WorldWideScience

Sample records for liquid scintillation counter

  1. Solid scintillator 'Ready Cap' for measurement with a liquid scintillation counter

    International Nuclear Information System (INIS)

    Ijiri, Kenichi; Endo, Masashi; Nogawa, Norio; Tsuda, Shoko; Nakamura, Aiko; Morikawa, Naotake; Osaki, Susumu.

    1990-01-01

    'Ready Cap', a small plastic container coated with solid scintillator has recently been introduced (Beckman Instruments, Inc.). Pulse height spectra and counting efficiencies obtained with a liquid scintillator and Ready Cap using a liquid scintillation counter were compared for 15 different radionuclides. For radionuclides emitting low-energy β-rays or characteristic X-rays, the spectra for Ready Cap shifted toward the higher energy side compared with the spectra for the liquid scintillator. This tendency was reversed for the nuclides emitting higher-energy β-radiations ( 36 Cl and 32 P). Generally, counting efficiencies both in Ready Cap and in liquid scintillator increased with increase in the energy of β- or X-rays. For some nuclides, Ready Cap gave higher counting efficiencies and for others it gave lower values than in the liquid scintillator. However, the differences were not large within each nuclide. The use of Ready Cap is recommended for measurements of radionuclides when liquid scintillation cocktails have no means of waste disposal under the present Japanese radioisotope regulation. (author)

  2. Manual calibration of liquid scintillation counter using the channel ratio technique

    International Nuclear Information System (INIS)

    Moussa, H.M.; Townsend, L.; Miller, L.F.

    1999-01-01

    The objectives of this activity are to introduce students to liquid scintillation counting and to calibrate the counter using the sample channel ratio technique. This is accomplished by using quenched standards set for 14 C and tritium ( 3 H) to generate a quench correction curve for the scintillation solution. It is a good method for students to gain a detailed understanding of issues important to manual calibration of a liquid scintillation counter, and results can be compared with a built-in automatic method

  3. Applications of commercial liquid scintillation counters to radon-222 and radium-226 analyses

    International Nuclear Information System (INIS)

    Gesell, T.F.; Prichard, H.M.; Haygood, J.R.

    1978-01-01

    The ubiquitous commerical liquid scintillation counter offers automatic sample processing, automatic data recording and the prospect of multiple users. With these features in mind we have explored a number of applications of liquid scintillation counters to environmental and health physics problems. One application, the analysis of radon in water has been described elsewhere and is only briefly reviewed. A method for measuring radon in air, two methods for measuring radium in water, and a technique for leak testing radium needles have also been investigated. An ordinary glass scintillation vial is readily converted into a miniature scintillation flask by coating the inside surface with a thin layer in ZnS:Ag phosphor. The lower limit detection is high, about 2 pCi/1 for a 1 hour count, but these flasks have proved to be useful in situations where a larger number of samples must be taken in environments with relatively high levels of radon. One technique for the detection of radium in water uses liquid-liquid extraction to concentrate radon into an organic scintillation fluid, the other involves passing the water sample through an ion exchange resin and then sealing the resin and scintillation fluid in a vial. Both techniques offer the prospect of easy and inexpensive analyses with limits of detection at or below 0.5 pCi/1. Radium needles can be leak tested by placing them in vials containing toluene for a few minutes, adding fluor to the toluene and counting. Preliminary data regarding these several methods are given

  4. Polyethylene vials for liquid scintillation counters produced by the National Materials Research Institute

    International Nuclear Information System (INIS)

    Fiser, B.; Lukas, D.

    1984-01-01

    The properties were tested of polyethylene vials for liquid scintillation counters manufactured by the National Materials Research Institute. Liquid scintillation counter ISOCAP 300 by Nuclear Chicago was used for measuring. For unquenched samples, channel A was set up to 0.5-3.6 keV and channel B to 0.5-18 keV. The scintillation solution was prepared of toluene, 4 g PPO, 0.15 g POPOP per 1 l of toluene. CCl 4 was used as the quenching agent. Radioactive samples were prepared from 20 μl of standard solution of [ 3 H]-toluene with specific activity of 349 Bq/g. All measurements were made using a 7 ml scintillation solution into which radioactivity and possibly quenching agents were added. Potassium-free glass vials by SKLO UNION Teplice and thin-walled polyethylene vials by Nuclear Chicago were used for comparison. The background was measured, as were the time dependences of weight losses of the scintillation solution and carbon tetrachloride from the counting vials, changes in efficiency in channel B with time, changes in SCR with time and changes in the quenching curve with time. (E.S.)

  5. Measuring techniques for environmental sup 3 H, sup 14 C and sup 222 Rn by liquid scintillation counter

    Energy Technology Data Exchange (ETDEWEB)

    Takata, Shigeru; Saito, Masaaki (Tokyo Metropolitan Isotope Research Center (Japan))

    1991-02-01

    Measuring techniques for environmental {sup 3}H, {sup 14}C and {sup 222}Rn with a liquid scintillation counter have been studied. {sup 3}H in environmental water was enriched by electrolysis and measured with a low background liquid scintillation counter. By this technique, {sup 3}H concentration of ground water, river water, sea water and rain water at Tokyo was founded to be 0.1 {approx} 2.5 Bq/1. {sup 14}C in taurine and ethyl-alcohol was measured directly liquid scintillation counter. By this {sup 14}C measuring, natural products, contain low level {sup 14}C, were distinguished from synthesised products contain no {sup 14}C. {sup 222}Rn in toluene extracted from environmental water or air was measured by scintillation pulse interval analysis method. By this technique, {sup 222}Rn was able to be measured under very low background counting rate, 0.03cpm, and high efficiency. (author).

  6. Novel determination of protein, fat, and lactose of milk by liquid scintillation counter

    International Nuclear Information System (INIS)

    Noble, R.C.; Shand, J.H.; West, I.G.

    1981-01-01

    A method for routine determination of protein, fat, and lactose contents of milk is based on the ability of a scintillation counter to measure coloration or opalescence through attenuation of photons emitted from sealed miniature carbon-14 and hydrogen-3 radioactive standards. A series of simplified and accurate analytical procedures enable full advantage to be taken of the automatic facilities on the modern liquid scintillation counter. The methods provide several advantages over existing procedures. Accuracy of quantification was high as assessed by comparing the results with those derived by recommended Kjeldahl, Gerber, and colorimetric procedures for protein, fat, and lactose determinations, respectively

  7. A comparison between the measurements of Kr-85 in environmental samples by liquid scintillation and proportional counters

    International Nuclear Information System (INIS)

    Heras Iniquez, M.C.; Perez Garcia, M.M.

    1983-01-01

    The most used methods for the measurement of Kr-81 beta-activity after their concentration and aisolation are the liquid scintillation counting and the proportional counter. In this work the beta activity of concentrated and aisolated Kr-85 samples measured in collaboration with the Max-Planck Institut fur Kernphyslk, Aussenstelle Freiburg. Samples taken both In Madrid and Frelburg are measured by proportional counters in the Max-Planck lnstitut, Freibury and by liquid scintillation counting in JEN, Madrid. The comparison of both measurements do not show appreciable discrepancy between the results obtained to both techniques. (Author)

  8. Cerenkov counting and Cerenkov-scintillation counting with high refractive index organic liquids using a liquid scintillation counter

    International Nuclear Information System (INIS)

    Wiebe, L.I.; Helus, F.; Maier-Borst, W.

    1978-01-01

    18 F and 14 C radioactivity was measured in methyl salicylate (MS), a high refractive index hybrid Cherenkov-scintillation generating medium, using a liquid scintillation counter. At concentrations of up to 21.4%, in MS, dimethyl sulfoxide (DMSO) quenched 14 C fluorescence, and with a 10-fold excess of DMSO over MS, 18 F count rates were reduced below that for DMSO alone, probably as a result of concentration-independent self-quenching due to 'dark-complex' formation. DMSO in lower concentrations did not reduce the counting efficiency of 18 F in MS. Nitrobenzene was a concentration-dependent quencher for both 14 C and 18 F in MS. Chlorobenzene (CB) and DMSO were both found to be weak Cherenkov generators with 18 F. Counting efficiencies for 18 F in MS, CB, and DMSO were 50.3, 7.8 and 4.3% respectively in the coincidence counting mode, and 58.1, 13.0 and 6.8% in the singles mode. 14 C efficiencies were 14.4 and 22.3% for coincidence and singles respectively, and 15.3 and 42.0% using a modern counter designed for coincidence and single photon counting. The high 14 C and 18 F counting efficiency in MS are discussed with respect to excitation mechanism, on the basis of quench and channels ratios changes observed. It is proposed that MS functions as an efficient Cherenkov-scintillation generator for high-energy beta emitters such as 18 F, and as a low-efficiency scintillator for weak beta emitting radionuclides such as 14 C. (author)

  9. Cerenkov counting and Cerenkov-scintillation counting with high refractive index organic liquids using a liquid scintillation counter

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, L I; Helus, F; Maier-Borst, W [Deutsches Krebsforschungszentrum, Heidelberg (Germany, F.R.). Inst. fuer Nuklearmedizin

    1978-06-01

    /sup 18/F and /sup 14/C radioactivity was measured in methyl salicylate (MS), a high refractive index hybrid Cherenkov-scintillation generating medium, using a liquid scintillation counter. At concentrations of up to 21.4%, in MS, dimethyl sulfoxide (DMSO) quenched /sup 14/C fluorescence, and with a 10-fold excess of DMSO over MS, /sup 18/F count rates were reduced below that for DMSO alone, probably as a result of concentration-independent self-quenching due to 'dark-complex' formation. DMSO in lower concentrations did not reduce the counting efficiency of /sup 18/F in MS. Nitrobenzene was a concentration-dependent quencher for both /sup 14/C and /sup 18/F in MS. Chlorobenzene (CB) and DMSO were both found to be weak Cherenkov generators with /sup 18/F. Counting efficiencies for /sup 18/F in MS, CB, and DMSO were 50.3, 7.8 and 4.3% respectively in the coincidence counting mode, and 58.1, 13.0 and 6.8% in the singles mode. /sup 14/C efficiencies were 14.4 and 22.3% for coincidence and singles respectively, and 15.3 and 42.0% using a modern counter designed for coincidence and single photon counting. The high /sup 14/C and /sup 18/F counting efficiency in MS are discussed with respect to excitation mechanism, on the basis of quench and channels ratios changes observed. It is proposed that MS functions as an efficient Cherenkov-scintillation generator for high-energy beta emitters such as /sup 18/F, and as a low-efficiency scintillator for weak beta emitting radionuclides such as /sup 14/C.

  10. The Optimum Condition For Determination Of Radioactivity Of Pest Insects Labelled with P-32 By Using Liquid scintillation Counter

    International Nuclear Information System (INIS)

    Yarianto, S.; Susilo, Budi; Sutrisno, Singgih

    2002-01-01

    Tracer technique is needed in the control programe of pest insects especially for determining of its direction and dispersal. Radioisotopes of P-32 is frecuently used for labeling of pest insects. Liquid Scintillation Counter can be used effectively for measuring radioactivity of pest insects labelled by P-32. Optilnization of liquid compositions that consist of solvents. primary scintillation PPO and secondary scintillation POPOP were determined by examination of their compositions. Based on the research result obtained, composition of scintillator which had the highest efficiency. consists of P-Xylene solvent. primary scintillation PPO (5 g/l ) and secondary scintillation POPOP (0.5 g/l)

  11. Automation of a Beckman liquid scintillation counter for data capture and data-base management

    International Nuclear Information System (INIS)

    Neil, W.; Irwin, T.J.; Yang, J.J.

    1988-01-01

    A software package for the automation of a Beckman LS9000 liquid scintillation counter is presented. The package provides effective on-line data capture (with a Perkin Elmer 3230 32-bit minicomputer), data-base management, audit trail and archiving facilities. Key features of the package are rapid and flexible data entry, background subtraction, half-life correction, ability to queue several sample sets pending scintillation counting, and formatted report generation. A brief discussion is given on the development of customized data processing programs. (author)

  12. Efficiency calibration of a liquid scintillation counter for 90Y Cherenkov counting

    International Nuclear Information System (INIS)

    Vaca, F.; Garcia-Leon, M.

    1998-01-01

    In this paper a complete and self-consistent method for 90 Sr determination in environmental samples is presented. It is based on the Cherenkov counting of 90 Y with a conventional liquid scintillation counter. The effects of color quenching on the counting efficiency and background are carefully studied. A working curve is presented which allows to quantify the correction in the counting efficiency depending on the color quenching strength. (orig.)

  13. Test use of 'Ready Cap' for radiation measurement with a liquid scintillation counter

    International Nuclear Information System (INIS)

    Kato, Takahisa; Saito, Kazumi; Kurihara, Norio

    1989-01-01

    We tested the performance of 'Ready Cap' which can be used in place of liquid scintillation cocktails to measure the activity of 3 H and 14 C with a liquid scintillation counter, and observed satisfactory results on counting efficiencies for these nuclides. We could correct color-quenching with Ready Cap either by a method of the gravity-center of β-ray spectrum or by an external standard method that uses the external irradiation from bottom of the sample. Although there are several problems such as limitation of the maximum sample volumes (<200 μl) and sample preparation procedures (drying the sample solution), we can conveniently employ Ready Cap in some aspects of activity counting because of the easy disposal procedure of the radioactive waste resulting from it. (author)

  14. Stabilization of the photomultiplier gain of a liquid scintillation counter

    International Nuclear Information System (INIS)

    Alkhazov, I.D.; Dmitriev, V.D.; Kuznetsov, A.V.; Malkin, L.Z.; Petrov, B.F.; Sheremet'ev, A.K.; Shpakov, V.I.

    1987-01-01

    A stabilization system of photomultiplier gain, where light-emitting diode flashes have been used to obtain a reference signal, is described. The diode is placed just in the liquid scintilllator volume. The stabilization system contains several (according to the number of photomultipliers) identical channels, which of them consists of a colorimeter, a control trigger and an integrator with an operational amplifier. Increase of photomultiplier stability is reached by changing voltage of photomultiplier power according to the reference signal amplitude. The level of background and efficiency of neutron detection by a scintillation counter are unchanged when using the stabilization system for 10 days of measurements

  15. Radiocarbon dating methods using benzene liquid scintillation

    International Nuclear Information System (INIS)

    Togashi, Shigeko; Matsumoto, Eiji

    1983-01-01

    The radiocarbon dating method using benzene liquid scintillation is reported in detail. The results of measurement of NBS oxalic acid agree with the recommended value, indicating that isotopic fractionation during benzene synthesis can be negligible. Ten samples which have been already measured by gas counter are dated by benzene liquid scintillation. There is no significant difference in age for the same sample between benzene liquid scintillation and gas counters. It is shown that quenching has to be corrected for the young sample. Memory effect in stainless steel reaction vessel can be removed by using an exchangeable inner vessel and by baking it in the air. Using this method, the oldest age that can be measured with 2.3 g carbon is 40,000 years B.P. (author)

  16. Activity measurement of tritium in biological samples by azeotropic distillation liquid scintillation counter

    International Nuclear Information System (INIS)

    Wu Zongmei; Zheng Xiaomin

    1994-01-01

    The authors introduced a method of extracting tissue free water tritium (TFWT) in biological samples by azeotropic distillation with toluene and of measuring its activity by liquid scintillation counter. Measured TFWT recovery ratios of pine needles (fresh), green vegetables, radish, milk, meat, rice are 0.90, 0.95, 0.95, 0.85, 0.53 and 0.90; and the activities of TFWT are 1.8, 3.2, 1.8, 4.0, 3.3 and 2.7 Bq/L, respectively

  17. Detection of environmental radioactive contamination levels using a liquid-scintillation counter

    International Nuclear Information System (INIS)

    Calisto, W.; Kun, A.; Campos, E.

    1981-01-01

    A high-efficiency LS-100 C liquid scintillation counter was used to detect low levels of environmental activity. Different concentrations of primary scintillator were tested and these established the most suitable values. Work was carried out at the same time to find conditions which would ensure a low background and high efficiency. To reduce the sample volume used, various types of chelating agents were utilized: 8-hydroxyquinoline (oxine), tannic acid, cupferron, dimethylglioxime and beta-naphthol. These were tested at pH levels of 1, 6 and 11. Measurements were performed by means of the Cerenkov effect using substances with differing refraction indices - 26% sodium chloride, water, glycerine, carbon bisulphide, nitrobenzene, benzyl alcohol and toluene. Finally, work was done on comparing spectra obtained by Cerenkov radiation and by 90 Sr and 90 Y beta radiation respectively. Clearly differentiated zones were obtained, thus making it possible to distinguish one isotope from another in an equilibrium solution. (author)

  18. Applications of liquid scintillation tubes

    International Nuclear Information System (INIS)

    Broga, D.W.

    1977-01-01

    A new cocktail containing device for liquid scintillation counting, the scintillation tube, consists of a two-layered plastic bag which is heatsealed after the cocktail and sample have been placed in it. It is then placed in a carrying vial and counted in a conventional liquid scintillation counter. These tubes have proved to be a practical and economical alternative to vials. Some of their advantages are elimination of absorption problems, transparency, lower background and higher counting efficiency, low breakage danger and savings in waste disposal costs. Two applications for which the tubes are particularly suitable are the counting of laboratory swipes and urine analysis. (author)

  19. Applications of low level liquid scintillation counting

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1983-01-01

    Low level liquid scintillation counting is reviewed in terms of its present use and capabilities for measuring low activity samples. New areas of application of the method are discussed with special interest directed to the food industry and environmental monitoring. Advantages offered in the use of a low background liquid scintillation counter for the nuclear power industry and nuclear navy are discussed. Attention is drawn to the need for commercial development of such instrumentation to enable wider use of the method. A user clientele is suggested as is the required technology to create such a counter

  20. Measurement of tissue free water tritium in biological samples by liquid scintillation counter

    International Nuclear Information System (INIS)

    Wu Zongmei; Zheng Xiaomin

    1993-01-01

    The authors introduced a method of extracting tissue free water tritium (TFWT) by the azeotropic distribution with toluene and of measuring the activity of the TFWT in biological samples by liquid scintillation counter. The TFWT recovery ratio of pine needles (fresh), green vegetables, radish, rice, pork (muscle) and milk is 0.90, 0.95, 0.96, 0.90, 0.52 and 0.85, and TFWT activity is 1.8, 3.2, 1.8, 2.7, 3.3 and 4.0 Bq/L-H 2 O, respectively

  1. Some history of liquid scintillator development at Los Alamos

    International Nuclear Information System (INIS)

    Ott, D.G.

    1979-01-01

    The early developments in liquid scintillation counting made at Los Alamos Scientific Laboratory are reviewed. Most of the work was under the direction of F.N. Hayes and included counter development and applications as well as synthesis and chemistry of liquid scintillators

  2. Process for the automatic compensation of spectral displacement based on quenching processes in a liquid scintillation counter

    International Nuclear Information System (INIS)

    Nather, R.E.

    1978-01-01

    In measurements in a liquid scintillation counter, the tritium or C 14 isotope to be examined is situated in a scintillator solution. It is excited according to the energy of the β particle to emit light. An electrical signal is proportional to the light signal, and from the former, selective counting in the β spectrum can be undertaken in an impulse height analyser. The influence of the quenching effects by colour quenching or chemical quenching would reduce the gain of the counter. To compensate for the displacement of the spectrum, the required adjustment of a system parameter is carried out by calibration with a sample of low quenching effect. The calibration process is directly set for the energy end-point of the spectrum. Well known processes can be used to determine the quenching effect of the quenching represented by the sample. For example, the system parameters can be the discriminator level of the counter window. (DG) 891 HP [de

  3. Calibration of a liquid scintillation counter to assess tritium levels in various samples

    CERN Document Server

    Al-Haddad, M N; Abu-Jarad, F A

    1999-01-01

    An LKB-Wallac 1217 Liquid Scintillation Counter (LSC) was calibrated with a newly adopted cocktail. The LSC was then used to measure tritium levels in various samples to assess the compliance of tritium levels with the recommended international levels. The counter was calibrated to measure both biological and operational samples for personnel and for an accelerator facility at KFUPM. The biological samples include the bioassay (urine), saliva, and nasal tests. The operational samples of the light ion linear accelerator include target cooling water, organic oil, fomblin oil, and smear samples. Sets of standards, which simulate various samples, were fabricated using traceable certified tritium standards. The efficiency of the counter was obtained for each sample. The typical range of the efficiencies varied from 33% for smear samples down to 1.5% for organic oil samples. A quenching curve for each sample is presented. The minimum detectable activity for each sample was established. Typical tritium levels in bio...

  4. Liquid Scintillation Counting - Packard Triple-Label Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Torretto, P. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-23

    The Radiological Measurements Laboratory (RML) maintains and operates nine Packard Liquid Scintillation Counters (LSCs). These counters were obtained through various sources and were generally purchased as 2500, 2700 or 3100 series counters. In 2004/2005 the software and firmware on the counters were upgraded. The counters are now designated as 3100 series counters running the Quantasmart software package. Thus, a single procedure can be used to calibrate and operate the Packard LSCs.

  5. Data transfer from Beckman LS 5800 liquid scintillation counters to IBM personal computers.

    Science.gov (United States)

    Maan, A C

    1985-09-01

    This communication describes a short routine in BASICA for the IBM-PC, written to collect data from a Beckman liquid scintillation counter. In the form presented here the routine converts incoming bytes into separate lines and saves these lines in a file. There are many possible applications for further use of the data in these files. A few suggestions are given as to the format in which data can be stored and how to process these data automatically after all samples have been counted. The only hardware needed is an asynchronous communications adapter for the IBM-PC and an RS232 cable.

  6. Liquid mixtures for scintillation counters

    International Nuclear Information System (INIS)

    Kauffmann, J.M.

    1975-01-01

    Liquid scintillators contain emulsifiers or combinations of these which can be used over a wide temperature range for a multitude of aqueous samples. These emulsifiers are block-polymerides with a nonhygroscopic center part of the chain of oxypropylene combinations recieved by addition of propylene oxide to both hydroxyl groups of a propylene-glycol nucleus and both ends of the center part of the chain terminating in hygroscopic poly(oxyethylene) groups. The length of the nonhygroscopic center part of the chain varies from about 800 to 3,000 or 4,000 in molecular weight. The hygroscopic poly(oxyethylene) end groups have a controlled length constituting about 10 to 80wt.% of the finished molecule. The most useful members of this group of co-polymerides possess a length of their poly(oxypropylene) chains corresponding to a value of y of about 15 to 56 and a length of their poly(oxyethylene)chains corresponding to values of x and z between 1 and 35 . All known fluorines can be used. With the scintillators the radioimmunoassay can also be carried through. (DG/PB) [de

  7. Sample oxidation for liquid scintillation counting

    International Nuclear Information System (INIS)

    Kisieleski, W.E.; Buess, E.M.

    1976-01-01

    The general features of biological and medical investigations which are responsible for the demands such investigations place upon the design specifications of liquid scintillation counters and associated methodology are reviewed. Special emphasis is given to the oxidative technique for sample preparation

  8. Removal of impurities from environmental water samples for tritium measurement by means of liquid scintillation counter

    International Nuclear Information System (INIS)

    Sakuma, Yoichi; Noda, Mitsuyasu

    2000-01-01

    Tritium concentration in environmental water samples is usually measured by means of liquid scintillation counting. Before the counting distillation operation is necessarily required to remove impurities, which have possibility of bad influence on the measurement, from the samples. But the operation usually takes long time and it is also troublesome. If you could simplify the purification process, you would be much easily able to measure it. Then, we have studied the probability of replacement the process by filtration aiming to simplify the procedure. We prepared several environmental water samples and also several water samples added quenching materials. These samples were purified by means of the distillation and the filtration and the impurities in them were examined. The purified samples were mixed with scintillation cocktail and the tritium concentration was measured. We added small amount of tritium in the same samples and investigated their scintillation spectra and their ESCR values in order to compare the two purification methods. Two kinds of filters were used for the filtration: 0.45 μm and 0.1 μm pore sized membrane filters. The liquid scintillation counter was LB-3 produced by Aloka Co. and Ltd. The scintillation cocktail was Ultima Gold LLT made by Packard Instrument Co and Ltd. The vial was Polyvial 145 LSD made by Zinsser Analytic Co. and Ltd. As the result, there was no significant difference between the two purification methods then the filtration method is feasible instead of the distillation. (author)

  9. New procedure for the determination of radium in water by extraction of radon and application of integral counting with a liquid scintillation counter

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, K [Tokyo Metropolitan Univ. (Japan). Faculty of Science; Murakami, Y [Kitasato Univ. (Japan). School of Hygienic Sciences

    1981-05-01

    A new Ra determination method is devised, storing the sample in a glass bottle with a Teflon stopper in an upside-down position, extracting Rn with liquid scintillator solution and combining integral counting with a liquid scintillation counter. This method realizes a high sensitivity of 5 x 10/sup -13/ Ci Ra, eliminates the tedious procedure of transferring Rn through the vacuum system to the detector and makes possible repeated determinations of Ra on the same sample without any further chemical treatment except extraction.

  10. The IFIN-HH triple coincidence liquid scintillation counter

    CSIR Research Space (South Africa)

    Razdolescu, AC

    2006-10-01

    Full Text Available at IFIN-HH using a 3 H standard. The performances of the IFIN-HH TDCR counter was checked against the measurement results of the TDCR counters of CSIR NML (South Africa), RC (Poland) and LNHB (France). A set of ready-to-measure Ni-63 sources in liquid...

  11. Scintillation counter based radiation dosimeter

    International Nuclear Information System (INIS)

    Shin, Jeong Hyun

    2009-02-01

    The average human exposure per year is about 240mrem which is come from Radon and human body and terrestrial and cosmic radiation and man-made source. Specially radiation exposure through air from environmental radiation sources is 80mrem/yr(= 0.01mR/hr) which come from Terrestrial and cosmic radiation. Radiation dose is defined as energy deposit/mass. There are two major methods to detect radiation. First method is the energy integration using Air equivalent material like GM counter wall material. Second method is the spectrum to dose conversion method using NaI(Tl), HPGe. These two methods are using generally to detect radiation. But these methods are expensive. So we need new radiation detection method. The research purpose is the development of economical environmental radiation dosimeter. This system consists of Plastic/Inorganic scintillator and Si photo-diode based detector and counting based circuitry. So count rate(cps) can be convert to air exposure rate(R/hr). There are three major advantages in this system. First advantages is no high voltage power supply like GM counter. Second advantage is simple electronics. Simple electronics system can be achieved by Air-equivalent scintillation detector with Al filter for the same detection efficiency vs E curve. From former two advantages, we can know the most important advantages of the this system. Third advantage is economical system. The price of typical GM counter is about $1000. But the price of our system is below $100 because of plastic scintillator and simple electronics. The role of scintillation material is emitting scintillation which is the flash of light produced in certain materials when they absorb ionizing radiation. Plastic scintillator is organic scintillator which is kind of hydrocarbons. The special point are cheap price, large size production(∼ton), moderate light output, fast light emission(ns). And the role of Al filter is equalizing counting efficiency of air and scintillator for

  12. The accurate measurement of the disintegration rate of 55Fe using an internal liquid scintillation counter

    International Nuclear Information System (INIS)

    Botha, S.M.

    1979-01-01

    As the well-known 4πX-γ-coincidence method cannot be used directly to find the disintegration rate of 55 Fe, another method was developed in which a tracer nuclide, possessing coincident gamma radiation, was used. It was now possible to determine the disintegration rate indirectly by the coincidence method using an internal liquid scintillation counter. 54 Mn and 51 Cr which lie in the immediate vicinity of iron in the series of nuclides, are suitable tracers. They are also electron capture nuclides, but decaying to an excited state, were counted by the 4πX-γ-coincidence method. A mixed source, containing 55 Fe and the tracer, was also counted by the coincidence method so that the 4π-counting rate of 55 Fe was obtained as function of the tracer's counting efficiency. It was also essential to find a relationship between the counting efficiencies of the liquid scintillation counter for 55 Fe and the tracer. This relationship is called the effeciency function. Efficiency functions were calculated for 55 Fe and 54 Mn as well as for 55 Fe and 51 Cr. Finally the radioactive concentration of a solution of 55 Fe had been carefully determined by using 54 Mn and 51 Cr tracers. The results for the two different tracers agreed within the statistical uncertainty of 0,4%. The systematic uncertainty on the final results was estimated as 0,17%

  13. Ultra Low Level Tritium Analysis Method Using a Liquid Scintillation Counter

    Energy Technology Data Exchange (ETDEWEB)

    Noh, S. J.; Kim, H. J.; Kim, H.; Lim, H. J.; Lee, M. W.; Jeong, D. H.; Kim, J. K.; Kang, Y. R. [Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of); Nam, S. H. [Inje University, Gimhae, (Korea, Republic of)

    2015-05-15

    To evaluate {sup 3}H concentration in the atmosphere more accurately compared to the conventional methods, the author of this paper intended to suggest more improved analytical methods and derived the elements which might occur during analysis or required improvements. The method suggested in this study is able to reduce the uncertainty and errors which may be existent in evaluating the {sup 3}H concentration of environmental sample s and thus will serve as the best solution in the technical and economic point of view. Liquid Scintillation Counter is the most widely used to analyze ultra-low level {sup 3}H by using CPM / DPM Counting Mode using external radiation source and Spectrum Plot Mode using internal radiation source. In CPM / DPM Counting Mode, multiple samples can be measured by single calibration despite its rather higher background whereas Spectrum Plot Mode requires more time and cost to analyze multiple samples despite its reliability to reduce the contribution of other radionuclides.

  14. Gamma-ray scintillation counter hodoscope for the experiment S140

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The experiment S140 was set-up in the East Hall (beam p14) by the CERN-Munich-Cracow Collaboration to study the production by negative kaons of a neutral meson associated to a Lambda. Here, the liquid hydrogen target (inside the horizontal black tube) is withdrawn from the surrounding cylindrical gamma-ray-measuring scintillation counter hodoscope.

  15. Direct measurement of radioactive carbon in Vietnamese vodkas by Liquid Scintillation Counter

    International Nuclear Information System (INIS)

    Hattori, Takamitsu

    2014-01-01

    From the view point of applying to laboratory exercise of radioactivity measurement by a Liquid Scintillation Counter (LSC), Vietnamese vodkas have specific features as measurement samples, for example, they are colorless, have high ethanol content, and only very few organic materials are included. Investigation was made to make sure that the Vietnamese vodkas are appropriate or not as a measurement sample for the LSC exercise. Direct measurements of 14 C without any chemical pre-treatment were made on both radioactive concentrations and specific activities of three kinds of Vietnamese vodka and also pure ethanol reagent. The LSC measurements reveal that estimated 14 C concentration is proportional to ethanol content in samples and that specific activity of 14 C shows good agreement among the Vietnamese vodkas and pure ethanol, as well as the reference value of 0.25 Bq/g of Carbon. Thus the conclusion is derived that the Vietnamese vodkas can be applied with high accuracy to the LSC exercise as measurement samples. (author)

  16. A liquid scintillation counter specifically designed for samples deposited on a flat matrix

    International Nuclear Information System (INIS)

    Potter, C.G.; Warner, G.T.

    1986-01-01

    A prototype liquid scintillation counter has been designed to count samples deposited as a 6x16 array on a flat matrix. Applications include the counting of labelled cells processed by a cell harvester from 96-well microtitration plates onto glass fibre filters and of DNA samples directly deposited onto nitrocellulose or nylon transfer membranes (e.g. 'Genescreen' NEN) for genetic studies by dot-blot hybridisation. The whole filter is placed in a bag with 4-12 ml of scintillant, sufficient to count all 96 samples. Nearest-neighbour intersample cross talk ranged from 0.004% for 3 H to 0.015% for 32 P. Background was 1.4 counts/min for glass fibre and 0.7 counts/min for 'Genescreen' in the 3 H channel: for 14 C the respective figures were 5.3 and 4.3 counts/min. Counting efficiency for 3 H-labelled cells on glass fibre was 54%(E 2 /B=2053) and 26% for tritiated thymidine spotted on 'Genescreen'(E 2 /B=980). Similar 14 C samples gave figures on 97%(E 2 /B=1775) and 81(E 2 B=1526) respectively. Electron emission counting from samples containing 125 I and 51 Cr was also possible. (U.K.)

  17. A comparison between the measurements of Kr-85 in environmental samples by liquid scintillation and proportional counters; Comparacion de resultados de la medida radiactiva del Kr-85 ambiental por centelleo liquido y contadores proporcionales

    Energy Technology Data Exchange (ETDEWEB)

    Heras, M. C.; Perez, M. M.

    1983-07-01

    The most used methods for the measurement of Kr-81 beta-activity after their concentration and aisolation are the liquid scintillation counting and the proportional counter. In this work the beta activity of concentrated and aisolated Kr-85 samples measured in collaboration with the Max-Planck Institut fur Kernphyslk, Aussenstelle Freiburg. Samples taken both In Madrid and Frelburg are measured by proportional counters in the Max-Planck lnstitut, Freibury and by liquid scintillation counting in JEN, Madrid. The comparison of both measurements do not show appreciable discrepancy between the results obtained to both techniques. (Author)

  18. Measurements of 222Rn and 226Ra Levels in environmental samples by using liquid scintillation counter

    International Nuclear Information System (INIS)

    Moustafa, A.S.

    2004-01-01

    The advantageous of liquid scintillation counting technique for 6 Ra determination compared with other methods are the high counting efficiency and the easier sample preparation, with no need for sample pre-concentration. In this work, liquid scintillation counting system was used to measure 222 Rn and 226 Ra levels in environmental samples. The liquid scintillation cocktail was prepared in the laboratory and was found efficient for measuring 222 Rn. Soil, sediment and TENORM samples were dried, grind, sieved and added to hydrochloric acid, in a standard scintillation vial, preloaded with the liquid scintillation cocktail. By measuring 222 Rn levels in the prepared vials, at different intervals of time after preparation, 222 Rn and 226 Ra levels were determined

  19. Method for determination of radon-222 in water by liquid scintillation counting

    International Nuclear Information System (INIS)

    Suomela, J.

    1993-06-01

    The procedure for the determination of radon-222 by liquid scintillation counting is quite specific for this radionuclide. Radon-222 is extracted readily from the water sample by an organic scintillant. The decay products of radon-222 will remain in the water phase whilst radon-222 will be extracted into the organic phase. Before measurement the sample is stored for three hours until equilibrium is reached between radon-222 and its alpha emitting decay products. The alpha activity from radon-222 and its decay products is measured in a liquid scintillation counter

  20. Liquid scintillation solutions

    International Nuclear Information System (INIS)

    Long, E.C.

    1976-01-01

    The liquid scintillation solution described includes a mixture of: a liquid scintillation solvent, a primary scintillation solute, a secondary scintillation solute, a variety of appreciably different surfactants, and a dissolving and transparency agent. The dissolving and transparency agent is tetrahydrofuran, a cyclic ether. The scintillation solvent is toluene. The primary scintillation solute is PPO, and the secondary scintillation solute is dimethyl POPOP. The variety of appreciably different surfactants is composed of isooctylphenol-polyethoxyethanol and sodium dihexyl sulphosuccinate [fr

  1. Radiation damage studies on new liquid scintillators and liquid-core scintillating fibers

    International Nuclear Information System (INIS)

    Golovkin, S.V.

    1994-01-01

    The radiation resistant of some new liquid scintillation and capillaries filled with liquid scintillators has been presented. It was found that scintillation efficiency of the scintillator based on 1-methyl naphthalene with a new R39 only by 10% at the dose of 190 Mrad and the radiation resistance of thin liquid-core scintillating was decreased fibers exceeded 60 Mrad. 35 refs

  2. Radium 226 and uranium isotopes simultaneously determination in water samples using liquid scintillation counter

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Al-Akel, B.; Saaid, S.; Nashawati, A.

    2007-04-01

    In this work a method has been developed to determine simultaneously Radium 226 and Uranium isotopes in water samples by low back ground Liquid Scintillation Counter. Radium 226 was determined by its progeny Polonium 214 after one month of sample storage in order to achieve the equilibrium between Radium 226 and Polonium 214. Uranium isotopes were determined by subtracting Radium 226 activity from total alpha activity. The method detection limits were 0.049 Bq/L and 0.176 Bq/L for Radium 226 and Uranium isotopes respectively. The repeatability limits were ± 0.32 Bq/L and ± 0.9 Bq/L for Radium 226 and Uranium isotopes respectively. While relative errors were % 9.5 and %18.2 for Radium 226 and Uranium isotopes respectively. On the other hand, the report presented the results of different standard and natural samples.(author)

  3. Determining the level of gross alpha and beta radioactivity of water from Marilao river using liquid scintillation counter

    International Nuclear Information System (INIS)

    Cruz, J.; Magtaka, J.; Balisi, R.; Castaneda, Soledad; De Vero, J.

    2009-01-01

    This study aims to determine the level of gross alpha- and beta- radioactivity present in the Marilao River. Liquid Scintillation Counter was used to detect samples radioactivity. Water samples were taken along the different spots of Marilao River. The results showed that the radioactivity are below the Philippine National Standard for Drinking Water (PNSDW) which is 0.1 Bq/L for gross alpha activity and 1.0 Bq/L for gross beta activity set by the Dept. of Health. Hence water samples from Marilao River, is safe in terms of the level of radioactivity levels.(author)

  4. Determination of thoron and radon ratio by liquid scintillation spectrometry

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Nakanishi, T.; Nakahara, H.

    2006-01-01

    A portable liquid scintillation counter was applied for the analysis of alpha-ray energy spectrum to determine the ratio of 220 Rn/ 222 Rn in fumarolic gas in the field. A surface-polished vial was developed, by which a Gaussian distribution could be approximated for the alpha-ray energy spectra and the peak areas of the nuclides could be estimated independently, because of the wide FWHM in the liquid scintillation pulse. A fumarolic gas sample was collected in Mt. Kamiyama (Hakoneyama geothermal field in Japan) having low 220 Rn/ 222 Rn ratio of 2.20 ± 0.13. (author)

  5. Selective solvent extraction of actinides associated to liquid scintillation measurements

    International Nuclear Information System (INIS)

    Ardois, C.; Musikas, C.

    1997-01-01

    The problems associated to radioactive waste disposal have acquired a special attention due, particularly, to the element instability and, consequently, to their lixiviation and to their peculiarities which are essential in the radioactivity penetration in the food chains; the other important parameters are the produced amounts and the noxiousnesses. New commercial liquid scintillation counters allow rapid α/β measurements. Associated with liquid-liquid extraction techniques, rapid and selective actinide analyses are possible. Among various actinide extractants, such as amines or organophosphorus compounds, we were particularly interested in tri-n-octyl-phosphine oxide (TOPO). Uranium, thorium and americium extractions with (TOPO) in toluene have been investigated. A systematic study of the counting parameters of a PACKARD 2550 TR/AB TM liquid scintillation analyzer is under completion

  6. An integrated photosensor readout for gas proportional scintillation counters

    International Nuclear Information System (INIS)

    Lopes, J.A.M.; Santos, J.M.F. dos; Conde, C.A.N.

    1996-01-01

    A xenon gas proportional scintillation counter has been instrumented with a novel photosensor that replaces the photomultiplier tube normally used to detect the VUV secondary scintillation light. In this implementation, the collection grid of a planar gas proportional scintillation counter also functions as a multiwire proportional chamber to amplify and detect the photoelectrons emitted by a reflective CsI photocathode in direct contact with the xenon gas. This integrated concept combines greater simplicity, compactness, and ruggedness (no optical window is used) with low power consumption. An energy resolution of 12% was obtained for 59.6 keV x-rays

  7. Optics study of liquid scintillation counting systems

    International Nuclear Information System (INIS)

    Duran Ramiro, M. T.; Garcia-Torano, E.

    2005-01-01

    Optics is a key issue in the development of any liquid scintillation counting (LSC) system. Light emission in the scintillating solution, transmission through the vial and reflector design are some aspects that need to be considered in detail. This paper describes measurements and calculations carried out to optimise these factors for the design of a new family of LSC counters. Measurements of the light distribution emitted by a scintillation vial were done by autoradiographs of cylindrical vials made of various materials and results were compared to those obtained by direct measurements of the light distribution made by scanning the vial with a photomultiplier tube. Calculations were also carried out to study the light transmission in the vial and the optimal design of the reflector for a system with one photomultiplier tube. (Author)

  8. Determination of radon concentration in ground water in Aichi Prefecture by liquid scintillation counter

    Energy Technology Data Exchange (ETDEWEB)

    Onuma, A.; Shimizu, M.; Chaya, K.; Hamamura, N. (Aichi Prefectural Inst. of Public Health, Nagoya (Japan)); Kagami, T.

    1982-01-01

    The radon (Rn) concentration in ground water in Aichi Prefecture was determined by the liquid scintillation counter (LSC) method. The measurement of radon by LSC was made by integration counting, keeping the constant LS quantity in a vial and the constant geometry of a photomultiplier. The recovery rate of radon with 226-radium standard solution was 98.7%. The coefficient of variation in the measured values of radon concentration in ground water in Aichi Prefecture by the LSC method was 4.9%. For the same ground waters in the prefecture, the radon concentrations measured by the LSC method and by the conventional IM fontactoscope method were examined comparatively. This gave a regression formula of LSC value = 0.583 x IM value + 1.325 (n = 70, coefficient of correlation 0.966), indicating significant correlation between the two. It is thus shown that the LSC method is an effective means as the IM fontactoscope method.

  9. Determination of radon concentration in ground water in Aichi Prefecture by liquid scintillation counter

    International Nuclear Information System (INIS)

    Onuma, Akiko; Shimizu, Michihiko; Chaya, Kunio; Hamamura, Norikatsu; Kagami, Tadaaki.

    1982-01-01

    The radon (Rn) concentration in ground water in Aichi Prefecture was determined by the liquid scintillation counter (LSC) method. The measurement of radon by LSC was made by integration counting, keeping the constant LS quantity in a vial and the constant geometry of a photomultiplier. The recovery rate of radon with 226-radium standard solution was 98.7%. The coefficient of variation in the measured values of radon concentration in ground water in Aichi Prefecture by the LSC method was 4.9%. For the same ground waters in the prefecture, the radon concentrations measured by the LSC method and by the conventional IM fontactoscope method were examined comparatively. This gave a regression formula of LSC value = 0.583 x IM value + 1.325 (n = 70, coefficient of correlation 0.966), indicating significant correlation between the two. It is thus shown that the LSC method is an effective means as the IM fontactoscope method. (J.P.N.)

  10. A gaseous scintillation counter filled with He3 for neutron spectrometry

    International Nuclear Information System (INIS)

    Baldin, S.A.; Matveev, V.V.

    1962-01-01

    The paper describes a gas plant and gaseous scintillation counter, and gives the results of experiments on the recording and spectrometry of neutron beams using a gaseous scintillation counter filled with a mixture of 10% xenene and 90% helium-3 at an overall pressure of 20 ata. Data are given on the design of the gas plant, which makes it possible to operate the counter continuously over long periods of time, as well as providing the required gas mixtures at overall pressures of up to 60 atm and ensuring constant freedom of the gas from contamination. In addition, the paper presents the results of research on the counter's energy resolution and linearity at different energy levels and indicates its efficiency in gamma fields of intensity up to 3 r/h; the possibility of extending the working energy-range of gaseous scintillation counters filled with helium-3 is also considered. (author) [fr

  11. Development of proportional counters using photosensitive gases and liquids

    International Nuclear Information System (INIS)

    Anderson, D.F.

    1984-10-01

    An introduction to the history and to the principle of operation of wire chambers using photosensitive gases and liquids is presented. Their use as light sensors coupled to Gas Scintillation Proportional Counters and BaF 2 , as well as their use in Cherenkov Ring imaging, is discussed in some detail. 42 references, 21 figures

  12. Improvements to well scintillation counters

    International Nuclear Information System (INIS)

    Farukhi, M.R.; Mataraza, G.A.; Wimer, O.D.

    1977-01-01

    This invention relates to the field of ionising radiation detection. It concerns in particular scintillation detectors of the type that is commonly used in conjunction with a photomultiplier tube and that is used for monitoring radiation, for instance in the clinical measurements of isotopes. This invention enables well scintillation counters to be made, characterised by a high efficiency in measuring the thindown rate of radio-pharmaceutical solutions and to resolve the distribution of energy emanating from the radioactive source. It particularly consists in improving the uniformity of the luminous efficiency, the quality of the resolution and the efficiency whilst improving the reception of light [fr

  13. Calibration of the neutron scintillation counter threshold

    International Nuclear Information System (INIS)

    Noga, V.I.; Ranyuk, Yu.N.; Telegin, Yu.N.

    1978-01-01

    A method for calibrating the threshold of a neutron counter in the form of a 10x10x40 cm plastic scintillator is described. The method is based on the evaluation of the Compton boundary of γ-spectrum from the discrimination curve of counter loading. The results of calibration using 60 Co and 24 Na γ-sources are given. In order to eValuate the Compton edge rapidly, linear extrapolation of the linear part of the discrimination curve towards its intersection with the X axis is recommended. Special measurements have shown that the calibration results do not practically depend on the distance between the cathode of a photomultiplier and the place where collimated γ-radiation of the calibration source reaches the scintillator

  14. Study of the factors affecting the performance of microextraction by packed sorbent (MEPS) using liquid scintillation counter and liquid chromatography-tandem mass spectrometry

    International Nuclear Information System (INIS)

    Altun, Zeki; Abdel-Rehim, Mohamed

    2008-01-01

    Microextraction by packed sorbent (MEPS) is a new technique for sample preparation that can be connected on-line with LC or GC. In MEPS, approximately 1-2 mg of the solid packing material is inserted into a syringe (100-250 μL) as a plug. Sample preparation takes place on the packed bed. The bed can be packed or coated to provide selective and suitable sampling conditions. The new method is very promising for extraction of drugs and metabolites from biological samples. In this paper, some factors affecting the performance of MEPS such as recovery, carry-over, leakage, washing volume and elution volume were studied using C18 and hydroxylated polystyrene-divinylbenzene copolymer (ENV+) as sorbents. Radioactively labelled bupivacaine in plasma samples was used as test analyte. For the extraction of this drug, using methanol/water 95:5 (v/v) (0.25% ammonium hydroxide) was used as elution solvent. The analyte response increased with increasing the elution volume and it was linear upp up to 100 μL utilizing liquid scintillation counter. Further, for concentrating the sample, we found that MEPS may be used such that the sample can be drawn through the needle, up and down, several times. The analyte leakage increases as the volume washing increases, though higher washing volumes may also result in cleaner extracts. To eliminate analyte carry-over, the sorbents were washed first with 3 x 250 μL elution solution and then with 3 x 250 μL washing solution. In addition, the reproducibility measurements show relatively good relative standard deviation (RSD) % values concerning analyte recovery and analyte leakage. The present study provides an understanding of basic aspects when optimizing methods for MEPS. In this study, MEPS was used off-line with liquid scintillation counter and on-line with LC-MS/MS

  15. Study of the factors affecting the performance of microextraction by packed sorbent (MEPS) using liquid scintillation counter and liquid chromatography-tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Altun, Zeki [Karlstad University, Faculty of Technology and Science, SE-651 88 Karlstad (Sweden); Abdel-Rehim, Mohamed [Karlstad University, Faculty of Technology and Science, SE-651 88 Karlstad (Sweden); Clinical Pharmacology and DMPK, AstraZeneca R and D Soedertaelje, SE-151 85 Soedertaelje (Sweden)], E-mail: Mohamed.Abdel-Rehim@Astrazeneca.com

    2008-12-23

    Microextraction by packed sorbent (MEPS) is a new technique for sample preparation that can be connected on-line with LC or GC. In MEPS, approximately 1-2 mg of the solid packing material is inserted into a syringe (100-250 {mu}L) as a plug. Sample preparation takes place on the packed bed. The bed can be packed or coated to provide selective and suitable sampling conditions. The new method is very promising for extraction of drugs and metabolites from biological samples. In this paper, some factors affecting the performance of MEPS such as recovery, carry-over, leakage, washing volume and elution volume were studied using C18 and hydroxylated polystyrene-divinylbenzene copolymer (ENV+) as sorbents. Radioactively labelled bupivacaine in plasma samples was used as test analyte. For the extraction of this drug, using methanol/water 95:5 (v/v) (0.25% ammonium hydroxide) was used as elution solvent. The analyte response increased with increasing the elution volume and it was linear upp up to 100 {mu}L utilizing liquid scintillation counter. Further, for concentrating the sample, we found that MEPS may be used such that the sample can be drawn through the needle, up and down, several times. The analyte leakage increases as the volume washing increases, though higher washing volumes may also result in cleaner extracts. To eliminate analyte carry-over, the sorbents were washed first with 3 x 250 {mu}L elution solution and then with 3 x 250 {mu}L washing solution. In addition, the reproducibility measurements show relatively good relative standard deviation (RSD) % values concerning analyte recovery and analyte leakage. The present study provides an understanding of basic aspects when optimizing methods for MEPS. In this study, MEPS was used off-line with liquid scintillation counter and on-line with LC-MS/MS.

  16. Liquid scintillation solution

    International Nuclear Information System (INIS)

    Long, E.C.

    1977-01-01

    A liquid scintillation solution is described which includes (1) a scintillation solvent (toluene and xylene), (2) a primary scintillation solute (PPO and Butyl PBD), (3) a secondary scintillation solute (POPOP and Dimethyl POPOP), (4) a plurality of substantially different surfactants and (5) a filter dissolving and/or transparentizing agent. 8 claims

  17. Method for calibration measurement in a liquid scintillation counter and carrier used in the method

    International Nuclear Information System (INIS)

    Reunanen, M.A.

    1976-01-01

    The present invention relates to a method for use in liquid scintillation measurements to feed an accurately determined amount of radioactive substance to a fluid scintillation system for a calibration measurement. According to the invention an accurately determined amount of radioactive substance is adsorbed to a carrier, which is introduced into the fluid scintillation system. The invention also relates to a carrier for use in the method

  18. On the use of single large-area photodiodes in scintillation counters

    International Nuclear Information System (INIS)

    Morrell, C.

    1989-12-01

    The compilation of this review was originally intended to assess the possibility of using photodiode-based scintillation counters in fluorescence EXAFS (or FLEXAFS) systems as a low-cost alternative to photomultiplier-based counters. The X-ray energies encountered in FLEXAFS experiments range from a few keV to a few tens of keV, and detectors are required to have some energy resolution and/or high count-rate capability in order to optimize the quality of data collected. The results presented in the reviewed literature imply strongly that photodiodes do not compete successfully with photomultipliers in scintillation counting systems for X-ray energies below the order of 100keV, at least at the present stage of photodiode technology. Nevertheless it is likely that there are other applications requiring X-ray detectors for which a photodiode-based scintillation counter may be perfectly adequate, and it is therefore felt that such a review is still useful. In addition, large-area single photodiodes have much to offer as X-ray detectors in their own right, and several of the considerations regarding their use in scintillation counters are highly relevant to this application. (author)

  19. Measurement of wavelength-dependent refractive indices of liquid scintillation cocktails

    International Nuclear Information System (INIS)

    Kossert, Karsten

    2013-01-01

    Refractive indices of several commercial liquid scintillation cocktails were measured by means of an automatic critical-angle dispersion refractometer in the wavelength range from 404.7 nm to 706.5 nm. The results are needed for various applications. In particular, detailed Monte Carlo simulations of liquid scintillation counters that include the computation of optical light require these data. In addition, the refractive index is an important parameter for studies of micelle sizes by means of dynamic light scattering. In this work, the refractive indices were determined for Ultima Gold™, Ultima Gold™ F, Ultima Gold™ LLT, Ultima Gold™ AB, Hionic Fluor™, Permafluor ® E+, Mineral Oil Scintillator, Insta-Gel Plus, OptiPhase HiSafe 2, OptiPhase HiSafe 3, Ultima Gold™ XR, Insta-Gel Plus, AquaLight, MaxiLight and Ultima Gold™ MV at 16 °C, 18 °C, 20 °C and 22 °C. The carbon dioxide absorber Carbo-Sorb ® E was also analyzed. For some scintillators, various batches were compared and mixtures with water or nitromethane were studied. - Highlights: • Refractive indices of several liquid scintillation cocktails were measured. • The wavelengths cover a range from 404.7 nm to 706.5 nm. • Measurements were carried out at 16 °C, 18 °C, 20 °C and 22 °C. • For some cocktails, mixtures with water or nitromethane were studied

  20. Study of colour quenching effects in the calibration of liquid scintillation counters: the case of sup 2 sup 1 sup 0 Pb

    CERN Document Server

    Villa, M; Manjon, G

    2003-01-01

    In this work a rigorous method for the calibration of a liquid scintillation counter for sup 2 sup 1 sup 0 Pb activity determination is proposed. The variation of the PSA threshold level for alpha/beta discrimination with the colour quenching is analysed for different beta energies. Also the changes in some parameters of the detector response, as the muon-peak, the channel ratio and the centroid of the spectrum, due to colour quenching are studied. The relationship between such parameters and the counting efficiency is described in such a way that the effects of colour in the efficiency are established. sup 9 sup 9 Tc is proposed as a good standard to calibrate the counter for sup 2 sup 1 sup 0 Pb determination in real samples.

  1. Liquid scintillation solution

    International Nuclear Information System (INIS)

    Long, E.C.

    1976-01-01

    The invention deals with a liquid scintillation solution which contains 1) a scintillation solvent (toluol), 2) a primary scintillation solute (PPO), 3) a secondary scintillation solute (dimethyl POPOP), 4) several surfactants (iso-octyl-phenol polyethoxy-ethanol and sodium di-hexyl sulfosuccinate) essentially different from one another and 5) a filter resolution and/or transparent-making agent (cyclic ether, especially tetrahydrofuran). (HP) [de

  2. Scintillation counting apparatus

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1978-01-01

    Apparatus is described for the accurate measurement of radiation by means of scintillation counters and in particular for the liquid scintillation counting of both soft beta radiation and gamma radiation. Full constructional and operating details are given. (UK)

  3. A neutron multiplicity analysis method for uranium samples with liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hao, E-mail: zhouhao_ciae@126.com [China Institute of Atomic Energy, P.O.BOX 275-8, Beijing 102413 (China); Lin, Hongtao [Xi' an Reasearch Institute of High-tech, Xi' an, Shaanxi 710025 (China); Liu, Guorong; Li, Jinghuai; Liang, Qinglei; Zhao, Yonggang [China Institute of Atomic Energy, P.O.BOX 275-8, Beijing 102413 (China)

    2015-10-11

    A new neutron multiplicity analysis method for uranium samples with liquid scintillators is introduced. An active well-type fast neutron multiplicity counter has been built, which consists of four BC501A liquid scintillators, a n/γdiscrimination module MPD-4, a multi-stop time to digital convertor MCS6A, and two Am–Li sources. A mathematical model is built to symbolize the detection processes of fission neutrons. Based on this model, equations in the form of R=F*P*Q*T could be achieved, where F indicates the induced fission rate by interrogation sources, P indicates the transfer matrix determined by multiplication process, Q indicates the transfer matrix determined by detection efficiency, T indicates the transfer matrix determined by signal recording process and crosstalk in the counter. Unknown parameters about the item are determined by the solutions of the equations. A {sup 252}Cf source and some low enriched uranium items have been measured. The feasibility of the method is proven by its application to the data analysis of the experiments.

  4. Optimization of liquid scintillation measurements applied to smears and aqueous samples collected in industrial environments

    Directory of Open Access Journals (Sweden)

    Arnaud Chapon

    Full Text Available Search for low-energy β contaminations in industrial environments requires using Liquid Scintillation Counting. This indirect measurement method supposes a fine control from sampling to measurement itself. Thus, in this paper, we focus on the definition of a measurement method, as generic as possible, for both smears and aqueous samples’ characterization. That includes choice of consumables, sampling methods, optimization of counting parameters and definition of energy windows, using the maximization of a Figure of Merit. Detection limits are then calculated considering these optimized parameters. For this purpose, we used PerkinElmer Tri-Carb counters. Nevertheless, except those relative to some parameters specific to PerkinElmer, most of the results presented here can be extended to other counters. Keywords: Liquid Scintillation Counting (LSC, PerkinElmer, Tri-Carb, Smear, Swipe

  5. Neutron crosstalk between liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, J.M., E-mail: verbeke2@llnl.gov; Prasad, M.K., E-mail: prasad1@llnl.gov; Snyderman, N.J., E-mail: snyderman1@llnl.gov

    2015-09-11

    A method is proposed to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction.

  6. Neutron crosstalk between liquid scintillators

    International Nuclear Information System (INIS)

    Verbeke, J.M.; Prasad, M.K.; Snyderman, N.J.

    2015-01-01

    A method is proposed to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction

  7. Method for determination of radium-226 in water by liquid scintillation counting

    International Nuclear Information System (INIS)

    Suomela, J.

    1993-07-01

    The chemical procedure involves the isolation or radium from the sample solution by co-precipitation with lead sulphate. The precipitate is dissolved in alkaline DTPA. The radium isotopes are separated from other radionuclides by co-precipitation with barium sulphate. The barium/radium precipitate is dissolved in alkaline EDTA, the solution is transfered to a liquid scintillation vial and the organic scintillant is added. After sealing, the sample is left until equilibrium between Ra-226 and Rn-222 is established or until a suitable ingrowth time has elapsed. The alpha activity of Rn-222 and its short-lived daughters, Po-218 and Po-214, are measured by the use of a commercial liquid scintillation counter. By using the following procedure and a low level LSC a lover limit of detection of 2 mBq/sample can be achieved

  8. A Performance Comparison of Nine Selected Liquid Scintillation Cocktails

    Energy Technology Data Exchange (ETDEWEB)

    Verrezen, F; Loots, H; Hurtgen, Ch

    2008-06-15

    In the selection of a suitable liquid scintillation (LSC) cocktail, the primary aspects taken into consideration are overall cocktail performance and specific laboratory needs. Overall performance of 9 selected, commercially available LSC cocktails was assessed by studying parameters of importance for the requirements of the Laboratory for Low Level Radioactivity Measurements of SCK-CEN: sample load capacity, sample compatibility, influence of sample load on counting efficiency, background count rate, figure of merit, quench resistance, sample stability and alpha/beta separation characteristics. The cocktails tested were EcoscintA, Insta Gel Plus, OptiPhase Hisafe3, OptiPhase Trisafe, Ready Gel, SafeScint 1:1, Ultima Gold, Ultima Gold LLT, and Ultima Gold XR. For the data acquisition a Packard TriCarb Model 1900CA and a Quantulus 1220 liquid scintillation counter is used. All samples were prepared in either 20 mL low potassium, borosilicate glass vials or 20 mL high density, polyethylene vials. The aim of this study was to determine a single cocktail that best suits all measurement requirements of the liquid scintillation laboratory at SCK-CEN for the determination of low levels of radioactivity in biological and environmental samples. As a conclusion, Optiphase HiSafe 3 was confirmed to be the optimal cocktail for the laboratory.

  9. A Performance Comparison of Nine Selected Liquid Scintillation Cocktails

    International Nuclear Information System (INIS)

    Verrezen, F.; Loots, H.; Hurtgen, Ch.

    2008-01-01

    In the selection of a suitable liquid scintillation (LSC) cocktail, the primary aspects taken into consideration are overall cocktail performance and specific laboratory needs. Overall performance of 9 selected, commercially available LSC cocktails was assessed by studying parameters of importance for the requirements of the Laboratory for Low Level Radioactivity Measurements of SCK-CEN: sample load capacity, sample compatibility, influence of sample load on counting efficiency, background count rate, figure of merit, quench resistance, sample stability and alpha/beta separation characteristics. The cocktails tested were EcoscintA, Insta Gel Plus, OptiPhase Hisafe3, OptiPhase Trisafe, Ready Gel, SafeScint 1:1, Ultima Gold, Ultima Gold LLT, and Ultima Gold XR. For the data acquisition a Packard TriCarb Model 1900CA and a Quantulus 1220 liquid scintillation counter is used. All samples were prepared in either 20 mL low potassium, borosilicate glass vials or 20 mL high density, polyethylene vials. The aim of this study was to determine a single cocktail that best suits all measurement requirements of the liquid scintillation laboratory at SCK-CEN for the determination of low levels of radioactivity in biological and environmental samples. As a conclusion, Optiphase HiSafe 3 was confirmed to be the optimal cocktail for the laboratory.

  10. Calibration of a liquid scintillation counter for alpha, beta and Cerenkov counting

    International Nuclear Information System (INIS)

    Scarpitta, S.C.; Fisenne, I.M.

    1996-07-01

    Calibration data are presented for 25 radionuclides that were individually measured in a Packard Tri-Carb 2250CA liquid scintillation (LS) counter by both conventional and Cerenkov detection techniques. The relationships and regression data between the quench indicating parameters and the LS counting efficiencies were determined using microliter amounts of tracer added to low 40 K borosilicate glass vials containing 15 mL of Insta-Gel XF scintillation cocktail. Using 40 K, the detection efficiencies were linear over a three order of magnitude range (10 - 10,000 mBq) in beta activity for both LS and Cerenkov counting. The Cerenkov counting efficiency (CCE) increased linearly (42% per MeV) from 0.30 to 2.0 MeV, whereas the LS efficiency was >90% for betas with energy in excess of 0.30 MeV. The CCE was 20 - 50% less than the LS counting efficiency for beta particles with maximum energies in excess of 1 MeV. Based on replicate background measurements, the lower limit of detection (LLD) for a 1-h count at the 95% confidence level, using water as a solvent, was 0.024 counts sec- -1 and 0.028 counts sec-1 for plastic and glass vials, respectively. The LLD for a 1-h-count ranged from 46 to 56 mBq (2.8 - 3.4 dpm) for both Cerenkov and conventional LS counting. This assumes: (1) a 100% counting efficiency, (2) a 50% yield of the nuclide of interest, (3) a 1-h measurement time using low background plastic vials, and (4) a 0-50 keV region of interest. The LLD is reduced an order of magnitude when the yield recovery exceeds 90% and a lower background region is used (i.e., 100 - 500 keV alpha region of interest). Examples and applications of both Cerenkov and LS counting techniques are given in the text and appendices

  11. Construction and calibration studies of the SAPHIR scintillation counters

    International Nuclear Information System (INIS)

    Kostrewa, D.

    1988-03-01

    For the scintillation counter system of the SAPHIR detector at the stretcher ring ELSA in Bonn 50 time of flight counters and 12 trigger counters have been built. Each of them has two photomultipliers, one at each side. A laser calibration system with a pulsed nitrogen laser as central light source to monitor these photomultipliers has been optimized. It was used to adjust the photomultipliers and to test their long and short time instabilities. (orig.)

  12. Measurement of gross alpha and beta in air filter samples by using liquid scintillation counter

    International Nuclear Information System (INIS)

    Sudheendran, V.; Baburajan, A.; Gaikwad, R.H.; Ravi, P.M.; Tripathi, R.M.

    2015-01-01

    The determination of gross alpha and gross beta in particulate air filter samples was carried out by alpha, beta discrimination method using Liquid Scintillation Analyzer by setting the PSA value at 55 for 5 ml 0.1 HCl plus 15 ml of Ultima Gold AB cocktail by using 241 Am and 90 Sr/ 90 Y sources. The standardized method was compared with the gross alpha and gross beta activity determined by conventional method of direct counting with end window G.M. counter and ZnS (Ag). The minimum detectable activity of LSA method was found to be 9.3 mBq and 17.7 mBq for gross alpha and gross beta respectively for 6000 sec compared to the conventional method of 9.8 mBq and 189 mBq respectively at the same counting time. The result of analysis by both method indicate that the alpha, beta discrimination set up of LSA method is highly effective in the determination of low level alpha, beta activity in air filter samples. (author)

  13. High resolution time-of-flight measurements in small and large scintillation counters

    International Nuclear Information System (INIS)

    D'Agostini, G.; Marini, G.; Martellotti, G.; Massa, F.; Rambaldi, A.; Sciubba, A.

    1981-01-01

    In a test run, the experimental time-of-flight resolution was measured for several different scintillation counters of small (10 x 5 cm 2 ) and large (100 x 15 cm 2 and 75 x 25 cm 2 ) area. The design characteristics were decided on the basis of theoretical Monte Carlo calculations. We report results using twisted, fish-tail, and rectangular light- guides and different types of scintillator (NE 114 and PILOT U). Time resolution up to approx. equal to 130-150 ps fwhm for the small counters and up to approx. equal to 280-300 ps fwhm for the large counters were obtained. The spatial resolution from time measurements in the large counters is also reported. The results of Monte Carlo calculations on the type of scintillator, the shape and dimensions of the light-guides, and the nature of the external wrapping surfaces - to be used in order to optimize the time resolution - are also summarized. (orig.)

  14. Liquid scintillation spectrometer survey 155Eu liquid activity

    International Nuclear Information System (INIS)

    Zhang Zuhua

    2002-01-01

    In the countrywide contrasting survey of 155 Eu activity, 155 Eu liquid activity was determined for the first time through using liquid scintillation spectrometer survey 155 Eu β ray. In survey total uncertainty, determining activity accord with determining activity average value of all a wide variety of survey instrument entering into contrasting survey. But using liquid scintillation spectrometer survey, it is simple and save time, is beyond compare for other survey method. It indicate liquid scintillation spectrometer survey β-γ nuclide activity is effective as well

  15. Nanophosphor composite scintillator with a liquid matrix

    Science.gov (United States)

    McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  16. New-generation large-area muon scintillation counters with wavelength shifter fiber readout for CDF II

    International Nuclear Information System (INIS)

    Artikov, A.; Budagov, Yu.; Chirikov-Zorin, I.

    2006-01-01

    New scintillation counters have been designed and constructed for upgrading of the CDF detector at the Fermilab Tevatron. A novel light collection technique using wavelength shifting fibers, together with a high-quality polystyrene-based scintillator UPS 923A, has resulted in compact counters with good and stable light collection efficiency over their lengths extending up to 320 cm. Design, construction and performance of counters are presented. Properties of the fibers and the scintillator, such as light output, light attenuation, decay time and long-term stability, are investigated. It is found that the polystyrene-based scintillator, unlike the polyvinyltoluene-based one, has better properties adequate for long-term experiments

  17. A lens-coupled scintillation counter in cryogenic environment

    International Nuclear Information System (INIS)

    Stoykov, A; Scheuermann, R; Amato, A; Bartkowiak, M; Konter, J A; Rodriguez, J; Sedlak, K

    2011-01-01

    In this work we present an elegant solution for a scintillation counter to be integrated into a cryogenic system. Its distinguishing feature is the absence of a continuous light guide coupling the scintillation and the photodetector parts, operating at cryogenic and room temperatures respectively. The prototype detector consists of a plastic scintillator with glued-in wavelength-shifting fiber located inside a cryostat, a Geiger-mode Avalanche Photodiode (G-APD) outside the cryostat, and a lens system guiding the scintillation light re-emitted by the fiber to the G-APD through optical windows in the cryostat shields. With a 0.8 mm diameter multiclad fiber and a 1 mm active area G-APD the coupling efficiency of the 'lens light guide' is about 50%. A reliable performance of the detector down to 3 K is demonstrated.

  18. Test of a large size acrylic scintillation counter

    International Nuclear Information System (INIS)

    Bertino, M.; De Zorzi, G.; Zanello, D.

    1984-01-01

    We have tested the behaviour of an acrylic scintillator measuring the attenuation length and the time resolution of a 7.8 m long counter. On a small sample the photon yield relative to the NE 110 plastic has been measured. (orig.)

  19. A pill-box design, flow type, gas scintillation proportional counter

    International Nuclear Information System (INIS)

    Garg, S.P.; Sharma, R.C.; Bhati, S.; Somasundaram, S.

    1982-01-01

    A gas scintillation proportional counter of 'pill-box' design operated with argon + 2.5% nitrogen gas in continuous flow, has been developed. An energy resolution of 1.6% is obtained for 239 Pu α-particles emitted from a mixed nuclide source of 239 Pu- 241 Am- 244 Cm and injected into the counter parallel to the anode. The risetime of the scintillation pulse is found to be less than 0.5 μs. Measurements have been made of charge and light gain factors as a function of anode voltage. It is found that for a given anode voltage, the scintillation pulse amplitude increases sharply with the addition of nitrogen to argon and reaches a maximum at about 2.5% and then decreases slowly, whereas the charge pulse amplitude reduces monotonically. Nitrogen improvement factors with the addition of 2.5% nitrogen to argon are found to be different for two photomultipliers with different photocathode responses. The improvement in energy resolution as a result of addition of nitrogen to argon is discussed. Comments are made on the intrinsic energy resolution capabilities of such a counter. (orig.)

  20. A theory of timing in scintillation counters based on maximum likelihood estimation

    International Nuclear Information System (INIS)

    Tomitani, Takehiro

    1982-01-01

    A theory of timing in scintillation counters based on the maximum likelihood estimation is presented. An optimum filter that minimizes the variance of timing is described. A simple formula to estimate the variance of timing is presented as a function of photoelectron number, scintillation decay constant and the single electron transit time spread in the photomultiplier. The present method was compared with the theory by E. Gatti and V. Svelto. The proposed method was applied to two simple models and rough estimations of potential time resolution of several scintillators are given. The proposed method is applicable to the timing in Cerenkov counters and semiconductor detectors as well. (author)

  1. The scintillation counter system at the SAPHIR detector

    International Nuclear Information System (INIS)

    Bour, D.

    1989-10-01

    The scintillation-counters system of the SAPHIR-detector at the stretcher accelerator ELSA in Bonn consists of 64 counters. It supplies a fast hadronic trigger and is utilizised for the particle identification by time of flight measurements. Prototypes of the counters (340x21.25 x 6.0 cm 3 ) had been tested. The contribution to the resolution of the time of flight measurement was measured to σ=125 ps, the effective light velocity to 17.5 ns/cm and the attenuation length of 7.8 m. A pion kaon separation is possible up to a momentum of 1 GeV/c with time of flight measurement. With the first photon-beam at SAPHIR the counters were tested, first triggers were obtained and evaluated. (orig.) [de

  2. Test of long scintillating counter prototypes for CDF-II

    International Nuclear Information System (INIS)

    Budagov, Yu.; Chirikov-Zorin, I.; Pukhov, O.; Incagli, M.; Leone, S.; Menzione, A.; Pauletta, G.; Tokar, S.

    2000-01-01

    New type long (up to 3 m) scintillating counter prototypes, developed for CDF-II, have been tested. The shift-spectrum fiber ribbons were used for light collection, and modern ultra compact photomultipliers R5600 were used for light detection. The efficiency for m.i.p. was excellent for all prototypes. The light yield from the far end of the counters was found to be more than 20 photoelectrons

  3. Scintillation counter, segmented shield

    International Nuclear Information System (INIS)

    Olson, R.E.; Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  4. The liquid scintillation counter of the NAVF-It-district Central Norway

    International Nuclear Information System (INIS)

    Traetteberg, J.

    1979-01-01

    NAVF have placed an automatic liquid sciuntillation counter at the disposal of Prof. K. Eik-Nes of the Institute of Biophysics at Trondheim Univ.,Norges Tekniske Hoegskole. The instrument is an uncooled Searle Isocap 300, and is mainly used in biochemical research with radioactive tracers. The apparatus and its operation in 1978 are briefly described. Experience has shown that the instrument is very reliable. (JIW)

  5. Liquid scintillation measurement. I

    International Nuclear Information System (INIS)

    Rexa, R.; Tykva, R.

    1983-01-01

    The individual components of scintillation solutions and their tasks are listed. Explained briefly is the scintillation process in a liquid scintillator. Factors are discussed which influence this process as are methods applied to supress their influence. They include: ionization quenching, quenching by dilution and concentration, chemical, colour, phase and photon quenching and single-photon events causing an undesirable backgorund. (M.D.)

  6. Review of the evolution of safety, ecological and economical aspects of liquid scintillation counting materials and techniques

    International Nuclear Information System (INIS)

    Kalbhen, D.A.

    1983-01-01

    The wide applicability of liquid scintillation techniques for counting weak β-emitters and other radionuclides has led to the daily use of a large number of liquid scintillation counter instruments in research and control laboratories. Of the solvents used in liquid scintillators, xylene, toluene and trimethyl benzene are most common. To a minor extent, dioxane, methylglycol, ethanol and methanol are also used. The estimated annual total volume is around 2-3 million liters of scintillation cocktails. The present situation demonstrates a problem in laboratory safety and concomitant cost for waste treatment, usually not recognized. The use and handling of these inflammable and irritant solvents can induce certain risks to personnel and laboratory safety. A significant reduction of the ecological and health risks is important. In recent years, some progress has been made by using smaller volumes and smaller sizes of vials. The introduction of non-flammable scintillator solvents, which do not penetrate through polyethylene vials and do not escape into the laboratory atmosphere, also adds to the safety process

  7. Scintillation Counters

    Science.gov (United States)

    Bell, Zane W.

    Scintillators find wide use in radiation detection as the detecting medium for gamma/X-rays, and charged and neutral particles. Since the first notice in 1895 by Roentgen of the production of light by X-rays on a barium platinocyanide screen, and Thomas Edison's work over the following 2 years resulting in the discovery of calcium tungstate as a superior fluoroscopy screen, much research and experimentation have been undertaken to discover and elucidate the properties of new scintillators. Scintillators with high density and high atomic number are prized for the detection of gamma rays above 1 MeV; lower atomic number, lower-density materials find use for detecting beta particles and heavy charged particles; hydrogenous scintillators find use in fast-neutron detection; and boron-, lithium-, and gadolinium-containing scintillators are used for slow-neutron detection. This chapter provides the practitioner with an overview of the general characteristics of scintillators, including the variation of probability of interaction with density and atomic number, the characteristics of the light pulse, a list and characteristics of commonly available scintillators and their approximate cost, and recommendations regarding the choice of material for a few specific applications. This chapter does not pretend to present an exhaustive list of scintillators and applications.

  8. CAMAC-system for calibration and control of experimental apparatus with scintillation counters

    International Nuclear Information System (INIS)

    Petrov, A.G.; Sinaev, A.N.

    1977-01-01

    The CAMAC-system is described, connected to the minicomputer PH-2116C, for calibration and control of an experiment on pion scattering on He-nuclei performed with a streamer chamber triggered by a scintillation hodoscope. The following operations are performed: -delay calibration in telescope and hodoscope tracts involving 22 scintillation counters; -control of relative efficiency of hodoscope counters and other parameters of the experiments; -control of HV supply of photomultipliers; -control of the currents of magnets and lenses of the muon track of the synchrocyclotron; -measurement of pulse-hight spectra from a Cherenkov counter to determine the beam composition. The working programs are initiated and the dialogue with the computer is carried out using an alphanumerical display connected to the PH-2116C via a CAMAC interface

  9. Liquid-helium scintillation detection with germanium photodiodes

    International Nuclear Information System (INIS)

    Luke, P.N.; Haller, E.E.; Steiner, H.M.

    1982-05-01

    Special high-purity germanium photodiodes have been developed for the direct detection of vacuum ultraviolet scintillations in liquid helium. The photodiodes are immersed in the liquid helium, and scintillations are detected through one of the bare sides of the photodiodes. Test results with scintillation photons produced by 5.3-MeV α particles are presented. The use of these photodiodes as liquid-helium scintillation detectors may offer substantial improvements over the alternate detection method requiring the use of wavelength shifters and photomultiplier tubes

  10. Determination of "1"2"9I using volatilization method and liquid scintillation spectrometry

    International Nuclear Information System (INIS)

    Remenec, Boris; Dulanska, Silvia; Horvathova, Bianka; Matel, Lubomir

    2017-01-01

    A simple and rapid separation method for "1"2"9I determination in radioactive waste samples was developed. Suitable conditions for iodine volatilization were tested. Iodine was trapped in 1.5 mol L"-"1 NaOH and precipitated as PdI_2·H_2O by addition of PdCl_2 with recoveries higher than 80%. The method was applied for analysis of contaminated soil, radioactive sludge, evaporator concentrate and heterogeneous waste samples from nuclear power plants in Slovak Republic. "1"2"9I was measured on liquid scintillation counter TRI CARB 2900 TR using Ultima Gold AB scintillation cocktail. (author)

  11. Time resolution research in liquid scintillating detection

    International Nuclear Information System (INIS)

    He Hongkun; Shi Haoshan

    2006-01-01

    The signal processing design method is introduced into liquid scintillating detection system design. By analyzing the signal of liquid scintillating detection, improving time resolution is propitious to upgrade efficiency of detecting. The scheme of realization and satisfactory experiment data is demonstrated. Besides other types of liquid scintillating detection is the same, just using more high speed data signal processing techniques and elements. (authors)

  12. Identification of irradiated spices with aid of scintillation counter

    International Nuclear Information System (INIS)

    Uusheimo, K.

    1989-08-01

    The aim off the work was to determine how one can identify gamma-irradiated spices with aid of a scintillation counter (LKB/Wallac 1219 RackBeta Spectral) by chemiluminescence measurements. Even though scintillation counters are more sensitive than real luminometers they have not been capable in identifying the irradiated spices after contact with photosensitizer like luminol, isoluminol and lucigenin presumably because the actual chemiluminescence reaction took place before the sample vial reached the measuring range. Whereas it was noticed that the identification of pure, dry allspice, black pepper, white peppar and cardemom was possible without any solutions when there were also present similar unirradiated spices. The identification was possible even after 23 weeks duration depending on the dose of the irradiation (10 kGy or 50 kGy) and the weight of the samples (1 g or 9 g). The duration of the investigation was 23 weeks

  13. Determination of total alpha and beta activity in water for human consumption by LSC(Liquid Scintillation Counter)

    International Nuclear Information System (INIS)

    2013-01-01

    The Ordinance Brazilian of Ministry of Health (MS 2914/2011) establishes the standards for quality of water intended for human consumption, being limits values of 5.0 Bq/L for gross alpha, and 1.0 Bq/L for gross beta radioactivity. The liquid scintillation spectrometry (LSC) technique has been presented as an alternative to conventional procedure using gas flow proportional counter. The present work shows a review of the methods for determination of gross alpha and gross beta in water by using LSC. Between the factors that influence the accuracy and repeatability of the analytical results we can highlight: thermal preconcentration, type of the acid and calibration standard. A procedure was established and carried out to samples of the National Program of Intercomparison of Radionuclides in Environmental Samples for evaluation of its performance. The gross alpha and gross beta analysis in samples of the public water supplies in the Metropolitan Region of Goiania, state of Goias was carried out. The results are consistent with the guideline values form the Ministry of Health concerning radioactivity. (author)

  14. An introduction to automatic radioactive sample counters

    International Nuclear Information System (INIS)

    1980-01-01

    The subject is covered in chapters, entitled; the detection of radiation in sample counters; nucleonic equipment; liquid scintillation counting; basic features of automatic sample counters; statistics of counting; data analysis; purchase, installation, calibration and maintenance of automatic sample counters. (U.K.)

  15. Method validation for simultaneous counting of Total α , β in Drinking Water using Liquid Scintillation Counter

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Nashawati, A.

    2014-05-01

    In this work, Method Validation Methods and Pulse Shape Analysis were validated to determine gross Alpha and Beta Emitters in Drinking Water using Liquid Scintillation Counter Win spectral 1414. Validation parameters include Method Detection Limit, Method Quantitation Limit, Repeatability Limit, Intermediate Precision, Trueness) Bias), Recovery Coefficient, Linearity and Uncertainty Budget in analysis. The results show that the Method Detection Limit and Method Quantitation Limit were 0.07, 0.24 Bq/l for Alpha emitters respectively, and 0.42, 1.4 Bq/l for Beta emitters, respectively. The relative standard deviation of Repeatability Limit reached 2.81% for Alpha emitters and 3.96% for Beta emitters. In addition to, the relative standard deviation of Intermediate Precisionis was 0.54% for Alpha emitters and 1.17% for Beta emitters. Moreover, the trueness was - 7.7% for Alpha emitters and - 4.5% for Beta emitters. Recovery Coefficient ranged between 87 - 96% and 88-101 for Alpha and Beta emitters, respectively. Linearity reached 1 for both Alpha and Beta emitters. on the other hand, Uncertainty Budget for all continents was 96.65% ,83.14% for Alpha and Beta emitters, respectively (author).

  16. Liquid scintillation alpha counting and spectrometry and its application to bone and tissue samples

    International Nuclear Information System (INIS)

    McDowell, W.J.; Weiss, J.F.

    1976-01-01

    Three methods for determination of alpha-emitting nuclides using liquid scintillation counting are compared, and the pertinent literature is reviewed. Data showing the application of each method to the measurement of plutonium concentration in tissue and bone samples are presented. Counting with a commercial beta-liquid scintillation counter and an aqueous-phase-accepting scintillator is shown to be accurate only in cases where the alpha activity is high (several hundred counts/min or more), only gross alpha counting is desired, and beta-gamma emitters are known to be absent from the sample or present at low levels compared with the alpha activity. Counting with the same equipment and an aqueous immiscible scintillator containing an extractant for the nuclide of interest (extractive scintillator) is shown to allow better control of alpha peak shift due to quenching, a significant reduction of beta-gamma interference, and, usually, a low background. The desirability of using a multichannel pulse-height analyzer in the above two counting methods is stressed. The use of equipment and procedures designed for alpha liquid scintillation counting is shown to allow alpha spectrometry with an energy resolution capability of 200 to 300 keV full-peak-width-at-half-peak-height and a background of 0.3 to 1.0 counts/min, or as low as 0.01 counts/min if pulse-shape discrimination methods are used. Methods for preparing animal bone and tissue samples for assay are described

  17. Liquid scintillation in medical diagnosis

    International Nuclear Information System (INIS)

    Painter, K.

    1976-01-01

    With the tremendous increase in the application of radioassay, particularly radioimmunoassay, in the clinical laboratory liquid scintillation counting became an indispensable tool in diagnostic medicine. Few publications, however, have concerned themselves with problem areas which occur with the method in the clinical laboratory. The purpose of this presentation is to summarize our experiences with the liquid scintillation technique in the clinical situation

  18. Scintillating properties of frozen new liquid scintillators

    CERN Document Server

    Britvich, G I; Golovkin, S V; Martellotti, G; Medvedkov, A M; Penso, G; Soloviev, A S; Vasilchenko, V G

    1999-01-01

    The light emission from scintillators which are liquid at room temperature was studied in the interval between $+20$~$^{\\circ}$C and $-120$~$^{\\circ}$C, where the phase transition from liquid to solid takes place. The light yield measured at $-120$~$^{\\circ}$C is about twice as much as that observed at $+20$~$^{\\circ}$C. By cooling the scintillator from $+20$~$^{\\circ}$C to $-120$~$^{\\circ}$C and then heating it from $-120$~$^{\\circ}$C to $+20$~$^{\\circ}$C, the light yield varies in steps at well defined temperatures, which are different for the cooling and heating processes. These hysteresis phenomena appear to be related to the solvent rather than to the dopant. The decay time of scintillation light was measured at $+20$~$^{\\circ}$C and $-120$~$^{\\circ}$C. Whilst at room temperature most of the light is emitted with a decay time of 6--8 ns, at $-120$~$^{\\circ}$C a slower component, with a decay time of 25--35 ns, becomes important.

  19. Study on quench effects in liquid scintillation counting during tritium measurements

    International Nuclear Information System (INIS)

    Ivana Jakonic; Jovana Nikolov; Natasa Todorovic; Miroslav Veskovic; Branislava Tenjovic

    2014-01-01

    Quench effects can cause a serious reduction in counting efficiency for a given sample/cocktail mixture in liquid scintillation counting (LSC) experiments. This paper presents a simple experiment performed in order to test the influence of quenching on the LSC efficiency of 3 H. The aim of this study was to investigate the behavior of several quench agents with different quench strengths (nitromethane, nitric acid, acetone, dimethyl-sulfoxide) added in different amounts to tritiated water in order to obtain standard sets for quench calibration curves. The OptiPhase HiSafe 2 and OptiPhase HiSafe 3 scintillation cocktails were used in this study in order to compare their quench resistance. Measurements were performed using a low-level LS counter (Wallac, Quantulus 1220). (author)

  20. Performance of two liquids scintillation and optimization of a Wallac 1411 counter in the tritium quantification in aqueous samples

    International Nuclear Information System (INIS)

    Contreras de la Cruz, E. de J.; Lopez del Rio, H.; Davila R, J. I.; Mireles G, F.; Pinedo V, J. L.

    2014-10-01

    The optimization of a liquid scintillation counting Wallac 1411 is presented as well as the performance of the liquids scintillation miscible in water OptiPhase Hi Safe 3 and Last Gold Ab, in the tritium quantification in aqueous samples. The luminescence effect, the quenching, the solution ph and the level of pulse amplitude comparator (Pac) were evaluated in the response of both liquids scintillation in the tritium measurement. The quenching and the luminescence modify the scintillators response; in the first of them the counting efficiency decreases and the minimum detectable activity increases; the second interferes in the tritium quantification in the interest window, but the effect disappears after 4 hours of darkness of the samples. The maximum counting efficiency was of 24% for OptiPhase Hi Safe 3 and 31% for Last Gold Ab, diminishing with the quenching until values of 8 and 11%, respectively. For a counting time of 6 hours and lower quenching, the minimum detectable concentration for OptiPhase Hi Safe 3 was of 13.4 ± 0.2 Bq/L and 9.9 ± 0.1 Bq/L for Last Gold Ab. Both scintillators responded appropriately to sour and basic solutions, being only presented chemiluminescence in Last Gold Ab to ph highly basic. The Pac application that varies between 1 and 256 does not have effect in the tritium measurement until values above 90. (Author)

  1. Gas scintillation proportional counters for x-ray synchrotron applications

    International Nuclear Information System (INIS)

    Smith, A.; Bavdaz, M.

    1992-01-01

    Gas scintillation proportional counters (GSPCs) as x-ray detectors provide some advantages and disadvantages compared with proportional counters. In this paper the various configurations of xenon filled GSPC are described including both imaging and nonimaging devices. It is intended that this work be used to configure a GSPC for a particular application and predict its general performance characteristics. The general principles of operation are described and the performance characteristics are then separately considered. A high performance, imaging, driftless GSPC is described in which a single intermediate window is used between the PMT and gas cell

  2. Liquid scintillation, counting, and compositions

    International Nuclear Information System (INIS)

    Sena, E.A.; Tolbert, B.M.; Sutula, C.L.

    1975-01-01

    The emissions of radioactive isotopes in both aqueous and organic samples can be measured by liquid scintillation counting in micellar systems. The micellar systems are made up of scintillation solvent, scintillation solute and a mixture of surfactants, preferably at least one of which is relatively oil-soluble water-insoluble and another which is relatively water-soluble oil-insoluble

  3. Electro-removal of H-3 and C-14 contained in scintillation liquid absorbed in soils type Phaeozem

    International Nuclear Information System (INIS)

    Valdovinos, V.; Bustos, E.; Monroy G, F.

    2014-10-01

    This paper presents the results of electro-removal, an electrochemical treatment in soils contaminated with H-3 and C-14 contained in scintillation liquids absorbed in soils. For this purpose the best electrochemical conditions were used, which are: scintillation liquid Ultima Gold Xr, water (1:1) and 1 m A in the passage of current. The media were characterized before and after of applying the different potentials by various analytical techniques, such as: liquids by gas chromatography with a flame ionization detector, solids and liquids by Fourier transform infrared spectroscopy (Ftir) and electrodes by scanning electron microscopy with elemental analysis by energy-dispersive X-ray spectroscopy. Later standard samples with H-3 and C-14 were prepared and the electrochemical treatment was applied to previously established conditions. After electrochemical treatment the scintillation liquid characterization was performed by gas chromatography and a scintillation counter to see the disintegrations per minute. According to results of Ftir, soils show no deterioration and in the liquid phase the amount of water increases as the applied potential, due to oxidation-reduction reactions where happen modification or mineralization of organic molecules (H 2 O and CO 2 formation). In 4 h of treatment, removal percentages in the liquid phase, were: 53.6% of H-3 and 11.6% of C-14. (Author)

  4. Scintillation counter: photomultiplier tube alignment

    International Nuclear Information System (INIS)

    Olson, R.E.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into the sample receiving zone. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (auth)

  5. Scintillation counter, maximum gamma aspect

    International Nuclear Information System (INIS)

    Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  6. Determination of the air/water partition coefficient of groundwater radon using liquid scintillation counter

    International Nuclear Information System (INIS)

    Lee, K.Y.; Yoon, Y.Y.; Ko, K.S.

    2010-01-01

    A method was studied for measuring air/water partition coefficient (K air/water ) of groundwater radon by a simple procedure using liquid scintillation counter (LSC). In contrast conventional techniques such as equilibrium partitioning in a closed system or air striping methods, the described method allow for a simple and uncomplicated determination of the coefficient. The (K air/water ) of radon in pure water has been well known quantitatively over a wide range of temperatures. In this work, groundwater samples having high radon concentration instead of distilled water have been used to determine the (K air/water ) of radon in the temperature range of 0-25. Aqueous phase in a closed system was used in this study instead of gaseous phase in conventional methods. Three kinds of groundwater taken from different geologic environments were used to investigate the effect of groundwater properties. With the aim to evaluate the reproducibility of the data an appropriate number of laboratory experiments have been carried out. The results show that tie (K air/water ) of radon in the groundwater is smaller than that in the pure water. However, the temperature effect on the coefficient is similar in the groundwater and the pure water. The method using aqueous phase in a closed system by LSC can be used to determine the (K air/water ) of radon in various groundwaters with a simple procedure. The results will be presented at the NAC-IV conference

  7. Development of portable Liquid Scintillation counters for on-site primary measurement of radionuclides using the Triple-to-Double Coincidence Ratio method

    International Nuclear Information System (INIS)

    Cassette, P.; Capogni, M.; De Felice, P.; Johansson, L.; Sephton, J.; Kossert, K.; Naehle, O.

    2013-06-01

    The Triple-to-Double Coincidence Ratio (TDCR) method in Liquid Scintillation counting (LSC) is a primary radionuclide standardization method widely used in National Metrology laboratories and was primarily developed for the activity measurement of beta emitters. It is based on liquid scintillation: the light is detected by three photomultipliers (PM) and the detection efficiency is evaluated by using a model which uses the ratio of triple-to-double coincidences between the PM tubes. Up to now, most of current TDCR systems were locally-made metrology instruments neither aimed at nor suitable for in-situ measurements. In the framework of the European Metrofission project, a work package was dedicated to the realisation of miniature self-calibrated primary TDCR systems, which are state-of-the-art, for use on-site. The challenge was to develop a versatile portable, table-top designed instrument, from this metrology device. This implied improvements for the miniaturisation of the detection chamber, for the miniaturisation of electronic modules by exploring the possibilities of digital treatment, and for the validation of models and extension of them to nuclides with special beta spectrum shapes, to nuclides with complex decay schemes including many gamma-rays and to nuclides with higher atomic number decaying by electron capture. Four prototypes of counters were built by the Metrofission partners ENEA (Italy), LNHB (France), NPL (UK) and PTB (Germany) using various technical approaches. The paper describes these prototypes and provides some details on the choice of the technical options concerning the design of the optical chamber, of the photodetectors and of the acquisition system. (authors)

  8. Inorganic liquid scintillator

    International Nuclear Information System (INIS)

    Pavlicek, Z.; Barta, C.; Jursova, L.

    1986-01-01

    An inorganic liquid scintillator is designed which contains 1 to 30 wt.% of an inorganic molecular compound as the basic active component; the compound contains a cation with an atomic number higher than 47 and a halogen anion. The basic inorganic component is dissolved in water or in an organic solvent in form of non-dissociated molecules or self-complexes in which the bond is preserved between the cation and anion components. The light yield from these scintillators ranges between 70 and 150% of the light yield of a standard organic scintillator based on toluene. They are advantageous in that that they allow to increase the water content in the sample to up to 100%. (M.D.)

  9. Energy resolution limitations in a gas scintillation proportional counter

    International Nuclear Information System (INIS)

    Simons, D.G.; de Korte, P.A.J.; Peacock, A.; Bleeker, J.A.M.

    1985-01-01

    An investigation is made of the factors limiting the energy resolution of a gas scintillation proportional counter (GSPC). Several of these limitations originate in the drift region of such a counter and data is presented, giving a quantitative description of those effects. Data is also presented of a GSPC without a drift region, that therefore largely circumvents most of those degrading factors. The results obtained so far indicate that in that detector the limitation to the resolution is most probably due to cleanliness of the gas. Further research is underway in order to assess quantitatively the limiting factors in such a driftless GSPC

  10. Evaluation of oxidation techniques for preparing bioassay and environmental samples for liquid scintillation counting

    International Nuclear Information System (INIS)

    Miller, H.H.

    1979-10-01

    In environmental and biological monitoring for carbon-14 and tritium, the presence of color and chemical quenching agents in the samples can degrade the efficiency of liquid scintillation counting. A series of experiments was performed to evaluate the usefulness, under routine conditions, of first oxidizing the samples to improve the counting by removing the color and quenching agents. The scintillation counter was calibrated for the effects of quenching agents on its counting efficiency. Oxidizing apparatus was tested for its ability to accurately recover the 14 C and 3 H in the samples. Scintillation counting efficiences were compared for a variety of oxidized and unoxidized environmental and bioassay samples. The overall conclusion was that, for routine counting, oxidation of such samples is advantageous when they are highly quenched or in solid form

  11. Study of light collection uniformity dependence on reflector type in a large scintillation counter

    International Nuclear Information System (INIS)

    Astvatsaturov, R.G.; Ivanov, V.I.; Knapik, E.; Kramarenko, V.A.; Malakhov, A.I.; Khachaturyan, M.N.

    1977-01-01

    An investigation of the way to improve uniformity of light collection onto photoelectric multiplier photocathode, for the 100x10x2 cm scintillation counter, has been undertaken. Pulse amplitude versus the point, particles strike a scintillator, relationship, has been demonstrated for several types of reflectors. Used as reflectors were: white papar, aluminium foil, black papar and a combination of above reflectors. Experimental data analysis shows, that the combination of reflectors with different reflection coefficient, provides a means for 1,5 time improvement of counter light collection uniformity, with no impairment of amplitude characteristics

  12. (Alpha-) quenching temperature dependence in liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Arnd; Lozza, Valentina; Krosigk, Belina von; Zuber, Kai [Institut fuer Kern- und Teilchenphysik, TU Dresden (Germany)

    2015-07-01

    Liquid scintillator (LS) is an effective and promising detector material, which is and will be used by many small and large scale experiments. In order to perform correct signal identification and background suppression, a very good knowledge of LS properties is crucial. One of those is the light yield from alpha particles in liquid scintillator. This light output strongly quenched, approx. 10 times compared to that of electrons, and has been precisely studied at room temperature for various LS. Big scintillator experiments, such as SNO+ and maybe future large scale detectors, will operate at different temperatures. While a strong temperature dependence is well known for solid state scintillators, due to the different scintillation process, a quenching temperature dependence in LS is usually assumed negligible. On the other hand, inconsistencies in between measurements are often explained by potential temperature effects. This study investigates LAB based liquid scintillator with an intrinsic, dissolved alpha emitter and its behaviour with temperature change. In a small, cooled and heated setup, a stabilized read-out with two PMTs is realised. First results are presented.

  13. Radioactivity measurements by liquid scintillation spectroscopy

    International Nuclear Information System (INIS)

    Cassette, Ph.

    2004-01-01

    The activity measurement techniques by liquid scintillation spectroscopy consist to mix the radioactive solution to measure with a scintillating liquid and to transform the ionizing radiations, resulting from decays, into light, detectable and quantifiable. The main advantages of these techniques are the easiness of preparation of the radioactive sources, the geometric efficiency of detection of 4π and the possibility of detection of low-level energy radiations. There are one of the only methods giving the possibility to measure the activity of pure β radionuclides; indeed, the nuclear disintegration is not accompanied of gamma radiations detectable by other techniques. There are one of the only methods too of measurement of radionuclides which disintegrate by electron capture and especially those leading to the emission of low-level energy ionizing radiations. Liquid scintillation spectroscopy can be used as an absolute method of activity measurement that is to say without the use of a calibration standard. The modern liquid scintillation counting devices can be very sensitive; the measurement of micro-activities being possible. Some of the applications of these activity measurement techniques are the carbon 14 dating and the geological tracing. Their main disadvantage is the global energetic yield which is low and variable in terms of the composition of the scintillation source necessitating to calculate the detection yield for each condition of measurement. (O.M.)

  14. Liquid scintillation alpha spectrometry techniques

    International Nuclear Information System (INIS)

    McKlveen, J.W.; McDowell, W.J.

    1984-01-01

    Accurate, quantitative determinations of alpha emitting nuclides by conventional plate counting methods are difficult, because of sample self-absorption problems in counting and because of non-reproducible losses in conventional sample separation methods. Liquid scintillation alpha spectrometry offers an attractive alternative with no sample self-absorption or geometry problems and with 100% counting efficiency. Sample preparation may include extraction of the alpha emitter of interest by a specific organic phase-soluble compound directly into the liquid scintillation counting medium. Detection electronics use energy and pulse-shape discrimination, to yield alpha spectra without beta and gamma background interference. Specific procedures have been developed for gross alpha, uranium, plutonium, thorium and colonium assay. Possibilities for a large number of other applications exist. Accuracy and reproducibility are typically in the 1% range. Backgrounds of the order of 0.01 cpm are readily achievable. The paper will present an overview of liquid scintillation alpha counting techniques and some of the results achieved for specific applications. (orig.)

  15. High efficiency scintillation detectors

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1976-01-01

    A scintillation counter consisting of a scintillation detector, usually a crystal scintillator optically coupled to a photomultiplier tube which converts photons to electrical pulses is described. The photomultiplier pulses are measured to provide information on impinging radiation. In inorganic crystal scintillation detectors to achieve maximum density, optical transparency and uniform activation, it has been necessary heretofore to prepare the scintillator as a single crystal. Crystal pieces fail to give a single composite response. Means are provided herein for obtaining such a response with crystal pieces, such means comprising the combination of crystal pieces and liquid or solid organic scintillator matrices having a cyclic molecular structure favorable to fluorescence. 8 claims, 6 drawing figures

  16. Development of new Polysiloxane Based Liquid Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, M.; Quaranta, A. [Department of Industrial Engineering, University of Trento,Via Sommarive, 9, 38123 Trento (Italy); INFN, Laboratori Nazionali di Legnaro,Viale dell' Universita, 2, 35020 Legnaro - Padova (Italy); Gramegna, F.; Marchi, T.; Cinausero, M. [INFN, Laboratori Nazionali di Legnaro,Viale dell' Universita, 2, 35020 Legnaro - Padova (Italy); Carturan, S.; Collazuol, G.; Checchia, C. [INFN, Laboratori Nazionali di Legnaro,Viale dell' Universita, 2, 35020 Legnaro - Padova (Italy); Department of Physics and Astronomy, University of Padova, Via Marzolo, 8, 35131 Padova (Italy); Degerlier, M. [Department of Physics, Nevsehir Haci Bektas Veli University, Science and Art Faculty, 50300 Nevsehir (Turkey)

    2015-07-01

    In the last decade, attention toward neutron detection has been growing in the scientific community, driven by new requirements in different fields of application ranging from homeland security to medical and material analysis, from research physics, to nuclear energy production. So far neutron detection, with particular attention to fast neutrons, has been mainly based on organic liquid scintillators, owing to their good efficiency and pulse shape discrimination (PSD) capability. Most of these liquids have however some main drawbacks given by toxicity, flammability, volatility and sensitivity to dissolved oxygen that limits the duration and the quality of their performances with worse handiness and increased costs. Phenyl-substituted polysiloxanes could address most of these issues, being characterized by low toxicity, low volatility and low flammability. Their optical properties can be tailored by changing the phenyl distribution and concentration thus allowing to increase the solubility of organic dyes, to modify the fluorescence spectra and to vary the refractive index of the medium. Furthermore, polysiloxanes have been recently exploited for the production of plastic scintillators with very good chemical and thermal stability and very good radiation hardness and the development of polysiloxane liquid scintillators could allow to combine these interesting properties with the supremacy of liquid scintillators as regarding PSD over plastics. For these reasons, the properties of several phenyl-substituted polysiloxane with different phenyl amounts and different viscosities have been investigated, with particular attention to the scintillation response and the pulse shape discrimination capability, and the results of the investigation are reported in this work. More in details, the scintillation light yield towards gamma rays ({sup 60}Co and {sup 137}Cs) of several polysiloxane liquids has been analyzed and compared with the light yield of a commercial non

  17. Secondary emission scintillation counter for microdosimetry at the nanometer level

    International Nuclear Information System (INIS)

    Goldhagen, P.

    1987-01-01

    The secondary emission scintillation (SES) counter is a device designed to count the positive ions of charged-particle tracks in gas volumes simulating sites in tissue with diameters of the order of 1 nanometer. Based on suggestions by H.H. Rossi and A.M. Kellerer, the basic idea of the device was developed by A. Kosiara, M. Biavati, and R.D. Colvett in the late 1970s. The device was substantially modified in 1982, but work on it was suspended before the new version could be tested, in order to devote full-time effort to rebuilding RARAF. Work resumed on the SES counter in 1986. A diagram of the prototype SES counter now being tested is shown. A weak electric field in the cylindrical collection region of the device drifts ions from a track to a small region (less than 1 mm) of high electric field where they are accelerated by several kilovolts onto a dynode, producing secondary electrons. The secondary electrons are then accelerated onto a plastic scintillator, and the resulting light is detected by a photomultiplier. The passage of a charged particle is established by a solid state detector, which triggers electronics detecting coincidences and measuring the timing and amplitude of pulses from the photomultiplier

  18. Investigation of organic liquid-scintillator optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Juergen; Feilitzsch, Franz von; Goeger-Neff, Marianne; Lewke, Timo; Meindl, Quirin; Oberauer, Lothar; Potzel, Walter; Todor, Sebastian; Wurm, Michael [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Marrodan Undagoitia, Teresa [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Physik-Institut, Universitaet Zuerich (Switzerland)

    2009-07-01

    The characterization of different organic liquid-scintillator mixtures is an important step towards the design of a large-scale detector such as LENA (Low Energy Neutrino Astronomy). Its physics goals, extending from particle and geological to astrophysical issues, set high demands on the optical properties of the liquid scintillator. Therefore, small-scale experiments are carried out in order to optimize the final scintillator mixture. PXE, LAB, and dodecane are under consideration as solvents. Setups for the determination of scintillator properties are presented, such as attenuation length, light yield, emission spectra, fluorescence decay times, and quenching factors. Furthermore, results are discussed.

  19. Study on determination of 90Sr by liquid scintillation spectrometry

    International Nuclear Information System (INIS)

    Zhai Xiufang; Li Weiping; Tian Mei; Zou Ronghu

    2012-01-01

    Both of Liquid scintillation counting and Cerenkov counting can be used to determinate 90 Sr in samples by Liquid scintillation spectrometry. In this work, effects of scintillation vials wit-h different material, Liquid scintillation cocktails, sample volume, Strontium carrier, pH, quenching (chemical quenching and color quenching)are studied, and both counting methods are compared. For Liquid scintillation counting. The results show that the best appropriate volume ratio of sample and liquid scintillation cocktail is 8:12 for OPTIPHASE HISAFE-3 and OPTIPHASE HISAFE-2, stability of solution decreased when sample load exceeds the maximum load for both Liquid scintillation cocktails, and OPTIPHASE HISAFE-3 also show superior performance for high saline solution. The type of scintillation vial haven't clear influence on the MDA of 90 Sr. Chemical quenching and color quenching can decrease the counting efficiency. For Cerenkov counting, the lowest MDA is obtained when polyethylene plastic vial is used and sample volume is 20 ml. Color quenching decreases the counting efficiency, while there isn't chemical quenching for Cerenkov counting. The MDA of 90 Sr is 1.19 and 1.00 Bq/L for Liquid scintillation counting and Cerenkov counting with the optimal labeling condition. (authors)

  20. A Monte Carlo Model for Neutron Coincidence Counting with Fast Organic Liquid Scintillation Detectors

    International Nuclear Information System (INIS)

    Gamage, Kelum A.A.; Joyce, Malcolm J.; Cave, Frank D.

    2013-06-01

    Neutron coincidence counting is an established, nondestructive method for the qualitative and quantitative analysis of nuclear materials. Several even-numbered nuclei of the actinide isotopes, and especially even-numbered plutonium isotopes, undergo spontaneous fission, resulting in the emission of neutrons which are correlated in time. The characteristics of this i.e. the multiplicity can be used to identify each isotope in question. Similarly, the corresponding characteristics of isotopes that are susceptible to stimulated fission are somewhat isotope-related, and also dependent on the energy of the incident neutron that stimulates the fission event, and this can hence be used to identify and quantify isotopes also. Most of the neutron coincidence counters currently used are based on 3 He gas tubes. In the 3 He-filled gas proportional-counter, the (n, p) reaction is largely responsible for the detection of slow neutrons and hence neutrons have to be slowed down to thermal energies. As a result, moderator and shielding materials are essential components of many systems designed to assess quantities of fissile materials. The use of a moderator, however, extends the die-away time of the detector necessitating a larger coincidence window and, further, 3 He is now in short supply and expensive. In this paper, a simulation based on the Monte Carlo method is described which has been performed using MCNPX 2.6.0, to model the geometry of a sector-shaped liquid scintillation detector in response to coincident neutron events. The detection of neutrons from a mixed-oxide (MOX) fuel pellet using an organic liquid scintillator has been simulated for different thicknesses of scintillators. In this new neutron detector, a layer of lead has been used to reduce the gamma-ray fluence reaching the scintillator. The effect of lead for neutron detection has also been estimated by considering different thicknesses of lead layers. (authors)

  1. Fitting of alpha-efficiency versus quenching parameter by exponential functions in liquid scintillation counting

    International Nuclear Information System (INIS)

    Sosa, M.; Manjón, G.; Mantero, J.; García-Tenorio, R.

    2014-01-01

    The objective of this work is to propose an exponential fit for the low alpha-counting efficiency as a function of a sample quenching parameter using a Quantulus liquid scintillation counter. The sample quenching parameter in a Quantulus is the Spectral Quench Parameter of the External Standard (SQP(E)), which is defined as the number of channel under which lies the 99% of Compton spectrum generated by a gamma emitter ( 152 Eu). Although in the literature one usually finds a polynomial fitting of the alpha counting efficiency, it is shown here that an exponential function is a better description. - Highlights: • We have studied the quenching in alpha measurement by liquid scintillation counting. • We have reviewed typical fitting of alpha counting efficiency versus quenching parameter. • Exponential fitting of data is proposed as better fitting. • We consider exponential fitting has a physical basis

  2. Fitting of alpha-efficiency versus quenching parameter by exponential functions in liquid scintillation counting

    Energy Technology Data Exchange (ETDEWEB)

    Sosa, M. [Departamento de Ingeniería Física, Campus León, Universidad de Guanajuato, 37150 León, Guanajuato (Mexico); Universidad de Sevilla, Departamento de Física Aplicada II, E.T.S. Arquitectura, Av. Reina Mercedes, 2, 41012 Sevilla (Spain); Manjón, G., E-mail: manjon@us.es [Universidad de Sevilla, Departamento de Física Aplicada II, E.T.S. Arquitectura, Av. Reina Mercedes, 2, 41012 Sevilla (Spain); Mantero, J.; García-Tenorio, R. [Universidad de Sevilla, Departamento de Física Aplicada II, E.T.S. Arquitectura, Av. Reina Mercedes, 2, 41012 Sevilla (Spain)

    2014-05-01

    The objective of this work is to propose an exponential fit for the low alpha-counting efficiency as a function of a sample quenching parameter using a Quantulus liquid scintillation counter. The sample quenching parameter in a Quantulus is the Spectral Quench Parameter of the External Standard (SQP(E)), which is defined as the number of channel under which lies the 99% of Compton spectrum generated by a gamma emitter ({sup 152}Eu). Although in the literature one usually finds a polynomial fitting of the alpha counting efficiency, it is shown here that an exponential function is a better description. - Highlights: • We have studied the quenching in alpha measurement by liquid scintillation counting. • We have reviewed typical fitting of alpha counting efficiency versus quenching parameter. • Exponential fitting of data is proposed as better fitting. • We consider exponential fitting has a physical basis.

  3. A 4π scintillation counter-optical spark chamber system for neutral particles

    International Nuclear Information System (INIS)

    Demarzo, C.; Distante, A.; Guerriero, L.; Niccolini, C.; Posa, F.; Walder, F.; Chen, G.T.Y.; Fletcher, C.R.; Lanou, R.E. Jr.; Thornton, R.K.; Barton, D.S.; Lyons, T.; Marx, M.; Rosenson, L.; Thern, R.

    1975-01-01

    The authors describe a scintillation counter-optical spark chamber system developed for the detection of high energy gamma rays and neutrons. They describe the system components and their use in two completed experiments. (Auth.)

  4. Liquid scintillation counting of chlorophyll

    International Nuclear Information System (INIS)

    Fric, F.; Horickova, B.; Haspel-Horvatovic, E.

    1975-01-01

    A precise and reproducible method of liquid scintillation counting was worked out for measuring the radioactivity of 14 C-labelled chlorophyll a and chlorophyll b solutions without previous bleaching. The spurious count rate caused by luminescence of the scintillant-chlorophyll system is eliminated by using a suitable scintillant and by measuring the radioactivity at 4 to 8 0 C after an appropriate time of dark adaptation. Bleaching of the chlorophyll solutions is necessary only for measuring of very low radioactivity. (author)

  5. The determination of Pu-241 by liquid scintillation counting in liquid effluents of the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Godoy, J.M.; Schuettelkopf, H.; Pimpl, M.

    1983-04-01

    A procedure was developed to measure Pu-241 by liquid scintillation counting. Sample preparation was performed by electroplating of plutonium on stainless steel planchets. To correct the selfabsorption, the linear dependence of counting efficiency in the liquid scintillation counter from the resolution in the alpha spectrometer was used. Pu-238, Pu-239+240 and Pu-241 were measured in the liquid effluents of the Karlsruhe Nuclear Research Center (KfK). The concentrations in monthly mixed samples ranged from 0.07 until 46 nCi Pu-238/m 3 , from 0.13 until 2.1 nCi Pu-239+240/m 3 and from 25 until 190 nCi Pu-241/m 3 . Between 5.4% and 41% of the plutonium content of the KfK waste water are released to the River Old Rhine. The values for the activity ratio Pu-238/Pu-239+240 are between 0.39 and 1.1 and for Pu-241/Pu-239+240 are between 11 and 300. The mean value for Pu-241/Pu-239+240 is 61. The dose exposure of the environmental population of the Karlsruhe Nuclear Research Center caused by released Pu-241 is negligible low. (orig./HP) [de

  6. The determination of Pu-241 by liquid scintillation counting in gaseous effluents of an incineration facility, FERAB, and the Karlsruhe Nuclear Reprocessing Plant, WAK

    International Nuclear Information System (INIS)

    Godoy, J.M.; Schuettelkopf, H.

    1983-03-01

    Although the concentration of Pu-241 in nuclear fuel to be reprocessed is high, there are only few results published about the emission of Pu-241 with gaseous and liquid effluents. Nearly no information is available, too, about the environmental contamination of nuclear installations by Pu-241. Therefore a procedure was developed to measure Pu-241 by liquid scintillation counting. Sample preparation was performed by electroplating of plutonium on stainless steel planchets. To correct the selfabsorption the linear dependence of counting efficiency in the liquid scintillation counter and the resolution in the α-spectrometer was used. (orig./HP) [de

  7. Preparation of 'dead water' for low background liquid scintillation counting

    International Nuclear Information System (INIS)

    Morishima, Hiroshige; Koga, Taeko; Niwa, Takeo; Kawai, Hiroshi

    1987-01-01

    'Dead water', low level tritiated water is indispensable to measure tritium concentration in environmental waters using a low background liquid scintillation counter. Water produced by combustion of natural gas, or deep sea water etc. are usually used for the above purpose. A new method of reducing tritium concentration in natural water has been introduced for preparation of 'dead water'. This method is to combine hydrogen-oxygen mixture produced by water electrolysis with hopcalite catalyzer at 700 deg C. Deep well water was electrolized up to 2/3 volume, and tritium concentration of recombined water was reduced to be about one third of that of the original one. (author)

  8. Physical properties of the TOF (time of flight) scintillation counters of DELPHI

    International Nuclear Information System (INIS)

    Benlloch, J.M.; Castillo, M.V.; Ferrer, A.; Fuster, J.; Higon, E.; Llopis, A.; Salt, J.; Sanchez, E.; Sanchis, E.; Silvestre, E.; Cuevas, J.

    1990-01-01

    In this paper we report the physical properties of the time of flight (TOF) scintillator counters used for the DELPHI Experiment at CERN. We discuss the different choices studied for the wrapping of the counters in order to obtain best efficiencies for light transmission. A very good agreement of the performances of the counters has been found with the results of an original Monte Carlo program. The main characteristics of the TOF counters of DELPHI are: an effective light attenuation length of 135 cm, effective light speed of 15.91 cm/ns, a time resolution of 1.2 ns, and an efficiency for detection of minimum ionizing particles of 99.9%. (orig.)

  9. Pulse shape discrimination with scintillation detectors

    International Nuclear Information System (INIS)

    Winyard, R.A.

    A quantitative study of pulse shape discrimination with scintillation counters has been undertaken using a crossover timing technique. The scintillators investigated included experimental and commercial liquids and plastics in addition to inorganic phosphors. The versatility of the pulse shape discrimination system has been demonstrated by extending the measurements to investigate phoswiches and liquids loaded with radioactive materials and by its application to the suppression of unwanted backgrounds in delayed coincidence counting for the measurement of nuclear half-lives and isotope identification have been carried out. (author)

  10. Large liquid-scintillator trackers for neutrino experiments

    CERN Document Server

    Benussi, L; D'Ambrosio, N; Déclais, Y; Dupraz, J P; Fabre, Jean-Paul; Fanti, V; Forton, E; Frekers, D; Frenkel, A; Girerd, C; Golovkin, S V; Grégoire, G; Harrison, K; Jonkmans, G; Jonsson, P; Katsanevas, S; Kreslo, I; Marteau, J; Martellotti, G; Martínez, S; Medvedkov, A M; Moret, G; Niwa, K; Novikov, V; Van Beek, G; Penso, G; Vasilchenko, V G; Vuilleumier, J L; Wilquet, G; Zucchelli, P; Kreslo, I E

    2002-01-01

    Results are given on tests of large particle trackers for the detection of neutrino interactions in long-baseline experiments. Module prototypes have been assembled using TiO$_2$-doped polycarbonate panels. These were subdivided into cells of $\\sim 1$~cm$^2$ cross section and 6~m length, filled with liquid scintillator. A wavelength-shifting fibre inserted in each cell captured a part of the scintillation light emitted when a cell was traversed by an ionizing particle. Two different fibre-readout systems have been tested: an optoelectronic chain comprising an image intensifier and an Electron Bombarded CCD (EBCCD); and a hybrid photodiode~(HPD). New, low-cost liquid scintillators have been investigated for applications in large underground detectors. Testbeam studies have been performed using a commercially available liquid scintillator. The number of detected photoelectrons for minimum-ionizing particles crossing a module at different distances from the fibre readout end was 6 to 12 with the EBCCD chain and ...

  11. Low level liquid scintillation analysis for environmental and biomedical quantitation

    International Nuclear Information System (INIS)

    Kessler, M.J.

    1991-01-01

    Over the past five years low level liquid scintillation counting has become increasing popular because of the large number of applications which can be performed using this technique. These applications include environmental monitoring ( 3 H, 90 Sr/ 90 Y, etc.), radiocarbon dating (for age determination to 50,000 years), food adulteration studies (alcohol and beverage industries), radon monitoring (air/water), nuclear power plant monitoring (low level 3 H) and metabolism studies (pharmaceutical research). These applications can be performed with either a dedicated low level LSC or using a standard liquid scintillation counter in conjunction with the new technique of time-resolved LSC (TR-LSC). This technique when used on a standard LSC reduces the instrument background without substantially effecting the background, thus increasing the performance (E 2 /B) of the LSC. Data will be presented for each of the applications mentioned above, comparing the standard LSC and the new TR-LSC techniques. The optimization of the samples for each of these applications will be explored in detail with experimental results. In conclusion, by using the TR-LSC technique in conjunction with a standard LSC the performance of the standard LSC can be increased substantially without dedicating the LSC to doing only low level samples

  12. Liquid emulsion scintillators which solidify for facile disposal

    International Nuclear Information System (INIS)

    O'Brien, R.E.; Krieger, J.K.

    1981-01-01

    A liquid organic scintillation cocktail is described which counts solutions of radiolabelled compounds containing up to ten % by volume of water with high efficiency and is readily polymerizable to a solid for easy disposal. The cocktail comprises a polymerizable organic solvent, a solubilizing agent, an intermediate solvent, and an organic scintillator. A method of disposing of liquid organic scintillation cocktail waste and a kit useful for practising the method are also described. (U.K.)

  13. The effect of volume and quenching on estimation of counting efficiencies in liquid scintillation counting

    International Nuclear Information System (INIS)

    Knoche, H.W.; Parkhurst, A.M.; Tam, S.W.

    1979-01-01

    The effect of volume on the liquid scintillation counting performance of 14 C-samples has been investigated. A decrease in counting efficiency was observed for samples with volumes below about 6 ml and those above about 18 ml when unquenched samples were assayed. Two quench-correction methods, sample channels ratio and external standard channels ratio, and three different liquid scintillation counters, were used in an investigation to determine the magnitude of the error in predicting counting efficiencies when small volume samples (2 ml) with different levels of quenching were assayed. The 2 ml samples exhibited slightly greater standard deviations of the difference between predicted and determined counting efficiencies than did 15 ml samples. Nevertheless, the magnitude of the errors indicate that if the sample channels ratio method of quench correction is employed, 2 ml samples may be counted in conventional counting vials with little loss in counting precision. (author)

  14. New liquid scintillators for fiber-optic applications

    International Nuclear Information System (INIS)

    Lutz, S.S.; Franks, L.A.; Flournoy, J.M.; Lyons, P.B.

    1981-01-01

    New long-wavelength-emitting, high-speed, liquid scintillators have been developed and tailored specifically for plasma diagnostic experiments employing fiber optics. These scintillators offer significant advantages over commercially available plastic scintillators in terms of sensitivity and bandwidth. FWHM response times as fast as 350 ps have been measured. Emission spectra, time response data, and relative sensitivity information are presented

  15. Liquid scintillation counting system with automatic gain correction

    International Nuclear Information System (INIS)

    Frank, R.B.

    1976-01-01

    An automatic liquid scintillation counting apparatus is described including a scintillating medium in the elevator ram of the sample changing apparatus. An appropriate source of radiation, which may be the external source for standardizing samples, produces reference scintillations in the scintillating medium which may be used for correction of the gain of the counting system

  16. Investigations of X-ray response of single wire anode Ar-N2 flow type gas scintillation proportional counters

    International Nuclear Information System (INIS)

    Garg, S.P.; Sharma, R.C.

    1984-01-01

    The X-ray response of single wire anode gas scintillation proportional counters of two different geometries operated with argon+nitrogen gases in continuous flow has been investigated with wire anodes of diameters 25 μm to 1.7 mm. An energy resolution of 19% is obtained for 5.9 keV X-rays entering the counter perpendicular to the anode in pill-box geometry with 25 μm diameter anode. With cylindrical geometry counters energy obtained at 5.9 keV are 18%, 24% and 33% for 50 μm, 0.5 mm and 1.7 mm diameter anodes respectively. An analysis of the observed resolution shows that the contribution from photon counting statistics to the relative variance of scintillation pulses even for X-rays in Ar-N 2 single wire anode gas scintillation proportional counters is small and is not a limiting factor. The energy resolution with thicker anodes, where the contribution from the variance of the charge multiplication factor also has been minimised, is found to deteriorate mainly by the interaction in the scintillation production region. Comments are made on the possibility of improvement in energy resolution by suppression of pulses due to such interactions with the help of the pulse risetime discrimination technique. (orig.)

  17. Relation between the measured results of radon concentration in ground water by liquid scintillation counter and the geology in Aichi Prefecture

    International Nuclear Information System (INIS)

    Shimizu, Michihiko; Onuma, Akiko; Chaya, Kunio; Hamamura, Norikatsu

    1982-01-01

    The radon ( 222 Rn) concentrations in ground water were measured by the liquid scintillation counter (LSC) method at 47 points in Aichi Prefecture. Then, the relation between the distribution of measured radon concentrations and the geology in the prefecture was examined. The areas with high radon concentration are located in the granite zones of the pre-Cenozoic era (the Mikawa mountainous region) and the average concentration was 35.5 +- 43.3 ( x 10 - 10 Ci Rn/l) (n = 22). The areas with low concentration are located in the sedimentary formation zones (the Nobi plain, Chita Peninsula), and the average concentration was 3.5 +- 3.0 ( x 10 - 10 Ci Rn/l) (n = 20). The secular changes in radon concentration in ultra deep ground waters of 1,000 m or more were investigated at eith points in the Nobi plain for seven years from 1975 to 1981. The coefficients of variation at Sobue and Dai-Nagoya hot springs were stable 4.7% and 6.8%, respectively, showing no secular changes. (J.P.N.)

  18. Relation between the measured results of radon concentration in ground water by liquid scintillation counter and the geology in Aichi Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, M.; Onuma, A.; Chaya, K.; Hamamura, N. (Aichi Prefectural Inst. of Public Health, Nagoya (Japan))

    1982-01-01

    The radon (/sup 222/Rn) concentrations in ground water were measured by the liquid scintillation counter (LSC) method at 47 points in Aichi Prefecture. Then, the relation between the distribution of measured radon concentrations and the geology in the prefecture was examined. The areas with high radon concentration are located in the granite zones of the pre-Cenozoic era (the Mikawa mountainous region) and the average concentration was 35.5 +- 43.3 ( x 10/sup -10/ Ci Rn/l) (n = 22). The areas with low concentration are located in the sedimentary formation zones (the Nobi plain, Chita Peninsula), and the average concentration was 3.5 +- 3.0 ( x 10/sup -10/ Ci Rn/l) (n = 20). The secular changes in radon concentration in ultra deep ground waters of 1,000 m or more were investigated at eight points in the Nobi plain for seven years from 1975 to 1981. The coefficients of variation at Sobue and Dai-Nagoya hot springs were stable 4.7% and 6.8%, respectively, showing no secular changes.

  19. Tritium Activity Measurement of Water Samples Using Liquid Scintillation Counter and Electrolytical Enrichment

    International Nuclear Information System (INIS)

    Baresic, J.; Krajcar Bronic, I.; Horvatincic, N.; Obelic, B.; Sironic, A.; Kozar-Logar J.

    2011-01-01

    Tritium (3H) activity of natural waters (precipitation, groundwater, surface waters) has recently become too low to be directly measured by low-level liquid scintillation (LSC) techniques. It is therefore necessary to perform electrolytical enrichment of tritium in such waters prior to LSC measurements. Electrolytical enrichment procedure has been implemented at the Rudjer Boskovic Institute (RBI) Tritium Laboratory in 2008, and since then 19 electrolyses have been completed. The mean enrichment factor E (a ratio between the final and initial 3H activities) after stabilisation of the system is E R BI = 22.5 @ 0.5, and the mean enrichment parameter (which describes the process of water mass reduction during electrolysis) is P R BI 0.949 @ 0.003. These values are comparable with those obtained at the Jo@ef Stefan Institute (JSI) Laboratory for liquid scintillation counting, at the electrolysis equipment of the same producer (AGH University of Science and Technology, Krakow, Poland) after 66 electrolyses carried out under identical conditions since 2007: E J SI = 18.9 @ 1.5, and P J SI = 0.896 @ 0.021. Both RBI and JSI laboratories have Ultra-low-level LSC Quantulus 1220 (Wallac, PerkinElmer) for measurement of 3H activity. A set of water samples having 3H activities in the range from 0 TU (''dead-water'' samples) to 18 000 TU (1 TU 0.118 Bq/L) were measured at both laboratories. Samples having 3H activity <200 TU were electrolytically enriched, while the others were measured directly in LSC. A very good agreement was obtained (correlation coefficient 0.991). Both laboratories participated in the IAEA TRIC2008 international intercomparison exercise. The analyses of reported 3H activity results in terms of z and u parameters showed that all results in both laboratories were acceptable. (author)

  20. Study of micro pixel photon counters for a high granularity scintillator-based hadron calorimeter

    International Nuclear Information System (INIS)

    D'Ascenzo, N.; Eggemann, A.; Garutti, E.

    2007-11-01

    A new Geiger mode avalanche photodiode, the Micro Pixel Photon Counter (MPPC), was recently released by Hamamatsu. It has a high photo-detection efficiency in the 420 nm spectral region. This product can represent an elegant candidate for the design of a high granularity scintillator based hadron calorimeter for the International Linear Collider. In fact, the direct readout of the blue scintillation photons with a MPPC is a feasible techological solution. The readout of a plastic scintillator by a MPPC, both mediated by the traditional wavelength shifting fiber, and directly coupled, has been systematically studied. (orig.)

  1. Discriminator setting and cocktail preparation for analysis of alpha and beta emitters in aqueous solution using liquid scintillation counter

    International Nuclear Information System (INIS)

    Zaini Hamzah; Masitah Alias; Zaharudin Ahmad

    2011-01-01

    Liquid scintillation counting (LSC) is not only being used to measure pure beta emitters, but it can be used to measure both alpha and beta emitters simultaneously. Measurement of alpha and beta emitters in aqueous solution is done using a single sample. For the sample preparation, colorless detergent or emulsifier was used to incorporate the water into an organic based scintillator to produce a clear homogeneous solution, since this is the best form to give the highest count rate and detection efficiency. The instrument also need some attention, where after calibration, the LSC was set for the discriminator level which is suitable for measurement of both alpha and beta radiations. In this study, the focus is on the development of the best scintillation cocktail and establishes the best discriminator setting. From this study the best proportion of scintillation cocktail is 2:4:4 for water, toluene, and Triton-N101 (emulsifier) respectively and the best discriminator setting for alpha and beta counting are 120. (author)

  2. An efficient energy response model for liquid scintillator detectors

    Science.gov (United States)

    Lebanowski, Logan; Wan, Linyan; Ji, Xiangpan; Wang, Zhe; Chen, Shaomin

    2018-05-01

    Liquid scintillator detectors are playing an increasingly important role in low-energy neutrino experiments. In this article, we describe a generic energy response model of liquid scintillator detectors that provides energy estimations of sub-percent accuracy. This model fits a minimal set of physically-motivated parameters that capture the essential characteristics of scintillator response and that can naturally account for changes in scintillator over time, helping to avoid associated biases or systematic uncertainties. The model employs a one-step calculation and look-up tables, yielding an immediate estimation of energy and an efficient framework for quantifying systematic uncertainties and correlations.

  3. Pulse-duration discrimination for increasing counting characteristic plateau and for improving counting rate stability of a scintillation counter

    International Nuclear Information System (INIS)

    Kuz'min, M.G.

    1977-01-01

    For greater stability of scintillation counters operation, discussed is the possibility for increasing the plateau and reducing its slope. Presented is the circuit for discrimination of the signal pulses from input pulses of a photomultiplier. The counting characteristics have been measured with the scintillation detectors being irradiated by different gamma sources ( 60 Co, 137 Cs, 241 Am) and without the source when the scintillation detector is shielded by a tungsten cylinder with a wall thickness of 23 mm. The comparison has revealed that discrimination in duration increase the plateau and reduces its slope. Proceeding from comparison of the noise characteristics, the relationship is found between the noise pulse number and gamma radiation energy. For better stability of the counting rate it is suggested to introduce into the scintillation counter the circuit for duration discrimination of the output pulses of a photomultiplier

  4. Liquid scintillation cocktails comparison for tritium contamination measurements

    International Nuclear Information System (INIS)

    Bazzarri, S.; Belloni, P.

    1996-01-01

    Liquid scintillation counting is one of the most used techniques for the measurements of tritium contamination. Until few years ago a problem related to this kind of measurement was the potential toxicity of the liquid cocktails used to produce the required scintillation. Some new products that guarantee an almost negligible impact on the environment and that are no longer toxic for the operators are now available. Some of this new scintillation cocktail are suitable to be used for tritium measurement. Due to the great benefit from the health point of view of these new materials a test of their scintillation performance has been done at the ENEA centers to select the product having the best characteristics for tritium measurement. (author)

  5. New scintillating media based on liquid crystals for particle detectors

    International Nuclear Information System (INIS)

    Barnik, M.I.; Yudin, S.G.; Vasil'chenko, V.G.; Golovkin, S.V.; Medvedkov, A.M.; Solovjev, A.S.

    2000-01-01

    The study results of optical, photoluminiscent and scintillation properties of a liquid crystal 4-pentyl-4'-cyanobiphenyl are presented. The scintillation light output of this liquid crystal is about 35% of crystal anthracene, its main decay time constants are 4 and 14 ns, and the maximum of light emission spectrum is about 400 nm. The light output of a dissolution of green emitting light scintillation dopant R6 in the liquid crystal is about 120% of crystal anthracene. The light output of the frozen dissolution measured at -112 deg. C is about 2.5 times higher as observed at +20 deg. C. In the uniaxially oriented liquid crystal, the predominant intensity direction of emitted light is pointed perpendicular to the liquid crystal director and an appreciable part of the emitted light is elliptically polarized. The possibility to use scintillation properties of liquid crystals is considered both for the improvement of existing particle detector characteristics and for the creation of new gated particle detectors

  6. New scintillating media based on liquid crystals for particle detectors

    CERN Document Server

    Barnik, M I; Vasilchenko, V G; Golovkin, S V; Medvedkov, A M; Soloviev, A S

    2000-01-01

    The study results of optical, photoluminiscent and scintillation properties of a liquid crystal 4-pentyl-4'-cyanobiphenyl are presented. The scintillation light output of this liquid crystal is about 35% of crystal anthracene, its main decay time constants are 4 and 14 ns, and the maximum of light emission spectrum is about 400 nm. The light output of a dissolution of green emitting light scintillation dopant R6 in the liquid crystal is about 120% of crystal anthracene. The light output of the frozen dissolution measured at -112 deg. C is about 2.5 times higher as observed at +20 deg. C. In the uniaxially oriented liquid crystal, the predominant intensity direction of emitted light is pointed perpendicular to the liquid crystal director and an appreciable part of the emitted light is elliptically polarized. The possibility to use scintillation properties of liquid crystals is considered both for the improvement of existing particle detector characteristics and for the creation of new gated particle detectors.

  7. Optics study of liquid scintillation counting systems; Estudio de la Optica en sistemas de medida por centelle liquido

    Energy Technology Data Exchange (ETDEWEB)

    Duran Ramiro, M. T.; Garcia-Torano, E.

    2005-07-01

    Optics is a key issue in the development of any liquid scintillation counting (LSC) system. Light emission in the scintillating solution, transmission through the vial and reflector design are some aspects that need to be considered in detail. This paper describes measurements and calculations carried out to optimise these factors for the design of a new family of LSC counters. Measurements of the light distribution emitted by a scintillation vial were done by autoradiographs of cylindrical vials made of various materials and results were compared to those obtained by direct measurements of the light distribution made by scanning the vial with a photomultiplier tube. Calculations were also carried out to study the light transmission in the vial and the optimal design of the reflector for a system with one photomultiplier tube. (Author)

  8. Direct current stabilization of scintillation counters used for uranium prospecting

    International Nuclear Information System (INIS)

    Fraser, H.J.

    1976-01-01

    A simple system for stabilizing a scintillation counter is described which uses a dc light source (a green light emitting diode) to illuminate the photo-cathode of the photomultiplier used to detect γ-induced light pulses from the scintillator. Basically, the photomultiplier anode current due to the light emitting diode light is held constant by an automatic control loop acting on the eht voltage to keep the gain of the photomultiplier tube constant. However, because the temperature coefficient of the scintillator does not in general match that of the light emitting diode, further compensation is required to achieve constant γ pulse gain. This is provided by adding to the control circuit a current derived from the light emitting diode voltage which is an excellent measure of temperature; the use of this technique results in gain constancy to within +-1% in the 10-50 0 C ambient temperature range. Noise and countrate limitations are discussed and it is concluded that the system is generally applicable to uranium prospecting equipment. (Auth.)

  9. Generalization of the development of liquid-sparkling counter

    International Nuclear Information System (INIS)

    Bian Zhengzhu; Zhang Jue; Zhang Jinwei

    2006-01-01

    This paper includes five parts. It not only reviews the development history of liquid-sparkling counter but refers that the appearance of coincident circuit is its milestone. The paper summarizes the resembled hard ware and soft ware and soft ware of liquid-sparkling counter of indoor and overseas, and prospects the development of liquid-sparkling counter in our country. (authors)

  10. Measuring the emulsion stability in Cherenkov radiation with insignificant modification of a liquid scintillation spectrometer

    International Nuclear Information System (INIS)

    Wiechen, A.; Lorenzen, P.Ch.; Reimerdes, E.H.

    1984-01-01

    A method is described by which the stability of emulsions can be measured by a modified liquid scintillation counter. The 226 Ra external standard source of a commercially available equipment, fixed in the measuring position, is used for the production of Cherenkov radiation in a sample of an emulsion. This Cherenkov radiation is absorbed by the sample due to its turbidity. The turbidity of emulsions follows a typical course with time designated as creaming-up-curve. These curves can be registered automatically in digital form. (author)

  11. An efficient anticoincidence counter

    CERN Multimedia

    1977-01-01

    This scintillation counter (about 25 cm diameter) was prepared at CERN for an experiment at the Saclay 600 MeV electron linac studying molecular processes originated in liquid hydrogen by muons. The counter is meant to surround the target and detect charged particles emerging from the hydrogen. The experiment was a CERN-Saclay collaboration which used the linac so as to take advantage of the time structure of the electron beam(see CERN Courier Sep 1977 and J. Bardin et al. Phys. Lett. B104 (1981) 320)

  12. Radiocarbon dating of archaeological samples (sambaqui) using CO(2) absorption and liquid scintillation spectrometry of low background radiation.

    Science.gov (United States)

    Mendonça, Maria Lúcia T G; Godoy, José M; da Cruz, Rosana P; Perez, Rhoneds A R

    2006-01-01

    Sambaqui means, in the Tupi language, a hill of shells. The sambaquis are archaeological sites with remains of pre-historical Brazilian occupation. Since the sambaqui sites in the Rio de Janeiro state region are older than 10,000 years, the applicability of CO(2) absorption on Carbo-sorb and (14)C determination by counting on a low background liquid scintillation counter was tested. In the present work, sambaqui shells were treated with H(3)PO(4) in a closed vessel in order to generate CO(2). The produced CO(2) was absorbed on Carbo-sorb. On saturation about 0.6g of carbon, as CO(2), was mixed with commercial liquid scintillation cocktail (Permafluor), and the (14)C activity determined by counting on a low background counter, Packard Tricarb 3170 TR/SL, for a period of 1000 mins to enable detection of a radiocarbon age of 22,400 BP. But only samples with ages up to 3500 BP were submitted to the method because the samples had been collected in the municipality of Guapimirim, in archaeological sambaqui-type sites belonging to this age range. The same samples were sent to the (14)C Laboratory of the Centro de Energia Nuclear na Agricultura (CENA/USP) where similar results were obtained.

  13. Performance of multiclad scintillating and clear waveguide fibers read out with visible light photon counters

    Energy Technology Data Exchange (ETDEWEB)

    Baumbaugh, B. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Erdman, J. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Gaskell, D. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Lu, Q. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Marchant, J. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Ruchti, R. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Wayne, M. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Cooper, C. (Department of Physics, Purdue University, West Lafayette, IN 47907 (United States)); Hinson, J. (Department of Physics, Purdue University, West Lafayette, IN 47907 (United States)); Koltick, D.S. (Department of Physics, Purdue University, West Lafayette, IN 47907 (United State

    1994-06-15

    Measurements have been made of the performance of scintillating fibers read out with visible light photon counters (VLPCs). The light yields of single-clad and multiclad scintillating fibers have been compared. The experiment consisted of 3 m long scintillating fibers of 830 [mu]m diameter optically coupled to 8 m long waveguide fibers of 965 [mu]m diameter read out with HISTE-IV VLPCs. For the case of multiclad scintillating fiber and waveguide, an average of 6.2 photoelectrons was detected from the far end of the scintillating fiber if the fiber end was unmirrored, and 10.2 photoelectrons if the fiber end was mirrored. With this substantial photoelectron yield, minimum-ionizing tracks can be easily detected in fiber arrays, and excellent performance characteristics are expected for the fiber trackers designed for the D0 experiment at the Fermilab Tevatron Collider and the SDC experiment at the SSC Laboratory. ((orig.))

  14. A sub-boiling distillation method for the preparation of low carbon content water from urine samples for tritium measurement by liquid scintillation counting

    International Nuclear Information System (INIS)

    Nogawa, Norio; Makide, Yoshihiro

    1999-01-01

    A new preparation method was developed for obtaining low carbon content water from urine samples for the measurement of tritium by a liquid scintillation counter. The method uses a simple and convenient subboiling distillation bottle. Many urine samples have been purified by this method and the change of tritium level in a tritium-handling radiation-worker was observed

  15. Performance of Water-Based Liquid Scintillator: An Independent Analysis

    Directory of Open Access Journals (Sweden)

    D. Beznosko

    2014-01-01

    Full Text Available The water-based liquid scintillator (WbLS is a new material currently under development. It is based on the idea of dissolving the organic scintillator in water using special surfactants. This material strives to achieve the novel detection techniques by combining the Cerenkov rings and scintillation light, as well as the total cost reduction compared to pure liquid scintillator (LS. The independent light yield measurement analysis for the light yield measurements using three different proton beam energies (210 MeV, 475 MeV, and 2000 MeV for water, two different WbLS formulations (0.4% and 0.99%, and pure LS conducted at Brookhaven National Laboratory, USA, is presented. The results show that a goal of ~100 optical photons/MeV, indicated by the simulation to be an optimal light yield for observing both the Cerenkov ring and the scintillation light from the proton decay in a large water detector, has been achieved.

  16. Radioactive flow detectors: liquid or solid scintillators

    International Nuclear Information System (INIS)

    Reich, A.R.

    1983-01-01

    During the past five years, two schools of thought have emerged producing two different types of radio-HPLC detectors. Based on the naphthalene-in-the-vial principle, manufacturers have developed heterogeneous scintillation detectors. In these detectors the anthracene or naphthalene crystals are replaced by other scintillators. In order to avoid dead space and turbulence, a narrow diameter tube is used, either straight, or more popularly formed into a coil or a 'U' as the cell. To optimize light transmission to the photomultiplier tubes, mirrors are used. Due to limiting factors in this technique the counting efficiency for tritium is below the 10 percent level. The other school of radio-HPLC detectors based their design on classical liquid scintillation counting technology. In a homogeneous detector, the effluent from the HPLC system is mixed with a suitable liquid scintillator before entering the counting cell. The cell design is typically a flat glass or Teflon coil tightly sandwiched between two photomultiplier tubes, making good optical contact without the use of mirrors. Depending on the chromatographic effluent, 3 H efficiencies between 25 to 50 percent, and 14 C counting efficiencies up to 85 percent can be achieved

  17. Comparison of triple to double coincidence ratio and Quench Parameter External methods for the determination of 3H efficiency by liquid scintillation counting

    International Nuclear Information System (INIS)

    Nisti, M.B.; Saueia, C.H.R.; Mazzilli, B.P.

    2013-01-01

    The aim of this study is to determine the tritium efficiency by liquid scintillation counting using two methodologies, Quench Parameter External (QPE) and Triple to Double Coincidence Ratio (TDCR), and to compare the results. The equipment used was the HIDEX model 300-SL Liquid Scintillation Counter, composed of three photomultipliers coupled with coincidence pulses, discrimination level and Mikro Win 2000 software. The efficiency varied from 0.028 to 0.706 cps dps -1 for QPE and from 0.061 to 0.703 cps dps -1 for TDCR. Different efficiencies were obtained using both methods, in the range from 459 to 572 quenching, above this range the efficiencies were similar. The verification of the efficiencies was performed by participating in the Intercomparison National Program (PNI). (author)

  18. Near-infrared scintillation of liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T. [Fermilab; Escobar, C. O. [Campinas State U.; Lippincott, W. H. [Fermilab; Rubinov, P. [Fermilab

    2016-03-03

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  19. New advanced in alpha spectrometry by liquid scintillation methods

    International Nuclear Information System (INIS)

    McDowell, W.J.; Case, G.N.

    1979-01-01

    Although the ability to count alpha particles by liquid scintillation methods has been long recognized, limited use has been made of the method because of problems of high background and alpha energy identification. In recent years some new developments in methods of introducing the alpha-emitting nuclide to the scintillator, in detector construction, and in electronics for processing the energy analog and time analog signals from the detector have allowed significant alleviation of the problems of alpha spectrometry by liquid scintillation. Energy resolutions of 200 to 300 keV full peak width at half maximum and background counts of 99% of all beta plus gamma interference is now possible. Alpha liquid scintillation spectrometry is now suitable for a wide range of applications, from the accurate quantitative determination of relatively large amounts of known nuclides in laboratory-generated samples to the detection and identification of very small, subpicocurie amounts of alpha emitters in environmental-type samples. Suitable nuclide separation procedures, sample preparation methods, and instrument configurations are available for a variety of analyses

  20. A large liquid scintillator detector for a long baseline neutrino oscillation experiment

    International Nuclear Information System (INIS)

    Border, P.; Cushman, P.; Heller, K.; Maxam, D.; Nelson, J.K.; Ruddick, K.; Rusack, R.; Schwienhorst, R.; Berg, T.; Chase, T.; Hansen, M.; Bower, C.; Hatcher, R.; Heinz, R.; Miller, L.; Mufson, S.

    2001-01-01

    We present the concept and design of a liquid scintillator detector for a long-baseline neutrino oscillation experiment. Neutrinos interact in 2.5 cm thick steel plates alternating with 2.0 cm thick planes of liquid scintillator. The scintillator is contained in multicell PVC extrusions containing individual 2 cmx3 cm cells up to 8 m long. Readout of the scintillation light is via wavelength-shifting fibers which transport light to pixellated photodetectors at one end of the cells

  1. Calculations and measurements of the scintillator-to-water stopping power ratio of liquid scintillators for use in proton radiotherapy

    International Nuclear Information System (INIS)

    Scott Ingram, W.; Robertson, Daniel; Beddar, Sam

    2015-01-01

    Liquid scintillators are a promising detector for high-resolution three-dimensional proton therapy dosimetry. Because the scintillator comprises both the active volume of the detector and the phantom material, an ideal scintillator will exhibit water equivalence in its radiological properties. One of the most fundamental of these is the scintillator’s stopping power. The objective of this study was to compare calculations and measurements of scintillator-to-water stopping power ratios to evaluate the suitability of the liquid scintillators BC-531 and OptiPhase HiSafe 3 for proton dosimetry. We also measured the relative scintillation output of the two scintillators. Both calculations and measurements show that the linear stopping power of OptiPhase is significantly closer to water than that of BC-531. BC-531 has a somewhat higher scintillation output. OptiPhase can be mixed with water at high concentrations, which further improves its scintillator-to-water stopping power ratio. However, this causes the solution to become cloudy, which has a negative impact on the scintillation output and spatial resolution of the detector. OptiPhase is preferred over BC-531 for proton dosimetry because its density and scintillator-to-water stopping power ratio are more water equivalent

  2. Scintillator counters with multi-pixel avalanche photodiode readout for the ND280 detector of the T2K experiment

    International Nuclear Information System (INIS)

    Mineev, O.; Afanasjev, A.; Bondarenko, G.; Golovin, V.; Gushchin, E.; Izmailov, A.; Khabibullin, M.; Khotjantsev, A.; Kudenko, Yu.; Kurimoto, Y.; Kutter, T.; Lubsandorzhiev, B.; Mayatski, V.; Musienko, Yu.; Nakaya, T.; Nobuhara, T.; Shaibonov, B.A.J.; Shaikhiev, A.; Taguchi, M.; Yershov, N.; Yokoyama, M.

    2007-01-01

    The Tokai-to-Kamioka (T2K) experiment is a second generation long baseline neutrino oscillation experiment which aims at a sensitive search for ν e appearance. The main design features of the T2K near neutrino detectors located at 280m from the target are presented, and the scintillator counters are described. The counters are readout via WLS fibers embedded into S-shaped grooves in the scintillator from both ends by multi-pixel avalanche photodiodes operating in a limited Geiger mode. Operating principles and results of tests of photosensors with a sensitive area of 1mm 2 are presented. A time resolution of 1.75ns, a spatial resolution of 9.9-12.4cm, and a detection efficiency for minimum ionizing particles of more than 99% were obtained for scintillator detectors in a beam test

  3. Temperature quenching in LAB based liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, A.; Zuber, K. [Technische Universitaet Dresden, Institute for Nuclear- and Particle Physics, Dresden (Germany); Hans, S.; Yeh, M. [Brookhaven National Laboratory, Chemistry Devision, Upton, NY (United States); Junghans, A.R.; Koegler, T.; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Krosigk, B. v. [Technische Universitaet Dresden, Institute for Nuclear- and Particle Physics, Dresden (Germany); University of British Columbia, Department of Physics and Astronomy, Vancouver, BC (Canada); Lozza, V. [Technische Universitaet Dresden, Institute for Nuclear- and Particle Physics, Dresden (Germany); Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Lisboa (Portugal)

    2018-01-15

    The effect of temperature changes on the light output of LAB based liquid scintillator is investigated in a range from -5 to 30 C with α-particles and electrons in a small scale setup. Two PMTs observe the scintillator liquid inside a cylindrically shaped aluminum cuvette that is heated or cooled and the temperature dependent PMT sensitivity is monitored and corrected. The α-emitting isotopes in dissolved radon gas and in natural Samarium (bound to a LAB solution) excite the liquid scintillator mixtures and changes in light output with temperature variation are observed by fitting light output spectra. Furthermore, also changes in light output by compton electrons, which are generated from external calibration γ-ray sources, is analysed with varying temperature. Assuming a linear behaviour, a combined negative temperature coefficient of (-0.29 ± 0.01)%/ C is found. Considering hints for a particle type dependency, electrons show (-0.17 ± 0.02)%/ C, whereas the temperature dependency seems stronger for α-particles, with (-0.35 ± 0.03)%/ C. Due to a high sampling rate, a pulse shape analysis can be performed and shows an enhanced slow decay component at lower temperatures, pointing to reduced non-radiative triplet state de-excitations. (orig.)

  4. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120\\,GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions and reflective coating mixtures, fiber diameters, and photosensor sizes. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R\\&D program.

  5. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Science.gov (United States)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120 GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions, reflective coating mixtures, and fiber diameters. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R&D program.

  6. Study of absorption and re-emission processes in a ternary liquid scintillation system

    International Nuclear Information System (INIS)

    Xiao Hualin; Wang Naiyan; Li Xiaobo; Cao Jun; Wen Liangjian; Zheng Dong

    2010-01-01

    Liquid scintillators are widely used as the neutrino target in neutrino experiments. The absorption and emission of different components of a ternary liquid scintillator (Linear Alkyl Benzene (LAB) as the solvent, 2, 5-diphenyloxazole (PPO) as the fluor and p-bis-(o-methylstyryl)-benzene (bis-MSB) as wavelength shifter) are studied. It is shown that the absorption of this liquid scintillator is dominant by LAB and PPO at wavelengths less than 349 nm, and the absorption by bis-MSB becomes prevalent at the wavelength larger than 349 nm. The fluorescence quantum yields, which are the key parameters to model the absorption and re-emission processes in large liquid scintillation detectors, are measured. (authors)

  7. Alpha liquid scintillation counting: past, present, and future

    International Nuclear Information System (INIS)

    McDowell, W.J.

    1979-01-01

    Beta liquid scintillation counting has been used for about 30 years, and its effectiveness for alpha particles has been known for almost that long; however, the technique has not been widely applied to alpha particle detection because of poor energy resolution, high background, and variable interference from beta and gamma radiation. Beginning with the work of Horrocks in the early 1960s, improvements in energy resolution and background rejection have been made. Further developments at Oak Ridge National Laboratory over the past 10 to 12 years have resulted in improved methods of sample preparation (using liquid-liquid extraction methods to isolate the sample and introduce it into the scintillator) and better instrumentation, including electronic rejection of beta and gamma pulses. Energy resolutions of 200- to 300-keV FWHM and background counts of 0.01 cpm are now routine. Alpha liquid scintillation spectrometry is now suitable for a wide range of applications, from the accurate quantitative determination of relatively large amounts of known nuclides in laboratory-generated samples to the detection and identification of very small, subpicocurie amounts of alpha emitters in environmental-type samples. Suitable nuclide separation procedures, sample preparation methods, and instrument configurations are outlined for a variety of analyses

  8. Liquid scintillator for 2D dosimetry for high-energy photon beams

    International Nuclear Information System (INIS)

    Poenisch, Falk; Archambault, Louis; Briere, Tina Marie; Sahoo, Narayan; Mohan, Radhe; Beddar, Sam; Gillin, Michael T.

    2009-01-01

    Complex radiation therapy techniques require dosimetric verification of treatment planning and delivery. The authors investigated a liquid scintillator (LS) system for application for real-time high-energy photon beam dosimetry. The system was comprised of a transparent acrylic tank filled with liquid scintillating material, an opaque outer tank, and a CCD camera. A series of images was acquired when the tank with liquid scintillator was irradiated with a 6 MV photon beam, and the light data measured with the CCD camera were filtered to correct for scattering of the optical light inside the liquid scintillator. Depth-dose and lateral profiles as well as two-dimensional (2D) dose distributions were found to agree with results from the treatment planning system. Further, the corrected light output was found to be linear with dose, dose rate independent, and is robust for single or multiple acquisitions. The short time needed for image acquisition and processing could make this system ideal for fast verification of the beam characteristics of the treatment machine. This new detector system shows a potential usefulness of the LS for 2D QA.

  9. Liquid scintillator for 2D dosimetry for high-energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Poenisch, Falk; Archambault, Louis; Briere, Tina Marie; Sahoo, Narayan; Mohan, Radhe; Beddar, Sam; Gillin, Michael T. [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard., Unit 94, Houston, Texas 77030 (United States)

    2009-05-15

    Complex radiation therapy techniques require dosimetric verification of treatment planning and delivery. The authors investigated a liquid scintillator (LS) system for application for real-time high-energy photon beam dosimetry. The system was comprised of a transparent acrylic tank filled with liquid scintillating material, an opaque outer tank, and a CCD camera. A series of images was acquired when the tank with liquid scintillator was irradiated with a 6 MV photon beam, and the light data measured with the CCD camera were filtered to correct for scattering of the optical light inside the liquid scintillator. Depth-dose and lateral profiles as well as two-dimensional (2D) dose distributions were found to agree with results from the treatment planning system. Further, the corrected light output was found to be linear with dose, dose rate independent, and is robust for single or multiple acquisitions. The short time needed for image acquisition and processing could make this system ideal for fast verification of the beam characteristics of the treatment machine. This new detector system shows a potential usefulness of the LS for 2D QA.

  10. Timing properties and pulse shape discrimination of LAB-based liquid scintillator

    International Nuclear Information System (INIS)

    Li Xiaobo; Xiao Hualin; Cao Jun; Li Jin; Heng Yuekun; Ruan Xichao

    2011-01-01

    Linear Alkyl Benzene (LAB) is a promising liquid scintillator solvent in neutrino experiments because it has many appealing properties. The timing properties of LAB-based liquid scintillator have been studied through ultraviolet and ionization excitation in this study. The decay time of LAB, PPO and bis-MSB is found to be 48.6 ns, 1.55 ns and 1.5 ns, respectively. A model can describe the absorption and re-emission process between PPO and bis-MSB perfectly. The energy transfer time between LAB and PPO with different concentrations can be obtained via another model. We also show that the LAB-based liquid scintillator has good (n, γ) and (α, γ) discrimination power. (authors)

  11. Reduction of the ionization loss distribution width of several simultaneous relativistic particles traversing a scintillation counter

    CERN Document Server

    Aderholz, M; Matthewson, R; Lehraus, I no 1; Matthewson, R no 1; Aderholz, M no 1

    1975-01-01

    A Poisson distribution of number of electrons at the input stages of a photomultiplier has been folded into a Landau-Symon distribution of ionization losses in a plastic scintillator and a distribution of the smallest value out of n detectors was derived analytically for m simultaneous particles. A group of four identical scintillation counters was constructed and the smallest of the four output pulses was used for selective triggering of the bubble chamber flash with the greater precision engendered by the considerably reduced distribution width. (22 refs).

  12. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Westerdale, S.; Xu, J.; Shields, E.; Froborg, F.; Calaprice, F.; Alexander, T.; Aprahamian, A.; Back, H. O.; Casarella, C.; Fang, X.; Gupta, Y. K.; Lamere, E.; Liu, Q.; Lyons, S.; Smith, M.; Tan, W.

    2017-08-01

    Organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of $^{10}$B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on $^{10}$B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem. In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57--467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in $dE/dx$ best describes the measurements, with $\\chi^2$/NDF$=1.6$. This result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.

  13. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    International Nuclear Information System (INIS)

    Westerdale, S.; Xu, J.; Shields, E.; Froborg, F.; Calaprice, F.; Alexander, T.; Back, H.O.; Aprahamian, A.; Casarella, C.; Fang, X.; Gupta, Y.K.; Lamere, E.; Liu, Q.; Lyons, S.; Smith, M.; Tan, W.

    2017-01-01

    Organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of 10 B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on 10 B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem. In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57–467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in dE / dx best describes the measurements, with χ 2 /NDF=1.6. This result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.

  14. Scintillating fiber tracking at high luminosities using Visible Light Photon counter readout

    International Nuclear Information System (INIS)

    Atac, M.

    1995-11-01

    This paper reviews the research work on the Visible Light Photon Counters (VLPC) that have been developed for the scintillating fiber tracking at high luminosity colliders and high rate fixed target experiments. The devices originated from the joint work between UCLA and Rockwell International Science Center. The VLPCs are capable of counting photons very efficiently down to a single photon level with high avalanche gain, producing pulses at very high rates with very short rise times. Due to small gain dispersions they can be used in counting photons with high quantum efficiencies, therefore they are excellent devices for charged particle tracking using small diameter scintillating plastic fibers. In this paper, fiber tracking for the CDF and D0 upgrades and a possible usage of the VLPC readout for the experiment E803 at Fermilab will be discussed

  15. Optimization of cocktail volume in estimation of Tritium activity using liquid scintillation spectrometer

    International Nuclear Information System (INIS)

    Kumaravel, S.; Narashimha Nath, V.; Prashanth Kumar, M.; Sunil, C.N.; Raghunath, T.; Bera, Utpal; Ramakrishna, V.; Nair, B.S.K.; Ganesh, G.; Tripathi, R.M.

    2016-01-01

    Liquid Scintillation Spectrometers (LSS) are widely used for the estimation of Tritium in Nuclear Industry and Environmental labs to find out the Tritium concentration. The main component used for the detection of tritium is the liquid scintillation cocktail composed of different chemicals. To reduce the radioactive chemical wastes and the cost of liquid scintillation cocktails the use of as small volume of cocktail as possible is required. Typically, 1 ml of the aqueous sample is added with 5 ml of the liquid scintillation cocktail in a 20 ml low potassium glass. In this study, suitability of the combination of I ml aqueous sample with 2.5 ml cocktail in a 7 ml low potassium glass vial using a HIDEX 300 SL TDCR LSS was carried out instead of the other combination

  16. LET dependence of scintillation yields in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Doke, Tadayoshi; Hitachi, Akira; Kikuchi, Jun; Crawford, H J; Lindstrom, P J; Masuda, Kimiaki; Shibamura, Eido; Takahashi, Tan

    1988-06-01

    Scintillation yields (scintillation intensity per unit absorbed energy) in liquid argon for ionizing particles are reviewed as a function of LET for the particles. The maximum scintillation yield, which is obtained for relativistic heavy ions from Ne to La, is about 1.2 times larger than that for gamma rays in NaI(Tl) crystal. In the low LET region, the scintillation yields for relativistic electrons, protons and He ions are 10-20% lower than the maximum yield. This tendency can be explained by taking into account the existence of the electrons which have escaped from their parent ions. In the high LET region, a quenching effect due to high ionization density is observed for alpha particles, fission fragments and relativistic Au ions.

  17. High-resolution tracking using large capillary bundles filled with liquid scintillator

    CERN Document Server

    Annis, P; Benussi, L; Bruski, N; Buontempo, S; Currat, C; D'Ambrosio, N; Van Dantzig, R; Dupraz, J P; Ereditato, A; Fabre, Jean-Paul; Fanti, V; Feyt, J; Frekers, D; Frenkel, A; Galeazzi, F; Garufi, F; Goldberg, J; Golovkin, S V; Gorin, A M; Grégoire, G; Harrison, K; Höpfner, K; Holtz, K; Konijn, J; Kozarenko, E N; Kreslo, I E; Kushnirenko, A E; Liberti, B; Martellotti, G; Medvedkov, A M; Michel, L; Migliozzi, P; Mommaert, C; Mondardini, M R; Panman, J; Penso, G; Petukhov, Yu P; Rondeshagen, D; Siegmund, W P; Tyukov, V E; Van Beek, G; Vasilchenko, V G; Vilain, P; Visschers, J L; Wilquet, G; Winter, Klaus; Wolff, T; Wörtche, H J; Wong, H; Zimyn, K V

    2000-01-01

    We have developed large high-resolution tracking detectors based on glass capillaries filled with organic liquid scintillator of high refractive index. These liquid-core scintillating optical fibres act simultaneously as detectors of charged particles and as image guides. Track images projected onto the readout end of a capillary bundle are visualized by an optoelectronic chain consisting of a set of image-intensifier tubes followed by a photosensitive CCD or by an EBCCD camera. Two prototype detectors, each composed of \\hbox{$\\approx 10^6$} capillaries with \\hbox{20$-$25 $\\mu$m} diameter and \\hbox{0.9$-$1.8 m} length, have been tested, and a spatial resolution of the order of \\hbox{20$-$40 $\\mu$m} has been attained. A high scintillation efficiency and a large light-attenuation length, in excess of 3 m, was achieved through special purification of the liquid scintillator. Along the tracks of minimum-ionizing particles, the hit densities obtained were $\\sim$ 8 hits/mm at the readout window, and \\hbox{$\\sim$ 3 ...

  18. Development of a reference liquid scintillation cocktail

    CSIR Research Space (South Africa)

    Van Wyn Gaardt, WM

    2006-02-01

    Full Text Available A reference system that would allow national laboratories to compare their activity measurements of non-gamma-emitting radionuclides at any time is currently being developed. The system requires a non-commercial reference-liquid scintillation...

  19. Liquid scintillation counting (LSC) - an overview

    International Nuclear Information System (INIS)

    Ravi, S.; Mathew, K.M.

    2005-01-01

    In Liquid Scintillation Counting, the amount of light produced is proportional to the amount of radiation present in the sample and the energy of the light produced is proportional to the energy of the radiation that is present in the sample. This makes LSC a very convenient tool to measure radioactivity

  20. A measurement of the efficiency for the detection of neutrons in the momentum range 200 to 3200 MeV/c, in large volume liquid scintillation counters

    International Nuclear Information System (INIS)

    Brown, R.M.; Clark, A.G.; Duke, P.J.

    1976-04-01

    A description is given of a system of 194 large volume liquid scintillation counters designed to detect neutrons in an experiment on the reaction π - p → π 0 n in the resonance region. The detection efficiency of the system has been determined, as a function of neutron momentum, in three separate measurements, covering the range 200 to 3200 MeV/c. Below 400 MeV/c the efficiency shows the expected momentum dependence near threshold, rising to a maximum of 50% near 300 MeV/c and then falling to 43% near 400 MeV/c. In the region 400 to 700 MeV/c the efficiency rises to 47% near 600 MeV/c and falls again to 43%, an effect not seen before; the efficiency was expected to be almost momentum independent in this region. Above the threshold for inelastic processes in nucleon-nucleon collision (approximately 800 MeV/c) the efficiency rises significantly reaching a maximum value of 65% above 1700 MeV/c. (author)

  1. Detection of supernova neutrinos in the liquid-scintillator experiment LENA

    International Nuclear Information System (INIS)

    Winter, Jurgen Michael Albrecht

    2014-01-01

    The LENA project (Low-Energy Neutrino Astronomy) is a planned large-volume liquid-scintillator detector. The good energy resolution, low-energy threshold, and its large mass allow to perform real-time spectroscopy of low-energy neutrinos with high statistics. This is especially beneficial for the observation of rare events such as a galactic core-collapse supernova. In a liquid scintillator, interactions by different particle types cause different scintillation light pulse shapes. They can be used to identify proton recoils induced by neutrino-proton scattering from supernova neutrinos or by cosmogenic knock-out neutrons. In order to evaluate the performance of the detector, a precise characterization of the liquid scintillator is necessary. In the course of this work, an experiment has been set up at the Maier-Leibnitz-Laboratorium in Garching in order to determine the pulse shape of proton and electron recoils in different liquid-scintillator mixtures. Neutrons produced via 11 B(p,n) 11 C or an americiumberyllium source were used to induce proton recoils. Compton scattering of simultaneously emitted γs provided information on the electron recoils. A time-of-flight measurement allows for an easy identification of neutron and γ induced events and thus effective background reduction. The tail-to-total and the Gatti method are used in order to determine the energy-dependent discrimination power of proton and electron recoils in liquid scintillator. Combining both methods, a proton recoil identification efficiency of (99.70±0.05)% can be achieved between 1-1.5 MeV, while suppressing 99% of the γ induced recoils for the probable liquid scintillator mixture for LENA, linear alkylbenzene (LAB) as solvent and 3 g/l 2,5-diphenyloxazole (PPO) and 20mg/l 1,4-bis-(o-methylstyryl)-benzole (bisMSB) as fluors. Moreover, the decay constants τ i and the respective amplitudes n i are determined for various liquid scintillator mixtures. It can be observed that the decay times

  2. Measurement of radon emanation of drainage layer media by liquid scintillation counting

    International Nuclear Information System (INIS)

    Turtiainen, T.

    2009-01-01

    Slab-on-ground is a typical base floor construction type in Finland. The drainage layer between the slab and soil is a layer of sand, gravel or crushed stone. This layer has a minimum thickness of 200 mm and is sometimes even 600 mm thick, and thus may be a significant contributor to indoor air radon. In order to investigate radon emanation from the drainage layer material, a simple laboratory test was developed. Many organic solvents have high Ostwald coefficients for radon, i.e., the ratio of the volume of gas absorbed to the volume of the absorbing liquid, which enables direct absorption of radon into a liquid scintillation cocktail. Here, we first present equations relating to the processes of gas transfer in emanation measurement by direct absorption into liquid scintillation cocktails. In order to optimize the method for emanation measurement, four liquid scintillation cocktails were assessed for their ability to absorb radon from air. A simple apparatus consisting of a closed glass container holding an open liquid scintillation vial was designed and the diffusion/absorption rate and Ostwald coefficient were determined for a selected cocktail. Finally, a simple test was developed based on this work. (author)

  3. Liquid scintillation counting techniques for the determination of some alpha emitting actinides: a review

    International Nuclear Information System (INIS)

    Mirashi, N.N.; Chander, Keshav; Aggarwal, S.K.

    2000-12-01

    The present report is a review of the work on liquid scintillation counting techniques, for the determination of alpha emitting actinides like uranium, plutonium, americium etc; for the last three decades (1970-1999). It covers the progress that has taken place in conventional liquid scintillation counting employing various solvents, scintillators and extractants. There is gradual development in instrumentation from integral counting of alpha emitters to alpha liquid scintillation spectrometry to resolve and identify different alpha emitters. These advancements have led to Pulse Shape Analysis (PSA) and Photon Electron Rejecting Alpha Liquid Scintillation Spectrometry (PERALS) techniques for the determination of the alpha emitters in the presence of beta and gamma activity. These techniques allow the determination of actinides at very low levels which has increased their applications to almost all the fields of chemistry; be it biomedical, environmental, geological or process chemistry of nuclear fuels. The development of biphasic technique using various extractants to separate different elements and counting in presence of one another has been made possible. Inorganic scintillators have been recently developed which have the advantage of eliminating effects of quenching and presence of beta/gamma emitting actinides. This review will serve as a reference to those who want to carry out work in the field of determination of actinides using liquid scintillation counting techniques. (author)

  4. Scintillation trigger system of the liquid argon neutrino detector

    International Nuclear Information System (INIS)

    Belikov, S.V.; Gurzhiev, S.N.; Gutnikov, Yu.E.; Denisov, A.G.; Kochetkov, V.I.; Matveev, M.Yu.; Mel'nikov, E.A.; Usachev, A.P.

    1994-01-01

    This paper presents the organization of the Scintillation Trigger System (STS) for the Liquid Argon Neutrino Detector of the Tagged Neutrino Facility. STS is aimed at the effective registration of the needed neutrino interaction type and production of a fast trigger signal with high time resolution. The fast analysis system of analog signal from the trigger scintillation planes for rejection of the trigger signals from background processes is described. Real scintillation trigger planes characteristics obtained on the basis of the presented data acquisition system are shown. 10 refs., 12 figs., 3 tabs

  5. The implications of particle energy and acidic media on gross alpha and gross beta determination using liquid scintillation

    Energy Technology Data Exchange (ETDEWEB)

    Zapata-Garcia, D. [Laboratori de Radiologia Ambiental (LRA), Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques, 1-11 Planta 3, E-08028 Barcelona (Spain); Llaurado, M., E-mail: montse.llaurado@ub.edu [Laboratori de Radiologia Ambiental (LRA), Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques, 1-11 Planta 3, E-08028 Barcelona (Spain); Rauret, G. [Laboratori de Radiologia Ambiental (LRA), Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques, 1-11 Planta 3, E-08028 Barcelona (Spain)

    2012-04-15

    The interaction of humans with radioactivity present in the environment from natural and artificial sources necessitates an evaluation of its risk on human health. Gross alpha and gross beta activities can provide a rapid evaluation of the radioactive content of a sample and can be simultaneously determined by using liquid scintillation counters. However, calibration of the liquid scintillation counter is required and is affected by many factors, such as particle energy and the acidity of the media. This study investigates what effect the particle energy used for calibration has on misclassification and how to account for this misclassification in routine measurements. The variability in measurement produced by the final pH, as well as any acids used in sample treatment, was also studied. These results showed that the most commonly used acid for these types of analyses, HNO{sub 3}, produced a high amount of misclassifications at very low pH. The results improved when HCl was used to adjust the sample to low pH. - Highlights: Black-Right-Pointing-Pointer We study the effect of alpha and beta energies on PSA optimisation. Black-Right-Pointing-Pointer The optimum PSA shifts to higher values as the alpha energy increases. Beta energies do not affect it. Black-Right-Pointing-Pointer We study the effect of pH on the simultaneous determination of gross alpha/beta activities. Black-Right-Pointing-Pointer HNO{sub 3} produces a high amount of misclassification at very low pH. Black-Right-Pointing-Pointer The results improve when HCl is used to adjust the sample to low pH.

  6. The implications of particle energy and acidic media on gross alpha and gross beta determination using liquid scintillation

    International Nuclear Information System (INIS)

    Zapata-García, D.; Llauradó, M.; Rauret, G.

    2012-01-01

    The interaction of humans with radioactivity present in the environment from natural and artificial sources necessitates an evaluation of its risk on human health. Gross alpha and gross beta activities can provide a rapid evaluation of the radioactive content of a sample and can be simultaneously determined by using liquid scintillation counters. However, calibration of the liquid scintillation counter is required and is affected by many factors, such as particle energy and the acidity of the media. This study investigates what effect the particle energy used for calibration has on misclassification and how to account for this misclassification in routine measurements. The variability in measurement produced by the final pH, as well as any acids used in sample treatment, was also studied. These results showed that the most commonly used acid for these types of analyses, HNO 3 , produced a high amount of misclassifications at very low pH. The results improved when HCl was used to adjust the sample to low pH. - Highlights: ► We study the effect of alpha and beta energies on PSA optimisation. ► The optimum PSA shifts to higher values as the alpha energy increases. Beta energies do not affect it. ► We study the effect of pH on the simultaneous determination of gross alpha/beta activities. ► HNO 3 produces a high amount of misclassification at very low pH. ► The results improve when HCl is used to adjust the sample to low pH.

  7. A study of liquid scintillator and fiber materials for use in a fiber calorimeter

    International Nuclear Information System (INIS)

    Altice, P.P. Jr.

    1990-04-01

    This reports an investigation into the performance of selected scintillation oils and fiber materials to test their applicability in high energy, liquid scintillator calorimetry. Two scintillating oils, Bicron BC-517 and an oil mixed for the MACRO experiment, and two fiber materials, Teflon and GlassClad PS-252, were tested for the following properties: light yield, attenuation length and internal reflection angle. The results of these tests indicated that the scintillation oils and the fiber materials had an overall good performance with lower energies and would meet the requirements of liquid scintillator detection at SSC energies. 6 refs

  8. Optical properties of quantum-dot-doped liquid scintillators

    International Nuclear Information System (INIS)

    Aberle, C; Winslow, L; Li, J J; Weiss, S

    2013-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO

  9. SBIR Final Report. Liquid Core Optical Scintillating Fibers

    International Nuclear Information System (INIS)

    Beetz, C.P.; Steinbeck, J.; Buerstler, R.

    2000-01-01

    This Phase I SBIR project focused on developing flexible scintillating liquid core optical fibers, with potential uses in high-energy calorimetry, tracking, preradiators, active targets or other fast detectors. Progress on the six tasks of the project is summarized. The technical developments involve three technology components: (1) highly flexible capillaries or tubes of relatively low n (index of refraction) to serve as cladding and liquid core containment; (2) scintillator (and clear) fluids of relatively high n to serve as a core-- these fluids must have a high light transmission and, for some applications, radiation hardness; (3) optical end plugs, plug insertion, and plug-cladding tube sealing technology to contain the core fluids in the tubes, and to transmit the light

  10. Laboratory studies on the removal of radon-born lead from KamLAND's organic liquid scintillator

    Science.gov (United States)

    Keefer, G.; Grant, C.; Piepke, A.; Ebihara, T.; Ikeda, H.; Kishimoto, Y.; Kibe, Y.; Koseki, Y.; Ogawa, M.; Shirai, J.; Takeuchi, S.; Mauger, C.; Zhang, C.; Schweitzer, G.; Berger, B. E.; Dazeley, S.; Decowski, M. P.; Detwiler, J. A.; Djurcic, Z.; Dwyer, D. A.; Efremenko, Y.; Enomoto, S.; Freedman, S. J.; Fujikawa, B. K.; Furuno, K.; Gando, A.; Gando, Y.; Gratta, G.; Hatakeyama, S.; Heeger, K. M.; Hsu, L.; Ichimura, K.; Inoue, K.; Iwamoto, T.; Kamyshkov, Y.; Karwowski, H. J.; Koga, M.; Kozlov, A.; Lane, C. E.; Learned, J. G.; Maricic, J.; Markoff, D. M.; Matsuno, S.; McKee, D.; McKeown, R. D.; Miletic, T.; Mitsui, T.; Motoki, M.; Nakajima, Kyo; Nakajima, Kyohei; Nakamura, K.; O`Donnell, T.; Ogawa, H.; Piquemal, F.; Ricol, J.-S.; Shimizu, I.; Suekane, F.; Suzuki, A.; Svoboda, R.; Tajima, O.; Takemoto, Y.; Tamae, K.; Tolich, K.; Tornow, W.; Watanabe, Hideki; Watanabe, Hiroko; Winslow, L. A.; Yoshida, S.

    2015-01-01

    The removal of radioactivity from liquid scintillator has been studied in preparation of a low background phase of KamLAND. This paper describes the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. We report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon-born lead from liquid scintillator.

  11. Infrared scintillation: a comparison between gaseous and liquid xenon

    International Nuclear Information System (INIS)

    Bressi, G.; Carugno, G.; Conti, E.; Del Noce, C.; Iannuzzi, D.

    2001-01-01

    Light yield and spectrum of infrared (IR) scintillation in Xe are different in gaseous and liquid phases. In gas, the spectrum consists mainly of a broad line centered at 1300 nm. In liquid, light is emitted primarily below 1200 nm and with a lower yield

  12. A study of time over threshold (TOT) technique for plastic scintillator counter

    International Nuclear Information System (INIS)

    Wu Jinjie; Chinese Academy of Sciences, Beijing; Heng Yuekun; Sun Zhijia; Wu Chong; Yang Guian; Jiang Chun Hua; Zhao Yuda

    2008-01-01

    A new charge measurement method, time over threshold (TOT), has been used in some gas detectors lately. Here TOT is studied for TOF system, made of plastic scintillator counter, which can simplify the electronics of the system. The signal characteristics are measured and analyzed with a high quality oscilloscope, including noise, pedestal, signal amplitude, total charge, rise time and the correlation between them. The TOT and charge are related and can be fitted by some empirical formula. The charge measurement resolution by TOT is given and this will help the design of TOF electronics. (authors)

  13. Measurement of Ra-226 in building materials, with a Na I (Tl) scintillation counter

    International Nuclear Information System (INIS)

    Vallejo, L.R.; Fuenteseca, J.W.; Rivera, C.A.; Aros, F.H.

    1992-01-01

    Ra-226 concentration in building materials is determined using gamma-ray spectrometry. Ra-226 contained in sundry materials employed in the construction of dwelling houses and public buildings in Antofagasta city is determined by counting the Pb-214 peaks at 295 KeV and 352 keV, and the Bi-214 peak at 609 keV recorded by means of a 7.5-cm Nal (TI) scintillation counter. (author)

  14. System and method of liquid scintillation counting

    International Nuclear Information System (INIS)

    Rapkin, E.

    1977-01-01

    A method of liquid scintillation counting utilizing a combustion step to overcome quenching effects comprises novel features of automatic sequential introduction of samples into a combustion zone and automatic sequential collection and delivery of combustion products into a counting zone. 37 claims, 13 figures

  15. Neutron spectrometer using NE218 liquid scintillator

    International Nuclear Information System (INIS)

    Dance, J.B.; Francois, P.E.

    1976-01-01

    A neutron spectrometer has been constructed using NE218 liquid scintillator. Discrimination against electron-gamma events was obtained usng a charge-comparison pulse shape discrimination system. The resolution obtained was about 0.25 MeV F.W.H.M. at 2.0 MeV

  16. Comparison of plastic scintillating fibres and capillaries filled with liquid scintillator

    International Nuclear Information System (INIS)

    Cardini, A.; Cavasinni, V.; Girolamo, B. di; Flaminio, V.; Golovkin, S.V.; Gorin, A.M.; Kulichenko, A.V.; Kushnirenko, A.E.; Pyshev, A.I.; Manuilov, I.; Vasilchenko, V.G.

    1994-01-01

    A comparison is made between the light yield, attenuation length, time response and light propagation speed in plastic scintillating fibres (SCSF-38 and Kuraray-3HF) and quartz capillaries filled with liquid scintillator (LS) 1-methilnaphthalene (1MN) doped with new dyes R45 and R39. The inner diameter of capillaries and diameter of plastic fibres is 0.5 mm. The number of photoelectrons detected at the far end (2 m) was 2.9 for capillaries filled with 1MN+3 g/l R45 while it was 1.8 times smaller in the case of SCSF-38 and 3 times smaller in the case of Kuraray 3HF plastic fibres. Taking into account the quantum efficiency of the photodetector used these reduction factors became 3.0 and 2.0, respectively. Good attenuation length, high light output and also excellent radiation resistance of capillaries filled with LS (>60 Mrad, measured elsewhere) show that they are a very promising alternative to plastic scintillating fibres for future applications in tracking detectors and calorimeters. ((orig.))

  17. Measuring fast neutrons with large liquid scintillation detector for ultra-low background experiments

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C. [Department of Physics, The University of South Dakota, Vermillion, SD 57069 (United States); College of Sciences, China Three Gorges University, Yichang 443002 (China); Mei, D.-M., E-mail: dongming.mei@usd.edu [Department of Physics, The University of South Dakota, Vermillion, SD 57069 (United States); Davis, P.; Woltman, B. [Department of Physics, The University of South Dakota, Vermillion, SD 57069 (United States); Gray, F. [Department of Physics and Computational Science, Regis University, Denver, CO 80221 (United States)

    2013-11-21

    We developed a 12-liter volume neutron detector filled with the liquid scintillator EJ301 that measures neutrons in an underground laboratory where dark matter and neutrino experiments are located. The detector target is a cylindrical volume coated on the inside with reflective paint (95% reflectivity) that significantly increases the detector's light collection. We demonstrate several calibration techniques using point sources and cosmic-ray muons for energies up to 20 MeV for this large liquid scintillation detector. Neutron–gamma separation using pulse shape discrimination with a few MeV neutrons to hundreds of MeV neutrons is shown for the first time using a large liquid scintillator.

  18. Study of the response of a lithium yttrium borate scintillator based neutron rem counter by Monte Carlo radiation transport simulations

    Science.gov (United States)

    Sunil, C.; Tyagi, Mohit; Biju, K.; Shanbhag, A. A.; Bandyopadhyay, T.

    2015-12-01

    The scarcity and the high cost of 3He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am-Be neutron source shows promise of being used as rem counter.

  19. Study of the response of a lithium yttrium borate scintillator based neutron rem counter by Monte Carlo radiation transport simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, C., E-mail: csunil11@gmail.com [Accelerator Radiation Safety Section, Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tyagi, Mohit [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Biju, K.; Shanbhag, A.A.; Bandyopadhyay, T. [Accelerator Radiation Safety Section, Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-12-11

    The scarcity and the high cost of {sup 3}He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am–Be neutron source shows promise of being used as rem counter.

  20. Assay of /sup 32/Si by liquid scintillation counting

    Energy Technology Data Exchange (ETDEWEB)

    Cumming, J B [Brookhaven National Lab., Upton, NY (USA)

    1983-10-03

    Application of the radioactivity of /sup 32/Si to problems of interest in geo- and cosmo-chemistry has been hampered by uncertainties in the half-life of this nuclide. A procedure for the stimulation assay of /sup 32/Si and its /sup 32/P daughter utilizing a liquid scintillation detector in association with a pulse height analyzer is described. The results indicate that /sup 32/Si can be assayed to an accuracy of a few percent by liquid scintillation counting techniques which do not require the preparation of an organic Si derivative. Combination of the mean specific activity with the /sup 32/Si abundance determined by accelerator-based mass spectrometry gave the reported 101+-18 year half-life.

  1. Determining random counts in liquid scintillation counting

    International Nuclear Information System (INIS)

    Horrocks, D.L.

    1979-01-01

    During measurements involving coincidence counting techniques, errors can arise due to the detection of chance or random coincidences in the multiple detectors used. A method and the electronic circuits necessary are here described for eliminating this source of error in liquid scintillation detectors used in coincidence counting. (UK)

  2. Electro-removal of H-3 and C-14 contained in scintillation liquid absorbed in soils type Phaeozem; Electrorremocion de H-3 y C-14 contenidos en liquido de centelleo absorbidos en suelos tipo Phaeozem

    Energy Technology Data Exchange (ETDEWEB)

    Valdovinos, V.; Bustos, E. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro s/n, San Fandila, 76703 Pedro Escobedo, Queretaro (Mexico); Monroy G, F., E-mail: vvaldovinos@cideteq.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    This paper presents the results of electro-removal, an electrochemical treatment in soils contaminated with H-3 and C-14 contained in scintillation liquids absorbed in soils. For this purpose the best electrochemical conditions were used, which are: scintillation liquid Ultima Gold Xr, water (1:1) and 1 m A in the passage of current. The media were characterized before and after of applying the different potentials by various analytical techniques, such as: liquids by gas chromatography with a flame ionization detector, solids and liquids by Fourier transform infrared spectroscopy (Ftir) and electrodes by scanning electron microscopy with elemental analysis by energy-dispersive X-ray spectroscopy. Later standard samples with H-3 and C-14 were prepared and the electrochemical treatment was applied to previously established conditions. After electrochemical treatment the scintillation liquid characterization was performed by gas chromatography and a scintillation counter to see the disintegrations per minute. According to results of Ftir, soils show no deterioration and in the liquid phase the amount of water increases as the applied potential, due to oxidation-reduction reactions where happen modification or mineralization of organic molecules (H{sub 2}O and CO{sub 2} formation). In 4 h of treatment, removal percentages in the liquid phase, were: 53.6% of H-3 and 11.6% of C-14. (Author)

  3. Use of pliable bags in liquid scintillation counting

    International Nuclear Information System (INIS)

    Simonnet, G.; Jacquet, M.A.; Sharif, A.; Engler, R.

    1981-01-01

    Pliable plastic bags have been used to replace glass or plastic vials for liquid scintillation counting. The two major advantages of this method are the lower cost of the plastic bags and the fact that, per sample, the radioactive waste is significantly reduced. The following parameters have been checked: the impermeability of the bags to various scintillator mixtures and the fact that neither the irregular shape of the bags nor their position in the counting chamber had any effect on the results of the counting. The latter was also constant with time, at least over a period of 10 days. The technique has been used to count the radioactivity of 3 H-DNA precipitates prepared from bacteria and lymphocytes and deposited on filters impregnated with only 200 μl scintillator. It is a method that can be applied to the counting of any samples deposited on filters and insoluble in scintillator. (author)

  4. Study of n-γ discrimination by digital charge comparison method for a large volume liquid scintillator

    International Nuclear Information System (INIS)

    Moszynski, M.; Costa, G.J.; Guillaume, G.; Heusch, B.; Huck, A.; Ring, C.; Bizard, G.; Durand, D.; Peter, J.; Tamain, B.; El Masri, Y.; Hanappe, F.

    1992-01-01

    The study of the n-γ discrimination for a large 41 volume BC501A liquid scintillator coupled to a 130 mm diameter XP4512B photomultiplier was carried out by digital charge comparison method. A very good n-γ discrimination down to 100 keV of recoil electron energy was achieved. The measured relative intensity of the charge integrated at the slow component of the scintillation pulse and the photoelectron yield of the tested counter allow the factor of merit of the n-γ discrimination spectra to be calculated and to be compared with those measured experimentally. This shows that the main limitation of the n-γ discrimination is associated with the statistical fluctuation of the photoelectron number at the slow component. A serious effect of the distortion in the cable used to send the photomultiplier pulse to the electronics for the n-γ discrimination was studied. This suggests that the length of RG58 cable should be limited to about 40 m to preserve a high quality n-γ discrimination. (orig.)

  5. Pulse-shape discrimination in NE213 liquid scintillator detectors

    International Nuclear Information System (INIS)

    Cavallaro, M.; Tropea, S.; Agodi, C.; Assié, M.; Azaiez, F.; Boiano, C.; Bondì, M.; Cappuzzello, F.; Carbone, D.; De Napoli, M.; Séréville, N. de; Foti, A.; Linares, R.; Nicolosi, D.; Scarpaci, J.A.

    2013-01-01

    The 16-channel fast stretcher BaFPro module, originally developed for processing signals of Barium Fluoride scintillators, has been modified to make a high performing analog pulse-shape analysis of signals from the NE213 liquid scintillators of the EDEN neutron detector array. The module produces two Gaussian signals, whose amplitudes are proportional to the height of the fast component of the output light and to the total energy deposited into the scintillator, respectively. An in-beam test has been performed at INFN-LNS (Italy) demonstrating a low detection threshold, a good pulse-shape discrimination even at low energies and a wide dynamic range for the measurement of the neutrons energy.

  6. Low-level measurements by liquid scintillation counting

    International Nuclear Information System (INIS)

    Schoenhofer, F.

    1991-01-01

    Liquid scintillation counting has become a convenient tool for analysis of many beta- and alpha-emitters even in ultra low-level concentration ranges. Extremely low background is achieved in a commercially available counter by an active shielding and heavy lead shielding. Thus special time saving radiochemical separation processes could be designed. Extremely simple sample preparation techniques can be used. Counting time can be reduced and sample throughput enhanced. Also precision can be enhanced. From the author's research, several applications are discussed. They include: tritium in water without enrichment, tritium in urine (excretion analysis), carbon-14 in samples like alcohol or vinegar, Rn-222 in water and air, even gaseous Kr-85. A simple and fast method for Sr-90 in environmental samples and food has been developed and the Ra-226-concentration in water can be measured as low as 30 mBq/l without any chemical separation or enrichment. The instrument has been used successfully for screening purposes after the Chernobyl accident as well as for monitoring groundwater after a large scale contamination in Lower Austria. Using a 'gross-beta-measurement' effluents from a nuclear installation are monitored, clearly showing advantages over traditional methods. α-β-discrimination reduces the background for alpha emitters to practically zero. Examples from the determination of Ra-226 in water are shown

  7. A primary scintillation gated high pressure position sensitive gas scintillation proportional counter (HPGSPC) for applications to x-ray astronomy

    International Nuclear Information System (INIS)

    Giarrusso, S.; Manzo, G.; Re, S.

    1985-01-01

    The authors describe a new instrument for x-ray astronomy. The instrument, based on a high pressure (5 atm.), xenon filled, position sensitive Gas Scintillation Proportional counter (HPGSPC) is expected to feature an energy resolution better than 4% at 60 keV, an angular resolution of approximately 20 arc-minutes over the full energy range (4 to 100 keV) and a field of view (FOV) of up to 30x30 degrees. A prototype flight unit of the gas cell on which the instrument is based is presently under technological development in the framework of the SAX project

  8. QUENCH: A software package for the determination of quenching curves in Liquid Scintillation counting.

    Science.gov (United States)

    Cassette, Philippe

    2016-03-01

    In Liquid Scintillation Counting (LSC), the scintillating source is part of the measurement system and its detection efficiency varies with the scintillator used, the vial and the volume and the chemistry of the sample. The detection efficiency is generally determined using a quenching curve, describing, for a specific radionuclide, the relationship between a quenching index given by the counter and the detection efficiency. A quenched set of LS standard sources are prepared by adding a quenching agent and the quenching index and detection efficiency are determined for each source. Then a simple formula is fitted to the experimental points to define the quenching curve function. The paper describes a software package specifically devoted to the determination of quenching curves with uncertainties. The experimental measurements are described by their quenching index and detection efficiency with uncertainties on both quantities. Random Gaussian fluctuations of these experimental measurements are sampled and a polynomial or logarithmic function is fitted on each fluctuation by χ(2) minimization. This Monte Carlo procedure is repeated many times and eventually the arithmetic mean and the experimental standard deviation of each parameter are calculated, together with the covariances between these parameters. Using these parameters, the detection efficiency, corresponding to an arbitrary quenching index within the measured range, can be calculated. The associated uncertainty is calculated with the law of propagation of variances, including the covariance terms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Liquid scintillator calorimetry for the LHC

    International Nuclear Information System (INIS)

    Artamonov, A.; Buontempo, S.; Epstein, V.; Ereditato, A.; Fiorillo, G.; Garufi, F.; Golovkin, S.; Gorbunov, P.; Jemanov, V.; Khovansky, V.; Kruchinin, S.; Maslennikov, A.; Medvedkov, A.; Vasilchenko, V.; Zaitsev, V.; Zuckerman, I.

    1995-01-01

    We report on the beam tests of full scale liquid scintillator modules designed for a very forward calorimeter for an experiment at the CERN Large Hadron Collider (LHC). Tests were performed in the electron beams of the SPS at CERN within the 20 and 150 GeV energy range. The response as a function of the beam impact point and incidence angle was measured. (orig.)

  10. Liquid scintillation systems and apparatus for measuring high-energy radiation emitted by samples in standard laboratory test tubes

    International Nuclear Information System (INIS)

    Benvenutti, R.A.

    1976-01-01

    Liquid scintillation detection system employs improved sample holders in which the cap of a glass vial is provided with a well for receiving a standard laboratory test tube containing a radioactive sample. The well is immersed in a liquid scintillator in the vial, the scintillator containing lead acetate solution to enhance its efficiency. A commercially available beta-counting liquid scintillation apparatus is modified to provide gamma-counting with the improved sample holders

  11. Whole body counters: types, performance and uses

    International Nuclear Information System (INIS)

    Jales, R.L.C.

    1983-01-01

    The present monograph deals with Whole Counters, since its definition, evolution, performance, clinical indications and results. Scintillation crystals detection systems were described as well as scintillant solutions, plastic scintillations, and gaseous detectors, including its interplay forms and basal characteristics. Geometric arrangements of standard chair, arc and hammock, arrangements with scintillant solutions and plastic scintillations, as well as special geometric arrangements were equally commented. Clinic and experimental studies were also dealt with Whole Body Counters, giving examples with potassium, iron vitamin B 12 and albumin. (author)

  12. Influence of dissolved gas and temperature on the light yield of new liquid scintillators

    CERN Document Server

    Buontempo, S; Golovkin, S V; Martellotti, G; Medvedkov, A M; Penso, G; Soloviev, A S; Vasilchenko, V G

    1999-01-01

    Sixteen new liquid scintillators, emitting green light, were studied. They are based on four solvents combined with four dopants. The influence of different gas atmospheres was studied. In particular it was shown that by keeping these liquid scintillators in vacuum or in a neutral gas, the light yield increases up to 32~\\% at 20 $^{\\circ}$C and for the best solvent-dopant combinations. The dependance of the light yield on temperature was also studied for these scintillators. In the 20--60 $^{\\circ}$C interval, some exhibit a light yield variation of $\\sim$ 3 \\% which is smaller than that of the NE 102A plastic scintillator.

  13. Low energy neutrino astronomy with the large liquid-scintillation detector LENA

    International Nuclear Information System (INIS)

    Undagoitia, T Marrodan; Feilitzsch, F von; Goeger-Neff, M; Hochmuth, K A; Oberauer, L; Potzel, W; Wurm, M

    2006-01-01

    The detection of low energy neutrinos in a large liquid scintillation detector may provide further important information on astrophysical processes as supernova physics, solar physics and elementary particle physics as well as geophysics. In this contribution, a new project for Low Energy Neutrino Astronomy (LENA) consisting of a 50 kt scintillation detector is presented

  14. Laboratory studies on the removal of radon-born lead from KamLAND's organic liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Keefer, G., E-mail: gregkeefer@llnl.gov [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Grant, C. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Piepke, A. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583 (Japan); Ebihara, T.; Ikeda, H. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Kishimoto, Y. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583 (Japan); Kibe, Y.; Koseki, Y.; Ogawa, M.; Shirai, J.; Takeuchi, S. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Mauger, C.; Zhang, C. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Schweitzer, G. [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Berger, B.E. [Department of Physics, Colorado State University, Fort Collins, CO 80523 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583 (Japan); Dazeley, S. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Decowski, M.P. [Physics Department, University of California, Berkeley, Berkeley, CA 94720 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583 (Japan); Detwiler, J.A. [Physics Department, University of California, Berkeley, Berkeley, CA 94720 (United States); Djurcic, Z. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); and others

    2015-01-01

    The removal of radioactivity from liquid scintillator has been studied in preparation of a low background phase of KamLAND. This paper describes the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. We report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon-born lead from liquid scintillator.

  15. Liquid scintillation vial for radiometric assay of lymphocyte carbohydrate metabolism in response to mitogens

    International Nuclear Information System (INIS)

    Tran, N.; Wagner, H.N. Jr.

    1978-01-01

    We have demonstrated that mitogens--i.e., PHA and Con.A--stimulate lymphocyte carbohydrate metabolism using a liquid-scintillation vial with conventional liquid-scintillation detectors. The results showed that this enclosed system can be useful for development of rapid in vitro tests of lymphocytes immune responsiveness, as well as for radiometric detection of bacterial growth in various gaseous atmospheres

  16. Liquid scintillation counting standardization of Na129I by the CIEMAT/NIST method

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Grau Carles, A.; Grau Malonda, A.

    1996-01-01

    We describe a sample preparation procedure for liquid scintillation measurements of stable solution of Na''129I. The counting stability and spectral evolution of this solution is studied in HiSafe''tmII, Ultima-Gold''tm and Insta-Gel''r. The liquid scintillation measurements have been carried efficiencies lower than 0.4%. the solution has been standardized in terms of activity concentration to an overall uncertainty of 0.46% (k=1 )

  17. Comparison of analysis techniques by liquid scintillation and Cerenkov Effect for 40K quantification in aqueous samples

    International Nuclear Information System (INIS)

    Miranda C, L.; Davila R, J. I.; Lopez del R, H.; Mireles G, F.

    2015-09-01

    In this work the counting by liquid scintillation and Cerenkov Effect to quantify 40 K in aqueous samples was used. The performance of both techniques was studied by comparing the response of three commercial liquid scintillation OptiPhase HiSafe 3, Ultima Gold Ab and OptiPhase TriSafe, the vial type and presentation conditions of the sample for counting. In liquid scintillation, the ability to form homogeneous mixtures depended on the ionic strength of the aqueous solutions. The scintillator OptiPhase HiSafe 3 showed a greater charge capacity for solutions with high ionic strength (<3.4), while the scintillator OptiSafe TriSafe no form homogeneous mixtures for solutions of ionic strength higher than 0.3. Counting efficiencies for different proportions of sample and scintillator near 100% for the scintillators OptiSafe HiSafe 3 and Ultima Gold Ab were obtained. In the counting by Cerenkov Effect, the efficiency and sensitivity depended of the vial type; polyethylene vials were more suitable for counting that the glass vials. The sample volume had not significant effect on counting efficiency, obtaining an average value of 44.8% for polyethylene vials and 37.3% for glass vials. Therefore, the liquid scintillation was more efficient and sensitive for the measurement of 40 K in aqueous solutions. (Author)

  18. Recent advances in low-level β-counting by liquid scintillation instrumentation

    International Nuclear Information System (INIS)

    Verzilov, Yu.; Maekawa, Fujio; Oyama, Yukio; Maekawa, Hiroshi

    1995-01-01

    This work attempts to solve problems for measurement 3 H and 32 P activity. A measurement of tritium activity in materials is desired for neutron experiments such as a fusion reactor blanket experiment and a neutron flux monitor with 6 Li(n,α) 3 H reaction. In such studies, lithium-containing pellets are usually irradiated by neutrons and the tritium produced in them is measured with a liquid scintillation counter. Tritium technique for Li 2 CO 3 is the subject of interest in the present study because this compound is well soluble and easy to use it. The 32 P is important nuclide in the in-system neutron spectrometry due to the following reactions: 31 P(n,γ) 32 P, 32 S(n,p) 32 P and 35 Cl(n,α) 32 P. For the reasons of similarity with Li 2 CO 3 , NH 4 PH 2 O 2 , CH 3 SO 2 CH 3 and NH 4 Cl were selected for measurement of 32 P activity. (J.P.N.)

  19. Influence of temperature to quenching on liquid scintillation measurement

    CERN Document Server

    Kato, T

    2003-01-01

    The amount of quench is measured with liquid scintillation spectrometer changing the temperature of the sample. The range of the changed temperature is between 0 deg C and 35 deg C. The measurement is carried out for three kinds of unquenched standard, two quenched standards and fifteen kinds of scintillation cocktail and the mixed sample. It is confirmed that the amount of quench increases for all samples as the temperature rises. The influence of the changed amount of quench to the quench correction is examined. (author)

  20. Light yield as a function of gas pressure and electric field in gas scintillation proportional counters

    International Nuclear Information System (INIS)

    Favata, F.; Smith, A.; Bavdaz, M.; Kowalski, T.Z.

    1990-01-01

    We have investigated the dependence of the scintillation light output for Xe on gas pressure in the range 0.14-1.4 bar, using a gas scintillation proportional counter, in different experimental configurations. We have compared our work with that of previous workers, and have shown that both our results and the results of previous authors are compatible with the intrinsic light output being independent of gas pressure, with any observed dependence being a pure experimental effect due to the spectral response of the various UV detectors used. We also use our experimental data for determining the ratio between the cross section of the Xe 2 ** +Xe→Xe 2 * +Xe reaction and the rate of the Xe 2 ** →2Xe+γ UV reaction. (orig.)

  1. Status of timing with plastic scintillation detectors

    International Nuclear Information System (INIS)

    Moszynski, M.; Bengtson, B.

    1979-01-01

    Timing properties of scintillators and photomultipliers as well as theoretical and experimental studies of time resolution of scintillation counters are reviewed. Predictions of the theory of the scintillation pulse generation processes are compared with the data on the light pulse shape from small samples, in which the light pulse shape depends only on the composition of the scintillator. For larger samples the influence of the light collection process and the self-absorption process on the light pulse shape are discussed. The data on rise times, fwhm's, decay times and light yield of several commercial scintillators used in timing are collected. The next part of the paper deals with the properties of photomultipliers. The sources of time uncertainties in photomultipliers as a spread of the initial velocity of photoelectrons, emission of photoelectrons under different angles and from different points at the photocathode, the time spread and the gain dispersion introduced by electron photomultiplier are reviewed. The experimental data on the time jitter, single electron response and photoelectron yield of some fast photomultipliers are collected. As the time resolution of the timing systems with scintillation counters depends also on time pick-off units, a short presentation of the timing methods is given. The discussion of timing theories is followed by a review of experimental studies of the time resolution of scintillation counters. The paper is ended by an analysis of prospects on further progress of the subnanosecond timing with scintillation counters. (Auth.)

  2. Wavelength shifting reflector foils for liquid Ar scintillation light

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Manuel [Physik Institut, Universitaet Zuerich (Switzerland); Collaboration: GERDA-Collaboration

    2013-07-01

    Liquid argon is used as a scintillator in several present and upcoming experiments. In Gerda it is used as a coolant, shielding and will be instrumented to become an active veto in Phase II. Its scintillation light has a wavelength of 128 nm, that gets absorbed by quartz. In order to measure the light using photo multiplier tubes (PMT) for cryogenic temperatures which have a quartz window, it is converted to longer wavelength by coated reflector foils. The conversion efficiency and stability of several such coatings was optimized using VM2000 and Tetratex separately as reflector foils. The efficiency has been measured in a liquid Ar set up build especially for this purpose. It employs a 3'' low radioactivity PMT of type R11065-10 from Hamamatsu, the favorite photo sensor candidate to be used in Gerda.

  3. Comparison of the quantulus 1220 and 300SL liquid scintillation counters for the analysis of {sup 222}Rn in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Cheol; Jung, Yoon Hee; Lee, Wanno; Choi, Guen Sik; Chung, Kun Ho; Kang, Mun Ja [Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    Liquid scintillation counters (LSCs) are commonly used as an analytical method for detecting {sup 222}Rn in groundwater because they involve a simple sample pretreatment and allow high throughout with an autosampler. The Quantulus 1220 is the best-selling LSC in Korea, but its production was stopped. Recently, a new type of LSC, the 300SL, was introduced. In this study, the 300SL was compared with the Quantulus 1220 in order to evaluate the ability of each apparatus to detect {sup 222}Rn in groundwater. The Quantulus 1220 and 300SL were used to detect the presence of {sup 222}Rn. Radon gas was extracted from a groundwater sample using a water-immiscible cocktail in a LSC vial. The optimal analytical conditions for each LSC were determined using a {sup 222}Rn calibration source prepared with a {sup 226}Ra source. The optimal pulse shape analysis level for alpha and beta separation was 80 for the Quantulus 1220, and the corresponding pulse length index was 12 in the 300SL. The counting efficiency of the Quantulus 1220 for alpha emissions was similar to that of the 300SL, but the background count rate of the Quantulus 1220 was 10 times lower than that of the 300SL. The minimum detectable activity of the Quantulus 1220 was 0.08 Bq·L{sup -,} while that of the 300SL was 0.20 Bq·L{sup -1}. The analytical results regarding {sup 222}Rn in groundwater were less than 10% different between these LSCs. The 300SL is an LSC that is comparable to the Quantulus 1220 for detecting {sup 222}Rn in groundwater. Both LSCs can be applied to determine the levels of {sup 222}Rn in groundwater under the management of the Ministry of Environment.

  4. Study of the peak shape in alpha spectra measured by liquid scintillation

    CERN Document Server

    Vera-Tome, F; Martin-Sanchez, A

    2002-01-01

    Liquid-scintillation counting allows the measurement of alpha and beta activities jointly or only of the alpha-emitting nuclides in a sample. Although the resolution of the alpha spectra is poorer than that attained with semiconductor detectors, it is still an attractive alternative. We describe here attempts to fit a peak shape to experimental liquid-scintillation alpha spectra and discuss the parameters affecting this shape, such as the PSA (pulse-shape analyser) level, vial type, shaking the sample, etc. Spectral analysis has been applied for complex alpha spectra.

  5. The performance of the curved grid gas proportional scintillation counter in X-ray spectrometry

    International Nuclear Information System (INIS)

    Santos, J.M.F. dos; Bento, A.C.S.S.M.; Conde, C.A.N.

    1994-01-01

    The performance of a curved grid gas proportional scintillation counter filled with xenon at 1100 mbar and having a 25 mm diameter window is evaluated for X-rays in the 1-11 keV energy range. Energy resolutions of 8.0% were obtained for a 5.9 keV parallel X-ray beam entering the detector through the full size window. The variation of the energy resolution with the X-ray energy is studied and X-ray fluorescence spectra for samples like industrial coal, painted porcelain and car lubrication oil, are presented. (orig.)

  6. Measurement of the Rayleigh scattering length in liquid scintillators for JUNO

    Energy Technology Data Exchange (ETDEWEB)

    Hackspacher, Paul [Johannes Gutenberg-Universitaet Mainz, PRISMA Excellence Cluster (Germany); Collaboration: JUNO-Collaboration

    2016-07-01

    In liquid scintillator neutrino detectors such as the upcoming Jiangmen Underground Neutrino Observatory (JUNO), neutrino interactions are being detected by means of inverse beta decay and analysis of the resulting luminescent light. In order to reliably reconstruct these events from photomultiplier signals, the scattering properties of the detector materials need to be sufficiently well known. In the LAB-based liquid scintillator that has been proposed for JUNO, the primary contribution to the scattering process comes from Rayleigh scattering. The characteristic Rayleigh scattering length can be experimentally obtained in an optical laboratory setup. This talk presents the approach, the current status and the future plans of the experiment.

  7. The design and performance of a large-volume spherical CsI(Tl) scintillation counter for gamma-ray spectroscopy

    CERN Document Server

    Meng, L J; Chirkin, V M; Potapov, V N; Ivanov, O P; Ignatov, S M

    2002-01-01

    This paper presents details of the design and performance of a prototype large-volume scintillation detector used for gamma-ray spectroscopy. In this detector, a spherical CsI(Tl) scintillation crystal having a diameter of 5.7 cm was polished and packed in dry MgO powder. The scintillation light from the crystal was viewed using a single 1x1 cm sup 2 silicon PIN diode. A low-noise preamplifier was also integrated within the detector housing. The measured noise level was equivalent to approx 800 electrons (FWHM). Such a configuration provided a very good light collection efficiency, which resulted in an average of 20 electrons being generated per keV of energy deposited in the crystal. One of the key features of the detector design is that it minimises spatial variations in the light collection efficiency throughout the detector. Compared with a standard 3 in. NaI scintillation counter, this feature leads to a much-improved energy resolution, particularly for photon energies above 1 MeV. The results presented ...

  8. Study of a system for tritium analysis in water by electrolytic enrichment and liquid scintillation

    International Nuclear Information System (INIS)

    Pane, L.

    1979-01-01

    A system for the measurement of the low-level tritium concentrations in water samples has been experimentally studied. The enrichment of the samples is performed through electrolysis in twenty cells connected in series, and the counting is made in a liquid scintillation counter. Several parameters that could affect the accuracy of the results are analysed and the optimization of the system is discussed. For a sample volume reduction from 1000 to 15ml, the recovery of tritium, during electrolysis is of 63% and the enrichment factor is about 40. The lowest detection limit of the system is 1.0+-0.5 U.T. Its analytical capacity is of 30 samples a month. The results obtained in the determination of 3 H concentration in a series of samples from rain, surface and underground waters can be considered satisfactory. (Author) [pt

  9. Preliminary study of light yield dependence on LAB liquid scintillator composition

    International Nuclear Information System (INIS)

    Ye Xingchen; Yu Boxiang; Zhou Xiang

    2015-01-01

    Liquid scintillator (LS) will be adopted as the detector material in JUNO (Jiangmen Underground Neutrino Observatory). The energy resolution requirement of JUNO is 3%, which has never previously been reached. To achieve this energy resolution, the light yield of liquid scintillator is an important factor. PPO (the fluor) and bis-MSB (the wavelength shifter) are the two main materials dissolved in LAB. To study the influence of these two materials on the transmission of scintillation photons in LS, 25 and 12 cm-long quartz vessels were used in a light yield experiment. LS samples with different concentration of PPO and bis-MSB were tested. At these lengths, the light yield growth is not obvious when the concentration of PPO is higher than 4 g/L. The influence from bis-MSB becomes insignificant when its concentration is higher than 8 mg/L. This result could provide some useful suggestions for the JUNO LS. (authors)

  10. Measurement of gross beta radioactivity in high-level liquid waste

    International Nuclear Information System (INIS)

    Lu Feng; Lin Cansheng; Zhang Xianzi; Chen Guoan; Zhang Chonghai

    1992-01-01

    Using beta plastic scintillation counter of low level background, gross beta radioactivity of twelve samples for high-level liquid waste is determined directly. Beta efficiency curves of plastic scintillation counter for four mass thickness are calibrated in advance. Determining gross beta radioactivity, gross efficiency of the scintillation counter for various energy beta ray is calculated via weighted mean method with the ratio of radioactivity for each nuclide. The ratio of radioactivity for nuclides which have gamma disintegration is determined in terms of the radioactivity measured by gamma spectrometer. The ratio of the radioactivity for 90 Sr which has purity beta disintegration is calculated in terms of half life time approximation. The ratio of the radioactivity for 147 Pm which also has purity disintegration is calculated by means of apparent cooling-time approximation. The uncertainty of results for the present work is about +-15%

  11. A CMOS integrated timing discriminator circuit for fast scintillation counters

    International Nuclear Information System (INIS)

    Jochmann, M.W.

    1998-01-01

    Based on a zero-crossing discriminator using a CR differentiation network for pulse shaping, a new CMOS integrated timing discriminator circuit is proposed for fast (t r ≥ 2 ns) scintillation counters at the cooler synchrotron COSY-Juelich. By eliminating the input signal's amplitude information by means of an analog continuous-time divider, a normalized pulse shape at the zero-crossing point is gained over a wide dynamic input amplitude range. In combination with an arming comparator and a monostable multivibrator this yields in a highly precise timing discriminator circuit, that is expected to be useful in different time measurement applications. First measurement results of a CMOS integrated logarithmic amplifier, which is part of the analog continuous-time divider, agree well with the corresponding simulations. Moreover, SPICE simulations of the integrated discriminator circuit promise a time walk well below 200 ps (FWHM) over a 40 dB input amplitude dynamic range

  12. Liquid scintillator mixable with water

    International Nuclear Information System (INIS)

    Benson, R.H.

    1976-01-01

    A liquid scintillator mixable with water is described consisting of an aromatic solvent (xylene), a scintillation material and an ethoxylated alkyl phenol (as surface-active substance). So far such kinds of system have not given good measurements on counting samples with high water content. Due to the invention's composition one gets good results even with counting samples having a water content of over 30% if the alkyl substituent of the alkyl phenol contains 7, 10, 11, 13, 14, 15 or 16 C atoms and the ratio n/x of the number n of C atoms of the alkyl substituents to the average number x of the ethoxy groups of the ethoxylated alkyl phenols lie between 0.83 and 1.67. The following alkyl phenols are mentioned: heptyl phenol (n/x between 0.83 and 1.08), decyl phenol (n/x between 0.90 and 1.17), hendecyl phenol (n/x between 0.93 and 1.22), tridecyl phenol (n/x between 0.97 and 1.34), tetradecyl phenol (n/x between 1.08 and 1.55), pentadecyl phenol (n/x between 1.15 and 1.67), hexadecyl phenol (n/x between 1.33 and 1.51). (UWI) [de

  13. Ionization and scintillation signals produced by relativistic La ions in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, H J; Doke, T; Hitachi, H; Kikuchi, J; Lindstrom, P J; Masuda, K; Shibamura, E; Nagamiya, S

    1987-04-15

    We have observed simultaneously the ionization and scintillation signals produced by relativistic La ions in liquid argon. The two signals are highly correlated and the sums of these signals are constant with the standard deviation of 1.2% over the range of the electric field from 0 to 7.5 kV/cm. The ratio of the sum signals expressed in unit of the number of species to the value N/sub i/ + N/sub ex/ is close to unity where N/sub i/ and N/sub ex/ are the numbers of ion pairs and excitons, respectively, produced by La ions in liquid argon. The pulse height resolution of the sum of the signals is better than that of ionization or scintillation alone. Almost no quenching is found in the scintillation signal from relativistic La ions when compared to signals from lighter ions.

  14. Prototype apparatus for the measurement of tritium in expired air using plastic scintillator pellets.

    Science.gov (United States)

    Furuta, Etsuko; Ito, Takeshi

    2018-02-01

    A new apparatus for measuring tritiated water in expired air was developed using plastic scintillator (PS) pellets and a low-background liquid scintillation counter. The sensitivity of the apparatus was sufficient when a large adapted Teflon vial was used. The measurement method generated low amounts of organic waste because the PS pellets were reusable by rinsing, and had adequate detection limits. The apparatus is useful for the safety management of workers that are exposed to radioactive materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Method for determining efficiency in a liquid scintillation system

    International Nuclear Information System (INIS)

    Laney, B.H.

    1975-01-01

    This invention relates to a method of counting radioactive events in a liquid scintillation radiation detecting and counting apparatus by utilizing pulses generated by a photomultiplying means resulting from scintillations caused by radioactive events. A counting efficiency value is assigned to each pulse generated in the photomultiplying means according to the height of the pulse. The numerical inverse of each assigned counting efficiency value is determined and each numerical inverse is recorded as an actual number of radioactive events with each having a pulse height identical to that of the corresponding pulse generated in the photomultiplying means. (Patent Office Record)

  16. 2003: A centennial of spinthariscope and scintillation counting

    International Nuclear Information System (INIS)

    Kolar, Z.I.; Hollander, W. den

    2004-01-01

    In 1903 W. Crookes demonstrated in England his 'spinthariscope' for the visual observation of individual scintillations caused by alpha particles impinging upon a ZnS screen. In contrast to the analogue methods of radiation measurements in that time the spinthariscope was a single-particle counter, being the precursor of scintillation counters since. In the same period F. Giesel, J. Elster and H. Geitel in Germany also found that scintillations from ZnS represent single particle events. This paper summarises the historical events relevant to the advent of scintillation counting

  17. Liquid scintillation counting of 3H-thymidine incorporated into rat lens DNA

    International Nuclear Information System (INIS)

    Soederberg, P.G.; Lindstroem, B.

    1990-01-01

    DNA synthesis in the lens has previously been localized by autoradiography following incorporation of 3 H-thymidine. For the quantification of DNA synthesis in the lens, pooling of lenses and extraction of the DNA for liquid scintillation counting, has formerly been adapted. In the present investigation a method has been developed for the extraction of the unincorporated tracer from whole lenses after short time incubation in a medium containing 3 H-thymidine. The 3 H-thymidine incorporated into individual lenses was then detected by liquid scintillation counting after dissolution of the lenses. The sources of the variation in the method are evaluated. (author)

  18. The study of vial and cocktail for tritium radioactivity analysis of rain water by liquid scintillation counter

    International Nuclear Information System (INIS)

    Noh, Sung Jin; Kim, Hyo Jin; Kim, Hyun; Lee, Man Woo; Jeong, Dong Hyeok; Yang, Kwang Mo; Kang, Yeong Rok; Nam, Sang Hee

    2015-01-01

    Even though the current method for tritium (3H) analysis is routine, for the case of the low level of tritium in the environment, special conditions have to be fulfilled in order to obtain accurate and reliable tritium measurements. There are very little comparative data concerning commercial scintillating cocktails. The best cocktails for measuring tritium are those based on benzene derived solvent, and the worse cocktails are those which have complex chemical composition or contain too small concentration of scintillators. The aim of study was to investigate various vials and cocktails by comparison with the combination of few different scintillation cocktails and vials in our routine measurements according to count, efficiency, and the figure of merit (FOM). The comparison of three types of vials with scintillation cocktails for tritium activity analysis of rain water shows that glass vials have higher count rates and HiSafe 3 cocktails have lower FOM

  19. Background characterization in a liquid scintillation spectrometer

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Los Arcos, J.M.; Jimenez de Mingo, A.

    1995-01-01

    An alternate procedure for background count rate estimation in a liquid scintillation spectrometer is presented, which does not require to measure a blank with similar composition, volume and quench, to the problem sample. The procedure is based on a double linear parameterization which was obtained from a systematic study of the background observed with glass vials, in three different windows, 0 - 20 KeV, 0 - 800 KeV and 0 - 2 MeV, for volume between 2 and 20 mi of three commercial scintillators, Hisafe II, Ultima-Gold and Instagel, and quenching degree in the interval equivalent to 50% - 3% tritium efficiency. This procedure was tested with standard samples of 3H, and led to average discrepancies less than 10% for activity ≥0,6 Bq, against conventional methods for which the discrepancies are twice on average. (Author) 10 refs

  20. Background characterization in a liquid scintillation spectrometer

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Los arcos, J.M.; Jimenez de Mingo, A.

    1995-01-01

    An alternate procedure for background count rate estimation in a liquid scintillation spectrometer is presented, which does not require to measure a blank with similar composition, volume and quench, to the problem sample. The procedure is based on a double linear parameterization which was obtained from a systematic study of the background observed with glass vials, in three different windows, 0-20 KeV, 0-800 KeV and 0-2 MeV, for volume between 2 and 20 ml of three commercial scintillators, Hisafe II, Ultima-gold and Instagel, and quenching degree in the interval equivalent to 50%-3% tritium efficiency. This procedure was tested with standard samples of ''3 H, and led to average discrepancies less than 10% for activity => 0,6 Bq, against conventional methods for which the discrepancies are twice on average

  1. Liquid scintillation alpha particle spectrometry. Progress report

    International Nuclear Information System (INIS)

    Bell, L.L.; Hakooz, S.A.; Johnson, L.O.; Nieschmidt, E.B.; Meikrantz, D.H.

    1979-12-01

    Objective to develop a technique whereby Pu may be put into solution, extracted by solvent extraction into a suitable extractive scintillant and subsequently counted. Presented here are results of attempts to separate beta and alpha activities through pulse shape discrimination. A qualitative discussion is given which yields alpha particle peak widths, resolution and response. The detection efficiency for alpha particles in a liquid scintillant is 100%. Present detection sensitivities of the equipment being used are: 4.5 x 10 -6 μCi (100 s), 1.2 x 10 -6 μCi (1000 s), and 4.0 x 10 -7 μCi (10,000 s) at the 3 sigma level. The detectability of a particular alpha-emitting species is strongly dependent upon the population of other species. The ability to discriminate depends upon the system resolution. 14 figures, 2 tables

  2. Gross alpha/beta analyses in water by liquid scintillation counting

    International Nuclear Information System (INIS)

    Wong, C.T.; Lawrence Livermore National Laboratory, CA; Soliman, V.M.; Perera, S.K.

    2005-01-01

    The standard procedure for analyzing gross alpha and gross beta in water is evaporation of the sample and radioactivity determination of the resultant solids by proportional counting. This technique lacks precision, and lacks sensitivity for samples with high total dissolved solids. Additionally, the analytical results are dependent on the choice of radionuclide calibration standard and the sample matrix. Direct analysis by liquid scintillation counting has the advantages of high counting efficiencies and minimal sample preparation time. However, due to the small sample aliquants used for analysis, long count times are necessary to reach required detection limits. The procedure proposed consists of evaporating a sample aliquant to dryness, dissolving the resultant solids in a small volume of dilute acid, followed by liquid scintillation counting to determine radioactivity. This procedure can handle sample aliquants containing up to 500 mg of dissolved solids. Various acids, scintillation cocktail mixtures, instrument discriminator settings, and regions of interest (ROI) were evaluated to determine optimum counting conditions. Precision is improved and matrix effects are reduced as compared to proportional counting. Tests indicate that this is a viable alternative to proportional counting for gross alpha and gross beta analyses of water samples. (author)

  3. Standardization of 241Am by digital coincidence counting, liquid scintillation counting and defined solid angle counting

    International Nuclear Information System (INIS)

    Balpardo, C.; Capoulat, M.E.; Rodrigues, D.; Arenillas, P.

    2010-01-01

    The nuclide 241 Am decays by alpha emission to 237 Np. Most of the decays (84.6%) populate the excited level of 237 Np with energy of 59.54 keV. Digital coincidence counting was applied to standardize a solution of 241 Am by alpha-gamma coincidence counting with efficiency extrapolation. Electronic discrimination was implemented with a pressurized proportional counter and the results were compared with two other independent techniques: Liquid scintillation counting using the logical sum of double coincidences in a TDCR array and defined solid angle counting taking into account activity inhomogeneity in the active deposit. The results show consistency between the three methods within a limit of a 0.3%. An ampoule of this solution will be sent to the International Reference System (SIR) during 2009. Uncertainties were analysed and compared in detail for the three applied methods.

  4. Evaluation of the ionization quenching correction for several liquid scintillators

    International Nuclear Information System (INIS)

    Los Arcos, J. M.; Borras, C.

    1990-01-01

    The most appropriate computational model for the ionization quenching function Q(E) is analyzed for electrons in liquid scintillators. A numerical evaluation of Q(E) from 0.1 keV to 3 MeV which the kB parameter varying between 0.005 and 0.010 cm/MeV is presented for seven scintillators; Toluene, Toluene-Alcohol, PCS, Toluene-CCl4, INSTAGEL, Dioxane-Naphtalene and HISAFE II. The numerical result are summarized as tables of Ieast squares fitting coefficient which make easy the computation of Q(E). (Author)

  5. Evaluation of the ionization quenching correction for several liquid scintillators

    International Nuclear Information System (INIS)

    Los Arcos, J.M.; Borras, C.

    1990-01-01

    The most appropiate computational model for the ionization quench-ing function Q(E) is analyzed for electrons in liquid scintillators. A numerical evaluation of Q(E) from 0.1 keV to 3 MeV which the kB parameter varying between 0.005 and 0.010 cm/MeV is presented for seven scintillators; Toluene, Toluene-Alcohol, PCS, Toluene-CC14, INSTAGEL, Dioxane-Naphtalene and HISAFE II. The numerical result are summarized as tables of least squares fitting coefficient which make easy the computation of Q(E).(Author)

  6. Investigation on n/γ discrimination methods for liquid scintillator detector

    International Nuclear Information System (INIS)

    Li Kuinian; Li Yang; Zhang Mei; Zhang Zhongbing; Li Binkang; Zhang Xiaodong; Liu Jun; Zhang Xianpeng

    2014-01-01

    To obtain the n/γ discrimination ability of different digital pulse shape discrimination methods, four methods (rising time method, charge comparison method, pulse gradient analysis and frequency gradient analysis) in americium-beryllium mixed radiation fields were demonstrated. The signals from EJ-301 and BC501A scintillator detectors were digitized using oscilloscope. A comparison was taken among the four discrimination methods. The discrimination results of the four methods in liquid scintillator detectors show that the rising time method is the best and it provides a good choice in real-time n/γ discrimination system. (authors)

  7. Data process of liquid scintillation counting

    International Nuclear Information System (INIS)

    Ishikawa, Hiroaki; Kuwajima, Susumu.

    1975-01-01

    The use of liquid scintillation counting system has been significantly spread because automatic sample changers and printers have recently come to be incorporated. However, the system will be systematized completely if automatic data processing and the sample preparation of radioactive materials to be measured are realized. Dry or wet oxidation method is applied to the sample preparation when radioactive materials are hard to dissolve into scintillator solution. Since these several years, the automatic sample combustion system, in which the dry oxidation is automated, has been rapidly spread and serves greatly to labor saving. Since the printers generally indicate only counted number, data processing system has been developed, and speeded up calculating process, which automatically corrects quenching of samples for obtaining the final radioactivity required. The data processing system is roughly divided into on-line and off-line systems according to whether computers are connected directly or indirectly, while its hardware is classified to input, calculating and output devices. Also, the calculation to determine sample activity by external standard method is explained. (Wakatsuki, Y.)

  8. Scintillation counter and wire chamber front end modules for high energy physics experiments

    International Nuclear Information System (INIS)

    Baldin, Boris; DalMonte, Lou

    2011-01-01

    This document describes two front-end modules developed for the proposed MIPP upgrade (P-960) experiment at Fermilab. The scintillation counter module was developed for the Plastic Ball detector time and charge measurements. The module has eight LEMO 00 input connectors terminated with 50 ohms and accepts negative photomultiplier signals in the range 0.25...1000 pC with the maximum input voltage of 4.0 V. Each input has a passive splitter with integration and differentiation times of ∼20 ns. The integrated portion of the signal is digitized at 26.55 MHz by Analog Devices AD9229 12-bit pipelined 4-channel ADC. The differentiated signal is discriminated for time measurement and sent to one of the four TMC304 inputs. The 4-channel TMC304 chip allows high precision time measurement of rising and falling edges with ∼100 ps resolution and has internal digital pipeline. The ADC data is also pipelined which allows deadtime-less operation with trigger decision times of ∼4 (micro)s. The wire chamber module was developed for MIPP EMCal detector charge measurements. The 32-channel digitizer accepts differential analog signals from four 8-channel integrating wire amplifiers. The connection between wire amplifier and digitizer is provided via 26-wire twist-n-flat cable. The wire amplifier integrates input wire current and has sensitivity of 275 mV/pC and the noise level of ∼0.013 pC. The digitizer uses the same 12-bit AD9229 ADC chip as the scintillator counter module. The wire amplifier has a built-in test pulser with a mask register to provide testing of the individual channels. Both modules are implemented as a 6Ux220 mm VME size board with 48-pin power connector. A custom europack (VME) 21-slot crate is developed for housing these front-end modules.

  9. Measuring variation of indoor radon concentration using bare nuclear tracks detectors, scintillation counters and surface barrier detectors

    International Nuclear Information System (INIS)

    Ishak, I.; Mahat, R.H.; Amin, Y.M.

    1996-01-01

    Bare LRI 15 nuclear track detectors , scintillators counter and surface barrier detectors were used to measured the indoor radon concentration in various location within two rooms. Spatial variation of the radon concentration is caused by positioning of the door, windows, furniture, cracks in the building and also distances from floor, wall and ceiling. It is found that the change in temperature are causing radon concentration to increase at certain time of the day

  10. A new water-based liquid scintillator and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, M., E-mail: yeh@bnl.gov [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Hans, S.; Beriguete, W.; Rosero, R.; Hu, L.; Hahn, R.L. [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Diwan, M.V.; Jaffe, D.E.; Kettell, S.H.; Littenberg, L. [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2011-12-21

    In this paper we describe a new type of scintillating liquid based on water. We describe the concept, preparation, and properties of this liquid, and how it could be used for a very large, but economical detector. The applications of such a detector range from fundamental physics such as nucleon decay and neutrino physics to physics with broader application such as neutron detection. We briefly describe the scientific requirements of these applications, and how they can be satisfied by the new material.

  11. Comparison of the efficacy of biodegradable and non-biodegradable scintillation liquids on the counting of tritium- and [14C]-labeled compounds

    Directory of Open Access Journals (Sweden)

    Medeiros R.B.

    2003-01-01

    Full Text Available The widespread use of ³H and 14C in research has generated a large volume of waste mixed with scintillation liquid, requiring an effective control and appropriate storage of liquid radioactive waste. In the present study, we compared the efficacy of three commercially available scintillation liquids, Optiphase HiSafe 3, Ultima-Gold(TM AB (biodegradable and Insta-Gel-XF (non-biodegradable, in terms of [14C]-glucose and [³H]-thymidine counting efficiency. We also analyzed the effect of the relative amount of water (1.6 to 50%, radioisotope concentration (0.1 to 100 nCi/ml, pH (2 to 10 and color of the solutions (samples containing 0.1 to 1.0 mg/ml of Trypan blue on the counting efficiency in the presence of these scintillation liquids. There were few significant differences in the efficiency of 14C and ³H counting obtained with biodegradable or non-biodegradable scintillation liquids. However, there was an 83 and 94% reduction in the efficiency of 14C and ³H counting, respectively, in samples colored with 1 mg/ml Trypan blue, but not with 0.1 mg/ml, independent of the scintillation liquid used. Considering the low cost of biodegradable scintillation cocktails and their efficacy, these results show that traditional hazardous scintillation fluids may be replaced with the new safe biodegradable fluids without impairment of ³H and 14C counting efficiency. The use of biodegradable scintillation cocktails minimizes both human and environmental exposure to hazardous solvents. In addition, some biodegradable scintillation liquids can be 40% less expensive than the traditional hazardous cocktails.

  12. Liquid Scintillation Detectors for High Energy Neutrinos

    International Nuclear Information System (INIS)

    Smith, Stefanie N.; Learned, John G.

    2010-01-01

    Large open volume (not segmented) liquid scintillation detectors have been generally dedicated to low energy neutrino measurements, in the MeV energy region. We describe the potential employment of large detectors (>1 kiloton) for studies of higher energy neutrino interactions, such as cosmic rays and long-baseline experiments. When considering the physics potential of new large instruments the possibility of doing useful measurements with higher energy neutrino interactions has been overlooked. Here we take into account Fermat's principle, which states that the first light to reach each PMT will follow the shortest path between that PMT and the point of origin. We describe the geometry of this process, and the resulting wavefront, which we are calling the 'Fermat surface', and discuss methods of using this surface to extract directional track information and particle identification. This capability may be demonstrated in the new long-baseline neutrino beam from Jaeri accelerator to the KamLAND detector in Japan. Other exciting applications include the use of Hanohano as a movable long-baseline detector in this same beam, and LENA in Europe for future long-baseline neutrino beams from CERN. Also, this methodology opens up the question as to whether a large liquid scintillator detector should be given consideration for use in a future long-baseline experiment from Fermilab to the DUSEL underground laboratory at Homestake.

  13. Some studies on extractive liquid scintillation counting for Th-234/P-234m

    International Nuclear Information System (INIS)

    Grudpan, K.; Singjanusong, P.; Punyodom, W.

    1990-01-01

    A study on solvent extraction for Th-234/Pa-234m by liquid scintillation counting has not been reported. This paper will report an application of the technique on such a study. In a hydrochloric acid solution of an uranyl salt, Pa-234m which is one of the daughters of U-238 can be separated by extraction into isobutyl methyl ketone (IBMK). Cerenkov counting was applied for the extraction investigation. Solvent extraction of Th-234/Pa-234m from an aqueous nitric acid solution by TOPO/PPO in toluene by using liquid scintillation counting will be described

  14. QUENCH: A software package for the determination of quenching curves in Liquid Scintillation counting

    International Nuclear Information System (INIS)

    Cassette, Philippe

    2016-01-01

    In Liquid Scintillation Counting (LSC), the scintillating source is part of the measurement system and its detection efficiency varies with the scintillator used, the vial and the volume and the chemistry of the sample. The detection efficiency is generally determined using a quenching curve, describing, for a specific radionuclide, the relationship between a quenching index given by the counter and the detection efficiency. A quenched set of LS standard sources are prepared by adding a quenching agent and the quenching index and detection efficiency are determined for each source. Then a simple formula is fitted to the experimental points to define the quenching curve function. The paper describes a software package specifically devoted to the determination of quenching curves with uncertainties. The experimental measurements are described by their quenching index and detection efficiency with uncertainties on both quantities. Random Gaussian fluctuations of these experimental measurements are sampled and a polynomial or logarithmic function is fitted on each fluctuation by χ"2 minimization. This Monte Carlo procedure is repeated many times and eventually the arithmetic mean and the experimental standard deviation of each parameter are calculated, together with the covariances between these parameters. Using these parameters, the detection efficiency, corresponding to an arbitrary quenching index within the measured range, can be calculated. The associated uncertainty is calculated with the law of propagation of variances, including the covariance terms. - Highlights: • The program “QUENCH” is devoted to the interpolation of quenching curves in LSC. • Functions are fitted to experimental data with uncertainties in both quenching and efficiency. • The parameters of the fitting function and the associated covariance matrix are evaluated. • The detection efficiency and uncertainty corresponding to a given quenching index is calculated.

  15. Measurement by liquid scintillation of 226 Ra coprecipitated in BaSO4

    International Nuclear Information System (INIS)

    Lopez del Rio, H.; Davila R, J.I.; Badillo A, V.E.; Mireles G, F.; Quirino T, L.; Lugo R, J.F.; Pinedo V, J.L.; Rios M, C.

    2003-01-01

    The 226 Ra is one of the more radio toxic nuclides since when entering to the organism it continues metabolically to the calcium, accumulating mainly in the bone tissue where it becomes in an internal radiation source. For the analysis of radium in water the methods of radon emanation are generally applied and coprecipitation with barium sulfate. This last is quick and efficient, and the radium in the precipitate can be measured by alpha or gamma spectrometry, or liquid scintillation dissolving the precipitate one with EDTA. In this work it is proposed a procedure for the radium measurement in water based on the coprecipitation with barium sulfate and in the detection by liquid scintillation. The precipitate of Ba(Ra)SO 4 it is carried with water and blended with the liquid scintillator OptiPhase Hi Safe 3, avoiding the dissolution with EDTA. A 92± 1.4% of radium it was recovered and it was reached a minimum activity detectable of 4.2 ± 0.9 mBq -1 . The procedure was essayed with natural mineral water with a knew activity in concentration of 226 Ra. The analytic result it coincided with the reported value with a relative error of 9%. (Author)

  16. Operation of CdZnTe Semiconductor Detectors in Liquid Scintillator for the COBRA Experiment

    International Nuclear Information System (INIS)

    Oldorf, Christian

    2015-08-01

    COBRA, the Cadmium-Zinc-Telluride O-neutrino double-Beta Research Apparatus, is an experiment aiming for the measurement of the neutrinoless double beta decay with several isotopes, in particular 116 Cd, 106 Cd and 130 Te. A highly granular large scale experiment with about 400 kg of CdZnTe semiconductor detectors is currently under development. To provide evidence for the neutrinoless double beta decay of 116 Cd, a background rate in the order of 10 -3 counts/keV/kg/a is needed to achieve the required half-life sensitivity of at least 2 . 10 26 years. To reach this target, the detectors have to be operated in a highly pure environment, shielded from external radiation. Liquid scintillator is a promising candidate as a circum fluent replacement for the currently used lacquer. Next to the function as highly pure passivation material, liquid scintillator also acts as a neutron shield and active veto for external gammas. Within this thesis, the design, construction and assembly of a test set-up is described. The operation of four CdZnTe detectors after several years of storage in liquid scintillator is demonstrated. Next to extensive material compatibility tests prior to the assembly, the commissioning of the set-up and the characterization of the detectors are shown. Finally, results concerning the background reduction capability of liquid scintillator and the detection of cosmic muons are presented and compared to a Monte Carlo simulation.

  17. Removal of actinide elements from liquid scintillation cocktail wastes using liquid-liquid extraction and demulsification techniques

    International Nuclear Information System (INIS)

    Foltz, K.; Landsberger, S.; Srinivasan, B.; Vandegrift, G.F.

    1994-01-01

    For many years liquid scintillation cocktail (LSC) wastes have been generated and stored at Argonne National Laboratory (ANL). These wastes are stored in thousands of 10--20 m scintillation vials, many of which contain elements with Z > 88. Because storage space is limited, disposal of this waste is pressing. These wastes could be commercially incinerated if the radionuclides with Z>88 are reduced to sufficiently low levels. However, there is currently no deminimus level for these radionuclides, and separation techniques are still being tested. The University of Illinois is conducting experiments to separate radionuclides with Z > 88 from simulated LSC wastes by using liquid-liquid extraction (LLX) and demulsification techniques. The actinide elements are removed from the LSC by extraction into an aqueous phase after the cocktail has been demulsified. The aqueous and organic phases are separated and the organic phase, now free from radionuclides with Z > 88, can be sent to a commercial incineration facility. The aqueous phase may be treated and disposed of using existing techniques. The LLX separation techniques used solutions of sodium oxalate, aluminum nitrate, and tetrasodium EDTA at varying concentrations. These extractants were mixed with the simulated waste in a 1:1 volume ratio. Using 1.0M Na 4 EDTA salt solutions, decontamination ratios as high as 230 were achieved

  18. Alpha/beta separation in liquid scintillation gel samples

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.

    1994-01-01

    The pulse shape analysis commonly used in liquid scintillation alpha/beta separations is satisfactory for moderate quench levels. However, for gel samples, the alpha particle counting efficiency is never greater than 10%, and an optimum separation of the alpha component cannot be achieved when beta to alpha counting rate ratios are greater than 100. In such cases, it is better to use a spectrum analysis method for alpha/beta separation. ((orig.))

  19. Ionization and scintillation produced by relativistic Au, He and H ions in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Shibamura, E; Masuda, K; Crawford, H J; Engelage, J M; Doke, T; Hitachi, A; Kikuchi, J; Flores, I; Lindstrom, P J; Ogura, K

    1987-10-15

    We have measured ionization and scintillation produced by relativistic ions of Au, He and H in liquid argon. The sum of ionization signal and scintillation signal per unit energy deposition is the same for He and H ions, which is also the same as that for relativistic Ne, Fe and La ions previously measured. We have found that quenching occurs when liquid argon is irradiated by relativistic Au ions and that the sum per unit energy deposition for the Au ions is 70-76% of that for the other ions mentioned above.

  20. Methods of detecting tritium in gases and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Petr, I

    1977-07-01

    Tritium mainly occurs in gases in two chemical forms, i.e., as water vapour (HTO) or elemental hydrogen (HT). Two methods for tritium gas measuring are described. The first consists in the use of an ionization chamber or a proportional counter with the sample sucked in through a filter to the detector working volume. The second consists in the separation of tritium (in the form of HTO) from the gas sample by sorption on silica gel or on molecular sieves and its detection using a liquid or a plastic scintillation detector. Tritium in the form of HT and gaseous organic tritium compounds are determined using the same measuring method after oxidation of the gaseous samples to HTO by burning. A description is given of detectors and measuring methods. Tritium in liquids mainly occurs in the form of tritiated water (HTO). The most commonly used method of tritium detection in liquids is the application of liquid scintillation detectors in which the sample is dissolved or suspended and measured with two photomultipliers in time-coincidence connection. The main advantage of liquid scintillators is the possibility to achieve the 4..pi.. measurement geometry. The methods of calibration and of checking the stability of a measuring system with liquid scintillators are described as are the applications of plastic scintillators in measuring tritium in liquids. Plastic scintillators are less costly in operation and show a more rapid response but their sensitivity is lower. The threshold values of activity are shown in dependence on the detector applied, the chemical form of tritium and the sampling method.

  1. A new liquid xenon scintillation detector for positron emission tomography

    International Nuclear Information System (INIS)

    Chepel, V.Yu.

    1993-01-01

    A new positron-sensitive detector of annihilation photons filled with liquid xenon is proposed for positron emission tomography. Simultaneous detection of both liquid xenon scintillation and ionization current produces a time resolution of < 1 ns and a position resolution in the tangential direction of the tomograph ring is ∼ 1 mm and in the radial direction is ∼ 5 mm. The advantages of a tomograph with new detectors are discussed. New algorithms of Compton scattering can be used. (author)

  2. Marine radioactivity measurements with liquid scintillation spectrometers

    International Nuclear Information System (INIS)

    Liong Wee Kwong, L.; Povinec, P.P.

    1999-01-01

    Liquid Scintillation Spectrometry (LSS) has now become the most widespread method for quantitative analytical measurement of low levels of β-emitting radionuclides like 3 H and 14 C. The high efficiency resulting from the latest development in LSS makes this technique not only appropriate but also enables direct measurement in environmental samples without excessive preparation. The introduction of several new cocktails based on solvents with a high flashpoint containing surfactants and having a high degree of aqueous sample compatibility has also contributed to the simplification of procedures

  3. PMP, a novel solute for liquid and plastic scintillation counting

    International Nuclear Information System (INIS)

    Gusten, Hans

    1983-01-01

    The excellent fluorescence properties of PMP ( 11-phenyl-3-mesityl-2-pyrazoline) such as long wavelength emission of over 400 nm, and high fluorescence quantum yield with a short decay time together with a solubility of more than one Mol/L in toluene make this compound a promising solute for scintillation counting. The Stokes' shift of PMP of over 10,000 cm -1 is twice as large as that of the commonly used PPO. Due to this unusually large Stokes' shift PMP can be used as a primary solute without requiring a secondary solute as wavelength shifter. A comparison of the scintillation properties of PMP and PPO in toluene reveals that the counting efficiency for 14 C is better for PMP while the 3 H efficiency is equally good. Due to the large Stokes' shift, PMP is about 50 percent less sensitive to color quenching than PPO. Compared to the solute combinations PPO/secondary solutes, the scintillation counting efficiency of PMP for 14 C in toluene or xylene is the same, while the absolute 3 H efficiency of PPO/secondary solutes in cocktails with emulsifiers is about 10 percent higher. The PMP scintillation efficiency for 14 C as well as 3 H in chemical quenching by urine is more or less the same as for PPO/dimethyl-POPOP. PMP is more sensitive to quenching by halogenated solvents. In the dioxane-based scintillation, this sensitivity to chemical quenching by CHCl 3 vanishes and the counting efficiencies for 14 C and 3 H are as good as for PPO/dimethyl-POPOP or PPO/bis-MSB. Due to the large Stokes' shift, the self-absorption of the scintillation light by PMP is lower than in conventional scintillators. This offers good possibilities in very large-volume applications of liquid as well as plastic scintillators

  4. Response of gadolinium doped liquid scintillator to charged particles: measurement based on intrinsic U/Th contamination

    Science.gov (United States)

    Du, Q.; Lin, S. T.; He, H. T.; Liu, S. K.; Tang, C. J.; Wang, L.; Wong, H. T.; Xing, H. Y.; Yue, Q.; Zhu, J. J.

    2018-04-01

    A measurement is reported for the response to charged particles of a liquid scintillator named EJ-335 doped with 0.5% gadolinium by weight. This liquid scintillator was used as the detection medium in a neutron detector. The measurement is based on the in-situ α-particles from the intrinsic Uranium and Thorium contamination in the scintillator. The β–α and the α–α cascade decays from the U/Th decay chains were used to select α-particles. The contamination levels of U/Th were consequently measured to be (5.54±0.15)× 10‑11 g/g, (1.45±0.01)× 10‑10 g/g and (1.07±0.01)× 10‑11 g/g for 232Th, 238U and 235U, respectively, assuming secular equilibrium. The stopping power of α-particles in the liquid scintillator was simulated by the TRIM software. Then the Birks constant, kB, of the scintillator for α-particles was determined to be (7.28±0.23) mg/(cm2ṡMeV) by Birks' formulation. The response for protons is also presented assuming the kB constant is the same as for α-particles.

  5. Liquid scintillation counting efficiency in three photomultiplier systems. Pure electron capture

    International Nuclear Information System (INIS)

    Los Arcos, J. M.; Grau Carles, A.; Grau Malonda, A.

    1990-01-01

    The tables of counting efficiency as a function of the figure of merit for a liquid scintillation counting system working with three phototubes are presented. The evaluation has been carried out for a Toluene-based scintillator with 5, 10 and 15 ml column, and 19 different radionuclides decaying by pure electron capture: 37Ar 41Ca, 49V, 53 Mn, 55Fe, 59Ni, 68Ge 7iGe, 82Sr, 97Tc, 118Te, 131CS, 137La, 140Ca, 157Tb, 165Er, 193Pt, 194Hg, 205Pb. (Author) 22 refs

  6. Scintillation counter with MRS APD light readout

    International Nuclear Information System (INIS)

    Akindinov, A.; Bondarenko, G.; Golovin, V.; Grigoriev, E.; Grishuk, Yu.; Mal'kevich, D.; Martemiyanov, A.; Ryabinin, M.; Smirnitskiy, A.; Voloshin, K.

    2005-01-01

    START, a high-efficiency and low-noise scintillation detector for ionizing particles, was developed for the purpose of creating a high-granular system for triggering cosmic muons. Scintillation light in START is detected by MRS APDs (Avalanche Photo-Diodes with Metal-Resistance-Semiconductor Structure), operated in the Geiger mode, which have 1mm 2 sensitive areas. START is assembled from a 15x15x1cm 3 scintillating plastic plate, two MRS APDs and two pieces of wavelength-shifting optical fiber stacked in circular coils inside the plastic. The front-end electronic card is mounted directly on the detector. Tests with START have confirmed its operational consistency, over 99% efficiency of MIP registration and good homogeneity. START demonstrates a low intrinsic noise of about 10 -2 Hz. If these detectors are to be mass-produced, the cost of a mosaic array of STARTs is estimated at a moderate level of 2-3kUSD/m 2

  7. Determination of 226Ra by alpha spectrometry of liquid scintillation

    International Nuclear Information System (INIS)

    Nobrega, A.W.; Sachett, I.A.; Hespanhol, E.C.B.

    1987-01-01

    The determination of 226 Ra in environmental samples using alpha spectrometry in liquid scintilation is studied. The Radon 1-2 emanation method and 226 Ra separation process of other radionuclides alpha emissors are analyzed. The use of 226 Ra coprecipitation with barium sulphate is evaluated. (M.J.C.) [pt

  8. Method for determining efficiency in a liquid scintillation system

    International Nuclear Information System (INIS)

    Laney, B.H.

    1975-01-01

    In a liquid scintillation system utilizing plural photomultiplyier means, a method for determining efficiency of coincident pulse detection. Various incremental counting efficiency levels are associated with asymptotic functions in a two dimension matrix in which the abscissa and ordinate correspond to the pulse heights of each of a pair of coincident pulses from different photomultiplier means. An efficiency determining point is located in the matrix based on the sum of the pulse heights of each of the coincident pulses as well as on the amplitude of the smallest pulse of the coincident pulses. The single counting efficiency determining point is recorded as the level of efficiency at which the photomultiplier means detect scintillations that generate coincident pulses having pulse heights equal to those recorded. (Patent Office Record)

  9. High energy gamma ray response of liquid scintillator

    International Nuclear Information System (INIS)

    Shigyo, N.; Ishibashi, K.; Matsufuji, N.; Nakamoto, T.; Numajiri, M.

    1994-01-01

    We made the experiment on the spallation reaction. NE213 organic liquid scintillators were used for measuring neutrons and γ rays. To produce the γ ray emission cross section, we used the response functions by EGS4 code. The response functions look like uniform above γ ray energies of 60 MeV. The experimental data of the γ ray emission cross section are different from the data of High Energy Transport Code. (author)

  10. Liquid scintillation: Sample preparation and counting atypical emissions

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Liquid scintillation sample preparation has the most published information but the least amount of definitive technical direction because the chemical and physical nature of the samples from biological investigations varies widely. This chapter discusses the following related topics: Aqueous Samples; Tissue Solubilizers; Absorption of 14 CO 2 ; Sample Combustion Methods; Heterogeneous Systems; Sample Preparation Problems (colored samples, chemiluminescence, photoluminescence, static electricity); Counting Various Types of Emitters; Counting Atypical Emissions. 2 refs., 2 figs

  11. Construction and implementation of a liquid scintillation TDCR system

    International Nuclear Information System (INIS)

    Wu Yongle; Liang Juncheng; Liu Jiacheng; Yang Yuandi; Yuan Daqing

    2012-01-01

    The triple-to-double coincidence ratio (TDCR) method is an absolute measurement method of radioactivity, and is a popular technique for the standardization of pure beta radionuclides. A triple-to-double coincidence ratio (TDCR) liquid scintillation counting system has been constructed in China. A description of the system and measured activities for sources such as 3 H and 99 Te are presented. (authors)

  12. Measurement of isotopic uranium in water for compliance monitoring by liquid scintillation counting with alpha/beta discrimination

    International Nuclear Information System (INIS)

    Venso, E.A.S.

    1993-01-01

    A simple and inexpensive method is described for analysis of uranium (U) activity and mass in water by liquid scintillation counting using α/β discrimination. This method appears to offer a solution to the need for an inexpensive protocol for monitoring U activity and mass simultaneously and an alternative to the potential inaccuracy involved when depending on the mass-to-activity conversion factor or activity screen. U is extracted virtually quantitatively into 20 ml extractive scintillator from a 1-ell aliquot of water acidified to less than pH 2. After phase separation, the sample is counted for a 20-minute screening count with a minimum detection level of 0.27 pCi ell -1 . α-particle emissions from the extracted U are counted with close to 100% efficiency with a Beckman LS6000 LL liquid scintillation counter equipped with pulse-shape discrimination electronics. Samples with activities higher than 10 pCi ell -1 are recounted for 500-1000 minutes for isotopic analysis. Isotopic analysis uses events that are automatically stored in spectral files and transferred to a computer during assay. The data can be transferred to a commercially available spreadsheet and retrieved for examination or data manipulation. Values for three readily observable spectral features can be rapidly identified by data examination and substituted into a simple formula to obtain 234 U/ 238 U ratio for most samples. U mass is calculated by substituting the isotopic ratio value into a simple equation. The utility of this method for the proposed compliance monitoring of U in public drinking water supplies was field tested with a survey of drinking water from Texas supplies that had previously been known to contain elevated levels of gross α activity. U concentrations in 32 samples from 27 drinking water supplies ranged from 0.26 to 65.5 pCi ell -1 , with seven samples exceeding the proposed Maximum Contaminant Level

  13. Counter current 'emulsion flow' extractor for continuous liquid-liquid extraction from suspended solutions

    International Nuclear Information System (INIS)

    Yanase, Nobuyuki; Naganawa, Hirochika; Nagano, Tetsushi; Noro, Junji

    2011-01-01

    A single current 'emulsion flow' liquid-liquid extraction apparatus has a head with a number of holes from which micrometer-sized droplets of an aqueous phase spout into an organic phase to mix the two liquid phases. For practical use, however, a fatal problem can occur when particulate components in the aqueous phase plug the holes. In the present study, we have succeeded in solving the problem by applying a counter current-type emulsion flow extractor where micrometer-sized droplets of the organic phase are generated. (author)

  14. System of the incineration for the liquid scintillation garbage

    International Nuclear Information System (INIS)

    Naba, Katsumi

    1981-12-01

    In Japan from 1980 the incineration of the used scintillation liquid has been permitted according to the safety guide regulation of Japan Scientific Technology Agency. This incineration method would disperse the radioactivity in local site and destroy the chemicals at the same time. This system are consist of three parts. (1) Filtration and pH. adjustment of liquid garbage. (2) Bubbling vaporization in closed cycle. The temperature of the solution inside vessel is kept from 65 0 C to 85 0 C and the solution is bubbled with nealy 4 0 C circulated air. After the end of distillation, water layer is separated from the organic chemical layer and put it down the drain according to the regulation. (3) The residue is mixed with only the distilled organic chemicals according to the next classification, thereafter incineration is carried out. (a) For under the radioactive concentration of 1 x 10 -3 μCi/ml, the mixed scintillation liquid are burned up in specially designed incinerator. (b) For over the level of 1 x 10 -3 μCi/ml, only the distilled organic chemicals are burned up and the residue will be sent to the Waste Disposal Site. (c) For under the water content of 5% these liquid garbage can be directly are burned up without distillation The residue seemed to be suitable for the combustion of the dried carcased animals as the auxiliary fuels. This incinerator will be able to use as room heater or water heater for the bath without radioactive contamination inside of install room. (author)

  15. Validation the quantification of beta emitters activity in urine by scintillation spectrometry in the liquid phase

    International Nuclear Information System (INIS)

    Sierra, I.; Hernandez, C.; Benito, P.; Lopez, C.

    2013-01-01

    In this paper the methodology used in the validation of the technique for quantifying activity of some beta emitters in urine ( 3 H, 1 4C, 3 5S, 3 2P and 9 0Sr) by scintillation spectrometry Liquid Phase (Liquid Scintillation Counting, LSC) is described in bio elimination Laboratory Service CIEMAT Radiation Dosimetry accredited since last year for carrying out assays measure radiation dose based on ISO forth above. (Author)

  16. Performances and stability of a 2.4 ton Gd organic liquid scintillator target for ν-bar e detection

    International Nuclear Information System (INIS)

    Barabanov, I R; Bezrukov, L B; Danilov, N A; Krilov, Yu S; Yanovich, E A; Malguin, A S; Cattadori, C M; Vacri, A di; Ioannucci, L; Bruno, G; Aglietta, M; Bonardi, A; Fulgione, W; Porta, A; Kemp, E; Selvi, M

    2010-01-01

    In this paper we report the performance and the chemical and physical properties of a 2 x 1.2 ton organic liquid scintillator target doped with Gd up to ∼ 0.1%, and the results of a 3 year long stability survey of the target. In particular we have measured and monitored the optical and fluorescent properties of the Gd-doped liquid scintillator (LS), the amount of both Gd and primary fluor in solution, and the performance of the two Gd doped targets as neutron detectors, namely neutron capture efficiency and average capture time. The experimental survey is ongoing, the targets being continuously monitored. From the spectrophotometric measurements performed on samples periodically extracted along the three years, we can exclude, at 99% C.L. level, a degradation of the light transmittance of the Gd-doped liquid scintillator larger than 1% y -1 ; from the in-tank measurements no significant decrease of the neutron capture efficiency and neutron capture time is observed. This is the largest stable Gd-doped organic liquid scintillator target ever produced and continuously operated for a long period.

  17. Prototype fast neutron counter for the assay of impure plutonium

    International Nuclear Information System (INIS)

    Wachter, J.R.; Adams, E.L.; Ensslin, N.

    1987-01-01

    A fast coincident neutron counter using liquid scintillators and gamma-ray/neutron pulse-shape discrimination has been constructed for the analysis of plutonium samples with unknown self-multiplication and (α,n) production. The counter was used to measure plutonium-bearing materials that cover a range of masses and (α,n) reaction rates of importance to the safeguards community. Measured values of the 240 Pu effective mass differed, on average, from their declared values by 0.4% for plutonium oxides and by -2.2% for metal and MgO-loaded samples. Poorer results were obtained for materials with large (α,n) reaction rates and low self-multiplication such as plutonium ash and plutonium fluoride

  18. Standardization of {sup 241}Am by digital coincidence counting, liquid scintillation counting and defined solid angle counting

    Energy Technology Data Exchange (ETDEWEB)

    Balpardo, C., E-mail: balpardo@cae.cnea.gov.a [Laboratorio de Metrologia de Radioisotopos, CNEA, Buenos Aires (Argentina); Capoulat, M.E.; Rodrigues, D.; Arenillas, P. [Laboratorio de Metrologia de Radioisotopos, CNEA, Buenos Aires (Argentina)

    2010-07-15

    The nuclide {sup 241}Am decays by alpha emission to {sup 237}Np. Most of the decays (84.6%) populate the excited level of {sup 237}Np with energy of 59.54 keV. Digital coincidence counting was applied to standardize a solution of {sup 241}Am by alpha-gamma coincidence counting with efficiency extrapolation. Electronic discrimination was implemented with a pressurized proportional counter and the results were compared with two other independent techniques: Liquid scintillation counting using the logical sum of double coincidences in a TDCR array and defined solid angle counting taking into account activity inhomogeneity in the active deposit. The results show consistency between the three methods within a limit of a 0.3%. An ampoule of this solution will be sent to the International Reference System (SIR) during 2009. Uncertainties were analysed and compared in detail for the three applied methods.

  19. Determination of Np, Pu and Am in high level radioactive waste with extraction-liquid scintillation counting

    International Nuclear Information System (INIS)

    Yang Dazhu; Zhu Yongjun; Jiao Rongzhou

    1994-01-01

    A new method for the determination of transuranium elements, Np, Pu and Am with extraction-liquid scintillation counting has been studied systematically. Procedures for the separation of Pu and Am by HDEHP-TRPO extraction and for the separation of Np by TTA-TiOA extraction have been developed, by which the recovery of Np, Pu and Am is 97%, 99% and 99%, respectively, and the decontamination factors for the major fission products ( 90 Sr, 137 Cs etc.) are 10 4 -10 6 . Pulse shape discrimination (PSD) technique has been introduced to liquid scintillation counting, by which the counting efficiency of α-activity is >99% and the rejection of β-counts is >99.95%. This new method, combining extraction and pulse shape discrimination with liquid scintillation technique, has been successfully applied to the assay of Np, Pu and Am in high level radioactive waste. (author) 7 refs.; 7 figs.; 4 tabs

  20. Use of the big liquid argon spectrometer BARS for neutrino and cosmic-ray studies

    International Nuclear Information System (INIS)

    Anikeev, V.B.; Belikov, S.N.; Gurzhiev, S.N.; Denisov, A.G.; Denisov, S.P.; Fedjakin, N.N.; Kochetkov, V.I.; Korablev, V.M.; Koreshev, V.I.; Lipaev, V.V.; Los, S.V.; Mikhailin, V.N.; Rybin, A.M.; Sytin, A.N.; Bogdanov, A.G.; Kirina, T.M.; Kokoulin, R.P.; Reznikov, M.A.; Petrukhin, A.A.; Yanson, E.E.; Alexeyev, E.N.; Chernyaev, A.B.; Petkov, V.B.; Smirnov, D.V.; Tsyabuk, A.L.; Voevodsky, A.V.; Gennaro, G.; Sergiampietri, F.; Spandre, G.; Lanfranchi, M.; Marchionni, A.; Conforto, G.; Martelli, F.

    1998-01-01

    The design of the fine grained 300 t liquid argon calorimeter BARS is described. The BARS electronics include about 30 K channels of low noise amplifiers and ADCs. The DAQ system makes it possible to select channels with signals above the chosen threshold. 48 scintillation horoscopes placed inside the liquid argon are used to form the first level trigger. The total number of scintillation counters in liquid argon is 384. Sums of ionization signals are used to produce the second level trigger. Results of the first use of liquid argon calorimetry for the measurements of tagged neutrino interactions, cosmic-ray muon spectra and composition of extensive atmospheric showers are discussed. (author)

  1. Measurement of the muon-induced neutron yield in liquid scintillator and stainless steel at LNGS with the LVD experiment

    International Nuclear Information System (INIS)

    Persiani, R.; Garbini, M.; Sartorelli, G.; Selvi, M.

    2013-01-01

    We describe the measurement of the muon-induced neutron yield in liquid scintillator and stainless steel (SS) at the Gran Sasso National Laboratory (LNGS), with the LVD experiment. The Large Volume Detector (LVD) is located in Hall A of the LNGS and is made of 1000 t of liquid scintillator and 1000 t of SS. Using an independent measurement to evaluate the background and with the support of a full Monte Carlo simulation based on Geant4, we measured a neutron yield of (2.9±0.6)×10 −4 and (1.5±0.3)×10 −3 in liquid scintillator and in stainless steel, respectively

  2. Application of PSD for low level alpha counting using liquid scintillation counting

    International Nuclear Information System (INIS)

    Krishnamachari, G.; Vaze, P.K.; Iyer, M.R.

    1989-01-01

    In the liquid scintillator the light produced by alpha particles decays differently than those produced by electrons. Pulse shape discrimination (PSD) methods are employed to estimate low levels of alpha emitting radionuclides by reducing the background due to either beta or gamma events. An attempt is being made to develop a liquid scintillation counting sytem using a simple PSD circuit to achieve a background of 0.01 counts/min. The PSD circuit is based on measuring zero cross over points to differentiate particle types. The input signal is first differentiated by a delay line and subsequently by a RC circuit. The width of the initial part of the doubly differentiated pulse is different for alpha and beta pulses. This width is converted to amplitude by a time-to-amplitude converter (TAC). The higher amplitude pulses from the TAC are due to alpha particles and they are separated by an integral discriminator. The output from the integral discriminator opens a linear gate to record the pulse height spectrum. The figure of merit of the PSD circuit and background in the alpha energy channel have been worked out using different scintillator types. (author). 4 figs

  3. Determination of total alpha and beta activity in water for human consumption by LSC(Liquid Scintillation Counter); Determinacao de atividades alfa e beta total em agua para consumo humano por LSC (Contador de Cintilacao Liquida))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The Ordinance Brazilian of Ministry of Health (MS 2914/2011) establishes the standards for quality of water intended for human consumption, being limits values of 5.0 Bq/L for gross alpha, and 1.0 Bq/L for gross beta radioactivity. The liquid scintillation spectrometry (LSC) technique has been presented as an alternative to conventional procedure using gas flow proportional counter. The present work shows a review of the methods for determination of gross alpha and gross beta in water by using LSC. Between the factors that influence the accuracy and repeatability of the analytical results we can highlight: thermal preconcentration, type of the acid and calibration standard. A procedure was established and carried out to samples of the National Program of Intercomparison of Radionuclides in Environmental Samples for evaluation of its performance. The gross alpha and gross beta analysis in samples of the public water supplies in the Metropolitan Region of Goiania, state of Goias was carried out. The results are consistent with the guideline values form the Ministry of Health concerning radioactivity. (author)

  4. Efficiency determination of whole-body counters by Monte Carlo method, using a microcomputer

    International Nuclear Information System (INIS)

    Fernandes Neto, J.M.

    1987-01-01

    A computing program using Monte Carlo method for calculate the whole efficiency of distributed radiation counters in human body is developed. A simulater of human proportions was used, of which was filled with a known and uniform solution containing a quantity of radioisopes. The 99m Tc, 131 I and 42 K were used in this experience, and theirs activities compared by a liquid scintillator. (C.G.C.) [pt

  5. Chemical and colour quenching in liquid scintillation counting

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Scott Guilleard, P.E.

    1986-01-01

    Chemical and colour quenching for H-3 and C-14 was studied. The method includes spectral analysis of colouring agents; methyl red (4'-dimethylamine-azobenzene 2-carboxilic acid) dimethyl yellow (4'-dimethylamine-azobenzene) and melachite green (metane, bis (4'-dimethyl aminophenyl)-(phenyl)). External standard channels ratio was applied for the liquid scintillation counting of samples. The introduction of an isolated external standard seems to be a strong tool for the correction of chemical and colour quenching curves. (author). 10 figs., 12 refs

  6. Chemical and colour quenching in liquid scintillation counting

    International Nuclear Information System (INIS)

    Scott G, P. E.; Grau M, A.

    1987-01-01

    Chemical and colour quenching for H-3 and C-14 was studied. The method includes spectral analysis of colouring agents; methyl red, (4'-dimethylamine-azobenzene 2-carboxylic acid) dimethyl yellow (4'-dimethylamine-azobenzene) and malachite green (methane, bis .(4-dimethyl aminophenyl) - (phenyl)). External standard channels ratio was applied for the liquid scintillation counting of samples. The introduction of an isolated external standard seems to be a strong tool for the correction of chemical and colour quenching curves. (Author) 12 refs

  7. Interference of dissolved salts in Cerenkov and liquid scintillation estimation of 90Sr

    International Nuclear Information System (INIS)

    Pulhani, Vandana; Jha, S.K.; Tripathi, R.M.; Reddy, Priyanka; Bhade, Sonali

    2014-01-01

    Quenching is the most important effect occurring in Cerenkov and LSC because it affects the efficiency of conversion of β particles into light. Bore well water samples are very often concentrated by evaporation to reduce the detection limit which can also increase the dissolved solid content (TDS) in the sample. Some ground waters are inherently having higher TDS. Self-absorption of beta-particle radiation by the sample especially the lower-energy beta particles depends on sample thickness and density. Environmental samples, after applying the radiochemical procedure, are also estimated by Cerenkov/LSC and might be affected by colour quenching. To get best measurements using Liquid Scintillation and Cerenkov radiations, it is necessary to avoid high salt concentrations and colors which may weaken energy transfers within scintillator cocktails and sample medium. Therefore the degree of self-absorption and quench should be evaluated and taken into account in the calibration. Efficiency is represented as a function spectral quench parameter of external standard SQP(E). The quenching effect of dissolved solids on the efficiency of estimation of 90 Sr by Cerenkov and Liquid Scintillation are studied

  8. Compositions and process for liquid scintillation counting

    International Nuclear Information System (INIS)

    1974-01-01

    Liquid scintillation counting compositions which include certain polyethoxylated poly(oxypropylene) emulsifiers allow stable dispersion of aqueous or other samples merely by shaking. Preferred are mixtures of such emulsifiers which give homogeneous monophasic-appearing dispersions over wide ranges of temperature and aqueous sample content. Certain of these emulsifiers, without being mixed, are of particular advantage when used in analysis of samples obtained through radioimmunoassay techniques which are extremely difficult to disperse. Certain of these emulsifiers, also without being mixed, uniformly give homogeneous monophasic-appearing aqueous counting samples over much wider ranges of aqueous sample content and temperature than prior sample emulsifiers

  9. Compositions and process for liquid scintillation counting

    International Nuclear Information System (INIS)

    Kauffman, J.M.

    1976-01-01

    Liquid scintillation counting compositions which include certain polyethoxylated poly(oxypropylene) emulsifiers allow stable dispersion of aqueous or other samples merely by shaking. Preferred are mixtures of such emulsifiers, which give homogeneous, monophasic-appearing dispersions over wide ranges of temperature and aqueous sample content. Certain of these emulsifiers, without being mixed, are of particular advantage when used in analysis of samples obtained through radioimmunoassay techniques, which are extremely difficult to disperse. Certain of these emulsifiers, also without being mixed, uniformly give homogeneous, monophasic appearing aqueous couting samples over much wider ranges of aqueous sample content and temperature than prior sample emulsifiers

  10. Compositions and process for liquid scintillation counting

    International Nuclear Information System (INIS)

    Kauffman, J.M.

    1978-01-01

    Liquid scintillation compositions which include certain polyethoxylated poly(oxypropylene) emulsifiers allow stable dispersion of aqueous or other samples merely by shaking. Preferred are mixtures of such emulsifiers, which give homogeneous, monophasic-appearing dispersions over wide ranges of temperature and aqueous sample content. Certain of these emulsifiers, without being mixed, are of particular advantage when used in analysis of samples obtained through radioimmunoassay techniques, which are extremely difficult to disperse. Certain of these emulsifiers, also without being mixed, uniformly give homogeneous, monophasic appearing aqueous counting samples over much wider ranges of aqueous sample content and temperature than prior sample emulsifiers

  11. Evaluating analytical ionization quenching correction models for 3D liquid organic scintillator detector

    Science.gov (United States)

    Alsanea, F.; Beddar, S.

    2017-05-01

    Proton therapy offers dosimetric advantage over conventional photon therapy due to the finite range of the proton beam, which improves dose conformity. However, one of the main challenges of proton beam therapy is verification of the complex treatment plans delivered to a patient. Thus, 3D measurements are needed to verify the complex dose distribution. A 3D organic scintillator detector is capable of such measurements. However, organic scintillators exhibit a non-linear relation to the ionization density called ionization quenching. The ionization quenching phenomenon in organic scintillators must be accounted for to obtain accurate dose measurements. We investigated the energy deposition by secondary electrons (EDSE) model to explain ionization quenching in 3D liquid organic scintillator when exposed to proton beams. The EDSE model was applied to volumetric scintillation measurement of proton pencil beam with energies of 85.6, 100.9, 144.9 and 161.9 MeV. The quenching parameter in EDSE model ρq was determined by plotting the total light output vs the initial energy of the ion. The results were compared to the Birks semi-empirical formula of scintillation light emission.

  12. Determination of the plutonium contamination level in biological samples by liquid scintillation

    International Nuclear Information System (INIS)

    Willemot, J.M.; Verry, M.; Lataillade, G.

    1989-01-01

    Usual radiochemical processes are unable to carry out without delay the very large number of analyses as required in plutonium toxicology studies. Liquid scintillation is the best method to quickly determine plutonium contamination levels in most various samples (bone, organs,...) [fr

  13. Some applications of Photon/Electron-Rejecting Alpha Liquid Scintillation (PERALS) spectrometry to the assay of alpha emitters

    International Nuclear Information System (INIS)

    McDowell, W.J.; Case, G.N.

    1988-01-01

    The combination of certain solvent extraction separations and a special kind of liquid scintillation detector and electronics designed for alpha spectrometry allows some highly accurate, yet simple determinations of alpha-emitting nuclides. Counting efficiency is 99.68% with backgrounds of 99.95%. The Photon/Electron Rejecting Alpha Liquid Scintillation (PERALS) equipment is described and procedures for the separation and determination of uranium, thorium, plutonium, polonium, radium, and trivalent actinides are outlined. 25 refs., 10 figs., 1 tab

  14. Application of avalanche photodiodes for the measurement of actinides by alpha liquid scintillation counting

    International Nuclear Information System (INIS)

    Reboli, A.

    2005-10-01

    Alpha emitters analysis using liquid scintillation spectroscopy is often used when sensitivity and fast samples preparation are the important points. A more extensive use of this technique is until now limited by its poor resolution compared to alpha particle spectroscopy with semiconductor detectors. To improve the resolution and thus promote this method for the measurement of actinides in environment, we have tested silicon avalanche photodiodes (APD) as new detectors for scintillation photons. The set-up consists of a large area avalanche photodiode (16 mm diameter) coupled to a thin vial containing alpha-emitters within a liquid scintillation cocktail. After optimization of several parameters like bias voltage, temperature, counting geometry and composition of the scintillating cocktail, energy resolutions have been found to be better than those obtained with standard photomultiplier tubes (PMT): 5% (200 keV FWHM) for 232 Th and 4.2% (240 keV FWHM) for 236 Pu. Our results show that the improvement is due to less fluctuations associated with light collection since the spatial response of APDs is more uniform than that of PMTs. The expected gain on quantum efficiency (80% for APDs instead of 25% for PMTs) is nullified by a corresponding increase on electronic noise and excess noise factor. Significant better results are foreseen by using green scintillators (450 - 550 nm wavelengths region) with larger Stokes-shift and blue-enhanced APDs which reach their maximum quantum efficiency in this region. (author)

  15. The measurement of Rn-222 in drinking water by low-level liquid scintillation counting

    International Nuclear Information System (INIS)

    Barnett, J.M.; McKlveen, J.W.

    1991-01-01

    Radon-222 has consistently been found in well water. The research objectives are to establish a method to collect well water and to measure the Rn in ground water using liquid scintillation (LS) counting. Water is collected at the well head while the well is pumping. The water is adjusted to a slow, non-aerated, steady flow through a clear tube, and a 437 mL (16 oz) glass bottle is filled. The sample is tightly capped after a high meniscus has developed. In the laboratory, standard 22 mL LS glass vials are filled with 10 mL of a toluene based mineral oil LS cocktail. Then, two 5 mL sample aliquots are pipetted into the vial. Vials are capped tightly, shaken vigorously, and placed in the LS counter. Secular equilibrium is established in approximately 3.5 hours, after which samples are counted for 100 minutes each. Quality assurance and control is performed weekly on the LS counter's electronics, spectral window, counting efficiency, and background. The counting efficiency ranges between 315-345 percent depending on the chosen spectral window. The average background is about 6 cpm. A total of 28 wells were tested for Rn in the Carefree-Cave Creek, Arizona, USA area, and 12 wells were selected, each over 50 Bq/L (1,350 pCi/L), for an extended 6 month period. The area's average Rn concentration was found to be 46.5 Bq/L (1,255 pCi/L); it is a geometric mean. The associated estimated lung dose is 1.13 mSv/a

  16. Measurement of radon 222 in drinking water and air by liquid scintillation

    International Nuclear Information System (INIS)

    Schoenhofer, F.

    1991-01-01

    This is a brief description of the liquid scintillation measuring method for determining radon 222 in drinking water and air. Discussed are the advantages of this method and its reliability or accuracy, as well as some conclusions from the results. (orig.) [de

  17. TOPAS 1 - construction and test of a scintillation counter hodoscope for the tagging of bremsstrahlung photons for the SAPHIR detector

    International Nuclear Information System (INIS)

    Merkel, R.

    1989-09-01

    The development of a tagging-hodoscope for the SAPHIR-detector at the stretcher ring ELSA in Bonn is described. The hodoscope covers the energy range 2.175 GeV γ 0 =3.500 GeV. 24 scintillation counters are used for the determination of the photon energy, giving a resolution of ΔE γ =25 MeV. The tagging method requires a good coincidence timing resoluting τ between the tagging hodoscope and the detector for the photon-induced reactions in order to keep the accidental coincidences low. The timing information is given by 8 fast timing counters (40 mm thick), covering 5 up to 7 energy channels each. Fluctuations of the timing signal which result from different impact-locations on the timing counter, due to different light travelling distances, are corrected by the energy defining counters. The timing-component (8 timing counters) is commpleted and tested. The results of first mesurements show an upper limit of σ=250 psec for the resolution of 7 coincidences out of 45 possible channels in the tagging hodscope. These results are obtained with a preliminary adjustment of the SAPHIR beam-line and with a not yet optimized signal to noize ratio in the extracted beam. We hope to obtain a σ<200 psec under optimized conditions. (orig.)

  18. Performance of two liquids scintillation and optimization of a Wallac 1411 counter in the tritium quantification in aqueous samples; Desempeno de dos centelleadores liquidos y optimizacion de un contador Wallac 1411 en la cuantificacion de tritio en muestras acuosas

    Energy Technology Data Exchange (ETDEWEB)

    Contreras de la Cruz, E. de J.; Lopez del Rio, H.; Davila R, J. I.; Mireles G, F.; Pinedo V, J. L., E-mail: hlopezdelrio@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-10-15

    The optimization of a liquid scintillation counting Wallac 1411 is presented as well as the performance of the liquids scintillation miscible in water OptiPhase Hi Safe 3 and Last Gold Ab, in the tritium quantification in aqueous samples. The luminescence effect, the quenching, the solution ph and the level of pulse amplitude comparator (Pac) were evaluated in the response of both liquids scintillation in the tritium measurement. The quenching and the luminescence modify the scintillators response; in the first of them the counting efficiency decreases and the minimum detectable activity increases; the second interferes in the tritium quantification in the interest window, but the effect disappears after 4 hours of darkness of the samples. The maximum counting efficiency was of 24% for OptiPhase Hi Safe 3 and 31% for Last Gold Ab, diminishing with the quenching until values of 8 and 11%, respectively. For a counting time of 6 hours and lower quenching, the minimum detectable concentration for OptiPhase Hi Safe 3 was of 13.4 ± 0.2 Bq/L and 9.9 ± 0.1 Bq/L for Last Gold Ab. Both scintillators responded appropriately to sour and basic solutions, being only presented chemiluminescence in Last Gold Ab to ph highly basic. The Pac application that varies between 1 and 256 does not have effect in the tritium measurement until values above 90. (Author)

  19. An improved method for 85Kr analysis by liquid scintillation counting and its application to atmospheric 85Kr determination

    International Nuclear Information System (INIS)

    Momoshima, Noriyuki; Inoue, Fumio; Sugihara, Shinji; Shimada, Jun; Taniguchi, Makoto

    2010-01-01

    Atmospheric 85 Kr concentration at Fukuoka, Japan was determined by an improved 85 Kr analytical method using liquid scintillation counting (LSC). An average value of 1.54 ± 0.05 Bq m -3 was observed in 2008, which is about two times that measured in 1981 at Fukuoka, indicating a 29 mBq y -1 rate of increase as an average for these 27 years. The analytical method developed involves collecting Kr from air using activated charcoal at liquid N 2 temperature and purifying it using He at dry ice temperature, followed by Kr separation by gas chromatography. An overall Kr recovery of 76.4 ± 8.1% was achieved when Kr was analyzed in 500-1000 l of air. The Kr isolated by gas chromatography was collected on silica gel in a quartz glass vial cooled to liquid N 2 temperature and the activity of 85 Kr was measured with a low-background LS counter. The detection limit of 85 Kr activity by the present analytical method is 0.0015 Bq at a 95% confidence level, including all propagation errors, which is equivalent with 85 Kr in 1.3 l of the present air under the analytical conditions of 72.1% counting efficiency, 0.1597 cps background count rate, and 76.4% Kr recovery.

  20. Determination of /sup 226/Ra by alpha spectrometry of liquid scintillation

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, A W; Sachett, I A; Hespanhol, E C.B.

    1987-07-01

    The determination of /sup 226/Ra in environmental samples using alpha spectrometry in liquid scintilation is studied. The Radon/sup 1-2/ emanation method and /sup 226/Ra separation process of other radionuclides alpha emissors are analyzed. The use of /sup 226/Ra coprecipitation with barium sulphate is evaluated. (M.J.C.).

  1. Standardization of iodine-129 by the TDCR liquid scintillation method and 4π β-γ coincidence counting

    Science.gov (United States)

    Cassette, P.; Bouchard, J.; Chauvenet, B.

    1994-01-01

    Iodine-129 is a long-lived fission product, with physical and chemical properties that make it a good candidate for evaluating the environmental impact of the nuclear energy fuel cycle. To avoid solid source preparation problems, liquid scintillation has been used to standardize this nuclide for a EUROMET intercomparison. Two methods were used to measure the iodine-129 activity: triple-to-double-coincidence ratio liquid scintillation counting and 4π β-γ coincidence counting; the results are in good agreement.

  2. Scintillation efficiency of nuclear recoil in liquid xenon

    CERN Document Server

    Arneodo, F; Badertscher, A; Benetti, P; Bernardini, E; Bettini, A; Borio di Tigliole, A A; Brunetti, R; Bueno, A G; Calligarich, E; Campanelli, M; Carpanese, C; Cavalli, D; Cavanna, F; Cennini, P; Centro, Sandro; Cesana, A; Cline, D; De Mitri, I; Dolfini, R; Ferrari, A; Gigli-Berzolari, A; Matthey, C; Mauri, F; Mazza, D; Mazzone, L; Meng, G; Montanari, C; Nurzia, G; Otwinowski, S; Palamara, O; Pascoli, D; Pepato, Adriano; Petrera, S; Periale, L; Piano Mortari, G; Piazzoli, A; Picchi, P; Pietropaolo, F; Rancati, T; Rappoldi, A; Raselli, G L; Rebuzzi, D; Revol, Jean Pierre Charles; Rico, J; Rossella, M; Rossi, C; Rubbia, André; Rubbia, Carlo; Sala, P; Scannicchio, D A; Sergiampietri, F; Suzuki, S; Terrani, M; Tian, W; Ventura, Sandro; Vignoli, C; Wang, H; Woo, J; Xu, Z

    2000-01-01

    We present the results of a test done with a Liquid Xenon (LXe) detector for 'Dark Matter' search, exposed to a neutron beam to produce nuclear recoil events simulating those which would be generated by WIMP's elastic scattering. The aim of the experiment was to measure directly the scintillation efficiency of nuclear recoil. The nuclear recoil considered in the test was in the tens of keV range. The ratio of measured visible energy over the true recoil energy was evaluated to be about 20%, in good agreement with the theoretical predictions.

  3. A liquid scintillator detector for the solar neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Ranucci, G [Lab. Nazionali del Gran Sasso, Assergi (Italy) Massachusetts Inst. of Technology, Cambridge, MA (United States) Joint Inst. for Nuclear Research, Dubna (USSR) Technical Univ. of Munich, Garching (Germany) Physics Dept., Univ. Genova (Italy) INFN, Genova (Italy) Univ. Hawaii, Honolulu, HI (United States) CCR Euratom, Ispra (Italy) Physics Dept., Univ. Milano (Italy) INFN, Milano (Italy) AT and T Bell Lab., Murray Hill, NJ (United States) Physics Dept., Univ. Pavia (Italy) INFN, Pavia (Italy) Physics Dept., Univ. Perugia (Italy) INFN, Perugia (Italy) Drexel Univ., Philadelphia, PA (United States) Charles Univ., Prague (Czechoslovakia) Czech Technical Univ., Prague (Czechoslovakia); Borex Collaboration

    1992-05-01

    Results of the three solar neutrino experiments presently running strongly suggest new neutrino physics scenarios to explain the discrepancy between the expected and measured neutrino flux. New experiments are needed to decide among the several theoretical explanations for this that has become known as the solar neutrino problem. This paper describes the unique features of the proposed low energy solar neutrino detector Borexino, that fully exploiting the powerful handless of liquid scintillation spectroscopy on large scale, will probe emerging suggestions on scenarios invoking neutrino mass mixing and magnetic moment. (orig.).

  4. Scinfi, a program to calculate the standardization curve in liquid scintillation counting

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.

    1984-01-01

    A code, Scinfi, was developed, written in Basic, to compute the efficiency-quench standardization curve for any radionuclide. The program requires the standardization curve for 3 H and the polynomial relations between counting efficiency and figure of merit for both 3 H and the problem (e.g. 14 C). The program is applied to the computation of the efficiency-quench standardization curve for 14 C. Five different liquid scintillation spectrometers and two scintillator solutions have been checked. The computation results are compared with the experimental values obtained with a set of 14 C standardized samples. (author)

  5. Preparation and calibration by liquid scintillation of a sample of Cl 36

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Los Arcos, J.M.; Rodriguez Barquero, L.; Suarez, C.

    1989-01-01

    A procedure to prepare a sample of Clorine 36, as Li 36 Cl, able to be measured by liquid scintillation counting, is described. The sample is chemically stable, with no variation of the quenching parameter up to 4 mg of LiCl per 15 ml of scintillator, keeps constant the counting efficiency for concentration higher than 40 μg of Li 36 Cl in that volume, and shows no deterioration over a 3 weed period. The Li 36 Cl solution has been standarized using the free parameter method with different volumes of toluene, PCS and Instagel, to an uncertainty of 0,3% (Author)

  6. SCINFI, a program to calculate the standardization curve in liquid scintillation counting

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.

    1984-01-01

    A code, SCINFI, was developed, written in BASIC, to compute the efficiency- quench standardization curve for any radionuclide. The program requires the standardization curve for 3H and the polynomial relations between counting efficiency and figure of merit for both 3H and the problem (e.g. 14 C ). The program is applied to the computation of the efficiency-quench standardization curve for 14 c . Five different liquid scintillation spectrometers and two scintillator solutions have bean checked. The computation results are compared with the experimental values obtained with a set of 14 c standardized samples. (Author)

  7. Measurement of tritium with plastic scintillator surface improvement with plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yoshihara, Y.; Furuta, E. [Ochanomizu University, Bunkyo-ku, Tokyo (Japan); Ohyama, R.I.; Yokota, S. [Tokai University, Hiratsuka-shi, Kanagawa (Japan); Kato, Y.; Yoshimura, T.; Ogiwara, K. [Hitachi Aloka Medical, Mure, Mitaka-shi, Tokyo (Japan)

    2015-03-15

    Tritium is usually measured by using a liquid scintillation counter. However, liquid scintillator used for measurement will become radioactive waste fluid. To solve this issue, we have developed a method of measuring tritium samples with plasma-treated plastic scintillator (PS)sheets (Plasma method). The radioactive sample is held between 2 PS sheets and the whole is enclosed in a a low-potassium glass vial. With the Plasma method of 2-min plasma treatment, we have obtained measurement efficiency of 48 ± 2 % for 2 min measurement of tritium except for tritiated water. The plasma treatment makes the PS surface rough and hydrophilic which contributes to improve the contact between tritium and PS. On the other hand, it needed almost 6 hours to obtain constant measurement efficiency. The reason was that the dry-up handling in the vial needed longer time to vaporize H{sub 2}O molecules than in the air. We tried putting silica gel beads into vials to remove H{sub 2}O molecules from PS sheet surface quickly. The silica gel beads worked well and we got constant measurement efficiency within 1-3 hours. Also, we tried using other kinds of PS treated with plasma to obtain higher measurement efficiencies of tritium samples.

  8. Uranium-scintillator device

    International Nuclear Information System (INIS)

    Smith, S.D.

    1979-01-01

    The calorimeter subgroup of the 1977 ISABELLE Summer Workshop strongly recommended investigation of the uranium-scintillator device because of its several attractive features: (1) increased resolution for hadronic energy, (2) fast time response, (3) high density (i.e., 16 cm of calorimeter per interaction length), and, in comparison with uranium--liquid argon detectors, (4) ease of construction, (5) simple electronics, and (6) lower cost. The AFM group at the CERN ISR became interested in such a calorimeter for substantially the same reasons, and in the fall of 1977 carried out tests on a uranium-scintillator (U-Sc) calorimeter with the same uranium plates used in their 1974 studies of the uranium--liquid argon (U-LA) calorimeter. The chief disadvantage of the scintillator test was that the uranium plates were too small to fully contain the hadronic showers. However, since the scintillator and liquid argon tests were made with the plates, direct comparison of the two types of devices could be made

  9. Cherenkov and scintillation light separation in organic liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, J.; Descamps, F.B.; Land, B.J.; Orebi Gann, G.D. [University of California, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Yeh, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2017-12-15

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3% and 63 ± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5% and 38 ± 4. LAB/PPO data is consistent with a rise time of τ{sub r} = 0.72 ± 0.33 ns. (orig.)

  10. Cherenkov and scintillation light separation in organic liquid scintillators

    International Nuclear Information System (INIS)

    Caravaca, J.; Descamps, F.B.; Land, B.J.; Orebi Gann, G.D.; Yeh, M.

    2017-01-01

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3% and 63 ± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5% and 38 ± 4. LAB/PPO data is consistent with a rise time of τ r = 0.72 ± 0.33 ns. (orig.)

  11. The measurement of 222Rn in drinking water by low-level liquid scintillation counting

    International Nuclear Information System (INIS)

    Barnett, J.M.; McKlveen, J.W.

    1992-01-01

    Radon-222 (Rn) has universally been found in well water. Non-stagnant ground water is collected at the well head while the well is pumping. The water is adjusted to a slow, non-aerated, steady flow through a clear tube, and a 500 ml glass bottle is filled. The sample is tightly capped after a high meniscus has developed. In the laboratory, standard 22 ml glass vials are filled with 10 ml of a toluene based mineral oil LS cocktail. Then, two 5 ml sample aliquots are pipetted into the vial. Vials are capped tightly, shaken vigorously, and placed in the liquid scintillation (LS) counter. Secular equilibrium is established in approximately 4 hours, after which samples are counted for 100 minutes each. The counting efficiency for Rn and progeny ranges between 315 to 345 percent depending on the chosen spectral window. The average background is about 6 cpm. A total of 28 wells were tested for Rn in the Carefree-Cave Creek, Arizone, USA area. The area's geometric average Rn concentration was found to be 46.5 Bq*1 -1 . The associated estimated lung dose is 0.51 mSv*y -1 . (author) 8 refs.; 1 fig.; 1 tab

  12. Saturation characteristics of liquid rare gas ionization chambers and recombination luminescence in liquid rare gas scintillation

    International Nuclear Information System (INIS)

    Takahashi, Tan; Konno, Satoshi; Kubota, Shinzo; Nakamoto, Jun; Miyajima, Mitsuhiro.

    1978-01-01

    From the saturation characteristics of liquid rare gases (Ar and Xe), the mean distance between electrons and ions. W-value, and the ratio of freely diffusion electrons were determined on the basis of the theory of Onsager. Their relationships with the scintillation due to recombination are also discussed. In the first part of this report, an analytic equation for the probability that an electron escapes from preferential recombination under the existence of an electric field is derived. The equation was then numerically solved with a computer code developed by Freeman. The adjusted parameters and the results of calculations for both Xe and Ar are presented together with the experimental results. Some discrepancy appeared between the analytical and the experimental results when the electric field was weak, and it is ascribable to the existence of the columnar (cluster) recombination and the effect of attachment due to the pulse method employed in the experiments. In the second part, the effect of electric field on the scintillation of liquid rare gases is considered, based on the theory of Onsager. (Aoki, K.)

  13. Comparison of accelerator mass spectrometric measurement with liquid scintillation counting measurement for the determination of 14C in environmental samples

    International Nuclear Information System (INIS)

    Yasuike, Kaeko; Yamada, Yoshimune; Amano, Hikaru

    2010-01-01

    The concentrations of organically-bound 14 C in tree-ring cellulose of a Japanese Black Pine grown in Shika-machi (37.0 deg. N, 136.8 deg. E) and those of a Japanese Cedar grown in Kanazawa (36.5 deg. N, 136.7 deg. E), Japan, were analyzed for the ring-years from 1989 to 1998 by the accelerator mass spectrometric measurement. The results were compared with those of the same samples analyzed by the liquid scintillation counting measurement to determine the reliability of liquid scintillation counting measurement. An important result of this study is that the sensitivity and reproducibility of accelerator mass spectrometric measurement was almost equal to that of liquid scintillation counting measurement.

  14. Standardization of 137 Cs+137m Ba by Liquid Scintillation

    International Nuclear Information System (INIS)

    Rodriguez, L.; Arcos, J.M., los; Grau Carles, A.

    1995-09-01

    A procedure for the preparation of a stable, homogeneous solution of ''137 Cs+''137m Ba, for use in liquid scintillation measurements, is described. Its count rate stability and spectral time evolution has been followed for several weeks. The solution has been standardised by the CIEMAT/NIST method in both Ultima-Gold and Insta-Gel, to a combined uncertainty lower than 0,51% (k=1)

  15. Determination of 129I using distillation method and liquid scintillation spectrometry

    International Nuclear Information System (INIS)

    Horvathova, B.; Dulanska, S.; Remenec, B.; Matel, L.; Gardonova, V.

    2014-01-01

    The conditions for effective distillation of iodine as a screening method for the determination of 129 I by liquid scintillation spectrometry were optimized. By distillation of iodine it is possible to achieve high-purity fraction without interferences needed for measuring 129 I for liquid scintillation spectrometer. Yields of separation were determined gravimetrically using PdI 2 ·H 2 O. The environment that was found to be effective for distillation of iodine is made up of 1 - 2 mol dm -3 HNO 3 together with 0.4 g of NaNO 2 as an oxidizing agent (I . →I 2 ). For testing of distillation, suitable apparatus for distillation of iodine was designed. The apparatus was connected to a vacuum box, which sucks iodine of the distilled solution. Then the iodine was captured in a solution of NaOH at a concentration of 1.5 mol dm -3 . As part of the optimization methodology, it was found that the concentration of NaOH solution for adsorption I 2 (g) does not have any influence on the yields, as opposed to its volume, where it is necessary to use a maximum amount of NaOH in the holding flask for maximum adsorption of iodine. It was determined, that time needed for coagulation PdI 2 ·H 2 O is 24 hours and suitable time for distillation was 20 minutes. Optimized method for the determination of 129 I was applied for various matrices from NPPs in Slovak Republic. Values of 129 I for all analyzed samples were less than the minimum detectable activity (0.043 Bq). The separation yields were in the range (73.14 to 82.04)% and 129 I was measured on a liquid scintillation spectrometer TRI CARB 2900TR with high detection efficiency of 95%. (authors)

  16. Crate counter for normal operating loss

    International Nuclear Information System (INIS)

    Harlan, R.A.

    A lithium-loaded zinc sulfide scintillation counter to closely assay plutonium in waste packaged in 1.3 by 1.3 by 2.13m crates was built. In addition to assays for normal operating loss accounting, the counter will allow safeguards verification immediately before shipment of the crates for burial. The counter should detect approximately 10 g of plutonium in 1000 kg of waste

  17. Long wavelength scintillators for fiber-optic applications

    International Nuclear Information System (INIS)

    Lyons, P.B.; Franks, L.; Lutz, S.; Flournoy, J.; Fullman, E.

    1980-01-01

    The use of fiber optics in plasma diagnostics has spurred the development of long wavelength scintillators with fast temporal characteristics. In this paper we describe several new liquid scintillator systems with fluorescent emissions maxima up to 730 nm. Subnanosecond scintillator FWHM response times have been obtained by the operation of liquid scintillators at elevated temperatures. Data on fiber system sensitivity versus fiber length and scintillator emission wavelength will be presented

  18. Poissonian and binomial models in radionuclide metrology by liquid scintillation counting

    International Nuclear Information System (INIS)

    Grau Malonda, A.

    1990-01-01

    Binomial and Poissonian models developed for calculating the counting efficiency from a free parameter is analysed in this paper. This model have been applied to liquid scintillator counting systems with two or three photomultipliers. It is mathematically demostrated that both models are equivalent and that the counting efficiencies calculated either from one or the other model are identical. (Author)

  19. Counting efficiency for liquid scintillator systems with a single multiplier phototube

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Garcia-Torano, E.

    1984-01-01

    In this paper counting efficiency as a function of a free parameter (the figure of merit) has been computed. The results are applicable to liquid scintillator systems with a single multiplier phototube. Tables of counting efficiency for 62 pure beta emitters are given for figures of merit in the range 0.25 to 50. (Author) 16 refs

  20. Measurement of the neutron and gamma-ray spectra originating from a 14-MeV neutron source in liquid nitrogen and liquid air

    International Nuclear Information System (INIS)

    Broecker, B.; Clausen, K.; Schneider-Kuehnle, P.; Weinert, M.

    1975-01-01

    An experiment to measure the radiation transport originating from a 14-MeV neutron source in liquid nitrogen and liquid air is presented. Neutron and gamma-ray spectra were measured with a proton-recoil NE 213 scintillator and with four spherical proportional counters in a tank filled with liquid nitrogen or liquid air. The neutron spectra cover the energy range of 20 keV to 18 MeV. The source-detector separation varies in the liquid medium between 60 and 240 cm. The experimental setup is briefly described and the errors are estimated. (2 tables, 9 figures) (auth)

  1. Determination of low α activity levels applying a pulse discrimination system to a conventional liquid scintillation unit

    International Nuclear Information System (INIS)

    Oliveira, A.A.; Bonino, A.D.

    1983-01-01

    The described system allows the measurement of α activity in the presence of β/γ activities in various types of samples. Pulse shape discrimination of the signal from a conventional liquid scintillation unit is used for assessing the α activity in samples obtained from several radiochemical processes as well as in samples from area and surface monitoring, without separating for the γ and β emitters present. Additionally, the considerable background reduction attained by this method makes possible the utilization of automatic liquid scintillation systems for measuring enviromental and occupational monitoring samples. (Author) [es

  2. Optimization of the detector and associated electronics used for high-resolution liquid-scintillation alpha spectroscopy

    International Nuclear Information System (INIS)

    Thorngate, J.H.; Christian, D.J.

    1977-01-01

    The performance of various reflector geometries, light coupling liquids, photomultiplier tubes, preamplifiers and linear amplifiers were compared and the configuration found that optimized the combination of pulse-height resolution and pulse-shape discrimination. The best combination used a hemispherical reflector, filled with distilled water, coupled to an 8575 photomultiplier tube, the output of which was conditioned by a special integrating preamplifier and a double-delay-line linear amplifier. Careful choice of the scintillator, sample preparation procedures, and electronic apparatus can produce liquid-scintillation alpha spectroscopy with a pulse-height resolution of 300 keV, or less, and, by using pulse-shape discrimination, background levels as low as 0.01 counts/min. (author)

  3. Time-of-flight resolution of scintillating counters with Burle 85001 microchannel plate photomultipliers in comparison with Hamamatsu R2083

    Energy Technology Data Exchange (ETDEWEB)

    Baturin, V. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Burkert, V. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Kim, W. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)]. E-mail: wooyoung@jlab.org; Majewsky, S. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Park, K. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Popov, V. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Smith, E.S. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Son, D. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Stepanyan, S.S. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Zorn, C. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States)

    2006-06-15

    Improvements in the time resolution of the CEBAF Large Acceptance Spectrometer (CLAS) below {approx}50ps will be required for experiments using the planned upgraded accelerator facility at Jefferson Lab. The improved time resolution will allow particle identification using time-of-flight techniques to be used effectively up to the proposed operating energy of 12GeV. The challenge of achieving this time resolution over a relatively large area is compounded because the photomultipliers (PM) in the CLAS 'time-zero' scintillating counters must operate in very high magnetic fields. Therefore, we have studied the resolution of 'time-zero' prototypes with microchannel plate PMs 85001-501 from Burle. For reference and comparison, measurements were also made using the standard PMs R2083 from Hamamatsu using two timing methods. The cosmic ray method, which utilizes three identical scintillating counters (Bicron BC-408, 2x3x50cm{sup 3}) with PMs at the ends, yields {sigma}{sub R2083}=59.1+/-0.7ps. The location method of particles from a radiative source with known coordinates has been used to compare timing resolutions of R2083 and 85001-501. This method yields {sigma}{sub R2083}=59.5+/-0.7ps and it also provides an estimate of the number of primary photoelectrons. For the microchannel plate PM from Burle the method yields {sigma}{sub 85001}=130+/-4ps due to lower number of primary photoelectrons.

  4. Needle counter

    International Nuclear Information System (INIS)

    Fujita, Yuzo

    1977-01-01

    Needle counter had been devised by Geiger about 60 years ago before the present GM counter appeared. It is suitable for the detection of weak radiation because it is limited in effective volume, if the background due to mainly cosmic ray is proportional to the effective volume of the counter. Recently the very low β detector having a needle counter as the main detector has been developed. It showed highly excellent performance in the measurements of small area samples, about ten times sensitive as compared with other detectors. The counter is installed in the very low radiation measuring well at Nokogiriyama, Chiba Prefecture, using a NaI scintillator as its guard counter. D. H. Wilkinson first treated a gas amplification counter theoretically and quantitatively. The authors have obtained good results in the comparison with the experiments of the counter using a generalized form of Wilkinson theory. The findings obtained through this study seem to be applicable to the electrode arrangement which is important for the counter design. It was found that the excellent rise time of induced pulses in a gas amplification counter was achieved in larger amplification factor and smaller convolution effect. In the detection of charged particles with small obstructing capability such as γ ray, faster rise time and higher pulses can be obtained with needle counters than wire counters. (Wakatsuki, Y.)

  5. Determination of 226Ra and 224Ra in drinking waters by liquid scintillation counting

    International Nuclear Information System (INIS)

    Manjon, G.; Vioque, I.; Moreno, H.; Garcia-Tenorio, R.; Garcia-Leon, M.

    1997-01-01

    A method for the determination of Ra-isotopes in water samples has been developed. Ra is coprecipitated with Ba as sulphate. The precipitate is then dissolved with EDTA and counted with a liquid scintillation system after mixing with a scintillation cocktail. The study of the temporal evolution of the separated activity gives the isotopic composition of the sample, i.e. the 224 Ra and 226 Ra contribution to the total activity. The method has been applied to some Spanish drinking waters. (author)

  6. ARAPUCA a new device for liquid argon scintillation light detection

    International Nuclear Information System (INIS)

    Machado, A.A.; Segreto, E.

    2016-01-01

    We present a totally innovative device for the detection of liquid argon scintillation light, that has been named ARAPUCA (Argon R and D Advanced Program at UniCAmp). It is composed of a passive light collector and of active devices. The latters are standard SiPMs that operate at liquid argon temperature, while the passive collector is based on a new technology, never explored in this field before. It is a photon trap, that allows to collect light with extremely high efficiency. The total detection efficiency of the device can be tuned by modifying the ratio between the area of the active devices (SiPM) and the area of the optical window. For example, it will allow to reach a detection efficiency at the level of 1% on a surface of 50 × 50 cm 2 with an active coverage of 2 × 2 cm 2 (two/three large area SiPM). It is also a cheap device, since the major part of its cost is represented by the active devices. For these reason this appears to be the ideal device for scintillation light detection in large Time Projection Chambers. With appropriate modifications it can be used also in next generation Dark Matter detectors

  7. Polonium-210 assay using a background-rejecting extractive liquid-scintillation method

    International Nuclear Information System (INIS)

    Case, C.N.; McDowell, W.J.

    1981-01-01

    This paper describes a procedure which combines solvent extraction with alpha liquid scintillation spectrometry. Pulse shape discrimination electronics are used to reject beta and gamma pulses and to lower the background count to acceptable levels. Concentration of 210 Po and separation from interferring elements are accomplished using a H 3 Po 4 -HCl solution with TOPO combined with a scintillor in toluene

  8. Analytical method of Kr-85 determination, using cryogenic concentration and separation and liquid scintillation counting

    International Nuclear Information System (INIS)

    Heras Iniquez, M.C.; Perez Garcia, M.M.; Grau Malonda, A.

    1983-01-01

    The method used in the Laboratory of the JEN for the determination of Kr-85 levels in gaseous effluents of nuclear power and in the atmosphere is described. Samples of air, collected in metallic cylinders, are introduced into a gas-solid chromatographic separation system which resolves Kr from the other air components. The separated Kr ia dissolved in a toluene based scintillation cocktail, and the Kr-85 content is determined by liquid scintillation counting. (Author)

  9. Testing of the scintillation sandwich prototype

    International Nuclear Information System (INIS)

    Vashkevich, V.

    1995-06-01

    The 3 m 2 prototype of the surface detector using optical fiber readout was completely prepared for testing measurements in February 1995 at Fermilab. Two 25 mm thick, 3 m 2 acrylic scintillation plates (1.2 x 2.5 m 2 ) are used for light collection in the upper (above the 25 mm steel plate) and lower (below the steel) counters of the sandwich. The light is collected with the help of 1 mm diameter wavelength shifter fiber loops 3 m long inserted in the grooves on the top surface of the scintillator, 3 fibers per groove. We used Kurary Y11, 200 ppm of shifter dye, and double clad fibers. 1.5 m of clear fibers spliced to each end of the shifter fiber transport the light to the phototube. Spacing between the grooves is 5 cm. The counter's edges were painted with BICRON (BC620) white reflective paint. The scintillation plates were wrapped with Dupont Tyvek. The glued bundle of fibers is connected to an EMI-9902KB 38 mm phototube through the simple light mixer bar. Used PM has a ''green extended'' rubidium bialkali photocathode. The report contains information on the testing of the scintillation sandwich

  10. Isotope Fractionation in Methane Reactions Studied by Gas Chromatography and Liquid Scintillation

    DEFF Research Database (Denmark)

    Andersen, Bertel Lohmann; Bidoglio, G.; Leip, A.

    1997-01-01

    Determination of C-14-marked methane by gas chromatography and liquid scintillation counting is shown to be useful in studies of isotope effects. Data on the specific activity is used to separate the contributions of (CH4)-C-14, and (CH4)-C-12 to the gas-chromatographic peak area. As an application...

  11. Nuclear recoil scintillation and ionisation yields in liquid xenon from ZEPLIN-III data

    Energy Technology Data Exchange (ETDEWEB)

    Horn, M., E-mail: m.horn@imperial.ac.uk [High Energy Physics group, Blackett Laboratory, Imperial College London (United Kingdom); Belov, V.A.; Akimov, D.Yu. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Araujo, H.M. [High Energy Physics group, Blackett Laboratory, Imperial College London (United Kingdom); Barnes, E.J. [School of Physics and Astronomy, SUPA University of Edinburgh (United Kingdom); Burenkov, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Chepel, V. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Currie, A. [High Energy Physics group, Blackett Laboratory, Imperial College London (United Kingdom); Edwards, B. [Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Ghag, C.; Hollingsworth, A. [School of Physics and Astronomy, SUPA University of Edinburgh (United Kingdom); Kalmus, G.E. [Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Kobyakin, A.S.; Kovalenko, A.G. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Lebedenko, V.N. [High Energy Physics group, Blackett Laboratory, Imperial College London (United Kingdom); Lindote, A. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Lopes, M.I. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Luescher, R.; Majewski, P. [Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Murphy, A.StJ. [School of Physics and Astronomy, SUPA University of Edinburgh (United Kingdom)

    2011-11-24

    Scintillation and ionisation yields for nuclear recoils in liquid xenon above 10 keV{sub nr} (nuclear recoil energy) are deduced from data acquired using broadband Am-Be neutron sources. The nuclear recoil data from several exposures to two sources were compared to detailed simulations. Energy-dependent scintillation and ionisation yields giving acceptable fits to the data were derived. Efficiency and resolution effects are treated using a light collection Monte Carlo, measured photomultiplier response profiles and hardware trigger studies. A gradual fall in scintillation yield below {approx}40 keV{sub nr} is found, together with a rising ionisation yield; both are in agreement with the latest independent measurements. The analysis method is applied to the most recent ZEPLIN-III data, acquired with a significantly upgraded detector and a precision-calibrated Am-Be source, as well as to the earlier data from the first run in 2008. A new method for deriving the recoil scintillation yield, which includes sub-threshold S1 events, is also presented which confirms the main analysis.

  12. Liquid organic scintillator in a polymerizable emulsion, its application to radioactive counting and process for its destruction

    International Nuclear Information System (INIS)

    O'Brien, R.E.; Krieger, J.K.

    1981-01-01

    Scintillation organic liquid mixture for performing very efficient counts on compound solutions labelled with a radioactive indicator containing up to 10% water by volume and which is easily polymerizable into a solid substance, in order to facilitate its elimination. The mixture includes a polymerizable organic solvent, a solubilizing agent, an intermediate solvent and an organic scintillator [fr

  13. Scintillating liquid xenon calorimeter for precise electron/photon/jet physics at high energy high luminosity hadron colliders

    International Nuclear Information System (INIS)

    Chen, M.; Luckey, D.; Pelly, D.; Shotkin, S.; Sumorok, K.; Wadsworth, B.; Yan, X.J.; You, C.; Zhang, X.; Chen, E.G.; Gaudreau, M.P.J.; Montgomery, D.B.; Sullivan, J.D.; Bolozdynya, A.; Chernyshev, V.; Goritchev, P.; Khovansky, V.; Kouchenkov, A.; Kovalenko, A.; Lebedenko, V.; Vinogradov, V.A.; Epstein, V.; Zeldovich, S.; Krasnokutsky, R.; Shuvalov, R.; Aprile, E.; Mukherjee, R.; Suzuki, M.; Moulsen, M.; Sugimoto, S.; Okada, K.; Fujino, T.; Matsuda, T.; Miyajima, M.; Doke, T.; Kikuchi, J.; Hitachi, A.; Kashiwagi, T.; Nagasawa, Y.; Ichinose, H.; Ishida, N.; Nakasugi, T.; Ito, T.; Masuda, K.; Shibamura, E.; Wallraff, W.; Vivargent, M.; Mutterer, M.; Chen, H.S.; Tang, H.W.; Tung, K.L.; Ding, H.L.; Takahashi, T.

    1990-01-01

    The authors use αs well as e, π, p, d and heavy ion beams to test prototype scintillating liquid xenon detectors, with large UV photodiodes and fast amplifiers submersed directly in liquid xenon. The data show very large photoelectron yields (10 7 /GeV) and high energy resolution (σ(E)/E 1.6 GeV). The α spectra are stable over long term and can be used to calibrate the detectors. Full size liquid xenon detectors have been constructed, to study cosmic μ's and heavy ions. The authors report the progress on the design and construction of the 5 x 5 and 11 x 11 cell liquid xenon detectors which will be tested in high energy beams to determine the e/π ratio. The authors describe the design and the unique properties of the proposed scintillating LXe calorimeter for the SSC

  14. Set of counts by scintillations for atmospheric samplings; Ensemble de comptages par scintillations pour prelevements atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Appriou, D.; Doury, A.

    1962-07-01

    The author reports the development of a scintillation-based counting assembly with the following characteristics: a photo-multiplier with a wide photo-cathode, a thin plastic scintillator for the counting of beta + alpha (and possibility of mounting an alpha scintillator), a relatively small own motion with respect to activities to be counted, a weakly varying efficiency. The authors discuss the counting objective, present equipment tests (counter, proportional amplifier and pre-amplifier, input drawer). They describe the apparatus operation, discuss the selection of scintillators, report the study of the own movement (electron-based background noise, total background noise, background noise reduction), discuss counts (influence of the external source, sensitivity to alpha radiations, counting homogeneity, minimum detectable activity) and efficiencies.

  15. Determination of hexachlorocyclohexane pesticide residues in wool fat by a combined high-performance liquid chromatographic-gas-liquid chromatographic method

    International Nuclear Information System (INIS)

    Ali, S.L.

    1978-01-01

    Beta- and gamma-hexachlorocyclohexane residues were determined in twelve wool fat samples by using a combined high-performance liquid chromatographic (HPLC)-gas-liquid chromatographic (GLC) method. After extraction and chromatographic clean-up on a silca-gel column, the sample was further purified by HPLC on a reversed-phase C-18 column with methanol as the mobile phase. The final determination was effected by GLC with a 1-mCi nickel-63 electron-capture detector. The analytical method was checked by addition of carbon-14-labelled lindane and measurement of the radioactivity in a liquid scintillation counter. (Auth.)

  16. Determination of 131I in milk using a liquid scintillation technique

    International Nuclear Information System (INIS)

    Palagyi, S.; Markusova, R.

    1978-01-01

    The method is based on the specific extraction of radioiodine using a liquid anion exchanger and measuring its radioactivity with a toluene based liquid scintillator. Milk proteins are precipitated with trichloroacetic acid and separated by filtration through asbestos. Radioiodine from whey is oxidized to I 2 with NaNO 2 or H 2 O 2 and purified by a benzene-water extraction cycle using sodium sulphite. Finally, the radioiodine is separated and concentrated into toluene solution of a liquid anion exchanger. Before radioactivity counting, the organic phase is decolourized with Na 2 SO 3 using methanol as solubilizer. The method takes about 2.5 hrs without radioactivity counting. The radiochemical yield is higher than 70% and the counting efficiency is 82%. (author)

  17. A feasibility study of boron-loaded liquid scintillator for the detection of electron anti-neutrinos

    CERN Document Server

    Wang, S C; Leung, R W S; Wang, S L; Chang, C Y; Chen Chi Ping; Cheng, K C; Ho, T I; Lai, W P; Liu, H M; Mao, Z P; Shih, I C; Wong, H T; Yu, Z Q

    1999-01-01

    Boron-loaded liquid scintillator offers some potential advantages as a detector for electron anti-neutrinos. A research program was carried out with the objective of developing such scintillators. The crucial feature is the pulse shape discrimination properties following the neutron capture by sup 1 sup 0 B. Results of the R and D efforts are presented. The feasibility and the technical difficulties of carrying out a full-scale neutrino experiment based on this approach are discussed. (author)

  18. Cherenkov radiation effects on counting efficiency in extremely quenched liquid scintillation samples

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.; Rodriguez Barquero, L.

    1993-01-01

    The CIEMAT/NIST tracer method has successfully standardized nuclides with diverse quench values and decay schemes in liquid scintillation counting. However, the counting efficiency is computed inaccurately for extremely quenched samples. This article shows that when samples are extremely quenched, the counting efficiency in high-energy beta-ray nuclides depends principally on the Cherenkov effect. A new technique is described for quench determination, which makes the measurement of counting efficiency possible when scintillation counting approaches zero. A new efficiency computation model for pure beta-ray nuclides is also described. The results of the model are tested experimentally for 89 Sr, 90 Y, 36 Cl and 204 Tl nuclides with independence of the quench level. (orig.)

  19. Study of alternative methods for the management of liquid scintillation counting wastes

    International Nuclear Information System (INIS)

    Roche-Farmer, L.

    1980-02-01

    The Nuclear Engineering Waste Disposal Site in Richland, Washington, is the only radioactive waste disposal facility that will accept liquid scintillation counting wastes (LSCW) for disposal. That site is scheduled to discontinue receiving LSCW by the end of 1982. This document explores alternatives presently available for management of LSCW: evaporation, distillation, solidification, conversion, and combustion

  20. Upgradation of automatic liquid scintillation counting system

    International Nuclear Information System (INIS)

    Bhattacharya, Sadhana; Behere, Anita; Sonalkar, S.Y.; Vaidya, P.P.

    2001-01-01

    This paper describes the upgradation of Microprocessor based Automatic Liquid Scintillation Counting systems (MLSC). This system was developed in 1980's and subsequently many systems were manufactured and supplied to Environment Survey labs at various Nuclear Power Plants. Recently this system has been upgraded to a more sophisticated one by using PC add-on hardware and developing Windows based software. The software implements more intuitive graphical user interface and also enhances the features making it comparable with commercially available systems. It implements data processing using full spectrum analysis as against channel ratio method adopted earlier, improving the accuracy of the results. Also it facilitates qualitative as well as quantitative analysis of the β-spectrum. It is possible to analyze a sample containing an unknown β-source. (author)

  1. Broad Energy Range Neutron Spectroscopy using a Liquid Scintillator and a Proportional Counter: Application to a Neutron Spectrum Similar to that from an Improvised Nuclear Device.

    Science.gov (United States)

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Garty, Guy; Harken, Andrew; Brenner, David J

    2015-09-11

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n) 3 He and D(d,n) 3 He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9 Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  2. Scintillation light from cosmic-ray muons in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Whittington, Denver Wade [Indiana Univ., Bloomington, IN (United States). Physics Dept.; Mufson, S. [Indiana Univ., Bloomington, IN (United States). Astronomy Dept.; Howard, B. [Indiana Univ., Bloomington, IN (United States). Physics Dept.

    2016-05-01

    This paper reports the results of an experiment to directly measure the time-resolved scintillation signal from the passage of cosmic-ray muons through liquid argon. Scintillation light from these muons is of value to studies of weakly-interacting particles in neutrino experiments and dark matter searches. The experiment was carried out at the TallBo dewar facility at Fermilab using prototype light guide detectors and electronics developed for the Deep Underground Neutrino Experiment. Two models are presented for the time structure of the scintillation light, a phenomenological model and a physically-motivated model. Both models find tT = 1:52 ms for the decay time constant of the Ar 2 triplet state. These models also show that the identification of the “early” light fraction in the phenomenological model, FE 25% of the signal, with the total light from singlet decays is an underestimate. The total fraction of singlet light is FS 36%, where the increase over FE is from singlet light emitted by the wavelength shifter through processes with long decay constants. The models were further used to compute the experimental particle identification parameter Fprompt, the fraction of light coming in a short time window after the trigger compared with the light in the total recorded waveform. The models reproduce quite well the typical experimental value 0.3 found by dark matter and double b-decay experiments, which suggests this parameter provides a robust metric for discriminating electrons and muons from more heavily ionizing particles.

  3. A review of lyoluminescence dosimetry and a new readout method using liquid scintillation techniques

    International Nuclear Information System (INIS)

    Ziemer, P.L.; Hanig, R.; Fayerman, L.K.

    1978-01-01

    Lyoluminescence dosimetry is useful as a personnel monitor and also as a neutron dosimeter. A review of lyoluminescence is given including readout systems, the machanisms of light emission, radiometric characteristics of lyoluminescence dosimeters, factor affecting response and liquid scintillation lyoluminscence readout

  4. Rapid determination of 226Ra in drinking water samples using dispersive liquid-liquid microextraction coupled with liquid scintillation counting

    International Nuclear Information System (INIS)

    Sadi, B.K.; Chunsheng Li; Kramer, G.H.; Johnson, C.L.; Queenie Ko; Lai, E.P.C.

    2011-01-01

    A new radioanalytical method was developed for rapid determination of 226 Ra in drinking water samples. The method is based on extraction and preconcentration of 226 Ra from a water sample to an organic solvent using a dispersive liquid-liquid microextraction (DLLME) technique followed by radiometric measurement using liquid scintillation counting. In DLLME for 226 Ra, a mixture of an organic extractant (toluene doped with dibenzo-21-crown-7 and 2-theonyltrifluoroacetone) and a disperser solvent (acetonitrile) is rapidly injected into the water sample resulting in the formation of an emulsion. Within the emulsion, 226 Ra reacts with dibenzo-21-crown-7 and 2-theonyltrifluoroacetone and partitions into the fine droplets of toluene. The water/toluene phases were separated by addition of acetonitrile as a de-emulsifier solvent. The toluene phase containing 226 Ra was then measured by liquid scintillation counting. Several parameters were studied to optimize the extraction efficiency of 226 Ra, including water immiscible organic solvent, disperser and de-emulsifier solvent type and their volume, chelating ligands for 226 Ra and their concentrations, inorganic salt additive and its concentration, and equilibrium pH. With the optimized DLLME conditions, the accuracy (expressed as relative bias, B r ) and method repeatability (expressed as relative precision, S B ) were determined by spiking 226 Ra at the maximum acceptable concentration level (0.5 Bq L -1 ) according to the Guidelines for Canadian Drinking Water Quality. Accuracy and repeatability were found to be less than -5% (B r ) and less than 6% (S B ), respectively, for both tap water and bottled natural spring water samples. The minimum detectable activity and sample turnaround time for determination of 226 Ra was 33 mBq L -1 and less than 3 h, respectively. The DLLME technique is selective for extraction of 226 Ra from its decay progenies. (author)

  5. Standardization of 137mCs+137mBa by Liquid Scintillation

    International Nuclear Information System (INIS)

    Rodriguez, L.; Los Arcos, J.M.; Grau, A.

    1995-01-01

    A procedure for the preparation of a stable, homogeneous solution of 137Cs+''137mBa, for use in liquid scintillation measurements, is described. Its count rate stability and spectral time evolution has been followed for several weeks. The solution has been standardised by the CIEMAT/NIST method in both Ultima-Gold and Insta-Gel, to a combined uncertainty lower than 0,51 % (k=l). (Author) 5 refs

  6. Neutrons detection by scintillation; Detection de neutrons par scintillations

    Energy Technology Data Exchange (ETDEWEB)

    Giraudon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-01-15

    The absence of charge of neutrons and their elevated penetration power make difficult their detection. Techniques vary otherwise with the energy of the particle. The author proposes the realization of a scintillation detector with a big volume of liquid scintillator and containing boron for the detection of slowing-down neutrons in the domain of intermediate energies from 1 to 10{sup 5} eV about. (M.B.) [French] L'absence de charge du neutron et son pouvoir de penetration eleve rendent difficile sa detection. Les techniques par ailleurs varient avec l'energie de cette particule. L'auteur propose la realisation d'un detecteur a scintillations comprenant un grand volume de scintillateur liquide et contenant du bore pour la detection des neutrons en ralentissement dans le domaine des energies intermediaires de 1 a 10{sup 5} eV environ. (M.B.)

  7. Near-Infrared Scintillation of Liquid Argon: Recent Results Obtained with the NIR Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, C. O. [Fermilab; Rubinov, P. [Fermilab; Tilly, E. [Sewanee U.

    2018-03-19

    After a short review of previous attempts to observe and measure the near-infrared scintillation in liquid argon, we present new results obtained with NIR, a dedicated cryostat at the Fermilab Proton Assembly Building (PAB). The new results give confidence that the near-infrared light can be used as the much needed light signal in large liquid argon time projection chambers.11 pages,

  8. NEST: a comprehensive model for scintillation yield in liquid xenon

    Energy Technology Data Exchange (ETDEWEB)

    Szydagis, M; Barry, N; Mock, J; Stolp, D; Sweany, M; Tripathi, M; Uvarov, S; Walsh, N; Woods, M [University of California, Davis, One Shields Ave., Davis, CA 95616 (United States); Kazkaz, K, E-mail: mmszydagis@ucdavis.edu [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States)

    2011-10-15

    A comprehensive model for explaining scintillation yield in liquid xenon is introduced. We unify various definitions of work function which abound in the literature and incorporate all available data on electron recoil scintillation yield. This results in a better understanding of electron recoil, and facilitates an improved description of nuclear recoil. An incident gamma energy range of O(1 keV) to O(1 MeV) and electric fields between 0 and O(10 kV/cm) are incorporated into this heuristic model. We show results from a Geant4 implementation, but because the model has a few free parameters, implementation in any simulation package should be simple. We use a quasi-empirical approach with an objective of improving detector calibrations and performance verification. The model will aid in the design and optimization of future detectors. This model is also easy to extend to other noble elements. In this paper we lay the foundation for an exhaustive simulation code which we call NEST (Noble Element Simulation Technique).

  9. NEST: a comprehensive model for scintillation yield in liquid xenon

    International Nuclear Information System (INIS)

    Szydagis, M; Barry, N; Mock, J; Stolp, D; Sweany, M; Tripathi, M; Uvarov, S; Walsh, N; Woods, M; Kazkaz, K

    2011-01-01

    A comprehensive model for explaining scintillation yield in liquid xenon is introduced. We unify various definitions of work function which abound in the literature and incorporate all available data on electron recoil scintillation yield. This results in a better understanding of electron recoil, and facilitates an improved description of nuclear recoil. An incident gamma energy range of O(1 keV) to O(1 MeV) and electric fields between 0 and O(10 kV/cm) are incorporated into this heuristic model. We show results from a Geant4 implementation, but because the model has a few free parameters, implementation in any simulation package should be simple. We use a quasi-empirical approach with an objective of improving detector calibrations and performance verification. The model will aid in the design and optimization of future detectors. This model is also easy to extend to other noble elements. In this paper we lay the foundation for an exhaustive simulation code which we call NEST (Noble Element Simulation Technique).

  10. Neutron detection in a high gamma-ray background with EJ-301 and EJ-309 liquid scintillators

    International Nuclear Information System (INIS)

    Stevanato, L.; Cester, D.; Nebbia, G.; Viesti, G.

    2012-01-01

    Using a fast digitizer, the neutron–gamma discrimination capability of the new liquid scintillator EJ-309 is compared with that obtained using standard EJ-301. Moreover the capability of both the scintillation detectors to identify a weak neutron source in a high gamma-ray background is demonstrated. The probability of neutron detection is PD=95% at 95% confidence level for a gamma-ray background corresponding to a dose rate of 100 μSv/h.

  11. Direct measurement of tritium in urine by liquid scintillation method

    International Nuclear Information System (INIS)

    Zhang Caihong; Wen Qinghua; Chen Kefei; Li Huaixin

    1999-01-01

    The author introduces the method for direct measurement of tritium concentration in urine using liquid scintillation. Effects of sampling containers, store patterns and storage time are studied. Meanwhile, results of two methods are compared with direct measurement method and oxidation distillation method. The results shows that direct measurement method is a economic and simple method, which can meet the need of determination of urine tritium for NPP workers. There is no significant difference compared with the data obtained by oxidation distillation method

  12. Development of a scintillator detector set with counter and data acquisition for flow measurements

    CERN Document Server

    Costa, F E D

    2002-01-01

    A portable counter with data acquisition system for flow measurements was developed, using the pulse velocity technique. This consists in determining the tracer transit time mixed homogeneously to the liquid or gas pipelines. The counter comprises: (a) two CsI(Tl) crystals solid state detectors, associated with Si PIN photodiodes, with compatible sensitivity to the injected radiotracers activities; (b) amplification units; (c) analogue-to-digital interface, which processes and displays the detectors counting separately and in real time, but in a same temporal axis, via a computer screen and (d) 30-m coaxial cables for signals transmission from each detector to the processing unit. Experiments were carried out for the detector and associated electronic characterizations. The equipment showed to be suitable for flow measurements in an industrial plant, in the real situation.

  13. Systematic studies of small scintillators for new sampling calorimeter

    Indian Academy of Sciences (India)

    A new sampling calorimeter using very thin scintillators and the multi-pixel photon counter (MPPC) has been proposed to produce better position resolution for the international linear collider (ILC) experiment. As part of this R & D study, small plastic scintillators of different sizes, thickness and wrapping reflectors are ...

  14. Apparent and actual 14C retention in the slower turnover bicarbonate pool in man when using liquid scintillation counting

    International Nuclear Information System (INIS)

    Clague, M.B.; Keir, M.J.; Clayton, C.B.

    1979-01-01

    The use of liquid scintillation counting to determine 14 CO 2 expiration without correct calibration of the apparatus suggests that about 25% of the label is retained within the slower turnover bicarbonate pool. Calibration reduces this figure to 13% and is in agreement with the figure obtained using a calibrated ionisation chamber. The discrepancy is due to reduction in the specific radioactivity in the vial, the mechanism involved being unknown, but it may be a characteristic of certain liquid scintillators under certain conditions. (author)

  15. Simple analytical technique for liquid scintillation counting of environmental carbon-14 using gel suspension method

    International Nuclear Information System (INIS)

    Okai, Tomio; Wakabayashi, Genichiro; Nagao, Kenjiro; Matoba, Masaru; Ohura, Hirotaka; Momoshima, Noriyuki; Kawamura, Hidehisa

    2000-01-01

    A simple analytical technique for liquid scintillation counting of environmental 14 C was developed. Commercially available gelling agent, N-lauroyl-L -glutamic -α,γ-dibutylamide, was used for the gel-formation of the samples (gel suspension method) and for the subsequent liquid scintillation counting of 14 C in the form of CaCO 3 . Our procedure for sample preparation is much simpler than that of the conventional methods and requires no special equipment. Self absorption, stability and reproducibility of gel suspension samples were investigated in order to evaluate the characteristics of the gel suspension method for 14 C activity measurement. The self absorption factor is about 70% and slightly decrease as CaCO 3 weight increase. This is considered to be mainly due to the absorption of β-rays and scintillation light by the CaCO 3 sample itself. No change of the counting rate for the gel suspension sample was observed for more than 2 years after the sample preparation. Four samples were used for checking the reproducibility of the sample preparation method. The same values were obtained for the counting rate of 24 C activity within the counting error. No change of the counting rate was observed for the 're-gelated' sample. These results show that the gel suspension method is appropriate for the 14 C activity measurement by the liquid scintillation counting method and useful for a long-term preservation of the sample for repeated measurement. The above analytical technique was applied to actual environmental samples in Fukuoka prefecture, Japan. Results obtained were comparable with those by other researchers and appear to be reasonable. Therefore, the newly developed technique is useful for the routine monitoring of environmental 14 C. (author)

  16. A high-resolution detector based on liquid-core scintillating fibres with readout via an electron-bombarded charge-coupled device

    International Nuclear Information System (INIS)

    Cianfarani, C.; Duane, A.; Fabre, J.P.; Frenkel, A.; Golovkin, S.V.; Gorin, A.M.; Harrison, K.; Kozarenko, E.N.; Kushnirenko, A.E.; Ladygin, E.A.; Martellotti, G.; Medvedkov, A.M.; Nass, P.A.; Obudovski, V.P.; Penso, G.; Petukhov, Yu.P.; Siegmund, W.P.; Tyukov, V.E.; Vasilchenko, V.G.

    1994-01-01

    This paper is a presentation of results from tests in a 5 GeV/c hadron beam of detectors based on liquid-core scintillating fibres, each fibre consisting of a glass capillary filled with organic liquid scintillator. Fibre readout was performed via an Electron-Bombarded Charge-Coupled Device (EBCCD) image tube, a novel instrument that combines the functions of a high-gain, gated image intensifier and a Charge-Coupled Device. Using 1-methylnaphthalene doped with 3 g/l of R45 as liquid scintillator, the attenuation lengths obtained for light propagation over distances greater than 16 cm were 1.5 m in fibres of 20 μm core and 1.0 m in fibres of 16 μm core. For particles that crossed the fibres of 20 μm core at distances of ∼1.8 cm and ∼95 cm from the fibres' readout ends, the recorded hit densities were 5.3 mm -1 and 2.5 mm -1 respectively. Using 1-methylnaphthalene doped with 3.6 g/l of R39 as liquid scintillator and fibres of 75 μm core, the hit density obtained for particles that crossed the fibres at a distance of ∼1.8 cm from their readout ends was 8.5 mm -1 . With a specially designed bundle of tapered fibres, having core diameters that smoothly increase from 16 μm to 75 μm, a spatial precision of 6 μm was measured. (orig.)

  17. Triton X-100 as a complete liquid scintillation cocktail for counting aqueous solutions and ionic nutrient salts

    International Nuclear Information System (INIS)

    Reed, D.W.

    1984-01-01

    Triton X-100, used alone, was found to act as a complete liquid scintillation cocktail. Triton X-100 acted as a scintillator and the effect was not due to Cerenkov radiation. A variety of other commercially available surfactants also acted as scintillators, but with different levels of efficiency. Triton X-100/water combinations were suitable for counting aqueous solutions of 33 P and 86 Rb and the count rate was stable over extended periods of time. Triton X-100/toluene combinations also yielded high counting efficiencies. Triton X-100 was more sensitive to quenching than standard cocktails containing fluors. (author)

  18. The fast trigger scintillator for the JETSET experiment (PS202/LEAR)

    International Nuclear Information System (INIS)

    Sefzick, T.

    1988-12-01

    In the present thesis the trigger detector of the JETSET experiment (PS202) at the LEAR/CERN consisting of scintillation counters is presented. After giving a start signal in a second stage of the trigger electronics the determination of the position of the traversed points of the reaction products is performed with the information of the scintillation detector. A third following trigger stage shall study the position informations given by the second stage under kinematical points of view. The present diploma thesis deals especially with the first two trigger stages. As basic conditions the components of a scintillation counter are treated and calibration and testing possibilities presented. For this belongs a fast light pulser with green or blue LED. Results of the studies which scintillator and light-guide materials are most suitable for the JETSET experiment are presented. (orig./HSI) [de

  19. Measurement of eDsub(L)/μ of electrons in liquid xenon

    International Nuclear Information System (INIS)

    Doke, T.; Suzuki, S.; Shibamura, E.; Masuda, K.

    1983-01-01

    A new method for measuring the spread of electron swarm drifting under uniform electric field in liquid xenon is proposed. This is made by observing the width of scintillation pulse produced by drifting electrons in the vicinity of a thin center wire of a proportional scintillation counter, put in the end part of the electron drift space. From the spread of electron swarm and its drift time, the ratio of longitudinal diffusion coefficient to mobility epsilon sub(L) = eDsub(L)/μ for electrons in liquid xenon is directly obtained. epsilon sub(L) of electron swarms under the various electric fields have been measured and compared with epsilon sub(T) = eDsub(T)/μ previously obtained under the same electric fields. (Authors)

  20. Liquid Scintillation High Resolution Spectral Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A.

    2010-08-06

    The CIEMAT/NIST and the TDCR methods in liquid scintillation counting are based on the determination of the efficiency for total counting. This paper tries to expand these methods analysing the pulse-height spectrum of radionuclides. To reach this objective we have to generalize the equations used in the model and to analyse the influence of ionization and chemical quench in both spectra and counting efficiency. We present equations to study the influence of different photomultipliers response in systems with one, two or three photomultipliers. We study the effect of the electronic noise discriminator level in both spectra and counting efficiency. The described method permits one to study problems that up to now was not possible to approach, such as the high uncertainty in the standardization of pure beta-ray emitter with low energy when we apply the TDCR method, or the discrepancies in the standardization of some electron capture radionuclides, when the CIEMAT/NIST method is applied. (Author) 107 refs.

  1. Liquid Scintillation High Resolution Spectral Analysis

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.

    2010-01-01

    The CIEMAT/NIST and the TDCR methods in liquid scintillation counting are based on the determination of the efficiency for total counting. This paper tries to expand these methods analysing the pulse-height spectrum of radionuclides. To reach this objective we have to generalize the equations used in the model and to analyse the influence of ionization and chemical quench in both spectra and counting efficiency. We present equations to study the influence of different photomultipliers response in systems with one, two or three photomultipliers. We study the effect of the electronic noise discriminator level in both spectra and counting efficiency. The described method permits one to study problems that up to now was not possible to approach, such as the high uncertainty in the standardization of pure beta-ray emitter with low energy when we apply the TDCR method, or the discrepancies in the standardization of some electron capture radionuclides, when the CIEMAT/NIST method is applied. (Author) 107 refs.

  2. Liquid scintillation measurements of aqueous 14C or 3H containing samples in a toluene cocktail

    International Nuclear Information System (INIS)

    Engelmann, A.; Reinhard, G.

    1980-01-01

    On the basis of investigations of the ternary system toluene/methanol/water that composition of toluene/methanol scintillation cocktails has been determined, which allows liquid scintillation measurements of 14 C or 3 H containing samples in homogeneous distribution. Because of more pronounced quenching the optimum sample quantity was less for blood solutions extracted with a HClO 4 /H 2 O 2 mixture than for water. The effect of beta radiation energy has to be taken into account. (author)

  3. Cherenkov and scintillation light separation on the CheSS experiment

    Science.gov (United States)

    Caravaca, Javier; Land, Benjamin; Descamps, Freija; Orebi Gann, Gabriel D.

    2016-09-01

    Separation of the scintillation and Cherenkov light produced in liquid scintillators enables outstanding capabilities for future particle detectors, the most relevant being: particle directionality information in a low energy threshold detector and improved particle identification. The CheSS experiment uses an array of small, fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in liquid scintillator using two techniques: based on the photon density and using the photon hit time information. A charged particle ionizing a scintillation medium produces a prompt Cherenkov cone and late isotropic scintillation light, typically delayed by several ns. The fast response of our PMTs and DAQ provides a precision well below the ns level, making possible the time separation. Furthermore, the usage of the new developed water-based liquid scintillators (WbLS) enhances the separation since it allows tuning of the Cherenkov/Scintillation ratio. Latest results on the separation for pure liquid scintillators and WbLS will be presented.

  4. Developing Detectors for Scintillation Light in Liquid Argon for DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Bruce [Fermilab

    2016-12-22

    The Deep Underground Neutrino experiment will conduct a broad program of physics research by studying a beam of neutrinos from Fermilab, atmospheric neutrinos, neutrinos from potential supernovae, and potential nucleon decay events. In pursuit of these studies, the experiment will deploy four 10kt fiducial mass liquid argon time projection chambers underground in Lead, South Dakota. Liquid argon time projection chambers allow high-resolution tracking and energy measurements. A precise timing signal is needed to provide the necessary time stamp to localize events in the drift direction. As liquid argon is a natural scintillator, a photon detection system will be deployed to provide such a signal, especially for non-beam events. In the baseline design for the single-phase time projection chamber, the detectors are contained within the anode plane assemblies. The design of two prototypes utilizing wavelength shifters and light guides are presented, and aspects of the research and development program are discussed.

  5. Neutrons detection by scintillation; Detection de neutrons par scintillations

    Energy Technology Data Exchange (ETDEWEB)

    Giraudon, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-01-15

    The absence of charge of neutrons and their elevated penetration power make difficult their detection. Techniques vary otherwise with the energy of the particle. The author proposes the realization of a scintillation detector with a big volume of liquid scintillator and containing boron for the detection of slowing-down neutrons in the domain of intermediate energies from 1 to 10{sup 5} eV about. (M.B.) [French] L'absence de charge du neutron et son pouvoir de penetration eleve rendent difficile sa detection. Les techniques par ailleurs varient avec l'energie de cette particule. L'auteur propose la realisation d'un detecteur a scintillations comprenant un grand volume de scintillateur liquide et contenant du bore pour la detection des neutrons en ralentissement dans le domaine des energies intermediaires de 1 a 10{sup 5} eV environ. (M.B.)

  6. 222Rn determination in water and brine samples using liquid scintillation spectrometry

    International Nuclear Information System (INIS)

    Oliveira, Thiago C.; Oliveira, Arno H.

    2017-01-01

    Liquid scintillation spectrometry (LSC) is the most common technique used for 222 Rn determination in environmental aqueous sample. In this study, the performance of water-miscible (Ultima Gold AB) and immiscible (Optiscint) liquid scintillation cocktails has been compared for different matrices. 241 Am, 90 Sr and 226 Ra standard solutions were used for LSC calibration. 214 Po region was defined as better for both cocktails. Counting efficiency of 76 % and optimum PSA level of 95 for Ultima Gold AB cocktail, and counting efficiency of 82 % and optimum PSA level of 85 for Optiscint cocktail were obtained. Both cocktails showed similar results when applied for 222 Rn activity determination in water and brine samples. However the Optiscint is recommended due to its quenching resistance. Limit of detection of 0.08 and 0.06 Bq l -1 were obtained for water samples using a sample:cocktail ratio of 10:12 mL for Ultima Gold AB and Optiscint cocktails, respectively. Limit of detection of 0.08 and 0.04 Bq l -1 were obtained for brine samples using a sample:cocktail ratio of 8:12 mL for Ultima Gold AB and Optiscint cocktails, respectively. (author)

  7. The efficacy of biodegradable liquid scintillation counting cocktails

    International Nuclear Information System (INIS)

    Klein, R.C.; Gershey, E.L.

    1990-01-01

    Liquid scintillation counting (LSC) waste once accounted for ∼50% of the low-level radioactive wastes generated by academic and biomedial research. Strict regulations banning the land burial of organic liquids led the U.S. Nuclear Regulatory Commission to deregulate very low level LSC waste (10CFR20.306 of the Code of Federal Regulations) in 1981. Today, LSC waste containing ≤0.05 μCi/ml of 3 H or 14 C is generally incinerated as flammable liquid. Several manufacturers are now offering cocktails that contain long-chain and multiringed aromatic compounds that have not been identified as hazardous by the Environmental Protection Agency (EPA) under the Resource Conservation and Recovery Act (40CFR261) or the Clean Water Act (40CFR122). In addition to lower toxicity and higher flash points than their predecessors, these new cocktails are being advertised as biodegradable. Simple exclusion from the relatively short EPA lists of hazardous chemicals, however, may only reflect insufficient study. Five cocktail solvent families were identified by gas chromatography (GC) and GC/mass spectrometry: meta- and ortho-xylenes, trimethylbenzene isomers, linear alkylbenzenes, 1-phenyl-1-(3,4-xylyl)-ethane, and diisopropylnaphthalene. Cocktail efficiencies were determined for tritiated samples commonly found in biomedical research by the internal standard method

  8. Scintillators and other particle optical detectors

    International Nuclear Information System (INIS)

    Chipaux, R.

    2011-01-01

    The author reports and comments his researcher career in the field of particle optical detectors. He addresses the cases of organic scintillators (scintillating fibers, liquid scintillators), inorganic scintillators (crystals for electromagnetic calorimetry, crystals for solar neutrino spectroscopy), and Cherenkov Effect detectors. He also reports his works on Cd Te detectors and their modelling

  9. Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiang; Zhang, Zhenyu [Wuhan University, Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan (China); Liu, Qian; Zheng, Yangheng [University of Chinese Academy of Sciences, School of Physics, Beijing (China); Han, Junbo [Huazhong University of Science and Technology, Wuhan National High Magnetic Field Center, Wuhan (China); Zhang, Xuan; Ding, Yayun; Zhou, Li; Cao, Jun; Wang, Yifang [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2015-11-15

    We have set up a light scattering spectrometer to study the depolarization of light scattering in linear alkylbenzene. The scattering spectra show that the depolarized part of light scattering is due to Rayleigh scattering. The additional depolarized Rayleigh scattering can make the effective transparency of linear alkylbenzene much better than expected. Therefore, sufficient scintillation photons can transmit through large liquid scintillator detector, such as that of the JUNO experiment. Our study is crucial to achieving an unprecedented energy resolution of 3 %/√(E(MeV)) required for the JUNO experiment to determine the neutrino mass hierarchy. The spectroscopic method can also be used to examine the depolarization of other organic solvents used in neutrino experiments. (orig.)

  10. Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiang, E-mail: xiangzhou@whu.edu.cn [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan (China); Liu, Qian, E-mail: liuqian@ucas.ac.cn [School of Physics, University of Chinese Academy of Sciences, 100049, Beijing (China); Han, Junbo [Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan (China); Zhang, Zhenyu [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan (China); Zhang, Xuan; Ding, Yayun [Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing (China); Zheng, Yangheng [School of Physics, University of Chinese Academy of Sciences, 100049, Beijing (China); Zhou, Li; Cao, Jun; Wang, Yifang [Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing (China)

    2015-11-21

    We have set up a light scattering spectrometer to study the depolarization of light scattering in linear alkylbenzene. The scattering spectra show that the depolarized part of light scattering is due to Rayleigh scattering. The additional depolarized Rayleigh scattering can make the effective transparency of linear alkylbenzene much better than expected. Therefore, sufficient scintillation photons can transmit through large liquid scintillator detector, such as that of the JUNO experiment. Our study is crucial to achieving an unprecedented energy resolution of 3 %/√(E(MeV)) required for the JUNO experiment to determine the neutrino mass hierarchy. The spectroscopic method can also be used to examine the depolarization of other organic solvents used in neutrino experiments.

  11. A new analytical method for 32P. Liquid scintillation counting with solvent extraction

    International Nuclear Information System (INIS)

    Liyanage, J.A.; Yonezawa, C.

    2003-01-01

    Trace determination of phosphorus has been studied using neutron activation analysis. Radioactivity of 32 P in tri-n-octylamine phosphomolybdate complex was measured using liquid scintillation counting by extracting the complex into xylene. Phosphorus can be quantitatively determined from 16.7 to 600 μg/10 ml by using the radiochemical analysis method described. (author)

  12. Liquid scintillators and liquefied rare gases for particle detectors. Background-determination in Double Chooz and scintillation properties of liquid argon

    International Nuclear Information System (INIS)

    Hofmann, Martin Alexander

    2012-01-01

    the BiPo analysis show the high level of radiopurity reached in Double Chooz. In addition, with the BiPo analysis the α-quenching factors for the Target and the GammaCatcher liquids have been determined, respectively, to 9.94±0.04 and 13.69±0.02 at 7.7 MeV, and 9.05±0.01 and 14.3±0.1 at 8.8 MeV. The former values show a good agreement with the values obtained in a dedicated laboratory measurement. The time stability of the peak position of the 214 Po α-peak could be proven, too, showing a stable detector performance at low visible energies. The direct search for Dark Matter can, amongst others, be performed with liquid rare gas detectors, which make use of the scintillation light. However, a good background discrimination is needed. Studies on the wavelength- and time-resolved scintillation properties of liquid argon have therefore been carried out with high resolution and best statistics. The results obtained for different ion beams show that particle discrimination is not feasible in any realistic experiment by means of the wavelength-resolved scintillation light only, but the time structure of the emitted light provides a good handle to distinguish between different incident particles. For heavy ions (sulfur) a ratio of the fast to the slow scintillation component of (1.6 ± 0.6) is found, while lighter particles (protons) exhibit a ratio of (0.25 ± 0.05). The outcome of the present studies shows that this ratio can also be used in wavelength-integrating measurements which have a comparable detection efficiency for wavelengths below and above ∝170 nm. The present results demonstrate that for a number of 90 detected photons the singlet-to-triplet distributions obtained for sulfur ions and protons as exciting particles cease to overlap. In a Dark Matter experiment, if all photons produced can be detected, this corresponds to a discrimination threshold of only 2.25 keV.

  13. Liquid scintillators and liquefied rare gases for particle detectors. Background-determination in Double Chooz and scintillation properties of liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Martin Alexander

    2012-11-27

    }(g)/(g)). Both gamma spectroscopy measurements and the BiPo analysis show the high level of radiopurity reached in Double Chooz. In addition, with the BiPo analysis the {alpha}-quenching factors for the Target and the GammaCatcher liquids have been determined, respectively, to 9.94{+-}0.04 and 13.69{+-}0.02 at 7.7 MeV, and 9.05{+-}0.01 and 14.3{+-}0.1 at 8.8 MeV. The former values show a good agreement with the values obtained in a dedicated laboratory measurement. The time stability of the peak position of the {sup 214}Po {alpha}-peak could be proven, too, showing a stable detector performance at low visible energies. The direct search for Dark Matter can, amongst others, be performed with liquid rare gas detectors, which make use of the scintillation light. However, a good background discrimination is needed. Studies on the wavelength- and time-resolved scintillation properties of liquid argon have therefore been carried out with high resolution and best statistics. The results obtained for different ion beams show that particle discrimination is not feasible in any realistic experiment by means of the wavelength-resolved scintillation light only, but the time structure of the emitted light provides a good handle to distinguish between different incident particles. For heavy ions (sulfur) a ratio of the fast to the slow scintillation component of (1.6 {+-} 0.6) is found, while lighter particles (protons) exhibit a ratio of (0.25 {+-} 0.05). The outcome of the present studies shows that this ratio can also be used in wavelength-integrating measurements which have a comparable detection efficiency for wavelengths below and above {proportional_to}170 nm. The present results demonstrate that for a number of 90 detected photons the singlet-to-triplet distributions obtained for sulfur ions and protons as exciting particles cease to overlap. In a Dark Matter experiment, if all photons produced can be detected, this corresponds to a discrimination threshold of only 2.25 keV.

  14. Development of a Liquid Scintillator-Based Active Interrogation System for LEU Fuel Assemblies

    International Nuclear Information System (INIS)

    Lavietes, Anthony D.; Plenteda, Romano; Mascahrenas, Nicholas; Cronholm, L. Marie; Aspinall, Michael; Joyce, Malcolm; Tomanin, Alice; Peerani, Paolo

    2013-06-01

    The IAEA, in collaboration with the Joint Research Center (Ispra, IT) and Hybrid Instruments (Lancaster, UK), has developed a full scale, liquid scintillator-based active interrogation system to determine uranium (U) mass in fresh fuel assemblies. The system implements an array of moderate volume (∼1000 ml) liquid scintillator detectors, a multichannel pulse shape discrimination (PSD) system, and a high-speed data acquisition and signal processing system to assess the U content of fresh fuel assemblies. Extensive MCNPX-PoliMi modelling has been carried out to refine the system design and optimize the detector performance. These measurements, traditionally performed with 3 He-based assay systems (e.g., Uranium Neutron Coincidence Collar [UNCL], Active Well Coincidence Collar [AWCC]), can now be performed with higher precision in a fraction of the acquisition time. The system uses a high-flash point, non-hazardous scintillating fluid (EJ309) enabling their use in commercial nuclear facilities and achieves significantly enhanced performance and capabilities through the combination of extremely short gate times, adjustable energy detection threshold, real-time PSD electronics, and high-speed, FPGA-based data acquisition. Given the possible applications, this technology is also an excellent candidate for the replacement of select 3 He-based systems. Comparisons to existing 3 He-based active interrogation systems are presented where possible to provide a baseline performance reference. This paper will describe the laboratory experiments and associated modelling activities undertaken to develop and initially test the prototype detection system. (authors)

  15. Scintillating fiber detector performance, detector geometries, trigger, and electronics issues for scintillating fiber tracking

    International Nuclear Information System (INIS)

    Baumbaugh, A.E.

    1994-06-01

    Scintillating Fiber tracking technology has made great advances and has demonstrated great potential for high speed charged particle tracking and triggering. The small detector sizes and fast scintillation fluors available make them very promising for use at high luminosity experiments at today's and tomorrow's colliding and fixed target experiments where high rate capability is essential. This talk will discuss the current state of Scintillating fiber performance and current Visual Light Photon Counter (VLPC) characteristics. The primary topic will be some of the system design and integration issues which should be considered by anyone attempting to design a scintillating fiber tracking system which includes a high speed tracking trigger. Design. constraints placed upon the detector system by the electronics and mechanical sub-systems will be discussed. Seemingly simple and unrelated decisions can have far reaching effects on overall system performance. SDC and DO example system designs will be discussed

  16. A new method of quench monitoring in liquid scintillation counting

    International Nuclear Information System (INIS)

    Horrocks, D.L.

    1978-01-01

    The quench level of different liquid scintillation counting samples is measured by comparing the responses (pulse heights) produced by the same energy electrons in each sample. The electrons utilized in the measurements are those of the maximum energy (Esub(max)) which are produced by the single Compton scattering process for the same energy gamma-rays in each sample. The Esub(max) response produced in any sample is related to the Esub(max) response produced in an unquenched, sealed standard. The difference in response on a logarithm response scale is defined as the ''H Number''. The H number is related to the counting efficiency of the desired radionuclide by measurement of a set of standards of known amounts of the radionuclide and different amounts of quench (standard quench curve). The concept of the H number has been shown to be theoretically valid. Based upon this proof, the features of the H number concept as embodied in the Beckman LS-8000 Series Liquid Scintillation Systems have been demonstrated. It has been shown that one H number is unique; it provides a method of instrument calibration and wide dynamic quench range measurements. Further, it has been demonstrated that the H number concept provides a universal quench parameter. Counting efficiency vs. H number plots are repeatable within the statistical limits of +-1% counting efficiency. By the use of the H number concept a very accurate method of automatic quench compensation (A.Q.C.) is possible. (T.G.)

  17. An improved method for {sup 85}Kr analysis by liquid scintillation counting and its application to atmospheric {sup 85}Kr determination

    Energy Technology Data Exchange (ETDEWEB)

    Momoshima, Noriyuki, E-mail: momoshima.noriyuki.551@m.kyushu-u.ac.j [Radioisotope Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Inoue, Fumio [Graduate School of Science, Kyushu University, 6-10-1Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Sugihara, Shinji [Radioisotope Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Shimada, Jun [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Taniguchi, Makoto [Research Institute for Humanity and Nature, 457-4 Motoyama Kamigamo, Kita-ku, Kyoto 603-8047 (Japan)

    2010-08-15

    Atmospheric {sup 85}Kr concentration at Fukuoka, Japan was determined by an improved {sup 85}Kr analytical method using liquid scintillation counting (LSC). An average value of 1.54 {+-} 0.05 Bq m{sup -3} was observed in 2008, which is about two times that measured in 1981 at Fukuoka, indicating a 29 mBq y{sup -1} rate of increase as an average for these 27 years. The analytical method developed involves collecting Kr from air using activated charcoal at liquid N{sub 2} temperature and purifying it using He at dry ice temperature, followed by Kr separation by gas chromatography. An overall Kr recovery of 76.4 {+-} 8.1% was achieved when Kr was analyzed in 500-1000 l of air. The Kr isolated by gas chromatography was collected on silica gel in a quartz glass vial cooled to liquid N{sub 2} temperature and the activity of {sup 85}Kr was measured with a low-background LS counter. The detection limit of {sup 85}Kr activity by the present analytical method is 0.0015 Bq at a 95% confidence level, including all propagation errors, which is equivalent with {sup 85}Kr in 1.3 l of the present air under the analytical conditions of 72.1% counting efficiency, 0.1597 cps background count rate, and 76.4% Kr recovery.

  18. Tests of the new STIC scintillator ring prototype, the photomultipliers and optic fibers cables of the 40 deg C counters

    International Nuclear Information System (INIS)

    Silva, Tatiana da

    1997-01-01

    This paper reports the tests performed on the semicircular prototype of the new scintillator ring with readings obtained by WLS optic fibers. The prototype intends to verify the light collecting and investigate a method for fiber gluing in a circular surface, without the appearing of air bubbles which may restrain the light transmission. Also the optic fiber cables and the photomultipliers used in the 40 deg C counters have been tested in order to verify the electromagnetic energy which may leak from failures in the barrel, aiming the hermeticity enhancement, and also the existence of any damaged cable

  19. Liquid scintillation counting analysis of cadmium-109

    International Nuclear Information System (INIS)

    Robinson, M.K.; Barfuss, D.W.

    1991-01-01

    Recently the authors have used radiolabled cadmium-109 to measure the transport of inorganic cadmium in renal proximal tubules. An anomaly discovered in the liquid scintillation counting analysis of Cd-109 which is not attributable to normal decay; it consists of a significant decrease in the measured count rate of small amounts of sample. The objective is to determine whether the buffer solution used in the membrane transport studies is causing precipitation of the cadmium or whether cadmium is being adsorbed by the glass. It was important to determine whether the procedure could be modified to correct this problem. The problem does not appear to be related to the use of the buffer or to adsorption of Cd onto glass. Correction based on using triated L-glucose in all of these experiments and calculating a correction factor for the concentration of cadmium

  20. Current status of liquid scintillation counting

    International Nuclear Information System (INIS)

    Klingler, G.W.

    1981-01-01

    Scintillation counting of alpha particles has been used since the turn of the century. The advent of pulse shape discrimination has made this method of detection accurate and reliable. The history, concepts and development of scintillation counting and pulse shape discrimination are discussed. A brief look at the ongoing work in the consolidation of components now used for pulse shape discrimination is included

  1. Liquid scintillation counting standardization of ''125 I in organic and inorganic samples by the CIEMAT/NIST method

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Grau Malonda, A.; Los Arcos Merino, J.M.; Grau Carles, A.

    1994-01-01

    The liquid scintillation counting standardization of organic and inorganic samples of ''125 I by the CIEMAT/NIST method using five different scintillators is described. The discrepancies between experimental and computed efficiencies are lower than 1.4% and 1.7%, for inorganic and organic samples, respectively, in the interval 421-226 of quenching parameter. Both organic and inorganic solutions have been standardized in terms of activity concentration to an overall uncertainty of 0.76%

  2. Optical fibers and avalanche photodiodes for scintillator counters

    International Nuclear Information System (INIS)

    Borenstein, S.R.; Palmer, R.B.; Strand, R.C.

    1980-01-01

    Fine hodoscopes can be made of new scintillating optical fibers and one half inch end-on PMT's. An avalanche photodiode with small size and immunity to magnetic fields remains as a tempting new device to be proven as a photodetector for the fibers

  3. A new digital method for high precision neutron-gamma discrimination with liquid scintillation detectors

    International Nuclear Information System (INIS)

    Nakhostin, M

    2013-01-01

    A new pulse-shape discrimination algorithm for neutron and gamma (n/γ) discrimination with liquid scintillation detectors has been developed, leading to a considerable improvement of n/γ separation quality. The method is based on triangular pulse shaping which offers a high sensitivity to the shape of input pulses, as well as, excellent noise filtering characteristics. A clear separation of neutrons and γ-rays down to a scintillation light yield of about 65 keVee (electron equivalent energy) with a dynamic range of 45:1 was achieved. The method can potentially operate at high counting rates and is well suited for real-time measurements.

  4. Optical scattering lengths in large liquid-scintillator neutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, M.; Feilitzsch, F. von; Goeger-Neff, M.; Hofmann, M.; Lewke, T.; Meindl, Q.; Moellenberg, R.; Oberauer, L.; Potzel, W.; Tippmann, M.; Todor, S.; Winter, J. [Physik-Department E15, Technische Universitaet Muenchen, James-Franck-Str., D-85748 Garching (Germany); Lachenmaier, T.; Traunsteiner, C. [Excellence Cluster Universe, Technische Universitaet Muenchen, Boltzmannstr. 2, D-85748 Garching (Germany); Undagoitia, T. Marrodan [Physik-Department E15, Technische Universitaet Muenchen, James-Franck-Str., D-85748 Garching (Germany); Physik-Institut, Universitaet Zuerich, Winterthurstr. 189, CH-8057 Zuerich (Switzerland)

    2010-05-15

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  5. Optical scattering lengths in large liquid-scintillator neutrino detectors.

    Science.gov (United States)

    Wurm, M; von Feilitzsch, F; Göger-Neff, M; Hofmann, M; Lachenmaier, T; Lewke, T; Marrodán Undagoitia, T; Meindl, Q; Möllenberg, R; Oberauer, L; Potzel, W; Tippmann, M; Todor, S; Traunsteiner, C; Winter, J

    2010-05-01

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  6. The ionization quench factor in liquid-scintillation counting standardizations

    CERN Document Server

    Grau-Malonda, A

    1999-01-01

    We present a new detailed analysis of the ionization quench function Q(E) used in calculating the counting efficiency in liquid-scintillation counting (LSC), which shows that Q(0)=1, and permits one to derive Q(E) as a function of the electron energy and the parameter kB. The coefficients are tabulated by applying a new empirical formula of Q(E) for kB values in the range between 0.001 and 0.20 gMeV sup - sup 1 cm sup - sup 2. We demonstrate the convenience of applying sup 3 H and sup 5 sup 4 Mn for beta-ray and electron capture standardizations, respectively.

  7. Determination of plutonium-241 by liquid scintillation counting method and its application to environmental samples

    International Nuclear Information System (INIS)

    Watanabe, Miki; Amano, Hikaru

    1997-03-01

    Radionuclides are usually measured by gross counting mode in liquid scintillator counting (LSC) which measures both α and β pulses. This method can easily measure radioactivities, but its background counting is high. Recently reported α-β pulse shape discrimination method (α-β PSD method) in LSC which distinguishes α pulses from β pulses, shows low background counting, so it makes the detection limit lower. The aim of this research is to develop the best method for the determination of 241 Pu which is β-emitter, and Pu isotopes of α-emitters which have long half-lives and stay long in animal body. In this research, two LSC machines was carried out in different scintillators, vial volumes, measurement modes and so on. The following things were found. 1. The liquid scintillator based on naphthalene is proved to be the best separator of α-ray from β-ray, because it acts quickly in energy translation procedure between solvent and aromatic compounds. 2. α-β PSD method makes the background counting rate ten times lower than usual method. It makes the measurement performance better. 3. It is possible to determine 241 Pu in environmental samples around Chernobyl by the combination of LSC and radiochemical separation methods. (author)

  8. The 'miniskirt' counter array at CDF II

    International Nuclear Information System (INIS)

    Artikov, A.; Budagov, Yu.; Bellettini, G.

    2002-01-01

    Muon detection is fundamental to many of the interesting analyses at CDF II. For more efficient muon registration in Run II it was decided to increase geometrical coverage. The so-called 'miniskirt' counters are part of this upgrade. The original design parameters of the 'miniskirt' and mixed 'miniskirt' scintillation counters for the CDF Muon System are presented. The modifications, testing and installation of these counters within the CDF Upgrade Project are described in detail. The timing characteristics of mixed 'miniskirt' counters are also investigated using cosmic muons. The measurements show that the time resolution does not exceed 2.2 ns

  9. Radioactivity measurement of barium carbonate [14C] by liquid scintillation counting

    International Nuclear Information System (INIS)

    Kobayashi, Katsutoshi; Hoizumi, Kiyoshi

    1985-03-01

    Two methods of sample preparation for the measurement of specific activity of BaCO 3 [ 14 C] by external standard method in liquid scintillation counting were studied. BaCO 3 [ 14 C] was decomposed by perchloric acid solution and generated CO 2 [ 14 C] was absorbed by ethylene glycol monomethyl ether solution of monoethanolamine as the method 1 or aqueous sodium hydroxide as the method 2. In order to prepare the sample solution of adequate radioactivity concentration, these carbonate solutions by the methods 1 and 2 were diluted with the suitable organic solvent and distilled water respectively. One tenth millilitre of these sample solutions was added into 10 ml of PPO-toluene scintillator containing 0.1 ml of monoethanolamine in a counting vial and homogeneously dissolved with ethyl alcohol. The results of the radioactivity measurement of BaCO 3 [ 14 C] based on the different method agreed within 5 % and the counting rate was found to be stable for as long as 7 deays or more. Both methods of preparation are suitable for the routine measurement because of their simplicity and feasibility. In the case of method 2, the liquid radioactive waste is almost inorganic solution and recovery in the form of BaCO 3 [ 14 C] is easily performed, so that this method is very advantageous from the view point of the radioactive waste treatement. (author)

  10. Spectral interpolation and unfolding to measure multi-labelled samples by liquid scintillation

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.

    1990-01-01

    A new procedure to determine the activity of each radionuclide in a mixture is described. The information contained in the liquid scintillation pulse height spectra is used. The dilatation, interpolation and contraction steps are essential to obtain a good experimental and computed spectra fitting. The procedure can be applied to mixtures of radionuclides decayin by β - , β - - γ, β + ,β + - γ, EC, EC - γ and isomeric transitions. (Author). 10 refs

  11. Preparation and standardization of a sample of P 32 by liquid scintillation

    International Nuclear Information System (INIS)

    Rodriguez, L.; Grau, A.; Los Arcos, J.M.; Suarez, C.

    1988-01-01

    A procedure to standardize P 32 in liquid scintillation counting by labelling a tsributyl phosphate organic molecule is described. This method shows a high counting efficiency, over 99%, while keeping a good stability of samples in PCS or toluene, which vary less that 1% in two weed periods. The global uncertainty that results for calibrating the radioactive solution through this method has been less that 2.2%. (Author)

  12. Study and construction of a new type of gaseous scintillator

    International Nuclear Information System (INIS)

    Khoury, H.J.

    1978-01-01

    The characteristics and constructional details of a new type of gas scintillation counter is presented. It is shown that using an electric field in a cylindrical geometry and operating the counter in a proportional region, the number of photons due to the excitation of rare gas (argon) during the passage of an ionising primary particle, is considerably increased. The effect of the intensity of applied eletric field is discussed and it is shown that the use of suitable electric field improves the resolution of scintillation counter. The use of several Waveshifters for shifting the ultraviolet component of photon spectrum into the sensitive region of the photomultiplier tube is discussed and the experimental results are presented. A source of Am 241 was used to verify the influence of electric field on alpha spectra. (Author) [pt

  13. Scintillation light from cosmic-ray muons in liquid argon

    International Nuclear Information System (INIS)

    Whittington, D.; Howard, B.; Mufson, S.

    2016-01-01

    This paper reports the results of an experiment to directly measure the time-resolved scintillation signal from the passage of cosmic-ray muons through liquid argon. Scintillation light from these muons is of value to studies of weakly-interacting particles in neutrino experiments and dark matter searches. The experiment was carried out at the TallBo dewar facility at Fermilab using prototype light guide detectors and electronics developed for the Deep Underground Neutrino Experiment. Two models are presented for the time structure of the scintillation light, a phenomenological model and a composite model. Both models find τ T  = 1.52 μs for the decay time constant of the Ar 2 * triplet state. These models also show that the identification of the ''early'' light fraction in the phenomenological model, F E  ≈ 25% of the signal, with the total light from singlet decays is an underestimate. The total fraction of singlet light is F S  ≈ 36%, where the increase over F E is from singlet light emitted by the wavelength shifter through processes with long decay constants. The models were further used to compute the experimental particle identification parameter F prompt , the fraction of light coming in a short time window after the trigger compared with the light in the total recorded waveform. The models reproduce quite well the typical experimental value ∼0.3 found by dark matter and double β-decay experiments, which suggests this parameter provides a robust metric for discriminating electrons and muons from more heavily ionizing particles.

  14. Liquid scintillation counting standardization of 125I in organic and inorganic samples by the CIEMAT/NIST method

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Grau Malonda, A.; Los Arcos Merino, J. M.; Grau Carles, A.

    1994-01-01

    The liquid scintillation counting standardization of organic and inorganic samples of ''I25I by the CIEMAT/NIST method using five different scintillators is described. The discrepancies between experimental and computed efficiencies are lower than 1.4% and 1.7%, for inorganic and organic samples, respectively, in the interval 421-226 of quenching parameter. Both organic and inorganic solutions have been standardized in terms of activity concentration to an overall uncertainty of 0.76%. (Author) 14 refs

  15. Ionic liquids as solvents for liquid scintillation technology. Čerenkov counting with 1-Butyl-3-Methylimidazolium Chloride

    International Nuclear Information System (INIS)

    Mirenda, Martín; Rodrigues, Darío; Arenillas, Pablo; Gutkowski, Karin

    2014-01-01

    We report the detection of the Čerenkov luminescence after the incorporation of a few droplets of a physiological solution of 2-deoxi-2( 18 F)fluorine-D-glucose into the ionic liquid 1-Butyl-3-Methylimidazolium Chloride (BmimCl). The phenomenon is attributed to the β + particles having energy above the threshold energy value for the Čerenkov radiation in this medium. The presence of another type of radiation that could eventually cause coincidences in the photodetectors was safely discarded. We show that this property serves to determine the activity of a 18 F solution by means of the novel TDCR–Čerenkov technique. The results were compared with those obtained from the classic TDCR scintillation method using a commercial scintillation cocktail. The activity values obtained from both methods were found to be virtually identical within the experimental uncertainties. The fact that high energy β particles in BmimCl generates Čerenkov photons makes this ionic liquid a promising compound for future research in detection and quantification of ionizing radiation, and it provides a potential alternative for applications in nuclear technology. - Highlights: • Čerenkov luminescence was detected when 18 F was dissolved in 1-Butyl-3-Methylimidazolium Chloride (BmimCl) ionic liquid. • The presence of another type of radiation that could eventually cause coincidences in the photodetectors was safely discarded. • Čerenkov luminescence serves to determine the activity of a 18 F solution by means of TDCR–Čerenkov technique. • Some advantages of the use of BmimCl as solvent for Čerenkov counting were listed

  16. Direct Measurement of Tritium in Biological Materials with the Liquid Scintillation Counter; Determination quantitative directe du tritium dans les substances biologiques, au moyen de compteurs a scintillations a liquides; Neposredstvennoe izmerenie kolichestva tritiya v biologicheskikh materialakh pri pomoshchi zhidkogo stsintillyatsionnogo schetchika; Determinacion cuantitativa directa del tritio en sustancias biologicas mediante contadores de centelleador liquido

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, K [Institutt for Atomenergi, Kjeller, Lillestroem (Norway)

    1962-01-15

    Procedures for measurement of tritium in animal tissues and isolated tissue fractions have been reported in the literature. In all the work reported, however, a liquid scintillation coincidence spectrometer has been used for the counting of the samples. In this work a single phototube liquid scintillation counter was used for the measurements. Investigation centred primarily on the direct dissolution of animal tissue in Hyamine 10-X and the suspension counting of lyophilized tissue in scintillating gels. Different tissues, such as liver, intestine, blood and skin, can be dissolved directly in Hyamine and measured with an efficiency of 10-15%. The techniques of quenching correction and certain phosphorescence phenomena as they affect the counting in a single phototube counting system are discussed. The sensitivity of the method, although somewhat less than that of the coincidence-counting arrangement, seems to be sufficient for many applications. The work reported was carried out on tissue samples from mice previously injected with tritium- labelled thymidine. When a dose of approximately 1 {mu}c tritiated thymidine per g of body weight was injected into the mice, the metabolic fate of the thymidine incorporated into deoxyribonucleic acid (DNA) of the various tissues could be followed for a period of one month. (author) [French] Diverses techniques de determination du tritium dans les tissus animaux et fractions isolees de tissus animaux ont deja ete decrites. Mais toutes comportent l'emploi d'un spectrometre de coincidences a scintillations a liquides pour le comptage des echantillons. Pour faire cette determination, l'auteur s'est servi d'un seul phototube-compteur a scintillations a liquides. Il a etudie surtout la dissolution directe de tissu animal dans de l'hyamine 10-X, et le comptage de tissus lyophilises en suspension dans des gels a scintillations. Certains tissus, tels que le foie, l'intestin, le sang et la peau, peuvent Etre dissous directement dans l

  17. Role of quenching on alpha/beta separation in liquid scintillation counting for several high capacity cocktails

    International Nuclear Information System (INIS)

    Pujol, L.; Sanchez-Cabeza, J.-A.

    1997-01-01

    The optimization of alpha/beta separation in liquid scintillation using pulse shape analysis is convenient for the simultaneous determination of alpha and beta emitters in natural water and other samples. In this work, alpha/beta separation was studied for different scintillant/vial combinations and it was observed that both the optimum pulse shape discrimination level and the total interference value (that is, the summed relative interference between alpha and beta spectra) were dependent on the sample quenching and independent of the scintillant/vial combination. These results provide a simple method for modifying the counting configuration, such as a change in the cocktail, vial or sample characteristics, without the need to perform exhaustive parameter optimizations. Also, it was observed that, for our counting conditions, the combination of Ultima Gold AB scintillation cocktail with Zinsser low diffusion vials presented the lowest total interference, namely 0.94 ± 0.28%, which is insignificant for the counting of environmental samples. (Author)

  18. Liquid Scintillation counting Standardization of 22 NaCl by the CIEMAT/NIST method

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Grau Carles, A.; Grau Malonda, A.

    1995-09-01

    We describe a procedure for preparing a stable solution of ''22 NaCl for liquid scintillation counting and its counting stability and spectral evolution in Insta-Gel''R is studied. The solution has been standardised in terms of activity concentration by the CIEMAT/NIST method with discrepancies between experimental and computed efficiencies lower than 0.4/% and an overall uncertainty of 0.35%

  19. Some rules to improve the energy resolution in alpha liquid scintillation with beta rejection

    CERN Document Server

    Aupiais, J; Dacheux, N

    2003-01-01

    Two common scintillating mixtures dedicated to alpha measurements by means of alpha liquid scintillation with pulse shape discrimination were tested: the di-isopropylnaphthalene - based and the toluene-based solvents containing the commercial cocktails Ultima Gold AB trademark and Alphaex trademark. We show the possibility to enhance the resolution up to 200% by using no-water miscible cocktails and by reducing the optical path. Under these conditions, the resolution of about 200 keV can be obtained either by the Tri Carb sup T sup M or by the Perals sup T sup M spectrometers. The time responses, e.g., the time required for a complete energy transfer between the initial interaction alpha particle-solvent and the final fluorescence of the organic scintillator, have been compared. Both cocktails present similar behavior. According to the Foerster theory, about 6-10 ns are required to complete the energy transfer. For both apparatus, the detection limits were determined for alpha emitters. The sensitivity of the...

  20. Preparation of manganese salts of carboxylic acids labelled with ''54Mn and comparison with ''54 MnCl2 in liquid scintillation counting

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Arcos Merino, J. M. los; Grau Malonda, A.

    1992-01-01

    Procedures for liquid scintillation sample preparation of manganese dimethylbutirate, decanoate and palmitate, labelled with 54 Mn are described. their quenching effect, spectral evolution and counting stability along several weeks are analysed in liquid scintillation measurements with Toluene. HISafe II. PCS, instagel. Dioxane-naphtalene and Toluene-alcohol. For comparison, Inorganic 54 MnCl-2 samples are also studied, resulting in acceptable counting stability but showing greater quenching and signs of little spectral degradation against the organic samples. (Author)

  1. Set of counts by scintillations for atmospheric samplings

    International Nuclear Information System (INIS)

    Appriou, D.; Doury, A.

    1962-01-01

    The author reports the development of a scintillation-based counting assembly with the following characteristics: a photo-multiplier with a wide photo-cathode, a thin plastic scintillator for the counting of beta + alpha (and possibility of mounting an alpha scintillator), a relatively small own motion with respect to activities to be counted, a weakly varying efficiency. The authors discuss the counting objective, present equipment tests (counter, proportional amplifier and pre-amplifier, input drawer). They describe the apparatus operation, discuss the selection of scintillators, report the study of the own movement (electron-based background noise, total background noise, background noise reduction), discuss counts (influence of the external source, sensitivity to alpha radiations, counting homogeneity, minimum detectable activity) and efficiencies

  2. Development of a new scintillation-trigger detector for the MTV experiment using aluminum-metallized film tape

    Science.gov (United States)

    Sakamoto, Yuko; Ozaki, Sachi; Tanaka, Saki; Tanuma, Ryosuke; Yoshida, Tatsuru; Murata, Jiro

    2014-09-01

    A new type of trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, using aluminum-metallized film tape for wrapping. The MTV experiment aims to perform the finest precision test of time reversal symmetry in nuclear beta decay. In that purpose, we search non-zero T-Violating transverse polarization of electrons emitted from polarized Li-8 nuclei. It uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The trigger-scintillation counter consists of 12-segmented 1 mm thick 300 mm long thin plastic scintillation counters. This counter is placed inside the CDC to generate a trigger signal. The required assembling precision of +-0.5 mm was a tricky point when we tried to use conventional total reflection mode. Indeed, produce an air-layer surrounding the scintillating bar to keep good light transmission was the main issue. For this reason, we tried to use a new wrapping material made of metallized-aluminum tape, which has a good mirror-like reflecting surface on both sides of the tape. Through this report, we will compare detection efficiency and light attenuation between conventional and new wrapping materials.

  3. Preparation and performance study of a novel liquid scintillator with mixed solvent as the matrix

    International Nuclear Information System (INIS)

    Zheng, Zhanlong; Zhu, Jiayi; Luo, Xuan; Xu, Yewei; Zhang, Qianfeng; Zhang, Xing; Bi, Yutie; Zhang, Lin

    2017-01-01

    A novel liquid scintillator with the mixed solvent as the matrix was prepared for obtaining a good comprehensive performance. In this ternary liquid scintillator, the combination of 20% pseudocumene (PC) and 80% linear-alkyl benzene (LAB) by volume was chosen as the mixed solvent, and 2,5-diphenyloxazole (PPO) and 1,4-bis(2-Methylstyryl) benzene (bis-MSB) were as the primary fluor and wavelength shifter, respectively. The optimum prescription was obtained with regard to the light yield. Some characterizations based on the optimal formulation were conducted. The fluorescence emission spectra and wavelength-dependent optical attenuation length of the sample were measured by the fluorescence spectrophotometer and an UV–Vis spectrometer, respectively. The light yield was characterized by adopting the home-made optical platform device. The decay time was tested by adopting the time-correlated single photon counting (TCSPC) technique featured in high dynamic range of several orders of magnitude in light intensity. The experimental test results showed that the sample had a fairly good comprehensive performance.

  4. Preparation and performance study of a novel liquid scintillator with mixed solvent as the matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhanlong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, Mianyang 621010 (China); Zhu, Jiayi [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, Mianyang 621010 (China); Luo, Xuan, E-mail: luox76@gmail.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Xu, Yewei [School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Zhang, Qianfeng [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, Mianyang 621010 (China); Zhang, Xing [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Bi, Yutie, E-mail: biyutie@sina.com [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, Mianyang 621010 (China); Zhang, Lin [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, Mianyang 621010 (China)

    2017-04-01

    A novel liquid scintillator with the mixed solvent as the matrix was prepared for obtaining a good comprehensive performance. In this ternary liquid scintillator, the combination of 20% pseudocumene (PC) and 80% linear-alkyl benzene (LAB) by volume was chosen as the mixed solvent, and 2,5-diphenyloxazole (PPO) and 1,4-bis(2-Methylstyryl) benzene (bis-MSB) were as the primary fluor and wavelength shifter, respectively. The optimum prescription was obtained with regard to the light yield. Some characterizations based on the optimal formulation were conducted. The fluorescence emission spectra and wavelength-dependent optical attenuation length of the sample were measured by the fluorescence spectrophotometer and an UV–Vis spectrometer, respectively. The light yield was characterized by adopting the home-made optical platform device. The decay time was tested by adopting the time-correlated single photon counting (TCSPC) technique featured in high dynamic range of several orders of magnitude in light intensity. The experimental test results showed that the sample had a fairly good comprehensive performance.

  5. Development of a novel scintillation-trigger detector for the MTV experiment using aluminum-metallized film tapes

    Science.gov (United States)

    Tanaka, S.; Ozaki, S.; Sakamoto, Y.; Tanuma, R.; Yoshida, T.; Murata, J.

    2014-07-01

    A new type of a trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, which uses aluminum-metallized film tape for wrapping to achieve the required assembling precision of ±0.5 mm. The MTV experiment uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The barrel-type trigger counter is placed inside the CDC to generate a trigger signal using 1 mm thick, 300 mm long thin plastic scintillation counters. Detection efficiency and light attenuation compared with conventional wrapping materials are studied.

  6. Development of a novel scintillation-trigger detector for the MTV experiment using aluminum-metallized film tapes

    International Nuclear Information System (INIS)

    Tanaka, S.; Ozaki, S.; Sakamoto, Y.; Tanuma, R.; Yoshida, T.; Murata, J.

    2014-01-01

    A new type of a trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, which uses aluminum-metallized film tape for wrapping to achieve the required assembling precision of ±0.5 mm. The MTV experiment uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The barrel-type trigger counter is placed inside the CDC to generate a trigger signal using 1 mm thick, 300 mm long thin plastic scintillation counters. Detection efficiency and light attenuation compared with conventional wrapping materials are studied

  7. Liquid Scintillation Counting Standardization of 22NaCl by te CIEMAT/NIST method

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Grau Carles, A.; Grau Malonda, A.

    1995-01-01

    We describe a procedure for preparing a stable solution of ''22NaCl for liquid scintillation counting and its counting stability and spectral evolution in Insta-Gel''R is studied. The solution has been standardised in terms of activity concentration by the CIEMAT/NIST method with discrepancies between experimental and computed efficiencies lower than 0.4 % and an overall uncertainty of 0.35 %. (Author) 4 refs

  8. Quality assurance manual plutonium liquid scintillation methods and procedures

    International Nuclear Information System (INIS)

    Romero, L.

    1997-01-01

    Nose swipe analysis is a very important tool for Radiation Protection personnel. Nose swipe analysis is a very fast and accurate method for (1) determining if a worker has been exposed to airborne plutonium contamination and (2) Identifying the area where there has been a possible plutonium release. Liquid scintillation analysis techniques have been effectively applied to accurately determine the plutonium alpha activity on nose swipe media. Whatman-40 paper and Q-Tips are the only two media which have been evaluated and can be used for nose swipe analysis. Presently, only Q-Tips are used by Group HSE-1 Radiation Protection Personnel. However, both swipe media will be discussed in this report

  9. Recoil-proton fast-neutron counter telescope

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R. (Padua Univ. (Italy). Ist. di Fisica); Galeazzi, G.; Bressanini, G.

    1981-12-01

    A recoil-proton neutron counter telescope is described composed of a solid-state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time of flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV.

  10. Recoil-proton fast-neutron-counter telescope

    Energy Technology Data Exchange (ETDEWEB)

    Galeazzi, G.; Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.; Bressanini, G.

    1981-01-01

    A proton-recoil neutron counter telescope is described composed of a solid state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time-of-flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV, presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV.

  11. Study of sample-detector assemblies for application to in-situ measurement of radioactivity in liquid effluents

    International Nuclear Information System (INIS)

    Pendharkar, K.A.; Narayanan Kutty, K.; Krishnamony, S.

    1991-01-01

    This paper describes the experimental investigations carried out on four different types of sample-detector assemblies with a view to determining their detection limits and relative merits for application to in-situ measurement of radioactivity in liquid effluents. The four systems studied were: (1) gamma detection using 11 cm x 8 cm NaI (Tl) scintillation detector inserted in the cavity of a specially designed stainless steel chamber of capacity 15 liters, (2) gamma detection using a metal-walled G.M. counter in a similar manner, (3) beta detection using twin thin-walled G.M. counters immersed in liquid, and (4) end window G.M. counter positioned above the liquid surface in a shallow tray. The design features of an in-line monitor employing a 11 cm x 8 cm NaI (Tl) detector used for the routine monitoring of beta gamma activity concentrations in the low level effluents of the Tarapur Fuel Processing Plant are described. (author). 1 tab

  12. Absorption of scintillation light in a 100l liquid xenon γ-ray detector and expected detector performance

    International Nuclear Information System (INIS)

    Baldini, A.; Bemporad, C.; Cei, F.; Doke, T.; Grassi, M.; Grebenuk, A.A.; Grigoriev, D.N.; Haruyama, T.; Kasami, K.; Kikuchi, J.; Maki, A.; Mashimo, T.; Mihara, S.; Mitsuhashi, T.; Mori, T.; Nicolo, D.; Nishiguchi, H.; Ootani, W.; Ozone, K.; Papa, A.; Pazzi, R.; Ritt, S.; Sawada, R.; Sergiampietri, F.; Signorelli, G.; Suzuki, S.; Terasawa, K.; Yamashita, M.; Yamashita, S.; Yoshimura, T.; Yuri, Yu.

    2005-01-01

    An 800l liquid xenon scintillation γ-ray detector is being developed for the MEG experiment which will search for μ + ->e + γdecay at the Paul Scherrer Institut. Absorption of scintillation light of xenon by impurities might possibly limit the performance of such a detector. We used a 100l prototype with an active volume of 372x372x496mm 3 to study the scintillation light absorption. We have developed a method to evaluate the light absorption, separately from elastic scattering of light, by measuring cosmic rays and α sources. By using a suitable purification technique, an absorption length longer than 100cm has been achieved. The effects of the light absorption on the energy resolution are estimated by Monte Carlo simulation

  13. Performance of a prototype active veto system using liquid scintillator for a dark matter search experiment

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.S. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 34047 (Korea, Republic of); Adhikari, P.; Adhikari, G.; Oh, S.Y. [Department of Physics, Sejong University, Seoul 05006 (Korea, Republic of); Kim, N.Y. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 34047 (Korea, Republic of); Kim, Y.D. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 34047 (Korea, Republic of); Department of Physics, Sejong University, Seoul 05006 (Korea, Republic of); Ha, C.; Park, K.S. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 34047 (Korea, Republic of); Lee, H.S., E-mail: hyunsulee@ibs.re.kr [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 34047 (Korea, Republic of); Jeon, E.J. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 34047 (Korea, Republic of)

    2017-04-11

    We report the performance of an active veto system using a liquid scintillator with NaI(Tl) crystals for use in a dark matter search experiment. When a NaI(Tl) crystal is immersed in the prototype detector, the detector tags 48% of the internal {sup 40}K background in the 0–10 keV energy region. We also determined the tagging efficiency for events at 6–20 keV as 26.5±1.7% of the total events, which corresponds to 0.76±0.04 events/keV/kg/day. According to a simulation, approximately 60% of the background events from U, Th, and K radioisotopes in photomultiplier tubes are tagged at energies of 0–10 keV. Full shielding with a 40-cm-thick liquid scintillator can increase the tagging efficiency for both the internal {sup 40}K and external background to approximately 80%.

  14. Scintillation light transport and detection

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Lillie, R.A.

    1986-08-01

    The MORSE neutron gamma-ray transport code has been modified to allow for the transport of scintillation light. This modified code is used to analyze the light collection characteristics of a large liquid scintillator module (18 x 18 x 350 cm 3 )

  15. Measurement of the time resolution of small SiPM-based scintillation counters

    Science.gov (United States)

    Kravchenko, E. A.; Porosev, V. V.; Savinov, G. A.

    2017-12-01

    In this research, we evaluated the timing resolution of SiPM-based scintillation detector on a 1-GeV electron beam "extracted" from VEPP-4M. We tested small scintillation crystals of pure CsI, YAP, LYSO, and LFS-3 with HAMAMATSU S10362-33-025C and S13360-3050CS. The CsI scintillator together with HAMAMATSU S13360-3050CS demonstrated the best results. Nevertheless, the achieved time resolution of ~80 ps (RMS) relates mainly to the photodetector itself. It makes the silicon photomultiplier an attractive candidate to replace other devices in applications where sub-nanosecond accuracy is required.

  16. Method and apparstus for determining random coincidence count rate in a scintillation counter utilizing the coincidence technique

    International Nuclear Information System (INIS)

    Horrocks, D.L.

    1980-01-01

    A method and apparatus for the reliable determination of a random coincidence count attributable to chance coincidences of single-photon events which are each detected in only a single detector of a scintillation counter utilizing two detectors in a coincidence counting technique are described. A firstdelay device is employed to delay output pulses from one detector, and then the delayed signal is compared with the undelayed signal from the other detector in a coincidence circuit, to obtain an approximate random coincidence count. The output of the coincidence circuit is applied to an anti-coincidence circuit, where it is corrected by elimination of pulses coincident with, and attributable to, conventionally detected real coincidences, and by elimination of pulses coincident with, and attributable to, real coincidences that have been delayed by a second delay device having the same time parameter as the first. 8 claims

  17. Accurate disintegration-rate measurement of 55Fe by liquid scintillation counting

    International Nuclear Information System (INIS)

    Steyn, J.; Oberholzer, P.; Botha, S.M.

    1979-01-01

    A method involving liquid scintillation counting is described for the accurate measurement of disintegration rate of 55 Fe. The method is based on the use of calculated efficiency functions together with either of the nuclides 54 Mn and 51 Cr as internal standards for measurement of counting efficiencies by coincidence counting. The method was used by the NAC during a recent international intercomparison of radioactivity measurements, and a summary of the results obtained by nine participating laboratories is presented. A spread in results of several percent is evident [af

  18. Improved terbium-doped, lithium-loaded glass scintillator fibers

    International Nuclear Information System (INIS)

    Spector, G.B.; McCollum, T.; Spowart, A.R.

    1993-01-01

    An improved terbium-doped, 6 Li-loaded glass scintillator has been drawn into fibers. Tests indicate that the neutron detection response of the fibers is superior to the response with fibers drawn from the original terbium-doped glass. The new fibers offer less attenuation (1/e length of ∝40 cm) and improved gamma ray/neutron discrimination. The improved fibers will be incorporated in a scintillator fiber optic long counter for neutron detection. (orig.)

  19. Standardization of 40 K by liquid scintillation counting. Determination of the half-life

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.

    1997-01-01

    The relative abundance of the natural radioisotope ''40 K in environmental samples frequently generates interferences in low activity measurements. In the present study we propose the determination of ''40 K by the CIEMAT/NIST method. On this context, the verification of ''40 K half-life is required. We present a half-life value obtained by liquid scintillation counting in excellent agreement with those reported in the literature. (Author)

  20. Primary 4πβ-γ coincidence system for standardization of radionuclides by means of plastic scintillators

    International Nuclear Information System (INIS)

    Baccarelli, Aida Maria

    2003-01-01

    The present work describes a 4π(α,β)-γ coincidence system for absolute measurement of radionuclide activity using a plastic scintillator in 4π geometry for charged particles detection and a Nal (Tl) crystal for gamma-ray detection. Several shapes and dimensions of the plastic scintillator have been tried in order to obtain the best system configuration. Radionuclides which decay by alpha emission, β - , β + and electron capture have been standardized. The results showed excellent agreement with other conventional primary system which makes use of a 4π proportional counter for X-ray and charged particle detection. The system developed in the present work have some advantages when compared with the conventional systems, namely; it does not need metal coating on the films used as radioactive source holders. When compared to liquid scintillators, is showed the advantage of not needing to be kept in dark for more than 24 h to allow phosphorescence decay of ambient light. Therefore it can be set to count immediately after the sources are placed inside of it. (author)

  1. Planktonic primary production evaluation by means of the 14C method with liquid scintillation counting

    International Nuclear Information System (INIS)

    Frangopol, T.P.; Bologa, S.A.

    1979-05-01

    Preliminary results on the planktonic primary production obtained for the first time with the 14 C method off the Romanian Black Sea coast (1977, 1978) and in the Sinoe, Mamaia and Bicaz lakes (1978) are presented, along with a review of this method with special reference to liquid scintillation counting. 140 Refs. (author)

  2. Determination of radiostrontium released from Fukushima Daiichi Nuclear Power Plant through extraction chromatography and liquid scintillation counting

    International Nuclear Information System (INIS)

    Maekawa, Akihiro; Momoshima, Noriyuki; Sugihara, Shinji; Tamari, Toshiya

    2013-01-01

    Two soil samples were collected on April 18-20, 2011 at Namie town and Tomioka town, which are located 26 km northwest and 11 km south of the Fukushima Daiichi Nuclear Power Plant, respectively. A 0-1 cm soil layer was used for analysis to determine the presence of radiostrontium. The soil was ashed, acid-digested, and strontium was separated from interference with use of an extraction chromatography resin (Sr resin, Eichrom Technologies). The isolation and purification of strontium from matrix components can be completed in 12 h. After 2 weeks for ingrowth of "9"0Y, measurements of a beta-ray of "9"0Y and "8"9"+"9"0Sr were conducted with a low-background liquid-scintillation counter for 1200 min. The concentration of "9"0Sr was determined to be 57.4 ± 1.0 and 10.1 ± 0.4 Bq kg"-"1 for Namie town and Tomioka town, respectively. "8"9Sr was not detected in either sample. The extraction chromatography method was successfully applied to determine the level of radiostrontium in the contaminated soil. When 2 g of soil is used, the detection limit of "9"0Sr is evaluated to be 2.7 Bq kg"-"1 under a chemical yield of strontium of 70%. (author)

  3. {sup 222}Rn determination in water and brine samples using liquid scintillation spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Thiago C.; Oliveira, Arno H., E-mail: oliveiratco2010@gmail.com [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte (Brazil). Departamento de Engenharia Nuclear; Monteiro, Roberto P.G.; Moreira, Rubens M., E-mail: rpgm@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Liquid scintillation spectrometry (LSC) is the most common technique used for {sup 222}Rn determination in environmental aqueous sample. In this study, the performance of water-miscible (Ultima Gold AB) and immiscible (Optiscint) liquid scintillation cocktails has been compared for different matrices. {sup 241}Am, {sup 90}Sr and {sup 226}Ra standard solutions were used for LSC calibration. {sup 214}Po region was defined as better for both cocktails. Counting efficiency of 76 % and optimum PSA level of 95 for Ultima Gold AB cocktail, and counting efficiency of 82 % and optimum PSA level of 85 for Optiscint cocktail were obtained. Both cocktails showed similar results when applied for {sup 222}Rn activity determination in water and brine samples. However the Optiscint is recommended due to its quenching resistance. Limit of detection of 0.08 and 0.06 Bq l{sup -1} were obtained for water samples using a sample:cocktail ratio of 10:12 mL for Ultima Gold AB and Optiscint cocktails, respectively. Limit of detection of 0.08 and 0.04 Bq l{sup -1} were obtained for brine samples using a sample:cocktail ratio of 8:12 mL for Ultima Gold AB and Optiscint cocktails, respectively. (author)

  4. Standardization of Ga-68 by coincidence measurements, liquid scintillation counting and 4πγ counting

    International Nuclear Information System (INIS)

    Roteta, Miguel; Peyres, Virginia; Rodríguez Barquero, Leonor; García-Toraño, Eduardo; Arenillas, Pablo; Balpardo, Christian; Rodrígues, Darío; Llovera, Roberto

    2012-01-01

    The radionuclide 68 Ga is one of the few positron emitters that can be prepared in-house without the use of a cyclotron. It disintegrates to the ground state of 68 Zn partially by positron emission (89.1%) with a maximum energy of 1899.1 keV, and partially by electron capture (10.9%). This nuclide has been standardized in the frame of a cooperation project between the Radionuclide Metrology laboratories from CIEMAT (Spain) and CNEA (Argentina). Measurements involved several techniques: 4πβ−γ coincidences, integral gamma counting and Liquid Scintillation Counting using the triple to double coincidence ratio and the CIEMAT/NIST methods. Given the short half-life of the radionuclide assayed, a direct comparison between results from both laboratories was excluded and a comparison of experimental efficiencies of similar NaI detectors was used instead. - Highlights: ► We standardized the positron emitter Ga-68 in a bilateral cooperation. ► We used several techniques, as coincidence, integral gamma and liquid scintillation. ► An efficiency comparison replaced a direct comparison of reference materials.

  5. Development of large-volume, high-resolution tracking detectors based on capillaries filled with liquid scintillator

    International Nuclear Information System (INIS)

    Buontempo, S.; Fabre, J.P.; Frenkel, A.; Gregoire, G.; Hoepfner, K.; Konijn, J.; Kozarenko, E.; Kreslo, I.; Kushnirenko, A.; Martellotti, G.; Michel, L.; Mondardini, M.R.; Penso, G.; Siegmund, W.P.; Strack, R.; Tyukov, V.; Vasilchenko, V.; Vilain, P.; Wilquet, G.; Winter, K.; Wong, H.; Zymin, K.

    1995-01-01

    Searches for the decay of short-lived particles require real time, high-resolution tracking in active targets, which in the case of neutrino physics should be of large volume. The possibility of achieving this by using glass capillaries filled with organic liquid scintillator is being investigated in the framework of the CHORUS experiment at CERN. In this paper, after outlining the application foreseen, advances in the tracking technique are discussed and results from tests are reported. An active target of dimensions 180x2x2 cm 3 has been assembled from capillaries with 20 μm diameter pores. The readout scheme currently in operation allows the reading of similar 5x10 5 channels using a single chain of image intensifiers having a resolution of σ similar 20 μm. Following the development of new liquid scintillators and purification methods an attenuation length of similar 3 m has been obtained. This translates into a hit density of 3.5 per mm for a minimum-ionizing particle that crosses the active target at a distance of 1 m from the readout end. (orig.)

  6. LArGe. A liquid argon scintillation veto for GERDA

    International Nuclear Information System (INIS)

    Heisel, Mark

    2011-01-01

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in 76 Ge, by operating naked germanium detectors submersed into 65 m 3 of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m 3 (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10 3 have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10 -2 cts/(keV.kg.y) (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural 42 Ar abundance (in parallel to Gerda), and have indication for the 2νββ-decay in natural germanium. (orig.)

  7. LArGe. A liquid argon scintillation veto for GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Heisel, Mark

    2011-04-13

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in {sup 76}Ge, by operating naked germanium detectors submersed into 65 m{sup 3} of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m{sup 3} (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10{sup 3} have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10{sup -2} cts/(keV.kg.y) (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural {sup 42}Ar abundance (in parallel to Gerda), and have indication for the 2{nu}{beta}{beta}-decay in natural germanium. (orig.)

  8. The research program of the Liquid Scintillation Detector (LSD) in the Mont Blanc Laboratory

    Science.gov (United States)

    Dadykin, V. L.; Yakushev, V. F.; Korchagin, P. V.; Korchagin, V. B.; Malgin, A. S.; Ryassny, F. G.; Ryazhskaya, O. G.; Talochkin, V. P.; Zatsepin, G. T.; Badino, G.

    1985-01-01

    A massive (90 tons) liquid scintillation detector (LSD) has been running since October 1984 in the Mont Blanc Laboratory at a depth of 5,200 hg/sq cm of standard rock. The research program of the experiment covers a variety of topics in particle physics and astrophysics. The performance of the detector, the main fields of research are presented and the preliminary results are discussed.

  9. A recoil-proton fast-neutron counter telescope

    International Nuclear Information System (INIS)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.; Galeazzi, G.; Bressanini, G.

    1981-01-01

    A recoil-proton neutron counter telescope is described composed of a solid-state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time of flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV. (author)

  10. A study of the scintillation induced by alpha particles and gamma rays in liquid xenon in an electric field

    International Nuclear Information System (INIS)

    Dawson, J.V.; Howard, A.S.; Akimov, D.; Araujo, H.; Bewick, A.; Davidge, D.C.R.; Jones, W.G.; Joshi, M.; Lebedenko, V.N.; Liubarsky, I.; Quenby, J.J.; Rochester, G.; Shaul, D.; Sumner, T.J.; Walker, R.J.

    2005-01-01

    Scintillation produced in liquid xenon by alpha particles and gamma rays has been studied as a function of applied electric field. For back scattered gamma rays with energy of about 200keV, the number of scintillation photons was found to decrease by 64±2% with increasing field strength. Consequently, the pulse shape discrimination power between alpha particles and gamma rays is found to reduce with increasing field, but remaining non-zero at higher fields

  11. Measurement of gross alpha, gross beta, radon and radium activity concentrations in aqueous samples using liquid scintillation technique

    International Nuclear Information System (INIS)

    Zaini Hamzah; Ahmad Saat; Masitah Alias; Siti Afiqah Abdul Rahman; Mohamed Kasim; Abdul Kadir Ishak

    2011-01-01

    Recently, Malaysia has taken a positive step toward providing a better water quality by introducing more water quality parameters into its Water Quality Standard. With regard to the natural radionuclides that may present in the water, 3 parameters were introduced that is gross alpha, gross beta and radium which need to be measured and cannot exceed 0.1, 1.0 and 1.0 Bq/ L respectively. This study was conducted to develop a more practical method in measuring these parameters in aqueous environmental samples. Besides having a lot of former tin mining areas, some part of Malaysia is located on the granitic rock which also contributes to a certain extent the amount of natural radionuclides such as uranium and thorium. For all we know these two radionuclides are the origin of other radionuclides being produced from their decay series. The State of Kelantan was chosen as the study area, where the water samples were collected from various part of the Kelantan River. 25 liters of samples were collected, acidify to pH 2 and filtered before the analysis. Measurement of these parameters was done using liquid scintillation counter (LSC). The LSC was set up to the optimum discriminator level and counting was done using alpha-beta mode. The results show that gross alpha and beta can be measured using scintillation cocktail and radium and radon using extraction method. The results for gross alpha, gross beta, 222 Ra and 226 Ra are 0.39-6.42, 0.66-16.18, 0.40-4.65 and 0.05-0.56 Bq/ L. MDA for gross alpha, gross beta and radium is 0.03, 0.08 and 0.00035 Bq/ L respectively. (Author)

  12. Evaluation of filters in RSPCS (Reactor Service Pool Cooling System) and HWL (Hot Water Layer) in OPAL research reactor at ANSTO (Australian Nuclear Science and Technology Organization) using Gamma Spectrometry System and Liquid Scintillation Counter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jim In; Foy, Robin; Jung, Seong Moon; Park, Hyeon Suk; Ye, Sung Joon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Australian Nuclear Science and Technology Organization(ANSTO) has a research reactor, OPAL (Open Pool Australian Lightwater reactor) which is a state-of-art 20 MW reactor for various purposes. In OPAL reactor, there are many kinds of radionuclides produced from various reactions in pool water and those should be identified and quantified for the safe use of OPAL. To do that, it is essential to check the efficiency of filters which are able to remove the radioactive substance from the reactor pool water. There are two main water circuits in OPAL which are RSPCS (Reactor Service Pool Cooling System) and HWL (Hot Water Layer) water circuits. The reactor service pool is connected to the reactor pool via a transfer canal and provides a working area and storage space for the spent and other materials. Also, HWL is the upper part of the reactor pool water and it minimize radiation dose rates at the pool surface. We collected water samples from these circuits and measured the radioactivity by using Gamma Spectrometry System (GSS) and Liquid Scintillation Counter (LSC) to evaluate the filters. We could evaluate the efficiency of filters in RSPCS and HWL in OPAL research reactor. Through the measurements of radioactivity using GSS and LSC, we could conclude that there is likely to be no alpha emitter in water samples, and for beta and gamma activity, there are very big differences between inlet and outlet results, so every filter is working efficiently to remove the radioactive substance.

  13. Single-photoelectron noise reduction in scintillation detectors

    International Nuclear Information System (INIS)

    Marvin, T.P.

    1995-10-01

    The 1994--95 search at SLAC for mulicharged particles used four 21 x 21 x 130-cm 3 Bicron 408 scintillation counters to detect a signal at the single-photoelectron level. The competing noise requiring minimization was due to a combination of PM tube (8-inch Thorne EMI 9353KA) afterpulsing and ambient radiation-induced scintillator luminescence. A very slow decay (> 30 μs) component was observed and received particular attention. Efforts to reduce the SPE noise included photomultiplier tube base modifications, detector shielding and cooling, signal amplification, and veto procedures

  14. Scintillating fiber detector development for the SSC: Annual progress report

    International Nuclear Information System (INIS)

    Ruchti, R.C.

    1989-01-01

    During the past year, considerable effort has been applied to the development of scintillating fiber detectors in several areas: new scintillation liquids and studies of their fluorescence properties; new fluorescent dyes based on non-intramolecular proton transfer; new dyes based on intramolecular proton transfer; incorporation of these new dyes in plastic (polystyrene) and liquid scintillation solutions; development of small cross section glass capillaries for the containment of liquid scintillators; studies of waveguide characteristics; studies of image intensifier phosphor screen characteristics; initial steps to form a collaboration to study and develop appropriate new properties of the Solid State Photomultiplier; construction of a new laboratory at Notre Dame to enhance our capabilities for further measurements and studies; and organization of and execution of a Workshop on Scintillating Fiber Detector Development for the SSC, held at Fermilab, November 14--16, 1988

  15. 'Miniskirt' counter array at CDF II

    International Nuclear Information System (INIS)

    Artikov, A.; Artikov, A.

    2006-01-01

    Full text: Muon detection is fundamental for the most of the interesting analyses at CDF. At the course of Run II, the collaboration expects to collect hundreds of t t-bar decays yielding a muon as well as several million B-hadron events involving J/ψ → μ + μ - decays. Muon detection is also of fundamental importance in the study of W-boson properties and in the search for Higgs production associated with W or Z bosons. Considerable effort therefore went into extending the muon detector coverage for Run II, which started in March 2001. The CDF II muon detector system consists of multiple layers of drift chambers and scintillation counters, which span the pseudorapidity (|η|) range between 0 and 1.5. Detectors spanning different ranges have different geometries, and the muon scintillation counter system includes subsystems in the regions that have come to be known as the 'central' (0 pe for WLS fiber readout is smaller than for conventional readout, we can also expect an increase in the statistical contribution to the overall uncertainty. Our first concern, before adopting this solution, was therefore to ascertain that the mean timing resolution obtained under these conditions was adequate. The modifications, testing and installation of these counters within the CDF Upgrade Project are described in detail. The timing characteristics of MSX' counters are also investigated using cosmic muons. The measurements show that the time resolution does not exceed 2.2 ns. (author)

  16. COOLC, Ne-213 Liquid Scintillation Detector Neutron Spectra Unfolding

    International Nuclear Information System (INIS)

    1971-01-01

    1 - Nature of physical problem solved: COOLC is designed to calculate a neutron energy spectrum from a pulse-height spectrum produced by a detector system using the liquid scintillator NE-213. 2 - Method of solution: The program estimates the counts which would be observed in an ideal detector system having a response which is specified by the user. The solution implicitly takes into account the non-negativity of the desired neutron spectrum. The solution is obtained by finding a nearly optimal combination of slices through the spectrometer response functions such that their sum approximates the response of a channel of the ideal analyzer, and then uses the coefficients so determined to obtain an estimate of the desired neutron spectrum. 3 - Restrictions on the complexity of the problem: There are none noted

  17. Mixed incineration of RAIW and liquid scintillator waste after storage for decay

    International Nuclear Information System (INIS)

    Naba, K.; Nakazato, K.; Kataoka, K.

    1993-01-01

    Most medical radioactive waste is combustible after radioactive decay. Moreover mixed incineration of LLW with biomedical radioactive waste will lessen radiation exposure to the public. This paper describes the total system flowsheet for the processing of liquid scintillator wastes and radioimmunoassay tube wastes containing iodine 125 (after a two-year storage for decay). The process was tested with a 60 kg/hr capacity incinerator from 1987 to 1991; this has been upgraded to a 150 kg/hr incinerator which is used for nonradioactive biomedical waste incineration as well

  18. Scintillation efficiency and X-ray imaging with the RE-Doped LuAG thin films grown by liquid phase epitaxy

    International Nuclear Information System (INIS)

    Tous, Jan; Blazek, Karel; Kucera, Miroslav; Nikl, Martin; Mares, Jiri A.

    2012-01-01

    Very thin scintillator imaging plates have recently become of great interest. In high resolution X-ray radiography, very thin scintillator layers of about 5–20 μm are used to achieve 2D-spatial resolutions below 1 μm. Thin screens can be prepared by mechanical polishing from single crystals or by epitaxial growth on single-crystal substrates using the Liquid Phase Epitaxy technique (LPE). Other types of screens (e.g. deposited powder) do no reach required spatial resolutions. This work compares LPE-grown YAG and LuAG scintillator films doped with different rare earth ions (Cerium, Terbium and Europium). Two different fluxes were used in the LPE growth procedure. These LPE films are compared to YAG:Ce and LuAG:Ce screens made from bulk single crystals. Relative light yield was detected by a highly sensitive CCD camera. Scintillator screens were excited by a micro-focus X-ray source and the generated light was gathered by the CCD camera’s optical system. Scintillator 2D-homogeneity is examined in an X-ray imaging setup also using the CCD camera.

  19. Real-time volumetric scintillation dosimetry

    International Nuclear Information System (INIS)

    Beddar, S

    2015-01-01

    The goal of this brief review is to review the current status of real-time 3D scintillation dosimetry and what has been done so far in this area. The basic concept is to use a large volume of a scintillator material (liquid or solid) to measure or image the dose distributions from external radiation therapy (RT) beams in three dimensions. In this configuration, the scintillator material fulfills the dual role of being the detector and the phantom material in which the measurements are being performed. In this case, dose perturbations caused by the introduction of a detector within a phantom will not be at issue. All the detector configurations that have been conceived to date used a Charge-Coupled Device (CCD) camera to measure the light produced within the scintillator. In order to accurately measure the scintillation light, one must correct for various optical artefacts that arise as the light propagates from the scintillating centers through the optical chain to the CCD chip. Quenching, defined in its simplest form as a nonlinear response to high-linear energy transfer (LET) charged particles, is one of the disadvantages when such systems are used to measure the absorbed dose from high-LET particles such protons. However, correction methods that restore the linear dose response through the whole proton range have been proven to be effective for both liquid and plastic scintillators. Volumetric scintillation dosimetry has the potential to provide fast, high-resolution and accurate 3D imaging of RT dose distributions. Further research is warranted to optimize the necessary image reconstruction methods and optical corrections needed to achieve its full potential

  20. A Scintillator Purification System for the Borexino Solar Neutrino Detector

    OpenAIRE

    Benziger, J.; Cadonati, L.; Calaprice, F.; Chen, M.; Corsi, A.; Dalnoki-Veress, F.; Fernholz, R.; Ford, R.; Galbiati, C.; Goretti, A.; Harding, E.; Ianni, Aldo; Ianni, Andrea; Kidner, S.; Leung, M.

    2007-01-01

    Purification of the 278 tons of liquid scintillator and 889 tons of buffer shielding for the Borexino solar neutrino detector was performed with a system that combined distillation, water extraction, gas stripping and filtration. The purification of the scintillator achieved unprecedented low backgrounds for the large scale liquid scintillation detector. This paper describes the principles of operation, design, construction and commissioning of the purification system, and reviews the require...

  1. First results of Minimum Fisher Regularisation as unfolding method for JET NE213 liquid scintillator neutron spectrometry

    International Nuclear Information System (INIS)

    Mlynar, Jan; Adams, John M.; Bertalot, Luciano; Conroy, Sean

    2005-01-01

    At JET, the NE213 liquid scintillator is being validated as a diagnostic tool for spectral measurements of neutrons emitted from the plasma. Neutron spectra have to be unfolded from the measured pulse-height spectra, which is an ill-conditioned problem. Therefore, use of two independent unfolding methods allows for less ambiguity on the interpretation of the data. In parallel to the routine algorithm MAXED based on the Maximum Entropy method, the Minimum Fisher Regularisation (MFR) method has been introduced at JET. The MFR method, known from two-dimensional tomography applications, has proved to provide a new transparent tool to validate the JET neutron spectra measured with the NE213 liquid scintillators. In this article, the MFR method applicable to spectra unfolding is briefly explained. After a mention of MFR tests on phantom spectra experimental neutron spectra are presented that were obtained by applying MFR to NE213 data in selected JET experiments. The results tend to confirm MAXED observations

  2. Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon

    Science.gov (United States)

    Di Giovanni, A.

    2018-03-01

    This work concerned the preliminary tests and characterization of a cryogenic preamplifier board for an array made of 16 S13370-3050CN (VUV4 family) Multi-Pixel Photon Counters manufactured by Hamamatsu and operated at liquid xenon temperature. The proposed prototype is based on the use of the Analog Devices AD8011 current feedback operational amplifier. The detector allows for single photon detection, making this device a promising choice for the future generation of neutrino and dark matter detectors based on liquid xenon targets.

  3. Detection of high energy gamma radiations with liquid rare gases as scintillators; Detection des rayonnements Gamma de grande energie avec les gaz rares liquides comme scintillateurs

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Phan Xuan

    1965-11-25

    This research thesis reports the study of a sensor based on a liquid scintillator for the detection of high energy (10 to 30 MeV) gamma radiations. The scintillator is a liquefied argon or xenon rare gas. The author first studies the process of energy transfer from the particle to the sensing medium. He addresses the different involved elements and phenomena: electromagnetic radiations (Compton Effect, photoelectric effect, pair production, and total gamma absorption), charged particles (braking radiation, collisions) and application to gamma spectrometry. He describes and discusses the scintillation mechanisms (scintillation of organic and inorganic materials), the general characteristics of scintillators (impurities, converters), and then reports the practical realisation of the sensor. Results are presented and discussed [French] Dans ce travail, nous nous proposons d'etudier une technique. Il s'agit d'un detecteur a scintillateur liquide pour la detection des rayonnements gamma energiques (10 a 30 MeV). Le scintillateur utilise est un gaz rare liquefie argon ou xenon. Nous examinerons d'abord les processus de transfert de l'energie de la particule au milieu detecteur puis les mecanismes de scintillation en general pour pouvoir exploiter au mieux les phenomenes favorables. Nous presenterons ensuite la realisation pratique du detecteur. Ses qualites (et defauts) trouveront leur place dans la fin de ce memoire. Bien qu'a l'heure actuelle, par la methode de Kyropoulos, on puisse faire pousser des gros cristaux d'iodure de sodium, l'utilisation des 'gaz rares' liquefies comme scintillateurs est, grace a la brievete de la scintillation, tres utile lorsqu'on recherche un fort taux de comptage (jusqu'a 10 impulsions par seconde) ou lorsqu'on veut resoudre certains problemes de coincidence. Les cristaux NaI(Tl) de grandes dimensions sont d'un montage facile mais leur manipulation requiert beaucoup de precautions du fait qu'ils supportent tres mal les chocs thermiques

  4. Rapid radiometric detection of microbial contamination using 14C-glucose and standard liquid scintillation counting system

    International Nuclear Information System (INIS)

    Joshi, S.H.; Kamble, S.B.; Pilkhwal, N.S.; Ramamoorthy, N.

    1998-01-01

    A simple and rapid method for detection of microbial contamination based on quantitation of 14 CO 2 released during metabolism of 14 C-Glucose by microorganisms is reported. Liquid scintillation counting system (LSCS) with a modified sample preparation method was utilised. The scintillator was impregnated on Whatman-1 paper on which 14 CO 2 evolved during metabolism could be absorbed. The important parameters of counting such as efficiency, position sensitivity and geometry as well as effect of NaOH quantity and of microbial load on detection period were studied. The efficiency of radioactivity assay was 18±2.8 %. Contamination of the order of 5-10 organism/ml of product could be detected in about 24 hours. (author)

  5. Determination of 90Sr by liquid scintillation counting

    International Nuclear Information System (INIS)

    Cerchetti, Maria L.; Aghazarian, V.P.

    2006-01-01

    99m Tc, the result of the radioactive decay of 99 Mo, is one of the most applied radioisotopes in nuclear medicine and is used in nuclear medicine as a radiopharmaceutical product. It is important to ensure 99 Mo quality in order to fit the 99m Tc quality specifications. The main objective was to obtain a technique for 90 Sr determination in 99 Mo and environmental samples. The purification of 90 Sr is performed by extraction chromatography where crown-ether resin (Sr-Spec, Eichrom) was used. The measurement of the 90 Sr activity is performed by Liquid Scintillation Counting (LSC) using the double windows method. This method permits the 90 Sr determination without waiting until radiochemical equilibrium 90 Sr / 90 Y has been reached. The recovery factor was determined by gamma spectrometry with 85 Sr, and by gravimetry with stable strontium carrier solution. The minimum detectable activity was 0,05 Bq. The recovery factor was the major contribution in the total uncertainty. (author)

  6. Charged particle scintillation mass spectrometer

    International Nuclear Information System (INIS)

    Baranov, P.S.; Zhuravlev, E.E.; Nafikov, A.A.; Osadchi , A.I.; Raevskij, V.G.; Smirnov, P.A.; Cherepnya, S.N.; Yanulis, Yu.P.

    1982-01-01

    A scintillation mass-spectrometer for charged particle identification by the measured values of time-of-flight and energy operating on line with the D-116 computer is described. Original time detectors with 100x100x2 mm 3 and 200x2 mm 2 scintillators located on the 1- or 2 m path length are used in the spectrometer. The 200x200x200 mm 3 scintillation unit is used as a E-counter. Time-of-flight spectra of the detected particles on the 2 m path length obtained in spectrometer test in the beam of charged particles escaping from the carbon target at the angle of 130 deg under 1.2 GeV bremsstrahlung beam of the ''Pakhra'' PIAS synchrotron are presented. Proton and deuteron energy spectra as well as mass spectrum of all the particles detected by the spectrometer are given. Mass resolution obtained on the 2 m path length for π-mesons is +-25%, for protons is +-5%, for deuterons is +-3%

  7. The MICE scintillating-fibre tracker

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, T [Imperial College London (United Kingdom)], E-mail: T.Matsushita@imperial.ac.uk

    2008-06-15

    The international Muon Ionization Cooling Experiment (MICE) collaboration will carry out a systematic investigation of the ionization cooling of a muon beam. An ionization cooling channel is required to compress the phase-space volume occupied by the muon beam prior to acceleration in the baseline conceptual designs for both the Neutrino Factory and the Muon Collider. Muons entering and leaving the cooling channel will be measured in two solenoidal spectrometers, each of which is instrumented with a scintillating-fibre tracker. Each tracker is composed of five planar scintillating fibre stations, each station being composed of three planar layers of 350 micron scintillating fibres. The devices will be read out using the Visible Light Photon Counters (VLPCs) developed for use in the D0 experiment at the Tevatron. The design of the system will be presented along with the status of the tracker-construction project. The expected performance of prototypes of the full tracker will be summarised.

  8. Determination of the proton and alpha-particle light-response functions for the KamLAND, BC-501A and BC-517H liquid scintillators

    International Nuclear Information System (INIS)

    Braizinha, B.; Esterline, J.H.; Karwowski, H.J.; Tornow, W.

    2010-01-01

    A cylindrical 5.1 cmx5.1 cm scintillator cell filled with the KamLAND liquid scintillator has been exposed to monoenergetic neutron beams produced via the 2 H(d,n) 3 He reaction to measure the proton light-response function for energies up to 10 MeV. Using Birks' recipe, the α-particle light-response function was derived from these data. The same method was applied to the BC-501A and BC-517H liquid scintillators to check on the systematic accuracy of the present data. The proton and α-particle light-response functions are needed to correct the KamLAND antineutrino prompt energy spectrum for background effects caused by the reaction 13 C(α,n) 16 O. Especially, the geo-antineutrino energy regime measured in the KamLAND experiment is contaminated by background events from this reaction.

  9. Present development of scintillator counters in France; Etat actuel du developpement des compteurs a scintillation en France

    Energy Technology Data Exchange (ETDEWEB)

    Koechlin, Y; Koch, L; Lansiart, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Pietri, G [Laboratoire d' Electronique et de Physique Appliquee (France)

    1958-07-01

    For a number of years photomultipliers and scintillators have been produced on an industrial scale in France. The AEC has accepted the task of testing their performance, and advising the industry in consequence. This combined effort has resulted in the wide range of photomultipliers and scintillators summarised in the following paper. (author)Fren. [French] La france fabrique industriellement depuis quelques annees des photomultiplicateurs et des scintillateurs. Le Commissariat a l'Energie atomique s'est charge de mesurer leurs performances et de conseiller l'industrie fran ise a ce sujet. C'est ainsi que nous disposons actuellement de toute une gamme de photomultiplicateurs et de scintillateurs fran is dont nous donnons ci-dessous un apercu. (auteur)

  10. Alpha scintillation radon counting

    International Nuclear Information System (INIS)

    Lucas, H.F. Jr.

    1977-01-01

    Radon counting chambers which utilize the alpha-scintillation properties of silver activated zinc sulfide are simple to construct, have a high efficiency, and, with proper design, may be relatively insensitive to variations in the pressure or purity of the counter filling. Chambers which were constructed from glass, metal, or plastic in a wide variety of shapes and sizes were evaluated for the accuracy and the precision of the radon counting. The principles affecting the alpha-scintillation radon counting chamber design and an analytic system suitable for a large scale study of the 222 Rn and 226 Ra content of either air or other environmental samples are described. Particular note is taken of those factors which affect the accuracy and the precision of the method for monitoring radioactivity around uranium mines

  11. Partitioning of krypton-85 in liquid scintillation cocktail

    International Nuclear Information System (INIS)

    Hohorst, F.A.; Sherlock, M.A.

    1994-12-01

    Krypton is one of the noble gases. As such, it forms compounds only with exceptionally strong oxidizing agents. The concentration of krypton in air is 1.139 parts per million by volume. In general, its behavior is best described as that of an ideal gas. Krypton-85 is the longest lived of the common radioactive noble gases with a half life of 10.72 years. Gamma radiation at 513.990 keV has an intensity of only 0.434%. Most decay is β - emission with a maximum energy of 687.0 keV and an average energy of 251.4 keV. The analytical chemistry of krypton-85 is driven by these factors. High concentrations may be gamma counted directly. Low levels are typically determined by more sensitive techniques such as liquid scintillation counting (LSC) where detection limits on the order of 1 picocurie (pCi) are routinely achieved. For a 5 standard cubic centimeter (scc) sample, this represents a concentration of 0.2 pCi/scc, well below the DOE Air Immersion Derived Concentration Guideline (G) of 3 pCi/scc. As a gas, krypton in a sealed LSC vial distributes itself between the liquid phase and the gas phase. Some past work has used gamma counting at levels many orders of magnitude greater than those now achievable by LSC to study the distribution of krypton. This effect is of interest in the analytical chemistry of krypton-85 because geometrical considerations influence how much of the material in the gas phase decays generating particles which then impact the liquid phase where they may be counted

  12. Scintillation Counters for Neutron Scattering Experiments; Compteurs a scintillations pour les experiences de diffusion neutronique; Stsintillyatsionnye schetchiki dlya ehksperimentov s rasseyaniem nejtronov; Contadores de centelleo para experimentos de dispersion neutronica.

    Energy Technology Data Exchange (ETDEWEB)

    Harris, D; Duffil, C [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada); Wraight, L A [Aere, Harwell, Didcot, Berks (United Kingdom)

    1963-01-15

    Scintillation counters discussed in this paper are of two types : (i) UP or B{sub 2}O{sub 3} fixed with zinc sulphide in varving composition, (ii) Li containing glasses of varying composition. The ideal composition of each rype for neutron scattering experiments and their relative sensitivity tae neutrons and {gamma}-rays are considered. The ZnS type can be used with a {gamma}-ray pulse shape discriminator and practical experience of its use in a multi-counter time-of-flight experiment is described. The Li glass has higher {gamma}-background but also higher neutron efficiency. Performance figures of a scintillator containing 25% by wt. Li{sub 2}O and 1 mm thick will be given. (author) [French] Les compteurs a scintillations etudies sont de deux types : i) LiF ou B{sub 2}O{sub 3} fixe par du sulfure de zinc en composition variable, ii) verres contenant du lithium en composition variable. Les auteurs examinent la composition ideale de chaque type de compteur pour les experiences de diffusion de neutrons, ainsi que leur sinsibilite rrelative aux neutrons et aux rayons gamma. On peut utiliser le compteur a ZnS avec un discriminates de forme pour rayons gamma; les auteurs decrivent l'experience qu'ils ont de son emploi dans une experience de temps de vol a plusieurs compteurs. Le compteur verre-Li a un mouvement propre plus eleve pour les rayons gamma mais une meilleure efficacite vis-a-vis des neutrons. Les auteurs donnent quelques chiffres concernant le fonctionnement d'un scintillateur contenant 25% en poids de Li{sub 2}O et ayant une epaisseur de un millimetre. (author) [Spanish] Los contadores de centelleo examinados en esta memoria son de dos tipos : a) de LiF o B{sub 2}O{sub 3} mezclado con sulfuro de cinc en proporciones variables; b) de vidrios litiados de diversas composiciones. Los autores estudian la composicion ideal de cada tipo para experimentos de dispersion neutronica, asi como su sensibilidad relativa a los neutrones y a los rayos gamma. El tio de Zn

  13. Advances in the sample preparation and the detector for a combined solvent extraction-liquid scintillation method of low-level plutonium measurement

    International Nuclear Information System (INIS)

    Perdue, P.T.; Christian, D.J.; Thorngate, J.H.; McDowell, W.J.; Case, G.N.

    1976-07-01

    A combined solvent extraction-liquid scintillation technique, developed at Oak Ridge National Laboratory (ORNL), has many possible applications to the determination of low levels of plutonium and other alpha-emitting nuclides. Using these procedures, plutonium can be extracted from biological or environmental samples and introduced directly into a liquid scintillator. Quenching of the scintillator is thus minimized so that spectroscopic techniques may be employed. Existing chemical procedures and counting equipment were reviewed and improved. Purification of the di(2-ethylhexyl)phosphoric acid (used as the actinide extractant) was found necessary. Destruction of organic material in the sample and control of the valence state of plutonium were found to be major sources of irreproducibility. Methods were developed to allow samples separated with commonly used ion exchange techniques to be extracted into the scintillator. Comparisons were made of a wide variety of the components and parameters of the detector system to find the best combination of pulse-height resolution and pulse-shape discrimination. When a single phototube was used, optimum performance was obtained using a hemispherical reflector-sample holder viewed sideways by an RCA 8575 photomultiplier tube used in conjunction with a special integrating preamplifier and a good quality linear amplifier that used delay lines to shape the pulses

  14. Separation of phosphorous by liquid-liquid extraction for the measurement of 32P

    International Nuclear Information System (INIS)

    Lee, H.N.; Yang, S.D.

    2010-01-01

    Phosphorous containing radioisotope waste was separated and determined by liquid-liquid extraction method through liquid scintillation counter (LSC). In this process, ammonium phosphate was converted to phosphomolybdate (PMo) by the reaction of ammonium molybdate (Mo) in HCl solution (0.02 M) and maximum UV/VIS absorbance (λ max ) 218 nm was observed. The PMo solution was extracted with TOA (Tri-n-Octylamine)/xylene mixture and λ max 290 nm was found for this organic layer. Absorbance of aqueous and organic layer was linear through concentration. The impurities such as Co, Cr, Gd, etc. remain in aqueous layer by treating with Mo which was determined by ICP-AES and AAS. The quenching correction curve for 32 P was calculated using LSC results. No counting change was observed as the volume of quenchers increased. The recovery was 98% and 81% for the extraction and separation process from the test using H 3 32 PO 4 as standard tracer. (author)

  15. High-efficiency organic glass scintillators

    Science.gov (United States)

    Feng, Patrick L.; Carlson, Joseph S.

    2017-12-19

    A new family of neutron/gamma discriminating scintillators is disclosed that comprises stable organic glasses that may be melt-cast into transparent monoliths. These materials have been shown to provide light yields greater than solution-grown trans-stilbene crystals and efficient PSD capabilities when combined with 0.01 to 0.05% by weight of the total composition of a wavelength-shifting fluorophore. Photoluminescence measurements reveal fluorescence quantum yields that are 2 to 5 times greater than conventional plastic or liquid scintillator matrices, which accounts for the superior light yield of these glasses. The unique combination of high scintillation light-yields, efficient neutron/gamma PSD, and straightforward scale-up via melt-casting distinguishes the developed organic glasses from existing scintillators.

  16. Preparation of ferric acetylacetonate, bonzonate and caprate labelled with Fe-55 and tests of application to liquid scintillation measurements

    International Nuclear Information System (INIS)

    Los Arcos, J.M.; Rodriguez Barquero, L.; Grau Malonda, A.

    1990-01-01

    The methods of preparation of ferric acetylacetonate, benzoate and caprate labelled with 55 Fe are described. The quenching effect, the spectral baehaviour and the count rate stability are studied by liquid scintillation measurements in toluene, INSTAGEL and HISAFE II, for two different values of the sample concentration. The ferric acetylaceton-ate is stable for all the three scintillators but shows a strong quench, while the ferric benzoate and caprate are stable only for INSTAGEL and HISAFE II showing no significant quench at the concentrat-ions of interest in habitual measurements. (Author)

  17. Age determination of trace plutonium using liquid scintillation counting and α-spectrometry

    International Nuclear Information System (INIS)

    Chen Yan; Chang Zhiyuan; Zhao Yonggang; Li Jinghuai; Shu Fujun

    2010-01-01

    Liquid scintillation counting combined with α-spectrometry through measuring 241 Pu/ 241 Am ratio to determine the age of trace Pu was studied. The technique was explored for the age determination of nanogram grade Pu sample on the basis of Pu/Am separation. The ages of two Pu samples-one with known and the other with unknown age were determined by the method. The determined age by the method is in agreement with the reference value. The established method for determining the age of trace Pu can be adopted in the verification activities of nuclear safeguards and nuclear arms control. (authors)

  18. Calibration of radionuclides with decay trough beta emission or electron capture by liquid scintillation technique

    International Nuclear Information System (INIS)

    Loureiro, Jamir dos Santos

    2000-02-01

    In this work is reported a methodology a methodology for pure beta and electron capture radionuclides standardization, suing liquid scintillation technique. In this sense the CIEMAT/NIST method, recently utilized by international laboratories, was implemented and the lack in the Laboratorio Nacional das Radiacoes Ionizantes - LNMRI, of the Comissao Nacional de Energia Nuclear - CNEN, for adequate methodology to standardize this kind if radionuclides was filled, fact that was not present with alpha and gamma radionuclides. The implementation procedure evaluation was provided by concentration activity determination of the following radionuclides: 14 C and 90 Sr, pure beta emitters; 55 Fe, electron capture decay; 204 Tl, electron capture and beta decay and 60 Co, beta-gamma emitter. In this way, a careful analysis of the implementation procedure with these radionuclides types, ranging on a broad energy spectral, was possible. To check the calibration results, intercomparisons among our measurements of these radionuclides and the reference values of the CIEMAT/Spain laboratory were provided. To check the calibration results, intercomparisons among our measurements of these radionuclides and the reference values of the CIEMAT/Spain laboratory were provided. Besides this intercomparisons, one was provided with a 204 Tl solution, utilized in the international comparison recently promoted by BIPM, and another one with a 60 C solution calibrated in LNMRI/CNEN previously by a relative calibration system, with a well type pressurized ionization chamber, and an absolute beta-gamma coincidence system, with a pill-box type proportional counter 4 π geometry, coupled with a scintillator system with a sodium iodide cristal of 4x4 inches. The comparisons among LNMRI/CNEN results and the reference values, showed a small deviation of 1,32% for 14 C, 0,40% for 60 Co, 1,12% for 55 Fe, 0,10% for 90 Sr and 0,73% for 204 Tl. For the BIPM solution the deviation was 0,46% and for 60 Co

  19. Determination of the proton and alpha-particle light-response functions for the KamLAND, BC-501A and BC-517H liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Braizinha, B. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Esterline, J.H. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, Duke University, Durham, NC 27708 (United States); Karwowski, H.J. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Tornow, W., E-mail: tornow@tunl.duke.ed [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, Duke University, Durham, NC 27708 (United States)

    2010-11-21

    A cylindrical 5.1 cmx5.1 cm scintillator cell filled with the KamLAND liquid scintillator has been exposed to monoenergetic neutron beams produced via the {sup 2}H(d,n){sup 3}He reaction to measure the proton light-response function for energies up to 10 MeV. Using Birks' recipe, the {alpha}-particle light-response function was derived from these data. The same method was applied to the BC-501A and BC-517H liquid scintillators to check on the systematic accuracy of the present data. The proton and {alpha}-particle light-response functions are needed to correct the KamLAND antineutrino prompt energy spectrum for background effects caused by the reaction {sup 13}C({alpha},n){sup 16}O. Especially, the geo-antineutrino energy regime measured in the KamLAND experiment is contaminated by background events from this reaction.

  20. Development and Studies of Novel Microfabricated Radiation Hard Scintillation Detectors With High Spatial Resolution

    CERN Document Server

    Mapelli, A; Haguenauer, M; Jiguet, S; Renaud, P; Vico Triviño, N

    2011-01-01

    A new type of scintillation detector is being developed with standard microfabrication techniques. It consists of a dense array of scintillating waveguides obtained by coupling microfluidic channels filled with a liquid scintillator to photodetectors. Easy manipulation of liquid scintillators inside microfluidic devices allow their flushing, renewal, and exchange making the active medium intrinsically radiation hard. Prototype detectors have been fabricated by photostructuration of a radiation hard epoxy resin (SU-8) deposited on silicon wafers and coupled to a multi-anode photomultiplier tube (MAPMT) to read-out the scintillation light. They have been characterized by exciting the liquid scintillator in the 200 micrometers thick microchannels with electrons from a 90Sr yielding approximately 1 photoelectron per impinging Minimum Ionizing Particle (MIP). These promising results demonstrate the concept of microfluidic scintillating detection and are very encouraging for future developments.

  1. Nd loaded liquid scintillator to search for 150Nd neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Barabanov, I; Bezrukov, L; Yanovich, E; Cattadori, C; Danilov, N; Di Vacri, A; Ianni, A; Nisi, S; Ortica, F; Romani, A; Salvo, C; Smirnov, O

    2008-01-01

    The 150 Nd is considered one of the most attractive candidate for searching neutrinoless double beta (0νββ-) decay, thanks to its high Q-value (3.367 MeV), that makes the external background issue less significative respect to other isotopes, and favorable computed matrix elements. The isotopic abundance of this isotope in natural neodimium is only 5.6% and up to now, it has been investigated only in low mass experiments. The next step is to increase the sensitivity of the experiments using larger mass of neodymium (10 ton-1 kton). This could be possible with a Nd loaded liquid scintillator (LS). At the Gran Sasso National Laboratory (LNGS), a joint INFN (Istituto Nazionale di Fisica Nucleare) and INR (Institute for Nuclear Research of Moscow) working group has been carrying out since 2001 an R and D activity aiming to develop organic liquid scintillators (LS) doped with metals. The achieved know-how and the satisfactory results obtained both with In and Gd allowed to face the development and production of Nd doped LS. The development of metal doped LS is challenging because the metal has to be embedded in a proper organic system that makes it soluble in an organic solvent minimizing the impact of the metal-organic compound on the optical and scintillation properties of the LS. A further challenge in the case of Nd is the presence of absorption bands of this element in the optical region with a transparent region around 400 nm, which is about at the maximum of the scintillator emission spectrum. A 2.5 1 Nd loaded LS has been produced diluting an originally developed Nd-Carboxylic (Nd-CBX) salt in pseudocumene (PC), the solvent of the Borexino liquid scintillator. The measured light yield, at [Nd] = 6.5 g/1 and [PPO] = 1.5 g/1, is ∼ 75% of pure PC at the same fluor concentration (∼ 10000 ph/MeV). The Nd doped LS has been tested in a 2 1 quartz cell (wrapped by VM2000 reflector film) having dimensions 5x5x100 cm 3 . The light propagates in the cell by total

  2. Method for measuring multiple scattering corrections between liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, J.M., E-mail: verbeke2@llnl.gov; Glenn, A.M., E-mail: glenn22@llnl.gov; Keefer, G.J., E-mail: keefer1@llnl.gov; Wurtz, R.E., E-mail: wurtz1@llnl.gov

    2016-07-21

    A time-of-flight method is proposed to experimentally quantify the fractions of neutrons scattering between scintillators. An array of scintillators is characterized in terms of crosstalk with this method by measuring a californium source, for different neutron energy thresholds. The spectral information recorded by the scintillators can be used to estimate the fractions of neutrons multiple scattering. With the help of a correction to Feynman's point model theory to account for multiple scattering, these fractions can in turn improve the mass reconstruction of fissile materials under investigation.

  3. Sealed drift tube cosmic ray veto counters

    International Nuclear Information System (INIS)

    Rios, R.; Tatar, E.; Bacon, J.D.; Bowles, T.J.; Hill, R.; Green, J.A.; Hogan, G.E.; Ito, T.M.; Makela, M.; Morris, C.L.; Mortenson, R.; Pasukanics, F.E.; Ramsey, J.; Saunders, A.; Seestrom, S.J.; Sondheim, W.E.; Teasdale, W.; Saltus, M.; Back, H.O.; Cottrell, C.R.

    2011-01-01

    We describe a simple drift tube counter that has been used as a cosmic ray veto for the UCNA experiment, a first-ever measurement of the neutron beta-asymmetry using ultra-cold neutrons. These detectors provide an inexpensive alternative to more conventional scintillation detectors for large area cosmic ray anticoincidence detectors.

  4. Waveshifters and Scintillators for Ionizing Radiation Detection

    International Nuclear Information System (INIS)

    Baumgaugh, B.; Bishop, J.; Karmgard, D.; Marchant, J.; McKenna, M.; Ruchti, R.; Vigneault, M.; Hernandez, L.; Hurlbut, C.

    2007-01-01

    Scintillation and waveshifter materials have been developed for the detection of ionizing radiation in an STTR program between Ludlum Measurements, Inc. and the University of Notre Dame. Several new waveshifter materials have been developed which are comparable in efficiency and faster in fluorescence decay than the standard material Y11 (K27) used in particle physics for several decades. Additionally, new scintillation materials useful for fiber tracking have been developed which have been compared to 3HF. Lastly, work was done on developing liquid scintillators and paint-on scintillators and waveshifters for high radiation environments

  5. Processing of liquid scintillation nuclear spectra for unquenched and quenched sources

    International Nuclear Information System (INIS)

    Madan, V.K.; Gopalakrishnan, K.R.

    1997-01-01

    This paper describes a nuclear (beta) spectral analysis method for qualitative and quantitative analysis of radioactivity for use in a liquid scintillation counting system. It is based on computing a spectral index number (SIN) for qualitative analysis of an unquenched sample. For quantitative analysis it was proposed that a complementary nonlinear function be estimated between efficiency and SIN from a standard set of samples. It reduces the computational burden. An unknown sample is analyzed by computing its SIN and that is used to calculate efficiency using the function to facilitate quantitative analysis. A software was developed and verified on real spectra of radioisotopes. The paper presents the method and its application with results. (author). 5 refs

  6. Response function of the trigger scintillation detector for the COSY 11 installation

    International Nuclear Information System (INIS)

    Moskal, P.

    1993-10-01

    The aim of this work is to test the response of a scintillation detector to ionizing particles. This counter, consisting of sixteen detection modules, will serve as a trigger of the whole detection system. Thus the time resolution as well as a signal amplitude variation with respect to a hit position is of a special interest. The former because this detector will be used as a start counter for the time of flight measurement, the latter as it will provide energy loss measurements of the particles. The present work is divided into two parts. In the first one the main stages of a signal production by scintillation counters are considered. In the second one the first chapter presents measurements of the characteristics of the photomultiplier, whereas the second one contains a description of the experimental set-ups as well as the method of data evaluation. The final chapter in turn presents the main characteristics of the considered detector. (orig.)

  7. ATLAS ALFA—measuring absolute luminosity with scintillating fibres

    CERN Document Server

    Franz, S

    2009-01-01

    ALFA is a high-precision scintillating fibre tracking detector under construction for the absolute determination of the LHC luminosity at the ATLAS interaction point. This detector, mounted in so-called Roman Pots, will track protons elastically scattered under μrad angles at IP1.In total there are four pairs of vertically arranged detector modules which approach the LHC beam axis to mm distance. Each detector module consists of ten layers of two times 64 scintillating fibres each (U and V planes). The fibres are coupled to 64 channels Multi-Anodes PhotoMultipliers Tubes read out by compact front-end electronics. Each detector module is complemented by so-called overlap detectors: Three layers of two times 30 scintillating fibres which will be used to measure the relative positioning of two vertically arranged main detectors. The total number of channels is about 15000. Conventional plastic scintillator tiles are mounted in front of the fibre detectors and will serve as trigger counter. The extremely restric...

  8. Multisector scintillation detector with fiber-optic light collection

    Science.gov (United States)

    Ampilogov, N. V.; Denisov, S. P.; Kokoulin, R. P.; Petrukhin, A. A.; Prokopenko, N. N.; Shulzhenko, I. A.; Unatlokov, I. B.; Yashin, I. I.

    2017-07-01

    A new type of scintillation detector for the use in high energy physics is described. The octagonal detector consists of eight triangular scintillator sectors with total area of 1 m2. Each sector represents two plates of 2 cm thick plastic scintillator. Seven 1 mm thick WLS fibers are laid evenly between the plates. The space between the fibers is filled with silicone compound to provide better light collection. Fiber ends from all eight sectors are gathered in the central part of the detector into a bunch and docked to the cathode of a FEU-115m photomultiplier. The read-out of the counter signals is carried out from 7th and 12th dynodes, providing a wide dynamic range up to about 10000 particles. The front-end electronics of the detector is based on the flash-ADC with a sampling frequency of 200 MHz. The features of detecting and recording systems of the multisector scintillation detector (MSD) and the results of its testing are discussed.

  9. Counting efficiencies by liquid scintillation counting. Single isomeric transitions; Eficiencia de recuento por centelleo liquido. Transiciones isomericas simples

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A.

    1995-07-01

    In this work we present liquid scintillation counting efficiency tables for several radionuclides with single isomeric transitions, in which electron conversion and gamma emission processes are competitive. We study the radionuclides: 58mCo, 77mSe, 79mBr, 87mSr, S9mY, 93mNb, 103mRh, 107mAg, 109mAg, 113mIn, 131mXe, I33mXe, 135raBa, 137mBa, 167raEr, for two different scintillators, Ultima-Gold and Insta-Gel. We consider volumes of 10 and 15 mL for Ultima Gold, and 15 mL for Insta-Gel. (Author) 18 refs.

  10. Scintillation densimeter for liquids and an isotopic conveyor weighers with plastic scintillator

    International Nuclear Information System (INIS)

    Makhaj, B.; Antonyak, V.; Plyater, Z.

    1979-01-01

    The method is described of the weighted material's mass measuring according to the results of the conveyor momentary load measurement derived from the attenuation of radiation in the transmission geometry, conveyor belt velocity measurement and digital processing of the signals from the measurement of the bouth values. In the measuring gage there are located: the point type gamma source of cesium-137 with 4 mCi capacity, the scintillation detector with plastic cylindric scintillator of 5 cm in diameter and with the length approximately equal to the width of the conveyor belt and also the tachometer-generator. The conveyor weighers described is intended for use with conveyor having belt; from 60 to 180 cm wide. The results are given of industrial exploitation of the instrument [ru

  11. Determination of carbon-14 environmental samples by mixing 14CO2 with a liquid scintillator

    International Nuclear Information System (INIS)

    Garcia Sanz, M.R.; Gomez, V.; Heras, M.C.; Beltran, M.A.

    1990-01-01

    A method for the determination of Carbon-14 ( 14 CO 2 ) in environmental samples has been developed. The method use the direct absorption of the carbon dioxide into Carbosorb, followed with incorporation of the mixture (Carbosorb-CO 2 ) to the liquid scintillator. The results obtained to apply this method and the benzene synthesis, usual in our laboratory, are discused and compared. The method of collection of atmospheric samples is also described. (Author)

  12. Rational approach to solvent system selection for liquid-liquid extraction-assisted sample pretreatment in counter-current chromatography.

    Science.gov (United States)

    Wang, Jiajia; Gu, Dongyu; Wang, Miao; Guo, Xinfeng; Li, Haoquan; Dong, Yue; Guo, Hong; Wang, Yi; Fan, Mengqi; Yang, Yi

    2017-05-15

    A rational liquid-liquid extraction approach was established to pre-treat samples for high-speed counter-current chromatography (HSCCC). n-Hexane-ethyl acetate-methanol-water (4:5:4:5, v/v) and (1:5:1:5, v/v) were selected as solvent systems for liquid-liquid extraction by systematically screening K of target compounds to remove low- and high-polarity impurities in the sample, respectively. After liquid-liquid extraction was performed, 1.4g of crude sample II was obtained from 18.5g of crude sample I which was extracted from the flowers of Robinia pseudoacacia L., and then separated with HSCCC by using a solvent system composed of n-hexane-ethyl acetate-methanol-water (1:2:1:2, v/v). As a result, 31mg of robinin and 37mg of kaempferol 7-O-α-l-rhamnopyranoside were isolated from 200mg of crude sample II in a single run of HSCCC. A scale-up separation was also performed, and 160mg of robinin with 95% purity and 188mg of kaempferol 7-O-α-l-rhamnopyranoside with 97% purity were produced from 1.2g of crude sample II. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Alternating sample changer and an automatic sample changer for liquid scintillation counting of alpha-emitting materials

    International Nuclear Information System (INIS)

    Thorngate, J.H.

    1977-08-01

    Two sample changers are described that were designed for liquid scintillation counting of alpha-emitting samples prepared using solvent-extraction chemistry. One operates manually but changes samples without exposing the photomultiplier tube to light, allowing the high voltage to remain on for improved stability. The other is capable of automatically counting up to 39 samples. An electronic control for the automatic sample changer is also described

  14. Evaluation of the ionization quenching correction for several liquid scintillators; Evaluacion de la extincion por ionizacion para diversos liquidos centelleadores

    Energy Technology Data Exchange (ETDEWEB)

    Los Arcos, J M; Borras, C

    1990-07-01

    The most appropriate computational model for the ionization quenching function Q(E) is analyzed for electrons in liquid scintillators. A numerical evaluation of Q(E) from 0.1 keV to 3 MeV which the kB parameter varying between 0.005 and 0.010 cm/MeV is presented for seven scintillators; Toluene, Toluene-Alcohol, PCS, Toluene-CCl4, INSTAGEL, Dioxane-Naphtalene and HISAFE II. The numerical result are summarized as tables of Ieast squares fitting coefficient which make easy the computation of Q(E). (Author)

  15. Possibility of semiconductor counters application for internal contamination measurement of whole human body

    International Nuclear Information System (INIS)

    Cunic, O.; Orlic, M.; Bek-Uzarov, Dj.; Pavlovic, S.; Pavlovic, R.

    1997-01-01

    The possibility of high resolution semiconductor counters application in 'Vinca' Whole Body Counter for direct beta-gamma internal contamination measurement are discussed, assuming the following relevant characteristics: efficiency, resolution and counter price. A comparison with appropriate characteristics of NaI(Tl) crystal used in 'Vinca' WBC is treated. It is evident that the scintillation counters have the higher detection efficiency, but HPGe counters having much better resolution and recently lowest prices are also acceptable to join the existing NaI(Tl) counters with the HPGe counters in the same time, allow better spectral analyses of the human body activity and additionally more precise estimation of the equivalent doses rate which is generally a essential problem in WBC measurements. (author)

  16. View of the VO prototype made of two sectors of scintillating counters. WLS fibers embedded within connectors appear in green color. Beams of optical fibers inside black sheath collect and transport the emitted light to photo-multipliers a few meters apart.

    CERN Multimedia

    2004-01-01

    View of the VO prototype made of two sectors of scintillating counters. WLS fibers embedded within connectors appear in green color. Beams of optical fibers inside black sheath collect and transport the emitted light to photo-multipliers a few meters apart.

  17. Systematic studies of small scintillators for new sampling calorimeter

    International Nuclear Information System (INIS)

    Jacosalem, E.P.; Sanchez, A.L.C.; Bacala, A.M.; Iba, S.; Nakajima, N.; Ono, H.; Miyata, H.

    2007-01-01

    A new sampling calorimeter using very thin scintillators and the multi-pixel photon counter (MPPC) has been proposed to produce better position resolution for the international linear collider (ILC) experiment. As part of this R and D study, small plastic scintillators of different sizes, thickness and wrapping reflectors are systematically studied. The scintillation light due to beta rays from a collimated 90 Sr source are collected from the scintillator by wavelength-shifting (WLS) fiber and converted into electrical signals at the PMT. The wrapped scintillator that gives the best light yield is determined by comparing the measured pulse height of each 10 x 40 x 2 mm strip scintillator covered with 3M reflective mirror film, teflon, white paint, black tape, gold, aluminum and white paint+teflon. The pulse height dependence on position, length and thickness of the 3M reflective mirror film and teflon wrapped scintillators are measured. Results show that the 3M radiant mirror film-wrapped scintillator has the greatest light yield with an average of 9.2 photoelectrons. It is observed that light yield slightly increases with scintillator length, but increases to about 100% when WLS fiber diameter is increased from 1.0 mm to 1.6 mm. The position dependence measurement along the strip scintillator showed the uniformity of light transmission from the sensor to the PMT. A dip across the strip is observed which is 40% of the maximum pulse height. The block type scintillator pulse height, on the other hand, is found to be almost proportional to scintillator thickness. (author)

  18. Neutron-gamma discrimination employing pattern recognition of the signal from liquid scintillator

    CERN Document Server

    Kamada, K; Ogawa, S

    1999-01-01

    A pattern recognition method was applied to the neutron-gamma discrimination of the pulses from the liquid scintillator, NE-213. The circuit for the discrimination is composed of A/D converter, fast SCA, memory control circuit, two digital delay lines and two buffer memories. All components are packed on a small circuit board and are installed into a personal computer. Experiments using a weak sup 2 sup 5 sup 2 Cf n-gamma source were undertaken to test the feasibility of the circuit. The circuit is of very easy adjustment and, at the same time, of very economical price when compared with usual discrimination circuits, such as the TAC system.

  19. Neutron-gamma discrimination employing pattern recognition of the signal from liquid scintillator

    International Nuclear Information System (INIS)

    Kamada, Kohji; Enokido, Uhji; Ogawa, Seiji

    1999-01-01

    A pattern recognition method was applied to the neutron-gamma discrimination of the pulses from the liquid scintillator, NE-213. The circuit for the discrimination is composed of A/D converter, fast SCA, memory control circuit, two digital delay lines and two buffer memories. All components are packed on a small circuit board and are installed into a personal computer. Experiments using a weak 252 Cf n-γ source were undertaken to test the feasibility of the circuit. The circuit is of very easy adjustment and, at the same time, of very economical price when compared with usual discrimination circuits, such as the TAC system

  20. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    Energy Technology Data Exchange (ETDEWEB)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France); Méchin, Laurence [CNRS, UCBN, Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen, 14050 Caen (France); Hamel, Matthieu [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France)

    2016-08-21

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  1. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    International Nuclear Information System (INIS)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu

    2016-01-01

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  2. Coincidence measurements with the use of detectors measuring the energy of the radiances (proportional meters and scintillation counter); Mesures de coincidences avec utilisation de detecteurs mesurant l'energie des rayonnements (compteurs proportionnels et compteur a scintillations)

    Energy Technology Data Exchange (ETDEWEB)

    Sartory, M [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1953-07-01

    In the setting of the realization of a set of installations permitting of the measures of coincidences between sorted radiances according to their energies, an installation understanding a proportional counter and a scintillation counter has been constructed and optimized. It has been used to do some measures of coincidences between X{sub K} photons and photons {gamma} issued at the time of the radioactive transformation of the selenium 75 (electronic capture). The efficiency of the proportional meter has been determined roughly. Besides, a proportional counter of solid angle neighboring of 4{pi} was able to achieve measures of coincidences while only doing one selection of amplitudes: indeed, the simultaneity of the detection of two radiances appear by an impulse whose amplitude is the sum of the amplitudes of the impulses resulting from each of the studied radiations. This method, applied to the coincidences between X-rays, permitted to bring the information on the diagram of decay of the arsenic 73. Besides, the coefficient of internal conversion of a consecutive transition to this decay has been valued. (author) [French] Dans le cadre de la realisation d'une serie de montages permettant des mesures de coincidences entre rayonnements tries d'apres leurs energies, un montage comprenant un compteur proportionnel et un compteur a scintillations a ete construit et mis au point. Il a ete utilise pour effectuer quelques mesures de coincidences entre photons X{sub K} et photons {gamma} emis lors de la transformation radioactive du selenium 75 (capture electronique). L'efficacite du compteur proportionnel a ete approximativement determinee. De plus, un compteur proportionnel d'angle solide voisin de 4{pi} a pu etre utilise pour realiser des mesures de coincidences en n'effectuant qu'une selection d'amplitudes: en effet, la simultaneite de la detection de deux rayonnements se manifeste par une impulsion dont l'amplitude est la somme des amplitudes des impulsions

  3. Activity measurements of radioactive solutions by liquid scintillation counting and pressurized ionization chambers and Monte Carlo simulations of source-detector systems for metrology

    International Nuclear Information System (INIS)

    Amiot, Marie-Noelle

    2013-01-01

    The research works 'Activity measurements of radioactive solutions by liquid scintillation and pressurized ionization chambers and Monte Carlo simulations of source-detector systems' was presented for the graduation: 'Habilitation a diriger des recherches'. The common thread of both themes liquid scintillation counting and pressurized ionization chambers lies in the improvement of the techniques of radionuclide activity measurement. Metrology of ionization radiation intervenes in numerous domains, in the research, in the industry including the environment and the health, which are subjects of constant concern for the world population these last years. In this big variety of applications answers a large number of radionuclides of diverse disintegration scheme and under varied physical forms. The presented works realized within the National Laboratory Henri Becquerel have for objective to assure detector calibration traceability and to improve the methods of activity measurements within the framework of research projects and development. The improvement of the primary and secondary activity measurement methods consists in perfecting the accuracy of the measurements in particular by a better knowledge of the parameters influencing the detector yield. The works of development dealing with liquid scintillation counting concern mainly the study of the response of liquid scintillators to low energy electrons as well as their linear absorption coefficients using synchrotron radiation. The research works on pressurized ionization chambers consist of the study of their response to photons and electrons by experimental measurements compared to the simulation of the source-detector system using Monte Carlo codes. Besides, the design of a new type of ionization chamber with variable pressure is presented. This new project was developed to guarantee the precision of the amount of activity injected into the patient within the framework of diagnosis examination

  4. Recent developments in plastic scintillators with pulse shape discrimination

    Science.gov (United States)

    Zaitseva, N. P.; Glenn, A. M.; Mabe, A. N.; Carman, M. L.; Hurlbut, C. R.; Inman, J. W.; Payne, S. A.

    2018-05-01

    The paper reports results of studies conducted to improve scintillation performance of plastic scintillators capable of neutron/gamma pulse-shape discrimination (PSD). Compositional modifications made with the polymer matrix improved physical stability, allowing for increased loads of the primary dye that, in combination with selected secondary dyes, provided enhanced PSD especially important for the lower energy ranges. Additional measurements were made with a newly-introduced PSD plastic EJ-276, that replaces the first commercially produced EJ-299. Comparative studies conducted with the new materials and EJ-309 liquids at large scale (up to 10 cm) show that current plastics may provide scintillation and PSD performance sufficient for the replacement of liquid scintillators. Comparison to stilbene single crystals compliments the information about the status of the solid-state materials recently developed for fast neutron detection applications.

  5. A measurement of the absorption of liquid argon scintillation light by dissolved nitrogen at the part-per-million level

    International Nuclear Information System (INIS)

    Jones, B J P; Chiu, C S; Conrad, J M; Ignarra, C M; Katori, T; Toups, M

    2013-01-01

    We report on a measurement of the absorption length of scintillation light in liquid argon due to dissolved nitrogen at the part-per-million (ppm) level. We inject controlled quantities of nitrogen into a high purity volume of liquid argon and monitor the light yield from an alpha source. The source is placed at different distances from a cryogenic photomultiplier tube assembly. By comparing the light yield from each position we extract the absorption cross section of nitrogen. We find that nitrogen absorbs argon scintillation light with strength of (1.51±0.15) × 10 −4 cm −1 ppm −1 , corresponding to an absorption cross section of (4.99±0.51) × 10 −21 cm 2 molecule −1 . We obtain the relationship between absorption length and nitrogen concentration over the 0 to 50 ppm range and discuss the implications for the design and data analysis of future large liquid argon time projection chamber (LArTPC) detectors. Our results indicate that for a current-generation LArTPC, where a concentration of 2 parts per million of nitrogen is expected, the attenuation length due to nitrogen will be 30±3 meters

  6. Scintillation proximity assay

    International Nuclear Information System (INIS)

    Hart, H.

    1980-01-01

    In a method of immunological assay two different classes of particles which interact at short distances to produce characteristic detectable signals are employed in a modification of the usual latex fixation test. In one embodiment an aqueous suspension of antigen coated tritiated latex particles (LH) and antigen coated polystyrene scintillant particles (L*) is employed to assay antibody in the aqueous medium. The amount of (LH) (L*) dimer formation and higher order aggregation induced and therefore the concentration of antibody (or antigen) present which caused the aggregation can be determined by using standard liquid scintillation counting equipment. (author)

  7. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  8. Proportional gas scintillation detectors and their applications

    International Nuclear Information System (INIS)

    Petr, I.

    1978-01-01

    The principle is described of a gas proportional scintillation detector and its function. Dependence of Si(Li) and xenon proportional detectors energy resolution on the input window size is given. A typical design is shown of a xenon detector used for X-ray spetrometry at an energy of 277 eV to 5.898 keV and at a gas pressure of 98 to 270 kPa. Gas proportional scintillation detectors show considerable better energy resolution than common proportional counters and even better resolution than semiconductor Si(Li) detectors for low X radiation energies. For detection areas smaller than 25 mm 2 Si(Li) detectors show better resolution, especially for higher X radiation energies. For window areas 25 to 190 mm 2 both types of detectors are equal, for a window area exceeding 190 mm 2 the proportional scintillation detector has higher energy resolution. (B.S.)

  9. A Liquid Scintillator System for Dosimetry of Photon and Proton Beams

    International Nuclear Information System (INIS)

    Beddar S

    2010-01-01

    We have developed a 3D system based on liquid scintillator (LS) for the dosimetry of photon and proton therapy. We have validated the LS detector system for fast and accurate quality assurance of IMRT and proton therapy fields. Further improvements are required to optimize the quantitative analysis of the light output provided by the system in photon beams. We have also demonstrated its usefulness for protons as it can determine the position and the range of proton beams. This system has also been shown to be capable of fast, sub-millimeter spatial localization of proton spots delivered in a 3D volume and could be used for quality assurance of IMPT. Further developments are on-going to measure beam intensities in 3D.

  10. Measurements of the proton light output function of the organic liquid scintillator NE213 in several detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, N.P.; Adams, J.M.; Bond, D.S.; Croft, S; Jarvis, O.N. E-mail: onj@jet.uk; Watkins, N

    2002-01-01

    When using an organic liquid scintillator such as NE213 for neutron spectrometry, the light output as a function of proton energy is needed in order to unfold the neutron spectrum from the scintillator's pulse height distribution. We have measured this function for several detectors over the range 1.5-16 MeV approximately, using monoenergetic neutrons from the Harwell 5 MV Van de Graaff accelerator. Results were obtained for a wide variety of sizes and shapes of the scintillator cell, and were found to be essentially in agreement within errors. The results were also compared with those of several other workers (amongst whom there is considerable disagreement). Below 10 MeV, there is excellent agreement with one worker and moderate or poor agreement with others; above 10 MeV, agreement is moderate in all cases. We conclude that workers wishing to unfold neutron spectra from NE213 pulse height distributions would be advised to make measurements with their own particular detector configuration, rather than use published functions.

  11. Fluorescent organic dyes as radiation converters in scintillation counting and laser techniques

    International Nuclear Information System (INIS)

    Guesten, H.

    1989-01-01

    PMP (1-phenyl-3-mesityl-2-pyrazoline) was selected as color quenching from the category of the sterically hindered 1,3-diphenyl-2-pyrazoline by means of comparative optimization between photo-physical and scintillation-spectroscopic and chemical properties and the costs of synthesis. It is applied in liquid scintillation detectors for the detection of β (T, C-14) and in large-volume liquid scintillators for the detection of neutrinos (Rutherford Lab.). (HP) [de

  12. Development of a liquid scintillation method for in vitro determination of 226Ra and 228 Ra in bioassay samples

    International Nuclear Information System (INIS)

    Fernandes, Paulo Cesar P.; Sousa, Wanderson O.; Juliao, Ligia M.Q.C.; Dantas, Bernardo M.

    2011-01-01

    Radium isotopes are dispersed in the environment according to their physicochemical characteristics. The intake of 226 Ra and 228 Ra in humans can occur by inhalation and ingestion and the risk of internal exposure are related to their long half-lives, characteristics of the emission and biokinetics of the isotopes in the human body. The goal of this work is to develop a methodology for the analysis of 226 Ra and 228 Ra in excreta samples (urine and feces), using liquid scintillation technique. Excreta samples were provided by non-exposed humans for the purpose of standardizing the methodology and the establishment of a background level of radium excretion. Radium isotopes were concentrated and separated from the constituents of the sample by co-precipitation with barium sulphate. The precipitate of Ba(Ra)SO 4 was filtrated and weighted for the determination of the chemical yield. The filter containing the precipitate was transferred to a scintillation vial. In the scintillation vial, 8 mL of water, 8 mL of Instagel XF and 4 mL of UltimaGold were added, forming a gel suspension, after stirring the solution. The 226 Ra and 228 Ra activities were determined 21 days after the precipitation of samples. The samples were counted in a liquid scintillation spectrometer. The technique presented adequate sensitivity and reproducibility for the analysis of urine and feces. The activities of 226 Ra and 228 Ra in excreta samples provide useful information for the identification of the main route of intake and for the assessment of the internal exposure of occupationally exposed workers and inhabitants of high background areas. (author)

  13. Results from a new combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    Czech Academy of Sciences Publication Activity Database

    Akhmadaliev, S.; Albiol, F.; Amaral, P.; Lokajíček, Miloš; Němeček, Stanislav

    2000-01-01

    Roč. 449, - (2000), s. 461-477 ISSN 0168-9002 R&D Projects: GA MPO RP-4210/69 Institutional research plan: CEZ:AV0Z1010920 Keywords : liquid argon * calorimeter * hadronic scintillating- tile * CERN SPS * ATLAS * LHC * energy resolution * pions Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.964, year: 2000

  14. A dual-phase xenon TPC for scintillation and ionisation yield measurements in liquid xenon

    Science.gov (United States)

    Baudis, Laura; Biondi, Yanina; Capelli, Chiara; Galloway, Michelle; Kazama, Shingo; Kish, Alexander; Pakarha, Payam; Piastra, Francesco; Wulf, Julien

    2018-05-01

    A small-scale, two-phase (liquid/gas) xenon time projection chamber ( Xurich II) was designed, constructed and is under operation at the University of Zürich. Its main purpose is to investigate the microphysics of particle interactions in liquid xenon at energies below 50 keV, which are relevant for rare event searches using xenon as target material. Here we describe in detail the detector, its associated infrastructure, and the signal identification algorithm developed for processing and analysing the data. We present the first characterisation of the new instrument with calibration data from an internal ^83{m} Kr source. The zero-field light yield is 15.0 and 14.0 photoelectrons/keV at 9.4 and 32.1 keV, respectively, and the corresponding values at an electron drift field of 1 kV/cm are 10.8 and 7.9 photoelectrons/keV. The charge yields at these energies are 28 and 31 electrons/keV, with the proportional scintillation yield of 24 photoelectrons per one electron extracted into the gas phase, and an electron lifetime of 200 μ s. The relative energy resolution, σ /E, is 11.9 and 5.8% at 9.4 and 32.1 keV, respectively using a linear combination of the scintillation and ionisation signals. We conclude with measurements of the electron drift velocity at various electric fields, and compare these to literature values.

  15. A new type of a gas scintillating chamber

    International Nuclear Information System (INIS)

    Khoury, H.J.

    1981-01-01

    In a previous paper (H.J. Khoury - thesis - 1978) the author has described a new type of a gas scintillating chamber, in which the light emitted by excitation of the gas, due to the passage of a charged incoming particle, has its intensity increased by the action of an applied electric field. New experiments are described which contribute to a deeper understanding of the phenomena involved in the scintillating chamber due to the nature of the gas, the electric field and spatial distribution, etc.. The behaviour of the gas scintillation counter is studied both in the proportional region and in the region of limited proportionality. It is shown that by the use of a suitable gas mixture and applied electric field, the resolution of an alpha particle spectrum is considerably increased and values up to 0,9% can be attained. (Author) [pt

  16. Neutron-Gamma Pulse Shape Discrimination With Ne-213 Liquid Scintillator By Using Digital Signal Processing Combined With Similarity Method

    International Nuclear Information System (INIS)

    Mardiyanto

    2008-01-01

    Neutron-Gamma Pulse Shape Discrimination with a NE-213 Liquid Scintillator by Using Digital Signal Processing Combined with Similarity Method. Measurement of mixed neutron-gamma radiation is difficult because a nuclear detector is usually sensitive to both radiations. A new attempt of neutron-gamma pulse shape discrimination for a NE-213 liquid scintillator is presented by using digital signal processing combined with an off-line similarity method. The output pulse shapes are digitized with a high speed digital oscilloscope. The n-γ discrimination is done by calculating the index of each pulse shape, which is determined by the similarity method, and then fusing it with its corresponding pulse height. Preliminary results demonstrate good separation of neutron and gamma-ray signals from a NE-213 scintillator with a simple digital system. The results were better than those with a conventional rise time method. Figure of Merit is used to determine the quality of discrimination. The figure of merit of the discrimination using digital signal processing combined with off-line similarity method are 1.9; 1.7; 1.1; 1.1; and 0.8; on the other hand by using conventional method the rise time are 0.9; 0.9; 0.9; 0.7; and 0.4 for the equivalent electron energy of 800; 278; 139; 69; and 30 keV. (author)

  17. Background characterization in a liquid scintillation spectrometer; Caracterizacion del fondo de un espectrometro de centelleo liquido

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Barquero, L.; Los Arcos, J.M.; Jimenez de Mingo, A.

    1995-07-01

    An alternate procedure for background count rate estimation in a liquid scintillation spectrometer is presented, which does not require to measure a blank with similar composition, volume and quench, to the problem sample. The procedure is based on a double linear parameterization which was obtained from a systematic study of the background observed with glass vials, in three different windows, 0 - 20 KeV, 0 - 800 KeV and 0 - 2 MeV, for volume between 2 and 20 mi of three commercial scintillators, Hisafe II, Ultima-Gold and Instagel, and quenching degree in the interval equivalent to 50% - 3% tritium efficiency. This procedure was tested with standard samples of 3H, and led to average discrepancies less than 10% for activity {>=}0,6 Bq, against conventional methods for which the discrepancies are twice on average. (Author) 10 refs.

  18. Performance of 2000CA/LL and 2260XL liquid scintillation spectrometers for low-level tritium and carbon-14 analyses

    International Nuclear Information System (INIS)

    Rozanski, K.; Stichler, W.; Schwarz, P.

    1991-01-01

    The performance of two commercially available liquid scintillation spectrometers for low-level counting of 3 H and 14 C has been investigated. Two models of new technology Tri-Carb spectrometers from the Packard Instrument Company were tested: the 2000CA/LL and 2260XL. The measurements revealed a superior 3 H performance of the 2000CA/LL equipment owing to its substantially higher counting efficiency. Results for 14 C are less conclusive and depend on the configuration of the counting parameters selected. A comparison of three commercially available scintillation cocktails for tritium assay in water samples revealed a superior performance for PicoFluor LLT. (Author)

  19. Synthesis of plastic scintillation microspheres: Evaluation of scintillators

    International Nuclear Information System (INIS)

    Santiago, L.M.; Bagán, H.; Tarancón, A.; Garcia, J.F.

    2013-01-01

    The use of plastic scintillation microspheres (PSm) appear to be an alternative to liquid scintillation for the quantification of alpha and beta emitters because it does not generate mixed wastes after the measurement (organic and radioactive). In addition to routine radionuclide determinations, PSm can be used for further applications, e.g. for usage in a continuous monitoring equipment, for measurements of samples with a high salt concentration and for an extractive scintillation support which permits the separation, pre-concentration and measurement of the radionuclides without additional steps of elution and sample preparation. However, only a few manufacturers provide PSm, and the low number of regular suppliers reduces its availability and restricts the compositions and sizes available. In this article, a synthesis method based on the extraction/evaporation methodology has been developed and successfully used for the synthesis of plastic scintillation microspheres. Seven different compositions of plastic scintillation microspheres have been synthesised; PSm1 with polystyrene, PSm2 with 2,5-Diphenyloxazol(PPO), PSm3 with p-terphenyl (pT), PSm4 with PPO and 1,4-bis(5-phenyloxazol-2-yl) (POPOP), PSm5 pT and (1,4-bis [2-methylstyryl] benzene) (Bis-MSB), PSm6 with PPO, POPOP and naphthalene and PSm7 with pT, Bis-MSB and naphthalene. The synthesised plastic scintillation microspheres have been characterised in terms of their morphology, detection capabilities and alpha/beta separation capacity. The microspheres had a median diameter of approximately 130 μm. Maximum detection efficiency values were obtained for the PSm4 composition as follows 1.18% for 3 H, 51.2% for 14 C, 180.6% for 90 Sr/ 90 Y and 76.7% for 241 Am. Values of the SQP(E) parameter were approximately 790 for PSm4 and PSm5. These values show that the synthesised PSm exhibit good scintillation properties and that the spectra are at channel numbers higher than in commercial PSm. Finally, the addition

  20. Preparatory on manganose salts of carboxilic acids labelled with 54Mn and comparison with 54MnCl2 in liquid scintillation counting

    International Nuclear Information System (INIS)

    Rodriguez, L.; Los Arcos, J.M.; Grau, A.

    1992-01-01

    Procedures for scintillation sample preparation of manganose dimethylbutirate, decanoate and palmitate, labelled with 54 Mn are described. Their quenching effect, spectral evolution and counting stability along several weeks are analysed in liquid scintillation measurements with Toluene, HlSafe II, PCS, Instagel, Dioxane-naphtalene and Toluene-alcohol. For comparison, inorganic 54 MnCl 2 samples are also studied, resulting in acceptable counting stability but showing greater quenching and signs of little spectral degradation against the organic samples. (author) 14 fig. 15 ref