WorldWideScience

Sample records for liquid-crystalline phases formed

  1. Nonionic diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains: thermotropic and lyotropic liquid crystalline phase behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena; Drummond, Calum J. (CSIRO/MSE)

    2014-09-24

    The thermotropic and lyotropic liquid crystalline phase behaviour of a series of diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains (geranoyl, H-farnesoyl, and phytanoyl) has been investigated. When neat, both H-farnesoyl and phytanoyl diethanolamide form a smectic liquid crystalline structure at sub-zero temperatures. In addition, all three diethanolamides exhibit a glass transition temperature at around -73 C. Geranoyl diethanolamide forms a lamellar crystalline phase with a lattice parameter of 17.4 {angstrom} following long term storage accompanied by the loss of the glass transition. In the presence of water, H-farnesoyl and phytanoyl diethanolamide form lyotropic liquid crystalline phases, whilst geranoyl diethanolamide forms an L{sub 2} phase. H-farnesoyl diethanolamide forms a fluid lamellar phase (L{sub {alpha}}) at room temperature and up to {approx} 40 C. Phytanoyl diethanolamide displays a rich mesomorphism forming the inverse diamond (Q{sub II}{sup D}) and gyroid (Q{sub II}{sup G}) bicontinuous cubic phases in addition to an L{sub {alpha}} phase.

  2. Highly tilted liquid crystalline materials possessing a direct phase transition from antiferroelectric to isotropic phase

    Energy Technology Data Exchange (ETDEWEB)

    Milewska, K.; Drzewiński, W. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Czerwiński, M., E-mail: mczerwinski@wat.edu.pl [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Dąbrowski, R. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Piecek, W. [Institute of Applied Physics, Military University of Technology, 00-908 Warsaw (Poland)

    2016-03-01

    Pure compounds and multicomponent mixtures with a broad temperature range of high tilted liquid crystalline antiferroelectric phase and a direct phase transition from antiferroelectric to isotropic phase, were obtained. X-ray diffraction analysis confirms these kinds of materials form a high tilted anticlinic phase, with a fixed layer spacing and very weak dependency upon temperature, after the transition from the isotropic phase. Due to this, not only pure orthoconic antiferroelectric liquid crystals but also those with a moderate tilt should generate a good dark state. Furthermore, due to the increased potential for forming anticlinic forces, such materials could minimize a commonly observed asymmetry of a rise and fall switching times at a surface stabilized geometry. - Highlights: • The new class of liquid crystalline materials with the direct SmC{sub A}*. • Iso phase transition were obtained. • Materials possess the layer spacing fixed and very weak dependent upon temperature. • Smectic layers without shrinkage are observed. • A good dark state can be generate in SSAFLC.

  3. Lyotropic liquid crystalline phase behaviour in amphiphile-protic ionic liquid systems.

    Science.gov (United States)

    Chen, Zhengfei; Greaves, Tamar L; Fong, Celesta; Caruso, Rachel A; Drummond, Calum J

    2012-03-21

    Approximate partial phase diagrams for nine amphiphile-protic ionic liquid (PIL) systems have been determined by synchrotron source small angle X-ray scattering, differential scanning calorimetry and cross polarised optical microscopy. The binary phase diagrams of some common cationic (hexadecyltrimethyl ammonium chloride, CTAC, and hexadecylpyridinium bromide, HDPB) and nonionic (polyoxyethylene (10) oleyl ether, Brij 97, and Pluronic block copolymer, P123) amphiphiles with the PILs, ethylammonium nitrate (EAN), ethanolammonium nitrate (EOAN) and diethanolammonium formate (DEOAF), have been studied. The phase diagrams were constructed for concentrations from 10 wt% to 80 wt% amphiphile, in the temperature range 25 °C to >100 °C. Lyotropic liquid crystalline phases (hexagonal, cubic and lamellar) were formed at high surfactant concentrations (typically >50 wt%), whereas at thermal stability of the phases formed by these surfactants persisted to temperatures above 100 °C. The phase behaviour of amphiphile-PIL systems was interpreted by considering the PIL cohesive energy, liquid nanoscale order, polarity and ionicity. For comparison the phase behaviour of the four amphiphiles was also studied in water.

  4. Liquid crystalline dihydroazulene photoswitches

    DEFF Research Database (Denmark)

    Petersen, Anne Ugleholdt; Jevric, Martyn; Mandle, Richard J.

    2015-01-01

    A large selection of photochromic dihydroazulene (DHA) molecules incorporating various substituents at position 2 of the DHA core was prepared and investigated for their ability to form liquid crystalline phases. Incorporation of an octyloxy-substituted biphenyl substituent resulted in nematic...... phase behavior and it was possible to convert one such compound partly into its vinylheptafulvene (VHF) isomer upon irradiation with light when in the liquid crystalline phase. This conversion resulted in an increase in the molecular alignment of the phase. In time, the meta-stable VHF returns...... to the DHA where the alignment is maintained. The systematic structural variation has revealed that a biaryl spacer between the DHA and the alkyl chain is needed for liquid crystallinity and that the one aromatic ring in the spacer cannot be substituted by a triazole. This work presents an important step...

  5. Molecular reorientations in a substance with liquid-crystalline and plastic-crystalline phases

    International Nuclear Information System (INIS)

    Nguyen, Xuan Phuc.

    1986-05-01

    Results of dielectric relaxation (DR), quasielastic neutron scattering (QNS), far infrared absorption (FIR), proton magnetic resonance (PMR), differential scanning calorimetry (DSC) and preliminary X-ray diffraction measurements on the di-n-pentyloxyazoxybenzene (5.OAOB) are presented. The measurements carried out by all these methods showed that 5.OAOB exhibits a nontypical for liquid-crystalline materials phase diagram. It has two mesophases: a nematic (N) and an ''intermediate'' crystalline phase just below it. A complex interpretation of results obtained is given. All suggestions concerning the character of reorientational motions of the molecule as a whole as well as of its segments in mesomorphic phases are analyzed. From comparison of the DR and QNS studies one can conclude that in the N phase the molecule as a whole performs rotational diffusion around the long axis (τ DR ∼ 100 ps) and at the same time the two moieties perform faster independent reorientations around N - benzene rings bonds withτ QNS ∼ 5 ps. On the basis of various experimental data it is shown that the CrI phase is a plastic-crystalline phase for which the molecule and its segments perform fast stochastic unaxial reorientations. This is the first case where the existence of such a phase in liquid-crystalline materials has been experimentally confirmed. (author)

  6. Structural aspects of fish skin collagen which forms ordered arrays via liquid crystalline states.

    Science.gov (United States)

    Giraud-Guille, M M; Besseau, L; Chopin, C; Durand, P; Herbage, D

    2000-05-01

    The ability of acid-soluble type I collagen extracts from Soleidae flat fish to form ordered arrays in condensed phases has been compared with data for calf skin collagen. Liquid crystalline assemblies in vitro are optimized by preliminary treatment of the molecular population with ultrasounds. This treatment requires the stability of the fish collagen triple helicity to be controlled by X-ray diffraction and differential scanning calorimetry and the effect of sonication to be evaluated by viscosity measurements and gel electrophoresis. The collagen solution in concentrations of at least 40 mg ml(-1) showed in polarized light microscopy birefringent patterns typical of precholesteric phases indicating long-range order within the fluid collagen phase. Ultrastructural data, obtained after stabilization of the liquid crystalline collagen into a gelated matrix, showed that neutralized acid-soluble fish collagen forms cross-striated fibrils, typical of type I collagen, following sine wave-like undulations in precholesteric domains. These ordered geometries, approximating in vivo situations, give interesting mechanical properties to the material.

  7. Electric-field triggered controlled release of bioactive volatiles from imine-based liquid crystalline phases.

    Science.gov (United States)

    Herrmann, Andreas; Giuseppone, Nicolas; Lehn, Jean-Marie

    2009-01-01

    Application of an electric field to liquid crystalline film forming imines with negative dielectric anisotropy, such as N-(4-methoxybenzylidene)-4-butylaniline (MBBA, 1), results in the expulsion of compounds that do not participate in the formation of the liquid crystalline phase. Furthermore, amines and aromatic aldehydes undergo component exchange with the imine by generating constitutional dynamic libraries. The strength of the electric field and the duration of its application to the liquid crystalline film influence the release rate of the expelled compounds and, at the same time, modulate the equilibration of the dynamic libraries. The controlled release of volatile organic molecules with different chemical functionalities from the film was quantified by dynamic headspace analysis. In all cases, higher headspace concentrations were detected in the presence of an electric field. These results point to the possibility of using imine-based liquid crystalline films to build devices for the controlled release of a broad variety of bioactive volatiles as a direct response to an external electric signal.

  8. Liquid phase and supercooled liquid phase welding of bulk metallic glasses

    International Nuclear Information System (INIS)

    Kawamura, Y.

    2004-01-01

    Recent progress on welding in bulk metallic glasses (BMGs) has been reviewed. BMGs have been successfully welded to BMGs or crystalline metals by liquid phase welding using explosion, pulse-current and electron-beam methods, and by supercooled liquid phase welding using friction method. Successful welding of the liquid phase methods was due to the high glass-forming ability of the BMGs and the high concentration of welding energy in these methods. In contrast, the supercooled liquid phase welding was successful due to the thermally stable supercooled liquid state of the BMGs and the superplasticity and viscous flow of the supercooled liquid. The successful welding of BMGs to BMGs and crystalline materials is promising for the future development of BMGs as engineering materials

  9. Phase behaviour of macromolecular liquid crystalline materials. Computational studies at the molecular level

    International Nuclear Information System (INIS)

    Stimson, Lorna M.

    2003-01-01

    Molecular simulations provide an increasingly useful insight into the static and dynamic characteristics of materials. In this thesis molecular simulations of macro-molecular liquid crystalline materials are reported. The first liquid crystalline material that has been investigated is a side chain liquid crystal polymer (SCLCP). In this study semi-atomistic molecular dynamics simulations have been conducted at a range of temperatures and an aligning potential has been applied to mimic the effect of a magnetic field. In cooling the SCLCP from an isotropic melt, microphase separation was observed yielding a domain structure. The application of a magnetic field to this structure aligns the domains producing a stable smectic mesophase. This is the first study in which mesophases have been observed using an off-lattice model of a SCLCP. The second material that has been investigated is a dendrimer with terminal mesogenic functionalization. Here, a multi-scale approach has been taken with Monte Carlo studies of a single dendrimer molecule in the gas phase at the atomistic level, semi-atomistic molecular dynamics of a single molecule in liquid crystalline solvents and a coarse-grained molecular dynamics study of the dendrimer in the bulk. The coarse-grained model has been developed and parameterized using the results of the atomistic and semi-atomistic work. The single molecule studies showed that the liquid crystalline dendrimer was able to change its structure by conformational changes in the flexible chains that link the mesogenic groups to the core. Structural change was seen under the application of a mean field ordering potential in the gas phase, and in the presence of liquid crystalline solvents. No liquid crystalline phases were observed for the bulk phase studies of the coarse-grained model. However, when the length of the mesogenic units was increased there was some evidence for microphase separation in these systems. (author)

  10. A metastable liquid melted from a crystalline solid under decompression

    Science.gov (United States)

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin

    2017-01-01

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure-temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.

  11. Investigations on the liquid crystalline phases of cation-induced ...

    Indian Academy of Sciences (India)

    liquid crystalline phases of Li–DNA system could be useful in the production of ... undergo unidirectional ordering (the solution starts to become birefringent under ... was spread over the glass slides with a cover slip and sealed with a neutral ...

  12. Naturally occurring crystalline phases: analogues for radioactive waste forms

    International Nuclear Information System (INIS)

    Haaker, R.F.; Ewing, R.C.

    1981-01-01

    Naturally occurring mineral analogues to crystalline phases that are constituents of crystalline radioactive waste forms provide a basis for comparison by which the long-term stability of these phases may be estimated. The crystal structures and the crystal chemistry of the following natural analogues are presented: baddeleyite, hematite, nepheline; pollucite, scheelite;sodalite, spinel, apatite, monazite, uraninite, hollandite-priderite, perovskite, and zirconolite. For each phase in geochemistry, occurrence, alteration and radiation effects are described. A selected bibliography for each phase is included

  13. Naturally occurring crystalline phases: analogues for radioactive waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Haaker, R.F.; Ewing, R.C.

    1981-01-01

    Naturally occurring mineral analogues to crystalline phases that are constituents of crystalline radioactive waste forms provide a basis for comparison by which the long-term stability of these phases may be estimated. The crystal structures and the crystal chemistry of the following natural analogues are presented: baddeleyite, hematite, nepheline; pollucite, scheelite;sodalite, spinel, apatite, monazite, uraninite, hollandite-priderite, perovskite, and zirconolite. For each phase in geochemistry, occurrence, alteration and radiation effects are described. A selected bibliography for each phase is included.

  14. Synergy in lipofection by cationic lipid mixtures: superior activity at the gel-liquid crystalline phase transition.

    Science.gov (United States)

    Koynova, Rumiana; Wang, Li; MacDonald, Robert C

    2007-07-12

    Some mixtures of two cationic lipids including phospholipid compounds (O-ethylphosphatidylcholines) as well as common, commercially available cationic lipids, such as dimethylammonium bromides and trimethylammonium propanes, deliver therapeutic DNA considerably more efficiently than do the separate molecules. In an effort to rationalize this widespread "mixture synergism", we examined the phase behavior of the cationic lipid mixtures and constructed their binary phase diagrams. Among a group of more than 50 formulations, the compositions with maximum delivery activity resided unambiguously in the solid-liquid crystalline two-phase region at physiological temperature. Thus, the transfection efficacy of formulations exhibiting solid-liquid crystalline phase coexistence is more than 5 times higher than that of formulations in the gel (solid) phase and over twice that of liquid crystalline formulations; phase coexistence occurring at physiological temperature thus appears to contribute significantly to mixture synergism. This relationship between delivery activity and physical property can be rationalized on the basis of the known consequences of lipid-phase transitions, namely, the accumulation of defects and increased disorder at solid-liquid crystalline phase boundaries. Packing defects at the borders of coexisting solid and liquid crystalline domains, as well as large local density fluctuations, could be responsible for the enhanced fusogenicity of mixtures. This study leads to the important conclusion that manipulating the composition of the lipid carriers so that their phase transition takes place at physiological temperature can enhance their delivery efficacy.

  15. Nonlinear optics of liquid crystalline materials

    International Nuclear Information System (INIS)

    Khoo, Iam Choon

    2009-01-01

    Liquid crystals occupy an important niche in nonlinear optics as a result of their unique physical and optical properties. Besides their broadband birefringence and transparency, abilities to self-assemble into various crystalline phases and to conform to various flexible forms and shapes, liquid crystals are compatible with almost all other optoelectronic materials and technology platforms. In both isotropic and ordered phases, liquid crystals possess extraordinarily large optical nonlinearities that stretch over multiple time scales. To date, almost all conceivable nonlinear optical phenomena have been observed in a very broad spectrum spanning the entire visible to infrared and beyond. In this review, we present a self-contained complete discussion of the optical nonlinearities of liquid crystals, and a thorough review of a wide range of nonlinear optical processes and phenomena enabled by these unique properties. Starting with a brief historical account of the development of nonlinear optical studies of the mesophases of liquid crystals, we then review various liquid crystalline materials and structures, and their nonlinear optical properties. Emphasis is placed on the nematic phase, which best exemplifies the dual nature of liquid crystals, although frequent references to other phases are also made. We also delve into recent work on novel structures such as photonic crystals, metamaterials and nanostructures and their special characteristics and emergent properties. The mechanisms and complex nonlocal dynamics of optical nonlinearities associated with laser induced director axis reorientation, thermal, density, and order parameter fluctuations, space charge field formation and photorefractivity are critically reviewed as a foundation for the discussions of various nonlinear optical processes detailed in this paper

  16. Simulation of bulk phases formed by polyphilic liquid crystal dendrimers

    Directory of Open Access Journals (Sweden)

    J.M. Ilnytskyi

    2010-01-01

    Full Text Available A coarse-grained simulation model for a third generation liquid crystalline dendrimer (LCDr is presented. It allows, for the first time, for a successful molecular simulation study of a relation between the shape of a polyphilic macromolecular mesogen and the symmetry of a macroscopic phase. The model dendrimer consists of a soft central sphere and 32 grafted chains each terminated by a mesogen group. The mesogenic pair interactions are modelled by the recently proposed soft core spherocylinder model of Lintuvuori and Wilson [J. Chem. Phys, 128, 044906, (2008]. Coarse-grained (CG molecular dynamics (MD simulations are performed on a melt of 100 molecules in the anisotropic-isobaric ensemble. The model LCDr shows conformational bistability, with both rod-like and disc-like conformations stable at lower temperatures. Each conformation can be induced by an external aligning field of appropriate symmetry that acts on the mesogens (uniaxial for rod-like and planar for disc-like, leading to formation of a monodomain smectic A (SmA or a columnar (Col phase, respectively. Both phases are stable for approximately the same temperature range and both exhibit a sharp transition to an isotropic cubic-like phase upon heating. We observe a very strong coupling between the conformation of the LCDr and the symmetry of a bulk phase, as suggested previously by theory. The study reveals rich potential in terms of the application of this form of CG modelling to the study of molecular self-assembly of liquid crystalline macromolecules.

  17. Liquid crystalline order of carbon nanotubes

    Science.gov (United States)

    Georgiev, Georgi; Ahlawat, Aditya; Mulkern, Brian; Doyle, Robert; Mongeau, Jennifer; Ogilvie, Alex

    2007-03-01

    Topological defects formed during phase transitions in liquid crystals provide a direct proof of the standard Cosmological model and are direct links to the Early Universe. On the other hand in Nanotechnology, carbon nanotubes can be manipulated and oriented directly by changing the liquid crystalline state of the nanotubes, in combination with organic liquid crystals. Currently there are no nano-assemblers, which makes the liquid crystal state of the nanotubes, one of the few ways of controlling them. We show the design of a fast and efficient polarized light ellipsometric system (a new modification of previous optical systems) that can provide fast quantitative real time measurements in two dimensions of the formation of topological defects in liquid crystals during phase transitions in lab settings. Our aim is to provide fundamental information about the formation of optically anisotropic structures in liquid crystals and the orientation of carbon nanotubes in electric field.

  18. How ionic species structure influences phase structure and transitions from protic ionic liquids to liquid crystals to crystals.

    Science.gov (United States)

    Greaves, Tamar L; Broomhall, Hayden; Weerawardena, Asoka; Osborne, Dale A; Canonge, Bastien A; Drummond, Calum J

    2017-12-14

    The phase behaviour of n-alkylammonium (C6 to C16) nitrates and formates has been characterised using synchrotron small angle and wide angle X-ray scattering (SAXS/WAXS), differential scanning calorimetry (DSC), cross polarised optical microscopy (CPOM) and Fourier transform infrared spectroscopy (FTIR). The protic salts may exist as crystalline, liquid crystalline or ionic liquid materials depending on the alkyl chain length and temperature. n-Alkylammonium nitrates with n ≥ 6 form thermotropic liquid crystalline (LC) lamellar phases, whereas n ≥ 8 was required for the formate series to form this LC phase. The protic ionic liquid phase showed an intermediate length scale nanostructure resulting from the segregation of the polar and nonpolar components of the ionic liquid. This segregation was enhanced for longer n-alkyl chains, with a corresponding increase in the correlation length scale. The crystalline and liquid crystalline phases were both lamellar. Phase transition temperatures, lamellar d-spacings, and liquid correlation lengths for the n-alkylammonium nitrates and formates were compared with those for n-alkylammonium chlorides and n-alkylamines. Plateau regions in the liquid crystalline to liquid phase transition temperatures as a function of n for the n-alkylammonium nitrates and formates are consistent with hydrogen-bonding and cation-anion interactions between the ionic species dominating alkyl chain-chain van der Waals interactions, with the exception of the mid chained hexyl- and heptylammonium formates. The d-spacings of the lamellar phases for both the n-alkylammonium nitrates and formates were consistent with an increase in chain-chain layer interdigitation within the bilayer-based lamellae with increasing alkyl chain length, and they were comparable to the n-alkylammonium chlorides.

  19. Dicyanamide Salts that Adopt Smectic, Columnar, or Bicontinuous Cubic Liquid-Crystalline Mesophases.

    Science.gov (United States)

    Park, Geonhui; Goossens, Karel; Shin, Tae Joo; Bielawski, Christopher W

    2018-04-25

    Although dicyanamide (i.e., [N(CN) 2 ] - ) has been commonly used to obtain low-viscosity, halogen-free, room-temperature ionic liquids, liquid-crystalline salts containing such anions have remained virtually unexplored. Here we report a series of amphiphilic dicyanamide salts that, depending on their structures and compositions, adopt smectic, columnar, or bicontinuous cubic thermotropic liquid-crystalline mesophases, even at room temperature in some cases. Their thermal properties were explored by polarized light optical microscopy, differential scanning calorimetry, thermogravimetric analysis (including evolved gas analysis), and variable-temperature synchrotron X-ray diffraction. Comparison of the thermal phase characteristics of these new liquid-crystalline salts featuring "V-shaped" [N(CN) 2 ] - anions with those of structural analogues containing [SCN] - , [BF 4 ] - , [PF 6 ] - , or [CF 3 SO 3 ] - anions indicated that not only the size of the counterion but also its shape should be considered in the development of mesomorphic salts. Collectively, these discoveries may be expected to facilitate the design of thermotropic ionic liquid crystals that form inverted-type bicontinuous cubic and other sophisticated liquid-crystalline phases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Liquid Crystalline Thermosets from Ester, Ester-imide, and Ester-amide Oligomers

    Science.gov (United States)

    Dingemans, Theodorus J. (Inventor); Weiser, Erik S. (Inventor); St. Clair, Terry L. (Inventor)

    2009-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystaloligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oli-gomers are stable forup to an hour in the melt phase. They are highly processable by a variety of melt process shape forming and blending techniques. Once processed and shaped, the end-capped liquid crystal oigomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures.

  1. Method of forming an oxide superconducting thin film having an R1A2C3 crystalline phase over an R2A1C1 crystalline phase

    International Nuclear Information System (INIS)

    Lelental, M.; Romanofsky, H.J.

    1992-01-01

    This patent describes a process which comprises forming a mixed rare earth alkaline earth copper oxide layer on a substrate and converting the mixed rare earth alkaline earth copper oxide layer to an electrically conductive layer. It comprises crystalline R 1 A 2 C 3 oxide phase by heating in the presence of oxygen, wherein rare earth and R is in each instance chosen from among yttrium, lanthanum, samarium, europium, gadolinium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium and alkaline earth and A is in each instance chosen from among calcium, strontium and barium, characterized in that a crystalline R 2 A 1 C 1 oxide phase is first formed as a layer on the substrate and the crystalline R 1 A 2 C 3 oxide phase is formed over the crystalline R 2 A 1 C 1 oxide phase by coating a mixed rare earth alkaline earth copper oxide on the crystalline R 2 A 1 C 1 oxide phase and heating the mixed rare earth alkaline earth copper oxide to a temperature of at least 1000 degrees C

  2. Lattice Boltzmann simulations of liquid crystalline fluids: active gels and blue phases

    OpenAIRE

    Cates, M. E.; Henrich, O.; Marenduzzo, D.; Stratford, K.

    2010-01-01

    Lattice Boltzmann simulations have become a method of choice to solve the hydrodynamic equations of motion of a number of complex fluids. Here we review some recent applications of lattice Boltzmann to study the hydrodynamics of liquid crystalline materials. In particular, we focus on the study of (a) the exotic blue phases of cholesteric liquid crystals, and (b) active gels - a model system for actin plus myosin solutions or bacterial suspensions. In both cases lattice Boltzmann studies have...

  3. Collagen films with stabilized liquid crystalline phases and concerns on osteoblast behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Minjian; Ding, Shan; Min, Xiang; Jiao, Yanpeng, E-mail: tjiaoyp@jnu.edu.cn; Li, Lihua; Li, Hong; Zhou, Changren, E-mail: tcrz9@jnu.edu.cn

    2016-01-01

    To duplicate collagen's in vivo liquid crystalline (LC) phase and investigate the relationship between the morphology of LC collagen and osteoblast behavior, a self-assembly method was introduced for preparing collagen films with a stabilized LC phase. The LC texture and topological structure of the films before and after stabilization were observed with polarizing optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The relationship between the collagen films and osteoblast behavior was studied with the 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide method, proliferation index detection, alkaline phosphatase measurements, osteocalcin assay, inverted microscopy, SEM observation, AFM observation, and cytoskeleton fluorescence staining. The results showed that the LC collagen film had continuously twisting orientations in the cholesteric phase with a typical series of arced patterns. The collagen fibers assembled in a well-organized orientation in the LC film. Compared to the non-LC film, the LC collagen film can promote cell proliferation, and increase ALP and osteocalcin expression, revealing a contact guide effect on osteoblasts. - Highlights: • Collagen film with liquid crystalline (LC) phase was observed by POM, SEM and AFM. • The effect of LC collagen film on osteoblasts behaviors was studied in detail. • LC collagen film promoted osteoblast proliferation and osteogenesis activity.

  4. Ferrofluids in liquid crystalline systems

    International Nuclear Information System (INIS)

    Figueiredo Neto, A.M.; Liebert, L.

    1989-08-01

    It is a well-known fact that intermediate or mesomorphic phase may exist between the crystalline and the isotropic liquid phases. The symmetry properties of these mesophases are intermediate between those of a crystal and a liquid. In this paper, some aspects of the use of ferrofluids in thermotropic and lyotropic systems are studied both the experimental difficulties as well as the fundamental phypical phenomena involved. (A.C.A.S.) [pt

  5. Enzymatic biofuel cell based on electrodes modified with lipid liquid-crystalline cubic phases

    Science.gov (United States)

    Nazaruk, Ewa; Smoliński, Sławomir; Swatko-Ossor, Marta; Ginalska, Grażyna; Fiedurek, Jan; Rogalski, Jerzy; Bilewicz, Renata

    Two glassy carbon electrodes modified with enzymes embedded in lyotropic liquid-crystalline cubic phase were used for the biofuel cell construction. The monoolein liquid-crystalline film allowed to avoid separators in the biofuel cell. Glucose and oxygen as fuels, and glucose oxidase and laccase as anode and cathode biocatalysts, respectively were used. The biofuel cell parameters were examined in McIlvaine buffer, pH 7 solution containing 15 mM of glucose and saturated with dioxygen. A series of mediators were tested taking into account their formal potentials, stability in the cubic phase and efficiency of mediation. Most stable was the biofuel cell based on tetrathiafulvalene (TTF) and 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as anode and cathode mediators, respectively. The open-circuit voltage was equal to 450 ± 40 mV. The power densities and current densities were measured for all the systems studied.

  6. Liquid Crystalline Perylene diimides : Architecture and Charge Carrier Mobilities

    NARCIS (Netherlands)

    Struijk, C.W.; Sieval, A.B.; Dakhorst, J.E.J.; Dijk, van M.; Kimkes, P.; Koehorst, R.B.M.; Donker, H.

    2000-01-01

    The phase behavior of three N-alkyl-substituted perylene diimide derivatives is examined by differential scanning calorimetry and polarized optical microscopy. The occurrence of multiple phase transitions indicates several crystalline and several liquid crystalline phases. X-ray diffraction

  7. Volume phase transitions of cholesteric liquid crystalline gels.

    Science.gov (United States)

    Matsuyama, Akihiko

    2015-05-07

    We present a mean field theory to describe anisotropic deformations of a cholesteric elastomer without solvent molecules and a cholesteric liquid crystalline gel immersed in isotropic solvents at a thermal equilibrium state. Based on the neoclassical rubber theory of nematic elastomers, we derive an elastic energy and a twist distortion energy, which are important to determine the shape of a cholesteric elastomer (or gel). We demonstrate that when the elastic energy dominates in the free energy, the cholesteric elastomer causes a spontaneous compression in the pitch axis and elongates along the director on the plane perpendicular to the pitch axis. Our theory can qualitatively describe the experimental results of a cholesteric elastomer. We also predict the first-order volume phase transitions and anisotropic deformations of a gel at the cholesteric-isotropic phase transition temperature. Depending on a chirality of a gel, we find a prolate or oblate shape of cholesteric gels.

  8. Volume phase transitions of cholesteric liquid crystalline gels

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Akihiko, E-mail: matuyama@bio.kyutech.ac.jp [Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka 820-8502 (Japan)

    2015-05-07

    We present a mean field theory to describe anisotropic deformations of a cholesteric elastomer without solvent molecules and a cholesteric liquid crystalline gel immersed in isotropic solvents at a thermal equilibrium state. Based on the neoclassical rubber theory of nematic elastomers, we derive an elastic energy and a twist distortion energy, which are important to determine the shape of a cholesteric elastomer (or gel). We demonstrate that when the elastic energy dominates in the free energy, the cholesteric elastomer causes a spontaneous compression in the pitch axis and elongates along the director on the plane perpendicular to the pitch axis. Our theory can qualitatively describe the experimental results of a cholesteric elastomer. We also predict the first-order volume phase transitions and anisotropic deformations of a gel at the cholesteric-isotropic phase transition temperature. Depending on a chirality of a gel, we find a prolate or oblate shape of cholesteric gels.

  9. Dry Powder Precursors of Cubic Liquid Crystalline Nanoparticles (cubosomes)

    International Nuclear Information System (INIS)

    Spicer, Patrick T.; Small, William B.; Small, William B.; Lynch, Matthew L.; Burns, Janet L.

    2002-01-01

    Cubosomes are dispersed nanostructured particles of cubic phase liquid crystal that have stimulated significant research interest because of their potential for application in controlled-release and drug delivery. Despite the interest, cubosomes can be difficult to fabricate and stabilize with current methods. Most of the current work is limited to liquid phase processes involving high shear dispersion of bulk cubic liquid crystalline material into sub-micron particles, limiting application flexibility. In this work, two types of dry powder cubosome precursors are produced by spray-drying: (1) starch-encapsulated monoolein is produced by spray-drying a dispersion of cubic liquid crystalline particles in an aqueous starch solution and (2) dextran-encapsulated monoolein is produced by spray-drying an emulsion formed by the ethanol-dextran-monoolein-water system. The encapsulants are used to decrease powder cohesion during drying and to act as a soluble colloidal stabilizer upon hydration of the powders. Both powders are shown to form (on average) 0.6 μm colloidally-stable cubosomes upon addition to water. However, the starch powders have a broader particle size distribution than the dextran powders because of the relative ease of spraying emulsions versus dispersions. The developed processes enable the production of nanostructured cubosomes by end-users rather than just specialized researchers and allow tailoring of the surface state of the cubosomes for broader application

  10. Lanthanide Phytanates: Liquid-Crystalline Phase Behavior, Colloidal Particle Dispersions, and Potential as Medical Imaging Agents

    Energy Technology Data Exchange (ETDEWEB)

    Conn, Charlotte E.; Panchagnula, Venkateswarlu; Weerawardena, Asoka; Waddington, Lynne J.; Kennedy, Danielle F.; Drummond, Calum J. (CSIRO/MHT); (CSIRO/MSE)

    2010-08-23

    Lanthanide salts of phytanic acid, an isoprenoid-type amphiphile, have been synthesized and characterized. Elemental analysis and FTIR spectroscopy were used to confirm the formed product and showed that three phytanate anions are complexed with one lanthanide cation. The physicochemical properties of the lanthanide phytanates were investigated using DSC, XRD, SAXS, and cross-polarized optical microscopy. Several of the hydrated salts form a liquid-crystalline hexagonal columnar mesophase at room temperature, and samarium(III) phytanate forms this phase even in the absence of water. Select lanthanide phytanates were dispersed in water, and cryo-TEM images indicate that some structure has been retained in the dispersed phase. NMR relaxivity measurements were conducted on these systems. It has been shown that a particulate dispersion of gadolinium(III) phytanate displays proton relaxivity values comparable to those of a commercial contrast agent for magnetic resonance imaging and a colloidal dispersion of europium(III) phytanate exhibits the characteristics of a fluorescence imaging agent.

  11. Lanthanide Phytanates: Liquid-Crystalline Phase Behavior, Colloidal Particle Dispersions, and Potential as Medical Imaging Agents

    International Nuclear Information System (INIS)

    Conn, Charlotte E.; Panchagnula, Venkateswarlu; Weerawardena, Asoka; Waddington, Lynne J.; Kennedy, Danielle F.; Drummond, Calum J.

    2010-01-01

    Lanthanide salts of phytanic acid, an isoprenoid-type amphiphile, have been synthesized and characterized. Elemental analysis and FTIR spectroscopy were used to confirm the formed product and showed that three phytanate anions are complexed with one lanthanide cation. The physicochemical properties of the lanthanide phytanates were investigated using DSC, XRD, SAXS, and cross-polarized optical microscopy. Several of the hydrated salts form a liquid-crystalline hexagonal columnar mesophase at room temperature, and samarium(III) phytanate forms this phase even in the absence of water. Select lanthanide phytanates were dispersed in water, and cryo-TEM images indicate that some structure has been retained in the dispersed phase. NMR relaxivity measurements were conducted on these systems. It has been shown that a particulate dispersion of gadolinium(III) phytanate displays proton relaxivity values comparable to those of a commercial contrast agent for magnetic resonance imaging and a colloidal dispersion of europium(III) phytanate exhibits the characteristics of a fluorescence imaging agent.

  12. Crystalline liquids: the blue phases

    Science.gov (United States)

    Wright, David C.; Mermin, N. David

    1989-04-01

    The blue phases of cholesteric liquid crystals are liquids that exhibit orientational order characterized by crystallographic space-group symmetries. We present here a pedagogical introduction to the current understanding of the equilibrium structure of these phases accompanied by a general overview of major experimental results. Using the Ginzburg-Landau free energy appropriate to the system, we first discuss in detail the character and stability of the usual helical phase of cholesterics, showing that for certain parameter ranges the helical phase is unstable to the appearance of one or more blue phases. The two principal models for the blue phases are two limiting cases of the Ginzburg-Landau theory. We explore each limit and conclude with some general considerations of defects in both models and an exact minimization of the free energy in a curved three-dimensional space.

  13. Liquid Crystals - The 'Fourth' Phase of Matter

    Indian Academy of Sciences (India)

    possibilities of novel technological applications. Liquid crystalline materials ... advanced instrumentation, including laptops and futuristic flat panel displays. .... The twist grain-boundary phase is formed when the layers of a smectic A phase are .... the optic axis) is uniformly oriented parallel to the glass plate. (see Figure IIa).

  14. Controlling the morphology of side chain liquid crystalline block copolymer thin films through variations in liquid crystalline content.

    Science.gov (United States)

    Verploegen, Eric; Zhang, Tejia; Jung, Yeon Sik; Ross, Caroline; Hammond, Paula T

    2008-10-01

    In this paper, we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase-segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the intermaterial dividing surface. By manipulating the strength of these interactions, the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nanopatterning applications without manipulation of the surface chemistry or the application of external fields.

  15. Liquid crystalline order in polymers

    CERN Document Server

    Blumstein, Alexandre

    1978-01-01

    Liquid Crystalline Order in Polymers examines the topic of liquid crystalline order in systems containing rigid synthetic macromolecular chains. Each chapter of the book provides a review of one important area of the field. Chapter 1 discusses scattering in polymer systems with liquid crystalline order. It also introduces the field of liquid crystals. Chapter 2 treats the origin of liquid crystalline order in macromolecules by describing the in-depth study of conformation of such macromolecules in their unassociated state. The chapters that follow describe successively the liquid crystalli

  16. Liquid crystallinity driven highly aligned large graphene oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Eun; Oh, Jung Jae; Yun, Taeyeong [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Kim, Sang Ouk, E-mail: sangouk.kim@kaist.ac.kr [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of)

    2015-04-15

    Graphene is an emerging graphitic carbon materials, consisting of sp{sup 2} hybridized two dimensinal honeycomb structure. It has been widely studied to incorporate graphene with polymer to utilize unique property of graphene and reinforce electrical, mechanical and thermal property of polymer. In composite materials, orientation control of graphene significantly influences the property of composite. Until now, a few method has been developed for orientation control of graphene within polymer matrix. Here, we demonstrate facile fabrication of high aligned large graphene oxide (LGO) composites in polydimethylsiloxane (PDMS) matrix exploiting liquid crystallinity. Liquid crystalline aqueous dispersion of LGO is parallel oriented within flat confinement geometry. Freeze-drying of the aligned LGO dispersion and subsequent infiltration with PDMS produce highly aligned LGO/PDMS composites. Owing to the large shape anisotropy of LGO, liquid crystalline alignment occurred at low concentration of 2 mg/ml in aqueous dispersion, which leads to the 0.2 wt% LGO loaded composites. - Graphical abstract: Liquid crystalline LGO aqueous dispersions are spontaneous parallel aligned between geometric confinement for highly aligned LGO/polymer composite fabrication. - Highlights: • A simple fabrication method for highly aligned LGO/PDMS composites is proposed. • LGO aqueous dispersion shows nematic liquid crystalline phase at 0.8 mg/ml. • In nematic phase, LGO flakes are highly aligned by geometric confinement. • Infiltration of PDMS into freeze-dried LGO allows highly aligned LGO/PDMS composites.

  17. Alignment engineering in liquid crystalline elastomers: Free-form microstructures with multiple functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Hao; Cerretti, Giacomo; Wiersma, Diederik S., E-mail: camilla.parmeggiani@lens.unifi.it, E-mail: wiersma@lens.unifi.it [European Laboratory for Non Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Wasylczyk, Piotr [European Laboratory for Non Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Faculty of Physics, Institute of Experimental Physics, University of Warsaw, ul. Hoza 69, Warszawa 00-681 (Poland); Martella, Daniele [European Laboratory for Non Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Dipartimento di Chimica “Ugo Schiff,” University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino (Italy); Parmeggiani, Camilla, E-mail: camilla.parmeggiani@lens.unifi.it, E-mail: wiersma@lens.unifi.it [European Laboratory for Non Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); CNR-INO, via Nello Carrara 1, 50019 Sesto Fiorentino (Italy)

    2015-03-16

    We report a method to fabricate polymer microstructures with local control over the molecular orientation. Alignment control is achieved on molecular level in a structure of arbitrary form that can be from 1 to 100 μm in size, by fixing the local boundary conditions with micro-grating patterns. The method makes use of two-photon polymerization (Direct Laser Writing) and is demonstrated specifically in liquid-crystalline elastomers. This concept allows for the realization of free-form polymeric structures with multiple functionalities which are not possible to realize with existing techniques and which can be locally controlled by light in the micrometer scale.

  18. Electrostatic Effects in Phase Transitions of Biomembranes between Cubic Phases and Lamellar Liquid-Crystalline (Lα) phase

    Science.gov (United States)

    Masum, Shah Md.; Li, Shu Jie; Tamba, Yukihiro; Yamashita, Yuko; Yamazaki, Masahito

    2004-04-01

    Elucidation of the mechanisms of transitions between cubic phase and liquid-crystalline (Lα) phase, and between different IPMS cubic phases, are essential for understanding of dynamics of biomembranes and topological transformation of lipid membranes. Recently, we found that electrostatic interactions due to surface charges of lipid membranes induce transition between cubic phase and Lα phase, and between different IPMS cubic phases. As electrostatic interactions increase, the most stable phase of a monoolein (MO) membrane changes: Q224 ⇒ Q229 ⇒ Lα. We also found that a de novo designed peptide partitioning into electrically neutral lipid membrane changed the phase stability of the MO membranes. As peptide-1 concentration increased, the most stable phase of a MO membrane changes: Q224 ⇒ Q229 ⇒Lα. In both cases, the increase in the electrostatic repulsive interaction greatly reduced the absolute value of spontaneous curvature of the MO monolayer membrane. We also investigated factors such as poly (L-lysine) and osmotic stress to control structure and phase stability of DOPA/MO membranes. Based on these results, we discuss the mechanism of the effect of electrostatic interactions on the stability of cubic phase.

  19. Drug Release and Skin Permeation from Lipid Liquid Crystalline Phases

    Science.gov (United States)

    Costa-Balogh, F. O.; Sparr, E.; Sousa, J. J. S.; Pais, A. A. C. C.

    We have studied drug release and skin permeation from several different liquid crystalline lipid formulations that may be used to control the respective release rates. We have studied the release and permeation through human skin of a water-soluble and amphiphilic drug, propranolol hydrochloride, from several formulations prepared with monoolein and phytantriol as permeation enhancers and controlled release excipients. Diolein and cineol were added to selected formulations. We observed that viscosity decreases with drug load, wich is compatible with the occurrence of phase changes. Diolein stabilizes the bicontinuous cubic phases leading to an increase in viscosity and sustained release of the drug. The slowest release was found for the cubic phases with higher viscosity. Studies on skin permeation showed that these latter formulations also presented lower permeability than the less viscous monoolein lamellar phases. Formulations containing cineol originated higher permeability with higher enhancement ratios. Thus, the various formulations are adapted to different circumstances and delivery routes. While a slow release is usually desired for drug sustained delivery, the transdermal route may require a faster release. Lamellar phases, which are less viscous, are more adapted to transdermal applications. Thus, systems involving lamellar phases of monoolein and cineol are good candidates to be used as skin permeation enhancers for propranolol hydrochloride.

  20. Polymer and Polymer Gel of Liquid Crystalline Semiconductors

    Institute of Scientific and Technical Information of China (English)

    Teppei Shimakawa; Naoki Yoshimoto; Jun-ichi Hanna

    2004-01-01

    It prepared a polymer and polymer gel of a liquid crystalline (LC) semiconductor having a 2-phenylnaphthalene moiety and studied their charge carrier transport properties by the time-of-flight technique. It is found that polyacrylate having the mesogenic core moiety of 2-phenylnaphtalene (PNP-acrylate) exhibited a comparable mobility of 10-4cm2/Vs in smectic A phase to those in smectic A (SmA) phase of small molecular liquid crystals with the same core moiety, e.g., 6-(4'-octylphenyl)- 2-dodecyloxynaphthalene (8-PNP-O12), and an enhanced mobility up to 10-3cm2/Vs in the LC-glassy phase at room temperature, when mixed with a small amount of 8-PNP-O12. On the other hand, the polymer gel consisting of 20 wt %-hexamethylenediacrylate (HDA)-based cross-linked polymer and 8-PNP-O12 exhibited no degraded mobility when cross-linked at the mesophase. These results indicate that the polymer and polymer composite of liquid crystalline semiconductors provide us with an easy way to realize a quality organic semiconductor thin film for the immediate device applications.

  1. Molecular structure of the discotic liquid crystalline phase of hexa-peri-hexabenzocoronene/oligothiophene hybrid and their charge transport properties

    International Nuclear Information System (INIS)

    Bag, Saientan; Maingi, Vishal; Maiti, Prabal K.; Yelk, Joe; Glaser, Matthew A.; Clark, Noel A.; Walba, David M.

    2015-01-01

    Using atomistic molecular dynamics simulation, we study the discotic columnar liquid crystalline (LC) phases formed by a new organic compound having hexa-peri-Hexabenzocoronene (HBC) core with six pendant oligothiophene units recently synthesized by Nan Hu et al. [Adv. Mater. 26, 2066 (2014)]. This HBC core based LC phase was shown to have electric field responsive behavior and has important applications in organic electronics. Our simulation results confirm the hexagonal arrangement of columnar LC phase with a lattice spacing consistent with that obtained from small angle X-ray diffraction data. We have also calculated various positional and orientational correlation functions to characterize the ordering of the molecules in the columnar arrangement. The molecules in a column are arranged with an average twist of 25° having an average inter-molecular separation of ∼5 Å. Interestingly, we find an overall tilt angle of 43° between the columnar axis and HBC core. We also simulate the charge transport through this columnar phase and report the numerical value of charge carrier mobility for this liquid crystal phase. The charge carrier mobility is strongly influenced by the twist angle and average spacing of the molecules in the column

  2. Langmuir-Blodgett films prepared from pre-formed cholestanic liquid-crystalline polymers

    Energy Technology Data Exchange (ETDEWEB)

    Tundo, P.; Hodge, P.; Valli, L.; Davis, F. (Venice Univ. (Italy). Dip. di Scienze Ambientali Lecce Univ. (Italy). Dip. di Scienza dei Materiali Manchester Univ. (United Kingdom). Dep. of Chemistry)

    1992-01-01

    A series of alternating copolymers of maleic anhydride and a-olefins functionalized through different alkyl chains with cholestanic groups were synthetised and derivatives prepared by reactions of the anhydride residues with methanol, water, dimethylamine and morpholine, respectively. The same starting functionalized a-olefins were used to prepare other suitable compounds in order to correlate the features of the liquid-crystalline behaviour of the mesogenic cholestanic group with the stability of the forthcoming polymeric or not polymeric Langmuir-Blodgett (LB) films. For some copolymers surface pressure against area per molecule isotherms are reported. In some multilayer (LB) films, the spacings between the layers were determined by the detection of BRAGG peaks by X-ray diffraction. The (LB) films of these polymers are closed packed, owing to either the polymeric skeleton or liquid-crystalline interaction.

  3. New theory for competing interactions and microstructures in partially-ordered (liquid-crystalline) phases

    International Nuclear Information System (INIS)

    Dowell, F.

    1987-01-01

    A summary of results from a unique statistical-physics theory to predict and explain competing interactions and resulting microstructures in some partially-ordered [in this case, liquid-crystalline (LC)] phases is presented. The static aspects of both partial orientational and partial positional ordering of the molecules into various microstructures in these phases (including the incommensurate smectic-Ad phase) can be understood in terms of various competing interactions (both entropic and energetic) involved in the packing together of the different molecular sub-units at given pressures and temperatures. These microstructures are predicted and explained (using no ad hoc or arbitrarily adjustable parameter) as a function of molecule chemical structure [including lengths and shapes (from bond lengths and angles), intramolecular rotations, site-site polarizabilities and pair potentials, dipole moments, etc]. Theoretical results are presented for the nematic, re-entrant nematic, smectic-Ad, and smectic-Al LC phases and the isotropic phase

  4. Liquid crystalline systems for transdermal delivery of celecoxib: in vitro drug release and skin permeation studies.

    Science.gov (United States)

    Estracanholli, Eder André; Praça, Fabíola Silva Garcia; Cintra, Ana Beatriz; Pierre, Maria Bernadete Riemma; Lara, Marilisa Guimarães

    2014-12-01

    Liquid crystalline systems of monoolein/water could be a promising approach for the delivery of celecoxib (CXB) to the skin because these systems can sustain drug release, improve drug penetration into the skin layers and minimize side effects. This study evaluated the potential of these systems for the delivery of CXB into the skin based on in vitro drug release and skin permeation studies. The amount of CXB that permeated into and/or was retained in the skin was assayed using an HPLC method. Polarizing light microscopy studies showed that liquid crystalline systems of monoolein/water were formed in the presence of CXB, without any changes in the mesophases. The liquid crystalline systems decreased drug release when compared to control solution. Drug release was independent of the initial water content of the systems and CXB was released from cubic phase systems, irrespective of the initial water content. The systems released the CXB following zero-order release kinetics. In vitro drug permeation studies showed that cubic phase systems allowed drug permeation and retention in the skin layers. Cubic phase systems of monoolein/water may be promising vehicles for the delivery of CXB in/through the skin because it improved CXB skin permeation compared with the control solution.

  5. Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals

    Science.gov (United States)

    Martínez-González, Jose A.; Li, Xiao; Sadati, Monirosadat; Zhou, Ye; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.

    2017-06-01

    Chiral nematic liquid crystals are known to form blue phases--liquid states of matter that exhibit ordered cubic arrangements of topological defects. Blue-phase specimens, however, are generally polycrystalline, consisting of randomly oriented domains that limit their performance in applications. A strategy that relies on nano-patterned substrates is presented here for preparation of stable, macroscopic single-crystal blue-phase materials. Different template designs are conceived to exert control over different planes of the blue-phase lattice orientation with respect to the underlying substrate. Experiments are then used to demonstrate that it is indeed possible to create stable single-crystal blue-phase domains with the desired orientation over large regions. These results provide a potential avenue to fully exploit the electro-optical properties of blue phases, which have been hindered by the existence of grain boundaries.

  6. Structural studies of different types of ferroelectric liquid crystalline substances

    Czech Academy of Sciences Publication Activity Database

    Obadović, D.Ž.; Stojanović, M.; Bubnov, Alexej; Éber, N.; Cvetinov, M.; Vajda, A.

    2011-01-01

    Roč. 35, č. 1 (2011), s. 3-13 ISSN 1450-7404 R&D Projects: GA AV ČR IAA100100911; GA AV ČR(CZ) GA202/09/0047; GA ČR(CZ) GAP204/11/0723 Grant - others:RFASI(RU) 02.740.11.5166 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectric liquid crystals * phase transition * structure of liquid crystalline phases * molecular parameters Subject RIV: BM - Solid Matter Physics ; Magnetism

  7. Bio-based liquid crystalline polyesters

    Science.gov (United States)

    Wilsens, Carolus; Rastogi, Sanjay; Dutch Collaboration

    2013-03-01

    The reported thin-film polymerization has been used as a screening method in order to find bio-based liquid crystalline polyesters with convenient melting temperatures for melt-processing purposes. An in depth study of the structural, morphological and chemical changes occurring during the ongoing polycondensation reactions of these polymers have been performed. Structural and conformational changes during polymerization for different compositions have been followed by time resolved X-ray and Infrared spectroscopy. In this study, bio-based monomers such as vanillic acid and 2,5-furandicarboxylic acid are successfully incorporated in liquid crystalline polyesters and it is shown that bio-based liquid crystalline polymers with high aromatic content and convenient processing temperatures can be synthesized. Special thanks to the Dutch Polymer Institute for financial support

  8. Induction of Liquid Crystallinity by Self-Assembled Molecular Boxes

    NARCIS (Netherlands)

    Piermattei, A.; Giesbers, M.; Marcelis, A.T.M.; Mendes, E.; Picken, S.J.; Crego-Calama, M.; Reinhoudt, D.N.

    2006-01-01

    In a hierarchical process, three molecules of a calix[4]arene (blue) and six of barbituric or cyanuric acid (green) assemble into double-rosette boxes, which assemble into columns, which in turn assemble into columnar liquid-crystalline phases (see picture). The resulting mesophases have a

  9. Photo-responsive liquid crystalline epoxy networks with exchangeable disulfide bonds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuzhan [Washington State Univ., Pullman, WA (United States); Zhang, Yuehong [Washington State Univ., Pullman, WA (United States); Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Keum, Jong K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kessler, Michael R. [Washington State Univ., Pullman, WA (United States); North Dakota State Univ., Fargo, ND (United States)

    2017-07-27

    The increasing demand for intelligent materials has driven the development of polymers with a variety of functionalities. However, combining multiple functionalities within one polymer is still challenging because of the difficulties encountered in coordinating different functional building blocks during fabrication. In this work, we demonstrate the fabrication of a multifunctional liquid crystalline epoxy network (LCEN) using the combination of thermotropic liquid crystals, photo-responsive azobenzene molecules, and exchangeable disulfide bonds. In addition to shape memory behavior enabled by the reversible liquid crystalline phase transition and photo-induced bending behavior resulting from the photo-responsive azobenzene molecules, the introduction of dynamic disulfide bonds into the LCEN resulted in a structurally dynamic network, allowing the reshaping, repairing, and recycling of the material.

  10. Mechanism of Formation of Li 7 P 3 S 11 Solid Electrolytes through Liquid Phase Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuxing [Energy; Lu, Dongping [Energy; Bowden, Mark [Environmental; El Khoury, Patrick Z. [Environmental; Han, Kee Sung [Environmental; Deng, Zhiqun Daniel [Energy; Xiao, Jie [Energy; Zhang, Ji-Guang [Energy; Liu, Jun [Energy

    2018-01-22

    Crystalline Li7P3S11 is a promising solid electrolyte for all solid state lithium/lithium ion batteries. A controllable liquid phase synthesis of Li7P3S11 is more desirable compared to conventional mechanochemical synthesis, but recent attempts suffer from reduced ionic conductivities. Here we elucidate the formation mechanism of crystalline Li7P3S11 synthesized in the liquid phase (acetonitrile, or ACN). We conclude that the crystalline Li7P3S11 forms through a two-step reaction: 1) formation of solid Li3PS4∙ACN and amorphous Li2S∙P2S5 phases in the liquid phase; 2) solid-state conversion of the two phases. The implication of this two-step reaction mechanism to the morphology control and the transport properties of liquid phase synthesized Li7P3S11 is identified and discussed.

  11. Interest of neutron scattering for the investigation of liquid-crystalline polymers

    International Nuclear Information System (INIS)

    Noirez, L.

    1994-01-01

    Small-angle Neutron scattering is the unique method which allows the determination of polymer conformation in the bulk state. This method has been applied to several kinds of liquid crystalline polymers. Results concerning side-chain liquid-crystal polymer, main-chain liquid-crystal polymer and combined liquid-crystal polymers, are reported. It is shown that the polymer conformation is largely dependent on the insertion site of the liquid crystal molecule and of the structure of the meso-phase. (author). 11 refs

  12. Suppressed Release of Clarithromycin from Tablets by Crystalline Phase Transition of Metastable Polymorph Form I.

    Science.gov (United States)

    Fujiki, Sadahiro; Watanabe, Narumi; Iwao, Yasunori; Noguchi, Shuji; Mizoguchi, Midori; Iwamura, Takeru; Itai, Shigeru

    2015-08-01

    The pharmaceutical properties of clarithromycin (CAM) tablets containing the metastable form I of crystalline CAM were investigated. Although the dissolution rate of form I was higher than that of stable form II, the release of CAM from form I tablet was delayed. Disintegration test and liquid penetration test showed that the disintegration of the tablet delayed because of the slow penetration of an external solution into form I tablet. Investigation by scanning electron microscopy revealed that the surface of form I tablet was covered with fine needle-shaped crystals following an exposure to the external solution. These crystals were identified as form IV crystals by powder X-ray diffraction. The phenomenon that CAM releases from tablet was inhibited by fine crystals spontaneously formed on the tablet surface could be applied to the design of sustained-release formulation systems with high CAM contents by minimizing the amount of functional excipients. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Electric properties of a liquid crystalline methacrylic polymer

    International Nuclear Information System (INIS)

    Gonzalez Henriquez, C.M.; Soto Bustamante, E.A.; Haase, W.

    2009-01-01

    The formation of a liquid crystalline polymer called PM6R8 is reported. The polymers were obtained with different concentration of AIBN as initiator (0.25, 0.50, 1 and 2mg in 5ml solution) and time of reaction (24, 36 and 48 hours). The compounds were characterized by 1 H-NMR, differential thermal analysis (DTA), X-ray diffractometer and pyroelectric measurements. For the polymer a smectic C 2 phase occurs over broad temperature range, which is a possible explanation for the electric signal. The arrangement of the molecules within of the crystalline lattice is related with the kinetic of precipitation. (author)

  14. Solvation Dynamics in Different Phases of the Lyotropic Liquid Crystalline System.

    Science.gov (United States)

    Roy, Bibhisan; Satpathi, Sagar; Gavvala, Krishna; Koninti, Raj Kumar; Hazra, Partha

    2015-09-03

    Reverse hexagonal (HII) liquid crystalline material based on glycerol monooleate (GMO) is considered as a potential carrier for drugs and other important biomolecules due to its thermotropic phase change and excellent morphology. In this work, the dynamics of encapsulated water, which plays important role in stabilization and formation of reverse hexagonal mesophase, has been investigated by time dependent Stokes shift method using Coumarin-343 as a solvation probe. The formation of the reverse hexagonal mesophase (HII) and transformation to the L2 phase have been monitored using small-angle X-ray scattering and polarized light microscopy experiments. REES studies suggest the existence of different polar regions in both HII and L2 systems. The solvation dynamics study inside the reverse hexagonal (HII) phase reveals the existence of two different types of water molecules exhibiting dynamics on a 120-900 ps time scale. The estimated diffusion coefficients of both types of water molecules obtained from the observed dynamics are in good agreement with the measured diffusion coefficient collected from the NMR study. The calculated activation energy is found to be 2.05 kcal/mol, which is associated with coupled rotational-translational water relaxation dynamics upon the transition from "bound" to "quasi-free" state. The observed ∼2 ns faster dynamics of the L2 phase compared to the HII phase may be associated with both the phase transformation as well as thermotropic effect on the relaxation process. Microviscosities calculated from time-resolved anisotropy studies infer that the interface is almost ∼22 times higher viscous than the central part of the cylinder. Overall, our results reveal the unique dynamical features of water inside the cylinder of reverse hexagonal and inverse micellar phases.

  15. Induction of liquid crystallinity of by self-assembled molecular boxes

    NARCIS (Netherlands)

    Piermattei, A.; Giesbers, Marcel; Marcelis, Antonius T.M.; Mendes, Eduardo; Picken, Stephen J.; Crego Calama, Mercedes; Reinhoudt, David

    2006-01-01

    Jewel-box: In a hierarchical process, three molecules of a calix[4]arene (blue) and six of barbituric or cyanuric acid (green) assemble into double-rosette boxes, which assemble into columns, which in turn assemble into columnar liquid-crystalline phases (see picture). The resulting mesophases have

  16. Glycine phases formed from frozen aqueous solutions: Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Surovtsev, N. V. [Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Adichtchev, S. V.; Malinovsky, V. K. [Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Ogienko, A. G.; Manakov, A. Yu. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Drebushchak, V. A. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Ancharov, A. I.; Boldyreva, E. V. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Institute of Solid Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Yunoshev, A. S. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Lavrentiev Institute of Hydrodynamics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation)

    2012-08-14

    Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice I{sub h} was observed in all the cases. On cooling at the rates of 0.5 K/min and 5 K/min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into {beta}-polymorph of glycine. Quench cooling of glycine solutions (15% w/w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice I{sub h} and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine 'X-phase') at 209-216 K, which at 218-226 K transformed into {beta}-polymorph of glycine. The 'X-phase' was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a= 6.648 A, b= 25.867 A, c= 5.610 A, {beta}= 113.12 Masculine-Ordinal-Indicator ); the formation of 'X-phase' from the glycine glassy phase and its transformation into {beta}-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.

  17. Glycine phases formed from frozen aqueous solutions: Revisited

    Science.gov (United States)

    Surovtsev, N. V.; Adichtchev, S. V.; Malinovsky, V. K.; Ogienko, A. G.; Drebushchak, V. A.; Manakov, A. Yu.; Ancharov, A. I.; Yunoshev, A. S.; Boldyreva, E. V.

    2012-08-01

    Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice Ih was observed in all the cases. On cooling at the rates of 0.5 K/min and 5 K/min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into β-polymorph of glycine. Quench cooling of glycine solutions (15% w/w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice Ih and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine "X-phase") at 209-216 K, which at 218-226 K transformed into β-polymorph of glycine. The "X-phase" was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a = 6.648 Å, b = 25.867 Å, c = 5.610 Å, β = 113.12°); the formation of "X-phase" from the glycine glassy phase and its transformation into β-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.

  18. The microwave heating mechanism of N-(4-methoxybenzyliden)-4-butylaniline in liquid crystalline and isotropic phases as determined using in situ microwave irradiation NMR spectroscopy.

    Science.gov (United States)

    Tasei, Yugo; Tanigawa, Fumikazu; Kawamura, Izuru; Fujito, Teruaki; Sato, Motoyasu; Naito, Akira

    2015-04-14

    Microwave heating effects are widely used in the acceleration of organic, polymerization and enzymatic reactions. These effects are primarily caused by the local heating induced by microwave irradiation. However, the detailed molecular mechanisms associated with microwave heating effects on the chemical reactions are not yet well understood. This study investigated the microwave heating effect of N-(4-methoxybenzylidene)-4-butylaniline (MBBA) in liquid crystalline and isotropic phases using in situ microwave irradiation nuclear magnetic resonance (NMR) spectroscopy, by obtaining (1)H NMR spectra of MBBA under microwave irradiation. When heated simply using the temperature control unit of the NMR instrument, the liquid crystalline MBBA was converted to the isotropic phase exactly at its phase transition temperature (Tc) of 41 °C. The application of microwave irradiation at 130 W for 90 s while maintaining the instrument temperature at 20 °C generated a small amount of isotropic phase within the bulk liquid crystal. The sample temperature of the liquid crystalline state obtained during microwave irradiation was estimated to be 35 °C by assessing the linewidths of the (1)H NMR spectrum. This partial transition to the isotropic phase can be attributed to a non-equilibrium local heating state induced by the microwave irradiation. The application of microwave at 195 W for 5 min to isotropic MBBA while maintaining an instrument temperature of 50 °C raised the sample temperature to 160 °C. In this study, the MBBA temperature during microwave irradiation was estimated by measuring the temperature dependent chemical shifts of individual protons in the sample, and the different protons were found to indicate significantly different temperatures in the molecule. These results suggest that microwave heating polarizes bonds in polar functional groups, and this effect may partly explain the attendant acceleration of organic reactions.

  19. Effect of Liquid Crystalline Systems Containing Antimicrobial Compounds on Infectious Skin Bacteria.

    Science.gov (United States)

    Souza, Carla; Watanabe, Evandro; Aires, Carolina Patrícia; Lara, Marilisa Guimarães

    2017-08-01

    This study aimed (i) to prepare liquid crystalline systems (LCS) of glyceryl monooleate (GMO) and water containing antibacterial compounds and (ii) to evaluate their potential as drug delivery systems for topical treatment of bacterial infections. Therefore, LCS containing CPC (cetylpyridinium chloride) (LCS/CPC) and PHMB (poly(hexamethylene biguanide) hydrochloride) (LCS/PHMB) were prepared and the liquid crystalline phases were identified by polarizing light microscopy 24 h and 7 days after preparation. The in vitro drug release profile and in vitro antibacterial activity of the systems were assessed using the double layer agar diffusion method against Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, Escherichia coli, and Enterococcus faecalis. The interaction between GMO and the drugs was evaluated by a drug absorption study. Stable liquid crystalline systems containing CPC and PHMB were obtained. LCS/PHMB decreased the PHMB release rate and exerted strong antibacterial activity against all the investigated bacteria. In contrast, CPC interacted with GMO so strongly that it became attached to the system; the amount released was not sufficient to exert antibacterial activity. Therefore, the studied liquid crystalline systems were suitable to deliver PHMB, but not CPC. Accordingly, it was demonstrated that GMO interacts with each drug differently, which may interfere in the final efficiency of GMO/water LCS.

  20. Discontinuous structural phase transition of liquid metal and alloys (2)

    International Nuclear Information System (INIS)

    Wang, Li; Liu, Jiantong

    2004-01-01

    The diameter (d f ) of diffusion fluid cluster before and after phase transition has been calculated in terms of the paper ''Discontinuous structural phase transition of liquid metal and alloy (1)'' Physics Letters. A 326 (2004) 429-435, to verify quantitatively the discontinuity of structural phase transition; the phenomena of thermal contraction and thermal expansion during the phase transition, together with the evolution model of discontinuous structural phase transition are also discussed in this Letter to explore further the nature of structural transition; In addition, based on the viscosity experimental result mentioned in paper [Y. Waseda, The Structure of Non-Crystalline Materials--Liquids and Amorphous Solids, McGraw-Hill, New York, 1980], we present an approach to draw an embryo of the liquid-liquid (L-L) phase diagram for binary alloys above liquidus in the paper, expecting to guide metallurgy process so as to improve the properties of alloys. The idea that controls amorphous structure and its properties by means of the L-L phase diagram for alloys and by the rapid cooling technique to form the amorphous alloy has been brought forward in the end

  1. Solution processed nanogap organic diodes based on liquid crystalline materials

    Science.gov (United States)

    Wang, Yi-Fei; Iino, Hiroaki; Hanna, Jun-ichi

    2017-09-01

    Co-planar nanogap organic diodes were fabricated with smectic liquid crystalline materials of the benzothienobenzothiophene (BTBT) derivative by a spin-coating technique. A high rectification ratio of the order of 106 at ±3 V was achieved when a liquid crystalline material of 2,7-didecyl benzothieno[3,2-b][1]benzothiophene (10-BTBT-10) was used in a device configuration of Al/10-BTBT-10/pentafluorobenzenethiol-treated Au on a glass substrate, which was 4 orders higher than that of the device based on non-liquid crystalline materials of 2,7-dibutyl benzothieno[3,2-b][1]benzothiophene (4-BTBT-4) and BTBT. Similar results were also observed when another liquid crystalline material of ω, ω'-dioctylterthiophene (8-TTP-8) and a non-liquid crystalline material of terthiophene (TTP) were used. These improved rectifications can be ascribed to the self-assembly properties and controllable molecular orientation of liquid crystalline materials, which made uniform perpendicular oriented polycrystalline films favorable for superior charge transport in nano-channels.

  2. Group theoretical arguments on the Landau theory of second-order phase transitions applied to the phase transitions in some liquid crystals

    International Nuclear Information System (INIS)

    Rosciszewski, K.

    1979-01-01

    The phase transitions between liquids and several of the simplest liquid crystalline phases (nematic, cholesteric, and the simplest types of smectic A and smectic C) were studied from the point of view of the group-theoretical arguments of Landau theory. It was shown that the only possible candidates for second-order phase transitions are those between nematic and smectic A, between centrosymmetric nematic and smectic C and between centrosymmetric smectic A and smectic C. Simple types of density functions for liquid crystalline phases are proposed. (author)

  3. From Cellulosic Based Liquid Crystalline Sheared Solutions to 1D and 2D Soft Materials

    Directory of Open Access Journals (Sweden)

    Maria Helena Godinho

    2014-06-01

    Full Text Available Liquid crystalline cellulosic-based solutions described by distinctive properties are at the origin of different kinds of multifunctional materials with unique characteristics. These solutions can form chiral nematic phases at rest, with tuneable photonic behavior, and exhibit a complex behavior associated with the onset of a network of director field defects under shear. Techniques, such as Nuclear Magnetic Resonance (NMR, Rheology coupled with NMR (Rheo-NMR, rheology, optical methods, Magnetic Resonance Imaging (MRI, Wide Angle X-rays Scattering (WAXS, were extensively used to enlighten the liquid crystalline characteristics of these cellulosic solutions. Cellulosic films produced by shear casting and fibers by electrospinning, from these liquid crystalline solutions, have regained wider attention due to recognition of their innovative properties associated to their biocompatibility. Electrospun membranes composed by helical and spiral shape fibers allow the achievement of large surface areas, leading to the improvement of the performance of this kind of systems. The moisture response, light modulated, wettability and the capability of orienting protein and cellulose crystals, opened a wide range of new applications to the shear casted films. Characterization by NMR, X-rays, tensile tests, AFM, and optical methods allowed detailed characterization of those soft cellulosic materials. In this work, special attention will be given to recent developments, including, among others, a moisture driven cellulosic motor and electro-optical devices.

  4. New theories for smectic and nematic liquid crystalline polymers

    International Nuclear Information System (INIS)

    Dowell, F.

    1987-01-01

    A summary of results from new statistical-physics theories for both backbone and side-chain liquid crystalline polymers (LCPs) and for mixtures with LCPs is presented. Thermodynamic and molecular ordering properties (including odd-even effects) have been calculated as a function of pressure, density, temperature, and molecule chemical structures (including degree of polymerization and the following properties of the chemical structures of the repeat units: lengths and shapes, intra-chain rotation energies, dipole moments, site-site polarizabilities and Lennard-Jones potentials, etc.) in nematic and multiple smectic-A LC phases and in the isotropic liquid phase. These theories can also be applied to combined LCPs. Since these theories have no ad hoc or arbitrarily adjustable parameters, these theories have been used to design new LCPs and new solvents and to predict and explain properties

  5. Determination of phase transitions in a lyotropic liquid crystal by Positron Annihilation technique

    International Nuclear Information System (INIS)

    Castillo V, V.M.

    1994-01-01

    Positron annihilation technique was used to determine the phase transitions in a lyotropic liquid crystal, as a function of temperature. Seven different concentrations of the surfactant cetyldimethylethylammonium bromide, were studied. The liquid crystal studied consisted of a binary system, formed by the surfactant and water. Positron annihilation technique has a very high sensitivity toward changes in the microestructure, in condensed matter, this is useful in order to detect the temperatures at which phase transitions occur and the number of these, in a liquid crystalline system. Thus, phase transitions are related with changes occurred in the ortho-positronium parameters: lifetime (τ 3 ) and intensity of formation (I 3 ). Six different kinds of phases were detected in the system studied in a temperature range of 35 to 140 Centigrade degrees, those phases were: hexagonal, hexagonal-lamellae, lamellae, lamellae-cubic, nematic and anisotropic. Using optical microscopic the textures of these phases were assigned. (Author)

  6. Quantitative Analysis of Matrine in Liquid Crystalline Nanoparticles by HPLC

    Directory of Open Access Journals (Sweden)

    Xinsheng Peng

    2014-01-01

    Full Text Available A reversed-phase high-performance liquid chromatographic method has been developed to quantitatively determine matrine in liquid crystal nanoparticles. The chromatographic method is carried out using an isocratic system. The mobile phase was composed of methanol-PBS(pH6.8-triethylamine (50 : 50 : 0.1% with a flow rate of 1 mL/min with SPD-20A UV/vis detector and the detection wavelength was at 220 nm. The linearity of matrine is in the range of 1.6 to 200.0 μg/mL. The regression equation is y=10706x-2959 (R2=1.0. The average recovery is 101.7%; RSD=2.22%  (n=9. This method provides a simple and accurate strategy to determine matrine in liquid crystalline nanoparticle.

  7. Synthesis and Supramolecular Chemistry of Novel Liquid Crystalline Crown Ether-Substituted Phthalocyanines : Toward Molecular Wires and Molecular Ionoelectronics

    NARCIS (Netherlands)

    Nostrum, Cornelus F. van; Picken, Stephen J.; Schouten, Arend-Jan; Nolte, Roeland J.M.

    1995-01-01

    The synthesis of the metal-free and the dihydroxysilicon derivatives of tetrakis[4’,5’-bis(decoxy)benzo-18-crown-6]phthalocyanine is described. The metal-free phthalocyanine is liquid crystalline and exhibits a crystalline phase to mesophase transition at 148 °C. The structures of the crystalline

  8. Liquid crystalline composites toward organic photovoltaic application (Conference Presentation)

    Science.gov (United States)

    Shimizu, Yo; Sosa-Vargas, Lydia; Shin, Woong; Higuchi, Yumi; Itani, Hiromichi; Kawano, Koki; Dao, Quang Duy; Fujii, Akihiko; Ozaki, Masanori

    2017-02-01

    Liquid crystalline semiconductor is an interesting category of organic electronic materials and also has been extensively studied in terms of "Printed Electronics". For the wider diversity in research toward new applications, one can consider how to use a combination of miscibility and phase separation in liquid crystals. Here we report discotic liquid crystals in making a composite of which structural order is controlled in nano-scale toward photovoltaic applications. Discotic columnar LCs were studied on their resultant molecular order and carrier transport properties. Liquid crystals of phthalocyanine and its analogues which exhibit columnar mesomorphism with high carrier mobility (10-1 cm2/Vs) were examined with making binary phase diagrams and the correlation to carrier transport properties by TOF measurements was discussed. The shape-analogues in chemical structure shows a good miscibility even for the different lattice-type of columnar arrangement and the carrier mobility is mostly decrease except for a case of combination with a metal-free and the metal complex. For the mixtures with non-mesogenic C60 derivatives, one sees a phase-separated structure due to its immiscibility, though the columnar order is remained in a range of component ratio.Especially, in a range of the ratio, it was observed the phase separated C60 derivatives are fused into the matrix of columnar bundles, indicating C60 derivatives could be diffused in columnar arrays in molecular level.

  9. Nanoscale characteristics of triacylglycerol oils: phase separation and binding energies of two-component oils to crystalline nanoplatelets.

    Science.gov (United States)

    MacDougall, Colin J; Razul, M Shajahan; Papp-Szabo, Erzsebet; Peyronel, Fernanda; Hanna, Charles B; Marangoni, Alejandro G; Pink, David A

    2012-01-01

    Fats are elastoplastic materials with a defined yield stress and flow behavior and the plasticity of a fat is central to its functionality. This plasticity is given by a complex tribological interplay between a crystalline phase structured as crystalline nanoplatelets (CNPs) and nanoplatelet aggregates and the liquid oil phase. Oil can be trapped within microscopic pores within the fat crystal network by capillary action, but it is believed that a significant amount of oil can be trapped by adsorption onto crystalline surfaces. This, however, remains to be proven. Further, the structural basis for the solid-liquid interaction remains a mystery. In this work, we demonstrate that the triglyceride liquid structure plays a key role in oil binding and that this binding could potentially be modulated by judicious engineering of liquid triglyceride structure. The enhancement of oil binding is central to many current developments in this area since an improvement in the health characteristics of fat and fat-structured food products entails a reduction in the amount of crystalline triacylglycerols (TAGs) and a relative increase in the amount of liquid TAGs. Excessive amounts of unbound, free oil, will lead to losses in functionality of this important food component. Engineering fats for enhanced oil binding capacity is thus central to the design of more healthy food products. To begin to address this, we modelled the interaction of triacylglycerol oils, triolein (OOO), 1,2-olein elaidin (OOE) and 1,2-elaidin olein (EEO) with a model crystalline nanoplatelet composed of tristearin in an undefined polymorphic form. The surface of the CNP in contact with the oil was assumed to be planar. We considered pure OOO and mixtures of OOO + OOE and OOO + EEO with 80% OOO. The last two cases were taken as approximations to high oleic sunflower oil (HOSO). The intent was to investigate whether phase separation on a nanoscale took place. We defined an "oil binding capacity" parameter, B

  10. Disorder-induced localization in crystalline phase-change materials.

    Science.gov (United States)

    Siegrist, T; Jost, P; Volker, H; Woda, M; Merkelbach, P; Schlockermann, C; Wuttig, M

    2011-03-01

    Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.

  11. Transport of Liquid Phase Organic Solutes in Liquid Crystalline Membranes

    OpenAIRE

    Han, Sangil

    2010-01-01

    Porous cellulose nitrate membranes were impregnated with 8CB and PCH5 LCs (liquid crystals) and separations of solutes dissolved in aqueous phases were performed while monitoring solute concentration via UV-VIS spectrometry. The diffusing organic solutes, which consist of one aromatic ring and various functional groups, were selected to exclude molecular size effects on the diffusion and sorption. We studied the effects on solute transport of solute intra-molecular hydrogen bonding and so...

  12. The effect of concentration on the structure and crystallinity of a cementitious waste form for caustic wastes

    International Nuclear Information System (INIS)

    Chung, Chul-Woo; Turo, Laura A.; Ryan, Joseph V.; Johnson, Bradley R.; McCloy, John S.

    2013-01-01

    Highlights: ► Cast Stone: Portland cement, fly ash, blast furnace slag, and simulated nuclear waste. ► Caustic secondary waste from the off-gas of a vitrification process was targeted. ► Crystallinity, micro- and mesostructure, and engineering properties characterized. ► Waste concentration varied from 0 to 2.5 M, but caused minimal changes. ► Cast Stone shows good compositional versatility as a secondary waste form. -- Abstract: Cement-based waste forms have long been considered economical technologies for disposal of various types of waste. A solidified cementitious waste form, Cast Stone, has been identified to immobilize the radioactive secondary waste from vitrification processes. In this work, Cast Stone was considered for a Na-based caustic liquid waste, and its physical properties were analyzed as a function of liquid waste loading up to 2 M Na. Differences in crystallinity (phase composition), microstructure, mesostructure (pore size distribution and surface area), and macrostructure (density and compressive strength) were investigated using various analytical techniques, in order to assess the suitability of Cast Stone as a chemically durable waste. It was found that the concentration of secondary waste simulant (caustic waste) had little effect on the relevant engineering properties of Cast Stone, showing that Cast Stone could be an effective and tolerant waste form for a wide range of concentrations of high sodium waste

  13. Physicochemical Properties of α-Form Hydrated Crystalline Phase of 3-(10-Carboxydecyl)-1,1,1,3,5,5,5-heptamethyl Trisiloxane/Higher alcohol/Polyoxyethylene (5 mol) Glyceryl monostearate/Water System.

    Science.gov (United States)

    Uyama, Makoto; Araki, Hidefumi; Fukuhara, Tadao; Watanabe, Kei

    2018-06-07

    The α-form hydrated crystalline phase (often called as an α-gel) is one of the hydrated crystalline phases which can be exhibited by surfactants and lipids. In this study, a novel system of an α-form hydrated crystal was developed, composed of 3-(10-carboxydecyl)-1,1,1,3,5,5,5-heptamethyl trisiloxane (CDTS), polyoxyethylene (5 mol) glyceryl monostearate (GMS-5), higher alcohol. This is the first report to indicate that a silicone surfactant can form an α-form hydrated crystal. The physicochemical properties of this system were characterized by small and wide angle X-ray scattering (SWAXS), differential scanning calorimetry (DSC), and diffusion-ordered NMR spectroscopy (DOSY) experiments. SWAXS and DSC measurements revealed that a plurality of crystalline phases coexist in the CDTS/higher alcohol/water ternary system. By adding GMS-5 to the ternary system, however, a wide region of a single α-form hydrated crystalline phase was obtained. The self-diffusion coefficients (D sel ) from the NMR measurements suggested that all of the CDTS, GMS-5, and higher alcohol molecules were incorporated into the same α-form hydrated crystals.

  14. Liquid crystalline epoxy nanocomposite material for dental application.

    Science.gov (United States)

    Tai, Yun-Yuan; Hsu, Sheng-Hao; Chen, Rung-Shu; Su, Wei-Fang; Chen, Min-Huey

    2015-01-01

    Novel liquid crystalline epoxy nanocomposites, which exhibit reduced polymerization shrinkage and effectively bond to tooth structures, can be applied in esthetic dentistry, including core and post systems, direct and indirect restorations, and dental brackets. The purposes of this study were to investigate the properties of liquid crystalline epoxy nanocomposites including biocompatibility, microhardness, and frictional forces of bracket-like blocks with different filler contents for further clinical applications. In this study, we evaluated liquid crystalline epoxy nanocomposite materials that exhibited various filler contents, by assessing their cell activity performance using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and their microhardness with or without thermocycling. We also evaluated the frictional force between bracket-like duplicates and commercially available esthetic bracket systems using Instron 5566. The liquid crystalline epoxy nanocomposite materials showed good biocompatibility. The materials having high filler content demonstrated greater microhardness compared with commercially available bracket materials, before and after the thermocycling treatment. Thus, manufacturing processes are important to reduce frictional force experienced by orthodontic brackets. The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment. Copyright © 2014. Published by Elsevier B.V.

  15. Shape-memory effect of nanocomposites based on liquid-crystalline elastomers

    Science.gov (United States)

    Marotta, A.; Lama, G. C.; Gentile, G.; Cerruti, P.; Carfagna, C.; Ambrogi, V.

    2016-05-01

    In this work, nanocomposites based on liquid crystalline (LC) elastomers were prepared and characterized in their shape memory properties. For the synthesis of materials, p-bis(2,3-epoxypropoxy)-α-methylstilbene (DOMS) was used as mesogenic epoxy monomer, sebacic acid (SA) as curing agent and multi-walled carbon nanotubes (MWCNT) and graphene oxide (GO) as fillers. First, an effective compatibilization methodology was set up to improve the interfacial adhesion between the matrix and the carbonaceous nanofillers, thus obtaining homogeneous distribution and dispersion of the nanofillers within the polymer phase. Then, the obtained nanocomposite films were characterized in their morphological and thermal properties. In particular, the effect of the addition of the nanofillers on liquid crystalline behavior, as well as on shape-memory properties of the realized materials was investigated. It was found that both fillers were able to enhance the thermomechanical response of the LC elastomers, making them good candidates as shape memory materials.

  16. Synergistic promotion of polar phase crystallization of PVDF by ionic liquid with PEG segment

    Science.gov (United States)

    Xu, Pei; Fu, Weijia; Cui, Zhaopei; Ding, Yunsheng

    2018-06-01

    To investigate the effect of imidazolium ionic liquid with poly(ethylene glycol) segment (IL) on the polar phase crystallization behavior of poly(vinylidene fluoride) (PVDF), a series of PVDF/IL composites were prepared using solution-cast method. The crystallization peak temperature of PVDF composites and the growth speed of samples decrease with increasing of IL. The >CF2 groups in amorphous region are retained and >CF2 groups in crystalline region are liberated by the PEG long soft segments of IL. The intensity of peaks represented as α phase reduces, moreover polar phase content increases with increasing of IL. The interaction between the >CF2 and the imidazolium cation can induce the polar phase, and the interaction between the >CF2 and PEG soft segment can strengthen polar crystalline induction. PVDF/12IL composite can form big γ spherulite circled by β phase.

  17. Assessment of analytical techniques for characterization of crystalline clopidogrel forms in patent applications

    Directory of Open Access Journals (Sweden)

    Luiz Marcelo Lira

    2014-04-01

    Full Text Available The aim of this study was to evaluate two important aspects of patent applications of crystalline forms of drugs: (i the physicochemical characterization of the crystalline forms; and (ii the procedure for preparing crystals of the blockbuster drug clopidogrel. To this end, searches were conducted using online patent databases. The results showed that: (i the majority of patent applications for clopidogrel crystalline forms failed to comply with proposed Brazilian Patent Office guidelines. This was primarily due to insufficient number of analytical techniques evaluating the crystalline phase. In addition, some patent applications lacked assessment of chemical/crystallography purity; (ii use of more than two analytical techniques is important; and (iii the crystallization procedure for clopidogrel bisulfate form II were irreproducible based on the procedure given in the patent application.

  18. Crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics for immobilization of simulated sulfate bearing high-level liquid waste

    Science.gov (United States)

    Wu, Lang; Xiao, Jizong; Wang, Xin; Teng, Yuancheng; Li, Yuxiang; Liao, Qilong

    2018-01-01

    The crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics with different content (0-30 wt %) of simulated sulfate bearing high-level liquid waste (HLLW) were evaluated. The sulfate phase segregation in vitrification process was also investigated. The results show that the glass-ceramics with 0-20 wt% of HLLW possess mainly zirconolite phase along with a small amount baddeleyite phase. The amount of perovskite crystals increases while the amount of zirconolite crystals decreases when the HLLW content increases from 20 to 30 wt%. For the samples with 20-30 wt% HLLW, yellow phase was observed during the vitrification process and it disappeared after melting at 1150 °C for 2 h. The viscosity of the sample with 16 wt% HLLW (HLLW-16) is about 27 dPa·s at 1150 °C. The addition of a certain amount (≤20 wt %) of HLLW has no significant change on the aqueous stability of glass-ceramic waste forms. After 28 days, the 90 °C PCT-type normalized leaching rates of Na, B, Si, and La of the sample HLLW-16 are 7.23 × 10-3, 1.57 × 10-3, 8.06 × 10-4, and 1.23 × 10-4 g·m-2·d-1, respectively.

  19. Systematic comparison of crystalline and amorphous phases: Charting the landscape of water structures and transformations

    International Nuclear Information System (INIS)

    Pietrucci, Fabio; Martoňák, Roman

    2015-01-01

    Systematically resolving different crystalline phases starting from the atomic positions, a mandatory step in algorithms for the prediction of structures or for the simulation of phase transitions, can be a non-trivial task. Extending to amorphous phases and liquids which lack the discrete symmetries, the problem becomes even more difficult, involving subtle topological differences at medium range that, however, are crucial to the physico-chemical and spectroscopic properties of the corresponding materials. Typically, system-tailored order parameters are devised, like global or local symmetry indicators, ring populations, etc. We show that a recently introduced metric provides a simple and general solution to this intricate problem. In particular, we demonstrate that a map can be traced displaying distances among water phases, including crystalline as well as amorphous states and the liquid, consistently with experimental knowledge in terms of phase diagram, structural features, and preparation routes

  20. Polyamine structural effects on the induction and stabilization of liquid crystalline DNA: potential applications to DNA packaging, gene therapy and polyamine therapeutics.

    Science.gov (United States)

    Saminathan, M; Thomas, Thresia; Shirahata, Akira; Pillai, C K S; Thomas, T J

    2002-09-01

    DNA undergoes condensation, conformational transitions, aggregation and resolubilization in the presence of polyamines, positively charged organic molecules present in all cells. Under carefully controlled environmental conditions, DNA can also transform to a liquid crystalline state in vitro. We undertook the present work to examine the ability of spermidine, N4-methylspermidine, spermine, N1-acetylspermine and a group of tetramine, pentamine and hexamine analogs of spermine to induce and stabilize liquid crystalline DNA. Liquid crystalline textures were identified under a polarizing microscope. In the absence of polyamines, calf thymus DNA assumed a diffused, planar cholesteric phase with entrapped bubbles when incubated on a glass slide at 37 degrees C. In the presence of spermidine and spermine, the characteristic fingerprint textures of the cholesteric phase, adopting a hexagonal order, were obtained. The helical pitch was 2.5 micro m. The final structures were dendrimeric and crystalline when DNA was treated with spermine homologs and bis(ethyl) derivatives. A cholesteric structure was observed when DNA was treated with a hexamine at 37 degrees C. This structure changed to a hexagonal dendrimer with fluidity on prolonged incubation. These data show a structural specificity effect of polyamines on liquid crystalline phase transitions of DNA and suggest a possible physiological function of natural polyamines.

  1. New lipid family that forms inverted cubic phases in equilibrium with excess water: molecular structure-aqueous phase structure relationship for lipids with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains.

    Science.gov (United States)

    Yamashita, Jun; Shiono, Manzo; Hato, Masakatsu

    2008-10-02

    With a view to discovering a new family of lipids that form inverted cubic phases, the aqueous phase behavior of a series of lipids with isoprenoid-type hydrophobic chains has been examined over a temperature range from -40 to 65 degrees C by using optical microscopy, DSC (differential scanning calorimetry), and SAXS (small-angle X-ray scattering) techniques. The lipids examined are those with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains linked to a series of headgroups, that is, erythritol, pentaerythritol, xylose, and glucose. All of the lipid/water systems displayed a "water + liquid crystalline phase" two-phase coexistence state when sufficiently diluted. The aqueous phase structures of the most diluted liquid crystalline phases in equilibrium with excess water depend both on the lipid molecular structure and on the temperature. Given an isoprenoid chain, the preferred phase consistently follows a phase sequence of an H II (an inverted hexagonal phase) to a Q II (an inverted bicontinuous cubic phase) to an L alpha (a lamellar phase) as A* (cross-section area of the headgroup) increases. For a given lipid/water system, the phase sequence observed as the temperature increases is L alpha to Q II to H II. The present study allowed us to find four cubic phase-forming lipid species, PEOC 18+4 [mono- O-(5,9,13,17-tetramethyloctadecyl)pentaerythritol], beta-XylOC 18+4 [1- O-(5,9,13,17-tetramethyloctadecyl)-beta- d-xylopyranoside], EROCOC 17+4 [1- O-(5,9,13,17-tetramethyloctadecanoyl)erythritol], and PEOCOC 17+4 [mono- O-(5,9,13,17-tetramethyloctadecanoyl)pentaerythritol]. The values of T K (hydrated solid-liquid crystalline phase transition temperature) of the cubic phase-forming lipids are all below 0 degrees C. Quantitative analyses of the lipid molecular structure-aqueous phase structure relationship in terms of the experimentally evaluated "surfactant parameter" allow us to rationally select an optimum combination of hydrophilic

  2. Thermotropic liquid crystalline polyazomethine nanocomposites via in situ interlayer polymerization

    International Nuclear Information System (INIS)

    Min, Ungki; Chang, Jin-Hae

    2011-01-01

    Highlights: → Nanocomposites of polyazomethine with the organoclay C 12 -MMT were synthesized by using the in situ interlayer polymerization method. → The thermal properties of the polyazomethine hybrids increase with the addition of the organoclay up to a critical content and then decrease with further organoclay loading. → Liquid crystalline compositions with 0-9 wt% organoclay have threaded Schlieren nematic textures. - Abstract: Nanocomposites of polyazomethine (PAM) with the organoclay C 12 -MMT were synthesized by using the in situ interlayer polymerization method. The variations with organoclay content of the thermal properties, morphology, and liquid crystalline mesophases of the hybrids were determined for concentrations from 0 to 9 wt% C 12 -MMT. The thermal properties and the morphologies of the PAM nanocomposites were examined by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffractometry (XRD), transmission electron microscopy (TEM), and polarizing optical microscopy (POM). The XRD analysis and TEM micrographs show that the levels of nanosize dispersion can be controlled by varying the C 12 -MMT content. The clay particles are better dispersed in the matrix polymer at low clay contents than at high clay contents. With the exception of the glass transition temperature (T g ), the maximum enhancement in the thermal properties was found to arise at an organoclay content of 1 wt%. Further, the PAM hybrids were shown to exhibit a nematic liquid crystalline phase for organoclay contents in the range 0-9 wt%.

  3. Distance-dependent metal enhanced fluorescence by flowerlike silver nanostructures fabricated in liquid crystalline phase

    Science.gov (United States)

    Zhang, Ying; Yang, Chengliang; Zhang, Guiyang; Peng, Zenghui; Yao, Lishuang; Wang, Qidong; Cao, Zhaoliang; Mu, Quanquan; Xuan, Li

    2017-10-01

    Flowerlike silver nanostructure substrates were fabricated in liquid crystalline phase and the distance dependent property of metal enhanced fluorescence for such substrate was studied for the first time. The distance between silver nanostructures and fluorophore was controlled by the well-established layer-by-layer (LbL) technique constructing alternate layers of poly (allylamine hydrochloride) (PAH) and poly (sodium 4-styrenesulfonate) (PSS). The Rhodamine 6G (R6G) molecules were electrostatically attached to the outmost negative charged PSS layer. The fluorescence enhancement factor of flowerlike nanostructure substrate increased firstly and then decreased with the distance increasing. The best enhanced fluorescence intensity of 71 fold was obtained at a distance of 5.2 nm from the surface of flowerlike silver nanostructure. The distance for best enhancement effect is an instructive parameter for the applications of such substrates and could be used in the practical MEF applications with the flowerlike nanostructure substrates fabricated in such way which is simple, controllable and cost-effective.

  4. Autophobicity and layering behavior of thin liquid-crystalline polymer films.

    NARCIS (Netherlands)

    Wielen, van der M.W.J.; Cohen Stuart, M.A.; Fleer, G.J.

    1998-01-01

    The stability against breaking-up of thin spin-coated films of liquid-crystalline polymers depends on the film thickness and annealing temperature. This study concerns side-chain liquid-crystalline polymers, based on alternating copolymers of maleic anhydride and mesogenic alkenes. The mesogenic

  5. Frustrated smectic liquid crystalline phases in lactic acid derivatives

    Czech Academy of Sciences Publication Activity Database

    Glogarová, Milada; Novotná, Vladimíra

    2016-01-01

    Roč. 89, č. 7-8 (2016), s. 829-839 ISSN 0141-1594 R&D Projects: GA ČR GA15-02843S Institutional support: RVO:68378271 Keywords : field * liquid crystals * TGB phases Subject RIV: JJ - Other Materials Impact factor: 1.060, year: 2016

  6. Vehicles of inverted hexagonal liquid crystalline lipid phases self-assembled at room temperature

    Czech Academy of Sciences Publication Activity Database

    Angelov, Borislav; Angelova, A.; Garamus, V. M.; Lesieur, S.

    2013-01-01

    Roč. 15, 3/4 (2013), s. 211-215 ISSN 1454-4164 R&D Projects: GA ČR GAP208/10/1600 Institutional support: RVO:61389013 Keywords : liquid crystalline lipid nanoparticles * small angle X-ray scattering * cross-polarised light optical microscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.563, year: 2013 http://joam.inoe.ro/index.php?option=magazine&op=view&idu=3179&catid=76

  7. Three-dimensional nanomechanical mapping of amorphous and crystalline phase transitions in phase-change materials.

    Science.gov (United States)

    Grishin, Ilja; Huey, Bryan D; Kolosov, Oleg V

    2013-11-13

    The nanostructure of micrometer-sized domains (bits) in phase-change materials (PCM) that undergo switching between amorphous and crystalline phases plays a key role in the performance of optical PCM-based memories. Here, we explore the dynamics of such phase transitions by mapping PCM nanostructures in three dimensions with nanoscale resolution by combining precision Ar ion beam cross-sectional polishing and nanomechanical ultrasonic force microscopy (UFM) mapping. Surface and bulk phase changes of laser written submicrometer to micrometer sized amorphous-to-crystalline (SET) and crystalline-to-amorphous (RESET) bits in chalcogenide Ge2Sb2Te5 PCM are observed with 10-20 nm lateral and 4 nm depth resolution. UFM mapping shows that the Young's moduli of crystalline SET bits exceed the moduli of amorphous areas by 11 ± 2%, with crystalline content extending from a few nanometers to 50 nm in depth depending on the energy of the switching pulses. The RESET bits written with 50 ps pulses reveal shallower depth penetration and show 30-50 nm lateral and few nanometer vertical wavelike topography that is anticorrelated with the elastic modulus distribution. Reverse switching of amorphous RESET bits results in the full recovery of subsurface nanomechanical properties accompanied with only partial topography recovery, resulting in surface corrugations attributed to quenching. This precision sectioning and nanomechanical mapping approach could be applicable to a wide range of amorphous, nanocrystalline, and glass-forming materials for 3D nanomechanical mapping of amorphous-crystalline transitions.

  8. 21 CFR 524.2620 - Liquid crystalline trypsin, Peru balsam, castor oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Liquid crystalline trypsin, Peru balsam, castor... NEW ANIMAL DRUGS § 524.2620 Liquid crystalline trypsin, Peru balsam, castor oil. (a)(1) Specifications... delivered to the wound site contains 0.12 milligram of crystalline trypsin, 87.0 milligrams of Peru balsam...

  9. Excimer fluorescence of liquid crystalline systems

    Science.gov (United States)

    Sakhno, Tamara V.; Khakhel, Oleg A.; Barashkov, Nikolay N.; Korotkova, Irina V.

    1996-04-01

    The method of synchronous scanning fluorescence spectroscopy shows a presence of dimers of pyrene in a polymeric matrix. The results suggest that excimer formation takes place with dimers in liquid crystalline systems.

  10. Demixing by a Nematic Mean Field: Coarse-Grained Simulations of Liquid Crystalline Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Hernández, Abelardo; Hur, Su-Mi; Armas-Pérez, Julio; Cruz, Monica; de Pablo, Juan

    2017-03-01

    Liquid crystalline polymers exhibit a particular richness of behaviors that stems from their rigidity and their macromolecular nature. On the one hand, the orientational interaction between liquid-crystalline motifs promotes their alignment, thereby leading to the emergence of nematic phases. On the other hand, the large number of configurations associated with polymer chains favors formation of isotropic phases, with chain stiffness becoming the factor that tips the balance. In this work, a soft coarse-grained model is introduced to explore the interplay of chain stiffness, molecular weight and orientational coupling, and their role on the isotropic-nematic transition in homopolymer melts. We also study the structure of polymer mixtures composed of stiff and flexible polymeric molecules. We consider the effects of blend composition, persistence length, molecular weight and orientational coupling strength on the melt structure at the nano-and mesoscopic levels. Conditions are found where the systems separate into two phases, one isotropic and the other nematic. We confirm the existence of non-equilibrium states that exhibit sought-after percolating nematic domains, which are of interest for applications in organic photovoltaic and electronic devices.

  11. PH-Induced Nanosegregation of Ritonavir to Lyotropic Liquid Crystal of Higher Solubility Than Crystalline Polymorphs

    International Nuclear Information System (INIS)

    Rodriguez-Spong, B.; Acciacca, A.; Fleisher, D.; Rodriguez-Hornedo, N.

    2009-01-01

    Birefringent spherical vesicles of ritonavir (RTV) are formed by increasing the pH of aqueous solutions from 1 to 3 or to 7 and by addition of water to ethanol solutions at room temperature. Increasing the pH creates supersaturation levels of 30--400. Upon this change in pH, the solutions become translucent, implying that some kind of RTV assembly was formed. Small spherical vesicles of narrow size distribution are detectable only after a few hours by optical microscopy. The vesicles show similar X-ray diffraction patterns and differential scanning calorimetry (DSC) behavior to amorphous RTV prepared by melt-quenching crystalline RTV. Examination by polarized optical microscopy suggests that these are lyotropic liquid crystalline (LLC) assemblies. Small-angle X-ray scattering and synchrotron X-ray diffraction further support the presence of orientational order that is associated with a nematic structure. RTV self-organizes into various phases as a result of the supersaturation created in aqueous solutions. The LLC vesicles do not fuse but slowly transform to the polymorphs of RTV (in days), Form I and finally Form II. Amorphous RTV in aqueous suspension also undergoes a transformation to a mesophase of similar morphology. Transformation pathways are consistent with measured dissolution rates and solubilities: amorphous > LLC >> Form I > Form II. The dissolution and solubility of LLC is slightly lower than that of the amorphous phase and about 20 times higher than that of Form II. RTV also self-assembles at the air/water interface as indicated by the decrease in surface tension of aqueous solutions. This behavior is similar to that of amphiphilic molecules that induce LLC formation.

  12. Liquid crystalline thermosetting polymers as protective coatings for aerospace

    OpenAIRE

    Guerriero, G.L.

    2012-01-01

    Environmental regulations are driving the development of new aerospace coating systems, mainly to eliminate chromates and reduce volatile organic compound (VOC) emissions. Among the various potential options for new coating materials, liquid crystalline polymers (LCPs) are attractive due to their unique combination of mechanical properties and chemical resistance. Their use, however, has been limited mainly due to poor adhesion properties. Thermotropic liquid crystalline thermosets displayed ...

  13. The influence of glass composition on crystalline phase stability in glass-ceramic wasteforms

    International Nuclear Information System (INIS)

    Maddrell, Ewan; Thornber, Stephanie; Hyatt, Neil C.

    2015-01-01

    Highlights: • Crystalline phase formation shown to depend on glass matrix composition. • Zirconolite forms as the sole crystalline phase only for most aluminous glasses. • Thermodynamics indicate that low silica activity glasses stabilise zirconolite. - Abstract: Zirconolite glass-ceramic wasteforms were prepared using a suite of Na 2 O–Al 2 O 3 –B 2 O 3 –SiO 2 glass matrices with variable Al:B ratios. Zirconolite was the dominant crystalline phase only for the most alumina rich glass compositions. As the Al:B ratio decreased zirconolite was replaced by sphene, zircon and rutile. Thermodynamic data were used to calculate a silica activity in the glass melt below which zirconolite is the favoured crystalline phase. The concept of the crystalline reference state of glass melts is then utilised to provide a physical basis for why silica activity varies with the Al:B ratio

  14. Crystalline structure in the confined-deconfined mixed phase: Neutron stars as an example

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1996-01-01

    We review the differences in first order phase transition of single and multi-component systems, and then discuss the crystalline structure expected to exist in the mixed confined deconfined phase of hadronic matter. The particular context of neutron stars is chosen for illustration. The qualitative results are general and apply for example to the vapor-liquid transition in subsaturated asymmetric nuclear matter

  15. Blending crystalline/liquid crystalline small molecule semiconductors: A strategy towards high performance organic thin film transistors

    Science.gov (United States)

    He, Chao; He, Yaowu; Li, Aiyuan; Zhang, Dongwei; Meng, Hong

    2016-10-01

    Solution processed small molecule polycrystalline thin films often suffer from the problems of inhomogeneity and discontinuity. Here, we describe a strategy to solve these problems through deposition of the active layer from a blended solution of crystalline (2-phenyl[1]benzothieno[3,2-b][1]benzothiophene, Ph-BTBT) and liquid crystalline (2-(4-dodecylphenyl) [1]benzothieno[3,2-b]benzothiophene, C12-Ph-BTBT) small molecule semiconductors with the hot spin-coating method. Organic thin film transistors with average hole mobility approaching 1 cm2/V s, much higher than that of single component devices, have been demonstrated, mainly due to the improved uniformity, continuity, crystallinity, and stronger intermolecular π-π stacking in blend thin films. Our results indicate that the crystalline/liquid crystalline semiconductor blend method is an effective way to enhance the performance of organic transistors.

  16. Liquid-Crystalline Ionic Liquids as Ordered Reaction Media for the Diels-Alder Reaction.

    Science.gov (United States)

    Bruce, Duncan W; Gao, Yanan; Canongia Lopes, José Nuno; Shimizu, Karina; Slattery, John M

    2016-11-02

    Liquid-crystalline ionic liquids (LCILs) are ordered materials that have untapped potential to be used as reaction media for synthetic chemistry. This paper investigates the potential for the ordered structures of LCILs to influence the stereochemical outcome of the Diels-Alder reaction between cyclopentadiene and methyl acrylate. The ratio of endo- to exo-product from this reaction was monitored for a range of ionic liquids (ILs) and LCILs. Comparison of the endo:exo ratios in these reactions as a function of cation, anion and liquid crystallinity of the reaction media, allowed for the effects of liquid crystallinity to be distinguished from anion effects or cation alkyl chain length effects. These data strongly suggest that the proportion of exo-product increases as the reaction media is changed from an isotropic IL to a LCIL. A detailed molecular dynamics (MD) study suggests that this effect is related to different hydrogen bonding interactions between the reaction media and the exo- and endo-transition states in solvents with layered, smectic ordering compared to those that are isotropic. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Photoluminescence at room temperature of liquid-phase crystallized silicon on glass

    Directory of Open Access Journals (Sweden)

    Michael Vetter

    2016-12-01

    Full Text Available The room temperature photoluminescence (PL spectrum due band-to-band recombination in an only 8 μm thick liquid-phase crystallized silicon on glass solar cell absorber is measured over 3 orders of magnitude with a thin 400 μm thick optical fiber directly coupled to the spectrometer. High PL signal is achieved by the possibility to capture the PL spectrum very near to the silicon surface. The spectra measured within microcrystals of the absorber present the same features as spectra of crystalline silicon wafers without showing defect luminescence indicating the high electronic material quality of the liquid-phase multi-crystalline layer after hydrogen plasma treatment.

  18. Indomethacin nanocrystals prepared by different laboratory scale methods: effect on crystalline form and dissolution behavior

    Energy Technology Data Exchange (ETDEWEB)

    Martena, Valentina; Censi, Roberta [University of Camerino, School of Pharmacy (Italy); Hoti, Ela; Malaj, Ledjan [University of Tirana, Department of Pharmacy (Albania); Di Martino, Piera, E-mail: piera.dimartino@unicam.it [University of Camerino, School of Pharmacy (Italy)

    2012-12-15

    The objective of this study is to select very simple and well-known laboratory scale methods able to reduce particle size of indomethacin until the nanometric scale. The effect on the crystalline form and the dissolution behavior of the different samples was deliberately evaluated in absence of any surfactants as stabilizers. Nanocrystals of indomethacin (native crystals are in the {gamma} form) (IDM) were obtained by three laboratory scale methods: A (Batch A: crystallization by solvent evaporation in a nano-spray dryer), B (Batch B-15 and B-30: wet milling and lyophilization), and C (Batch C-20-N and C-40-N: Cryo-milling in the presence of liquid nitrogen). Nanocrystals obtained by the method A (Batch A) crystallized into a mixture of {alpha} and {gamma} polymorphic forms. IDM obtained by the two other methods remained in the {gamma} form and a different attitude to the crystallinity decrease were observed, with a more considerable decrease in crystalline degree for IDM milled for 40 min in the presence of liquid nitrogen. The intrinsic dissolution rate (IDR) revealed a higher dissolution rate for Batches A and C-40-N, due to the higher IDR of {alpha} form than {gamma} form for the Batch A, and the lower crystallinity degree for both the Batches A and C-40-N. These factors, as well as the decrease in particle size, influenced the IDM dissolution rate from the particle samples. Modifications in the solid physical state that may occur using different particle size reduction treatments have to be taken into consideration during the scale up and industrial development of new solid dosage forms.

  19. Computer simulation of confined and flexoelectric liquid crystalline systems

    International Nuclear Information System (INIS)

    Barmes, F.

    2003-01-01

    In this Thesis, systems of confined and flexoelectric liquid crystal systems have been studied using molecular computer simulations. The aim of this work was to provide a molecular model of a bistable display cell in which switching is induced through the application of directional electric field pulses. In the first part of this Thesis, the study of confined systems of liquid crystalline particles has been addressed. Computation of the anchoring phase diagrams for three different surface interaction models showed that the hard needle wall and rod-surface potentials induce both planar and homeotropic alignment separated by a bistability region, this being stronger and wider for the rod-surface varant. The results obtained using the rod-sphere surface model, in contrast, showed that tilled surface arrangements can be induced by surface absorption mechanisms. Equivalent studies of hybrid anchored systems showed that a bend director structure can be obtained in a slab with monostable homeotropic anchoring at the top surface and bistable anchoring at the bottom, provided that the slab height is sufficiently large and the top homeotropic anchoring is not too strong. In the second part of the Thesis, the development of models for tapered (pear-shaped) mesogens has been addressed. The first model considered, the truncated Stone expansion model, proved to be unsuccessful in that it did not display liquid crystalline phases. This drawback was then overcome using the alternative parametric hard Gaussian overlap model which was found to display a much richer phase behaviour. With a molecular elongation k = 5, both nematic and interdigitated smectic A 2 phases were obtained. In the final part of this Thesis, the knowledge acquired from the two previous studies was united in an attempt to model a bistable display cell. Switching between the hybrid aligned nematic and vertical states of the cell was successfully performed using pear shaped particles with both dielectric and

  20. Development and evaluation of exemestane-loaded lyotropic liquid crystalline gel formulations

    OpenAIRE

    Musa, Muhammad Nuh; David, Sheba Rani; Zulkipli, Ihsan Nazurah; Mahadi, Abdul Hanif; Chakravarthi, Srikumar; Rajabalaya, Rajan

    2017-01-01

    Introduction: The use of liquid crystalline (LC) gel formulations for drug delivery has considerably improved the current delivery methods in terms of bioavailability and efficacy. The purpose of this study was to develop and evaluate LC gel formulations to deliver the anti-cancer drug exemestane through transdermal route. Methods: Two LC gel formulations were prepared by phase separation coacervation method using glyceryl monooleate (GMO), Tween 80 and Pluronic® F127 (F127). The formulations...

  1. The importance of orientation in proton transport of a polymer film based on an oriented self-organized columnar liquid-crystalline polyether

    Energy Technology Data Exchange (ETDEWEB)

    Tylkowski, Bartosz; Castelao, Nuria [Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paiesos Catalans, 26, E-43007, Tarragona (Spain); Giamberini, Marta, E-mail: marta.giamberini@urv.net [Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paiesos Catalans, 26, E-43007, Tarragona (Spain); Garcia-Valls, Ricard [Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paiesos Catalans, 26, E-43007, Tarragona (Spain); Reina, Jose Antonio [Departament de Quimica Analitica i Quimica Organica, Universitat Rovira i Virgili, Carrer Marcel.li Domingo s/n, E-43007, Tarragona (Spain); Gumi, Tania [Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paiesos Catalans, 26, E-43007, Tarragona (Spain)

    2012-02-01

    We prepared membranes based on a liquid-crystalline side-chain polyether obtained by chemical modification of commercial poly(epichlorohydrin) (PECH) with dendrons. This polymer exhibited a columnar structure, which could form an ion channel in the inner part. The columns were successfully oriented by taking advantage of surface interactions between the polymer and hydrophilic substrates, as confirmed by X-ray diffraction analysis (XRD), environmental scanning electron microscopy (ESEM) and optical microscopy between crossed polars (POM). Column orientation was found to be crucial for effective transport: the oriented membranes exhibited proton transport comparable to that of Nafion Registered-Sign N117 and no water uptake. An increase in sodium ion concentration in the feed phase suggested a proton/cation antiport. On the contrary, no proton transport was detected on unoriented membranes based on the same liquid-crystalline side-chain polyether or on unmodified PECH. - Highlights: Black-Right-Pointing-Pointer We prepared oriented membranes based on a liquid crystalline columnar polyether. Black-Right-Pointing-Pointer In this structure, the inner polyether chain could work as an ion channel. Black-Right-Pointing-Pointer We obtained membranes by casting a chloroform solution in the presence of water. Black-Right-Pointing-Pointer Membranes showed good proton permeability due to the presence of oriented channels.

  2. The importance of orientation in proton transport of a polymer film based on an oriented self-organized columnar liquid-crystalline polyether

    International Nuclear Information System (INIS)

    Tylkowski, Bartosz; Castelao, Nuria; Giamberini, Marta; Garcia-Valls, Ricard; Reina, José Antonio; Gumí, Tània

    2012-01-01

    We prepared membranes based on a liquid-crystalline side-chain polyether obtained by chemical modification of commercial poly(epichlorohydrin) (PECH) with dendrons. This polymer exhibited a columnar structure, which could form an ion channel in the inner part. The columns were successfully oriented by taking advantage of surface interactions between the polymer and hydrophilic substrates, as confirmed by X-ray diffraction analysis (XRD), environmental scanning electron microscopy (ESEM) and optical microscopy between crossed polars (POM). Column orientation was found to be crucial for effective transport: the oriented membranes exhibited proton transport comparable to that of Nafion® N117 and no water uptake. An increase in sodium ion concentration in the feed phase suggested a proton/cation antiport. On the contrary, no proton transport was detected on unoriented membranes based on the same liquid-crystalline side-chain polyether or on unmodified PECH. - Highlights: ► We prepared oriented membranes based on a liquid crystalline columnar polyether. ► In this structure, the inner polyether chain could work as an ion channel. ► We obtained membranes by casting a chloroform solution in the presence of water. ► Membranes showed good proton permeability due to the presence of oriented channels.

  3. Liquid Crystalline Semiconductors Materials, properties and applications

    CERN Document Server

    Kelly, Stephen; O'Neill, Mary

    2013-01-01

    This is an exciting stage in the development of organic electronics. It is no longer an area of purely academic interest as increasingly real applications are being developed, some of which are beginning to come on-stream. Areas that have already been commercially developed or which are under intensive development include organic light emitting diodes (for flat panel displays and solid state lighting), organic photovoltaic cells, organic thin film transistors (for smart tags and flat panel displays) and sensors. Within the family of organic electronic materials, liquid crystals are relative newcomers. The first electronically conducting liquid crystals were reported in 1988 but already a substantial literature has developed. The advantage of liquid crystalline semiconductors is that they have the easy processability of amorphous and polymeric semiconductors but they usually have higher charge carrier mobilities. Their mobilities do not reach the levels seen in crystalline organics but they circumvent all of t...

  4. Thermoresponsive Membrane Based on Thermotropic Liquid Crystalline Cholesteryl - (L-lacticacidn System: Study of Its Drug Permeability

    Directory of Open Access Journals (Sweden)

    Massoumeh Bagheri

    2013-01-01

    Full Text Available The rapidly increasing interest in functional materials with reversibly switchable physico- chemical properties has led to significant work on the development of stimuli responsive membranes. Thermotropic liquid crystals with their exceptional properties have potentials for drug-delivery applications. Thermoresponsive liquid-crystal-embedded membranes were investigated for the purpose of developing the drug delivery systems with thermal stimuli response. Drug release occurs at temperatures above the phase transition temperature of thermotropic liquid crystals. Therefore, they can control drug release in response to small temperature changes. In this work, the biocompatible and thermotropic liquid crystalline polymer cholesteryl-(L-lactic acidn ,CLAn (n=30, was synthesized with accurate control of molecular weight via ring opening polymerization method. Polymerization of L-lactide was carried out in the presence of cholesterol as an initiator and catalytic amount of tin (II octoate (Sn(Oct2 at 150°C in 5 h. The number-average degree of polymerization of CLA 30 was obtained from 1H NMR spectroscopy. The phase transition behavior of liquid crystalline CLA30 was established by differential scanning calorimetry and polarizing optical microscopy. The resulting liquid crystalline CLA30 was subsequently utilized to prepare CLA30 -embedded cellulose nitrate membrane by adsorption method. The CLA30-embedded cellulose nitrate membrane was used by an in-vitro drug penetration studies. Acetaminophen was used as a model drug. The permeation study was carried out at different temperatures around glass transition temperature of polymer CLA30 (37, 45 and 40°C, respectively. The results show that the CLA30 -embedded cellulose nitrate membranes exhibit thermo-responsive sensitivity with controlled drug permeation.

  5. Phosphoric acids as amplifiers of molecular chirality in liquid crystalline media

    NARCIS (Netherlands)

    Eelkema, R; Feringa, BL

    2006-01-01

    A new system for the double amplification of the molecular chirality of simple chiral amines in achiral liquid crystalline media is described. It involves a conformationally flexible phosphoric acid based receptor that by binding to chiral amines induces chirality in the liquid crystalline matrix.

  6. Liquid crystalline systems containing Vitamin E TPGS for the controlled transdermal nicotine delivery

    Directory of Open Access Journals (Sweden)

    Lívia Neves Borgheti-Cardoso

    Full Text Available ABSTRACT Transdermal nicotine patches have been used in smoking cessation therapy, suggested for the treatment of skin disorders with eosinophilic infiltration and have been found to improve attention performance in patients with Alzheimer's disease and age-associated memory impairment. However, skin irritation with extended patch use is still a problem. The aim of this work was to develop a simple to prepare liquid crystalline system containing vitamin E TPGS that would be able to control nicotine delivery and reduce irritation and sensitization problems. The liquid crystalline phases were macroscopically characterized by visual analysis and examined microscopically under a polarized light microscope. Topical and transdermal delivery of nicotine were investigated in vitro using porcine ear skin mounted on a Franz diffusion cell. Nicotine skin permeation from the developed cubic phase followed zero-order kinetics (r = 0.993 and was significantly enhanced after 12 h when compared to the control formulation (nicotine solution (p < 0.05 (138.86 ± 20.44 and 64.91 ± 4.06 μg/cm2, respectively. Cubic phase was also able to target viable skin layers in comparison to control solution (8.18 ± 1.89 and 2.63 ± 2.51 μg/cm2, respectively. Further studies to evaluate skin sensitization and irritation are now necessary.

  7. Reverse-phase HPLC analysis of human alpha crystallin.

    Science.gov (United States)

    Swamy, M S; Abraham, E C

    1991-03-01

    A rapid and highly sensitive reverse-phase HPLC (RP-HPLC) method was used to separate crystallin subunits from human alpha crystallin. Three distinct peaks were separated; by electrophoretic and immunological analyses the first and second peaks were identified as alpha B and alpha A respectively. On the other hand, peak 3 appeared to be a modified form of alpha crystallin. The ratio of alpha A and alpha B proteins was 3:1 in 1 day old lenses which gradually changed to 2:1 in 17 year old lenses and to 1:1 in the 50 and 82 year old whole lenses and 82 year old lens cortex, with a concomitant increase in the modified alpha, suggesting that alpha A subunits are relatively more involved in aggregation. Analysis of the 82 year old lens nucleus also supported this conclusion. The RP-HPLC analysis of the HMW aggregate fraction showed substantial enrichment of the modified alpha. The alpha A and alpha B subunits independently reassociated to form polymeric alpha crystallin whereas the modified alpha reassociated to form HMW aggregates as shown by molecular sieve HPLC. Hence it appears that the HMW aggregate peak was constituted by modified alpha crystallin. Only in the peak 3 material the 280 nm absorbance was about 2-fold higher than what was expected from the actual protein content. The data suggest that the changes induced by post-translational modifications may have some role in the formation of modified alpha. The present RP-HPLC method is useful in separating these modified alpha from the unmodified alpha A and alpha B subunits.

  8. Phase transitions of antibiotic clarithromycin forms I, IV and new form VII crystals.

    Science.gov (United States)

    Ito, Masataka; Shiba, Rika; Watanabe, Miteki; Iwao, Yasunori; Itai, Shigeru; Noguchi, Shuji

    2018-06-01

    Metastable crystal form I of the antibiotic clarithromycin has a pharmaceutically valuable characteristic that its crystalline phase transition can be applied for its sustained release from tablets. The phase transition of form I was investigated in detail by single crystal and powder X-ray analyses, dynamic vapor sorption analysis and thermal analysis. The single crystal structure of form I revealed that form I was not an anhydrate crystal but contained a partially occupied water molecule in the channel-like void space. Dynamic vapor sorption (DVS) analysis demonstrated that form I crystals reversibly sorbed water molecules in two steps when the relative humidity (RH) increased and finally transited to hydrate form IV at 95% RH. DVS analysis also showed that when the RH decreased form IV crystals lost water molecules at 40% RH and transited to the newly identified anhydrate crystal form VII. Form VII reversibly transited to form IV at lower RH than form I, suggesting that form I is more suitable for manufacturing a sustained-release tablet of CAM utilizing the crystalline phase transition. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Binary and ternary solid-liquid phase equilibrium for the systems formed by succinic acid, urea and diethylene glycol: Determination and modelling

    International Nuclear Information System (INIS)

    Li, Yanxun; Li, Congcong; Han, Shuo; Zhao, Hongkun

    2017-01-01

    Highlights: • Solubility of succinic acid in diethylene glycol was determined. • Solubility of succinic acid + urea + diethylene glycol was determined. • Three ternary phase diagrams were constructed for the ternary system. • The ternary phase diagrams were correlated using NRTL model. - Abstract: In this work, the solid-liquid phase equilibrium for binary system of succinic acid + diethylene glycol at the temperatures ranging from (298.15 to 333.15) K and ternary system of (succinic acid + urea + diethylene glycol) at 298.15 K, 313.15 K and 333.15 K was built by using the isothermal saturation method under atmospheric pressure (101.2 kPa), and the solubilities were determined by a high-performance liquid chromatography. The solid-phases formed in the ternary system of ((succinic acid + urea + diethylene glycol)) were confirmed by Schreinemaker’s method of wet residue, which corresponded to urea, succinic acid, and adduct 2:1 urea-succinic acid (mole ratio). Three isothermal phase diagrams for the ternary system were constructed based on the measured mutual solubility. Each isothermal phase diagram included six crystallization fields, three invariant curves, two invariant points and two co-saturated points. The crystalline region of adduct 2:1 urea-succinic acid is larger than those of the other two solids. The solubility of succinic acid in diethylene glycol was correlated with the modified Apelblat equation, λh equation and NRTL model; and the mutual solubility of the ternary ((succinic acid + urea + diethylene glycol)) system was correlated and calculated by the NRTL model. The interaction parameters’ values of succinic acid-urea were acquired. The value of RMSD was 7.11 × 10 −3 for the ternary system. The calculation results had good agreement with the experiment values. Furthermore, the densities of equilibrium liquid phase were acquired. The phase diagrams and the thermodynamic model of the ternary system could provide the basis for design of

  10. Liquid crystallinity in flexible and rigid rod polymers

    International Nuclear Information System (INIS)

    Pickett, Galen T.; Schweizer, Kenneth S.

    2000-01-01

    We apply an anisotropic version of the polymer reference interaction site model (PRISM) integral equation description of flexible polymers to analyze athermal liquid crystallinity. The polymers are characterized by a statistical segment length, σ o , and by a physical hard-core thickness, d, that prevents the overlap of monomers on different chains. At small segment densities, ρ, the microscopic length scale d is irrelevant (as it must be in the universal semidilute regime), but becomes important in concentrated solutions and melts. Under the influence of the excluded volume interactions alone, the chains undergo a lyotropic, first-order isotropic-nematic transition at a concentration dependent upon the dimensionless ''aspect ratio,'' σ o /d. The transition becomes weaker as d→0, becoming second order, as has been previously shown. We extend the theory to describe the transition of rigid, thin rods, and discuss the evolution of the anisotropic liquid structure in the ordered phase. (c) 2000 American Institute of Physics

  11. First-principles study of the liquid and amorphous phases of In2Te3

    Science.gov (United States)

    Dragoni, D.; Gabardi, S.; Bernasconi, M.

    2017-08-01

    Structural, dynamical, and electronic properties of the liquid and amorphous phase of the In2Te3 compound have been studied by means of density functional molecular dynamics simulations. This system is of interest as a phase change material, undergoing a fast and reversible change between the crystalline and amorphous phases upon heating. It can be seen as a constituent of ternary InSbTe alloys which are receiving attention for application in electronic phase change memories. Amorphous models of In2Te3 300 -atom large have been generated by quenching from the melt by using different exchange and correlation functionals and different descriptions of the van der Waals interaction. It turns out the local bonding geometry of the amorphous phase is mostly tetrahedral with corner and edge sharing tetrahedra similar to those found in the crystalline phases of the InTe, In2Te3 , and In2Te5 compounds. Benchmark calculations on the crystalline α phase of In2Te3 in the defective zincblend geometry have also been performed. The calculations reveal that the high symmetric F 4 ¯3 m structure inferred experimentally from x-ray diffraction for the α phase must actually result from a random distribution of Te-Te bonds in different octahedral cages formed by the coalescence of vacancies in the In sublattice.

  12. Electrical transport in crystalline phase change materials

    International Nuclear Information System (INIS)

    Woda, Michael

    2012-01-01

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge 2 Sb 2 Te 5 . The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  13. Liquid crystalline solutions of cellulose in phosphoric acid for preparing cellulose yarns

    NARCIS (Netherlands)

    Boerstoel, H.

    2006-01-01

    The presen thesis describes a new process for manufacturing high tenacity and high modulus cellulose yarns. A new direct solvent for cellulose has been discovered, leading to liquid crystalline solutions. This new solvent, superphosphoric acid, rapidly dissolves cellulose. These liquid crystalline

  14. Liquid crystalline biopolymers: A new arena for liquid crystal research

    International Nuclear Information System (INIS)

    Rizvi, Tasneem Zahra

    2001-07-01

    This paper gives a brief introduction to liquid crystals on the basis of biopolymers and reviews literature on liquid crystalline behaviour of biopolymers both in vitro and in vivo in relation to their implications in the fields of biology, medicine and material science. Knowledge in the field of biological liquid crystals is crucial for understanding complex phenomena at supramolecular level which will give information about processes involved in biological organization and function. The understanding of the interaction of theses crystals with electric, magnetic, optical and thermal fields will uncover mechanisms of near quantum-energy detection capabilities of biosystems

  15. Lyotropic liquid crystal preconcentrates for the treatment of periodontal disease.

    Science.gov (United States)

    Fehér, A; Urbán, E; Eros, I; Szabó-Révész, P; Csányi, E

    2008-06-24

    The aim of our study was to develop water-free lyotropic liquid crystalline preconcentrates, which consist of oils and surfactants with good physiological tolerance and spontaneously form lyotropic liquid crystalline phase in aqueous environment. In this way these preconcentrates having low viscosity can be injected into the periodontal pocket, where they are transformed into highly viscous liquid crystalline phase, so that the preparation is prevented from flowing out of the pocket due to its great viscosity, while drug release is controlled by the liquid crystalline texture. In order to follow the structure alteration upon water absorption polarization microscopical and rheological examinations were performed. The water absorption mechanism of the samples was examined by the Enslin-method. Metronidazole-benzoate was used as active agent the release of which was characterized via in vitro investigations performed by means of modified Kirby-Bauer disk diffusion method. On the grounds of the results it can be stated that the 4:1 mixture of the investigated surfactants (Cremophor EL, Cremophor RH40) and oil (Miglyol 810) formed lyotopic liquid crystalline phases upon water addition. Polarization microscopic examinations showed that samples with 10-40% water content possessed anisotropic properties. On the basis of water absorption, rheological and drug release studies it can be concluded that the amount of absorbed water and stiffness of lyotropic structure influenced by the chemical entity of the surfactant exerted major effect on the drug release.

  16. Mesophase and size manipulation of itraconazole liquid crystalline nanoparticles produced via quasi nanoemulsion precipitation.

    Science.gov (United States)

    Mugheirbi, Naila A; Tajber, Lidia

    2015-10-01

    The fabrication of drug nanoparticles (NPs) with process-mediated tunable properties and performances continues to grow rapidly during the last decades. This study investigates the synthesis and phase tuning of nanoparticulate itraconazole (ITR) mesophases using quasi nanoemulsion precipitation from acetone/water systems to seek out an alternative pathway to the nucleation-based NP formation. ITR liquid crystalline (LC) phases were formed and nematic-smectic mesomorphism was achieved via controlling solvent:antisolvent temperature difference (ΔTS:AS). The use of ΔTS:AS=49.5°C was associated with a nematic assembly, while intercalated smectic A layering was observed at ΔTS:AS=0°C, with both phases confined in the nanospheres at room temperature. The quasi emulsion system has not been investigated at the nanoscale to date and in contrary to the microscale, quasi nanoemulsion was observed over the solvent:antisolvent viscosity ratios of 1:7-1:1.4. Poly(acrylic acid) in the solvent phase exhibited a concentration dependent interaction when ITR formed NPs. This nanodroplet-based approach enabled the preparation of a stable ITR nanodispersion using Poloxamer 407 at 80°C, which was unachievable before using precipitation via nucleation. Findings of this work lay groundwork in terms of rationalised molecular assembly as a tool in designing pharmaceutical LC NPs with tailored properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide

    KAUST Repository

    Song, Zhibo

    2018-04-04

    Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.

  18. Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide

    Science.gov (United States)

    Song, Zhibo; Wang, Qixing; Li, Ming-Yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew

    2018-04-01

    Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48 ) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.

  19. Cross-Linked Liquid Crystalline Systems From Rigid Polymer Networks to Elastomers

    CERN Document Server

    Broer, Dirk

    2011-01-01

    With rapidly expanding interest in liquid crystalline polymers and elastomers among the liquid crystal community, researchers are currently exploring the wide range of possible application areas for these unique materials, including optical elements on displays, tunable lasers, strain gauges, micro-structures, and artificial muscles. Written by respected scientists from academia and industry around the world, who are not only active in the field but also well-known in more traditional areas of research, "Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers&qu

  20. Some problems of the statistical theory of polymeric lyotropic liquid crystals

    International Nuclear Information System (INIS)

    Grosberg, A.Yu.; Khokhlov, A.R.

    1980-06-01

    In this article we consider some topics of the statistical physics of liquid-crystalline phase in the solutions of stiff chain macromolecules. Among these topics are: the problem of the phase diagram for the liquid-crystalline transition in the solutions of completely stiff macromolecules (rigid rods); conditions of formation of the liquid-crystalline phase in the solutions of semiflexible macromolecules; possibility of the intramolecular liquid-crystalline ordering in semiflexible macromolecules; structure of intramolecular liquid crystals and dependence of the properties of the liquid-crystalline phase on the microstructure of the polymer chain. (author)

  1. Electrical transport in crystalline phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Woda, Michael

    2012-01-06

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge{sub 2}Sb{sub 2}Te{sub 5}. The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  2. Liquid crystalline phase as a probe for crystal engineering of lactose: carrier for pulmonary drug delivery.

    Science.gov (United States)

    Patil, Sharvil S; Mahadik, Kakasaheb R; Paradkar, Anant R

    2015-02-20

    The current work was undertaken to assess suitability of liquid crystalline phase for engineering of lactose crystals and their utility as a carrier in dry powder inhalation formulations. Saturated lactose solution was poured in molten glyceryl monooleate which subsequently transformed into gel. The gel microstructure was analyzed by PPL microscopy and SAXS. Lactose particles recovered from gels after 48 h were analyzed for polymorphism using techniques such as FTIR, XRD, DSC and TGA. Particle size, morphology and aerosolisation properties of prepared lactose were analyzed using Anderson cascade impactor. In situ seeding followed by growth of lactose crystals took place in gels with cubic microstructure as revealed by PPL microscopy and SAXS. Elongated (size ∼ 71 μm) lactose particles with smooth surface containing mixture of α and β-lactose was recovered from gel, however percentage of α-lactose was more as compared to β-lactose. The aerosolisation parameters such as RD, ED, %FPF and % recovery of lactose recovered from gel (LPL) were found to be comparable to Respitose® ML001. Thus LC phase (cubic) can be used for engineering of lactose crystals so as to obtain particles with smooth surface, high elongation ratio and further they can be used as carrier in DPI formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Liquid crystalline tactoids: ordered structure, defective coalescence and evolution in confined geometries

    Science.gov (United States)

    Wang, Pei-Xi; MacLachlan, Mark J.

    2017-12-01

    Tactoids are liquid crystalline microdroplets that spontaneously nucleate from isotropic dispersions, and transform into macroscopic anisotropic phases. These intermediate structures have been found in a range of molecular, polymeric and colloidal liquid crystals. Typically only studied by polarized optical microscopy, these ordered but easily deformable microdroplets are now emerging as interesting components for structural investigations and developing new materials. In this review, we highlight the structure, property and transformation of tactoids in different compositions, but especially cellulose nanocrystals. We have selected references that illustrate the diversity and most exciting developments in tactoid research, while capturing the historical development of this field. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  4. Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations

    Directory of Open Access Journals (Sweden)

    T. Koop

    2009-12-01

    Full Text Available Interactions with water are crucial for the properties, transformation and climate effects of atmospheric aerosols. Here we present a conceptual framework for the interaction of amorphous aerosol particles with water vapor, outlining characteristic features and differences in comparison to crystalline particles. We used a hygroscopicity tandem differential mobility analyzer (H-TDMA to characterize the hydration and dehydration of crystalline ammonium sulfate, amorphous oxalic acid and amorphous levoglucosan particles (diameter ~100 nm, relative humidity 5–95% at 298 K. The experimental data and accompanying Köhler model calculations provide new insights into particle microstructure, surface adsorption, bulk absorption, phase transitions and hygroscopic growth. The results of these and related investigations lead to the following conclusions:

    (1 Many organic substances, including carboxylic acids, carbohydrates and proteins, tend to form amorphous rather than crystalline phases upon drying of aqueous solution droplets. Depending on viscosity and microstructure, the amorphous phases can be classified as glasses, rubbers, gels or viscous liquids.

    (2 Amorphous organic substances tend to absorb water vapor and undergo gradual deliquescence and hygroscopic growth at lower relative humidity than their crystalline counterparts.

    (3 In the course of hydration and dehydration, certain organic substances can form rubber- or gel-like structures (supramolecular networks and undergo transitions between swollen and collapsed network structures.

    (4 Organic gels or (semi-solid amorphous shells (glassy, rubbery, ultra-viscous with low molecular diffusivity can kinetically limit the uptake and release of water and may influence the hygroscopic growth and activation of aerosol particles as cloud condensation nuclei (CCN and ice nuclei (IN. Moreover, (semi-solid amorphous phases may influence the uptake of gaseous photo

  5. Intestinal mucus and juice glycoproteins have a liquid crystalline structure

    International Nuclear Information System (INIS)

    Denisova, E.A.; Lazarev, P.I.; Vazina, A.A.; Zheleznaya, L.A.

    1985-01-01

    X-ray diffraction patterns have been obtained from the following components of canine gastrointestinal tract: (1) native small intestine mucus layer; (2) the precipitate of the flocks formed in the duodenal juice with decreasing pH; (3) concentrated solutions of glycoproteins isolated from the duodenal juice. The X-ray patterns consist of a large number of sharp reflections of spacings between about 100 and 4 A. Some reflections are common for all components studied. All the patterns are interpreted as arising from the glycoprotein molecules ordered into a liquid crystalline structure. (author)

  6. Novel lecithin-integrated liquid crystalline nanogels for enhanced cutaneous targeting of terconazole: development, in vitro and in vivo studies

    Science.gov (United States)

    Elnaggar, Yosra SR; Talaat, Sara M; Bahey-El-Din, Mohammed; Abdallah, Ossama Y

    2016-01-01

    Terconazole (Tr) is the first marketed, most active triazole for vaginal candidiasis. Owing to poor skin permeation and challenging physicochemical properties, Tr was not employed for the treatment of cutaneous candidiasis. This is the first study to investigate the relevance of novel lecithin-integrated liquid crystalline nano-organogels (LCGs) to improve physicochemical characteristics of Tr in order to enable its dermal application in skin candidiasis. Ternary phase diagram was constructed using lecithin/capryol 90/water to identify the region of liquid crystalline organogel. The selected organogel possessed promising physicochemical characteristics based on particle size, rheological behavior, pH, loading efficiency, and in vitro antifungal activity. Microstructure of the selected organogel was confirmed by polarized light microscopy and transmission electron microscopy. Ex vivo and in vivo skin permeation studies revealed a significant 4.7- and 2.7-fold increase in the permeability of Tr-loaded LCG when compared to conventional hydrogel. Moreover, acute irritation study indicated safety and compatibility of liquid crystalline organogel to the skin. The in vivo antifungal activity confirmed the superiority of LCG over the conventional hydrogel for the eradication of Candida infection. Overall, lecithin-based liquid crystalline organogel confirmed its potential as an interesting dermal nanocarrier for skin targeting purpose. PMID:27822033

  7. Novel lecithin-integrated liquid crystalline nanogels for enhanced cutaneous targeting of terconazole: development, in vitro and in vivo studies.

    Science.gov (United States)

    Elnaggar, Yosra Sr; Talaat, Sara M; Bahey-El-Din, Mohammed; Abdallah, Ossama Y

    Terconazole (Tr) is the first marketed, most active triazole for vaginal candidiasis. Owing to poor skin permeation and challenging physicochemical properties, Tr was not employed for the treatment of cutaneous candidiasis. This is the first study to investigate the relevance of novel lecithin-integrated liquid crystalline nano-organogels (LCGs) to improve physicochemical characteristics of Tr in order to enable its dermal application in skin candidiasis. Ternary phase diagram was constructed using lecithin/capryol 90/water to identify the region of liquid crystalline organogel. The selected organogel possessed promising physicochemical characteristics based on particle size, rheological behavior, pH, loading efficiency, and in vitro antifungal activity. Microstructure of the selected organogel was confirmed by polarized light microscopy and transmission electron microscopy. Ex vivo and in vivo skin permeation studies revealed a significant 4.7- and 2.7-fold increase in the permeability of Tr-loaded LCG when compared to conventional hydrogel. Moreover, acute irritation study indicated safety and compatibility of liquid crystalline organogel to the skin. The in vivo antifungal activity confirmed the superiority of LCG over the conventional hydrogel for the eradication of Candida infection. Overall, lecithin-based liquid crystalline organogel confirmed its potential as an interesting dermal nanocarrier for skin targeting purpose.

  8. Liquid crystal blue phases: stability, field effects and alignment

    OpenAIRE

    Gleeson, HF; Miller, RJ; Tian, L; Görtz, V; Goodby, JW

    2015-01-01

    The blue phases are fascinating structures in liquid crystals, fluids that exhibit cubic structures that have true crystalline order. The blue phases were discovered in the 1970s and were the subject of extensive research in the 1980s, when a deep understanding of many of their properties was established. The discovery that the blue phases could be stabilised to exist over wide temperature ranges meant that they became more than scientific curiosities and led to a recent resurgence in researc...

  9. Polarized Emission of Wholly Aromatic Bio-Based Copolyesters of a Liquid Crystalline Nature

    Directory of Open Access Journals (Sweden)

    Daisaku Kaneko

    2011-05-01

    Full Text Available A novel thermotropic liquid crystalline polymers poly{3-benzylidene amino-4-hydroxybenzoic acid (3,4-BAHBA-co-trans-4-hydroxycinnamic acid (4HCA: trans-coumaric acid} (Poly(3,4-BAHBA-co-4HCA, was synthesized by the thermal polycondensation of 4HCA and 3,4-BAHBA, which was synthesized by a reaction of 3-amino-4-hydroxybenzoic acid (3,4-AHBA with benzaldehyde. When the 4HCA compositions of Poly(3,4-BAHBA-co-4HCAs were above 55 mol%, the copolymers showed a nematic, liquid crystalline phase. Differential scanning calorimetry (DSC measurements of the copolymers showed a high glass transition temperature of more than 100 °C, sufficient for use in engineering plastics. Furthermore, the copolymers showed photoluminescence in an N-methylpyrrolidone (NMP solution under ultraviolet (UV light with a wavelength of 365 nm. Oriented film of Poly(3,4-BAHBA-co-4HCA with a 4HCA composition of 75 mol% emitted polarized light, which was confirmed by fluorescent spectroscopy equipped with parallel and crossed polarizers.

  10. Phase-field model of vapor-liquid-solid nanowire growth

    Science.gov (United States)

    Wang, Nan; Upmanyu, Moneesh; Karma, Alain

    2018-03-01

    We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth

  11. Probing the Texture of the Calamitic Liquid Crystalline Dimer of 4-(4-Pentenyloxybenzoic Acid

    Directory of Open Access Journals (Sweden)

    Maher A. Qaddoura

    2010-01-01

    Full Text Available The liquid crystalline dimer of 4-(4-pentenyloxybenzoic acid, a member of the n-alkoxybenzoic acid homologous series, was synthesized using potassium carbonate supported on alumina as catalyst. The acid dimer complex exhibited three mesophases; identified as nematic, smectic X1 and smectic X2. Phase transition temperatures and the corresponding enthalpies were recorded using differential scanning calorimetry upon both heating and cooling. The mesophases were identified by detailed texture observations by variable temperature polarized light microscopy. The nematic phase was distinguished by a fluid Schlieren texture and defect points (four and two brushes while the smectic phases were distinguished by rigid marble and mosaic textures, respectively.

  12. Crystalline Ceramic Waste Forms: Comparison Of Reference Process For Ceramic Waste Form Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K. S. [Savannah River National Laboratory; Marra, J. C. [Savannah River National Laboratory; Amoroso, J. [Savannah River National Laboratory; Tang, M. [Los Alamos National Laboratory

    2013-08-22

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be produced from a melting and crystallization process. The objective of this report is to explore the phase formation and microstructural differences between lab scale melt processing in varying gas environments with alternative densification processes such as Hot Pressing (HP) and Spark Plasma Sintering (SPS). The waste stream used as the basis for the development and testing is a simulant derived from a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. Melt processing as well as solid state sintering routes SPS and HP demonstrated the formation of the targeted phases; however differences in microstructure and elemental partitioning were observed. In SPS and HP samples, hollandite, pervoskite/pyrochlore, zirconolite, metallic alloy and TiO{sub 2} and Al{sub 2}O{sub 3} were observed distributed in a network of fine grains with small residual pores

  13. Thermotropic liquid crystalline polyesters derived from 2-chloro ...

    Indian Academy of Sciences (India)

    NAGESH MANURKAR

    2017-08-24

    Aug 24, 2017 ... extremely useful for various applications including fab- rication of numerous ... In another flask, sodium hydroxide (4.4 g, 0.11 mole) was dissolved in 50 ..... relationships of smectic liquid crystalline polyacrylates as revealed by ...

  14. Novel lecithin-integrated liquid crystalline nanogels for enhanced cutaneous targeting of terconazole: development, in vitro and in vivo studies

    Directory of Open Access Journals (Sweden)

    Elnaggar YSR

    2016-10-01

    Full Text Available Yosra SR Elnaggar,1,2 Sara M Talaat,1 Mohammed Bahey-El-Din,3 Ossama Y Abdallah1 1Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 2Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, 3Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt Abstract: Terconazole (Tr is the first marketed, most active triazole for vaginal candidiasis. Owing to poor skin permeation and challenging physicochemical properties, Tr was not employed for the treatment of cutaneous candidiasis. This is the first study to investigate the relevance of novel lecithin-integrated liquid crystalline nano-organogels (LCGs to improve physicochemical characteristics of Tr in order to enable its dermal application in skin candidiasis. Ternary phase diagram was constructed using lecithin/capryol 90/water to identify the region of liquid crystalline organogel. The selected organogel possessed promising physicochemical characteristics based on particle size, rheological behavior, pH, loading efficiency, and in vitro antifungal activity. Microstructure of the selected organogel was confirmed by polarized light microscopy and transmission electron microscopy. Ex vivo and in vivo skin permeation studies revealed a significant 4.7- and 2.7-fold increase in the permeability of Tr-loaded LCG when compared to conventional hydrogel. Moreover, acute irritation study indicated safety and compatibility of liquid crystalline organogel to the skin. The in vivo antifungal activity confirmed the superiority of LCG over the conventional hydrogel for the eradication of Candida infection. Overall, lecithin-based liquid crystalline organogel confirmed its potential as an interesting dermal nanocarrier for skin targeting purpose. Keywords: terconazole, liquid crystalline, organogel, skin targeting, skin mycosis

  15. Hydrogen Bond Induces Hierarchical Self-Assembly in Liquid-Crystalline Block Copolymers.

    Science.gov (United States)

    Huang, Shuai; Pang, Linlin; Chen, Yuxuan; Zhou, Liming; Fang, Shaoming; Yu, Haifeng

    2018-03-01

    Microphase-separated structures of block copolymers (BCs) with a size of sub-10 nm are usually obtained by hydrogen-bond-induced self-assembly of BCs through doping with small molecules as functional additives. Here, fabrication of hierarchically self-assembled sub-10 nm structures upon microphase separation of amphiphilic liquid-crystalline BCs (LCBCs) at the existence of hydrogen bonds but without any dopants is reported. The newly introduced urethane groups in the side chain of the hydrophobic block of LCBCs interact with the ether groups of the hydrophilic poly(ethylene oxide) (PEO) block, leading to imperfect crystallization of the PEO blocks. Both crystalline and amorphous domains coexist in the separated PEO phase, enabling a lamellar structure to appear inside the PEO nanocylinders. This provides an elegant method to fabricate controllable sub-10 nm microstructures in well-defined polymer systems without the introduction of any dopants. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Nonlinear optical properties of TeO$_2$ crystalline phases from first principles

    OpenAIRE

    Berkaine, Nabil; Orhan, Emmanuelle; Masson, Olivier; Thomas, Philippe; Junquera, Javier

    2010-01-01

    We have computed second and third nonlinear optical susceptibilities of two crystalline bulk tellurium oxide polymorphs: $\\alpha$-TeO$_{2}$ (the most stable crystalline bulk phase) and $\\gamma$-TeO$_{2}$ (the crystalline phase that ressembles the more to the glass phase. Third order nonlinear susceptibilities of the crystalline phases are two orders of magnitude larger than $\\alpha$-SiO$_{2}$ cristoballite, thus extending the experimental observations on glasses to the case of crystalline com...

  17. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.

    Science.gov (United States)

    Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2017-09-28

    Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.

  18. Macromolecular crowding-assisted fabrication of liquid-crystalline imprinted polymers.

    Science.gov (United States)

    Zhang, Chen; Zhang, Jing; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-04-01

    A macromolecular crowding-assisted liquid-crystalline molecularly imprinted monolith (LC-MIM) was prepared successfully for the first time. The imprinted stationary phase was synthesized with polymethyl methacrylate (PMMA) or polystyrene (PS) as the crowding agent, 4-cyanophenyl dicyclohexyl propylene (CPCE) as the liquid-crystal monomer, and hydroquinidine as the pseudo-template for the chiral separation of cinchona alkaloids in HPLC. A low level of cross-linker (26%) has been found to be sufficient to achieve molecular recognition on the crowding-assisted LC-MIM due to the physical cross-linking of mesogenic groups in place of chemical cross-linking, and baseline separation of quinidine and quinine could be achieved with good resolution (R(s) = 2.96), selectivity factor (α = 2.16), and column efficiency (N = 2650 plates/m). In contrast, the LC-MIM prepared without crowding agents displayed the smallest diastereoselectivity (α = 1.90), while the crowding-assisted MIM with high level of cross-linker (80%) obtained the greatest selectivity factor (α = 7.65), but the lowest column efficiency (N = 177 plates/m).

  19. Novel side-chain liquid crystalline polyester architecture for reversible optical storage

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Andruzzi, Fulvio; Kulinna, Chrisian

    1995-01-01

    New side-chain liquid crystalline polyesters have been prepared by melt transesterification of diphenyl tetradecanedioate and a series of mesogenic 2-[omega-[4-[(4-cyanophenyl)azo]phenoxyl] alkyl]-1,3-propanediols, where the alkyl spacer is hexa-, octa-, and decamethylene in turn. The polyesters...... have molecular masses in the range 5000-89 000. Solution C-13 NMR spectroscopy has been employed to identify carbons of polyester repeat units and of both types of end groups. Polyester phases and phase transitions have been investigated in detail by polarizing optical microscopy and differential...... scanning calorimetry for the hexamethylene spacer architecture with different molecular masses. Using FTIR polarization spectroscopy, the segmental orientation in unoriented polyester films induced by argon ion laser irradiation has been followed and an irradiation-dependent order parameter...

  20. LIQUID CRYSTALLINE BEHAVIOR OF HYDROXYPROPYL CELLULOSE ESTERIFIED WITH 4-ALKOXYBENZOIC ACID.

    Directory of Open Access Journals (Sweden)

    Yehia Fahmy

    2010-07-01

    Full Text Available A series of 4- alkyoxybenzoyloxypropyl cellulose (ABPC-n samples was synthesized via the esterification of hydroxypropyl cellulose (HPC with 4-alkoxybenzoic acid bearing different numbers of carbon atoms. The molecular structure of the ABPC-n was confirmed by Fourier transform infrared (FT-IR spectroscopy and 1H NMR spectroscopy. The liquid crystalline (LC phases and transitions behaviors were investigated using differential scanning calorimetry (DSC, polarized light microscopy (PLM, and refractometry. It was found that the glass transition (Tg and clearing (Tc temperatures decrease with increase of the alkoxy chain length. It was observed that the derivatives with an odd number of carbon atoms are non-mesomorphic. This series of ABPC-n polymers exhibit characteristic features of cholesteric LC phases between their glass transition and isotropization temperatures.

  1. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ingo Dierking

    2017-10-01

    Full Text Available Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii novel functionalities can be added to the liquid crystal; and (iii the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide.

  2. Liquid crystalline fiber optic colorimeter for hydrostatic pressure measurement

    Science.gov (United States)

    Wolinski, Tomasz R.; Bajdecki, Waldemar K.; Domanski, Andrzej W.; Karpierz, Miroslaw A.; Konopka, Witold; Nasilowski, T.; Sierakowski, Marek W.; Swillo, Marcin; Dabrowski, Roman S.; Nowinowski-Kruszelnicki, Edward; Wasowski, Janusz

    2001-08-01

    This paper presents results of tests performed on a fiber optic system of liquid crystalline transducer for hydrostatic pressure monitoring based on properties of colorimetry. The system employs pressure-induced deformations occurring in liquid crystalline (LC) cells configured in a homogeneous Frederiks geometry. The sensor is compared of a round LC cell placed inside a specially designed pressure chamber. As a light source we used a typical diode operating at red wavelength and modulated using standard techniques. The pressure transducer was connected to a computer with a specially designed interface built on the bas of advanced ADAM modules. Results indicate that the system offers high response to pressure with reduced temperature sensitivity and, depending on the LC cell used, can be adjusted for monitoring of low hydrostatic pressures up to 6 MPa. These studies have demonstrated the feasibility of fiber optic liquid crystal colorimeter for hydrostatic pressure sensing specially dedicated to pipe- lines, mining instrumentation, and process-control technologies.

  3. Rotational reorganization of doped cholesteric liquid crystalline films

    NARCIS (Netherlands)

    Eelkema, R.; M. Pollard, M.; Katsonis, N.; Vicario, J.; J. Broer, D.; Feringa, B.L.

    2006-01-01

    In this paper an unprecedented rotational reorganization of cholesteric liquid crystalline films is described. This rotational reorganization results from the conversion of a chiral molecular motor dopant to an isomer with a different helical twisting power, leading to a change in the cholesteric

  4. Optical modulation in nematic phase of halogen substituted hydrogen bonded liquid crystals

    Science.gov (United States)

    Vijayakumar, V. N.; Madhu Mohan, M. L. N.

    2012-01-01

    A series of halogen-substituted hydrogen-bonded liquid crystalline complexes have been designed and synthesised. A successful attempt has been made to form complementary hydrogen bonding between the dodecyloxy benzoic acid (12BAO) and halogen-substituted benzoic acids and the physical properties exhibited by the individual complexes are studied. The complexes obtained are analysed by polarising optical microscope (POM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and dielectric studies. The formation of complementary hydrogen bond is confirmed through FTIR spectra. An interesting feature of this series is the observation of a field-induced transition (FiT) in nematic phase. Another interesting phenomenon is the observation of a new smectic X phase (worm-like texture) in all the synthesised complexes. Dielectric relaxation studies in the smectic C phase of these hydrogen bonded complexes along with the Arrhenius and the Cole-Cole plots are discussed. Optical tilt angle in smectic C phase and the corresponding fitted data analysis concur with the Mean field theory prediction.

  5. Temperature-Responsive Luminescent Solar Concentrators: Tuning Energy Transfer in a Liquid Crystalline Matrix.

    Science.gov (United States)

    Sol, Jeroen A H P; Dehm, Volker; Hecht, Reinhard; Würthner, Frank; Schenning, Albertus P H J; Debije, Michael G

    2018-01-22

    Temperature-responsive luminescent solar concentrators (LSCs) have been fabricated in which the Förster resonance energy transfer (FRET) between a donor-acceptor pair in a liquid crystalline solvent can be tuned. At room temperatures, the perylene bisimide (PBI) acceptor is aggregated and FRET is inactive; while after heating to a temperature above the isotropic phase of the liquid crystal solvent, the acceptor PBI completely dissolves and FRET is activated. This unusual temperature control over FRET was used to design a color-tunable LSC. The device has been shown to be highly stable towards consecutive heating and cooling cycles, making it an appealing device for harvesting otherwise unused solar energy. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Dissolution of crystalline ceramics

    International Nuclear Information System (INIS)

    White, W.B.

    1982-01-01

    The present program objectives are to lay out the fundamentals of crystalline waste form dissolution. Nuclear waste ceramics are polycrystalline. An assumption of the work is that to the first order, the release rate of a particular radionuclide is the surface-weighted sum of the release rates of the radionuclide from each crystalline form that contains it. In the second order, of course, there will be synergistic effects. There will be also grain boundary and other microstructural influences. As a first approximation, we have selected crystalline phases one at a time. The sequence of investigations and measurements is: (i) Identification of the actual chemical reactions of dissolution including identification of the solid reaction products if such occur. (ii) The rates of these reactions are then determined empirically to give what may be called macroscopic kinetics. (iii) Determination of the rate-controlling mechanisms. (iv) If the rate is controlled by surface reactions, the final step would be to determine the atomic kinetics, that is the specific atomic reactions that occur at the dissolving interface. Our concern with the crystalline forms are in two areas: The crystalline components of the reference ceramic waste form and related ceramics and the alumino-silicate phases that appear in some experimental waste forms and as waste-rock interaction products. Specific compounds are: (1) Reference Ceramic Phases (zirconolite, magnetoplumbite, spinel, Tc-bearing spinel and perovskite); (2) Aluminosilicate phases (nepheline, pollucite, CsAlSi 5 O 12 , Sr-feldspar). 5 figures, 1 table

  7. Laser-induced microscopic phase-transition on an ionic liquid

    International Nuclear Information System (INIS)

    Iguchi, Natsuki; Datta, Alokmay; Yoshikawa, Kenichi; Ma Yue

    2009-01-01

    Nematic-isotropic transition is induced in a 5 μm 'droplet' within an oriented bulk of a mixture of a liquid crystalline material with a room-temperature ionic liquid, by a laser working at 532 nm with an output power of 200 mW and a beam diameter of 1 μm. No microscopic phase transition is observed either in absence of the ionic liquid or at the other wavelength of 1064 nm, available to the Nd-YAG laser. This indicates the essential role on a resonant transfer of energy to the ionic liquid from the laser radiation, which is subsequently transferred to the liquid crystal. Spectroscopy of the pure liquid crystal and ionic liquid samples confirms this concept. Spatio-temporal image of the droplet growth shows, however, that the phase transition remains confined within the microscopic domain for the first 50 s, and then spreads out rapidly. Since resonant, quantum transitions between molecular levels takes place in less than microseconds, the about seven orders of magnitude slowing down of energy transfer observed here suggests unique hierarchical dynamics including the coupling between the intra-molecular motions in the ionic liquid and the inter-molecular forces between ionic liquid and liquid crystal.

  8. Bicontinuous liquid crystals

    CERN Document Server

    Lynch, Mathew L

    2005-01-01

    PrefaceIntroduction AcknowledgmentsBicontinuous Cubic Liquid Crystalline Materials: A Historical Perspective and Modern Assessment; Kr̄e LarssonIntermediate Phases; Michael C. Holmes and Marc S. LeaverCubic Phases and Human Skin: Theory and Practice; Steven Hoath and Lars NorlňThe Relationship between Bicontinuous Inverted Cubic Phases and Membrane Fusion; D.P. SiegelAspects of the Differential Geometry and Topology of Bicontinuous Liquid-Crystalline Phases; Robert W. CorkeryNovel L3 Phases and Their Macroscopic Properties; R. Beck and H. HoffmannBicontinuous Cubic Phases of Lipids with Entra

  9. Gibbs free-energy difference between the glass and crystalline phases of a Ni-Zr alloy

    Science.gov (United States)

    Ohsaka, K.; Trinh, E. H.; Holzer, J. C.; Johnson, W. L.

    1993-01-01

    The heats of eutectic melting and devitrification, and the specific heats of the crystalline, glass, and liquid phases have been measured for a Ni24Zr76 alloy. The data are used to calculate the Gibbs free-energy difference, Delta G(AC), between the real glass and the crystal on an assumption that the liquid-glass transition is second order. The result shows that Delta G(AC) continuously increases as the temperature decreases in contrast to the ideal glass case where Delta G(AC) is assumed to be independent of temperature.

  10. Self-assembly of azobenzene based side-chain liquid crystalline ...

    Indian Academy of Sciences (India)

    The polymeric complexes acquitted as undivided liquid crystalline properties ... India) methanol and other solvents were purified by .... mixture was warmed to room temperature and stirred ... Polymer is soluble in DMF, CHCl3, CH2Cl2 and.

  11. Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD.

    Science.gov (United States)

    Zhang, Jiafu; Wang, Yixun; Zhang, Liye; Zhang, Ruihong; Liu, Guangqing; Cheng, Gang

    2014-01-01

    X-ray diffraction (XRD) was used to understand the interactions of cellulose in lignocellulosic biomass with ionic liquids (ILs). The experiment was designed in such a way that the process of swelling and solubilization of crystalline cellulose in plant cell walls was followed by XRD. Three different feedstocks, switchgrass, corn stover and rice husk, were pretreated using 1-butyl-3-methylimidazolium acetate ([C4mim][OAc]) at temperatures of 50-130°C for 6h. At a 5 wt.% biomass loading, increasing pretreatment temperature led to a drop in biomass crystallinity index (CrI), which was due to swelling of crystalline cellulose. After most of the crystalline cellulose was swollen with IL molecules, a low-order structure was found in the pretreated samples. Upon further increasing temperature, cellulose II structure started to form in the pretreated biomass samples as a result of solubilization of cellulose in [C4mim][OAc] and subsequent regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility

    Directory of Open Access Journals (Sweden)

    Himmel Michael E

    2011-10-01

    Full Text Available Abstract Background In converting biomass to bioethanol, pretreatment is a key step intended to render cellulose more amenable and accessible to cellulase enzymes and thus increase glucose yields. In this study, four cellulose samples with different degrees of polymerization and crystallinity indexes were subjected to aqueous sodium hydroxide and anhydrous liquid ammonia treatments. The effects of the treatments on cellulose crystalline structure were studied, in addition to the effects on the digestibility of the celluloses by a cellulase complex. Results From X-ray diffractograms and nuclear magnetic resonance spectra, it was revealed that treatment with liquid ammonia produced the cellulose IIII allomorph; however, crystallinity depended on treatment conditions. Treatment at a low temperature (25°C resulted in a less crystalline product, whereas treatment at elevated temperatures (130°C or 140°C gave a more crystalline product. Treatment of cellulose I with aqueous sodium hydroxide (16.5 percent by weight resulted in formation of cellulose II, but also produced a much less crystalline cellulose. The relative digestibilities of the different cellulose allomorphs were tested by exposing the treated and untreated cellulose samples to a commercial enzyme mixture (Genencor-Danisco; GC 220. The digestibility results showed that the starting cellulose I samples were the least digestible (except for corn stover cellulose, which had a high amorphous content. Treatment with sodium hydroxide produced the most digestible cellulose, followed by treatment with liquid ammonia at a low temperature. Factor analysis indicated that initial rates of digestion (up to 24 hours were most strongly correlated with amorphous content. Correlation of allomorph type with digestibility was weak, but was strongest with cellulose conversion at later times. The cellulose IIII samples produced at higher temperatures had comparable crystallinities to the initial cellulose I

  13. Phase formation in contact of dissimilar metals

    Energy Technology Data Exchange (ETDEWEB)

    Savvin, V S; Kazachkova, Yu A; Povzner, A A [Ural State Technical University-UPI, Mira st., 19, A-203, Yekaterinburg 620002 (Russian Federation)], E-mail: savvin-vs@yandex.ru

    2008-02-15

    Formation and growth of intermediate phases in contact of the crystalline samples forming a two-component eutectic system is considered. It is shown that during the competition to a growing liquid phase the intermediate solid phases cannot grow by diffusion. The alternative is formation of metastable areas of a liquid phase. Measurements of liquid layers extent in Pb-Bi and In-Bi systems have allowed to define the composition of liquid on interface where formation of metastable liquid is possible. The results show that the concentration interval of a liquid layer corresponds to a stable constitution diagram. In order to explain the experimental results the hypothesis according to which the intermediate solid phases are formed as a result of precipitation from metastable melt is considered. The experimental confirmation of formation and crystallization of a metastable liquid is the fact that intergrowth of the samples forming system with an intermetallic phase at temperatures below the temperature of fusion of the most low-melting eutectic is observed. The possibility of the processes concerned with the occurrence of metastable areas of a liquid is showed by means of computer imitation.

  14. Liquid crystalline thermosetting polymers as protective coatings for aerospace

    NARCIS (Netherlands)

    Guerriero, G.L.

    2012-01-01

    Environmental regulations are driving the development of new aerospace coating systems, mainly to eliminate chromates and reduce volatile organic compound (VOC) emissions. Among the various potential options for new coating materials, liquid crystalline polymers (LCPs) are attractive due to their

  15. Polymer-induced liquid precursor (PILP) phases of calcium carbonate formed in the presence of synthetic acidic polypeptides - relevance to biomineralization

    NARCIS (Netherlands)

    Schenk, A.S.; Zope, H.; Kim, Y.; Kros, A.; Sommerdijk, N.A.J.M.; Meldrum, F.C.

    2012-01-01

    Polymer-induced liquid precursor (PILP) phases of calcium carbonate have attracted significant interest due to possible applications in materials synthesis, and their resemblance to intermediates seen in biogenic mineralisation processes. Further, these PILP phases have been formed in vitro using

  16. Liquid phase sintered superconducting cermet

    International Nuclear Information System (INIS)

    Ray, S.P.

    1990-01-01

    This patent describes a method of making a superconducting cermet having superconducting properties with improved bulk density, low porosity and in situ stabilization. It comprises: forming a structure of a superconducting ceramic material having the formula RM 2 Cu 3 O (6.5 + x) wherein R is one or more rare earth elements capable of reacting to form a superconducting ceramic, M is one or more alkaline earth metal elements selected from barium and strontium capable of reacting to form a superconducting ceramic, x is greater than 0 and less than 0.5; and a precious metal compound in solid form selected from the class consisting of oxides, sulfides and halides of silver; and liquid phase sintering the mixture at a temperature wherein the precious metal of the precious metal compound is molten and below the melting point of the ceramic material. The liquid phase sintering is carried out for a time less than 36 hours but sufficient to improve the bulk density of the cermet

  17. The Chemistry, Crystallization, Physicochemical Properties and Behavior of Sodium Aluminosilicate Solid Phases: Final Report

    International Nuclear Information System (INIS)

    Rosencrance, S.

    2003-01-01

    The synthesis of sodium aluminosilicate solids phases precipitated from NO 2 /NO 3 -free and NO 2 /NO 3 -rich liquors has been performed. Four sodium aluminosilicate precipitation products were formed. These are (1) X-ray/electron diffraction-indifferent amorphous phase; (2) crystalline zeolite A; (3)NO 2 /NO 3 -rich crystalline sodalite; and (4) NO 2 /NO 3 -rich crystalline cancrinite phase. Characterization of the physicochemical properties for these phases has been performed under conditions simulating Westinghouse Savannah River Company liquid waste processing

  18. Synthesis of Programmable Main-chain Liquid-crystalline Elastomers Using a Two-stage Thiol-acrylate Reaction

    OpenAIRE

    Saed, Mohand O.; Torbati, Amir H.; Nair, Devatha P.; Yakacki, Christopher M.

    2016-01-01

    This study presents a novel two-stage thiol-acrylate Michael addition-photopolymerization (TAMAP) reaction to prepare main-chain liquid-crystalline elastomers (LCEs) with facile control over network structure and programming of an aligned monodomain. Tailored LCE networks were synthesized using routine mixing of commercially available starting materials and pouring monomer solutions into molds to cure. An initial polydomain LCE network is formed via a self-limiting thiol-acrylate Michael-addi...

  19. New theories for smectic and nematic liquid-crystal polymers: Backbone LCPs [liquid crystalline polymers] and their mixtures and side-chain LCPs

    International Nuclear Information System (INIS)

    Dowell, F.

    1987-01-01

    A summary of predictions and explanations from statistical-physics theories for both backbone and side-chain liquid crystalline polymers (LCPs) and for mixtures with backbone LCPs are presented. Trends in the thermodynamic and molecular ordering properties have been calculated as a function of pressure, density, temperature, and molecule chemical structures (including degree of polymerization and the following properties of the chemical structures of the repeat units: lengths and shapes, intra-chain rotation energies, dipole moments, site-site polarizabilities and Lennard-Jones potentials, etc.) in nematic and multiple smectic-A LC phases and in the isotropic liquid phase. The theoretical results are found to be in good agreement with existing experimental data. These theories can also be applied to combined LCPs. Since these theories have no ad hoc or arbitrarily adjustable parameters, these theories can be used to design new LCPs and new solvents as well as to predict and explain properties. 27 refs., 4 tabs

  20. Mesomorphous versus traces of crystallinity: The itraconazole example

    Energy Technology Data Exchange (ETDEWEB)

    Atassi, Faraj, E-mail: fatassi@yahoo.com; Behme, Robert J.; Patel, Phenil J.

    2013-12-20

    Highlights: • Characterizing partially disordered pharmaceuticals is very challenging due to the fact that more than one discrete disordered phase can be present. • Dynamic mechanical analysis and dielectric analysis are extremely helpful in characterizing pharmaceutical mesophases (liquid crystals). • Thermotropic pharmaceutical mesophases, often mistaken as amorphous or partially crystalline, can show different phases of liquid crystallinity at different temperature. • Liquid crystalline pharmaceutical materials often show amorphous behavior along with other characteristics specific to mesomorphous materials. • The thermal and mechanical history of pharmaceutical disordered samples has a significant effect on their phase composition. - Abstract: Characterizing disordered pharmaceutical materials can be challenging, especially materials with partially disordered structures that lose one or two directional order (mesophases) and do not fit the traditional characterization categories of amorphous, crystalline or a combination of the two. Itraconazole, an antifungal agent, was chosen as a model compound that, when quench cooled, exhibits atypical disordered structure. Five different analytical tools were used to map out the molecular structure of this material and how it changes with changing temperature. X-ray diffraction showed some remnant crystallinity while dielectric analysis, dynamic mechanical analysis, DSC and hot stage microscopy gave more detailed molecular structure of the disordered material and explained all temperature related structural changes. The characterization of mesomorphous Itraconazole described here will help characterize a wide range of pharmaceuticals that exhibit thermotropic (temperature induced) mesomorphism at the molecular level.

  1. Mesomorphous versus traces of crystallinity: The itraconazole example

    International Nuclear Information System (INIS)

    Atassi, Faraj; Behme, Robert J.; Patel, Phenil J.

    2013-01-01

    Highlights: • Characterizing partially disordered pharmaceuticals is very challenging due to the fact that more than one discrete disordered phase can be present. • Dynamic mechanical analysis and dielectric analysis are extremely helpful in characterizing pharmaceutical mesophases (liquid crystals). • Thermotropic pharmaceutical mesophases, often mistaken as amorphous or partially crystalline, can show different phases of liquid crystallinity at different temperature. • Liquid crystalline pharmaceutical materials often show amorphous behavior along with other characteristics specific to mesomorphous materials. • The thermal and mechanical history of pharmaceutical disordered samples has a significant effect on their phase composition. - Abstract: Characterizing disordered pharmaceutical materials can be challenging, especially materials with partially disordered structures that lose one or two directional order (mesophases) and do not fit the traditional characterization categories of amorphous, crystalline or a combination of the two. Itraconazole, an antifungal agent, was chosen as a model compound that, when quench cooled, exhibits atypical disordered structure. Five different analytical tools were used to map out the molecular structure of this material and how it changes with changing temperature. X-ray diffraction showed some remnant crystallinity while dielectric analysis, dynamic mechanical analysis, DSC and hot stage microscopy gave more detailed molecular structure of the disordered material and explained all temperature related structural changes. The characterization of mesomorphous Itraconazole described here will help characterize a wide range of pharmaceuticals that exhibit thermotropic (temperature induced) mesomorphism at the molecular level

  2. Moessbauer and EXAFS studies of amorphous iron produced by thermal decomposition of carbonyl iron in liquid phase

    International Nuclear Information System (INIS)

    Nomura, Kiyoshi; Tanaka, Junichi; Ujihira, Yusuke; Takahashi, Tamotu; Uchida, Yasuzo

    1990-01-01

    Decomposition of iron carbonyl Fe(CO) 5 and Fe 2 (CO) 9 in liquid phase gave amorphous and crystalline iron powders in the absence and presence of catalyst, respectively. The hyperfine fields were large in amorphous phases prepared from Fe(CO) 5 than from Fe 2 (CO) 9 . Crystalline iron, iron carbide and a trace amount of Fe 3 O 4 were detected in the decomposition products of the amorphous phase prepared from Fe(CO) 5 , and iron carbide was mainly included in the decomposition products of the amorphous phase prepared from Fe 2 (CO) 9 . (orig.)

  3. Formulation and development of bicontinuous nanostructured liquid crystalline particles of efavirenz.

    Science.gov (United States)

    Avachat, Amelia M; Parpani, Shreekrishna S

    2015-02-01

    Efavirenz is a lipophilic non-nucleoside reverse transcriptase inhibitor used in the first-line pediatric therapeutic cocktail. Due to its high lipophilicity (logP = 5.4) and poor aqueous solubility (intrinsic water solubility = 8.3 μg/mL) efavirenz has low bioavailability. A 30 mg/mL solution in a medium-chain triglyceride vehicle is the only pediatric formulation available with an oral bioavailability 20% lower than the solid form. The current work was aimed at formulating and characterizing liquid crystal nanoparticles for oral delivery of efavirenz to improve oral bioavailability, provide sustained release, minimize side effects and drug resistance. Formulation of cubosomes was done by two methods; sonication and spray drying. Sonication gave highest entrapment efficiency and least particle size. Further, monoolein was substituted with phytantriol as monoolein gets degraded in the presence of lipase when administered orally with consequent loss of liquid crystalline structure. It was confirmed that there was no difference in particle size, entrapment efficiency and nature of product formed by using monoolein or phytantriol. The best formulation was found to be F9, having particle size 104.19 ± 0.21 nm and entrapment efficiency 91.40 ± 0.10%. In vitro release at the end of 12h was found to be 56.45% and zeta potential to be -23.14 mV which stabilized the cubic phase dispersions. It was further characterized for TEM, small angle X-ray scattering (SAXS), DSC and stability studies. SAXS revealed Pn3m space group, indicating a diamond cubic phase which was further confirmed by TEM. Pharmacokinetics of EFV was studied in male Wistar rats. EFV-loaded cubosome dispersions exhibited 1.93 and 1.62-fold increase in peak plasma concentration (Cmax) and 1.48 and 1.42-fold increase in AUC in comparison to that of a suspension prepared with the contents of EFV capsules suspended in 1.5% carboxymethylcellulose PBS solution (pH 5.0), and an EFV solution in medium

  4. Higher-order-structure formation in liquid crystal epoxy thermosets investigated by synchrotron radiation-wide-angle X-ray diffraction

    International Nuclear Information System (INIS)

    Maeda, Rina; Okuhara, Kenta; Nakamura, Akihiro; Hayakawa, Teruaki; Uehara, Yasushi; Motoya, Tsukasa; Nobutoki, Hideharu

    2016-01-01

    We report the investigation of the mesophase transformations of a liquid crystalline molecule with terminal epoxy groups from the initial stages of curing with a diamine compound. The ordered arrangement of molecules within the smectic layers in the thermoset formed at the end of the curing process was characterized by synchrotron radiation-wide-angle X-ray diffraction (SR-WAXD). Data from this experiment helps us understand the phase transitions from the nematic to smectic phases of curing liquid crystalline epoxies. (author)

  5. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers

    KAUST Repository

    Oh, Jae Eun

    2010-02-01

    The increase in strength and evolution of crystalline phases in inorganic polymer cement, made by the alkali activation of slag, Class C and Class F fly ashes, was followed using compressive strength test and synchrotron X-ray diffraction. In order to increase the crystallinity of the product the reactions were carried out at 80 °C. We found that hydrotalcite formed in both the alkali-activated slag cements and the fly ash-based geopolymers. Hydroxycancrinite, one member of the ABC-6 family of zeolites, was found only in the fly ash geopolymers. Assuming that the predominantly amorphous geopolymer formed under ambient conditions relates to the crystalline phases found when the mixture is cured at high temperature, we propose that the structure of this zeolitic precursor formed in Na-based high alkaline environment can be regarded as a disordered form of the basic building unit of the ABC-6 group of zeolites which includes poly-types such as hydroxycancrinite, hydroxysodalite and chabazite-Na. © 2009 Elsevier Ltd.

  6. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers

    International Nuclear Information System (INIS)

    Oh, Jae Eun; Monteiro, Paulo J.M.; Jun, Ssang Sun; Choi, Sejin; Clark, Simon M.

    2010-01-01

    The increase in strength and evolution of crystalline phases in inorganic polymer cement, made by the alkali activation of slag, Class C and Class F fly ashes, was followed using compressive strength test and synchrotron X-ray diffraction. In order to increase the crystallinity of the product the reactions were carried out at 80 deg. C. We found that hydrotalcite formed in both the alkali-activated slag cements and the fly ash-based geopolymers. Hydroxycancrinite, one member of the ABC-6 family of zeolites, was found only in the fly ash geopolymers. Assuming that the predominantly amorphous geopolymer formed under ambient conditions relates to the crystalline phases found when the mixture is cured at high temperature, we propose that the structure of this zeolitic precursor formed in Na-based high alkaline environment can be regarded as a disordered form of the basic building unit of the ABC-6 group of zeolites which includes poly-types such as hydroxycancrinite, hydroxysodalite and chabazite-Na.

  7. Bicontinuous cubic liquid crystalline nanoparticles for oral delivery of Doxorubicin

    DEFF Research Database (Denmark)

    Swarnakar, Nitin K; Thanki, Kaushik; Jain, Sanyog

    2014-01-01

    PURPOSE: The present study explores the potential of bicontinous cubic liquid crystalline nanoparticles (LCNPs) for improving therapeutic potential of doxorubicin. METHODS: Phytantriol based Dox-LCNPs were prepared using hydrotrope method, optimized for various formulation components, process...

  8. The influence of intraannular templates on the liquid crystallinity of shape-persistent macrocycles

    Directory of Open Access Journals (Sweden)

    Joscha Vollmeyer

    2014-04-01

    Full Text Available A series of shape-persistent phenylene–ethynylene–naphthylene–butadiynylene macrocycles with different extraannular alkyl groups and intraannular bridges is synthesized by oxidative Glaser-coupling of the appropriate precursors. The intraannular bridges serve in this case as templates that reduce the oligomerization even when the reaction is not performed under pseudo high-dilution conditions. The extraannular as well as the intraannular substituents have a strong influence on the thermal behavior of the compounds. With branched alkyl chains at the periphery, the macrocycles exhibit liquid crystalline (lc phases when the interior is empty or when the length of the alkyl bridge is just right to cross the ring. With a longer alkyl or an oligoethylene oxide bridge no lc phase is observed, most probably because the mesogene is no longer planar.

  9. Crystalline phases by an improved gradient expansion technique

    Science.gov (United States)

    Carignano, S.; Mannarelli, M.; Anzuini, F.; Benhar, O.

    2018-02-01

    We develop an innovative technique for studying inhomogeneous phases with a spontaneous broken symmetry. The method relies on the knowledge of the exact form of the free energy in the homogeneous phase and on a specific gradient expansion of the order parameter. We apply this method to quark matter at vanishing temperature and large chemical potential, which is expected to be relevant for astrophysical considerations. The method is remarkably reliable and fast as compared to performing the full numerical diagonalization of the quark Hamiltonian in momentum space and is designed to improve the standard Ginzburg-Landau expansion close to the phase transition points. For definiteness, we focus on inhomogeneous chiral symmetry breaking, accurately reproducing known results for one-dimensional and two-dimensional modulations and examining novel crystalline structures, as well. Consistently with previous results, we find that the energetically favored modulation is the so-called one-dimensional real-kink crystal. We propose a qualitative description of the pairing mechanism to motivate this result.

  10. Improved modeling of two-dimensional transitions in dense phases on crystalline surfaces. Krypton-graphite system.

    Science.gov (United States)

    Ustinov, E A

    2015-02-21

    This paper presents a refined technique to describe two-dimensional phase transitions in dense fluids adsorbed on a crystalline surface. Prediction of parameters of 2D liquid-solid equilibrium is known to be an extremely challenging problem, which is mainly due to a small difference in thermodynamic functions of coexisting phases and lack of accuracy of numerical experiments in case of their high density. This is a serious limitation of various attempts to circumvent this problem. To improve this situation, a new methodology based on the kinetic Monte Carlo method was applied. The methodology involves analysis of equilibrium gas-liquid and gas-solid systems undergoing an external potential, which allows gradual shifting parameters of the phase coexistence. The interrelation of the chemical potential and tangential pressure for each system is then treated with the Gibbs-Duhem equation to obtain the point of intersection corresponding to the liquid/solid-solid equilibrium coexistence. The methodology is demonstrated on the krypton-graphite system below and above the 2D critical temperature. Using experimental data on the liquid-solid and the commensurate-incommensurate transitions in the krypton monolayer derived from adsorption isotherms, the Kr-graphite Lennard-Jones parameters have been corrected resulting in a higher periodic potential modulation.

  11. Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Preidel, V., E-mail: veit.preidel@helmholtz-berlin.de; Amkreutz, D.; Haschke, J.; Wollgarten, M.; Rech, B.; Becker, C. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Division Renewable Energy, Kekuléstr. 5, 12489 Berlin (Germany)

    2015-06-14

    Liquid phase crystallized Si thin-film solar cells on nanoimprint textured glass substrates exhibiting two characteristic, but distinct different surface structures are presented. The impact of the substrate texture on light absorption, the structural Si material properties, and the resulting solar cell performance is analyzed. A pronounced periodic substrate texture with a vertical feature size of about 1 μm enables excellent light scattering and light trapping. However, it also gives rise to an enhanced Si crystal defect formation deteriorating the solar cell performance. In contrast, a random pattern with a low surface roughness of 45 nm allows for the growth of Si thin films being comparable to Si layers on planar reference substrates. Amorphous Si/crystalline Si heterojunction solar cells fabricated on the low-roughness texture exhibit a maximum open circuit voltage of 616 mV and internal quantum efficiency peak values exceeding 90%, resulting in an efficiency potential of 13.2%. This demonstrates that high quality crystalline Si thin films can be realized on nanoimprint patterned glass substrates by liquid phase crystallization inspiring the implementation of tailor-made nanophotonic light harvesting concepts into future liquid phase crystallized Si thin film solar cells on glass.

  12. Evaluation of Microemulsion and Lamellar Liquid Crystalline Systems for Transdermal Zidovudine Delivery.

    Science.gov (United States)

    Carvalho, André Luis Menezes; Silva, José Alexsandro da; Lira, Ana Amélia Moreira; Conceição, Tamara Matos Freire; Nunes, Rogéria de Souza; de Albuquerque Junior, Ricardo Luiz Cavalcanti; Sarmento, Victor Hugo Vitorino; Leal, Leila Bastos; de Santana, Davi Pereira

    2016-07-01

    This study proposed to investigate and to compare colloidal carrier systems containing Zidovudine (3'-azido-3'-deoxythymidine) (AZT) for transdermal administration and optimization of antiretroviral therapy. Microemulsion (ME) and lamellar phase (LP) liquid crystal were obtained and selected from pseudoternary diagrams previously developed. Small-angle X-ray scattering and rheology analysis confirmed the presence of typical ME and liquid crystalline structures with lamellar arrangement, respectively. Both colloidal carrier systems, ME, and LP remained stable, homogeneous, and isotropic after AZT addition. In vitro permeation study (using pig ear skin) showed that the amount of permeated drug was higher for ME compared to the control and LP, obtaining a permeation enhancing effect on the order of approximately 2-fold (p drug permeation without causing apparent skin irritation. On the order hand, LP functioned as a drug reservoir reducing AZT partitioning into the skin. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Phase relations in crystalline ceramic nuclear waste forms the system UO/sub 2 + x/-CeO2-ZrO2-ThO2 at 12000C in air

    International Nuclear Information System (INIS)

    Pepin, J.G.; McCarthy, G.J.

    1981-01-01

    Steady-state phase relations in the system UO/sub 2 + x/-CeO 2 -ZrO 2 -ThO 2 were determined for application to phase relations in the high-level crystalline ceramic nuclear waste form Supercalcine-Ceramics. Samples were treated at 1200 0 C at an oxygen partial pressure of 0.21 atm and a total pressure of 1 atm. Phase assemblages were found to be composed of cubic solid solutions of the flourite structure type, solid solutions based on ZrO 2 , and orthorhombic solid solutions based on U 3 O 8

  14. Electro-optics of novel polymer-liquid crystalline composites

    International Nuclear Information System (INIS)

    Ibragimov, T.D.; Bayramov, G.M.; Imamaliyev, A.R.; Bayramov, G.M.

    2014-01-01

    The polymer network liquid crystals based on the liquid crystals H37 and 5CB with PMVP and PEG have been developed. Mesogene substance HOBA is served for stabilization of obtaining composites. Kinetics of network formation is investigated by methods of polarization microscopy and integrated small-angle scattering. It is shown that gel-like states of the composite H-37+PMVP+HOBA and 5CB+PEG+HOBA are formed at polymer concentration above 7 percent and 9 percent, correspondingly. The basic electro-optic parameters of the obtained composites are determined at room temperature. Experimental results are explained by phase separation of the system, diminution of a working area of electro-optical effects and influence of areas with high polymer concentration on areas with their low concentration

  15. Phase separation and structure formation in gadolinium based liquid and glassy metallic alloys

    International Nuclear Information System (INIS)

    Han, Junhee

    2014-01-01

    In this PhD research the liquid-liquid phase separation phenomena in Gd-based alloys was investigated in terms of phase equilibria, microstructure formation upon quenching the melt and corresponding magnetic properties of phase-separated metallic glasses. The phase diagrams of the binary subsystems Gd-Zr and Gd-Ti were experimentally reassessed. Especially the phase equilibria with the liquid phase could be determined directly by combining in situ high energy synchrotron X-ray diffraction with electrostatic levitation of the melt. The Gd-Zr system is of eutectic type with a metastable miscibility gap. The eutectic composition at 18 ± 2 at.% Zr, the liquidus line and the coexistence of bcc-Zr and bcc-Gd at elevated temperature could be determined. The Gd-Ti system is a monotectic system. The experimental observations in this work led to improved new Gd-Zr and Gd-Ti phase diagrams. The phase equilibria of the ternary Gd-Ti-Co system were analyzed for two alloy compositions. The XRD patterns for molten Gd 35 Ti 35 Co 30 gave direct evidence for the coexistence of two liquid phases formed by liquid-liquid phase separation. The first experimental and thermodynamic assessment of the ternary Gd-Ti-Co system revealed that the stable miscibility gap of binary Gd-Ti extends into the ternary Gd-Ti-Co system (up to about 30 at.% Co). New phase-separated metallic glasses were synthesized in Gd-TM-Co-Al (TM = Hf, Ti or Zr) alloys. The microstructure was characterized in terms of composition and cooling rate dependence of phase separation. Due to large positive enthalpy of mixing between Gd on the one side and Hf, Ti or Zr on the other side, the alloys undergo liquid-liquid phase separation during rapid quenching the melt. The parameters determining the microstructure development during phase separation are the thermodynamic properties of the liquid phase, kinetic parameters and quenching conditions. By controlling these parameters and conditions the microstructure can be

  16. Irreversible altering of crystalline phase of phase-change Ge-Sb thin films

    International Nuclear Information System (INIS)

    Krusin-Elbaum, L.; Shakhvorostov, D.; Cabral, C. Jr.; Raoux, S.; Jordan-Sweet, J. L.

    2010-01-01

    The stability of the crystalline phase of binary phase-change Ge x Sb 1-x films is investigated over a wide range of Ge content. From Raman spectroscopy we find the Ge-Sb crystalline structure irreversibly altered after exposure to a laser beam. We show that with increasing beam intensity/temperature Ge agglomerates and precipitates out in the amount growing with x. A simple empirical relation links Ge precipitation temperature T Ge p to the rate of change dT cryst /dx of crystallization, with the precipitation easiest on the mid-range x plateau, where T cryst is nearly constant. Our findings point to a preferable 15% < or approx. x < 50% window, that may achieve the desired cycling/archival properties of a phase-change cell.

  17. Liquid crystalline polymer nanocomposites reinforced with in-situ reduced graphene oxide

    Directory of Open Access Journals (Sweden)

    D. Pedrazzoli

    2015-08-01

    Full Text Available In this work liquid-crystalline polymer (LCP nanocomposites reinforced with in-situ reduced graphene oxide are investigated. Graphene oxide (GO was first synthesized by the Hummers method, and the kinetics of its thermal reduction was assessed. GO layers were then homogeneously dispersed in a thermotropic liquid crystalline polymer matrix (Vectran®, and an in-situ thermal reduction of GO into reduced graphene oxide (rGO was performed. Even at low rGO amount, the resulting nanocomposites exhibited an enhancement of both the mechanical properties and the thermal stability. Improvements of the creep stability and of the thermo-mechanical behavior were also observed upon nanofiller incorporation. Furthermore, in-situ thermal reduction of the insulating GO into the more electrically conductive rGO led to an important surface resistivity decrease in the nanofilled samples.

  18. CRYSTALLINE CERAMIC WASTE FORMS: REFERENCE FORMULATION REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K.; Fox, K.; Marra, J.

    2012-05-15

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be successfully produced from a melting and crystallization process. The objective of this report is to explain the design of ceramic host systems culminating in a reference ceramic formulation for use in subsequent studies on process optimization and melt property data assessment in support of FY13 melter demonstration testing. The waste stream used as the basis for the development and testing is a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. In addition to the combined CS/LN/TM High Mo waste stream, variants without Mo and without Mo and Zr were also evaluated. Based on the results of fabricating and characterizing several simulated ceramic waste forms, two reference ceramic waste form compositions are recommended in this report. The first composition targets the CS/LN/TM combined waste stream with and without Mo. The second composition targets

  19. A Histone-Like Protein Induces Plasmid DNA to Form Liquid Crystals in Vitro and Gene Compaction in Vivo

    Directory of Open Access Journals (Sweden)

    Shiyong Sun

    2013-12-01

    Full Text Available The liquid crystalline state is a universal phenomenon involving the formation of an ordered structure via a self-assembly process that has attracted attention from numerous scientists. In this study, the dinoflagellate histone-like protein HCcp3 is shown to induce super-coiled pUC18 plasmid DNA to enter a liquid crystalline state in vitro, and the role of HCcp3 in gene condensation in vivo is also presented. The plasmid DNA (pDNA-HCcp3 complex formed birefringent spherical particles with a semi-crystalline selected area electronic diffraction (SAED pattern. Circular dichroism (CD titrations of pDNA and HCcp3 were performed. Without HCcp3, pUC18 showed the characteristic B conformation. As the HCcp3 concentration increased, the 273 nm band sharply shifted to 282 nm. When the HCcp3 concentration became high, the base pair (bp/dimer ratio fell below 42/1, and the CD spectra of the pDNA-HCcp3 complexes became similar to that of dehydrated A-form DNA. Microscopy results showed that HCcp3 compacted the super-coiled gene into a condensed state and that inclusion bodies were formed. Our results indicated that HCcp3 has significant roles in gene condensation both in vitro and in histone-less eukaryotes in vivo. The present study indicates that HCcp3 has great potential for applications in non-viral gene delivery systems, where HCcp3 may compact genetic material to form liquid crystals.

  20. In situ growth of capping-free magnetic iron oxide nanoparticles on liquid-phase exfoliated graphene

    NARCIS (Netherlands)

    Tsoufis, T.; Syrgiannis, Z.; Akhtar, N.; Prato, M.; Katsaros, F.; Sideratou, Z.; Kouloumpis, A.; Gournis, D.; Rudolf, P.

    2015-01-01

    We report a facile approach for the in situ synthesis of very small iron oxide nanoparticles on the surface of high-quality graphene sheets. Our synthetic strategy involved the direct, liquid-phase exfoliation of highly crystalline graphite (avoiding any oxidation treatment) and the subsequent

  1. Synthesis and characterization of novel side-chain liquid crystalline polycarbonates, 4 - Synthesis of side-chain liquid crystalline polycarbonates with mesogenic groups having tails of different lengths

    NARCIS (Netherlands)

    Jansen, J.C.; Addink, R.; Nijenhuis, K.T.; Mijs, W.J.

    1999-01-01

    Side-chain liquid crystalline polycarbonates with alkoxyphenylbenzoate side groups, having a short spacer and tails ranging from 1 to 8 C-atoms, were synthesized. The polymers were prepared by an organo-zinc catalysed copolymerization of carbon dioxide and mesogenic 4-alkoxyphenyl

  2. Liquid crystalline epoxy nanocomposite material for dental application

    Directory of Open Access Journals (Sweden)

    Yun-Yuan Tai

    2015-01-01

    Conclusion: The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment.

  3. Smectic order and backbone anisotropy of a side-chain liquid crystalline polymer by Small-Angle Neutron Scattering

    Science.gov (United States)

    Noirez, L.; Pépy, G.; Keller, P.; Benguigui, L.

    1991-07-01

    We have simultaneously measured, for the first time, the extension of the polymer backbone of a side-chain liquid crystalline polymer and the intensity of the 001 Bragg reflection, which gives the smectic order parameter Psi as a function of temperature in the smectic phase. We have qualitatively demonstrated that the more the smectic phase is ordered, the more the polymer backbone is localized between the mesogenic layers. It is shown that the Landau theory allows us to relate the radius of gyration parallel to the magnetic field of the polymer backbone to the smectic order parameter. We also show that the Renz-Warner theory is suitable at low temperatures.

  4. Droplet snap-off in fluids with nematic liquid crystalline ordering

    International Nuclear Information System (INIS)

    Verhoeff, A A; Lekkerkerker, H N W

    2012-01-01

    We studied the snap-off of nematic liquid crystalline droplets originating from the Rayleigh-Taylor instability at the isotropic-nematic interface in suspensions of charged gibbsite in water and sterically stabilized gibbsite in bromotoluene. We found that droplet snap-off strongly depends on the director field structure inside the thinning neck, which is determined by the ratio of the splay elastic constant and the anchoring strength of the nematic phase to the droplet interface relative to the thickness of the thinning neck. If anchoring is weak, which is the case for aqueous gibbsite, this ratio is comparable to the thickness of the breaking thread. As a result, the thinning neck and pending drop have a uniform director field and droplet snap-off is determined by the viscous properties of the liquid crystal as well as by thermal fluctuations of the interface. On the other hand, in sterically stabilized gibbsite where anchoring is strong, this ratio is significantly smaller than the neck thickness. In this case, the neck has an escaped radial director field and the neck thinning is retarded close to snap-off due to a topological energy barrier involved in the separation of the droplet from the thread. (paper)

  5. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Serdar, Marijana [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Meral, Cagla [Middle East Technical University, Department of Civil Engineering, Ankara (Turkey); Kunz, Martin [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Bjegovic, Dubravka [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Wenk, Hans-Rudolf [Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 (United States); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2015-05-15

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM.

  6. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    International Nuclear Information System (INIS)

    Serdar, Marijana; Meral, Cagla; Kunz, Martin; Bjegovic, Dubravka; Wenk, Hans-Rudolf; Monteiro, Paulo J.M.

    2015-01-01

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM

  7. Acidic ionic liquids for n-alkane isomerization in a liquid-liquid or slurry-phase reaction mode

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.; Hager, V.; Geburtig, D.; Kohr, C.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer Chemische Reaktionstechnik; Haumann, M. [Chemical Reaction Engineering, FAU Busan Campus, Korea (Korea, Republic of)

    2011-07-01

    Highly acidic ionic liquid (IL) catalysts offer the opportunity to convert n-alkanes at very low reaction temperatures. The results of IL catalyzed isomerization and cracking reactions of pure n-octane are presented. Influence of IL composition, [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / H{sub 2}SO{sub 4} and [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / 1-chlorooctane, on catalyst activity and selectivities to branched alkanes was investigated. Acidic chloroaluminate IL catalysts form liquid-liquid biphasic systems with unpolar organic product mixtures. Thus, recycling of the acidic IL is enabled by simple phase separation in the liquid-liquid biphasic reaction mode or the IL can be immobilized on an inorganic support with a large specific surface area. These supported ionic liquid phase (SILP) catalysts offer the advantage to get a macroscopically heterogeneous system while still preserving all benefits of the homogeneous catalyst which can be used for the slurry-phase n-alkane isomerization. The interaction of the solid support and acidic IL influences strongly the catalytic activity. (orig.)

  8. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: Improving preocular retention and ocular bioavailability.

    Science.gov (United States)

    Gan, Li; Han, Shun; Shen, Jinqiu; Zhu, Jiabi; Zhu, Chunliu; Zhang, Xinxin; Gan, Yong

    2010-08-30

    The object of this study was to design novel self-assembled liquid crystalline nanoparticles (cubosomes) as an ophthalmic delivery system for dexamethasone (DEX) to improve its preocular retention and ocular bioavailability. DEX cubosome particles were produced by fragmenting a cubic crystalline phase of monoolein and water in the presence of stabilizer Poloxamer 407. Small angle X-ray diffraction (SAXR) profiles revealed its internal structure as Pn3m space group, indicating the diamond cubic phase. In vitro, the apparent permeability coefficient of DEX administered in cubosomes exhibited a 4.5-fold (F1) and 3.5-fold (F2) increase compared to that of Dex-Na phosphate eye drops. Preocular retention studies revealed that the retention of cubosomes was significantly longer than that of solution and carbopol gel, with AUC(0-->180min) of Rh B cubosomes being 2-3-fold higher than that of the other two formulations. In vivo pharmacokinetics in aqueous humor was evaluated by microdialysis, which indicated a 1.8-fold (F1) increase in AUC(0-->240min) of DEX administered in cubosomes relative to that of Dex-Na phosphate eye drops, with about an 8-fold increase compared to that of DEX suspension. Corneal cross-sections after incubation with DEX cubosomes demonstrated an unaffected corneal structure and tissue integrity, which indicated the good biocompatibility of DEX cubosomes. In conclusion, self-assembled liquid crystalline nanoparticles might represent a promising vehicle for effective ocular drug delivery. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  9. Synthesis and Characterization of Ferroelectric Liquid Crystalline Organosiloxanes Containing 4-(4-undecanyloxy bi-phenyl-1-carboxyloxyphenyl (2S,3S-2-chloro-3-methylvalerate and 4-(4-undecanyloxybenzoyloxybiphenyl (2S,3S-2-chloro-3-methylvalerate

    Directory of Open Access Journals (Sweden)

    Chih-Hung Lin

    2013-10-01

    Full Text Available A series of new organosiloxane ferroelectric liquid crystalline (FLC materials have been synthesized, and their mesomorphic and physical properties have been characterized. Four new disiloxanes and trisiloxanes, containing biphenyl 4-hydroxybenzoate and phenyl 4-hydroxybiphenylcarboxylate as mesogenic units and eleven methylene unit as spacers and (2S,3S-2-chloro-3-methylvalerate unit as chiral end groups. The molecule, using three phenyl ring as a mesogenic unit, formulates much wider liquid crystalline phase temperature ranges than that of a two phenyl ring unit. The phenyl arrangement differences of mesogenic unit result in the greater differences of the liquid crystal phase formation. The siloxane molecule induction is helpful to the more regular smectic phase formation and smectic phase stabilization, such as chiral SC (SC* and SB phases. The siloxane molecule is helpful to reduce the phase transition temperature and broaden the liquid crystal temperature range of the SC* phase and, simultaneously, it will not induce chain crystallization phenomenon and dilute the Ps value. The synthesis and characterization of the new FLCs materials, which exhibit a room temperature SC* phase and higher spontaneous polarization are presented.

  10. Liquid-liquid phase transition in Stillinger-Weber silicon

    International Nuclear Information System (INIS)

    Beaucage, Philippe; Mousseau, Normand

    2005-01-01

    It was recently demonstrated that Stillinger-Weber silicon undergoes a liquid-liquid first-order phase transition deep into the supercooled region (Sastry and Angell 2003 Nat. Mater. 2 739). Here we study the effects of perturbations on this phase transition. We show that the order of the liquid-liquid transition changes with negative pressure. We also find that the liquid-liquid transition disappears when the three-body term of the potential is strengthened by as little as 5%. This implies that the details of the potential could affect strongly the nature and even the existence of the liquid-liquid phase

  11. Liquid Phase Epitaxial Growth of Al-doped f-SiC for White Light-Emitting Diodes

    DEFF Research Database (Denmark)

    Tang, Kai; Ma, Xiang; can der Eijk, Casper

    efficiency, better light quality and longer lifespan, compared to the current yellow phosphor based white LEDs.Liquid phase epitaxy technology can yield a high crystalline quality in terms of structural perfection owing to the fact that it is a near equilibrium crystalline growth process. In addition....... The experimental results are presented and discussed. Since operational temperature of LPE growth is much lower than that currently used in physical vapour transport (PVT) process, it is expected to save the energy consumption for SiC crystal growth....

  12. Metamorphosis: Phases of UF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, R.H. [Department of Energy, Oak Ridge, TN (United States)

    1991-12-31

    A 15-minute videotape is presented. The subject matter is 150 grams of UF{sub 6} sealed in a glass tube. Close-up views show the UF{sub 6} as phase changes are effected by the addition or removal of heat from the closed system. The solid-to-liquid transition is shown as heat is added, both slowly and rapidly. The solid phases which result from freezing and from desublimation are contrasted. In the solid state, uranium hexafluoride is a nearly-white, dense crystalline solid. The appearance of this solid depends on whether it is formed by freezing from the liquid or by desublimation from the vapor phase. If frozen from the liquid, the solid particles take the form of irregularly shaped coarse grains, while the solid product of desublimation tends to be a rather formless mass without individually distinguishable particles. The changes in state are presented in terms of the UF{sub 6} phase diagram.

  13. Liquid-like thermal conduction in intercalated layered crystalline solids

    Science.gov (United States)

    Li, B.; Wang, H.; Kawakita, Y.; Zhang, Q.; Feygenson, M.; Yu, H. L.; Wu, D.; Ohara, K.; Kikuchi, T.; Shibata, K.; Yamada, T.; Ning, X. K.; Chen, Y.; He, J. Q.; Vaknin, D.; Wu, R. Q.; Nakajima, K.; Kanatzidis, M. G.

    2018-03-01

    As a generic property, all substances transfer heat through microscopic collisions of constituent particles1. A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations2,3. As a result, a solid is usually thermally more conductive than a liquid. In canonical viewpoints, such a difference also serves as the dynamic signature distinguishing a solid from a liquid. Here, we report liquid-like thermal conduction observed in the crystalline AgCrSe2. The transverse acoustic phonons are completely suppressed by the ultrafast dynamic disorder while the longitudinal acoustic phonons are strongly scattered but survive, and are thus responsible for the intrinsically ultralow thermal conductivity. This scenario is applicable to a wide variety of layered compounds with heavy intercalants in the van der Waals gaps, manifesting a broad implication on suppressing thermal conduction. These microscopic insights might reshape the fundamental understanding on thermal transport properties of matter and open up a general opportunity to optimize performances of thermoelectrics.

  14. H-Bond stabilized columnar discotic liquid crystals

    NARCIS (Netherlands)

    Paraschiv, I.

    2007-01-01

    Since 1977, more than 2300 publications on discotic (disk-like) liquid crystalline materials have appeared. Discotic liquid crystals, which usually consist of polyaromatic molecules surrounded by long peripheral alkyl tails, can form liquid crystalline mesophases in a wide temperature range. Within

  15. Comparison of SRP high-level waste disposal costs for borosilicate glass and crystalline ceramic waste forms

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1982-04-01

    An evaluation of costs for the immobilization and repository disposal of SRP high-level wastes indicates that the borosilicate glass waste form is less costly than the crystalline ceramic waste form. The wastes were assumed immobilized as glass with 28% waste loading in 10,300 reference 24-in.-diameter canisters or as crystalline ceramic with 65% waste loading in either 3400 24-in.-diameter canisters or 5900 18-in.-diameter canisters. After an interim period of onsite storage, the canisters would be transported to the federal repository for burial. Total costs in undiscounted 1981 dollars of the waste disposal operations, excluding salt processing for which costs are not yet well defined, were about $2500 million for the borosilicate glass form in reference 24-in.-diameter canisters, compared to about $2900 million for the crystalline ceramic form in 24-in.-diameter canisters and about $3100 million for the crystalline ceramic form in 18-in.-diameter canisters. No large differences in salt processing costs for the borosilicate glass and crystalline ceramic forms are expected. Discounting to present values, because of a projected 2-year delay in startup of the DWPF for the crystalline ceramic form, preserved the overall cost advantage of the borosilicate glass form. The waste immobilization operations for the glass form were much less costly than for the crystalline ceramic form. The waste disposal operations, in contrast, were less costly for the crystalline ceramic form, due to fewer canisters requiring disposal; however, this advantage was not sufficient to offset the higher development and processing costs of the crystalline ceramic form. Changes in proposed Nuclear Regulatory Commission regulations to permit lower cost repository packages for defense high-level wastes would decrease the waste disposal costs of the more numerous borosilicate glass forms relative to the crystalline ceramic forms

  16. White emission from liquid-crystalline copolymers containing oxadiazole moieties in the side chain

    Science.gov (United States)

    Kawamoto, Masuki; Tsukamoto, Takuji; Kinoshita, Motoi; Ikeda, Tomiki

    2006-09-01

    A liquid-crystalline polymer in the side chain was synthesized through copolymerization of a bipolar carrier-transporting monomer with a liquid-crystalline monomer containing oxadiazole moieties substituted with trifluoromethyl groups. A single-layer light-emitting diode of indium tin oxide (ITO)/copolymer/MgAg emitted white light with a maximum luminous efficiency of 0.1cd/A. The origin of the white emission in the copolymer is the electroplex between bipolar carrier-transporting moieties and strong electron-withdrawing moieties. Furthermore, a simple multilayer device with configuration of ITO/poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid)/copolymer/MgAg device showed white emission with CIE 1931 chromaticity coordinates (x,y): (0.30, 0.33).

  17. Novel biphotonic holographic storage in a side-chain liquid crystalline polyester

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Hvilsted, S.; Andruzzi, F.

    1993-01-01

    We report novel biphotonic holographic storage of text and gratings on unoriented films of a side-chain liquid crystalline polyester capable of high density storage and complete erasure. The holograms have a typical size of 1 mm. The recording utilizes unusual photochemistry involving azo dye...

  18. Liquid crystalline polymers IX Main chain thermotropic poly (azomethine – ethers containing thiazole moiety linked with polymethylene spacers

    Directory of Open Access Journals (Sweden)

    2007-04-01

    Full Text Available A new homologous series of thermally stable thermotropic liquid crystalline poly(azomethine-ethers based on thiazole moiety were synthesized by solution polycondensation of 4,4`-diformyl-α,ω-diphenoxyalkanes, I–IV or 4,4`-diformyl-2,2`-dimethoxy-α,ω-diphenoxyalkanes V–VIII with the new bis(2-aminothiazole monomer X. A model compound XI was synthesized from X with benzaldehyde and characterized by elemental and spectral analyses. The inherent viscosities of the resulting polymers were in the range 0.43–1.34 dI/g. All the poly(azomethine-ethers were insoluble in common organic solvents but dissolved completely in concentrated H2SO4 and formic acid. The mesomorphic properties of these polymers were studied as a function of the diphenoxyalkane space length. Their thermotropic liquid crystalline properties were examined by DSC and optical polarizing microscopy and demonstrated that the resulting polymers form nematic mesophases over wide temperature ranges. The thermogravimetric analyses of those polymers were evaluated by TGA and DSC measurements and correlated to their structural units. X-ray analysis showed that polymers having some degree of crystallinity in the region 2θ = 5–60°. In addition, the morphological properties of selected examples were tested by scanning electron microscopy.

  19. Side-chain liquid-crystalline polyesters for optical information storage

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Andruzzi, F.; Ramanujam, P.S.

    1992-01-01

    We report erasable holographic recording with a resolution of at least 2500 lines/mm on unoriented films of side-chain liquid-crystalline polyesters. Recording energies of approximately 1 J/cm2 have been used. We have obtained a diffraction efficiency of approximately 30% with polarization record...... recording of holograms. The holograms can be erased by heating them to approximately 80-degrees-C for approximately 2 min and are available for rerecording....

  20. Experimental (solid + liquid) or (liquid + liquid) phase equilibria of (amine + nitrile) binary mixtures

    International Nuclear Information System (INIS)

    Domanska, Urszula; Marciniak, Malgorzata

    2007-01-01

    (Solid + liquid) phase diagrams have been determined for (hexylamine, or octylamine, or 1,3-diaminopropane + acetonitrile) mixtures. Simple eutectic systems have been observed in these mixtures. (Liquid + liquid) phase diagrams have been determined for (octylamine, or decylamine + propanenitrile, or + butanenitrile) mixtures. Mixtures with propanenitrile and butanenitrile show immiscibility in the liquid phase with an upper critical solution temperature, UCST. (Solid + liquid) phase diagrams have been correlated using NRTL, NRTL 1, Wilson and UNIQUAC equations. (Liquid + liquid) phase diagrams have been correlated using NRTL equation

  1. Rare-earth-ion doped KY(WO4)2 optical waveguides grown by liquid-phase epitaxy

    NARCIS (Netherlands)

    Romanyuk, Y.E.; Apostolopoulos, V.; Utke, U.; Pollnau, Markus

    High-quality KY(WO4)2 thin layers doped with rare-earth-ions were grown using liquid-phase epitaxy. A low-temperature mixture of chlorides was used as the flux and undoped KY(WO4)2 crystals as substrates. The crystalline layers possessed thicknesses up to 10 µm. Passive and active planar waveguiding

  2. Tube Radial Distribution Flow Separation in a Microchannel Using an Ionic Liquid Aqueous Two-Phase System Based on Phase Separation Multi-Phase Flow.

    Science.gov (United States)

    Nagatani, Kosuke; Shihata, Yoshinori; Matsushita, Takahiro; Tsukagoshi, Kazuhiko

    2016-01-01

    Ionic liquid aqueous two-phase systems were delivered into a capillary tube to achieve tube radial distribution flow (TRDF) or annular flow in a microspace. The phase diagram, viscosity of the phases, and TRDF image of the 1-butyl-3-methylimidazolium chloride and NaOH system were examined. The TRDF was formed with inner ionic liquid-rich and outer ionic liquid-poor phases in the capillary tube. The phase configuration was explained using the viscous dissipation principle. We also examined the distribution of rhodamine B in a three-branched microchannel on a microchip with ionic liquid aqueous two-phase systems for the first time.

  3. Vapor-deposited non-crystalline phase vs ordinary glasses and supercooled liquids: Subtle thermodynamic and kinetic differences

    International Nuclear Information System (INIS)

    Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2015-01-01

    Vapor deposition of molecules on a substrate often results in glassy materials of high kinetic stability and low enthalpy. The extraordinary properties of such glasses are attributed to high rates of surface diffusion during sample deposition, which makes it possible for constituents to find a configuration of much lower energy on a typical laboratory time scale. However, the exact nature of the resulting phase and the mechanism of its formation are not completely understood. Using fast scanning calorimetry technique, we show that out-of-equilibrium relaxation kinetics and possibly the enthalpy of vapor-deposited films of toluene and ethylbenzene, archetypical fragile glass formers, are distinct from those of ordinary supercooled phase even when the deposition takes place at temperatures above the ordinary glass softening transition temperatures. These observations along with the absolute enthalpy dependences on deposition temperatures support the conjecture that the vapor-deposition may result in formation of non-crystalline phase of unique structural, thermodynamic, and kinetic properties

  4. Forming of film surface of very viscous liquid flowing with gas in pipes

    Directory of Open Access Journals (Sweden)

    Czernek Krystian

    2017-01-01

    Full Text Available The study presents the possible use of optoelectronic system for the measurement of the values, which are specific for hydrodynamics of two-phase gas liquid flow in vertical pipes, where a very-high-viscosity liquid forms a falling film in a pipe. The experimental method was provided, and the findings were presented and analysed for selected values, which characterize the two-phase flow. Attempt was also made to evaluate the effects of flow parameters and properties of the liquid on the gas-liquid interface value, which is decisive for the conditions of heat exchange and mass transfer in falling film equipment. The nature and form of created waves at various velocities were also described.

  5. Ultra-fast solid state electro-optical modulator based on liquid crystal polymer and liquid crystal composites

    Energy Technology Data Exchange (ETDEWEB)

    Ouskova, Elena; Sio, Luciano De, E-mail: luciano@beamco.com; Vergara, Rafael; Tabiryan, Nelson [Beam Engineering for Advanced Measurements Company, Winter Park, Florida 32789 (United States); White, Timothy J.; Bunning, Timothy J. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7707 (United States)

    2014-12-08

    A different generation of polymer-dispersed liquid crystals (PDLCs) based on a liquid crystalline polymer host is reported wherein the fluid behavior of the reactive mesogenic monomer is an enabler to concentration windows (liquid crystal polymer/liquid crystal) (and subsequent morphologies) not previously explored. These liquid crystal (LC) polymer/LC composites, LCPDLCs, exhibit excellent optical and electro-optical properties with negligible scattering losses in both the ON and OFF states. These systems thus have application in systems where fast phase modulation of optical signal instead of amplitude control is needed. Polarized optical microscopy and high resolution scanning electron microscopy confirm a bicontinuous morphology composed of aligned LC polymer coexisting with a phase separated LC fluid. Operating voltages, switching times, and spectra of LCPDLCs compare favourably to conventional PDLC films. The LCPDLCs exhibit a low switching voltage (4–5 V/μm), symmetric and submillisecond (200 μs) on/off response times, and high transmission in both the as formed and switched state in a phase modulation geometry.

  6. Liquid crystalline phases in suspensions of pigments in non-polar solvents

    Science.gov (United States)

    Klein, Susanne; Richardson, Robert M.; Eremin, Alexey

    We will discuss colloid suspensions of pigments and compare their electro-optic properties with those of traditional dyed low molecular weight liquid crystal systems. There are several potential advantages of colloidal suspensions over low molecular weight liquid crystal systems: a very high contrast because of the high orientational order parameter of suspensions of rod shaped nano-particles, the excellent light fastness of pigments as compared to dyes and high colour saturations resulting from the high loading of the colour stuff. Although a weak `single-particle' electro-optic response can be observed in dilute suspensions, the response is very much enhanced when the concentration of the particles is sufficient to lead to a nematic phase. Excellent stability of suspensions is beneficial for experimental observation and reproducibility, but it is a fundamental necessity for display applications. We therefore discuss a method to achieve long term stability of dispersed pigments and the reasons for its success. Small angle X-ray scattering was used to determine the orientational order parameter of the suspensions as a function of concentration and the dynamic response to an applied electric field. Optical properties were investigated for a wide range of pigment concentrations. Electro-optical phenomena, such as field-induced birefringence and switching, were characterised. In addition, mixtures of pigment suspensions with small amounts of ferrofluids show promise as future magneto-optical materials.

  7. Enhancement of polar crystalline phase formation in transparent PVDF-CaF{sub 2} composite films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Goo; Ha, Jong-Wook, E-mail: jongwook@krict.re.kr; Sohn, Eun-Ho; Park, In Jun; Lee, Soo-Bok

    2016-12-30

    Highlights: • The crystalline phase in transparent PVDF-CaF{sub 2} composite films was investigated. • CaF{sub 2} promoted the formation of polar crystalline phases in PVDF matrix. • Ordered γ-phase was obtained by thermal treatment of as-cast films at the vicinity of its melting temperature. - Abstract: We consider the influence of calcium fluoride (CaF{sub 2}) nanoparticles on the crystalline phase formation of poly(vinylidene fluoride) (PVDF) for the first time. The transparent PVDF-CaF{sub 2} composite films were prepared by casting on PET substrates using N,N-dimethylacetamide (DMAc) as a solvent. It was found that CaF{sub 2} promoted the formation of polar crystalline phase of PVDF in composites, whereas nonpolar α-phase was dominant in the neat PVDF film prepared at the same condition. The portion of polar crystalline phase increased in proportional to the weight fraction of CaF{sub 2} in the composite films up to 10 wt%. Further addition of CaF{sub 2} suppressed completely the α-phase formation. Polar crystalline phase observed in as-cast composite films was a mixture of β- and γ-polymorph structures. It was also shown that much ordered γ-phase could be obtained through thermal treatment of as-cast PVDF-CaF{sub 2} composite film at the temperatures above the melting temperature of the composite films, but below that of γ-phase.

  8. Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding.

    Science.gov (United States)

    Zhu, Min; Cojocaru-Mirédin, Oana; Mio, Antonio M; Keutgen, Jens; Küpers, Michael; Yu, Yuan; Cho, Ju-Young; Dronskowski, Richard; Wuttig, Matthias

    2018-05-01

    Laser-assisted field evaporation is studied in a large number of compounds, including amorphous and crystalline phase change materials employing atom probe tomography. This study reveals significant differences in field evaporation between amorphous and crystalline phase change materials. High probabilities for multiple events with more than a single ion detected per laser pulse are only found for crystalline phase change materials. The specifics of this unusual field evaporation are unlike any other mechanism shown previously to lead to high probabilities of multiple events. On the contrary, amorphous phase change materials as well as other covalently bonded compounds and metals possess much lower probabilities for multiple events. Hence, laser-assisted field evaporation in amorphous and crystalline phase change materials reveals striking differences in bond rupture. This is indicative for pronounced differences in bonding. These findings imply that the bonding mechanism in crystalline phase change materials differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding. Instead, the data reported here confirm a recently developed conjecture, namely that metavalent bonding is a novel bonding mechanism besides those mentioned previously. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Gamma-irradiation effects to posttranslational modification and chaperon function of bovine α-crystalline

    International Nuclear Information System (INIS)

    Hiroki, K; Matsumoto, S.; Awakura, M.; Fujii, N.

    2001-01-01

    The formation of D-asparate (D-Asp) in αA-crystallin of the aged human eye and the cataract crystalline lens has been reported. Crystalline lens keeps the transparency by forming α-crystallin which consists of a high order association of αA-and αB-crystallin. Bovine α-crystallin for investigating a chaperone function which protects the crystalline lens from getting to opaque or disordered agglutination with heat or light, is irradiated by gamma-ray (Co-60) at 0, 1, 2, 3, and 4 kGy, respectively. The irradiated bovine α-crystallin are analyzed with electrophoresis, gel permeation chromatograph, and UV absorption spectrometer for checking on the agglutination and the isomerization of macromolecules. Oxidation of methionine residues (Met-1) and isomerization of asparagine residues (Asp-151) in the αA-crystallin are ascertained in molecular levels with reversed phase liquid chromatography. The Met-1 oxidation and the Asp-151 isomerization depend on gamma-irradiation doses. It is thought that OH radical and H radical in water generated by the irradiation lead to the oxidation and the isomerization. Stereoinversion in the α-crystallin following to such a chemical change are considered to lead to the agglutination of polymer and the reduction of chaperon function. (M. Suetake)

  10. Quasicrystalline and crystalline phases in Al65Cu20(Fe, Cr)15 alloys

    International Nuclear Information System (INIS)

    Liu, W.; Koester, U.; Mueller, F.; Rosenberg, M.

    1992-01-01

    Two types of icosahedral quasicrystals are observed in Al 65 Cu 20 Fe 15-x Cr x (0 ≤ x ≤ 15) alloys, the face-centred AlCuFe-type icosahedral phase with dissoluted Cr and the primitive AlCuCr-type icosahedral phase with dissoluted Fe. In the vicinity of Al 65 Cu 20 Fe 8 Cr 7 a stable decagonal phase (a=0.45 nm and c=1.23 nm) forms competitively with the icosahedral quasicrystals. All these three quasicrystalline phases can be regarded as Hume-Rothery phases stabilized by the energy band factor. The density is measured to be 4.57, 4.44, and 4.11 g/cm 3 for the icosahedral Al 65 Cu 20 Fe 15 , the decagonal Al 65 Cu 20 Fe 8 Cr 7 , and the icosahedral Al 65 Cu 20 Cr 15 alloys, respectively. Depending on the composition in the range between Al 65 Cu 20 Fe 8 Cr 7 and Al 65 Cu 20 Cr 15 , several crystalline phases are observed during the transormation of the AlCuCr-type icosahedral phase: the 1/1-3/2-type orthorhombic (o) and the 1/0-3/2-type tetragonal (t) approximants of the decagonal phase, a hexagonal (h) phase, as well as a long-range vacancy ordered τ 3 -phase derived from a CsCl-type structure with a=0.2923 nm. The structures of all the crystalline phases are closely related to those of the icosahedral (i) and decagonal (d) quasicrystals, which leads to a definite orientation relationship as follows: i5 parallel d10 parallel o[100] parallel t[100] parallel h[001] parallel τ 3 [110]. (orig.)

  11. Side-chain liquid crystalline polyesters for optical information storage

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, Christian; Hvilsted, Søren

    1996-01-01

    and holographic storage in one particular polyester are described in detail and polarized Fourier transform infrared spectroscopic data complementing the optical data are presented. Optical and atomic force microscope investigations point to a laser-induced aggregation as responsible for permanent optical storage.......Azobenzene side-chain liquid crystalline polyester structures suitable for permanent optical storage are described. The synthesis and characterization of the polyesters together with differential scanning calorimetry and X-ray investigations are discussed. Optical anisotropic investigations...

  12. Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite.

    Science.gov (United States)

    Hsu, Sheng-Hao; Chen, Rung-Shu; Chang, Yuan-Ling; Chen, Min-Huey; Cheng, Kuo-Chung; Su, Wei-Fang

    2012-11-01

    Low-shrinkage resin-based photocurable liquid crystalline epoxy nanocomposite has been investigated with regard to its application as a dental restoration material. The nanocomposite consists of an organic matrix and an inorganic reinforcing filler. The organic matrix is made of liquid crystalline biphenyl epoxy resin (BP), an epoxy resin consisting of cyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (ECH), the photoinitiator 4-octylphenyl phenyliodonium hexafluoroantimonate and the photosensitizer champhorquinone. The inorganic filler is silica nanoparticles (∼70-100 nm). The nanoparticles were modified by an epoxy silane of γ-glycidoxypropyltrimethoxysilane to be compatible with the organic matrix and to chemically bond with the organic matrix after photo curing. By incorporating the BP liquid crystalline (LC) epoxy resin into conventional ECH epoxy resin, the nanocomposite has improved hardness, flexural modulus, water absorption and coefficient of thermal expansion. Although the incorporation of silica filler may dilute the reinforcing effect of crystalline BP, a high silica filler content (∼42 vol.%) was found to increase the physical and chemical properties of the nanocomposite due to the formation of unique microstructures. The microstructure of nanoparticle embedded layers was observed in the nanocomposite using scanning and transmission electron microscopy. This unique microstructure indicates that the crystalline BP and nanoparticles support each other and result in outstanding mechanical properties. The crystalline BP in the LC epoxy resin-based nanocomposite was partially melted during exothermic photopolymerization, and the resin expanded via an order-to-disorder transition. Thus, the post-gelation shrinkage of the LC epoxy resin-based nanocomposite is greatly reduced, ∼50.6% less than in commercialized methacrylate resin-based composites. This LC epoxy nanocomposite demonstrates good physical and chemical properties and good biocompatibility

  13. Tuning Eu"3"+ emission in europium sesquioxide films by changing the crystalline phase

    International Nuclear Information System (INIS)

    Mariscal, A.; Quesada, A.; Camps, I.; Palomares, F.J.; Fernández, J.F.; Serna, R.

    2016-01-01

    Highlights: • PLD production of high quality europium sesquioxide (Eu_2O_3) films. • The deposition of Al_2O_3 capping and/or buffer layers modifies the crystallization for Eu_2O_3 films upon annealing. • The formation of cubic or monoclinic phases can be favored. • Eu"3"+ emission tuning is achieved as a consequence of crystal field effects. - Abstract: We report the growth of europium sesquioxide (Eu_2O_3) thin films by pulsed laser deposition (PLD) in vacuum at room temperature from a pure Eu_2O_3 ceramic bulk target. The films were deposited in different configurations formed by adding capping and/or buffer layers of amorphous aluminum oxide (a-Al_2O_3). The optical properties, refractive index and extinction coefficient of the as deposited Eu_2O_3 layers were obtained. X-ray photoelectron spectroscopy (XPS) measurements were done to assess its chemical composition. Post-deposition annealing was performed at 500 °C and 850 °C in air in order to achieve the formation of crystalline films and to accomplish photoluminescence emission. According to the analysis of X-ray diffraction (XRD) spectra, cubic and monoclinic phases were formed. It is found that the relative amount of the phases is related to the different film configurations, showing that the control over the crystallization phase can be realized by adequately designing the structures. All the films showed photoluminescence emission peaks (under excitation at 355 nm) that are attributed to the intra 4f-transitions of Eu"3"+ ions. The emission spectral shape depends on the crystalline phase of the Eu_2O_3 layer. Specifically, changes in the hypersensitive "5D_0 → "7F_2 emission confirm the strong influence of the crystal field effect on the Eu"3"+ energy levels.

  14. Industrial aspects of gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Hewitt, G.F.

    1977-01-01

    The lecture begins by reviewing the various types of plant in which two phase flow occurs. Specifically, boiling plant, condensing plant and pipelines are reviewed, and the various two phase flow problems occurring in them are described. Of course, many other kinds of chemical engineering plant involve two phase flow, but are somewhat outside the scope of this lecture. This would include distillation columns, vapor-liquid separators, absorption towers etc. Other areas of industrial two phase flow which have been omitted for space reasons from this lecture are those concerned with gas/solids, liquid/solid and liquid/liquid flows. There then follows a description of some of the two phase flow processes which are relevant in industrial equipment and where special problems occur. The topics chosen are as follows: (1) pressure drop; (2) horizontal tubes - separation effects non-uniformites in heat transfer coefficient, effect of bends on dryout; (3) multicomponent mixtures - effects in pool boiling, mass transfer effects in condensation and Marangoni effects; (4) flow distribution - manifold problems in single phase flow, separation effects at a single T-junction in two phase flow and distribution in manifolds in two phase flow; (5) instability - oscillatory instability, special forms of instability in cryogenic systems; (6) nucleate boiling - effect of variability of surface, unresolved problems in forced convective nucleate boiling; and (7) shell side flows - flow patterns, cross flow boiling, condensation in cross flow

  15. Light-induced circular birefringence in cyanoazobenzene side-chain liquid-crystalline polyester films

    DEFF Research Database (Denmark)

    Naydenova, I; Nikolova, L; Ramanujam, P.S.

    1999-01-01

    We report the inducement of large circular birefringence (optical activity) in films of a cyanoazobenzene side-chain liquid-crystalline polyester on illumination with circularly polarized light. The polyester has no chiral groups and is initially isotropic. The induced optical rotation is up to 5...

  16. The phase diagram of crystalline surfaces

    International Nuclear Information System (INIS)

    Anagnostopoulos, K.N.; Bowick, M.J.; Catterall, S.M.

    1995-01-01

    We report the status of a high-statistics Monte Carlo simulation of non-self-avoiding crystalline surfaces with extrinsic curvature on lattices of size up to 128 2 nodes. We impose free boundary conditions. The free energy is a gaussian spring tethering potential together with a normal-normal bending energy. Particular emphasis is given to the behavior of the model in the cold phase where we measure the decay of the normal-normal correlation function

  17. Cold crucible induction melter test for crystalline ceramic waste form fabrication: A feasibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, Jake W., E-mail: jake.amoroso@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Marra, James; Dandeneau, Christopher S. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Brinkman, Kyle; Xu, Yun [Clemson University, Clemson, SC 29634 (United States); Tang, Ming [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maio, Vince [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Webb, Samuel M. [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94086 (United States); Chiu, Wilson K.S. [University of Connecticut, Storrs, Connecticut 06269-3139 (United States)

    2017-04-01

    The first scaled proof-of-principle cold crucible induction melter (CCIM) test to process a multiphase ceramic waste form from a simulated combined (Cs/Sr, lanthanide and transition metal fission products) commercial used nuclear fuel waste stream was recently conducted in the United States. X-ray diffraction, 2-D X-ray absorption near edge structure (XANES), electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the fabricated CCIM material. Characterization analyses confirmed that a crystalline ceramic with a desirable phase assemblage was produced from a melt using a CCIM. Primary hollandite, pyrochlore/zirconolite, and perovskite phases were identified in addition to minor phases rich in Fe, Al, or Cs. The material produced in the CCIM was chemically homogeneous and displayed a uniform phase assemblage with acceptable aqueous chemical durability.

  18. Reactions and Interactions in Liquid Crystalline Media

    Science.gov (United States)

    1991-10-30

    nematic lyophases of potassium laurate, myristyl tri methylammonium bromide or sodium decylsulfate with 1-decanol and 23 water. A strong retardation of the...crystalline polyacrylate crosslinked elastomers were synthesized. 198c 0 0 96 0 0 0O-(CH12 ) 2 -0O(k 97 Crosslinking, up to 10% of structural units produced...in their isotropic state and they work as the transporting phase for the azo-crown ether molecules. The permeation of K+ from a potassium p

  19. Liquid-liquid phase separation in internally mixed magnesium sulfate/glutaric acid particles

    Science.gov (United States)

    Wu, Feng-Min; Wang, Xiao-Wei; Jing, Bo; Zhang, Yun-Hong; Ge, Mao-Fa

    2018-04-01

    The confocal Raman microscopy is utilized to investigate the liquid-liquid phase separation (LLPS) of mixed magnesium sulfate/glutaric acid (MgSO4/GA) droplets deposited on a hydrophobic polytetrafluoroethylene (PTFE) substrate and a hydrophilic quartz substrate. Raman spectra collected from different regions of the mixed droplets provide detailed information of component distributions for MgSO4 and GA. During the dehydration process, the MgSO4/GA mixed particles show the initial liquid-liquid phase separation between 85% and 80% relative humidity (RH) on both the hydrophobic and hydrophilic substrates. For the droplets deposited on the two substrates, the inner phase of droplets is dominated by aqueous MgSO4, which is surrounded by a rich GA organic layer due to the surface tension effects. In addition, the crystallization of GA could be observed in the organic aqueous phase while it is inhibited in the inner MgSO4 phase due to the effects of gel formation of MgSO4 at low RH. The Raman spectra reveal that with decreasing RH the morphology of the mixed droplet evolves from a uniform droplet to the structure of LLPS with the GA crystallizing in the outer layer and MgSO4 gel formed in the inner phase. These findings contribute to the further understanding of the role of interactions between inorganic salts and organic acids on the morphological evolution and environmental effects of atmospheric aerosols under ambient RH conditions.

  20. Time-resolved luminescent spectroscopy of YAG:Ce single crystal and single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Gorbenko, V.; Savchyn, V.; Vozniak, T.; Puzikov, V.; Danko, A.; Nizhankovski, S.

    2010-01-01

    The peculiarities of the luminescence and energy transfer from YAG host to the emission centers formed by the Y Al antisite defects and Ce 3+ ions have been studied in YAG:Ce single crystals, grown from the melt by modified Bridgman method in Ar and CO 2 + H 2 atmospheres, and YAG:Ce single crystalline film, grown by liquid phase epitaxy method, using the comparative time-resolved luminescent spectroscopy under excitation by synchrotron radiation in the range of fundamental adsorption of this garnet.

  1. Supramolecular liquid crystalline π-conjugates: the role of aromatic π-stacking and van der Waals forces on the molecular self-assembly of oligophenylenevinylenes.

    Science.gov (United States)

    Goel, Mahima; Jayakannan, M

    2010-10-07

    Here, we report a unique design strategy to trace the role of aromatic π-stacking and van der Waals interactions on the molecular self-organization of π-conjugated building blocks in a single system. A new series of bulky oligophenylenevinylenes (OPVs) bearing a tricyclodecanemethylene (TCD) unit in the aromatic π-core with flexible long methylene chains (n = 0-12 and 16) in the longitudinal position were designed and synthesized. The OPVs were found to be liquid crystalline, and their enthalpies of phase transitions (also entropies) showed odd-even oscillation with respect to the number of carbon atoms in alkyl chains. OPVs with an even number of methylene units in the side chains showed higher enthalpies with respect to their highly packed solid structures compared to odd-numbered ones. Polarized light microscopic analysis confirmed the formation of cholesteric liquid crystalline (LC) phases of fan shaped textures with focal conics in OPVs with 5 ≤ n ≤ 9. OPVs with longer alkyl chains (OPV-10 to OPV-12) produced a birefringence pattern consisting of dark and bright ring-banded suprastructures. The melting temperature followed a sigmoidal trend, indicating the transformation of molecular self-organization in OPVs from solid to ring-banded suprastructures via cholesteric LC intermediates. At longer alkyl chain lengths, the van der Waals interactions among the alkyl chains became predominant and translated the mesogenic effect across the lamellae; as a consequence, the lamellae underwent twisted self-organization along the radial growth direction of the spherulites to produce bright and dark bands. Scanning electron microscope (SEM) analysis of cholesteric LC and ring-banded textures strongly supported the existence of twisted lamellae in the OPVs with ring-banded textures. Variable temperature X-ray diffraction analysis confirmed the reversibility of the molecular self-organization in the solid state and also showed the existence of the higher ordered

  2. The effect of calcining temperature on the properties of 0-3 piezoelectric composites of PZT and a liquid crystalline thermosetting polymer

    NARCIS (Netherlands)

    Ende, D.A. van den; Groen, W.A.; Zwaag, S. van der

    2011-01-01

    We report on the optimisation of a recently developed high performance 0-3 piezoelectric composite comprising of the piezoelectric Lead Zirconate Titanate (PZT) powder and a liquid crystalline thermosetting matrix polymer (LCT). The matrix polymer is a liquid crystalline polymer comprising of an

  3. Vapor-phase hydrothermal transformation of HTiOF3 intermediates into {001} faceted anatase single-crystalline nanosheets.

    Science.gov (United States)

    Liu, Porun; Wang, Yun; Zhang, Haimin; An, Taicheng; Yang, Huagui; Tang, Zhiyong; Cai, Weiping; Zhao, Huijun

    2012-12-07

    For the first time, a facile, one-pot hydrofluoric acid vapor-phase hydrothermal (HF-VPH) method is demonstrated to directly grow single-crystalline anatase TiO(2) nanosheets with 98.2% of exposed {001} faceted surfaces on the Ti substrate via a distinctive two-stage formation mechanism. The first stage produces a new intermediate crystal (orthorhombic HTiOF(3) ) that is transformed into anatase TiO(2) nanosheets during the second stage. The findings reveal that the HF-VPH reaction environment is unique and differs remarkably from that of liquid-phase hydrothermal processes. The uniqueness of the HF-VPH conditions can be readily used to effectively control the nanostructure growth. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Quantitative determination of the crystalline phases of the ceramic materials utilizing the Rietveld method

    International Nuclear Information System (INIS)

    Kniess, C.T.; Prates, P.B.; Lima, J.C. de; Kuhnen, N.C.; Riella, H.G.; Maliska, A.M.

    2009-01-01

    Ceramic materials have properties defined by their chemical and micro-structural composition. The quantification of the crystalline phases is a fundamental stage in the determination of the structure, properties and applications of a ceramic material. Within this context, this study aims is the quantitative determination of the crystalline phases of the ceramic materials developed with addition of mineral coal bottom ash, utilizing the X ray diffraction technique, through the method proposed by Rietveld. For the formulation of the ceramic mixtures a {3,3} simplex-lattice design was used, giving ten formulations of three components (two different types of clays and coal bottom ash). The crystalline phases identified in the ceramic materials after sintering at 1150 deg C during two hours are: quartz, tridimite, mullite and hematite. The proposed methodology utilizing the Rietveld method for the quantification relating to crystalline phases of the materials was shown to be adequate and efficient. (author)

  5. About the Shape of the Melting Line as a Possible Precursor of a Liquid-Liquid Phase Transition

    Science.gov (United States)

    Imre, Attila R.; Rzoska, Sylwester J.

    Several simple, non-mesogenic liquids can exists in two or more different liquid forms. When the liquid-liquid line, separating two liquid forms, meets the melting line, one can expect some kind of break on the melting line, caused by the different freezing/melting behaviour of the two liquid forms. Unfortunately recently several researchers are using this vein of thinking in reverse; seeing some irregularity on the melting line, they will expect a break and the appearance of a liquid-liquid line. In this short paper, we are going to show, that in the case of the high-pressure nitrogen studied recently by Mukherjee and Boehler, the high-pressure data can be easily described by a smooth, break-free function, the modified Simon-Glatzel equation. In this way, the break, suggested by them and consequently the suggested appearance of a new liquid phase of the nitrogen might be artefacts.

  6. Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Lan, S.; Ma, J. L.; Fan, J. [Department of Physics and Material Science, City University of Hong Kong 83 Tat Chee Ave., Kowloon (Hong Kong); Blodgett, M.; Kelton, K. F. [Department of Physics and Institute of Materials Science and Engineering, Washington University One Brookings Drive, St. Louis, Missouri 63130-4899 (United States); Wang, X.-L., E-mail: xlwang@cityu.edu.hk [Department of Physics and Material Science, City University of Hong Kong 83 Tat Chee Ave., Kowloon (Hong Kong); City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057 (China)

    2016-05-23

    Time-resolved synchrotron measurements were carried out to capture the structure evolution of an electrostatically levitated metallic-glass-forming liquid during free cooling. The experimental data shows a crossover in the liquid structure at ∼1000 K, about 115 K below the melting temperature and 150 K above the crystallization temperature. The structure change is characterized by a dramatic growth in the extended-range order below the crossover temperature. Molecular dynamics simulations have identified that the growth of the extended-range order was due to an increased correlation between solute atoms. These results provide structural evidence for a liquid-to-liquid-phase-transition in the supercooled metallic liquid.

  7. Effects of crystalline grain size and packing ratio of self-forming core/shell nanoparticles on magnetic properties at up to GHz bands

    International Nuclear Information System (INIS)

    Suetsuna, Tomohiro; Suenaga, Seiichi; Sakurada, Shinya; Harada, Koichi; Tomimatsu, Maki; Takahashi, Toshihide

    2011-01-01

    Self-forming core/shell nanoparticles of magnetic metal/oxide with crystalline grain size of less than 40 nm were synthesized. The nanoparticles were highly concentrated in an insulating matrix to fabricate a nanocomposite, whose magnetic properties were investigated. The crystalline grain size of the nanoparticles strongly influenced the magnetic anisotropy field, magnetic coercivity, relative permeability, and loss factor (tan δ=μ''/μ') at high frequency. The packing ratio of the magnetic metallic phase in the nanocomposite also influenced those properties. High permeability with low tan δ of less than 1.5% at up to 1 GHz was obtained in the case of the nanoparticles with crystalline grain size of around 15 nm with large packing ratio of the nanoparticles. - Research highlights: → Self-forming core/shell nanoparticles of magnetic metal/oxide were synthesized. → Crystalline grain size of the nanoparticle and its packing ratio were controlled. → Magnetic properties changed according to the size and packing ratio.

  8. Direct Visualisation of the Structural Transformation between the Lyotropic Liquid Crystalline Lamellar and Bicontinuous Cubic Mesophase.

    Science.gov (United States)

    Tran, Nhiem; Zhai, Jiali; Conn, Charlotte E; Mulet, Xavier; Waddington, Lynne J; Drummond, Calum J

    2018-05-29

    The transition between the lyotropic liquid crystalline lamellar and the bicontinuous cubic mesophase drives multiple fundamental cellular processes involving changes in cell membrane topology including endocytosis and membrane budding. While several theoretical models have been proposed to explain this dynamic transformation, experimental validation of these models has been challenging due to the short lived nature of the intermediates present during the phase transition. Herein, we report the direct observation of a lamellar to bicontinuous cubic phase transition in nanoscale dispersions using a combination of cryogenic transmission electron microscopy and static small angle X-ray scattering. The results represent the first experimental confirmation of a theoretical model which proposed that the bicontinuous cubic phase originates from the centre of a lamellar vesicle, then propagates outward via the formation of inter-lamellar attachments and stalks. The observation was possible due to the precise control of the lipid composition to place the dispersion systems at the phase boundary of a lamellar and a cubic phase, allowing for the creation of long-lived structural intermediates. By surveying the nanoparticles using cryogenic transmission electron microscopy, a complete phase transition sequence was established.

  9. The surface quasiliquid melt acceleration and the role of thermodynamic phase in the thermal decomposition of crystalline organic explosives

    Energy Technology Data Exchange (ETDEWEB)

    Henson, Bryan F [Los Alamos National Laboratory

    2010-01-01

    We show that melt acceleration in the thermal decomposition of crystalline organic solids is a manifestation of the surface quasiliquid phase. We derive a single universal rate law for melt acceleration that is a simple function of the metastable liquid activity below the melting point, and has a zero order term proportional to the quasiliquid thickness. We argue that the underlying mechanisms of this model will provide a molecular definition for the stability of the class of secondary explosives.

  10. Annual report on the development and characterization of solidified forms for nuclear wastes, 1979

    International Nuclear Information System (INIS)

    Chick, L.A.; McVay, G.L.; Mellinger, G.B.; Roberts, F.P.

    1980-12-01

    Development and characterization of solidified nuclear waste forms is a major continuing effort at Pacific Northwest Laboratory. Contributions from seven programs directed at understanding chemical composition, process conditions, and long-term behaviors of various nuclear waste forms are included in this report. The major findings of the report are included in extended figure captions that can be read as brief technical summaries of the research, with additional information included in a traditional narrative format. Waste form development proceeded on crystalline and glass materials for high-level and transuranic (TRU) wastes. Leaching studies emphasized new areas of research aimed at more basic understanding of waste form/aqueous solution interactions. Phase behavior and thermal effects research included studies on crystal phases in defense and TRU waste glasses and on liquid-liquid phase separation in borosilicate waste glasses. Radiation damage effects in crystals and glasses from alpha decay and from transmutation are reported

  11. Two-Order-Parameter Description of Liquids: Critical Phenomena and Phase Separation of Supercooled Liquids

    OpenAIRE

    Tanaka, Hajime

    1997-01-01

    Because of the isotropic and disordered nature of liquids, the anisotropy hidden in intermolecular interactions are often neglected. Accordingly, the order parameter describing a simple liquid has so far been believed to be only density. In contrast to this common sense, we propose that two order parameters, namely, density and bond order parameters, are required to describe the phase behavior of liquids since they intrinsically tend to form local bonds. This model gives us clear physical exp...

  12. Measurements of liquid-phase turbulence in gas–liquid two-phase flows using particle image velocimetry

    International Nuclear Information System (INIS)

    Zhou, Xinquan; Doup, Benjamin; Sun, Xiaodong

    2013-01-01

    Liquid-phase turbulence measurements were performed in an air–water two-phase flow loop with a circular test section of 50 mm inner diameter using a particle image velocimetry (PIV) system. An optical phase separation method-–planar laser-induced fluorescence (PLIF) technique—which uses fluorescent particles and an optical filtration technique, was employed to separate the signals of the fluorescent seeding particles from those due to bubbles and other noises. An image pre-processing scheme was applied to the raw PIV images to remove the noise residuals that are not removed by the PLIF technique. In addition, four-sensor conductivity probes were adopted to measure the radial distribution of the void fraction. Two benchmark tests were performed: the first was a comparison of the PIV measurement results with those of similar flow conditions using thermal anemometry from previous studies; the second quantitatively compared the superficial liquid velocities calculated from the local liquid velocity and void fraction measurements with the global liquid flow rate measurements. The differences of the superficial liquid velocity obtained from the two measurements were bounded within ±7% for single-phase flows and two-phase bubbly flows with the area-average void fraction up to 18%. Furthermore, a preliminary uncertainty analysis was conducted to investigate the accuracy of the two-phase PIV measurements. The systematic uncertainties due to the circular pipe curvature effects, bubble surface reflection effects and other potential uncertainty sources of the PIV measurements were discussed. The purpose of this work is to facilitate the development of a measurement technique (PIV-PLIF) combined with image pre-processing for the liquid-phase turbulence in gas–liquid two-phase flows of relatively high void fractions. The high-resolution data set can be used to more thoroughly understand two-phase flow behavior, develop liquid-phase turbulence models, and assess high

  13. Molecular tilt near nanoparticles in the smectic A phase of de Vries liquid-crystalline compound

    Czech Academy of Sciences Publication Activity Database

    Lejček, Lubor; Novotná, Vladimíra; Glogarová, Milada

    2014-01-01

    Roč. 89, č. 1 (2014), "012505-1"-"012505-6" ISSN 1539-3755 R&D Projects: GA ČR(CZ) GAP204/11/0723 Institutional support: RVO:68378271 Keywords : liquid crystals * smectic phases * nanoparticles * deVries behaviour Subject RIV: JJ - Other Materials Impact factor: 2.288, year: 2014 http://pre. aps .org/abstract/PRE/v89/i1/e012505

  14. Manipulating Liquids With Acoustic Radiation Pressure Phased Arrays

    Science.gov (United States)

    Oeftering, Richard C.

    1999-01-01

    High-intensity ultrasound waves can produce the effects of "Acoustic Radiation Pressure" (ARP) and "acoustic streaming." These effects can be used to propel liquid flows and to apply forces that can be used to move or manipulate floating objects or liquid surfaces. NASA's interest in ARP includes the remote-control agitation of liquids and the manipulation of bubbles and drops in liquid experiments and propellant systems. A high level of flexibility is attained by using a high-power acoustic phased array to generate, steer, and focus a beam of acoustic waves. This is called an Acoustic Radiation Pressure Phased Array, or ARPPA. In this approach, many acoustic transducer elements emit wavelets that converge into a single beam of sound waves. Electronically coordinating the timing, or "phase shift," of the acoustic waves makes it possible to form a beam with a predefined direction and focus. Therefore, a user can direct the ARP force at almost any desired point within a liquid volume. ARPPA lets experimenters manipulate objects anywhere in a test volume. This flexibility allow it to be used for multiple purposes, such as to agitate liquids, deploy and manipulate drops or bubbles, and even suppress sloshing in spacecraft propellant tanks.

  15. Antibacterial photocatalytic activity of different crystalline TiO2 phases in oral multispecies biofilm.

    Science.gov (United States)

    Pantaroto, Heloisa N; Ricomini-Filho, Antonio P; Bertolini, Martinna M; Dias da Silva, José Humberto; Azevedo Neto, Nilton F; Sukotjo, Cortino; Rangel, Elidiane C; Barão, Valentim A R

    2018-07-01

    Titanium dioxide (TiO 2 ) incorporation in biomaterials is a promising technology due to its photocatalytic and antibacterial activities. However, the antibacterial potential of different TiO 2 crystalline structures on a multispecies oral biofilm remains unknown. We hypothesized that the different crystalline TiO 2 phases present different photocatalytic and antibacterial activities. Three crystalline TiO 2 films were deposited by magnetron sputtering on commercially pure titanium (cpTi), in order to obtain four groups: (1) machined cpTi (control); (2) A-TiO 2 (anatase); (3) M-TiO 2 (mixture of anatase and rutile); (4) R-TiO 2 (rutile). The morphology, crystalline phase, chemical composition, hardness, elastic modulus and surface free energy of the surfaces were evaluated. The photocatalytic potential was assessed by methylene blue degradation assay. The antibacterial activity was evaluated on relevant oral bacteria, by using a multispecies biofilm (Streptococcus sanguinis, Actinomyces naeslundii and Fusobacterium nucleatum) formed on the treated titanium surfaces (16.5h) followed by UV-A light exposure (1h) to generate reactive oxygen species production. All TiO 2 films presented around 300nm thickness and improved the hardness and elastic modulus of cpTi surfaces (p0.05 vs. control). This study brings new insights on the development of extra oral protocols for the photocatalytic activity of TiO 2 in oral biofilm-associated disease. Anatase and mixture-TiO 2 showed antibacterial activity on this oral bacterial biofilm, being promising surface coatings for dental implant components. Copyright © 2018 The Academy of Dental Materials. All rights reserved.

  16. Low-pressure phase diagram of crystalline benzene from quantum Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Azadi, Sam, E-mail: s.azadi@ucl.ac.uk [Departments of Physics and Astronomy, University College London, Thomas Young Center, London Centre for Nanotechnology, London WC1E 6BT (United Kingdom); Cohen, R. E. [Extreme Materials Initiative, Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015 (United States); Department of Earth- and Environmental Sciences, Ludwig Maximilians Universität, Munich 80333 (Germany); Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2016-08-14

    We studied the low-pressure (0–10 GPa) phase diagram of crystalline benzene using quantum Monte Carlo and density functional theory (DFT) methods. We performed diffusion quantum Monte Carlo (DMC) calculations to obtain accurate static phase diagrams as benchmarks for modern van der Waals density functionals. Using density functional perturbation theory, we computed the phonon contributions to the free energies. Our DFT enthalpy-pressure phase diagrams indicate that the Pbca and P2{sub 1}/c structures are the most stable phases within the studied pressure range. The DMC Gibbs free-energy calculations predict that the room temperature Pbca to P2{sub 1}/c phase transition occurs at 2.1(1) GPa. This prediction is consistent with available experimental results at room temperature. Our DMC calculations give 50.6 ± 0.5 kJ/mol for crystalline benzene lattice energy.

  17. Solvent-free directed patterning of a highly ordered liquid crystalline organic semiconductor via template-assisted self-assembly for organic transistors.

    Science.gov (United States)

    Kim, Aryeon; Jang, Kwang-Suk; Kim, Jinsoo; Won, Jong Chan; Yi, Mi Hye; Kim, Hanim; Yoon, Dong Ki; Shin, Tae Joo; Lee, Myong-Hoon; Ka, Jae-Won; Kim, Yun Ho

    2013-11-20

    Highly ordered organic semiconductor micropatterns of the liquid-crystalline small molecule 2,7-didecylbenzothienobenzothiophene (C10 -BTBT) are fabricated using a simple method based on template-assisted self-assembly (TASA). The liquid crystallinity of C10 -BTBT allows solvent-free fabrication of high-performance printed organic field-effect transistors (OFETs). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Liquid structure as a guide for phase stability in the solid state: Discovery of a stable compound in the Au-Si alloy system

    International Nuclear Information System (INIS)

    Tasci, Emre S.; Sluiter, Marcel H.F.; Pasturel, Alain; Villars, Pierre

    2010-01-01

    A new crystalline ground state was discovered in the Au-Si system through first-principles electronic structure calculations. The new structure was found using the experimentally and theoretically determined local atomic structure in the liquid as a guide for the solid state. Local atomic structure in the liquid was matched with that for all known crystal structures as compiled in the Pauling File structural database. The best matching crystalline structures were then explicitly calculated using first-principles methods. Most candidate crystal structures were found to be close, but above the enthalpy of a composition weighted average of the face-centered cubic Au and diamond structure Si terminal phases, but one crystal structure was more stable than the terminal phases by about 10 meV atom -1 at T = 0 K. As first-principles simulations of local structure are feasible for most liquid alloys, the present methodology is applicable to other alloys lying near a eutectic composition.

  19. Synthesis, characterization and photoinduction of optical anisotropy in liquid crystalline diblock azo-copolymers

    NARCIS (Netherlands)

    Forcen, P.; Oriol, L.; Sanchez, S.; Alcala, R.; Hvilsted, S.; Jankova, K.; Loos, J.

    2007-01-01

    Diblock copolymers with polymethyl methacrylate and side chain liquid crystalline (LC) azopolymethacrylate blocks were synthesized by atom transfer radical polymerization (ATRP). The azobenzene content in these copolymers ranges from 52 to 7 wt %. For an azo content down to 20% they exhibit a LC

  20. Graphene/phase change material nanocomposites: light-driven, reversible electrical resistivity regulation via form-stable phase transitions.

    Science.gov (United States)

    Wang, Yunming; Mi, Hongyi; Zheng, Qifeng; Ma, Zhenqiang; Gong, Shaoqin

    2015-02-04

    Innovative photoresponsive materials are needed to address the complexity of optical control systems. Here, we report a new type of photoresponsive nanomaterial composed of graphene and a form-stable phase change material (PCM) that exhibited a 3 orders of magnitude change in electrical resistivity upon light illumination while retaining its overall original solid form at the macroscopic level. This dramatic change in electrical resistivity also occurred reversibly through the on/off control of light illumination. This was attributed to the reversible phase transition (i.e., melting/recrystallization) behavior of the microscopic crystalline domains present in the form-stable PCM. The reversible phase transition observed in the graphene/PCM nanocomposite was induced by a reversible temperature change through the on/off control of light illumination because graphene can effectively absorb light energy and convert it to thermal energy. In addition, this graphene/PCM nanocomposite also possessed excellent mechanical properties. Such photoresponsive materials have many potential applications, including flexible electronics.

  1. Functionalized Nanoporous Polymer Membranes with Well-Defined Pore Architectures via Lyotropic Liquid-Crystalline Monomers

    National Research Council Canada - National Science Library

    Gin, Douglas

    1997-01-01

    .... Two lyotropic liquid-crystalline monomer platforms have been synthesized. The interchannel separations in the polymerizable materials can be varied in the 30-40 A range by the choice of counterion on the ionic headgroup of the monomers...

  2. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Kushner, Mark Jay [University of Michigan

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  3. Emergence of liquid crystalline order in the lowest Landau level of a quantum Hall system with internal anisotropy

    Science.gov (United States)

    Ciftja, Orion

    2018-05-01

    It has now become evident that interplay between internal anisotropy parameters (such as electron mass anisotropy and/or anisotropic coupling of electrons to the substrate) and electron-electron correlation effects can create a rich variety of possibilities especially in quantum Hall systems. The electron mass anisotropy or material substrate effects (for example, the piezoelectric effect in GaAs) can lead to an effective anisotropic interaction potential between electrons. For lack of knowledge of realistic ab-initio potentials that may describe such effects, we adopt a phenomenological approach and assume that an anisotropic Coulomb interaction potential mimics the internal anisotropy of the system. In this work we investigate the emergence of liquid crystalline order at filling factor ν = 1/6 of the lowest Landau level, a state very close to the point where a transition from the liquid to the Wigner solid happens. We consider small finite systems of electrons interacting with an anisotropic Coulomb interaction potential and study the energy stability of an anisotropic liquid crystalline state relative to its isotropic Fermi-liquid counterpart. Quantum Monte Carlo simulation results in disk geometry show stabilization of liquid crystalline order driven by an anisotropic Coulomb interaction potential at all values of the interaction anisotropy parameter studied.

  4. NMR studies of liquid crystals and molecules dissolved in liquid crystal solvents

    Energy Technology Data Exchange (ETDEWEB)

    Drobny, Gary Peter [Univ. of California, Berkeley, CA (United States)

    1982-11-01

    This thesis describes several studies in which nuclear magnetic resonance (nmr) spectroscopy has been used to probe the structure, orientation and dynamics of liquid crystal mesogens and molecules dissolved in liquid crystalline phases. In addition, a modern high field nmr spectrometer is described which has been used to perform such nmr studies. Chapter 1 introduces the quantum mechanical formalisms used throughout this thesis and briefly reviews the fundamentals of nuclear spin physics and pulsed nmr spectroscopy. First the density operator is described and a specific form for the canonical ensemble is derived. Then Clebsch-Gordon coefficients, Wigner rotation matrices, and irreducible tensor operators are reviewed. An expression for the equilibrium (Curie) magnetization is obtained and the linear response of a spin system to a strong pulsed r.f. irradiation is described. Finally, the spin interaction Hamiltonians relevant to this work are reviewed together with their truncated forms. Chapter 2 is a deuterium magnetic resonance study of two 'nom' liquid crystals which possess several low temperature mesomorphic phases. Specifically, deuterium quadrupolar echo spectroscopy is used to determine the orientation of the liquid crystal molecules in smectic phases, the changes in molecular orientation and motion that occur at smectic-smectic phase transitions, and the order of the phase transitions. For both compounds, the phase sequence is determined to be isotropic, nematic, smectic A, smectic C, smectic BA, smectic BC, and crystalline. The structure of the smectic A phase is found to be consistent with the well-known model of a two dimensional liquid in which molecules are rapidly rotating about their long axes and oriented at right angles to the plane of the layers. Molecules in the smectic C phase are found to have their long axes tilted with respect to the layer normal, and the tilt angle is temperature dependent, increasing from

  5. Liquid Solution Phase Epitaxial Growth of Al-doped f-SiC for LEDs

    DEFF Research Database (Denmark)

    Tang, Kai; Ma, Xiang; van der Eijk, Casper

    light quality and longer lifespan, compared to the current yellow phosphor based white LEDs. Liquid phase epitaxy technology is able to yield a high crystalline quality in terms of structural perfection owing to the fact that it is a near equilibrium process. In addition, the technological equipment...... are presented and discussed. Since operational temperature of LPE growth is much lower than that currently used in physical vapour transport (PVT) process, it is expected to save the energy consumption for SiC crystal growth....

  6. μ-'Diving suit' for liquid-phase high-Q resonant detection.

    Science.gov (United States)

    Yu, Haitao; Chen, Ying; Xu, Pengcheng; Xu, Tiegang; Bao, Yuyang; Li, Xinxin

    2016-03-07

    A resonant cantilever sensor is, for the first time, dressed in a water-proof 'diving suit' for real-time bio/chemical detection in liquid. The μ-'diving suit' technology can effectively avoid not only unsustainable resonance due to heavy liquid-damping, but also inevitable nonspecific adsorption on the cantilever body. Such a novel technology ensures long-time high-Q resonance of the cantilever in solution environment for real-time trace-concentration bio/chemical detection and analysis. After the formation of the integrated resonant micro-cantilever, a patterned photoresist and hydrophobic parylene thin-film are sequentially formed on top of the cantilever as sacrificial layer and water-proof coat, respectively. After sacrificial-layer release, an air gap is formed between the parylene coat and the cantilever to protect the resonant cantilever from heavy liquid damping effect. Only a small sensing-pool area, located at the cantilever free-end and locally coated with specific sensing-material, is exposed to the liquid analyte for gravimetric detection. The specifically adsorbed analyte mass can be real-time detected by recording the frequency-shift signal. In order to secure vibration movement of the cantilever and, simultaneously, reject liquid leakage from the sensing-pool region, a hydrophobic parylene made narrow slit structure is designed surrounding the sensing-pool. The anti-leakage effect of the narrow slit and damping limited resonance Q-factor are modelled and optimally designed. Integrated with electro-thermal resonance excitation and piezoresistive frequency readout, the cantilever is embedded in a micro-fluidic chip to form a lab-chip micro-system for liquid-phase bio/chemical detection. Experimental results show the Q-factor of 23 in water and longer than 20 hours liquid-phase continuous working time. Loaded with two kinds of sensing-materials at the sensing-pools, two types of sensing chips successfully show real-time liquid-phase detection to ppb

  7. Transient phases during fast crystallization of organic thin films from solution

    Science.gov (United States)

    Wan, Jing; Li, Yang; Ulbrandt, Jeffrey G.; Smilgies, Detlef-M.; Hollin, Jonathan; Whalley, Adam C.; Headrick, Randall L.

    2016-01-01

    We report an in situ microbeam grazing incidence X-ray scattering study of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) organic semiconductor thin film deposition by hollow pen writing. Multiple transient phases are observed during the crystallization for substrate temperatures up to ≈93 °C. The layered smectic liquid-crystalline phase of C8-BTBT initially forms and preceedes inter-layer ordering, followed by a transient crystalline phase for temperature >60 °C, and ultimately the stable phase. Based on these results, we demonstrate a method to produce extremely large grain size and high carrier mobility during high-speed processing. For high writing speed (25 mm/s), mobility up to 3.0 cm2/V-s has been observed.

  8. A quasimechanism of melt acceleration in the thermal decomposition of crystalline organic solids

    Energy Technology Data Exchange (ETDEWEB)

    Henson, Bryan F [Los Alamos National Laboratory

    2009-01-01

    It has been know for half a century that many crystalline organic solids undergo an acceleration in the rate of thermal decomposition as the melting temperature is approached. This acceleration terminates at the melting point, exhibiting an Arrhenius-like temperature dependence in the faster decomposition rate from the liquid phase. This observation has been modeled previously using various premelting behaviors based on e.g. freezing point depression induced by decomposition products or solvent impurities. These models do not, however, indicate a mechanism for liquid formation and acceleration which is an inherent function of the bulk thermodynamics of the molecule. Here we show that such an inherent thermodynamic mechanism for liquid formation exists in the form of the so-called quasi-liquid layer at the solid surface. We explore a kinetic mechanism which describes the acceleration of rate and is a function of the free energies of sublimation and vaporization. We construct a differential rate law from these thermodynamic free energies and a normalized progress variable. We further construct a reduced variable formulation of the model which is a simple function of the metastable liquid activity below the melting point, and show that it is applicable to the observed melt acceleration in several common organic crystalline solids. A component of the differential rate law, zero order in the progress variable, is shown to be proportional to the thickness of the quasiliquid layer predicted by a recent thermodynamic theory for this phenomenon. This work therefore serves not only to provide new insight into thermal decomposition in a broad class or organic crystalline solids, but also further validates the underlying thermodynamic nature of the phenomenon of liquid formation on the molecular surface at temperatures below the melting point.

  9. A review of solid-fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid-liquid and multiphase solid-liquid flows

    Science.gov (United States)

    Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.

    2017-09-01

    Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.

  10. Modeling of liquid phases

    CERN Document Server

    Soustelle, Michel

    2015-01-01

    This book is part of a set of books which offers advanced students successive characterization tool phases, the study of all types of phase (liquid, gas and solid, pure or multi-component), process engineering, chemical and electrochemical equilibria, and the properties of surfaces and phases of small sizes. Macroscopic and microscopic models are in turn covered with a constant correlation between the two scales. Particular attention has been given to the rigor of mathematical developments. This second volume in the set is devoted to the study of liquid phases.

  11. The strength of crystalline color superconductors

    International Nuclear Information System (INIS)

    Mannarelli, Massimo; Rajagopal, Krishna; Sharma, Rishi

    2007-01-01

    We present a study of the shear modulus of the crystalline color superconducting phase of quark matter, showing that this phase of dense, but not asymptotically dense, quark matter responds to shear stress as a very rigid solid. This phase is characterized by a gap parameter Δ that is periodically modulated in space and therefore spontaneously breaks translational invariance. We derive the effective action for the phonon fields that describe space- and time-dependent fluctuations of the crystal structure formed by Δ, and obtain the shear modulus from the coefficients of the spatial derivative terms. Within a Ginzburg-Landau approximation, we find shear moduli which are 20 to 1000 times larger than those of neutron star crusts. This phase of matter is thus more rigid than any known material in the universe, but at the same time the crystalline color superconducting phase is also superfluid. These properties raise the possibility that the presence of this phase within neutron stars may have distinct implications for their phenomenology. For example (some) pulsar glitches may originate in crystalline superconducting neutron star cores

  12. Fluctuations in an Inorganic Glass Forming System Capable of Liquid-Liquid Phase Separation

    Science.gov (United States)

    Bogdanov, V.; Maksimov, L.; Anan'ev, A.; Nemilov, S.; Rusan, V.

    2012-08-01

    Rayleigh and Mandel'shtam-Brillouin scattering (RMBS) spectroscopy and high temperature ultrasonic study (HTUS) are applied to PbO-Al2O3-B2O3 glass forming system characterized by over liquidus miscibility gap. Temperature dependences of ultrasonic velocity of glass melts were measured in 600-1200°C range. "Frozen-in" density fluctuations in two phase glasses were estimated from HTUS data by Macedo-Shroeder formulation. Landau-Placzek ratios were found from RMBS spectra of single phase glasses at room temperature. Results of RMBS and HTUS were compared with well-known SAXS data. It was found that contribution of "frozen-in" density fluctuations into light scattering by two-phase glasses is much smaller than the scattering on particles of the second glassy phase causing opalescence of the glasses. Abnormal "water-like" growth of ultrasonic velocity with melt temperature can be explained by coexistence of two types of packaging of structural elements.

  13. Irradiation induced crystalline to amorphous transition

    International Nuclear Information System (INIS)

    Bourgoin, J.

    1980-01-01

    Irradiation of a crystalline solid with energetic heavy particles results in cascades of defects which, with increasing dose, overlap and form a continuous disordered layer. In semiconductors the physical properties of such disordered layers are found to be similar to those of amorphous layers produced by evaporation. It is shown in the case of silicon, that the transition from a disordered crystalline (X) layer to an amorphous (α) layer occurs when the Gibbs energy of the X phase and of the defects it contains becomes larger than the Gibbs energy of the α phase. (author)

  14. Liquid crystalline phase behavior of protein fibers in water: experiments versus theory.

    Science.gov (United States)

    Jung, Jin-Mi; Mezzenga, Raffaele

    2010-01-05

    We have developed a new method allowing the study of the thermodynamic phase behavior of mesoscopic colloidal systems consisting of amyloid protein fibers in water, obtained by heat denaturation and aggregation of beta-lactoglobulin, a dairy protein. The fibers have a cross section of about 5.2 nm and two groups of polydisperse contour lengths: (i) long fibers of 1-20 microm, showing semiflexible behavior, and (ii) short rods of 100-200 nm long, obtained by cutting the long fibers via high-pressure homogenization. At pH 2 without salt, these fibers are highly charged and stable in water. We have studied the isotropic-nematic phase transition for both systems and compared our results with the theoretical values predicted by Onsager's theory. The experimentally measured isotropic-nematic phase transition was found to occur at 0.4% and at 3% for the long and short fibers, respectively. For both systems, this phase transition occurs at concentrations more than 1 order of magnitude lower than what is expected based on Onsager's theory. Moreover, at low enough pH, no intermediate biphasic region was observed between the isotropic phase and the nematic phase. The phase diagrams of both systems (pH vs concentration) showed similar, yet complex and rich, phase behavior. We discuss the possible physical fundamentals ruling the phase diagram as well as the discrepancy we observe for the isotropic-nematic phase transition between our experimental results and the predicted theoretical results. Our work highlights that systems formed by water-amyloid protein fibers are way too complex to be understood based solely on Onsager's theories. Experimental results are revisited in terms of the Flory's theory (1956) for suspensions of rods, which allows accounting for rod-solvent hydrophobic interactions. This theoretical approach allows explaining, on a semiquantitative basis, most of the discrepancies observed between the experimental results and Onsager's predictions. The sources of

  15. The study of diffusion mechanism in network-forming liquid: Silica liquid

    Directory of Open Access Journals (Sweden)

    P. K. Hung

    2016-12-01

    Full Text Available Molecular dynamics simulation is employed to investigate the diffusion mechanism in silica melt, a typical network-forming liquid. From the analysis of SiOx→SiOx±1 and OSiy→OSiy±1 reactions we reveal two moving modes: fast hopping and slow collective moving. Accordingly the atoms diffuse in the melt by simple hopping or through displacing of super-molecule (SM. A cluster analysis is performed for several of atom sets. It is shown that the melt exhibits non-uniform spatial distribution of reaction which causes the dynamics heterogeneity (DH. Further, the network structure of the melt consists of main subnet and large defective subnets. These subnets differ strongly in local environment, chemical composition and atomic density. This result evidences two distinct phases, the structure heterogeneity in silica melt and supports the polymorphism of network-forming liquid. We also find out that the node transformation spreads non-uniformly through the network structure. It takes place mainly in large defective subnet. The strong localization of node transformation is responsible for dynamical slowdown.

  16. Extraction Equilibrium of Acrylic Acid by Aqueous Two-Phase Systems Using Hydrophilic Ionic Liquids

    International Nuclear Information System (INIS)

    Lee, Yong Hwa; Lee, Woo Youn; Kim, Ki-Sub; Hong, Yeon Ki

    2014-01-01

    As an effective method for extraction of acrylic acid, aqueous two-phase systems based on morpholinium ionic liquids were used in this study. Effects of the alkyl chain length of cation in morpholinium ionic liquids on phase diagram and extraction efficiencies were investigated. Experimental results show that aqueous two phase systems can be formed by adding appropriate amount of morpholinium ionic liquids to aqueous K 2 HPO 4 solutions. It can be found that the ability of morpholinium ionic liquids for phase separation followed the order [HMMor][Br]>[OMMor][Br]>[BMMor][Br]>[EMMor][Br]. There was little difference between binodal curves of imidazolium ionic liquids and those of morpholinium ionic liquids. 50-90% of the extraction efficiency was observed for acrylic acid by aqueous two phase extraction of acrylic acid with morpholinium ionic liquids. It can be concluded that morpholinium ionic liquids/K 2 HPO 4 were effective for aqueous two phases extraction of acrylic acid comparing to imidazolium ionic liquids/K 2 HPO 4 systems because of their lower cost

  17. Laser-induced separation of hydrogen isotopes in the liquid phase

    International Nuclear Information System (INIS)

    Beattie, W.; Freund, S.; Holland, R.; Maier, W.

    1980-01-01

    A process for separating hydrogen isotopes which comprises (A) forming a liquid phase of hydrogen-bearing feedstock compound at a temperature at which the spectral features of the feedstock compound are narrow enough or the absorption edges sharp enough to permit spectral features corresponding to the different hydrogen isotopes to be separated to be distinguished, (B) irradiating the liquid phase at said temperature with monochromatic radiation of a first wavelength which selectively or at least preferentially excites those molecules of said feedstock compound containing a first hydrogen isotope, and (C) subjecting the excited molecules to physical or chemical processes or a combination thereof whereby said first hydrogen isotope contained in said excited molecules is separated from other hydrogen isotopes contained in the unexcited molecules in said liquid phase

  18. Atomic structure and electronic properties of the SixSb100-x phase-change memory material

    DEFF Research Database (Denmark)

    Verma, Ashok K.; Modak, Paritosh; Svane, Axel

    2011-01-01

    The electronic and structural properties of SixSb100-x (x∼16) materials are investigated using first-principles molecular dynamics simulations. Crystalline-liquid-amorphous phase transitions are examined and remarkable changes in the local structure around the Si atoms are found. The average Si...... coordination number 6 (3 long + 3 short Si-Sb bonds) of the crystalline phase changes to 4 (3 long Si-Sb + 1 short Si-Si bonds) by preserving three Si-Sb bonds in both the liquid and the amorphous phases. In the amorphous phase ∼90% of the Si atoms are fourfold coordinated compared to 40% in the liquid....... The electronic density of states is metal-like in both the crystalline and the liquid phases, but it exhibits a pseudogap at the Fermi level in the amorphous phase, reflecting the strong abundance of fourfold coordinated Si in the amorphous phase....

  19. Cubic liquid crystalline nanoparticles containing a polysaccharide from Ulva fasciata with potent antihyperlipidaemic activity

    Directory of Open Access Journals (Sweden)

    Azza A. Matloub

    2018-02-01

    Full Text Available The present study involves the preparation of cubic liquid crystalline nanoparticles (cubsomes for liver targeting to assess the potential of a formulated bioactive polysaccharide isolated from the hot aqueous extract of Ulva fasciata as an alternative natural agent with anti-hyperlipidaemic activity. Cubosomal nanoparticles were prepared by disrupting the cubic gel phase of the polysaccharide and water in the presence of a surfactant. Different lipid matrices and stabilizers were tested. All the formulations were in the nanosize range and showed sufficient negative charge to inhibit the aggregation of the cubosomes. Drug entrapment efficiencies (EEs% were determined and in vitro release studies were performed. Transmission electron microscopy (TEM and differential scanning calorimetry were used to analyze the loaded cubosomal nanoparticles containing glyceryl monostearate (GMO 2.25 g, poloxamer 407 (0.25 g and 50 mg of the polysaccharide. A preclinical study comparing the cubic liquid crystalline nanoparticles containing polysaccharide to fluvastatin as a reference drug in hyperlipidaemic rats was conducted. The rats treated with the polysaccharide- loaded cubosomes showed significant decreases in total cholesterol (TC, triglycerides (TG and total lipid (TL compared to the untreated HL rats. In addition, oxidative stress and antioxidant biomarkers were measured in the HL rats. Compared to the untreated HL rats, the cubosome treated rats showed a significant reduction in malondialdehyde (MDA, whereas insignificant changes were detected in nitric oxide (NO, glutathione (GSH levels and total antioxidant capacity (TAC. Further, vascular and intercellular adhesion molecules (VCAM, ICAM, and myeloperoxidase were demonstrated. A histopathological examination was conducted to study the alterations in histopathological lesions and to document the biochemical results. In conclusion, this study demonstrates the superiority of using a natural lipid

  20. Determination and modeling of binary and ternary solid-liquid phase equilibrium for the systems formed by 1,8-dinitronaphthalene and 1,5-dinitronaphthalene and N-methyl-2-pyrrolidone

    International Nuclear Information System (INIS)

    Xie, Yong; Du, Cunbin; Cong, Yang; Wang, Jian; Han, Shuo; Zhao, Hongkun

    2016-01-01

    Highlights: • SLE formed by 1,5 and/or 1,8-dinitronaphthalene and NMP was determined. • The binary and ternary phase diagrams were constructed. • The phase diagrams were correlated and calculated using thermodynamic models. - Abstract: The solubility of 1,8-dinitronaphthalene and 1,5-dinitronaphthalene in N-methyl-2-pyrrolidone at (293.15–343.15) K and the mutual solubility of the ternary 1,5-dinitronaphthalene + 1,8-dinitronaphthalene + N-methyl-2-pyrrolidone mixture at (313.15, 328.15 and 343.15) K were determined experimentally using the isothermal saturation method under atmospheric pressure (101.2 kPa). The solubility of 1,8-dinitronaphthalene in N-methyl-2-pyrrolidone is larger than that of 1,5-dinitronaphthalene. Three isothermal ternary phase diagrams were built according to the measured mutual solubility data. In each ternary phase diagram, there were one co-saturated point, two boundary curves, and three crystalline regions. Two pure solids (pure 1,8-dinitronaphthalene and pure 1,5-dinitronaphthalene) were formed in the ternary system at a given temperature, which were identified by Schreinemaker’s method of wet residue and powder X-ray diffraction (PXRD) pattern. The crystallization region of 1,8-dinitronaphthalene was smaller than that of 1,5-dinitronaphthalene at each temperature. The modified Apelblat equation, λh equation, NRTL model and Wilson model were used to correlate the solubility of 1,8-dinitronaphthalene and 1,5-dinitronaphthalene in N-methyl-2-pyrrolidone; and the NRTL and Wilson models were employed to correlate and calculate the mutual solubility for the ternary 1,5-dinitronaphthalene + 1,8-dinitronaphthalene + N-methyl-2-pyrrolidone system. The largest value of root-mean-square deviation (RMSD) was 20.34 × 10 −4 for the binary systems; and 7.38 × 10 −3 for ternary system. The calculated results via these models are all acceptable for the binary and ternary solid-liquid phase equilibrium.

  1. Comparison of Oxidative Stresses Mediated by Different Crystalline Forms and Surface Modification of Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Karim Samy El-Said

    2015-01-01

    Full Text Available Titanium dioxide nanoparticles (TiO2 NPs are manufactured worldwide for use in a wide range of applications. There are two common crystalline forms of TiO2 anatase and rutile with different physical and chemical characteristics. We previously demonstrated that an increased DNA damage response is mediated by anatase crystalline form compared to rutile. In the present study, we conjugated TiO2 NPs with polyethylene glycol (PEG in order to reduce the genotoxicity and we evaluated some oxidative stress parameters to obtain information on the cellular mechanisms of DNA damage that operate in response to TiO2 NPs different crystalline forms exposure in hepatocarcinoma cell lines (HepG2. Our results indicated a significant increase in oxidative stress mediated by the anatase form of TiO2 NPs compared to rutile form. On the other hand, PEG modified TiO2 NPs showed a significant decrease in oxidative stress as compared to TiO2 NPs. These data suggested that the genotoxic potential of TiO2 NPs varies with crystalline form and surface modification.

  2. Gas-liquid phase coexistence in a tetrahedral patchy particle model

    International Nuclear Information System (INIS)

    Romano, Flavio; Tartaglia, Piero; Sciortino, Francesco

    2007-01-01

    We evaluate the location of the gas-liquid coexistence line and of the associated critical point for the primitive model for water (PMW), introduced by Kolafa and Nezbeda (1987 Mol. Phys. 61 161). Besides being a simple model for a molecular network forming liquid, the PMW is representative of patchy proteins and novel colloidal particles interacting with localized directional short-range attractions. We show that the gas-liquid phase separation is metastable, i.e. it takes place in the region of the phase diagram where the crystal phase is thermodynamically favoured, as in the case of particles interacting via short-range attractive spherical potentials. We do not observe crystallization close to the critical point. The region of gas-liquid instability of this patchy model is significantly reduced as compared to that from equivalent models of spherically interacting particles, confirming the possibility of observing kinetic arrest in a homogeneous sample driven by bonding as opposed to packing. (fast track communication)

  3. Second amorphous-to-crystalline phase transformation in Cu60Ti20Zr20 bulk metallic glass

    DEFF Research Database (Denmark)

    Cao, Q.P.; Li, J.F.; Zhang, P.N.

    2007-01-01

    The second amorphous-to-crystalline phase transformation in Cu60Ti20Zr20 bulk metallic glass was investigated by differential scanning calorimetry and x-ray diffractometry. The difference of the Gibbs free energies between the amorphous phase and the crystalline products during the transformation...

  4. Pulsed zero field NMR of solids and liquid crystals

    International Nuclear Information System (INIS)

    Thayer, A.M.

    1987-02-01

    This work describes the development and applications to solids and liquid crystals of zero field nuclear magnetic resonance (NMR) experiments with pulsed dc magnetic fields. Zero field NMR experiments are one approach for obtaining high resolution spectra of amorphous and polycrystalline materials which normally (in high field) display broad featureless spectra. The behavior of the spin system can be coherently manipulated and probed in zero field with dc magnetic field pulses which are employed in a similar manner to radiofrequency pulses in high field NMR experiments. Nematic phases of liquid crystalline systems are studied in order to observe the effects of the removal of an applied magnetic field on sample alignment and molecular order parameters. In nematic phases with positive and negative magnetic susceptibility anisotropies, a comparison between the forms of the spin interactions in high and low fields is made. High resolution zero field NMR spectra of unaligned smectic samples are also obtained and reflect the symmetry of the liquid crystalline environment. These experiments are a sensitive measure of the motionally induced asymmetry in biaxial phases. Homonuclear and heteronuclear solute spin systems are compared in the nematic and smectic phases. Nonaxially symmetric dipolar couplings are reported for several systems. The effects of residual fields in the presence of a non-zero asymmetry parameter are discussed theoretically and presented experimentally. Computer programs for simulations of these and other experimental results are also reported. 179 refs., 75 figs

  5. Recent development of ionic liquid stationary phases for liquid chromatography.

    Science.gov (United States)

    Shi, Xianzhe; Qiao, Lizhen; Xu, Guowang

    2015-11-13

    Based on their particular physicochemical characteristics, ionic liquids have been widely applied in many fields of analytical chemistry. Many types of ionic liquids were immobilized on a support like silica or monolith as stationary phases for liquid chromatography. Moreover, different approaches were developed to bond covalently ionic liquids onto the supporting materials. The obtained ionic liquid stationary phases show multi-mode mechanism including hydrophobic, hydrophilic, hydrogen bond, anion exchange, π-π, and dipole-dipole interactions. Therefore, they could be used in different chromatographic modes including ion-exchange, RPLC, NPLC and HILIC to separate various classes of compounds. This review mainly summarizes the immobilized patterns and types of ionic liquid stationary phases, their retention mechanisms and applications in the recent five years. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Transient phases during fast crystallization of organic thin films from solution

    Directory of Open Access Journals (Sweden)

    Jing Wan

    2016-01-01

    Full Text Available We report an in situ microbeam grazing incidence X-ray scattering study of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT organic semiconductor thin film deposition by hollow pen writing. Multiple transient phases are observed during the crystallization for substrate temperatures up to ≈93 °C. The layered smectic liquid-crystalline phase of C8-BTBT initially forms and preceedes inter-layer ordering, followed by a transient crystalline phase for temperature >60 °C, and ultimately the stable phase. Based on these results, we demonstrate a method to produce extremely large grain size and high carrier mobility during high-speed processing. For high writing speed (25 mm/s, mobility up to 3.0 cm2/V-s has been observed.

  7. Evaluating the Liquid Liquid Phase Transition Hypothesis of Supercoooled Water

    Science.gov (United States)

    Limmer, David; Chandler, David

    2011-03-01

    To explain the anomalous behavior of supercooled water it has been conjectured that buried within an experimentally inaccessible region of liquid water's phase diagram there exists a second critical point, which is the terminus of a first order transition line between two distinct liquid phases. The so-called liquid-liquid phase transition (LLPT) has since generated much study, though to date there is no consensus on its existence. In this talk, we will discuss our efforts to systematically study the metastable phase diagram of supercooled water through computer simulation. By employing importance-sampling techniques, we have calculated free energies as a function of the density and long-range order to determine unambiguously if two distinct liquid phases exist. We will argue that, contrary to the LLPT hypothesis, the observed phenomenology can be understood as a consequence of the limit of stability of the liquid far away from coexistence. Our results suggest that homogeneous nucleation is the cause of the increased fluctuations present upon supercooling. Further we will show how this understanding can be extended to explain experimental observations of hysteresis in confined supercooled water systems.

  8. Induced liquid-crystalline ordering in solutions of stiff and flexible amphiphilic macromolecules: Effect of mixture composition

    International Nuclear Information System (INIS)

    Glagolev, Mikhail K.; Vasilevskaya, Valentina V.; Khokhlov, Alexei R.

    2016-01-01

    Impact of mixture composition on self-organization in concentrated solutions of stiff helical and flexible macromolecules was studied by means of molecular dynamics simulation. The macromolecules were composed of identical amphiphilic monomer units but a fraction f of macromolecules had stiff helical backbones and the remaining chains were flexible. In poor solvents the compacted flexible macromolecules coexist with bundles or filament clusters from few intertwined stiff helical macromolecules. The increase of relative content f of helical macromolecules leads to increase of the length of helical clusters, to alignment of clusters with each other, and then to liquid-crystalline-like ordering along a single direction. The formation of filament clusters causes segregation of helical and flexible macromolecules and the alignment of the filaments induces effective liquid-like ordering of flexible macromolecules. A visual analysis and calculation of order parameter relaying the anisotropy of diffraction allow concluding that transition from disordered to liquid-crystalline state proceeds sharply at relatively low content of stiff components.

  9. Biaxiality of chiral liquid crystals

    International Nuclear Information System (INIS)

    Longa, L.; Trebin, H.R.; Fink, W.

    1993-10-01

    Using extended deGennes-Ginzburg-Landau free energy expansion in terms of the anisotropic part of the dielectric tensor field Q αβ (χ) a connection between the phase biaxiality and the stability of various chiral liquid crystalline phases is studied. In particular the cholesteric phase, the cubic Blue Phases and the phases characterized by an icosahedral space group symmetry are analysed in detail. Also a general question concerning the applicability of the mean-field approximation in describing the chiral phases is addressed. By an extensive study of the model over a wide range of the parameters a new class of phenomena, not present in the original deGennes-Ginzburg-Landau model, has been found. These include: a) re-entrant phase transitions between the cholesteric and the cubic blue phases and b) the existence of distinct phases of the same symmetry but of different biaxialities. The phase biaxiality serves here as an extra scalar order parameter. Furthermore, it has been shown that due to the presence of the competing bulk terms in the free energy, the stable phases may acquire a large degree of biaxiality, also in liquid crystalline materials composed of effectively uniaxial molecules. A study of icosahedral space group symmetries gives a partial answer to the question as to whether an icosahedral quasicrystalline liquid could be stabilized in liquid crystals. Although, in general, the stability of icosahedral structures could be enhanced by the extra terms in the free energy no absolutely stable icosahedral phase has been found. (author). 16 refs, 3 figs, 1 tab

  10. Synthesis of Isothianaphthene (ITN and 3,4-Ethylenedioxy-Thiophene (EDOT-Based Low-Bandgap Liquid Crystalline Conjugated Polymers

    Directory of Open Access Journals (Sweden)

    Hiromasa Goto

    2013-05-01

    Full Text Available Copolymers, consisting of isothianaphthene and phenylene derivatives with liquid crystal groups, were synthesized via Migita-Kosugi-Stille polycondensation reaction. IR absorption, UV-vis optical absorption, and PL spectroscopy measurements were carried out. Thermotropic liquid crystallinity of the polymers with bandgap of ~2.5 eV was confirmed.

  11. Modeling Textural Processes during Self-Assembly of Plant-Based Chiral-Nematic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Yogesh K. Murugesan

    2010-12-01

    Full Text Available Biological liquid crystalline polymers are found in cellulosic, chitin, and DNA based natural materials. Chiral nematic liquid crystalline orientational order is observed frozen-in in the solid state in plant cell walls and is known as a liquid crystal analogue characterized by a helicoidal plywood architecture. The emergence of the plywood architecture by directed chiral nematic liquid crystalline self assembly has been postulated as the mechanism that leads to optimal cellulose fibril organization. In natural systems, tissue growth and development takes place in the presence of inclusions and secondary phases leaving behind characteristic defects and textures, which provide a unique testing ground for the validity of the liquid crystal self-assembly postulate. In this work, a mathematical model, based on the Landau-de Gennes theory of liquid crystals, is used to simulate defect textures arising in the domain of self assembly, due to presence of secondary phases representing plant cells, lumens and pit canals. It is shown that the obtained defect patterns observed in some plant cell walls are those expected from a truly liquid crystalline phase. The analysis reveals the nature and magnitude of the viscoelastic material parameters that lead to observed patterns in plant-based helicoids through directed self-assembly. In addition, the results provide new guidance to develop biomimetic plywoods for structural and functional applications.

  12. One-pot Sonochemical Synthesis of Hg-Ag Alloy Microspheres from Liquid Mercury.

    Science.gov (United States)

    Harika, Villa Krishna; Kumar, Vijay Bhooshan; Gedanken, Aharon

    2018-01-01

    Metallic mercury has always attracted much attention in various fields because of its unique characteristic of forming amalgams. Here, different phases of pure crystalline Hg-Ag amalgam microspheres are synthesized by ultrasonically reacting liquid mercury with an aqueous solution of silver nitrate. Sonicating different molar ratios of liquid metallic Hg with AgNO 3 results in the formation of pure crystalline phases of solid silver amalgams with uniform morphology. The resulting Hg-Ag amalgams from various compositions after sonication are physically characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and Differential Scanning Calorimetry (DSC). The XRD of the amalgams obtained from the molar ratios of Hg:Ag (1:1.5) and Hg:Ag (1.5:1 and 2:1) match the Schachnerite and Moschellandbergite phases, respectively, whereas the Hg-Ag amalgam prepared from a 1:1Hg:Ag molar ratio results in a mixture of the Schachnerite and Moschellandbergite phases. The obtained amalgam microspheres are between 6 and 10µm in size. The detailed thermal and chemical behaviour of the Ag-Hg systems is also investigated. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Tuning Eu{sup 3+} emission in europium sesquioxide films by changing the crystalline phase

    Energy Technology Data Exchange (ETDEWEB)

    Mariscal, A., E-mail: antonio.mariscal@csic.es [Laser Processing Group, Instituto de Óptica, CSIC, C/ Serrano 121, 28006 Madrid (Spain); Quesada, A. [Ceramics for Smart Systems Group, Instituto de Cerámica y Vidrio, C/ Kelsen 5, 28049 Madrid (Spain); Camps, I. [Laser Processing Group, Instituto de Óptica, CSIC, C/ Serrano 121, 28006 Madrid (Spain); Palomares, F.J. [Instituto de Ciencia de Materiales de Madrid, C/ Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain); Fernández, J.F. [Ceramics for Smart Systems Group, Instituto de Cerámica y Vidrio, C/ Kelsen 5, 28049 Madrid (Spain); Serna, R. [Laser Processing Group, Instituto de Óptica, CSIC, C/ Serrano 121, 28006 Madrid (Spain)

    2016-06-30

    Highlights: • PLD production of high quality europium sesquioxide (Eu{sub 2}O{sub 3}) films. • The deposition of Al{sub 2}O{sub 3} capping and/or buffer layers modifies the crystallization for Eu{sub 2}O{sub 3} films upon annealing. • The formation of cubic or monoclinic phases can be favored. • Eu{sup 3+} emission tuning is achieved as a consequence of crystal field effects. - Abstract: We report the growth of europium sesquioxide (Eu{sub 2}O{sub 3}) thin films by pulsed laser deposition (PLD) in vacuum at room temperature from a pure Eu{sub 2}O{sub 3} ceramic bulk target. The films were deposited in different configurations formed by adding capping and/or buffer layers of amorphous aluminum oxide (a-Al{sub 2}O{sub 3}). The optical properties, refractive index and extinction coefficient of the as deposited Eu{sub 2}O{sub 3} layers were obtained. X-ray photoelectron spectroscopy (XPS) measurements were done to assess its chemical composition. Post-deposition annealing was performed at 500 °C and 850 °C in air in order to achieve the formation of crystalline films and to accomplish photoluminescence emission. According to the analysis of X-ray diffraction (XRD) spectra, cubic and monoclinic phases were formed. It is found that the relative amount of the phases is related to the different film configurations, showing that the control over the crystallization phase can be realized by adequately designing the structures. All the films showed photoluminescence emission peaks (under excitation at 355 nm) that are attributed to the intra 4f-transitions of Eu{sup 3+} ions. The emission spectral shape depends on the crystalline phase of the Eu{sub 2}O{sub 3} layer. Specifically, changes in the hypersensitive {sup 5}D{sub 0} → {sup 7}F{sub 2} emission confirm the strong influence of the crystal field effect on the Eu{sup 3+} energy levels.

  14. Numerical evidence of liquid crystalline mesophases of a lollipop shaped model in two dimensions

    Science.gov (United States)

    Pérez-Lemus, G. R.; Armas-Pérez, J. C.; Chapela, G. A.; Quintana-H., J.

    2017-12-01

    Small alterations in the molecular details may produce noticeable changes in the symmetry of the resulting phase behavior. It is possible to produce morphologies having different n-fold symmetries by manipulating molecular features such as chirality, polarity or anisotropy. In this paper, a two dimensional hard molecular model is introduced to study the formation of liquid crystalline phases in low dimensionality. The model is similar to that reported by Julio C. Armas-Pérez and Jacqueline Quintana-H., Phys. Rev. E 83, 051709 (2011). The main difference is the lack of chirality in the model proposed, although they share some characteristics like the geometrical polarity. Our model is called a lollipop model, because its shape is constructed by a rounded section attached to the end of a stick. Contrary to what happens in three dimensions where chiral nematogens produce interesting and complex phases such as blue phases, the lack of molecular chirality of our model generates a richer phase diagram compared to the chiral system. We show numerical and some geometrical evidences that the lack of laterality of the non chiral model seems to provide more routes of molecular self-assembly, producing triatic, a random cluster and possibly a tetratic phase behavior which were not presented in the previous work. We support our conclusions using results obtained from isobaric and isochoric Monte Carlo simulations. Properties as the n-fold order parameters such as the nematic, tetratic and triatic as well as their correlation functions were used to characterize the phases. We also provide the Fourier transform of equilibrium configurations to analyze the n-fold symmetry characteristic of each phase.

  15. Low-temperature liquid-phase epitaxy and optical waveguiding of rare-earth-ion-doped KY(WO4)2 thin layers

    NARCIS (Netherlands)

    Romanyuk, Y.E.; Utke, I.; Ehrentraut, D.; Apostolopoulos, V.; Pollnau, Markus; Garcia-Revilla, S.; Valiente, B.

    2004-01-01

    Crystalline $KY(WO_{4})_{2}$ thin layers doped with different rare-earth ions were grown on b-oriented, undoped $KY(WO_{4})_{2}$ substrates by liquid-phase epitaxy employing a low-temperature flux. The ternary chloride mixture of NaCl, KCl, and CsCl with a melting point of 480°C was used as a

  16. Casimir Force Contrast Between Amorphous and Crystalline Phases of AIST

    NARCIS (Netherlands)

    Torricelli, Gauthier; van Zwol, Peter J.; Shpak, Olex; Palasantzas, George; Svetovoy, Vitaly B.; Binns, Chris; Kooi, Bart J.; Jost, Peter; Wuttig, Matthias

    2012-01-01

    Phase change materials (PCMs) can be rapidly and reversibly switched between the amorphous and crystalline state. The structural transformation is accompanied by a significant change of optical and electronic properties rendering PCMs suitable for rewritable optical data storage and non-volatile

  17. Casimir Force Contrast Between Amorphous and Crystalline Phases of AIST

    NARCIS (Netherlands)

    Torrichelli, G.; van Zwol, P.J.; Shpak, O.; Palasantzas, G.; Svetovoy, Vitaly; Binns, C.; Kooi, B.J.; Jost, P.; Wittig, M.

    2012-01-01

    Phase change materials (PCMs) can be rapidly and reversibly switched between the amorphous and crystalline state. The structural transformation is accompanied by a signifi cant change of optical and electronic properties rendering PCMs suitable for rewritable optical data storage and nonvolatile

  18. Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, T. T. D.; Petit, A.; Semmar, N., E-mail: nadjib.semmar@univ-orleans.fr [GREMI, UMR7344, CNRS/University of Orleans, 14 rue d' Issoudun, BP6744, 45067 Orleans Cedex 2 (France); Vayer, M. [ICMN, UMR 7374, CNRS/University of Orleans, 1b rue de la Ferollerie, CS 40059, 45071 Orleans Cedex (France); Sauldubois, A. [CME, UFR Sciences, University of Orleans, 1 Rue de Chartres, BP 6759, 45067 Orleans Cedex 2 (France)

    2015-11-09

    Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm{sup 2}). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shown the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.

  19. Confined crystallization, crystalline phase deformation and their effects on the properties of crystalline polymers

    Science.gov (United States)

    Wang, Haopeng

    With the recent advances in processing and catalyst technology, novel morphologies have been created in crystalline polymers and they are expected to substantially impact the properties. To reveal the structure-property relationships of some of these novel polymeric systems becomes the primary focus of this work. In the first part, using an innovative layer-multiplying coextrusion process to obtain assemblies with thousands of polymer nanolayers, dominating "in-plane" lamellar crystals were created when the confined poly(ethylene oxide) (PEO) layers were made progressively thinner. When the thickness was confined to 25 nanometers, the PEO crystallized as single, high-aspect-ratio lamellae that resembled single crystals. This crystallization habit imparted more than two orders of magnitude reduction in the gas permeability. The dramatic decrease in gas permeability was attributed to the reduced diffusion coefficient, because of the increase in gas diffusion path length through the in-plane lamellae. The temperature dependence of lamellar orientation and the crystallization kinetics in the confined nanolayers were also investigated. The novel olefinic block copolymer (OBC) studied in the second part consisted of long crystallizable sequences with low comonomer content alternating with rubbery amorphous blocks with high comonomer content. The crystallizable blocks formed lamellae that organized into space-filling spherulites even when the fraction of crystallizable block was so low that the crystallinity was only 7%. These unusual spherulites were highly elastic and recovered from strains as high as 300%. These "elastic spherulites" imparted higher strain recovery and temperature resistance than the conventional random copolymers that depend on isolated, fringed micellar-like crystals to provide the junctions for the elastomeric network. In the third part, positron annihilation lifetime spectroscopy (PALS) was used to obtain the temperature dependence of the free

  20. Local structure of liquid Ge{sub 1}Sb{sub 2}Te{sub 4} for rewritable data storage use

    Energy Technology Data Exchange (ETDEWEB)

    Sun Zhimei; Zhou Jian [Department of Materials Science and Engineering, College of Materials, Xiamen University, 361005 (China); Blomqvist, Andreas; Ahuja, Rajeev [Division for Materials Theory, Department of Physics and Materials Science, Uppsala University, Box 530, SE-751 21, Uppsala (Sweden); Xu Lihua [Department of Inorganic Non-metallic Materials Science, School of Materials and Engineering, University of Science and Technology Beijing, 100083 (China)], E-mail: zhmsun2@yahoo.com, E-mail: zmsun@xmu.edu.cn

    2008-05-21

    Phase-change materials based on chalcogenide alloys have been widely used for optical data storage and are promising materials for nonvolatile electrical memory use. However, the mechanism behind the utilization is unclear as yet. Since the rewritable data storage involved an extremely fast laser melt-quenched process for chalcogenide alloys, the liquid structure of which is one key to investigating the mechanism of the fast reversible phase transition and hence rewritable data storage, here by means of ab initio molecular dynamics we have studied the local structure of liquid Ge{sub 1}Sb{sub 2}Te{sub 4}. The results show that the liquid structure gives a picture of most Sb atoms being octahedrally coordinated, and the coexistence of tetrahedral and fivefold coordination at octahedral sites for Ge atoms, while Te atoms are essentially fourfold and threefold coordinated at octahedral sites, as characterized by partial pair correlation functions and bond angle distributions. The local structure of liquid Ge{sub 1}Sb{sub 2}Te{sub 4} generally resembles that of the crystalline form, except for the much lower coordination number. It may be this unique liquid structure that results in the fast and reversible phase transition between crystalline and amorphous states.

  1. Minimalistic Liquid-Assisted Route to Highly Crystalline α-Zirconium Phosphate.

    Science.gov (United States)

    Cheng, Yu; Wang, Xiaodong Tony; Jaenicke, Stephan; Chuah, Gaik-Khuan

    2017-08-24

    Zirconium phosphates have potential applications in areas of ion exchange, catalysis, photochemistry, and biotechnology. However, synthesis methodologies to form crystalline α-zirconium phosphate (Zr(HPO 4 ) 2 ⋅H 2 O) typically involve the use of excess phosphoric acid, addition of HF or oxalic acid and long reflux times or hydrothermal conditions. A minimalistic sustainable route to its synthesis has been developed by using only zirconium oxychloride and concentrated phosphoric acid to form highly crystalline α-zirconium phosphate within hours. The morphology can be changed from platelets to rod-shaped particles by fluoride addition. By varying the temperature and time, α-zirconium phosphate with particle sizes from nanometers to microns can be obtained. Key features of this minimal solvent synthesis are the excellent yields obtained with high atom economy under mild conditions and ease of scalability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High-quality single crystalline NiO with twin phases grown on sapphire substrate by metalorganic vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    Kazuo Uchida

    2012-12-01

    Full Text Available High-quality single crystalline twin phase NiO grown on sapphire substrates by metalorganic vapor phase epitaxy is reported. X-ray rocking curve analysis of NiO films grown at different temperatures indicates a minimum full width at half maximum of the cubic (111 diffraction peak of 0.107° for NiO film grown at as low as 550 °C. Detailed microstructural analysis by Φ scan X-ray diffraction and transmission electron microscopy reveal that the NiO film consists of large single crystalline domains with two different crystallographic orientations which are rotated relative to each other along the [111] axis by 60°. These single crystal domains are divided by the twin phase boundaries.

  3. Liquid alloys: New perspectives and challenges

    International Nuclear Information System (INIS)

    Saboungi, M.L.; Leonard, S.R.; Johnson, G.K.; Price, D.L.

    1987-12-01

    In this paper, we will focus on one of many unusual liquid semiconducting alloys, K-Pb. The thermodynamic and electrical properties will be discussed and analyzed in terms of a disorder model introduced first by Wagner for crystalline semiconductors. The structure of the equiatomic alloy will be presented; interpretation of the first sharp diffraction peak in the total structure factor is based on the local structures in the crystalline phase and should be viewed as an example of the interrelation between the solid and liquid properties

  4. Crystal-liquid-gas phase transitions and thermodynamic similarity

    CERN Document Server

    Skripov, Vladimir P; Schmelzer, Jurn W P

    2006-01-01

    Professor Skripov obtained worldwide recognition with his monograph ""Metastable liquids"", published in English by Wiley & Sons. Based upon this work and another monograph published only in Russia, this book investigates the behavior of melting line and the properties of the coexisting crystal and liquid phase of simple substances across a wide range of pressures, including metastable states of the coexisting phases. The authors derive new relations for the thermodynamic similarity for liquid-vapour phase transition, as well as describing solid-liquid, liquid-vapor and liquid-liquid phase tra

  5. Mass transfer processes in crystalline aggregates containing a fluid phase

    NARCIS (Netherlands)

    Visser, H.J.M.

    1999-01-01

    Understanding mass transfer processes in porous crystalline aggregates containing a fluid phase is of major importance for modelling partially molten regions of the Earth's mantle, such as those under mid-ocean spreading ridges. Despite the fact that mid-ocean ridges can be considered the

  6. Mass transfer processes in crystalline aggregates containing a fluid phase

    NARCIS (Netherlands)

    Visser, H.J.M.

    1999-01-01

    Understanding mass transfer processes in porous crystalline aggregates containing a fluid phase is of major importance for modelling partially molten regions of the Earth's mantle, such as those under mid-ocean spreading ridges. Despite the fact that mid-ocean ridges can be considered the simplest

  7. Abnormal gas-liquid-solid phase transition behaviour of water observed with in situ environmental SEM.

    Science.gov (United States)

    Chen, Xin; Shu, Jiapei; Chen, Qing

    2017-04-24

    Gas-liquid-solid phase transition behaviour of water is studied with environmental scanning electron microscopy for the first time. Abnormal phenomena are observed. At a fixed pressure of 450 Pa, with the temperature set to -7 °C, direct desublimation happens, and ice grows continuously along the substrate surface. At 550 Pa, although ice is the stable phase according to the phase diagram, metastable liquid droplets first nucleate and grow to ~100-200 μm sizes. Ice crystals nucleate within the large sized droplets, grow up and fill up the droplets. Later, the ice crystals grow continuously through desublimation. At 600 Pa, the metastable liquid grows quickly, with some ice nuclei floating in it, and the liquid-solid coexistence state exists for a long time. By lowering the vapour pressure and/or increasing the substrate temperature, ice sublimates into vapour phase, and especially, the remaining ice forms a porous structure due to preferential sublimation in the concave regions, which can be explained with surface tension effect. Interestingly, although it should be forbidden for ice to transform into liquid phase when the temperature is well below 0 °C, liquid like droplets form during the ice sublimation process, which is attributed to the surface tension effect and the quasiliquid layers.

  8. Investigation of the liquid crystalline phase transitions using the new modified Pople Karasz model

    Science.gov (United States)

    Yazıcı, Mustafa; Özgan, Şükrü; Keskin, Mustafa

    2005-09-01

    Thermodynamics of solid nematic and nematic isotropic liquid transitions are studied by using a new modified model that combines the modified theories of Chandrasekhar et al. with those Keskin and Özgan which are based on the Pople Karasz theory. The thermodynamic properties of the disordered system are evaluated relative to those of the perfectly ordered one within the lowest approximation of the cluster variation method which is identical to the mean-field approximation. The results are compared with the some available experimental data, the predictions of the original Pople Karasz (PK) theory and its previous modified theories. For nematic isotropic and s(nematic) at the transition temperatures, the agreement is very good and much better than the predictions of the PK theory and its previous modified theories. For the solid nematic transition, all theories give very nearly the same results, but the values are significantly lower than the observed data. Moreover, one of the theoretical phase diagrams is also qualitatively similar to the experimental phase diagram for p-azoxyphenetole (PAA).

  9. Investigation of the liquid crystalline phase transitions using the new modified Pople-Karasz model

    International Nuclear Information System (INIS)

    Yazici, Mustafa; Oezgan, Suekrue; Keskin, Mustafa

    2005-01-01

    Thermodynamics of solid-nematic and nematic-isotropic liquid transitions are studied by using a new modified model that combines the modified theories of Chandrasekhar et al. with those Keskin and Oezgan which are based on the Pople-Karasz theory. The thermodynamic properties of the disordered system are evaluated relative to those of the perfectly ordered one within the lowest approximation of the cluster variation method which is identical to the mean-field approximation. The results are compared with the some available experimental data, the predictions of the original Pople-Karasz (PK) theory and its previous modified theories. For nematic-isotropic and s(nematic) at the transition temperatures, the agreement is very good and much better than the predictions of the PK theory and its previous modified theories. For the solid-nematic transition, all theories give very nearly the same results, but the values are significantly lower than the observed data. Moreover, one of the theoretical phase diagrams is also qualitatively similar to the experimental phase diagram for p-azoxyphenetole (PAA)

  10. Structural Analysis of Aromatic Liquid Crystalline Polyesters

    Directory of Open Access Journals (Sweden)

    Arpad Somogyi

    2011-01-01

    Full Text Available Laboratory preparations of liquid crystalline prepolymers, distillates accompanying prepolymers, final polymers, and sublimates accompanying final polymers were examined. NaOD/D2O depolymerization of prepolymers and polymers back to monomers with integration of the 1H NMR spectra showed up to 6% excess of carboxyls over phenol groups, caused partly by loss of the low-boiling comonomer hydroquinone through distillation during prepolymerization and leaving anhydride units in the polymer chain. ESI− MS and MS/MS of hexafluoroisopropanol extracts of the prepolymer detected small molecules including some containing anhydride groups; ESI+ MS showed the presence of small cyclic oligomers. 1H NMR (including TOCSY spectra provided more quantitative analyses of these oligomers. The final polymerization increases the length of the polymer chains and sublimes out the small oligomers. Anhydride linkages remaining in the polymer must make LCP’s more susceptible to degradation by nucleophilic reagents such as water, alkalis, and amines.

  11. Liquid-liquid and liquid-solid phase separation and flocculation for a charged colloidal dispersion

    International Nuclear Information System (INIS)

    Lai, S.K.; Wu, K.L.

    2002-01-01

    We model the intercolloidal interaction by a hard-sphere Yukawa repulsion to which is added the long-range van der Waals attraction. In comparison with the Derjaguin-Landau-Verwey-Overbeek repulsion, the Yukawa repulsion explicitly incorporates the spatial correlations between colloids and small ions. As a result, the repulsive part can be expressed analytically and has a coupling strength depending on the colloidal volume fraction. By use of this two-body potential of mean force and in conjunction with a second-order thermodynamic perturbation theory, we construct the colloidal Helmholtz free energy and use it to calculate the thermodynamic quantities, pressure and chemical potential, needed in the determination of the liquid-liquid and liquid-solid phase diagrams. We examine, in an aqueous charged colloidal dispersion, the effects of the Hamaker constant and particle size on the conformation of a stable liquid-liquid phase transition calculated with respect to the liquid-solid coexistence phases. We find that there exists a threshold Hamaker constant or particle size whose value demarcates the stable liquid-liquid coexistence phases from their metastable counterparts. Applying the same technique and using the energetic criterion, we extend our calculations to study the flocculation phenomenon in aqueous charged colloids. Here, we pay due attention to determining the loci of a stability curve stipulated for a given temperature T 0 , and obtain the parametric phase diagram of the Hamaker constant vs the coupling strength or, at given surface potential, the particle size. By imposing T 0 to be the critical temperature T c , i.e., setting k B T 0 (=k B T c ) equal to a reasonable potential barrier, we arrive at the stability curve that marks the irreversible reversible phase transition. The interesting result is that there occurs a minimum size for the colloidal particles below (above) which the colloidal dispersion is driven to an irreversible (reversible) phase

  12. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    Energy Technology Data Exchange (ETDEWEB)

    Kalkan, B. [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 20015 (United States); Edwards, T. G.; Sen, S. [Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616 (United States); Raoux, S. [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2013-08-28

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ∼5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous →β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ∼2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

  13. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    Science.gov (United States)

    Kalkan, B.; Edwards, T. G.; Raoux, S.; Sen, S.

    2013-08-01

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ˜5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous → β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ˜2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

  14. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    International Nuclear Information System (INIS)

    Kalkan, B.; Edwards, T. G.; Sen, S.; Raoux, S.

    2013-01-01

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ∼5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous →β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ∼2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression

  15. Development of multibarrier nuclear waste forms

    International Nuclear Information System (INIS)

    1979-03-01

    The multibarrier concept aims to separate the radionuclide-containing inner core material and the environment by the use of coatings and matrices. Two options were developed for the inner core of the multibarrier concept: supercalcine pellets and glass marbles. Supercalcine is a crystalline assemblage of mutually compatible, refractory, and leach-resistant solid solution phases incorporating high-level liquid waste ions. Supercalcine powder is produced by spray calcining the liquid waste stream to which Al 2 O 3 , CaO, SiO 2 , and SrO have been added. Supercalcine pellets are produced by disc pelletizing. The amorphous supercalcine crystallizes into solid solution phases after subsequent heat treatment. Based on the multibarrier processes described, several conclusions can be made: gravity sintering and vacuum casting are both applicable methods for metal matrix encapsulation. The multibarrier concept of glass marbles encapsulated in a vacuum-cast lead alloy provides enhanced inertness at a minimum increase in technological complexity. If it were desirable to develop a crystalline multibarrier waste form, uncoated sintered supercalcine pellets would offer enhanced inertness at a much lower level of technological complexity than glaze- or CVD-coated supercalcine. The 16-inch diameter pelletizer unit has enough capacity to handle the output of a large PNL spray calciner (52.5 kg of calcine/hr) and it can form spray-calcined material into pellets with diameters of 2 mm to 20 mm having strength enough to withstand handling without significant breakage.Chemical vapor deposition coating of supercalcine should be pursued only if a very high level of inertness is required

  16. High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester

    DEFF Research Database (Denmark)

    Sánchez, C; Alcalá, R; Hvilsted, Søren

    2001-01-01

    High diffraction efficiencies have been achieved with polarization gratings recorded in thin films of an azobenzene side-chain liquid crystalline polyester by means of biphotonic processes. Efficiency values up to 30% have been reached after an induction period of 300 s and subsequent evolution...

  17. Inducing β Phase Crystallinity in Block Copolymers of Vinylidene Fluoride with Methyl Methacrylate or Styrene

    Directory of Open Access Journals (Sweden)

    Nahal Golzari

    2017-07-01

    Full Text Available Block copolymers of poly(vinylidene fluoride (PVDF with either styrene or methyl methacrylate (MMA were synthesized and analyzed with respect to the type of the crystalline phase occurring. PVDF with iodine end groups (PVDF-I was prepared by iodine transfer polymerization either in solution with supercritical CO2 or in emulsion. To activate all iodine end groups Mn2(CO10 is employed. Upon UV irradiation Mn(CO5 radicals are obtained, which abstract iodine from PVDF-I generating PVDF radicals. Subsequent polymerization with styrene or methyl methacrylate (MMA yields block copolymers. Size exclusion chromatography and NMR results prove that the entire PVDF-I is converted. XRD, FT-IR, and differential scanning calorimetry (DSC analyses allow for the identification of crystal phase transformation. It is clearly shown that the original α crystalline phase of PVDF-I is changed to the β crystalline phase in case of the block copolymers. For ratios of the VDF block length to the MMA block length ranging from 1.4 to 5 only β phase material was detected.

  18. Protic Cationic Oligomeric Ionic Liquids of the Urethane Type

    DEFF Research Database (Denmark)

    Shevchenko, V. V.; Stryutsky, A. V.; Klymenko, N. S.

    2014-01-01

    Protic oligomeric cationic ionic liquids of the oligo(ether urethane) type are synthesized via the reaction of an isocyanate prepolymer based on oligo(oxy ethylene)glycol with M = 1000 with hexamethylene-diisocyanate followed by blocking of the terminal isocyanate groups with the use of amine...... derivatives of imidazole, pyridine, and 3-methylpyridine and neutralization of heterocycles with ethanesulfonic acid and p-toluenesulfonic acid. The structures and properties of the synthesized oligomeric ionic liquids substantially depend on the structures of the ionic groups. They are amorphous at room...... temperature, but ethanesulfonate imidazolium and pyridinium oligomeric ionic liquids form a low melting crystalline phase. The proton conductivities of the oligomeric ionic liquids are determined by the type of cation in the temperature range 80-120 degrees C under anhydrous conditions and vary within five...

  19. Chromonic liquid crystalline nematic phase exhibited in binary mixture of two liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Govindaiah, T. N., E-mail: tngovi.phy@gmail.com; Sreepad, H. R. [Post-Graduate Department of Physics, Government College (Autonomous), Mandya-571401 (India); Sridhar, K. N.; Sridhara, G. R.; Nagaraja, N. [Government College for Boys, Kolar-563101 (India)

    2015-06-24

    A binary mixture of abietic acid and orthophosphoric acid (H{sub 3}PO{sub 4}) exhibits co-existence of biphasic region of Nematic+Isotropic (N+I), lyotropic Nematic (ND) and Smectic-G (SmG) phases. The mixture exhibits N+I, N and SmG phases at different concentrations and at different temperatures. Mixtures with all concentrations of abietic acid exhibit I→N+I→N→SmG phases sequentially when the specimen is cooled from its isotropic melt. These phases have been characterized by using differential scanning calorimetric, X-ray diffraction, and optical texture studies.

  20. A new series of two-ring-based side chain liquid crystalline polymers: synthesis and mesophase characterization

    CSIR Research Space (South Africa)

    Reddy, GSM

    2013-05-01

    Full Text Available A new series of side chain liquid crystalline polymers containing a core, a butamethylenoxy spacer, ester groups, and terminal alkoxy groups were synthesised and their structures were confirmed. The core was constructed with two phenyl rings...

  1. Economic comparison of crystalline ceramic and glass waste forms for HLW disposal

    International Nuclear Information System (INIS)

    McKee, R.W.; Daling, P.M.; Wiles, L.E.

    1983-05-01

    A titanate-based, crystalline ceramic produced by hot isostatic pressing has been proposed as a potentially more stable and improved waste form for high-level nuclear waste disposal compared to the currently favored borosilicate glass waste form. This paper describes the results of a study to evaluate the relative costs for disposal of high-level waste from a 70,000 metric ton equivalent (MTE) system. The entire waste management system, including waste processing and encapsulation, transportation, and final repository disposal, was included in this analysis. The repository concept is based on the current basalt waste isolation project (BWIP) reference design. A range of design basis alternatives is considered to determine if this would influence the relative economics of the two waste forms. A thermal analysis procedure was utilized to define optimum canister sizes to assure that each waste form was compared under favorable conditions. Repository costs are found to favor the borosilicate glass waste form while transportation costs greatly favor the crystalline ceramic waste form. The determining component in the cost comparison is the waste processing cost, which strongly favors the borosilicate glass process because of its relative simplicity. A net cost advantage on the order of 12% to 15% on a waste management system basis is indicated for the glass waste form

  2. Magneto-responsive liquid crystalline elastomer nanocomposites as potential candidates for dynamic cell culture substrates

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Posada, Stephany; Mora-Navarro, Camilo; Ortiz-Bermudez, Patricia; Torres-Lugo, Madeline [Department of Chemical Engineering, Call Box 9000, University of Puerto Rico, Mayagüez PR 00681 (Puerto Rico); McElhinny, Kyle M.; Evans, Paul G. [Department of Materials Science and Engineering, 1509 University Avenue, University of Wisconsin-Madison, WI 53706 (United States); Calcagno, Barbara O. [Department of General Engineering, Call Box 9000, University of Puerto Rico, Mayagüez PR 00681 (Puerto Rico); Acevedo, Aldo, E-mail: aldo.acevedo@upr.edu [Department of Chemical Engineering, Call Box 9000, University of Puerto Rico, Mayagüez PR 00681 (Puerto Rico)

    2016-08-01

    Recently, liquid crystalline elastomers (LCEs) have been proposed as active substrates for cell culture due to their potential to attach and orient cells, and impose dynamic mechanical signals through the application of external stimuli. In this report, the preparation of anisotropic and oriented nematic magnetic-sensitized LCEs with iron oxide nanoparticles, and the evaluation of the effect of particle addition at low concentrations on the resultant structural, thermal, thermo-mechanical, and mechanical properties is presented. Phase transformations produced by heating in alternating magnetic fields were investigated in LCEs in contact with air, water, and a common liquid cell culture medium was also evaluated. The inclusion of nanoparticles into the elastomers displaced the nematic-to-isotropic phase transition, without affecting the nematic structure as evidenced by similar values of the order parameter, while reducing the maximum thermomechanical deformations. Remote and reversible deformations of the magnetic LCEs were achieved through the application of alternating magnetic fields, which induces the nematic–isotropic phase transition through nanoparticle heat generation. Formulation parameters can be modified to allow for remote actuation at values closer to the human physiological temperature range and within the range of deformations that can affect the cellular behavior of fibroblasts. Finally, a collagen surface treatment was performed to improve compatibility with NIH-3T3 fibroblast cultures, which enabled the attachment and proliferation of fibroblasts on substrates with and without magnetic particles under quiescent conditions. The LCEs developed in this work, which are able to deform and experience stress changes by remote contact-less magnetic stimulation, may allow for further studies on the effect of substrate morphology changes and dynamic mechanical properties during in vitro cell culture. - Highlights: • Magnetic LCE nanocomposites were

  3. Magneto-responsive liquid crystalline elastomer nanocomposites as potential candidates for dynamic cell culture substrates

    International Nuclear Information System (INIS)

    Herrera-Posada, Stephany; Mora-Navarro, Camilo; Ortiz-Bermudez, Patricia; Torres-Lugo, Madeline; McElhinny, Kyle M.; Evans, Paul G.; Calcagno, Barbara O.; Acevedo, Aldo

    2016-01-01

    Recently, liquid crystalline elastomers (LCEs) have been proposed as active substrates for cell culture due to their potential to attach and orient cells, and impose dynamic mechanical signals through the application of external stimuli. In this report, the preparation of anisotropic and oriented nematic magnetic-sensitized LCEs with iron oxide nanoparticles, and the evaluation of the effect of particle addition at low concentrations on the resultant structural, thermal, thermo-mechanical, and mechanical properties is presented. Phase transformations produced by heating in alternating magnetic fields were investigated in LCEs in contact with air, water, and a common liquid cell culture medium was also evaluated. The inclusion of nanoparticles into the elastomers displaced the nematic-to-isotropic phase transition, without affecting the nematic structure as evidenced by similar values of the order parameter, while reducing the maximum thermomechanical deformations. Remote and reversible deformations of the magnetic LCEs were achieved through the application of alternating magnetic fields, which induces the nematic–isotropic phase transition through nanoparticle heat generation. Formulation parameters can be modified to allow for remote actuation at values closer to the human physiological temperature range and within the range of deformations that can affect the cellular behavior of fibroblasts. Finally, a collagen surface treatment was performed to improve compatibility with NIH-3T3 fibroblast cultures, which enabled the attachment and proliferation of fibroblasts on substrates with and without magnetic particles under quiescent conditions. The LCEs developed in this work, which are able to deform and experience stress changes by remote contact-less magnetic stimulation, may allow for further studies on the effect of substrate morphology changes and dynamic mechanical properties during in vitro cell culture. - Highlights: • Magnetic LCE nanocomposites were

  4. Vapor-phase synthesis and characterization of ZnSe nanoparticles

    Science.gov (United States)

    Sarigiannis, D.; Pawlowski, R. P.; Peck, J. D.; Mountziaris, T. J.; Kioseoglou, G.; Petrou, A.

    2002-06-01

    Compound semiconductor nanoparticles are an exciting class of materials whose unique optical and electronic properties can be exploited in a variety of applications, including optoelectronics, photovoltaics, and biophotonics. The most common route for synthesizing such nanoparticles has been via liquid-phase chemistry in reverse micelles. This paper discusses a flexible vapor-phase technique for synthesis of crystalline compound semiconductor nanoparticles using gas-phase condensation reactions near the stagnation point of a counterflow jet reactor. ZnSe nanoparticles were formed by reacting vapors of dimethylzinc: triethylamine adduct and hydrogen selenide at 120Torr and room temperature (28°C). No attempt was made to passivate the surface of the particles, which were collected as random aggregates on silicon wafers or TEM grids placed downstream of the reaction zone. Particle characterization using TEM, electron diffraction, Raman and EDAX revealed that the aggregates consisted of polycrystalline ZnSe nanoparticles, almost monodisperse in size (with diameters of ~40nm). The polycrystalline nanoparticles appear to have been formed by coagulation of smaller single-crystalline nanoparticles with characteristic size of 3-5 run.

  5. Shape distortion and dimensional precision in tungsten heavy alloy liquid phase sintering

    International Nuclear Information System (INIS)

    Wuwen Yi; German, R.M.; Lu, P.K.

    2001-01-01

    Microstructure effects on densification and shape distortion in liquid phase sintering of tungsten heavy alloy were investigated. Microstructure parameters such as the solid volume fraction, dihedral angle, initial porosity, and pore size were varied to measure densification and distortion behavior during LPS using W-Ni-Cu alloys. Green compacts were formed using ethylene-bis-stearamide as a pore-forming agent with the amount of polymer controlling the initial porosity. Different initial pore sizes were generated by varying the polymer particle size. Dihedral angle was varied by changing the Ni:Cu ratio in the alloys. Finally, the solid volume fraction was adjusted via the tungsten content. Distortion was quantified using profiles determined with a coordinate measuring machine to calculate a distortion parameter. Sintering results showed that solid volume fraction and dihedral angle are the dominant factors on densification and distortion during liquid phase sintering. Distortion decreases with increasing solid volume fraction and dihedral angle, while initial porosity and pore size have no observable effect on distortion at nearly full densification. Various strategies emerge to improve distortion control in liquid phase sintering. (author)

  6. Aligned silane-treated MWCNT/liquid crystal polymer films

    International Nuclear Information System (INIS)

    Cervini, Raoul; Simon, George P; Ginic-Markovic, Milena; Matisons, Janis G; Huynh, Chi; Hawkins, Stephen

    2008-01-01

    We report on a method to preferentially align multiwall carbon nanotubes (MWCNTs) in a liquid crystalline matrix to form stable composite thin films. The liquid crystalline monomeric chains can be crosslinked to form acrylate bridges, thereby retaining the nanotube alignment. Further post-treatment by ozone etching of the composite films leads to an increase in bulk conductivity, leading to higher emission currents when examined under conducting scanning probe microscopy. The described methodology may facilitate device manufacture where electron emission from nanosized tips is important in the creation of new display devices

  7. Oxidation studies of β-sialon ceramics containing amorphous and / or crystalline intergranular phases

    International Nuclear Information System (INIS)

    Persson, J.; Kall, P.O.; Jansson, K.; Nygren, M.

    1992-01-01

    β-sialon ceramics of equal overall compositions but containing amorphous, partly crystalline and almost completely crystalline intergranular phase(s) have been oxidized in oxygen at 1350 deg C for 20 hours. The obtained weight gain curves do not follow the parabolic rate law (ΔW/A 0 ) 2 = k p t + β. To the extent that crystallization occurs in the oxide scale during the oxidation experiment, the amorphous cross section area through which oxygen most easily diffuses will decrease with time. A brief description of this new rate law is given, and the obtained oxidation curves will be discussed within that framework. 4 refs., 2 tabs., 2 figs

  8. Thermal degradation of polymer systems having liquid crystalline oligoester segment

    Directory of Open Access Journals (Sweden)

    Renato Matroniani

    Full Text Available Abstract Block copolymers and blends comprised by liquid crystalline oligoester and polystyrene were prepared and their thermal stability were characterized by thermogravimetric analysis (TGA. The samples have shown three main decomposition temperatures due to (1 lost of flexible chain and decomposition of mesogenic segment, (2 decomposition of polystyrene and (3 final decomposition of oligoester rigid segment. Both copolymers and polymer blends presented lower thermal stability compared to polystyrene and oligoester. The residual mass after heating at 600 °C in copolymers and polymer blends were lower than those found in the oligoesters. A degradative process of aromatic segments of oligoester induced by decomposition of polystyrene is suggested.

  9. Measuring the Thermophysical and Structural Properties of Glass-Forming and Quasicrystal-Forming Liquids

    Science.gov (United States)

    Hyers, Robert W.; Bradshaw, Richard C.; Rogers, Jan R.; Gangopadhyay, Anup K.; Kelton, Ken F.

    2006-01-01

    The thermophysical properties of glass-forming and quasicrystal-forming alloys show many interesting features in the undercooled liquid range. Some of the features in the thermophysical property curves are expected to reflect changes in the structure and coordination of the liquid. These measurements require containerless processing such as electrostatic levitation to access the undercooled liquid regime. An overview of the state of the art in measuring the thermophysical properties and structure of undercooled liquid glass-forming and quasicrystal-forming alloys will be presented, along with the status of current measurements.

  10. Crystalline ceramics: Waste forms for the disposal of weapons plutonium

    International Nuclear Information System (INIS)

    Ewing, R.C.; Lutze, W.; Weber, W.J.

    1995-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ''logs''; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium

  11. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  12. Profile of MIBI liquid phase radiopharmaceutical for myocardial imaging

    International Nuclear Information System (INIS)

    I Daruwati; ME Sriyani; NK Oekar; N Zainuddin; KA Hanafiah

    2016-01-01

    The 99m Tc-MIBI radiopharmaceutical has been used in nuclear medicine in Indonesia for myocardial imaging. BATAN researchers have mastered the technology to manufacture MIBI as a lyophilized kit. A reformulation of MIBI radiopharmaceutical has been conducted to improve the stability of the kit especially in the liquid-phase kit. Basically, radiopharmaceuticals in liquid form are not different from the dry kit. However in the manufacturing of liquid-phase kit, lyophilization process was not done. To improve the stability of liquid kit, a reformulation of the components was conducted by using two separate vials (Formulation 2) and the characteristics were compared with the one-vial formulation (Formulation 1). The MIBI Formulation 2 consists of two vials, vial A containing 0.06 mg of SnCl 2 2H 2 O and 2.6 mg Sodium Citrate 2H 2 O and vial B containing 0.5 mg of [Cu(MIBI) 4 ]BF 4 , 1 mg of cysteine hydrochloride, and 20 mg of mannitol. The purposes of this study were to determine the stability of two different formulations of MIBI as a liquid-phase kit, to compare their stability in different storage condition such as in refrigerator and freezer, and to compare the ratio of activities attained between target and nontarget organs after injection to animal model. As a diagnostic agent, MIBI was reconstituted with Technetium-99m as radionuclide tracer to 99m Tc-MIBI labeled compound. The radiochemical purity of 99m Tc-MIBI was determined by chromatography method using alumina thin-layer chromatography paper as the stationary phase and ethanol 95% as the mobile phase. The results showed MIBI Formulation 2 has a higher stability than Formulation 1. Formulation 2 also maintained a 96.68% radiochemical purity under 52-day storage and attained a target-to-nontarget activity ratio of 8.22. (author)

  13. Iron Fibers Arrays Prepared by Electrodepositing in Reverse Liquid Crystalline

    Institute of Scientific and Technical Information of China (English)

    ZHAO Suling; LIN Dong; GUAN Jianguo; ZHANG Lianmeng

    2006-01-01

    Ordered iron fiber arrays were electrodeposited on the surface of zinc foils using "FeSO4 solution-sodium caprylate-Decanol" 3-component reverse hexagonal liquid crystal as soft templates. The structure of the soft templates and the synthesized iron fibers were characterized by polarizing microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray microanalysis etc. The experimental results show that the synthesized iron fibers with α crystal phase grew up in the form of fiber clusters of about 200 nm along the direction perpendicular to the cathode surface. Each cluster was composed of several tens of fibers. The fibers had almost the same length of more than 10 μm with a diameter of about 50 nm.

  14. Supported ionic liquid-phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Wasserscheid, P.

    2005-01-01

    The concept of supported ionic liquid-phase (SILP) catalysis has been demonstrated for gas- and liquid-phase continuous fixed-bed reactions using rhodium phosphine catalyzed hydroformylation of propene and 1-octene as examples. The nature of the support had important influence on both the catalytic...

  15. DEVELOPMENT OF CRYSTALLINE CERAMICS FOR IMMOBILIZATION OF ADVANCED FUEL CYCLE REPROCESSING WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Brinkman, K.

    2011-09-22

    The Savannah River National Laboratory (SRNL) is developing crystalline ceramic waste forms to incorporate CS/LN/TM high Mo waste streams consisting of perovskite, hollandite, pyrochlore, zirconolite, and powellite phase assemblages. Simple raw materials, including Al{sub 2}O{sub 3}, CaO, and TiO{sub 2} were combined with simulated waste components to produce multiphase crystalline ceramics. Fiscal Year 2011 (FY11) activities included (i) expanding the compositional range by varying waste loading and fabrication of compositions rich in TiO{sub 2}, (ii) exploring the processing parameters of ceramics produced by the melt and crystallize process, (iii) synthesis and characterization of select individual phases of powellite and hollandite that are the target hosts for radionuclides of Mo, Cs, and Rb, and (iv) evaluating the durability and radiation stability of single and multi-phase ceramic waste forms. Two fabrication methods, including melting and crystallizing, and pressing and sintering, were used with the intent of studying phase evolution under various sintering conditions. An analysis of the XRD and SEM/EDS results indicates that the targeted crystalline phases of the FY11 compositions consisting of pyrochlore, perovskite, hollandite, zirconolite, and powellite were formed by both press and sinter and melt and crystallize processing methods. An evaluation of crystalline phase formation versus melt processing conditions revealed that hollandite, perovskite, zirconolite, and residual TiO{sub 2} phases formed regardless of cooling rate, demonstrating the robust nature of this process for crystalline phase development. The multiphase ceramic composition CSLNTM-06 demonstrated good resistance to proton beam irradiation. Electron irradiation studies on the single phase CaMoO{sub 4} (a component of the multiphase waste form) suggested that this material exhibits stability to 1000 years at anticipated self-irradiation doses (2 x 10{sup 10}-2 x 10{sup 11} Gy), but that

  16. Quantitative analysis of crystalline and remaining glass phases in CaO-B2O3-SiO2 ternary system glass ceramics

    International Nuclear Information System (INIS)

    He Ming; Wu Mengqiang; Zhang Shuren; Zhou Xiaohua; Zhang Ting; Chen Song

    2010-01-01

    Research highlights: → As for CBS ternary system glass ceramics, due to the complex phase compositions, many methods could be difficult to determine quantitatively the absolute amounts of crystalline and remaining oxides. In this study, an available method based on the Rietveld method was used to quantitatively analyze the relative weight fraction and densities of crystalline phases. These above data are used to obtain a table of both relative weight fraction of crystalline phases and densities of all phases including CBS LTCC. Using volume additivity rule, it is possible to analysis quantitatively the absolute weight fraction of crystalline phases and also the oxides molar content in the remaining glass. - Abstract: Based on Rietveld method of X-ray techniques and volume additivity rule, a new method was developed to quantitatively analyze the phase composition of CaO-B 2 O 3 -SiO 2 ternary system glass ceramics. Lattice parameters, densities and relative weight fractions of crystalline phases in CaO-B 2 O 3 -SiO 2 ternary system were obtained by X-ray diffraction (XRD) refinement. According to the relative weight fraction of crystalline phases and densities of various components, the volume additivity rule was revealed by calculating the absolute weight fraction of crystalline phases of CaO-B 2 O 3 -SiO 2 glass ceramics. In addition, molar contents of the oxides in the remaining glass can also be determined by this method. Comparing this method with internal standard method, it is found that the maximum deviations of the crystallinity and the absolute weight fraction of crystalline phases are less than 2.6% and 2.9%, respectively. As a result, quantitative evaluation of CaO-B 2 O 3 -SiO 2 ternary system glass ceramics can be achieved using this method.

  17. Thermodynamics of the Gd/sub 63.2/Co/sub 36.8/ glass-forming eutectic

    International Nuclear Information System (INIS)

    Baricco, M.; Antonione, C.; Battezzati, L.

    1987-01-01

    In the last years a tendency has consolidated to investigate the properties of the liquid phase in relation to amorphization. The thermodynamic properties of glass-forming liquids show some remarkable similarities and provide a unifying picture for the understanding of glass formation. In particular the specific heat difference between liquid and crystal phases, C/sub P/, seem always positive thus enabling the liquid entropy to approach that of the solid on under-cooling towards the glass transition temperature, T/sub g/. The enthalpy of mixing in glass-forming alloys is strongly negative and depends on temperature giving rise to an excess specific heat. As the liquid and crystalline pure elements have similar specific heat and the Newmann-Kopp law is usually obeyed by solid alloys, the excess specific heat can be assimilated to G. This last quantity, therefore, determines the trend of the thermodynamic properties in the undercooling regime and ultimately the glass-forming tendency of the liquid systems. Specific heat data are available for some liquid alloys but only a few of them refer to glass-forming systems. Typical examples are Au/sub 77/Ge/sub 13.6/Si/sub 9.4/ among metal-metalloid and Mg/sub 85.5/Cu/sub 14.5/ among metal-metal systems. The authors present here a complete determination of the thermodynamic properties of the Gd/sub 63.2/Co/sub 36.8/ eutectic as an example for anthanide transition metal glass-formers. This alloy is low melting so that its liquid state is accessible by differential scanning calorimetry. It forms glasses readily by means of liquid quenching

  18. Infrared spectroscopy study of structural changes in glass-forming salol.

    Science.gov (United States)

    Baran, J; Davydova, N A

    2010-03-01

    We report the investigation of glass-forming salol upon different courses of the temperature changes from liquid to glass state and back using FT-IR spectroscopy measurements in the wide spectral and temperature ranges. The formation of the ordered clusters in supercooled liquid salol has been observed at 250 K. When the temperature is decreased further to 11 K these ordered clusters become an element of the glass structure. With increasing temperature to 270 K through the glass transition noticeable evolutions of the IR spectrum occurs up till the ordered clusters are developed into crystal. So produced crystal melts in the temperature range 300-310 K, that corresponds to the melting temperature of the metastable phase (Tmelt=302 K) . Thus, the crystalline structure of the ordered clusters corresponds to the structure of metastable phase and is monoclinic.

  19. 10,000 optical write, read, and erase cycles in an azobenzene sidechain liquid-crystalline polyester

    DEFF Research Database (Denmark)

    Holme, NCR; Ramanujam, P.S.; Hvilsted, Søren

    1996-01-01

    We show far what is believed to he the first time that it is possible tu generate 10,000 rapid write, read, and erase cycles optically in an azobenzene sidechain liquid-crystalline polyester. We do this by exposing the film alternately to visible light from an argon laser at 488 nm and ultraviolet...

  20. New liquid crystalline materials based on two generations of dendronised cyclophosphazenes.

    Science.gov (United States)

    Jiménez, Josefina; Laguna, Antonio; Gascón, Elena; Sanz, José Antonio; Serrano, José Luis; Barberá, Joaquín; Oriol, Luis

    2012-12-21

    A divergent approach was used for the synthesis of dendritic structures based on a cyclotriphosphazene core with 12 or 24 hydroxyl groups, by starting from [N(3)P(3)(OC(6)H(4)OH-4)(6)] and using an acetal-protected 2,2-di(hydroxymethyl)propionic anhydride as the acylating agent. Hydroxyl groups in these first- and second-generation dendrimers, G1-(OH)(12) or G2-(OH)(24), were then condensed in turn with mono- or polycatenar pro-mesogenic acids to study their ability to promote self-assembly into liquid crystalline structures. Reactions were monitored by using (31)P{(1)H} and (1)H NMR spectroscopy and the chemical structure of the resulting materials was confirmed by using different spectroscopic techniques and mass spectrometry (MALDI-TOF MS). The results were in accordance with monodisperse, fully functionalised cyclotriphosphazene dendrimers. Thermal and liquid crystalline properties were studied by using optical microscopy, differential scanning calorimetry and X-ray diffraction. The dendrimer with 12 4-pentylbiphenyl mesogenic units gives rise to columnar rectangular organisation, whereas the one with 24 pentylbiphenyl units does not exhibit mesomorphic behaviour. In the case of materials that contain polycatenar pro-mesogenic units with two aromatic rings (A4 vs. A5), the incorporation of a short flexible spacer connected to the periphery of the dendron (acid A5) was needed to achieve mesomorphic organisation. In this case, both dendrimer generations G1 A5 and G2 A5 exhibit a hexagonal columnar mesophase. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Phase selection and microstructure in directional solidification of glass forming Pd-Si-Cu alloys

    Science.gov (United States)

    Huo, Yang

    Phase selection and microstructure formation during the rapid solidification of alloy melts has been a topic of substantial interest over the last several decades, attributed mainly to the access to novel structures involving metastable crystalline and non-crystalline phases. In this work, Bridgeman type directional solidification was conducted in Pd-Si-Cu glass forming system to study such cooling rate dependent phase transition and microstructure formation. The equilibrium state for Pd-Si-Cu ternary system was investigated through three different works. First of all, phase stabilities for Pd-Si binary system was accessed with respects of first-principles and experiments, showing Pd5Si, Pd9Si2, Pd3Si and Pd 2Si phase are stable all way to zero Kevin while PdSi phase is a high temperature stable phase, and Pd2Si phase with Fe2P is a non-stoichiometry phase. A thermodynamic database was developed for Pd-Si system. Second, crystal structures for compounds with ternary compositions were studied by XRD, SEM and TEM, showing ordered and disordered B2/bcc phases are stable in Pd-rich part. At last, based on many phase equilibria and phase transitions data, a comprehensive thermodynamic discrption for Pd-Si-Cu ternary system was first time to be developed, from which different phase diagrams and driving force for kinetics can be calculated. Phase selection and microstructure formation in directional solidification of the best glass forming composition, Pd 77.5Si16.5Cu6, in this system with growth velocities from 0.005 to 7.5mm/s was systematically studied and the solidification pathways at different conditions were interpreted from thermodynamic simulation. The results show that for growth velocities are smaller than 0.1mm/s Pd 3Si phase is primary phase and Pd9Si2 phase is secondary phase, the difficulty for Pd9Si2 phase nucleation gives rise to the formation of two different eutectic structure. For growth velocities between 0.4 and 1mm/s, instead of Pd3Si phase, Pd9Si2

  2. A crystalline quark-hadron mixed phase in neutron stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1994-01-01

    The mixed phase of a substance undergoing a first order phase transition has entirely different behavior according as the substance has more than one conserved charge or only one, as in the text book examples. In the latter case the pressure and nature of the phases are constants throughout the coexistence phase. For systems with more than one conserved charge (or independent component) we prove two theorems: (1) The pressure and the nature of the phases in equilibrium change continuously as the proportion of the phases varies from one pure phase to the other. (2) If one of the conserved charges is the Coulomb force, an intermediate-range order will be created by the competition between Coulomb and surface interface energy. Their sum is minimized when the coexistence phase assumes a Coulomb lattice of one phase immersed in the other. The geometry will vary continuously as the proportion of phases. We illustrate the theorems for a simple description of the hadron to quark phase transition in neutron stars and find a crystalline phase many kilometers thick. However the theorems are general and pertain to chemical mixtures, nuclear systems, either static as in stars or dynamic as in collisions, and have possible application to phase transitions in the early universe

  3. Detection of a new 'nematic-like' phase in liquid crystal-amphiphile mixture by differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Kaustabh, E-mail: kaustabhdan@gmail.com; Roy, Madhusudan, E-mail: kaustabhdan@gmail.com; Datta, Alokmay, E-mail: kaustabhdan@gmail.com [Surface Physics and Materials Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar Block, Sector 1, Kolkata-700064 (India)

    2014-04-24

    Differential Scanning Calorimetry (DSC) studies on phase transitions of the pure liquid crystalline material N-4-methoxybenzylidene-4-butylaniline (MBBA) and mixtures of MBBA and the amphiphile Stearic Acid (StA) show significant changes in the behavior of mixture from pure MBBA, as regards the nematic-isotropic (N-I) transition temperature (T{sub c}) and other thermodynamic parameters like enthalpy, specific heat and activation energy with concentration of StA. In particular, the convexity of the Arrhenius plot in pure MBBA vanishes with StA concentration pointing to the formation of a new, perhaps 'nematic-like', phase in the mixtures.

  4. Goldstone bosons in a crystalline chiral phase

    International Nuclear Information System (INIS)

    Schramm, Marco

    2017-01-01

    The phase diagram of strong interaction matter is expected to exhibit a rich structure. Different models have shown, that crystalline phases with a spatially varying chiral condensate can occur in the regime of low temperatures and moderate densities, where they replace the first-order phase transition found for spatially constant order parameters. We investigate this inhomogeneous phase, where in addition to the chiral symmetry, translational and rotational symmetry are broken as well, in a two flavor Nambu--Jona-Lasinio model. The main goal of this work is to describe the Goldstone bosons in this phase, massless excitations that occur for spontaneously broken symmetries. We take one of the simplest possible modulations, the chiral density wave, and show how to derive the quark propagator of the theory analytically, by means of transformations in chiral and momentum space. We apply this to a test case for the gap equation. We show the derivation of Nambu-Goldstone modes in the inhomogeneous phase and find, that for our case only three different modes have to be taken into account. We proceed to calculate the Goldstone boson related to the breaking of spatial symmetry, which can be related to the neutral pion. By evaluating a Bethe-Salpeter equation, we can show, that we have indeed found a Goldstone boson and give its dispersion relation in terms of momenta perpendicular, as well as parallel to the mass modulation.

  5. Goldstone bosons in a crystalline chiral phase

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, Marco

    2017-07-24

    The phase diagram of strong interaction matter is expected to exhibit a rich structure. Different models have shown, that crystalline phases with a spatially varying chiral condensate can occur in the regime of low temperatures and moderate densities, where they replace the first-order phase transition found for spatially constant order parameters. We investigate this inhomogeneous phase, where in addition to the chiral symmetry, translational and rotational symmetry are broken as well, in a two flavor Nambu--Jona-Lasinio model. The main goal of this work is to describe the Goldstone bosons in this phase, massless excitations that occur for spontaneously broken symmetries. We take one of the simplest possible modulations, the chiral density wave, and show how to derive the quark propagator of the theory analytically, by means of transformations in chiral and momentum space. We apply this to a test case for the gap equation. We show the derivation of Nambu-Goldstone modes in the inhomogeneous phase and find, that for our case only three different modes have to be taken into account. We proceed to calculate the Goldstone boson related to the breaking of spatial symmetry, which can be related to the neutral pion. By evaluating a Bethe-Salpeter equation, we can show, that we have indeed found a Goldstone boson and give its dispersion relation in terms of momenta perpendicular, as well as parallel to the mass modulation.

  6. Hydrogen bonding discotic liquid crystals: Synthesis, self-assembly, and molecular recognition

    Science.gov (United States)

    Bushey, Mark Lawrence

    The triamides shown below form discotic liquid crystalline phases with intermolecular hydrogen bonding stabilizing the columnar structure, A and B. The mesomorphic orientations of the columns are dependent on the amide side chain. Three mesophasic orientations are described: columns aligned perpendicular to the surface, columns aligned parallel to the surface in a radial pattern, and columns aligned parallel to the surface in a parallel or aligned pattern. The aggregation of the tridodecyloxy-triamides show N-H shifting in the IR at elevated temperatures, an indication that hydrogen bonding is important in the association of liquid crystalline mesophases. Powder X-ray diffraction studies indicate packing of the columns into a hexagonal lattice.* Studies on triamides with chiral side chains result in molecules stacking into columns displaying a helical pitch. In concentrated solutions of dodecane, molecules with chiral side chains display behavior consistent with chiral nematic liquid crystals; a super helical packing of the chiral columns. These superhelical packed systems show temperature dependent selective reflection of visible light and fingerprint textures. Atomic force microscopy (AFM) confirms in sub-monolayer films, that molecules preferring an edge-on orientation form long columns on highly ordered pyrolytic graphite (HOPG), those that prefer a face-on orientation form large amorphous domains. Electrostatic force microscopy (EFM) images of the domains of molecules in the edge-on orientation provides no discernible polarity, imaging of the domains of molecules in the face-on orientation indicates a negative polar orientation. Scanning probe measurements (SPM) of the tridodecynyl-triamide have shown similar edge-on orientations of other tridodecyloxy-triamides. Powder X-ray diffraction of these liquid crystalline phases shows a hexagonal packing of the columnar assembly. Electro-optic switching studies indicate a piezoelectric switching mechanism, possibly

  7. Effect of multilactate chiral part of liquid crystalline molecule on mesomorphic behaviour

    Czech Academy of Sciences Publication Activity Database

    Bubnov, Alexej M.; Novotná, Vladimíra; Hamplová, Věra; Kašpar, Miroslav; Glogarová, Milada

    2008-01-01

    Roč. 892, 1-3 (2008), 151-157 ISSN 0022-2860 R&D Projects: GA MŠk OC 175; GA AV ČR IAA100100710 Institutional research plan: CEZ:AV0Z10100520 Keywords : lactic acid derivative * liquid crystal * ferroelectric liquid crystal * antiferroelectric phase * hexatic phase * keto group * lactate group Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.594, year: 2008

  8. The effect of peptides and ions interacting with an electrically neutral membrane interface on the structure and stability of lipid membranes in the liquid-crystalline phase and in the liquid-ordered phase

    Science.gov (United States)

    Sano, Ryoko; Masum, Shah Md; Tanaka, Tomoki; Yamashita, Yuko; Levadny, Victor; Yamazaki, Masahito

    2005-08-01

    We investigated the effects of a de novo designed peptide, WLFLLKKK (peptide-1) and La3+, which can bind with the electrically neutral lipid membrane interface, on the stability of the phosphatidylcholine (PC) membrane in the Lα phase and that of the liquid-ordered (lo) phase membranes. The results of spacing of the multilamellar vesicle and shape changes of the giant unilamellar vesicle (GUV) indicate that the peptide-1 can be partitioned into the membrane interface in the Lα phase but not into that in the lo phase. La3+ induced shape changes of GUVs of the lo phase membrane, which are the same as those of GUVs in the Lα phase. This indicates that the binding of La3+ induced an increase in the lateral compression pressure of the membrane, which decreased the surface area of the membrane in the lo phase. The difference of the membrane interface between the Lα phase and the lo phase is discussed.

  9. The effect of peptides and ions interacting with an electrically neutral membrane interface on the structure and stability of lipid membranes in the liquid-crystalline phase and in the liquid-ordered phase

    International Nuclear Information System (INIS)

    Sano, Ryoko; Masum, Shah Md; Tanaka, Tomoki; Yamashita, Yuko; Levadny, Victor; Yamazaki, Masahito

    2005-01-01

    We investigated the effects of a de novo designed peptide, WLFLLKKK (peptide-1) and La 3+ , which can bind with the electrically neutral lipid membrane interface, on the stability of the phosphatidylcholine (PC) membrane in the L α phase and that of the liquid-ordered (lo) phase membranes. The results of spacing of the multilamellar vesicle and shape changes of the giant unilamellar vesicle (GUV) indicate that the peptide-1 can be partitioned into the membrane interface in the L α phase but not into that in the lo phase. La 3+ induced shape changes of GUVs of the lo phase membrane, which are the same as those of GUVs in the L α phase. This indicates that the binding of La 3+ induced an increase in the lateral compression pressure of the membrane, which decreased the surface area of the membrane in the lo phase. The difference of the membrane interface between the L α phase and the lo phase is discussed

  10. Amorphous and crystalline phase interaction during the Brill transition in nylon 66

    Directory of Open Access Journals (Sweden)

    2009-07-01

    Full Text Available A prominent α' process in specifically treated nylon 66 and microcomposite samples is identified by dynamic mechanical analysis and proposed to be an amorphous phase counterpart of the Brill transition identified by synchrotron wide-angle X-ray diffraction (WAXD. It is suggested that this α' process, which marks a critical free volume change and an onset of segmental chain movement in the amorphous phase, precedes and prompts the Brill transition in the crystalline phase.

  11. The initial phase of sudden releases of superheated liquid

    International Nuclear Information System (INIS)

    Schmidli, J.

    1994-04-01

    The catastrophic failure of a pressure vessel containing a liquefied substance, leading to an instantaneous release of its whole contents is considered as one of the major technological hazards. Due to the rapid depressurization caused by vessel failure, the fluid becomes superheated and unstable. Part of the fluid will evaporate using its internal energy and the two-phase mixture forming will be accelerated. This flashing process can be very violent, as experiments and incidents actually happened have shown. In the past, a number of dispersion models were developed to predict the history of an instantaneous release. In most of these models the source term is considered to be a gas volume at rest and not a rapidly expanding aerosol, as could be observed. Furthermore, it is usually assumed that all of the remaining fluid is entrained into the expanding cloud and nothing is deposited on the ground to form a pool. This work concentrates on the initial phase of the sudden release of superheated liquids with the aim to gain a better understanding of the flashing process and of the physical mechanisms involved, leading to a reliable prediction of the source term. Therefore, more than 400 experiments with propane, butane, refrigerant 12 and 114 were conducted. The experiments were initiated by shattering spherical glass flasks of different sizes. The main parameters varied were the liquid superheat and the filling level of the vessel. Using high-speed video and movie recordings and very fast responding measurement devices, it was possible to study the initial phase of such releases during which gravity plays no role. For sufficiently large released internal energy, the initial evolution of the release was always spherical with a constant radial expansion velocity during he first milliseconds until instabilities appeared at the surface of the droplet/vapor cloud that was formed. For all the experimental conditions, the fraction of the initial liquid falling on the ground

  12. Liquid metal–organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A.; Chapman, Karena W.; Keen, David A.; Bennett, Thomas D.; Coudert, François-Xavier

    2017-10-09

    Metal–organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including ‘defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.

  13. Liquid metal-organic frameworks

    Science.gov (United States)

    Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A.; Chapman, Karena W.; Keen, David A.; Bennett, Thomas D.; Coudert, François-Xavier

    2017-11-01

    Metal-organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including `defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.

  14. Liquid-liquid phase separation in dilute solutions of poly(styrene sulfonate) with multivalent cations: Phase diagrams, chain morphology, and impact of temperature

    Science.gov (United States)

    Hansch, Markus; Hämisch, Benjamin; Schweins, Ralf; Prévost, Sylvain; Huber, Klaus

    2018-01-01

    The dilute solution behavior of sodium poly(styrene sulfonate) is studied in the presence of trivalent Al3+ and bivalent Ba2+ cations at various levels of excess NaCl. The study evaluates the phase behavior and the morphology of the polyelectrolyte chains with increasing extent of decoration with the Al3+ and Ba2+ cations and analyses the effect of temperature on these decorated chains. The phase behavior is presented in the form of the cation concentration versus the respective poly(styrene sulfonate) concentration, recorded at the onset of precipitation. Whereas poly(styrene sulfonate) with Al3+ exhibits a linear phase boundary, denoted as the "threshold line," which increases with increasing poly(styrene sulfonate) concentration, Ba2+ cations show a threshold line which is independent of the poly(styrene sulfonate) concentration. An additional re-entrant phase, at considerably higher cation content than those of the threshold lines, is observed with Al3+ cations but not with Ba2+ cations. The threshold line and the re-entrant phase boundary form parts of the liquid-liquid phase boundary observed at the limit of low polymer concentration. The dimensions of the polyelectrolyte chains shrink considerably while approaching the respective threshold lines on increase of the Al3+ and Ba2+ cation content. However, subtle differences occur between the morphological transformation induced by Al3+ and Ba2+. Most strikingly, coils decorated with Al3+ respond very differently to temperature variations than coils decorated with Ba2+ do. As the temperature increases, the poly(styrene sulfonate) chains decrease their size in the presence of Al3+ cations but increase in size in the presence of Ba2+ cations.

  15. Hydrothermal transformation of titanate nanotubes into single-crystalline TiO2 nanomaterials with controlled phase composition and morphology

    International Nuclear Information System (INIS)

    Xu, Yuanmei; Fang, Xiaoming; Xiong, Jian; Zhang, Zhengguo

    2010-01-01

    Single-crystalline TiO 2 nanomaterials were synthesized by hydrothermally treating suspensions of H-titanate nanotubes and characterized by XRD, TEM, and HRTEM. The effects of the pH values of the suspensions and the hydrothermal temperatures on the phase composition and morphology of the obtained TiO 2 nanomaterials were systematically investigated. The H-titanate nanotubes were predominately transformed into anatase nanoparticle with rhombic shape when the pH value was greater than or equal to 1.0, whereas primarily turned into rutile nanorod with two pyramidal ends at the pH value less than or equal to 0.5. We propose a possible mechanism for hydrothermal transformation of H-titanate nanotubes into single-crystalline TiO 2 nanomaterials. While the H-titanate nanotubes transform into tiny anatase nanocrystallites of ca. 3 nm in size, the formed nanocrystallites as an intermediate grow into the TiO 2 nanomaterials with controlled phase composition and morphology. This growth process involves the steps of protonation, oriented attachment, and Ostwald ripening.

  16. Crystalline-to-amorphous phase transition in irradiated silicon

    International Nuclear Information System (INIS)

    Seidman, D.N.; Averback, R.S.; Okamoto, P.R.; Baily, A.C.

    1986-01-01

    The amorphous(a)-to-crystalline (c) phase transition has been studied in electron(e - ) and/or ion irradiated silicon (Si). The irradiations were performed in situ in the Argonne High Voltage Microscope-Tandem Facility. The irradiation of Si, at 0 K, with 1-MeV e - to a fluence of 14 dpa failed to induce the c-to-a transition. Whereas an irradiation, at 0 K, with 1.0 or 1.5-MeV Kr+ ions induced the c-to-a transition by a fluence of approx.0.37 dpa. Alternatively a dual irradiation, at 10 0 K, with 1.0-MeV e - and 1.0 or 1.5-MeV Kr+ to a Kr+ fluence of 1.5 dpa - where the ratio of the displacement rates for e - to ions was approx.0.5 - resulted in the Si specimen retaining a degree of crystallinity. These results are discussed in terms of the degree of dispersion of point defects in the primary state of damage and the mobilities of point defects

  17. LPE growth and scintillation properties of (Zn,Mg)O single crystalline film

    Czech Academy of Sciences Publication Activity Database

    Yoshikawa, A.; Yanagida, T.; Fujimoto, Y.; Kurosawa, S.; Yokota, Y.; Yamaji, A.; Sugiyama, M.; Wakahara, S.; Futami, Y.; Kikuchi, M.; Miyamoto, M.; Sekiwa, H.; Nikl, Martin

    2012-01-01

    Roč. 59, č. 5 (2012), 2286-2289 ISSN 0018-9499 R&D Projects: GA MŠk LH12150 Institutional research plan: CEZ:AV0Z10100521 Keywords : crystalline materials * epitaxial layers * liquid phase epitaxy * scintillator * semiconductor films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.219, year: 2012

  18. Unraveling Crystalline Structure of High-Pressure Phase of Silicon Carbonate

    Directory of Open Access Journals (Sweden)

    Rulong Zhou

    2014-03-01

    Full Text Available Although CO_{2} and SiO_{2} both belong to group-IV oxides, they exhibit remarkably different bonding characteristics and phase behavior at ambient conditions. At room temperature, CO_{2} is a gas, whereas SiO_{2} is a covalent solid with rich polymorphs. A recent successful synthesis of the silicon-carbonate solid from the reaction between CO_{2} and SiO_{2} under high pressure [M. Santoro et al., Proc. Natl. Acad. Sci. U.S.A. 108, 7689 (2011] has resolved a long-standing puzzle regarding whether a Si_{x}C_{1−x}O_{2} compound between CO_{2} and SiO_{2} exists in nature. Nevertheless, the detailed atomic structure of the Si_{x}C_{1−x}O_{2} crystal is still unknown. Here, we report an extensive search for the high-pressure crystalline structures of the Si_{x}C_{1−x}O_{2} compound with various stoichiometric ratios (SiO_{2}:CO_{2} using an evolutionary algorithm. Based on the low-enthalpy structures obtained for each given stoichiometric ratio, several generic structural features and bonding characteristics of Si and C in the high-pressure phases are identified. The computed formation enthalpies show that the SiC_{2}O_{6} compound with a multislab three-dimensional (3D structure is energetically the most favorable at 20 GPa. Hence, a stable crystalline structure of the elusive Si_{x}C_{1−x}O_{2} compound under high pressure is predicted and awaiting future experimental confirmation. The SiC_{2}O_{6} crystal is an insulator with elastic constants comparable to typical hard solids, and it possesses nearly isotropic tensile strength as well as extremely low shear strength in the 2D plane, suggesting that the multislab 3D crystal is a promising solid lubricant. These valuable mechanical and electronic properties endow the SiC_{2}O_{6} crystal for potential applications in tribology and nanoelectronic devices, or as a stable solid-state form for CO_{2} sequestration.

  19. Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness

    International Nuclear Information System (INIS)

    Chai, Luxiao; Wang, Xiaodong; Wu, Dezhen

    2015-01-01

    Highlights: • We designed and synthesized a sort of bifunctional PCMs-based microcapsules. • These microcapsules have an n-eicosane core and a crystalline TiO 2 shell. • Such a crystalline TiO 2 shell exhibited a good photocatalytic activity. • The microcapsules showed good performance in energy storage and sterilization. - Abstract: A sort of novel bifunctional microencapsulated phase change material (PCM) was designed by encapsulating n-eicosane into a crystalline titanium dioxide (TiO 2 ) shell and, then, was successfully synthesized through in-situ polycondensation in the sol–gel process using tetrabutyl titanate as a titania precursor. The resultant microcapsule samples were characterized by Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy to determine their chemical compositions and structures. Furthermore, the crystallinity of the TiO 2 shell was verified by powder X-ray diffraction patterns. It was confirmed that the fluorinions could induce the phase transition from the amorphous TiO 2 to the brookite-form crystals during the sol–gel process, thus resulting in a crystalline TiO 2 shell for the microencapsulated n-eicosane. The scanning and transmission electron microscopy investigations indicated that all of the resultant microcapsules presented a perfect spherical shape with a uniform particle size of 1.5–2 μm, and they also exhibited a well-defined core–shell structure as well as a smooth and compact shell. The crystalline TiO 2 shell made the resultant microcapsules a photocatalytic activity, and therefore, these microcapsules demonstrated a good photocatalytic effect for the chemical degradation and an antimicrobial function for some of the Gram-negative bacteria. Most of all, all of the microencapsulated n-eicosane samples indicated good phase-change performance and high thermal reliability for latent-heat storage and release, and moreover, they achieved a high

  20. Phase transitions in liquids with directed intermolecular bonding

    OpenAIRE

    Son, L.; Ryltcev, R.

    2005-01-01

    Liquids with quasi - chemical bonding between molecules are described in terms of vertex model. It is shown that this bonding results in liquid - liquid phase transition, which occurs between phases with different mean density of intermolecular bonds. The transition may be suggested to be a universal phenomena for those liquids.

  1. Comparison of alignment tensors generated for native tRNAVal using magnetic fields and liquid crystalline media

    International Nuclear Information System (INIS)

    Latham, Michael P.; Hanson, Paul; Brown, Darin J.; Pardi, Arthur

    2008-01-01

    Residual dipolar couplings (RDCs) complement standard NOE distance and J-coupling torsion angle data to improve the local and global structure of biomolecules in solution. One powerful application of RDCs is for domain orientation studies, which are especially valuable for structural studies of nucleic acids, where the local structure of a double helix is readily modeled and the orientations of the helical domains can then be determined from RDC data. However, RDCs obtained from only one alignment media generally result in degenerate solutions for the orientation of multiple domains. In protein systems, different alignment media are typically used to eliminate this orientational degeneracy, where the combination of RDCs from two (or more) independent alignment tensors can be used to overcome this degeneracy. It is demonstrated here for native E. coli tRNA Val that many of the commonly used liquid crystalline alignment media result in very similar alignment tensors, which do not eliminate the 4-fold degeneracy for orienting the two helical domains in tRNA. The intrinsic magnetic susceptibility anisotropy (MSA) of the nucleobases in tRNA Val was also used to obtain RDCs for magnetic alignment at 800 and 900 MHz. While these RDCs yield a different alignment tensor, the specific orientation of this tensor combined with the high rhombicity for the tensors in the liquid crystalline media only eliminates two of the four degenerate orientations for tRNA Val . Simulations are used to show that, in optimal cases, the combination of RDCs obtained from liquid crystalline medium and MSA-induced alignment can be used to obtain a unique orientation for the two helical domains in tRNA Val

  2. Phase stability analysis of liquid-liquid equilibrium with stochastic methods

    Directory of Open Access Journals (Sweden)

    G. Nagatani

    2008-09-01

    Full Text Available Minimization of Gibbs free energy using activity coefficient models and nonlinear equation solution techniques is commonly applied to phase stability problems. However, when conventional techniques, such as the Newton-Raphson method, are employed, serious convergence problems may arise. Due to the existence of multiple solutions, several problems can be found in modeling liquid-liquid equilibrium of multicomponent systems, which are highly dependent on the initial guess. In this work phase stability analysis of liquid-liquid equilibrium is investigated using the NRTL model. For this purpose, two distinct stochastic numerical algorithms are employed to minimize the tangent plane distance of Gibbs free energy: a subdivision algorithm that can find all roots of nonlinear equations for liquid-liquid stability analysis and the Simulated Annealing method. Results obtained in this work for the two stochastic algorithms are compared with those of the Interval Newton method from the literature. Several different binary and multicomponent systems from the literature were successfully investigated.

  3. On the molecular anisotropy of liquid crystalline and flexible polymer systems

    Science.gov (United States)

    van Horn, Brett L.

    The demand for products of ever increasing quality or for novel applications has required increasing attention to or manipulation of the anisotropy of manufactured parts. Oriented plastics are used everywhere from recording film to automotive body parts to monofilament fishing line. Liquid crystals are also used in a wide array of applications including their dominance in the flat panel display industry, color changing temperature sensors, and woven bullet resistant fabrics. Anisotropy can also be detrimental, for instance sometimes leading to poor fracture resistance or low yield stress along specific directions. Controlling and measuring anisotropy of materials has become increasingly important, but doing so is wrought with challenges. Measuring physical properties of isotropic liquids, such as water or most oils can be done in a straightforward fashion. Their viscosities and densities, for example, have unique values under a given set of conditions. With anisotropic fluids, like liquid crystals, the viscosity, for instance, will not only depend upon temperature, concentration, etc. but also upon the direction of observation, degree of anisotropy, source of anisotropy, and so forth. This added degree of complexity complicates our ability to define the state of the material at which the measurements are made and generally necessitates the use of more sophisticated measurement strategies or techniques. This work presents techniques and tools for investigating anisotropy in liquid crystalline and stretched polymeric systems. Included are the use of conoscopy for the determination of birefringence and orientation of nematic liquid crystals and stretched polymers, the shear response of flow aligning nematic liquid crystal monodomains, and the design of a novel linear rheometer that allows for in situ optical or scattering investigations.

  4. Liquid-liquid phase transition and glass transition in a monoatomic model system.

    Science.gov (United States)

    Xu, Limei; Buldyrev, Sergey V; Giovambattista, Nicolas; Stanley, H Eugene

    2010-01-01

    We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses.

  5. Liquid-Liquid Phase Transition and Glass Transition in a Monoatomic Model System

    Directory of Open Access Journals (Sweden)

    Nicolas Giovambattista

    2010-12-01

    Full Text Available We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses.

  6. Mirror Symmetry Breaking by Chirality Synchronisation in Liquids and Liquid Crystals of Achiral Molecules.

    Science.gov (United States)

    Tschierske, Carsten; Ungar, Goran

    2016-01-04

    Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self-assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well-ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long-term stable symmetry-broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Crystalline phase control and growth selectivity of β-MnO{sub 2} thin films by remote plasma assisted pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Abi-Akl, M.; Tabbal, M., E-mail: malek.tabbal@aub.edu.lb; Kassem, W.

    2016-08-01

    In this paper, we exploit the effect of coupling an oxygen remote plasma source to Pulsed Laser Deposition (PLD) for the growth of pure and well crystallized β-MnO{sub 2} films. Films were grown on Si substrates by laser ablation of a MnO target in oxygen ambient and remote plasma. X-Ray Diffraction, Fourier Transform Infra-Red spectroscopy and Raman scattering were used to determine the crystalline structure and bonding in the grown layers, whereas Atomic Force Microscopy was used to study their morphology and surface roughness. Deposition at 500 °C and high oxygen pressure (33.3–66.6 Pa) resulted in the formation of films with roughness of 12 nm consisting of nsutite γ-MnO{sub 2}, a structure characterized by the intergrowth of the pyrolusite β-MnO{sub 2} in a ramsdellite R-MnO{sub 2} matrix. Deposition at the same temperature but low pressure (1.33–3.33 Pa) in oxygen ambient lead to the formation of Mn{sub 2}O{sub 3} whereas plasma activation within the same pressure range induced the growth of single phase highly crystalline β-MnO{sub 2} having smooth surfaces with a roughness value of 0.6 nm. Such results underline the capability of remote plasma assisted PLD in selecting and controlling the crystalline phase of manganese oxide layers. - Highlights: • MnO{sub 2} films were grown by Remote Plasma Assisted Pulsed Laser Deposition. • Crystalline MnO{sub 2} is formed at a substrate temperature of 500 °C. • Smooth crystalline single phase β-MnO{sub 2} films were obtained at 1.33–3.33 Pa. • Deposition at 1.33–3.33 Pa without plasma activation lead to the growth of Mn{sub 2}O{sub 3}. • Without plasma, mixed phases of MnO{sub 2} polymorphs are obtained at 33.3 Pa and above.

  8. Appearance of large crystalline domains in VO{sub 2} films grown on sapphire (001) and their phase transition characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Azhan, Nurul Hanis; Su, Kui; Okimura, Kunio, E-mail: okifn@keyaki.cc.u-tokai.ac.jp [Graduate School of Science and Technology, Tokai University, Hiratsuka 259-1292 (Japan); Zaghrioui, Mustapha; Sakai, Joe [GREMAN, UMR 7347 CNRS, Université François Rabelais de Tours, Parc de Grandmont 37200 Tours (France)

    2015-06-28

    We report the first observation of large crystalline domains of several μm-size in VO{sub 2} films deposited on Al{sub 2}O{sub 3} (001) substrates by rf-biased reactive sputtering technique. The large crystalline domains, dominated with random in-plane oriented growth of (011){sub M1}-orientation, appear only under adequate substrate biasing, such as 10 W, while most biasing conditions result in conventional nanosized grains of highly oriented (010){sub M1}-orientation. Two temperature-controlled analyses, x-ray diffraction and micro-Raman spectroscopy, have revealed that some parts of large crystalline domains undergo intermediate monoclinic (M2) phase during the thermally-induced structural phase transition from monoclinic (M1) to rutile-tetragonal (R) phase. As an effect of the appearance of large crystalline domains, the film showed in-plane tensile stress, resulting in high T{sub IMT} of 69 °C due to the elongation of the V-V distance in its low-temperature monoclinic phase.

  9. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    Science.gov (United States)

    Kim, Choong Paul; Hays, Charles C.; Johnson, William L.

    2004-03-23

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  10. Improving the thermal stability and electrical parameters of a liquid crystalline material 4-n-(nonyloxy) benzoic acid by using Li ion beam irradiation

    Science.gov (United States)

    Kumar, Satendra; Verma, Rohit; Dwivedi, Aanchal; Dhar, R.; Tripathi, Ambuj

    2018-05-01

    Li ion beam irradiation studies on a liquid crystalline material 4-n-(nonyloxy) benzoic acid (NOBA) have been carried out. The material has phase sequence of I-N-SmC-Cr. Thermodynamic studies demonstrate that an irradiation fluence of 1×1013 ions-cm-2 results in the increased thermal stability of the smectic C (SmC) phase of the material. Dielectric measurements illustrate that the transverse component of the dielectric permittivity and hence the dielectric anisotropy of the material in the nematic (N) and SmC phases are increased as compared to those of the pure material due to irradiation. UV-Visible spectrum of the irradiated material shows an additional peak along with the peak of the pure material. The observed change in the thermodynamic and electrical parameters is attributed to the conversion of some of the dimers of NOBA to monomers of NOBA due to irradiation.

  11. Proton-conductive materials formed by coumarin photocrosslinked ionic liquid crystal dendrimers

    NARCIS (Netherlands)

    Concellon, A.; Liang, T.; Schenning, A.P.H.J.; Luis Serrano, J.; Romero, P.; Marcos, M.

    2018-01-01

    In this work, we have successfully examined for the first time the use of ionic dendrimers as building blocks for the preparation of 1D and 2D proton conductive materials. For this purpose, a new family of liquid crystalline dendrimers has been synthesized by ionic self-assembly of poly(amidoamine)

  12. Liquid-liquid phase separation and solidification behavior of Al55Bi36Cu9 monotectic alloy with different cooling rates

    Science.gov (United States)

    Bo, Lin; Li, Shanshan; Wang, Lin; Wu, Di; Zuo, Min; Zhao, Degang

    2018-03-01

    The cooling rate has a significant effect on the solidification behavior and microstructure of monotectic alloy. In this study, different cooling rate was designed through casting in the copper mold with different bore diameters. The effects of different cooling rate on the solidification behavior of Al55Bi36Cu9 (at.%) immiscible alloy have been investigated. The liquid-liquid phase separation of Al55Bi36Cu9 immiscible alloy melt was investigated by resistivity test. The solidification microstructure and phase analysis of Al55Bi36Cu9 immiscible alloy were performed by the SEM and XRD, respectively. The results showed that the liquid-liquid phase separation occurred in the solidification of Al55Bi36Cu9 monotectic melt from 917 °C to 653 °C. The monotectic temperature, liquid phase separation temperature and immiscibility zone of Al55Bi36Cu9 monotectic alloy was lower than those of Al-Bi binary monotectic alloy. The solidification morphology of Al55Bi36Cu9 monotectic alloy was very sensitive to the cooling rate. The Al/Bi core-shell structure formed when Al55Bi36Cu9 melt was cast in the copper mold with a 8 mm bore diameter.

  13. Resonant x-ray scattering study of the antiferroelectric and ferrielectric phases in liquid crystal devices

    International Nuclear Information System (INIS)

    Matkin, L. S.; Watson, S. J.; Gleeson, H. F.; Pindak, R.; Pitney, J.; Johnson, P. M.; Huang, C. C.; Barois, P.; Levelut, A.-M.; Srajer, G.

    2001-01-01

    Resonant x-ray scattering has been used to investigate the interlayer ordering of the antiferroelectric and ferrielectric smectic C * subphases in a device geometry. The liquid crystalline materials studied contain a selenium atom and the experiments were carried out at the selenium K edge allowing x-ray transmission through glass. The resonant scattering peaks associated with the antiferroelectric phase were observed in two devices containing different materials. It was observed that the electric-field-induced antiferroelectric to ferroelectric transition coincides with the chevron to bookshelf transition in one of the devices. Observation of the splitting of the antiferroelectric resonant peaks as a function of applied field also confirmed that no helical unwinding occurs at fields lower than the chevron to bookshelf threshold. Resonant features associated with the four-layer ferrielectric liquid crystal phase were observed in a device geometry. Monitoring the electric field dependence of these ferrielectric resonant peaks showed that the chevron to bookshelf transition occurs at a lower applied field than the ferrielectric to ferroelectric switching transition

  14. The effect of peptides and ions interacting with an electrically neutral membrane interface on the structure and stability of lipid membranes in the liquid-crystalline phase and in the liquid-ordered phase

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Ryoko [Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529 (Japan); Masum, Shah Md [Material Science, Graduate School of Science and Engineering, Shizuoka University, 422-8529 (Japan); Tanaka, Tomoki [Material Science, Graduate School of Science and Engineering, Shizuoka University, 422-8529 (Japan); Yamashita, Yuko [Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529 (Japan); Levadny, Victor [Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529 (Japan); Scientific Council for Cybernetics, Russian Academy of Sciences, Vavilov street 34, 333117, Moscow (Russian Federation); Yamazaki, Masahito [Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529 (Japan); Material Science, Graduate School of Science and Engineering, Shizuoka University, 422-8529 (Japan)

    2005-08-10

    We investigated the effects of a de novo designed peptide, WLFLLKKK (peptide-1) and La{sup 3+}, which can bind with the electrically neutral lipid membrane interface, on the stability of the phosphatidylcholine (PC) membrane in the L{sub {alpha}} phase and that of the liquid-ordered (lo) phase membranes. The results of spacing of the multilamellar vesicle and shape changes of the giant unilamellar vesicle (GUV) indicate that the peptide-1 can be partitioned into the membrane interface in the L{sub {alpha}} phase but not into that in the lo phase. La{sup 3+} induced shape changes of GUVs of the lo phase membrane, which are the same as those of GUVs in the L{sub {alpha}} phase. This indicates that the binding of La{sup 3+} induced an increase in the lateral compression pressure of the membrane, which decreased the surface area of the membrane in the lo phase. The difference of the membrane interface between the L{sub {alpha}} phase and the lo phase is discussed.

  15. Studies on the Synthesis,Characterization and Properties of the Reactive Thermotropic Liquid Crystalline Polymer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Introduction Four species of reactive thermotropic liquid crystalline polymer (LCMC) with different relative molecular weight were synthesized in this work (see scheme 1, n=2, 6, 10, ∞.n means number of repeat structure unit). Their structure, morphology and properties were investigated systemically by differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Wide-angle X-ray diffraction (WAXD), polarizing opticalmicroscopy (POM) and ubb...

  16. Phospholipids chiral at phosphorus. Dramatic effects of phosphorus chirality on the deuterium NMR properties of the choline head group of phospholipids in the liquid crystalline phase

    International Nuclear Information System (INIS)

    Loffredo, W.M.; Jiang, Rutai; Tsai, Mingdaw

    1990-01-01

    To probe the motional and conformational propertis of the choline head group of 1,2-dipalmitoyl-sn-glycero-3-thiophosphocholine (DPPsC), the R p , S p , and R p + S p isomers of [α-D 2 ]DPPsC, [β-D 2 ]DPPsC, and [δ-D 9 ]DPPsC in the subgel, gel, and liquid crystalline phases were investigated with deuterium NMR, and the results were compared with those of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) labeled at the same positions. In the subgel phase (5 degree C) all isomers of [α-D 2 ]DPPsC and [β-D 2 ]DPPsC displayed amorphous line shapes characteristic of a restricted and disordered motional environment, whereas [δ-D 9 ]DPPsC showed narrower and symmetric line shapes indicating substantial motions. For all three labeled positions the apparent line width of the R p isomer is larger than those of S p and R p + S p isomers, and the amorphous line shape of the R p isomer also persists at 25 and 35 degree C. These results indicate that the motional and conformational properties of the C α -C β segment of DPPsC is very sensitive to the configuration at phosphorus. Structurally, this provides strong support for noncovalent interactions between the quaternary ammonium group of choline and the phosphate group of a neighboring molecule in the bilayers of phosphatidylcholine and suggests that such interactions are important to the motion of the choline chain

  17. Structure of 1,5-Anhydro-D-Fructose: X-ray Analysis of Crystalline Acetylated Dimeric Forms

    DEFF Research Database (Denmark)

    Lundt, Inge; Andersen, Søren Møller; Marcussen, Jan

    1998-01-01

    Acetylation of 1,5-anhydro-D-fructose under acidic conditions gave two crystalline acetylated dimeric forms, which by X-ray analysis were shown to be diastereomeric spiroketals formed between C-2 and C-2´/C-3´. The structures of the compounds differed only at the configuration at C-2. Acetylation...... or benzoylation of 1,5-anhydro-D-fructose in pyridine yielded 3,6-di-O-acetyl-1,5-anhydro-4-deoxy-D-glycero-hex-3-enos-2-ulopyra -nose or crystalline 1,5-anhydro-3,6-di-O-benzoyl-4-deoxy-D-glycero-hex-3-enos-2-ulo-py ranose....

  18. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2013-06-01

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011), 10.1063/1.3643333 and preprint arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

  19. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II

    International Nuclear Information System (INIS)

    Limmer, David T.; Chandler, David

    2013-01-01

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys.135, 134503 (2011) and preprint http://arxiv.org/abs/arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light

  20. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II

    Energy Technology Data Exchange (ETDEWEB)

    Limmer, David T.; Chandler, David, E-mail: chandler@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States)

    2013-06-07

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys.135, 134503 (2011) and preprint http://arxiv.org/abs/arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

  1. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II.

    Science.gov (United States)

    Limmer, David T; Chandler, David

    2013-06-07

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011) and preprint arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

  2. Characterization of surfactant liquid crystal phases suitable for molecular alignment and measurement of dipolar couplings

    International Nuclear Information System (INIS)

    Barrientos, Laura G.; Dolan, Caroline; Gronenborn, Angela M.

    2000-01-01

    Media employed for imparting partial alignment onto solute molecules have recently attracted considerable attention, since they permit the measurement of NMR parameters for solute biomolecules commonly associated with solid state NMR. Here we characterize a medium which is based on a quasi-ternary surfactant system comprising cetylpyridinium bromide/hexanol/sodium bromide. We demonstrate that dilute solutions of this system can exist in liquid crystalline phases which orient in the magnetic field and allow the measurement of residual dipolar couplings under a variety of conditions. The present system is extremely versatile and robust, tolerating different buffer conditions, temperature ranges and concentrations

  3. Liquid crystals for organic thin-film transistors

    Science.gov (United States)

    Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-Ichi

    2015-04-01

    Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm2 V-1 s-1) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics.

  4. Liquid-Liquid Phase Separation in Model Nuclear Waste Glasses: A Solid-State Double-Resonance NMR Study

    Energy Technology Data Exchange (ETDEWEB)

    Martineau, Ch.; Michaelis, V.K.; Kroeker, S. [Univ Manitoba, Dept Chem, Winnipeg, MB R3T 2N2 (Canada); Schuller, S. [CEA Valrho Marcoule, LDMC, SECM, DTCD, DEN, F-30207 Bagnols Sur Ceze (France)

    2010-07-01

    Double-resonance nuclear magnetic resonance (NMR) techniques are used in addition to single-resonance NMR experiments to probe the degree of mixing between network-forming cations Si and B, along with the modifier cations Cs{sup +} and Na{sup +} in two molybdenum-bearing model nuclear waste glasses. The double-resonance experiments involving {sup 29}Si in natural abundance are made possible by the implementation of a CPMG pulse-train during the acquisition period of the usual REDOR experiments. For the glass with lower Mo content, the NMR results show a high degree of Si-B mixing, as well as an homogeneous distribution of the cations within the borosilicate network, characteristic of a non-phase-separated glass. For the higher-Mo glass, a decrease of B-Si(Q{sup 4}) mixing is observed, indicating phase separation. {sup 23}Na and {sup 133}Cs NMR results show that although the Cs{sup +} cations, which do not seem to be influenced by the molybdenum content, are spread within the borate network, there is a clustering of the Na{sup +} cations, very likely around the molybdate units. The segregation of a Mo-rich region with Na{sup +} cations appears to shift the bulk borosilicate glass composition toward the metastable liquid liquid immiscibility region and induce additional phase separation. Although no crystallization is observed in the present case, this liquid liquid phase separation is likely to be the first stage of crystallization that can occur at higher Mo loadings or be driven by heat treatment. From this study emerges a consistent picture of the nature and extent of such phase separation phenomena in Mo-bearing glasses, and demonstrates the potential of double-resonance NMR methods for the investigation of phase separation in amorphous materials. (authors)

  5. Selectively deuterated liquid crystalline cyanoazobenzene side-chain polyesters. 3. Investigations of laser induced segmental mobility by Fourier transform infrared spectroscopy

    DEFF Research Database (Denmark)

    Kulinna, Christian; Hvilsted, Søren; Hendann, Claudia

    1998-01-01

    The laser-induced anisotropy in thin films of an extensive number of cyanoazobenzene sidechain liquid crystalline polytetradecanedioates, -dodecanedioates, and -adipates selectively deuterated at different positions have been investigated with polarized FTIR spectroscopy. The analysis of the segm......The laser-induced anisotropy in thin films of an extensive number of cyanoazobenzene sidechain liquid crystalline polytetradecanedioates, -dodecanedioates, and -adipates selectively deuterated at different positions have been investigated with polarized FTIR spectroscopy. The analysis...... of the segmental orientation based on dichroic ratios of characteristic absorption bands shows that, in polyesters with long main-chain spacing (tetradecanedioates and dodecanedioates), not only the light sensitive azo chromophore but also the main-chain methylene segment and to a smaller extent the flexible...

  6. Removal of pyridine from liquid and gas phase by copper forms of natural and synthetic zeolites

    International Nuclear Information System (INIS)

    Rehakova, Maria; Fortunova, Lubica; Bastl, Zdenek; Nagyova, Stanislava; Dolinska, Silvia; Jorik, Vladimir; Jona, Eugen

    2011-01-01

    Zeoadsorbents on the basis of copper forms of synthetic zeolite ZSM5 and natural zeolite of the clinoptilolite type (CT) have been studied taking into account their environmental application in removing harmful pyridine (py) from liquid and gas phase. Sorption of pyridine by copper forms of zeolites (Cu-ZSM5 and Cu-CT) has been studied by CHN, X-ray photoelectron spectroscopy, X-ray powder diffractometry, FTIR spectroscopy, thermal analysis (TG, DTA and DTG) and analysis of the surface areas and the pore volumes by low-temperature adsorption of nitrogen. The results of thermal analyses of Cu-ZSM5, Cu-(py) x ZSM5, Cu-CT and Cu-(py) x CT zeolitic products with different composition (x depends on the experimental conditions of sorption of pyridine) clearly confirmed their different thermal properties as well as the sorption of pyridine. In the zeolitic pyridine containing samples the main part of the pyridine release process occurs at considerably higher temperatures than is the boiling point of pyridine, which proves strong bond and irreversibility of py-zeolite interaction. FTIR spectra of Cu-(py) x zeolite samples showed well resolved bands of pyridine. The results of thermal analysis and FTIR spectroscopy are in a good agreement with the results of other used methods.

  7. AsS melt under pressure: one substance, three liquids.

    Science.gov (United States)

    Brazhkin, V V; Katayama, Y; Kondrin, M V; Hattori, T; Lyapin, A G; Saitoh, H

    2008-04-11

    An in situ high-temperature--high-pressure study of liquid chalcogenide AsS by x-ray diffraction, resistivity measurements, and quenching from melt is presented. The obtained data provide direct evidence for the existence in the melt under compression of two transformations: one is from a moderate-viscosity molecular liquid to a high-viscosity nonmetallic polymerized liquid at P approximately 1.6-2.2 GPa; the other is from the latter to a low-viscosity metallic liquid at P approximately 4.6-4.8 GPa. Upon rapid cooling, molecular and metallic liquids crystallize to normal and high-pressure phases, respectively, while a polymerized liquid is easily quenched to a new AsS glass. General aspects of multiple phase transitions in liquid AsS, including relations to the phase diagram of the respective crystalline, are discussed.

  8. Dynamics and Geometry of Icosahedral Order in Liquid and Glassy Phases of Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Masato Shimono

    2015-07-01

    Full Text Available The geometrical properties of the icosahedral ordered structure formed in liquid and glassy phases of metallic glasses are investigated by using molecular dynamics simulations. We investigate the Zr-Cu alloy system as well as a simple model for binary alloys, in which we can change the atomic size ratio between alloying components. In both cases, we found the same nature of icosahedral order in liquid and glassy phases. The icosahedral clusters are observed in liquid phases as well as in glassy phases. As the temperature approaches to the glass transition point Tg, the density of the clusters rapidly grows and the icosahedral clusters begin to connect to each other and form a medium-range network structure. By investigating the geometry of connection between clusters in the icosahedral network, we found that the dominant connecting pattern is the one sharing seven atoms which forms a pentagonal bicap with five-fold symmetry. From a geometrical point of view, we can understand the mechanism of the formation and growth of the icosahedral order by using the Regge calculus, which is originally employed to formulate a theory of gravity. The Regge calculus tells us that the distortion energy of the pentagonal bicap could be decreased by introducing an atomic size difference between alloying elements and that the icosahedral network would be stabilized by a considerably large atomic size difference.

  9. Growth of high purity semiconductor epitaxial layers by liquid phase ...

    Indian Academy of Sciences (India)

    Unknown

    semiconductor materials in high purity form by liquid phase epitaxy (LPE) technique. Various possible sources of impurities in such ... reference to the growth of GaAs layers. The technique of growing very high purity layers ... the inner walls of the gas lines and (e) the containers for storing, handling and cleaning of the mate-.

  10. A possible mechanism of ultrafast amorphization in phase-change memory alloys: an ion slingshot from the crystalline to amorphous position

    International Nuclear Information System (INIS)

    Kolobov, A V; Mishchenko, A S; Fons, P; Yakubenya, S M; Tominaga, J

    2007-01-01

    We propose that the driving force of the ultrafast crystalline-to-amorphous transition in phase-change memory alloys is caused by strained bonds existing in the (metastable) crystalline phase. For the prototypical example of Ge 2 Sb 2 Te 5 , we demonstrate that upon breaking of the longer Ge-Te bond by photoexcitation, a Ge ion is shot from an octahedral crystalline to a tetrahedral amorphous position by the uncompensated force of strained short bonds. Subsequent lattice relaxation stabilizes the tetrahedral surroundings of the Ge atoms and ensures the long-term stability of the optically induced phase

  11. Purification of flavonoids from licorice using an off-line preparative two-dimensional normal-phase liquid chromatography/reversed-phase liquid chromatography method.

    Science.gov (United States)

    Fan, Yunpeng; Fu, Yanhui; Fu, Qing; Cai, Jianfeng; Xin, Huaxia; Dai, Mei; Jin, Yu

    2016-07-01

    An orthogonal (71.9%) off-line preparative two-dimensional normal-phase liquid chromatography/reversed-phase liquid chromatography method coupled with effective sample pretreatment was developed for separation and purification of flavonoids from licorice. Most of the nonflavonoids were firstly removed using a self-made Click TE-Cys (60 μm) solid-phase extraction. In the first dimension, an industrial grade preparative chromatography was employed to purify the crude flavonoids. Click TE-Cys (10 μm) was selected as the stationary phase that provided an excellent separation with high reproducibility. Ethyl acetate/ethanol was selected as the mobile phase owing to their excellent solubility for flavonoids. Flavonoids co-eluted in the first dimension were selected for further purification using reversed-phase liquid chromatography. Multiple compounds could be isolated from one normal-phase fraction and some compounds with bad resolution in one-dimensional liquid chromatography could be prepared in this two-dimensional system owing to the orthogonal separation. Moreover, this two-dimensional liquid chromatography method was beneficial for the preparation of relatively trace flavonoid compounds, which were enriched in the first dimension and further purified in the second dimension. Totally, 24 flavonoid compounds with high purity were obtained. The results demonstrated that the off-line two-dimensional liquid chromatography method was effective for the preparative separation and purification of flavonoids from licorice. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Phase Diagram of Binary Mixture E7:TM74A Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Serafin Delica

    1999-12-01

    Full Text Available Although there are many liquid crystalline materials, difficulty is often experienced in obtaining LCs that are stable and has a wide mesophase range. In this study, mixtures of two different LCs were used to formulate a technologically viable LC operating at room temperature. Nematic E7(BDH and cholesteric TM74A were mixed at different weight ratios at 10% increments. Transition temperatures were determined via Differential Scanning Calorimetry and phase identification was done using Optical Polarizing Microscopy. The phase diagram showed the existence of three different phases for the temperature range of 10-80°C. Mixtures with 0-20% E7 exhibit only the cholesteric-nematic mesophase, which could be due to the mixture's being largely TM74A and its behavior in the temperature range considered is similar to the behavior of pure TM74A. With an increase in the concentration of E7, the smectic phase of the pure cholesteric was enhanced, as seen from the increased transition to the cholesteric-nematic phase and a broader smectic range. The cholesteric-nematic to isotropic transition increased as the nematic concentration increases, following the behavior expected from LC mixtures. For mixtures that are largely nematic (more than 50% E7, the smectic phase has vanished and the cholesteric-nematic phase dominated from 30-60°C.

  13. Glass and liquid phase diagram of a polyamorphic monatomic system

    Science.gov (United States)

    Reisman, Shaina; Giovambattista, Nicolas

    2013-02-01

    We perform out-of-equilibrium molecular dynamics (MD) simulations of a monatomic system with Fermi-Jagla (FJ) pair potential interactions. This model system exhibits polyamorphism both in the liquid and glass state. The two liquids, low-density (LDL) and high-density liquid (HDL), are accessible in equilibrium MD simulations and can form two glasses, low-density (LDA) and high-density amorphous (HDA) solid, upon isobaric cooling. The FJ model exhibits many of the anomalous properties observed in water and other polyamorphic liquids and thus, it is an excellent model system to explore qualitatively the thermodynamic properties of such substances. The liquid phase behavior of the FJ model system has been previously characterized. In this work, we focus on the glass behavior of the FJ system. Specifically, we perform systematic isothermal compression and decompression simulations of LDA and HDA at different temperatures and determine "phase diagrams" for the glass state; these phase diagrams varying with the compression/decompression rate used. We obtain the LDA-to-HDA and HDA-to-LDA transition pressure loci, PLDA-HDA(T) and PHDA-LDA(T), respectively. In addition, the compression-induced amorphization line, at which the low-pressure crystal (LPC) transforms to HDA, PLPC-HDA(T), is determined. As originally proposed by Poole et al. [Phys. Rev. E 48, 4605 (1993)], 10.1103/PhysRevE.48.4605 simulations suggest that the PLDA-HDA(T) and PHDA-LDA(T) loci are extensions of the LDL-to-HDL and HDL-to-LDL spinodal lines into the glass domain. Interestingly, our simulations indicate that the PLPC-HDA(T) locus is an extension, into the glass domain, of the LPC metastability limit relative to the liquid. We discuss the effects of compression/decompression rates on the behavior of the PLDA-HDA(T), PHDA-LDA(T), PLPC-HDA(T) loci. The competition between glass polyamorphism and crystallization is also addressed. At our "fast rate," crystallization can be partially suppressed and the

  14. The orientation-enhancing effect of diphenyl aluminium phosphate nanorods in a liquid-crystalline epoxy matrix ordered by magnetic field

    Czech Academy of Sciences Publication Activity Database

    Mossety-Leszczak, B.; Strachota, Beata; Strachota, Adam; Steinhart, Miloš; Šlouf, Miroslav

    2015-01-01

    Roč. 72, November (2015), s. 238-255 ISSN 0014-3057 Institutional support: RVO:61389013 Keywords : liquid-crystalline epoxy resins * magnetic field orientation * nanocomposites Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.485, year: 2015

  15. The shape and dynamics of the generation of the splash forms in single-phase systems after drop hitting

    Science.gov (United States)

    Sochan, Agata; Beczek, Michał; Mazur, Rafał; RyŻak, Magdalena; Bieganowski, Andrzej

    2018-02-01

    The splash phenomenon is being increasingly explored with the use of modern measurement tools, including the high-speed cameras. Recording images at a rate of several thousand frames per second facilitates parameterization and description of the dynamics of splash phases. This paper describes the impact of a single drop of a liquid falling on the surface of the same liquid. Three single-phase liquid systems, i.e., water, petrol, and diesel fuel, were examined. The falling drops were characterized by different kinetic energy values depending on the height of the fall, which ranged from 0.1 to 7.0 m. Four forms, i.e., waves, crowns, semi-closed domes, and domes, were distinguished depending on the drop energy. The analysis of the recorded images facilitated determination of the static and dynamic parameters of each form, e.g., the maximum height of each splash form, the width of the splash form at its maximum height, and the rate of growth of the splash form. We, Re, Fr, and K numbers were determined for all analyzed liquid systems. On the basis of the obtained values of dimensionless numbers, the areas of occurrence of characteristic splash forms were separated.

  16. Light scattering from crystals, glasses and liquids

    International Nuclear Information System (INIS)

    Subbaswamy, K.R.

    1984-09-01

    The theory of inelastic light scattering from a model system in the crystalline, disordered and liquid phases is analyzed. The roles of disorder induced first order scattering and second order scattering are clarified in the context of the classical liquid. The correlation functions appropriate for the various contributions are identified and useful ways of processing experimental data are pointed out. (author)

  17. Phase transitions in surfactant monolayers

    International Nuclear Information System (INIS)

    Casson, B.D.

    1998-01-01

    Two-dimensional phase transitions have been studied in surfactant monolayers at the air/water interface by sum-frequency spectroscopy and ellipsometry. In equilibrium monolayers of medium-chain alcohols C n H 2n+1 OH (n = 9-14) a transition from a two-dimensional crystalline phase to a liquid was observed at temperatures above the bulk melting point. The small population of gauche defects in the solid phase increased only slightly at the phase transition. A model of the hydrocarbon chains as freely rotating rigid rods allowed the area per molecule and chain tilt in the liquid phase to be determined. The area per molecule, chain tilt and density of the liquid phase all increased with increasing chain length, but for each chain length the density was higher than in a bulk liquid hydrocarbon. In a monolayer of decanol adsorbed at the air/water interface a transition from a two-dimensional liquid to a gas was observed. A clear discontinuity in the coefficient of ellipticity as a function of temperature showed that the transition is first-order. This result suggests that liquid-gas phase transitions in surfactant monolayers may be more widespread than once thought. A solid-liquid phase transition has also been studied in mixed monolayers of dodecanol with an anionic surfactant (sodium dodecyl sulphate) and with a homologous series of cationic surfactants (alkyltrimethylammonium bromides: C n TABs, n = 12, 14, 16). The composition and structure of the mixed monolayers was studied above and below the phase transition. At low temperatures the mixed monolayers were as densely packed as a monolayer of pure dodecanol in its solid phase. At a fixed temperature the monolayers under-went a first-order phase transition to form a phase that was less dense and more conformationally disordered. The proportion of ionic surfactant in the mixed monolayer was greatest in the high temperature phase. As the chain length of the C n TAB increased the number of conformational defects

  18. Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography--a review.

    Science.gov (United States)

    Pino, Verónica; Afonso, Ana M

    2012-02-10

    Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100°C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Preliminary investigation of liquid phase sintering in ferrous systems

    International Nuclear Information System (INIS)

    Klein, J.

    1975-04-01

    Liquid phase sintering was utilized to achieve, by a simple compaction and sintering procedure involving short times and moderate temperatures, a virtually full dense high carbon Fe:C alloy and high boron Fe:B alloy. Parameters such as powder characteristics and mixing, compacting pressure, heating program and the liquid phase fraction were found to influence the sintered density. The response of the Fe:C alloy to a heat treatment is reported along with preliminary experiments in the iron base ternary system Fe:W:C. Residual porosities observed in microstructures of certain liquid phase sintered compacts were accounted for by a proposed capillary flow of the liquid phase and a local densification competing against an overall densification. Some general recommendations are made for liquid phase sintering of powder aggregates. 15 fig., 7 tables

  20. Thermal Analysis, Mechanical and Rheological Behaviour of Melt Manufactured Polyethylene/Liquid Crystal Polymer Blends

    Directory of Open Access Journals (Sweden)

    Ilze ELKSNITE

    2011-07-01

    Full Text Available Modification of properties of conventional thermoplastics with thermotropic liquid crystal polymers, from one hand, allows decrease their viscosities, substantially facilitating processing conditions, and, from another hand, allows increase their exploitation properties. Orientation of the labile structure of liquid crystal polymer in extrusion or injection moulding causes specific reinforcement (so-called self-reinforcement to occur in the blends containing liquid crystal polymer. Up to now the effect of self-reinforcement is mostly investigated in the blends, containing considerable amount of liquid crystal polymer. In this research the effect of minor amounts of liquid crystalline co-polyester modifier on the properties of polyethylene is investigated. Various compositions of laboratory synthesized hydroxybenzoic acid /polyethylene terephtalate copolymer containing polyethylene composites have been manufactured by thermoplastic blending. It has been observed that 1 modulus of elasticity, yield strength and ultimate strength increase with raising the content of liquid crystalline modifier; 2 void content in the investigated polyethylene/liquid crystal copolymer composites is not greater that 1 %; 3 addition of liquid crystalline co-polyester modifier improves arrangement of PE crystalline phase.http://dx.doi.org/10.5755/j01.ms.17.2.483

  1. Effect of metallic silver nanoparticles on the alignment and relaxation behaviour of liquid crystalline material in smectic C* phase

    Science.gov (United States)

    Vimal, Tripti; Kumar Gupta, Swadesh; Katiyar, Rohit; Srivastava, Atul; Czerwinski, Michal; Krup, Katarzyna; Kumar, Sandeep; Manohar, Rajiv

    2017-09-01

    The influence of silver nanoparticles dispersed in a Ferroelectric Liquid Crystal (FLC) on the properties of the resultant composite system has been investigated by thermal, electro-optical, and dielectric methods. We show that the concentration of thiol capped silver nanoparticles is a critical factor in governing the alignment of nanoparticles (NPs) in the host FLC. The orientation of NPs in composite samples affects the ordering of the LC (Liquid Crystal) phase and consequently changes the various phase transition temperatures of the host LC. Formation of self-assembled 2D (two dimensional) arrays of nanoparticles is observed for high concentration of dopant in the LC, oriented perpendicular to the direction of rubbing. We propose that the molecular interaction between the thiol capped NPs and LC molecules is the key factor behind such an arrangement of NPs. Orientation of NPs has affected the relaxation behaviour and various other material parameters, significantly. A noteworthy change in DC conductivity articulates our proposed idea of the formation of 2D array of NPs perpendicular to the direction of rubbing. This comprehensive study endorses the importance of dopant concentration in modifying the properties of the host LC material.

  2. Competitive concurrence of surface wrinkling and dewetting of liquid crystalline polymer films on non-wettable substrates.

    Science.gov (United States)

    Song, Sung E; Choi, Gwan H; Yi, Gi-Ra; Yoo, Pil J

    2017-11-01

    Polymeric thin films coated on non-wettable substrates undergo film-instabilities, which are usually manifested as surface deformation in the form of dewetting or wrinkling. The former takes place in fluidic films, whereas the latter occurs in solid films. Therefore, there have rarely been reports of systems involving simultaneous deformations of dewetting and wrinkling. In this study, we propose polymeric thin films of liquid crystalline (LC) mesogens prepared on a non-wettable Si substrate and apply a treatment of plasma irradiation to form a thin polymerized layer at the surface. The resulting compressive stress generated in the surface region drives the formation of wrinkles, while at the same time, dipolar attraction between LC molecules induces competitive cohesive dewetting. Intriguing surface structures were obtained whereby dewetting-like hole arrays are nested inside the randomly propagated wrinkles. The structural features are readily controlled by the degree of surface cross-linking, hydrophilicity of the substrates, and the LC film thickness. In particular, dewetting of LC mesogens is observed to be restricted to occur at the trough regions of wrinkles, exhibiting the typical behavior of geometrically confined dewetting. Finally, wrinkling-dewetting mixed structures are separated from the substrate in the form of free standing films to demonstrate the potential applicability as membranes.

  3. Estimation of Rabeprazole Sodium and Itopride Hydrochloride in Tablet Dosage Form Using Reverse Phase High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Shaik Harum Rasheed

    2011-01-01

    Full Text Available A reversed phase high performance liquid chromatography (RP-HPLC method was developed, validated and used for the quantitative determination of rabeprazole sodium (RP and itopride hydrochloride (IH, from its tablet dosage form. Chromatographic separation was performed on a Phenomenex C18 column (250 mm × 4.6 mm, 5 μm, with a mobile phase comprising of a mixture of 50 mM ammonium acetate buffer and methanol (20:80v/v, pH 4.5 adjusted with acetic acid, at a flow rate of 1.3 mL/min with detection at 286 nm. Separation was completed in less than 10 min. As per International Conference on Harmonization (ICH guidelines the method was validated for linearity, accuracy, precision, limit of quantitation and limit of detection. Linearity of RP was found to be in the range of 37.5-375 μg/mL and IH was found to be in the range of 5-50 μg/mL. The correlation coefficients were 0.9997 and 0.9995 for RB and IH respectively. The accuracy of the developed method was found to be 98.6-100.7 for RP and 99.42 -100.81 for IH. The experiment shows the developed method is free from interference of excipients. It indicates the developed RP-HPLC method is simple, linear, precise and accurate and it can be conveniently adopted for the routine quality control analysis of the tablet dosage form.

  4. Induced Smectic X Phase Through Intermolecular Hydrogen-Bonded Liquid Crystals Formed Between Citric Acid and p- n-(Octyloxy)Benzoic Acid

    Science.gov (United States)

    Sundaram, S.; Subhasri, P.; Rajasekaran, T. R.; Jayaprakasam, R.; Senthil, T. S.; Vijayakumar, V. N.

    2017-08-01

    Hydrogen-bonded liquid crystal (HBLC) is synthesized from citric acid (CA) and 4-(octyloxy)benzoic acid (8OBA) with different mole ratios. Fourier transform infrared spectroscopy (FT-IR) confirms the presence of hydrogen bond between CA and 8OBA. Nuclear magnetic resonance (NMR) spectroscopic studies validate the intermolecular complementary, cyclic type of hydrogen bond, and molecular environment in the designed HBLC complex. Powder X-ray diffraction analysis reveals the monoclinic nature of liquid crystal complex in solid phase. Liquid crystal parameters such as phase transition temperature and enthalpy values for the corresponding mesogenic phases are investigated using a polarizing optical microscope (POM) and differential scanning calorimetry (DSC). It is observed that the change in chain length and steric hindrance while increasing the mole ratio in HBLC complex induces a new smectic X (Sm X) along with higher-order smectic G (Sm G) phases by quenching of smectic C (Sm C). From the experimental observations, induced Sm X phase has been identified as a finger print texture. Also, Sm G is a multi-colored mosaic texture in 1:1, 1:2, and 1:3 mol ratios. The optical tilt angle, thermal stability factor, and enhanced thermal span width of CA + 8OBA complex are discussed.

  5. Determination of glibenclamide, metformin hydrochloride and rosiglitazone maleate by reversed phase liquid chromatographic technique in tablet dosage form

    Directory of Open Access Journals (Sweden)

    Havele Shweta S.

    2014-01-01

    Full Text Available A simple, precise and accurate high performance liquid chromatography (HPLC method was developed for the simultaneous estimation of metformin hydrochloride, rosiglitazone maleate, glibenclamide present in multicomponent dosage forms. Chromatography was performed on a 25 cm × 4.6 mm i.d., 5-μm particle, C18 column with 78:22 (v/v methanol: 20 mM potassium dihydrogen phosphate buffer as mobile phase at a flow rate of 1.0 ml/min and UV detection at 238 nm for metformin hydrochloride, rosiglitazone maleate, and glibenclamide. The total elution time was shorter than 9 min. This method was found to be precise and reproducible. This proposed method was successfully applied for the analysis of metformin hydrochloride, rosiglitazone maleate, glibenclamide as a bulk drug and in pharmaceutical formulation without any interference from the excipients.

  6. Crystalline and magnetic ordering in the monoclinic phase of the layered perovskite PAMC

    DEFF Research Database (Denmark)

    Harris, P.; Lebech, B.; Achiwa, N.

    1994-01-01

    A single-crystal elastic neutron scattering experiment between 4.2 and 115 K has been performed on the low-temperature monoclinic zeta phase of the layered perovskite bis(propylammonium) manganesetetrachloride (PAMC). The crystalline structure is commensurately modulated, with a modulation vector...

  7. Emergence of topological and topological crystalline phases in TlBiS2 and TlSbS2

    KAUST Repository

    Zhang, Qingyun

    2015-02-11

    Using first-principles calculations, we investigate the band structure evolution and topological phase transitions in TlBiS2 and TlSbS2 under hydrostatic pressure as well as uniaxial and biaxial strain. The phase transitions are identified by parity analysis and by calculating the surface states. Zero, one, and four Dirac cones are found for the (111) surfaces of both TlBiS2 and TlSbS2 when the pressure grows, which confirms trivial-nontrivial-trivial phase transitions. The Dirac cones at the (M) over bar points are anisotropic with large out-of-plane component. TlBiS2 shows normal, topological, and topological crystalline insulator phases under hydrostatic pressure, thus being the first compound to exhibit a phase transition from a topological to a topological crystalline insulator.

  8. Emergence of topological and topological crystalline phases in TlBiS2 and TlSbS2

    KAUST Repository

    Zhang, Qingyun; Cheng, Yingchun; Schwingenschlö gl, Udo

    2015-01-01

    Using first-principles calculations, we investigate the band structure evolution and topological phase transitions in TlBiS2 and TlSbS2 under hydrostatic pressure as well as uniaxial and biaxial strain. The phase transitions are identified by parity analysis and by calculating the surface states. Zero, one, and four Dirac cones are found for the (111) surfaces of both TlBiS2 and TlSbS2 when the pressure grows, which confirms trivial-nontrivial-trivial phase transitions. The Dirac cones at the (M) over bar points are anisotropic with large out-of-plane component. TlBiS2 shows normal, topological, and topological crystalline insulator phases under hydrostatic pressure, thus being the first compound to exhibit a phase transition from a topological to a topological crystalline insulator.

  9. Predicting glass-to-glass and liquid-to-liquid phase transitions in supercooled water using classical nucleation theory

    Science.gov (United States)

    Tournier, Robert F.

    2018-01-01

    Glass-to-glass and liquid-to-liquid phase transitions are observed in bulk and confined water, with or without applied pressure. They result from the competition of two liquid phases separated by an enthalpy difference depending on temperature. The classical nucleation equation of these phases is completed by this quantity existing at all temperatures, a pressure contribution, and an enthalpy excess. This equation leads to two homogeneous nucleation temperatures in each liquid phase; the first one (Tn- below Tm) being the formation temperature of an "ordered" liquid phase and the second one corresponding to the overheating temperature (Tn+ above Tm). Thermodynamic properties, double glass transition temperatures, sharp enthalpy and volume changes are predicted in agreement with experimental results. The first-order transition line at TLL = 0.833 × Tm between fragile and strong liquids joins two critical points. Glass phase above Tg becomes "ordered" liquid phase disappearing at TLL at low pressure and at Tn+ = 1.302 × Tm at high pressure.

  10. Application of Ionic Liquids in High Performance Reversed-Phase Chromatography

    Directory of Open Access Journals (Sweden)

    Wentao Bi

    2009-06-01

    Full Text Available Ionic liquids, considered “green” chemicals, are widely used in many areas of analytical chemistry due to their unique properties. Recently, ionic liquids have been used as a kind of novel additive in separation and combined with silica to synthesize new stationary phase as separation media. This review will focus on the properties and mechanisms of ionic liquids and their potential applications as mobile phase modifier and surface-bonded stationary phase in reversed-phase high performance liquid chromatography (RP-HPLC. Ionic liquids demonstrate advantages and potential in chromatographic field.

  11. Tritium in liquid phase in a BWR-5 like Laguna Verde

    International Nuclear Information System (INIS)

    Tijerina S, F.; Vargas A, A.; Cardenas J, J.

    2011-11-01

    In boiling water reactors (BWR), the tritium (H 3 ) takes place mainly as a result of ternary fissions in the nuclear reactors, of those which 75% are in gaseous form and 25% in liquid form. In the liquid phase, the tritium is transported to the pipes of the primary coolant toward condensed tanks or tanks of drainage excesses of radioactive equipment, located in external areas of a BWR, as well as to the processes of radioactive wastes to be able to be directed to the liquid effluents. For that reason, is necessary to know the possible routes of the transport and processes of the tritium in a BWR to control this radioisotope in the site of the event of leaks in equipment s and buried pipes, avoiding that emigrates toward underground flowing and an impact to the environment and to the people in general. (Author)

  12. Supported Ionic Liquid Phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco

    2006-01-01

    Applications of ionic liquids to replace conventional solvents in homogeneous transition-metal catalysis have increased significantly during the last decade. Biphasic ionic liquid/organic liquid systems offer advantages with regard to product separation, catalyst stability, and recycling...... but utilise in the case of fast chemical reactions only a small amount of expensive ionic liquid and catalyst. The novel Supported Ionic Liquid Phase (SILP) catalysis concept overcomes these drawbacks and allows the use of fixed-bed reactors for continuous reactions. In this Microreview the SILP catalysis...

  13. Temperature, Crystalline Phase and Influence of Substrate Properties in Intense Pulsed Light Sintering of Copper Sulfide Nanoparticle Thin Films.

    Science.gov (United States)

    Dexter, Michael; Gao, Zhongwei; Bansal, Shalu; Chang, Chih-Hung; Malhotra, Rajiv

    2018-02-02

    Intense Pulsed Light sintering (IPL) uses pulsed, visible light to sinter nanoparticles (NPs) into films used in functional devices. While IPL of chalcogenide NPs is demonstrated, there is limited work on prediction of crystalline phase of the film and the impact of optical properties of the substrate. Here we characterize and model the evolution of film temperature and crystalline phase during IPL of chalcogenide copper sulfide NP films on glass. Recrystallization of the film to crystalline covellite and digenite phases occurs at 126 °C and 155 °C respectively within 2-7 seconds. Post-IPL films exhibit p-type behavior, lower resistivity (~10 -3 -10 -4  Ω-cm), similar visible transmission and lower near-infrared transmission as compared to the as-deposited film. A thermal model is experimentally validated, and extended by combining it with a thermodynamic approach for crystal phase prediction and via incorporating the influence of film transmittivity and optical properties of the substrate on heating during IPL. The model is used to show the need to a-priori control IPL parameters to concurrently account for both the thermal and optical properties of the film and substrate in order to obtain a desired crystalline phase during IPL of such thin films on paper and polycarbonate substrates.

  14. Charge Transport and Phase Behavior of Imidazolium-Based Ionic Liquid Crystals from Fully Atomistic Simulations.

    Science.gov (United States)

    Quevillon, Michael J; Whitmer, Jonathan K

    2018-01-02

    Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure-constant temperature ensemble. These materials exhibit a distinct "smectic" liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications.

  15. Schottky barrier formation at amorphous-crystalline interfaces of GeSb phase change materials

    NARCIS (Netherlands)

    Kroezen, H. J.; Eising, G.; ten Brink, Gert; Palasantzas, G.; Kooi, B. J.; Pauza, A.

    2012-01-01

    The electrical properties of amorphous-crystalline interfaces in phase change materials, which are important for rewritable optical data storage and for random access memory devices, have been investigated by surface scanning potential microscopy. Analysis of GeSb systems indicates that the surface

  16. Glycation precedes lens crystallin aggregation

    International Nuclear Information System (INIS)

    Swamy, M.S.; Perry, R.E.; Abraham, E.C.

    1987-01-01

    Non-enzymatic glycosylation (glycation) seems to have the potential to alter the structure of crystallins and make them susceptible to thiol oxidation leading to disulfide-linked high molecular weight (HMW) aggregate formation. They used streptozotocin diabetic rats during precataract and cataract stages and long-term cell-free glycation of bovine lens crystallins to study the relationship between glycation and lens crystallin aggregation. HMW aggregates and other protein components of the water-soluble (WS) and urea-soluble (US) fractions were separated by molecular sieve high performance liquid chromatography. Glycation was estimated by both [ 3 H]NaBH 4 reduction and phenylboronate agarose affinity chromatography. Levels of total glycated protein (GP) in the US fractions were about 2-fold higher than in the WS fractions and there was a linear increase in GP in both WS and US fractions. This increase was parallelled by a corresponding increase in HMW aggregates. Total GP extracted by the affinity method from the US fraction showed a predominance of HMW aggregates and vice versa. Cell-free glycation studies with bovine crystallins confirmed the results of the animals studies. Increasing glycation caused a corresponding increase in protein insolubilization and the insoluble fraction thus formed also contained more glycated protein. It appears that lens protein glycation, HMW aggregate formation, and protein insolubilization are interrelated

  17. Attenuation of Thermal Neutrons by Crystalline Silicon

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; Ashry, A.; Fathalla, M.

    2002-01-01

    A simple formula is given which allows to calculate the contribution of the total neutron cross - section including the Bragg scattering from different (hkt) planes to the neutron * transmission through a solid crystalline silicon. The formula takes into account the silicon form of poly or mono crystals and its parameters. A computer program DSIC was developed to provide the required calculations. The calculated values of the total neutron cross-section of perfect silicon crystal at room and liquid nitrogen temperatures were compared with the experimental ones. The obtained agreement shows that the simple formula fits the experimental data with sufficient accuracy .A good agreement was also obtained between the calculated and measured values of polycrystalline silicon in the energy range from 5 eV to 500μ eV. The feasibility study on using a poly-crystalline silicon as a cold neutron filter and mono-crystalline as a thermal neutron one is given. The optimum crystal thickness, mosaic spread, temperature and cutting plane for efficiently transmitting the thermal reactor neutrons, while rejecting both fast neutrons and gamma rays accompanying the thermal ones for the mono crystalline silicon are also given

  18. Thermal performance study of form-stable composite phase change material with polyacrylic

    Science.gov (United States)

    Kee, Shin Yiing; Munusamy, Yamuna; Ong, Kok Seng; Chee, Swee Yong; Sanmuggam, Shimalaa

    2017-04-01

    Phase change material (PCM) is one of the most popular and widely used as thermal energy storage material because it is able to absorb and release a large amount of latent heat during a phase change process over a narrow temperature range. In this work, the form-stable composite PCM was prepared by blending of PMMA and myristic acid in different weight percentage. PMMA was used as a supporting material while myristic acid was used as PCM. Theoretically, PCM can be encapsulated in the support material after blending. However, a small amount of liquid PCMs can leak out from supporting material due to the volume change in phase change process. Therefore, a form-stable composite PCM with polyacrylic coating was studied. Leakage test was carried out to determine the leakage percentage of the form-stable composite PCM. Fourier transform infrared spectroscopy (FTIR) was used to characterize the chemical compatibility of the form-stable PCM composite while differential scanning calorimetry (DSC) was used to study the melting, freezing point and the latent heat of melting and freezing for the form-stable composite PCM.

  19. Brownian dynamics and dynamic Monte Carlo simulations of isotropic and liquid crystal phases of anisotropic colloidal particles: a comparative study.

    Science.gov (United States)

    Patti, Alessandro; Cuetos, Alejandro

    2012-07-01

    We report on the diffusion of purely repulsive and freely rotating colloidal rods in the isotropic, nematic, and smectic liquid crystal phases to probe the agreement between Brownian and Monte Carlo dynamics under the most general conditions. By properly rescaling the Monte Carlo time step, being related to any elementary move via the corresponding self-diffusion coefficient, with the acceptance rate of simultaneous trial displacements and rotations, we demonstrate the existence of a unique Monte Carlo time scale that allows for a direct comparison between Monte Carlo and Brownian dynamics simulations. To estimate the validity of our theoretical approach, we compare the mean square displacement of rods, their orientational autocorrelation function, and the self-intermediate scattering function, as obtained from Brownian dynamics and Monte Carlo simulations. The agreement between the results of these two approaches, even under the condition of heterogeneous dynamics generally observed in liquid crystalline phases, is excellent.

  20. The effect of glassfibre, graphite and MoS2 on the tribological performance of a liquid crystalline polymer

    NARCIS (Netherlands)

    Dufour, P.R.; de Gee, A.W.J.; Kingma, J.A.; Mens, J.W.M.

    1992-01-01

    A thermotropic liquid crystalline polymer (LCP) with a high melting point of approximately 400 °C, unfilled and filled with glassfibre, MoS2 or graphitic carbon was tested in dry sliding contact with steel. Three different test methods were applied, i.e. measurement of coefficient of friction and

  1. Scintillating screens based on the single crystalline films of multicomponent garnets: new achievements and possibilities

    Czech Academy of Sciences Publication Activity Database

    Zorenko, Yu.; Gorbenko, V.; Zorenko, T.; Paprocki, K.; Nikl, Martin; Mareš, Jiří A.; Bilski, P.; Twardak, A.; Sidletskiy, O.; Gerasymov, I.; Grinyov, B.; Fedorov, A.

    2016-01-01

    Roč. 63, č. 2 (2016), s. 497-502 ISSN 0018-9499 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : Ce dopant * garnets * liquid phase epitaxy * luminescence * scintillators * single crystalline films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.171, year: 2016

  2. Characterizing the correlations between local phase fractions of gas–liquid two-phase flow with wire-mesh sensor

    Science.gov (United States)

    Liu, W. L.; Dong, F.

    2016-01-01

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas–liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas–liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185959

  3. Characterizing the correlations between local phase fractions of gas-liquid two-phase flow with wire-mesh sensor.

    Science.gov (United States)

    Tan, C; Liu, W L; Dong, F

    2016-06-28

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas-liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas-liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  4. Theory of phase transformation and reorientation in single crystalline shape memory alloys

    International Nuclear Information System (INIS)

    Zhu, J J; Liang, N G; Cai, M; Liew, K M; Huang, W M

    2008-01-01

    A constitutive model, based on an (n+1)-phase mixture of the Mori–Tanaka average theory, has been developed for stress-induced martensitic transformation and reorientation in single crystalline shape memory alloys. Volume fractions of different martensite lattice correspondence variants are chosen as internal variables to describe microstructural evolution. Macroscopic Gibbs free energy for the phase transformation is derived with thermodynamics principles and the ensemble average method of micro-mechanics. The critical condition and the evolution equation are proposed for both the phase transition and reorientation. This model can also simulate interior hysteresis loops during loading/unloading by switching the critical driving forces when an opposite transition takes place

  5. Pharmaceutical Perspective on Opalescence and Liquid-Liquid Phase Separation in Protein Solutions.

    Science.gov (United States)

    Raut, Ashlesha S; Kalonia, Devendra S

    2016-05-02

    Opalescence in protein solutions reduces aesthetic appeal of a formulation and can be an indicator of the presence of aggregates or precursor to phase separation in solution signifying reduced product stability. Liquid-liquid phase separation of a protein solution into a protein-rich and a protein-poor phase has been well-documented for globular proteins and recently observed for monoclonal antibody solutions, resulting in physical instability of the formulation. The present review discusses opalescence and liquid-liquid phase separation (LLPS) for therapeutic protein formulations. A brief discussion on theoretical concepts based on thermodynamics, kinetics, and light scattering is presented. This review also discusses theoretical concepts behind intense light scattering in the vicinity of the critical point termed as "critical opalescence". Both opalescence and LLPS are affected by the formulation factors including pH, ionic strength, protein concentration, temperature, and excipients. Literature reports for the effect of these formulation factors on attractive protein-protein interactions in solution as assessed by the second virial coefficient (B2) and the cloud-point temperature (Tcloud) measurements are also presented. The review also highlights pharmaceutical implications of LLPS in protein solutions.

  6. Mean-field theory of photoinduced molecular reorientation in azobenzene liquid crystalline side-chain polymers

    DEFF Research Database (Denmark)

    Pedersen, T.G.; Johansen, P.M.

    1997-01-01

    . The theory provides an explanation for the high long-term stability of the photoinduced anisotropy as well as a theoretical prediction of the temporal behavior of photoinduced birefringence. The theoretical results agree favorably with measurements in the entire range of writing intensities used......A novel mean-field theory of photoinduced reorientation and optical anisotropy in liquid crystalline side-chain polymers is presented and compared with experiments, The reorientation mechanism is based on photoinduced trans cis isomerization and a multidomain model of the material is introduced...

  7. Second amorphous-to-crystalline phase transformation in Cu(60)Ti(20)Zr(20) bulk metallic glass.

    Science.gov (United States)

    Cao, Q P; Li, J F; Zhang, P N; Horsewell, A; Jiang, J Z; Zhou, Y H

    2007-06-20

    The second amorphous-to-crystalline phase transformation in Cu(60)Ti(20)Zr(20) bulk metallic glass was investigated by differential scanning calorimetry and x-ray diffractometry. The difference of the Gibbs free energies between the amorphous phase and the crystalline products during the transformation is estimated to be about 2.46 kJ mol(-1) at 753 K, much smaller than the 61 kJ mol(-1) obtained assuming that it is a polymorphic transformation. It was revealed that the phase transformation occurs through a eutectic crystallization of Cu(51)Zr(14) and Cu(2)TiZr, having an effective activation energy of the order of 400 kJ mol(-1). The average Avrami exponent n is about 2.0, indicating that the crystallization is diffusion controlled.

  8. Nature of phase transitions in crystalline and amorphous GeTe-Sb2Te3 phase change materials.

    Science.gov (United States)

    Kalkan, B; Sen, S; Clark, S M

    2011-09-28

    The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope. © 2011 American Institute of Physics

  9. Electrochemical synthesis of self-organized TiO2 crystalline nanotubes without annealing

    Science.gov (United States)

    Giorgi, Leonardo; Dikonimos, Theodoros; Giorgi, Rossella; Buonocore, Francesco; Faggio, Giuliana; Messina, Giacomo; Lisi, Nicola

    2018-03-01

    This work demonstrates that upon anodic polarization in an aqueous fluoride-containing electrolyte, TiO2 nanotube array films can be formed with a well-defined crystalline phase, rather than an amorphous one. The crystalline phase was obtained avoiding any high temperature annealing. We studied the formation of nanotubes in an HF/H2O medium and the development of crystalline grains on the nanotube wall, and we found a facile way to achieve crystalline TiO2 nanotube arrays through a one-step anodization. The crystallinity of the film was influenced by the synthesis parameters, and the optimization of the electrolyte composition and anodization conditions (applied voltage and time) were carried out. For comparison purposes, crystalline anatase TiO2 nanotubes were also prepared by thermal treatment of amorphous nanotubes grown in an organic bath (ethylene glycol/NH4F/H2O). The morphology and the crystallinity of the nanotubes were studied by field emission gun-scanning electron microscopy (FEG-SEM) and Raman spectroscopy, whereas the electrochemical and semiconducting properties were analyzed by means of linear sweep voltammetry, impedance spectroscopy, and Mott-Schottky plots. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) allowed us to determine the surface composition and the electronic structure of the samples and to correlate them with the electrochemical data. The optimal conditions to achieve a crystalline phase with high donor concentration are defined.

  10. Palmitic acid/polypyrrole composites as form-stable phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Silakhori, Mahyar; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Baradaran, Saeid; Naghavi, Mohammad Sajad

    2014-01-01

    Highlights: • A novel phase change composite of palmitic acid–polypyrrole(PA–PPy) was fabricated. • Thermal properties of PA–PPy are characterized in different mass ratios of PA–PPy. • Thermal cycling test showed that form stable PCM had a favorable thermal reliability. - Abstract: In this study a novel palmitic acid (PA)/polypyrrole (PPy) form-stable PCMs were readily prepared by in situ polymerization method. PA was used as thermal energy storage material and PPy was operated as supporting material. Form-stable PCMs were investigated by SEM (scanning electron microscopy) and FTIR (Fourier transform infrared spectrometer) analysis that illustrated PA Particles were wrapped by PPy particles. XRD (X-ray diffractometer) was used for crystalline phase of PA/PPy composites. Thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC) were used for investigating Thermal stability and thermal energy storage properties of prepared form-stable PCMs. According to the obtained results the form stable PCMs exhibited favorable thermal stability in terms of their phase change temperature. The form-stable PCMs (79.9 wt% loading of PA) were considered as the highest loading PCM with desirable latent heat storage of 166.3 J/g and good thermal stability. Accelerated thermal cycling tests also showed that form stable PCM had an acceptable thermal reliability. As a consequence of acceptable thermal properties, thermal stability and chemical stability, we can consider the new kind of form stable PCMs for low temperature solar thermal energy storage applications

  11. Comment on "Spontaneous liquid-liquid phase separation of water".

    Science.gov (United States)

    Limmer, David T; Chandler, David

    2015-01-01

    Yagasaki et al. [Phys. Rev. E 89, 020301 (2014)] present results from a molecular dynamics trajectory illustrating coarsening of ice, which they interpret as evidence of transient coexistence between two distinct supercooled phases of liquid water. We point out that neither two distinct liquids nor criticality are demonstrated in this simulation study. Instead, the illustrated trajectory is consistent with coarsening behaviors analyzed and predicted in earlier work by others.

  12. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.

    Science.gov (United States)

    An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L

    2017-06-02

    The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Formation of nano quasicrystalline and crystalline phases by mechanical alloying

    International Nuclear Information System (INIS)

    Shamah, A.M.; Ibrahim, S.; Hanna, F.F.

    2011-01-01

    Research highlights: → Mechanical alloying (MA) is an important method to investigate the formation of nano sized quasicrystalline phases in Al 86 Cr 14 , Al 84 Fe 16 and Al 62.5 Cu 25 Fe 12.5 compounds. The second part of the present work is an attempt to examine the possibility of formation of the i-phase of the Al 62.5 Cu 25 Fe 12.5 , which lies in the region of the perfect i-phase in the ternary phase diagram, by rapid solidification method. To perform the obtained quasi phase mechanical alloying and heat treatment at the rapid solidified sample were done. - Abstract: In the present work, the formation of nano quasicrystalline icosahedral phase in Al 86 Cr 14 , Al 84 Fe 16 and Al 62.5 Cu 25 Fe 12.5 alloys has been investigated by mechanical alloying. Mixtures of quasicrystalline and related crystalline phases have been observed under various milling conditions. The X-ray diffraction, differential thermal analysis and electrical resistivity techniques have been used for characterization and physical property measurements. The particle size was calculated by X-ray profile using Williamson-Hall plot method and it was found to be 25-50 nm size.

  14. A method for the quantitative determination of crystalline phases by X-ray

    Science.gov (United States)

    Petzenhauser, I.; Jaeger, P.

    1988-01-01

    A mineral analysis method is described for rapid quantitative determination of crystalline substances in those cases in which the sample is present in pure form or in a mixture of known composition. With this method there is no need for prior chemical analysis.

  15. Simulations of electrolytes at the liquid-liquid interface and of lanthanide cations complexes in gas phase

    International Nuclear Information System (INIS)

    Berny, F.

    2000-01-01

    Two processes related to liquid/liquid extraction of ions by extractant molecules were studied: the ion approach at the interface and the ion complexation by ligands. In the first part, the behaviour of salts at the chloroform/water interface was simulated by molecular dynamics. The aim was to understand the way these salts ions approach the interface in order to be extracted. Some ions are repelled by the interface (K + , Cl - , UO 2 2+ , Na + , NO 3 - ) whereas others adsorb (amphiphilic molecules and also ClO 4 - , SCN - , guanidinium Gu + and picrate Pic - ). The surface-active counter-ions make the ion approach at the interface easier. In a perfectly homogeneous mixture of the two solvents (water and chloroform) de-mixing, the ions seem to influence the phases separation rate. Nitric acid which is known to favour liquid/liquid extraction reveals strong adsorption at the interface in its neutral form and a smaller one in its ionic form (H 3 O + /NO 3 - ). HNO 3 and H 3 O + display particular orientations at the interface: hydrogen atoms are pointing in the direction of the water slab. The nature of the organic phase can also influence the ion approach at the interface. For example, Gu + and Pic - adsorb much less at the supercritical CO 2 /water interface than at the chloroform/water interface. In the second part, complexes of La 3+ , Eu 3+ and Yb 3+ with ligands such as amide, urea, thio-amide, thiourea were studied by quantum mechanics. Our calculations show that cation-ligand interactions depend on the nature of substituents on ligands, on the presence of counter-ions or on the number of ligands in the complex. Sulfur compounds seem to less interact with cations than oxygen compounds. Ureas interact as much as amides and are potentially good ligands. (author)

  16. Surfactant-enhanced liquid-liquid microextraction coupled to micro-solid phase extraction onto highly hydrophobic magnetic nanoparticles

    International Nuclear Information System (INIS)

    Giannoulis, Kiriakos M.; Giokas, Dimosthenis L.; Tsogas, George Z.; Vlessidis, Athanasios G.; Zhu, Qing; Pan, Qinmin

    2013-01-01

    We are presenting a simplified alternative method for dispersive liquid-liquid microextraction (DLLME) by resorting to the use of surfactants as emulsifiers and micro solid-phase extraction (μ-SPE). In this combined procedure, DLLME of hydrophobic components is initially accomplished in a mixed micellar/microemulsion extractant phase that is prepared by rapidly mixing a non-ionic surfactant and 1-octanol in aqueous medium. Then, and in contrast to classic DLLME, the extractant phase is collected by highly hydrophobic polysiloxane-coated core-shell Fe 2 O 3 (at)C magnetic nanoparticles. Hence, the sample components are the target analyte in the DLLME which, in turn, becomes the target analyte of the μ-SPE step. This 2-step approach represents a new and simple DLLME procedure that lacks tedious steps such as centrifugation, thawing, or delicate collection of the extractant phase. As a result, the analytical process is accelerated and the volume of the collected phase does not depend on the volume of the extraction solvent. The method was applied to extract cadmium in the form of its pyrrolidine dithiocarbamate chelate from spiked water samples prior to its determination by FAAS. Detection limits were brought down to the low μg L −1 levels by preconcentrating 10 mL samples with satisfactory recoveries (96.0–108.0 %). (author)

  17. Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, N.C.R.; Hvilsted, S.

    1996-01-01

    Atomic force and scanning near-field optical microscopic investigations have been carried out on a polarization holographic grating recorded in an azobenzene side-chain Liquid crystalline polyester. It has been found that immediately following laser irradiation, a topographic surface grating...

  18. Solution processing of polymer semiconductor: Insulator blends-Tailored optical properties through liquid-liquid phase separation control

    KAUST Repository

    Hellmann, Christoph; Treat, Neil D.; Scaccabarozzi, Alberto D.; Razzell Hollis, Joseph; Fleischli, Franziska D.; Bannock, James H.; de Mello, John; Michels, Jasper J.; Kim, Ji-Seon; Stingelin, Natalie

    2014-01-01

    © 2014 Wiley Periodicals, Inc. It has been demonstrated that the 0-0 absorption transition of poly(3-hexylthiophene) (P3HT) in blends with poly(ethylene oxide) (PEO) could be rationally tuned through the control of the liquid-liquid phase separation process during solution deposition. Pronounced J-like aggregation behavior, characteristic for systems of a low exciton band width, was found for blends where the most pronounced liquid-liquid phase separation occurred in solution, leading to domains of P3HT and PEO of high phase purity. Since liquid-liquid phase separation could be readily manipulated either by the solution temperature, solute concentration, or deposition temperature, to name a few parameters, our findings promise the design from the out-set of semiconductor:insulator architectures of pre-defined properties by manipulation of the interaction parameter between the solutes as well as the respective solute:solvent system using classical polymer science principles.

  19. Solution processing of polymer semiconductor: Insulator blends-Tailored optical properties through liquid-liquid phase separation control

    KAUST Repository

    Hellmann, Christoph

    2014-12-17

    © 2014 Wiley Periodicals, Inc. It has been demonstrated that the 0-0 absorption transition of poly(3-hexylthiophene) (P3HT) in blends with poly(ethylene oxide) (PEO) could be rationally tuned through the control of the liquid-liquid phase separation process during solution deposition. Pronounced J-like aggregation behavior, characteristic for systems of a low exciton band width, was found for blends where the most pronounced liquid-liquid phase separation occurred in solution, leading to domains of P3HT and PEO of high phase purity. Since liquid-liquid phase separation could be readily manipulated either by the solution temperature, solute concentration, or deposition temperature, to name a few parameters, our findings promise the design from the out-set of semiconductor:insulator architectures of pre-defined properties by manipulation of the interaction parameter between the solutes as well as the respective solute:solvent system using classical polymer science principles.

  20. Differential thermal, Thermogravimetric and X-ray diffraction investigation of hydration phases in cementitious waste form

    International Nuclear Information System (INIS)

    Khalil, M.Y.; Nagy, M.E.; El-Sourougy, M.R.; Zaki, A.A.

    1996-01-01

    Hydration phases of cement determine the final properties of the product. Adding other components to the cement paste may alter the final phases formed and affect properties of the hardened products. In this work ordinary portland cement and/or blast furnace slag cement were hardened with low-or intermediate-level radioactive liquid wastes and different additives. Hydration phases were investigated using differential thermal, thermogravimetric, and X-ray diffraction techniques. Low-and intermediate-level liquid wastes were found not to affect the hydration phases of cement. The addition of inorganic exchangers and latex were found to affect the hydration properties of the cement waste system. This resulted in a reduction of compressive strength. On the contrary, addition of epoxy also affected the hydration causing increase in compressive strength. 10 figs., 2 tabs

  1. Synthesis and characterization of liquid crystals and their thermoset films

    International Nuclear Information System (INIS)

    Ahn, Yong-Ho; Jung, Myung-Sup; Chang, Jin-Hae

    2010-01-01

    We prepared a series of aromatic liquid crystals (LCs) based on aromatic ester units with the reactive end groups methyl-maleimide and nadimide, and the resulting LCs were thermally cross-linked to produce liquid crystalline thermoset (LCT) films by means of solution-casting and heat treatment. The synthesized LCs and LCTs were characterized with Fourier transform infrared (FT-IR) spectroscopy, 1 H nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and polarizing optical microscopy with a hot stage. We found that all these LCs form nematic phases. The coefficients of thermal expansion (CTEs) of the LCT films are strongly affected by the reactive end group and the mesogen units in their main-chain structures. The methyl-maleimide-terminated biphenyl LCT was found to have the lowest CTE.

  2. Indication of liquid-liquid phase transition in CuZr-based melts

    DEFF Research Database (Denmark)

    Zhou, C.; Hu, L.N.; Sun, Q.J.

    2013-01-01

    We study the dynamic behavior of CuZr-based melts well above the liquidus temperature. The results show a discontinuous change in viscosity during cooling, which is attributed to an underlying liquid-liquid phase transition (LLPT) in these melts. The LLPT is further verified by thermodynamic...

  3. Vapor phase versus liquid phase grafting of meso-porous alumina

    NARCIS (Netherlands)

    Sripathi, V.G.P.; Mojet, Barbara; Nijmeijer, Arian; Benes, Nieck Edwin

    2013-01-01

    Functionalization of meso-porous c-alumina has been performed by grafting of 3-Aminopropyltrimethoxysilane (3APTMS) simultaneously from either the liquid phase or from the vapor phase. In both cases, after grafting nitrogen physisorption indicates that the materials remain meso-porous with

  4. Magnetic Field Alignment of PS-P4VP: a Non-Liquid Crystalline Coil-Coil Block Copolymer

    Science.gov (United States)

    Rokhlenko, Yekaterina; Zhang, Kai; Larson, Steven; Gopalan, Padma; O'Hern, Corey; Osuji, Chinedum

    2015-03-01

    Magnetic fields provide the ability to control alignment of self-assembled soft materials such as block copolymers. Most prior work in this area has relied on the presence of ordered assemblies of anisotropic liquid crystalline species to ensure sufficient magnetic anisotropy to drive alignment. Recent experiments with poly(styrene-b-4-vinylpyridine), a non-liquid crystalline BCP, however, show field-induced alignment of a lamellar microstructure during cooling across the order-disorder transition. Using in situ x-ray scattering, we examine the roles of field strength and cooling rate on the alignment response of this low MW coil-coil BCP. Alignment is first observed at field strengths as low as 1 Tesla and improves markedly with both increasing field strength and slower cooling. We present a geometric argument to illustrate the origin of a finite, non-trivial magnetic susceptibility anisotropy for highly stretched surface-tethered polymer chains and corroborate this using coarse-grained molecular dynamics simulations. We rationalize the magnetic field response of the system in terms of the mobility afforded by the absence of entanglements, the intrinsic anisotropy resulting from the stretched polymer chains and sterically constrained conjugated rings, and the large grain size in these low molecular weight materials.

  5. Visualization and measurement of gas-liquid metal two-phase flow with large density difference using thermal neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Mishima, K.; Hibiki, T.; Saito, Y.; Nishihara, H.; Tobita, Y.; Konishi, K.; Matsubayashi, M.

    1999-01-01

    In a core melt accident of a fast breeder reactor, there is a possibility of boiling of the fuel-steel mixture in the containment pool. In relation to safety evaluation on severe accident, it is indispensable to evaluate the possibility of re-criticality of melted core. Gas-liquid two-phase flow with a large liquid-to-gas density ratio is formed due to the boiling of fuel-steel mixture. Although it is anticipated that the large density ratio may affect the basic characteristics of two-phase flow, little work has been performed so far on two-phase flow with a large liquid-to-gas density ratio. In this study, visualization and void fraction measurement of gas-liquid metal two-phase flow were performed by using neutron radiography and image processing techniques. Then, the effect of large density difference between gas and liquid phases on the basic flow characteristics of two-phase flow was clarified

  6. Fundamental research of two-phase flows with high liquid/gas density ratios

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Hibiki, Takashi; Saito, Yasushi; Tobita, Yoshiharu; Konishi, Kensuke; Suzuki, Tohru

    2000-07-01

    In order to analyze the boiling of a fuel-steel mixture pool formed during the core disruptive accident in a fast breeder reactor, it is important to understand the flow characteristics of gas-liquid two-phase pools containing molten reactor materials. Since the liquid/gas density ratio is high, the characteristics of such two-phase flows may differ from those of ordinary flows such as water/air flow. In this study, as a fundamental research of two-phase flows with a high liquid/gas density ratio, the experiments were performed to visualize and measure molten metal (lead-bismuth)/nitrogen gas two-phase flows using a neutron radiography technique. From these experiments, fundamental data such as bubble shapes, void fractions and liquid velocity fields were obtained. In addition, the momentum exchange model of SIMMER-III, which has been developed by JNC, was assessed and improved using the experimental data. In the visualization by neutron radiography, it was found that deformed ellipsoidal bubbles could be seen with smaller gas flux or lower void fractions, and spherical cap bubbles could be seen with larger gas flux or higher void fractions. In addition, a correlation applicable to SIMMER-III was proposed through a comparison between the experimental data and traditional empirical correlations. Furthermore, a visualization experiment using gold-cadmium tracer particles showed that the image processing technique used in the quantification of void fractions is applicable to the measurement of the liquid velocity fields. On the other hand, in the analysis by SIMMER-III, it was confirmed that the original momentum exchange model was appropriate for ellipsoidal bobby flows and that the accuracy of SIMMER-III for cap bubbly flows was much improved with the proposed correlation. Moreover, a new procedure, in which the appropriate drag coefficient could be automatically selected according to bubble shape, was developed. The SIMMER-III code improved through this study can

  7. Ionic liquid stationary phases for gas chromatography.

    Science.gov (United States)

    Poole, Colin F; Poole, Salwa K

    2011-04-01

    This article provides a summary of the development of ionic liquids as stationary phases for gas chromatography beginning with early work on packed columns that established details of the retention mechanism and established working methods to characterize selectivity differences compared with molecular stationary phases through the modern development of multi-centered cation and cross-linked ionic liquids for high-temperature applications in capillary gas chromatography. Since there are many reviews on ionic liquids dealing with all aspects of their chemical and physical properties, the emphasis in this article is placed on the role of gas chromatography played in the design of ionic liquids of low melting point, high thermal stability, high viscosity, and variable selectivity for separations. Ionic liquids provide unprecedented opportunities for extending the selectivity range and temperature-operating range of columns for gas chromatography, an area of separation science that has otherwise been almost stagnant for over a decade. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Milestone in the NTB phase investigation and beyond: direct insight into molecular self-assembly.

    Science.gov (United States)

    Ivšić, Trpimir; Vinković, Marijana; Baumeister, Ute; Mikleušević, Ana; Lesac, Andreja

    2014-12-14

    Although liquid-crystalline materials are most widely exploited for flat-panel displays, their ability to self-organize into periodically ordered nanostructures gives rise to a broad variety of additional applications. The recently discovered low-temperature nematic phase (N(TB)) with unusual characteristics generated considerable attention within the scientific community: despite the fact that the molecules from which the phase is composed are not chiral, the helicoidal structure of the phase is strongly implicated. Here we report on combined experimental, computational and spectroscopic studies of the structural aspects influencing formation of the N(TB) phase as well as on the molecular organization within the phase. In an extensive DFT study, the structure-property prerequisite was traced to a "bent-propeller" shape of the molecule. We also demonstrate the first utilization of liquid state NMR for direct analysis of intermolecular interactions within thermotropic liquid-crystalline phases, providing new insight into molecular packing that can lead towards design of novel chiral functional materials. The synergy of experimental, computational and NMR studies suggests a syn-parallel helical molecular organization within the N(TB) phase.

  9. Structure of the gas-liquid annular two-phase flow in a nozzle section

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Kataoka, Isao; Ohmori, Syuichi; Mori, Michitsugu

    2006-01-01

    Experimental studies on the flow behavior of gas-liquid annular two-phase flow passing through a nozzle section were carried out. This study is concerned with the central steam jet injector for a next generation nuclear reactor. In the central steam jet injector, steam/water annular two-phase flow is formed at the mixing nozzle. To make an appropriate design and to establish the high-performance steam injector system, it is very important to accumulate the fundamental data of the thermo-hydro dynamic characteristics of annular flow passing through a nozzle section. On the other hand, the transient behavior of multiphase flow, in which the interactions between two-phases occur, is one of the most interesting scientific issues and has attracted research attention. In this study, the transient gas-phase turbulence modification in annular flow due to the gas-liquid phase interaction is experimentally investigated. The annular flow passing through a throat section is under the transient state due to the changing cross sectional area of the channel and resultantly the superficial velocities of both phases are changed compared with a fully developed flow in a straight pipe. The measurements for the gas-phase turbulence were precisely performed by using a constant temperature hot-wire anemometer, and made clear the turbulence structure such as velocity profiles, fluctuation velocity profiles. The behavior of the interfacial waves in the liquid film flow such as the ripple or disturbance waves was also observed. The measurements for the liquid film thickness by the electrode needle method were also performed to measure the base film thickness, mean film thickness, maximum film thickness and wave height of the ripple or the disturbance waves. (author)

  10. Comment on "Spontaneous liquid-liquid phase separation of water"

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2015-01-01

    Yagasaki et al. [Phys. Rev. E 89, 020301 (2014), 10.1103/PhysRevE.89.020301] present results from a molecular dynamics trajectory illustrating coarsening of ice, which they interpret as evidence of transient coexistence between two distinct supercooled phases of liquid water. We point out that neither two distinct liquids nor criticality are demonstrated in this simulation study. Instead, the illustrated trajectory is consistent with coarsening behaviors analyzed and predicted in earlier work by others.

  11. FORTRAN program for calculating liquid-phase and gas-phase thermal diffusion column coefficients

    International Nuclear Information System (INIS)

    Rutherford, W.M.

    1980-01-01

    A computer program (COLCO) was developed for calculating thermal diffusion column coefficients from theory. The program, which is written in FORTRAN IV, can be used for both liquid-phase and gas-phase thermal diffusion columns. Column coefficients for the gas phase can be based on gas properties calculated from kinetic theory using tables of omega integrals or on tables of compiled physical properties as functions of temperature. Column coefficients for the liquid phase can be based on compiled physical property tables. Program listings, test data, sample output, and users manual are supplied for appendices

  12. Continuous fixed-bed gas-phase hydroformylation using supported ionic liquid-phase (SILP) Rh catalysts

    DEFF Research Database (Denmark)

    Riisager, Anders; Wasserscheid, Peter; Van Hal, R.

    2003-01-01

    Continuous flow gas-phase hydroformylation of propene was performed using novel supported ionic liquid-phase (SILP) catalysts containing immobilized Rh complexes of the biphosphine ligand sulfoxantphos in the ionic liquids 1-n-butyl-3-methylimidazolium hexafluorophosphate and halogen-free 1-n-butyl...

  13. Structure analysis of turbulent liquid phase by POD and LSE techniques

    International Nuclear Information System (INIS)

    Munir, S.; Muthuvalu, M. S.; Siddiqui, M. I.; Heikal, M. R.; Aziz, A. Rashid A.

    2014-01-01

    In this paper, vortical structures and turbulence characteristics of liquid phase in both single liquid phase and two-phase slug flow in pipes were studied. Two dimensional velocity vector fields of liquid phase were obtained by Particle image velocimetry (PIV). Two cases were considered one single phase liquid flow at 80 l/m and second slug flow by introducing gas at 60 l/m while keeping liquid flow rate same. Proper orthogonal decomposition (POD) and Linear stochastic estimation techniques were used for the extraction of coherent structures and analysis of turbulence in liquid phase for both cases. POD has successfully revealed large energy containing structures. The time dependent POD spatial mode coefficients oscillate with high frequency for high mode numbers. The energy distribution of spatial modes was also achieved. LSE has pointed out the coherent structured for both cases and the reconstructed velocity fields are in well agreement with the instantaneous velocity fields

  14. Structure analysis of turbulent liquid phase by POD and LSE techniques

    Energy Technology Data Exchange (ETDEWEB)

    Munir, S., E-mail: shahzad-munir@comsats.edu.pk; Muthuvalu, M. S.; Siddiqui, M. I. [Department of Fundamental and Applied Science, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Heikal, M. R., E-mail: morgan.heikal@petronas.com.my; Aziz, A. Rashid A., E-mail: morgan.heikal@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia)

    2014-10-24

    In this paper, vortical structures and turbulence characteristics of liquid phase in both single liquid phase and two-phase slug flow in pipes were studied. Two dimensional velocity vector fields of liquid phase were obtained by Particle image velocimetry (PIV). Two cases were considered one single phase liquid flow at 80 l/m and second slug flow by introducing gas at 60 l/m while keeping liquid flow rate same. Proper orthogonal decomposition (POD) and Linear stochastic estimation techniques were used for the extraction of coherent structures and analysis of turbulence in liquid phase for both cases. POD has successfully revealed large energy containing structures. The time dependent POD spatial mode coefficients oscillate with high frequency for high mode numbers. The energy distribution of spatial modes was also achieved. LSE has pointed out the coherent structured for both cases and the reconstructed velocity fields are in well agreement with the instantaneous velocity fields.

  15. Formation of nano quasicrystalline and crystalline phases by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Shamah, A.M.; Ibrahim, S. [Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt); Hanna, F.F., E-mail: fariedhanna@yahoo.com [Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt)

    2011-02-03

    Research highlights: > Mechanical alloying (MA) is an important method to investigate the formation of nano sized quasicrystalline phases in Al{sub 86}Cr{sub 14}, Al{sub 84}Fe{sub 16} and Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} compounds. The second part of the present work is an attempt to examine the possibility of formation of the i-phase of the Al{sub 62.5}Cu{sub 25}Fe{sub 12.5}, which lies in the region of the perfect i-phase in the ternary phase diagram, by rapid solidification method. To perform the obtained quasi phase mechanical alloying and heat treatment at the rapid solidified sample were done. - Abstract: In the present work, the formation of nano quasicrystalline icosahedral phase in Al{sub 86}Cr{sub 14}, Al{sub 84}Fe{sub 16} and Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} alloys has been investigated by mechanical alloying. Mixtures of quasicrystalline and related crystalline phases have been observed under various milling conditions. The X-ray diffraction, differential thermal analysis and electrical resistivity techniques have been used for characterization and physical property measurements. The particle size was calculated by X-ray profile using Williamson-Hall plot method and it was found to be 25-50 nm size.

  16. Active Mesogenic Droplets: Impact of Liquid Crystallinity and Collective Behavior

    Science.gov (United States)

    Bahr, Christian

    Droplets of common mesogenic compounds show a self-propelled motion when immersed in aqueous solutions containing ionic surfactants at concentrations well above the critical micelle concentration. After introducing some general properties of this type of artificial microswimmer, we focus on two topics: the influence of liquid crystallinity on the swimming behavior and the collective behavior of ensembles of a larger number of droplets. The mesogenic properties are not essential for the basic mechanism of self-propulsion, nevertheless they considerably influence the swimming behavior of the droplets. For instance, the shape of the trajectories strongly depends on whether the droplets are in the nematic or isotropic state. The droplet swimmers are also ideally suited for the study of collective behavior: Microfluidics enables the generation of large numbers of identical swimmers and we can tune their buoyancy. We report on the collective behavior in three-dimensional environments. Supported by the Deutsche Forschungsgemeinschaft (SPP 1726 ``Microswimmers'').

  17. On the “Tertiary Structure” of Poly-Carbenes; Self-Assembly of sp3-Carbon-Based Polymers into Liquid-Crystalline Aggregates

    NARCIS (Netherlands)

    Franssen, N.G.M.; Ensing, B.; Hegde, M.; Dingemans, T.J.; Norder, B.; Picken, S.J.; Alberda van Ekenstein, G.O.R.; van Eck, E.R.H.; Elemans, J.A.A.W; Vis, M.; Reek, J.N.H.; de Bruin, B.

    2013-01-01

    The self-assembly of poly(ethylidene acetate) (st-PEA) into van der Waals-stabilized liquid-crystalline (LC) aggregates is reported. The LC behavior of these materials is unexpected, and unusual for flexible sp(3)-carbon backbone polymers. Although the dense packing of polar ester functionalities

  18. Crystallization behavior of nuclear waste forms

    International Nuclear Information System (INIS)

    Rusin, J.M.; Lokken, R.O.; May, R.P.; Wald, J.W.

    1981-09-01

    Several waste form options have been or are being developed for the immobilization of high-level wastes. The final selection of a waste form must take into consideration both waste form product as well as process factors. Crystallization behavior has an important role in nuclear waste form technology. For glass or vitreous waste forms, crystallization is generally controlled to a minimum by appropriate glass formulation and heat treatment schedules. With glass ceramic waste forms, crystallization is essential to convert glass products to highly crystalline waste forms with a minimum residual glass content. In the case of ceramic waste forms, additives and controlled sintering schedules are used to contain the radionuclides in specific tailored crystalline phases

  19. Simulations of electrolytes at the liquid-liquid interface and of lanthanide cations complexes in gas phase; Simulations d'electrolytes a l'interface liquide/liquide et de complexes de cations lanthanides en phase gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Berny, F

    2000-07-01

    Two processes related to liquid/liquid extraction of ions by extractant molecules were studied: the ion approach at the interface and the ion complexation by ligands. In the first part, the behaviour of salts at the chloroform/water interface was simulated by molecular dynamics. The aim was to understand the way these salts ions approach the interface in order to be extracted. Some ions are repelled by the interface (K{sup +}, Cl{sup -}, UO{sub 2}{sup 2+}, Na{sup +}, NO{sub 3}{sup -}) whereas others adsorb (amphiphilic molecules and also ClO{sub 4}{sup -}, SCN{sup -}, guanidinium Gu{sup +} and picrate Pic{sup -}). The surface-active counter-ions make the ion approach at the interface easier. In a perfectly homogeneous mixture of the two solvents (water and chloroform) de-mixing, the ions seem to influence the phases separation rate. Nitric acid which is known to favour liquid/liquid extraction reveals strong adsorption at the interface in its neutral form and a smaller one in its ionic form (H{sub 3}O{sup +}/NO{sub 3}{sup -}). HNO{sub 3} and H{sub 3}O{sup +} display particular orientations at the interface: hydrogen atoms are pointing in the direction of the water slab. The nature of the organic phase can also influence the ion approach at the interface. For example, Gu{sup +} and Pic{sup -} adsorb much less at the supercritical CO{sub 2}/water interface than at the chloroform/water interface. In the second part, complexes of La{sup 3+}, Eu{sup 3+} and Yb{sup 3+} with ligands such as amide, urea, thio-amide, thiourea were studied by quantum mechanics. Our calculations show that cation-ligand interactions depend on the nature of substituents on ligands, on the presence of counter-ions or on the number of ligands in the complex. Sulfur compounds seem to less interact with cations than oxygen compounds. Ureas interact as much as amides and are potentially good ligands. (author)

  20. NMR of bicelles: orientation and mosaic spread of the liquid-crystal director under sample rotation

    International Nuclear Information System (INIS)

    Zandomeneghi, Giorgia; Tomaselli, Marco; Williamson, Philip T.F.; Meier, Beat H.

    2003-01-01

    Model-membrane systems composed of liquid-crystalline bicellar phases can be uniaxially oriented with respect to a magnetic field, thereby facilitating structural and dynamics studies of membrane-associated proteins. Here we quantitatively characterize a method that allows the manipulation of the direction of this uniaxial orientation. Bicelles formed from DMPC/DHPC are examined by 31 P NMR under variable-angle sample-spinning (VAS) conditions, confirming that the orientation of the liquid-crystalline director can be influenced by sample spinning. The director is perpendicular to the rotation axis when Θ (the angle between the sample-spinning axis and the magnetic field direction) is smaller than the magic angle, and is parallel to the rotation axis when Θ is larger than the magic angle. The new 31 P NMR VAS data presented are considerably more sensitive to the orientation of the bicelle than earlier 2 H studies and the analysis of the sideband pattern allows the determination of the orientation of the liquid-crystal director and its variation over the sample, i.e., the mosaic spread. Under VAS, the mosaic spread is small if Θ deviates significantly from the magic angle but becomes very large at the magic angle

  1. Development and evaluation of exemestane-loaded lyotropic liquid crystalline gel formulations.

    Science.gov (United States)

    Musa, Muhammad Nuh; David, Sheba Rani; Zulkipli, Ihsan Nazurah; Mahadi, Abdul Hanif; Chakravarthi, Srikumar; Rajabalaya, Rajan

    2017-01-01

    Introduction: The use of liquid crystalline (LC) gel formulations for drug delivery has considerably improved the current delivery methods in terms of bioavailability and efficacy. The purpose of this study was to develop and evaluate LC gel formulations to deliver the anti-cancer drug exemestane through transdermal route. Methods: Two LC gel formulations were prepared by phase separation coacervation method using glyceryl monooleate (GMO), Tween 80 and Pluronic® F127 (F127). The formulations were characterized with regard to encapsulation efficiency (EE), vesicle size, Fourier transform infrared (FTIR) spectroscopy, surface morphology (using light and fluorescence microscopy), in vitro release, ex vivo permeation, in vitro effectiveness test on MDA-MB231 cancer cell lines and histopathological analysis. Results: Results exhibited that the EE was 85%-92%, vesicle size was 119.9-466.2 nm while morphology showed spherical vesicles after hydration. An FTIR result also revealed that there was no significant shift in peaks corresponding to Exemestane and excipients. LC formulations release the drug from cellulose acetate and Strat-MTM membrane from 15%-88.95%, whereas ex vivo permeation ranges from 37.09-63%. The in vitro effectiveness study indicated that even at low exemestane concentrations (12.5 and 25 μg/mL) the formulations were able to induce cancer cell death, regardless of the surfactant used. Histopathological analysis thinning of the epidermis as the formulations penetrate into the intercellular regions of squamous cells. Conclusion: The results conjectured that exemestane could be incorporated into LC gels for the transdermal delivery system and further preclinical studies such as pharmacokinetic and pharmacodynamic studies will be carried out with suitable animal models.

  2. Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems.

    Science.gov (United States)

    Broer, Dirk J; Bastiaansen, Cees M W; Debije, Michael G; Schenning, Albertus P H J

    2012-07-16

    Functional organic materials are of great interest for a variety of applications. To obtain precise functional properties, well-defined hierarchically ordered supramolecular materials are crucial. The self-assembly of liquid crystals has proven to be an extremely useful tool in the development of well-defined nanostructured materials. We have chosen the illustrative example of photopolymerizable hydrogen-bonding mesogens to show that a wide variety of functional materials can be made from a relatively simple set of building blocks. Upon mixing these compounds with other reactive mesogens, nematic, chiral nematic, and smectic or columnar liquid-crystalline phases can be formed that can be applied as actuators, sensors and responsive reflectors, and nanoporous membranes, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sandwich-cell-type bulk-heterojunction organic solar cells utilizing liquid crystalline phthalocyanine

    Science.gov (United States)

    Nakata, Yuya; Usui, Toshiki; Nishikawa, Yuki; Nekelson, Fabien; Shimizu, Yo; Fujii, Akihiko; Ozaki, Masanori

    2018-03-01

    Sandwich-cell-type bulk-heterojunction organic solar cells utilizing the liquid crystalline phthalocyanine, 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2), have been fabricated and their photovoltaic properties have been studied. The short-circuit current (J SC) and power conversion efficiency (PCE) depended on the blend ratio of donor and acceptor molecules, and the maximum performance, such as J SC of 3.4 mA/cm2 and PCE of 0.67%, was demonstrated, when the blend ratio of the acceptor was 10 mol %. The photovoltaic properties were discussed by taking the relationship between the column axis direction of C6PcH2 and the carrier mobility in the active layer into consideration.

  4. Azobenzene side-chain liquid crystalline polyesters with outstanding optical storage properties

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Pedersen, M; Holme, NCR

    1998-01-01

    A flexible azobenzene side-chain liquid crystalline (SCLC) polyester architecture employed for reversible optical storage is described. The modular design allows four structural parameters to be individually modified. These parameters: i- the methylene side-chain spacer length, ii- the substituent......,000 are routinely obtained by melt transesterification of the novel diols and selected diacid precursors (parameter iii). Prominent storage features include no prealignment of thin SCLC polyester films prior to the writing process, and sensitivity in a broad laser wavelength window (415-532 nm). Additionally...... sign of fatigue. The non-destructive read out is performed with red light (600-750 nm). Finally, erasing the information can be achieved by heating the polyester film to 80 degrees C or irradiating it briefly with UV-light. In the latter case at least 10,000 write, read and erase cycles are possible...

  5. Exfoliation in ecstasy: liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug γ-butyrolactone

    Science.gov (United States)

    Bergin, Shane D.; Nicolosi, Valeria; Giordani, Silvia; de Gromard, Antoine; Carpenter, Leslie; Blau, Werner J.; Coleman, Jonathan N.

    2007-11-01

    Large-scale debundling of single-walled nanotubes has been demonstrated by dilution of nanotube dispersions in the solvent γ-butyrolactone. This liquid, sometimes referred to as 'liquid ecstasy', is well known for its narcotic properties. At high concentrations the dispersions form an anisotropic, liquid crystalline phase which can be removed by mild centrifugation. At lower concentrations an isotropic phase is observed with a biphasic region at intermediate concentrations. By measuring the absorbance before and after centrifugation, as a function of concentration, the relative anisotropic and isotropic nanotube concentrations can be monitored. The upper limit of the pure isotropic phase was CNT~0.004 mg ml-1, suggesting that this can be considered the nanotube dispersion limit in γ-butyrolactone. After centrifugation, the dispersions are stable against sedimentation and further aggregation for a period of 8 weeks at least. Atomic-force-microscopy studies on films deposited from the isotropic phase reveal that the bundle diameter distribution decreases dramatically as concentration is decreased. Detailed data analysis suggests the presence of an equilibrium bundle number density. A population of individual nanotubes is always observed which increases with decreasing concentration until almost 40% of all dispersed objects are individual nanotubes at a concentration of 6 × 10-4 mg ml-1. The number density of individual nanotubes peaks at a concentration of ~6 × 10-3 mg ml-1 where almost 10% of the nanotubes by mass are individualized.

  6. Exfoliation in ecstasy: liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug {gamma}-butyrolactone

    Energy Technology Data Exchange (ETDEWEB)

    Bergin, Shane D [School of Physics, Trinity College Dublin, University of Dublin, Dublin 2 (Ireland); Nicolosi, Valeria [School of Physics, Trinity College Dublin, University of Dublin, Dublin 2 (Ireland); Giordani, Silvia [School of Physics, Trinity College Dublin, University of Dublin, Dublin 2 (Ireland); Gromard, Antoine de [School of Physics, Trinity College Dublin, University of Dublin, Dublin 2 (Ireland); Carpenter, Leslie [School of Physics, Trinity College Dublin, University of Dublin, Dublin 2 (Ireland); Blau, Werner J [School of Physics, Trinity College Dublin, University of Dublin, Dublin 2 (Ireland); Coleman, Jonathan N [School of Physics, Trinity College Dublin, University of Dublin, Dublin 2 (Ireland)

    2007-11-14

    Large-scale debundling of single-walled nanotubes has been demonstrated by dilution of nanotube dispersions in the solvent {gamma}-butyrolactone. This liquid, sometimes referred to as 'liquid ecstasy', is well known for its narcotic properties. At high concentrations the dispersions form an anisotropic, liquid crystalline phase which can be removed by mild centrifugation. At lower concentrations an isotropic phase is observed with a biphasic region at intermediate concentrations. By measuring the absorbance before and after centrifugation, as a function of concentration, the relative anisotropic and isotropic nanotube concentrations can be monitored. The upper limit of the pure isotropic phase was C{sub NT}{approx}0.004 mg ml{sup -1}, suggesting that this can be considered the nanotube dispersion limit in {gamma}-butyrolactone. After centrifugation, the dispersions are stable against sedimentation and further aggregation for a period of 8 weeks at least. Atomic-force-microscopy studies on films deposited from the isotropic phase reveal that the bundle diameter distribution decreases dramatically as concentration is decreased. Detailed data analysis suggests the presence of an equilibrium bundle number density. A population of individual nanotubes is always observed which increases with decreasing concentration until almost 40% of all dispersed objects are individual nanotubes at a concentration of 6 x 10{sup -4} mg ml{sup -1}. The number density of individual nanotubes peaks at a concentration of {approx}6 x 10{sup -3} mg ml{sup -1} where almost 10% of the nanotubes by mass are individualized.

  7. Exfoliation in ecstasy: liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug γ-butyrolactone

    International Nuclear Information System (INIS)

    Bergin, Shane D; Nicolosi, Valeria; Giordani, Silvia; Gromard, Antoine de; Carpenter, Leslie; Blau, Werner J; Coleman, Jonathan N

    2007-01-01

    Large-scale debundling of single-walled nanotubes has been demonstrated by dilution of nanotube dispersions in the solvent γ-butyrolactone. This liquid, sometimes referred to as 'liquid ecstasy', is well known for its narcotic properties. At high concentrations the dispersions form an anisotropic, liquid crystalline phase which can be removed by mild centrifugation. At lower concentrations an isotropic phase is observed with a biphasic region at intermediate concentrations. By measuring the absorbance before and after centrifugation, as a function of concentration, the relative anisotropic and isotropic nanotube concentrations can be monitored. The upper limit of the pure isotropic phase was C NT ∼0.004 mg ml -1 , suggesting that this can be considered the nanotube dispersion limit in γ-butyrolactone. After centrifugation, the dispersions are stable against sedimentation and further aggregation for a period of 8 weeks at least. Atomic-force-microscopy studies on films deposited from the isotropic phase reveal that the bundle diameter distribution decreases dramatically as concentration is decreased. Detailed data analysis suggests the presence of an equilibrium bundle number density. A population of individual nanotubes is always observed which increases with decreasing concentration until almost 40% of all dispersed objects are individual nanotubes at a concentration of 6 x 10 -4 mg ml -1 . The number density of individual nanotubes peaks at a concentration of ∼6 x 10 -3 mg ml -1 where almost 10% of the nanotubes by mass are individualized

  8. Studies on Three Liquid Phase Extraction (TLPE) system for separation of rare earths

    International Nuclear Information System (INIS)

    Yadav, Kartikey K.; Singh, D.K.; Anitha, M.; Singh, H.

    2014-01-01

    Three-liquid-phase extraction (TLPE) is relatively a new separation technique, which takes the advantage of the differences in physicochemical properties of three coexisted phases to achieve multi-phase liquid separation of two or more components in one-step extraction. TLPE system consists of three liquid layers namely an organic solvent phase (organophosphorous type) and two aqueous phases one rich in polymer phase (poly alkylene glycol) and other a salt solution. To study the feasibility of using such system for separation of rare earths, it is important to optimize the preparatory conditions by selective suitable polymer and salt solutions at an appropriate pH to obtain a stable three phase layers to effect the separation. D2EHPA (di-2-ethyl hexyl phosphoric acid) is a well- established extractant in the rare earth industry and has been chosen in the present work to form a TLPE with polymer and salt solution. In the present investigation after preparing the stable three phase, the feasibility of using TLPE has been examined to separate rare earths from a multicomponent solutions. This study has demonstrated the ability of TLPE having D2EHPA as organic phase to separate rare earths from a multicomponent system. Effect of pH, concentration and types of polymer, complexing agent and D2EHPA concentration has been studied. Variation in pH study indicated that 4.0 leads to extraction of rare earths in the polymer phase. PEG 600 was found to be best amongst the polymer investigated. Presence of DTPA as complexing agent in the salt solution having pH >4.0 resulted in enhanced extraction of rare earths in PEG phase

  9. Enhancement of biomembrane functions under phase-separated conditions: A self-organized criticality phenomenon?

    International Nuclear Information System (INIS)

    Eze, M.O.; Chela Flores, J.

    1993-12-01

    Self-organized criticality (SOC) is hereby proposed as a possible physical basis for explaining observations in the temperature-dependence of the rates of biological membrane-associated events. The biomembrane undergoes a reversible, cooperative, thermotropic gel-to-liquid crystalline phase transition which is broad, and involves lateral phase separation. The lateral phase separated (rather than the totally gel-, or the totally liquid crystalline-) membrane state has been observed to be the state in which vital membrane functions are facilitated. The membrane in this unique state is viewed, for our purposes here, as a dynamical, extended dissipative system with spatial and temporal degrees of freedom, exhibiting power law behaviour, typical of the self-organized critical state. Experiments are suggested for verifying this hypothesis. (author). 30 refs

  10. The nuclear liquid gas phase transition and phase coexistence

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    2001-01-01

    In this talk we will review the different signals of liquid gas phase transition in nuclei. From the theoretical side we will first discuss the foundations of the concept of equilibrium, phase transition and critical behaviors in infinite and finite systems. From the experimental point of view we will first recall the evidences for some strong modification of the behavior of hot nuclei. Then we will review quantitative detailed analysis aiming to evidence phase transition, to define its order and phase diagram. Finally, we will present a critical discussion of the present status of phase transitions in nuclei and we will draw some lines for future development of this field. (author)

  11. The nuclear liquid gas phase transition and phase coexistence

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph

    2001-07-01

    In this talk we will review the different signals of liquid gas phase transition in nuclei. From the theoretical side we will first discuss the foundations of the concept of equilibrium, phase transition and critical behaviors in infinite and finite systems. From the experimental point of view we will first recall the evidences for some strong modification of the behavior of hot nuclei. Then we will review quantitative detailed analysis aiming to evidence phase transition, to define its order and phase diagram. Finally, we will present a critical discussion of the present status of phase transitions in nuclei and we will draw some lines for future development of this field. (author)

  12. Luminescent properties and energy transfer processes in Ce-Tb doped single crystalline film screens of Lu-based silicate, perovskite and garnet compounds

    Czech Academy of Sciences Publication Activity Database

    Zorenko, Y.; Gorbenko, V.; Savchyn, V.; Zorenko, T.; Martin, T.; Douissard, P.-A.; Nikl, Martin; Mareš, Jiří A.

    2013-01-01

    Roč. 56, Sept (2013), s. 415-419 ISSN 1350-4487 Institutional support: RVO:68378271 Keywords : single crystalline films * liquid phase epitaxy * perovskites * luminescence * scintillators Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.140, year: 2013

  13. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  14. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  15. An investigation of phase transformation and crystallinity in laser surface modified H13 steel

    Science.gov (United States)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2013-03-01

    This paper presents a laser surface modification process of AISI H13 tool steel using 0.09, 0.2 and 0.4 mm size of laser spot with an aim to increase hardness properties. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). X-ray diffraction analysis (XRD) was conducted to measure crystallinity of the laser-modified surface. X-ray diffraction patterns of the samples were recorded using a Bruker D8 XRD system with Cu K α ( λ=1.5405 Å) radiation. The diffraction patterns were recorded in the 2 θ range of 20 to 80°. The hardness properties were tested at 981 mN force. The laser-modified surface exhibited reduced crystallinity compared to the un-processed samples. The presence of martensitic phase was detected in the samples processed using 0.4 mm spot size. Though there was reduced crystallinity, a high hardness was measured in the laser-modified surface. Hardness was increased more than 2.5 times compared to the as-received samples. These findings reveal the phase source of the hardening mechanism and grain composition in the laser-modified surface.

  16. Visualization and measurement of liquid velocity field of gas-liquid metal two-phase flow using neutron radiography

    International Nuclear Information System (INIS)

    Saito, Yasushi; Suzuki, Tohru; Matsubayashi, Masahito

    2000-01-01

    In a core melt accident of a fast breeder reactor, a possibility of re-criticality is anticipated in the molten fuel-steel mixture pool. One of the mechanisms to suppress the re-criticality is the boiling of steel in the molten fuel-steel mixture pool because of the negative void reactivity effect. To evaluate the reactivity change due to boiling, it is necessary to know the characteristics of gas-liquid two-phase flow in the molten fuel-steel mixture pool. For this purpose, boiling bubbles in a molten fuel-steel mixture pool were simulated by adiabatic gas bubbles in a liquid metal pool to study the basic characteristics of gas-liquid metal two-phase mixture. Visualization of the two-phase mixture and measurements of liquid phase velocity and void fraction were conducted by using neutron radiography and image processing techniques. From these measurements, the basic characteristics of gas-liquid metal two-phase mixture were clarified. (author)

  17. Liquid Film Migration in Warm Formed Aluminum Brazing Sheet

    Science.gov (United States)

    Benoit, M. J.; Whitney, M. A.; Wells, M. A.; Jin, H.; Winkler, S.

    2017-10-01

    Warm forming has previously proven to be a promising manufacturing route to improve formability of Al brazing sheets used in automotive heat exchanger production; however, the impact of warm forming on subsequent brazing has not previously been studied. In particular, the interaction between liquid clad and solid core alloys during brazing through the process of liquid film migration (LFM) requires further understanding. Al brazing sheet comprised of an AA3003 core and AA4045 clad alloy, supplied in O and H24 tempers, was stretched between 0 and 12 pct strain, at room temperature and 523K (250 °C), to simulate warm forming. Brazeability was predicted through thermal and microstructure analysis. The rate of solid-liquid interactions was quantified using thermal analysis, while microstructure analysis was used to investigate the opposing processes of LFM and core alloy recrystallization during brazing. In general, liquid clad was consumed relatively rapidly and LFM occurred in forming conditions where the core alloy did not recrystallize during brazing. The results showed that warm forming could potentially impair brazeability of O temper sheet by extending the regime over which LFM occurs during brazing. No change in microstructure or thermal data was found for H24 sheet when the forming temperature was increased, and thus warm forming was not predicted to adversely affect the brazing performance of H24 sheet.

  18. Magneto-optic dynamics in a ferromagnetic nematic liquid crystal

    OpenAIRE

    Potisk, Tilen; Mertelj, Alenka; Sebastian, Nerea; Osterman, Natan; Lisjak, Darja; Brand, Helmut R.; Pleiner, Harald; Svenšek, Daniel

    2018-01-01

    We investigate dynamic magneto-optic effects in a ferromagnetic nematic liquid crystal experimentally and theoretically. Experimentally we measure the magnetization and the phase difference of the transmitted light when an external magnetic field is applied. As a model we study the coupled dynamics of the magnetization, M, and the director field, n, associated with the liquid crystalline orientational order. We demonstrate that the experimentally studied macroscopic dynamic behavior reveals t...

  19. Gibbs free energy difference between the undercooled liquid and the beta phase of a Ti-Cr alloy

    Science.gov (United States)

    Ohsaka, K.; Trinh, E. H.; Holzer, J. C.; Johnson, W. L.

    1992-01-01

    The heat of fusion and the specific heats of the solid and liquid have been experimentally determined for a Ti60Cr40 alloy. The data are used to evaluate the Gibbs free energy difference, delta-G, between the liquid and the beta phase as a function of temperature to verify a reported spontaneous vitrification (SV) of the beta phase in Ti-Cr alloys. The results show that SV of an undistorted beta phase in the Ti60Cr40 alloy at 873 K is not feasible because delta-G is positive at the temperature. However, delta-G may become negative with additional excess free energy to the beta phase in the form of defects.

  20. Measurement of gas-liquid two-phase flow around horizontal tube bundle using SF6-water. Simulating high-pressure high-temperature gas-liquid two-phase flow of PWR/SG secondary coolant side at normal pressure

    International Nuclear Information System (INIS)

    Ishikawa, Atsushi; Imai, Ryoj; Tanaka, Takahiro

    2014-01-01

    In order to improve prediction accuracy of analysis code used for design and development of industrial products, technology had been developed to create and evaluate constitutive equation incorporated in analysis code. The experimental facility for PWR/SG U tubes part was manufactured to measure local void fraction and gas-liquid interfacial velocity with forming gas-liquid upward two-phase flow simulating high-pressure high-temperature secondary coolant (water-steam) rising vertically around horizontal tube bundle. The experimental facility could reproduce flow field having gas-liquid density ratio equivalent to real system with no heating using SF6 (Sulfur Hexafluoride) gas at normal temperature and pressure less than 1 MPa, because gas-liquid density ratio, surface tension and gas-liquid viscosity ratio were important parameters to determine state of gas-liquid two-phase flow and gas-liquid density ratio was most influential. Void fraction was measured by two different methods of bi-optical probe and conductivity type probe. Test results of gas-liquid interfacial velocity vs. apparent velocity were in good agreement with existing empirical equation within 10% error, which could confirm integrity of experimental facility and appropriateness of measuring method so as to set up original constitutive equation in the future. (T. Tanaka)

  1. Large Electro-Optic Kerr-Effect in Ionic Liquid Crystals: Connecting Features of Liquid Crystals and Polyelectrolytes.

    Science.gov (United States)

    Schlick, Michael Christian; Kapernaum, Nadia; Neidhardt, Manuel; Wöhrle, Tobias; Stöckl, Yannick; Laschat, Sabine; Gießelmann, Frank

    2018-06-06

    The electro-optic Kerr effect in the isotropic phase of two ionic liquid crystals (ILCs) is investigated and compared to the Kerr effect in non-ionic liquid crystals (LCs) with same phase sequences, namely direct isotropic to hexagonal columnar transitions and direct isotropic to smectic-A transitions. Up to electric field amplitudes of some 106 V m-1, the optical birefringence induced in the isotropic phases follows Kerr's law and strongly increases when the temperature approaches the transition temperature into the particular liquid crystalline phase. Close to the transition, maximum Kerr constants in the order of 10-11 m V-2 are found, which are more than ten times higher than the Kerr constant of nitrobenzene, a strongly dipolar fluid with a huge Kerr effect applied in optical shutters and phase modulators. In comparison to their non-ionic LC counterparts the Kerr effect in ILCs is found to be enhanced in magnitude, but slowed-down in speed, showing rise times in the order of ten milliseconds. These remarkable differences are attributed to the presence of counterion polarization well-known from complex ionic fluids such as polyelectrolytes or ionic micellar solutions. ILCs thus combine the Kerr effect features of liquid crystals and complex ionic fluids. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Experimental Study on Ice Forming Process of Cryogenic Liquid Releasing underwater

    Science.gov (United States)

    Zhang, Bin; Wu, Wanqing; Zhang, Xingdong; Zhang, Yi; Zhang, Chuanlin; Zhang, Haoran; Wang, Peng

    2017-11-01

    Cryogenic liquid releasing into water would be a process combines hyperactive boiling with ice forming. There are still few researches on the experimental study on the environmental conditions for deciding ice forming speed and liquid surviving state. In this paper, to advance our understanding of ice forming deciding factors in the process of LN2 releasing underwater, a visualization experimental system is built. The results show that the pressure difference significantly influences the ice forming speed and liquid surviving distance, which is observed by the experiment and theoretically analysed by Kelvin-Helmholtz instability. Adding nucleating agent is helpful to provide ice nucleus which can accelerate the ice forming speed. Water flowing has some effect on changing pressure difference, which can affect the ice forming speed and liquid surviving distance.

  3. Structural evolution during fragile-to-strong transition in CuZr(Al) glass-forming liquids

    DEFF Research Database (Denmark)

    Zhou, C.; Hu, L.N.; Sun, Q.J.

    2015-01-01

    In the present work, we show experimental evidence for the dynamic fragile-to-strong (F-S) transition in a series of CuZr(Al) glass-forming liquids (GFLs). A detailed analysis of the dynamics of 98 glass-forming liquids indicates that the F-S transition occurs around Tf-s ≈ 1.36 Tg. Using...... the hyperquenching-annealing-x-ray scattering approach, we have observed a three-stage evolution pattern of medium-range ordering (MRO) structures during the F-S transition, indicating a dramatic change of the MRO clusters around Tf-s upon cooling. The F-S transition in CuZr(Al) GFLs is attributed to the competition...... among the MRO clusters composed of different locally ordering configurations. A phenomenological scenario has been proposed to explain the structural evolution from the fragile to the strong phase in the CuZr(Al) GFLs....

  4. Energy storage crystalline gel materials for 3D printing application

    Science.gov (United States)

    Mao, Yuchen; Miyazaki, Takuya; Gong, Jin; Zhu, Meifang

    2017-04-01

    Phase change materials (PCMs) are considered one of the most reliable latent heat storage and thermoregulation materials. In this paper, a vinyl monomer is used to provide energy storage capacity and synthesize gel with phase change property. The side chain of copolymer form crystal microcell to storage/release energy through phase change. The crosslinking structure of the copolymer can protect the crystalline micro-area maintaining the phase change stable in service and improving the mechanical strength. By selecting different monomers and adjusting their ratios, we design the chemical structure and the crystallinity of gels, which in further affect their properties, such as strength, flexibility, thermal absorb/release transition temperature, transparency and the water content. Using the light-induced polymerization 3D printing techniques, we synthesize the energy storage gel and shape it on a 3D printer at the same time. By optimizing the 3D printing conditions, including layer thickness, curing time and light source, etc., the 3D printing objects are obtained.

  5. Interplay of the Glass Transition and the Liquid-Liquid Phase Transition in Water

    Science.gov (United States)

    Giovambattista, Nicolas

    2013-03-01

    Most liquids can form a single glass or amorphous state when cooled sufficiently fast (in order to prevent crystallization). However, there are a few substances that are relevant to scientific and technological applications which can exist in at least two different amorphous states, a property known as polyamorphism. Examples include silicon, silica, and in particular, water. In the case of water, experiments show the existence of a low-density (LDA) and high-density (HDA) amorphous ice that are separated by a dramatic, first-order like phase transition. It has been argued that the LDA-HDA transformation evolves into a first-order liquid-liquid phase transition (LLPT) at temperatures above the glass transition temperature Tg. However, obtaining direct experimental evidence of the LLPT has been challenging since the LLPT occurs at conditions where water rapidly crystallizes. In this talk, I will (i) discuss the general phenomenology of polyamorphism in water and its implications, and (ii) explore the effects of a LLPT on the pressure dependence of Tg(P) for LDA and HDA. Our study is based on computer simulations of two water models - one with a LLPT (ST2 model), and one without (SPC/E model). In the absence of a LLPT, Tg(P) for all glasses nearly coincide. Instead, when there is a LLPT, different glasses exhibit dramatically different Tg(P) loci which are directly linked with the LLPT. Available experimental data for Tg(P) are only consistent with the scenario that includes a LLPT (ST2 model) and hence, our results support the view that a LLPT may exist for the case of water.

  6. Liquid phase sintered ceramic bone scaffolds by combined laser and furnace.

    Science.gov (United States)

    Feng, Pei; Deng, Youwen; Duan, Songlin; Gao, Chengde; Shuai, Cijun; Peng, Shuping

    2014-08-21

    Fabrication of mechanically competent bioactive scaffolds is a great challenge in bone tissue engineering. In this paper, β-tricalcium phosphate (β-TCP) scaffolds were successfully fabricated by selective laser sintering combined with furnace sintering. Bioglass 45S5 was introduced in the process as liquid phase in order to improve the mechanical and biological properties. The results showed that sintering of β-TCP with the bioglass revealed some features of liquid phase sintering. The optimum amount of 45S5 was 5 wt %. At this point, the scaffolds were densified without defects. The fracture toughness, compressive strength and stiffness were 1.67 MPam1/2, 21.32 MPa and 264.32 MPa, respectively. Bone like apatite layer was formed and the stimulation for apatite formation was increased with increase in 45S5 content after soaking in simulated body fluid, which indicated that 45S5 could improve the bioactivity. Furthermore, MG-63 cells adhered and spread well, and proliferated with increase in the culture time.

  7. Microfluidic Manufacturing of Polymeric Nanoparticles: Comparing Flow Control of Multiscale Structure in Single-Phase Staggered Herringbone and Two-Phase Reactors.

    Science.gov (United States)

    Xu, Zheqi; Lu, Changhai; Riordon, Jason; Sinton, David; Moffitt, Matthew G

    2016-12-06

    We compare the microfluidic manufacturing of polycaprolactone-block-poly(ethylene oxide) (PCL-b-PEO) nanoparticles (NPs) in a single-phase staggered herringbone (SHB) mixer and in a two-phase gas-liquid segmented mixer. NPs generated from two different copolymer compositions in both reactors and at three different flow rates, along with NPs generated using a conventional bulk method, are compared with respect to morphologies, dimensions, and internal crystallinities. Our work, the first direct comparison between alternate microfluidic NP synthesis methods, shows three key findings: (i) NP morphologies and dimensions produced in the bulk are different from those produced in a microfluidic mixer, whereas NP crystallinities produced in the bulk and in the SHB mixer are similar; (ii) NP morphologies, dimensions, and crystallinities produced in the single-phase SHB and two-phase mixers at the lowest flow rate are similar; and (iii) NP morphologies, dimensions, and crystallinities change with flow rate in the two-phase mixer but not in the single-phase SHB mixer. These findings provide new insights into the relative roles of mixing and shear in the formation and flow-directed processing of polymeric NPs in microfluidics, informing future reactor designs for manufacturing NPs of low polydispersity and controlled multiscale structure and function.

  8. CO2 Capture with Liquid-Liquid Phase Change Solvents: A Thermodynamic Study

    DEFF Research Database (Denmark)

    Waseem Arshad, Muhammad; Fosbøl, Philip Loldrup; von Solms, Nicolas

    2017-01-01

    by the quaternary H2O-DEEAMAPA-CO2 system which gives liquid-liquid phase split when reacted with carbon dioxide. A total of 94 model parameters and 6 thermodynamic properties were fitted to approximately 1500 equilibrium and thermal experimental data consisting of pureamine vapor pressure (Pvap), vapor...

  9. Gel–sol synthesis and aging effect on highly crystalline anatase ...

    Indian Academy of Sciences (India)

    Gel–sol synthesis and aging effect on highly crystalline anatase nanopowder .... −1 in static air. To identify the gel-phase, it was mixed with D2O to form sample solution ... Ti(OH)4 chemical composition is produced this way: Ti3. [. (OC2H4)3 N. ].

  10. Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography

    International Nuclear Information System (INIS)

    Manapuram, R K; Larin, K V; Baranov, S A; Manne, V G R; Mashiatulla, M; Sudheendran, N; Aglyamov, S; Emelianov, S

    2011-01-01

    We propose a real-time technique based on phase-sensitive swept source optical coherence tomography (PhS-SSOCT) modality for noninvasive quantification of very small optical path length changes produced on the surface of a mouse crystalline lens. Propagation of submicron mechanical waves on the surface of the lens was induced by periodic mechanical stimulation. Obtained results demonstrate that the described method is capable of detecting minute damped vibrations with amplitudes as small as 30 nanometers on the lens surface and hence, PhS-SSOCT could be potentially used to assess biomechanical properties of a crystalline lens with high accuracy and sensitivity

  11. Liquid phase chromatography on microchips

    DEFF Research Database (Denmark)

    Kutter, Jörg Peter

    2012-01-01

    explosive development of, in particular, chromatographic separation systems on microchips, has, however, slowed down in recent years. This review takes a closer, critical look at how liquid phase chromatography has been implemented in miniaturized formats over the past several years, what is important...

  12. Structure of the liquid-vapor interface of a dilute ternary alloy: Pb and In in Ga

    International Nuclear Information System (INIS)

    Yang Bin; Li Dongxu; Rice, Stuart A.

    2003-01-01

    We report the results of experimental studies of how the competition between two solutes to segregate in the liquid-vapor interface of a dilute ternary alloy influences the composition and structure of that interface. The system studied has small amounts of Pb and In dissolved in Ga; it differs from a previous study of dilute alloys containing small amounts of Pb and Sn dissolved in Ga by the addition of a new variable, namely, the valence difference between the solute atoms Pb and In. This valence difference influences the electron density distribution in the alloy liquid-vapor interface in proportion to the excess concentrations of the solute species in the interface, and thereby should affect the structure of the interface. We find that for a ternary PbInGa alloy that contains 0.039 at. % Pb and 6.31 at. % In, the Pb that segregates in the liquid-vapor interface forms a two-dimensional hexagonal crystal phase that undergoes a first-order transition to a disordered phase at T=29.0±0.1 deg. C. The two-dimensional crystalline Pb forms about 0.6 of a full monolayer; the remainder of the outer stratum of the liquid-vapor interface is filled with two-dimensional liquid In. For a ternary PbInGa alloy that contains the same amount of Pb and 12.2 at. % In, the Pb that segregates in the liquid-vapor interface forms a two-dimensional liquid down to 26.0 deg. C, the lowest temperature at which data were taken. For temperatures in excess of 29.0 deg. C two-dimensional liquid Pb and two-dimensional liquid In coexist in the interface, with the fractional occupation of the monolayer by In exceeding the fractional occupation by Pb

  13. Impact of vacancy ordering on thermal transport in crystalline phase-change materials

    International Nuclear Information System (INIS)

    Siegert, K S; Lange, F R L; Sittner, E R; Volker, H; Schlockermann, C; Wuttig, M; Siegrist, T

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge–Sb–Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb 2 Te 3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more ‘crystal-like’ thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials. (key issues review)

  14. Impact of vacancy ordering on thermal transport in crystalline phase-change materials.

    Science.gov (United States)

    Siegert, K S; Lange, F R L; Sittner, E R; Volker, H; Schlockermann, C; Siegrist, T; Wuttig, M

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge-Sb-Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb2Te3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more 'crystal-like' thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials.

  15. Development of clinical dosage forms for a poorly water-soluble drug II: formulation and characterization of a novel solid microemulsion preconcentrate system for oral delivery of a poorly water-soluble drug.

    Science.gov (United States)

    Li, Ping; Hynes, Sara R; Haefele, Thomas F; Pudipeddi, Madhu; Royce, Alan E; Serajuddin, Abu T M

    2009-05-01

    The solution of a poorly water-soluble drug in a liquid lipid-surfactant mixture, which served as a microemulsion preconcentrate, was converted into a solid form by incorporating it in a solid polyethylene glycol (PEG) matrix. The solid microemulsion preconcentrates thus formed consisted of Capmul PG8 (propylene glycol monocaprylate) as oil, Cremophor EL (polyoxyl 35 castor oil) as surfactant, and hydrophilic polymer PEG 3350 as solid matrix. The drug (aqueous solubility: 0.17 microg/mL at pH 1-8 and 25 degrees C) was dissolved in a melt of the mixture at 65-70 degrees C and then the hot solution was filled into hard gelatin capsules; the liquid gradually solidified upon cooling below 55 degrees C. The solid system was characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), confocal Raman microscopy (CRM), and the dispersion testing in water. It was confirmed that a solid microemulsion preconcentrate is a two-phase system, where clusters of crystalline PEG 3350 formed the solid structure (m.p. 55-60 degrees C) and the liquid microemulsion preconcentrate dispersed in between PEG 3350 crystals as a separate phase. The drug remained dissolved in the liquid phase. In vitro release testing showed that the preconcentrate dispersed readily in water forming a microemulsion with the drug dissolved in the oil particles (PEG 3350 did not interfere with the process of self-microemulsification.

  16. Balance of liquid-phase turbulence kinetic energy equation for bubble-train flow

    International Nuclear Information System (INIS)

    Ilic, Milica; Woerner, Martin; Cacuci, Dan Gabriel

    2004-01-01

    In this paper the investigation of bubble-induced turbulence using direct numerical simulation (DNS) of bubbly two-phase flow is reported. DNS computations are performed for a bubble-driven liquid motion induced by a regular train of ellipsoidal bubbles rising through an initially stagnant liquid within a plane vertical channel. DNS data are used to evaluate balance terms in the balance equation for the liquid phase turbulence kinetic energy. The evaluation comprises single-phase-like terms (diffusion, dissipation and production) as well as the interfacial term. Special emphasis is placed on the procedure for evaluation of interfacial quantities. Quantitative analysis of the balance equation for the liquid phase turbulence kinetic energy shows the importance of the interfacial term which is the only source term. The DNS results are further used to validate closure assumptions employed in modelling of the liquid phase turbulence kinetic energy transport in gas-liquid bubbly flows. In this context, the performance of respective closure relations in the transport equation for liquid turbulence kinetic energy within the two-phase k-ε and the two-phase k-l model is evaluated. (author)

  17. Highly Selective Continuous Gas-Phase Methoxycarbonylation of Ethylene with Supported Ionic Liquid Phase (SILP) Catalysts

    DEFF Research Database (Denmark)

    Khokarale, Santosh Govind; Garcia Suárez, Eduardo José; Fehrmann, Rasmus

    2017-01-01

    Supported ionic liquid phase (SILP) technology was applied for the first time to the Pd-catalyzed continuous, gas-phase methoxycarbonylation of ethylene to selectively produce methyl propanoate (MP) in high yields. The influence of catalyst and reaction parameters such as, for example, ionic liquid...

  18. Comparison of cryopreserved human sperm in vapor and liquid phases of liquid nitrogen: effect on motility parameters, morphology, and sperm function.

    Science.gov (United States)

    Punyatanasakchai, Piyaphan; Sophonsritsuk, Areephan; Weerakiet, Sawaek; Wansumrit, Surapee; Chompurat, Deonthip

    2008-11-01

    To compare the effects of cryopreserved sperm in vapor and liquid phases of liquid nitrogen on sperm motility, morphology, and sperm function. Experimental study. Andrology laboratory at Ramathibodi Hospital, Thailand. Thirty-eight semen samples with normal motility and sperm count were collected from 38 men who were either patients of an infertility clinic or had donated sperm for research. Each semen sample was divided into two aliquots. Samples were frozen with static-phase vapor cooling. One aliquot was plunged into liquid nitrogen (-196 degrees C), and the other was stored in vapor-phase nitrogen (-179 degrees C) for 3 days. Thawing was performed at room temperature. Motility was determined by using computer-assisted semen analysis, sperm morphology was determined by using eosin-methylene blue staining, and sperm function was determined by using a hemizona binding test. Most of the motility parameters of sperm stored in the vapor phase were not significantly different from those stored in the liquid phase of liquid nitrogen, except in amplitude of lateral head displacement. The percentages of normal sperm morphology in both vapor and liquid phases also were not significantly different. There was no significant difference in the number of bound sperm in hemizona between sperm cryopreserved in both vapor and liquid phases of liquid nitrogen. Cryopreservation of human sperm in a vapor phase of liquid nitrogen was comparable to cryopreservation in a liquid phase of liquid nitrogen.

  19. Quantum Dot/Liquid Crystal Nanocomposites in Photonic Devices

    Directory of Open Access Journals (Sweden)

    Andrea L. Rodarte

    2015-07-01

    Full Text Available Quantum dot/liquid crystal nano-composites are promising new materials for a variety of applications in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however, we need to control and stabilize nano-particle dispersion in different liquid crystal host phases and understand how the particles behave in an anisotropic fluid. An ideal system will allow for the controlled assembly of either well-defined nano-particle clusters or a uniform particle distribution. In this paper, we investigate mesogen-functionalized quantum dots for dispersion in cholesteric liquid crystal. These nanoparticles are known to assemble into dense stable packings in the nematic phase, and such structures, when localized in the liquid crystal defects, can potentially enhance the coupling between particles and a cholesteric cavity. Controlling the dispersion and assembly of quantum dots using mesogenic surface ligands, we demonstrate how resonant fluid photonic cavities can result from the co-assembly of luminescent nanoparticles in the presence of cholesteric liquid crystalline ordering.

  20. Visualization and measurement of gas-liquid metal two-phase flow with large density difference using thermal neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Saito, Y.; Hibiki, T.; Mishima, K.; Nishihara, H.; Yamamoto, A.; Kanda, K.; Tobita, Y.; Konishi, K.; Matsubayashi, M.

    1998-01-01

    In a core melt accident of a fast breeder reactor there is a possibility of boiling of fuel-steel mixture in the containment pool. In relation to safety evaluation on severe accident, it is indispensable to evaluate the recriticality of melted core. Gas-liquid two-phase flow with a large density difference is formed due to the boiling of fuel-steel mixture. Although the large density difference may affect the basic characteristics of two-phase flow, little work has been performed so far on two-phase flow with large density difference has not been performed well. In this study, visualization and void fraction measurement of gas-liquid metal two-phase flow were performed by using neutron radiography. The effect of the large density difference between gas and liquid phases on the basic flow characteristics of two-phase flow was clarified. (author)

  1. Surfactant mediated liquid phase exfoliation of graphene

    Science.gov (United States)

    Narayan, Rekha; Kim, Sang Ouk

    2015-10-01

    Commercialization of graphene based applications inevitably requires cost effective mass production. From the early days of research on graphene, direct liquid phase exfoliation (LPE) of graphite has been considered as the most promising strategy to produce high-quality mono or few-layer graphene sheets in solvent dispersion forms. Substantial success has been achieved thus far in the LPE of graphene employing numerous solvent systems and suitable surfactants. This invited review article principally showcase the recent research progress as well as shortcomings of surfactant assisted LPE of graphene. In particular, a comprehensive assessment of the quality and yield of the graphene sheets produced by different categories of the surfactants are summarized. Future direction of LPE methods is also proposed for the eventual success of commercial applications.

  2. Hot isostatically-pressed aluminosilicate glass-ceramic with natural crystalline analogues for immobilizing the calcined high-level nuclear waste at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Raman, S.

    1993-12-01

    The additives Si, Al, MgO, P 2 O 5 were mechanically blended with fluorinelsodium calcine in varying proportions. The batches were vacuum sealed in stainless steel canisters and hot isostatically pressed at 20,000 PSI and 1000 C for 4 hours. The resulting suite of glass-ceramic waste forms parallels the natural rocks in microstructural and compositional heterogeneity. Several crystalline phases ar analogous in composition and structure to naturally occurring minerals. Additional crystalline phases are zirconia and Ca-Mg borate. The glasses are enriched in silica and alumina. Approximately 7% calcine elements occur dissolved in this glass and the total glass content in the waste forms averages 20 wt%. The remainder of the calcine elements are partitioned into crystalline phases at 75 wt% calcine waste loading. The waste forms were tested for chemical durability in accordance with the MCC1-test procedure. The leach rates are a function of the relative proportions of additives and calcine, which in turn influence the composition and abundances of the glass and crystalline phases. The DOE leach rate criterion of less than 1 g/m 2 -day is met by all the elements B, Cs and Na are increased by lowering the melt viscosity. This is related to increased crystallization or devitrification with increases in MgO addition. This exploratory work has shown that the increases in waste loading occur by preferred partitioning of the calcine components among crystalline and glass phases. The determination of optimum processing parameters in the form of additive concentration levels, homogeneous blending among the components, and pressure-temperature stabilities of phases must be continued to eliminate undesirable effects of chemical composition, microstructure and glass devitrification

  3. Identification of liquid-phase decomposition species and reactions for guanidinium azotetrazolate

    International Nuclear Information System (INIS)

    Kumbhakarna, Neeraj R.; Shah, Kaushal J.; Chowdhury, Arindrajit; Thynell, Stefan T.

    2014-01-01

    Highlights: • Guanidinium azotetrazolate (GzT) is a high-nitrogen energetic material. • FTIR spectroscopy and ToFMS spectrometry were used for species identification. • Quantum mechanics was used to identify transition states and decomposition pathways. • Important reactions in the GzT liquid-phase decomposition process were identified. • Initiation of decomposition occurs via ring opening, releasing N 2 . - Abstract: The objective of this work is to analyze the decomposition of guanidinium azotetrazolate (GzT) in the liquid phase by using a combined experimental and computational approach. The experimental part involves the use of Fourier transform infrared (FTIR) spectroscopy to acquire the spectral transmittance of the evolved gas-phase species from rapid thermolysis, as well as to acquire spectral transmittance of the condensate and residue formed from the decomposition. Time-of-flight mass spectrometry (ToFMS) is also used to acquire mass spectra of the evolved gas-phase species. Sub-milligram samples of GzT were heated at rates of about 2000 K/s to a set temperature (553–573 K) where decomposition occurred under isothermal conditions. N 2 , NH 3 , HCN, guanidine and melamine were identified as products of decomposition. The computational approach is based on using quantum mechanics for confirming the identity of the species observed in experiments and for identifying elementary chemical reactions that formed these species. In these ab initio techniques, various levels of theory and basis sets were used. Based on the calculated enthalpy and free energy values of various molecular structures, important reaction pathways were identified. Initiation of decomposition of GzT occurs via ring opening to release N 2

  4. Laser-induced partial oxidation of cyclohexane in liquid phase

    International Nuclear Information System (INIS)

    Oshima, Y.; Wu, X.W.; Koda, S.

    1995-01-01

    A laser-induced partial oxidation of cyclohexane was studied in the liquid phase. With KrF excimer laser (248 nm) irradiation to neat liquid cyclohexane in which O 2 was dissolved, cyclohexanol and cyclohexanone were obtained with very high selectivities, together with cyclohexane as a minor product. Radical recombination reactions to produce dicyclohexyl ether and bicyclohexyl also took place, while these products were not observed in the gas phase reaction. These experimental results were considered to be due not only to higher concentration of cyclohexane but to the cage effect in the liquid phase oxidation. To clarify the reaction progress including the photoabsorption process, the effects of laser intensity and O 2 pressure on product distribution were studied. (author)

  5. Effect of doxorubicin on the order and dynamics of the acyl chains of anionic and zwitterionic phospholipids in liquid-crystalline mixed model membranes

    NARCIS (Netherlands)

    Wolf, de F.A.; Nicolaij, K.; Kruijff, de B.

    1992-01-01

    We investigated the effect of the antineoplastic drug doxorubicin on the order of the acyl chains in liquid-crystalline mixed bilayers consisting of dioleoylphosphatidylserine (DOPS) or -phosphatidic acid (DOPA), and dioleoylphosphatidylcholine (DOPC) or - hosphatidylethanolamine (DOPE). Previous

  6. Bidimensional distortion in ferroelectric liquid crystals with strong ...

    Indian Academy of Sciences (India)

    characterized by bistability and optical memory in the surface-stabilized bookshelf [2,3] ... tic layers, which lies in a plane parallel to the cell walls (see figure 1). Up to now ... Theory. We consider a liquid crystalline material exhibiting ferroelectric phase organized in book- ... By applying an external electric field Eext along.

  7. Formation of a crystalline InSe phase from a quaternary single crystal of the Cu-Ag-In-Se system by massive ion motion

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, R., E-mail: raquel.diaz@uam.es [Departamento de Fisica Aplicada, M12, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Rueda, F. [Departamento de Fisica Aplicada, M12, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2012-08-15

    The composition and structural properties of a single crystal of the Cu-Ag-In-Se system are analyzed. Laue diffraction shows a single crystal while XRD diffraction and EDAX composition indicate two crystalline phases and two compositions close to Cu{sub 0.97}Ag{sub 0.03}In{sub 1.75}Se{sub 2.84} and Cu{sub 0.95}Ag{sub 0.05}In{sub 2}Se{sub 3.5} with lattice parameter, a = 5.770 Angstrom-Sign and a = 5.790 Angstrom-Sign and c/a {approx_equal} 2.0 respectively. Impedance spectroscopy is carried out at temperatures up to 120 Degree-Sign C in a sequential annealing in order to obtain the electrical properties. A motion of two ions is observed and two ionic resistances and activation energies are computed in the 0.15-0.17 eV range and 0.52 eV, respectively. In the successive annealing, the impedance spectra change, probably due to a non-reversible process in the sample. After the impedance analysis, composition measurements and the structural analysis show a massive motion of Ag + Cu and In ions in the slice. These motions produce different phases with very different compositions in different regions. Due to the high disorder in Cu and In sublattices and to the high number of (2V{sub Cu} + In{sub Cu}) defect pairs, these ions are easily moved, leading to the formation of an InSe crystalline phase. Ions are rearranged in the chalcopyrite phase region, along with the transformation of In{sup 3+} into In{sup 2+} chemical species accompanied by the corresponding electron conduction capture. These changes are responsible of the non-reversibility of the process. These results would allow to understand the highest solar energy conversion efficiencies of up to 20.3% observed in CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGS) thin films obtained using a three-stage co-evaporation process. In these films, the CIGS layer reaches a copper rich composition and a quasi-liquid Cu{sub 2-y}Se phase is formed which enhances crystallization of the absorber layer and also affects the distribution of

  8. Preparation and evaluation of surface-bonded tricationic ionic liquid silica as stationary phases for high-performance liquid chromatography.

    Science.gov (United States)

    Qiao, Lizhen; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2015-05-29

    Two tricationic ionic liquids were prepared and then bonded onto the surface of supporting silica materials through "thiol-ene" click chemistry as new stationary phases for high-performance liquid chromatography. The obtained columns of tricationic ionic liquids were evaluated respectively in the reversed-phase liquid chromatography (RPLC) mode and hydrophilic interaction liquid chromatography (HILIC) mode, and possess ideal column efficiency of 80,000 plates/m in the RPLC mode with naphthalene as the test solute. The tricationic ionic liquid stationary phases exhibit good hydrophobic and shape selectivity to hydrophobic compounds, and RPLC retention behavior with multiple interactions. In the HILIC mode, the retention and selectivity were evaluated through the efficient separation of nucleosides and bases as well as flavonoids, and the typical HILIC retention behavior was demonstrated by investigating retention changes of hydrophilic solutes with water volume fraction in mobile phase. The results show that the tricationic ionic liquid columns possess great prospect for applications in analysis of hydrophobic and hydrophilic samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Investigation of liquid phase axial dispersion in Taylor bubble flow by radiotracer residence time distribution analysis

    Directory of Open Access Journals (Sweden)

    Jin J.H.

    2013-05-01

    Full Text Available A gas-liquid Taylor bubble flow occurs in small diameter channels in which gas bubbles are separated by slugs of pure liquid. This type of flow regime is well suited for solid catalyzed gas-liquid reactors in which the reaction efficiency is a strong function of axial dispersion in the regions of pure liquid. This paper presents an experimental study of liquid phase axial dispersion in a Taylor bubble flow developed in a horizontal tube using high speed photography and radiotracer residence time distribution (RTD analysis. A parametric dependence of axial dispersion on average volume fraction of gas phase was also investigated by varying the relative volumetric flow rates of the two phases. 137mBa produced from a 137Cs/137mBa radionuclide generator was used as radiotracer and measurements were made using the NaI(Tl scintillation detectors. Validation of 137mBa in the form of barium chloride as aqueous phase radiotracer was also carried out. Axial Dispersion Model (ADM was used to simulate the hydrodynamics of the system and the results of the experiment are presented. It was observed that the system is characterized by very high values of Peclet Number (Pe∼102 which reveals an approaching plug type flow. The experimental and model estimated values of mean residence times were observed in agreement with each other.

  10. Structure and transformation of tactoids in cellulose nanocrystal suspensions

    Science.gov (United States)

    Wang, Pei-Xi; Hamad, Wadood Y.; MacLachlan, Mark J.

    2016-05-01

    Cellulose nanocrystals obtained from natural sources are of great interest for many applications. In water, cellulose nanocrystals form a liquid crystalline phase whose hierarchical structure is retained in solid films after drying. Although tactoids, one of the most primitive components of liquid crystals, are thought to have a significant role in the evolution of this phase, they have evaded structural study of their internal organization. Here we report the capture of cellulose nanocrystal tactoids in a polymer matrix. This method allows us to visualize, for the first time, the arrangement of cellulose nanocrystals within individual tactoids by electron microscopy. Furthermore, we can follow the structural evolution of the liquid crystalline phase from tactoids to iridescent-layered films. Our insights into the early nucleation events of cellulose nanocrystals give important information about the growth of cholesteric liquid crystalline phases, especially for cellulose nanocrystals, and are crucial for preparing photonics-quality films.

  11. Crystalline heterogeneities and instabilities in thermally convecting magma chamber

    Science.gov (United States)

    Culha, C.; Suckale, J.; Qin, Z.

    2016-12-01

    A volcanic vent can supply different densities of crystals over an eruption time period. This has been seen in Hawai'i's Kilauea Iki 1959 eruption; however it is not common for all Kilauea or basaltic eruptions. We ask the question: Under what conditions can homogenous magma chamber cultivate crystalline heterogeneities? In some laboratory experiments and numerical simulations, a horizontal variation is observed. The region where crystals reside is identified as a retention zone: convection velocity balances settling velocity. Simulations and experiments that observe retention zones assume crystals do not alter the convection in the fluid. However, a comparison of experiments and simulations of convecting magma with crystals suggest that large crystal volume densities and crystal sizes alter fluid flow considerably. We introduce a computational method that fully resolves the crystalline phase. To simulate basaltic magma chambers in thermal convection, we built a numerical solver of the Navier-Stoke's equation, continuity equation, and energy equation. The modeled magma is assumed to be a viscous, incompressible fluid with a liquid and solid phase. Crystals are spherical, rigid bodies. We create Rayleigh-Taylor instability through a cool top layer and hot bottom layer and update magma density while keeping crystal temperature and size constant. Our method provides a detailed picture of magma chambers, which we compare to other models and experiments to identify when and how crystals alter magma chamber convection. Alterations include stratification, differential settling and instabilities. These characteristics are dependent on viscosity, convection vigor, crystal volume density and crystal characteristics. We reveal that a volumetric crystal density variation may occur over an eruption time period, if right conditions are met to form stratifications and instabilities in magma chambers. These conditions are realistic for Kilauea Iki's 1959 eruption.

  12. Dynamics and stability of flexible cylinders subjected to liquid and two-phase axial flow in confined annuli

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Paidoussis, M.P.

    1976-03-01

    The nuclear fuel for CANDU-BLW reactors consists of fuel bundles assembled in the form of strings. The strings are inserted in fuel channels. From a fluidelastic viewpoint the strings are essentially flexible cylinders in confined annuli. Fluidelastic instability is one of the flow-induced vibration excitation mechanisms that could cause fretting damage. The fluidelastic behaviour of flexible cylinders in confined annuli was investigated experimentally. The cylinders were subjected to fuel channel flow conditions, that is flow velocities up to 10 m/s in liquid flow and mass fluxes up to 500 g/cm 2 s in two-phase flow simulated by air-water. The effect of several parameters such as flexural rigidity, end conditions, downstream end shape, and annular confinement were explored. Generally, cylinders except those with square downstream free ends experienced fluidelastic instabilities in liquid flow in the form of buckling or oscillations. Higher frequencies and higher modes were observed at higher flow velocities. Conversely cylinders with square downstream free ends were very stable in liquid flow. The behaviour in two-phase flow is completely different. The cylinder vibration response was severe and broadband random in nature. A mathematical model was formulated for the fluidelastic behaviour. The experimental results are compared to the analytical predictions. The formulated model is qualitatively valid for liquid flow but not for two-phase flow. (author)

  13. The reaction process of the Bi-Sr-Ca-Cu-O system and the forming mechanism of the 2212 superconducting phase

    International Nuclear Information System (INIS)

    Xiong Guohong; Wang Minquan; Fan Xianping; Tang Xiaoming

    1993-01-01

    The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680 C-790 C, forming of the 2212 superconducting phase at 790 C-860 C and forming of semiconducting phases in the presence of the liquid phase at 860 C-970 C. It is also confirmed that the 2212 superconducting phase (T c =85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase. (orig.)

  14. The reaction process of the Bi-Sr-Ca-Cu-O system and the forming mechanism of the 2212 superconducting phase

    Science.gov (United States)

    Xiong, Guohong; Wang, Minquan; Fan, Xianping; Tang, Xiaoming

    1993-02-01

    The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680°C 790°C, forming of the 2212 superconducting phase at 790°C 860°C and forming often semiconducting phases in the presence of the liquid phase at 860°C 970°C. It is also confirmed that the 2212 superconducting phase ( T c=85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase.

  15. The reaction process of the Bi-Sr-Ca-Cu-O system and the forming mechanism of the 2212 superconducting phase

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Guohong (Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering); Wang Minquan (Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering); Fan Xianping (Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering); Tang Xiaoming (Zhejiang Univ., Hangzhou (China). Center for Analysis and Measurement)

    1993-02-01

    The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680 C-790 C, forming of the 2212 superconducting phase at 790 C-860 C and forming of semiconducting phases in the presence of the liquid phase at 860 C-970 C. It is also confirmed that the 2212 superconducting phase (T[sub c]=85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase. (orig.)

  16. Glass-forming liquids: one or more "order" parameters"

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Christensen, Tage Emil; Jakobsen, Bo

    2008-01-01

    We first summarize the classical arguments that the vast majority of glass-forming liquids require more than one ‘order' parameter for their description. Critiques against this conventional wisdom are then presented, and it is argued that the matter deserves to be reconsidered in the light...... that a description with a single "order" parameter applies to a good approximation whenever thermal equilibrium fluctuations of fundamental variables like energy and pressure are strongly correlated. Results from computer simulations showing that this is the case for a number of simple glass-forming liquids, as well...

  17. Elastic properties of crystalline and liquid gallium at high pressures

    Science.gov (United States)

    Lyapin, A. G.; Gromnitskaya, E. L.; Yagafarov, O. F.; Stal'Gorova, O. V.; Brazhkin, V. V.

    2008-11-01

    The elastic properties of gallium, such as the bulk modulus B, the shear modulus G, and the Poisson’s ratio σ, are investigated and the relative change in the volume is determined in the stability regions of the Ga I, Ga II, and liquid phases at pressures of up to 1.7 GPa. The observed lines of the Ga I-Ga II phase transition and the melting curves of the Ga I and Ga II phases are in good agreement with the known phase diagram of gallium; in this case, the coordinates of the Ga I-Ga II-melt triple point are determined to be 1.24 ± 0.40 GPa and 277 ± 2 K. It is shown that the Ga I-Ga II phase transition is accompanied by a considerable decrease in the moduli B (by 30%) and G (by 55%) and an increase in the density by 5.7%. The Poisson’s ratio exhibits a jump from typically covalent values of approximately 0.22-0.25 to values of approximately 0.32-0.33, which are characteristic of metals. The observed behavior of the elastic characteristics is described in the framework of the model of the phase transition from a “quasi-molecular” (partially covalent) metal state to a “normal” metal state. An increase in the Poisson’s ratio in the Ga I phase from 0.22 to 0.25 with an increase in the pressure can be interpreted as a decrease in the degree of covalence, i.e., the degree of spatial anisotropy of the electron density along the bonds, whereas the large value of the pressure derivative of the bulk modulus (equal to approximately 8) observed up to the transition to the Ga II phase or the melt is associated not only with the quasicovalent nature of the Ga I phase but also with the structural features. In view of the presence of seven neighbors for each gallium atom in the Ga I phase, the gallium lattice can be treated as a structure intermediate between typical open-packed and close-packed structures. Premelting effects, such as a flattening of the isothermal dependence of the shear modulus G( p) with increasing pressure and an increase in the slope of the

  18. Elastic properties of crystalline and liquid gallium at high pressures

    International Nuclear Information System (INIS)

    Lyapin, A. G.; Gromnitskaya, E. L.; Yagafarov, O. F.; Stal'gorova, O. V.; Brazhkin, V. V.

    2008-01-01

    The elastic properties of gallium, such as the bulk modulus B, the shear modulus G, and the Poisson's ratio σ, are investigated and the relative change in the volume is determined in the stability regions of the Ga I, Ga II, and liquid phases at pressures of up to 1.7 GPa. The observed lines of the Ga I-Ga II phase transition and the melting curves of the Ga I and Ga II phases are in good agreement with the known phase diagram of gallium; in this case, the coordinates of the Ga I-Ga II-melt triple point are determined to be 1.24 ± 0.40 GPa and 277 ± 2 K. It is shown that the Ga I-Ga II phase transition is accompanied by a considerable decrease in the moduli B (by 30%) and G (by 55%) and an increase in the density by 5.7%. The Poisson's ratio exhibits a jump from typically covalent values of approximately 0.22-0.25 to values of approximately 0.32-0.33, which are characteristic of metals. The observed behavior of the elastic characteristics is described in the framework of the model of the phase transition from a 'quasi-molecular' (partially covalent) metal state to a 'normal' metal state. An increase in the Poisson's ratio in the Ga I phase from 0.22 to 0.25 with an increase in the pressure can be interpreted as a decrease in the degree of covalence, i.e., the degree of spatial anisotropy of the electron density along the bonds, whereas the large value of the pressure derivative of the bulk modulus (equal to approximately 8) observed up to the transition to the Ga II phase or the melt is associated not only with the quasicovalent nature of the Ga I phase but also with the structural features. In view of the presence of seven neighbors for each gallium atom in the Ga I phase, the gallium lattice can be treated as a structure intermediate between typical open-packed and close-packed structures. Premelting effects, such as a flattening of the isothermal dependence of the shear modulus G(p) with increasing pressure and an increase in the slope of the isobaric

  19. Formation of a new archetypal Metal-Organic Framework from a simple monatomic liquid

    International Nuclear Information System (INIS)

    Metere, Alfredo; Oleynikov, Peter; Dzugutov, Mikhail; O’Keeffe, Michael

    2014-01-01

    We report a molecular-dynamics simulation of a single-component system of particles interacting via a spherically symmetric potential that is found to form, upon cooling from a liquid state, a low-density porous crystalline phase. Its structure analysis demonstrates that the crystal can be described by a net with a topology that belongs to the class of topologies characteristic of the Metal-Organic Frameworks (MOFs). The observed net is new, and it is now included in the Reticular Chemistry Structure Resource database. The observation that a net topology characteristic of MOF crystals, which are known to be formed by a coordination-driven self-assembly process, can be reproduced by a thermodynamically stable configuration of a simple single-component system of particles opens a possibility of using these models in studies of MOF nets. It also indicates that structures with MOF topology, as well as other low-density porous crystalline structures can possibly be produced in colloidal systems of spherical particles, with an appropriate tuning of interparticle interaction

  20. Structure and dynamics in liquid water from x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Wernet, Philippe

    2009-01-01

    Oxygen K-edge x-ray absorption spectra of water are discussed. The spectra of gas-phase water, liquid water and ice illustrate the sensitivity of oxygen K-edge x-ray absorption spectroscopy to hydrogen bonding in water. Transmission mode spectra of amorphous and crystalline ice are compared to x-ray Raman spectra of ice. The good agreement consolidates the experimental spectrum of crystalline ice and represents an incentive for theoretical calculations of the oxygen K-edge absorption spectrum of crystalline ice. Time-resolved infrared-pump and x-ray absorption probe results are finally discussed in the light of this structural interpretation.