the glass transition temperature T g on the heating rate β, the fragility, F i , and the activation energy, E t , have been calculated. It is seen that F i and E t are attained their minimum values at 0 x -T g , SCL region and the GS. The GFA has been investigated on the basis of Hruby parameter K H , which is a strong indicator of GFA, and the relaxation time. Results of GFA are in good agreement with the fragility index, F i , calculations indicating that {90Li 2 B 4 O 7 .10CuO} is the best glass former. The stronger glass forming ability has decreasing the fragility index. XRD result indicates that no fully amorphous samples but a mixture of crystalline and amorphous phases are formed in the samples containing x>25 mol% CuO and below it composed of glassy phase. Increasing the CuO content above 25 mol% helps the crystallization process, and thus promotes a distinct SCL region. XRD suggests the presence of micro-crystallites of remaining residual amorphous matrix by increasing the CuO content.

  9. Optical and vibrational spectroscopy of Ba0.85Ca0.15Zr0.1Ti0.9O3 modified lithium borate glass ceramics

    Science.gov (United States)

    Viswanath, Pamarti; Prashanth, Sadhu Sai Pavan; Molli, Muralikrishna; Wicram, Jaschin Prem; Sai Muthukumar, V.

    2018-04-01

    Glass ceramics are excellent replacement for single crystalline materials which are expensive and difficult to fabricate. In this context, we have attempted to fabricate glass nanocomposites comprising of Lithium Borate glass matrix embedded with lead free ferroelectric Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT). Both of these functional materials are known to exhibit excellent ferroelectric behavior and are currently explored for various device applications. We have prepared these novel glass nanocomposite using melt-quenching techniquein various chemical composition involving different molar ratio. x(Ba0.85Ca0.15Zr0.1Ti0.9O3)-(1-x)(Li2O.2B2O3) where (x=0.1,0.2,0.3,0.4). The as-quenched samples exhibited amorphous nature as revealed by X-ray Diffraction studies. With the increase in BCZT content we have observed significant alteration in optical bandgap and Urbach energy. The tailoring of optical properties by tuning the structure was probed by Raman vibrational spectroscopy which confirmed the dominant role played by BCZT as a network modifier in these borate glasses. Concomitantly, these glass nanocomposites were found to be excellent UV absorbers.

  10. Effect of irradiation on differential thermal properties and crystallization behavior of some lithium borate glasses

    International Nuclear Information System (INIS)

    El-Alaily, N.A.; Mohamed, R.M.

    2001-01-01

    Differential thermal properties and the crystallization behavior of binary system Li 2 O-B 2 O 3 glasses were investigated. The effects of the presence of oxides of aluminum, lead or one of the transition metals TiO 2 or V 2 O 5 or Fe 2 O 3 in the parent glass were also studied. The effects of three different heat treatments on the crystalline structure of all the studied glasses were also investigated. The results showed that all glass samples were amorphous before the heat treatment, with the most common formed phase being tetraborate Li 2 B 8 O 13 (Li 2 O-4B 2 O 3 ). The exposure of the glass samples to either gamma rays or fast neutrons resulted in considerable changes in their thermal behavior. The results also showed that T g increases for all studied glasses when subjected to irradiation either by fast neutron or gamma rays, while T c decreased only at higher doses

  11. Structural simulation and ionic conductivity mechanisms in lithium thio-borate based glasses

    International Nuclear Information System (INIS)

    Estournes, C.

    1992-04-01

    We propose in this work a structural study of B 2 S 3 -Li 2 S glass system through the use of neutron scattering, X-ray photo-electron spectroscopy and computerized simulation. We have got information on the order at low and short distance range of these glasses. This information has been correlated to changes in physical features like ionic conductivity, density and temperature of the vitreous transition according to their chemical compositions. The knowledge of the local order in the most modified binary glasses has allowed us to propose a model for ionic conduction similar to the model used for ionic crystals. This model has been validated: it yields an activation energy that agrees well with experimental data

  12. Effect of substituting iron on structural, thermal and dielectric properties of lithium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Dalal, Seema [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal 131039 (India); Physics Department, Baba Mast Nath University, Asthal Bohr 124001 (India); Khasa, S., E-mail: skhasa@yahoo.com [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal 131039 (India); Dahiya, M.S. [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal 131039 (India); Agarwal, A. [Applied Physics Department, Guru Jambheshwar University of Science and Technology, Hisar 125001 (India); Yadav, Arti [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal 131039 (India); Seth, V.P. [Retd Professor, Physics Department, Maharshi Dayanand University Rohtak 124001 (India); Dahiya, S. [Physics Department, Baba Mast Nath University, Asthal Bohr 124001 (India)

    2015-10-15

    Highlights: • There is increase in NBOs with iron content. • FTIR spectra supported the results predicted by density. • Glass stability has been examined. • Iron shows “blocking effect” on migration of mobile ions. • Internal Circuit varies with temperature and composition. - Abstract: Glasses with composition xFe{sub 2}O{sub 3}·(30 − x)Li{sub 2}O·70B{sub 2}O{sub 3} (x = 0, 2, 5, 7 and 10 mol%) were prepared via melt-quenching technique and their physical, thermal and dielectric properties are discussed. XRD was carried out to confirm the amorphous nature of prepared glasses. Density (ρ) and molar volume (V{sub m}) were found to increase with increase in Fe{sub 2}O{sub 3} content. Infrared absorption spectra depicted that Fe{sub 2}O{sub 3} is acting as a network modifier. DTA has been carried out to determine glass transition temperature (T{sub g}) and crystallization temperature (T{sub x}). Electrical properties have been studied using impedance spectroscopy and dc conductivity. The dc conductivity decreases and activation energy increases on replacing Li{sup +} ions with Fe{sup 3+}. The impedance measurements reveal that the total conductivity obeys Jonscher’s power law. Study of the equivalent circuit analysis up to a temperature of 523 K shows a significant change in the equivalent circuitry with change in temperature and composition.

  13. Synthesis and optical property of holmium doped Lithium lead borate glasses

    Science.gov (United States)

    Usharani, V. L.; Eraiah, B.

    2017-05-01

    The new glass system 60B2O3-30PbO-(10-x)Li2O-xHo2O3 (where x =0, 0.1, 0.3 and 0.5 mol%) were prepared by conventional melt quenching method. The XRD spectrum confirms the amorphous nature of the sample. The density of these glasses is measured by using Archimedes principle, the values range from 4.23 g/cm-3 to 4.34 g/cm-3 and the corresponding molar volumes are calculated. The optical absorbance studies were carried out on these glasses in the wavelength range of 200nm to 1100nm. The measured optical direct band gap energies were in the range of 3.072eV to 3.259eV and the optical indirect band gap energies in the range of 2.658eV to 2.846eV. The refractive indices of these glasses were measured by using Abbe refractometer and the corresponding polarizabilities of oxide ions are calculated by using Lorentz-Lorentz relations.

  14. EPR and impedance spectroscopic investigations on lithium bismuth borate glasses containing nickel and vanadium ions

    Science.gov (United States)

    Yadav, Arti; Khasa, Satish; Hooda, Ashima; Dahiya, Manjeet S.; Agarwal, Ashish; Chand, Prem

    2016-03-01

    Glasses having composition 7NiO • 23Li2O • 20Bi2O3 • 50B2O3, 7V2O5 • 23Li2O • 20Bi2O3 • 50B2O3 and x(2NiO • V2O5) • (30 - x)Li2O • 50B2O3 • 20Bi2O3 (with x = 0, 2, 5, 7 & 10 mol%) prepared through melt-quench route are explored by analyzing density, impedance spectroscopy and electron paramagnetic resonance (EPR). It is found that both density and molar volume increase with an increase in substitution of 2NiO • V2O5 in the base glass matrix. Different dielectric parameters viz. dielectric loss (ε), electrical modulus (M), loss tangent (tanδ) etc. are evaluated and their variations with frequency and temperature are analyzed which reveals that these glasses exhibit a non-Debye relaxation behavior. A phenomenal description of the capacitive behavior is obtained by considering the circuitry as a parallel combination of bulk resistance (Rb) and constant phase element (CPE). The conduction mechanism is found to follow Quantum Mechanical Tunneling (QMT) model. Spin Hamiltonian Parameters (SHPs) and covalency rates are calculated from the EPR spectra of vanadyl ion. The observed EPR spectra confirmed that V4 + ion exists as vanadyl ion in the octahedral coordination with tetragonal compression.

  15. Exoelectron emission from magnesium borate glass ceramics

    International Nuclear Information System (INIS)

    Kawamoto, Takamichi; Yanagisawa, Hideo; Nakamichi, Hiroshi; Kikuchi, Riichi; Kawanishi, Masaharu.

    1986-01-01

    Thermally stimulated exoelectron emission (TSEE) of a magnesium borate glass ceramics was investigated for its application to dosemetric use. It has been found that the TSEE glow patterns of the magnesium borate glass ceramics as well as a Li 2 B 4 O 7 glass ceramics depend on the kind of the radiation used and that the heat resistance of the magnesium borate glass ceramics is higher than that of the Li 2 B 4 O 7 glass ceramics. Therefore, the TSEE glow patterns of the magnesium borate glass ceramics indicate a possibility to be used as the dose measurement for each kind of radiation in the mixed radiation field. (author)

  16. Multimodal emissions from Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate glass: Upconversion, downshifting and quantum cutting

    Energy Technology Data Exchange (ETDEWEB)

    Bahadur, A.; Yadav, R.S.; Yadav, R.V.; Rai, S.B., E-mail: sbrai49@yahoo.co.in

    2017-02-15

    This paper reports the optical properties of Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method. The absorption spectrum of the Yb{sup 3+} doped LB glass contains intense NIR band centered at 976 nm due to {sup 2}F{sub 7/2}→{sup 2}F{sub 5/2} transition. The emission spectra of the prepared glasses have been monitored on excitation with 266, 355 and 976 nm. The Yb{sup 3+} doped glass emits a broad NIR band centered at 976 nm whereas the Tb{sup 3+} doped glass gives off visible bands on excitations with 266 and 355 nm. When the Tb{sup 3+} and Yb{sup 3+} ions are co-doped together, the emission intensity in the visible region decreases whereas it increases in the NIR region significantly. The increase in the emission intensity in the NIR region is due to efficient cooperative energy transfer (CET) from Tb{sup 3+} to Yb{sup 3+} ions. The quantum cutting efficiency for Tb{sup 3+}/Yb{sup 3+} co-doped glass has been calculated and compared for 266 and 355 nm excitations. The quantum cutting efficiency is larger for 355 nm excitation (137%). The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass also emits upconverted visible bands on excitation with 976 nm. The mechanisms involved in the energy transfer have been discussed using schematic energy level diagram. The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may be used in the optical devices and in solar cell for solar spectral conversion and behaves as a multi-modal photo-luminescent material. - Graphical abstract: The Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method emits upconverted visible emissions through upconversion CET from Yb{sup 3+} to Tb{sup 3+} ions and quantum cutting emissions through downconversion CET from Tb{sup 3+} to Yb{sup 3+} ions. Therefore, the Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may find applications in optical devices and solar cell and behaves as a multi-modal photo-luminescent material. - Highlights: • The Tb{sup 3+}/Yb{sup 3

  17. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    The alkaline earth borate glasses containing heavy metal oxides show good solubility of rare-earth ions. Glasses containing PbO exhibit low glass transition temperature (Tg) and high ..... These oxygen ions carry a partial negative charge and.

  18. Effect of co-doped SnO{sub 2} nanoparticles on photoluminescence of cu-doped potassium lithium borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Namma, Haydar Aboud; Wagiran, H.; Hussin, R.; Ariwahjoedi, B. [Department of Physics, Universiti Teknologi Malaysia, Skudai 81310, Malaysia and Baghdad College of Economic Sciences University (Iraq); Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 31750 Tronoh (Malaysia)

    2012-09-26

    The SnO{sub 2} co-doped lithium potassium borate glasses doped with 0.05, 0.10, 0.25 and 0.50 mol% of Cu were synthesized by the melt quenching technique. The SnO{sub 2} co-dope was added to the compounds in the amounts of 0.05, 0.10, and 0.20 mol%. The photoluminescent spectrum for different concentrations of copper was studied. It was observed that the intensity of blue emission (450, 490 nm) varies with concentration mol%. In addition, with different concentration of SnO{sub 2} to 0.10 mol% Cu, the influence of the luminescence has been observed to enhance intensity and shifted to blue and red (490, 535 nm) emissions.

  19. Nano crystalline Bi{sub 2}(VO{sub 5}) phases in lithium bismuth borate glasses containing mixed vanadium-nickel oxides

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Arti, E-mail: artidabhur@gmail.com; Khasa, S.; Dahiya, M. S. [Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India-131039 (India); Agarwal, A. [Department of Applied Physics, G. J. University of Science and Technology, Hisar, India-125001 (India)

    2016-05-23

    Glass composition 7V{sub 2}O{sub 5}·23Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} and x(2NiO·V{sub 2}O{sub 5})·(30-x)Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3}, x=0, 2, 5, 7 and 10, were produced by conventional melt quenching technique. The quenched amorphous glass samples were annealed at temperatures 400°C and 500°C for 6 hours. The Bi{sub 2}(VO{sub 5}) crystallite were grown in all prepared glass matrix. Tn vanadium lithium bismuth borate glass (annealed), the some phrase of V{sub 2}O{sub 5}-crystal were observed along with the nano crystalline Bi{sub 2}(VO{sub 5}) phase. The sharp peaks in FTTR spectra of all annealed compositions were also compatible with the XRD diffraction peaks of the system under investigation. Average crystalline size (D) of the Bi{sub 2}(VO{sub 5}) nano-crystallite was ~30 nm for samples annealed at 400°C and ~42 nm for samples annealed at 500°C. Lattice parameter and the lattice strain for all the samples was also calculated corresponding to the (113) plane of Bi{sub 2}(VO{sub 5}) crystallite.

  20. Physical, thermal, structural and optical properties of Dy{sup 3+} doped lithium alumino-borate glasses for bright W-LED

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, P.P.; Munishwar, S.R.; Gautam, S.; Gedam, R.S., E-mail: rupesh_gedam@rediffmail.com

    2017-03-15

    Rare earth (RE) doped glasses have potential applications due to their emission efficiencies of 4f–4 f and 4f–5d electronic transitions. Among all the rare earths, Dy{sup 3+} doped glasses have drawn much interest among the researchers for their intense emission in the visible region from 470 to 500 nm and around 570 to 600 nm. The physical, thermal, structural and optical properties of Dy{sup 3+} doped lithium alumino-borate glasses (LABD glasses) have been studied for white LED (W-LED) application. The glasses were synthesized by conventional melt quench technique. X-ray diffraction spectra revealed the amorphous nature of the glass sample. An FTIR spectrum was carried out to study the glass structure and various functional groups present in the LABD glasses. Optical absorption spectra were recorded by UV–vis-NIR spectrometer. Allowed direct and indirect band gaps were obtained by Tauc's plot. Thermal parameters like glass thermal stability (∆T), Hruby's parameter (K{sub gl}), etc. were calculated by DTA graph. Photoluminescence excitation and emission spectra's were measured at room temperature. The emission spectra shows two intense emission bands at around 482 nm (blue) and 574 nm (yellow) corresponds to the {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} transitions respectively along with one feeble band at 662 nm (red) corresponds to {sup 4}F{sub 9/2}→{sup 6}H{sub 11/2} transition. The CIE chromaticity co-ordinates were calculated for all glass samples. CIE chromaticity diagram shows glass LABD-4 containing 0.5 mol% Dy{sub 2}O{sub 3} with colour co-ordinates X = 0.34 and Y = 0.38 have highest emission intensity. These glasses having emission in the white region and thus can be used for bright white LED.

  1. Lithium conducting ionic liquids based on lithium borate salts

    Energy Technology Data Exchange (ETDEWEB)

    Zygadlo-Monikowska, E.; Florjanczyk, Z.; Sluzewska, K.; Ostrowska, J.; Langwald, N.; Tomaszewska, A. [Warsaw University of Technology, Faculty of Chemistry, ul. Noakowskiego 3, 00-664 Warsaw (Poland)

    2010-09-15

    The simple reaction of trialkoxyborates with butyllithium resulted in the obtaining of new lithium borate salts: Li{l_brace}[CH{sub 3}(OCH{sub 2}CH{sub 2}){sub n}O]{sub 3}BC{sub 4}H{sub 9}{r_brace}, containing oxyethylene substituents (EO) of n=1, 2, 3 and 7. Salts of n {>=} 2 show properties of room temperature ionic liquid (RTIL) of low glass transition temperature, T{sub g} of the order from -70 to -80 C. The ionic conductivity of the salts depends on the number of EO units, the highest conductivity is shown by the salt with n = 3; in bulk its ambient temperature conductivity is 2 x 10{sup -5} S cm{sup -1} and in solution in cyclic propylene sulfite or EC/PC mixture, conductivity increases by an order of magnitude. Solid polymer electrolytes with borate salts over a wide concentration range, from 10 to 90 mol.% were obtained and characterized. Three types of polymeric matrices: poly(ethylene oxide) (PEO), poly(trimethylene carbonate) (PTMC) and two copolymers of acrylonitrile and butyl acrylate p(AN-BuA) were used in them as polymer matrices. It has been found that for systems of low salt concentration (10 mol.%) the best conducting properties were shown by solid polymer electrolytes with PEO, whereas for systems of high salt concentration, of the polymer-in-salt type, good results were achieved for PTMC as polymer matrix. (author)

  2. Effect of Dy{sub 2}O{sub 3} impurities on the physical, optical and thermoluminescence properties of lithium borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Mhareb, M.H.A., E-mail: mmhareb@hotmail.com [Radiation Protection Directorate, Energy and Minerals Regulatory Commission, Amman 11821 (Jordan); Hashim, S. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Ghoshal, S.K., E-mail: lordshib@gmail.com [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Alajerami, Y.S.M. [Department of Medical Radiography, Al-Azhar University, Gaza Strip, Palestine (Country Unknown); Bqoor, M.J.; Hamdan, A.I. [Radiation Protection Directorate, Energy and Minerals Regulatory Commission, Amman 11821 (Jordan); Saleh, M.A. [Nuclear Engineering Programme, Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Karim, M.K.B. Abdul [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2016-09-15

    Dysprosium (Dy) doped lithium borate glass (LBG) is prepared using conventional melting-quenching technique with varying Dy concentration in the range of 0 to 1.0 mol%. Prepared glass samples are characterized via X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR), UV–vis–IR, Photoluminescence (PL), Thermoluminescence (TL) spectroscopy and Differential Thermal Analysis (DTA). The physical parameters such as the density, optical energy band gap, oscillator strength, refractive index, ion concentration, Polaron radius, molar volume and inter-nuclear distance are determined. UV–vis–IR spectra revealed seven prominent bands centered at 448, 749, 796, 899, 1085, 1265 and 1679 nm corresponding to the transition from the Dy{sup 3+} ion's ground state ({sup 6}H{sub 15/2}) to the excited states ({sup 4}I{sub 15/2},{sup 6}F{sub 3/2}, {sup 6}F{sub 5/2}, {sup 6}H{sub 5/2}, {sup 6}F{sub 9/2}, {sup 6}H{sub 9/2} and {sup 6}H{sub 11/2}). The room temperature photoluminescence (PL) spectra of the glass series at 350 nm excitation displayed two peaks centered at 481 nm and 573 nm, which are assigned to the transitions of ({sup 4}F{sub 9/2}→{sup 6}H{sub 15/2}) and ({sup 4}F{sub 9/2}→{sup 6}H{sub 13/2}), respectively. The TL spectra of gamma-irradiated samples are measured, which showed Dy{sup 3+} content dependent simple glow peak at 190 °C. Dysprosium ion is found to play an important role in the TL and PL intensity enhancement of LB phosphor.

  3. Rheological properties of potassium barium borate glasses

    NARCIS (Netherlands)

    Szwejda, K.A.; Vogel, D.L.; Stevels, J.M.

    1973-01-01

    Several series of potassium barium borate glasses have been investigated as to their rheological properties. It has been found, that all these glasses show deviations from ‘Newtonian’ behaviour below temperatures corresponding to viscosities of 1010 poises. The activation energies of viscous flow

  4. The thermal electrical properties of lithium sodium borate gasses

    International Nuclear Information System (INIS)

    Joshi, Anita R.; Bichile, G.K.

    2012-01-01

    Lithium sodium borate glasses with various composition have been prepared by melt quenching method. DSC studies were carried out. The glass transition temperature were found to decrease with alkali content in single alkali system and increase with second alkali content in mixed alkali system. The dc electrical conductivity has been measured as a function of temperature. The activation energy from the slope of the Arrhenius plots is calculated and it depends on the composition. In one set of single alkali glasses activation energies were found to increase with alkali content and in another set a single alkali system a transition from predominantly electronic to ionic conduction has been observed above 0.16 mol fraction of alkali content. The mixed alkali glasses have shown higher activation energies and lower conductivities. (author)

  5. Optical and physical properties of samarium doped lithium diborate glasses

    Science.gov (United States)

    Hanumantharaju, N.; Sardarpasha, K. R.; Gowda, V. C. Veeranna

    2018-05-01

    Sm3+ doped lithium di-borate glasses with composition 30Li2O-60B2O3-(10-x) PbO, (where 0 molar volume with samarium ion content indicates the openness of the glass structure. The gradual increase in average separation of boron-boron atoms with VmB clearly indicates deterioration of borate glass network, which in turn leads to decrease in the oxygen packing density. The replacements of Sm2O3 for PbO depolymerise the chain structure and that would increase the concentration of non-bridging oxygens. The marginal increase of optical band gap energy after 1.0 mol.% of Sm2O3 is explained by considering the structural modification in lead-borate. The influence of Sm3+ ion on physical and optical properties in lithium-lead-borate glasses is investigated and the results were discussed in view of the structure of borate glass network.

  6. Investigation into the structure of lead-borate glass

    International Nuclear Information System (INIS)

    Kurtsinovskaya, R.I.

    1976-01-01

    X-ray phase and IR analysis of lead borate glasses show that glasses containing from 12 to 45 mole % PbO consist of several phases. A comparison of x-ray different data for lead borate and lead germanate glasses, which have two maxima on the diffraction patterns throughout the glass-formation region, shows that the microstructure of lead borate glasses is far more complex

  7. Physical, structural and luminescence investigation of Eu3+-doped lithium-gadolinium bismuth-borate glasses for LEDs

    Science.gov (United States)

    Zaman, F.; Rooh, G.; Srisittipokakun, N.; Wongdeeying, C.; Kim, H. J.; Kaewkhao, J.

    2018-06-01

    The aim of the current report is to fabricate Eu3+-doped glasses with the chemical composition of 50Li2O-15Gd2O3-5Bi2O3-(30-x)B2O3-xEu2O3 (where x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol%), with the help of conventional melt quenching technique. The fabricated glasses have been studied with help of physical, structural and luminescence properties for application of LEDs. The structural properties were investigated by XRD and FTIR spectra. Physical properties have been measured. Direct and indirect optical energy band gap (Eg) have been calculated and found to be increasing with Eu2O3 concentration. Luminescence spectra have been observed from photo and radioluminescence spectra and found in good agreement with each other, however the concentration quenching was not determined for the samples. The high-covalence and asymmetric nature was confirmed from Photoluminescence emission and RL emission transition as well as from the higher values of luminescence intensity ratio. The JO parameters have been found for the better performance of lasing materials. The lifetime's data have been found to be decreasing from 1.64 to 1.50 ms, which is the confirmation of energy transfer in Eu3+ ions through cross relaxations. From the calculated properties it has been suggested that the present glass samples might be good for red-light emitting devices.

  8. XRD and FTIR analysis heat treated lithium bismo-borate glasses doped with 1.0 mol% copper ferrite

    Science.gov (United States)

    Yadav, Arti; Narwal, P.; Dahiya, Manjeet S.; Dahiya, T.; Agarwal, A.; Khasa, S.

    2018-05-01

    Glasses of compositions of 20Li20 • xBi2O3• (79-x)B2O3 + (1.0 mol%) CuFe2O4, with 0 ≤ x ≤ 40 were prepared by melt-quench technique. To obtain the glass-ceramics the controlled heat treatment were given to the prepared glasses. Two nano crystalline phases, i.e., Li2B4O7 and LiB3O5 were observed from X-ray diffraction patterns of the prepared glass- ceramic samples. We investigated the change in coordination number of network formers B2O3 and Bi2O3 and network modifiers Bi2O3, Li2O and CuFe2O4. Crystallites size (lies in range ˜47-50nm) and lattice strain (ɛ) were calculated for major phases for all prepared samples. FT-IR study revealed the de-polymerization of borate groups that change with heat treatment and Bi2O3 content. Deconvolution of IR absorption spectra resolves the overlapped and hidden peaks in IR spectra. Sharp and more intense FTIR peaks confirm the vibrations due to crystallites Li2B4O7 and LiB3O5 and change in coordination of network forming borate units.

  9. Effect of co-doping of sodium on the thermoluminescence dosimetry properties of copper-doped zinc lithium borate glass system

    International Nuclear Information System (INIS)

    Saidu, A.; Wagiran, H.; Saeed, M.A.; Alajerami, Y.S.M.; Kadir, A.B.A.

    2016-01-01

    The effect of sodium as a co-dopant on the thermoluminescence (TL) properties of copper-doped zinc lithium borate (ZLB: Cu) subjected to Co-60 gamma radiation is reported in this study. TL intensity is enhanced with the introduction of sodium in ZLB: Cu. The obtained glow curve is simple with a single peak. The annealing procedure and the best heating rate for the proposed thermoluminescent dosimeter (TLD) are established, and the phosphor is reusable. The TL response within the dose range of 0.5–1000 Gy is investigated. The results show that the thermal fading behaviour is improved significantly. - Highlights: • Dosimetry properties of an improved TL dosimeter. • The dosimeter is made of lithium borate, modified with ZnO, doped with CuO and co-doped with Na 2 O. • With addition of Na to Cu in the ZLB host, TL yield and sensitivity has significantly enhanced. • The fading behaviour has also been minimized significantly. • The new material is also characterized with the linear dose response, and good reproducibility behaviour.

  10. The effect of heat treatment and irradiation on some physical properties of lithium borate glass containing transition elements

    International Nuclear Information System (INIS)

    Soliman, A.A.; Aly, S.A.; Frhan, H.; Abo-Zeid, Y.M.

    1999-01-01

    The effect of introducing iron, nickel and cobalt oxide on some physical properties investigated in this article. The electrical conductivity has a higher value in samples containing 1 mol% transition metal oxides. The conductivity decreased as the content of transition metal oxide increased up to 5 mol% which was due to the change of Fe 2+ to Fe 3+ and increase of Co and Ni ions in octahedral state. The effect of heat treatment on the conductivity measurements shows a decrease in the conductivity values for glass samples with increasing the heat treatment time up to 72 h. This decrease could be attributed to the change in the structure of the glass samples. The investigation of radiation doses with the electrical conductivity concluded that the conductivity increased with increase the irradiation doses. The reason of that may be due to increasing the number of vacancies and vacancy interstitial pairs which are created. The magnetic susceptibility measurements showed an increase in the magnetic susceptibility as Fe 2 O 3 and NiO were increased. While for samples containing CoO the magnetic susceptibility changed due to the change in coordination number of the Co ions. The effect of heat treatment on magnetic susceptibility of the investigated samples concluded that the magnetic susceptibilities have a random behavior with increasing time of heat treatment. By investigating irradiation doses with a magnetic susceptibility it was found that the increase of irradiation dose promotes a tendency to change the magnetic susceptibility values. This change can be related to the presence of structure defects and impurities in the samples before irradiation

  11. Interfacial reactions between titanium and borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K. [Sandia National Labs., Albuquerque, NM (United States); Saha, S.K.; Goldstein, J.I. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Materials Science

    1992-12-31

    Interfacial reactions between melts of several borate glasses and titanium have been investigated by analytical scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS). A thin titanium boride interfacial layer is detected by XPS after short (30 minutes) thermal treatments. ASEM analyses after longer thermal treatments (8--120 hours) reveal boron-rich interfacial layers and boride precipitates in the Ti side of the interface.

  12. Strontium borate glass: potential biomaterial for bone regeneration

    OpenAIRE

    Pan, H. B.; Zhao, X. L.; Zhang, X.; Zhang, K. B.; Li, L. C.; Li, Z. Y.; Lam, W. M.; Lu, W. W.; Wang, D. P.; Huang, W. H.; Lin, K. L.; Chang, J.

    2009-01-01

    Boron plays important roles in many life processes including embryogenesis, bone growth and maintenance, immune function and psychomotor skills. Thus, the delivery of boron by the degradation of borate glass is of special interest in biomedical applications. However, the cytotoxicity of borate glass which arises with the rapid release of boron has to be carefully considered. In this study, it was found that the incorporation of strontium into borate glass can not only moderate the rapid relea...

  13. Density of mixed alkali borate glasses: A structural analysis

    International Nuclear Information System (INIS)

    Doweidar, H.; El-Damrawi, G.M.; Moustafa, Y.M.; Ramadan, R.M.

    2005-01-01

    Density of mixed alkali borate glasses has been correlated with the glass structure. It is assumed that in such glasses each alkali oxide associates with a proportional quantity of B 2 O 3 . The number of BO 3 and BO 4 units related to each type of alkali oxide depends on the total concentration of alkali oxide. It is concluded that in mixed alkali borate glasses the volumes of structural units related to an alkali ion are the same as in the corresponding binary alkali borate glass. This reveals that each type of alkali oxide forms its own borate matrix and behaves as if not affected with the presence of the other alkali oxide. Similar conclusions are valid for borate glasses with three types of alkali oxide

  14. Comparative study of ion conducting pathways in borate glasses

    International Nuclear Information System (INIS)

    Hall, Andreas; Swenson, Jan; Adams, Stefan

    2006-01-01

    The conduction pathways in metal-halide doped silver, lithium, and sodium diborate glasses have been examined by bond valence analysis of reverse Monte Carlo (RMC) produced structural models of the glasses. Although all glass compositions have basically the same short-range structure of the boron-oxygen network, it is evident that the intermediate-range structure is strongly dependent on the type of mobile ion. The topography of the pathways and the coordination of the pathway sites differ distinctly between the three glass systems. The mobile silver ions in the AgI-doped glass tend to be mainly iodine-coordinated and travel in homogeneously distributed pathways located in salt-rich channels of the borate network. In the NaCl-doped glass, there is an inhomogeneous spatial distribution of pathways that reflects the inhomogeneous introduction of salt ions into the glass. However, since the salt clusters are not connected, no long-range conduction pathways are formed without including also oxygen-rich regions. The pathways in the LiCl-doped glass are slightly more evenly distributed compared to the NaCl-doped glass (but not as ordered as in the AgI-doped glass), and the regions of mainly oxygen-coordinated pathway sites are of higher importance for the long-range migration. In order to more accurately investigate how these differences in the intermediate-range order of the glasses affect the ionic conductivity, we have compared the realistic structure models to more or less randomized structures. An important conclusion from this comparison is that we find no evidence that a pronounced intermediate-range order in the atomic structure or in the network of conduction pathways, as in the AgI-doped glass, is beneficial for the dc conductivity

  15. Effect of alkali ion on relaxation properties of binary alkali-borate glasses

    International Nuclear Information System (INIS)

    Lomovskoj, V.A.; Bartenev, G.M.

    1992-01-01

    Method of relaxation spectrometry were used to analyze the data on internal friction spectra of lithium, sodium, potassium and rubidium alkali-borate glasses in wide range of temperatures and frequencies. The nature of two relaxation processes was clarified: β m -process, related with mobility of alkaline metal cations, and α-process (vitrification), conditioned by system transformation from viscous-flow to vitreous state. It is shown that atomic-molecular mechanism of vitrification process changes when passing from vitreous B 2 O 3 to alkali-borate glasses

  16. Topological phases in Ba-Borate glasses

    Science.gov (United States)

    Holbrook, Chad; Czaja, Andrew; Boolchand, Punit

    2015-03-01

    Twelve compositions in the (BaO)x(B2O3)100-x pseudo binary, in the 15% Modulated- DSC and Raman scattering experiments were undertaken systematically as function of BaO content (x). Calorimetric measurements reveal Tg(x) to show a broad maximum and the non-reversing enthalpy to show a Gaussian-like reversibility window2, both centered near x = 28%. Raman scattering displays rich lineshapes with modes similar to those observed in Na-Borates2. Modes near 808 cm-1, 770 cm-1, 740 cm-1 and 705 cm-1 are observed, and identified with breathing modes of pure and mixed rings from characteristic structural groupings2. These preliminary results suggest that glasses at x 30% in the flexible phase. Supported by NSF Grant DMR 08-53957.

  17. Ultrasonic investigations of some bismuth borate glasses doped with ...

    Indian Academy of Sciences (India)

    Keywords. Bismuth borate glasses; elastic moduli; Makishima–Mackenzie model. 1. Introduction ... former because of the small field strength of Bi3+ ion. Bi2O3 ..... Typically, when the material undergoes a phase change, the value of the.

  18. Statistical approach to study of lithium magnesium metaborate glasses

    Directory of Open Access Journals (Sweden)

    Nedyalkova Miroslava

    2017-03-01

    Full Text Available Alkali borate glasses and alkaline earth borate glasses are commonly used materials in the field of optoelectronics. Infrared (FTIR and Raman spectroscopy are valuable tools for structural investigation of borate glass networks. The compositional and structural variety of lithium magnesium metaborate glasses is usually determined by traditional instrumental methods. In this study a data set is classified by structural and physicochemical parameters (FTIR, Raman spectra, glass transition temperature-Tg. Characterisation of magnesium containing metaborate glasses by multivariate statistics (hierarchical cluster analysis to reveal potential relationships (similarity or dissimilarity between the type of glasses included in the data set using specific structural features available in the literature is conducted. The clustering of the glass objects indicates a good separation of different magnesium containing borate glass compositions. The grouping of variables concerning Tg and structural data for BO3 and BO4 linkage confirms that BO4/BO3 ratios strongly affect Tg. Additionally, patterns of similarity could be detected not only between the glass composition but also between the features (variables describing the glasses. The proposed approach can be further used as an expert tool for glass properties prediction or fingerprinting (identification of unknown compositions.

  19. Intrinsic luminescence of un-doped borate glasses

    International Nuclear Information System (INIS)

    Kindrat, I.I.; Padlyak, B.V.; Drzewiecki, A.

    2017-01-01

    The nature of intrinsic luminescence in the un-doped borate glasses of different compositions has been investigated using spectroscopic methods including photoluminescence, optical absorption, electron paramagnetic resonance (EPR), and thermally stimulated luminescence (TSL). The un-doped borate glasses with Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 basic compositions were obtained from corresponding polycrystalline compounds in the air with usage the standard technology of glasses. Three different broad emission bands in the UV–Visible spectral range have been observed under different wavelength of photoexcitation. The luminescence kinetics of the observed emission bands have been registered and analysed. The nature and possible mechanisms of the intrinsic luminescence in the investigated borate glasses are considered and discussed based on the obtained results and referenced data.

  20. Glass-Forming Ability of Soda Lime Borate Liquids

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Mauro, J.C.; Smedskjær, Morten Mattrup

    2012-01-01

    We investigate the composition dependence of glass-forming ability (GFA) of a series of iron-containing soda lime borate liquids by substituting Na2O for B2O3. We have characterized GFA by measuring the glass stability against crystallization using a differential scanning calorimeter (DSC......). The results show that the GFA decreases when substituting Na2O for B2O3. Moreover, we find that there is no direct link between the kinetic fragility and GFA for the soda lime borate series studied herein. We have also discovered and clarified a striking thermal history dependence of the glass stability...

  1. Barium-borate-flyash glasses: As radiation shielding materials

    International Nuclear Information System (INIS)

    Singh, Sukhpal; Kumar, Ashok; Singh, Devinder; Thind, Kulwant Singh; Mudahar, Gurmel S.

    2008-01-01

    The attenuation coefficients of barium-borate-flyash glasses have been measured for γ-ray photon energies of 356, 662, 1173 and 1332 keV using narrow beam transmission geometry. The photon beam was highly collimated and overall scatter acceptance angle was less than 3 o . Our results have an uncertainty of less than 3%. These coefficients were then used to obtain the values of mean free path (mfp), effective atomic number and electron density. Good agreements have been observed between experimental and theoretical values of these parameters. From the studies of the obtained results it is reported here that from the shielding point of view the barium-borate-flyash glasses are better shields to γ-radiations in comparison to the standard radiation shielding concretes and also to the ordinary barium-borate glasses

  2. Ion-conductivity of thin film Li-Borate glasses

    International Nuclear Information System (INIS)

    Abouzari, M.R.S.

    2007-01-01

    In this thesis, the specific conductivity of ion-sputtered lithium borate thin films is studied. To this end, lithium borate glasses of the composition yLi 2 O.(1-y)B 2 O 3 with y=0.15, 0.20, 0.25, and 0.35 were produced as sputter targets. Films with thicknesses between 7 nm and 700 nm are deposited on silicon substrate between two AlLi electrodes. Conductivity spectra have been taken over a frequency range of 5 Hz to 2 MHz. The measurements were performed at different temperatures between 40 C and 350 C depending on the thickness and the composition of the films. The following results are derived by studying the conductivities of the films: i) The specific dc conductivity of layers with thicknesses larger than 150 nm is independent of their thicknesses; we call these layers 'thick films' and consider their conductivity as the 'base conductivity'. ii) The specific dc conductivity of layers with thicknesses smaller than 150 nm, called 'thin films', depends on the layer thickness. A nontrivial enhancement of the specific dc conductivity about three orders of magnitude for y=0.15, 0.2, and 0.25 is observed. iii) The base conductivity depends on y and at 120 C it varies between 4 x 10 -10 Ω -1 cm -1 and 2.5 x 10 -6 Ω -1 cm -1 when y varies between 0.15 and 0.35, whereas the maximum value of the specific dc conductivity of extremely thin films (with a thickness of some nanometre) seems to be independent of y and equals to the specific dc conductivity of layers with y= 0.35. Furthermore, we found in this work a physical interpretation of the so-called 'Constant Phase Element' (CPE) which is widely used in equivalent circuits for ionic conductors. This element describes correctly the depressed impedance semicircles observed in impedance spectroscopy. So far, this effect is sometimes attributed to the surface roughness. We have shown not only the invalidity of this approach, but we have also found that the depression arises from the nature of ionic motions. The model

  3. Ion-conductivity of thin film Li-Borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Abouzari, M.R.S.

    2007-12-17

    In this thesis, the specific conductivity of ion-sputtered lithium borate thin films is studied. To this end, lithium borate glasses of the composition yLi{sub 2}O.(1-y)B{sub 2}O{sub 3} with y=0.15, 0.20, 0.25, and 0.35 were produced as sputter targets. Films with thicknesses between 7 nm and 700 nm are deposited on silicon substrate between two AlLi electrodes. Conductivity spectra have been taken over a frequency range of 5 Hz to 2 MHz. The measurements were performed at different temperatures between 40 C and 350 C depending on the thickness and the composition of the films. The following results are derived by studying the conductivities of the films: i) The specific dc conductivity of layers with thicknesses larger than 150 nm is independent of their thicknesses; we call these layers 'thick films' and consider their conductivity as the 'base conductivity'. ii) The specific dc conductivity of layers with thicknesses smaller than 150 nm, called 'thin films', depends on the layer thickness. A nontrivial enhancement of the specific dc conductivity about three orders of magnitude for y=0.15, 0.2, and 0.25 is observed. iii) The base conductivity depends on y and at 120 C it varies between 4 x 10{sup -10} {omega}{sup -1}cm{sup -1} and 2.5 x 10{sup -6} {omega}{sup -1}cm{sup -1} when y varies between 0.15 and 0.35, whereas the maximum value of the specific dc conductivity of extremely thin films (with a thickness of some nanometre) seems to be independent of y and equals to the specific dc conductivity of layers with y= 0.35. Furthermore, we found in this work a physical interpretation of the so-called 'Constant Phase Element' (CPE) which is widely used in equivalent circuits for ionic conductors. This element describes correctly the depressed impedance semicircles observed in impedance spectroscopy. So far, this effect is sometimes attributed to the surface roughness. We have shown not only the invalidity of this approach, but

  4. Strontium borate glass: potential biomaterial for bone regeneration.

    Science.gov (United States)

    Pan, H B; Zhao, X L; Zhang, X; Zhang, K B; Li, L C; Li, Z Y; Lam, W M; Lu, W W; Wang, D P; Huang, W H; Lin, K L; Chang, J

    2010-07-06

    Boron plays important roles in many life processes including embryogenesis, bone growth and maintenance, immune function and psychomotor skills. Thus, the delivery of boron by the degradation of borate glass is of special interest in biomedical applications. However, the cytotoxicity of borate glass which arises with the rapid release of boron has to be carefully considered. In this study, it was found that the incorporation of strontium into borate glass can not only moderate the rapid release of boron, but also induce the adhesion of osteoblast-like cells, SaOS-2, thus significantly increasing the cyto-compatibility of borate glass. The formation of multilayers of apatite with porous structure indicates that complete degradation is optimistic, and the spread of SaOS-2 covered by apatite to form a sandwich structure may induce bone-like tissue formation at earlier stages. Therefore, such novel strontium-incorporated borosilicate may act as a new generation of biomaterial for bone regeneration, which not only renders boron as a nutritious element for bone health, but also delivers strontium to stimulate formation of new bones.

  5. Moessbauer effect and infrared study of some borate glass containing Mn and Fe oxides

    International Nuclear Information System (INIS)

    Gabr, M.

    2005-01-01

    Lithium borate glasses containing transition metals appeared now of very high technological and scientific interest. Therefore some lithium borate glasses containing mixed transition metal ions (manganese and iron) were investigated. The glass batches were melted at 1250 degree C for three hours and annealed at 350 degree C -over night- to obtain strain free glasses. Moessbauer Effect spectroscopy and Infrared analysis were employed to investigate the structural changes due to the change of their batches composition. Differential thermal analysis, magnetic susceptibility, density and molar volume measurements were also performed to study the effect of changing both manganese and iron oxides at the expense of boron oxide on these properties. Infrared analysis indicated the presence of different structural groups such as BO 3 , BO 4 , FeO 4 and MnO 6 as well as different vibrations indicated the presence of various bonds in the glass network. The values of the characteristic temperatures (T g , T c and T m ) showed gradual increase except those of the last sample where they showed a decrease. The mid sample showed the lowest stability value. It was found that the molar volume showed its highest value at R=0.33 [where R is the ratio of glass network modifier to the glass network former]. After that it showed gradual linear decrease. The magnetic susceptibility measurements showed approximately stable value between R=0.29 and 0.33, then it increased up to R=0.38, and after that, it decreased up to R= 0.43. The obtained magnetic susceptibility values indicated that all these glasses are paramagnetic. The obtained Moessbauer spectra and the calculated parameters confirmed that iron ions participated in the glass network as network former cations. It confirmed also that all glasses reflect paramagnetic character. The observed structural change were explained and correlated with the change of the measured physical properties

  6. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    ... devices; radiation shields, surgical lasers and their glass ceramic counter ... Alkaline earth oxides improve glass forming capability while heavy metal ... reports on optical properties of MO-B2O3 glasses containing alkaline earth oxides.

  7. XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on LiNbO3 and LiNb3O8 nano-crystallite phases in lithium borate glass system.

    Science.gov (United States)

    Kashif, Ismail; Soliman, Ashia A; Sakr, Elham M; Ratep, Asmaa

    2013-09-01

    Glasses of various compositions in the system 90 Li2B4O7-10 Nb2O5 mixed with T.M ions (where T.M is the transition metal) were prepared by quenching technique. Heat-treatment of the parent glasses was performed at 540, 570 and 620 °C, for 5 and 16 h. The glass structure evolution during the controlled crystallization was examined by XRD and FT-IR spectroscopy analysis. The crystalline phases present in the glass ceramics were identified via X-ray diffraction as a function of heat treatment. The FT-IR data propose for these glasses and heat-treated glass network structures mainly built by: di-, tri-, tetra-, penta-and ortho-borate groups. It was found that the quantitative evolution of these various borate species in the glass structures is influenced by the transition metal. A detailed discussion relating to the N4 evolution with the T.M content was made. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Thermoluminescence properties of alkali borate glasses containing neodymium

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, A.F.; Henaish, B.A.; Kenaway, M.A.; Salem, L.R.

    1988-01-01

    The thermoluminescence properties of sodium borate glasses as a function of neodymium oxide content as well as the divalent metal oxides (RO = ZnO, MgO and CaO) in replacement of Na/sub 2/O have been investigated. It is observed that the addition of Nd/sub 2/O/sub 3/ imparts to the host glass a monopeak glow curve according to an active luminescent centre (E approx. = 0.97 eV to 1.232 eV). The gradual addition of neodymium oxide to the sodium borate glass causes gradual enhancement in the TL-intensity up to a quenching concentration value (4 g Nd/sub 2/O/sub 3/ added to 100 g of borate glass) above which a draw back in TL-intensity occurs. On the other hand the replacement of 5 wt% Na/sub 2/O by RO shows that CaO dominates the other two divalent metal oxides used, as it possesses a much deeper luminescent trap (1.232 eV). The results obtained suggest that these glasses can be used in radiation detection and dosimetry. The ..gamma..-induced Tl-signal of such type of glass is found to be reproducible within an acceptable error of not more than 3.5% in all individual and group scattering over the detector samples each of which is used 10 times for evaluating the same ..gamma..-dose.

  9. FTIR of binary lead borate glass: Structural investigation

    Science.gov (United States)

    Othman, H. A.; Elkholy, H. S.; Hager, I. Z.

    2016-02-01

    The glass samples were prepared according to the following formula: (100-x) B2O3 - x PbO, where x = 20-80 mol% by melt quenching method. The density of the prepared samples was measured and molar volume was calculated. IR spectra were measured for the prepared samples to investigate the glass structure. The IR spectra were deconvoluted using curves of Gaussian shape at approximately the same frequencies. The deconvoluted data were used to study the effect of PbO content on all the structural borate groups. Some structural parameters such as density, packing density, bond length and bond force constant were theoretically calculated and were compared to the obtained experimental results. Deviation between the experimental and theoretically calculated parameters reflects the dual role of PbO content on the network of borate glass.

  10. Neutron shielding properties of a borated high-density glass

    Directory of Open Access Journals (Sweden)

    Saeed Aly Abdallah

    2017-01-01

    Full Text Available The neutron shielding properties of a borated high density glass system was characterized experimentally. The total removal macroscopic cross-section of fast neutrons, slow neutrons as well as the linear attenuation coefficient of total gamma rays, primary in addition to secondary, were measured experimentally under good geometric condition to characterize the attenuation properties of (75-x B2O3-1Li2O-5MgO-5ZnO-14Na2O-xBaO glassy system. Slabs of different thicknesses from the investigated glass system were exposed to a collimated beam of neutrons emitted from 252Cf and 241Am-Be neutron sources in order to measure the attenuation properties of fast and slow neutrons as well as total gamma rays. Results confirmed that barium borate glass was suitable for practical use in the field of radiation shielding.

  11. Practical use of lithium borate in thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Chavaudra, J.; Nguyen, J.; Marinello, G.; Brule, A.M.

    1976-01-01

    The functional principles of thermoluminescent dosimeters are recalled: heating, apparatus for measuring the emitted light, circulation of nitrogen, reference source. The essential role played by the circulation of nitrogen over the dosimeters which equilibrates the temperature of the photomultiplier, reduces the emission of unwanted light, prevents the combustion of dust or other possible impurities and finally improves the accuracy of the measurements even for high doses, is underlined. Lithium borate is taken as an example and a simple method for finding the optimum working conditions for the heating apparatus of the planchette in the most simple T.L.D. readers and in those where the heating apparatus of the planchette has a pre-heating phase is proposed. The dosimetric properties of lithium borate incorporated in thin teflon discs (type DLB. 0.13 and 0.4) are studied. This shows itself to be very interesting for certain uses because it is a solid dosimeter which does not require annealing between two measurements. The accuracy of the measurements obtained with this material, the stability of the response relative to the delay between radiation and reading (fading), the response relative to the absorbed dose plus the nature and the energy of the rays, are presented with the usual reservations made for this type of dosimetry [fr

  12. Fragility, anharmonicity and anelasticity of silver borate glasses

    International Nuclear Information System (INIS)

    Carini, Giovanni; Carini, Giuseppe; D'Angelo, Giovanna; Tripodo, Gaspare; Bartolotta, Antonio; Marco, Gaetano Di

    2006-01-01

    The fragility and the anharmonicity of (Ag 2 O) x (B 2 O 3 ) 1-x borate glasses have been quantified by measuring the change in the specific heat capacity at the glass transition temperature T g and the room-temperature thermodynamic Grueneisen parameter. Increasing the silver oxide content above X = 0.10 leads to an increase of both the parameters, showing that a growing fragility of a glass-forming liquid is predictive of an increasing overall anharmonicity of its glassy state. The attenuation and velocity of ultrasonic waves of frequencies in the range of 10-70 MHz have also been measured in silver borate glasses as a function of temperature between 1.5 and 300 K. The experimental data reveal anelastic behaviours which are governed by (i) quantum-mechanical tunnelling below 20 K (ii) thermally activated relaxations between 20 and 200 K and (iii) vibrational anharmonicity at even higher temperatures. Evaluation of tunnelling (C) and relaxation (C * ) strengths shows that C is independent of the structural changes affecting the borate network with increasing metal oxide content and is at least one order of magnitude smaller than C * . The latter observation implies that only a small fraction of the locally mobile defects are subjected to tunnelling motions

  13. Bone bonding ability of some borate bio-glasses and their corresponding glass-ceramic derivatives

    Directory of Open Access Journals (Sweden)

    Fatma H. Margha

    2012-12-01

    Full Text Available Ternary borate glasses from the system Na2O·CaO·B2O3 together with soda-lime-borate samples containing 5 wt.% of MgO, Al2O3, SiO2 or P2O5 were prepared. The obtained glasses were converted to their glass-ceramic derivatives by controlled heat treatment. X-ray diffraction was employed to investigate the separated crystalline phases in glass-ceramics after heat treatment of the glassy samples. The glasses and corresponding glass-ceramics after immersion in water or diluted phosphate solution for extended times were characterized by the grain method (adopted by several authors and recommended by ASTM and Fourier-transform infrared spectra to justify the formation of hydroxyapatite as an indication of the bone bonding ability. The influence of glass composition on bioactivity potential was discussed too.

  14. Luminescence properties of the Sm-doped borate glasses

    International Nuclear Information System (INIS)

    Kindrat, I.I.; Padlyak, B.V.; Drzewiecki, A.

    2015-01-01

    The optical absorption and photoluminescence (emission and excitation) spectra as well as decay kinetics of a series of the Sm-doped glasses with Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 compositions were investigated and analysed. The Li 2 B 4 O 7 :Sm, LiKB 4 O 7 :Sm, CaB 4 O 7 :Sm, and LiCaBO 3 :Sm glasses of high optical quality have been obtained from the corresponding polycrystalline compounds in the air atmosphere, using a standard glass technology. On the basis of electron paramagnetic resonance (EPR) and optical spectra analysis it was shown that the samarium impurity is incorporated into the glass network as Sm 3+ (4f 5 , 6 H 5/2 ) ions, exclusively. All observed 4f – 4f transitions of the Sm 3+ centres in the optical absorption and luminescence spectra of the investigated glasses are identified. Most intense emission band of the Sm 3+ ions peaked about 598 nm ( 4 G 5/2 → 6 H 7/2 transition) is characterised by a single exponential decay with typical lifetime values, which depend on the basic glass composition as well as concentration and local structure of the Sm 3+ luminescence centres. The quantum efficiency has been evaluated for observed transitions of the Sm 3+ centres using obtained experimental lifetimes and radiative lifetimes calculated by Judd–Ofelt theory. The calculated high quantum efficiencies and measured quantum yields of luminescence show that the investigated borate glasses are perspective luminescence materials. Energy transfer from the Ce 3+ non-controlled impurity and intrinsic luminescence centres to the Sm 3+ centres has been observed. Peculiarities of the Sm 3+ local structure in the network of investigated glasses have been discussed based on the obtained spectroscopic results and structural data. - Highlights: • The Sm-doped Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 glasses of high quality were obtained. • EPR, optical absorption and luminescence spectra of Sm 3+ ions in obtained glasses were

  15. Structure and Properties of Compressed Borate Glasses

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Bauer, U.; Behrens, H.

    While the influence of thermal history on the structure and properties of glasses has been thoroughly studied in the past century, the influence of pressure history has received considerably less attention. In this study, we investigate the pressure-induced changes in structure and properties in ......, hardness and crack formation from nanoindentation experiments, and overshoot in isobaric heat capacity from DSC experiments at ambient pressure. The influence of the initial boron speciation on the degree of changes in structure and properties will also be discussed....

  16. Study of neutron and gamma shielding by lead borate and bismuth lead borate glasses: transparent radiation shielding

    International Nuclear Information System (INIS)

    Singh, Vishwanath P.; Badiger, N.M.

    2013-01-01

    Radiation shielding for gamma and neutron is the prominent area in nuclear reactor technology, medical application, dosimetry and other industries. Shielding of these types of radiation requires an appropriate concrete with mixture of low-to-high Z elements which is an opaque medium. The transparent radiation shielding in visible light for gamma and neutron is also extremely essential in the nuclear facilities as lead window. Presently various types of lead equivalent glass oxides have been invented which are transparent as well as provide protection from radiation. In our study we have assessment of effectiveness of neutron and gamma radiation shielding of xPbO.(1-x) B 2 O 3 (x=0.15 to 0.60) and xBi 2 O 3 .(0.80-x) PbO.0.20 B 2 O 3 (x=0.10 to 0.70) transparent borate and bismuth glasses by NXCOM program. The neutron effective mass removal cross section, Σ R /ρ (cm 2 /g) of the lead, bismuth and boron oxides are given. We found invariable Σ R /ρ of various combinations of the lead borate glass for x=0.15 to 0.60 and bismuth lead borate glass for x=0.10 to 0.70. It is observed that the effective removal cross-section for fast neutron (cm -1 ) of lead borate reduces significantly whereas roughly constant for bismuth borate. The gamma mass attenuation coefficients (μ/ρ) of the glasses were also compared with possible experimental values and found comparable. High (μ/ρ) for gamma radiation of the bismuth glasses shows that it is better gamma shielding compared with lead containing glass. However lead borate glasses are better neutron shielding as the neutron removal coefficient are higher. Our investigation is very useful for nuclear reactor technology where prompt neutron of energy 17 MeV and gamma photon up to 10 MeV produced. (author)

  17. Comparision of γ -ray shielding properties of some borate glasses

    International Nuclear Information System (INIS)

    Thind, K.S.

    2003-01-01

    Several new glasses have been prepared in recent years to suit their increasing number of applications. Some of the glass compositions have distinct properties which make them the most preferred materials for certain applications such as shielding, optical fibers, electronics displays etc. The information of composition, processing and effect of environment on the glass properties is of great importance for their design and application. The shielding ability of pure elements and some mixtures have already been studied but limited attempts have been made on glasses. A good shielding glass should have high absorption cross - section for radiation and at the same time irradiation effects on its mechanical and optical properties should be small. By keeping in view of the importance of shielding ability of borate glasses, we have studied two series of different glass type: x PbO - (1-x) B 2 O 3 and x ZnO - 2xPbO - (1-3x) B 2 O 3 (where x is the mole fraction) by using narrow beam transmission method. A 2' x 2' NaI(Tl) crystal with an energy resolution of 12.5% at 662 keV of 137 Cs was used for the determination of attenuation coefficients and hence interaction cross-sections. Glass samples were prepared by using melt-quenching technique. Thickness measurement was carried out by micrometer and density was measured by Archimede's Principle using benzene as the immersion liquid. The densities of the glasses were found to increase linearly with the increase in the chemical composition of heavy metal oxide. Variations in mass attenuation coefficients and interaction cross ' sections were observed with the change in chemical composition and photon energy. It is found that these glasses have potential applications to be used as radiation shielding materials

  18. Role of oxygen on the optical properties of borate glass doped with ZnO

    International Nuclear Information System (INIS)

    Abdel-Baki, Manal; El-Diasty, Fouad

    2011-01-01

    Lithium tungsten borate glass (0.56-x)B 2 O 3 -0.4Li 2 O-xZnO-0.04WO 3 (0≤x≤0.1 mol%) is prepared by the melt quenching technique for photonic applications. Small relative values of ZnO are used to improve the glass optical dispersion and to probe as well the role of oxygen electronic polarizability on its optical characteristics. The spectroscopic properties of the glass are determined in a wide spectrum range (200-2500 nm) using a Fresnel-based spectrophotometric technique. Based on the Lorentz-Lorenz theory, as ZnO content increases on the expense of B 2 O 3 the glass molar polarizability increased due to an enhanced unshared oxide ion 2p electron density, which increases ionicity of the chemical bonds of glass. The role of oxide ion polarizability is explained in accordance with advanced measures and theories such as optical basicity, O 1s binding energy, the outer most cation binding energy in Yamashita-Kurosawa's interionic interaction parameter and Sun's average single bond strength. FT-IR measurements confirm an increase in bridging oxygen bonds, as a result of replacement of ZnO by B 2 O 3 , which increase the UV glass transmission window and transmittance. - Graphical abstract: O1s, Yamashita-Kurosawa's parameter and average single bond strength of charge overlapping between electronic shells are used to explain enhanced oxide ion 2p electron density, which increases refractive index of glasses. Highlights: → New borate glass for photonic application is prepared. → The dispersion property of the glass is effectively controlled using small amounts of ZnO. → ZnO is used to probe the glass structure and investigate the role of oxygen on the obtained optical properties of the glasses. → Modern theories are used to explain enhanced unshared oxide ion 2p electron density, which increases ionicity of chemical bonds of the glass.

  19. Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices

    OpenAIRE

    Ruengsri, Suwimon

    2014-01-01

    Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of th...

  20. Luminescence properties of the Sm-doped borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kindrat, I.I. [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland); Padlyak, B.V., E-mail: B.Padlyak@if.uz.zgora.pl [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland); Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79-005 Lviv (Ukraine); Drzewiecki, A. [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland)

    2015-10-15

    The optical absorption and photoluminescence (emission and excitation) spectra as well as decay kinetics of a series of the Sm-doped glasses with Li{sub 2}B{sub 4}O{sub 7}, LiKB{sub 4}O{sub 7}, CaB{sub 4}O{sub 7}, and LiCaBO{sub 3} compositions were investigated and analysed. The Li{sub 2}B{sub 4}O{sub 7}:Sm, LiKB{sub 4}O{sub 7}:Sm, CaB{sub 4}O{sub 7}:Sm, and LiCaBO{sub 3}:Sm glasses of high optical quality have been obtained from the corresponding polycrystalline compounds in the air atmosphere, using a standard glass technology. On the basis of electron paramagnetic resonance (EPR) and optical spectra analysis it was shown that the samarium impurity is incorporated into the glass network as Sm{sup 3+} (4f{sup 5}, {sup 6}H{sub 5/2}) ions, exclusively. All observed 4f – 4f transitions of the Sm{sup 3+} centres in the optical absorption and luminescence spectra of the investigated glasses are identified. Most intense emission band of the Sm{sup 3+} ions peaked about 598 nm ({sup 4}G{sub 5/2} → {sup 6}H{sub 7/2} transition) is characterised by a single exponential decay with typical lifetime values, which depend on the basic glass composition as well as concentration and local structure of the Sm{sup 3+} luminescence centres. The quantum efficiency has been evaluated for observed transitions of the Sm{sup 3+} centres using obtained experimental lifetimes and radiative lifetimes calculated by Judd–Ofelt theory. The calculated high quantum efficiencies and measured quantum yields of luminescence show that the investigated borate glasses are perspective luminescence materials. Energy transfer from the Ce{sup 3+} non-controlled impurity and intrinsic luminescence centres to the Sm{sup 3+} centres has been observed. Peculiarities of the Sm{sup 3+} local structure in the network of investigated glasses have been discussed based on the obtained spectroscopic results and structural data. - Highlights: • The Sm-doped Li{sub 2}B{sub 4}O{sub 7}, LiKB{sub 4}O{sub 7}, Ca

  1. Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices

    Directory of Open Access Journals (Sweden)

    Suwimon Ruengsri

    2014-01-01

    Full Text Available Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of the glass matrices. The silicate and phosphate glass systems are more appropriate choices as lead-based radiation shielding glass than the borate glass system. Moreover, comparison of results has shown that the glasses possess better shielding properties than standard shielding concretes, suggesting a smaller size requirement in addition to transparency in the visible region.

  2. On the Elastic behavior of Sodium Borate Glasses

    Science.gov (United States)

    Vignarooban, K.; Boolchand, P.; Kerner, R.; Micoulaut, M.

    2010-03-01

    Alkali Borates are industrial glasses and their physical properties are of general interest. We have made a special effort to synthesize dry (Na2O)x(B2O3)100-x glasses over a wide composition range, 0 modulated-DSC, Raman scattering, FTIR, and molar volume experiments. The enthalpy of relaxation at Tg shows a global minimum in the 20% < x < 40% range, which we identify with the rigid but stress-free Intermediate Phase (IP). The Boroxyl ring vibrational mode near 808 cm-1 in B2O3, steadily softens by about 4 cm-1 as the soda content increases to about 20%. A vibrational mode of mixed ringsfootnotetextKamitsos et al., Jour. Mol. Struct 247, 1 (1996). (containing 3-fold and 4-fold B) is also observed near 775 cm-1 at low x, and it also steadily softens by nearly 10 cm-1 as x increases in the 20% < x < 40% soda range (IP). We are examining the underlying optical elasticity power-laws to ascertain the nature of the elastic phases. IR reflectance experiments provide the 4-fold coordinated B fraction to increase from 0.17 near x = 20% to 0.44 near x = 40% in broad agreement with NMR results. Evolution of physical properties of these glasses with soda content will be reviewed.

  3. Volume and structural relaxation in compressed sodium borate glass.

    Science.gov (United States)

    Svenson, Mouritz N; Youngman, Randall E; Yue, Yuanzheng; Rzoska, Sylwester J; Bockowski, Michal; Jensen, Lars R; Smedskjaer, Morten M

    2016-11-21

    The structure and properties of glass can be modified through compression near the glass transition temperature (T g ), and such modified structure and properties can be maintained at ambient temperature and pressure. However, once the compressed glass undergoes annealing near T g at ambient pressure, the modified structure and properties will relax. The challenging question is how the property relaxation is correlated with both the local and the medium-range structural relaxation. In this paper, we answer this question by studying the volume (density) and structural relaxation of a sodium borate glass that has first been pressure-quenched from its T g at 1 GPa, and then annealed at ambient pressure under different temperature-time conditions. Using 11 B MAS NMR and Raman spectroscopy, we find that the pressure-induced densification of the glass is accompanied by a conversion of six-membered rings into non-ring trigonal boron (B III ) units, i.e. a structural change in medium-range order, and an increase in the fraction of tetrahedral boron (B IV ), i.e. a structural change in short-range order. These pressure-induced structural conversions are reversible during ambient pressure annealing near T g , but exhibit a dependence on the annealing temperature, e.g. the ring/non-ring B III ratio stabilizes at different values depending on the applied annealing temperature. We find that conversions between structural units cannot account for the pressure-induced densification, and instead we suggest the packing of structural units as the main densification mechanism.

  4. Microwave and conventional preparation of Zinc borate glass: Eu3+ ion as luminescent probe

    International Nuclear Information System (INIS)

    Mandal, Ashis K.; Balaji, S.; Sen, Ranjan

    2014-01-01

    Highlights: • IR transparent Zinc borate glass is prepared using microwave heating. • Glass transition temperature of microwave melted glass is found higher than that of glass prepared in conventional melting. • Low OH concentration in glass can be prepared in microwave heating. • We report higher reduction of Eu 3+ to Eu 2+ in microwave processing of Zinc borate glass. - Abstract: Transparent Zinc borate glass is melted using microwave energy as an alternative heating route to conventional resistive heating. A comparative study of the properties of the glasses prepared by both the methods is conducted by adopting X-ray diffraction (XRD), Differential scanning calorimetry (DSC), UV–VIS–NIR spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Refractive Indices (RI). Amorphous nature of samples is confirmed by X-ray diffraction study. Glass transition temperature (T g ) of microwave melted glass is found ∼7–9 °C higher than that of glass prepared in conventional melting. OH content is found less than 250 ppm in microwave melted glass whereas it is above 330 ppm in conventional melted glasses. Photoluminescence study of Eu 2 O 3 doped glass prepared in microwave heating indicates higher reduction of Eu 3+ → Eu 2+ than the glass melted in conventional route. Thus, microwave processing can be an alternative energy efficient, time saving, environmental friendly glass preparation method

  5. Composition effect of potassium-borate glasses on their relaxation properties

    International Nuclear Information System (INIS)

    Lomovskoj, V.A.; Bartenev, G.M.

    1995-01-01

    Relaxation processes in potassium-borate glasses have been investigated in detail for the first time. It is shown that low-temperature β-process of relaxation relating to rotational mobility of the B-O bond is the same for all potassium-borate glasses and B 2 O 3 . The process of β k -relaxation related to diffusion mobility of potassium ions depends on the composition of the glasses in the same way as α-relaxation (glass formation).12 refs., 10 figs., 2 tabs

  6. Novel method for early investigation of bioactivity in different borate bio-glasses

    Science.gov (United States)

    Abdelghany, A. M.

    Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm-1 after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses.

  7. Evaluation of gamma-ray attenuation properties of bismuth borate glass systems using Monte Carlo method

    International Nuclear Information System (INIS)

    Tarim, Urkiye Akar; Ozmutlu, Emin N.; Yalcin, Sezai; Gundogdu, Ozcan; Bradley, D.A.; Gurler, Orhan

    2017-01-01

    A Monte Carlo method was developed to investigate radiation shielding properties of bismuth borate glass. The mass attenuation coefficients and half-value layer parameters were determined for different fractional amounts of Bi 2 O 3 in the glass samples for the 356, 662, 1173 and 1332 keV photon energies. A comparison of the theoretical and experimental attenuation coefficients is presented. - Highlights: • Radiation shielding properties of bismuth borate glass systems have been reported. • Mass attenuation coefficients increase linearly with increase in Bi concentration. • Half-value layer decreases with increasing concentration of Bi. • Half-value layer decreases with the increase in the sample density.

  8. Evaluation of gamma-ray attenuation properties of bismuth borate glass systems using Monte Carlo method

    Science.gov (United States)

    Tarim, Urkiye Akar; Ozmutlu, Emin N.; Yalcin, Sezai; Gundogdu, Ozcan; Bradley, D. A.; Gurler, Orhan

    2017-11-01

    A Monte Carlo method was developed to investigate radiation shielding properties of bismuth borate glass. The mass attenuation coefficients and half-value layer parameters were determined for different fractional amounts of Bi2O3 in the glass samples for the 356, 662, 1173 and 1332 keV photon energies. A comparison of the theoretical and experimental attenuation coefficients is presented.

  9. Investigation of Er doped zinc borate glasses by low-temperature photoluminescence

    Czech Academy of Sciences Publication Activity Database

    Kostka, Petr; Kabalci, I.; Tay, T.; Gladkov, Petar; Zavadil, Jiří

    2017-01-01

    Roč. 192, DEC 2017 (2017), s. 1104-1109 ISSN 0022-2313 Institutional support: RVO:67985891 ; RVO:67985882 Keywords : borate glasses * rare-earth ions * stark levels * photoluminiscence Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass; JH - Ceramics, Fire-Resistant Materials and Glass (URE-Y) OBOR OECD: Ceramics; Ceramics (URE-Y) Impact factor: 2.686, year: 2016

  10. Ultrasonic and Thermal Properties of Borate and Phosphate Glasses Containing Bismuth and Lead

    International Nuclear Information System (INIS)

    Aziz, Sidek Hj. Abd.; Ahmad, Hamezan; Wahab, Zaidan A.; Sulaiman, Zainal Abidin; Talib, Zainal Abidin; Shaari, A. Halim; Senin, H. B.

    2007-01-01

    Systematic series of (B2O3,P2O5)-Bi2O3-PbO glasses have been successfully prepared by using the rapid quenching technique in which each oxide content changes for every series on the basis of its weight percentage. Their amorphous natures were confirmed earlier by the x-ray diffraction technique. The experimental results show that the density of both glasses, determined by using the Archimedes principle, increases with the glass modifier content. This is due to the replacement of Bi2O3 and PbO in the borate and phosphate glassy networks. The molar volume for borate glass increases with the addition of bismuth and lead oxides, but a reverse trend occurs for the phosphate glass. The longitudinal and shear ultrasound velocities, determined by the MBS 8000 system, of both lead bismuth borate and phosphate glasses show a decreasing trend as more PbO and Bi2O3 are added to the glass system. The increase in PbO/Bi2O3 content was probably related to the progressive increase in the concentration of non-bridging oxygen (NBOs). Thermal studies of the glass, using the Labsys DTA-Setaram machine, show that the value of the glass transition temperature (Tg) is closely related to the chemical bond in the system. In lead bismuth borate glasses, the addition of more Pb2+ and Bi3+ results in a more dominant ionic bond character in the system and hence decreases Tg of the sample. However, in lead bismuth phosphate glasses, the addition of Pb2+ and Bi3+ not only failed to weaken the covalent character in P-O-P bonds, but strengthened it further, leading to an increment in the values of Tg

  11. Corrosion mechanism and bioactivity of borate glasses analogue to Hench’s bioglass

    Directory of Open Access Journals (Sweden)

    Mona A. Ouis

    2012-09-01

    Full Text Available Bioactive borate glasses (from the system Na2O-CaO-B2O3-P2O5 and corresponding glass-ceramics as a new class of scaffold material were prepared by full replacement of SiO2 with B2O3 in Hench patented bioactive glass. The prepared samples were investigated by differential thermal analysis (DTA, Fourier transform infrared (FTIR spectroscopy and X-ray diffraction (XRD analysis. The DTA data were used to find out the proper heat treatment temperatures for preparation of the appropriate glass-ceramics with high crystallinity. The prepared crystalline glass-ceramics derivatives were examined by XRD to identify the crystalline phases that were precipitated during controlled thermal treatment. The FTIR spectroscopy was used to justify the formation of hydroxyapatite as an indication of the bioactivity potential or activity of the studied ternary borate glasses or corresponding glass-ceramics after immersion in aqueous phosphate solution. The corrosion results are interpreted on the basis of suggested recent views on the corrosion mechanism of such modified borate glasses in relation to their composition and constitution.

  12. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions.

    Science.gov (United States)

    Sathish, K; Thirumaran, S

    2015-08-05

    The present work describes the glass samples of composition (x% V₂O₅-(80-x)% B₂O₃-20% Na₂CO₃) VBS glass system and (x%MnO₂-(80-x)% B₂O₃-20% Na₂CO₃) in MBS glass system with mol% ranging from x=3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V₂O₅ doped glass system,(VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO₂ doped glass system (VBS glass system). The present study critically observes the doping of V₂O₅ with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO₂. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO₃ or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na₂CO₃, V₂O₅ and MnO₂ contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs

  13. Synthesis, Characterization and Battery Performance of A Lithium Poly (4-vinylphenol) Phenolate Borate Composite Membrane

    International Nuclear Information System (INIS)

    Xu, Guodong; Zhang, Yunfeng; Rohan, Rupesh; Cai, Weiwei; Cheng, Hansong

    2014-01-01

    We report synthesis of lithium poly (4-vinylphenol) phenolate borate (LiPVPPB) single-ion conductor comprised of boron atoms with sp 3 electronic configuration covalently bonded to a polystyrene backbone with high thermal and electrochemical stability. The highly delocalized anionic charges surrounding the boron atoms in the polymer give rise to weak association with lithium ions in the polymer matrix, resulting in an ion transference number close to unity and remarkably high ionic conductivity. A composite membrane blended with LiPVPPB and poly(vinylidene-fluoride-co-hexafluoropropene) (PVDF-HFP) was fabricated. The battery of the electrolyte displays excellent cyclability with nearly 100% coulombic efficiency over a wide temperature range. The superior membrane performance suggests that single ion polymer electrolyte materials are highly promising for safe and high power applications of lithium ion batteries

  14. Influence of tellurite on lifetime for samarium doped lanthanum lead borate glass

    Science.gov (United States)

    Madhu, A.; Eraiah, B.

    2018-04-01

    Samarium substituted tellurium lanthanum lead borate glass is prepared using melt quenching technique. Luminescence spectra have been recorded upon excitation with 402 nm various transitions from 4G5/2 level, for samarium doped tellurite glasses are studied and also lifetime for all the samples exhibit single exponential behaviour of decay curve. Luminescence spectra of present glasses show quenching effect due to cross-relation channels of samarium ions. The lifetime of glass samples decrease as the tellurite concentration is decreased. So, it evidences that to attain longer lifetime for lasing material one can tune the host by selecting concentration of tellurite.

  15. Red light emission from europium doped zinc sodium bismuth borate glasses

    Science.gov (United States)

    Hegde, Vinod; Viswanath, C. S. Dwaraka; Upadhyaya, Vyasa; Mahato, K. K.; Kamath, Sudha D.

    2017-12-01

    Zinc sodium bismuth borate (ZNBB) glasses doped with different concentrations of europium were prepared by conventional melt quenching method and characterized through the measurements of density, refractive index, X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectra, optical absorption, luminescence and radiative lifetimes. FTIR spectra showed seven characteristic peaks of bismuth and borate functional groups in the range of 400-1600 cm-1. The optical band gap and bonding parameters have been calculated from absorption spectra. Photoluminescence spectra recorded in the visible region with 394 nm excitation are used to calculate the Judd-Ofelt (JO) intensity parameters (Ω2 and Ω4). The JO intensity parameters have been used to calculate the radiative parameters such as branching ratio (β), stimulated emission cross-section (σse), transition probability (A) for the fluorescent level of 5D0→7F2. Decay rates through single exponential are used to calculate the lifetime (τm) of the meta-stable state 5D0 of (Eu3+ ion) these glasses. The radiative parameters measured for all these glasses show 0.7 mol% europium doped zinc sodium bismuth borate glass 5D0→7F2 transition has the potential for red laser applications. The quality of the colour emitted by the present glasses are estimated quantitatively by CIE chromaticity coordinates, which confirms the suitability of these glasses as a red emitting material for field emission technologies and LEDs.

  16. Femtosecond laser-induced reduction in Eu-doped sodium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ki-Soo [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)]. E-mail: kslim@chungbuk.ac.kr; Lee, Sunkyun [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Trinh, Minh-Tuan [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Suk-Ho [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Lee, Myeongkyu [Departent of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seoul 120-749 (Korea, Republic of); Hamilton, Douglas S. [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Gibson, George N. [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States)

    2007-01-15

    In this work, we report permanent reduction of Eu{sup 3+} to Eu{sup 2+} in sodium borate glasses by irradiation of near-infrared femtosecond laser. Glass composition of sodium borate was 85B{sub 2}O{sub 3}-15Na{sub 2}O. The glasses were doped with 0.05, 0.1, and 0.5 mol% Eu{sub 2}O{sub 3}. Absorption and fluorescence dynamics were studied to investigate valence state change of europium ions and the energy transfer between Eu{sup 2+} and Eu{sup 3+} ions. As the femtosecond laser intensity or exposure time increases, the emission band at 400 nm becomes stronger. However, the photoreduction efficiency decreases as the dopant concentration increases. We discuss the photoreduction mechanism under multiphoton absorption.

  17. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    Energy Technology Data Exchange (ETDEWEB)

    Omar, R. S., E-mail: ratnasuffhiyanni@gmail.com; Wagiran, H., E-mail: husin@utm.my; Saeed, M. A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia)

    2016-01-22

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05  mol % ≤ y ≤ 0.7  mol % of dyprosium were prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.

  18. Effect of alkali content on AC conductivity of borate glasses containing two transition metals

    International Nuclear Information System (INIS)

    Kashif, I.; Rahman, Samy A.; Soliman, A.A.; Ibrahim, E.M.; Abdel-Khalek, E.K.; Mostafa, A.G.; Sanad, A.M.

    2009-01-01

    Sodium borate glasses containing iron and molybdenum ions with the total concentration of transition ions constant and gradual substitution of sodium oxide (network modifier) by borate oxide (network former) was prepared. Densities, molar volume, DC and AC conductivities are measured. The trends of these properties are attributed to changes in the glass network structure. Their DC and AC conductivity increased with increasing NaO concentration. The increase of AC conductivity of sodium borate glasses is attributed to the chemical composition and the hopping mechanism of conduction. Measurements of the dielectric constant (ε) and dielectric loss (tan δ) as a function of frequency (50 Hz-100 kHz) and temperature (RT-600 K) indicate that the increase in dielectric constant and loss (ε and tan δ) values with increasing sodium ion content could be attributed to the assumption that Fe and Mo ions tend to assume network-forming position in the glass compositions studied. The variation of the value of frequency exponent s for all glass samples as the function of temperature at a definite frequency indicates that the value of s decreases with increasing the temperature which agrees with the correlated barrier-hopping (CBH) model.

  19. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Melo, B. M. G.; Graça, M. P. F., E-mail: mpfg@ua.pt; Prezas, P. R.; Valente, M. A. [Physics Department (I3N), Aveiro University, Campus Universitário de Santiago, Aveiro (Portugal); Almeida, A. F.; Freire, F. N. A. [Mechanics Engineering Department, Ceará Federal University, Fortaleza (Brazil); Bih, L. [Equipe Physico-Chimie la Matière Condensée, Faculté des Sciences de Meknès, Meknès (Morocco)

    2016-08-07

    In this work, phosphate-borate based glasses with molar composition 20.7P{sub 2}O{sub 5}–17.2Nb{sub 2}O{sub 5}–13.8WO{sub 3}–34.5A{sub 2}O–13.8B{sub 2}O{sub 3}, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric, and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σ{sub ac} and σ{sub dc}, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz–1 MHz.

  20. Broad-spectrum antibacterial properties of metal-ion doped borate bioactive glasses for clinical applications

    Science.gov (United States)

    Ottomeyer, Megan

    Bioactive glasses with antimicrobial properties can be implemented as coatings on medical devices and implants, as well as a treatment for tissue repair and prevention of common hospital-acquired infections such as MRSA. A borate-containing glass, B3, is also undergoing clinical trials to assess wound-healing properties. The sensitivities of various bacteria to B3, B3-Ag, B3-Ga, and B3-I bioactive glasses were tested. In addition, the mechanism of action for the glasses was studied by spectroscopic enzyme kinetics experiments, Live-Dead staining fluorescence microscopy, and luminescence assays using two gene fusion strains of Escherichia coli. It was found that gram-positive bacteria were more sensitive to all four glasses than gram negative bacteria, and that a single mechanism of action for the glasses is unlikely, as the rates of catalysis for metabolic enzymes as well as membrane permeability were altered after glass exposure.

  1. Lithium tri borate (LiB3O5) embedded polymer electret for mechanical sensing application

    Science.gov (United States)

    Murugan, S.; Praveen, E.; Prasad, M. V. N.; Jayakumar, K.

    2017-05-01

    Lithium tri borate (LiB3O5) particles were synthesized by precipitation assisted high temperature solid state reaction. The particles were embedded in chitosan polymer and used as an electret. This electret was characterized for the suitability as a sensing element in vibration accelerometer. It is observed that LiB3O5 embedded electret exhibiting piezoelectric property. The electret is also giving an isolation of > 999 MΩ at 100 Vdc, 250 Vdc, 500 Vdc and 1kVdc confirms compatible for intrinsically safe sensing alternative in vibration accelerometer.

  2. Shielding behavior of V2O5 doped lead borate glasses towards gamma irradiation

    International Nuclear Information System (INIS)

    Ghoneim, N.A.; ElBatal, H.A.; Abdelghany, A.M.; Ali, I.S.

    2011-01-01

    Highlights: → Base lead borate glass together with samples of the same composition doped with varying V 2 O 5 contents were prepared. → UV-visible and infrared spectroscopy were measured before and after successive gamma irradiation. → Glass samples are observed to absorb strongly in the UV. → Infrared absorption spectra indicate the presence of both triangular and tetrahedral borate groups besides the sharing of lead ions in network forming and network modifying sites. - Abstract: Undoped lead borate glass of the composition PbO 70%-B 2 O 3 30% together with samples of the same composition and doped with varying V 2 O 5 contents were prepared. UV-visible absorption spectra were measured out in the range 200-1500 nm before and after successive gamma irradiation. Infrared absorption measurements within the range 4000-400 cm -1 were carried out for the undoped and V 2 O 5 doped samples before gamma irradiation and after being irradiated with a dose of 6 Mrad. All the glass samples are observed to absorb strongly in the UV region due to the combined contributions of absorption due to trace iron impurities and that from the divalent lead Pb 2+ ions. The V 2 O 5 -doped glasses reveal extra visible absorption bands which are attributed to the existence of V 3+ ions in measurable content but not neglecting the other valence states of vanadium ions (V 4+ , V 5+ ). Infrared absorption spectra indicate the presence of both triangular and tetrahedral borate groups besides the sharing of lead ions in network forming and network modifying sites.

  3. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions

    International Nuclear Information System (INIS)

    Chen, Sisi; Yang, Qingbo; Brow, Richard K.; Liu, Kun; Brow, Katherine A.; Ma, Yinfa

    2017-01-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. - Highlights: • Novel dynamic flow cell culture modules were designed. • Bioactive glass fibers were evaluated for their effects on VEGF secretion. • Borate-based glass fibers stimulate VEGF secretion under dynamic condition. • CuO and ZnO doped borate-based glass fibers stimulate the greatest VEGF release.

  4. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sisi [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Yang, Qingbo [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Brow, Richard K. [Department of Material Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Liu, Kun [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Brow, Katherine A. [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Ma, Yinfa [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); and others

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. - Highlights: • Novel dynamic flow cell culture modules were designed. • Bioactive glass fibers were evaluated for their effects on VEGF secretion. • Borate-based glass fibers stimulate VEGF secretion under dynamic condition. • CuO and ZnO doped borate-based glass fibers stimulate the greatest VEGF release.

  5. Radiation effects and defects in lithium borate crystals

    Science.gov (United States)

    Ogorodnikov, Igor N.; Poryvay, Nikita E.; Pustovarov, Vladimir A.

    2010-11-01

    The paper presents the results of a study of the formation and decay of lattice defects in wide band-gap optical crystals of LiB3O5 (LBO), Li2B4O7 (LTB) and Li6Gd(BO3)3 (LGBO) with a sublattice of mobile lithium cations. By means of thermoluminescence techniques, and luminescent and absorption optical spectroscopy with a nanosecond time resolution under excitation with an electron beam, it was revealed that the optical absorption in these crystals in the visible and ultraviolet spectral ranges is produced by optical hole-transitions from the local defect level to the valence band states. The valence band density of the states determines mainly the optical absorption spectral profile, and the relaxation kinetics is rated by the interdefect non-radiative tunnel recombination between the trapped-hole center and the Li0 trapped-electron centers. At 290 K, the Li0 centers are subject to thermally stimulated migration. Based on experimental results, the overall picture of thermally stimulated recombination processes with the participation of shallow traps was established for these crystals.

  6. Radiation effects and defects in lithium borate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikov, Igor N; Poryvay, Nikita E; Pustovarov, Vladimir A, E-mail: igor.ogorodnikov@bk.ru [Ural Federal University, Mira Street, 19, Ekaterinburg 620002 (Russian Federation)

    2010-11-15

    The paper presents the results of a study of the formation and decay of lattice defects in wide band-gap optical crystals of LiB{sub 3}O{sub 5} (LBO), Li{sub 2}B{sub 4}O{sub 7} (LTB) and Li{sub 6}Gd(BO{sub 3}){sub 3} (LGBO) with a sublattice of mobile lithium cations. By means of thermoluminescence techniques, and luminescent and absorption optical spectroscopy with a nanosecond time resolution under excitation with an electron beam, it was revealed that the optical absorption in these crystals in the visible and ultraviolet spectral ranges is produced by optical hole-transitions from the local defect level to the valence band states. The valence band density of the states determines mainly the optical absorption spectral profile, and the relaxation kinetics is rated by the interdefect non-radiative tunnel recombination between the trapped-hole center and the Li{sup 0} trapped-electron centers. At 290 K, the Li{sup 0} centers are subject to thermally stimulated migration. Based on experimental results, the overall picture of thermally stimulated recombination processes with the participation of shallow traps was established for these crystals.

  7. Structure of B2O3 and alkali borates in glass-like and melted states

    International Nuclear Information System (INIS)

    Golubkov, V.V.

    1992-01-01

    Structure of boron oxide and alkali-borate oxide and alkali-borate glasses and melts at temperatures up to 100 deg C was investigated using method of x-ray scattering at small angles (RSA). Specified and detailed concentration dependences were given for the main parameters of the structure: sizes of non-uniformity regions, values of surface interface, data of average square of difference of electron densities. Uppearance of ordered structures at sharp drop of temperature of B 2 O 3 sample was shown. Interference effects connected with this phenomenon significantly influence on value of RSA intensity in the field of small angles and correspondingly on light diffusion intensity. Conclusion on existence of structural differences between liquids and supercooled liquids was confirmed. Narrow temperature range of transition from one state to another esisted. Submicrononuniform structure of alkaliborate glasses wasn't connected with critical phenomenon. In the fields of non-uniformity 25-50% of alkali ions were concentrated

  8. Silver lead borate glasses doped with europium ions for phosphors

    Indian Academy of Sciences (India)

    From the differential scanning calorimetry studies, the glass transition temperatures ( T g )have been investigated and their values are ranging from 449 to 458 ∘ C. The investigation of Fourier transformer infraredspectra shows the presence of boron atoms in both BO 3 and BO 4 units in the glass network. In addition, it was ...

  9. Infrared spectra of zinc doped lead borate glasses

    Indian Academy of Sciences (India)

    Unknown

    size, smaller heat of fusion and valence (= 3) of B. In ... of amorphous materials, we have used it to determine the structure ... 1073 K. The homogenized molten glass was cast in two ... ing the glass, all the samples were immediately transferred.

  10. Laser- and gamma-induced transformations of optical spectra of indium-doped sodium borate glass

    CERN Document Server

    Kopyshinsky, O V; Zelensky, S E; Danilchenko, B A; Shakhov, O P

    2003-01-01

    The optical absorption and luminescence properties of indium-doped sodium borate glass irradiated by gamma-rays and by powerful UV lasers within the impurity-related absorption band are investigated experimentally. It is demonstrated that both the laser- and gamma-irradiation cause similar transformations of optical spectra in the UV and visible regions. The changes of the spectra observed are described with the use of a model which includes three types of impurity centres formed by differently charged indium ions.

  11. Urbach tails in the absorption spectra of semiconducting molybdenum-borate glasses

    International Nuclear Information System (INIS)

    Jamel Basha Adlan, M.; Wan Yusri Wan Yusuff; Tan, C.W.; Yam, F.K.

    1991-01-01

    The absorption curve of many amorphous compound semiconductors may be divided into three regions: (1) the high absorption region (α(w)≥10 4 cm -1 ), (2) an exponential region (1cm -1 ≤(w)≤10 4 cm -1 ) which obeys Urbach's rule and (3) a weak absorption tail (α(w)≤1cm -1 ). In this paper we will present the absorption edge of binary Molybdenum-Borate glasses at the exponential region of the spectra

  12. The structural analysis of zinc borate glass by laboratory EXAFS and X-ray diffraction measurements

    International Nuclear Information System (INIS)

    Kajinami, Akihiko; Harada, Yasushi; Inoue, Shinsuke; Deki, Shigehito; Umesaki, Norimasa

    1999-01-01

    The structure of zinc borate glass has been investigated by laboratory EXAFS and X-ray diffraction measurement as preliminary investigations for the detailed study in SPring-8. The zinc borate glass was prepared in the range from 40 to 65 mol% of zinc oxide content. The X-ray diffraction was measured by horizontal θ-θ goniometer with 60 kV and 300 mA output of Mo target. The EXAFS of zinc borate glass was measured by laboratory EXAFS system with 20 kV, 100 mA output of Mo target for the K absorption edge of zinc atom. From the X-ray diffraction and the EXAFS measurements, it is found that the zinc ion is surrounded by four oxygen atoms and formed a tetrahedral structure whose (Zn-O) distance is about 2 A and that the structure is unchanged with the zinc oxide content. The diffraction data show that the neighboring structure of boron atom transforms from BO 4 tetrahedra to BO 3 tetragonal planar structure with increasing of the zinc oxide content. (author)

  13. Measurements of the light conversion efficiency of lithium borate for alpha particles relative to cobalt-60 gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, D.T.; Wall, B.F.; Fisher, E.S. (National Radiological Protection Board, Harwell (UK))

    1982-01-01

    The results are reported of measurements of the light conversion efficiencies of lithium borate TLD phosphor of British Nuclear Fuels Ltd. manufacture to 5.65 MeV and 2.4 MeV alpha particles relative to /sup 60/Co gamma radiation.

  14. SYNTHESIS, STRUCTURE AND SPECTRAL PROPERTIES OF POTASSIUMALUMINA- BORATE GLASS WITH NANOCRYSTALS OF MANGANESE FERRITE

    Directory of Open Access Journals (Sweden)

    D. I. Sobolev

    2016-07-01

    Full Text Available Subject of Research.The paper presents research results of optical properties of potassium-alumina-borate glass, activated with ions of iron and manganese. The formation process of nanocrystals of manganese ferrite MnFe2O4 in potassium-alumina-borate glass host was studied. Magneto-optical characteristics were analyzed. Method. The studied glasses were synthesized by the method of charge melting in the crucible. Potassium-alumina-borate glass system was used (K2O-Al2O3-B2O3 proposed by S.A. Stepanov (Vavilov State Institute. Glass system was doped by 3 wt% of Fe2O3 and 2 wt% MnO by weight (composition 1 and 2 wt% Fe2O3 and 1 wt% MnO by weight (composition 2. The glass transition temperature was 430 °C. Segregating of the crystal phase of manganese ferrite MnFe2O4 occurred during heat treatment at 550 °C for 2 hours in a programmable muffle furnace. The absorption spectrum in the wavelength range 200-2000 nm was recorded with Perkin Elmer Lambda 650 and Varian Cary 500 spectrophotometers. The XRD patterns were obtained on Rigaku Ultima IV X-ray diffractometer by copper anode with a wavelength λ (Cu = 0.15418 nm. Magneto-optical Verde constant was measured by the angle of polarization plane rotation of the passing light through the sample when the sample is placed in magnetic field. Main Results. New technological modes of potassium-alumina-borate glass synthesis doped with ions of iron and manganese were developed and studied. It is established that during heat treatment nanocrystals of manganese ferrites are evolved with an average size of 18 nm. These glasses have a Verde constant equal to 0.9 arc.min/(cm·Oe. It is shown that obtained glasses possess high absorbance in ultra-violet and visible light spectrum. Practical Relevance. Proposed and analyzed nanoglass-ceramics could be accepted as a basis for creation of sensing environments for sensors current and magnetic field and for creation of optical isolators based on the Faraday effect.

  15. Comparative study of radiation shielding parameters for bismuth borate glasses

    International Nuclear Information System (INIS)

    Kaundal, Rajinder Singh

    2016-01-01

    Melt and quench technique was used for the preparation of glassy samples of the composition x Bi 2 O 3- (1-x) B 2 O 3 where x= .05 to .040. XCOM computer program is used for the evaluation of gamma-ray shielding parameters of the prepared glass samples. Further the values of mass attenuation coefficients, effective atomic number and half value layer for the glassy samples have been calculated in the energy range from 1KeV to 100GeV. Rigidity of the glass samples have been analyzed by molar volume of the prepared glass samples. (author)

  16. Comparative study of radiation shielding parameters for bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kaundal, Rajinder Singh, E-mail: rajinder_apd@yahoo.com [Department of Physics, School of Physical Sciences, Lovely Professional University, Phagwara, Punjab (India)

    2016-07-15

    Melt and quench technique was used for the preparation of glassy samples of the composition x Bi{sub 2}O{sub 3-}(1-x) B{sub 2}O{sub 3} where x= .05 to .040. XCOM computer program is used for the evaluation of gamma-ray shielding parameters of the prepared glass samples. Further the values of mass attenuation coefficients, effective atomic number and half value layer for the glassy samples have been calculated in the energy range from 1KeV to 100GeV. Rigidity of the glass samples have been analyzed by molar volume of the prepared glass samples. (author)

  17. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions.

    Science.gov (United States)

    Chen, Sisi; Yang, Qingbo; Brow, Richard K; Liu, Kun; Brow, Katherine A; Ma, Yinfa; Shi, Honglan

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Comparative Study of Radiation Shielding Parameters for Bismuth Borate Glasses

    OpenAIRE

    Kaundal, Rajinder Singh

    2016-01-01

    Melt and quench technique was used for the preparation of glassy samples of the composition x Bi2O3-(1-x) B2O3 where x= .05 to .040. XCOM computer program is used for the evaluation of gamma-ray shielding parameters of the prepared glass samples. Further the values of mass attenuation coefficients, effective atomic number and half value layer for the glassy samples have been calculated in the energy range from 1KeV to 100GeV. Rigidity of the glass samples have been analyzed by molar volume of...

  19. Silver lead borate glasses doped with europium ions for phosphors ...

    Indian Academy of Sciences (India)

    2017-07-25

    Jul 25, 2017 ... C. The investigation of Fourier transformer infrared spectra shows the presence of ... around the ions, these kinds of Eu3+ doped glasses find wide range of ... is attributed to hydroxyl (OH) or water group [12]. The broad water ...

  20. Laser and thermal bleaching of colour centres in sodium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Bukharaev, A A; Yafaev, N R [AN SSSR, Kazan. Fiziko-Tekhnicheskij Inst.

    1978-12-01

    The maximum of the additional absorption band in ..gamma..- or UV-irradiated sodium borate glasses shifts to higher energy when the low-energy side of the band is bleached by a helium-neon laser, ..lambda.. = 632.8 nm. Simultaneously the half-width of the additional absorption band decreases. This phenomenon is associated with the fact that because of structural disorder of glasses there is a distribution of ground-state energies of trapped electrons forming the light-sensitive absorption band. The distribution interval of the activation energy for trapped electrons is estimated using the decomposition of the initial thermal bleaching curves into components. For UV irradiated glasses it is aproximately 0.24 eV, and for ..gamma..-irradiated glasses only 0.12 eV. These values correlate with the relative shift maximum of the absorption band at laser bleaching.

  1. Borate electrolyte additives for high voltage lithium nickel manganese oxide electrode: A comparative study

    International Nuclear Information System (INIS)

    Chen, Zhiting; Wang, Cun; Xing, Lidan; Wang, Xianshu; Tu, Wenqiang; Zhu, Yunmin; Li, Weishan

    2017-01-01

    Highlights: •TMB and TEB effective improve the cyclic stability of LNMO at high voltage. •The performance of LNMO with TMB-containing electrolyte is superior to that of TEB. •LNMO shows catalytic effect on the oxidation reaction of TEB. •The film generated in TMB shows better ability on suppressing LNMO shedding than TEB. -- Abstract: Trimethyl borate (TMB) and triethyl borate (TEB) are used as film-forming electrolyte additives for high voltage Lithium nickel manganese oxide (LNMO) cathode. DFT calculation and initial charge curve of LNMO reveal that the oxidation activity of TEB is higher than that of TMB. Addition of 2% TMB and 2% TEB effectively improve the capacity retention of high voltage LNMO from 23.4% to 85.3% and 72.6% after 600 cycles, respectively. The film generated in TMB-containing electrolyte shows better ability on suppressing the LNMO shedding in comparison with that of TEB, resulting in higher capacity retention of LNMO in TMB-containing electrolyte at high voltage. The superior performance of LNMO with TMB-containing electrolyte should be ascribed to its less intense film-forming reaction which generates a denser protective surface film on LNMO surface. However, why LNMO shows catalyzation effect on TEB oxidation but not on TMB is unclear, which needs further intensive investigation.

  2. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives

    Science.gov (United States)

    Abdelghany, A. M.; Ouis, M. A.; Azooz, M. A.; ElBatal, H. A.; El-Bassyouni, G. T.

    2016-01-01

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680 cm-1 after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.

  3. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives.

    Science.gov (United States)

    Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T

    2016-01-05

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Effect of sulfolane on the performance of lithium bis(oxalato)borate-based electrolytes for advanced lithium ion batteries

    International Nuclear Information System (INIS)

    Li Shiyou; Zhao Yangyu; Shi Xinming; Li Bucheng; Xu Xiaoli; Zhao Wei; Cui Xiaoling

    2012-01-01

    Highlights: ► High purity of LiBOB is obtained by the compressing dry granulation method. ► LiBOB-SL/DEC electrolyte is an excellent candidate electrolyte for lithium ion batteries. ► It shows high oxidation potentials (>5.3 V) and satisfactory conductivities. ► In Li/MCMB cells, this novel electrolyte exhibits excellent film-forming characteristics and low impedances of the interface films. ► In LiFePO 4 /Li cells, this novel electrolyte exhibits stable cycle performance and high discharge voltage plateau (>3.35 V). - Abstract: Lithium bis(oxalato)borate (LiBOB) is a promising salt for lithium ion batteries. However, before applying in lithium ion batteries, it is necessary to prepare high purity LiBOB with a simple method, and find more appropriate solvent systems to exert the perfect electrochemical performance of LiBOB. In this paper, LiBOB is synthesized by the compressing dry granulation method, with the yield of 97%. Moreover, the electrochemical performances of LiBOB-sulfolane (SL)/diethyl carbonate (DEC) electrolyte are investigated. It shows high oxidation potentials (>5.3 V) and satisfactory conductivities, also the temperature dependence of the conductivity is well in accord with the Vogel–Tamman–Fulcher (VTF) behavior. When used in Li/MCMB (mesophase carbon microbeads) cells, this novel electrolyte exhibits not only excellent film-forming characteristics, but also low impedances of the interface films. When used in LiFePO 4 /Li cells, compared to the cell with the electrolyte system of LiBOB-EC/DEC electrolyte, LiBOB-SL/DEC electrolyte exhibit several advantages, such as more stable cycle performance, and higher discharge voltage plateau (>3.35 V).

  5. Electron magnetic resonance and magnetooptical studies of nanoparticle-containing borate glasses

    International Nuclear Information System (INIS)

    Kliava, Janis; Edelman, Irina; Ivanova, Oxana; Ivantsov, Ruslan; Petrakovskaja, Eleonora; Hennet, Louis; Thiaudiere, Dominique; Saboungi, Marie-Louise

    2011-01-01

    We report electron magnetic resonance (EMR) and magnetooptical studies of borate glasses of molar composition 22.5K 2 O-22.5Al 2 O 3 -55B 2 O 3 co-doped with low concentrations of Fe 2 O 3 and MnO. In as-prepared samples the paramagnetic ions, as a rule, are in diluted state. However, in the case where the ratio of the iron and manganese oxides in the charge is 3/2, magnetic nanoparticles with characteristics close to those of manganese ferrite are formed already at the first stage of the glass preparation, as evidenced by both magnetic circular dichroism (MCD) and EMR. After thermal treatment all glasses show characteristic MCD and EMR spectra, attesting to the presence of magnetic nanoparticles, predominantly including iron ions. Preliminary EXAFS measurements at the Fe K-absorption edge show an emergence of nanoparticles with a structure close to MnFe 2 O 4 after annealing the glasses at 560 o C. By computer simulating the EMR spectra at variable temperatures, a superparamagnetic nature of relatively broad size and shape distribution with the average diameter of ca. 3-4 nm. The characteristic temperature-dependent shift of the apparent resonance field is explained by a strong temperature dependence of the magnetic anisotropy in the nanoparticles. The formation of magnetic nanoparticles confers to the potassium-alumina-borate glasses magnetic and magneto-optical properties typical of magnetically ordered substances. At the same time, they remain transparent in a part of the visible and near infrared spectral range and display a high Faraday rotation value. - Research Highlights: →Magnetic nanoparticles are formed in borate glasses co-doped with Fe 2 O 3 and MnO. →The nanoparticle structure is close to that of manganese ferrite. →The particles have large morphological distributions with mean size of 3-4 nm. →These glasses remain transparent in a part of visible and near infrared range. →The glasses show hysteresis in the magnetic field dependence of the

  6. Electron magnetic resonance and magnetooptical studies of nanoparticle-containing borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kliava, Janis, E-mail: j.kliava@cpmoh.u-bordeaux1.f [CPMOH, UMR 5798, Universite Bordeaux 1-CNRS, 351 Cours de la Liberation, 33405 Talence Cedex (France); Edelman, Irina; Ivanova, Oxana; Ivantsov, Ruslan; Petrakovskaja, Eleonora [L.V. Kirensky Institute of Physics, Siberian Branch of the RAS, 660036 Krasnoyarsk (Russian Federation); Hennet, Louis [CEMHTI, UPR3079 CNRS et Universite d' Orleans, 1D Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2 (France); Thiaudiere, Dominique [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Saboungi, Marie-Louise [CRMD, UMR 6619, Universite d' Orleans-CNRS, 1b Rue de la Ferollerie, 45071 Orleans Cedex 2 (France)

    2011-03-15

    We report electron magnetic resonance (EMR) and magnetooptical studies of borate glasses of molar composition 22.5K{sub 2}O-22.5Al{sub 2}O{sub 3}-55B{sub 2}O{sub 3} co-doped with low concentrations of Fe{sub 2}O{sub 3} and MnO. In as-prepared samples the paramagnetic ions, as a rule, are in diluted state. However, in the case where the ratio of the iron and manganese oxides in the charge is 3/2, magnetic nanoparticles with characteristics close to those of manganese ferrite are formed already at the first stage of the glass preparation, as evidenced by both magnetic circular dichroism (MCD) and EMR. After thermal treatment all glasses show characteristic MCD and EMR spectra, attesting to the presence of magnetic nanoparticles, predominantly including iron ions. Preliminary EXAFS measurements at the Fe K-absorption edge show an emergence of nanoparticles with a structure close to MnFe{sub 2}O{sub 4} after annealing the glasses at 560 {sup o}C. By computer simulating the EMR spectra at variable temperatures, a superparamagnetic nature of relatively broad size and shape distribution with the average diameter of ca. 3-4 nm. The characteristic temperature-dependent shift of the apparent resonance field is explained by a strong temperature dependence of the magnetic anisotropy in the nanoparticles. The formation of magnetic nanoparticles confers to the potassium-alumina-borate glasses magnetic and magneto-optical properties typical of magnetically ordered substances. At the same time, they remain transparent in a part of the visible and near infrared spectral range and display a high Faraday rotation value. - Research Highlights: >Magnetic nanoparticles are formed in borate glasses co-doped with Fe{sub 2}O{sub 3} and MnO. >The nanoparticle structure is close to that of manganese ferrite. > The particles have large morphological distributions with mean size of 3-4 nm. > These glasses remain transparent in a part of visible and near infrared range. > The glasses show

  7. Optical and physical properties of sodium lead barium borate glasses doped with praseodymium ion

    Science.gov (United States)

    Lenkennavar, Susheela K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-05-01

    Praseodymium doped sodium lead barium borate glasses have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses using PekinElemer Lambda-35 Uv-Vis spectrometer in the range of 200 -1100 nm. The optical direct band gap energies were found to be in the range of 3.62 eV to 3.69 eV and indirect band gap energies were found to be in the range of 3.57 eV to 3.62eV. The refractive indices were measured by using Abbe refractometer the values are in the range of 1.620 to 1.625.

  8. Spectroscopic investigations on Pr3+ ions doped lead telluro-borate glasses for photonic applications

    Science.gov (United States)

    Suthanthirakumar, P.; Mariyappan, M.; Marimuthu, K.

    2018-04-01

    A new series of Lead telluro-borate glasses doped with different concentrations of Pr3+ ions (xPLTB) were prepared by melt quenching technique and their structural and spectroscopic properties were investigated by recording XRD, FTIR, optical absorption and luminescence spectral measurements. XRD measurements confirm the amorphous nature and the FTIR spectra reveal the presence of different vibrational modes of borate and tellurite networks in the prepared glasses. The bonding parameter values (δ) obtained from the absorption band positions indicates that the bonding between Pr3+ ions and their surrounding ligands is of ionic in nature. The optical band gap (Eopt) corresponding to the direct and indirect allowed transitions were determined with the framework of tauc's plot. From the luminescence spectra, important radiative parameters such as stimulated emission cross-section (σPE) , branching ratios (βR) and radiative lifetime (τR) were calculated for the dominant emission transition 3P0→3H4 (blue) in order to suggest the suitability of the studied glasses for suitable photonic applications.

  9. Electron magnetic resonance and magnetooptical studies of nanoparticle-containing borate glasses

    Science.gov (United States)

    Kliava, Janis; Edelman, Irina; Ivanova, Oxana; Ivantsov, Ruslan; Petrakovskaja, Eleonora; Hennet, Louis; Thiaudière, Dominique; Saboungi, Marie-Louise

    2011-03-01

    We report electron magnetic resonance (EMR) and magnetooptical studies of borate glasses of molar composition 22.5K 2O-22.5Al 2O 3-55B 2O 3 co-doped with low concentrations of Fe 2O 3 and MnO. In as-prepared samples the paramagnetic ions, as a rule, are in diluted state. However, in the case where the ratio of the iron and manganese oxides in the charge is 3/2, magnetic nanoparticles with characteristics close to those of manganese ferrite are formed already at the first stage of the glass preparation, as evidenced by both magnetic circular dichroism (MCD) and EMR. After thermal treatment all glasses show characteristic MCD and EMR spectra, attesting to the presence of magnetic nanoparticles, predominantly including iron ions. Preliminary EXAFS measurements at the Fe K-absorption edge show an emergence of nanoparticles with a structure close to MnFe 2O 4 after annealing the glasses at 560 °C. By computer simulating the EMR spectra at variable temperatures, a superparamagnetic nature of relatively broad size and shape distribution with the average diameter of ca. 3-4 nm. The characteristic temperature-dependent shift of the apparent resonance field is explained by a strong temperature dependence of the magnetic anisotropy in the nanoparticles. The formation of magnetic nanoparticles confers to the potassium-alumina-borate glasses magnetic and magneto-optical properties typical of magnetically ordered substances. At the same time, they remain transparent in a part of the visible and near infrared spectral range and display a high Faraday rotation value.

  10. Gamma radiation shielding and optical properties measurements of zinc bismuth borate glasses

    International Nuclear Information System (INIS)

    Yasaka, P.; Pattanaboonmee, N.; Kim, H.J.; Limkitjaroenporn, P.; Kaewkhao, J.

    2014-01-01

    Highlights: • 10ZnO:xBi 2 O 3 :(90−x)B 2 O 3 , (ZBB) glasses were prepared. • Radiation shielding and optical properties were investigated. • Higher 25 mol% of Bi 2 O 3 show better shielding property compared with concretes. • ZBB glasses can develop as a Pb-free radiation shielding material. - Abstract: In this work, the zinc bismuth borate (ZBB) glasses of the composition 10ZnO:xBi 2 O 3 :(90−x)B 2 O 3 (where x = 15, 20, 25 and 30 mol%) were prepared by the melt quenching technique. Their radiation shielding and optical properties were investigated and compared with theoretical calculations. The mass attenuation coefficients of ZBB glasses have been measured at different energies obtained from a Compton scattering technique. The results show a decrease of the mass attenuation coefficient, effective atomic number and effective electron density values with increasing of gamma-ray energies; and good agreements between experimental and theoretical values. The glass samples with Bi 2 O 3 concentrations higher than 25 mol% (25 and 30 mol%) were observed with lower mean free path (MFP) values than all the standard shielding concretes studied. These results are indications that the ZBB glasses in the present study may be developed as a lead-free radiation shielding material in the investigated energy range

  11. A medium range order structural connection to the configurational heat capacity of borate-silicate mixed glasses.

    Science.gov (United States)

    Liu, Hao; Smedskjaer, Morten M; Tao, Haizheng; Jensen, Lars R; Zhao, Xiujian; Yue, Yuanzheng

    2016-04-28

    It has been reported that the configurational heat capacity (C(p,conf)) first increases and then becomes saturated with increasing B2O3/SiO2 ratio in borate-silicate mixed glasses. Through Raman spectroscopy measurements, we have, in this work, found an implication for the intermediate range order (IRO) structural connection to the composition dependence of the C(p,conf) of borate-silicate mixed glasses. In the silica-rich compositions, the C(p,conf) rapidly increases with increasing B2O3 content. This is attributed to the increase of the content of the B-O-Si network units ([B2Si2O8](2-)) and 6-membered borate rings with 1 or 2 B(4). In the boron-rich compositions, the C(p,conf) is almost constant, independent of the increase in the B2O3/SiO2 ratio. This is likely attributed to the counteraction between the decrease of the fraction of two types of metaborate groups and the increase of the fraction of other borate superstructural units (particularly 6-membered borate rings). The overall results suggest that the glasses containing more types of superstructural units have a larger C(p,conf).

  12. Effect of TeO2 on the elastic moduli of sodium borate glasses

    International Nuclear Information System (INIS)

    Saddeek, Y.B.; Abd El Latif, Lamia

    2004-01-01

    Sodium borate glass containing tellurite as Te x Na 2-2x B 4-4x O 7-5x with x=0, 0.05, 0.15, 0.25 and 0.35 have been prepared by rapid quenching. Ultrasonic velocity (both longitudinal and shear) measurements have been made using a transducer operated at the fundamental frequency of 4 MHz at room temperature. The density was measured by the conventional Archimedes method. The elastic moduli, the Debye temperature, Poisson's ratio, and the parameters derived from the Makishima-Mackenzie model and the bond compression model have been obtained as a function of TeO 2 content. The monotonic decrease in the velocities and the elastic moduli, and the increase in the ring diameter and the ratio K bc /K e as a function of TeO 2 modifier content reveals the loose packing structure, which is attributed to the increase in the molar volume and the reduction in the vibrations of the borate lattice. The observed results confirm that the addition of TeO 2 changes the rigid character of Na 2 B 4 O 7 to a matrix of ionic behaviour bonds (NBOs). This is due to the creation of more and more discontinuities and defects in the glasses, thus breaking down the borax structure

  13. EPR of SeO2- and SeO3- radicals in alkaline borate glasses with 77Se isotope

    International Nuclear Information System (INIS)

    Galimov, D.G.; Tarzimanov, K.D.

    1977-01-01

    Alkaline borate glasses with 77 Se were investigated in order to establish the nature of selenium compounds and radicals in glasses. The relationship between alkali ions and the oxygen radical of selenium was determined by decoding the hyperfine structure of the alkaline borate glass EPR spectra obtained before and after γ-irradiation. The irradiated and non-irradiated glasses were characterized by hyperfine splitting of the EPR lines from the α- and β centres. Moreover, the irradiated samples were noted to have a line doublet (signal phi). With intenser reduction conditions of glass fusion, the intensities of α, β, and phi signals were noted to decline. This confirmes the suggestion that these centres were caused by oxygen compouds. The authors concluded that α and β signals were due to the paramagnetic centres of SeO 2 - and [SeO 2 - ]R + , and phi signal to the SeO 3 - radicals

  14. Electrical properties of fast ion conducting silver based borate glasses: Application in solid battery

    International Nuclear Information System (INIS)

    Masoud, Emad M.; Khairy, M.; Mousa, M.A.

    2013-01-01

    Graphical abstract: -- Highlights: •AgI dopant created more opened borate network structure. •Dielectric constant and loss values increased with AgI concentration. •AgI dopant enhanced both ion migration and orientation. •0.6 AgI–0.27 Ag 2 O–0.13 B 2 O 3 showed the highest DC-conductivity at room temperature. •It showed also good life time as a solid electrolyte in solid battery at room temperature. -- Abstract: The electrical properties of the ternary ionic conducting glass system xAgI–(1 – x)[0.67Ag 2 O–0.33B 2 O 3 ], where x = 0.4 , 0.5, 0.6, 0.7 and 0.8, were studied for emphasizing the influence of silver iodide concentration on the transport properties in the based borate glasses. The glasses were prepared by melt quenching technique and characterized using X-ray diffraction (XRD), FT-IR spectra and differential thermal analysis (DTA). XRD confirmed a glassy nature for all investigated compositions. Electrical conductivity (σ), dielectric constant (ε′), dielectric loss (ε ″ ) and impedance spectra (Z′–Z′′) were studied for all samples at a frequency range of 0–10 6 Hz and over a temperature range of 303–413 K. Changes of conductivity and dielectric properties with composition, temperature and frequency were analyzed and discussed. A silver iodine battery using glassy electrolyte sample with the highest ionic conductivity (x = 0.6) was studied

  15. Optical and spectroscopic properties of neodymium doped cadmium-sodium borate glasses

    Science.gov (United States)

    Mohan, Shaweta; Thind, Kulwant Singh

    2017-10-01

    Neodymium doped cadmium sodium borate glasses having composition xCdO-(40-x) Na2CO3-59.5H3BO3-0.5Nd2O3; x = 10, 20 and 30 mol% were prepared by conventional melt-quenching technique. X-ray diffraction studies confirmed the amorphous nature of the prepared glasses. Conventional methods were used to determine the physical properties such as density, molar volume, refractive index, and rare earth ion concentration. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. The calculated intensity parameters were further used to predict the radiative transition probability (A), radiative lifetime (τR) and branching ratio (βR) for the various fluorescent levels of Nd3+ ion in the prepared glass series. The effect of the compositional changes on the spectroscopic characteristics of Nd3+ ions have been studied and reported. The value of Ω2 is found to decrease with the decrease in the sodium content and the corresponding increase in the cadmium content. This can be ascribed to the changes in the asymmetry of the ligand field at the rare earth ion site and the change in rare earth oxygen (RE-O) covalency. Florescence spectra has been used to determine the peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σp) for the 4F3/2 → 4I9/2,4I11/2,4I13/2 transitions of the Nd3+ ion. The reasonably higher values of branching ratios and stimulated emission cross-section for the prepared glasses points towards the efficacy of these glasses as laser host materials. However, the glass with more sodium content is found to show better lasing properties.

  16. Spectroscopic investigation on europium doped heavy metal borate glasses for red luminescent application

    Energy Technology Data Exchange (ETDEWEB)

    Hegde, Vinod; Wagh, Akshatha; Kamath, Sudha D. [Manipal University, Department of Physics, Manipal Institute of Technology, Manipal (India); Hegde, Hemanth [Manipal University, Department of Chemistry, Manipal Institute of Technology, Manipal (India); Vishwanath, C.S.D. [Sri Venkateswara University, Department of Physics, Tirupati (India)

    2017-05-15

    The present study explores a new borate family glasses based on 10ZnO-5Na{sub 2}O-10Bi{sub 2}O{sub 3}-(75 - x) B{sub 2}O{sub 3}-xEu{sub 2}O{sub 3} (x = 0, 0.1, 0.5, 1, 1.5, 2, 3 mol%) composition, synthesized by rapid melt quench technique. Prepared glasses were subjected to the density and refractive index measurements and their values were used to calculate other physical properties of the glass matrix as a function of Eu{sup 3+} concentration. XRD confirmed amorphous nature of the glasses. FTIR spectra in the absorption mode were recorded in the 400-4000 cm{sup -1} region to identify different functional groups in the glass matrix. Deconvoluted FTIR spectra showed increase in BO{sub 4} units with rise in europium content which confirmed the 'network strengthener' role of europium ions by creating bridging oxygens (BOs). Optical properties were investigated for their luminescence behavior through various spectroscopic techniques such as UV-Vis-NIR absorption, excitation, emission, decay profiles, and color measurements at room temperature. Lasing properties of the glasses like total radiative life time, branching ratio, emission cross section, and optical gain were obtained from the calculated Judd-Ofelt (Ω{sub 2},Ω{sub 4}) intensity parameters. From the measured values of emission, cross sections, branching ratios, life times, strong photoluminescence features, and CIE chromaticity coordinates, 0.5 mol% of Eu{sup 3+} ions doped ZnNaBiB glasses showed optimum performance and are potential candidate for red light generation at 613 nm. (orig.)

  17. Structure and luminescence properties of Dy2O3 doped bismuth-borate glasses

    International Nuclear Information System (INIS)

    Mugoni, Consuelo; Gatto, C.; Pla-Dalmau, A.; Siligardi, C.

    2017-01-01

    In this study heavy bismuth-borate glasses were studied as host matrices of Dy 2 O 3 rare earth, for potential application as scintillator materials in high energy physics experiments and in general radiation detection systems. Glass matrices were prepared from 20BaO-xBi 2 O 3 -(80-x)B 2 O 3 (x = 20, 30, 40 mol%) ternary systems and synthesized by the melt-quenching method at different temperatures in order to obtain high density and high transparency in the UV/Vis range. Particularly, the glass manifesting the higher transparency and with sufficiently high density was doped with Dy 2 O 3 (2.5 and 5 mol%) in order to induce the luminescence characteristics. The effects of Bi 2 O 3 and Dy 2 O 3 on density, thermal behaviour, transmission as well as luminescence properties under UV excitation, were investigated. The experimental results show that the synthesized glasses can be considered promising candidate materials as dense scintillators, due to the Dy 3+ centres emission.

  18. Moessbauer effect study of oxidation and coordination states of iron in some sodium borate glasse:;

    International Nuclear Information System (INIS)

    Eissa, N.A.; Sanad, A.M.; Youssef, S.M.; El-Henawii, S.A.; Gomaa, S.Sh.; Mostafa, A.G.

    1980-01-01

    A structural study of some sodium borate glasses containing iron was carried out applying ME spectroscopy. Both oxidation and coordination states of iron were investigated under the effect of gradual replacing of sodium carbonate by sodium nitrate in the glass batches. The glasses were melted in porcelain crucibles using an electrically heated furnace at 1000+-10 deg C, then were quenched on a steel plate at room temperature (R.T.). The ME source was 20 mCi radioactive Co-57 in chromium. The obtained ME spectra indicated that at lower sodium nitrate content both Fe 2+ and Fe 3+ are present in these glasses. At moderate concentrations some Fe 3+ ions were separated in a crystalline phase and the rest of the iron ions appeared as ferric ions in glassy state. At high sodium nitrate content only Fe 3+ ions in glassy state were detected. The values of the ME parameters for all iron ions indicated that all of them are in the octahedral coordination state. The density measurements confirm the separation of a crystalline phase at moderate sodium nitrate content. (author)

  19. Glass laser discs with annular alkali lead borate coatings and use thereof

    International Nuclear Information System (INIS)

    Cooley, R.F.

    1975-01-01

    A laser assembly that includes a novel glass laser disc having an annular alkali lead borate glass coating for use in the assembly is disclosed. The annular coating has an index of refraction that is about 3 to 12 percent greater than the index of refraction of the laser disc, the thermal properties also being sufficiently matched with the glass laser disc so as to prevent the development of undesirable strains therein, the glass coating comprising a mixture of alkali metal oxides in which at least two different alkali metal oxides are present, and any K 2 O that is present is limited to an amount of not substantially more than about 1 percent by weight and an effective energy absorbing amount of heavy metal oxide that absorbs energy at a wavelength of about 1.06 microns to prevent parasitic oscillations. The heavy metal oxides include oxides of transition metals of the 3d, 4d, 4f, 5d and 5f orbital series. (auth)

  20. Thermoluminescence Response of Copper-Doped Potassium Borate Glass Subjected to 6 Megavolt X-Ray Irradiation

    Science.gov (United States)

    Hossain, I.; Shekaili, N. K.; Wagiran, H.

    2015-03-01

    This study addresses the characteristics of Cu-doped and undoped potassium borate glass for use as ionizing radiation dosimeters by investigating and comparing the thermoluminescence responses, linearity, sensitivity and dose response s of the two types of glasses. A number of samples based on xK 2 CO 3 + (100 - x)H 3 BO 3 , where 10 ≤ x ≤ 30 mol.%, have been prepared using a melt quenching technique. The amorphous phases were identified using X-ray diffraction (XRD). The undoped potassium borate samples 20K 2 CO 3 + 80H 3 BO 3 (mol.%) and Cu-doped (0.5 mol.%) samples were placed in a solid phantom apparatus and irradiated with in X-ray tube under 6 MV accelerating voltage with doses ranging from 0.5 to 4.0 Gy. This beam was produced by the Primus MLC 3339 linear accelerator (LINAC) available at Hospital Sultan Ismail, Johor Bahru, Malaysia. The results clearly show the superiority of Cu-doped glass in terms of response and sensitivity to producing luminescence over undoped potassium borate glass. The sensitivity of Cu-doped glass is 6.75 times greater than that of undoped glass.

  1. A density functional theory study of the carbon-coating effects on lithium iron borate battery electrodes

    DEFF Research Database (Denmark)

    Loftager, Simon; García Lastra, Juan Maria; Vegge, Tejs

    2017-01-01

    a density functional theory (DFT) study of the anchoring configurations of carbon coating on the LiFeBO3 electrode and its implications on the interfacial lithium diffusion. Due to large barriers associated with Li-ion diffusion through a parallel-oriented pristine graphene coating on the FeBO3 and LiFeBO3......Lithium iron borate (LiFeBO3) is a promising cathode material due to its high theoretical specific capacity, inexpensive components and a small volume change during operation. Yet, challenges relating to severe air- and moisture-induced degradation necessitate the application of a protective...... coating on the electrode which also improves the electronic conductivity. However, not much is known about the preferential geometries of the coating as well as how these coating–electrode interfaces influence the lithium diffusion between the coating and the electrode. Here, we therefore present...

  2. Physical and optical studies in mixed alkali borate glasses with three types of alkali ions

    International Nuclear Information System (INIS)

    Samee, M.A.; Awasthi, A.M.; Shripathi, T.; Bale, Shashidhar; Srinivasu, Ch.; Rahman, Syed

    2011-01-01

    Research highlights: → We report, for the first time, the mixed alkali effect in the (40-x)Li 2 O-xNa 2 O-10K 2 O-50B 2 O 3 glasses through optical properties, density and modulated DSC studies. → Optical band gap (E opt ) and Urbach energy (ΔE) have been evaluated. → The values of E opt and ΔE show non-linear behavior with compositional parameter showing the mixed alkali effect. → The glass stability S is observed to be less which may be important for the present glasses as promising material for non-optical applications. - Abstract: So far only a handful of publications have been concerned with the study of the mixed alkali effect in borate glasses containing three types of alkali ions. In the present work, the mixed alkali effect (MAE) has been investigated in the glass system (40-x)Li 2 O-xNa 2 O-10K 2 O-50B 2 O 3 . (0 ≤ x ≤ 40 mol%) through density and modulated DSC studies. The density and glass transition temperature of the present glasses varies non-linearly exhibiting mixed alkali effect. The glass stability is observed to be less which may be important for the present glasses as promising material for non-optical applications. We report, for the first time, the mixed alkali effect in the present glasses through optical properties. From the absorption edge studies, the values of indirect optical band gap (E opt ), direct optical band gap and Urbach energy (ΔE) have been evaluated. The values of E opt and ΔE show non-linear behavior with compositional parameter showing the mixed alkali effect. The average electronic polarizability of oxide ions α O 2- , optical basicity Λ, and Yamashita-Kurosawa's interaction parameter A have been examined to check the correlations among them and bonding character. Based on good correlation among electronic polarizability of oxide ions, optical basicity and interaction parameter, the present Li 2 O-Na 2 O-K 2 O-B 2 O 3 glasses are classified as normal ionic (basic) oxides.

  3. A comparative property investigation of lithium phosphate glass

    Indian Academy of Sciences (India)

    The present study addresses the application of microwave (MW) energy for melting lithium phosphate glass. Acomparative analysis of the properties is presented with glasses melted in conventional resistance heating adopting standardmethods of characterization. The density of the glass was found less in MW heating.

  4. To immobilize polyethylene glycol-borate ester/lithium fluoride in graphene oxide/poly(vinyl alcohol for synthesizing new polymer electrolyte membrane of lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Y. F. Huang

    2017-01-01

    Full Text Available Polymer electrolyte membranes (PEMs are potentially applicable in lithium-ion batteries with high safety, low cost and good performance. Here, to take advantages of ionic conductivity and selectivity of borate ester-functionalized small molecules as well as structural properties of polymer nanocomposite, a strategy of immobilizing as-synthesized polyethylene glycol-borate ester/lithium fluoride (B-PEG/LiF in graphene oxide/poly(vinyl alcohol (GO/PVA to prepare a PEM is put forward. Chemical structure of the PEM is firstly characterized by 1H-, 11B- and 19F-nuclear magnetic resonance spectra, and Fourier transform infrared spectroscopy spectra, respectively, and then is further investigated under consideration of the interactions among PVA, B-PEG and LiF components. The immobilization of B-PEG/LiF in PVA-based structure is confirmed. As the interactions within electrolyte components can be further tuned by GO, ionic conductivity (~10–3 S·cm–1, lithium-ion transfer number (~0.49, and thermal (~273 °C/electrochemical (>4 V stabilities of the PEM can be obtained, and the feasibility of PEMs applied in a lithium-ion battery is also confirmed. It is believed that such PEM is a promising candidate as a new battery separator.

  5. Luminescence investigations of rare earth doped lead-free borate glasses modified by MO (M = Ca, Sr, Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Janek, Joanna, E-mail: janek.joanna@gmail.com; Sołtys, Marta; Żur, Lidia; Pietrasik, Ewa; Pisarska, Joanna; Pisarski, Wojciech A.

    2016-09-01

    Series of lead-free borate glasses with different oxide modifiers and lanthanide ions were prepared. The effect of oxide modifiers MO (M = Ca, Sr, Ba) on spectroscopic properties of trivalent Ln{sup 3+} (Ln = Eu, Er, Pr) were systematically investigated. Especially, the luminescence spectra of Ln{sup 3+}-doped lead-free borate glasses are presented and discussed in relation to the impact of selective components (CaO, SrO and BaO). Several spectroscopic parameters, such as the fluorescence intensity ratio R/O (Eu{sup 3+}) and measured luminescence lifetimes for the {sup 5}D{sub 0} (Eu{sup 3+}), {sup 4}I{sub 13/2} (Er{sup 3+}) and {sup 1}D{sub 2} (Pr{sup 3+}) excited states of lanthanide ions were analyzed in details. The research proved that spectroscopic properties of trivalent Ln{sup 3+} depend significantly on kind of presence oxide modifiers MO (M = Ca, Sr, Ba) in glass host matrices. - Highlights: • Luminescence of Ln{sup 3+}-doped borate glasses was presented and discussed. • Effect of glass modifiers on spectroscopic properties of rare earths was studied. • Measured luminescence lifetimes of Ln{sup 3+} (Ln = Eu, Er, Pr) were analyzed. • Luminescence intensity ratios R/O (Eu{sup 3+}) were determined.

  6. Effect of 3d-transition metal doping on the shielding behavior of barium borate glasses: a spectroscopic study.

    Science.gov (United States)

    ElBatal, H A; Abdelghany, A M; Ghoneim, N A; ElBatal, F H

    2014-12-10

    UV-visible and FT infrared spectra were measured for prepared samples before and after gamma irradiation. Base undoped barium borate glass of the basic composition (BaO 40%-B2O3 60mol.%) reveals strong charge transfer UV absorption bands which are related to unavoidable trace iron impurities (Fe(3+)) within the chemical raw materials. 3d transition metal (TM)-doped glasses exhibit extra characteristic absorption bands due to each TM in its specific valence or coordinate state. The optical spectra show that TM ions favor generally the presence in the high valence or tetrahedral coordination state in barium borate host glass. Infrared absorption bands of all prepared glasses reveal the appearance of both triangular BO3 units and tetrahedral BO4 units within their characteristic vibrational modes and the TM-ions cause minor effects because of the low doping level introduced (0.2%). Gamma irradiation of the undoped barium borate glass increases the intensity of the UV absorption together with the generation of an induced broad visible band at about 580nm. These changes are correlated with suggested photochemical reactions of trace iron impurities together with the generation of positive hole center (BHC or OHC) within the visible region through generated electrons and positive holes during the irradiation process. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effect of glass composition on the relaxation of the 4Isub(13/2) level of erbium ions in borate and silicate glasses

    International Nuclear Information System (INIS)

    Ryba-Romanowski, W.; Jezowska-Trzebiatowska, B.

    1979-01-01

    The effect of glass nerwork formers and glass modifiers on radiative transition probabilities and quantum efficiencies of the 4 Isub(13/2) level of Er +3 ions in ternary borate and silicate glasses was studied by both absorption and emission spectroscopy. It was found that the transition probabilities may be widely varied by changes glass network former and alkali ion substitution. The role of multiphonon emission and O-H vibration in the relaxation of the 4 Isub(13/2) level is discussed. (author)

  8. Determination of thermoluminescence kinetic parameters of thulium doped lithium calcium borate

    International Nuclear Information System (INIS)

    Jose, M.T.; Anishia, S.R.; Annalakshmi, O.; Ramasamy, V.

    2011-01-01

    For the first time kinetic parameters of thulium doped Lithium calcium borate (LCB) Thermoluminescence (TL) material are reported here. Irradiated LCB:Tm 3+ powder has revealed two intense TL glow peaks one at 510 (peak 1) and the other at 660 K (peak 2). Activation energy (E), frequency factor (s) and order of kinetics (b) of these peaks were determined by various heating rate (VHR), initial rise (IR), and peak shape (PS) methods. The trap depth and frequency factor determined for peaks 1 and 2 of LCB:Tm phosphor using VHR and IR methods are in good agreement. The average activation energy of peaks 1 and 2 obtained by these methods is 1.62 and 1.91 eV respectively. The frequency factors of peaks 1 and 2 are in the range of 10 13-16 and 10 12-14 sec -1 respectively. The E and s values estimated using the glow peak shape dependent parameters are relatively less compared to the values obtained from other methods. The large difference in these values is due to the complex nature of the glow curves. The order of the kinetics process for complex glow curve peaks could not be assigned on the basis of shape parameters alone but T m response on absorbed dose is to be considered for final confirmation. Glow peaks 1 and 2 of LCB:Tm 3+ obey first and general order kinetics respectively. - Highlights: → Trap depth and frequency factor are determined for the peaks at 510 and 660 K of LCB:Tm. → Parameters obtained by various heating rate and initial rise methods are in good agreement. → Trap depth of peak 1 and peak 2 is 1.61 eV and 1.91 eV respectively. → T m response to absorbed dose is used to distinguish a first order or non-first order kinetics.

  9. Local structure of alkalis in mixed-alkali borate glass to elucidate the origin of mixed-alkali effect

    Directory of Open Access Journals (Sweden)

    Yomei Tokuda

    2015-12-01

    Full Text Available We report the structural analysis of Na+ and Cs+ in sodium cesium borate crystals and glasses using 23Na and 133Cs magic-angle spinning nuclear magnetic resonance (MAS NMR spectroscopy. The composition dependence of NMR spectra of the borate was similar to that of the silicate: (1 the peak position of cesium borate crystals shifted to upfield for structures with larger Cs+ coordination numbers, (2 the MAS NMR spectra of xNa2O-yCs2O-3B2O3 (x = 0, 0.25, 0.5, 0.75, 1.0, x + y = 1 glass showed that the average coordination number (CN of both the alkali cations decreases with increasing Cs+/(Na+ + Cs+ ratio. However, the degree of decrement in borates is much smaller than that in silicates. We have considered that the small difference in CN is due to 4-coordinated B, because it is electrically compensated by the alkali metal ions resulting in the restriction of having various coordinations of O to alkali metal.

  10. A model for the stabilization of atomic hydrogen centers in borate glasses

    International Nuclear Information System (INIS)

    Pontuschka, W.M.; Isotani, S.; Furtado, W.W.; Piccini, A.; Rabbani, S.R.

    1989-04-01

    A model describing the trapping site of the interstitial atomic hydrogen (H sup(0) sub(i) in borate glasses x-irradiated at 77 K is proposed. The hydrogen atom is stabilized at the centers of oxygen polygons belonging to B-O ring structures in the glass network by van der Waals forces. The previously reported H sup(0) sub(i) isothermal decay experimental data are discussed in the light of this microscopic model. A coupled differential equation system describing the possible reactions was numerically solved by means of Runge-Kutta's method. The parameter best fit was found by trial and error. The untrapping parameter provided an activation energy of 0.7 x 10 sup(-19) J, in good agreement with the calculated results for dispersion interactions between the stabilized atomic hydrogen and the neighbouring oxygen atoms at the vertices of hexagonal and heptagonal structures. The retrapping and recombination parameters were found to be correlated to (T sup1/2) - T sup(1/2) sub(0)) where t sub(0)=179 K is a cutoff temperature for the kinetics process. (author)

  11. Structural and luminescence properties of samarium doped lead alumino borate glasses

    Science.gov (United States)

    Mohan, Shaweta; Kaur, Simranpreet; Singh, D. P.; Kaur, Puneet

    2017-11-01

    The study reports the effect of samarium concentration on the physical, structural and spectroscopic characteristics of samarium doped lead alumino borate glasses having composition 20PbO-(10-x)Al2O3-70B2O3-xSm2O3; x = 0.1, 0.5, 1.0 and 2.0 mol %. The glasses were fabricated by conventional melt-quenching technique and then characterized by XRD, FTIR, optical absorption and fluorescence spectra. X-ray diffraction studies confirmed the amorphous nature of the prepared glasses. FTIR spectra indicate the presence of BO3, BO4, AlO6 and a few other structural groups. Various physical properties such as density, molar volume, refractive index, rare earth ion concentration, boron-boron distance and polarizability etc. were determined using conventional methods and standard formulae. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. The value of Ω2 was found to be highest for glass with 1 mol% Sm2O3 and attributed to the asymmetry of the ligand field at the rare earth ion site and the rare earth oxygen (Sm-O) covalency. The calculated intensity parameters and fluorescence spectra were further used to predict the radiative transition probability (A), radiative lifetime (τR), branching ratio (βR), peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σ) for the characteristic 4G5/2 → 6H5/2, 6H7/2 and 6H9/2 transitions of the Sm3+ ion. Concentration quenching was observed for 2 mol% concentration of Sm2O3 and ascribed to energy transfer through various cross-relaxation channels between Sm3+ ions. Reasonably high values of branching ratios and stimulated emission cross-section for the prepared glasses points towards their utility in the development of visible lasers emitting in the reddish-orange spectral region. However, the glass with 1 mol% Sm2O3 was found to show better radiative properties.

  12. Formation, characterization and magnetic properties of maghemite γ-Fe2O3 nanoparticles in borate glasses

    International Nuclear Information System (INIS)

    Edelman, I.S.; Ivanova, O.S.; Petrakovskaja, E.A.; Velikanov, D.A.; Tarasov, I.A.; Zubavichus, Y.V.; Trofimova, N.N.; Zaikovskii, V.I.

    2015-01-01

    Highlights: • Fe and large-ion-radius elements (Y, Bi, Pb, and Sm) co-doped borate glasses were prepared. • Maghemite, γ-Fe 2 O 3 , nanoparticles arise in the glasses as a result of the thermal treatment. • The particles structure is the same for all large-ion-radius elements used. • The particle size depends on the large-ion-radius elements nature and concentration. • The glass magnetic properties correlate with the particles size. - Abstract: A new type of nanocomposite materials based on maghemite, γ-Fe 2 O 3 , nanoparticles dispersed in borate glasses co-doped with low contents of iron together with the larger radius element combinations: Y and Bi, or Sm and Pb, or Y and Pb is studied. Nanoparticles arise as a result of heat treatment of the glasses which gives them properties characteristic of magnetically ordered substances. Transmission electron microscopy and XRD show that only one magnetic phase, namely γ-Fe 2 O 3 nanoparticles, occurs in glasses subjected to the thermal treatment at 540 °C during 24 h independently on the doping element nature. At the same time doping element and their concentrations ratio in every combination affect the particles average size and glass magnetic properties, such as magnetization temperature dependences, Faraday rotation value and electron magnetic resonance spectrum characteristics

  13. Study of the response of a lithium yttrium borate scintillator based neutron rem counter by Monte Carlo radiation transport simulations

    Science.gov (United States)

    Sunil, C.; Tyagi, Mohit; Biju, K.; Shanbhag, A. A.; Bandyopadhyay, T.

    2015-12-01

    The scarcity and the high cost of 3He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am-Be neutron source shows promise of being used as rem counter.

  14. Study of the response of a lithium yttrium borate scintillator based neutron rem counter by Monte Carlo radiation transport simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, C., E-mail: csunil11@gmail.com [Accelerator Radiation Safety Section, Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tyagi, Mohit [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Biju, K.; Shanbhag, A.A.; Bandyopadhyay, T. [Accelerator Radiation Safety Section, Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-12-11

    The scarcity and the high cost of {sup 3}He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am–Be neutron source shows promise of being used as rem counter.

  15. Physical and spectroscopic studies of Cr{sup 3+} doped mixed alkaline earth oxide borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Samdani, E-mail: samdanimohd82@gmail.com [Department of Engineering, Salalah College of Technology, Salalah (Oman); Ramadevudu, G. [Department of Physics, Vasavi College of Engineering, Ibrahimbagh, Hyderabad 500031, Telangana (India); Chary, M. Narasimha; Shareefuddin, Md. [Department of Physics, Osmania University, Hyderabad 500007, Telangana (India)

    2017-01-15

    A series of mixed alkaline earth oxide glasses xMgO-(30-x)BaO-69.8B{sub 2}O{sub 3}-0.2Cr{sub 2}O{sub 3} were prepared and studied using electron paramagnetic resonance (EPR), optical absorption, Raman spectroscopy and photoluminescence experimental techniques. The optical absorption spectra revealed the characteristic octahedral symmetry of Cr{sup 3+}ions through three broad band transitions {sup 4}A{sub 2g}(F)→ {sup 4}T{sub 2g}(F), {sup 4}A{sub 2g}(F)→ {sup 4}T{sub 1g}(F), and {sup 4}A{sub 2g}(F)→ {sup 2}T{sub 1g}(P). The crystal field (Dq) and Racah parameters (B and C), the optical band gap and Urbach energies of the glass samples were also reported along with the physical properties like density and molar volume. In the EPR spectra three resonance signals corresponding to Cr3+ ions were observed. A broad signal with g = 5.110 was observed which belongs to the isolated Cr3+ centers localized in the strongly distorted octahedral (rhombic) sites of the glass network, a narrow signal (g = 1.960) corresponding to the Cr{sup 3+} centers in the weekly distorted (cubic) sites of the glass network, and a third very broad signal (g = 2.210) was also observed corresponding to Cr{sup 3+}- Cr{sup 3+} paired centers coupled by magnetic dipolar interaction. Another resonance signal with effective value g ≈ 4.220 was attributed to Fe{sup 3+} ions impurity. The number of spins (N) participating in the resonance and susceptibility (χ) values at room temperature were reported and their values varied in a non-linear manner with the composition exhibiting mixed oxide effect. The estimated molecular bonding coefficients (α) values indicated stronger ionic contribution. The Raman spectral investigations were carried out. The Photoluminescence spectra bands near 690 and 750 nm correspond to the Cr{sup 3+} centers in high and low field sites respectively. - Highlights: • Spectroscopic studies were made on alkaline earth borate glasses. • Three resonance signals

  16. In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method

    International Nuclear Information System (INIS)

    Fu Hailuo; Fu Qiang; Zhou Nai; Huang Wenhai; Rahaman, Mohamed N.; Wang Deping; Liu Xin

    2009-01-01

    Borate-based bioactive glass scaffolds with a microstructure similar to that of human trabecular bone were prepared using a polymer foam replication method, and evaluated in vitro for potential bone repair applications. The scaffolds (porosity = 72 ± 3%; pore size = 250-500 μm) had a compressive strength of 6.4 ± 1.0 MPa. The bioactivity of the scaffolds was confirmed by the formation of a hydroxyapatite (HA) layer on the surface of the glass within 7 days in 0.02 M K 2 HPO 4 solution at 37 deg. C. The biocompatibility of the scaffolds was assessed from the response of cells to extracts of the dissolution products of the scaffolds, using assays of MTT hydrolysis, cell viability, and alkaline phosphatase activity. For boron concentrations below a threshold value (0.65 mM), extracts of the glass dissolution products supported the proliferation of bone marrow stromal cells, as well as the proliferation and function of murine MLO-A5 cells, an osteogenic cell line. Scanning electron microscopy showed attachment and continuous increase in the density of MLO-A5 cells cultured on the surface of the glass scaffolds. The results indicate that borate-based bioactive glass could be a potential scaffold material for bone tissue engineering provided that the boron released from the glass could be controlled below a threshold value.

  17. Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xu [Institute of Bioengineering and Information Technology Materials, Tongji University, Shanghai 200092 (China); Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055 (China); Huang, Wenhai [Institute of Bioengineering and Information Technology Materials, Tongji University, Shanghai 200092 (China); Zhang, Yadong, E-mail: zhangyadong6@126.com [Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120 (China); Huang, Chengcheng; Yu, Zunxiong; Wang, Lei; Liu, Wenlong; Wang, Ting [Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055 (China); Zhou, Jie; Wang, Hui; Zhou, Nai; Wang, Deping [Institute of Bioengineering and Information Technology Materials, Tongji University, Shanghai 200092 (China); Pan, Haobo, E-mail: hb.pan@siat.ac.cn [Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055 (China); Rahaman, Mohamed N., E-mail: rahaman@mst.edu [Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120 (China); Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409-0340 (United States)

    2017-04-01

    There is a need for synthetic biomaterials to heal bone defects using minimal invasive surgery. In the present study, an injectable cement composed of bioactive borate glass particles and a chitosan bonding solution was developed and evaluated for its capacity to heal bone defects in a rabbit femoral condyle model. The injectability and setting time of the cement in vitro decreased but the compressive strength increased (8 ± 2 MPa to 31 ± 2 MPa) as the ratio of glass particles to chitosan solution increased (from 1.0 g ml{sup −1} to 2.5 g ml{sup −1}). Upon immersing the cement in phosphate-buffered saline, the glass particles reacted and converted to hydroxyapatite, imparting bioactivity to the cement. Osteoblastic MC3T3-E1 cells showed enhanced proliferation and alkaline phosphatase activity when incubated in media containing the soluble ionic product of the cement. The bioactive glass cement showed a better capacity to stimulate bone formation in rabbit femoral condyle defects at 12 weeks postimplantation when compared to a commercial calcium sulfate cement. The injectable bioactive borate glass cement developed in this study could provide a promising biomaterial to heal bone defects by minimal invasive surgery. - Highlights: • New class of injectable bone cement composed of bioactive borate glass particles and chitosan bonding phase was created. • The cement is biocompatible and bioactive, and has a much lower temperature increase during setting than PMMA cement. • The cement has a more controllable degradation rate and higher strength over a longer time than calcium sulfate cement. • The cement showed a better ability to heal bone defects than calcium sulfate over a twelve-week implantation period.

  18. Optical and FT Infrared spectral studies of vanadium ions in cadmium borate glass and effects of gamma irradiation.

    Science.gov (United States)

    AbdelAziz, T D; EzzElDin, F M; El Batal, H A; Abdelghany, A M

    2014-10-15

    Combined optical and infrared absorption spectra of V2O5-doped cadmium borate glasses were investigated before and after gamma irradiation with a dose of 8 Mrad (=8×10(4) Gy). The undoped base cadmium borate glass reveals a spectrum consisting of strong charge transfer UV absorption bands which are related to the presence of unavoidable contaminated trace iron impurities (mainly Fe(3+)). The V2O5-doped glasses reveal an extra band at 380nm and the high V2O5-content glass also shows a further band at about 420nm. The observed optical spectrum indicates the presence of vanadium ions mainly in the pentavalent state (d(0) configuration). The surplus band at 420nm shows that some trivalent vanadium ions are identified at high V2O5 content. The optical spectra of the glasses after gamma irradiation show small decrease of the intensity of the UV absorption which are interpreted by assuming the transformation of some Fe(3+) ions by photochemical reactions with the presence of high content (45mol%) of heavy massive CdO causing some shielding behavior. FT infrared absorption spectra of the glasses show vibrational bands due to collective presence of triangular and tetrahedral borate groups in their specific wavenumbers. The FTIR spectra are observed to be slightly affected by both the V2O5-dopants being present in modifying low percent or gamma irradiation due to the presence of high content heavy CdO. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic.

    Science.gov (United States)

    Elsaka, Shaymaa E; Elnaghy, Amr M

    2016-07-01

    The aim of this study was to assess the mechanical properties of recently introduced zirconia reinforced lithium silicate glass-ceramic. Two types of CAD/CAM glass-ceramics (Vita Suprinity (VS); zirconia reinforced lithium silicate and IPS e.max CAD (IC); lithium disilicate) were used. Fracture toughness, flexural strength, elastic modulus, hardness, brittleness index, and microstructures were evaluated. Data were analyzed using independent t tests. Weibull analysis of flexural strength data was also performed. VS had significantly higher fracture toughness (2.31±0.17MPam(0.5)), flexural strength (443.63±38.90MPa), elastic modulus (70.44±1.97GPa), and hardness (6.53±0.49GPa) than IC (Pglass-ceramic revealed significantly a higher brittleness index (2.84±0.26μm(-1/2)) (lower machinability) than IC glass-ceramic (Pglass-ceramic revealed a lower probability of failure and a higher strength than IC glass-ceramic according to Weibull analysis. The VS zirconia reinforced lithium silicate glass-ceramic revealed higher mechanical properties compared with IC lithium disilicate glass-ceramic. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. TL and OSL studies on lithium borate single crystals doped with Cu and Ag

    International Nuclear Information System (INIS)

    Rawat, N.S.; Kulkarni, M.S.; Tyagi, M.; Ratna, P.; Mishra, D.R.; Singh, S.G.; Tiwari, B.; Soni, A.; Gadkari, S.C.; Gupta, S.K.

    2012-01-01

    Lithium borate (LBO) single crystals doped with Cu and Ag (0.25 mol% each) (Li 2 B 4 O 7 :Cu,Ag) are grown by the Czochralski method. The thermoluminescence readout on Li 2 B 4 O 7 :Cu,Ag crystals showed three glow peaks at∼375, 441 and 516 K for the heating rate of 1 K/s. The thermoluminescence sensitivity of the grown Li 2 B 4 O 7 :Cu,Ag single crystals is found to be 5 times TLD-100 and a linear dose response in the range 1 mGy to 1 kGy. The glow curve deconvolution reveals nearly first order kinetics for all the three peaks with trap depths 0.77, 1.25 and 1.34 eV respectively and corresponding frequency factors 1.6×10 9 , 1.3×10 13 and 6.8×10 11 s −1 . The continuous wave optically stimulated luminescence (CW-OSL) measurements were performed on the LBO:Cu,Ag single crystals using blue light stimulation. The traps responsible for the three thermoluminescence peaks in Li 2 B 4 O 7 :Cu,Ag are found to be OSL sensitive. The qualitative correlation between TL peaks and CW-OSL response is established. The photoluminescence studies show that in case of co-doping of Ag in LBO:Cu the emission at 370 nm in Cu states dominates over the transitions in Ag states implying doping of Ag plays a role as sensitizer when co-doped with Cu and increases overall emission. - Highlights: ► Growth of crack free single crystals of Li2B4O7 :Cu and Ag. ► Study of TL and OSL parameters for Li2B4O7 :Cu and Ag. ► Correlation of OSL with TL peaks. ► Optimization of OSL readout time with respect to residual TL.

  1. Synthesis and Characterization of Network Single Ion Conductors(NSIC) Based On Comb-Branched Polyepoxide Ethers and Lithium Bis(allylmalonato)borate

    International Nuclear Information System (INIS)

    Sun, Xiao-Guang; Kerr, John B.

    2004-01-01

    Network single ion conductors (NSICs) based on comb-branch polyepoxide ethers and lithium bis(allylmalonato) borate have been synthesized and thoroughly characterized by means of ionic conductivity measurements, electrochemical impedance and by dynamic mechanical analysis (DMA). The materials have been tested as battery electrolytes by cycling in symmetrical Li/Li half cells and in Li/V 6 O 13 full cells in which the NSIC was used as both binder and electrolyte in the cathode electrode and as the electrolyte separator membrane,. The substitution of the trimethylene oxide (TMO) unit into the side chains in place of ethylene oxide (EO) units increased the polymerion mobility (lower glass transition temperature). However, the ionic conductivity was nearly one and half orders of magnitude lower than the corresponding pure EO based single ion conductor at the same salt concentration. This effect may be ascribed to the lower dielectric constant of the TMO side chains that result in a lower concentration of free conducting lithium cations. For a highly cross-linked system (EO/Li=20), only 47 wt% plasticizing solvent (ethylene carbonate (EC)/ethyl methyl carbonate (EMC), 1/1 by wt) could be taken up and the ionic conductivity was only increased by one order of magnitude over the dry polyelectrolyte while for a less densely crosslinked system (EO/Li=80), up to 75 wt% plasticizer could be taken up and the ionic conductivity was increased by nearly two orders of magnitude. A Li/Li symmetric cell that was cycled at 85 C at a current density of 25(micro)Acm -2 showed no concentration polarization or diffusional relaxation, consistent with a lithium ion transference number of one. However, both the bulk and interfacial impedances increased after 20 cycles, apparently due to continued cross-linking reactions within the membrane and on the surface of the lithium electrodes. A Li/V 6 O 13 full cell constructed using a single ion conductor gel (propylene carbonate (PC)/EMC, 1/1 in

  2. Thermal, structural and spectroscopic properties of Pr3+-doped lead zinc borate glasses modified by alkali metal ions

    Directory of Open Access Journals (Sweden)

    M.V. Sasi kumar

    2017-07-01

    Full Text Available This paper offers a study on Pr3+-doped alkali and mixed-alkali borate glasses prepared by the melt quenching technique and characterized by thermal, structural and spectroscopic studies. The amorphous nature of the glassy systems was identified based on X-ray diffraction. The thermal behaviour of glasses was studied using differential thermal analysis (DTA. The functional groups contained in the glasses were identified by Fourier transform infrared spectroscopy (FTIR. Spectral intensities were evaluated from the absorption spectra and used for calculating J–O intensity parameters, Ωλ (λ = 2, 4 and 6. Further, these parameters were used for calculating different radiative properties. The best radiative state was identified as the laser transition state among the various states. Emission analysis was performed for this state by calculating the branching ratios and stimulated emission cross sections (σp for all the prepared glasses. These studies suggest that borate glasses are useful for visible fluorescence.

  3. Structural and optical properties of antimony-germanate-borate glass and glass fiber co-doped Eu3+ and Ag nanoparticles.

    Science.gov (United States)

    Zmojda, Jacek; Kochanowicz, Marcin; Miluski, Piotr; Baranowska, Agata; Pisarski, Wojciech A; Pisarska, Joanna; Jadach, Renata; Sitarz, Maciej; Dorosz, Dominik

    2018-08-05

    In the paper analysis of structural and luminescent properties of antimony-germanate-borate glasses and glass fiber co-doped with 0.6AgNO 3 /0.2Eu 2 O 3 are presented. Heat treatment of the fabricated glass and optical fiber (400 °C, 12 h) enabled to obtain Ag nanoparticles (NPs) with average size 30-50 nm on their surface. It has been proofed that silver ions migrate to the glass surface, where they are reduced to Ag 0 nanoparticles. Simultaneously, FTIR analysis showed that heat treatment of the glass and optical fiber increases the local symmetry of the Eu 3+ site. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A density functional theory study of the carbon-coating effects on lithium iron borate battery electrodes.

    Science.gov (United States)

    Loftager, Simon; García-Lastra, Juan María; Vegge, Tejs

    2017-01-18

    Lithium iron borate (LiFeBO 3 ) is a promising cathode material due to its high theoretical specific capacity, inexpensive components and small volume change during operation. Yet, challenges related to severe air- and moisture-induced degradation have prompted the utilization of a protective coating on the electrode which also improves the electronic conductivity. However, not much is known about the preferential geometries of the coating as well as how these coating-electrode interfaces influence the lithium diffusion between the coating and the electrode. Here, we therefore present a density functional theory (DFT) study of the anchoring configurations of carbon coating on the LiFeBO 3 electrode and its implications on the interfacial lithium diffusion. Due to large barriers associated with Li-ion diffusion through a parallel-oriented pristine graphene coating on the FeBO 3 and LiFeBO 3 electrode surfaces, large structural defects in the graphene coating are required for fast Li-ion diffusion. However, such defects are expected to exist only in small concentrations due to their high formation energies. Alternative coating geometries were therefore investigated, and the configuration in which the coating layers were anchored normal to the electrode surface at B and O atoms was found to be most stable. Nudged elastic band (NEB) calculations of the lithium diffusion barriers across the interface between the optimally oriented coating layers and the electrode show no kinetic limitations for lithium extraction and insertion. Additionally, this graphite-coating configuration showed partial blocking of electrode-degrading species.

  5. Dosimetric properties of germanium doped calcium borate glass subjected to 6 MV and 10 MV X-ray irradiations

    Science.gov (United States)

    Tengku Kamarul Bahri, T. N. H.; Wagiran, H.; Hussin, R.; Saeed, M. A.; Hossain, I.; Ali, H.

    2014-10-01

    Germanium doped calcium borate glasses are investigated in term of thermoluminescence properties to seek their possibility to use as glass radiation dosimeter. The samples were exposed to 6 MV, and 10 MV photon beams in a dose range of 0.5-4.0 Gy. There is a single and broad thermoluminescence glow curve that exhibits its maximum intensity at about 300 °C. Linear dose response behavior has been found in this dose range for the both photon energies. Effective atomic number, TL sensitivity, and reproducibility have also been studied. It is found that the sensitivity of germanium doped sample at 6 MV is only 1.28% and it is superior to the sensitivity at 10 MV. The reproducibility of germanium doped sample is good with a percentage of relative error less than 10%. The results indicate that this glass has a potential to be used as a radiation dosimetry, especially for application in radiotherapy.

  6. Contribution of Eu ions on the precipitation of silver nanoparticles in Ag-Eu co-doped borate glasses

    International Nuclear Information System (INIS)

    Jiao, Qing; Qiu, Jianbei; Zhou, Dacheng; Xu, Xuhui

    2014-01-01

    Graphical abstract: - Highlights: • Silver nanoparticles are precipitated from the borate glasses during the melting process without any further heat treatment. • The reduction of Eu 3+ ions to Eu 2+ ions is presented in this material. • The intensity of Ag + luminescence. • The introduction of Eu ions accelerated the reaction between Eu 2+ ions and silver ions inducing the silver clusters formation. - Abstract: Ag + doped sodium borate glasses with different Eu ions concentration were prepared by the melt-quenching method. The absorption at about 410 nm which was caused by the surface plasmon resonance (SPR) of Ag nanoparticles (NPs) is promoted with increasing of Eu ions concentration. Meanwhile, the luminescent spectra showed that the emission intensity of Ag + decreased while that of the Ag aggregates increased simultaneously. The results indicated that the Ag ions intend to form the high-polymeric state such as Ag aggregates and nanoparticles with increasing of europium ions. Owing to the self-reduction of Eu 3+ to Eu 2+ in our glass system, it revealed that Ag + has been reduced by the neighboring Eu 2+ which leads to the formation of Ag aggregates and the precipitation of Ag NPs in the matrix. In addition, energy transfer (ET) process from Ag + /Ag aggregates to the Eu 3+ was investigated for the enhancement of Eu 3+ luminescence

  7. Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials

    International Nuclear Information System (INIS)

    Singh, Narveer; Singh, Kanwar Jit; Singh, Kulwant; Singh, Harvinder

    2004-01-01

    Gamma-ray mass attenuation coefficients have been measured experimentally and calculated theoretically for PbO-B 2 O 3 and Bi 2 O 3 -PbO-B 2 O 3 glass systems using narrow beam transmission method. These values have been used to calculate half value layer (HVL) parameter. These parameters have also been calculated theoretically for some standard radiation shielding concretes at same energies. Effect of replacing lead by bismuth has been analyzed in terms of density, molar volume and mass attenuation coefficient

  8. Investigation of Gamma and Neutron Shielding Parameters for Borate Glasses Containing NiO and PbO

    OpenAIRE

    Singh, Vishwanath P.; Badiger, N. M.

    2014-01-01

    The mass attenuation coefficients, μ/ρ, half-value layer, HVL, tenth-value layer, TVL, effective atomic numbers, ZPIeff, and effective electron densities, Ne,eff, of borate glass sample systems of (100-x-y) Na2B4O7 : xPbO : yNiO (where x and y=0, 2, 4, 6, 8, and 10 weight percentage) containing PbO and NiO, with potential gamma ray and neutron shielding applications, have been investigated. The gamma ray interaction parameters, μ/ρ, HVL, TVL, ZPIeff, and Ne,eff, were computed for photon energ...

  9. In vitro bioactivity of soda lime borate glasses with substituted SrO in sodium phosphate solution

    Directory of Open Access Journals (Sweden)

    Mohamed A. Marzouk

    2014-09-01

    Full Text Available Borate glasses with the basic composition 0.6B2O3·0.2Na2O·0.2CaO and SrO progressively substituting CaO were prepared and characterized for their bone-bonding ability. The obtained glasses were thermally treated and converted to their glass-ceramic derivatives. In this study, FTIR spectral analyses were done for the prepared glasses and glass-ceramics before and after immersion in a sodium phosphate solution for extended times. The appearance of two IR bands within the spectral range 550–680 cm-1 after immersion confirms the formation of hydroxyapatite. X-ray diffraction studies and scanning electron microscope analysis supported the obtained infrared spectroscopy results. The solubility test (measurements of the weight loss in aqueous sodium phosphate solution was conducted for measuring the dissolution of both glassy and crystalline derivatives to find out the role of SrO. The corrosion behaviour of the glasses and glass-ceramics indicate the increase of weight loss with the increase of SrO content. Different suggested proposals were introduced to explain this abnormal behaviour.

  10. Dosimetric properties of germanium doped calcium borate glass subjected to 6 MV and 10 MV X-ray irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Tengku Kamarul Bahri, T.N.H., E-mail: tnhidayah2@gmail.com [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru (Malaysia); Wagiran, H.; Hussin, R.; Saeed, M.A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru (Malaysia); Hossain, I. [Department of Physics, College of Science and Arts, King Abdul Aziz University, 21911 Rabigh (Saudi Arabia); Ali, H. [Department of Radiotherapy and Oncology, Hospital Sultan Ismail, 81100 Johor Bahru (Malaysia)

    2014-10-01

    Highlights: •The TL properties of 29.9CaO–70B{sub 2}O{sub 3}: 0.1GeO{sub 2} glass has been investigated. •We exposed glass samples to 6 MV and 10 MV in a dose range of 0.5–4.0 Gy. •This glass has a potential material to be used for application in radiotherapy. -- Abstract: Germanium doped calcium borate glasses are investigated in term of thermoluminescence properties to seek their possibility to use as glass radiation dosimeter. The samples were exposed to 6 MV, and 10 MV photon beams in a dose range of 0.5–4.0 Gy. There is a single and broad thermoluminescence glow curve that exhibits its maximum intensity at about 300 °C. Linear dose response behavior has been found in this dose range for the both photon energies. Effective atomic number, TL sensitivity, and reproducibility have also been studied. It is found that the sensitivity of germanium doped sample at 6 MV is only 1.28% and it is superior to the sensitivity at 10 MV. The reproducibility of germanium doped sample is good with a percentage of relative error less than 10%. The results indicate that this glass has a potential to be used as a radiation dosimetry, especially for application in radiotherapy.

  11. Dosimetric properties of germanium doped calcium borate glass subjected to 6 MV and 10 MV X-ray irradiations

    International Nuclear Information System (INIS)

    Tengku Kamarul Bahri, T.N.H.; Wagiran, H.; Hussin, R.; Saeed, M.A.; Hossain, I.; Ali, H.

    2014-01-01

    Highlights: •The TL properties of 29.9CaO–70B 2 O 3 : 0.1GeO 2 glass has been investigated. •We exposed glass samples to 6 MV and 10 MV in a dose range of 0.5–4.0 Gy. •This glass has a potential material to be used for application in radiotherapy. -- Abstract: Germanium doped calcium borate glasses are investigated in term of thermoluminescence properties to seek their possibility to use as glass radiation dosimeter. The samples were exposed to 6 MV, and 10 MV photon beams in a dose range of 0.5–4.0 Gy. There is a single and broad thermoluminescence glow curve that exhibits its maximum intensity at about 300 °C. Linear dose response behavior has been found in this dose range for the both photon energies. Effective atomic number, TL sensitivity, and reproducibility have also been studied. It is found that the sensitivity of germanium doped sample at 6 MV is only 1.28% and it is superior to the sensitivity at 10 MV. The reproducibility of germanium doped sample is good with a percentage of relative error less than 10%. The results indicate that this glass has a potential to be used as a radiation dosimetry, especially for application in radiotherapy

  12. Studying effect of MoO{sub 3} on elastic and crystallization behavior of lithium diborate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Shaaban, KH.S.; Abd Elnaeim, A.M. [El-Azhar University, Physics Department, Faculty of Science, Assiut (Egypt); Abo-naf, S.M. [National Research Centre, Glass Research Department, Cairo (Egypt); Hassouna, M.E.M. [Beni-Suef University, Chemistry Department, Faculty of Science, Beni Suef (Egypt)

    2017-06-15

    The effect of MoO{sub 3} addition on the crystallization characteristics of 2Al{sub 2}O{sub 3}-23Li{sub 2}O-(75 - x) B{sub 2}O{sub 3} glass (where x MoO{sub 3} = 0, 10, 20, and 40 mol %) has been investigated. The compositional dependence of the glass transition (T{sub g}), and crystallization (T{sub c}) temperatures was determined by the differential thermal analysis (DTA). It was found that both the T{sub g} and T{sub c} decrease with increasing MoO{sub 3} content. The amorphous nature of the as-quenched glass and crystallinity of the produced glass-ceramics were confirmed by X-ray powder diffraction (XRD) analysis. Glass-ceramics embedded with diomignite (lithium diborate, Li{sub 2}B{sub 4}O{sub 7}) were produced from all investigated glasses by heat-treating the as-quenched glasses at the appropriate temperatures obtained from the DTA traces. Addition of MoO{sub 3} to the glass composition at 10% MoO{sub 3}, causes the formation of lithium molybdenum oxide (Li{sub 4}MoO{sub 5}) crystalline phase in addition to the diomignite phase. Increasing MoO{sub 3} content to 20% causes a phase transformation of lithium molybdenum oxide from the (Li{sub 4}MoO{sub 5}) to the (Li{sub 2}MoO{sub 4}) phase and the formation of another lithium borate (Li{sub 4}B{sub 2}O{sub 5}) phase in addition to the diomignite. Further increase of MoO{sub 3} content to 40% results in another phase transformation to the lithium aluminum molybdenum oxide [LiAl(MoO{sub 4}){sub 2}], and, in this case, the molybdenum content was excess enough to crystallize the molybdate (MoO{sub 3}) itself. Scanning electron microscopy (SEM) was used to characterize the morphology and microstructure of the formed solid solution phases. The values of the T{sub g} decrease with increasing the MoO{sub 3} content. The ultrasonic wave velocities and elastic moduli were determined using the pulse-echo method. Both velocities (v{sub L} and v{sub T}) were increased as the MoO{sub 3} content, this increase can be

  13. Ordered and disordered models of local structure around Ag cations in silver borate glasses based on x-ray absorptio n near-edge structure spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Šipr, Ondřej; Dalba, G.; Rocca, F.

    2004-01-01

    Roč. 69, - (2004), 134201/1-134201/16 ISSN 0163-1829 R&D Projects: GA ČR GA202/02/0841 Institutional research plan: CEZ:AV0Z1010914 Keywords : disordered systems * structural analysis * XANES * silver * borate glass es Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.075, year: 2004

  14. UV-visible, infrared and Raman spectroscopic and thermal studies of tungsten doped lead borate glasses and the effect of ionizing gamma irradiation

    International Nuclear Information System (INIS)

    El-Kheshen, Amany A.; El-Batal, Fatma H.; Marzouk, Samir Y.

    2008-01-01

    Ultraviolet-visible, infrared and Raman spectroscopy together with thermal properties were measured for undoped and WO 3 - doped (up to 10%) lead borate glasses. Also, the effect of gamma irradiation was followed by UV-visible measurements. The UV visible spectrum of the undoped glass reveals before irradiation intense ultraviolet bands due to the combined effects of trace iron impurities (Fe 3+ ) and Pb 2+ ions which remain unchanged with the addition of WO 3 . Infrared and Raman measurements show characteristic bands due to borate group and the possible sharing of lead-oxygen and tungsten-oxygen groups. The studied glasses show obvious resistance to gamma irradiation. The thermal and density data are correlated with the introduction of highly polarizable and heavy (W 6+ ) ions and to the change in structural arrangement with varying glass composition. (author)

  15. Cracking phenomena in lithium-di-silicate glass ceramics

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Lithium-di-silicate glass ceramic (Li2O, SiO2) with uniformly oriented crystals was placed on a. Vickers indentation with extrusion axis horizontally parallel to the base axis. The material was rotated through. 0°– 90° and at each angle a 20 N load was applied to ascertain the crack path. It was observed that the crack.

  16. Influence of CuO content on the structure of lithium fluoroborate glasses: Spectral and gamma irradiation studies.

    Science.gov (United States)

    Abdelghany, A M; ElBatal, H A; EzzElDin, F M

    2015-10-05

    Glasses of lithium fluoroborate of the composition LiF 15%-B2O3 85% with increasing CuO as added dopant were prepared and characterized by combined optical and FTIR spectroscopy before and after gamma irradiation. The optical spectrum of the undoped glass reveals strong UV absorption with two distinct peaks at about 235 and 310 nm and with no visible bands. This strong UV absorption is related to the presence of unavoidable trace iron impurity (Fe(3+)) within the materials used for the preparation of this glass. After irradiation, the spectrum of the undoped glass shows a decrease of the intensity of the UV bands together with the resolution of an induced visible broad band centered at about 520 nm. The CuO doped glasses reveal the same UV absorption beside a very broad visible band centered at 780 nm and this band shows extension and splitting to several component peaks with higher CuO contents. Upon gamma irradiation, the spectra of all CuO-doped glasses reveal pronounced decrease of their intensities. The response of irradiation on the studied glasses is correlated with suggested photochemical reactions together with some shielding effect of the copper ions. The observed visible band is related to the presence of copper as distorted octahedral Cu(2+) ions. Infrared absorption spectra of the prepared glasses show repetitive characteristic triangular and tetrahedral borate units similar to that published from alkali or alkaline earth oxides B2O3 glasses. A suggested formation of (BO3/2F) tetrahedral units is advanced through action of LiF on B2O3 and these suggested units showing the same position and number as BO4 tetrahedra. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Study on borate glass system containing with Bi2O3 and BaO for gamma-rays shielding materials: Comparison with PbO

    International Nuclear Information System (INIS)

    Kaewkhao, J.; Pokaipisit, A.; Limsuwan, P.

    2010-01-01

    In this work, the mass attenuation coefficients and shielding parameters of borate glass matrices containing with Bi 2 O 3 and BaO have been investigated at 662 keV, and compare with PbO in same glass structure. The theoretical values were calculated by WinXCom software and compare with experiential data. The results found that the mass attenuation coefficients were increased with increasing of Bi 2 O 3 , BaO and PbO concentration, due to increase photoelectric absorption of all glass samples. However, Compton scattering gives dominant contribution to the total mass attenuation coefficients for studied glass samples. Moreover the half value layers (HVL) of glass samples were also better than ordinary concretes and commercial window glass. These results reflecting that the Bi-based glass can use replace Pb in radiation shielding glass. In the case of Ba, may be can use at appropriate energy such as X-rays or lower.

  18. In vitro bioactivity behavior of modified multicomponent borate glasses containing dopants of Ag2O, CuO, CeO2 or V2O5

    Science.gov (United States)

    Marzouk, M. A.; ElBatal, F. H.; Ghoneim, N. A.

    2018-02-01

    Some multi-component borate glasses containing dopants of Ag2O, CuO, CeO2 or V2O5 were prepared. Multi-characterization techniques were carried out to investigate their bioactivity, corrosion weight loss after immersion in phosphate solution. Controlled thermal heat-treatment by two-step technique was done to convert the prepared glasses to their corresponding glass-ceramic derivatives. X-ray diffraction analysis was performed to identify the crystalline phases formed by thermal treatment. Infrared absorption of glasses and glass-ceramics reveal vibrational bands due to combined main triangular and tetrahedral borate groups in their specific wavenumbers besides some sharing of phosphate group. After immersion in the phosphate solution, two extra characteristic peaks are generated indicating the bioactivity of the studied glasses and glass-ceramics through the formation of calcium phosphate (hydroxyapatite). X-ray diffraction data indicate the formation of crystalline phases which are variable with the introduced dopants. The main crystalline phase identified is calcium borate together with some other phases some of which contain phosphate ions. These data indicate that the presence of CaO and P2O5 initiates phase separation and subsequent crystallization of the parent and doped glasses. Weight loss data indicate that glass-ceramics are obviously durable than the parent glasses. SEM micrographs of glass-ceramics before immersion show multiconstituent crystalline phases due to the basic chemical composition consisting of multicomponent mixed alkali and alkaline earth oxides beside P2O5 and with the main B2O3 constituent. After immersion, the crystalline phases are identified to be more distinct in different shapes because of the multi-composition involved.

  19. Ion-conducting lithium bis(oxalato)borate-based polymer electrolytes

    Czech Academy of Sciences Publication Activity Database

    Reiter, Jakub; Dominko, R.; Nádherná, Martina; Jakubec, Ivo

    2009-01-01

    Roč. 189, č. 1 (2009), s. 133-138 ISSN 0378-7753 R&D Projects: GA MŠk LC523; GA AV ČR KJB400320701 Institutional research plan: CEZ:AV0Z40320502 Keywords : polymer electrolyte * 2-ethoxyethyl methacrylate * lithium -ion battery Subject RIV: CG - Electrochemistry Impact factor: 3.792, year: 2009

  20. EPR of radiation defects in lithium-oxyfluoride glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fedotovs, A; Rogulis, U; Sarakovskis, A; Dimitrocenko, L, E-mail: andris-f@navigator.l [Institute of Solid State Physics, University of Latvia, Kengaraga st. 8, LV-1063, Riga (Latvia)

    2010-11-01

    We studied oxyfluoride composites based on lithium silicate glasses with yttrium fluorides and rare-earth dopants. The electron paramagnetic resonance (EPR) has been used to obtain information about radiation induced defects in these materials. Spectra have been measured before and after X-ray irradiation at room temperature and at liquid nitrogen temperature. Fluoride crystallites within samples were created by means of thermal treatment at specific temperatures. EPR spectra of radiation induced defects in oxyfluoride glass ceramics, in which crystallites have not been yet created, show no explicit hfs interaction of fluorine nuclei. However, in glass ceramics, which already contains fluoride crystallites, the hfs characteristic to fluorine nuclei appears in the EPR spectra. EPR hyperfine structure could be explained within a model of an F-type centre in YF{sub 3} crystalline phase.

  1. EPR of radiation defects in lithium-oxyfluoride glass ceramics

    Science.gov (United States)

    Fedotovs, A.; Rogulis, U.; Sarakovskis, A.; Dimitrocenko, L.

    2010-11-01

    We studied oxyfluoride composites based on lithium silicate glasses with yttrium fluorides and rare-earth dopants. The electron paramagnetic resonance (EPR) has been used to obtain information about radiation induced defects in these materials. Spectra have been measured before and after X-ray irradiation at room temperature and at liquid nitrogen temperature. Fluoride crystallites within samples were created by means of thermal treatment at specific temperatures. EPR spectra of radiation induced defects in oxyfluoride glass ceramics, in which crystallites have not been yet created, show no explicit hfs interaction of fluorine nuclei. However, in glass ceramics, which already contains fluoride crystallites, the hfs characteristic to fluorine nuclei appears in the EPR spectra. EPR hyperfine structure could be explained within a model of an F-type centre in YF3 crystalline phase.

  2. Structural and morphological studies lead borate glasses by melt quenching technique

    International Nuclear Information System (INIS)

    Jetruth Mary Alphonsa, K.; Sumathi, T.

    2013-01-01

    The studies of oxide glasses have gained attention due to their structural features. This type of glass has some remarkable features such as low melting temperature, impressive wide glass formation region, high resistance against devitrification and high refractive index. 60B 2 O 3 -(30-x) PbO-xK 2 O/Li 2 O glasses were prepared using the melt quenching technique because of its rapid glass forming ability. The amorphous nature of the prepared glass samples were confirmed by XRD (X-Ray diffraction technique) and SEM (Scanning Electron Microscopy). The quantitative analysis has been carried out in order to obtain more information about the structure of these glasses using FT-IR (Fourier transform infrared spectroscopy). (author)

  3. Lithium

    Science.gov (United States)

    Bradley, Dwight C.; Stillings, Lisa L.; Jaskula, Brian W.; Munk, LeeAnn; McCauley, Andrew D.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Lithium, the lightest of all metals, is used in air treatment, batteries, ceramics, glass, metallurgy, pharmaceuticals, and polymers. Rechargeable lithium-ion batteries are particularly important in efforts to reduce global warming because they make it possible to power cars and trucks from renewable sources of energy (for example, hydroelectric, solar, or wind) instead of by burning fossil fuels. Today, lithium is extracted from brines that are pumped from beneath arid sedimentary basins and extracted from granitic pegmatite ores. The leading producer of lithium from brine is Chile, and the leading producer of lithium from pegmatites is Australia. Other potential sources of lithium include clays, geothermal brines, oilfield brines, and zeolites. Worldwide resources of lithium are estimated to be more than 39 million metric tons, which is enough to meet projected demand to the year 2100. The United States is not a major producer at present but has significant lithium resources.

  4. AC Conductivity Studies of Lithium Based Phospho Vanadate Glasses

    International Nuclear Information System (INIS)

    Nagendra, K.; Babu, G. Satish; Gowda, Veeranna; Reddy, C. Narayana

    2011-01-01

    Glasses in the system xLi 2 SO 4 -20Li 2 O-(80-x) [80P 2 O 5 -20V 2 O 5 ](5≥x≥20 mol%) has been prepared by melt quenching method. Dc and ac conductivity has been studied over a wide range of frequency (10 Hz to 10 MHz) and temperature (298 K-523 K). The dc conductivity found to increase with increase of Li 2 SO 4 concentration. The ac conductivities have been fitted to the Almond-West type single power law equation σ(ω) = σ(0)+Aω s where 's' is the power law exponent. The ac conductivity found to increase with increase of Li 2 SO 4 concentration. An attempt is made to elucidate the enhancement of lithium ion conduction in phosphor-vanadate glasses by considering the expansion of network structure.

  5. Role of MnO in manganese–borate binary glass systems

    Indian Academy of Sciences (India)

    Structural and thermal properties of x MnO−( 100 − x )B 2 O 3 (where x = 40 , 50 and 60 mol%) glass samples have been investigated with the employment of various techniques. Fourier transform infrared spectroscopy results revealed the influence of MnO on glass matrix. Decrease of B–O bond-related band intensities has ...

  6. Absolute measurement of the responses of small lithium glass scintillators to gamma radiation

    International Nuclear Information System (INIS)

    Dalton, A.W.

    1987-04-01

    The absolute scintillation efficiency and intrinsic resolution of lithium glass scintillators for electron excitation have been determined over a range of electron energies, lithium concentrations and lithium enrichments. Measurements of these response characteristics form part of a study on the possible use of such glasses for the determination of tritium breeding in fusion reactor blanket experiments. The measurements were undertaken to establish a basis for extracting the information relating to tritium production reactions from the background signals induced within the glass scintillators by the neutron/gamma fields of a fusion reactor blanket. Criteria for the selection of glasses most suitable for tritium breeding measurements are discussed in tems of their observed responses

  7. Violet and visible up-conversion emission in Yb{sup 3+}-Ho{sup 3+} co-doped germanium-borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yanmin, E-mail: mihuyym@163.co [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Zhang Meixin [Forensic Science Lab, Hebei University, Baoding 071002 (China); Yang Zhiping [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Fu Zuoling [Key Laboratory of Coherent Light, Atomic and Molecular Spectroscopy, College of physics, Jilin University, Ministry of Education, Changchun 130023 (China)

    2010-10-15

    The up-conversion emission properties of Yb{sup 3+}-Ho{sup 3+} co-doped germanium-borate glasses have been investigated with 980 nm excitation. The violet, blue, green and red emission bands at about 350, 485, 544 and 653 nm can be identified, respectively. Experimental results indicated that the relative intensity ratios of the peaks I{sub Red}/I{sub Green} increased with increasing B{sub 2}O{sub 3} concentration, which led to changing color of up-conversion emission from green at x=0 to yellow at x=40, to red at x=60. The violet emission at 350 nm was first reported in germanium-borate glass host and up-conversion mechanisms of the emissions were discussed. The Yb{sup 3+}-Ho{sup 3+} co-doped germanium-borate glasses could be an alternative for the generation of violet and primary colors for application in solid-state displays.

  8. The effect of Li2O and LiF on structural properties of cobalt doped borate glasses

    Directory of Open Access Journals (Sweden)

    A.M. Abdelghany

    2017-10-01

    Full Text Available Two glassy (LiF–B2O3 and (Li2O–B2O3 systems containing different content of CoO dopants (0.05, 0.1, 0.15, 0.2 wt% were prepared. UV/Vis optical absorption of base glasses reveals a strong UV absorption bands attributed to unavoidable contaminated trace iron impurities. CoO-doped glasses show extra three visible bands due to both octahedral and tetrahedral Co2+ ions related to the little variation between energies of ligand field stabilization between the two coordination states. Fluoride containing glasses show limited variations in the spectral properties due to the different ligand strength of the anions (F− and O2−. FTIR spectra display characteristic modes of vibrations due to triangular and tetrahedral borate groups. It is assumed that LiF acts as Li2O in promoting the formation of tetrahedral (BO3F units which possess the same wavenumber position for vibrations of (BO4 units in the range of 800–1200 cm−1. CoO causes no distinct variations in number or position of characteristic IR vibrational bands due to their low dopant level (0.05–0.2%. A new suggested trial has been utilized to calculate the percent of four coordinated borons from both optical and FTIR spectra to give more insight on the role of CoO as dopant on these spectral properties and on the calculated parameters.

  9. Optical and Physical Investigations of Lanthanum Bismuth Borate glasses doped with Ho2O3

    Science.gov (United States)

    Ramesh, P.; Jagannath, G.; Eraiah, B.; Kokila, M. K.

    2018-02-01

    Holmium doped 10La2O3-15Bi2O3-(75-x) B2O3 (Ho3+: LBB) glasses have been prepared by melt quench technique and the impact of holmium ions concentration on optical and physical properties of present glasses have been examined. Ho3+ dependent density, molar volume, refractive index, rare earth ion concentration, polaron radius, inter ionic distance, field strength and energy band gap are calculated and tabulated. Amorphous nature of the all glasses has been confirmed by XRD patterns. The room temperature (RT) Uv-Vis absorption spectrum doped with 1 mol% of Ho2O3 exhibit eight prominent bands centred at 895, 641, 537, 486, 472, 467, 451 and 416 due to transition between ground state to various excited states. The results show that, the density is increases and molar volume of the glasses is decreases with an increase in Ho2O3 concentration and consequently generate more non-bridging oxygen (NBOs) in the glass matrix. The Urbach energy is increases with holmium concentration which exemplifies the degree of disorder present in the LBB glasses. The considerable increase in field strength observed in present glasses is attributed to occurrence of strong bridge between Ho3+ and B- ions and this strong bridge is possibly due to the displacement between Ho3+ and oxygen atoms which are generated from the conversion BO3-BO4 units.

  10. Physical, structural and optical characterizations of borate modified bismuth-silicate-tellurite glasses

    Science.gov (United States)

    Berwal, Neelam; Kundu, R. S.; Nanda, Kirti; Punia, R.; Kishore, N.

    2015-10-01

    Quaternary bismuthate glasses with compositions xB2O3-(80 - x) Bi2O3-15SiO2-5TeO2 have been prepared by melt-quench technique. X-ray diffraction studies were performed to ascertain the amorphous nature of samples. The density, molar volume and crystalline volume decrease with increase in B2O3 content whereas the glass transition temperature shows the reverse trend. The Raman and FTIR spectra of the studied glasses indicate that B2O3 has been found to exist in the form of BO3 trigonal and BO4 tetrahedral structural units and vibrations corresponding to these structural units increase with increase in B2O3 content. SiO2 is present in the form of SiO4 tetrahedral structural units and TeO2 in the form of TeO3 structural units. Bismuth plays the role of network modifier [BiO6 octahedra] as well as network former [BiO3 pyramids] for all the glass compositions. The optical band gap energy has been calculated from the fitting of both Mott and Davis's model and Hydrogenic excitonic model with the experimentally observed absorption spectra. A good fitting of experimental data with HEM indicates the excitonic formation in the studies glass system. The values of optical band gap energy show nonlinear behavior due to the structural changes that take place in the present glass samples. The Urbach energy calculated using Urbach empirical formula for studied glass samples suggest the possibility of reduction in defect concentrations. The metallization criterion of the presently studied samples suggests that the prepared glasses may be potential candidates for nonlinear optical applications.

  11. Lithium Organic Borate Salt and Sulfite Functional Electrolytes%有机硼酸锂盐及亚硫酸酯类功能电解质材料

    Institute of Scientific and Technical Information of China (English)

    陈人杰; 何舟影; 吴锋

    2011-01-01

    随着锂离子电池对高安全性、高容量、高功率等性能的技术需求,新型功能电解质材料的研究开发成为锂离子电池新材料领域研发工作的重点.本文对面向锂离子电池应用的功能电解质材料锂盐和添加剂的最新研究进展作了较为全面的阐述,其中重点介绍了本研究团队近年来在面向改善锂离子电池安全性能、提高其温度适应性、增强电解质与电极材料相容特性等方面研究开发的系列基于双草酸硼酸锂[LiBOB]及二氟草酸硼酸锂[LiODFB]等有机硼酸锂盐和亚硫酸酯类等添加剂的新型功能电解质材料,其表现出高的热稳定性和良好的电化学性能.而且,其中的有机硼酸锂盐和亚硫酸酯还可以作为SEI成膜材料进行应用,其在石墨电极表面可形成稳定的SEI膜,有利于改善电池的循环寿命、自放电、库仑效率和不可逆容量衰减.最后,本文探讨了当前存在的问题及未来的研究方向,并对其应用前景进行了展望.%With the rapid development of lithium ion batteries with higher energy density, higher power density and high security, the research of new functional electrolytes has attracted considerable attention in novel materials field for lithium ion batteries.In this paper, the recent research advances of key technologies on the application of lithium salts and additive functional electrolytes in lithium ion batteries are reviewed, especially on the results of our research team focusing on new functional electrolytes based on lithium organic borate salt, such as lithium bis(oxalato) borate [LiBOB]and lithium oxalyldifluoroborate [LiODFB], and sulfite additives for the purpose of improving security, temperature adaptability and the compatibility between electrolytes and electrodes of lithium ion batteries.These electrolytes exhibit high thermal stability and good electrochemical properties.Moreover, lithium organic borate salt and sulfite have been

  12. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    International Nuclear Information System (INIS)

    Wurth, R.; Pascual, M.J.; Mather, G.C.; Pablos-Martín, A.; Muñoz, F.; Durán, A.; Cuello, G.J.; Rüssel, C.

    2012-01-01

    A base glass of composition 3.5 Li 2 O∙0.15 Na 2 O∙0.2 K 2 O∙1.15 MgO∙0.8 BaO∙1.5 ZnO∙20 Al 2 O 3 ∙67.2 SiO 2 ∙2.6 TiO 2 ∙1.7 ZrO 2 ∙1.2 As 2 O 3 (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi 2 O 6 with nanoscaled crystals forms at 750 °C. Quantitative Rietveld refinement of samples annealed at 750 °C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, β-eucryptite-like structure (2 × 2 × 2 cell) with Li ordered in the structural channels. The Avrami parameter (n ∼ 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 ± 20 kJ mol −1 . - Highlights: ► Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. ► Combined X-ray and neutron diffraction structural refinement. ► β-Eucryptite-like structure (2 × 2×2 cell) with Li ordered in the structural channels. ► 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. ► Usage and validation of an alternative approach to calculate the Avrami parameter.

  13. Preparation of hollow hydroxyapatite microspheres by the conversion of borate glass at near room temperature

    International Nuclear Information System (INIS)

    Yao, Aihua; Ai, Fanrong; Liu, Xin; Wang, Deping; Huang, Wenhai; Xu, Wei

    2010-01-01

    Hollow hydroxyapatite microspheres, consisting of a hollow core and a porous shell, were prepared by converting Li 2 O-CaO-B 2 O 3 glass microspheres in dilute phosphate solution at 37 o C. The results confirmed that Li 2 O-CaO-B 2 O 3 glass was transformed to hydroxyapatite without changing the external shape and dimension of the original glass object. Scanning electron microscopy images showed the shell wall of the microsphere was built from hydroxyapatite particles, and these particles spontaneously align with one another to form a porous sphere with an interior cavity. Increase in phosphate concentration resulted in an increase in the reaction rate, which in turn had an effect on shell wall structure of the hollow hydroxyapatite microsphere. For the Li 2 O-CaO-B 2 O 3 glass microspheres reacted in low-concentration K 2 HPO 4 solution, lower reaction rate and a multilayered microstructure were observed. On the other hand, the glass microspheres reacted in higher phosphate solution converted more rapidly and produced a single hydroxyapatite layer. Furthermore, the mechanism of forming hydroxyapatite hollow microsphere was described.

  14. Gamma-ray shielding effect of Gd3+ doped lead barium borate glasses

    Science.gov (United States)

    Kummathi, Harshitha; Naveen Kumar, P.; Vedavathi T., C.; Abhiram, J.; Rajaramakrishna, R.

    2018-05-01

    The glasses of the batch xPbO: 10BaO: (90-x)B2O3: 0.2Gd2O3 (x = 40,45,50 mol %) were prepared by melt-quench technique. The work emphasizes on gamma ray shielding effect on doped lead glasses. The role of Boron is significant as it acts as better neutron attenuator as compared with any other materials, as the thermal neutron cross-sections are high for Gadolinium, 0.2 mol% is chosen as the optimum concentration for this matrix, as higher the concentration may lead to further increase as it produces secondary γ rays due to inelastic neutron scattering. Shielding effects were studied using Sodium Iodide (NaI) - Scintillation Gamma ray spectrometer. It was found that at higher concentration of lead oxide (PbO) in the matrix, higher the attenuation which can be co-related with density. Infra-red (I.R.) spectra reveals that the conversion of Lose triangles to tight tetrahedral structure results in enhancement of shielding properties. The Differential Scanning Calorimeter (D.S.C.) study also reveals that the increase in glass forming range increases the stability which in-turn results in inter-conversion of BO3 to BO4 units such that the density of glass increases with increase in PbO content, resulting in much stable and efficient gamma ray shielding glasses.

  15. Optical and EPR studies of barium alumino borate glasses containing Cu2+ ions

    Science.gov (United States)

    Ahmed, Mohamad Raheem; Phani, A. V. Lalitha; Narsimha Chary, M.; Shareefuddin, Md.

    2018-05-01

    Glass containing Cu2+ ions in (30-x) BaO-xAl2O3-69.5B2O3-0.5CuO (0 ≤ x ≤ 15 mol %) were prepared by the conventional melt quenching technique. Peak free X-ray diffractograms confirmed the amorphous nature of the glass samples. Spectroscopic studies such as optical absorption, EPR were studied to understand the effect of modifier oxide and CuO dopant. From EPR spectra the spin-Hamiltonian parameter were evaluated. The ground state of Cu2+ is dx2-y2 (2B1g state) and the site symmetry around Cu2+ is tetragonally distorted octahedral. A broad optical absorption band was observed for all the glasses containing Cu2+ ions corresponding to the 2B1g → 2B2g transition. The optical band gap and Urbach energy values are calculated.

  16. Physical and optical property studies on Bi3+ ion containing vanadium sodium borate glasses

    Science.gov (United States)

    Venkatesh, G.; Meera, B. N.; Eraiah, B.

    2018-04-01

    xBi2O3-(15-x)V2O5-45B2O3-40Na2O glasses have been prepared using melt quenching technique. Amorphous nature of the glasses is verified using powder XRD. Densities and molar volume have been determined as a function of bismuth content and interestingly both increases as a function of bismuth content. Further oxygen packing density (OPD) is found to decrease with bismuth content. The increase in the molar volume as a function of bismuth content may be due to structural changes in the glass network. The optical properties performed from the optical absorption spectra were recorded in the wavelength range 200-1100 nm using UV-Visible spectrophotometer. The theoretical optical basicity of the oxides have also been estimated. The calculated energy band gap values increases with increase in Bi2O3 content.

  17. Performance of Large Neutron Detectors Containing Lithium-Gadolinium-Borate Scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Slaughter, David M.; Stuart, Cory R.; Klaass, R. Fred; Merrill, David B. [MSI/Photogenics Division, Orem, Utah (United States)

    2015-07-01

    This paper describes the development and testing of a neutron counter, spectrometer, and dosimeter that is compact, efficient, and accurate. A self-contained neutron detection instrument has wide applications in health physics, scientific research, and programs to detect, monitor, and control strategic nuclear materials (SNM). The 1.3 liter detector head for this instrument is a composite detector with an organic scintillator containing uniformly distributed {sup 6}Li{sub 6}{sup nat}Gd{sup 10}B{sub 3}O{sub 9}:Ce (LGB:Ce) microcrystals. The plastic scintillator acts to slow impinging neutrons and emits light proportional to the energy lost by the neutrons as they moderate in the detector body. Moderating neutrons that have slowed sufficiently capture in one of the Lithium-6, Boron-10, or Gadolinium-157 atoms in the LGB:Ce scintillator, which then releases the capture energy in a characteristic cerium emission pulse. The measured captured pulses indicate the presence of neutrons. When a scintillating fluor is present in the plastic, the light pulse resulting from the neutron moderating in the plastic is paired with the LGB:Ce capture pulse to identify the energy of the neutron. About 2% of the impinging neutrons lose all of their energy in a single collision with the detector. There is a linear relationship between the pulse areas of this group of neutrons and energy. The other 98% of neutrons have a wide range of collision histories within the detector body. When these neutrons are 'binned' into energy groups, each group contains a distribution of pulse areas. This data was used to assist in the unfolding of the neutron spectra. The unfolded spectra were then validated with known spectra, at both neutron emitting isotopes and fission/accelerator facilities. Having validated spectra, the dose equivalent and dose rate are determined by applying standard, regulatory damage coefficients to the measured neutron counts for each energy bin of the spectra. Testing

  18. Structure and transport investigations on lithium-iron-phosphate glasses

    International Nuclear Information System (INIS)

    Banday, Azeem; Sharma, Monika; Murugavel, Sevi

    2016-01-01

    Cathode materials for Lithium Ion Batteries (LIB’s) are being constantly studied and reviewed especially in the past few decades. LiFePO_4 (LFP) is one of the most potential candidates in the pedigree of cathode materials and has been under extensive study ever since. In this work, we report the synthesis of amorphous analogs of crystallite LFP by conventional melt quenching method. Thermal study by using differential scanning calorimetry (DSC) was used to determine the glass transition T_g and crystallization T_c temperatures on the obtained glass sample Fourier transform infrared (FTIR) absorption spectroscopy is being used to investigate the structural properties of the glass sample. The intrinsic electrical conductivity measurements were done using broad-band impedance spectroscopy with wide different temperature ranges. The conduction mechanism is described by non-adiabatic small polaron hopping between nearest neighbors. Based on the obtained results, we suggest that the glassy LFP is more suitable cathode material as compared to its crystalline counterpart.

  19. Role of MnO in manganese–borate binary glass systems: a study on ...

    Indian Academy of Sciences (India)

    2017-08-30

    Aug 30, 2017 ... for use in sensors and glass fibres [2,3]. Introduction of mag- .... X-ray photoelectron spectroscopy analysis (XPS) was car- ried out with X-ray ... were analysed with Casa-XPS software using a Shirley back- ground subtraction ...

  20. Barium and calcium borate glasses as shielding materials for x rays and gamma rays

    DEFF Research Database (Denmark)

    Singh, H.; Singh, K.; Sharma, G.

    2003-01-01

    Values of the gamma-ray, mass attenuation coefficient and the effective atomic number have been determined experimentally for xBaO.(1-x) B2O3 (x=0.24, 0.30, 0.34,0.40 and 0.44) and xCaO. (I-x)B2O3 (x=0.30 and 0.40) glasses at photon energies 356, 511, 662, 1173, and 1332 keV It is pointed out tha...... that these glasses are potential radiation shielding materials. The specific volume of the glasses has been derived from density measurements and studied as a function of composition.......Values of the gamma-ray, mass attenuation coefficient and the effective atomic number have been determined experimentally for xBaO.(1-x) B2O3 (x=0.24, 0.30, 0.34,0.40 and 0.44) and xCaO. (I-x)B2O3 (x=0.30 and 0.40) glasses at photon energies 356, 511, 662, 1173, and 1332 keV It is pointed out...

  1. The role of halides on a chromium ligand field in lead borate glasses

    Science.gov (United States)

    Sekhar, K. Chandra; Srinivas, B.; Narsimlu, N.; Narasimha Chary, M.; Shareefuddin, Md

    2017-10-01

    Glasses with a composition of PbX-PbO-B2O3 (X  =  F2, Cl2 and Br2) containing Cr3+ ions were prepared by a melt quenching technique and investigated by using x-ray diffraction (XRD), optical absorption and electron paramagnetic resonance (EPR) studies. X-ray diffractograms revealed the amorphous nature of the glasses. The density and molar volume were determined. Density values increased for the PFPBCR glass system and decreased for the PCPBCR and PBPBCR glass systems with the composition. Optical absorption spectra were recorded at room temperature (RT) to evaluate the optical band gap E opt and Urbach energies. All the spectra showed characteristic peaks at around 450 nm, 600 nm and 690 nm, and they are assigned to 4 A 2g  →  4 T 1g, 4 A 2g  →  4 T 2g, 4 A 2g  →  2 E transitions respectively. From the optical absorption spectral data, the crystal field (D q ) and Racah parameters (B and C) have been evaluated. Variations in optical band gaps were explained using the electro negativity of halide ions. Electron paramagnetic resonance (EPR) studies were carried out by introducing Cr3+ as the spin probe. The EPR spectra of all the glass samples were recorded at X-band frequencies. The EPR spectra exhibit two resonance signals with effective g values at g  ≈  4.82 and g  ≈  1.99 and are attributed to isolated Cr3+ ions and exchange coupled Cr3+ pairs respectively. The number of spins along with susceptibility are also calculated from the EPR spectra.

  2. Luminescence properties of erbium doped sodium barium borate glass with silver nanoparticles

    Science.gov (United States)

    Rajeshree Patwari, D.; Eraiah, B.

    2018-02-01

    Alteration in the absorption features of rare earth (RE) doped glasses with silver nanoparticles is ever-challenging in photonics. Erbium (Er3+) doped glasses with composition (60-x-y)B2O3-30Na2CO3-10BaO-xEr2O3-yAgCl where (x=0.5, 1.0 and y=1.0 mol %) are synthesized using melt-quenching method. The density is determined by Archimedes principle and molar volumes are calculated. Glass samples were characterized by XRD and UV-Visible spectroscopy. UV-Visible spectra shows eleven prominent absorption peaks centred around 366, 378, 408, 442, 452, 489, 521, 547, 652, 800 and 977 nm equivalent to the rare earth (Er3+) ion transitions. The sample without rare earth shows no peaks which specifies that rare earth ion plays a spirited role in the glass matrix. The glass samples with silver and without rare earth ion shows plasmon peak on heat treatment. The energy band gap values calculated for direct and indirect transitions are in the range of 3.126-3.440eV and 2.58-3.177eV respectively. The refractive indices and Urbach energies are also determined. Photoluminescence spectra are recorded and studied for excitation of the most intense peaks of wavelengths 378 and 521nm. The luminescence of erbium ion is enhanced by the presence of silver when the concentration of rare earth ion is less than that of silver.

  3. Positron annihilation in some barium borate glasses containing transition metal oxides

    International Nuclear Information System (INIS)

    Usmar, S.G.; Rawson, H.; West, R.N.

    1982-01-01

    Results of positron lifetime and angular correlation measurements for the glass series xMsub(s)Osub(r):(1-x)(0.4BaO:0.6B 2 O 3 ) are presented (Msub(s)Osub(r) equivalent to V 2 O 5 ;Fe 2 O 3 and CuO). All glasses exhibit two or three component lifetime spectra, tau 1 approximately 200 ps; tau 2 approximately 300-400 ps and tau 3 approximately 780 ps. tau 1 is attributed to a mixture of pPs and bulk state annihilation, tau 2 to a trapped or bound state and tau 3 to oPs pick-off. Supporting evidence for these assignments is found in the angular correlation results. (Auth.)

  4. Identification of ε-Fe{sub 2}O{sub 3} nano-phase in borate glasses doped with Fe and Gd

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, O.S.; Ivantsov, R.D. [L.V. Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnoyarsk (Russian Federation); Edelman, I.S., E-mail: ise@iph.krasn.ru [L.V. Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnoyarsk (Russian Federation); Petrakovskaja, E.A. [L.V. Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnoyarsk (Russian Federation); Velikanov, D.A. [L.V. Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnoyarsk (Russian Federation); Siberian Federal University, 660036 Krasnoyarsk (Russian Federation); Zubavichus, Y.V. [NRC “Kurchatov Institute”, 123182 Moscow (Russian Federation); Zaikovskii, V.I. [Boreskov Institute of Catalysis, Siberian Branch of RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Stepanov, S.A. [Vavilov State Optical Institute, All-Russia Research Center, 192371 Petersburg (Russian Federation)

    2016-03-01

    A new type of magnetic nanoparticles was revealed in borate glasses co-doped with low contents of iron and gadolinium. Structure and magnetic properties of the particles differ essentially from that of the α-Fe{sub 2}O{sub 3}, γ-Fe{sub 2}O{sub 3}, or Fe{sub 3}O{sub 4} nanoparticles which were detected earlier in similar glass matrices. Transmission electron microscopy including STEM-HAADF and EDX, synchrotron radiation-based XRD, static magnetic measurements, magnetic circular dichroism, and electron magnetic resonance studies allow referring the nanoparticles to the iron oxide phase-ε-Fe{sub 2}O{sub 3}. Analysis of the data set has shown that it is Gd atoms that govern the process of nanoparticles’ nucleation and its incorporation into the particles in different proportions can be used to adjust their magnetic and magneto-optical characteristics. - Highlights: • Alumina-potassium-borate glasses co-doped with Fe and Gd are studied. • Magnetic nanoparticles with structure close to ε-Fe{sub 2}O{sub 3} are shown to arise in glasses • Magnetic hysteresis loops and EMR evidence on the ferromagnetic and paramagnetic nano-phases coexistence. • Magnetic circular dichroism for ε-Fe{sub 2}O{sub 3} is studied for the first time.

  5. Effect of cement kiln dust and gamma irradiation on the ultrasonic parameters of HMO borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Abd elfadeel, G. [Physics Department, Faculty of Science, Al-Azhar University, Assiut 71524 (Egypt); Saddeek, Yasser B., E-mail: ysaddeek@gmail.com [Physics Department, Faculty of Science, Al-Azhar University, Assiut 71524 (Egypt); Mohamed, Gehan Y. [Experimental Nuclear Physics Department, Nuclear Research Center, Atomic Energy Authority, Post Office No. 13759, Cairo (Egypt); Mostafa, A.M.A. [Physics Department, Faculty of Science, Al-Azhar University, Assiut 71524 (Egypt); Shokry Hassan, H. [Advanced Technology and New Materials Research Institute, City of Scientific Research and Technology Applications, New Borg El-Arab City, Alexandria 21934 (Egypt)

    2017-03-01

    Glass samples with the chemical formula x CKD—(100 − x) (5Na{sub 2}O–65 B{sub 2}O{sub 3}–9 Bi{sub 2}O{sub 3}–21PbO), (0 ⩽ x ⩽ 32 mol%) were prepared. The density and the ultrasonic estimations of the investigated glasses were analyzed at room temperature before and after the impact of two dosages of gamma irradiation to study the effect of both CKD and gamma radiation. It was found that the density, and the ultrasonic parameters are sensitive to the variety of the content of CKD and the effect of γ-radiation. Replacement of oxides with higher atomic weights such as Bi{sub 2}O{sub 3} and PbO by CKD decreases the density. Analysis of the behavior of the ultrasonic parameters demonstrates that creation of CaO{sub 6} and SiO{sub 4} on one hand and an alternate transformation between BO{sub 4} and BO{sub 3} structural units, on the other hand, affect the increase of the ultrasonic velocities and the elastic moduli. Moreover, the density and the ultrasonic parameters decrease somewhat with the increase of the doses of γ-irradiation. The variations of the previous physical parameters can be referred to the creation of radiation imperfections, which occupied the voids inside the glass structure.

  6. Effect of cement kiln dust and gamma irradiation on the ultrasonic parameters of HMO borate glasses

    Science.gov (United States)

    Abd elfadeel, G.; Saddeek, Yasser B.; Mohamed, Gehan Y.; Mostafa, A. M. A.; Shokry Hassan, H.

    2017-03-01

    Glass samples with the chemical formula x CKD-(100 - x) (5Na2O-65 B2O3-9 Bi2O3-21PbO), (0 ⩽ x ⩽ 32 mol%) were prepared. The density and the ultrasonic estimations of the investigated glasses were analyzed at room temperature before and after the impact of two dosages of gamma irradiation to study the effect of both CKD and gamma radiation. It was found that the density, and the ultrasonic parameters are sensitive to the variety of the content of CKD and the effect of γ-radiation. Replacement of oxides with higher atomic weights such as Bi2O3 and PbO by CKD decreases the density. Analysis of the behavior of the ultrasonic parameters demonstrates that creation of CaO6 and SiO4 on one hand and an alternate transformation between BO4 and BO3 structural units, on the other hand, affect the increase of the ultrasonic velocities and the elastic moduli. Moreover, the density and the ultrasonic parameters decrease somewhat with the increase of the doses of γ-irradiation. The variations of the previous physical parameters can be referred to the creation of radiation imperfections, which occupied the voids inside the glass structure.

  7. Structural properties of alkaline sodium lead fluoride borate glasses incorporated with Praseodymium ion

    Science.gov (United States)

    Lenkennavar, Susheela K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-05-01

    The effect of different alkaline and Pr ions on the density and structure of Na2O-PbO-MO-B2O3 (M represents Ba/Ca/Sr) has been investigated using X-ray diffraction (XRD), infrared spectrophotometer (FTIR). The amorphous phase has been identified based on X-ray diffraction analysis. The Praseodymium oxide plays the role as a glass-modifier and influences on BO3↔BO4 conversion. The same effect is also observed in density and molar volume variation due to non bridging oxygen's (NBO) created when BO3 units are converted.

  8. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Wurth, R. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany); Pascual, M.J., E-mail: mpascual@icv.csic.es [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Mather, G.C.; Pablos-Martin, A.; Munoz, F.; Duran, A. [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Cuello, G.J. [Institut Laue-Langevin, Boite Postale 156, 38042 Grenoble Cedex 9 (France); Ruessel, C. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany)

    2012-06-15

    A base glass of composition 3.5 Li{sub 2}O Bullet-Operator 0.15 Na{sub 2}O Bullet-Operator 0.2 K{sub 2}O Bullet-Operator 1.15 MgO Bullet-Operator 0.8 BaO Bullet-Operator 1.5 ZnO Bullet-Operator 20 Al{sub 2}O{sub 3} Bullet-Operator 67.2 SiO{sub 2} Bullet-Operator 2.6 TiO{sub 2} Bullet-Operator 1.7 ZrO{sub 2} Bullet-Operator 1.2 As{sub 2}O{sub 3} (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi{sub 2}O{sub 6} with nanoscaled crystals forms at 750 Degree-Sign C. Quantitative Rietveld refinement of samples annealed at 750 Degree-Sign C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, {beta}-eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. The Avrami parameter (n {approx} 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 {+-} 20 kJ mol{sup -1}. - Highlights: Black-Right-Pointing-Pointer Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. Black-Right-Pointing-Pointer Combined X-ray and neutron diffraction structural refinement. Black-Right-Pointing-Pointer {beta}-Eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. Black-Right-Pointing-Pointer 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. Black-Right-Pointing-Pointer Usage and validation of an alternative approach to calculate the Avrami parameter.

  9. V sub 2 O sub 5 -based glasses as cathodes for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Levy, M; Duclot, M J; Rousseau, F [British Columbia Univ., Vancouver (Canada)

    1989-05-01

    The electronic conductivities of glasses in the TeO2-V2O5 and TeO2-V2O5-MoO3 systems have been determined in the 20-200 C temperature range to give simple Arrhenius relationships. Chemical and electrochemical lithium intercalations have been performed, showing that V2O5-based glasses are suitable positive electrode materials for lithium batteries. 20 refs.

  10. Determination of major, minor and trace elements in rock samples by laser ablation inductively coupled plasma mass spectrometry: Progress in the utilization of borate glasses as targets

    International Nuclear Information System (INIS)

    Leite, Tacito Dantas F.; Escalfoni, Rainerio; Fonseca, Teresa Cristina O. da; Miekeley, Norbert

    2011-01-01

    The present work is a continuation of a research study performed at our laboratory aiming at the multielement analysis of rock samples (basalts and shale) by inductively coupled plasma mass spectrometry in combination with laser ablation using borate glasses as analytical targets. Argon, nitrogen-argon mixtures and helium were evaluated as cell gases, the latter confirming its better performance. Different operational parameters of the laser, such as gas flow, energy, focus, scanning speed and sampling frequency were optimized. External calibration was made with standards prepared by fusion of geological reference materials (basalts 688 and BCR-2, obsidian SRM 278, and shale SGR-1) of different mass fractions in the meta-tetra borate matrix. Coefficients of determination (R 2 ) were > 0.99 for 30 elements from o total of 40 determined. Method validation was then performed using additional certified reference materials (BHVO-2, BIR-1, SCo-1) produced as borate targets in a similar way. Accuracies were better than 10% for most of the elements studied and analytical precisions, calculated from the residual standard deviations of calibration curves were, typically, between 6% and 10%. Additionally, the semiquantitative TotalQuant (registered) technique was applied, which gave, within the expected uncertainty for this calibration technique, concordant results when compared to the quantitative external calibration procedure. Both methods were then used for the analysis of marine shale samples, which are of great geological interest in petroleum prospecting.

  11. The influence of CdSe and ZnSe nanoparticles on the optical properties of Sm"3"+ ions in lead borate glasses

    International Nuclear Information System (INIS)

    Mallur, Saisudha B.; Heidorn, William D.; Fatokun, Stephen O.; Joshi, Krishna D.; Bista, Sandip S.; Babu, Panakkattu K.

    2017-01-01

    The effect of glass composition and the presence of CdSe/ZnSe nanoparticles (NPs) on the optical absorption and fluorescence of Sm-doped lead borate glasses are studied. Three sets of glass samples xPbO:(99.5-x) B_2O_3:0.5Sm_2O_3, x = 29.5–69.5 mol%, xPbO:(96.5-x) B_2O_3:0.5Sm_2O_3: 3CdSe/ZnSe, x = 36.5, and 56.5 mol% are prepared. NPs are grown by annealing these glasses just below the glass transition temperature. Average size of both types of NPs increases with annealing time; however, CdSe NPs grew to a larger size range (2 to 20 nm) compared to ZnSe NPs (1 to 16 nm). We analyzed the hypersensitive transition, intensity parameters, radiative transition probability, stimulated emission cross section (σ_p), and the area ratio of the electric dipole/magnetic dipole transitions of Sm"3"+. The intensity parameters show a minimum at 11 h annealing for 36.5 mol% and a maximum for the same annealing duration in 56.5 mol% PbO containing CdSe NPs. The σ_p for 56.5 mol% of PbO with CdSe NPs is found to be a maximum when the average NP size is around 14 nm. ZnSe NPs containing glasses also show significant changes in σ_p when the average particle size is ~16 nm, for 36.5 mol% PbO. Our results suggest that the optical properties of Sm"3"+ in lead borate glasses are sensitive to its electronic environment which can be modified by varying the base glass composition and/or incorporating large NPs of CdSe/ZnSe. The large σ_p values that we observe for some of the glass compositions make them attractive materials for photonic devices and photovoltaic applications.

  12. The influence of CdSe and ZnSe nanoparticles on the optical properties of Sm{sup 3+} ions in lead borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mallur, Saisudha B.; Heidorn, William D.; Fatokun, Stephen O.; Joshi, Krishna D.; Bista, Sandip S.; Babu, Panakkattu K., E-mail: PK-Babu@wiu.edu [Western Illinois University, Department of Physics (United States)

    2017-03-15

    The effect of glass composition and the presence of CdSe/ZnSe nanoparticles (NPs) on the optical absorption and fluorescence of Sm-doped lead borate glasses are studied. Three sets of glass samples xPbO:(99.5-x) B{sub 2}O{sub 3}:0.5Sm{sub 2}O{sub 3}, x = 29.5–69.5 mol%, xPbO:(96.5-x) B{sub 2}O{sub 3}:0.5Sm{sub 2}O{sub 3}: 3CdSe/ZnSe, x = 36.5, and 56.5 mol% are prepared. NPs are grown by annealing these glasses just below the glass transition temperature. Average size of both types of NPs increases with annealing time; however, CdSe NPs grew to a larger size range (2 to 20 nm) compared to ZnSe NPs (1 to 16 nm). We analyzed the hypersensitive transition, intensity parameters, radiative transition probability, stimulated emission cross section (σ{sub p}), and the area ratio of the electric dipole/magnetic dipole transitions of Sm{sup 3+}. The intensity parameters show a minimum at 11 h annealing for 36.5 mol% and a maximum for the same annealing duration in 56.5 mol% PbO containing CdSe NPs. The σ{sub p} for 56.5 mol% of PbO with CdSe NPs is found to be a maximum when the average NP size is around 14 nm. ZnSe NPs containing glasses also show significant changes in σ{sub p} when the average particle size is ~16 nm, for 36.5 mol% PbO. Our results suggest that the optical properties of Sm{sup 3+} in lead borate glasses are sensitive to its electronic environment which can be modified by varying the base glass composition and/or incorporating large NPs of CdSe/ZnSe. The large σ{sub p} values that we observe for some of the glass compositions make them attractive materials for photonic devices and photovoltaic applications.

  13. Solid-state ionics: Studies of lithium-conducting sulfide glasses and a superconducting oxide compound

    International Nuclear Information System (INIS)

    Ahn, Byung Tae.

    1989-01-01

    The first part of this work studies lithium-conducting sulfide glasses for battery applications, while the second part studies the thermodynamic properties of a superconducting oxide compound by using an oxide electrolyte. Lithium conducting glasses based on the SiS 2 -Li 2 S system are possible solid electrolytes for high-energy-density lithium batteries. The foremost requirement for solid electrolytes is that they should have high ionic conductivities. Unfortunately, most crystalline lithium conductors have low ionic conductivities at room temperature. However, glass ionic conductors show higher ionic conductivities than do crystalline forms of the same material. In addition to higher ionic conductivities, glasses appear to have several advantages over crystalline materials. These advantages include isotropic conductivity, absence of grain boundary effects, ease of glass forming, and the potential for a wide range of stability to oxidizing and reducing conditions. Using pyrolitic graphite-coated quartz ampoules, new ternary compounds and glasses in the SiS 2 -Li 2 S system were prepared. Several techniques were used to characterize the materials: powder x-ray diffraction, differential thermal analysis, differential scanning calorimetry, and AC impedance spectroscopy. The measured lithium conductivity of the sulfide glasses was one of the highest among the known solid lithium conductors. Measuring the equilibrium open circuit voltages assisted in determining the electrochemical stabilities of the ternary compounds and glasses with respect to pure Li. A solid-state ionic technique called oxygen coulometric titration was used to measure the thermodynamic stability, the oxygen stoichiometry, and the effects of the oxygen stoichiometry, and the effects of the oxygen stoichiometry and the cooling rate on superconductivity of the YBa 2 Cu 3 O 7-x compound were investigated

  14. Wear behavior of pressable lithium disilicate glass ceramic.

    Science.gov (United States)

    Peng, Zhongxiao; Izzat Abdul Rahman, Muhammad; Zhang, Yu; Yin, Ling

    2016-07-01

    This article reports effects of surface preparation and contact loads on abrasive wear properties of highly aesthetic and high-strength pressable lithium disilicate glass-ceramics (LDGC). Abrasive wear testing was performed using a pin-on-disk device in which LDGC disks prepared with different surface finishes were against alumina pins at different contact loads. Coefficients of friction and wear volumes were measured as functions of initial surface finishes and contact loads. Wear-induced surface morphology changes in both LDGC disks and alumina pins were characterized using three-dimensional laser scanning microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results show that initial surface finishes of LDGC specimens and contact loads significantly affected the friction coefficients, wear volumes and wear-induced surface roughness changes of the material. Both wear volumes and friction coefficients of LDGC increased as the load increased while surface roughness effects were complicated. For rough LDGC surfaces, three-body wear was dominant while for fine LDGC surfaces, two-body abrasive wear played a key role. Delamination, plastic deformation, and brittle fracture were observed on worn LDGC surfaces. The adhesion of LDGC matrix materials to alumina pins was also discovered. This research has advanced our understanding of the abrasive wear behavior of LDGC and will provide guidelines for better utilization and preparation of the material for long-term success in dental restorations. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 968-978, 2016. © 2015 Wiley Periodicals, Inc.

  15. bismuth borate glasses

    Indian Academy of Sciences (India)

    0 ≤ ≤ 2) were measured in the temperature range 297 K up to 629 K and in the frequency range 0.1–100 kHz. The d.c. and a.c. conductivity values and the dielectric loss (tan ) values were found to increase with increasing Sm2O3 content ...

  16. Elastic properties and structural studies on some zinc-borate glasses derived from ultrasonic, FT-IR and X-ray techniques

    International Nuclear Information System (INIS)

    Gaafar, M.S.; El-Aal, N.S. Abd; Gerges, O.W.; El-Amir, G.

    2009-01-01

    Glasses in the system (1 - x) [29Na 2 O- 4Al 2 O 3 - 67B 2 O 3 ]- xZnO (0 ≤ x ≤ 35 mol%), have been prepared by the melt quenching technique. Elastic properties, X-ray and FT-IR spectroscopic studies have been employed to study the role of ZnO on the structure of the investigated glass system. Elastic properties and Debye temperature have been investigated using sound wave velocity measurements at 4 MHz at room temperature. The results showed that the density increases and the molar volume decreases while both sound velocities and the determined glass transition temperatures decrease with increase in x. X-ray and infrared spectra of the glasses reveal that the borate network consists of diborate units and is affected by the increase in the concentration of ZnO content. These results are interpreted in terms of the decrease in the N 4 values (fraction of tetrahedral coordinated boron atoms), and substitution of longer bond lengths of Zn-O in place of shorter B-O bond. The results indicate that Zinc ions have been substituted for boron ions as tetrahedral network former ions. The elastic moduli are observed to increase with the increase of ZnO content.

  17. Lithium conductivity in glasses of the Li2O-Al2O3-SiO2 system.

    Science.gov (United States)

    Ross, Sebastian; Welsch, Anna-Maria; Behrens, Harald

    2015-01-07

    To improve the understanding of Li-dynamics in oxide glasses, i.e. the effect of [AlO4](-) tetrahedra and non-bridging oxygens on the potential landscape, electrical conductivity of seven fully polymerized and partly depolymerized lithium aluminosilicate glasses was investigated using impedance spectroscopy (IS). Lithium is the only mobile particle in these materials. Data derived from IS, i.e. activation energies, pre-exponential factors and diffusivities for lithium, are interpreted in light of Raman spectroscopic analyses of local structures in order to identify building units, which are crucial for lithium dynamics and migration. In polymerized glasses (compositional join LiAlSiO4-LiAlSi4O10) the direct current (DC) electrical conductivity continuously increases with increasing lithium content while lithium diffusivity is not affected by the Al/Si ratio in the glasses. Hence, the increase in electrical conductivity can be solely assigned to lithium concentration in the glasses. An excess of Li with respect to Al, i.e. the introduction of non-bridging oxygen into the network, causes a decrease in lithium mobility in the glasses. Activation energies in polymerized glasses (66 to 70 kJ mol(-1)) are significantly lower than those in depolymerized networks (76 to 78 kJ mol(-1)) while pre-exponential factors are nearly constant across all compositions. Comparison of the data with results for lithium silicates from the literature indicates a minimum in lithium diffusivity for glasses containing both aluminium tetrahedra and non-bridging oxygens. The findings allow a prediction of DC conductivity for a large variety of lithium aluminosilicate glass compositions.

  18. Ionic Borate-Based Covalent Organic Frameworks: Lightweight Porous Materials for Lithium-Stable Solid State Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Black, Hayden T; Harrison, Katharine Lee

    2016-10-01

    The synthesis and characterization of the first polyelectrolyte of intrinsic microporosity (PEIM) is described. The novel material was synthesized via reaction between the nitrile group in the polymer backbone and n-butyl lithium, effectively anchoring an imine anion to the porous framework while introducing a mobile lithium counterion. The PEIM was characterized by 13C, 1H, and 7Li NMR experiments, revealing quantitative conversion of the nitrile functionality to the anionic imine. Variable temperature 7Li NMR analysis of the dry PEIM and the electrolyteswollen PEIM revealed that lithium ion transport within the dry PEIM was largely due to interchain hopping of the Li+ ions, and that the mobility of polymer associated Li+ was reduced after swelling in electrolyte solution. Meanwhile, the swollen PEIM supported efficient transport of dissolved Li+ within the expanded pores. These results are discussed in the context of developing novel solid or solid-like lithium ion electrolytes using the new PEIM material.

  19. Study of cerium diffusion in undoped lithium-6 enriched glass with Rutherford backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: xzhang39@utk.edu [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Hayward, Jason P. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Oak Ridge National Lab, Oak Ridge, TN 37831 (United States)

    2016-07-01

    Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick’s second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.

  20. Study of cerium diffusion in undoped lithium-6 enriched glass with Rutherford backscattering spectrometry

    Science.gov (United States)

    Zhang, Xiaodong; Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D.; Hayward, Jason P.

    2016-07-01

    Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick's second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.

  1. Wear behavior of human enamel against lithium disilicate glass ceramic and type III gold.

    Science.gov (United States)

    Lee, Ahreum; Swain, Michael; He, Lihong; Lyons, Karl

    2014-12-01

    The wear behavior of human enamel that opposes different prosthetic materials is still not clear. The purpose of this in vitro study was to investigate and compare the friction and wear behavior of human tooth enamel that opposes 2 indirect restorative materials: lithium disilicate glass ceramic and Type III gold. Friction-wear tests on human enamel (n=5) that opposes lithium disilicate glass ceramic (n=5) and Type III gold (n=5) were conducted in a ball-on-flat configuration with a reciprocating wear testing apparatus. The wear pairs were subjected to a normal load of 9.8 N, a reciprocating amplitude of approximately 200 μm, and a reciprocating frequency of approximately 1.6 Hz for up to 1100 cycles per test under distilled water lubrication. The frictional force of each cycle was recorded, and the corresponding friction coefficient for different wear pairs was calculated. After wear testing, the wear scars on the enamel specimens were examined under a scanning electron microscope. Type III gold had a significantly lower steady-state friction coefficient (P=.009) and caused less wear damage on enamel than lithium disilicate glass ceramic. Enamel that opposed lithium disilicate glass ceramic exhibited cracks, plow furrows, and surface loss, which indicated abrasive wear as the prominent wear mechanism. In comparison, the enamel wear scar that opposed Type III gold had small patches of gold smear adhered to the surface, which indicated a predominantly adhesive wear mechanism. A lower friction coefficient and better wear resistance were observed when human enamel was opposed by Type III gold than by lithium disilicate glass ceramic in vitro. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. XRD, TEM, IR, Raman and NMR Spectroscopy of In Situ Crystallization of Lithium Disilicate Glass

    Science.gov (United States)

    Fuss, T.; Mogus-Milankovic, A.; Ray, C. S.; Lesher, C. E.; Youngman, R.; Day, D. E.

    2006-01-01

    The structure of a Li2O-2SiO2 (LS2) glass was investigated as a function of pressure and temperature up to 6 GPa and 750 C respectively, using XRD, TEM, IR, Raman and NMR spectroscopy. Glass densified at 6 GPa has an average Si-O-Si bond angle approx.7deg lower than that found in glass processed at 4.5 GPa. At 4.5 GPa, lithium disilicate crystallizes from the glass, while at 6 GPa a new high pressure form of lithium metasilicate crystallizes. The new phase, while having lithium metasilicate crystal symmetry, contains at least 4 different Si sites. NMR results for 6 GPa sample indicate the presence of Q4 species with (Q(sup 4))Si-O-Si(Q(sup 4)) bond angles of approx.157deg. This is the first reported occurrence of Q(sup 4) species with such large bond angles in alumina free alkali silicate glass. No five- or six- coordinated Si are found.

  3. Study on lithium/air secondary batteries - Stability of NASICON-type lithium ion conducting glass-ceramics with water

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Satoshi; Imanishi, Nobuyuki; Zhang, Tao; Xie, Jian; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu [Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507 (Japan)

    2009-04-01

    The water stability of the fast lithium ion conducting glass-ceramic electrolyte, Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} (LATP), has been examined in distilled water, and aqueous solutions of LiNO{sub 3}, LiCl, LiOH, and HCl. This glass-ceramics are stable in aqueous LiNO{sub 3} and aqueous LiCl, and unstable in aqueous 0.1 M HCl and 1 M LiOH. In distilled water, the electrical conductivity slightly increases as a function of immersion time in water. The Li-Al/Li{sub 3-x}PO{sub 4-y}N{sub y}/LATP/aqueous 1 M LiCl/Pt cell, where lithium phosphors oxynitrides Li{sub 3-x}PO{sub 4-y}N{sub y} (LiPON) are used to protect the direct reaction of Li and LATP, shows a stable open circuit voltage (OCV) of 3.64 V at 25 C, and no cell resistance change for 1 week. Lithium phosphors oxynitride is effectively used as a protective layer to suppress the reaction between the LATP and Li metal. The water-stable Li/LiPON/LATP system can be used in Li/air secondary batteries with the air electrode containing water. (author)

  4. Gamma ray interactions with undoped and CuO-doped lithium disilicate glasses

    International Nuclear Information System (INIS)

    Elbatal, H.A.; Mandouh, Z.; Zayed, H.; Marzouk, S.Y.; Elkomy, G.; Hosny, A.

    2010-01-01

    Ultraviolet-visible absorption of undoped lithium disilicate glass reveals strong UV absorption and no visible bands could be identified. Such UV absorption is related to the presence of unavoidable trace iron impurities within raw materials used for the preparation of this glass. Optical absorption of the CuO-doped samples show an extra broad visible band centered at 780 nm and in high CuO contents samples obvious splitting to several component peaks are observed. This characteristic visible absorption of copper-doped samples is correlated with the presence of Cu +2 ions in octahedral coordination with tetragonal distortion. Gamma irradiation of the prepared samples produces radiation-induced defects, which are related to the sharing of host lithium disilicate glass, trace iron impurities and copper iron in their formation. The visible spectrum of the CuO samples shows shielding effect towards successive gamma irradiation.

  5. Effects of crystal refining on wear behaviors and mechanical properties of lithium disilicate glass-ceramics.

    Science.gov (United States)

    Zhang, Zhenzhen; Guo, Jiawen; Sun, Yali; Tian, Beimin; Zheng, Xiaojuan; Zhou, Ming; He, Lin; Zhang, Shaofeng

    2018-05-01

    The purpose of this study is to improve wear resistance and mechanical properties of lithium disilicate glass-ceramics by refining their crystal sizes. After lithium disilicate glass-ceramics (LD) were melted to form precursory glass blocks, bar (N = 40, n = 10) and plate (N = 32, n = 8) specimens were prepared. According to the differential scanning calorimetry (DSC) of precursory glass, specimens G1-G4 were designed to form lithium disilicate glass-ceramics with different crystal sizes using a two-step thermal treatment. In the meantime, heat-pressed lithium disilicate glass-ceramics (GC-P) and original ingots (GC-O) were used as control groups. Glass-ceramics were characterized using X-ray diffraction (XRD) and were tested using flexural strength test, nanoindentation test and toughness measurements. The plate specimens were dynamically loaded in a chewing simulator with 350 N up to 2.4 × 10 6 loading cycles. The wear analysis of glass-ceramics was performed using a 3D profilometer after every 300,000 wear cycles. Wear morphologies and microstructures were analyzed by scanning electron microscopy (SEM). One-way analysis of variance (ANOVA) was used to analyze the data. Multiple pairwise comparisons of means were performed by Tukey's post-hoc test. Materials with different crystal sizes (p properties. Specifically, G3 with medium-sized crystals presented the highest flexural strength, hardness, elastic modulus and fracture toughness. G1 and G2 with small-sized crystals showed lower flexural strength, whereas G4, GC-P, and GC-O with large-sized crystals exhibited lower hardness and elastic modulus. The wear behaviors of all six groups showed running-in wear stage and steady wear stage. G3 showed the best wear resistance while GC-P and GC-O exhibited the highest wear volume loss. After crystal refining, lithium disilicate glass-ceramic with medium-sized crystals showed the highest wear resistance and mechanical properties. Copyright © 2018

  6. A comparative property investigation of lithium phosphate glass ...

    Indian Academy of Sciences (India)

    2017-08-16

    Aug 16, 2017 ... However, MW processing of bulk glass is a relatively recent development and a ... candidates for nuclear waste immobilization [19]. Low refrac- ... one of the basic prototype glasses in solid-state electrolyte, because of its high ...

  7. Mixed alkali effect in borate glasses - electron paramagnetic resonance and optical absorption studies in Cu sup 2 sup + doped xNa sub 2 O- (30 - x)K sub 2 O- 70B sub 2 O sub 3 glasses

    CERN Document Server

    Chakradhar, R P S; Rao, J L; Ramakrishna, J

    2003-01-01

    The mixed alkali borate glasses xNa sub 2 O-(30 - x)K sub 2 O-70B sub 2 O sub 3 (5 sup sup 2 B sub 2 sub g) and a weak band on the higher energy side at 22 115 cm sup - sup 1 corresponding to the transition ( sup 2 B sub 1 sub g -> sup 2 E sub g). With x > 5, the higher energy band disappears and the lower energy band shifts slightly to the lower energy side. By correlating the EPR and optical absorption data, the molecular orbital coefficients alpha sup 2 and beta sub 1 sup 2 are evaluated for the different glasses investigated. The values indicate that the in-plane sigma bonding is moderately covalent while the in-plane pi bonding is significantly ionic in nature; these exhibit a minimum with x = 15, showing the MAE. The theoretical values of optical basicity of the glasses have also been evaluated. From optical absorption edges, the optical bandgap energies have been calculated and are found to lie in the range 3.00-3.40 eV. The physical properties of the glasses studied have also been evaluated with respe...

  8. Infrared Spectroscopic Study For Structural Investigation Of Lithium Lead Silicate Glasses

    International Nuclear Information System (INIS)

    Ahlawat, Navneet; Aghamkar, Praveen; Ahlawat, Neetu; Agarwal, Ashish; Monica

    2011-01-01

    Lithium lead silicate glasses with composition 30Li 2 O·(70-x)PbO·xSiO 2 (where, x = 10, 20, 30, 40, 50 mol %)(LPS glasses) were prepared by normal melt quench technique at 1373 K for half an hour in air to understand their structure. Compositional dependence of density, molar volume and glass transition temperature of these glasses indicates more compactness of the glass structure with increasing SiO 2 content. Fourier transform infrared (FTIR) spectroscopic data obtained for these glasses was used to investigate the changes induced in the local structure of samples as the ratio between PbO and SiO 2 content changes from 6.0 to 0.4. The observed absorption band around 450-510 cm -1 in IR spectra of these glasses indicates the presence of network forming PbO 4 tetrahedral units in glass structure. The increase in intensity with increasing SiO 2 content (upto x = 30 mol %) suggests superposition of Pb-O and Si-O bond vibrations in absorption band around 450-510 cm -1 . The values of optical basicity in these glasses were found to be dependent directly on PbO/SiO 2 ratio.

  9. Gamma-ray attenuation coefficients in some heavy metal oxide borate glasses at 662 keV

    International Nuclear Information System (INIS)

    Khanna, A.; Bhatti, S.S.; Singh, K.J.; Thind, K.S.

    1996-01-01

    The linear attenuation coefficient (μ) and mass attenuation coefficients (μ/ρ) of glasses in three systems: xPbO(1-x)B 2 O 3 , 0.25PbO.xCdO(0.75-x)B 2 O 3 and xBi 2 O 3 (1-x)B 2 O 3 were measured at 662 keV. Appreciable variations were noted in the attenuation coefficients due to changes in the chemical composition of glasses. In addition to this, absorption cross-sections per atom were also calculated. A comparison of shielding properties of these glasses with standar d shielding materials like lead, lead glass and concrete has proven that these glasses have a potential application as transparent radiation shielding. (orig.)

  10. Improved terbium-doped, lithium-loaded glass scintillator fibers

    International Nuclear Information System (INIS)

    Spector, G.B.; McCollum, T.; Spowart, A.R.

    1993-01-01

    An improved terbium-doped, 6 Li-loaded glass scintillator has been drawn into fibers. Tests indicate that the neutron detection response of the fibers is superior to the response with fibers drawn from the original terbium-doped glass. The new fibers offer less attenuation (1/e length of ∝40 cm) and improved gamma ray/neutron discrimination. The improved fibers will be incorporated in a scintillator fiber optic long counter for neutron detection. (orig.)

  11. The effect of spark plasma sintering on lithium disilicate glass-ceramics.

    Science.gov (United States)

    Al Mansour, Fatima; Karpukhina, Natalia; Grasso, Salvatore; Wilson, Rory M; Reece, Mike J; Cattell, Michael J

    2015-10-01

    To evaluate the effects of spark plasma sintering (SPS) on the microstructure of lithium disilicate glass-ceramics. IPS e.max CAD glass-ceramic samples were processed using spark plasma sintering (SPS) and conventionally sintered (CS) as a comparison. Specimens were sintered at varying temperatures (T1: 840°C, T2: 820°C, T3: 800°C), heating rates (HR1: 150°C/min, HR2: 300°C/min, HR3: 500°C/min) and pressures (P1: 15MPa, P2: 50MPa, P3: 70MPa). IPS e.max Press glass powder samples were densified at 750 and 800°C (50 or 200MPa pressure). Samples were characterized using XRD, HTXRD, and SEM and quantitative image analysis. There was a significant increase in median crystal size (MCS) between the CS and the SPS T1 groups. A statistical difference (p>0.05) in MCS between SPS T1 and SPS T2 groups was observed. The SPS HR3 sample produced a smaller MCS than the CS, SPS HR1 and HR2 groups (pglass samples resulted in fine fibrils or graduated lithium disilicate crystals. The effects of SPS were used to refine the microstructure of IPS e.max CAD lithium disilicate glass-ceramics. Densification by SPS of IPS e.max Press glass resulted in textured and fine nano-crystalline microstructures. SPS generated glass-ceramic microstructures may have unique properties and could be useful in the production of CAD/CAM materials for dentistry. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Molecular Dynamics Simulation of the Structure and Properties of Lithium Phosphate Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Liang, J-J; Cygan, R.T.; Alam, T.M.

    1999-07-09

    A new forcefield model was developed for the computer simulation of phosphate materials that have many important applications in the electronics and biomedical industries. The model provides a fundamental basis for the evaluation of phosphate glass structure and thermodynamics. Molecular dynamics simulations of a series of lithium phosphate glass compositions were performed using the forcefield model. A high concentration of three-membered rings (P{sub 3}O{sub 3}) occurs in the glass of intermediate composition (0.2 Li{sub 2}O {center_dot} 0.8P{sub 2}O{sub 5}) that corresponds to the minimum in the glass transition temperature curve for the compositional series. Molecular orbital calculations of various phosphate ring clusters indicate an increasing stabilization of the phosphate ring structure going from two- to four-membered rings.

  13. Effects of crystal size on the mechanical properties of a lithium disilicate glass-ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Li, D. [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049 (China); Guo, J.W.; Wang, X.S; Zhang, S.F. [State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, 145 West Changle Road, Xi’an 710032 (China); He, L., E-mail: helin@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049 (China)

    2016-07-04

    Crystal size of lithium disilicate (LD) phase in a LD glass-ceramic was changed by thermally controlled crystallization of a precursory LD glass at different temperatures. Effects of the crystal size on the mechanical properties of the glass-ceramic were investigated. It was found that the flexural strength presented a hump-like variation trend with increasing the crystal size, the hardness monotonously decreased at the same time. It was further confirmed that micro residual compressive stresses existed inside the LD crystals due to the thermal expansion mismatch between the glass matrix and the crystalline phase. The levels of the residual stresses increased with increasing the crystal size. The crystal size performed dual effects on the flexural strength of the glass-ceramic: an “interlocking effect” caused by larger-sized LD crystals and a “micro residual stress effect” related to the balancing tensile stresses in the glass matrix. Higher residual tensile stresses in the glass matrix induced by larger-sized LD crystals would counteract the “interlocking effect” of the crystals, causing the strength degradation. The hardness of the glass-ceramic was mainly controlled by the “micro residual stress effect”.

  14. The structural studies of vanadium substituted lithium-bismuth-boro-tellurite glass

    Science.gov (United States)

    Madhu, A.; Eraiah, B.

    2018-05-01

    The structural studies of vanadium substituted lithium-bismuth-boro-tellurite glass is successfully prepared and certain analysis like XRD,FTIR,DTA/TGA with density, molar volume are done. The amorphous phase has been identified based on X-ray diffraction analysis. The vanadium oxide plays the role as a glass-modifier and influences on BO3 ↔ BO4 conversion. The observed nonlinear variation in Tg with vanadium oxide increase, it reflects structural changes. The nonlinear variation of density and molar volume can be attributed to vanadium oxide incorporation have increased the number of Non-bridging oxygen (NBO'S).

  15. Lithium in tektites and impact glasses: Implications for sources, histories and large impacts

    Czech Academy of Sciences Publication Activity Database

    Magna, T.; Deutsch, A.; Mezger, K.; Skála, Roman; Seitz, H.-M.; Mizera, Jiří; Řanda, Zdeněk

    2011-01-01

    Roč. 75, č. 8 (2011), s. 2137-2158 ISSN 0016-7037 R&D Projects: GA ČR GA205/09/0991 Institutional research plan: CEZ:AV0Z30130516; CEZ:AV0Z10480505 Keywords : crater * glass * isotopic composition * isotopic fractionation * lithium * lithology * mafic rock * moldavite * suevite * tektite * trace element Subject RIV: DD - Geochemistry Impact factor: 4.259, year: 2011

  16. Green fluorescence of terbium ions in lithium fluoroborate glasses ...

    Indian Academy of Sciences (India)

    tion and solid-state lasers attracted remarkable attention in the last few decades. .... Figure 1. Vis absorption spectrum of 1.0 mol% Tb3+-doped. LBZLFB glass. Figure 2. .... both ions quickly decay non-radiatively to the ground level. The energy ...

  17. Nanostructured sodium lithium niobate and lithium niobium tantalate solid solutions obtained by controlled crystallization of glass

    International Nuclear Information System (INIS)

    Radonjic, L.; Todorovic, M.; Miladinovic, J.

    2005-01-01

    Transparent, nanostructured glass ceramics based on ferroelectric solid solutions of the type Na 1-x Li x NbO 3 (in very narrow composition regions for x = 0.12 and 0.93) and LiNb 1-y Ta y O 3 (y = 0.5 unlimited solid solubility), can be obtained by controlled crystallization of glass. The parent glass samples were prepared by conventional melt-quenching technique. Heat-treatment of the parent glasses was performed at the various temperatures, for the same time. The glass structure evolution during the controlled crystallization was examined by FT-IR spectroscopy analysis. Crystalline phases were identified by X-ray diffraction analysis and SEM was used for microstructure characterization. Densities of the crystallized glasses were measured by Archimedean principle. The capacitance and dielectric loss tangent were measured at a frequency of 1 kHz, at the room temperature. It was found that in the all investigated systems crystallize solid solutions Na 1-x Li x NbO 3 and LiNb 1-y Ta y O 3 in the glassy matrix, have crystal size on nanoscale (less than 100 nm), which is one of requirements to get a transparent glass ceramic that could be a good ferroelectric material regarding to the measured properties

  18. Absorption and emission analysis of RE3+(Sm3+ and Dy3+): lithium boro tellurite glasses.

    Science.gov (United States)

    Sooraj Hussain, N; Hungerford, G; El-Mallawany, R; Gomes, M J M; Lopes, M A; Ali, Nasar; Santos, J D; Buddhudu, S

    2009-06-01

    This paper reports on the development and spectral analysis of Sm3+ (1.0%) and Dy3+ (1.0%) doped lithium-boro-tellurite glasses. A bright orange (4G5/2-->6H7/2) along with a red (4G5/2-->6H9/2) and a yellow (4G5/2-->6H5/2) emission transition have been measured from Sm3+ doped lithium-boro-tellurite glass. Both blue (4F9/2-->6H15/2) and yellow (4F9/2-->6H13/2) emission bands have been obtained from Dy3+ glass. From the measured decay profiles, the lifetimes of the emissions of the Sm3+ glass (4G5/2-->6H5/2, 7/2, 9/2 and 11/2) at an excitation of 401 nm have been found to be in the range 0.47-0.81 ms, and with respect to the Dy3+ emissions (4F9/2-->6H15/2 and 13/2), with excitation at 450 nm, are measured to be in the range of 0.302-0.307 ms. Stimulated emission cross-sections (sigmapE) of the measured emission transitions have also been computed and the values are in the range of (0.38-1.20) x 10(-20) cm2 for Sm3+ and for Dy3+ doped lithium-boro-tellurite glass the values are (0.66-1.39) x 10(-20) cm2.

  19. Characterization of Glass Fiber Separator Material for Lithium Batteries

    Science.gov (United States)

    Subbarao, S.; Frank, H.

    1984-01-01

    Characterization studies were carried out on a glass fiber paper that is currently employed as a separator material for some LiSOCl2 primary cells. The material is of the non-woven type made from microfilaments of E-type glass and contains an ethyl acrylate binder. Results from extraction studies and tensile testing revealed that the binder content and tensile strength of the paper were significantly less than values specified by the manufacturer. Scanning electron micrographs revealed the presence of clusters of impurities many of which were high in iron content. Results of emission spectroscopy revealed high overall levels of iron and leaching, followed by atomic absorption measurements, revealed that essentially all of this iron is soluble in SOCl2.

  20. Optical absorption, luminescence, and energy transfer processes studies for Dy3+/Tb3+-codoped borate glasses for solid-state lighting applications

    Science.gov (United States)

    Lakshminarayana, G.; Kaky, Kawa M.; Baki, S. O.; Lira, A.; Caldiño, U.; Kityk, I. V.; Mahdi, M. A.

    2017-10-01

    By using melt quenching technique, good optical quality singly doped Dy3+ or Tb3+ and Dy3+/Tb3+-codoped borate glasses were synthesized and studied by optical absorption, excitation, emission and decay lifetimes curve analysis. Following the absorption spectrum, the evaluated Judd-Ofelt (J-O) intensity parameters (Ωλ (λ = 2, 4 and 6)) were used to calculate the transition probability (AR), the branching ratio (βR), and the radiative lifetime (τR) for different luminescent transitions such as 4I15/2 → 6H15/2, 4F9/2 → 6H15/2, 4F9/2 → 6H13/2, 4F9/2 → 6H11/2 and 4F9/2 → 6H9/2,6F11/2 for the 0.5 mol % singly Dy3+-doped glass. The βR calculated (65%) indicates that for lasing applications, 4F9/2 → 6H13/2 emission transition is highly suitable. For all the Dy3+/Tb3+-codoped glasses, Tb3+: 5D3→7F6 emission decay lifetime curves are found to be non-exponential in nature for different concentrations of Dy3+ codoping. Using the Inokuti-Hirayama model, these nonexponential decay curves were analyzed to identify the nature of the energy transfer (ET) processes and here the electric dipole-dipole interaction is dominant for the ET. Based on the excitation and emission spectra and decay lifetimes curve analysis, the cross relaxation and ET processes between Dy3+ and Tb3+ were confirmed. For the 0.5 mol % Tb3+ and 2.0 mol % Dy3+-codoped glass, the evaluated Tb3+→Dy3+ ET efficiency (η) is found to be 45% under 369 nm excitation. Further, for Tb3+/Dy3+ -codoped glasses, an enhancement of Tb3+ green emission is observed up to 1.5 mol % Dy3+ codoping, and this is due to the non-radiative resonant ET from Dy3+ to Tb3+ upon 395 nm excitation. For singly 0.5 mol % Dy3+ or 0.5 mol % Tb3+-doped glass, the calculated color coordinates (x,y) and correlated color temperatures (CCT) represent the neutral white or warm white light regions, whereas Dy3+/Tb3+-codoped glasses (x,y) and CCT values fall in the yellowish green region with respect to the different Dy3

  1. Investigation of the effect of barium content on the structural and gamma-ray shielding properties of bismuth borate glasses

    International Nuclear Information System (INIS)

    Parminder Kaur; Singh, K.J.; Kulwinder Kaur; Anand, Vikas; Dogra, Mridula

    2017-01-01

    Glasses doped with heavy metal oxides have been proposed to shield the hazardous gamma rays originating from nuclear reactors as alternative to the conventional concretes. In this work, transparent glasses with composition 65Bi_2O_3-xBaO-(35-x) B_2O_3 (with x =0, 4, 8 wt %) have been prepared by using melt quenching technique in the laboratory. XRD and FTIR studies have been undertaken to explore the structural properties. The amorphous nature of the prepared samples is confirmed by XRD studies. Structural changes in the system have been explored by FTIR studies. The FTIR results reveal the conversion of (BO_3) triangular units to (BO_4) tetrahedral units with the addition of barium oxide along with the creation of non-bridging oxygen in the prepared glass system. Gamma-ray shielding properties have been explored with the help of WinXCom software developed by National Institute Standards and Technology at photon energy 662 keV. Gamma ray shielding properties in terms of mass attenuation coefficient, half value layer, tenth value layer and mean free path have been found to be superior as compared to the ordinary as well as barite concrete. Therefore, it is speculated that our prepared glass samples can serve as better gamma ray shielding materials. (author)

  2. Influence of heat treatment on structure and some physical properties of lithium boro-niobate glass

    Science.gov (United States)

    Kashif, I.; Sakr, E. M.; Soliman, A. A.; Ratep, A.

    2012-08-01

    The glass composition (90 mol% Li2B4O7-10 mol% Nb2O5) was prepared by the melt quenching technique. The quenched sample was heat treated at 480°C, 545°C and 630°C for 5 h and heat treated at 780°C with different time. The times were 5, 10, 15, 20, 28, and 36 h. The glass and glass ceramics were studied by differential thermal analysis (DTA), X-ray diffraction (XRD), and dc conductivity as a function of temperature. Lithium niobate (LiNbO3) and lithium diborate (Li2B4O7) were the main phases in glass ceramic addition to traces from LiNb3O8. Crystallite size of the main phases determined from the X-ray diffraction peaks are in the range <100 nm. The fraction of crystalline (LiNbO3) phase increases with increase the heat treatment temperature and time. The relation between physical properties and structure were studied.

  3. Magnesium borate radiothermoluminescent detectors

    International Nuclear Information System (INIS)

    Kazanskaya, V.A.; Kuzmin, V.V.; Minaeva, E.E.; Sokolov, A.D.

    1974-01-01

    In the report the technology of obtaining polycrystalline magnesium borate activated by dysprosium is described briefly and the method of preparing the tabletted detectors from it is presented. The dependence of the light sum of the samples on the proportion of the components and on the sintering regime has shown that the most sensitive material is obtained at the proportion of boric anhydride and magnesium oxide 2.2-2.4 and at the dysprosium concentration about 1 milligram-atom per gram molecule of the base. The glow curve of such a material has a simple form with one peak the maximum of which is located at 190-200 0 C. The measurement of the main dosimetric characteristics of the magnesium borate tabletted detectors and the comparison with similar parmaeters of the lithium fluoride tabletted detectors have shown that at practically identical effective number the former detectors have the following substantial advantages: the sensitivity is ten-twenty times as large, they are substantially more technological on synthesis of the radiothermoluminophor and during the production of the tabletted detectors, they have a simple glow curve, they do not require the utilization of the thermocycling during the use. (author)

  4. Deformation, Stress Relaxation, and Crystallization of Lithium Silicate Glass Fibers Below the Glass Transition Temperature

    Science.gov (United States)

    Ray, Chandra S.; Brow, Richard K.; Kim, Cheol W.; Reis, Signo T.

    2004-01-01

    The deformation and crystallization of Li(sub 2)O (center dot) 2SiO2 and Li(sub 2)O (center dot) 1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range -50 to -150 C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100 C below T (sub)g, and they crystallize significantly at temperatures close to, but below T,, about 150 C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams-Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, E, (about 400 kJ/mol) near T, for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below T,

  5. Role of aluminum on the physical and spectroscopic properties of chromium-doped strontium alumino borate glasses

    Science.gov (United States)

    Ahmed, Mohamed Raheem; Sekhar, K. Chandra; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md

    2018-03-01

    The glass samples were prepared in accordance with the formula: (30-x)SrO-xAl2O3-69.8B2O3-0.2Cr2O3 (0 ≤x ≤ 15 mol %) by melt quenching method. The absence of Bragg’s peaks confirmed the amorphous nature of the prepared glass samples. It was observed that the molar volume was increasing while the density is decreasing with increasing of Al2O3 content. Optical absorption study was performed to evaluate the optical bandgap, oxygen packing density, ionic packing density and Urbach energies. The Racah parameters (B and C) and Dq/B ratio have been calculated. Fourier transform infrared (FTIR) spectra recorded in the region from 400-1600 cm-1 at room-temperature (RT) confirmed the formation of BO3, BO4 and AlO4 groups upon the addition of strontium oxide as modifier. The Raman spectra of all the glasses recorded over continuous spectral range 200-1600 cm-1 exhibited different spectral bands. The EPR spectra recorded at 9.7 GHz (X-band frequency) have four resonance signals. The signal at g ≈ 5.33 is due to Cr3+ ion sites of rhombic symmetry and signal at g ≈ 1.97 is due to contribution from Cr3+ and Cr5+ ion pairs.

  6. Luminescent hybrid materials based on (8-hydroxyquinoline)-substituted metal-organic complexes and lead-borate glasses

    Science.gov (United States)

    Petrova, Olga B.; Anurova, Maria O.; Akkuzina, Alina A.; Saifutyarov, Rasim R.; Ermolaeva, Ekaterina V.; Avetisov, Roman I.; Khomyakov, Andrew V.; Taydakov, Ilya V.; Avetissov, Igor Ch.

    2017-07-01

    Novel luminescent organic-inorganic hybrid materials based on 8-hydroxyquinoline metal complexes (Liq, Kq, Naq, Rbq, Mgq2, Srq2, Znq2, Scq3, Alq3, Gaq3, and Inq3) have been synthesized by a high temperature exchange reaction with 80PbF2-20B2O3 inorganic low-melting glass. The mechanical and optical properties, transmission spectra, emission an excitation photoluminescence, and luminescence kinetic of hybrid materials were studied. All hybrid materials showed a wide luminescence band in the range 400-700 nm.

  7. Machinability of lithium disilicate glass ceramic in in vitro dental diamond bur adjusting process.

    Science.gov (United States)

    Song, Xiao-Fei; Ren, Hai-Tao; Yin, Ling

    2016-01-01

    Esthetic high-strength lithium disilicate glass ceramics (LDGC) are used for monolithic crowns and bridges produced in dental CAD/CAM and oral adjusting processes, which machinability affects the restorative quality. A machinability study has been made in the simulated oral clinical machining of LDGC with a dental handpiece and diamond burs, regarding the diamond tool wear and chip control, machining forces and energy, surface finish and integrity. Machining forces, speeds and energy in in vitro dental adjusting of LDGC were measured by a high-speed data acquisition and force sensor system. Machined LDGC surfaces were assessed using three-dimensional non-contact chromatic confocal optical profilometry and scanning electron microscopy (SEM). Diamond bur morphology and LDGC chip shapes were also examined using SEM. Minimum tool wear but significant LDGC chip accumulations were found. Machining forces and energy significantly depended on machining conditions (pceramics (pceramics (pceramics. Surface roughness for machined LDGC was comparable for other glass ceramics. The removal mechanisms of LDGC were dominated by penetration-induced brittle fracture and shear-induced plastic deformation. Unlike most other glass ceramics, distinct intergranular and transgranular fractures of lithium disilicate crystals were found in LDGC. This research provides the fundamental data for dental clinicians on the machinability of LDGC in intraoral adjustments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Does 8-methacryloxyoctyl trimethoxy silane (8-MOTS) improve initial bond strength on lithium disilicate glass ceramic?

    Science.gov (United States)

    Maruo, Yukinori; Nishigawa, Goro; Yoshihara, Kumiko; Minagi, Shogo; Matsumoto, Takuya; Irie, Masao

    2017-03-01

    Dental ceramic surfaces are modified with silane coupling agents, such as γ-methacryloxypropyl trimethoxy silane (γ-MPTS), to improve bond strength. For bonding between lithium disilicate glass ceramic and resin cement, the objective was to investigate if 8-methacryloxyoctyl trimethoxy silane (8-MOTS) could yield a similar performance as the widely used γ-MPTS. One hundred and ten lithium disilicate glass ceramic specimens were randomly divided into 11 groups (n=10) according to pretreatment regime. All specimens were pretreated with a different solution composed of one or a combination of these agents: 10 or 20wt% silane coupling agent of γ-MPTS or 8-MOTS, followed by a hydrolysis solution of acetic acid or 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). Each pretreated surface was luted to a stainless steel rod of 3.6mm diameter and 2.0mm height with resin cement. Shear bond strength between ceramic and cement was measured after 24-h storage in 37°C distilled water. 8-MOTS produced the same bonding performance as γ-MPTS. Both silane coupling agents significantly increased the bond strength of resin cement, depending on their concentration. When activated by 10-MDP hydrolysis solution, 20wt% concentration produced the highest values (γ-MPTS: 24.9±5.1MPa; 8-MOTS: 24.6±7.4MPa). Hydrolysis with acetic acid produced lower bond strengths than with 10-MDP. Silane coupling pretreatment with 8-MOTS increased the initial bond strength between lithium disilicate glass ceramic and resin cement, rendering the same bonding effect as the conventional γ-MPTS. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Calculation of neutron detection efficiency for the thick lithium glass using Monte Carlo method

    International Nuclear Information System (INIS)

    Tang Guoyou; Bao Shanglian; Li Yulin; Zhong Wenguan

    1989-08-01

    The neutron detector efficiencies of a NE912 (45mm in diameter, 9.55 mm in thickness) and 2 pieces of ST601 (40mm in diameter, 3 and 10 mm in thickness respectively) lithium glasses have been calculated with a Monte Carlo computer code. The energy range in the calculation is 10 keV to 2.0 MeV. The effect of time delayed caused by neutron multiple scattering in the detectors (prompt neutron detection efficiency) has been considered

  10. Comparison of cutting efficiency with different diamond burs and water flow rates in cutting lithium disilicate glass ceramic.

    Science.gov (United States)

    Siegel, Sharon C; Patel, Tejas

    2016-10-01

    This study compared different diamond burs and different water flow rates on the cutting efficiency of sectioning through lithium disilicate glass ceramic. The authors used a standardized cutting regimen with 4 brands of diamond burs to section through lithium disilicate glass ceramic blocks. Twelve diamonds of each brand cut through the blocks in randomized order. In the first part of the study, the authors recorded sectioning rates in millimeters per minute for each diamond bur as a measure of cutting efficiency. In the second part of the study, the authors compared sectioning rates using only 1 brand of diamond bur, with 3 different water flow rates. The authors averaged and compared cutting rates of each brand of diamond bur and the cutting rates for each flow rate using an analysis of variance and determined the differences with a Tukey honest significant difference test. One diamond bur cut significantly slower than the other 3, and one diamond bur cut significantly faster than 2 of the others. The diamond bur cutting efficiency through lithium disilicate glass ceramic with a 20 mL/min water flow rate was significantly higher than 15 mL/min. There are differences in cutting efficiency between diamond burs when sectioning lithium disilicate glass ceramic. Use a minimum of 20 mL/min of water coolant flow when sectioning lithium disilicate glass ceramic with dental diamond burs to maximize cutting efficiency. Recommendations for specific diamond burs with a coarse grit and water flow rate of 20 mL/min can be made when removing or adjusting restorations made from lithium disilicate glass ceramic. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  11. Ionic conductivities of lithium phosphorus oxynitride glasses, polycrystals, and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.; Bates, J.B.; Chakoumakos, B.C.; Sales, B.C.; Kwak, B.S.; Zuhr, R.A. [Oak Ridge National Lab., TN (United States); Robertson, J.D. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Chemistry

    1994-11-01

    Various lithium phosphorus oxynitrides have been prepared in the form of glasses, polycrystals, and thin films. The structures of these compounds were investigated by X-ray and neutron diffraction, X-ray photoelectron spectroscopy (XPS), and high-performance liquid chromatography (HPLC). The ac impedance measurements indicate a significant improvement of ionic conductivity as the result of incorporation of nitrogen into the structure. In the case of polycrystalline Li{sub 2.88}PO{sub 3.73}N{sub 0.14} with the {gamma}-Li{sub 3}PO{sub 4} structure, the conductivity increased by several orders of magnitude on small addition of nitrogen. The highest conductivities in the bulk glasses and thin films were found to be 3.0 {times} 10{sup -7} and 8.9 {times} 10{sup -7} S{center_dot}cm{sup -1} at 25{degrees}C, respectively.

  12. Ionic conductivities of lithium phosphorus oxynitride glasses, polycrystals, and thin films

    International Nuclear Information System (INIS)

    Wang, B.; Bates, J.B.; Chakoumakos, B.C.; Sales, B.C.; Kwak, B.S.; Zuhr, R.A.; Robertson, J.D.

    1994-11-01

    Various lithium phosphorus oxynitrides have been prepared in the form of glasses, polycrystals, and thin films. The structures of these compounds were investigated by X-ray and neutron diffraction, X-ray photoelectron spectroscopy (XPS), and high-performance liquid chromatography (HPLC). The ac impedance measurements indicate a significant improvement of ionic conductivity as the result of incorporation of nitrogen into the structure. In the case of polycrystalline Li 2.88 PO 3.73 N 0.14 with the γ-Li 3 PO 4 structure, the conductivity increased by several orders of magnitude on small addition of nitrogen. The highest conductivities in the bulk glasses and thin films were found to be 3.0 x 10 -7 and 8.9 x 10 -7 S·cm -1 at 25 degrees C, respectively

  13. Crystallization, Microstructure, and Viscosity Evolutions in Lithium Aluminosilicate Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2016-11-01

    Full Text Available Lithium aluminosilicate glass-ceramics have found widespread commercial success in areas such as consumer products, telescope mirrors, fireplace windows, etc. However, there is still much to learn regarding the fundamental mechanisms of crystallization, especially related to the evolution of viscosity as a function of the crystallization (ceramming process. In this study, the impact of phase assemblage and microstructure on the viscosity was investigated using high temperature X-ray diffraction (HTXRD, beam bending viscometry (BBV, and transmission electron microscopy (TEM. Results from this study provide a first direct observation of viscosity evolution as a function of ceramming time and temperature. Sharp viscosity increases due to phase separation, nucleation and phase transformation are noticed through BBV measurement. A near-net shape ceramming can be achieved in TiO2-containing compositions by keeping the glass at a high viscosity (> 109 Pa.s throughout the whole thermal treatment.

  14. [Effect of hydrofluoric acid concentration on the surface morphology and bonding effectiveness of lithium disilicate glass ceramics to resin composites].

    Science.gov (United States)

    Hailan, Qian; Lingyan, Ren; Rongrong, Nie; Xiangfeng, Meng

    2017-12-01

    This study aimed at determining the influence of hydrofluoric acid (HF) in varied concentrations on the surface morphology of lithium disilicate glass ceramics and bond durability between resin composites and post-treated lithium disilicate glass ceramics. After being sintered, ground, and washed, 72 as-prepared specimens of lithium disilicate glass ceramics with dimensions of 11 mm×13 mm×2 mm were randomly divided into three groups. Each group was treated with acid solution [32% phosphoric acid (PA) or 4% or 9.5% HF] for 20 s. Then, four acidified specimens from each group were randomly selected. One of the specimens was used to observe the surface morphology using scanning electron microscopy, and the others were used to observe the surface roughness using a surface roughness meter (including Ra, Rz, and Rmax). After treatment with different acid solutions in each group, 20 samples were further treated with silane coupling agent/resin adhesive/resin cement (Monobond S/Multilink Primer A&B/Multilink N), followed by bonding to a composite resin column (Filtek™ Z350) with a diameter of 3 mm. A total of 20 specimens in each group were randomly divided into two subgroups, which were used for measuring the microshear bond strength, with one of them subjected to cool-thermal cycle for 20 000 times. The surface roughness (Ra, Rz, and Rmax) of lithium disilicate glass ceramics treated with 4% or 9.5% HF was significantly higher than that of the ceramic treated with PA (Pglass ceramics treated with 9.5% HF also demonstrated better surface roughness (Rz and Rmax) than that of the ceramics treated with 4% HF. Cool-thermal cycle treatment reduced the bond strength of lithium disilicate glass ceramics in all groups (Pglass ceramics treated with HF had higher bond strength than that of the ceramics treated with PA. The lithium disilicate glass ceramics treated with 4% HF had higher bond strength than that of the ceramics treated with 9.5% HF (Pglass ceramics treated with 4

  15. Role of lithium ions on the physical, structural and optical properties of zinc boro tellurite glasses

    Science.gov (United States)

    Rani, S.; Ahlawat, N.; Parmar, R.; Dhankhar, S.; Kundu, R. S.

    2018-01-01

    Lithium zinc boro tellurite glasses with compositions xLi2O-(100-x) [0.25ZnO-0.15B2O3-0.60TeO2] [where x = 0, 5, 10, 15 and 20 mol%] have been prepared by melt-quench technique. The amorphous nature of the prepared system is ascertained by X-ray diffraction. The density and molar volume are found to decrease with the increase in concentration of Li2O. The differential scanning calorimetry is used to calculate the glass transition temperature (Tg) and the observed values are found to be decreased. The IR and Raman spectra indicate that Li2O acts as a network modifier in the glass matrix. In the present system, tellurium exists as TeO4 and TeO3, B2O3 in the form of BO4 and BO3 and zinc oxide exists as ZnO4 structural units. The values of the optical band gap are estimated from the fitting of Mott and Davis's and model. A better convergence is achieved between experimental observed spectra of absorption coefficient and hydrogenic excitonic model. The optical band gap energy increases, whereas refractive index and molar refractivity follow the reverse trend with Li2O. The range of metallization criterion suggests that these glasses may be a potential candidate for nonlinear optical materials.

  16. Optical band gap and spectroscopic study of lithium alumino silicate glass containing Y3+ ions.

    Science.gov (United States)

    Shakeri, M S; Rezvani, M

    2011-09-01

    The effect of different amounts of Y2O3 dopant on lithium alumino silicate (LAS) glass has been studied in this work. Glasses having 14.8Li2O-20Al2O3-65.2SiO2 (wt%) composition accompanied with Y2O3 dopant were prepared by normal melting process. In order to calculate the absorption coefficient of samples, transmittance and reflectance spectra of polished samples were measured in the room temperature. Optical properties i.e. Fermi energy level, direct and indirect optical band gaps and Urbach energy were calculated using functionality of extinction coefficient from Fermi-Dirac distribution function, Tauc's plot and the exponential part of absorption coefficient diagram, respectively. It has been clarified that variation in mentioned optical parameters is associated with the changes in physical properties of samples i.e. density or molar mass. On the other hand, increasing of Y3+ ions in the glassy microstructure of samples provides a semiconducting character to LAS glass by reducing the direct and indirect optical band gaps of glass samples from 1.97 to 1.67 and 3.46 to 2.1 (eV), respectively. These changes could be attributed to the role of Y3+ ions as the network former in the track of SiO4 tetrahedrals. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. AFM Surface Roughness and Topography Analysis of Lithium Disilicate Glass Ceramic

    Directory of Open Access Journals (Sweden)

    M. Pantić

    2015-12-01

    Full Text Available The aim of this study is presenting AFM analysis of surface roughness of Lithium disilicate glass ceramic (IPS e.max CAD under different finishing procedure (techniques: polishing, glazing and grinding. Lithium disilicate glass ceramics is all-ceramic dental system which is characterized by high aesthetic quality and it can be freely said that properties of material provide all prosthetic requirements: function, biocompatibility and aesthetic. Experimental tests of surface roughness were investigated on 4 samples with dimensions: 18 mm length, 14 mm width and 12 mm height. Contact surfaces of three samples were treated with different finishing procedure (polishing, glazing and grinding, and the contact surface of the raw material is investigated as a fourth sample. Experimental measurements were done using the Atomic Force Microscopy (AFM of NT-MDT manufacturers, in the contact mode. All obtained results of different prepared samples are presented in the form of specific roughness parameters (Rа, Rz, Rmax, Rq and 3D surface topography.

  18. Flexible, Heat-Resistant, and Flame-Retardant Glass Fiber Nonwoven/Glass Platelet Composite Separator for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Ulrich Schadeck

    2018-04-01

    Full Text Available A new type of high-temperature stable and self-supporting composite separator for lithium-ion batteries was developed consisting of custom-made ultrathin micrometer-sized glass platelets embedded in a glass fiber nonwoven together with a water-based sodium alginate binder. The physical and electrochemical properties were investigated and compared to commercial polymer-based separators. Full-cell configuration cycling tests at different current rates were performed using graphite and lithium iron phosphate as electrode materials. The glass separator was high-temperature tested and showed a stability up to at least 600 °C without significant shrinking. Furthermore, it showed an exceptional wettability for non-aqueous electrolytes. The electrochemical performance was excellent compared to commercially available polymer-based separators. The results clearly show that glass platelets integrated into a glass fiber nonwoven performs remarkably well as a separator material in lithium-ion batteries and show high-temperature stability.

  19. Glass microspheres for medical applications

    Science.gov (United States)

    Conzone, Samuel David

    Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in 100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass microspheres, composed of micron-sized, metallic rhenium particles dispersed within a magnesium alumino borate glass matrix were produced by sintering ReO2 powder and glass frit at 1050°C. A 50 mg injection of radioactive rhenium glass

  20. Optical properties of Nd3+ doped barium lithium fluoroborate glasses for near-infrared (NIR) emission

    Science.gov (United States)

    Mariselvam, K.; Arun Kumar, R.; Suresh, K.

    2018-04-01

    The neodymium doped barium lithium fluoroborate (Nd3+: BLFB) glasses with the chemical composition (70-x) H3BO3 - 10 Li2CO3 - 10 BaCO3- 5 CaF2-5 ZnO - x Nd2O3 (where x = 0.05, 0.1, 0.25, 0.5, 1, 2 in wt %) have been prepared by the conventional melt quenching technique and characterised through optical absorption, near infrared emission and decay-time measurements. The x-ray diffraction studies confirm the amorphous nature of the prepared glasses. The optical absorption spectra and emission spectra were recorded in the wavelength ranges of 190-1100 nm. The optical band gap (Eg) and Urbach energy (ΔE) values were calculated from the absorption spectra. The Judd-Ofelt intensity parameters were determined from the systematic analysis of the absorption spectrum of neodymium ions in the prepared glasses. The emission spectra exhibited three prominent peaks at 874, 1057, 1331 nm corresponding to the 4F3/2 → 4I9/2, 11/2, 13/2 transitions levels respectively in the near infrared region. The emission intensity of the 4F3/2 → 4I11/2 transition increases with the increase in neodymium concentration up to 0.5 wt% and the concentration quenching mechanism was observed for 1 wt% and 2 wt% concentrations. The lifetime of the 4F3/2 level was found to decrease with increasing Nd3+ ion concentration. The nature of energy transfer process was a single exponential curve which was studied for all the glasses and analysed.

  1. Effect of concentration on the photoluminescence properties of Sm3+ and Dy3+: cadmium lithium boro tellurite glasses.

    Science.gov (United States)

    Raju, K Vemasevana; Sailaja, S; Reddy, M Bhushana; Giridhar, P; Raju, C Nageswara; Reddy, B Sudhakar

    2012-02-01

    Rare-earth (Sm3+ or Dy3+) ions doped cadmium lithium boro tellurite glasses have been prepared by melt quenching method for their spectral studies. From X-ray diffraction (XRD) patterns the glass amorphous nature has been confirmed. Vis-NIR absorption, excitation and emission spectra of these glasses have been analyzed systematically and also rare earth ion concentration is optimised Sm3+: CLiBT glasses have shown strong orange-reddish emission at 598 nm (4G5/2-->6H7/2) with an excitation wavelength lambda(exci) = 401 nm and Dy3+: CLiBT glasses have shown strong yellow emission at 574 nm (6F9/2-->6H13/2) with lambda(exci) = 451 nm.

  2. Phase evolution and dielectric properties of MgTi2O5 ceramic sintered with lithium borosilicate glass

    International Nuclear Information System (INIS)

    Shin, Hyunho; Shin, Hee-Kyun; Jung, Hyun Suk; Cho, Seo-Yong; Hong, Kug Sun

    2005-01-01

    Phase evolution, densification, and dielectric properties of MgTi 2 O 5 dielectric ceramic, sintered with lithium borosilicate (LBS) glass, were studied. Reaction between LBS glass and MgTi 2 O 5 was significant in forming secondary phases such as TiO 2 and (Mg,Ti) 2 (BO 3 )O. The glass addition was not necessarily deleterious to the dielectric properties due to the formation of TiO 2 : permittivity increased and temperature coefficient of resonance frequency could be tuned to zero with the addition of LBS glass, although the inevitable glass-induced decrease of quality factor was not retarded by the formation of TiO 2 . The sintered specimen with 10 wt% LBS fired at 950 deg. C for 2 h showed permittivity of 19.3, quality factor of 6800 GHz, and τ f of -16 ppm/ deg. C

  3. Luminescence properties of Dy3+ doped lithium zinc borosilicate glasses for photonic applications

    Directory of Open Access Journals (Sweden)

    N. Jaidass

    2018-03-01

    Full Text Available Different concentrations of Dy3+ ions doped lithium zinc borosilicate glasses of chemical composition (30-x B2O3 - 25 SiO2 -10 Al2O3 -30 LiF - 5 ZnO - x Dy2O3 (x = 0, 0.1, 0.5, 1.0 and 2.0 mol% were prepared by the melt quenching technique. The prepared glasses were investigated through X-ray diffraction, optical absorption, photoluminescence and decay measurements. Intensities of absorption bands expressed in terms of oscillator strengths (f were used to determine the Judd-Ofelt (J-O intensity parameters Ωλ (λ = 2, 4 and 6. The evaluated J-O parameters were used to determine the radiative parameters such as transition probabilities (AR, total transition probability rate (AT, radiative lifetime (τR and branching ratios (βR for the excited 4F9/2 level of Dy3+ ions. The chromaticity coordinates determined from the emission spectra were found to be located in the white light region of CIE chromaticity diagram. Keywords: Condensed matter physics, Engineering, Materials science

  4. Improved ionic conductivity of lithium-zinc-tellurite glass-ceramic electrolytes

    Directory of Open Access Journals (Sweden)

    W. Widanarto

    Full Text Available An enhancement in the secondary battery safety demands the optimum synthesis of glass-ceramics electrolytes with modified ionic conductivity. To achieve improved ionic conductivity and safer operation of the battery, we synthesized Li2O included zinc-tellurite glass-ceramics based electrolytes of chemical composition (85-xTeO2·xLi2O·15ZnO, where x = 0, 5, 10, 15 mol%. Samples were prepared using the melt quenching method at 800 °C followed by thermal annealing at 320 °C for 3 h and characterized. The effects of varying temperature, alternating current (AC frequency and Li2O concentration on the structure and ionic conductivity of such glass-ceramics were determined. The SEM images of the annealed glass-ceramic electrolytes displayed rough surface with a uniform distribution of nucleated crystal flakes with sizes less than 1 μm. X-ray diffraction analysis confirmed the well crystalline nature of achieved electrolytes. Incorporation of Li2O in the electrolytes was found to generate some new crystalline phases including hexagonal Li6(TeO6, monoclinic Zn2Te3O8 and monoclinic Li2Te2O5. The estimated crystallite size of the electrolyte was ranged from ≈40 to 80 nm. AC impedance measurement revealed that the variation in the temperatures, Li2O contents, and high AC frequencies have a significant influence on the ionic conductivity of the electrolytes. Furthermore, electrolyte doped with 15 mol% of Li2O exhibited the optimum performance with an ionic conductivity ≈2.4 × 10−7 S cm−1 at the frequency of 54 Hz and in the temperature range of 323–473 K. This enhancement in the conductivity was attributed to the sizable alteration in the ions vibration and ruptures of covalent bonds in the electrolytes network structures. Keywords: Zinc-tellurite, Glass-ceramics, X-ray diffraction, Ionic conductivity, Lithium oxide

  5. Electronic polarizability, optical basicity and interaction parameter for Nd2O3 doped lithium-zinc-phosphate glasses

    Science.gov (United States)

    Algradee, M. A.; Sultan, M.; Samir, O. M.; Alwany, A. Elwhab B.

    2017-08-01

    The Nd3+-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd2O3 content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system.

  6. Judd-Ofelt analysis and photoluminescence properties of RE3+ (RE = Er & Nd): Cadmium lithium boro tellurite glasses

    Science.gov (United States)

    Raju, K. Vemasevana; Raju, C. Nageswara; Sailaja, S.; Reddy, B. Sudhakar

    2013-01-01

    Rare earth (Er3+ and Nd3+) ions doped cadmium lithium boro tellurite (CLiBT) glasses were prepared by melt quenching method. The vis-NIR absorption spectra of these glasses have been analyzed systematically. Judd-Ofelt intensity parameters Ωλ (λ = 2, 4, 6) have been evaluated and used to compute the radiative properties of emission transitions of Er3+ and Nd3+: CLiBT glasses. From the NIR emission spectra of Er3+: CLiBT glasses a broad emission band centered at 1538 nm (4I13/2 → 4I15/2) is observed and from Nd3+: CLiBT glasses, three NIR emission bands at 898 nm (4F3/2 → 4I9/2), 1070 nm (4F3/2 → 4I11/2) and 1338 nm (4F3/2 → 4I13/2) are observed with an excitation wavelength λexci = 514.5 nm (Ar+ Laser). The FWHM and stimulated emission cross-section values are calculated for Er3+ and Nd3+: CLiBT glasses. FWHM × σeP values are also calculated for Er3+: CLiBT glasses.

  7. Silanated Surface Treatment: Effects on the Bond Strength to Lithium Disilicate Glass-Ceramic.

    Science.gov (United States)

    Baratto, Samantha Schaffer Pugsley; Spina, Denis Roberto Falcão; Gonzaga, Carla Castiglia; Cunha, Leonardo Fernandes da; Furuse, Adilson Yoshio; Baratto Filho, Flares; Correr, Gisele Maria

    2015-10-01

    The aim of this study was to evaluate the effect of silanization protocols on the bond strength of two resin cements to a lithium disilicate glass-ceramic. Thirty-two ceramic discs were assigned to 2 groups (n=16): G1 - dual-cured resin cement and G2 - light-cured resin cement. Four subgroups were evaluated according to the used silanization protocol. The glass-ceramic was etched with 10% hydrofluoric acid for 20 s and silane was applied for 1 min, as follows: CTL - according to the manufacturer's instructions; HA - dried with hot air; NWA - washed and dried with water and air at room temperature; HWA - washed and dried with hot water and hot air. Thereafter, adhesive was applied and light-cured for 20 s. Silicon molds were used to prepare resin cement cylinders (1x1 mm) on the ceramic surface. The specimens were stored in deionized water at 37 °C for 48 h and subjected to a micro-shear test. The data were submitted to statistical analysis (?#61537;=0.05). Group G1 showed higher bond strengths than G2, except for the CTL and NWA subgroups. Differences as function of the silanization protocol were only observed in G1: HWA (25.13±6.83)≥HA (22.95±7.78)≥CTL(17.44±7.24) ≥NWA(14.63±8.76). For G2 there was no difference among the subgroups. In conclusion, the silanization protocol affected the resin cement/ceramic bond strengths, depending on the material. Washing/drying with hot water and/or hot air increased only the bond strength of the dual-cured resin cement.

  8. Effect of high pressure on the mechanical properties of lithium disilicate glass ceramic

    International Nuclear Information System (INIS)

    Buchner, Silvio; Lepienski, Carlos M.; Jr, Paulo C. Soares; Balzaretti, Naira M.

    2011-01-01

    Research highlights: → High pressure densification of LS2 decreases the mechanical properties. → Densification of LS2 at high temperature improves the mechanical properties. → Hardness and elastic modulus of LS2 densified at high temperature are notably high. - Abstract: Lithium disilicate glass has been submitted to a high pressure treatment associated to a heat treatment, and the effects of densification and crystallization at high pressure on the mechanical properties were evaluated. The hardness and elastic modulus were examined by instrumented indentation using a Berkovich tip. The crack pattern morphology after indentation with a cube corner indenter was also investigated. The hardness and elastic modulus of the samples submitted to high pressure at room temperature decreased with increasing pressure. The hardness and elastic modulus of the samples submitted simultaneously to high pressure (up to 7.7 GPa) and high temperature increased noticeably. The amount, length and type of cracks induced by the cube corner tip changed with increasing pressure. These results indicate that the high temperature treatment under high pressure improved the mechanical properties of LS 2 .

  9. Measurements of the purge helium pressure drop across pebble beds packed with lithium orthosilicate and glass pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Sena, Ali, E-mail: ali.abou-sena@kit.edu; Arbeiter, Frederik; Boccaccini, Lorenzo V.; Schlindwein, Georg

    2014-10-15

    Highlights: • The objective is to measure the purge helium pressure drop across various HCPB-relevant pebble beds packed with lithium orthosilicate and glass pebbles. • The purge helium pressure drop significantly increases with decreasing the pebbles diameter from one run to another. • At the same superficial velocity, the pressure drop is directly proportional to the helium inlet pressure. • The Ergun's equation can successfully model the purge helium pressure drop for the HCPB-relevant pebble beds. • The measured values of the purge helium pressure drop for the lithium orthosilicate pebble bed will support the design of the purge gas system for the HCPB breeder units. - Abstract: The lithium orthosilicate pebble beds of the Helium Cooled Pebble Bed (HCPB) blanket are purged by helium to transport the produced tritium to the tritium extraction system. The pressure drop of the purge helium has a direct impact on the required pumping power and is a limiting factor for the purge mass flow. Therefore, the objective of this study is to measure the helium pressure drop across various HCPB-relevant pebble beds packed with lithium orthosilicate and glass pebbles. The pebble bed was formed by packing the pebbles into a stainless steel cylinder (ID = 30 mm and L = 120 mm); then it was integrated into a gas loop that has four variable-speed side-channel compressors to regulate the helium mass flow. The static pressure was measured at two locations (100 mm apart) along the pebble bed and at inlet and outlet of the pebble bed. The results demonstrated that: (i) the pressure drop significantly increases with decreasing the pebbles diameter, (ii) for the same superficial velocity, the pressure drop is directly proportional to the inlet pressure, and (iii) predictions of Ergun's equation agree well with the experimental results. The measured pressure drop for the lithium orthosilicate pebble bed will support the design of the purge gas system for the HCPB.

  10. [An experimental study of the wear behavior of dental feldspathic glass-ceramic and lithium disilicate glass-ceramic].

    Science.gov (United States)

    Tian, Bei-min; Zhang, Shao-feng; He, Lin; Guo, Jia-wen; Yu, Jin-tao; Wu, Xiao-hong

    2013-11-01

    To investigate the tribology characteristics of two ceramic materials in vitro:feldspathic glass-ceramic (veneer porcelain) and lithium disilicate glass-ceramic (heat-pressed ceramic), and to evaluate the wear resistance of different ceramic materials from the dynamic chewing perspective. Wear tests were performed in simulated oral environment with stainless steel ball antagonists (r = 3 mm), veneer porcelain (CERAMCO 3) and heat-pressed ceramic (IPS e.max Press HT type) in the chewing simulator. The tribological tests were carried out under artificial saliva lubrication condition in room temperature with a vertical load of 10 N for 1.2×10(6) cycles (f = 1.5 Hz, uniform circular motion, revolving speed = 90 r/min, radius = 0.5 mm). The wear volumes were measured using three-dimensional profiling, and surface microscopic morphology were observed using scanning electron microscopy at time point of 200 000, 400 000, 600 000, 800 000, 1 000 000, and 1 200 000 cycles. In a simulated oral environment, the wear rates of veneer porcelain were (0.001 20 ± 0.00 018) , (0.000 10 ± 0.000 03) , (0.000 50 ± 0.000 05), (0.000 10 ± 0.000 02) , (0.004 10 ± 0.000 38) , and (0.019 00 ± 0.003 53) (×10(-4) mm(3)/cycles) at 200 000, 400 000, 600 000, 800 000, 1 000 000, 1 200 000 cycles. The wear rates of heat-pressed ceramic were (0.139 50 ± 0.030 94), (0.124 40 ± 0.031 20), (0.054 80 ± 0.005 38), (0.038 80 ± 0.006 10), (0.011 10 ± 0.003 75), (0.198 90 ± 0.045 80) (×10(-4) mm(3)/cycles) at 200 000, 400 000, 600 000, 800 000, 1 000 000, 1 200 000 cycles. Three stages were observed in the wear loss process of the two materials: running-in stage, steady wear stage and severe wear stage. In running-in and steady wear stage, the shallow wear tracks of veneer porcelain were produced by the fatigue effect.While in severe wear stage, the wear tracks turned into ploughing. In running-in stage, the surface of heat-pressed ceramic was characterized by dense and shallow ploughing

  11. Flexural strength and translucent characteristics of lithium disilicate glass-ceramics with different P2O5 content

    International Nuclear Information System (INIS)

    Wang, Fu; Gao, Jing; Wang, Hui; Chen, Ji-hua

    2010-01-01

    Lithium disilicate glass-ceramics derived from the SiO 2 -Li 2 O-K 2 O-Al 2 O 3 -ZrO 2 -P 2 O 5 system with different P 2 O 5 content (from 0.5 mol.% to 2.0 mol.% at a step of 0.5 mol.%) were prepared for dental restorative application. Flexural strength of final glass-ceramics and translucent characteristics expressed in term of contrast ratio (CR) were measured. The interrelations between P 2 O 5 content, microstructure and properties were discussed. Glass-ceramic with a P 2 O 5 content of 1.0 mol.%, in which elongated rod-like Li 2 Si 2 O 5 crystals formed an interlocking microstructure, showed the highest flexural strength and suitable contrast ratio for dental restorative application.

  12. Pulse energy dependence of refractive index change in lithium niobium silicate glass during femtosecond laser direct writing.

    Science.gov (United States)

    Cao, Jing; Poumellec, Bertrand; Brisset, François; Lancry, Matthieu

    2018-03-19

    Femtosecond laser-induced refractive index changes in lithium niobium silicate glass were explored at high repetition rate (300 fs, 500 kHz) by polarized light microscopy, full-wave retardation plate, quantitative birefringence microscopy, and digital holographic microscopy. We found three regimes on energy increase. The first one corresponds to isotropic negative refractive index change (for pulse energy ranging 0.4-0.8 μJ/pulse, 0.6 NA, 5μm/s, 650μm focusing depth in the glass). The second one (0.8-1.2 μJ/pulse) corresponds to birefringence with well-defined slow axis orientation. The third one (above 1.2 μJ/pulse) is related to birefringence direction fluctuation. Interestingly, these regimes are consistent with crystallization ones. In addition, an asymmetric orientational writing effect has been detected on birefringence. These topics extend the possibility of controlling refractive index change in multi-component glasses.

  13. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Inda, Yasushi [Research and Development Department, Ohara-inc, 1-15-30 Oyama, Sagamihara, Kanagawa 229-1186 (Japan); Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Katoh, Takashi [Research and Development Department, Ohara-inc, 1-15-30 Oyama, Sagamihara, Kanagawa 229-1186 (Japan); Baba, Mamoru [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan)

    2007-12-06

    We have developed a high performance lithium-ion conducting glass-ceramics. This glass-ceramics has the crystalline form of Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} with a NASICON-type structure, and it exhibits a high lithium-ion conductivity of 10{sup -3} S cm{sup -1} or above at room temperature. Moreover, since this material is stable in the open atmosphere and even to exposure to moist air, it is expected to be applied for various uses. One of applications of this material is as a solid electrolyte for a lithium-ion battery. Batteries were developed by combining a LiCoO{sub 2} positive electrode, a Li{sub 4}Ti{sub 5}O{sub 12} negative electrode, and a composite electrolyte. The battery using the composite electrolyte with a higher conductivity exhibited a good charge-discharge characteristic. (author)

  14. Determination of the mechanical behavior of lithium disilicate glass ceramics by nanoindentation and scanning probe microscopy

    International Nuclear Information System (INIS)

    Smith, Calvin M.; Jiang, Danyu; Gong, Jianghong; Yin, Ling

    2014-01-01

    This paper reports on the mechanical behavior of high-strength dental ceramics, lithium disilicate glass ceramics (LDGC) using nanoindentation and in situ scanning probe microscopy (SPM). The nanoindentation hardness and Young's moduli of LDGC were measured as a function of the applied indentation load. The indentation load/size effect (ISE) was analyzed for both measured nanoindentation hardness and Young's moduli. The true hardness, i.e., the load-independent hardness, was determined based on the proportional specimen resistance (PSR) model. Nanoindentation-induced plasticity in LDGC was characterized by in situ SPM imaging of the indented volumes and by measuring pile-up heights of indented cross-sections. The results show that both nanoindentation hardness and Young's modulus are load-dependent following the expended Meyer's law using a power series. At the nanoindentation loads, indented LDGC can be mainly plastically deformed by limiting cracking events. This unusual behavior, for nominally brittle materials, influences the mode of contact damage in applications such as machining, polishing, wear, impact damage and hardness testing for dental restorations. - Highlights: • Both hardness and Young's modulus of LDGC were load-dependent following the expended Meyer's law. • The true hardness of LDGC was determined based on the proportional specimen resistance (PSR) model. • Nanoindentation-induced plasticity in LDGC was characterized by in situ SPM imaging. • At low nanoindentation loads, indented LDGC can be mainly plastically deformed by limiting cracking events

  15. LED and Halogen Light Transmission through a CAD/CAM Lithium Disilicate Glass-Ceramic.

    Science.gov (United States)

    Pereira, Carolina Nemesio de Barros; De Magalhães, Cláudia Silami; Daleprane, Bruno; Peixoto, Rogéli Tibúrcio Ribeiro da Cunha; Ferreira, Raquel da Conceição; Cury, Luiz Alberto; Moreira, Allyson Nogueira

    2015-01-01

    The effect of thickness, shade and translucency of CAD/CAM lithium disilicate glass-ceramic on light transmission of light-emitting diode (LED) and quartz-tungsten-halogen units (QTH) were evaluated. Ceramic IPS e.max CAD shades A1, A2, A3, A3.5, high (HT) and low (LT) translucency were cut (1, 2, 3, 4 and 5 mm). Light sources emission spectra were determined. Light intensity incident and transmitted through each ceramic sample was measured to determine light transmission percentage (TP). Statistical analysis used a linear regression model. There was significant interaction between light source and ceramic translucency (p=0.008) and strong negative correlation (R=-0.845, pceramic thickness and TP. Increasing one unit in thickness led to 3.17 reduction in TP. There was no significant difference in TP (p=0.124) between shades A1 (ß1=0) and A2 (ß1=-0.45) but significant reduction occurred for A3 (ß1=-0.83) and A3.5 (ß1=-2.18). The interaction QTH/HT provided higher TP (ß1=0) than LED/HT (ß1=-2.92), QTH/LT (ß1=-3.75) and LED/LT (ß1=-5.58). Light transmission was more effective using halogen source and high-translucency ceramics, decreased as the ceramic thickness increased and was higher for the lighter shades, A1 and A2. From the regression model (R2=0.85), an equation was obtained to estimate TP value using each variable ß1 found. A maximum TP of 25% for QTH and 20% for LED was found, suggesting that ceramic light attenuation could compromise light cured and dual cure resin cements polymerization.

  16. Titanophosphate glasses as lithium-free nonsilicate pH-responsive glasses—Compatibility between pH responsivity and self-cleaning properties

    International Nuclear Information System (INIS)

    Hashimoto, Tadanori; Wagu, Moe; Kimura, Kentaro; Nasu, Hiroyuki; Ishihara, Atsushi; Nishio, Yuji; Iwamoto, Yasukazu

    2012-01-01

    Highlights: ► Ti 3+ -containing TP glasses are lithium-free nonsilicate pH-responsive ones. ► TP glasses with a large amount of Ti 3+ ions show good pH responsivity. ► TP glasses with pH responsivity and self-cleaning properties are obtained. ► pH response of TP glasses is explained by phase boundary potential model. -- Abstract: Lithium silicate-based glasses have been widely used as commercially available pH glass electrodes. It was revealed that Ti 3+ -containing titanophosphate (TiO 2 –P 2 O 5 , TP) glasses are pH-responsive as lithium-free nonsilicate glasses for the first time. The absorption coefficient at 532 nm, α 532 as a measure of Ti 3+ content in TP glasses increased with increasing melting temperature. TP glasses with large α 532 tended to give low electrical resistivity, high pH sensitivity and the short pH response time. The first post-annealing (oxidation of Ti 3+ ) of TP glasses at 600–620 °C for 60–240 h resulted in the occurrence of the photo-induced hydrophilicity along with the disappearance of pH responsivity and the increase of electrical resistivity. The second post-annealing (reduction of Ti 4+ ) of the first post-annealed TP glasses at 600–620 °C for 48 h under vacuum recovered both pH responsivity and electrical resistivity to the level of the as-prepared TP glasses with maintaining the photo-induced hydrophilicity. Moreover, the second post-annealed TP glasses had photocatalytic activity for methylene blue (MB) comparable to commercially available self-cleaning glass. Thus, TP glasses with the compatibility between pH responsivity and self-cleaning properties were obtained by the sequential post-annealing (oxidation and reduction) of as-prepared glasses. From some circumstantial evidences, pH response of TP glasses was explained in terms of phase boundary potential model related to hopping conduction of electron from Ti 3+ to Ti 4+ via O 2− ion in TP glasses rather than diffusion potential model.

  17. Thermoluminescence responses of photon- and electron-irradiated lithium potassium borate co-doped with Cu+Mg or Ti+Mg

    International Nuclear Information System (INIS)

    Alajerami, Y.S.M.; Hashim, S.; Ramli, A.T.; Saleh, M.A.; Saripan, M.I.; Alzimami, K.; Min Ung, Ngie

    2013-01-01

    New glasses Li 2 CO 3 –K 2 CO 3 –H 3 BO 3 (LKB) co-doped with CuO and MgO, or with TiO 2 and MgO, were synthesized by the chemical quenching technique. The thermoluminescence (TL) responses of LKB:Cu,Mg and LKB:Ti,Mg irradiated with 6 MV photons or 6 MeV electrons were compared in the dose range 0.5–4.0 Gy. The standard commercial dosimeter LiF:Mg,Ti (TLD-100) was used to calibrate the TL reader and as a reference in comparison of the TL properties of the new materials. The dependence of the responses of the new materials on 60 Co dose is linear in the range of 1–1000 Gy. The TL yields of both of the co-doped glasses and TLD-100 are greater for electron irradiation than for photon irradiation. The TL sensitivity of LKB:Ti,Mg is 1.3 times higher than the sensitivity of LKB:Cu,Mg and 12 times less than the sensitivity of TLD-100. The new TL dosimetric materials have low effective atomic numbers, good linearity of the dose responses, excellent signal reproducibility, and a simple glow curve structure. This combination of properties makes them suitable for radiation dosimetry. - Highlights: • Enhancement of about three times has been shown with the increment of MgO. • A comparison was carried out between the TL responses of the prepared dosimeters and TLD-100. • The prepared dosimeters show simple glow curve, low Z material and excellent reproducibility. • The TL measurements show a linear dose response in a long span of exposures. • The electron response shows 1.18 times greater than photon response for the prepared dosimeters

  18. Crystallo-chemistry of boric anhydride and of anhydrous borates

    International Nuclear Information System (INIS)

    Bernardin, Jacques

    1968-01-01

    After an overview of various aspects related to the atomic structure of boron and of its three-bind and four-bind compounds, this report briefly presents the different forms of boric anhydride (in solid, liquid, glassy and gaseous state), presents and comments the structure of these different forms, and addresses the molten boric anhydride which is used as oxide solvent. The next part addresses the structure of anhydrous borates. It presents some generalities on their structure, and describes examples of known structures: dimers, trimers, polymers with a degree higher than three like calcium metaborate, caesium tri-borate, lithium tetraborate, or potassium pentaborate

  19. CRYSTALLIZATION AND THERMAL EXPANSION CHARACTERISTICS OF In2O3-CONTAINING LITHIUM IRON SILICATE-DIOPSIDE GLASSES

    Directory of Open Access Journals (Sweden)

    S.M. SALMAN

    2011-06-01

    Full Text Available The crystallization characteristics of glasses based on lithium iron silicate (LiFeSi2O6-diopside (CaMgSi2O6 composition with addition of Al2O3 at the expense of Fe2O3 were described. The effect of LiInSi2O6/CaMgSi2O6 replacements was also investigated. The thermal treatment, the crystal phases, and the micro-structural properties of (LiFeSi2O6–CaMgSi2O6 glasses, replacing partial Fe2O3 with Al2O3 and partial CaMgSi2O6 with LiInSi2O6, have been studied by a differential thermal analysis, an X-ray diffraction, and a scanning electron microscopy. The glasses show the intense uniform bulkcrystallization with the fine grained microstructure by increasing the replacement of Al2O3/Fe2O3 and LiInSi2O6/CaMgSi2O6. The crystallizing phases of Ca(Fe,Mg(SiO32, a-LiFe5O8, Li2SiO3, a-SiO2 and CaMgSi2O6 are mostly formed together, in most case, with Li0.6Al0.6Si2.4O6, β-eucryptite solid solution, LiInSi2O6, In2Si2O7, and LiFeSi2O6. The Al2O3 partial replacement increases the transformation temperature (Tg and softening one (Ts for the glasses and the glass-ceramics, and decreases the thermal expansion coefficient (a-value for the glasses. The LiInSi2O6 partial replacement decreases Tg and Ts and increases the a-value for the glasses, while the Al2O3 and LiInSi2O6 partial replacements decrease the a-value for the glassceramics. The crystallization characters of the glasses are correlated to the internal structure, as well as role played by the glass-forming cations. However, the one of the glass-ceramics are mainly attributed to the crystalline phases formed in the material.

  20. Lasing transition at 1.06 μm emission in Nd3+ -doped borate-based tellurium calcium zinc niobium oxide glasses for high-power solid-state lasers.

    Science.gov (United States)

    Ravi, O; Prasad, K; Jain, Rajiv; Venkataswamy, M; Chaurasia, Shivanand; Deva Prasad Raju, B

    2017-08-01

    The spectroscopic properties of Tellurium Calcium Zinc Niobium oxide Borate (TCZNB) glasses of composition (in mol%) 10TeO 2  + 15CaO + 5ZnO + 10 Nb 2 O 5  + (60 - x)B 2 O 3  + Nd 2 O 3 (x = 0.1, 0.5, 1.0 or 1.5 mol%) have been investigated experimentally. The three phenomenological intensity parameters Ω 2 , Ω 4, Ω 6 have been calculated using the Judd-Ofelt theory and in turn radiative properties such as radiative transition probabilities, emission cross-sections, branching ratios and radiative lifetimes have been estimated. The trend found in the JO intensity parameter is Ω 2  > Ω 6  > Ω 4 If Ω 6  > Ω 4 , the glass system is favourable for the laser emission 4 F 3 /2  →  4 I 11 /2 in the infrared (IR) wavelength. The experimental values of branching ratio of 4 F 3 /2  →  4 I 11 /2 transition indicate favourable lasing action with low threshold power. The evaluated total radiative transition probabilities (A T ), stimulated emission cross-section (σ e ) and gain bandwidth parameters (σ e  × Δλ p ) were compared with earlier reports. An energy level analysis has been carried out considering the experimental energy positions of the absorption and emission bands. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Mössbauer spectroscopy of ZnxMg1-x Fe2O4 (0 ≤ x ≤ 0.74) nanostructures crystallized from borate glasses

    Science.gov (United States)

    El Shabrawy, S.; Miglierini, M.; Schaaf, P.; Tzankov, D.; Georgieva, M.; Harizanova, R.; Rüssel, C.

    2018-03-01

    Glasses in the system 51.7 B2O3/9.3 K2O/1 P2O5/10.4 Fe2O3/(27.6 - y) MgO/y ZnO (with y = 0, 1, 2.5, 5, 7.5, 10, 13.8, and 20) were prepared by the conventional melt quenching method. The glass samples were thermally treated at 560 °C for 3 h in ambient conditions. Using 57Fe Mössbauer spectroscopy, the effect of the substitution of MgO by ZnO in the glass network and the effect on the precipitated crystallized phase was studied. The results showed that the ratio of Zn2+:Mg2+ in the precipitated crystals increases with the ZnO concentration in the glass. The isomer shift values indicated that iron occurs as Fe3+, which is distributed at the tetrahedral (A) and the octahedral [B] sites. Introducing ZnO leads to a relative increase of the Fe3+ concentration at the B sites at the expense of that occupying the A sites. This indicates the precipitation of ZnxMg1-x Fe2O4 nanoparticles, where Zn2+ ions favorably occupy the A sites. The average hyperfine field of the samples showed a strong dependence on the Zn concentration. At the highest Zn concentration of 13.8 and 20 mol%, the samples are paramagnetic, while for the smaller ones, the samples are superparamagnetic.

  2. Characterization and Exergy Analysis of Triphenyl Borate

    International Nuclear Information System (INIS)

    Acarali, N. B.

    2015-01-01

    In this study, unlike from the literature, boron oxide, borax decahydrate, boric acid and borax pentahydrate as boron sources were used to synthesize Triphenyl Borate (TPB). The reactions of TPB were carried out by using both phenol and various boron sources in inert water-immiscible organic solvent successfully. On the basis of analyzes (FT-IR, SEM, TGA/DSC) obtained, it was seen that phenol acted as a support to borate structure framework and thermal characterisation of the amorphous solid under determined conditions suggested that usage of different boron sources had effects for glass transition temperature in TPB production. The exergy analysis was performed to the TPB production to determine efficiency. The exergy analysis showed that the highest exergy efficiency was obtained by using boron oxide as a boron source. Consequently, all analyses results showed that TPB was produced successfully. Accordingly, characterization and exergy analysis supported each other. (author)

  3. Physical and optical properties of lithium borosilicate glasses doped with Dy3+ ions

    Science.gov (United States)

    Ramteke, D. D.; Gedam, R. S.; Swart, H. C.

    2018-04-01

    The borosilicate glasses with Dy3+ ions were prepared by the melt quench technique with varying concentration of Dy2O3. The glasses were characterized by the density calculation, absorbance and photoluminescence (PL) spectroscopy measurements. Density and molar volume of the glasses increases with increase in Dy3+ ions in the glass matrix. This behavior is correlated with the higher molecular weight and larger ionic radius of Dy3+ ion compared to the other constituents of glass matrix. Emission of Dy3+ doped glasses showed three bands at 482, 573 and at 665 nm which correspond to 6H15/2 (blue), 6H13/2 (yellow) and 6H11/2 (red) transitions. The emission spectra of glasses with different concentration of Dy3+ ions shows that, glasses with 0.5 mol% of Dy2O3 shows highest emission and decreases with further doping. CIE 1931 chromaticity diagram showed that the emission of these glasses was in the white region. Photographs of these glasses under 349 nm Light emitting diode excitation also confirmed the white light emission from these glasses.

  4. Phase transformations in lithium bearing sodiumborosilicate base glass melts for the solidification of HAW

    International Nuclear Information System (INIS)

    Goettlicher, J.

    1994-10-01

    Metastable phase separation has been observed in the Li-bearing basic glass SM58. This observation gave rise to examine the exsolution behaviour in model glasses by chemical substitution. It is impossible to produce metastable phase separation in the Li-free HAW-glasses VG98/12 and VG98/12.2. However, one can't exclude textural changes of Li-bearing glasses, because in a HAW-container the central temperature remains at about 300 C for more than 50 years. For the first time it has been tried to find a relationship between glass textures and structural parameters by combining textural investigations (electron microscopy) with structural determinations (NMR, WAXS). Modell glasses belong to the system (Li, Na) 2 O.B 2 O 3 , (Al 2 O 3 ).n(TO 2 ), with T=Si, Ge and n=2, 4, 6. Furthermore glasses from the KfK and from Mol (PAMELA) were investigated. A newly built apparatus was used to prepare glasses by replica technique (PtIrC oblique shadowing) for TEM investigations. This method turned out to be well suited to study glass textures with features down to 5 nm. Sometimes direct examinations of ion-thinned glasses showed that their textures were affected by radiation damage, caused by accelerated electrons. LVSE-(Low Voltage Scanning Electron)- and AF-(Atomic Force)- microscopy seems to be a promising method for studying glass surfaces and their textures directly. (orig./MM) [de

  5. The effect of variations in translucency and background on color differences in CAD/CAM lithium disilicate glass ceramics.

    Science.gov (United States)

    Al Ben Ali, Abdulaziz; Kang, Kiho; Finkelman, Matthew D; Zandparsa, Roya; Hirayama, Hiroshi

    2014-04-01

    The purpose of this study was to compare the effect of variations in translucency and background on color differences (ΔE) for different shades of computer-aided design and computer-aided manufacturing (CAD/CAM) lithium disilicate glass ceramics. A pilot study suggested n = 10 as an appropriate sample size for the number of lithium disilicate glass ceramic cylinders per group. High-transparency (HT) and low-transparency (LT) cylinders (diameter, 12 mm; length, 13 mm) were fabricated in three ceramic shades (BL1, A2, C3) using CAD/CAM technology and were cut into specimen disks (thickness, 1.2 mm; diameter, 12 mm) for placement on Natural Die (ND1 and ND4) backgrounds. Four combinations of translucency and background color were evaluated in terms of color differences for the three ceramic shades: group 1 (HT ND1, reference), group 2 (HT ND4), group 3 (LT ND1), and group 4 (LT ND4). A spectrophotometer was used to measure the color differences. Nonparametric tests (Kruskal-Wallis tests) were used to evaluate the color differences among the tested groups, and Mann-Whitney U tests with Bonferroni correction were used as post hoc tests. Furthermore, for each ceramic shade, the HT groups were compared to the LT groups using the Mann-Whitney U test. Significant differences were present among the tested groups of the same ceramic shade (p glass ceramic color among the BL1, A2, and C3 ceramic shades. Changing the underlying color from a lighter background to a darker background resulted in increased color differences. © 2013 by the American College of Prosthodontists.

  6. Evaluation of marginal fit of 2 CAD-CAM anatomic contour zirconia crown systems and lithium disilicate glass-ceramic crown.

    Science.gov (United States)

    Ji, Min-Kyung; Park, Ji-Hee; Park, Sang-Won; Yun, Kwi-Dug; Oh, Gye-Jeong; Lim, Hyun-Pil

    2015-08-01

    This study was to evaluate the marginal fit of two CAD-CAM anatomic contour zirconia crown systems compared to lithium disilicate glass-ceramic crowns. Shoulder and deep chamfer margin were formed on each acrylic resin tooth model of a maxillary first premolar. Two CAD-CAM systems (Prettau®Zirconia and ZENOSTAR®ZR translucent) and lithium disilicate glass ceramic (IPS e.max®press) crowns were made (n=16). Each crown was bonded to stone dies with resin cement (Rely X Unicem). Marginal gap and absolute marginal discrepancy of crowns were measured using a light microscope equipped with a digital camera (Leica DFC295) magnified by a factor of 100. Two-way analysis of variance (ANOVA) and post-hoc Tukey's HSD test were conducted to analyze the significance of crown marginal fit regarding the finish line configuration and the fabrication system. The mean marginal gap of lithium disilicate glass ceramic crowns (IPS e.max®press) was significantly lower than that of the CAD-CAM anatomic contour zirconia crown system (Prettau®Zirconia) (Pmarginal discrepancy (Pmarginal gap than the CAD-CAM anatomic contour zirconia crown system (Prettau®Zirconia). In terms of absolute marginal discrepancy, the CAD-CAM anatomic contour zirconia crown system (ZENOSTAR®ZR translucent) had under-extended margin, whereas the CAD-CAM anatomic contour zirconia crown system (Prettau®Zirconia) and lithium disilicate glass ceramic crowns (IPS e.max®press) had overextended margins.

  7. Morphology and orientation of β-BaB{sub 2}O{sub 4} crystals patterned by laser in the inside of samarium barium borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Nishii, Akihito; Shinozaki, Kenji; Honma, Tsuyoshi; Komatsu, Takayuki, E-mail: komatsu@mst.nagaokaut.ac.jp

    2015-01-15

    Nonlinear optical β-BaB{sub 2}O{sub 4} crystal lines (β-BBO) were patterned in the inside of 8Sm{sub 2}O{sub 3}–42BaO–50B{sub 2}O{sub 3} glass by irradiations of continuous-wave Yb:YVO{sub 4} lasers with a wavelength of 1080 nm (power: P=0.8–1.0 W, scanning speed: S=0.2–2.5 μm/s), in which the laser focal position was moved gradually from the surface to the inside. The morphology, size, and orientation of β-BBO crystals were examined from polarization optical microscope and birefringence imaging observations. It was demonstrated that c-axis oriented β-BBO crystals with long lengths (e.g., 20 mm) were patterned in the inside of the glass. The morphology of β-BBO in the cross-section of lines was a rectangular shape with rounded corners, and the volume of β-BBO formed increased with increasing laser power and with decreasing laser scanning speed. The maximum depth in the inside from the surface for β-BBO patterning increased with increasing laser power, e.g., D{sub max}∼100 μm at P=0.8 W, D{sub max}∼170 μm at P=0.9 W, and D{sub max}∼200 μm at P=1 W. The present study proposes that the laser-induced crystallization opens a new door for applied engineering in glassy solids. - Graphical abstract: This figure shows the POM photographs for β-BaB{sub 2}O{sub 4} crystal lines patterned by cw Yb:YVO{sub 4} fiber laser irradiations with a laser power of P=0.8 W and a laser scanning speed S=2 μm/s in the glass. The laser focal point was moved gradually from the surface into the inside. The results shown in Fig. 1 demonstrate that it is possible to pattern highly oriented β-BaB{sub 2}O{sub 4} crystals even in the inside of glasses. - Highlights: • β-BaB{sub 2}O{sub 4} crystal lines were patterned in the inside of a glass by lasers. • Laser focal position was moved gradually from the surface to the inside. • Birefringence imaging was observed. • Morphology, size, and orientation of crystals were clarified. • Crystal lines with long lengths

  8. Evaluation of the gamma radiation shielding parameters of bismuth modified quaternary glass system

    Science.gov (United States)

    Kaur, Parminder; Singh, K. J.; Thakur, Sonika

    2018-05-01

    Glasses modified with heavy metal oxides (HMO) are an interesting area of research in the field of gamma-ray shielding. Bismuth modified lithium-zinc-borate glasses have been studied whereby bismuth oxide is added from 0 to 50 mol%. The gamma ray shielding properties of the glasses were evaluated at photon energy 662 keV with the help of XMuDat computer program by using the Hubbell and Seltzer database. Various gamma ray shielding parameters such as attenuation coefficient, shield thickness in terms of half and tenth value layer, effective atomic number have been studied in this work. A useful comparison of this glass system has been made with standard radiation shielding concretes viz. ordinary, barite and iron concrete. The glass samples containing 20 to 50 mol% bismuth oxide have shown better gamma ray shielding properties and hence have the potential to become good radiation absorbers.

  9. Fatigue failure load of two resin-bonded zirconia-reinforced lithium silicate glass-ceramics: Effect of ceramic thickness.

    Science.gov (United States)

    Monteiro, Jaiane Bandoli; Riquieri, Hilton; Prochnow, Catina; Guilardi, Luís Felipe; Pereira, Gabriel Kalil Rocha; Borges, Alexandre Luiz Souto; de Melo, Renata Marques; Valandro, Luiz Felipe

    2018-06-01

    To evaluate the effect of ceramic thickness on the fatigue failure load of two zirconia-reinforced lithium silicate (ZLS) glass-ceramics, adhesively cemented to a dentin analogue material. Disc-shaped specimens were allocated into 8 groups (n=25) considering two study factors: ZLS ceramic type (Vita Suprinity - VS; and Celtra Duo - CD), and ceramic thickness (1.0; 1.5; 2.0; and 2.5mm). A trilayer assembly (ϕ=10mm; thickness=3.5mm) was designed to mimic a bonded monolithic restoration. The ceramic discs were etched, silanized and luted (Variolink N) into a dentin analogue material. Fatigue failure load was determined using the Staircase method (100,000 cycles at 20Hz; initial fatigue load ∼60% of the mean monotonic load-to-failure; step size ∼5% of the initial fatigue load). A stainless-steel piston (ϕ=40mm) applied the load into the center of the specimens submerged in water. Fractographic analysis and Finite Element Analysis (FEA) were also performed. The ceramic thickness influenced the fatigue failure load for both ZLS materials: Suprinity (716N up to 1119N); Celtra (404N up to 1126N). FEA showed that decreasing ceramic thickness led to higher stress concentration on the cementing interface. Different ZLS glass-ceramic thicknesses influenced the fatigue failure load of the bonded system (i.e. the thicker the glass ceramic is, the higher the fatigue failure load will be). Different microstructures of the ZLS glass-ceramics might affect the fatigue behavior. FEA showed that the thicker the glass ceramic is, the lower the stress concentration at the tensile surface will be. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  10. The influence of Al2O3, MgO and ZnO on the crystallization characteristics and properties of lithium calcium silicate glasses and glass-ceramics

    International Nuclear Information System (INIS)

    Salman, S.M.; Darwish, H.; Mahdy, E.A.

    2008-01-01

    The crystallization characteristics of glasses based on the Li 2 O-CaO-SiO 2 eutectic (954 ± 4 deg. C) system containing Al 2 O 3 , MgO and ZnO has been investigated by differential thermal analysis (DTA), X-ray diffraction analysis (XRD), and scanning electron microscopy (SEM). The partial replacement of Li 2 O by Al 2 O 3 and CaO by MgO or ZnO in the studied glass-ceramics led to the development of different crystalline phase assemblages, including lithium meta- and di-silicates, lithium calcium silicates, α-quartz, diopside, clinoenstatite, wollastonite, β-eucryptite ss, β-spodumene, α-tridymite, lithium zinc orthosilicate, hardystonite and willemite using various heat-treatment processes. The dilatometric thermal expansion of the glasses and their corresponding glass-ceramics were determined. A wide range of thermal expansion coefficient values were obtained for the investigated glasses and their corresponding crystalline products. The thermal expansion coefficients of the investigated glasses were decreased by Al 2 O 3 , MgO or ZnO additions. The α-values of the investigated glasses were ranged from (+18) to (+108) x 10 -7 K -1 (25-300 deg. C), while those of the glass-ceramics were (+3) to (+135) x 10 -7 K -1 (25-700 deg. C). The chemical durability of the glass-ceramics, towards the attack of 0.1N HCl solution, was markedly improved by Al 2 O 3 with MgO replacements. The composition containing 11.5 mol% Al 2 O 3 and 6.00 mol% MgO exhibited low thermal expansion values and good chemical durability

  11. The mechanism of deceleration of nucleation and crystal growth by the small addition of transition metals to lithium disilicate glasses

    Science.gov (United States)

    Thieme, Katrin; Avramov, Isak; Rüssel, Christian

    2016-01-01

    The addition of small amounts of niobium or tantalum oxide to lithium disilicate glass provokes a drastic decrease of the steady-state nucleation rates and the crystal growth velocities. The viscosity of the residual glassy matrix is considered as a function of the crystallization degree in the course of a non-isothermal crystallization. For simplification, a homogeneous distribution of the added oxides in the glass matrix is assumed. While the viscosity initially decreases, it significantly increases again for higher crystallization degrees hindering crystal growth. However, it was shown that the additives are enriched at the crystal interface. Several possible reasons for the inhibition of nucleation and growth kinetics such as viscosity, interfacial energy crystal/glassy phase, thermodynamic driving force or impingement rate are discussed. Since the crystallization front is blocked by the additives the impingement rate is decreased with increasing additive concentration. Since small concentrations of Nb2O5 and Ta2O5 have a drastic effect on the nucleation, these components should be enriched at the interface crystal/glass. This will only take place, if it leads to a decrease in the interfacial energy. Since this effect alone should result in an increase of the nucleation rate, it must be overcompensated by kinetic effects. PMID:27150844

  12. An on-line monitor for cation exchange elution chromatography using lithium silicate glass beads as solid scintillator

    International Nuclear Information System (INIS)

    Zhu Rongbao; Yang Liucheng; Wei Liansheng; Ji Liqiang; Zhang Zengrui

    1988-03-01

    A new type of on-line monitoring system used to monitor radioactive nuclides with α or soft β radiation in the effluent from a high pressure ion exchange column is described. The beads made of cerium-impregnated lithium silicate glass are used as scientillation material. They are filled into a quartz glass tube to form a flow cell. By reducing the diameter of glass beads to more closly approximate the average range of α or soft β radiation in solution, the absolute counting efficiency for 241 Am, 242 Cm α radiation have reached and 85.8% and 92.8% respectively, for 14 C, 90 Sr- 90 Y β radiation, 62.1% and 88.6% respectively. These values can be comparable to those achieved with on-line liquid scientillation technique. When the total amount of 241 Am added into column is decreased to 7.4 Bq it is still possible to obtain a clear chromatography peak (half peak width = 0.22 mL)

  13. Dynamic colour and utilizable white fluorescence from Eu/Tb ions codoped lithium-yttrium-aluminium-silicate glasses

    International Nuclear Information System (INIS)

    Shen Lifan; Liu Xiao; Chen Baojie; Lin Hai; Pun, Edwin Yue Bun

    2012-01-01

    A group of dynamic-colour white fluorescences with various colour temperatures that can be applied to circadian lighting are achieved in Eu/Tb-codoped lithium-yttrium-aluminium-silicate (LYAS) glasses, which can be attributed to the simultaneous generation of three primary colours emitting from Eu 3+ (red), Eu 2+ (blue) and Tb 3+ (green) by varying the ultraviolet (UV) radiation wavelength. Fluorescence colour coordinates pass through the whole white region of the CIE x, y chromaticity diagram when the UV excitation wavelength is increased from 300 to 370 nm. A favourable white light with colour coordinates (0.338, 0.298) close to the equal energy white is obtained under 360 nm excitation. These results indicate that the Eu/Tb-codoped LYAS glasses are a promising candidate to develop white lighting devices under the excitation of commercial UV light-emitting diodes, and a smart lighting system based on rare-earth doped glasses will be a potential illumination source offering controllability of the colour temperature that can adjust to specific environments and requirements, and benefit human health, well-being and productivity. (paper)

  14. Synthesis and characterization of cadmium doped lead–borate ...

    Indian Academy of Sciences (India)

    Unknown

    Mater. Sci., Vol. 29, No. 1, February 2006, pp. 55–58. © Indian Academy of Sciences. 55. Synthesis and characterization of cadmium doped lead–borate glasses. A A ALEMI*, H SEDGHI†, A R MIRMOHSENI and V GOLSANAMLU. Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.

  15. Flexural strength and microstructure of two lithium disilicate glass ceramics for CAD/CAM restoration in the dental clinic

    Directory of Open Access Journals (Sweden)

    Suk-Ho Kang

    2013-08-01

    Full Text Available Objectives There has been a growing interest in glass ceramic systems with good esthetics, high fracture resistance and bonding durability, and simplified fabrication techniques using CAD/CAM. The aim of this study is to compare flexural strength before and after heat treatment of two lithium disilicate CAD/CAM blocks, IPS e.max CAD (Ivoclar Vivadent and Rosetta SM (Hass, and to observe their crystalline structures. Materials and Methods Biaxial flexural strength was tested according to ISO 6872 with 20 disc form specimens sliced from each block before and after heat treatment. Also, the crystalline structures were observed using field-emission scanning microscopy (FE-SEM, Hitachi and x-ray diffraction (XRD, Rigaku analysis. The mean values of the biaxial flexural strength were analyzed by the Mann-Whitney U test at a significance level of p = 0.05. Results There were no statistically significant differences in flexural strength between IPS e.max CAD and Rosetta SM either before heat treatment or after heat treatment. For both ceramics, the initial flexural strength greatly increased after heat treatment, with significant differences (p < 0.05. The FE-SEM images presented similar patterns of crystalline structure in the two ceramics. In the XRD analysis, they also had similar patterns, presenting high peak positions corresponding to the standard lithium metasilicate and lithium disilicate at each stage of heat treatment. Conclusions IPS e.max CAD and Rosetta SM showed no significant differences in flexural strength. They had a similar crystalline pattern and molecular composition.

  16. Optical characterization of Eu3+ and Tb3+ ions doped cadmium lithium alumino fluoro boro tellurite glasses.

    Science.gov (United States)

    Raju, K Vemasevana; Sailaja, S; Raju, C Nageswara; Reddy, B Sudhakar

    2011-06-01

    This article reports on the development and spectral results of Eu(3+) and Tb(3+) ions doped cadmium lithium alumino fluoro boro tellurite (CLiAFBT) glasses in the following composition. 40TeO2-30B2O3-10CdO-10Li2O-10AlF3 (Hostglass) (40-x)TeO2-30B2O3-10CdO-10Li2O-10AlF3-xEu2O3 (40-x)TeO2-30B2O3-10CdO-10Li2O-10AlF3-xTb4O7 where x=0.25, 0.50, 0.75, 1.0, 1.25 mol%. Glass amorphous nature and thermal properties have been studied using the XRD and DSC profiles. From the emission spectra of Eu(3+):glasses, five emission transitions have been observed at 578 nm, 592 nm, 612 nm, 653 nm, 701 nm and are assigned to the transitions (5)D(0)→(7)F(0), (7)F(1,)(7)F(2), (7)F(3) and (7)F(4), respectively, with λ(exci)=392 nm ((7)F(0)→(5)L(6)). In case of Tb(3+):glasses, four emission transitions ((5)D(4)→(7)F(6,)(7)F(5), (7)F(4) and (7)F(3)) are observed at 488 nm, 543 nm, 584 nm and 614 nm, respectively, with λ(exci)=376 nm. Decay curves and energy level diagrams have been plotted to evaluate the life times and to analyze the emission mechanism. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Ferroelectricity of strained SrTiO3 in lithium tetraborate glass-nanocomposite and glass-ceramic

    Science.gov (United States)

    Abdel-Khalek, E. K.; Mohamed, E. A.; Kashif, I.

    2018-02-01

    Glass-nanocomposite (GNCs) sample of the composition [90Li2B4O7-10SrTiO3] (mol %) was prepared by conventional melt quenching technique. The glassy phase and the amorphous nature of the GNCs sample were identified by Differential thermal analysis (DTA) and X-ray diffraction (XRD) studies, respectively. DTA of the GNCs exhibits sharp and broad exothermic peaks which represent the crystallization of Li2B4O7 and SrTiO3, respectively. The tetragonal Li2B4O7 and tetragonal SrTiO3 crystalline phases in glass-ceramic (GC) were identified by XRD and scanning electron microscopic (SEM). The strain tetragonal SrTiO3 phase in GNCs and GC has been confirmed by SEM. The values of crystallization activation energies (Ec1 and Ec2) for the first and second exothermic peaks are equal to 174 and 1452 kJ/mol, respectively. The Ti3+ ions in tetragonal distorted octahedral sites in GNCs were identified by optical transmission spectrum. GNCs and GC samples exhibit broad dielectric anomalies at 303 and 319 K because of strained SrTiO3 ferroelectric, respectively.

  18. The role of lead oxide on structural and physical properties of lithium diborate glasses

    International Nuclear Information System (INIS)

    Kashif, I.; Abd El-Maboud, A.; El-said, R.; Sakr, E.M.; Soliman, A.A.

    2012-01-01

    Highlights: ► We prepare Li 2 B 4 O 7 –Pb 3 O 4 glass samples by the quenched method as bulk. ► The effects of substitution Li 2 B 4 O 7 with Pb 3 O 4 in glass composition are studied. ► The structure, density, Vickers hardness, glass transition temperature and electrical properties have been influenced by these substitution. - Abstract: Pseudo-binary (100 − x)Li 2 B 4 O 7 –xPb 3 O 4 , with x = 0–70 mol% PbO have been prepared and their properties investigated. The glass transition temperature, density and molar volume have been determined as a function of composition. The values of T g and the molar volume decrease non-linearly while the density increases as the Pb 3 O 4 content is raised. Infrared spectra of the glasses reveal that a strong network consisting of diborate units breaks up by the addition of Pb 3 O 4 . The absorption bands below 620 cm −1 show that PbO is one of the network formers of the glasses 70 ⩾ Pb 3 O 4 ⩾ 10; as they can be associated with vibrations of (PbO 4 ) 2− grouping. PbO plays a dual role in the glass network. The calculated values of N 4 [the fraction of borons which are tetrahedral] slightly decrease with PbO content up to 30 mol% and then increase with Pb 3 O 4 content up to 50 mol%, then followed by a decrease as the Pb 3 O 4 content rises further. The Vickers hardness of the glasses varies as a function of the PbO content in the same manner as the variation of N 4 . The dc conductivity decreases with the Pb 3 O 4 concentration up to about 30 mol% and then increases thereafter.

  19. Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds

    Science.gov (United States)

    Khan, Pintu Kumar; Mahato, Arnab; Kundu, Biswanath; Nandi, Samit K.; Mukherjee, Prasenjit; Datta, Someswar; Sarkar, Soumya; Mukherjee, Jayanta; Nath, Shalini; Balla, Vamsi K.; Mandal, Chitra

    2016-01-01

    Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering. PMID:27604654

  20. Ion transport studies in lithium phospho-molybdate glasses containing Cl{sup −} ion

    Energy Technology Data Exchange (ETDEWEB)

    Gowda, V.C. Veeranna [Department of Physics, Government College for Women, Chintamani (India); Chethana, B.K. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore (India); Reddy, C. Narayana, E-mail: nivetejareddy@gmail.com [Department of Physics, Maharani' s Science College for Women, Bangalore (India)

    2013-07-01

    Highlights: • Addition of LiCl creates more conducting channels for Li{sup +} ion movement. • The decrease in E{sub dc} with increasing LiCl concentration could be due to Li{sup +} ions present in the columbic wells surrounded by Cl{sup −} ions are expected to be shallow. • Examined the power law fits using both two term and three term equation with fixed and floated parameters. -- Abstract: Ion conducting glasses in xLiCl–20Li{sub 2}O–(80−x) [0.80P{sub 2}O{sub 5}–0.20MoO{sub 3}] glass system have been prepared over a wide range of composition (X = 5, 10, 15, 20 and 25 mol%). The electrical conductivity and dielectric relaxation of these glasses were analyzed using impedance spectroscopy in the frequency range of 10 Hz–10 MHz and in the temperature range of 313–353 K. D.c. activation energies extracted from Arrhenius plots using regression analysis, decreases with increasing LiCl mol%. A.c. conductivity data has been fitted to both single and double power law equation with both fixed and variable parameters. The increased conductivity in the present glass system has been correlated with the volume increasing effect and the coordination changes that occur due to structural modification resulting in the creation of non-bridging oxygens (NBO's) of the type O-Mo-O{sup −} bonds in the glass network. Dielectric relaxation mechanism in these glasses is analyzed using Kohlrausch–Williams–Watts (KWW) stretched exponential function and stretched exponent (β) is found to be insensitive to temperature.

  1. Ion transport studies in lithium phospho-molybdate glasses containing Cl− ion

    International Nuclear Information System (INIS)

    Gowda, V.C. Veeranna; Chethana, B.K.; Reddy, C. Narayana

    2013-01-01

    Highlights: • Addition of LiCl creates more conducting channels for Li + ion movement. • The decrease in E dc with increasing LiCl concentration could be due to Li + ions present in the columbic wells surrounded by Cl − ions are expected to be shallow. • Examined the power law fits using both two term and three term equation with fixed and floated parameters. -- Abstract: Ion conducting glasses in xLiCl–20Li 2 O–(80−x) [0.80P 2 O 5 –0.20MoO 3 ] glass system have been prepared over a wide range of composition (X = 5, 10, 15, 20 and 25 mol%). The electrical conductivity and dielectric relaxation of these glasses were analyzed using impedance spectroscopy in the frequency range of 10 Hz–10 MHz and in the temperature range of 313–353 K. D.c. activation energies extracted from Arrhenius plots using regression analysis, decreases with increasing LiCl mol%. A.c. conductivity data has been fitted to both single and double power law equation with both fixed and variable parameters. The increased conductivity in the present glass system has been correlated with the volume increasing effect and the coordination changes that occur due to structural modification resulting in the creation of non-bridging oxygens (NBO's) of the type O-Mo-O − bonds in the glass network. Dielectric relaxation mechanism in these glasses is analyzed using Kohlrausch–Williams–Watts (KWW) stretched exponential function and stretched exponent (β) is found to be insensitive to temperature

  2. Effects of /sup 60/Co gamma radiation damage and heat treatment on the electro-mechanical properties of some related lithium alumino-borosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Abou Sekkina, M.M.; Gohar, I.A.; Megahed, A.A. (Al-Azhar Univ., Tanta (Egypt). Faculty of Science; Cairo Univ., El Mansura (Egypt). Faculty of Science)

    1985-01-01

    Various samples of pure lithium alumino-borosilicate glasses have been prepared and annealed. Data have been taken on the temperature dependence of DC electrical conductivity and the activation energy for conduction was evaluated in each case. Vickers hardness data have also been obtained as a function of tempering temperature and time for all glass compositions. Co-ordinated explanations of the DC conductivity and Vickers hardness induced by ionizing radiation are put forward and the activation energy for the process of carrier liberation are evaluated for the first time.

  3. Effect of adhesive luting on the fracture resistance of zirconia compared to that of composite resin and lithium disilicate glass ceramic

    Directory of Open Access Journals (Sweden)

    Myung-Jin Lim

    2017-02-01

    Full Text Available Objectives The purpose of this study was to evaluate the effect of adhesive luting on the fracture resistance of zirconia compared to that of a composite resin and a lithium disilicate glass ceramic. Materials and Methods The specimens (dimension: 2 mm × 2 mm × 25 mm of the composite resin, lithium disilicate glass ceramic, and yttria-stabilized tetragonal zirconia polycrystal (Y-TZP were prepared. These were then divided into nine groups: three non-luting groups, three non-adhesive luting groups, and three adhesive luting groups, for each restorative material. In the non-luting groups, specimens were placed on the bovine tooth without any luting agents. In the non-adhesive luting groups, only zinc phosphate cement was used for luting the specimen to the bovine tooth. In the adhesive luting groups, specimens were pretreated, and the adhesive luting procedure was performed using a self-adhesive resin cement. For all the groups, a flexural test was performed using universal testing machine, in which the fracture resistance was measured by recording the force at which the specimen was fractured. Results The fracture resistance after adhesive luting increased by approximately 29% in the case of the composite resin, 26% in the case of the lithium disilicate glass ceramic, and only 2% in the case of Y-TZP as compared to non-adhesive luting. Conclusions The fracture resistance of Y-TZP did not increased significantly after adhesive luting as compared to that of the composite resin and the lithium disilicate glass ceramic.

  4. Effect of Heat-Pressing Temperature and Holding Time on the Microstructure and Flexural Strength of Lithium Disilicate Glass-Ceramics

    Science.gov (United States)

    Gao, Jing; Wang, Hui; Chen, Jihua

    2015-01-01

    The present study aimed to evaluate the influence of various heat-pressing procedures (different holding time and heat pressing temperature) on the microstructure and flexural strength of lithium disilicate glass ceramic. An experimental lithium silicate glass ceramic (ELDC) was prepared from the SiO2-Li2O-K2O-Al2O3-ZrO2-P2O5 system and heat-pressed following different procedures by varying temperature and holding time. The flexural strength was tested and microstructure was analyzed. The relationships between the microstructure, mechanical properties and heat-pressing procedures were discussed in-depth. Results verified the feasibility of the application of dental heat-pressing technique in processing the experimental lithium disilicate glass ceramic. Different heat-pressing procedures showed significant influence on microstructure and flexural strength. ELDC heat-pressed at 950℃ with holding time of 15 min achieved an almost pore-free microstructure and the highest flexural strength, which was suitable for dental restorative application. PMID:25985206

  5. Effect of heat-pressing temperature and holding time on the microstructure and flexural strength of lithium disilicate glass-ceramics.

    Directory of Open Access Journals (Sweden)

    Fu Wang

    Full Text Available The present study aimed to evaluate the influence of various heat-pressing procedures (different holding time and heat pressing temperature on the microstructure and flexural strength of lithium disilicate glass ceramic. An experimental lithium silicate glass ceramic (ELDC was prepared from the SiO2-Li2O-K2O-Al2O3-ZrO2-P2O5 system and heat-pressed following different procedures by varying temperature and holding time. The flexural strength was tested and microstructure was analyzed. The relationships between the microstructure, mechanical properties and heat-pressing procedures were discussed in-depth. Results verified the feasibility of the application of dental heat-pressing technique in processing the experimental lithium disilicate glass ceramic. Different heat-pressing procedures showed significant influence on microstructure and flexural strength. ELDC heat-pressed at 950℃ with holding time of 15 min achieved an almost pore-free microstructure and the highest flexural strength, which was suitable for dental restorative application.

  6. Effect of Silanization on Microtensile Bond Strength of Different Resin Cements to a Lithium Disilicate Glass Ceramic.

    Science.gov (United States)

    Gré, Cristina Parise; de Ré Silveira, Renan C; Shibata, Shizuma; Lago, Carlo Tr; Vieira, Luiz Cc

    2016-02-01

    This study evaluated the influence of a silane-coupling agent on the bond strength of a self-adhesive cement and a conventional resin cement to a lithium disilicate glass ceramic. A total of eight ceramic blocks were fabricated and divided into four groups (n = 2). In groups 1 and 3, ceramic surfaces were etched with hydrofluoric acid 10% for 20 seconds, rinsed for 30 seconds, and air-dried. One layer of a silane agent was applied onto all ceramic specimens and air-dried for 30 seconds. In groups 2 and 4, ceramic surfaces were etched with hydrofluoric acid, rinsed, and air-dried without application of the silane-coupling agent. The ceramic blocks were bonded to a block of composite with a self-adhesive resin cement or with a conventional resin cement, according to the manufacturer's instructions. After 24 hours in distilled water at 37°C, the specimens were sectioned perpendicular to the bonding interface area to obtain beams with a bonding area of 0.8 mm(2) and submitted to a microtensile bond strength test at a crosshead speed of 0.5 mm/min. Data were statistically analyzed with one-way analysis of variance and the Games-Howell post hoc test (p = 0.05). Fractured specimens were examined under optical microscopy at 40x magnification. Silanization resulted in higher microtensile bond strength compared to groups without silane. No significant differences were found between the conventional resin cement and the self-adhesive resin cement with silane agent (p = 0.983), and without silane agent (p = 0.877). Silanization appears to be crucial for resin bonding to a lithium disilicate-based ceramic, regardless of the resin cement used. The self-adhesive resin cement performed as well as the conventional resin cement. Applying one layer of a silane-coupling agent after etching the ceramic surface with hydrofluoric acid 10% enhanced the bond strength between resin cements and a glass ceramic.

  7. Effect of nanocrystallization on the electrical conduction of silver lithium phosphate glasses containing iron and vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Hassaan, M. Y., E-mail: myhassaan@yahoo.com [Al-Azhar University, Physics Department, Faculty of Science (Egypt); El-Desoky, M. M. [Suez Canal University, Physics Department, Faculty of Science (Egypt); Masuda, H.; Kubuki, S. [Tokyo Metropolitan University, Department of Chemistry, Graduate School of Science and Engineering (Japan); Nishida, T. [Kinki University, Department of Biological and Environmental Chemistry, Faculty of Humanity-Oriented Science and Engineering (Japan)

    2012-03-15

    xLi{sub 2}O{center_dot}(20-x)Ag{sub 2}O{center_dot}20Fe{sub 2}O{sub 3}{center_dot}60P{sub 2}O{sub 5} glasses (x = 0, 5, 10, 15 and 20 mol%) and 5Ag{sub 2}O{center_dot}15Li{sub 2}O{center_dot}5V{sub 2}O{sub 5}{center_dot}15Fe{sub 2}O{sub 3}{center_dot}60P{sub 2}O{sub 5} glass were prepared by melt-quenching of the reagent mixture at 1000 Degree-Sign C. Glass transition temperature (T{sub g}) and crystallization temperature (T{sub c}) of these samples were determined by differential thermal analysis (DTA). It proved that T{sub g} increased with Li{sub 2}O content. XRD of as-quenched glasses confirmed their amorphous nature. XRD of samples heat treated for one hour at temperature near their T{sub c}, indicated nanocrystals precipitated in the glassy matrix with an average particle size of 35 nm. Moessbauer results revealed that the relative fraction of Fe{sup 2 + } was decreased with an increasing Li{sub 2}O content. The isomer shift values of Fe{sup 3 + } lie in a range of 0.38-0.45 mm s{sup - 1}, while those for Fe{sup 2 + } were 1.10-1.31 mm s{sup - 1}. Heat-treated sample of 5Ag{sub 2}O{center_dot}15Li{sub 2}O{center_dot}5V{sub 2}O{sub 5}{center_dot}15Fe{sub 2}O{sub 3}{center_dot}60P{sub 2}O{sub 5} glass exhibit an enhancement of the electrical conductivity by three orders of magnitude due to the 3d-electron (polaron) hopping from V{sup 4 + } to V{sup 5 + } in the 'vanadate glass' units.

  8. Electronic polarizability, optical basicity and interaction parameter for Nd{sub 2}O{sub 3} doped lithium-zinc-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Algradee, M.A.; Sultan, M.; Samir, O.M.; Alwany, A.E.B. [Ibb University, Department of Physics, Faculty of Science, Ibb (Yemen)

    2017-08-15

    The Nd{sup 3+}-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd{sub 2}O{sub 3} content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system. (orig.)

  9. Lithium-Ion Mobility in Quaternary Boro-Germano-Phosphate Glasses.

    Science.gov (United States)

    Moguš-Milanković, Andrea; Sklepić, Kristina; Mošner, Petr; Koudelka, Ladislav; Kalenda, Petr

    2016-04-28

    Effect of the structural changes, electrical conductivity, and dielectric properties on the addition of a third glass-former, GeO2, to the borophosphate glasses, 40Li2O-10B2O3-(50 - x)P2O5-xGeO2, x = 0-25 mol %, has been studied. Introduction of GeO2 causes the structural modifications in the glass network, which results in a continuous increase in electrical conductivity. Glasses with low GeO2 content, up to 10 mol %, show a rapid increase in dc conductivity as a result of the interlinkage of slightly depolymerized phosphate chains and negatively charged [GeO4](-) units, which enhances the migration of Li(+) ions. The Li(+) ions compensate these delocalized charges connecting both phosphate and germanium units, which results in reduction of both bond effectiveness and binding energy of Li(+) ions and therefore enables their hop to the next charge-compensating site. For higher GeO2 content, the dc conductivity increases slightly, tending to approach a maximum in Li(+) ion mobility caused by the incorporation of GeO2 units into phosphate network combined with conversion of GeO4 to GeO6 units. The strong cross-linkage of germanium and phosphate units creates heteroatomic P-O-Ge bonds responsible for more effectively trapped Li(+) ions. A close correspondence between dielectric and conductivity parameters at high frequencies indicates that the increase in conductivity indeed is controlled by the modification of structure as a function of GeO2 addition.

  10. Improved ionic conductivity of lithium-zinc-tellurite glass-ceramic electrolytes

    Science.gov (United States)

    Widanarto, W.; Ramdhan, A. M.; Ghoshal, S. K.; Effendi, M.; Cahyanto, W. T.; Warsito

    An enhancement in the secondary battery safety demands the optimum synthesis of glass-ceramics electrolytes with modified ionic conductivity. To achieve improved ionic conductivity and safer operation of the battery, we synthesized Li2O included zinc-tellurite glass-ceramics based electrolytes of chemical composition (85-x)TeO2·xLi2O·15ZnO, where x = 0, 5, 10, 15 mol%. Samples were prepared using the melt quenching method at 800 °C followed by thermal annealing at 320 °C for 3 h and characterized. The effects of varying temperature, alternating current (AC) frequency and Li2O concentration on the structure and ionic conductivity of such glass-ceramics were determined. The SEM images of the annealed glass-ceramic electrolytes displayed rough surface with a uniform distribution of nucleated crystal flakes with sizes less than 1 μm. X-ray diffraction analysis confirmed the well crystalline nature of achieved electrolytes. Incorporation of Li2O in the electrolytes was found to generate some new crystalline phases including hexagonal Li6(TeO6), monoclinic Zn2Te3O8 and monoclinic Li2Te2O5. The estimated crystallite size of the electrolyte was ranged from ≈40 to 80 nm. AC impedance measurement revealed that the variation in the temperatures, Li2O contents, and high AC frequencies have a significant influence on the ionic conductivity of the electrolytes. Furthermore, electrolyte doped with 15 mol% of Li2O exhibited the optimum performance with an ionic conductivity ≈2.4 × 10-7 S cm-1 at the frequency of 54 Hz and in the temperature range of 323-473 K. This enhancement in the conductivity was attributed to the sizable alteration in the ions vibration and ruptures of covalent bonds in the electrolytes network structures.

  11. Influence of samarium ions (Sm3+) on the optical properties of lithium zinc phosphate glasses

    Science.gov (United States)

    Shwetha, M.; Eraiah, B.

    2018-05-01

    New glass samples with composition xSm2O3-(15-x) Li2O-45ZnO-40P2O5, where x= 0, 0.1, 0.3 and 0.5 mol % are prepared by conventional melt-quenching method. X-ray Diffraction measurements were performed to confirm their amorphous nature. Densities of these glasses were measured by Archimedes method. Optical properties were studied using optical absorption spectra which was recorded at room temperature in the UV-Vis region. Electronic transitions specific to the rare earth ion were observed from the UV-Visible spectroscopy. Optical direct band gap and indirect band gap energies were measured and their values were found to be between 4.23-4.74 eV and 3.02-3.67 eV, respectively. Refractive index has been measured with respect to different concentrations of Sm2O3. Polaron radius, inter-nuclear distance, field strength, dielectric constant and polarizability of oxide ions have been calculated. Fluorescence spectroscopy measurements have been performed by excitation in the UV-Visible range, which resulted in the significant fluorescence peaks. The luminescence color of the glass system has been characterized using Commission International de l'Eclairage de France 1931 chromaticity diagram.

  12. Effect of lithium addition on thermal and optical properties of zinc-tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, E.A., E-mail: emanattamohammed@yahoo.com [Department of Physics, Faculty of Science (Girl' s Branch), Al Azhar University, Nasr City, Cairo (Egypt); Ahmad, F. [Department of Physics, Faculty of Science (Girl' s Branch), Al Azhar University, Nasr City, Cairo (Egypt); Aly, K.A. [Physics Department, Faculty of Science, Al-Azhar University, P.O 71452, Assiut (Egypt); Physics Department, Faculty of Science and Arts, King Abdulaziz University (KAU), Khulais (Saudi Arabia)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer (80-x)TeO{sub 2}-x Li{sub 2}O-20ZnO) (0 Less-Than-Or-Slanted-Equal-To x Less-Than-Or-Slanted-Equal-To 10) glasses were prepared by melt quenching method. Black-Right-Pointing-Pointer FTIR results revealed that the glassy matrix is composed of TeO{sub 3}, TeO{sub 4} and ZnO{sub 4} units. Black-Right-Pointing-Pointer Some physical properties as a function of Li{sub 2}O content have been evaluated. - Abstract: Glasses with the composition, (80-x)TeO{sub 2}-xLi{sub 2}O-20ZnO with x = 0, 5 and 10 (in mol%), were prepared by conventional melt quenching method. Properties such as density, molar volume, glass transition activation energy, crystallization activation energy and thermal stability as a function of Li{sub 2}O content are reported. FTIR results revealed that the glassy matrix is composed of TeO{sub 3}, TeO{sub 3+1}, TeO{sub 4} units and ZnO{sub 4} structural units. The optical transmission studies revealed that the {lambda}{sub cutoff} wavelength and optical band gap energy (E{sub opt}) decreases with the addition and increase of Li{sub 2}O content while Urbach energy (E{sub 0}) and refractive index increases.

  13. Method for ultimate disposition of borate containing radioactive wastes by vitrification

    International Nuclear Information System (INIS)

    Bege, D.; Faust, H.J.; Puthawala, A.; Stunkel, H.

    1984-01-01

    Method for the ultimate disposition of radioactive wastes by vitrification, in which weak to medium radioactive waste concentrates from borate-containing radioactive liquids are mixed with added glass-forming materials, maximally in a ratio of 1:3, and the mixture heated to obtain a glass-forming melt

  14. Copper doped borate dosimeters revisited

    Energy Technology Data Exchange (ETDEWEB)

    Alajerami, Y.S.M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Department of Medical Radiography, Al-Azhar University, Gaza Strip, Palestine (Country Unknown); Hashim, S., E-mail: suhairul@utm.my [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Oncology Treatment Centre, Sultan Ismail Hospital, 81100 Johor Bahru (Malaysia); Ghoshal, S.K. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Bradley, D.A. [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mhareb, M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Saleh, M.A. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); National Atomic Energy Commission (NATEC), Sana' a (Yemen)

    2014-11-15

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu{sup +} and Cu{sup ++}) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu{sup +} ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated

  15. Copper doped borate dosimeters revisited

    International Nuclear Information System (INIS)

    Alajerami, Y.S.M.; Hashim, S.; Ghoshal, S.K.; Bradley, D.A.; Mhareb, M.; Saleh, M.A.

    2014-01-01

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu + and Cu ++ ) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu + ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated technique in borate

  16. Ion transport properties of lithium ionic liquids and their ion gels

    International Nuclear Information System (INIS)

    Shobukawa, Hitoshi; Tokuda, Hiroyuki; Susan, Md. Abu Bin Hasan; Watanabe, Masayoshi

    2005-01-01

    A new series of lithium ionic liquids were prepared by introducing of two electron-withdrawing trifluoroacetyl groups in borate salts containing two methoxy-oligo(ethylene oxide) groups in the structures. Successive substitution reactions of oligo-ethylene glycol monomethyl ether and trifluroacetic acid from LiBH 4 yielded the lithium salts, which were clear and colorless liquids at room temperature. The fundamental physicochemical properties, such as density, thermal property, viscosity, ionic conductivity, self-diffusion coefficients, and electrochemical stability, were measured. The lithium ionic liquids had self-dissociation ability and conducted ions even in the absence of organic solvents. New polymer electrolytes, named 'ion gels', were prepared by radical cross-linking reactions of a poly(ethylene oxide-co-propylene oxide)tri-acrylate macromonomer in the presence the lithium ionic liquid. An increase in the glass transition temperatures (T g ) of the ion gels was very small even with increasing lithium ionic liquid concentration, and the T g 's were lower than that of the ionic liquid itself. The ionic conductivity of the ion gels surpassed that of the lithium ionic liquid in the bulk at certain compositions

  17. Effect of zircon-based tricolor pigments on the color, microstructure, flexural strength and translucency of a novel dental lithium disilicate glass-ceramic.

    Science.gov (United States)

    Yuan, Kun; Wang, Fu; Gao, Jing; Sun, Xiang; Deng, Zai-Xi; Wang, Hui; Jin, Lei; Chen, Ji-Hua

    2014-01-01

    The purpose of this study was to investigate the effect of zircon-based tricolor pigments (praseodymium zircon yellow, ferrum zircon red, and vanadium zircon blue) on the color, thermal property, crystalline phase composition, microstructure, flexural strength, and translucency of a novel dental lithium disilicate glass-ceramic. The pigments were added to the glass frit, milled, pressed, and sintered. Ninety monochrome samples were prepared and the colors were analyzed. The effect of the pigments on thermal property, crystalline phase composition, and microstructure were determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM), respectively. Addition of the pigments resulted in the acquisition of subtractive primary colors as well as tooth-like colors, and did not demonstrate significant effects on the thermal property, crystalline phase composition, microstructure, and flexural strength of the experimental glass-ceramic. Although significant differences (p ceramics, the translucencies of the latter were sufficient to fabricate dental restorations. These results indicate that the zircon-based tricolor pigments can be used with dental lithium disilicate glass-ceramic to produce abundant and predictable tooth-like colors without significant adverse effects, if mixed in the right proportions. Copyright © 2013 Wiley Periodicals, Inc.

  18. Fracture-free surfaces of CAD/CAM lithium metasilicate glass-ceramic using micro-slurry jet erosion.

    Science.gov (United States)

    Yin, Ling; Baba, Takashi; Nakanishi, Yoshitaka

    2018-04-01

    This paper reports the use of micro-slurry jet erosion (MSJE) on CAD/CAM lithium mesilicate glass ceramic (LMGC) that is capable of achieving the fracture-free surface quality. A computer-controlled MSJE process using a low-pressure and low-concentration alumina slurry was applied to diamond-ground LMGC surfaces with surface and subsurface damage. The MSJE processed and diamond-ground LMGC surfaces were examined using scanning electron microscopy (SEM) to examine surface morphology, fractures, and residual defects. 3D confocal laser microscopy (CLM) was used to quantitatively characterize all machined surface textures as a function of processing conditions. Our results show that surface and subsurface damage induced in diamond-ground surfaces were significantly diminished after 50-cycle MSJE processing. Fracture-free surfaces were obtained after 100 MSJE cycles. Our measured parameters of the 3D surface topography included the average surface roughness, maximum peak-valley height, highest peak height, lowest valley height, and kurtosis and absolute skewness of height distributions. All these parameters were significantly reduced with the increase of MSJE cycles. This work implies that MSJE promises to be an effective manufacturing technique for the generation of fracture-free LMGC surfaces which are crucial for high-quality monolithic restorations made from the material. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Effect of etching with distinct hydrofluoric acid concentrations on the flexural strength of a lithium disilicate-based glass ceramic.

    Science.gov (United States)

    Prochnow, Catina; Venturini, Andressa B; Grasel, Rafaella; Bottino, Marco C; Valandro, Luiz Felipe

    2017-05-01

    This study examined the effects of distinct hydrofluoric acid concentrations on the mechanical behavior of a lithium disilicate-based glass ceramic. Bar-shaped specimens were produced from ceramic blocks (e.max CAD, Ivoclar Vivadent). The specimens were polished, chamfered, and sonically cleaned in distilled water. The specimens were randomly divided into five groups (n = 23). The HF1, HF3, HF5, and HF10 specimens were etched for 20 s with acid concentrations of 1%, 3%, 5%, and 10%, respectively, while the SC (control) sample was untreated. The etched surfaces were evaluated using a scanning electron microscope and an atomic force microscope. Finally, the roughness was measured, and 3-point bending flexural tests were performed. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (α = 0.05). The Weibull modulus and characteristic strength were also determined. No statistical difference in the roughness and flexural strength was determined among the groups. The structural reliabilities (Weilbull moduli) were similar for the tested groups; however, the characteristic strength of the HF1 specimen was greater than that of the HF10 specimen. Compared with the untreated ceramic, the surface roughness and flexural strength of the ceramic were unaffected upon etching, regardless of the acid concentration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 885-891, 2017. © 2016 Wiley Periodicals, Inc.

  20. Laser-excited fluorescence spectroscopy of oxide glasses

    International Nuclear Information System (INIS)

    Weber, M.J.

    1977-01-01

    Laser-induced fluorescence line narrowing was applied to investigate the local fields and interactions of paramagnetic ions in oxide glasses. Studies included the site dependence of energy levels, radiative and nonradiative transition probabilities, homogeneous line broadening, and ion--ion energy transfer of rare earth ions. These results and the experimental techniques are reviewed briefly; the use of paramagnetic ions other than the rare earths is also considered. Recently, laser-excited fluorescence spectroscopy was used to investigate modifications in the local structure of lithium borate glass caused by compositional changes and phase separation and the site dependence of nonradiative relaxation of paramagnetic ions by multiphonon processes. These results and their implications are discussed. 6 figures

  1. Glasses

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2004-01-01

    The temperature dependence of the viscosity of most glassforming liquids is known to depart significantly from the classical Arrhenius behaviour of simple fluids. The discovery of an unexpected correlation between the extent of this departure and the Poisson ratio of the resulting glass could lead...... to new understanding of glass ageing and viscous liquid dynamics....

  2. Crystallization kinetics and optical properties of titanium-lithium tetraborate glass containing europium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, E.A. [Al Azhar University, Department of Physics, Faculty of Science (Girl' s Branch), Cairo (Egypt); Ratep, A. [Ain Shams University, Physics Department, Faculty of Girls, Cairo (Egypt); Abdel-Khalek, E.K.; Kashif, I. [Al-Azhar University, Department of Physics, Faculty of Science, Cairo (Egypt)

    2017-07-15

    The crystallization kinetics and optical properties of [60 Li{sub 2}B{sub 4}O{sub 7}-30 TiO{sub 2}-10 Eu{sub 2}O{sub 3}] (mol%) glass sample have been investigated. The present glass sample exhibits three crystallization exothermic peaks (T{sub p1}, T{sub p2,} and T{sub p3}) corresponding to the formation of LiBO{sub 2}, Li{sub 2}B{sub 4}O{sub 7,} and EuTiO{sub 3} phases, respectively. The presence of phase separation in the glass sample has been confirmed by scanning electron microscopic (SEM). The mean values of Avrami exponent (n = 3.1 and 4) around T{sub p1} and T{sub p2}, indicate that the bulk crystallization with a constant number of nuclei and with an increasing number of nuclei, respectively. The values of the local activation energy as a function of the fraction of crystallization (0.1 ≤ χ ≤ 0.9) decrease for the crystallization of LiBO{sub 2} and EuTiO{sub 3} and increase for the crystallization of Li{sub 2}B{sub 4}O{sub 7}. The values of n(χ) for T{sub p3} and T{sub p2} in the range (0.1 ≤ χ ≤ 0.9) and (0.1 ≤ χ ≤ 0.4), respectively, are larger than 4 indicate that the presence of anomalous in Avrami exponent. The trend of Judd-Ofelt intensity parameters (Ω{sub 2} > Ω{sub 4} > Ω{sub 6}) and the bonding parameter (δ) indicate that the lower symmetry and the highest covalent nature of the bonding around Eu{sup 3+} ions. (orig.)

  3. Triple modifier effect on physical, optical and structural properties of boro tellurite zinc lithium glasses

    Science.gov (United States)

    Naresh, P.; Srinivasu, D.; Narsimlu, N.; Ch. Srinivas, Kavitha, B.; Deshpandhe, Uday; Kumar, K. Siva

    2018-05-01

    To investigate physical, optical and structural properties of glass samples of the Quaternary system (60-x)B2O3-xTeO2-10ZnO-30Li2O with x=0,5,10,15, and 20 mol% were prepared by conventional melt quenching technique. XRD confirmed the amorphous nature of all samples. Physical parameters like density, molar volume, Oxygen packing density and etc. calculated. Density of glass samples increased with the increase of TeO2 concentration due to the replacement of lighter B2O3 with heavier TeO2. Optical properties has studied with the help of UV-Visible spectra. Cut off wavelength is increases whereas Eopt and Urbache energies is decreased except intermediate mole fraction of TeO2 at which the triple modifier effect can be observed. Fourier Transform Infrared spectroscopy reveals that the network consists of TeO3 and TeO6 structural units along with BO3 and BO4 units.

  4. Synthesis and optical properties of antimony oxide glasses doped with holmium trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Raghunatha, S.; Eraiah, B., E-mail: eraiah@rediffmail.com [Department of physics, Bangalore University, Bengaluru – 560 056. India (India)

    2016-05-06

    Holmium doped lithium-antimony-lead borate glasses having 1 mol% AgNO{sub 3} with composition 50B{sub 2}O{sub 3}-20PbO-25Sb{sub 2}O{sub 3}-5Li{sub 2}O have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses. The optical direct band gap energies were found to be in the range of 3.10 eV to 3.31 eV and indirect band gap energies were found to be in the range of 2.28 eV to 3.00 eV. The refractive indexes have been calculated by using Lorentz-Lorenz formula and the calculated values in the range of 2.31 to 2.37.

  5. Characterization of a scintillating lithium glass ultra-cold neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, B.; Rebenitsch, L.A.; Hansen-Romu, S.; Mammei, R.; Martin, J.W. [University of Winnipeg, Department of Physics, Winnipeg (Canada); Lauss, B. [Paul Scherrer Institute, Laboratory for Particle Physics, Villigen (Switzerland); Lindner, T. [TRIUMF, Vancouver (Canada); University of Winnipeg, Department of Physics, Winnipeg (Canada); Pierre, E. [TRIUMF, Vancouver (Canada); Osaka University, Research Centre for Nuclear Physics, Osaka (Japan)

    2017-01-15

    A {sup 6}Li-glass-based scintillation detector developed for the TRIUMF neutron electric dipole moment experiment was characterized using the ultra-cold neutron source at the Paul Scherrer Institute (PSI). The data acquisition system for this detector was demonstrated to perform well at rejecting backgrounds. An estimate of the absolute efficiency of background rejection of 99.7±0.1% is made. For variable ultra-cold neutron rate (varying from < 1 kHz to approx. 100 kHz per channel) and background rate seen at the Paul Scherrer Institute, we estimate that the absolute detector efficiency is 89.7{sup +1.3}{sub -1.9}%. Finally a comparison with a commercial Cascade detector was performed for a specific setup at the West-2 beamline of the ultra-cold neutron source at PSI. (orig.)

  6. Development and radiation stability of glasses for highly radioactive wastes

    International Nuclear Information System (INIS)

    Hall, A.R.; Dalton, J.T.; Hudson, B.; Marples, J.A.C.

    1976-01-01

    The variation of formation temperature, crystallizing behaviour and leach resistance with composition changes for sodium-lithium borosilicate glasses suitable for vitrifying Magnox waste are discussed. Viscosities have been measured between 400 and 1050 0 C. The principal crystal phases which occur have been identified as magnesium silicate, magnesium borate and ceria. The leach rate of polished discs in pure water at 100 0 C does not decrease with time if account is taken of the fragile siliceous layer that is observed to occur. The effect of 100 years' equivalent α- and β-irradiation on glass properties is discussed. Stored energy release experiments demonstrated that energy is released over a wide temperature range so that it cannot be triggered catastrophically. Temperatures required to release energy are dependent upon the original storage temperature. Helium release is by Fick's diffusion law up to at least 30% of the total inventory, with diffusion coefficients similar to those for comparable borosilicate glasses. Leach rates were not measurably affected by α-radiation. β-radiation in a Van de Graaff accelerator did not change physical properties, but irradiation in an electron microscope caused minute bubbles in lithium-containing glasses above 200 0 C. (author)

  7. Lithium-aluminum-zinc phosphate glasses activated with Tb3+ and Tb3+/Eu3+ for green laser medium, reddish-orange and white phosphor applications

    Science.gov (United States)

    Francisco-Rodriguez, H. I.; Lira, A.; Soriano-Romero, O.; Meza-Rocha, A. N.; Bordignon, S.; Speghini, A.; Lozada-Morales, R.; Caldiño, U.

    2018-05-01

    A spectroscopic analysis of Tb3+ and Tb3+/Eu3+ doped lithium-aluminum-zinc phosphate glasses is performed through their absorbance and photoluminescence spectra, and decay time profiles. Laser parameter values (stimulated emission cross section, effective bandwidth, gain bandwidth and optical gain) were obtained for the terbium 5D4 → 7F5 green emission from the Tb3+ singly-doped glass (LAZT) excited at 350 nm to judge the suitability of the glass phosphor for fiber lasers. A quantum yield of (47.68 ± 0.49)% was measured for the 5D4 level luminescence. Upon 350 nm excitation the LAZT glass phosphor emits green light with a color purity of 65.6% and chromaticity coordinates (0.285, 0.585) very close to those (0.29, 0.60) of European Broadcasting Union illuminant green. The Tb3+/Eu3+codoped glass emission color can be tuned from reddish-orange of 1865 K upon 318 nm excitation to warm white of 3599 K and neutral white of 4049 K upon 359 and 340 nm excitations, respectively. Upon Tb3+ excitation at 340 nm Eu3+ is sensitized by Tb3+ through a non-radiative energy transfer with an efficiency of 0.23-0.26. An electric dipole-dipole interaction might be the dominant mechanism in the Tb3+ to Eu3+ energy transfer taking place into Tb3+ - Eu3+ clusters.

  8. Optical properties of nanocrystalline potassium lithium niobate in the glass system (100-x) TeO2-x(1.5K2O-Li2O-2.5Nb2O5).

    Science.gov (United States)

    Ahamad, M Niyaz; Varma, K B R

    2009-08-01

    Optically clear glasses of various compositions in the system (100-x) TeO2-x(1.5K2O-Li2O-2.5Nb2O5) (2 glasses comprising potassium lithium niobate (K3Li2Nb5O15) microcrystallites on the surface and nanocrystallites within the glass were obtained by controlled heat-treatment of the as-quenched glasses just above the glass transition temperature (T(g)). The optical transmission spectra of these glasses and glass-crystal composites of various compositions were recorded in the 200-2500 nm wavelength range. Various optical parameters such as optical band gap, Urbach energy, refractive index were determined. Second order optical non-linearity was established in the heat-treated samples by employing the Maker-Fringe method.

  9. Borated aluminum alloy manufacturing technology

    International Nuclear Information System (INIS)

    Shimojo, Jun; Taniuchi, Hiroaki; Kajihara, Katsura; Aruga, Yasuhiro

    2003-01-01

    Borated aluminum alloy is used as the basket material of cask because of its light weight, thermal conductivity and superior neutron absorbing abilities. Kobe Steel has developed a unique manufacturing process for borated aluminum alloy using a vacuum induction melting method. In this process, aluminum alloy is melted and agitated at higher temperatures than common aluminum alloy fabrication methods. It is then cast into a mold in a vacuum atmosphere. The result is a high quality aluminum alloy which has a uniform boron distribution and no impurities. (author)

  10. Characterisation and Properties of Lithium Disilicate Glass Ceramics in the SiO2-Li2O-K2O-Al2O3 System for Dental Applications

    Directory of Open Access Journals (Sweden)

    Naruporn Monmaturapoj

    2013-01-01

    Full Text Available This work proposes four different glass formulas derived from the SiO2-Li2O-K2O-Al2O3 system to investigate the effect of glass composition on their crystal formations and properties. Glass LD1 was SiO2-Li2O-K2O-Al2O3 system with the addition of P2O5 and CaF2 as nucleating agents. In Glass LD2, a slight amount of MgO was mixed in order to increase the viscosity of the melting glass. Finally, the important factor of Si : Li ratio was increased in Glasses LD3 and LD4 with compositions otherwise the same as LD1 and LD2. The results found that P2O5 and CaF2 served as a nucleating site for lithium phosphate and fluorapatite to encourage heterogenous nucleation and produce a fine-grained interlocking microstructure of lithium disilicate glass ceramics. MgO content in this system seemed to increase the viscosity of the melting glass and thermal expansion coefficient including the chemical solubility. Increasing the Si : Li ratio in glass compositions resulted in the change of the microstructure of Li2Si2O5 crystals.

  11. Structure and crystallization of SiO2 and B2O3 doped lithium disilicate glasses from theory and experiment.

    Science.gov (United States)

    Erlebach, Andreas; Thieme, Katrin; Sierka, Marek; Rüssel, Christian

    2017-09-27

    Solid solutions of SiO 2 and B 2 O 3 in Li 2 O·2SiO 2 are synthesized and characterized for the first time. Their structure and crystallization mechanisms are investigated employing a combination of simulations at the density functional theory level and experiments on the crystallization of SiO 2 and B 2 O 3 doped lithium disilicate glasses. The remarkable agreement of calculated and experimentally determined cell parameters reveals the preferential, kinetically controlled incorporation of [SiO 4 ] and [BO 4 ] at the Li + lattice sites of the Li 2 O·2SiO 2 crystal structure. While the addition of SiO 2 increases the glass viscosity resulting in lower crystal growth velocities, glasses containing B 2 O 3 show a reduction of both viscosities and crystal growth velocities. These observations could be rationalized by a change of the chemical composition of the glass matrix surrounding the precipitated crystal phase during the course of crystallization, which leads to a deceleration of the attachment of building units required for further crystal growth at the liquid-crystal interface.

  12. Structural investigation and optical properties of xMnO2-25Li2O-5Na2O-15Bi2O3-(55-x)B2O3 glasses

    Science.gov (United States)

    Kulkarni, Shilpa; Jali, V. M.

    2018-02-01

    This paper deals with the new mixed system of glass compositions Lithium sodium bismuth borate glasses doped with transition metal oxide. The technique used to prepare a sample is by melt quenching. The XRD profile pattern confirmed the amorphous phase of the present glass system. The network structure is based on BO3, BO4 units and BiO6 octahedral units. No boroxyl rings observed in the glass structure. The addition of MnO2 in small amount does not account for major structural changes. Optical band gap lies in the range 1.89 to 0.96 eV. Density, molar volume, oxygen packing density, Tg, direct optical band gap and refractive index show anomalous behavior.

  13. Time-dependent fracture probability of bilayer, lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation

    Science.gov (United States)

    Anusavice, Kenneth J.; Jadaan, Osama M.; Esquivel–Upshaw, Josephine

    2013-01-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. Objective The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6 mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Materials and methods Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Results Predicted fracture probabilities (Pf) for centrally-loaded 1,6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8 mm/0.8 mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4 mm/1.2 mm). Conclusion CARES/Life results support the proposed crown design and load orientation hypotheses. Significance The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. PMID:24060349

  14. Time-dependent fracture probability of bilayer, lithium-disilicate-based, glass-ceramic, molar crowns as a function of core/veneer thickness ratio and load orientation.

    Science.gov (United States)

    Anusavice, Kenneth J; Jadaan, Osama M; Esquivel-Upshaw, Josephine F

    2013-11-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Predicted fracture probabilities (Pf) for centrally loaded 1.6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8mm/0.8mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4mm/1.2mm). CARES/Life results support the proposed crown design and load orientation hypotheses. The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  15. Study of the mixed alkali effect in lithium and sodium metaphosphate glass-forming liquids by photon correlation spectroscopy

    International Nuclear Information System (INIS)

    Changstrom, J R; Sidebottom, D L

    2008-01-01

    We report results of an extensive study of the structural relaxation occurring in mixed alkali metaphosphate liquids obtained by photon correlation spectroscopy. Values for the glass transition temperature, the fragility index, and the heterogeneity parameter (also known as the Kohlrausch exponent) are extracted from the measurements and are all shown to exhibit a mixed alkali effect wherein nonlinear variations with mixing occur. The depression in the glass transition temperature is shown to be the direct result of mechanical relaxations, present in the solid, which prematurely loosen the glass structure. A minimum in the fragility index is believed to be an artifact of the resulting depression of the glass transition temperature

  16. The investigation of the influence of lead oxide on the formation and on the structure of lithium diborate glasses

    International Nuclear Information System (INIS)

    Soliman, A.A.; Sakr, E.M.; Kashif, I.

    2009-01-01

    Pseudo-binary (100 - x) Li 2 B 4 O 7 .xPbO, where x = 0, 5, 15, 25, 35, 45, 55 and 65 mol%. PbO have been investigated. The glass transition temperatures, density and molar volume have been determined. Both T g 's values and molar volume decreased non-linearly while the density increased by increase the PbO content. Infrared spectra of the glasses reveal that the strong network consisting of diborate units is break open by PbO. The absorption bands below 620 cm -1 show that PbO is one of the network former of glasses 65 ≥ PbO ≥ 5 which can be associated with vibrations due to [PbO 4 ] 2- type of grouping are become sharp and high intensities by increase PbO content. PbO plays the dual role in the glass network. The calculated values of N 4 slightly decreased by increase PbO content up to 25 mol% and then increased up to 45 mol% PbO, then decreases above it. Proving that three-coordinated boron atoms are predominant in these glass samples. The Vicker's hardness values of the glasses vary as a function of the PbO content in a manner that N 4 varied. The dc conductivity decreased by increase PbO concentration up to about 25 mol% and then increased by increase the concentration of lead oxide

  17. Glass transition dynamics and conductivity scaling in ionic deep eutectic solvents: The case of (acetamide + lithium nitrate/sodium thiocyanate) melts

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Satya N., E-mail: satyanarayantripathy@gmail.com; Wojnarowska, Zaneta; Knapik, Justyna; Paluch, Marian [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow (Poland); Shirota, Hideaki [Department of Nanomaterial Science and Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522 (Japan); Biswas, Ranjit [Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700098 (India)

    2015-05-14

    A detailed investigation on the molecular dynamics of ionic deep eutectic solvents (acetamide + lithium nitrate/sodium thiocyanate) is reported. The study was carried out employing dielectric relaxation spectroscopy covering seven decades in frequency (10{sup −1}-10{sup 6} Hz) and in a wide temperature range from 373 K down to 173 K, accessing the dynamic observables both in liquid and glassy state. The dielectric response of the ionic system has been presented in the dynamic window of modulus formalism to understand the conductivity relaxation and its possible connection to the origin of localized motion. Two secondary relaxation processes appear below glass transition temperature. Our findings provide suitable interpretation on the nature of secondary Johari-Goldstein process describing the ion translation and orientation of dipoles in a combined approach using Ngai’s coupling model. A nearly constant loss feature is witnessed at shorter times/lower temperatures. We also discuss the ac conductivity scaling behavior using Summerfield approach and random free energy barrier model which establish the time-temperature superposition principle. These experimental observations have fundamental importance on theoretical elucidation of the conductivity relaxation and glass transition phenomena in molten ionic conductors.

  18. Influence of cobalt ions on spectroscopic and dielectric properties of Sb2O3 doped lithium fluoroborophosphate glasses

    Science.gov (United States)

    Kumar, G. Ravi; Srikumar, T.; Rao, M. C.; Venkat Reddy, P.; Srinivasa Rao, Ch

    2018-03-01

    Glasses with compositions (20–x) LiF–10 Sb2O3–10 B2O3–60 P2O5: x CoO (0 disorder in the glass network with increasing concentration of CoO up to 0.15 mol%. The reversal trend has been observed beyond 0.15 mol% suggesting an increasing polymerization of glass network. The optical properties of LiF–Sb2O3–B2O3–P2O5: CoO glasses were analyzed by optical absorption and photoluminescence studies. The observations from OA and PL spectral studies suggested that the gradual increase of octahedral Co2+ ions with the increase in the concentration of CoO up to 0.15 mol%. At higher concentration i.e. above 0.15 mol% of CoO, there was a reduction in the concentration of octahedral Co2+ ions. The electrical properties of the glass samples were studied by both DC and AC conductivity studies. The dielectric dispersion analysis was also performed on the prepared glass samples. The results of these studies indicated that there is a mixed conduction (both ionic and polaronic) and the polaron hoping seems to prevail over ionic conduction in the glasses containing CoO less than 0.15 mol%. The increasing space charge polarization is responsible for enhanced values of dielectric constant, dielectric loss and AC conductivity for all frequency and temperature ranges with the increase in concentration of CoO up to 0.15 mol%.

  19. Ultrasonic and structural features of some borosilicate glasses ...

    Indian Academy of Sciences (India)

    2017-06-09

    Jun 9, 2017 ... transform infrared spectroscopy, density and ultrasonic techniques to debate the issue of the role ... in the fields of electronics [3], optical lenses with high refrac- ..... of the borate glass will be close packed through the polymer-.

  20. Low temperature biosynthesis of Li2O–MgO–P2O5–TiO2 nanocrystalline glass with mesoporous structure exhibiting fast lithium ion conduction

    DEFF Research Database (Denmark)

    Du, X.Y.; He, W.; Zhang, X.D.

    2013-01-01

    We demonstrate a biomimetic synthesis methodology that allows us to create Li2O–MgO–P2O5–TiO2 nanocrystalline glass with mesoporous structure at lower temperature. We design a ‘nanocrystal-glass’ configuration to build a nanoarchitecture by means of yeast cell templates self-assembly followed by ...... nanocrystalline glass exhibits outstanding thermal stability, high conductivity and wide potential window. This approach could be applied to many other multicomponent glass–ceramics to fabricate mesoporous conducting materials for solid-state lithium batteries....

  1. NMR studies of the structure of glasses

    International Nuclear Information System (INIS)

    Bray, P.J.; Gravina, S.J.; Stallworth, P.E.; Szu, S.P.; Jianhui Zhong

    1988-01-01

    Earlier continuous wave (CW) NMR studies of chemical bonding and structure in glasses are summarized. Examples are given of this use of the quadrupolar interaction and chemical shift to obtain structural information. New NMR data and analyses are presented for alkali borate and gallate glasses. Extensions to other elements (e.g. molybdenum, lanthanum) are suggested. 44 refs. (author)

  2. A study on the optical, structural, electrical conductivity and dielectric properties of a lithium bismuth germanium tungsten glasses

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Shaaban M., E-mail: shaabansalem@gmail.com [Department of Physics, Faculty of Science, Al Azhar University, Nasr City 11884, Cairo (Egypt); Abdel-Khalek, E.K. [Department of Physics, Faculty of Science, Al Azhar University, Nasr City 11884, Cairo (Egypt); Department of Physics, Faculty of Science, Jazan University (Saudi Arabia); Mohamed, E.A. [Department of Physics, Faculty of Science (Girl' s Branch), Al Azhar University, Nasr City, Cairo (Egypt); Department of Physics, Faculty of Science, Jazan University (Saudi Arabia); Farouk, M. [Department of Physics, Faculty of Science, Al Azhar University, Nasr City 11884, Cairo (Egypt); Department of Physics, Faculty of Science, Jazan University (Saudi Arabia)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer I report, for the first time, the effect of WO{sub 3} on Bi{sub 2}O{sub 3}, Li{sub 2}O, GeO{sub 2} and WO{sub 3} glasses through structural, optical, conductivity and dielectric studies. Black-Right-Pointing-Pointer Optical band gap E{sub op} for all types of electronic transitions, Urbach energy (E{sub r}), and refractive index determined. Black-Right-Pointing-Pointer The WO{sub 3} promotes as bitter constituent the reduction of W{sup 6+} to W{sup 5+} giving the bluish color. Black-Right-Pointing-Pointer Infrared spectra reveal characteristic GeO{sub 4}, GeO{sub 6}, Bi{sub 2}O{sub 3}, BiO{sub 6}, WO{sub 4} and WO{sub 6} units. Black-Right-Pointing-Pointer Based on ac and dc conductivity the conductivity increased and activation energies decreased with increase of WO{sub 3} content at all frequencies. - Abstract: Glasses in the system (65 - x)Bi{sub 2}O{sub 3}-15Li{sub 2}O-20GeO{sub 2}-xWO{sub 3} (where x = 2, 5 and 10 mol%) were prepared by normal melt quenching method. The change in density and molar volume in these glasses indicates the effect of WO{sub 3} on the glass structure. Fourier transform infrared (FT-IR) spectra show that these glasses are made up of GeO{sub 4}, GeO{sub 6}, BiO{sub 6}, BiO{sub 3}, WO{sub 4} and WO{sub 6} basic structural units. The structural units of BiO{sub 6}, GeO{sub 6} and WO{sub 6} increase with the increasing of WO{sub 3} content. The optical constants of these glasses are determined over a spectral range, providing the complex dielectric constant to be calculated. Higher values for the refractive index and dispersion are recorded due to the high polarizability of bismuth and tungsten ions. The values of the optical band gap E{sub g} for all types of electronic transitions and refractive index have been determined and discussed. The dc conductivity measured in the temperature range 423-623 K obeys Arrhenius law. The dielectric constant ({epsilon} Prime ), dielectric loss (tan {delta}) and

  3. Nd3+-doped heavy metal oxide based multicomponent borate glasses for 1.06 μm solid-state NIR laser and O-band optical amplification applications

    Science.gov (United States)

    Lakshminarayana, G.; Kaky, Kawa M.; Baki, S. O.; Lira, A.; Meza-Rocha, A. N.; Falcony, C.; Caldiño, U.; Kityk, I. V.; Méndez-Blas, A.; Abas, A. F.; Alresheedi, M. T.; Mahdi, M. A.

    2018-04-01

    Nd3+-doped glasses in the composition (50-x) B2O3-10 PbO-10 BaO-10 Al2O3-10 ZnO-10 Na2O-(x) Nd2O3 (x = 0.0, 0.1, 0.25, 0.5, 0.75, 1.0, 1.5, and 2.0 mol %) were fabricated using melt quenching method. Upon 592 nm visible and 808 nm LD excitations, the luminescence spectra show a strong 4F3/2 → 4I11/2 (1.06 μm) emission transition, and two less intense 4F3/2 → 4I9/2 (0.89 μm) and 4F3/2 → 4I13/2 (1.331 μm) emission transitions. The intensity of such emissions increases up to 0.5 mol % Nd3+, and above this doping level, quenching occurs. For 0.5 mol % Nd3+-doped glass, following Judd-Ofelt intensity parameters and emission spectrum, AR, τR, βR and βexp, including Δλeff,σem(λp), (σem × (Δλeff)) and (σem × (τrad)), are derived for Nd3+ ion 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 fluorescence transitions. The highest σem(λp) for the 1.06 and 1.331 μm fluorescence bands are found to be 6.216 × 10-20 and 2.295 × 10-20cm2, respectively. The 4F3/2 level lifetimes are found to decrease with an increase in Nd2O3 content and the decay curves of the glass up to 1.5 mol % Nd3+ exhibit single exponential nature. From 'τexp' of the Nd3+: 4F3/2 level, quantum efficiency (η), (σem × (τexp)), and saturation intensity (IS) are 48.87%, 51.09 × 10-25 cm2s and 3.67 × 108 W/m2, respectively, for the 0.5 mol % Nd3+-doped glass. Higher thermal stability, very low χ, high AR, large βexp., moderate τR, large gain bandwidth and high optical gain values indicate that 0.5 mol % Nd3+-doped glass could be a potential gain medium for solid-state NIR lasers at 1.06 μm. Moreover, for the 1.331 μm emission, large Δλeff and the theoretical gain coefficient value of 1.579 dB/cm, evaluated with an excited Nd3+ ion fractional factor of 0.6, indicate that this glass might be a promising candidate in developing O-band optical fiber amplifiers.

  4. The effect of heat treatments applied to superstructure porcelain on the mechanical properties and microstructure of lithium disilicate glass ceramics.

    Science.gov (United States)

    Özdemir, Hatice; Özdoğan, Alper

    2018-01-30

    The aim of this study was to investigate that heat treatments with different numbers applied to superstructure porcelain whether effects microstructure and mechanical properties of lithium disilicate ceramic (LDC). Eighty disc-shaped specimens were fabricated from IPS e.max Press. Specimens were fired at heating values of porcelain in different numbers and divided four groups (n=5). Initial Vickers hardness were measured and X-ray diffraction (XRD) analysis was performed. Different surface treatment were applied and then Vickers hardness, surface roughness and environmental scanning electron microscopy (ESEM) analysis were performed. Data were analyzed with Varyans analysis and Tukey HSD test (α=0.05). Initial hardness among groups was no significant different (p>0.05), but hardness and surface roughness after surface treatments were significant different (pmicrostructure of LDC. Increasing firing numbers and surface treatments effect the microstructure of LDC.

  5. Dielectric and optical properties of glasses of CdO-B2O3 system

    International Nuclear Information System (INIS)

    Semin, V.N.; Mal'tsev, V.T.; Panich, A.E.

    1986-01-01

    Dielectric and optical properties of glasses of CdO-B 2 O 3 system are investigated. It is shown, that on changing the composition, cadmic-borate glasses undergo structural changes, similar to those, taking place in lead-borate glasses, and the maximum part of the boron atoms in the oxygen tetrahedral coordination is at CdO:B 2 O 3 =3:2

  6. Diffusion and ionic conduction in oxide glasses

    International Nuclear Information System (INIS)

    Mehrer, H; Imre, A W; Tanguep-Nijokep, E

    2008-01-01

    The ion transport properties of soda-lime silicate and alkali borate glasses have been studied with complimentary tracer diffusion and impedance spectroscopy techniques in order to investigate the ion dynamics and mixed-alkali effect (MAE). In soda-lime silicate glasses the tracer diffusivity of 22 Na alkali ions is more than six orders of magnitude faster than the diffusivity of earth alkali 45 Ca ions. This observation is attributed to a stronger binding of bivalent earth alkali ions to the glass network as compared to that of alkali ions. The conductivity of the investigated standard soda-lime silicate glasses is mostly due to the high mobility of sodium ions and a temperature independent Haven ratio of about 0.45 is obtained. For single alkali sodium-borate glasses, the Haven ratio is also temperature independent, however, it is decreases with decreasing temperature for rubidium-borate glass. The MAE was investigated for Na-Rb borate glasses and it was observed that the tracer diffusivities of 22 Na and 86 Rb ions cross, when plotted as function of the relative alkali content. This crossover occurs near the Na/(Na+Rb) ratio of the conductivity minimum due to MAE. The authors suggest that this crossover and the trend of diffusion coefficients is the key to an understanding of the MAE

  7. [Effect of repeated sintering and variations in thickness on the color and microstructure of dental lithium disilicate-based glass ceramic veneers].

    Science.gov (United States)

    Cui, Huang; Jia, Yu; Shaofeng, Meng; Biyun, Gao

    2017-08-01

    Objective The aim of this study is to evaluate the effect of repeated sintering and variation in thickness on the color and microstructure of dental lithium disilicate-based glass ceramic veneers. Methods A total of 24 computer aided design and computer aided manufacturing (CAD/CAM) veneers was fabricated using the IPS e.max-CAD LS2 and then randomly divided into four groups (S0, S1, S2, S3; n=6). Each group was sintered 0, 1, 2, 3 times individually according to the manufacturer's recommendation. The color parameters (L, C, H, a, b values) of all the specimens were measured by a Vita easyshade dental colorimeter. The results were statistically analyzed using the SAS 9.1.3 software for MANOVA and LSD. Subsequently, the microstructures of the intersecting surfaces of the specimens were observed by scanning electron microscopy (SEM). Results After repeated sintering, the L value significantly decreased (P<0.05). For the C and b values, statistical differences were observed among the groups except between S2 and S3. SEM results showed that the interlocking microstructures of rod-shaped Li₂Si₂O₅ crystals became more compact when the number of sintering times was increased. Conclusion Repeated sintering exhibited significant influence on the color of the IPS e.max-CAD LS2 veneers.

  8. Fracture, roughness and phase transformation in CAD/CAM milling and subsequent surface treatments of lithium metasilicate/disilicate glass-ceramics.

    Science.gov (United States)

    Alao, Abdur-Rasheed; Stoll, Richard; Song, Xiao-Fei; Abbott, John R; Zhang, Yu; Abduo, Jaafar; Yin, Ling

    2017-10-01

    This paper studied surface fracture, roughness and morphology, phase transformations, and material removal mechanisms of lithium metasilicate/disilicate glass ceramics (LMGC/LDGC) in CAD/CAM-milling and subsequent surface treatments. LMGC (IPS e.max CAD) blocks were milled using a chairside dental CAD/CAM milling unit and then treated in sintering, polishing and glazing processes. X-ray diffraction was performed on all processed surfaces. Scanning electron microscopy (SEM) was applied to analyse surface fracture and morphology. Surface roughness was quantitatively characterized by the arithmetic average surface roughness R a and the maximum roughness R z using desktop SEM-assisted morphology analytical software. The CAD/CAM milling induced extensive brittle cracks and crystal pulverization on LMGC surfaces, which indicate that the dominant removal mechanism was the fracture mode. Polishing and sintering of the milled LMGC lowered the surface roughness (ANOVA, p 0.05). In comparison of all applied fabrication process routes, it is found that CAD/CAM milling followed by polishing and sintering produced the smoothest surface with R a = 0.12 ± 0.08µm and R z = 0.89 ± 0.26µm. Thus , it is proposed as the optimized process route for LMGC/LDGC in dental restorations. This route enables to manufacture LMGC/LDGC restorations with cost effectiveness, time efficiency, and improved surface quality for better occlusal functions and reduced bacterial plaque accumulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. In Vitro Human Umbilical Vein Endothelial Cells Response to Ionic Dissolution Products from Lithium-Containing 45S5 Bioactive Glass

    Science.gov (United States)

    Haro Durand, Luis A.; Vargas, Gabriela E.; Vera-Mesones, Rosa; Baldi, Alberto; Zago, María P.; Fanovich, María A.; Boccaccini, Aldo R.; Gorustovich, Alejandro

    2017-01-01

    Since lithium (Li+) plays roles in angiogenesis, the localized and controlled release of Li+ ions from bioactive glasses (BGs) represents a promising alternative therapy for the regeneration and repair of tissues with a high degree of vascularization. Here, microparticles from a base 45S5 BG composition containing (wt %) 45% SiO2, 24.5% Na2O, 24.5% CaO, and 6% P2O5, in which Na2O was partially substituted by 5% Li2O (45S5.5Li), were obtained. The results demonstrate that human umbilical vein endothelial cells (HUVECs) have greater migratory and proliferative response and ability to form tubules in vitro after stimulation with the ionic dissolution products (IDPs) of the 45S5.5Li BG. The results also show the activation of the canonical Wnt/β-catenin pathway and the increase in expression of proangiogenic cytokines insulin like growth factor 1 (IGF1) and transforming growth factor beta (TGFβ). We conclude that the IDPs of 45S5.5Li BG would act as useful inorganic agents to improve tissue repair and regeneration, ultimately stimulating HUVECs behavior in the absence of exogenous growth factors. PMID:28773103

  10. Membranes in Lithium Ion Batteries

    Science.gov (United States)

    Yang, Min; Hou, Junbo

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed. PMID:24958286

  11. Membranes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Junbo Hou

    2012-07-01

    Full Text Available Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  12. Computational study of structural, elastic and electronic properties of lithium disilicate (Li(2)Si(2)O(5)) glass-ceramic.

    Science.gov (United States)

    Biskri, Zine Elabidine; Rached, Habib; Bouchear, Merzoug; Rached, Djamel

    2014-04-01

    The objective of this study is to investigate theoretically the structural, elastic and electronic properties of Lithium Disilicate (LD) crystal (Li2Si2O5), using the pseudo potential method based on Density Functional Theory (DFT) with the Local Density Approximation (LDA) and the Generalized Gradient Approximation (GGA). The calculated structural properties namely the equilibrium lattice parameters and cell volume are in good agreement with the available experimental results. However, for the LD crystal elastic moduli: Shear modulus G, Young's modulus E and Poisson's ratio ν we have found a discrepancy between our theoretical values and experimental ones reported in polycrystalline sample containing LD crystals. The calculated elastic properties show that LD is more rigid compared with other components. We also investigated the mechanical stability of Li2Si2O5 compound and we have noticed that this compound is stable against elastic deformations. On the basis of shear to bulk modulus ratio analysis, we inferred that Li2Si2O5 compound is brittle in nature. In order to complete the fundamental characteristics of this compound we have measured the elastic anisotropy. Our results for the energy band structure and Density of States (DOS) show that Li2Si2O5 compound has an insulator characteristic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Influence of lithium and boron ions on calcium sulfo-aluminate cement hydration: application for the conditioning of boron ion exchange resins

    International Nuclear Information System (INIS)

    Dhoury, Melanie

    2015-01-01

    In pressurized water reactors, a solution of boric acid, the pH of which is controlled by the addition of lithium hydroxide, is injected in the primary circuit. Boron acts as a neutron moderator and helps controlling the fission reactions. The primary coolant is purified by flowing through columns of ion exchange resins. These resins are periodically renewed and constitute a low-level radioactive waste. In addition to radionuclides, they mainly contain borate and lithium ions. They are currently encapsulated in an organic matrix before being stored in a near-surface repository. An evolution of the process is considered, involving the replacement of the organic matrix by a mineral one. In this PhD study, the potential of calcium sulfo-aluminate cements (CSAC) to solidify/stabilize borated resins in the presence of lithium is investigated. These binders have the advantage to form hydrates which can incorporate borate ions in their structure, and their hydration is less retarded than that of Portland cement.An analytical approach is adopted, based on a progressive increase in the complexity of the investigated systems. Hydration of ye-elimite-rich CSAC is thus successively investigated in the presence of (i) lithium salts, (ii) lithium hydroxide and sodium borate, and (iii) lithium hydroxide and borated ion exchange resins. The experimental investigation is supplemented by thermodynamic modelling using a database specially developed for the needs of the study. Lithium ions are shown to accelerate CSAC hydration by decreasing the duration of the period of low thermal activity. The postulated mechanism involves the precipitation of lithium-containing aluminum hydroxide. On the contrary, sodium borate retards CSAC hydration by increasing the duration of the period of low thermal activity. Ulexite, a poorly crystallized mineral containing sodium and borates, transiently precipitates at early age. As long as ulexite is present, dissolution of ye-elimite is strongly slowed

  14. Separation of cesium from aqueous solutions using alkylated tetraaryl borates

    International Nuclear Information System (INIS)

    Feldmaier, F.

    1991-01-01

    The water solubility of cesium tetraaryl borates was lowered by introducing hydrophobic aliphatic side chains into corresponding acid-resistant fluorosubstituted tetraaryl borates. This improved cesium spearability both in precipitation and in extraction from aqueous solutions. (orig.) [de

  15. Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Omar Rodriguez

    2016-12-01

    Full Text Available Silica-based and borate-based glass series, with increasing amounts of TiO2 incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion closer to the substrate’s (Ti6Al4V CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO2 in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO2 to the glass structure enhances its toughness, while decreasing its bulk hardness. Borate-based glass BRT3, with 15 mol % TiO2 incorporated, exhibits superior properties overall compared to the other proposed glasses in this work, as well as 45S5 Bioglass® and Pyrex.

  16. Mineralogical and geochemical studies on borate deposits from the Shahr- e - Babak playa (Khatoonabad and Robat - Marvast, Kerman province - Iran

    Directory of Open Access Journals (Sweden)

    Atefeh Ghaedi

    2017-11-01

    Full Text Available Introduction Borate deposits are often important constituents of economic non - marine evaporates. They produce under arid climatic conditions in playa lakes (Floyd et al., 1998. In the south – western parts of the Kerman province, such as the Khatoonabad area (east of the city of Shahr –e –Babak and Robat – Marvast basin (west of Shahr – e – Babak, there are several borate deposits. They can be seen mainly in Sanandaj – Sirjan depressions and they occur as borate bearing nodules beneath a thin layer of soil. In general, boron considerably reduces the thermal expansion of glass, provides good resistance to vibration, high temperatures and thermal shock, and improves its toughness, strength, chemical resistance and durability. It also greatly reduces the viscosity of the glass melt. These features, and others, allow it to form superior glass for many industrial and specialty applications (Garrett, 1998. In the past, the ancient residents used them as co-melting matters. Ulexite which is frequently found in the Khatoonabad playa (at 30 km South East of Shahr Babak have Jewel properties (Ghaedi et al., 2014. Materials and methods After reviewing and Library Studies, geological field studies on the borate deposits were carried out from Shahr – e – Babak Playa. In order to take better samples, several pits were excavated with a depth of 30 cm to 1 meter so that borate minerals became apparent. X-ray diffraction analysis (IMIDRO, Karaj, and ICP AES (ALS CHEMEX, Canada methods were carried out on representative samples taken from the studied area. Discussion Field observations show that in the studied areas, borate bearing basins are fed by rivers which have originated from Sanandaj – Sirjan metamorphic rocks, Nain – Baft colored mélanges and igneous rocks of Urumieh – Dokhtar magmatic belt. Borate minerals also occur in fibrous aggregates and massive forms. Mineralogy XRD results show that the studied borate minerals mainly

  17. Study of radiation effects on some glasses and their applications in radiation dosimetry

    International Nuclear Information System (INIS)

    Mohammad, A.El.

    2008-01-01

    This thesis comprises a study of the X-ray diffraction, thermal, electrical, ESR and optical properties of lead lithium tetra borate glass. The objective of this thesis is to prepare glass dosimeter and study the effect of several gamma-irradiation doses on Lead lithium tetra borate glasses doped with Cu O. The two glasses were prepared from chemical reagents; Li 2 B 4 O 7 from ready package, lead and copper oxide were added in fixed Proportions. The glass melting was made in porcelain crucibles, using electrically heated furnace at temperature of 1000 -1100 degree C. The melts rapidly quenched in air by pressing between two stainless-steel plates mould kept at room temperature. The resultant glasses were colorless for LPTB and transparent greenish sheet of LPTB Cu glass about 0.8 mm thick and where polished to meet the requirements for optical and electrical measurements. The obtained results can be summarized as follows:- Density It is observed that, for unirradiated samples, the addition of copper to LPTB leads to the increase of the number of ions in the sample which decreases the inter-ionic distance. As a result, the molar volume of LPTB Cu decreased and consequently its density increased in the range of 10 ± 1 %. Irradiation with gamma rays is assumed to create displacements, electronic defects and /or breaks in the network bonds. Irradiation can cause the compaction of B 2 O 3 by breaking of the bonds between trigonal elements, allowing the formation of different configuration. Irradiating the LPTB glass with growing gamma doses up to 25 kGy decreased its molar volume with in 4.07 % and consequently increased the density with the same percentage. For the glass LPTB Cu, the effect of gamma rays appeared as a decrease in the molar volume and increase in density with the same percentage (12.9%). The addition traces of copper (0.01 weight %) to LPTB enhanced the effect of gamma radiation on it. Crystallization Behavior: - X-ray diffraction The results show

  18. Fusion welding of borated stainless steels

    International Nuclear Information System (INIS)

    Robino, C.V.; Cieslak, M.J.

    1993-01-01

    Borated austenitic stainless steels have been developed for use in the nuclear industry where storage, transport, and reprocessing of nuclear materials are required. The objective of this work is to develop appropriate joining technology for borated stainless steels based upon understanding the response of these materials to thermal processing involving melting. This understanding is being developed through the application of physical metallurgy techniques to determine the evolution of microstructure and mechanical properties within the various regions of the HAZ. Initial investigations include development of the kinetics of boride coarsening in the solid-state region of HAZ and the effect of boride coarsening on the impact properties of this region of the weld zone. Microstructures of the borated stainless steels, their response to high temperature isothermal heat treatments, and the implications of these heat treatments with respect to welding behavior will be presented

  19. Green colorants based on energetic azole borates.

    Science.gov (United States)

    Glück, Johann; Klapötke, Thomas M; Rusan, Magdalena; Stierstorfer, Jörg

    2014-11-24

    The investigation of green-burning boron-based compounds as colorants in pyrotechnic formulations as alternative for barium nitrate, which is a hazard to health and to the environment, is reported. Metal-free and nitrogen-rich dihydrobis(5-aminotetrazolyl)borate salts and dihydrobis(1,3,4-triazolyl)borate salts have been synthesized and characterized by NMR spectroscopy, elemental analysis, mass spectrometry, and vibrational spectroscopy. Their thermal and energetic properties have been determined as well. Several pyrotechnic compositions using selected azolyl borate salts as green colorants were investigated. Formulations with ammonium dinitramide and ammonium nitrate as oxidizers and boron and magnesium as fuels were tested. The burn time, dominant wavelength, spectral purity, luminous intensity, and luminous efficiency as well as the thermal and energetic properties of these compositions were measured. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Drastic decrease of Ba(Zn1/3Ta2/3O3 sintering temperature by lithium salts and glass phase addition

    Directory of Open Access Journals (Sweden)

    Marinel, S.

    2011-04-01

    Full Text Available The complex perovskite oxide Ba(Zn1/3Ta2/3O3 (BZT has been studied for its attractive dielectric properties which make this material interesting for applications such as multilayer ceramics capacitors or hyperfrequency resonators. Nevertheless, BZT ceramic requires high temperature to be correctly sintered (≅1450°C, that is too high to envisage a silver co-sintering (Tf(Ag = 961°C. For this reason, the lowering of the sintering temperature of BZT by glass phase’s additions has been investigated. This material is sinterable at low temperature with combined glass phase –lithium salt additions, and exhibits, at 1MHz very low dielectric losses combined with relatively high dielectric constant and a good stability of this later versus temperature. The 5 wt% of ZnO-SiO2-B2O3 glass phase and 1 wt% of LiF added BZT sample sintered at 900°C exhibits a relative density higher than 95% and attractive dielectric properties: a dielectric constant εr of 32, low dielectrics losses (tan (δ-3 and a temperature coefficient of permittivity τε of -10ppm/°C. Their good dielectric properties and their compatibility with silver electrodes, make these ceramics suitable for L.T.C.C applications.Se ha estudiado el óxido complejo con estructura tipo perovskita Ba (Zn1/3Ta2/3 O3 (BZT. Sus atractivas propiedades dieléctricas le hacen muy interesante para aplicaciones como condensadores cerámicos multicapa o resonadores de microondas. No obstante, los cerámicos de BZT requieren temperaturas de sinterización superiores a 1450 ° C, que es muy alta para abordar un proceso de co-sinterización con electrodos de plata (Tf (Ag = 961 ° C. Para ello, se ha estudiado la bajada de la temperatura de sinterización del BZT mediante la adición de una fase vítrea. La suma combinada de la fase vítrea y la sal de litio lleva la sinterización de este material a temperaturas bajas. Las propiedades dieléctricas presentan pérdidas muy bajas, constante diel

  1. Bioactive glass in tissue engineering

    Science.gov (United States)

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  2. Topological Principles of Borosilicate Glass Chemistry - An Invited Talk

    DEFF Research Database (Denmark)

    Mauro, J.C.; Smedskjær, Morten Mattrup; Youngman, R. E.

    Borosilicate glasses display a rich complexity of chemical behavior depending on the details of their composition and thermal history. We investigate the topological principles of borosilicate glass chemistry covering the extremes from pure borate to pure silicate end members. Based on NMR...

  3. Viscosity properties of sodium borophosphate glasses

    International Nuclear Information System (INIS)

    Gaylord, S.; Tincher, B.; Petit, L.; Richardson, K.

    2009-01-01

    The viscosity behavior of (1 - x)NaPO 3 -xNa 2 B 4 O 7 glasses (x = 0.05-0.20) have been measured as a function of temperature using beam-bending and parallel-plate viscometry. The viscosity was found to shift to higher temperatures with increasing sodium borate content. The kinetic fragility parameter, m, estimated from the viscosity curve, decreases from 52 to 33 when x increases from 0.05 to 0.20 indicating that the glass network transforms from fragile to strong with the addition of Na 2 B 4 O 7 . The decrease in fragility with increasing x is due to the progressive depolymerization of the phosphate network by the preferred four-coordinated boron atoms present in the low alkali borate glasses. As confirmed by Raman spectroscopy increasing alkali borate leads to enhanced B-O-P linkages realized with the accompanying transition from solely four-coordinated boron (in BO 4 units) to mixed BO 4 /BO 3 structures. The glass viscosity characteristics of the investigated glasses were compared to those of P-SF67 and N-FK5 commercial glasses from SCHOTT. We showed that the dependence of the viscosity of P-SF67 was similar to the investigated glasses due to similar phosphate network organization confirmed by Raman spectroscopy, whereas N-FK5 exhibited a very different viscosity curve and fragility parameter due to its highly coordinated silicate network

  4. NMR study of glasses in the PbO-B/sub 2/O/sub 3/-PbF/sub 2/-AlF/sub 3/ system

    Energy Technology Data Exchange (ETDEWEB)

    Vopilov, V.A.; Bogdanov, V.L.; Buznik, V.M.; Karapetyan, A.K.; Matsulev, A.N.

    1986-01-01

    The NMR method has been successfully used in the study of the structure of oxide glasses and in lithium glasses. Using steady-state and pulse methods of B-11 and F-19 NMR, the authors have studied borate glasses in the PbO-B/sub 2/O/sub 3/-PbF/sub 2/-AlF/sub 3/ system. Lead fluoride was added to the composition of the experimental glasses. A small amount of PbF2 has a weak effect on the electrical conductivity, and it is only in the specimen with the maximum values of the PbF/sub 2/ concentration that conductivity becomes significant. In glasses of the PbO X B/sub 2/O/sub 3/ X AlF/sub 3/ compositions, there is an exchange of the oxygen and fluoride modifier anions and as a result the F ions are incorporated into the first coordination sphere of the lead cations.

  5. Topological Principles of Borosilicate Glass Chemistry

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Mauro, J. C.; Youngman, R. E.

    2011-01-01

    and laboratory glassware to high-tech applications such as liquid crystal displays. In this paper, we investigate the topological principles of borosilicate glass chemistry covering the extremes from pure borate to pure silicate end members. Based on NMR measurements, we present a two-state statistical...

  6. Hardness and crack behavior of compressed borate glasses

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Striepe, S.; Bauer, U.

    , but also concerning the metal particle formation, and the broadband near infrared luminescence. Both the inward diffusion and the infrared luminescence depend on the bismuth oxidation state. The latter can be varied by adjusting the parameters of the heat-treatment, e.g., time, temperature, and partial...

  7. Lithium-based neutron detectors

    International Nuclear Information System (INIS)

    Yursova, L.

    1977-01-01

    The problems of using scintillation lithium-based detectors (LiJ(Eu) and 6 LiJ(Eu)), as well as lithium glasses for neutron detection are described. As compared with the glasses the LiJ(Eu) monocrystal possesses substantially higher energy resolution, its luminescence yield is considerably higher (in some cases ten fold), its application makes possible gamma radiation discrimination with the energy approximately four times higher and its higher specific mass ensures better efficiency of gamma radiation counting. The only 6 LiJ(Eu) drawback is its high hydroscopicity as well as its possibility to be used only in a limited temperature range (maximum temperature +35 deg C). The lithium glass can be used (with the exception of spectrometric measurements and radiation mixed regions measurement) with more than 1 MeV gamma radiation energy in a wide temperature range, in agressive, corroding and acid media

  8. Tensile behavior of borated stainless steels

    International Nuclear Information System (INIS)

    Stephens, J.J. Jr.; Sorenson, K.B.

    1991-01-01

    Borated stainless steel tensile testing is being conducted at Sandia National Laboratories (SNL). The goal of the test program is to provide data to support a code case inquiry to the ASME Boiler and Pressure Vessel Code, Section III. The adoption by ASME facilitates a material's qualification for structural use in transport cask applications. For transport cask basket applications, the potential advantage to using borated stainless steel arises from the fact that the structural and criticality control functions can be combined into one material. This can result in a decrease in net section thickness of the basket web (increased payload capacity) and eliminates the fabrication process and cost of attaching a discrete boron poison material to the basket web. In addition, adding borate stainless steel to the inventory of acceptable structural material provides the Department of Energy (DOE) and its cask contractors an alternative to current proposed materials which have not been qualified for structural service. The test program at SNL involves procuring material, machining test specimens, and conducting the tensile tests. From test measurements obtained so far, general trends indicate that tensile properties (yield strength and ultimate strength) increase with boron content and are in all cases superior to the minimum required properties established in A-240, Type 304, a typical grade of austenitic stainless steel. Therefore, in a designed basket, web thicknesses using borated stainless steel would be comparable to or thinner tan an equivalent basket manufactured from a typical stainless steel without boron additions. General trends from test results indicate that ductilities decrease with increasing boron content

  9. Fragility correlates thermodynamic and kinetic properties of glass forming liquids

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, C.Narayana [Maharani’s Science College for Women, Bangalore 560001 (India); Viswanatha, R.; Chethana, B.K. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India); Gowda, V.C.Veeranna [Government First Grade College, Jayanagara, Bangalore 560070 (India); Rao, K.J., E-mail: kalyajrao@yahoo.co.in [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India)

    2015-03-15

    Graphical abstract: The suggested new fragility parameter correlates viscosity and configurational entropy. - Highlights: • A new fragility function, F=ΔT/ΔC{sub p}×C{sub p}{sup l}/T{sub g} has been proposed. • A three parameter viscosity function using the new F reproduces Angell fragility plot. • A new ΔC{sub p} function is derived which directly relates Adam–Gibbs function with the fragility based viscosity function. - Abstract: In our earlier communication we proposed a simple fragility determining function, ([NBO]/V{sub m}{sup 3}T{sub g}), which we have now used to analyze several glass systems using available thermal data. A comparison with similar fragility determining function, ΔC{sub p}/C{sub p}{sup l}, introduced by Chryssikos et al. in their investigation of lithium borate glasses has also been performed and found to be more convenient quantity for discussing fragilities. We now propose a new function which uses both ΔC{sub p} and ΔT and which gives a numerical fragility parameter, F whose value lies between 0 and 1 for glass forming liquids. F can be calculated through the use of measured thermal parameters ΔC{sub p}, C{sub p}{sup l}, T{sub g} and T{sub m}. Use of the new fragility values in reduced viscosity equation reproduces the whole range of viscosity curves of the Angell plot. The reduced viscosity equation can be directly compared with the Adam–Gibbs viscosity equation and a heat capacity function can be formulated which reproduces satisfactorily the ΔC{sub p} versus ln(T{sub r}) curves and hence the configurational entropy.

  10. The Synthesis and Physical Properties of Magnesium Borate Mineral of Admontite Synthesized from Sodium Borates

    Directory of Open Access Journals (Sweden)

    Azmi Seyhun Kipcak

    2014-01-01

    Full Text Available Magnesium borates are significant compounds due to their advanced mechanical and thermal durability properties. This group of minerals can be used in ceramic industry, in detergent industry, and as neutron shielding material, phosphor of thermoluminescence by dint of their extraordinary specialties. In the present study, the synthesis of magnesium borate via hydrothermal method from sodium borates and physical properties of synthesized magnesium borate minerals were investigated. The characterization of the products was carried out by X-ray diffraction (XRD, Fourier transform infrared (FT-IR and Raman spectroscopies, and differential thermal analysis and thermal gravimetry (DTA/TG. The surface morphology was examined by scanning electron microscopy (SEM. B2O3 content was determined through titration. The electrical resistivity/conductivity properties of products were measured by Picoammeter Voltage Source. UV-vis spectrometer was used to investigate optical absorption characteristics of synthesized minerals in the range 200–1000 nm at room temperature. XRD results identified the synthesized borate minerals as admontite [MgO(B2O33·7(H2O] with code number “01-076-0540” and mcallisterite [Mg2(B6O7(OH62·9(H2O] with code number “01-070-1902.” The FT-IR and Raman spectra of the obtained samples were similar with characteristic magnesium borate bands. The investigation of the SEM images remarked that both nano- and microscale minerals were produced. The reaction yields were between 75.1 and 98.7%.

  11. Photoluminescence and thermoluminescence properties of Li₂O-Na₂O-B₂O₃ glass.

    Science.gov (United States)

    Razak, N A; Hashim, S; Mhareb, M H A; Tamchek, N

    2016-05-01

    Influence of Nd(3+) concentration on the optical and thermoluminescence (TL) properties of melt-annealed synthesized 10 Na2O: 20 Li2O: (70-x) B2O3 : xNd2O3, where 0.1≤ x ≤0.7 (LNB) glasses are determined. The absence of sharp peaks in X-ray diffraction patterns confirms the amorphous nature of the prepared glasses. The photoluminescence spectra under 800 nm laser excitations at room temperature exhibit three prominent peaks centred at 538, 603 and 675 nm corresponding to the transitions of (4)G(7/2) → (4)I(9/2), [(4)G(7/2) → (4)I(11/2), (4)G(5/2) → (4)I(9/2)] and [(4)G(7/2) → (4)I(13/2), (4)G(5/2) → (4)I(11/2)], respectively. The TL glow curve exhibits a prominent peak (T(m)) at 180°C. The best performance of the prepared glass was found at 0.5 mol% of Nd2O3. We achieved a good linearity of TL response against dose between 0.5 to 4.0 Gy. The calculated value of the effective atomic number, Z(eff), is 7.55 which is nearly tissue equivalent (Z(eff) = 7.42). These promising features demonstrate the capability of the aforementioned glass to be used as a radiation dosimeter. The thermoluminescence and optical properties of new compositions of lithium sodium borate glasses doped with Nd(3+) ions were reported. Attractive features were obtained from the TL, PL and UV-Vis light analysis. Three upconversion luminescences permitting green, orange and red emissions were observed. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Allyl borates: a novel class of polyhomologation initiators

    KAUST Repository

    Wang, De

    2016-12-24

    Allyl borates, a new class of monofunctional polyhomologation initiators, are reported. These monofunctional initiators are less sensitive and more effective towards polymethylene-based architectures. As an example, the synthesis of α-vinyl-ω-hydroxypolymethylenes is given. By designing/synthesizing different allylic borate initiators, and using 1H and 11B NMR spectroscopy, the initiation mechanism was elucidated.

  13. Corrosion behaviour of borated aluminium used as neutron absorber

    Energy Technology Data Exchange (ETDEWEB)

    Emmerich, R. [EaglePicher Technologies GmbH, Oehringen (Germany); Ensinger, W.; Enders, B. [Philipps-Univ. of Marburg, Dept. of Chemistry, Material Science Centre (Germany)

    2004-07-01

    The electrochemical behaviour of pure and borated aluminium was examined. Measurements were performed in two different electrolytes at 90 C containing different trace-amounts of chloride. For borated aluminium current transients, i.e. metastable depassivation events were found. It is suggested to attribute these transients to less stable passivation layers in comparison to pure aluminium.

  14. Glass ceramic seals to inconel

    Science.gov (United States)

    McCollister, Howard L.; Reed, Scott T.

    1983-11-08

    A glass ceramic composition prepared by subjecting a glass composition comprising, by weight, 65-80% SiO.sub.2, 8-16%, Li.sub.2 O, 2-8% , Al.sub.2 O.sub.3, 1-8% K.sub.2 O, 1-5% P.sub.2 O.sub.5 and 1.5-7% B.sub.2 O.sub.3, to the following processing steps of heating the glass composition to a temperature sufficient to crystallize lithium metasilicate therein, holding the glass composition at a temperature and for a time period sufficient to dissolve the lithium metasilicate therein thereby creating cristobalite nucleii, cooling the glass composition and maintaining the composition at a temperature and for a time period sufficient to recrystallize lithium metasilicate therein, and thermally treating the glass composition at a temperature and for a time period sufficient to cause growth of cristobalite and further crystallization of lithium metasilicate producing a glass ceramic composition having a specific thermal expansion coefficient and products containing said composition.

  15. Polarized localization and borate-dependent degradation of the Arabidopsis borate transporter BOR1 in tobacco BY-2 cells.

    Science.gov (United States)

    Yamauchi, Noboru; Gosho, Tadashi; Asatuma, Satoru; Toyooka, Kiminori; Fujiwara, Toru; Matsuoka, Ken

    2013-01-01

    In Arabidopsis the borate transporter BOR1, which is located in the plasma membrane, is degraded in the presence of excess boron by an endocytosis-mediated mechanism. A similar mechanism was suggested in rice as excess boron decreased rice borate transporter levels, although in this case whether the decrease was dependent on an increase in degradation or a decrease in protein synthesis was not elucidated. To address whether the borate-dependent degradation mechanism is conserved among plant cells, we analyzed the fate of GFP-tagged BOR1 (BOR1-GFP) in transformed tobacco BY-2 cells. Cells expressing BOR1-GFP displayed GFP fluorescence at the plasma membrane, especially at the membrane between two attached cells. The plasma membrane signal was abolished when cells were incubated in medium with a high concentration of borate (3 to 5 mM). This decrease in BOR1-GFP signal was mediated by a specific degradation of the protein after internalization by endocytosis from the plasma membrane. Pharmacological analysis indicated that the decrease in BOR1-GFP largely depends on the increase in degradation rate and that the degradation was mediated by a tyrosine-motif and the actin cytoskeleton. Tyr mutants of BOR1-GFP, which has been shown to inhibit borate-dependent degradation in Arabidopsis root cells, did not show borate-dependent endocytosis in tobacco BY-2 cells. These findings indicate that the borate-dependent degradation machinery of the borate transporter is conserved among plant species.

  16. In 2015 Lithium Price Tripled,Lithium Battery is In a Draught of the Industry

    Institute of Scientific and Technical Information of China (English)

    2017-01-01

    According to'Report on Market Demand Forecast and Investment Strategy Analysis of China Power Lithium Battery Industry'of the Qianzhan Industry Institute,currently lithium demand is mainly concentrated in mobile battery and glass,lubricating oil markets,whose percentage is up to 85%,market share of electric vehicle and ESS energy backup system

  17. Microwave synthesis and electrochemical properties of lithium manganese borate as cathode for lithium ion batteries

    Science.gov (United States)

    Ma, Ting; Muslim, Arzugul; Su, Zhi

    2015-05-01

    Nano structured LiMnBO3/C cathode materials are synthesized by a fast microwave solid-state reaction method using MnCO3, Li2CO3, H3BO3 and glucose as starting materials for the first time. The crystal structure, morphology and electrochemical properties of LiMnBO3/C composites are characterized by X-ray diffraction (XRD), raman spectroscopy (Ramon), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and charge-discharge tests. The result shows that not only monoclinic LiMnBO3/C but also hexagonal LiMnBO3/C cathode materials can be successfully synthesized by microwave solid-state method with power of 240 W in different time. Compared with h-LiMnBO3/C and mixed phase LiMnBO3/C, m-LiMnBO3/C displays lower charge-transfer resistance and the Warburg impedance, so it reveals a higher first discharge capacity of 156.3 mAh g-1 at 0.05 C within 1.8V-4.6 V, The value increases up to 173.2 mAh g-1 caused by the activation process. Even after 50 cycles, the discharge capacity of m-LiMnBO3/C still remains at 148.2 mAh g-1.

  18. Lithium Intoxication

    Directory of Open Access Journals (Sweden)

    Sermin Kesebir

    2011-09-01

    Full Text Available Lithium has been commonly used for the treatment of several mood disorders particularly bipolar disorder in the last 60 years. Increased intake and decreased excretion of lithium are the main causes for the development of lithium intoxication. The influence of lithium intoxication on body is evaluated as two different groups; reversible or irreversible. Irreversible damage is usually related with the length of time passed as intoxicated. Acute lithium intoxication could occur when an overdose of lithium is received mistakenly or for the purpose of suicide. Patients may sometimes take an overdose of lithium for self-medication resulting in acute intoxication during chronic, while others could develop chronic lithium intoxication during a steady dose treatment due to a problem in excretion of drug. In such situations, it is crucial to be aware of risk factors, to recognize early clinical symptoms and to conduct a proper medical monitoring. In order to justify or exclude the diagnosis, quantitative evaluation of lithium in blood and toxicologic screening is necessary. Following the monitoring schedules strictly and urgent intervention in case of intoxication would definitely reduce mortality and sequela related with lithium intoxication. In this article, the etiology, frequency, definition, clinical features and treatment approaches to the lithium intoxication have been briefly reviewed.

  19. Rare earth separations by selective borate crystallization

    Science.gov (United States)

    Yin, Xuemiao; Wang, Yaxing; Bai, Xiaojing; Wang, Yumin; Chen, Lanhua; Xiao, Chengliang; Diwu, Juan; Du, Shiyu; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao

    2017-03-01

    Lanthanides possess similar chemical properties rendering their separation from one another a challenge of fundamental chemical and global importance given their incorporation into many advanced technologies. New separation strategies combining green chemistry with low cost and high efficiency remain highly desirable. We demonstrate that the subtle bonding differences among trivalent lanthanides can be amplified during the crystallization of borates, providing chemical recognition of specific lanthanides that originates from Ln3+ coordination alterations, borate polymerization diversity and soft ligand coordination selectivity. Six distinct phases are obtained under identical reaction conditions across lanthanide series, further leading to an efficient and cost-effective separation strategy via selective crystallization. As proof of concept, Nd/Sm and Nd/Dy are used as binary models to demonstrate solid/aqueous and solid/solid separation processes. Controlling the reaction kinetics gives rise to enhanced separation efficiency of Nd/Sm system and a one-step quantitative separation of Nd/Dy with the aid of selective density-based flotation.

  20. Borated stainless steel joining technology. Final report

    International Nuclear Information System (INIS)

    Smith, R.J.

    1994-12-01

    EPRI had continued investigating the application of borated stainless steel products within the US commercial nuclear power industry through participation in a wide range of activities. This effort provides the documentation of the data obtained in the development of the ASTM-A887 Specification preparation effort conducted by Applied Science and Technology and the most recent efforts for the development of joining technologies conducted under a joint effort by EPRI, Carpenter Technologies and Sandia National Laboratory under a US DOE CRADA program. The data presented in this report provides the basis for the ASTM specification which has been previously unpublished by EPRI and the data generated in support of the Joining Technology research effort conducted at Sandia. The results of the Sandia research, although terminated prior to the completion, confirms earlier data that the degradation of material properties in fusion welded borated stainless steels occurs in the heat affected zone of the weld area and not in the base material. The data obtained also supports the conclusion that the degradation of material properties can be overcome by post weld heat treatment which can result in material properties near the original unwelded metal

  1. Titanium addition influences antibacterial activity of bioactive glass coatings on metallic implants.

    Science.gov (United States)

    Rodriguez, Omar; Stone, Wendy; Schemitsch, Emil H; Zalzal, Paul; Waldman, Stephen; Papini, Marcello; Towler, Mark R

    2017-10-01

    In an attempt to combat the possibility of bacterial infection and insufficient bone growth around metallic, surgical implants, bioactive glasses may be employed as coatings. In this work, silica-based and borate-based glass series were synthesized for this purpose and subsequently characterized in terms of antibacterial behavior, solubility and cytotoxicity. Borate-based glasses were found to exhibit significantly superior antibacterial properties and increased solubility compared to their silica-based counterparts, with BRT0 and BRT3 (borate-based glasses with 0 and 15 mol% of titanium dioxide incorporated, respectively) outperforming the remainder of the glasses, both borate and silicate based, in these respects. Atomic Absorption Spectroscopy confirmed the release of zinc ions (Zn 2+ ), which has been linked to the antibacterial abilities of glasses SRT0, BRT0 and BRT3, with inhibition effectively achieved at concentrations lower than 0.7 ppm. In vitro cytotoxicity studies using MC3T3-E1 osteoblasts confirmed that cell proliferation was affected by all glasses in this study, with decreased proliferation attributed to a faster release of sodium ions over calcium ions in both glass series, factor known to slow cell proliferation in vitro .

  2. Influence of Ga3+ ions on spectroscopic and dielectric features of multi component lithium lead boro bismuth silicate glasses doped with manganese ions

    International Nuclear Information System (INIS)

    Ramesh Babu, P.; Vijay, R.; Nageswara Rao, P.; Veeraiah, N.; Krishna Rao, D.

    2013-01-01

    Graphical abstract: The plots between ε″(ω)ω vs. ε′(ω) and ε″(ω)/ω vs. ε′(ω) yield straight lines with slope 1/τ and τ, respectively. Considerable deviation from the straight line is observed in the high frequency region. Such deviation suggests spreading of relaxation times and this is attributed to the presence of multiple type of dipoles in the glass matrix. Variation of the parameters ωε″(ω) and ε″(ω)/ω with ε′(ω) of glass Li 2 O–PbO–B 2 O 3 –SiO 2 –Bi 2 O 3 –MnO multi-component glasses mixed with 2.0 mol% of Ga 2 O 3 measured at 373 K. - Highlights: • A series of Li 2 O–PbO–B 2 O 3 –SiO 2 –Bi 2 O 3 –MnO:Ga 2 O 3 glasses have been synthesized. • A variety of spectroscopic and dielectric properties have been investigated. • Analysis of the results indicated that glasses with below 3.0 mol% Ga 2 O 3 are good conducting materials. - Abstract: Multi-component glasses of the chemical composition 19.5Li 2 O–20PbO–20B 2 O 3 –30SiO–(10 − x)Bi 2 O 3 –0.5MnO:xGa 2 O 3 with 0 ≤ x ≤ 5.0 have been synthesized. Spectroscopic (optical absorption, IR, Raman and ESR) and dielectric properties were investigated. Optical absorption and ESR spectral studies have indicated that managanese ions do exist in Mn 3+ state in addition to Mn 2+ state in the samples containing low concentration of Ga 2 O 3 . The IR and Raman studies indicated increasing degree of disorder in the glass network with the concentration of Ga 2 O 3 up to 3.0 mol%. The dielectric constant, loss and ac conductivity are observed to increase with the concentration of Ga 2 O 3 up to 3.0 mol%. The quantitative analysis of the results of dielectric properties has indicated an increase in the insulating strength of the glasses as the concentration of Ga 2 O 3 is raised beyond 3.0 mol%. This has been attributed to adaption of gallium ions from octahedral to tetrahedral coordination

  3. Lithium-free silver-activated alkali-alkaline earth-aluminium phosphate glass for radiophotoluminescence dosimetry with decreased pre-dose and increased chemical resistance. Lithiumfreies, silberaktiviertes Alkali-Erdalkali-Aluminium-Phosphatglas fuer die Radiophotolumineszenzdosimetrie mit verringertem Vordosiswert und erhoehter chemischer Resistenz

    Energy Technology Data Exchange (ETDEWEB)

    Jahn, W.; Schumann, W.

    1980-07-24

    The silver activated phosphate glass (metaphosphate glass) is free of lithium and exhibits an improved chemical resistance, a constant sensitivity, as well as a predose value of only about 265 mRad. It was made by melting 23.9 wt.% NaPO, 24.4 wt.% Mg(PO), 48.2 wt.% Al (PO) and 3.5 wt.% AgPO at a temperature of 1250 C in a ceramic crucible, cleared of bubbles at 1450 C and then cooled slowly.

  4. Photon emission induced by brittle fracture of borosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Shiota, Tadashi, E-mail: tshiota@ceram.titech.ac.jp [Department of Metallurgy and Ceramic Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Sato, Yoshitaka [Department of Metallurgy and Ceramic Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Kishi, Tetsuo [Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Yasuda, Kouichi [Department of Metallurgy and Ceramic Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2016-05-15

    Photon emission (PE) at wavelength ranges of 430–490 nm (B-PE), 500–600 nm (G-PE) and 610–680 nm (R-PE) caused by brittle fracture was simultaneously measured in the nanosecond-to-microsecond and millisecond time domains for two types of borosilicate glasses: Pyrex-type Tempax glass and BK7 glass. The results were compared to those for silica and soda lime glasses. The time dependence of the PE of Tempax glass was similar to that of silica glass, while the PE intensity was lower. Because Tempax glass contains both silica-rich and borate-rich amorphous phases, the PE must be mainly produced by the fracture of the silica-rich phase. Moreover, the proportion of B-PE of Tempax glass was higher than that of silica glass. This suggests that the measured B-PE might also include very weak PE caused by the fracture of the borate-rich phase. The PE time dependence of BK7 glass was similar to that of soda lime glass, which was different from the case for Tempax glass. The PE intensity of BK7 glass was slightly higher than that of soda lime glass, but much lower than that of Tempax glass. The result indicates that non-bridging oxygen in the glasses affects crack propagation behavior and reduces the PE. - Highlights: • Photon emission (PE) upon brittle fracture of borosilicate glasses was measured. • Pyrex-type Tempax and BK7 glasses showed different PE characteristics. • The rupture of Si–O bonds produces much stronger PE than that of B–O bonds. • Non-bridging oxygen in glass affects crack propagation behavior and reduces the PE.

  5. Lithium Poisoning

    DEFF Research Database (Denmark)

    Baird-Gunning, Jonathan; Lea-Henry, Tom; Hoegberg, Lotte C G

    2017-01-01

    Lithium is a commonly prescribed treatment for bipolar affective disorder. However, treatment is complicated by lithium's narrow therapeutic index and the influence of kidney function, both of which increase the risk of toxicity. Therefore, careful attention to dosing, monitoring, and titration...... is required. The cause of lithium poisoning influences treatment and 3 patterns are described: acute, acute-on-chronic, and chronic. Chronic poisoning is the most common etiology, is usually unintentional, and results from lithium intake exceeding elimination. This is most commonly due to impaired kidney...... function caused by volume depletion from lithium-induced nephrogenic diabetes insipidus or intercurrent illnesses and is also drug-induced. Lithium poisoning can affect multiple organs; however, the primary site of toxicity is the central nervous system and clinical manifestations vary from asymptomatic...

  6. High temperature flow behaviour of SiC reinforced lithium

    Indian Academy of Sciences (India)

    The compressive flow behaviour of lithium aluminosilicate (LAS) glass, with and without SiC particulate reinforcements, was studied. The LAS glass crystallized to spodumene during high-temperature testing. The flow behaviour of LAS glass changed from Newtonian to non-Newtonian due to the presence of crystalline ...

  7. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Benjamin Michael [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, τ, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single

  8. Borat tungib psüühesse / Rain Tolk

    Index Scriptorium Estoniae

    Tolk, Rain, 1977-

    2006-01-01

    Briti koomik Sacha Baron Cohen ja tema loodud peategelasega film "Borat - kultuurialased õppetunnid Ameerikast abiks suursuguse Kasahstani riigi ülesehitamisel", režissöör Larry Charles : Ameerika Ühendriigid 2006

  9. Interaction of natural borates with potassium hydroxide solution

    International Nuclear Information System (INIS)

    Azarova, L.A.; Vinogradov, E.E.; Kudinov, I.B.; Panasyuk, G.P.; Danilov, V.P.

    2000-01-01

    Interaction of natural borates - inyoite, ulexite and hydroboracite MgCa[B 3 O 4 (OH) 3 ] 2 ·3H 2 O with KOH solution is studied at 50 Deg C by the methods of chemical, x- ray phase, differential thermal analyses and IR spectroscopy. IR spectra points out on island character of forming borates and confirms the data of x-ray phase and chemical analyses about presence of asharite and calcium hydrous borate in resulting products. Hydroboracite (chain structure) under the action of potassium hydroxide passes into borates of magnesium and calcium with island structure and in this case boron transforms partially into liquid phase. When potassium hydroxide interacts with inyoite and ulexite calcium hydroxide and roentgenoamorphous boron-containing product precipitate [ru

  10. Allyl borates: a novel class of polyhomologation initiators

    KAUST Repository

    Wang, De; Hadjichristidis, Nikolaos

    2016-01-01

    Allyl borates, a new class of monofunctional polyhomologation initiators, are reported. These monofunctional initiators are less sensitive and more effective towards polymethylene-based architectures. As an example, the synthesis of α

  11. Magnesium Borate Synthesis by Microwave Energy: A New Method

    Directory of Open Access Journals (Sweden)

    Azmi Seyhun Kipcak

    2013-01-01

    Full Text Available Magnesium borates are one of the major groups of boron minerals that have important properties such as high heat and corrosion resistances and high coefficients of elasticity. In this study, magnesium borate minerals are synthesized using boric acid and magnesium oxide with a new method of microwave, and the synthesized minerals are characterized by various analysis techniques. The results show that pure, “magnesium borate hydrate” minerals are obtained at the end of various steps. The characterization of the products is determined with the techniques of X-Ray Diffraction (XRD, Fourier Transform Infrared Spectroscopy (FT-IR, Raman Spectroscopy, and Scanning Electron Microscopy (SEM. Additionally, overall “magnesium borate hydrate” yields are calculated and found about 67% at 270 W, 8 minutes and 360 W, 3 minutes of reaction times, respectively.

  12. Effect of silica and water content on the glass transition of poly(ethylene glycol) monomethylether-silica gel-lithium perchlorate ormolytes

    International Nuclear Information System (INIS)

    Korwin, Rebecca S.; Masui, Hitoshi

    2005-01-01

    The effect of silica and water content on the glass transition temperature, T g , of MPEG2000-silica-LiClO 4 ormolytes was assessed by differential scanning calorimetry (DSC). The sol-gel synthesized ormolytes consisted of various amounts of poly(ethylene glycol) monomethylether (M.W. 2000 g/mol; i.e., MPEG2000) tethered to silica gel through the hydroxyl terminus via a urethane linkage. DSC features corresponding to physisorbed and hydrogen-bonded water, as well as the glass transition of the polyether, were identified. Both silica and LiClO 4 raise the T g and suppress crystallization of the polyether component. Water plasticizes the polyether and stoichiometrically solvates and sequesters Li + , thereby, lowering T g

  13. Fluoride removal performance of glass derived hydroxyapatite

    International Nuclear Information System (INIS)

    Liang, Wen; Zhan, Lei; Piao, Longhua; Russel, Christian

    2011-01-01

    Research highlights: → Novel sodium calcium borate glass derived hydroxyapatite (G-HAP) is prepared. → Micro-G-HAP adsorbs F - ions in solutions more effectively than commercial nano-HAP. → The adsorption kinetics and isotherms are well fitted by a second order kinetic model and Freundlich isotherm model. -- Abstract: A novel sodium calcium borate glass derived hydroxyapatite (G-HAP) with different ranges of particle size was prepared by immersion sodium calcium borate glass in 0.1 M K 2 HPO 4 solution by the ratio of 50 g L -1 for 7 days. The unique advantage of G-HAP for the adsorption of fluoride ions in solutions was studied. The effects of size and quantity of particles, pH value and adsorption time on adsorption performance were investigated. The maximum adsorption capacity was 17.34 mg g -1 if 5 g L -1 , - in solution more effectively than commercial nano-HAP, which makes potential application of the G-HAP in removing the fluoride ions from wastewater. The adsorption kinetics and isotherms for F - could be well fitted by a second order kinetic model and Freundlich isotherm model respectively, which could be used to describe the adsorption behavior. The mechanism of G-HAP in immobilizing F - from aqueous solutions was investigated by the X-ray diffraction (XRD), infrared spectra (IR) and scanning electron microscopy (SEM).

  14. CREEP BEHAVIOR OF BORATE-TREATED STRANDBOARD: EFFECT OF ZINC BORATE RETENTION, WOOD SPECIES, AND LOAD LEVEL

    OpenAIRE

    Wu,Qinglin; Lee,Ong N; Cai,Zhiyong; Zhou,Dingguo

    2009-01-01

    Creep performance of zinc borate-treated strandboard from southern pine (Pinus taeda L.) and red oak (Quercus falcata) was investigated at 25(0)C temperature and 65% relative humidity. It was shown that the borate treatment had some significant effect on creep deflection of the test panels, and the effect varied with wood species. There was no significant effect of creep loading on residual bending properties of treated strandboard under the stress levels used. The four element spring-dashpot...

  15. Lithium Batteries

    Science.gov (United States)

    National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional thin-film lithium batteries for a variety of technological applications. These batteries have high essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for

  16. EPR investigation into the structure of boron-containing quartz glasses

    International Nuclear Information System (INIS)

    Amosov, A.V.; Bushmarin, D.B.; Prokhorova, T.I.; Yudin, D.M.

    1975-01-01

    Certain properties of boron-containing quartz glasses and the nature of occurrence of boron in the glass lattice are studied as functions of the method of alloying. The formation of three types of borate structural nodes (BO 4 , BO 3 and BO 4 -BO 3 ) in the lattice of quartz glasses is established. Alloying by boron oxide up to 3% (weight) increases the crystallization stability of quartz glasses, lowers down tsub(g) from 1220 to 950 deg C and does not affect the coefficient of thermal expansion. Low symmetry of borate structural nodes, following from the analysis of EPR spectra, confirms the literature data concerning the low symmetry of glass-forming polyhedrons in a quartz glass

  17. Growth and Evaluation of Nonlinear Optical Crystals for Laser Applications: Lithium Borate, Barium Borate and Silver Gallium Selenide.

    Science.gov (United States)

    1994-12-08

    communication 2. S. A. Kutovi, V. V. Laptev and S. Yu. Matsnev, " Lanthanum scandoborate as a new highly efficient active medium of solid state lasers," Sov. J...34Noncritical detection of tunable C02 laser radiation into green by upconversion in silver thio- gallate ," Applied Physics B53, 19 (1991). 3. N.-H

  18. Elastic properties of Na2 O–ZnO–ZnF2 –B2 O3 oxyfluoride glasses

    Indian Academy of Sciences (India)

    Administrator

    Elastic properties of borate glasses through ultrasound velocity measurements is one of the important techniques to elucidate the structure of glasses, since their properties have direct bearing on the bonding and interatomic forces. Sound velocity measurement at ultrasonic fre- quencies is used to determine the mechanical ...

  19. Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements

    OpenAIRE

    Edelman , Irina; Ivanova , Oxana; Ivantsov , Ruslan; Velikanov , D.; Zabluda , V.; Zubavichus , Y.; Veligzhanin , A.; Zaikovskiy , V.; Stepanov , S.; Artemenko , Alla; Curély , Jacques; Kliava , Janis

    2012-01-01

    International audience; A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge struct...

  20. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...

  1. Lithium neurotoxicity.

    Science.gov (United States)

    Suraya, Y; Yoong, K Y

    2001-09-01

    Inspite of the advent of newer antimanic drugs, lithium carbonate remains widely used in the treatment and prevention of manic-depressive illness. However care has to be exercised due to its low therapeutic index. The central nervous system and renal system are predominantly affected in acute lithium intoxication and is potentially lethal. The more common side effect involves the central nervous system. It occurs early and is preventable. We describe three cases of lithium toxicity admitted to Johor Bahru Hospital, with emphasis on its neurological preponderance.

  2. Effect of mulitivalent cation dopants on lithium manganese spinel cathodes

    CSIR Research Space (South Africa)

    De Kock, A

    1998-02-01

    Full Text Available The aim of this investigation is to determine optimised spinel cathode compositions that can be used in lithium cells. The cycling stability of 4 V LixMn2O4 electrodes in lithium, flooded electrolyte glass cells has been improved by the addition...

  3. Modulation of solid electrolyte interphase of lithium-ion batteries by LiDFOB and LiBOB electrolyte additives

    Science.gov (United States)

    Huang, Shiqiang; Wang, Shuwei; Hu, Guohong; Cheong, Ling-Zhi; Shen, Cai

    2018-05-01

    Solid-electrolyte interphase (SEI) layer is an organic-inorganic composite layer that allows Li+ transport across but blocks electron flow across and prevents solvent diffusing to electrode surface. Morphology, thickness, mechanical and chemical properties of SEI are important for safety and cycling performance of lithium-ion batteries. Herein, we employ a combination of in-situ AFM and XPS to investigate the effects of two electrolyte additives namely lithium difluoro(oxalate)borate (LiDFOB) and lithium bis(oxalato)borate (LiBOB) on SEI layer. LiDFOB is found to result in a thin but hard SEI layer containing more inorganic species (LiF and LiCO3); meanwhile LiBOB promotes formation of a thick but soft SEI layer containing more organic species such as ROCO2Li. Findings from present study will help development of electrolyte additives that promote formation of good SEI layer.

  4. Crack tip fracture toughness of base glasses for dental restoration glass-ceramics using crack opening displacements.

    Science.gov (United States)

    Deubener, J; Höland, M; Höland, W; Janakiraman, N; Rheinberger, V M

    2011-10-01

    The critical stress intensity factor, also known as the crack tip toughness K(tip), was determined for three base glasses, which are used in the manufacture of glass-ceramics. The glasses included the base glass for a lithium disilicate glass-ceramic, the base glass for a fluoroapatite glass-ceramic and the base glass for a leucite glass-ceramic. These glass-ceramic are extensively used in the form of biomaterials in restorative dental medicine. The crack tip toughness was established by using crack opening displacement profiles under experimental conditions. The crack was produced by Vickers indentation. The crack tip toughness parameters determined for the three glass-ceramics differed quite significantly. The crack tip parameters of the lithium disilicate base glass and the leucite base glass were higher than that of the fluoroapatite base glass. This last material showed glass-in-glass phase separation. The discussion of the results clearly shows that the droplet glass phase is softer than the glass matrix. Therefore, the authors conclude that a direct relationship exists between the chemical nature of the glasses and the crack tip parameter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Influence of fast neutrons on thermophysical properties of pure and borated low density polyethylene

    International Nuclear Information System (INIS)

    El-Khatib, A. M.; Kassem, M.

    1990-01-01

    The impact of radiation crosslinking on the mechanical, thermomechanical and electrical conductivity properties of LDPE and borated polyethylene have been studied and evaluated. The 8% borated polyethylene samples have added a new advantage where the tensile strength has increased to the maximum and then it became constant at higher crosslink density. Moreover, the electrical conductivity of 8% borated polyethylene is much higher than pure and 4% borated polyethylene. (author). 16 refs., 8 figs

  6. Corrosion studies of titanium in borated water for TPX

    International Nuclear Information System (INIS)

    Wilson, D.F.; Pawel, S.J.; DeVan, J.H.; Cole, M.J.; Nelson, B.E.

    1995-01-01

    Corrosion testing was performed to demonstrate the compatibility of the titanium vacuum vessel with borated water. Borated water is proposed to fill the annulus of the double wall vacuum vessel to provide effective radiation shielding. Borating the water with 110 grams of boric acid per liter is sufficient to reduce the nuclear heating in the Toroidal Field Coil set and limit the activation of components external to the vacuum vessel. Constant extension rate tensile (CERT) and electrochemical potentiodynamic tests were performed. Results of the CERT tests confirm that stress corrosion cracking is not significant for Ti-6Al4V or Ti-3AI-2.5V. Welded and unwelded specimens were tested in air and in borated water at 150 degree C. Strength, elongation, and time to failure were nearly identical for all test conditions, and all the samples exhibited ductile failure. Potentiodynamic tests on Ti-6A1-4V and Ti in borated water as a function of temperature showed low corrosion rates over a wide passive potential range. Further, this passivity appeared stable to anodic potentials substantially greater than those expected from MHD effects

  7. Sonochemical-assisted magnesium borate synthesis from different boron sources

    Directory of Open Access Journals (Sweden)

    Yildirim Meral

    2017-03-01

    Full Text Available In this study, sonochemical-assisted magnesium borate synthesis is studied from different boron sources. Various reaction parameters are successfully applied by a simple and green method. X-ray diffraction (XRD, Fourier transform infrared (FT-IR and Raman spectroscopies are used to characterize the synthesized magnesium borates on the other hand surface morphologies are investigated by using scanning electron microscope (SEM. The XRD analyses showed that the products were admontite [MgO(B2O33 · 7(H2O] with JCPDS (Joint Committee on Powder Diffraction Standards no. of 01-076-0540 and mcallisterite [Mg2(B6O7(OH62 · 9(H2O] with JCPDS no. of 01-070-1902. The results that found in the spectroscopic studies were in a good agreement with characteristic magnesium borate bands in both regions of infra-red and visible. According to SEM results, obtained borates were in micro and sub-micro scales. By the use of ultrasonication, reaction yields were found between 84.2 and 97.9%. As a result, it is concluded that the sonochemical approach is a practicable synthesis method to get high efficiency and high crystallinity in the synthesis magnesium borate compounds.

  8. Kinetic parameters and TL mechanism in cadmium tetra borate phosphor

    International Nuclear Information System (INIS)

    Annalakshmi, O.; Jose, M.T.; Sridevi, J.; Venkatraman, B.; Amarendra, G.; Mandal, A.B.

    2014-01-01

    Polycrystalline powder samples of cadmium tetra borate were synthesized by a simple solid state sintering technique and gamma irradiated sample showed a simple Thermoluminescence (TL) glow peak around 460 K. The TL kinetic parameters of gamma irradiated phosphor were determined by initial rise (IR), isothermal decay (ID), peak shape (PS), variable heating rate (VHR) and glow curve de-convolution method. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics (b) were calculated by IR, ID, PS and VHR methods are in the order of ∼1.05 eV, 10 9 –10 12 s −1 and 1.58, respectively. From the results of TL and PL emission studies carried out on the phosphor revealed that the defect centers related to TL is different from that for PL. EPR measurements were carried out to identify the defect centers formed in cadmium tetra borate phosphor on gamma irradiation. Based on EPR studies the mechanism for TL process in cadmium tetra borate is proposed in this paper -- Highlights: • Polycrystalline powder samples of undoped cadmium tetra borate synthesized. • Cadmium tetra borate phosphor exhibits a dosimetric peak at 458 K. • Kinetic parameters of the trap responsible for TL evaluated. • TL mechanism is proposed from TL to EPR correlation studies

  9. Kinetic parameters and TL mechanism in cadmium tetra borate phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Annalakshmi, O. [Radiological Safety Division, Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Jose, M.T., E-mail: mtj@igcar.gov.in [Radiological Safety Division, Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Sridevi, J. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai 600 020, Tamilnadhu (India); Venkatraman, B. [Radiological Safety Division, Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Amarendra, G. [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Mandal, A.B. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai 600 020, Tamilnadhu (India)

    2014-03-15

    Polycrystalline powder samples of cadmium tetra borate were synthesized by a simple solid state sintering technique and gamma irradiated sample showed a simple Thermoluminescence (TL) glow peak around 460 K. The TL kinetic parameters of gamma irradiated phosphor were determined by initial rise (IR), isothermal decay (ID), peak shape (PS), variable heating rate (VHR) and glow curve de-convolution method. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics (b) were calculated by IR, ID, PS and VHR methods are in the order of ∼1.05 eV, 10{sup 9}–10{sup 12} s{sup −1} and 1.58, respectively. From the results of TL and PL emission studies carried out on the phosphor revealed that the defect centers related to TL is different from that for PL. EPR measurements were carried out to identify the defect centers formed in cadmium tetra borate phosphor on gamma irradiation. Based on EPR studies the mechanism for TL process in cadmium tetra borate is proposed in this paper -- Highlights: • Polycrystalline powder samples of undoped cadmium tetra borate synthesized. • Cadmium tetra borate phosphor exhibits a dosimetric peak at 458 K. • Kinetic parameters of the trap responsible for TL evaluated. • TL mechanism is proposed from TL to EPR correlation studies.

  10. Uranium(iii) complexes supported by hydrobis(mercaptoimidazolyl)borates: synthesis and oxidation chemistry.

    Science.gov (United States)

    Maria, Leonor; Santos, Isabel C; Santos, Isabel

    2018-05-23

    The reaction of [UI3(thf)4] with the sodium or lithium salts of hydrobis(2-mercapto-1-methylimidazolyl)borate ligands ([H(R)B(timMe)2]-) in a 1 : 2 ratio, in tetrahydrofuran, gave the U(iii) complexes [UI{κ3-H,S,S'-H(R)B(timMe)2}2(thf)2] (R = H (1), Ph (2)) in good yields. Crystals of [UI{κ3-H,S,S'-H(Ph)B(timMe)2}2(thf)2] (2) were obtained by recrystallization from a tetrahydrofuran/acetonitrile solution, and the ion-separated uranium complex [U{κ3-H,S,S'-H(Ph)B(timMe)2}2(CH3CN)3][I] (3-I) was obtained by dissolution of 2 in acetonitrile followed by recrystallization. One-electron oxidation of 2 with AgBPh4 or I2 resulted in the formation of the cationic U(iv) complexes [U{κ3-H,S,S'-H(Ph)B(timMe)2}3][X] (X = BPh4 (6-BPh4), I (6-I)), due to a ligand redistribution process. These complexes are the first examples of homoleptic poly(azolyl)borate U(iv) complexes. Treatment of complex 2 with azobenzene led to the isolation of crystals of the U(iv) compound [UI{κ3-H(Ph)B(timMe)2}2(κ2-timMe)] (7). Treatment of 2 with pyridine-N oxide (pyNO) led to the formation of the uranyl complex [UO2{κ2-S,S'-H(Ph)B(timMe)2}2] (8) and of complex 6-I, while from the reaction of [U{κ3-H(Ph)B(timMe)2}2(thf)3][BPh4] (5) with pyNO, the oxo-bridged U(iv) complex [{U{κ3-H(Ph)B(timMe)2}2(pyNO)}2(μ-O)][BPh4]2 (9) was also obtained. In the U(iii) and U(iv) complexes, the bis(azolyl)borate ligands bind to the uranium center in a κ3-H,S,S' coordination mode, while in the U(vi) complex the ligands bind to the metal in a κ2-S,S' mode. The presence of UH-B interactions in the solid-state, for the nine-coordinate complexes 1, 2, 3, 6 and 7 and for the eight-coordinate complex 9, was supported by IR spectroscopy and/or X-ray diffraction analysis.

  11. Study on cementation of simulated radioactive borated liquid wastes

    International Nuclear Information System (INIS)

    Sun Qina; Li Junfeng; Wang Jianlong

    2010-01-01

    To compare sulfoaluminate cement with ordinary Portland cement on their cementation of radioactive borated liquid waste and to provide more data for formula optimization, simulated radioactive borated liquid waste were solidified by the two cements. 28 d compressive strength and strength losses after water/freezing/irradiation resistance tests were investigated. Leaching test and X-ray diffraction analysis were also conducted. The results show that it is feasible to solidify borated liquid wastes with sulfoaluminate cement and ordinary Portland cement with formulas used in the study. The 28 d compressive strengths, strength losses after tests and simulated nuclides leaching rates of the solidified waste forms meet the demand of GB 14569.1-93. The sulfoaluminate cement formula show better retention of Cs + than ordinary Portland cement formula. Boron, in form of B (OH) 4 - , incorporate in ettringite as solid solutions. (authors)

  12. The ions displacement through glasses

    International Nuclear Information System (INIS)

    Sevegnani, F.X.

    1980-01-01

    A method to introduce sodium, potassium, lithium, calcium, iron and other ions in vacuum or gas light bulb by mean of a strong stationay electric field. The experiments showed that the mass deposited inside the bulbs obey Faraday's law of electrolysis, although the process of mass transfer is not that of a conventional electrolysis. A method which allows to show that hydrogen ions do not penetrate the glass structure is also described. Using radioactive tracers, it is shown that heavy ions, such PO 4 --- do not penetrate the glass structure. The vitreous state and the glass properties were studied for interpreting experimental results. (Author) [pt

  13. Glass ceramic-to-metal seals

    Science.gov (United States)

    Not Available

    1982-04-19

    A glass ceramic composition prepared by subjecting a glass composition comprising, by weight, 65 to 80% SiO/sub 2/, 8 to 16% Li/sub 2/O, 2 to 8% Al/sub 2/O/sub 3/, 1 to 8% K/sub 2/O, 1 to 5% P/sub 2/O/sub 5/ and 1.5 to 7% B/sub 2/O/sub 3/, to the following processing steps of heating the glass composition to a temperature sufficient to crystallize lithium metasilicate therein, holding the glass composition at a temperature and for a time period sufficient to dissolve the lithium metasilicate therein thereby creating cristobalite nucleii, cooling the glass composition and maintaining the composition at a temperature and for a time period sufficient to recrystallize lithium metasilicate therein, and thermally treating the glass composition at a temperature and for a time period sufficient to caus growth of cristobalite and further crystallization of lithium metasilicate producing a glass ceramic composition having a specific thermal expansion coefficient and products containing said composition.

  14. The Kerr nonlinearity of the beta-barium borate crystal

    DEFF Research Database (Denmark)

    Bache, Morten; Guo, Hairun; Zhou, Binbin

    2013-01-01

    A popular crystal for ultrafast cascading experiments is beta-barium-borate (β-BaB2O4, BBO). It has a decent quadratic nonlinear coefficient, and because the crystal is anisotropie it can be birefringence phase-matched for type I (oo → e) second-harmonic generation (SHG). For femtosecond experime......A popular crystal for ultrafast cascading experiments is beta-barium-borate (β-BaB2O4, BBO). It has a decent quadratic nonlinear coefficient, and because the crystal is anisotropie it can be birefringence phase-matched for type I (oo → e) second-harmonic generation (SHG). For femtosecond...

  15. Composition-structure-property relation of oxide glasses

    DEFF Research Database (Denmark)

    Hermansen, Christian

    also increases such properties. Yet, these rules are not strictly followed even for the simplest binary oxide glasses, such as alkali silicates, borates and phosphates. In this thesis it is argued that the missing link between composition and properties is the glass structure. Structural models...... are proposed based on topological selection rules and experimentally verified. The relation between structure and properties is evaluated using topological constraint theory, which in its essence is a theory that quantifies the two intuitions of the glass scientist. The end result is a quantitative model...

  16. Effect of Magnesium Borates on the Fire-Retarding Properties of Zinc Borates

    Directory of Open Access Journals (Sweden)

    Azmi Seyhun Kipcak

    2014-01-01

    Full Text Available Magnesium borate (MB is a technical ceramic exhibiting high heat resistance, corrosion resistance, great mechanical strength, great insulation properties, lightweightness, high strength, and a high coefficient of elasticity. Zinc borate (ZB can be used as a multifunctional synergistic additive in addition to flame retardant additives in polymers. In this study, the raw materials of zinc oxide (ZnO, magnesium oxide (MgO, and boric acid (H3BO3 were used in the mole ratio of 1 : 1 : 9, which was obtained from preexperiments. Using the starting materials, hydrothermal synthesis was applied, and characterisation of the products was performed using X-Ray diffraction (XRD and Fourier transform infrared (FT-IR and Raman spectroscopies. The forms of Zn3B6O12·3.5H2O, MgO(B2O33·7(H2O, and Mg2(B6O7(OH62·9(H2O were synthesised successfully. Moreover, the surface morphology was investigated using scanning electron microscopy (SEM, and the B2O3 content was determined. In addition, the reaction yields were calculated. The results of the B2O3 content analysis were in compliance with the literature values. Examination of the SEM images indicated that the obtained nanoscale minerals had a reaction efficiency ranging between 63–74% for MB and 87–98% for ZB. Finally, the fire-retarding properties of the synthesised pure MBs, pure ZBs, and mixtures of MB and ZB were determined using differential thermal analysis and thermal gravimetry (DTA-TG and differential scanning calorimetry (DSC.

  17. Letter concerning Li2B4O7 thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Soares, C.G.

    1979-01-01

    This letter reports the comparison of two commercially available types of lithium borate thermoluminesence dosimeters: one in which crystalline lithium borate was pressed into chips, and the other in which lithium borate was dispersed in a glass matrix. When irradiated with cobalt 60 gamma radiation, the response of a single sample of each type was reproducible to within 1%. However, differences between the two samples were apparent in their long term storage characteristics

  18. Effect of borate concentration on solidification of radioactive wastes by different cements

    International Nuclear Information System (INIS)

    Sun Qina; Li Junfeng; Wang Jianlong

    2011-01-01

    Highlights: → The effect of borate on cementation of radioactive borate evaporator concentrates by sulfoaluminate cement (SAC) and Portland cement (PC) was compared. → The X-ray diffraction (XRD) revealed that borate did not interfere with the formation of main hydration products of SAC and PC. → Borate, in the form of B(OH) 4- , incorporated in ettringite as solid solution phase. - Abstract: To investigate the effect of borate on the cementation of radioactive evaporator concentrates, and to provide more data for solidification formula optimization, the simulated borate evaporator concentrates with different borate concentrations (as B) and Na/B ratio (molar ratio) were solidified by sulfoaluminate cement (SAC) and Portland cement (PC), with addition of Ca(OH) 2 , zeolite and accelerator or water reducer. The hydration products of solidified matrices were characterized by X-ray diffraction (XRD). The experimental results showed that borate retarded the cement setting for both SAC and PC formulas, and the final setting time prolonged with decrease of Na/B ratio. Borate could enhance the fluidity of the cement mixture. The 28 d compressive strengths of the solidified matrices for both SAC and PC formulas decreased with increase of borate concentration. The XRD patterns suggested that, in the matrices maintained for 28 d, borate did not interfere with the formation of main hydration products of SAC and PC. Borate, in the form of B(OH) 4- , incorporated in ettringite (3CaO.Al 2 O 3 .3CaSO 4 .32H 2 O) as solid solution phase. The formula of SAC and PC developed in this study was effective for cementation of the simulated borate evaporator concentrates. However further optimization was required to reduce retarding effect of higher borate concentrations and to extend the practical feasibility for actual evaporator concentrates.

  19. Indentation size effect and the plastic compressibility of glass

    Energy Technology Data Exchange (ETDEWEB)

    Smedskjaer, Morten M., E-mail: mos@bio.aau.dk [Section of Chemistry, Aalborg University, 9000 Aalborg (Denmark)

    2014-06-23

    Oxide glasses exhibit significant densification under an applied isostatic pressure at the glass transition temperature. The glass compressibility is correlated with the chemical composition and atomic packing density, e.g., borate glasses with planar triangular BO{sub 3} units are more disposed for densification than silicate glasses with tetrahedral units. We here show that there is a direct relation between the plastic compressibility following hot isostatic compression and the extent of the indentation size effect (ISE), which is the decrease of hardness with indentation load exhibited by most materials. This could suggest that the ISE is correlated with indentation-induced shear bands, which should form in greater density when the glass network is more adaptable to volume changes through structural and topological rearrangements under an applied pressure.

  20. Use of a new borate raw material for glaze formulation

    International Nuclear Information System (INIS)

    Gomez-Tena, M. P.; Moreno, A.; Bou, E.; Cook, S.; Galindo, M.

    2010-01-01

    The Rio Tinto Minerals company has developed a new borate (E-4972), which can be used in glaze formulation (patent WO 2007/148101). This new borate, synthesised by low-temperature calcination, fundamentally contributes five oxides: silicon oxide (SiO 2 ), aluminium oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), calcium oxide (CaO), and sodium oxide (Na 2 O), its content in B 2 O 3 being between 10 and 11% by weight. It is largely amorphous, and quartz is the major crystalline phase present. The characteristics of this new borate, such as its low solubility and ability readily to form glassy phase, enable it to be used as a raw material in glaze compositions. Its suitability for glaze formulation has been the result of several years research in collaboration with the Instituto de Tecnologia Ceramica. In this paper, the feasibility has been studied of fabricating ceramic glazes by using a new synthetic borate raw material that contributes boron to the glaze composition without this needing to be done in fritted form. It has been possible to obtain fired glazes with similar technical and aesthetics characteristics to those obtained from industrial glaze compositions that contain typical frits in their compositions, thus enabling glazes to be formulated by using the new synthetic boron raw material. The results obtained show that this new raw material (E-4972) is particularly appropriate for use in producing glazes with low gloss at high temperature. (Author) 15 refs.

  1. Measurement of lithium ion transference numbers of electrolytes for lithium-ion batteries. A comparative study with five various methods.; Messung von Lithium-Ionen Ueberfuehrungszahlen an Elektrolyten fuer Lithium-Ionen Batterien. Eine vergleichende Studie mit fuenf verschiedenen Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Zugmann, Sandra

    2011-03-30

    activity coefficients. The new electrolyte lithium difluoromono(oxalato)borate LiDFOB in EC/DEC (3/7) was for example fully determined at 25 C in this work. In comparison with other salts (LiPF6 und LiBF4) it proves to be an appropriate electrolyte for lithium-ion batteries. It generates no HF by hydrolysis that avoids the use of environment friendly and cost-effective manganese spinels, and it much better soluble as lithium bis(oxalato)borate LiBOB. In addition LiDFOB protects aluminum from corrosion and is more thermal stable as the standard salt LiPF6.

  2. Measurement of lithium ion transference numbers of electrolytes for lithium-ion batteries. A comparative study with five various methods.; Messung von Lithium-Ionen Ueberfuehrungszahlen an Elektrolyten fuer Lithium-Ionen Batterien. Eine vergleichende Studie mit fuenf verschiedenen Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Zugmann, Sandra

    2011-03-30

    number and ideally activity coefficients. The new electrolyte lithium difluoromono(oxalato)borate LiDFOB in EC/DEC (3/7) was for example fully determined at 25 C in this work. In comparison with other salts (LiPF6 und LiBF4) it proves to be an appropriate electrolyte for lithium-ion batteries. It generates no HF by hydrolysis that avoids the use of environment friendly and cost-effective manganese spinels, and it much better soluble as lithium bis(oxalato)borate LiBOB. In addition LiDFOB protects aluminum from corrosion and is more thermal stable as the standard salt LiPF6.

  3. Active Mechanism of the Interphase Film-Forming Process for an Electrolyte Based on a Sulfolane Solvent and a Chelato-Borate Complexe.

    Science.gov (United States)

    Li, Chunlei; Wang, Peng; Li, Shiyou; Zhao, Dongni; Zhao, Qiuping; Liu, Haining; Cui, Xiao-Ling

    2018-06-14

    Electrolytes based on sulfolane (SL) solvents and lithium bis(oxalato)borate (LiBOB) chelato-borate complexes have been reported many times for use in advanced lithium-ion batteries due to their many advantages. This study aims to clarify the active mechanism of the interphase film-forming process to optimize the properties of these batteries by experimental analysis and theoretical calculations. The results indicate that the self-repairing film-forming process during the first cycle is divided into three stages: the initial film formation with an electric field force of ~1.80 V, the further growth of the preformation solid electrolyte interface (SEI) film at ~1.73 V, and the final formation of a complete SEI film at a potential below 0.7 V. Additionally, we can deduce that the decomposition of LiBOB and SL occurs throughout nearly the entire process of the formation of the SEI film. The decomposition product of BOB- anions tends to form films with an irregular structure, while the decomposition product of SL is in favor of the formation of a uniform SEI film.

  4. Overview of ultraviolet and infrared spectroscopic properties of Yb3+ doped borate and oxy-borates compounds

    International Nuclear Information System (INIS)

    Sablayrolles, J.

    2006-12-01

    The trivalent ytterbium ion can give rise to two emissions with different spectroscopic properties: the first one, with a short lifetime, in the ultraviolet (charge transfer emission) is used in detectors such as scintillators, and the other one, with a long lifetime, in the infrared (4f-4f emission) for laser applications. The strong link between material structure and properties is illustrated through ytterbium luminescence study, in the ultraviolet and infrared, inserted in the borate Li 6 Y(BO 3 ) 3 and two oxy-borates: LiY 6 O 5 (BO 3 ) 3 and Y 17,33 B 8 O 38 . For the first time an ytterbium charge transfer emission in oxy-borates has been observed. The calculation of the single configurational coordinate diagram, as well as the thermal quenching, has been conducted under a fundamental approach on the ytterbium - oxygen bond. The study of the ytterbium infrared spectroscopy in these compounds has been realised and an energy level attribution is proposed in the particular case of the borate Li 6 Y(BO 3 ) 3 : Yb 3+ . An original approach is introduced with the study of the charge transfer states for the three compounds by looking at the infrared emission. The first laser performances in three operating modes (continuous wave, Q-switch and mode locking) of a Li 6 Y(BO 3 ) 3 : Yb 3+ crystal are reported. (author)

  5. Amount of leachant and water absorption levels of wood treated with borates and water repellents.

    Science.gov (United States)

    Baysal, Ergun; Sonmez, Abdullah; Colak, Mehmet; Toker, Hilmi

    2006-12-01

    Wood protection efficacy of borates against biological agents, flame retardancy, and suitability to the environment is well known. Since borates can be applied to timber as water based solutions, they are preferred economically as well. Even though they are highly mobile in wood, boron compounds are widely used in timber preservation. Borates migrate in liquid and increase the hygroscopicity of wood in damp conditions. This study deals with the physical restriction of water access in wood by impregnating water repellent agents into wood to limit amount of leachant and water absorption levels of wood after boron treatment. Borates were incorporated with polyethylene glycol-400 (PEG-400) their bulking effect in wood was considered. Results indicated that the amount of leachates from wood treated with borates in PEG-400 was remarkably higher compared to those of wood treated with the aqueous solutions of borates. Water absorption (WA) levels of wood treated with aqueous solutions of borates were higher than those of their treated samples with the solutions in PEG-400. Secondary treatments of wood with the water repellent (WR) chemicals following borate impregnation reduced the leaching of chemicals from wood in water and also WA of the specimens were less than those of the wood treated with only borates from aqueous and PEG solutions. Styrene (St) was the most effective monomer among the other agents used in terms of immobility effect on borates and WA.

  6. Preparation and transport properties of novel lithium ionic liquids

    International Nuclear Information System (INIS)

    Shobukawa, Hitoshi; Tokuda, Hiroyuki; Tabata, Sei-Ichiro; Watanabe, Masayoshi

    2004-01-01

    Novel lithium salts of borates having two electron-withdrawing groups (either 1,1,1,3,3,3-hexafluoro-2-propoxy or pentafluorophenoxy group) and two methoxy-oligo(ethylene oxide) groups (number of repeating unit: n = 3, 4, 7.2) were prepared by successive substitution-reactions from LiBH 4 . The obtained lithium salts were clear and colorless liquids at room temperature. The density, thermal property, viscosity, and ionic conductivity were measured for the lithium ionic liquids. The pulsed-gradient spin-echo NMR (PGSE-NMR) method was used to independently determine self-diffusion coefficients of the lithium cation ( 7 Li NMR) and the anion ( 19 F NMR) in the bulk. The ionic conductivity of the new lithium salts was 10 -5 to 10 -4 S cm -1 at 30 deg. C, which was lower than that of typical ionic liquids by two orders of magnitude. However, the degree of self-dissociation of the lithium ionic liquids; the ratio of the molar conductivity determined by the complex impedance method to that calculated from the self-diffusion coefficients and the Nernst-Einstein equation, ranged from 0.1 to 0.4, which are comparable values to those of a highly dissociable salt in an aprotic polar solvent and of typical ionic liquids. The main reason for the meager conductivity was high viscosities of the lithium ionic liquids. It should be noted that the lithium ionic liquids have self-dissociation ability and conduct the ions in the absence of organic solvents

  7. Effect of certain alkaline metals on Pr doped glasses to investigate spectroscopic studies

    Science.gov (United States)

    Lenkennavar Susheela, K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-02-01

    Incorporation of different Alkaline earth metal like Barium, Calcium and strontium in sodium lead borate glass doped with Pr3+ is studied. Physical parameters such as density, molar volume, molar refractivity etc have been evaluated. Effect of different atomic size of alkaline metal using optical and physical parameters is analysed. XRD and FTIR were carried out to know the structural behaviour of the glasses. Absorption and Emission spectra are recorded at room temperature and the results were discussed.

  8. Fluoride removal performance of glass derived hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Wen, E-mail: wliang@ecust.edu.cn [Research Institute of Biomaterials, School of Materials Science and Engineering, East China University of Science and Technology (China); Zhan, Lei; Piao, Longhua [Research Institute of Biomaterials, School of Materials Science and Engineering, East China University of Science and Technology (China); Russel, Christian [Otto-Schott-Institut, Universitaet Jena, Jena (Germany)

    2011-02-15

    Research highlights: {yields} Novel sodium calcium borate glass derived hydroxyapatite (G-HAP) is prepared. {yields} Micro-G-HAP adsorbs F{sup -} ions in solutions more effectively than commercial nano-HAP. {yields} The adsorption kinetics and isotherms are well fitted by a second order kinetic model and Freundlich isotherm model. -- Abstract: A novel sodium calcium borate glass derived hydroxyapatite (G-HAP) with different ranges of particle size was prepared by immersion sodium calcium borate glass in 0.1 M K{sub 2}HPO{sub 4} solution by the ratio of 50 g L{sup -1} for 7 days. The unique advantage of G-HAP for the adsorption of fluoride ions in solutions was studied. The effects of size and quantity of particles, pH value and adsorption time on adsorption performance were investigated. The maximum adsorption capacity was 17.34 mg g{sup -1} if 5 g L{sup -1}, <100 {mu}m G-HAP was added to a solution with an initial pH value of 6.72 and the adsorption time was 12 h. The results showed that the micro-G-HAP could immobilize F{sup -} in solution more effectively than commercial nano-HAP, which makes potential application of the G-HAP in removing the fluoride ions from wastewater. The adsorption kinetics and isotherms for F{sup -} could be well fitted by a second order kinetic model and Freundlich isotherm model respectively, which could be used to describe the adsorption behavior. The mechanism of G-HAP in immobilizing F{sup -} from aqueous solutions was investigated by the X-ray diffraction (XRD), infrared spectra (IR) and scanning electron microscopy (SEM).

  9. Enhancing mechanical properties of ceramic papers loaded with zeolites using borate compounds as binders

    OpenAIRE

    Juan P. Cecchini; Ramiro M. Serra; María A. Ulla; Miguel A. Zanuttini; Viviana G. Milt

    2013-01-01

    NaY zeolite-containing ceramic papers were prepared by a papermaking technique with a dual polyelectrolyte retention system that implied the use of cationic and anionic polymers. To improve their mechanical properties, we found that some borate compounds could be successfully used as ceramic binders. Three types of sodium and/or calcium borates were tested as binders: colemanite, nobleite, and anhydrous ulexite. The improvement in the mechanical properties depends both on the borate used and ...

  10. Glass sealing

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K.; Kovacic, L.; Chambers, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  11. Could borate have played a role in the RNA World?

    Science.gov (United States)

    Grew, E. S.; Bada, J. L.; Hazen, R. M.

    2012-12-01

    Two scenarios have been proposed for boron to play a critical role in the stabilization of ribose and other sugars in the ribonucleic acid (RNA) World, >3.8 Ga ago. One scenario envisages oligomeric RNA being synthesized in subaerial intermountane desert valleys in which groundwater was enriched in borate from breakdown of tourmaline (Benner et al. 2012 doi: 10.1021/ar200332w). In the alternative scenario, borates are enriched in hydrothermal environments (3.8 Ma as they are today and (2) plate tectonics was the prevailing regime. The postulated non-marine borate deposits would have been associated with continental collision and subduction with volcanism releasing B, whereas in the second scenario, ocean floor caught up in an early phase of subduction is considered a favorable site for borate formation. Because borate deposits are typically ephemeral and poorly preserved, the lack of evidence in the geologic record for these scenarios does not invalidate them. For example, the oldest reported non-marine borate deposits analogous to the type postulated in first scenario are only 20 Ma, but metamorphosed borates of Precambrian age have been interpreted to have non-marine evaporite precursors, the oldest being 2.4-2.1 Ga in the Liaoning-Jilin area, China. The first B minerals so far reported in the geologic record are metamorphic dravite-schorl tourmalines in the 3.7-3.8 Ga Isua supracrustal belt (southern West Greenland), where there is good evidence for seafloor spreading and subduction. The precursors to the Isua tourmalines are reported to include B-bearing marine clay minerals and detrital tourmaline. The relatively high Li contents in zircon from Jack Hills, Australia, have been cited as evidence for the presence of granitic (s. l.) "protocontinental" crust by 4.3 Ga (Ushikuba et al. 2008 doi:10.1016/j.epsl.2008.05.032; Valley et al. 2010 Rec Geol Surv W Aust, 5-7), but the existence of conventional plate tectonics prior to 3.8 Ga remains controversial

  12. Electrochromic Glasses.

    Science.gov (United States)

    1980-07-31

    this glass and that dipole-dipole correlations contribute to the "ferroelectric-like" character of this amorphous system. The TeO2 -W03 glasses can only...shows the dielectric constant and Fig. I(b) glass from pure TeO2 ot pure WO. In addition, glass the tan 8 of the WO glass as a function of temperature... glasses containing WO, in various glass forming nitworks of LifO-B1O0, Na:O-BzO,, and TeO2 were prepared from reagent grade oxides at 800 C - 9SO C in

  13. Glass scintillator pair for compensation neutron logging

    International Nuclear Information System (INIS)

    Ji Changsong; Li Xuezhi; Yiu Guangduo

    1985-01-01

    Glass scintillator pair types ST 1604 and ST 1605 for compensation of neutron logging is developed. The neutron sensitive material used is multistick lithium glass scintillators 3 and 4 mm in diameter respectively. Thermoneutron detection efficiencies are 50-60% and 100% respectively. The detection efficiency for 60 Co γ ray is lower than 0.3%. The type ST 1604 and ST 1605 may also be used as high sensitive neutron detectors in an intensive γ ray field

  14. A chemically stable PVD multilayer encapsulation for lithium microbatteries

    International Nuclear Information System (INIS)

    Ribeiro, J F; Sousa, R; Cunha, D J; Vieira, E M F; Goncalves, L M; Silva, M M; Dupont, L

    2015-01-01

    A multilayer physical vapour deposition (PVD) thin-film encapsulation method for lithium microbatteries is presented. Lithium microbatteries with a lithium cobalt oxide (LiCoO 2 ) cathode, a lithium phosphorous oxynitride (LiPON) electrolyte and a metallic lithium anode are under development, using PVD deposition techniques. Metallic lithium film is still the most common anode on this battery technology; however, it presents a huge challenge in terms of material encapsulation (lithium reacts with almost any materials deposited on top and almost instantly begins oxidizing in contact with atmosphere). To prove the encapsulation concept and perform all the experiments, lithium films were deposited by thermal evaporation technique on top of a glass substrate, with previously patterned Al/Ti contacts. Three distinct materials, in a multilayer combination, were tested to prevent lithium from reacting with protection materials and atmosphere. These multilayer films were deposited by RF sputtering and were composed of lithium phosphorous oxide (LiPO), LiPON and silicon nitride (Si 3 N 4 ). To complete the long-term encapsulation after breaking the vacuum, an epoxy was applied on top of the PVD multilayer. In order to evaluate oxidation state of lithium films, the lithium resistance was measured in a four probe setup (cancelling wires/contact resistances) and resistivity calculated, considering physical dimensions. A lithium resistivity of 0.16 Ω μm was maintained for more than a week. This PVD multilayer exonerates the use of chemical vapour deposition (CVD), glove-box chambers and sample manipulation between them, significantly reducing the fabrication cost, since battery and its encapsulation are fabricated in the same PVD chamber. (paper)

  15. A chemically stable PVD multilayer encapsulation for lithium microbatteries

    Science.gov (United States)

    Ribeiro, J. F.; Sousa, R.; Cunha, D. J.; Vieira, E. M. F.; Silva, M. M.; Dupont, L.; Goncalves, L. M.

    2015-10-01

    A multilayer physical vapour deposition (PVD) thin-film encapsulation method for lithium microbatteries is presented. Lithium microbatteries with a lithium cobalt oxide (LiCoO2) cathode, a lithium phosphorous oxynitride (LiPON) electrolyte and a metallic lithium anode are under development, using PVD deposition techniques. Metallic lithium film is still the most common anode on this battery technology; however, it presents a huge challenge in terms of material encapsulation (lithium reacts with almost any materials deposited on top and almost instantly begins oxidizing in contact with atmosphere). To prove the encapsulation concept and perform all the experiments, lithium films were deposited by thermal evaporation technique on top of a glass substrate, with previously patterned Al/Ti contacts. Three distinct materials, in a multilayer combination, were tested to prevent lithium from reacting with protection materials and atmosphere. These multilayer films were deposited by RF sputtering and were composed of lithium phosphorous oxide (LiPO), LiPON and silicon nitride (Si3N4). To complete the long-term encapsulation after breaking the vacuum, an epoxy was applied on top of the PVD multilayer. In order to evaluate oxidation state of lithium films, the lithium resistance was measured in a four probe setup (cancelling wires/contact resistances) and resistivity calculated, considering physical dimensions. A lithium resistivity of 0.16 Ω μm was maintained for more than a week. This PVD multilayer exonerates the use of chemical vapour deposition (CVD), glove-box chambers and sample manipulation between them, significantly reducing the fabrication cost, since battery and its encapsulation are fabricated in the same PVD chamber.

  16. Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction

    Science.gov (United States)

    Conder, Joanna; Bouchet, Renaud; Trabesinger, Sigita; Marino, Cyril; Gubler, Lorenz; Villevieille, Claire

    2017-06-01

    In the on going quest towards lithium-battery chemistries beyond the lithium-ion technology, the lithium-sulfur system is emerging as one of the most promising candidates. The major outstanding challenge on the route to commercialization is controlling the so-called polysulfide shuttle, which is responsible for the poor cycling efficiency of the current generation of lithium-sulfur batteries. However, the mechanistic understanding of the reactions underlying the polysulfide shuttle is still incomplete. Here we report the direct observation of lithium polysulfides in a lithium-sulfur cell during operation by means of operando X-ray diffraction. We identify signatures of polysulfides adsorbed on the surface of a glass-fibre separator and monitor their evolution during cycling. Furthermore, we demonstrate that the adsorption of the polysulfides onto SiO2 can be harnessed for buffering the polysulfide redox shuttle. The use of fumed silica as an electrolyte additive therefore significantly improves the specific charge and Coulombic efficiency of lithium-sulfur batteries.

  17. Magnetic properties and morphology of manganese ferrite nanoparticles in glasses

    International Nuclear Information System (INIS)

    Edelman, I; Ivanova, O; Ivantsov, I; Velikanov, D; Petrakovskaja, E; Artemenko, A; Curély, J; Kliava, J; Zaikovskiy, V; Stepanov, S

    2011-01-01

    Static magnetization (SM), magnetic circular dichroism (MCD) and electron magnetic resonance (EMR) studies are reported of borate glasses 22.5 K 2 O-22.5 Al 2 O 3 -55 B 2 O 3 co-doped with iron and manganese oxides. In as-prepared glasses the paramagnetic ions usually are in diluted state; however, if the ratio of the iron and manganese oxides in the charge is 3/2, magnetic nanoparticles are found already in as-prepared glass. After additional thermal treatment all glasses show magnetic behaviour, MCD and EMR due to the presence of magnetic nanoparticles with characteristics close to those of manganese ferrite. By computer simulating the EMR spectra at variable temperatures, their morphological characteristics are deduced: relatively broad size and shape distribution with average diameter of ca. 3-4 nm. The characteristic temperature-dependent shift of the apparent resonance field is explained by a strong temperature dependence of the magnetocrystalline anisotropy in the nanoparticles. The potassium-alumina-borate glasses containing magnetic nanoparticles represent a novel class of materials: t ransparent magnets . Indeed, they remain transparent in a part of visible and near infrared spectral range while showing magnetic and magneto-optical properties characteristic of magnetically ordered materials.

  18. Effect of Lithium Disilicate Reinforced Liner Treatment on Bond and Fracture Strengths of Bilayered Zirconia All-Ceramic Crown

    Directory of Open Access Journals (Sweden)

    Yong-Seok Jang

    2018-01-01

    Full Text Available This study was performed to evaluate the effect of a lithium-disilicate spray-liner application on both the bond strength between zirconia cores and heat-pressed lithium-disilicate glass-ceramic veneers, and the fracture strength of all-ceramic zirconia crowns. A lithium-disilicate reinforced liner was applied on the surface of a zirconia core and lithium-disilicate glass-ceramic was veneered on zirconia through heat press forming. Microtensile and crown fracture tests were conducted in order to evaluate, respectively, the bonding strength between the zirconia cores and heat pressed lithium-disilicate glass-ceramic veneers, and the fracture strength of bilayered zirconia all-ceramic crowns. The role of lithium-disilicate spray-liner at the interface between zirconia and lithium-disilicate glass-ceramic veneers was investigated through surface and cross-sectional analyses. We confirmed that both the mean bonding strength between the zirconia ceramics and lithium-disilicate glass-ceramic veneers and the fracture strength of the liner-treated groups were significantly higher than those of the untreated groups, which resulted, on the one hand, from the chemical bonding at the interface of the zirconia and lithium-disilicate liner, and, on the other, from the existence of a microgap in the group not treated with liner.

  19. Mixed mobile ion effect in fluorozincate glasses

    International Nuclear Information System (INIS)

    Ghosh, S; Ghosh, A

    2005-01-01

    The mixed mobile ion effect has been investigated for the first time in zinc fluoride glasses where in addition to alkali cations fluorine anions also participate in the diffusion process, unlike mixed alkali oxide glasses. The minimum in the conductivity, conductivity relaxation frequency, crossover frequency and decoupling index indicates the existence of the mixed mobile ion effect in these fluoride glasses. It has been observed that the non-exponential parameter and the frequency exponent are independent of temperature. It has been established that alkali ions and fluorine anions exhibit lower dimensionality of the conduction pathways in mixed alkali zinc fluoride glasses than that in the single alkali lithium based zinc fluoride glasses while they are migrating. From the scaling of the conductivity spectra, it has been established that the relaxation dynamics in mixed alkali zinc fluoride glasses is independent of temperature and composition

  20. Investigation of local environment around rare earths (La and Eu) by fluorescence line narrowing during borosilicate glass alteration

    International Nuclear Information System (INIS)

    Molières, Estelle; Panczer, Gérard; Guyot, Yannick; Jollivet, Patrick; Majérus, Odile; Aschehoug, Patrick; Barboux, Philippe; Gin, Stéphane; Angeli, Frédéric

    2014-01-01

    The local environment of europium in soda-lime borosilicate glasses with a range of La 2 O 3 content was probed by continuous luminescence and Fluorescence Line Narrowing (FLN) to investigate the local environment of rare earth elements in pristine and leached glass. After aqueous leaching at 90 °C at pH 7 and 9.5, rare earths were fully retained and homogeneously distributed in the amorphous alteration layer (commonly called gel). Two separate silicate environments were observed in pristine and leached glasses regardless of the lanthanum content and the leaching conditions. A borate environment surrounding europium was not observed in pristine and leached glasses. During glass alteration, OH groups were located around the europium environment, which became more organized (higher symmetry) in the first coordination shell. -- Highlights: • No borate environment surrounding europium was detected in pristine borosilicate glasses. • Up to 12 mol% of REE2O3 in glass, local environment of europium does not significantly change. • Europium environment becomes more ordered and symmetric in gels than in pristine glasses. • Two distinct silicate sites were observed, as well in pristine glass as in gels (leached glasses). • In altered glasses, OH groups were located around europium

  1. Investigation of local environment around rare earths (La and Eu) by fluorescence line narrowing during borosilicate glass alteration

    Energy Technology Data Exchange (ETDEWEB)

    Molières, Estelle [CEA – DEN-DTCD-LCV-SECM Laboratoire d' études du Comportement à Long Terme, 30207 Bagnols-sur-Cèze (France); Panczer, Gérard; Guyot, Yannick [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France); Jollivet, Patrick [CEA – DEN-DTCD-LCV-SECM Laboratoire d' études du Comportement à Long Terme, 30207 Bagnols-sur-Cèze (France); Majérus, Odile; Aschehoug, Patrick; Barboux, Philippe [Laboratoire de Chimie de la Matière Condensée de Paris, UMR-CNRS 7574, École Nationale Supérieure de Chimie de Paris (ENSCP Chimie-ParisTech), 11 rue Pierre et Marie Curie, 75231 Paris (France); Gin, Stéphane [CEA – DEN-DTCD-LCV-SECM Laboratoire d' études du Comportement à Long Terme, 30207 Bagnols-sur-Cèze (France); Angeli, Frédéric, E-mail: frederic.angeli@cea.fr [CEA – DEN-DTCD-LCV-SECM Laboratoire d' études du Comportement à Long Terme, 30207 Bagnols-sur-Cèze (France)

    2014-01-15

    The local environment of europium in soda-lime borosilicate glasses with a range of La{sub 2}O{sub 3} content was probed by continuous luminescence and Fluorescence Line Narrowing (FLN) to investigate the local environment of rare earth elements in pristine and leached glass. After aqueous leaching at 90 °C at pH 7 and 9.5, rare earths were fully retained and homogeneously distributed in the amorphous alteration layer (commonly called gel). Two separate silicate environments were observed in pristine and leached glasses regardless of the lanthanum content and the leaching conditions. A borate environment surrounding europium was not observed in pristine and leached glasses. During glass alteration, OH groups were located around the europium environment, which became more organized (higher symmetry) in the first coordination shell. -- Highlights: • No borate environment surrounding europium was detected in pristine borosilicate glasses. • Up to 12 mol% of REE2O3 in glass, local environment of europium does not significantly change. • Europium environment becomes more ordered and symmetric in gels than in pristine glasses. • Two distinct silicate sites were observed, as well in pristine glass as in gels (leached glasses). • In altered glasses, OH groups were located around europium.

  2. The electrical and electrochemical properties of graphene nanoplatelets modified 75V2O5e25P2O5 glass as a promising anode material for lithium ion battery

    CSIR Research Space (South Africa)

    Kebede, Mesfin A

    2018-02-01

    Full Text Available A V2O5 anode material significantly challenged on its further development to be used in lithium ion batteries in-terms of its structural degradation, poor cyclability and low conductivity. Thus researchers started to work on composite matrix...

  3. Effective binding of perhalogenated closo-borates to serum albumins revealed by spectroscopic and ITC studies

    Science.gov (United States)

    Kuperman, Marina V.; Losytskyy, Mykhaylo Yu.; Bykov, Alexander Yu.; Yarmoluk, Sergiy M.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolay T.; Varzatskii, Oleg A.; Gumienna-Kontecka, Elzbieta; Kovalska, Vladyslava B.

    2017-08-01

    The interactions of boron cluster compounds closo-borates with biomolecules are widely studied due to their efficiency as agents for boron neutron capture therapy of cancer. In present work the binding abilities of anionic halogen closo-borates [B10Hal10]2- (Hal = Cl, Br, I) and [B12Hal12]2- (Hal = Cl, I) towards bovine and human serum albumins were investigated by spectroscopic and isothermal titration calorimetry (ITC) methods. The protein fluorescence quenching method and ITC studies confirmed the complex formation. The degree of protein fluorescence quenching increased from chlorine to iodine boron derivatives that is attributed to external heavy atom effect. The ITC data point on the existence in the protein structure of two types of binding sites: with higher and lower affinity to closo-borates. Albumin-closo-borate complex binding ratio, n (4-5 anions per protein molecule) is higher than for the parent hydrogen closo-borates (2 anions per protein molecule). Binding constants estimated by fluorescent and ITC methods indicate higher affinity of halogen closo-borates to albumins (K in the range of 104-106 M-1) comparing to that of the hydrogen closo-borate (K about 103 M-1). Due to their high affinity and high binding ratio to albumins halogen closo-borates are proposed for further studies as agents for boron neutron capture therapy.

  4. Glass consistency and glass performance

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Ramsey, W.G.

    1994-01-01

    Glass produced by the Defense Waste Processing Facility (DWPF) will have to consistently be more durable than a benchmark glass (evaluated using a short-term leach test), with high confidence. The DWPF has developed a Glass Product Control Program to comply with this specification. However, it is not clear what relevance product consistency has on long-term glass performance. In this report, the authors show that DWPF glass, produced in compliance with this specification, can be expected to effectively limit the release of soluble radionuclides to natural environments. However, the release of insoluble radionuclides to the environment will be limited by their solubility, and not glass durability

  5. Hydrogen determination in magnesium, zirconium, sodium and lithium using installation, C2532

    International Nuclear Information System (INIS)

    Malikova, E.D.; Velyukhanov, V.P.; Makhinova, L.O.; Kunin, L.L.

    1980-01-01

    Techniques of hydrogen determination in magnesium, lithium, sodium and zirconium using the S 2532 installation are developed. The method of oxidizing melting using lead borate has been used for hydrogen determination in lithium and sodium and the method of vacuum extraction - for hydrogen determination in zirconium and magnesium. Zr and Mg extraction has been carried out in steel reactor at the temperatures of 1000 and 650 deg C, the time of extraction being 30 and 10 minutes respectively. A quartz reactor, temperatures of oxidizing melting of 700-800 deg C, the time of analysis 10 and 20 minutes have been used for sodium and lithium. A possibility to determine volumetric content of hydrogen in magnesium at the existing surface contaminations with hydrogen-containing compounds is shown [ru

  6. A Comparative Study of Structural Stability and Mechanical and Optical Properties of Fluorapatite (Ca5(PO4)3F) and Lithium Disilicate (Li2Si2O5) Components Forming Dental Glass-Ceramics: First Principles Study

    Science.gov (United States)

    Biskri, Z. E.; Rached, H.; Bouchear, M.; Rached, D.; Aida, M. S.

    2016-10-01

    The aim of this paper is a comparative study of structural stability and mechanical and optical properties of fluorapatite (FA) (Ca5(PO4)3F) and lithium disilicate (LD) (Li2Si2O5), using the first principles pseudopotential method based on density functional theory (DFT) within the generalized gradient approximation (GGA). The stability of fluorapatite and lithium disilicate compounds has been evaluated on the basis of their formation enthalpies. The results show that fluorapatite is more energetically stable than lithium disilicate. The independent elastic constants and related mechanical properties, including bulk modulus ( B), shear modulus ( G), Young's modulus ( E) and Poisson's ratio ( ν) as well as the Vickers hardness ( H v), have been calculated for fluorapatite compound and compared with other theoretical and experimental results. The obtained values of the shear modulus, Young's modulus and Vickers hardness are smaller in comparison with those of lithium disilicate compound, implying that lithium disilicate is more rigid than fluorapatite. The brittle and ductile properties were also discussed using B/ G ratio and Poisson's ratio. Optical properties such as refractive index n( ω), extinction coefficient k( ω), absorption coefficient α( ω) and optical reflectivity R( ω) have been determined from the calculations of the complex dielectric function ɛ( ω), and interpreted on the basis of the electronic structures of both compounds. The calculated values of static dielectric constant ɛ 1(0) and static refractive index n(0) show that the Li2Si2O5 compound has larger values compared to those of the Ca5(PO4)3F compound. The results of the extinction coefficient show that Li2Si2O5 compound exhibits a much stronger ultraviolet absorption. According to the absorption and reflectivity spectra, we inferred that both compounds are theoretically the best visible and infrared transparent materials.

  7. Efficient Electrolytes for Lithium-Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Natarajan eAngulakshmi

    2015-05-01

    Full Text Available This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium-sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium-sulfur batteries. The electrolytes for lithium-sulfur batteries are broadly classified as (i non-aqueous liquid electrolytes, (ii ionic liquids, (iii solid polymer and (iv glass-ceramic electrolytes. This article presents the properties, advantages and limitations of each type of electrolytes. Also the importance of electrolyte additives on the electrochemical performance of Li-S cells is discussed.

  8. Determination of lithium in rocks by distillation

    Science.gov (United States)

    Fletcher, M.H.

    1949-01-01

    A method for the quantitative extraction and recovery of lithium from rocks is based on a high temperature volatilization procedure. The sample is sintered with a calcium carbonate-calcium chloride mixture at 1200?? C. for 30 minutes in a platinum ignition tube, and the volatilization product is collected in a plug of Pyrex glass wool in a connecting Pyrex tube. The distillate, which consists of the alkali chlorides with a maximum of 5 to 20 mg. of calcium oxide and traces of a few other elements, is removed from the apparatus by dissolving in dilute hydrochloric acid and subjected to standard analytiaal procedures. The sinter residues contained less than 0.0005% lithium oxide. Lithium oxide was recovered from synthetic samples with an average error of 1.1%.

  9. Colloidal glasses

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Colloidal glasses. Glassy state is attained when system fails to reach equilibrium due to crowding of constituent particles. In molecular glasses, glassy state is reached by rapidly lowering the temperature. In colloidal glasses, glassy state is reached by increasing the ...

  10. Conditioning highly concentrated borate solutions with calcium sulfo-aluminate cement

    International Nuclear Information System (INIS)

    Champenois, J.B.; Cau dit Coumes, C.; Poulesquen, A.; Le Bescop, P.; Damidot, D.

    2012-01-01

    The early age hydration by borate solution of 3 calcium sulfo-aluminate cements (CSA), containing respectively 0%, 10% and 20% of gypsum by weight of cement was studied using isothermal calorimetry and dynamic mode rheo-metry. XRD and TGA analysis were carried out on pastes with increasing hydration degrees (up to 90 days) to specify the mineralogy and to figure out the mechanisms of borate immobilisation. It has been shown that the retarding effect of borate anions is due to the precipitation of the amorphous calcium borate C 2 B 3 H 8 ; borate anions were then incorporated in Aft-type phases. The macroscopic properties of hydrated binders (compressive strength, length change) were also followed during 180 days. It appears that the mechanical strength continuously increases with the hydration degree. Length changes under wet-curing and sealed bag remain moderate and seem to be stabilized after 180 days

  11. Evaluation of stress-corrosion cracking of sensitized 304SS in low-temperature borated water

    International Nuclear Information System (INIS)

    Jones, R.H.; Johnson, A.B. Jr.; Bruemmer, S.M.

    1981-05-01

    Intergranular stress corrosion cracking has been observed in constant extension rate tests, CERT and constant load tests of 304SS tested at 32 0 C in borated water plus 15 ppM C1 - . Evidence of IGSCC was obtained in CERT tests of welded pipe samples only when the original inner diameter surface was intact and with 15 ppM C1 - added to the borated water while IGSCC occurred in a furnace sensitized pipe sample after 500 h at a constant stress of 340 MPa in borated water containing 15 ppM C1 - . These results indicate that surface features associated with weld preparation grinding contributed to the susceptibility of sensitized 304SS to IGSCC in low temperature borated water; however, the constant load test indicates that such surface defects are not necessary for IGSCC in low temperature borated water

  12. Recent advances in rare earth doped alkali-alkaline earth borates for solid state lighting applications

    Science.gov (United States)

    Verma, Shefali; Verma, Kartikey; Kumar, Deepak; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    As a novel class of inorganic phosphor, the alkali-alkaline earth borate phosphors have gained huge attention due to their charming applications in solid-state lighting (SSL) and display devices. The current research drive shows that phosphors based on the alkali-alkaline earth borates have transformed the science and technology due to their high transparency over a broad spectral range, their flexibility in structure and durability for mechanical and high-laser applications. Recent advances in various aspects of rare-earth (RE) doped borate based phosphors and their utilizations in SSL and light emitting diodes are summarized in this review article. Moreover, the present status and upcoming scenario of RE-doped borate phosphors were reviewed in general along with the proper credential from the existing literature. It is believed that this review is a sole compilation of crucial information about the RE-doped borate phosphors in a single platform.

  13. Indentation Behavior of Permanently Densified Oxide Glasses

    DEFF Research Database (Denmark)

    Bechgaard, Tobias Kjær; Januchta, Kacper; Kapoor, Saurabh

    -induced changes in density, structure, and indentation behavior of a range of oxide glasses, including silicates, borates, and phosphates. The effect of compression on the structure is analyzed through both Raman and NMR spectroscopy, while the mechanical properties are investigated using Vickers micro......Hot isostatic compression can be used as a post treatment method to tune the properties of glass materials as well as to obtain improved understanding of the pressure-induced structural changes and densification mechanisms, e.g., during sharp contact loading. Here, we review the pressure......-indentation. The magnitude of the changes in all macroscopic properties (e.g., density, hardness, and crack resistance) is found to correlate well with the magnitude and type of structural change induced by hot compression. We show that the structural changes depend largely on the type of network former, the coordination...

  14. Optical properties of Dy3+ doped yttrium aluminium borate

    International Nuclear Information System (INIS)

    Vazquez, R MartInez; Osellame, R; Marangoni, M; Ramponi, R; Dieguez, E; Ferrari, M; Mattarelli, M

    2004-01-01

    A Dy 3+ doped yttrium aluminium borate (Dy:YAB) crystal has been optically characterized. The refractive indices at seven different wavelengths, ranging from the visible to the near infrared (IR), have been measured and the Sellmeier curves have been calculated. The polarized optical absorption spectra have been obtained at room temperature, and the Judd-Ofelt parameters have been calculated. The lifetime of the upper laser level 4 F 9/2 has been estimated and compared with the experimental value. Evidence of high luminescence quantum efficiency of the 4 F 9/2 state in YAB is provided by measured lifetimes

  15. Effect of RE (Nd3+, Sm3+) oxide on structural, optical properties of Na2O-Li2O-ZnO-B2O3 glass system

    Science.gov (United States)

    Hivrekar, Mahesh M.; Bhoyar, D. N.; Mande, V. K.; Dhole, V. V.; Solunke, M. B.; Jadhav, K. M.

    2018-05-01

    Zinc borate glass activated with rare earth oxide (Nd2O3, Sm2O3) of Na2O-Li2O-ZnO-B2O3 quaternary system has been prepared successfully by melt quenching method. The nucleation and growth of RE oxide were controlled temperature range 950-1000° C and rapid cooling at room temperature. The physical, structural and optical properties were characterized by using X-ray diffraction (XRD), SEM, Ultraviolet-visible spectroscopy (UV-Vis). XRD and SEM studies confirmed the amorphous nature, surface morphology of prepared zinc borate glass. The physical parameters like density, molar volume, molar mass of Nd3+, Sm3+ doped borate glass are summarized in the present article. The optical absorption spectra along with tauc's plot are presented. The optical energy band gap increases due to the addition of rare earth oxide confirming the role of network modifier.

  16. Silicate glasses

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    Vitrification of liquid high-level radioactive wastes has received the greatest attention, world-wide, compared to any other HLW solidification process. The waste form is a borosilicate-based glass. The production of phosphate-based glass has been abandoned in the western world. Only in the Soviet Union are phosphate-based glasses still being developed. Vitrification techniques, equipment and processes and their remote operation have been developed and studied for almost thirty years and have reached a high degree of technical maturity. Industrial demonstration of the vitrification process has been in progress since 1978. This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e., borosilicate glasses

  17. Understanding the structural drivers governing glass-water interactions in borosilicate based model bioactive glasses.

    Science.gov (United States)

    Stone-Weiss, Nicholas; Pierce, Eric M; Youngman, Randall E; Gulbiten, Ozgur; Smith, Nicholas J; Du, Jincheng; Goel, Ashutosh

    2018-01-01

    The past decade has witnessed a significant upsurge in the development of borate and borosilicate based resorbable bioactive glasses owing to their faster degradation rate in comparison to their silicate counterparts. However, due to our lack of understanding about the fundamental science governing the aqueous corrosion of these glasses, most of the borate/borosilicate based bioactive glasses reported in the literature have been designed by "trial-and-error" approach. With an ever-increasing demand for their application in treating a broad spectrum of non-skeletal health problems, it is becoming increasingly difficult to design advanced glass formulations using the same conventional approach. Therefore, a paradigm shift from the "trial-and-error" approach to "materials-by-design" approach is required to develop new-generations of bioactive glasses with controlled release of functional ions tailored for specific patients and disease states, whereby material functions and properties can be predicted from first principles. Realizing this goal, however, requires a thorough understanding of the complex sequence of reactions that control the dissolution kinetics of bioactive glasses and the structural drivers that govern them. While there is a considerable amount of literature published on chemical dissolution behavior and apatite-forming ability of potentially bioactive glasses, the majority of this literature has been produced on silicate glass chemistries using different experimental and measurement protocols. It follows that inter-comparison of different datasets reveals inconsistencies between experimental groups. There are also some major experimental challenges or choices that need to be carefully navigated to unearth the mechanisms governing the chemical degradation behavior and kinetics of boron-containing bioactive glasses, and to accurately determine the composition-structure-property relationships. In order to address these challenges, a simplified

  18. Synthesis, characterization, bioactivity and antibacterial studies of silver doped calcium borosilicate glass-ceramics

    Science.gov (United States)

    Kumar, Alesh; Mariappan, C. R.

    2018-04-01

    Bioactive glass-ceramics 45.8 mol% SiO- 45.8 CaO - 8.4 B2O3 doped with Ag2O were synthesized by sol-gel method. The glass-ceramic nature of samples was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. Fourier transform infrared (FT-IR) spectra reveal the probable stretching and bending vibration modes of silicate and borate groups. UV-Visible spectra reveal the presence of Ag+ ions and metallic Ag in the glass matrix for Ag2O doped ceramic sample. Biocompatibility of the glass nature of samples was studied by soaking of samples in Dulbecco's Modified Eagle's Medium (DMEM) with subsequent XRD studies. It was found that bone-like apatite formation on the glasses after soaked in DMEM. Antibacterial studies of glass ceramics powder against gram positive and negative microorganisms were carried out.

  19. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  20. Effect of ionic interaction of chlorode-borate and iodide-borate on their absorption by Lemna minor L

    Energy Technology Data Exchange (ETDEWEB)

    Thellier, M; Ayadi, A; Tromeur, C

    1967-11-27

    The effect of borate ions on the absorption of chloride and iodide ions by Lemna minor was studied by using the radioactive tracers Cl-36 at 23/sup 0/C with an illumination of 8000 Lux and I-131 at 25.5 C with 600 Lux. The absorbed quantities of the tracer elements were measured with a Geiger counter. The concentrations of sodium chloride solutions tested ranged from 0.055 to 1 mM, those of potassium iodide from 0.04 to 4 mM. While the presence of borate ions in the test solutions of NaCl inhibited the absorption of Cl ions by Lemna minor, only a mild inhibition or none at all was noted in the case of the absorption of I ions. Because of the difference of the cations (sodium in the case of Cl, potassium in the case of I) no direct comparison can be drawn between the absorption of the two halogens. The absorption of I by the plant is thought to proceed by a much simpler mechanism than that of Cl.

  1. Lithium batteries; Les accumulateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop on lithium batteries is divided into 4 sections dealing with: the design and safety aspects, the cycling, the lithium intercalation and its modeling, and the electrolytes. These 4 sections represent 19 papers and are completed by a poster session which corresponds to 17 additional papers. (J.S.)

  2. Lithium batteries; Les accumulateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop on lithium batteries is divided into 4 sections dealing with: the design and safety aspects, the cycling, the lithium intercalation and its modeling, and the electrolytes. These 4 sections represent 19 papers and are completed by a poster session which corresponds to 17 additional papers. (J.S.)

  3. Studies of the local distortions and the EPR parameters for Cu{sup 2+} in xLi{sub 2}O-(30-x)Na{sub 2}O-69.5B{sub 2}O glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Chang-Chun; Wu, Shao-Yi; Kuang, Min-Quan; Hu, Xian-Fen; Li, Guo-Liang [Univ. of Electronic Science and Technology of China, Chengdu (China). Dept. of Applied Physics

    2016-07-01

    The local distortions and electron paramagnetic resonance (EPR) parameters for Cu2+ in lithium sodium borate (LNB) glasses xLi{sub 2}O.(30-x).Na{sub 2}O.69.5B{sub 2}O{sub 3} (5 ≤ x ≤ 25 mol%) are theoretically studied at various concentrations x in a consistent way. Owing to the Jahn-Teller effect, the [CuO{sub 6}]{sup 10-} clusters are found to experience the significant tetragonal elongations of 16% along C{sub 4} axis. Despite the nearly unchanging observed g factors, measured d-d transition band (or cubic field parameter Dq) shows remarkable linear increases with concentration x, whose influences on g {sub parallel} and g {sub perpendicular} {sub to} are actually cancelled by the linearly increasing covalency factor N and relative elongation ratio η with x. The almost unvarying hyperfine structure constants are attributed to the fact that the influences of the linearly increasing N and the linearly decreasing core polarisation constant κ largely cancel one another. The microscopic mechanisms of the above concentration dependences for these quantities are illustrated from mixed alkali effect (modification of B{sub 2}O{sub 3} network by transforming some BO{sub 3} units into BO{sub 4} ones with variations in modifier Li{sub 2}O concentration).

  4. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  5. Cosmos & Glass

    DEFF Research Database (Denmark)

    Beim, Anne

    1996-01-01

    The article unfolds the architectural visions of glass by Bruno Taut. It refers to inspirations by Paul Sheerbart and litterature and the Crystal Chain, also it analyses the tectonic univers that can be found in the glass pavillion for the Werkbund exposition in Cologne....

  6. Glass Glimpsed

    DEFF Research Database (Denmark)

    Lock, Charles

    2015-01-01

    Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology.......Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology....

  7. Structural and luminescence properties of Mn2+ ions doped calcium zinc borophosphate glasses

    International Nuclear Information System (INIS)

    Wan, Ming Hua; Wong, Poh Sum; Hussin, Rosli; Lintang, Hendrik O.; Endud, Salasiah

    2014-01-01

    Highlights: • FT-IR revealed that the network structures are from borate and phosphate network. • The PL spectrum exhibits a green emission band at 582 nm ( 4 T 1g → 6 A 1g ). • As the concentration of Mn 2+ ions is increased, the emission band had been red shifted. • These glasses are found to have potential applications as luminescent optical materials. - Abstract: Calcium zinc borophosphate glasses (CaZnBP) doped with various concentrations of Mn 2+ ions and borate and phosphate as variable were prepared using conventional melt quenching technique. The structure of obtained glasses were examined by means of use: X-ray diffraction (XRD) and fourier transform infrared (FT-IR). XRD analysis confirmed amorphous nature of glass samples. The FT-IR spectra reveals the presence of both borate and phosphate vibrational modes in the prepared glasses. The doping of Mn 2+ ions (2–10 mol%) shows no significant changes in the main IR vibrational bands. Optical properties were studied by measuring the near infrared photoluminescence (PL) spectra. CaZnBP glasses exhibited intense green emission peak (582 nm) (tetrahedral symmetry), which is assigned to a transition from the upper 4 T 1g → 6 A 1g ground state of Mn 2+ ions. As the concentration of Mn 2+ ions increases, the emission band increases from 582 nm to 650 nm and exhibited a red light emission (octahedral symmetry). The decay curves of 4 T 1g level were examined for all concentrations and the measured lifetimes are found to depend strongly on Mn 2+ concentrations. From the emission characteristic parameters of 6 A 1g (S) level, it shows that the CaZnBP glasses could have potential applications as luminescent optical materials, visible lasers and fluorescent display devices

  8. Chemical stability of soda-alumina-zirconia-silica glasses to Na, Na2S4, and S

    International Nuclear Information System (INIS)

    Bloom, S.I.; Bradley, J.; Nelson, P.A.; Roche, M.F.

    1985-01-01

    Twenty-two glasses with a broad range of compositions, spanning the quaternary soda-alumina-zirconia-silica system, have been prepared to allow characterization of the various properties of the system. The glasses were characterized by their resistivities, energies of activation for conduction, and glass transition temperatures. The glasses were screened for compositions of especially high chemical stability of static corrosion tests in Na, S, and Na 2 S 4 for 1000h at 400 0 C. Among the glasses tested, the high soda glasses showed the smallest weight change after exposure to the three media. The weight change observed was comparable to that seen in the Dow borate glass and beta'' alumina

  9. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  10. Elevated temperature tensile properties of borated 304 stainless steel

    International Nuclear Information System (INIS)

    Stephens, J.J.; Sorenson, K.B.; McConnell, P.

    1993-01-01

    This paper presents a comparison of the tensile properties of Powder Metallurgy (PM) 'Grade A' material with that of the conventional IM 'Grade B' material for two selected Types (i.e., boron contents) as defined by the ASTM A887 specification: Types 304B5 and 304B7. Tensile properties have been generated for these materials at temperatures ranging from room temperature to 400degC (752degF). The data at higher temperatures are required for ASME Code Case purposes, since the use temperature of a basket under 'worst case' cask conditions may be as high as 343degC (650degF), due to self-heating by the activated fuel elements. We will also discuss the current status of efforts aimed at obtaining an ASME Boiler and Pressure Vessel Code Case for selected grades of borated stainless steel covered by the ASTM A887 specification. (J.P.N.)

  11. Treatment of timber products with gaseous borate esters, Part 1: factors influencing the treatment process

    CSIR Research Space (South Africa)

    Turner, P

    1995-08-01

    Full Text Available Several factors which influence the treatment of timber products with vapour phase preservatives such as borate esters are considered. Gas flow rate through the substrate was found to be a significant factor limiting both preservative penetration...

  12. Structure and luminescence spectra of lutetium and yttrium borates synthesized from ammonium nitrate melt

    International Nuclear Information System (INIS)

    Klassen, Nikolay V.; Shmurak, Semion Z.; Shmyt'ko, Ivan M.; Strukova, Galina K.; Derenzo, Stephen E.; Weber, Marvin J.

    2005-01-01

    Lutetium and yttrium borates doped with europium, terbium, gadolinium, etc. have been synthesized by dissolving initial oxides and nitrates in ammonium nitrate melt and thermal decomposition of the solvent. Annealings in the range of 500-1100 deg. C modified the dimensions of the grains from 2 to 3 nm to more than 100 nm. Significant dependence of the structure of lutetium borate on slight doping with rare earth ions has been found: terbium makes high-temperature vaterite phase preferential at room temperature, whereas europium stabilizes low-temperature calcite phase. Influence of the structure of the borates on the pattern of the luminescence spectra of europium dopant was observed. Possibilities for manufacturing of scintillating lutetium borate ceramics by means of this method of synthesis are discussed

  13. Structure and luminescence spectra of lutetium and yttrium borates synthesized from ammonium nitrate melt

    Science.gov (United States)

    Klassen, Nikolay V.; Shmurak, Semion Z.; Shmyt'ko, Ivan M.; Strukova, Galina K.; Derenzo, Stephen E.; Weber, Marvin J.

    2005-01-01

    Lutetium and yttrium borates doped with europium, terbium, gadolinium, etc. have been synthesized by dissolving initial oxides and nitrates in ammonium nitrate melt and thermal decomposition of the solvent. Annealings in the range of 500-1100°C modified the dimensions of the grains from 2 to 3 nm to more than 100 nm. Significant dependence of the structure of lutetium borate on slight doping with rare earth ions has been found: terbium makes high-temperature vaterite phase preferential at room temperature, whereas europium stabilizes low-temperature calcite phase. Influence of the structure of the borates on the pattern of the luminescence spectra of europium dopant was observed. Possibilities for manufacturing of scintillating lutetium borate ceramics by means of this method of synthesis are discussed.

  14. INFLUENCE OF BORATE BUFFERS ON THE ELECTROPHORETIC BEHAVIOR OF HUMIC SUBSTANCES IN CAPILLARY ZONE ELECTROPHORESIS

    Science.gov (United States)

    The influence of tetrahydroxyborate ions on the electrophoretic mobility of humic acids was evaluated by capillary electrophoresis (CE). Depending on the molarity of borate ions in the separation buffer, the humic acids exhibit electropherograms with sharp peaks consistently exte...

  15. Fabrication and characterization of poly (bisphenol A borate) with high thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shujuan [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Xiao [Department of Chemical Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Jia, Beibei [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Jing, Xinli, E-mail: xljing@mail.xjtu.edu.cn [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an, 710049 (China)

    2017-01-15

    Highlights: • PBAB with excellent thermal resistance and high char yield was synthesized. • The chemical reaction of BPA with BA, and chemical structure of PBAB were studied. • PBAB show excellent thermal resistance in N{sub 2} and air atmospheres. • The thermal stability of PBAB is greatly influenced by boron content. • Boron oxide and boron carbide are formed during the pyrolysis of PBAB. - Abstract: In this work, poly (bisphenol A borate) (PBAB), which has excellent thermal resistance and a high char yield, was synthesized via a convenient A{sub 2} + B{sub 3} strategy by using bisphenol A (BPA) and boric acid (BA). The chemical reaction between BPA and BA and the chemical structure of PBAB were investigated. The results demonstrate that PBAB consists of aromatic, Ph–O–B and B–O–B structures, as well as a small number of boron hydroxyl groups and phenolic hydroxyl groups. The thermal properties of PBAB were studied by DMA and TGA. The results indicate that the glass transition temperature and char yield are gradually enhanced by increasing the boron content, where the char yield of PBAB at 800 °C in nitrogen (N{sub 2}) reaches up to 71.3%. It is of particular importance that PBAB show excellent thermal resistance in N{sub 2} and air atmospheres. By analysing the pyrolysis of PBAB, the high char yield of PBAB can be attributed to the formation of boron oxide and boron carbide at high temperatures, which reduced the release of volatile carbon dioxide and improved the thermal stability of the carbonization products. This study provides a new perspective on the design of novel boron-containing polymers and possesses significant potential for the improvement of the comprehensive performance of thermosetting resins to broaden their applicability in the field of advanced composites.

  16. Structures and ion conduction pathways of amorphous lithium ion conductors

    International Nuclear Information System (INIS)

    Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei

    2014-01-01

    For ( 7 Li 2 S) x (P 2 S 5 ) 100-x glasses (x = 50, 60, and 70) and 7 Li 7 P 3 S 11 metastable crystal, time-of-flight neutron diffraction and synchrotron X-ray diffraction experiments were performed, and three-dimensional structures and conduction pathways of lithium ions were studied using the reverse Monte Carlo (RMC) modeling and the bond valence sum (BVS) approach. The conduction pathways of the lithium ions could be classified into two types: lithium 'stable' and 'metastable' regions, respectively. Moreover, it was found that there is a significant relationship between the activation energy of the electrical conduction and the topology of the conduction pathways of the lithium ions. (author)

  17. Gladstone-Dale rule and its applicability to natural calcium borates

    International Nuclear Information System (INIS)

    Gode, G.K.; Spritse, D.P.

    1987-01-01

    Applicability of Gladstone-Dale rule, relating a dependence between the values of refractive index, density and chemical composition of the liquids, to 25 natural crystalline calcium borates (minerals) is determined. The given rule is stated to be applicable to 21 of them. Only for 4 borates with unclear chemical composition and inaccurate data on the density and refractive indices Gladstone-Dale rule variations are expressed by more significant values

  18. Enriched lithium collection from lithium plasma flow

    International Nuclear Information System (INIS)

    Karchevsky, A.I.; Laz'ko, V.S.; Muromkin, Y.A.; Pashkovsky, V.G.; Ustinov, A.L.; Dolgolenko, D.A.

    1994-01-01

    In order to understand the physical processes concerned with the selective heating by ion cyclotron resonance and with the subsequent collection of heated particles, experiments were carried out with the extraction of lithium samples, enriched with 6 Li isotopes. Probe and integral extractors allow to collect enriched Li at the end of the selective heating region. Surface density distribution on the collector and local isotopic content of lithium are measured, as a function of the screen height and the retarding potential. Dependence of the collected amount of lithium and of its isotopic content on the value of the magnetic field is also measured. 4 figs., 2 tabs., 5 refs

  19. Neutron shielding and constructional characteristics of a new type concrete and from borated clinker

    International Nuclear Information System (INIS)

    Cakaloz, T.

    1979-07-01

    A boron containing cement, which can be used as nuclear shielding material, is produced at pilot plant scale applying two different methods. In the first method, the raw mixture of a normal portland cement is mixed with pre-calcined colemanite, a calcium borate mineral, and clinkerized in a rotary kiln (borated-clinker). In the second method, the colemanite is mixed with an admixture, which contains mainly limestone and marl, and burnt in the rotary kiln to obtain a borated-lime composite. The borated-lime composite is then added to the normal portland cement clinker up to 2% B 2 O 3 content for shielding purpose. The results have shown that the borated-clinker contained untolerable amount of free lime resulting in a decrease in compressive strength. The addition of the borated-lime composite to the normal portland cement clinker up to 1% B 2 O 3 content did not alter the setting time and the volume expansion properties. The reduction in the compressive strength was found to be tolerable, however, the decrease in the bending strength was 20% lower than that of permissible value. On the other hand, the increase in B 2 O 3 content of the mixture improved the neutron absorptivity resulting in an increase in total cross-section about 7 times for 1% B 2 O 3 without changing the gamma absorption value

  20. Spectrophotometric determination of boron in complex matrices by isothermal distillation of borate ester into curcumin

    International Nuclear Information System (INIS)

    Thangavel, S.; Dhavile, S.M.; Dash, K.; Chaurasia, S.C.

    2004-01-01

    In situ distillation of borate ester into the curcumin solution has been developed for the spectrophotometric determination of boron in a variety of complex matrixes. A polypropylene vessel containing the sample solution was placed inside a vessel (PP) containing 10 ml of curcumin solution and the distillation was carried out at room temperature/on a water bath. The borate ester collected in to the curcumin solution was evaporated to dryness on the water bath, taken in acetone and the absorbance was measured at 550 nm. In situ distillation of borate ester directly into the chromogenic reagent eliminates tedious sample treatment (before and/or after borate separation), use of methanol, complicated quartz set up, possible loss of boron and reduces the analysis time significantly. In situ dehydration of sample solution by ethanolic vapour in the absence of dehydrating acid prevents the formation of fluoborate and co-distillation of potential anionic interferents (nitrate and fluoride). This developed method has been applied for the determination of traces of boric acid in boron powder by the distillation of methyl borate at room temperature. For other matrixes (water, uranium oxide, uranyl nitrate, fluoride salt, etc.) distillation of ethyl borate was carried out on the water bath. LOD (3σ) was 5 ng g -1 for water and 30 ng g -1 for solid samples

  1. The Measurement of Integrated Gamma-Ray Doses in the Range 50 Mrad to 5 Mrad Using Phosphate Glass and Lithium Fluoride; Mesure, au Moyen de Verre au Phosphate et de Fluorure de Lithium, de Doses Integrees de Rayons Gamma de 50 Mrad a 5 Mrad; 0418 0417 041c 0414 ; Medicion de Dosis Integradas de Rayos Gamma de 50 Mrad a 5 Mrad por Medio de Vidrio al Fosfato y de Fluoruro de Litio

    Energy Technology Data Exchange (ETDEWEB)

    Webb, G. A.M. [Central Electricity Generating Board, Berkeley Nuclear Laboratories, Berkeley, Glos. (United Kingdom)

    1965-06-15

    The radio-photoluminescence and colour-change of phosphate glass and the thermoluminescence of lithium fluoride have been compared as the basis of dosimetry systems over the range of {gamma}-ray doses from 50 mrad to 5 Mrad. The stimulated luminescence of low atomic number, silver-activated phosphate flass was measured on a commercial fluorimeter (Toshiba fluoroglass dosimeter) supplemented by a spectrophotometer to measure the change of optical density for the high-dose region. The effects of various cleaning procedures for the glass were studied. The thermoluminescence of lithium fluoride was measured using a laboratory reader to produce glow curves and then integrating the area under the required peak. The emission spectrum of the thermoluminescence was measured using optical filters, which were also used to minimize the effects due to infra-red radiation from the heating tray. The effects on the tribothermoluminescent peak of optical filters and readout under nitrogen were investigated. A number of performance criteria of the two systems were investigated and compared critically. The range of the glass is very large, from 5 x 10{sup -2} to 5 x 10{sup 6} rad, i. e. a dynamic range of 108, whereas LiF, although it may be used for slightly lower doses, saturates above 10{sup 5} rad. The LiF is almost energy-dependent, but glass shows a maximum departure of seven times the response to Co{sup 60} at 60 keV; this may be corrected by shielding at the expense of raising the lower energy limit. The fading of the glass has been thoroughly investigated; that of LiF, which is not so marked, has been studied to a lesser extent. Annealing and re-use of both glass and LiF is possible and various annealing cycles have been tried for each; the sensitivity for re-use has also been measured. The effects of temperature of irradiation and storage in the range 20 to 100 Degree-Sign C have been studied for each system, as has the evaluation of doses in mixed neutron and {gamma

  2. [Microstructure and mechanical property of a new IPS-Empress 2 dental glass-ceramic].

    Science.gov (United States)

    Luo, Xiao-ping; Watts, D C; Wilson, N H F; Silsons, N; Cheng, Ya-qin

    2005-03-01

    To investigate the microstructure and mechanical properties of a new IPS-Empress 2 dental glass-ceramic. AFM, SEM and XRD were used to analyze the microstructure and crystal phase of IPS-Empress 2 glass-ceramic. The flexural strength and fracture toughness were tested using 3-point bending method and indentation method respectively. IPS-Empress 2 glass-ceramic mainly consisted of lithium disilicate crystal, lithium phosphate and glass matrix, which formed a continuous interlocking structure. The crystal phases were not changed before and after hot-pressed treatment. AFM showed nucleating agent particles of different sizes distributed on the highly polished ceramic surface. The strength and fracture toughness were 300 MPa and 3.1 MPam(1/2). The high strength and fracture toughness of IPS-Empress 2 glass ceramic are attributed to the fine lithium disilicate crystalline, interlocking microstructure and crack deflection.

  3. Mg- and K-bearing borates and associated evaporites at Eagle Borax spring, Death Valley, California: A spectroscopic exploration

    Science.gov (United States)

    Crowley, J.K.

    1996-01-01

    Efflorescent crusts at the Eagle Borax spring in Death Valley, California, contain an array of rare Mg and K borate minerals, several of which are only known from one or two other localities. The Mg- and/or K-bearing borates include aristarainite, hydroboracite, kaliborite, mcallisterite, pinnoite, rivadavite, and santite. Ulexite and probertite also occur in the area, although their distribution is different from that of the Mg and K borates. Other evaporite minerals in the spring vicinity include halite, thenardite, eugsterite, gypsum-anhydrite, hexahydrite, and bloedite. Whereas the first five of these minerals are found throughout Death Valley, the last two Mg sulfates are more restricted in occurrence and are indicative of Mg-enriched ground water. Mineral associations observed at the Eagle Borax spring, and at many other borate deposits worldwide, can be explained by the chemical fractionation of borate-precipitating waters during the course of evaporative concentration. The Mg sulfate and Mg borate minerals in the Eagle Borax efflorescent crusts point to the fractionation of Ca by the operation of a chemical divide involving Ca carbonate and Na-Ca borate precipitation in the subsurface sediments. At many other borate mining localities, the occurrence of ulexite in both Na borate (borax-kernite) and Ca borate (ulexite-colemanite) deposits similarly reflects ulexite's coprecipitation with Ca carbonate at an early concentration stage. Such ulexite may perhaps be converted to colemanite by later reaction with the coexisting Ca carbonate - the latter providing the additional Ca2+ ions needed for the conversion. Mg and Ca-Mg borates are the expected late-stage concentration products of waters forming ulexite-colemanite deposits and are therefore most likely to occur in the marginal zones or nearby mud facies of ulexite-colemanite orebodies. Under some circumstances, Mg and Ca-Mg borates might provide a useful prospecting guide for ulexite-colemanite deposits

  4. Properties and osteoblast cytocompatibility of self-curing acrylic cements modified by glass fillers.

    Science.gov (United States)

    Lopes, P; Garcia, M P; Fernandes, M H; Fernandes, M H V

    2013-11-01

    Materials filled with a silicate glass (MSi) and a borate glass (MB) were developed and compared in terms of their in vitro behavior. The effect of filler composition and concentration (0, 30, 40 and 50 wt%) on the curing parameters, residual monomer, water uptake, weight loss, bioactivity, mechanical properties (bending and compression) and osteoblast cytocompatibility was evaluated. The addition of bioactive glass filler significantly improved the cements curing parameters and the mechanical properties. The most relevant results were obtained for the lower filler concentration (30 t%) a maximum flexural strength of 40.4 Pa for MB3 and a maximum compressive strength of 95.7 MPa for MSi3. In vitro bioactivity in acellular media was enhanced by the higher glass contents in the cements. Regarding the biological assessment, the incorporation of the silicate glass significantly improved osteoblast cytocompatibility, whereas the presence of the borate glass resulted in a poor cell response. Nevertheless it was shown that the surviving cells on the MB surface were in a more differentiated stage compared to those growing over non-filled poly(methyl methacrylate). Results suggest that the developed formulations offer a high range of properties that might be interesting for their use as self-curing cements.

  5. Jahn-Teller glass formation in beta-lithium ammonium sulfate monocrystals studied by means of the electron paramagnetic resonance of Mn sup 2 sup + and Cu sup 2 sup + ions

    CERN Document Server

    Waplak, S

    2002-01-01

    The EPR (electron paramagnetic resonance) spectra of non-Jahn-Teller (JT) Mn sup 2 sup + and JT Cu sup 2 sup + ions have been studied for alpha- or beta-LAS structure modification in the temperature range of 4.2-480 K. The experimental evidence for JT glass with frozen-in random strain fields due to the presence of the JT Cu sup 2 sup + ions is presented.

  6. Geometric optimization of a neutron detector based on a lithium glass–polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M., E-mail: mike.f.mayer@gmail.com [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Nattress, J. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Trivelpiece, C. [Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Jovanovic, I. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2015-06-01

    We report on the simulation and optimization of a neutron detector based on a glass–polymer composite that achieves high gamma rejection. Lithium glass is embedded in polyvinyltoluene in three geometric forms: disks, rods, and spheres. Optimal shape, geometric configuration, and size of the lithium glass fragments are determined using Geant4 simulations. All geometrical configurations maintain an approximate 7% glass to polymer mass ratio. Results indicate a 125-mm diameter as the optimal detector size for initial prototype design achieving a 10% efficiency for the thermalization of incident fission neutrons from {sup 252}Cf. The geometrical features of a composite detector are shown to have little effect on the intrinsic neutron efficiency, but a significant effect on the gamma rejection is observed. The sphere geometry showed the best overall performance with an intrinsic neutron efficiency of approximately 6% with a gamma rejection better than 10{sup −7} for 280-μm diameter spheres. These promising results provide a motivation for prototype composite detector development based on the simulated designs. - Highlights: • Composite polymer–lithium glass scintillation detector is simulated. • Polymer is considered to be non-scintillating in the simulation. • Three forms of lithium glass are considered: disks, rods, and spheres. • Glass shape has a small effect on neutron efficiency. • Glass shape has a significant effect on gamma rejection.

  7. GLASS BOX

    National Research Council Canada - National Science Library

    Curtis, Laura

    2008-01-01

    The goals of this effort were to develop Glass Box capabilities to allow for the capturing of analyst activities and the associated data resources, track and log the results of automated processing...

  8. Late Byzantine mineral soda high alumina glasses from Asia Minor: a new primary glass production group.

    Directory of Open Access Journals (Sweden)

    Nadine Schibille

    Full Text Available The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS. The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor.

  9. Experimental lithium system experience

    International Nuclear Information System (INIS)

    Atwood, J.M.; Berg, J.D.; Kolowith, R.; Miller, W.C.

    1984-01-01

    The Experimental Lithium System is a test loop built to support design and operation of the Fusion Materials Irradiation Test Facility. ELS has achieved over 15,000 hours of safe and reliable operation. An extensive test program has demonstrated satisfactory performance of the system components, including an electromagnetic pump, lithium jet target, and vacuum system. Data on materials corrosion and behavior of lithium impurities are also presented. (author)

  10. An interaction of the functionalized closo-borates with albumins: The protein fluorescence quenching and calorimetry study

    International Nuclear Information System (INIS)

    Losytskyy, Mykhaylo Yu.; Kovalska, Vladyslava B.; Varzatskii, Oleg A.; Kuperman, Marina V.; Potocki, Slawomir; Gumienna-Kontecka, Elzbieta; Zhdanov, Andrey P.; Yarmoluk, Sergiy M.; Voloshin, Yan Z.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolai T.; Elskaya, Anna V.

    2016-01-01

    An interaction of the boron clusters closo-borates K 2 [B 10 H 10 ], K 2 [B 12 H 12 ] and their functionalized derivatives with serum proteins human (HSA) and bovine (BSA) albumins and immonoglobulin IgG as well as globular proteins β-lactoglobulin and lysozyme was characterized. The steady state and time resolved protein fluorescence quenching studies point on the binding of the closo-borate arylamine derivatives to serum albumins and discrimination of other proteins. The mechanism of the albumin fluorescence quenching by the closo-borate arylamine derivatives was proposed. The complex formation between albumin and the closo-borate molecules has been confirmed by isothermal titration calorimetry (ITC). The compound (K 2 [B 10 H 10 ]) and its arylamine derivative both interact with HSA, have close values of K a (1.4 and 1.2×10 3 M −1 respectively) and Gibbs energy (−17.9 and −17.5 kJ/mol respectively). However, the arylamine derivative forms complex with the higher guest/host binding ratio (4:1) comparing to the parent closo-borate (2:1). - Highlights: • Complex formation between boron clusters closo-borates and albumins was confirmed. • Functional substituent of closo-borate strongly affects its complex with albumins. • Binding of arylamine closo-borates essentially quench the albumin fluorescence. • Mechanism of tryptophan emission quenching by arylamine closo-borates was proposed.

  11. Electrochemical performances of lithium ion battery using alkoxides of group 13 as electrolyte solvent

    International Nuclear Information System (INIS)

    Kaneko, Fuminari; Masuda, Yuki; Nakayama, Masanobu; Wakihara, Masataka

    2007-01-01

    Tris(methoxy polyethylenglycol) borate ester (B-PEG) and aluminum tris(polyethylenglycoxide) (Al-PEG) were used as electrolyte solvent for lithium ion battery, and the electrochemical property of these electrolytes were investigated. These electrolytes, especially B-PEG, showed poor electrochemical stability, leading to insufficient discharge capacity and rapid degradation with cycling. These observations would be ascribed to the decomposition of electrolyte, causing formation of unstable passive layer on the surface of electrode in lithium ion battery at high voltage. However, significant improvement was observed by the addition of aluminum phosphate (AlPO 4 ) powder into electrolyte solvent. AC impedance technique revealed that the increase of interfacial resistance of electrode/electrolyte during cycling was suppressed by adding AlPO 4 , and this suppression could enhance the cell capabilities. We infer that dissolved AlPO 4 components formed electrochemically stable layer on the surface of electrode

  12. Structure and lattice dynamics in non-centrosymmetric borates

    International Nuclear Information System (INIS)

    Stein, W.D.R.

    2007-01-01

    This thesis deals with a study of structural and lattice dynamical properties of some noncentrosymmetric borates with outstanding non-linear optical properties. The focus was on the compound bismuth triborate (BiB 3 O 6 ). The structure of the tetraborates MB 4 O 7 (M=Pb,Sr,Ba) was also investigated. The structural investigations in bismuth triborate include powder and single crystal diffraction experiments on X-ray and neutron sources. The crystal structure was under examination in the temperature range from 100 K to room temperature and the lattice constants in the temperature range from 20 K to 800 K. The lattice constants show a nearly linear dependency from temperature. Our observations are in good agreement with investigations of the thermal expansion, which shows a strong anisotropy within the layer-like structure of bismuth triborate. Within the borate layers, along the polar axis a strong positive and in the orthogonal direction a negative thermal expansion is observed. This effect can be explained by a zig-zag effect within the borate layers. The lone electron pair at the bismuth atom is discussed to be possibly the origin of the temperature dependency of the coordination environment of the bismuth atom. The influence of the lone electron pair on the crystal structure is raising by lowering the temperature. At the bismuth atom distinct anharmonic effects are observed, where the maximum points along the direction of the polar axis and therefore along the direction of the lone electron pair. The phonon dispersion of bismuth triborate has been investigated by inelastic neutron scattering. The low symmetry of the crystal structure depicts to be a special challenge. The dispersion was observed along the three reciprocal lattice constants. Along the polar axis the dispersion could be characterized to a maximum energy of 20 THz. The low energy acoustic branch along the polar axis shows a softening at the zone boundary. In the orthogonal directions the dispersion

  13. Glass transition and crystallization kinetics of a barium borosilicate glass by a non-isothermal method

    International Nuclear Information System (INIS)

    Lopes, Andreia A. S.; Soares, Roque S.; Lima, Maria M. A.; Monteiro, Regina C. C.

    2014-01-01

    The glass transition and crystallization kinetics of a glass with a molar composition 60BaO-30B 2 O 3 -10SiO 2 were investigated by differential scanning calorimetry (DSC) under non-isothermal conditions. DSC curves exhibited an endothermic peak associated with the glass transition and two partially overlapped exothermic peaks associated with the crystallization of the glass. The dependence of the glass transition temperature (T g ) and of the maximum crystallization temperature (T p ) on the heating rate was used to determine the activation energy associated with the glass transition (E g ), the activation energy for crystallization (E c ), and the Avrami exponent (n). X-ray diffraction (XRD) revealed that barium borate (β-BaB 2 O 4 ) was the first crystalline phase to be formed followed by the formation of barium silicate (Ba 5 Si 8 O 21 ). The variations of activation energy for crystallization and of Avrami exponent with the fraction of crystallization (χ) were also examined. When the crystallization fraction (χ) increased from 0.1 to 0.9, the value of local activation energy (E c (χ)) decreased from 554 to 458 kJ/mol for the first exothermic peak and from 1104 to 831 kJ/mol for the second exothermic peak. The value determined for the Avrami exponent was near 2 indicating a similar one-dimensional crystallization mechanism for both crystalline phases. This was confirmed by the morphological studies performed by scanning electron microscopy (SEM) on glass samples heat-treated at the first and at the second crystallization temperatures

  14. Lithium Battery Diaper Ulceration.

    Science.gov (United States)

    Maridet, Claire; Taïeb, Alain

    2016-01-01

    We report a case of lithium battery diaper ulceration in a 16-month-old girl. Gastrointestinal and ear, nose, and throat lesions after lithium battery ingestion have been reported, but skin involvement has not been reported to our knowledge. © 2015 Wiley Periodicals, Inc.

  15. Investigation of impact of water type on borate ore flotation.

    Science.gov (United States)

    Ozkan, S G; Acar, A

    2004-04-01

    In this work, the impact of water type on borate ore flotation was investigated, while various physical parameters during flotation were considered in order to compare the results. Two different colemanite samples from Emet deposits of Turkey, named as Emet-A and Emet-B contained 44% B(2)O(3) and 40% B(2)O(3), respectively. The flotation tests were performed at feed particle size range of -210 +20 microm. Optimal consumption values for the reagents were determined as 2000 gt(-1) for AeroPromoter R825 from Cytec Company, a sulphonate type collector, 1500 gt(-1) for Procol CA927 from Allied Colloids Company, a sulphosuccinamate type collector and 100 gt(-1) for AeroFrother 70 from Cytec Company, an alcohol-type frother. In the tests, the impeller speed of the Denver-type flotation machine was set to 1200 rpm and the samples were fed into a litre cell at 25% solid/liquid ratio and at natural pH value of the slurry at room temperature. The flotation results obtained from the tests with use of tap water, demineralised water and the artificial water prepared with Ca(2+) and Mg(2+) cations deliberately added into demineralised water were compared to each other in optimal flotation conditions.

  16. Rare Earth Doped Lanthanum Calcium Borate Polycrystalline Red Phosphors

    Directory of Open Access Journals (Sweden)

    H. H. Xiong

    2014-01-01

    Full Text Available Single-phased Sm3+ doped lanthanum calcium borate (SmxLa2−xCaB10O19, SLCB, x=0.06 polycrystalline red phosphor was prepared by solid-state reaction method. The phosphor has two main excitation peaks located at 398.5 nm and 469.0 nm, which are nicely in accordance with the emitting wavelengths of commercial near-UV and blue light emitting diode chips. Under the excitation of 398.0 nm, the dominant red emission of Sm3+ in SLCB phosphor is centered at 598.0 nm corresponding to the transition of 4G5/2 → 6H7/2. The Eu3+ fluorescence in the red spectral region is applied as a spectroscopic probe to reveal the local site symmetry in the host lattice and, hence, Judd-Ofelt parameters Ωt  (t=2, 4 of Eu3+ in the phosphor matrix are derived to be 3.62×10-20 and 1.97×10-20 cm2, indicating a high asymmetrical and strong covalent environment around rare earth luminescence centers. Herein, the red phosphors are promising good candidates employed in white light emitting diodes (LEDs illumination.

  17. Electrochemical behaviour of silver in borate buffer solutions

    International Nuclear Information System (INIS)

    Zaky, Ayman M.; Assaf, Fawzi H.; Abd El Rehim, Sayed S.; Mohamed, Basheer

    2004-01-01

    The electrochemical behaviour of Ag in aqueous 0.15 M borax and 0.15 M boric acid buffer solution was studied under various conditions using cyclic voltammetry and potentiostatic techniques. It was found that the anodic polarization curve of Ag in borate buffer solution was characterized by the appearance of two potential regions, active and passive, prior to the oxygen evolution reaction. The active potential region was characterized by the appearance of three anodic peaks, the first two peaks A 1 and A 2 correspond to the oxidation of Ag and formation of [Ag(OH) 2 ] - soluble compound and a passive film of Ag 2 O on the electrode surface. The third anodic peak corresponds to the conversion of both [Ag(OH) 2 ] - and Ag 2 O to Ag 2 O 2 . X-ray diffraction patterns confirmed the existence of Ag 2 O and Ag 2 O 2 passive layers on the electrode surface potentiodynamically polarized up to 800 mV. Potentiostatic current transient measurements showed that the formation of Ag 2 O and Ag 2 O 2 involves a nucleation and growth mechanism under diffusion control

  18. Spray drying test of simulated borated waste solutions

    International Nuclear Information System (INIS)

    An Hongxiang; Zhou Lianquan; Fan Zhiwen; Sun Qi; Lin Xiaolong

    2007-01-01

    Performance and the effecting factors of spray drying of simulated borated waste solutions is studied for three contaeting methods between the atomized beads and the heated air, in which boron concentration is around 21000 ppm. The contacting modes are centrifugal atomizing co-current flow, pneumatic atomizing co-current flow and mixed flow. The results show that a free-flowing product in all these tests when the temperature of the solutions is between 62 de