WorldWideScience

Sample records for liquid pb-bi eutectic

  1. High temperature ultrasonic transducers for imaging and measurements in a liquid Pb/Bi eutectic alloy.

    Science.gov (United States)

    Kazys, Rymantas; Voleisis, Algirdas; Sliteris, Reimondas; Mazeika, Liudas; Van Nieuwenhove, Rudi; Kupschus, Peter; Abderrahim, Hamid Aït

    2005-04-01

    In some nuclear reactors or accelerator-driven systems (ADS) the core is intended to be cooled by means of a heavy liquid metal, for example, lead-bismuth (Pb/Bi) eutectic alloy. For safety and licensing reasons, an imaging method of the interior of ADS, based on application of ultrasonic waves, has thus to be developed. This paper is devoted to description of developed various ultrasonic transducers suitable for long term imaging and measurements in the liquid Pb/Bi alloy. The results of comparative experimental investigations of the developed transducers of different designs in a liquid Pb/Bi alloy up to 450 degrees C are presented. Prototypes with different high temperature piezoelectric materials were investigated: PZT, bismuth titanate (Bi4Ti3O12), lithium niobate (LiNbO3), gallium orthophosphate (GaPO4) and aluminum nitride (A1N). For acoustic coupling with the metal alloy, it was proposed to coat the active surface of the transducers by diamond like carbon (DLC). The radiation robustness was assessed by exposing the transducers to high gamma dose rates in one of the irradiation facilities at SCK x CEN. The experimental results proved that the developed transducers are suitable for long-term operation in harsh conditions.

  2. Corrosion behavior of austenitic and ferritic/martensitic steels in oxygen-saturated liquid Pb-Bi eutectic at 450circC and 550circC

    OpenAIRE

    倉田 有司; 二川 正敏; 斎藤 滋

    2005-01-01

    Static corrosion tests of various austenitic and ferritic/martensitic steels were conducted in oxygen-saturated liquid Pb-Bi at 450circC and 550circC for 3000h to study the effects of temperature and alloying elements on corrosion behavior. Oxidation, grain boundary corrosion, dissolution and penetration were observed. The corrosion depth decreases at 450circC with increasing Cr content in steels regardless of ferritic/martensitic or austenitic steels. Appreciable dissolution of Ni and Cr doe...

  3. Behavior of steels in flowing liquid PbBi eutectic alloy at 420-600 deg. C after 4000-7200 h

    International Nuclear Information System (INIS)

    Mueller, G.; Heinzel, A.; Konys, J.; Schumacher, G.; Weisenburger, A.; Zimmermann, F.; Engelko, V.; Rusanov, A.; Markov, V.

    2004-01-01

    This paper presents the results of steel exposure up to 7200 h in flowing LBE at elevated temperatures and is a follow-up paper of that with results of an exposure of up to 2000 h. The examined AISI 316 L, 1.4970 austenitic and MANET 10Cr martensitic steels are suitable as a structural material in LBE (liquid eutectic Pb 45 Bi 55 ) up to 550 deg. C, if 10 -6 wt% of oxygen is dissolved in the LBE. The martensitic steel develops a thick magnetite and spinel layer while the austenites have thin spinel surface layers at 420 deg. C and thick oxide scales like the martensitic steel at 550 deg. C. The oxide scales protect the steels from dissolution attack by LBE during the whole test period of 7200 h. Oxide scales that spall off are replaced by new protective ones. At 600 deg. C severe attack occurs already after 2000 and 4000 h of exposure. Steels with 8-15 wt% Al alloyed into the surface suffer no corrosion attack at all experimental temperatures and exposure times

  4. Theoretical basis of oxygen pressure control in liquid Pb-Bi using YSZ

    International Nuclear Information System (INIS)

    Jung, S. H.; Hwang, I. S.; Park, B. K.

    2002-01-01

    To develop a liquid Pb-Bi cooled reactor, it is necessary to solve the structural material corrosion problem caused by Pb-Bi. This experiment examine the fundamental behaviors to practically test the oxide film formation on the surface of structural material known as solution of corrosion inhibition in liquid Pb-Bi. The corrosion inhibition through oxide film formation is to prevent metals from dissolving into liquid Pb-Bi though not forming coolants slug resulted from oxidation. In this paper, we examined the oxygen pressure controllability using YSZ in cover gas, and theoretically derived the relationship between oxygen cover gas pressure and dissolved oxygen in liquid Pb-Bi

  5. Proceedings of the international workshop on the technology and thermal hydraulics of heavy liquid metals (Hg, Pb, Bi, and their eutectics)

    International Nuclear Information System (INIS)

    Appleton, B.R.; Bauer, G.S.

    1996-06-01

    The International Workshop on the Technology and Thermal Hydraulics of Heavy Liquid Metals (Schruns Workshop) was organized to assess the R ampersand D and technology problems associated with designing and building a heavy liquid metal target for a spallation neutron source. The European scientific community is completing a feasibility study for a future, accelerator-based, pulsed spallation neutron source that would deliver a beam power of 5 megawatts (MW) to a target. They have concluded that a liquid metal target is preferable to conventional solid targets for handling the extreme radiation environments, high heat loads, and pulsed power. Similarly, the ORNL has been funded by the DOE to design a high-power, pulsed spallation neutron source that would begin operation at about 1 MW but that could be upgraded to significantly higher powers in the future. Again, the most feasible target design appears to be a liquid metal target. Since the expertise needed to consider these problems resides in a number of disparate disciplines not normally covered by existing conferences, this workshop was organized to bring a small number of scientists and engineers together to assess the opportunities for building such a target. The objectives and goals of the Schruns Workshop were to: review and share existing information on the science and technology of heavy liquid metal systems. Evaluate the opportunities and limitations of materials compatibility, thermal hydraulics and heat transfer, chemical reactions, corrosion, radiation effects, liquid-gas mixtures, systems designs, and circuit components for a heavy liquid metal target. Establish the critical R ampersand D and technology that is necessary to construct a liquid metal target. Explore opportunities for cooperative R ampersand D among members of the international community that could expedite results, and share expertise and resources. Selected papers are indexed separately for inclusion in the Energy Science and

  6. Proceedings of the international workshop on the technology and thermal hydraulics of heavy liquid metals (Hg, Pb, Bi, and their eutectics)

    Energy Technology Data Exchange (ETDEWEB)

    Appleton, B.R.; Bauer, G.S. [comp.

    1996-06-01

    The International Workshop on the Technology and Thermal Hydraulics of Heavy Liquid Metals (Schruns Workshop) was organized to assess the R&D and technology problems associated with designing and building a heavy liquid metal target for a spallation neutron source. The European scientific community is completing a feasibility study for a future, accelerator-based, pulsed spallation neutron source that would deliver a beam power of 5 megawatts (MW) to a target. They have concluded that a liquid metal target is preferable to conventional solid targets for handling the extreme radiation environments, high heat loads, and pulsed power. Similarly, the ORNL has been funded by the DOE to design a high-power, pulsed spallation neutron source that would begin operation at about 1 MW but that could be upgraded to significantly higher powers in the future. Again, the most feasible target design appears to be a liquid metal target. Since the expertise needed to consider these problems resides in a number of disparate disciplines not normally covered by existing conferences, this workshop was organized to bring a small number of scientists and engineers together to assess the opportunities for building such a target. The objectives and goals of the Schruns Workshop were to: review and share existing information on the science and technology of heavy liquid metal systems. Evaluate the opportunities and limitations of materials compatibility, thermal hydraulics and heat transfer, chemical reactions, corrosion, radiation effects, liquid-gas mixtures, systems designs, and circuit components for a heavy liquid metal target. Establish the critical R & D and technology that is necessary to construct a liquid metal target. Explore opportunities for cooperative R & D among members of the international community that could expedite results, and share expertise and resources. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  7. Investigation of corrosion resistance of 18Cr-14NNi-1.5Si austenitic steel in molten PbBi eutectic

    International Nuclear Information System (INIS)

    Rivai, A.K.; Heinzel, H.; Effendi, N.

    2013-01-01

    Full-text: The development of high corrosion resistant materials for the fuel cladding and structural materials in liquid lead-bismuth (Pb-Bi) eutectic environment especially at high temperature is a critical issue for the deployment of LFR (Lead alloy-cooled fast reactor) and ADS (Accelerator driven Transmutation System). Pb-Bi eutectic is a coolant for LFR which is one of the future nuclear reactors in the world (Generation IV reactors), and also a spallation target material and a coolant for ADS. In this study, corrosion test of an austenitic steel was done in COSTA Pb-Bi eutectic corrosion test facility at Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Germany. The sample was an 18Cr-14Ni-1.5Si austenitic steel which has been developed in Center For Technology of Nuclear Industry Materials, Indonesian National Nuclear Energy Agency. The test was done in stagnant molten Pb-Bi eutectic at 550 degree Celsius of temperature for about 300 hours with an oxygen concentration of 1 x 10 -6 wt %. The characterization was carried out using OM (Optical Microscope), SEM-EDS (Scanning Electron Microscope and Energy Dispersive X-ray Spectroscope) and AFM (Atomic Force Microscope). The corrosion test result showed the formation of a duplex oxide layer for example an outer iron oxide layer with about 3-3.4 μm in thickness. Furthermore, there was no penetration of Pb-Bi into the bulk of the specimen because of the protection from the protective oxide layer. (author)

  8. Corrosion behavior of materials in a liquid Pb-Bi spallation target

    International Nuclear Information System (INIS)

    Barbier, F.; Balbaud, F.; Deloffre, P.; Terlain, A.

    2001-01-01

    Corrosion results of austenitic and martensitic steels exposed to Pb-Bi liquid alloy (material candidate for the spallation target of ADS) are presented. They show the large influence of parameters such as the oxygen content in Pb-Bi and the Pb-Bi velocity on the corrosion. At low O 2 content (7 10 -8 wt%) in Pb-Bi the steels can suffer from significant dissolution while at high O 2 (1-2 10 -6 wt%) content they can be covered by an oxide layer which protects them from the dissolution. Moreover it is shown that, in aniso-thermal systems, the deposit chemical composition formed in the cold parts can depend on the temperature. (authors)

  9. Liquid Li-Pb-Bi, a new tritium breeder

    International Nuclear Information System (INIS)

    Rogers, A.G.; Benedict, B.L.; Clemmer, R.G.

    1981-01-01

    In light of their potential utility as tritium breeder-blanket materials, a study was conducted to identify and characterize low-melting phases in the lithium-lead-bismuth system. It is found that a low-melting ternary phase field did in fact exist, e.g., compositions with less than or equal to 20 atom percent lithium and Pb/Bi = 0.773 melted at or below 140 0 C. In addition, the qualitative reactivity of Li-Bi-Pb alloys with water was tested, and although minimal evidence of exothermic chemical reaction was observed, a physical vapor explosion did occur in one of the tests

  10. Out-of-pile chemical compatibility of Pb-Bi eutectic alloy with graphite

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, A.K.; Bhagat, R.K.; Jarvis, T.; Majumdar, S. [Radiometallurgy Div., Bhabha Atomic Research Centre, Mumbai (India); Laik, A.; Kale, G.B. [Material Science Div., Bhabha Atomic Research Centre, Mumbai (India); Kamath, H.S. [Nuclear Fuels Group, Bhabha Atomic Research Centre, Mumbai (India)

    2006-06-15

    Lead Bismuth eutectic alloy (Pb: 55.5 wt.%, Bi: 44.5 wt.%) is a potential candidate coolant material for high-temperature reactors because of its low melting point (124 C), high thermal conductivity, heat capacity, and better neutronic properties. Out-of-pile chemical compatibility studies of this coolant with graphite (coolant channel) have been carried out by isothermal annealing of the liquid alloy in a graphite crucible at 800, 900, 1000, and 1100 C for times ranging from 100 h to 1000 h. Formation of a reaction layer is observed. The growth rate of the reaction layer follows a parabolic law. Reaction layer thicknesses of 61.3 {mu}m and 121 {mu}m are estimated from the growth rate vs. time relation after 1 year and 5 years respectively. The growth of the reaction layer is diffusion-controlled and the activation energy of the reaction is estimated to be 100 KJ/mol. (orig.)

  11. Out-of-pile chemical compatibility of Pb-Bi eutectic alloy with graphite

    International Nuclear Information System (INIS)

    Sengupta, A.K.; Bhagat, R.K.; Jarvis, T.; Majumdar, S.; Laik, A.; Kale, G.B.; Kamath, H.S.

    2006-01-01

    Lead Bismuth eutectic alloy (Pb: 55.5 wt.%, Bi: 44.5 wt.%) is a potential candidate coolant material for high-temperature reactors because of its low melting point (124 C), high thermal conductivity, heat capacity, and better neutronic properties. Out-of-pile chemical compatibility studies of this coolant with graphite (coolant channel) have been carried out by isothermal annealing of the liquid alloy in a graphite crucible at 800, 900, 1000, and 1100 C for times ranging from 100 h to 1000 h. Formation of a reaction layer is observed. The growth rate of the reaction layer follows a parabolic law. Reaction layer thicknesses of 61.3 μm and 121 μm are estimated from the growth rate vs. time relation after 1 year and 5 years respectively. The growth of the reaction layer is diffusion-controlled and the activation energy of the reaction is estimated to be 100 KJ/mol. (orig.)

  12. Excellent corrosion resistance of 18Cr-20Ni-5Si steel in liquid Pb-Bi

    International Nuclear Information System (INIS)

    Kurata, Y.; Futakawa, M.

    2004-01-01

    The corrosion properties of three austenitic steels with different Si contents were studied under oxygen-saturated liquid Pb-Bi condition for 3000 h. The three austenitic steels did not exhibit appreciable dissolution of Ni and Cr at 450 deg. C. At 550 deg. C, the thick ferrite layer produced by dissolution of Ni and Cr was found in JPCA and 316SS with low Si contents while the protective oxide film composed of Si and O was formed on 18Cr-20Ni-5Si steel and prevented dissolution of Ni and Cr

  13. Compatibility of different stainless steels in molten Pb-Bi eutectic at high temperatures

    International Nuclear Information System (INIS)

    Chandra, K.; Kain, Vivekanand; Laik, A.; Sharma, B.P.; Bhattacharya, S.; Debnath, A.K.

    2005-10-01

    Advanced nuclear reactors and the accelerator driven subcritical (ADS) system require the structural materials to be in contact with the molten metals/lead-bismuth eutectic at 400 degC and higher temperatures. One of the primary concerns in using the molten lead-bismuth eutectic (LBE) as a coolant in the primary circuit of these systems is the degradation of structural materials in contact with LBE. An experimental setup has been fabricated to expose the materials in the molten LBE at high temperatures in stagnant condition under inert atmosphere. Samples from five different stainless steels (types 304L, 316L, 403, duplex SS SAF 2205 and super austenitic SS 2RK65) were exposed in this setup at 450 degC for 200h and at 500 degC for 600 and 2100 h under argon atmosphere. A different setup was prepared in which type 316L SS tube in the as-welded condition was exposed in molten LBE at 500 degC for 1200 h in rotating condition. All the samples showed formation of oxide on their surfaces. The thickness and compositional profiles of these oxides analyzed by EPMA confirmed formation of a double layer oxide on type 316L SS. The oxide thickness was highest on SS 403, while it was lowest on 304L and 316L SS. SEM results showed dissolution of materials at the surface in Sandvik 2RK65 and preferential dissolution of austenite phase in duplex SS. None of the stainless steels, except the duplex and the super austenitic stainless steels, showed any localized or selective corrosion. The composition of LBE before and after the exposure tests was analyzed by XRF technique. The result showed presence of Fe, Cr and Ni in the used LBE but these elements were not present in the virgin Pb-Ei alloy. This showed that the corrosion of stainless steels in LBE at temperatures upto 500 degC is due to oxidation and dissolution of alloying elements through the oxide on stainless steels. (author)

  14. Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb Bi at 450 and 550 °C

    Science.gov (United States)

    Kurata, Y.; Futakawa, M.; Saito, S.

    2005-08-01

    Static corrosion tests of various steels were conducted in oxygen-saturated liquid Pb-Bi eutectic at 450 °C and 550 °C for 3000 h to study the effects of temperature and alloying elements on corrosion behavior in liquid Pb-Bi. Corrosion depth decreases at 450 °C with increasing Cr content in steels regardless of ferritic/martensitic steels or austenitic steels. Appreciable dissolution of Ni and Cr does not occur in the three austenitic steels at 450 °C. Corrosion depth of ferritic/martensitic steels also decreases at 550 °C with increasing Cr content in steels whereas corrosion depth of austenitic steels, JPCA and 316SS becomes larger due to ferritization caused by dissolution of Ni at 550 °C than that of ferritic/martensitic steels. An austenitic stainless steel containing about 5%Si exhibits fine corrosion resistance at 550 °C because the protective Si oxide film is formed and prevents dissolution of Ni and Cr.

  15. Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb-Bi at 450 and 550 deg. C

    International Nuclear Information System (INIS)

    Kurata, Y.; Futakawa, M.; Saito, S.

    2005-01-01

    Static corrosion tests of various steels were conducted in oxygen-saturated liquid Pb-Bi eutectic at 450 deg. C and 550 deg. C for 3000 h to study the effects of temperature and alloying elements on corrosion behavior in liquid Pb-Bi. Corrosion depth decreases at 450 deg. C with increasing Cr content in steels regardless of ferritic/martensitic steels or austenitic steels. Appreciable dissolution of Ni and Cr does not occur in the three austenitic steels at 450 deg. C. Corrosion depth of ferritic/martensitic steels also decreases at 550 deg. C with increasing Cr content in steels whereas corrosion depth of austenitic steels, JPCA and 316SS becomes larger due to ferritization caused by dissolution of Ni at 550 deg. C than that of ferritic/martensitic steels. An austenitic stainless steel containing about 5%Si exhibits fine corrosion resistance at 550 deg. C because the protective Si oxide film is formed and prevents dissolution of Ni and Cr

  16. Corrosion mechanism of T91 steel by Pb-Bi eutectic used as spallation target: importance for accelerator driven system; Mecanisme de corrosion de l'acier T91 par l'eutectique Pb-Bi utilise comme materiau de cible de spallation: importance pour les reacteurs hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, L

    2005-10-15

    The aim of this work has been to determine the oxidation mechanism of the martensitic steel T91 in the Pb-Bi liquid eutectic alloy, saturated in oxygen, at 470 C, in order to develop a long-term predictive model of the oxidation kinetics of the steel. This work enters in the framework of the lifetime studies of the spallation module demonstrator: MEGAPIE for the researches on hybrid reactors. An experimental characterization of the oxide layers has been carried out as well as the oxidation kinetics of the T91 steel. An oxidation mechanism has been elaborated from these experimental results and then simulated. The oxide layer formed at the T91 surface presents a duplex structure constituted by a magnetite external layer and a spinel Fe-Cr internal layer. A growth mechanism of the oxide layers has been proposed: the growth of the magnetite layer seems to be limited by the iron diffusion in the lattice of the duplex oxide layer. In parallel, an auto-regulation mechanism seems to govern the growth of the Fe-Cr spinel layer. This mechanism includes a non-limiting step of the oxygen diffusion in the oxide layer (by liquid way in the nano-channels of lead), as well as a limiting step of iron diffusion in the lattice of the oxide layer. In considering the proposed oxidation mechanisms, a simulation of the growth of the two oxide layers is carried out and compared to the long-time oxidation growth kinetics. The good agreement between the experimental results allows, finally, to strengthen the proposition of a long-term growth kinetic oxidation mechanism of the oxide layers. (O.M.)

  17. Investigation of evaporation characteristics of polonium and its lighter homologues selenium and tellurium from liquid Pb-Bi-eutecticum

    CERN Document Server

    Neuhausen, J; Eichler, B

    2004-01-01

    The evaporation behaviour of polonium and its lighter homologues selenium and tellurium dissolved in liquid Pb-Bi-eutecticum (LBE) has been studied at various temperatures in the range from 482 K up to 1330 K under Ar/H2 and Ar/H2O-atmospheres using γ-ray spectroscopy. Polonium release in the temperature range of interest for technical applications is slow. Within short term (1h) experiments measurable amounts of polonium are evaporated only at temperatures above 973 K. Long term experiments reveal that a slow evaporation of polonium occurs at temperatures around 873 K resulting in a fractional polonium loss of the melt around 1% per day. Evaporation rates of selenium and tellurium are smaller than those of polonium. The presence of H2O does not enhance the evaporation within the error limits of our experiments. The thermodynamics and possible reaction pathways involved in polonium release from LBE are discussed.

  18. Thermodynamic properties and equation of state of liquid lead and lead bismuth eutectic

    Science.gov (United States)

    Sobolev, V. P.; Schuurmans, P.; Benamati, G.

    2008-06-01

    Since the 1950s, liquid lead (Pb) and lead-bismuth eutectic (Pb-Bi) have been studied in the USA, Canada and in the former-USSR as potential coolants for nuclear installations due to their very attractive thermophysical and neutronic properties. However, experimental data on the thermal properties of these coolants in the temperature range of interest are still incomplete and often contradictory. This makes it very difficult to perform design calculations and to analyse the normal and abnormal behaviour of nuclear installations where these coolants are expected to be used. Recently, a compilation of heavy liquid metal (HLM) properties along with recommendations for its use was prepared by the OECD/NEA Working Party on Fuel Cycle (WPFC) Expert Group on Lead-Bismuth Eutectic Technology. A brief review of this compilation and some new data are presented in this article. A set of correlations for the temperature dependence of the main thermodynamic properties of Pb and Pb-Bi(e) at normal pressure, and a set of simplified thermal and caloric equations of state for the liquid phase are proposed.

  19. Nano-Channels Early Formation Investigation on Stainless Steel 316Ti after Immersion in Molten Pb-Bi

    Directory of Open Access Journals (Sweden)

    Abu Khalid Rivai

    2017-04-01

    Full Text Available Pb-Bi (lead-bismuth eutectic-LBE is a coolant of one of main candidates for the future nuclear reactor in the world (Generation IV reactors i.e. LFR (Lead alloy-cooled Fast Reactor, and also a spallation target material for ADS (Accelerator Driven Transmutation System. However, the development of fuel cladding and structural materials in LBE environment, especially at high temperature, is a critical issue for the deployment of LFR and ADS. This is because of the corrosive characteristic of LBE to metals as constituent materials of fuel cladding and structural of the reactors. In this study, corrosion test of a high-chromium austenitic steel i.e. SS316Ti in liquid Pb-Bi at 550ºC has been carried out for about 300 hours. The characterization using SEM-EDS (Scanning Electron Microscope-Energy Dispersive X-ray Spectroscope showed that an iron oxide as the outer layer and a chromium oxide as the inner layer on the surface of the specimen were formed which protected the steel specimen from corrosion and dissolution attack of Pb-Bi. However, small amount of Pb-Bi could penetrate into the iron oxide layer through ultra-thin channels. Atomic Force Microscopy (AFM was employed to investigate the phenomena of the channels formation. The results of the nano-scale investigation showed clearly the formation of the channels.

  20. Potential containment materials for liquid-lead and lead-bismuth eutectic spallation neutron source

    International Nuclear Information System (INIS)

    Park, J.J.; Butt, D.P.; Beard, C.A.

    1997-11-01

    Lead (Pb) and lead-bismuth eutectic (44Pb-56Bi) have been the two primary candidate liquid-metal target materials for the production of spallation neutrons. Selection of a container material for the liquid-metal target will greatly affect the lifetime and safety of the target subsystem. For the lead target, niobium-1 (wt%) zirconium (Nb-1Zr) is a candidate containment material for liquid lead, but its poor oxidation resistance has been a major concern. The oxidation rate of Nb-1Zr was studied based on the calculations of thickness loss due to oxidation. According to these calculations, it appeared that uncoated Nb-1Zr may be used for a one-year operation at 900 C at P O 2 = 1 x 10 -6 torr, but the same material may not be used in argon with 5-ppm oxygen. Coating technologies to reduce the oxidation of Nb-1Zr are reviewed, as are other candidate refractory metals such as molybdenum, tantalum, and tungsten. For the Pb-Bi target, three candidate containment materials are suggested based on a literature survey of the materials compatibility and proton irradiation tests: Croloy 2-1/4, modified 9Cr-1Mo, and 12Cr-1Mo (HT-9) steel. These materials seem to be used only if the lead-bismuth is thoroughly deoxidized and treated with zirconium and magnesium

  1. Technology for cleaning of Pb-Bi adhering to steel (1). Basic tests

    International Nuclear Information System (INIS)

    Saito, Shigeru; Sasa, Toshinobu; Umeno, Makoto; Kurata, Yuji; Kikuchi, Kenji; Futakawa, Masatoshi

    2004-12-01

    The accelerator driven system (ADS) is proposed to transmute minor actinides (MA) in high-level waste from spent fuels of nuclear power reactors. Liquid Pb-Bi alloy is a candidate material for spallation target and coolant of ADS. Pb-Bi cleaning technology is required to reduce radiation exposure during maintenance service and to decontaminate replaced components. In this study, three cleaning methods were tested; silicon oil cleaning at 170degC, mixture of acetic acid and nitric acid cleaning. Specimens were prepared by immersion in melted Pb-Bi. After silicon oil tests, most of Pb-Bi remained on the surface of the specimens. It was found that blushing was needed to remove Pb-Bi effectively. On the other hands, Pb-Bi was easily dissolved and almost removed in the mixed acid and nitric acid. Silicon oil cleaning did not affect on base metals. The surface of base metals was slightly blacked after mixed acid cleaning. F82H base metals were corroded by nitric acid. (author)

  2. The inhomogeneities of (Pb,Bi)2223 superconducting tapes and their detection

    International Nuclear Information System (INIS)

    Leeuwen, S. van

    1999-05-01

    This thesis consists of two parts: first, the inhomogeneities that were observed in high temperature superconducting (Pb,Bi)2223 tapes were studied followed by the design of two rigs which were built to detect them. These investigations concentrated on (Pb,Bi)2223 phase high temperature superconducting tapes. Superconductors and their applications were briefly evaluated. It was found that high temperature superconductors have unique properties which cannot be duplicated by their counterparts. However, it was noted that there are significant improvements to be made before they can be commercially viable. An investigation was carried out into the variation of core density within cross sections and along lengths of (Pb,Bi)2223 tapes during fabrication. It was observed that rolling and thermal treatment brought about a non-uniform core density in both these aspects of tile tape. This was followed by an investigation into the effect of core density on the formation of the (Pb,Bi)2223 phase. It was shown that a high core density formed the (Pb,Bi)2223 phase at a slower rate than a lower core density under the thermal treatment. A high core density and a slow heating rate produced smaller 2212 grains at the end of the incubation period. Smaller 2212 grains were thought to be linked to the faster formation of the (Pb,B1)2223 phase. The highest Jc was from a high core density tape which had the smaller 2212 grains at the end of incubation period. Smaller 2212 grains were thought to aid a more homogeneous conversion to the (Pb,Bi)2223 phase. Alloy-sheathed (Pb,Bi)2223 superconducting tapes were produced in order to fabricate a more homogeneous core density. It was found that the alloy sheath (with an addition of 15% wt Ag in the precursor powder) changed the characteristics of the core in several ways: the formation of the (Pb,Bi)2223 phase was homogeneous across the thickness of the core, a smaller 2212 grain size was formed at the end of the incubation period and a higher

  3. Liquid-liquid structure transition and nucleation in undercooled Co-B eutectic alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yixuan [Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an, Shanxi (China); Universite Grenoble Alpes, LNCMI, Grenoble (France); CNRS, LNCMI, Grenoble (France); Li, Jinshan; Wang, Jun; Kou, Hongchao [Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an, Shanxi (China); Beagunon, Eric [Universite Grenoble Alpes, LNCMI, Grenoble (France); CNRS, LNCMI, Grenoble (France)

    2017-06-15

    Cyclic superheating and cooling were carried out for the undercooled hypereutectic Co{sub 80}B{sub 20}, eutectic Co{sub 81.5}B{sub 18.5,} and hypoeutectic Co{sub 83}B{sub 17} alloys. For each alloy, there is a critical overheating temperature T{sub c}° at which there is a sharp increase of the mean undercooling, i.e., below (above) T{sub c}°, and the mean undercooling is about 80 °C (200 °C). DSC measurements show that there is a thermal absorption peak in the heating process, the peak temperature of which is nearly equal to the critical overheating temperature, indicating that the temperature-induced liquid-liquid structure transition does occur and should relate highly to nucleation in the undercooled Co-B eutectic melts. The effect of the liquid-liquid structure transition on nucleation was interpreted by the recent nucleation theory that considers the structures of overheated melts, and the composition-dependent overheating temperature was ascribed to the change of local favored structures. The present work provides further evidences for the liquid-liquid structure transition and is helpful for understanding solidification in undercooled melts. (orig.)

  4. Structure of liquid Au-Si alloys around the eutectic region

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, S. [Faculty of Sciences, Kyushu University, Ropponmatsu Fukuoka 810-8560 (Japan)], E-Mail: takeda@rc.kyushu-u.ac.jp; Fujii, H. [Graduate School of Sciences, Kyushu University, Ropponmatsu Fukuoka 810-8560 (Japan); Kawakita, Y. [Faculty of Sciences, Kyushu University, Ropponmatsu Fukuoka 810-8560 (Japan); Kato, Y. [Graduate School of Sciences, Kyushu University, Ropponmatsu Fukuoka 810-8560 (Japan); Fujita, S. [Graduate School of Sciences, Kyushu University, Ropponmatsu Fukuoka 810-8560 (Japan); Yokota, Y. [Graduate School of Sciences, Kyushu University, Ropponmatsu Fukuoka 810-8560 (Japan); Kohara, S. [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouo Mikazuki-cho, Sayou-gun Hyogo 670-5198 (Japan)

    2007-03-25

    X-ray diffraction measurements have been carried out for liquid Au-Si alloys around the eutectic region by the transmission method using high-energy X-ray to investigate the atomic arrangements in the liquid state. From the temperature dependence of the observed structure factors, the partial pair correlation and the detailed atomic arrangements will be discussed on the basis of a Reverse Monte Carlo analysis. The reproduced atomic arrangements around the eutectic region suggest the substitution structure and also rather dense liquid with decreasing temperature.

  5. Binary eutectic clusters and glass formation in ideal glass-forming liquids

    International Nuclear Information System (INIS)

    Lu, Z. P.; Shen, J.; Xing, D. W.; Sun, J. F.; Liu, C. T.

    2006-01-01

    In this letter, a physical concept of binary eutectic clusters in 'ideal' glass-forming liquids is proposed based on the characteristics of most well-known bulk metallic glasses (BMGs). The authors approach also includes the treatment of binary eutectic clusters as basic units, which leads to the development of a simple but reliable method for designing BMGs more efficiently and effectively in these unique glass-forming liquids. As an example, bulk glass formers with superior glass-forming ability in the Zr-Ni-Cu-Al and Zr-Fe-Cu-Al systems were identified with the use of the strategy

  6. Glycerol-based deep eutectic solvents as extractants for the separation of MEK and ethanol via liquid-liquid extraction

    NARCIS (Netherlands)

    Rodriguez, N.R.; Ferré Güell, J.; Kroon, M.C.

    2016-01-01

    Four different glycerol-based deep eutectic solvents (DESs) were tested as extracting agents for the separation of the azeotropic mixture {methyl ethyl ketone + ethanol} via liquid-liquid extraction. The selected DESs for this work were: glycerol/choline chloride with molar ratios (4:1) and (2:1),

  7. Sorption of radionuclides from Pb-Bi melt. Report 1

    International Nuclear Information System (INIS)

    Konovalov, Eh.E.; Il'icheva, N.S.; Trifonova, O.E.

    2015-01-01

    Results of laboratory investigations of sorption and interfacial distribution of 54 Mn, 59 Fe, 60 Co, 106 Ru, 125 Sb, 137 Cs, 144 Ce, 154,155 Eu and 235,238 U radionuclides in the system Pb-Bi melt - steel surface are analyzed. It is shown that 106 Ru and 125 Sb are concentrated in Pb-Bi melt and other radionuclides with higher oxygen affinity are sorbed on oxide deposits on structural materials. Temperature dependences of sorption efficiency of radionuclides are studied. It is shown that there is sharp increase of this value for all radionuclides near the temperature range 350-400 deg C. Recommendations are given on the use of 106 Ru and 125 Sb as a reference for fuel element rupture detection system with radiometric monitoring of coolant melt samples and 137 Cs, 134 Cs, 134m Cs with radiometric monitoring of sorbing samples [ru

  8. Contactless flowrate sensors for Na, PbBi and Pb flows

    International Nuclear Information System (INIS)

    Buchenau, D.; Gerbeth, G.; Priede, J.

    2011-01-01

    Accurate and reliable flow rate measurements are required for various liquid metal systems such as the Na or Lead-flows in fast reactors, the PbBi-flows in transmutation systems, or the flows in liquid metal targets. For liquid metal flows, a contactless measurement is preferable. In this paper we report on the recent development of two types of such flow meters. The former operates by detecting the flow-induced disturbance in the phase distribution of an externally applied AC magnetic field. Such a phase-shift flow meter was developed with an emitting coil at one side of the duct and two sensing coils at the opposite side. The second approach uses a rotatable single cylindrical permanent magnet, which is placed close to the liquid metal duct. The rotation rate of this magnet is proportional to the flow rate. (author)

  9. Pressure-induced structural change in liquid GaIn eutectic alloy

    DEFF Research Database (Denmark)

    Yu, Q.; Ahmad, A. S.; Ståhl, Kenny

    2017-01-01

    Synchrotron x-ray diffraction reveals a pressure induced crystallization at about 3.4 GPa and a polymorphic transition near 10.3 GPa when compressed a liquid GaIn eutectic alloy up to ~13 GPa at room temperature in a diamond anvil cell. Upon decompression, the high pressure crystalline phase...

  10. Behavior of radioisotope in liquid neutron irradiated Pb-17Li eutectic

    International Nuclear Information System (INIS)

    Tebus, V.N.; Aksenov, B.S.; Klabukov, U.G.

    1994-01-01

    Investigation of radioisotope 210 Po evaporation from liquid neutron irradiated Pb- 17 Li eutectic has been performed by Knudsen method. Equilibrium 210 Po vapor pressures at temperatures 250-700 degrees C were found about 3-4 orders of magnitude less than that for pure Po and were closed to equilibrium vapor pressures of Po-Pb compound. It was proposed Po forms stable Po-Pb compounds in eutectic at temperatures up to 750-800 degrees C. But disintegrates during long storage owing to self irradiation. It was determined Po aerosol transfer with radio gases takes place at the melting period. Contamination is happened also under irradiated eutectic storage at room temperature owing to aggregate recoil characteristic of Po

  11. A study on the corrosion characteristics of lead-bismuth liquid metal

    International Nuclear Information System (INIS)

    Tak, Nam Il; Park, Won S.; Han, Seok Jung; Jeong, Won Seok

    1999-03-01

    Pb-Bi eutectic has been adopted as a coolant and spallation target material of HYPER (Hybrid Power Extraction Reactor), an accelerator driven subcritical transmutation system. The contents and scope of the present study are to implement systematic survey and analyses of available results on the corrosion characteristics of Pb-Bi liquid metal which are considered to be the most important among Pb-Bi coolant technologies and to provide fundamental bases for future research efforts. Major parameters affecting the corrosion of structural materials in liquid metals are temperature, flow velocity, contents of impurities in coolant, compositions of structural materials, and so forth. It was already known that for traditional commercial austenitic steels of 18Cr-10Ni-Ti type and 12%Cr ferritic steels, the operating temperatures of Pb-Bi coolant cannot be raised above 400 dg C and 450 dg C, respectively. However, extensive researches have been performed to protect structural materials under higher operating temperature such as the development of various kinds of coating methods for steels and the investigations of coolant inhibition by different chemical elements. The available experimental results show that the effective methods to improve the performance of structural materials in Pb-Bi coolant are the development of suitable steel alloys, the creation of oxide type coatings, and the control of oxygen inhibition. According to the recently presented research results of URRS, utilization of these methods makes it possible to raise the operating temperature limit to 620-650 dg C. It provides the possibility of usage of Pb-Bi coolant for the transmutation system, HYPER some day. (Author). 27 refs., 6 tabs., 15 figs

  12. A study on the corrosion characteristics of lead-bismuth liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Tak, Nam Il; Park, Won S.; Han, Seok Jung; Jeong, Won Seok

    1999-03-01

    Pb-Bi eutectic has been adopted as a coolant and spallation target material of HYPER (Hybrid Power Extraction Reactor), an accelerator driven subcritical transmutation system. The contents and scope of the present study are to implement systematic survey and analyses of available results on the corrosion characteristics of Pb-Bi liquid metal which are considered to be the most important among Pb-Bi coolant technologies and to provide fundamental bases for future research efforts. Major parameters affecting the corrosion of structural materials in liquid metals are temperature, flow velocity, contents of impurities in coolant, compositions of structural materials, and so forth. It was already known that for traditional commercial austenitic steels of 18Cr-10Ni-Ti type and 12%Cr ferritic steels, the operating temperatures of Pb-Bi coolant cannot be raised above 400 dg C and 450 dg C, respectively. However, extensive researches have been performed to protect structural materials under higher operating temperature such as the development of various kinds of coating methods for steels and the investigations of coolant inhibition by different chemical elements. The available experimental results show that the effective methods to improve the performance of structural materials in Pb-Bi coolant are the development of suitable steel alloys, the creation of oxide type coatings, and the control of oxygen inhibition. According to the recently presented research results of URRS, utilization of these methods makes it possible to raise the operating temperature limit to 620-650 dg C. It provides the possibility of usage of Pb-Bi coolant for the transmutation system, HYPER some day. (Author). 27 refs., 6 tabs., 15 figs.

  13. Sustainable Poly(Ionic Liquids) for CO2 Capture Based on Deep Eutectic Monomers

    KAUST Repository

    Isik, Mehmet; Zulfiqar, Sonia; Edhaim, Fatimah; Ruiperez, Fernando; Rothenberger, Alexander; Mecerreyes, David

    2016-01-01

    The design of high performance solid sorbent materials for CO2 capture is a technology which has been employed to mitigate global warming. However, the covalent incorporation of functionalities into polymeric supports usually involves multistep energy-intensive chemical processes. This fact makes the net CO2 balance of the materials negative even though they possess good properties as CO2 sorbents. Here we show a new family of polymers which are based on amines, amidoximes, and natural carboxylic acids and can be obtained using sustainable low energy processes. Thus, deep eutectic monomers based on natural carboxylic acids, amidoximes, and amines have been prepared by just mixing with cholinium type methacrylic ammonium monomer. The formation of deep eutectic monomers was confirmed by differential scanning calorimetry measurements. In all cases, the monomers displayed glass transition temperatures well below room temperature. Computational studies revealed that the formation of eutectic complexes lengthens the distance between the cation and the anion causing charge delocalization. The liquid nature of the resulting deep eutectic monomers (DEMs) made it possible to conduct a fast photopolymerization process to obtain the corresponding poly(ionic liquids). Materials were characterized by means of nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction to evaluate the properties of the polymers. The polymers were then used as solid sorbents for CO2 capture. It has been shown that the polymers prepared with citric acid displayed better performance both experimentally and computationally. The current endeavor showed that sustainable poly(ionic liquids) based on deep eutectic monomers can be easily prepared to produce low-energy-cost alternatives to the materials currently being researched for CO2 capture. © 2016 American Chemical Society.

  14. Sustainable Poly(Ionic Liquids) for CO2 Capture Based on Deep Eutectic Monomers

    KAUST Repository

    Isik, Mehmet

    2016-10-05

    The design of high performance solid sorbent materials for CO2 capture is a technology which has been employed to mitigate global warming. However, the covalent incorporation of functionalities into polymeric supports usually involves multistep energy-intensive chemical processes. This fact makes the net CO2 balance of the materials negative even though they possess good properties as CO2 sorbents. Here we show a new family of polymers which are based on amines, amidoximes, and natural carboxylic acids and can be obtained using sustainable low energy processes. Thus, deep eutectic monomers based on natural carboxylic acids, amidoximes, and amines have been prepared by just mixing with cholinium type methacrylic ammonium monomer. The formation of deep eutectic monomers was confirmed by differential scanning calorimetry measurements. In all cases, the monomers displayed glass transition temperatures well below room temperature. Computational studies revealed that the formation of eutectic complexes lengthens the distance between the cation and the anion causing charge delocalization. The liquid nature of the resulting deep eutectic monomers (DEMs) made it possible to conduct a fast photopolymerization process to obtain the corresponding poly(ionic liquids). Materials were characterized by means of nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction to evaluate the properties of the polymers. The polymers were then used as solid sorbents for CO2 capture. It has been shown that the polymers prepared with citric acid displayed better performance both experimentally and computationally. The current endeavor showed that sustainable poly(ionic liquids) based on deep eutectic monomers can be easily prepared to produce low-energy-cost alternatives to the materials currently being researched for CO2 capture. © 2016 American Chemical Society.

  15. A comparative study on the compatibility of liquid lead–gold eutectic and liquid lead–bismuth eutectic with T91 and SS 316LN steels

    International Nuclear Information System (INIS)

    Dai, Y.; Gao, W.; Zhang, T.; Platacis, E.; Heinitz, S.; Thomsen, K.

    2012-01-01

    Liquid lead–gold eutectic (LGE) is considered as a potential target material for high power spallation sources. In the present work, the corrosion effects of LGE on T91 and SS 316LN steels have been investigated in comparison with that of liquid lead–bismuth eutectic (LBE) under the same testing conditions. Two tests were conducted at 400 °C for 1800 h and at 450 °C for 1300 h, in which specimens of the two steels were exposed to 1 m/s flowing LGE and LBE. Surface inspections showed that the specimens underwent a mixed corrosion mode of dissolution and oxidation. The results obtained from the SS 316LN specimens are very interesting. Firstly, EDX (electron energy dispersion X-ray spectrometry) analyses revealed that Ni, Cr and Mn have a higher dissolution rate in LGE than in LBE. Secondly, it was observed that LBE attacked strongly on grain-boundaries (GBs) and twin-boundaries (TBs), while LGE did not preferentially attack GBs and TBs. Further, the diffusion or penetration paths of LBE look straight, while those of LGE look like a complex network. In the attacked regions the chemical composition of the steel did not change much in the LBE case, but changed greatly in the LGE case. The T91 specimens exhibited considerably weaker corrosion effects under the present testing conditions.

  16. CFD Simulations of Pb-Bi Two-Phase Flow

    International Nuclear Information System (INIS)

    Dostal, Vaclav; Zelezny, Vaclav; Zacha, Pavel

    2008-01-01

    In a Pb-Bi cooled direct contact steam generation fast reactor water is injected directly above the core, the produced steam is separated at the top and is send to the turbine. Neither the direct contact phenomenon nor the two-phase flow simulations in CFD have been thoroughly described yet. A first attempt in simulating such two-phase flow in 2D using the CFD code Fluent is presented in this paper. The volume of fluid explicit model was used. Other important simulation parameters were: pressure velocity relation PISO, discretization scheme body force weighted for pressure, second order upwind for momentum and CISCAM for void fraction. Boundary conditions were mass flow inlet (Pb-Bi 0 kg/s and steam 0.07 kg/s) and pressure outlet. The effect of mesh size (0.5 mm and 0.2 mm cells) was investigated as well as the effect of the turbulent model. It was found that using a fine mesh is very important in order to achieve larger bubbles and the turbulent model (k-ε realizable) is necessary to properly model the slug flow. The fine mesh and unsteady conditions resulted in computationally intense problem. This may pose difficulties in 3D simulations of the real experiments. (authors)

  17. Parameters promoting liquid metal embrittlement of the T91 steel in lead-bismuth eutectic alloy

    International Nuclear Information System (INIS)

    Proriol Serre, I.; Ye, C.; Vogt, J.B.

    2015-01-01

    The use of liquid lead-bismuth eutectic (LBE) as a spallation target and a coolant in accelerator-driven systems raises the question of the reliability of structural materials, such as T91 martensitic steel in terms of liquid metal assisted damage and corrosion. In this study, the mechanical behaviour of the T91 martensitic steel was examined in liquid lead-bismuth eutectic (LBE) and in inert atmosphere. Several conditions showed the most sensitive embrittlement factor. The Small Punch Test technique was employed using smooth specimens. In this standard heat treatment, T91 appeared in general as a ductile material, and became brittle in the considered conditions if the test was performed in LBE. It turns out that the loading rate appeared as a critical parameter for the occurrence of liquid metal embrittlement (LME) of the T91 steel in LBE. Loading the T91 very slowly instead of rapidly in oxygen saturated LBE resulted in brittle fracture. Furthermore, low-oxygen content in LBE and an increase in temperature promote LME. (authors)

  18. New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel†

    Science.gov (United States)

    Zhao, Hua; Baker, Gary A.; Holmes, Shaletha

    2012-01-01

    The enzymatic preparation of biodiesel has been hampered by the lack of suitable solvents with desirable properties such as high lipase compatibility, low cost, low viscosity, high biodegradability, and ease of product separation. Recent interest in using ionic liquids (ILs) as advanced reaction media has led to fast reaction rates and high yields in the enzymatic synthesis of biodiesel. However, conventional (i.e., cation–anion paired) ILs based on imidazolium and other quaternary ammonium salts remain too expensive for wide application at industrial scales. In this study, we report on newly-synthesized eutectic ILs derived from choline acetate or choline chloride coupled with biocompatible hydrogen-bond donors, such as glycerol. These eutectic solvents have favorable properties including low viscosity, high biodegradability, and excellent compatibility with Novozym® 435, a commercial immobilized Candida antarctica lipase B. Furthermore, in a model biodiesel synthesis system, we demonstrate high reaction rates for the enzymatic transesterification of Miglyol® oil 812 with methanol, catalyzed by Novozym® 435 in choline acetate/glycerol (1 : 1.5 molar ratio). The high conversion (97%) of the triglyceride obtained within 3 h, under optimal conditions, suggests that these novel eutectic solvents warrant further exploration as potential media in the enzymatic production of biodiesel. PMID:21283901

  19. Equilibrium evaporation test of lead-bismuth eutectic and of tellurium in lead-bismuth

    International Nuclear Information System (INIS)

    Ohno, Shuji; Nishimura, Masahiro; Hamada, Hirotsugu; Miyahara, Shinya; Sasa, Toshinobu; Kurata, Yuji

    2005-01-01

    A series of equilibrium evaporation experiment was performed to acquire the essential and the fundamental knowledge about the transfer behavior of lead-bismuth eutectic (LBE) and impurity tellurium in LBE from liquid to gas phase. The experiments were conducted using the transpiration method in which saturated vapor in an isothermal evaporation pot was transported by inert carrier gas and collected outside of the pot. The size of the used evaporation pot is 8 cm inner diameter and 15 cm length. The weight of the LBE pool in the pot is about 500 g. The investigated temperature range was 450degC to 750degC. From this experiment and discussion using the data in literature, we have obtained several instructive and useful data on the LBE evaporation behavior such as saturated vapor pressure of LBE, vapor concentration of Pb, Bi and Bi 2 in LBE saturated gas phase, and activity coefficient of Pb in the LBE. The LBE vapor pressure equation is represented as the sum of Pb, Bi and Bi 2 vapor in the temperature range between 550degC and 750degC as logP[Pa]=10.2-10100/T[k]. The gas-liquid equilibrium partition coefficient of tellurium in LBE is in the range of 10 to 100, with no remarkable temperature dependency between 450degC and 750degC. This research was founded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT). (author)

  20. Measurement of solid-liquid interfacial energy in the In-Bi eutectic alloy at low melting temperature

    International Nuclear Information System (INIS)

    Marasli, N; Akbulut, S; Ocak, Y; Keslioglu, K; Boeyuek, U; Kaya, H; Cadirli, E

    2007-01-01

    The Gibbs-Thomson coefficient and solid-liquid interfacial energy of the solid In solution in equilibrium with In Bi eutectic liquid have been determined to be (1.46 ± 0.07) x 10 -7 K m and (40.4 ± 4.0) x 10 -3 J m -2 by observing the equilibrated grain boundary groove shapes. The grain boundary energy of the solid In solution phase has been calculated to be (79.0 ± 8.7) x 10 -3 J m -2 by considering force balance at the grain boundary grooves. The thermal conductivities of the In-12.4 at.% Bi eutectic liquid phase and the solid In solution phase and their ratio at the eutectic melting temperature (72 deg. C) have also been measured with radial heat flow apparatus and Bridgman-type growth apparatus

  1. Effect of Low-Melting Metals (Pb, Bi, Cd, In) on the Structure, Phase Composition, and Properties of Casting Al-5% Si-4% Cu Alloy

    Science.gov (United States)

    Yakovleva, A. O.; Belov, N. A.; Bazlova, T. A.; Shkalei, I. V.

    2018-01-01

    The effect of low-melting metals (Pb, Bi, Cd, In) on the structure, phase composition, and properties of the Al-5% Si-4% Cu alloy was studied using calculations. Polythermal sections have been reported, which show that the considered systems are characterized by the presence of liquid regions and monotectic reactions. The effect of low-melting metals on the microstructure and hardening of base alloy in the cast and heat-treated states has been studied.

  2. Thermophoresis research of nanoparticles in liquid lead-bismuth eutectic alloy

    International Nuclear Information System (INIS)

    Yang Xu; Zhou Tao; Liu Liang; Fang Xiaolu; Lin Daping

    2015-01-01

    Thermophoresis theory of solid particles in liquid are selected to research thermophoresis phenomenon in liquid Lead-Bismuth Eutectic (LBE). Thermophoretic velocity of different particles in LBE and stainless steel particles in different fluid are calculated. The results showed that, thermophoretic velocity of particles in LBE increase with the increase of temperature gradient and the decrease of particle radius. And the thermophoretic velocity of stainless steel particles two orders of magnitude lower than the Carbon Nanotubes (CNT) particles, at the same time, it is similar to copper particles in LBE. What's more, the thermophoretic velocity of stainless steel particles in LBE would one order of magnitude lower than that in water and R134a. Of course, it is still faster than that in Engine Oil and Ethyl Glycol two orders of magnitude. (author)

  3. Vaporization of liquid Pb-Li eutectic alloy from 1000K to 1200K - A high temperature mass spectrometric study

    Science.gov (United States)

    Jain, U.; Mukherjee, A.; Dey, G. K.

    2017-09-01

    Liquid lead-lithium eutectic will be used as a coolant in fusion reactor blanket loop. Vapor pressure of the eutectic is an important parameter to accurately predict its in-loop behavior. Past measurements of vapor pressure of the eutectic relied on indirect methods. In this paper, we report for the first time the in-situ vaporization behavior of the liquid alloy between 1042 and 1176 K by Knudsen effusion mass spectrometry (KEMS). It was seen that the vaporization occurred by independent evaporation of lead and lithium. No complex intermetallic vapor was seen in the mass spectra. The partial pressures and enthalpy of vaporization of Pb and Li were evaluated directly from the measured ion intensities formed from the equilibrium vapor over the alloy. The activity of Li over a temperature range of 1042-1176 K was found to be 4.8 × 10-5 to that of pure Li, indicating its very low activity in the alloy.

  4. Tritium permeation barriers in contact with liquid lithium-lead eutectic (Pb-17Li)

    International Nuclear Information System (INIS)

    Forcey, K.S.; Perujo, A.

    1995-01-01

    The permeation of deuterium through coated stainless steel tubes containing liquid lithium-lead eutectic (Pb-17Li) has been studied and compared to measurements through tubes without the lithium compound. The measurements form part of an investigation into the effect of a potential tritium breeder material on permeation barriers for fusion reactors. The coatings studied were CVD TiC and Al 2 O 3 and a pack aluminised layer. Without the lithium-lead, the CVD coatings reduced the permeation rate up to 1 order of magnitude, and the aluminised layer up to 2 orders of magnitude. A CVD layer was unaffected by Pb-17Li whilst in the case of the aluminised tube, the lithium-lead completely removed the permeation barrier, presumably by attacking the surface oxide. Furthermore, the aluminised sample presented a large number of cracks and poor adheren ce to the substrate. ((orig.))

  5. Conceptual design tool development for a Pb-Bi cooled reactor

    International Nuclear Information System (INIS)

    Lee, K. G.; Chang, S. H.; No, H. C.; Chunm, M. H.

    2000-01-01

    Conceptual design is generally ill-structured and mysterious problem solving. This leads the experienced experts to be still responsible for the most of synthesis and analysis task, which are not amenable to logical formulations in design problems. Especially because a novel reactor such as a Pb-Bi cooled reactor is going on a conceptual design stage, it will be very meaningful to develop the conceptual design tool. This tool consists of system design module with artificial intelligence, scaling module, and validation module. System design decides the optimal structure and the layout of a Pb-Bi cooled reactor, using design synthesis part and design analysis part. The designed system is scaled to be optimal with desired power level, and then the design basis accidents (Dbase) are analyzed in validation module. Design synthesis part contains the specific data for reactor components and the general data for a Pb-Bi cooled reactor. Design analysis part contains several design constraints for formulation and solution of a design problem. In addition, designer's intention may be externalized through emphasis on design requirements. For the purpose of demonstration, the conceptual design tool is applied to a Pb-Bi cooled reactor with 125 M Wth of power level. The Pb-Bi cooled reactor is a novel reactor concept in which the fission-generated heat is transferred from the primary coolant to the secondary coolant through a reactor vessel wall of a novel design. The Pb-Bi cooled reactor is to deliver 125 M Wth per module for 15 effective full power years without any on-site fuel handling. The conceptual design tool investigated the feasibility of a Pb-Bi cooled reactor. Application of the conceptual design tool will be, in detail, presented in the full paper. (author)

  6. A liquid-based eutectic system: LiBH4·NH 3-nNH3BH3 with high dehydrogenation capacity at moderate temperature

    KAUST Repository

    Tan, Yingbin; Guo, Yanhui; Li, Shaofeng; Sun, Weiwei; Zhu, Yihan; Li, Qi; Yu, Xuebin

    2011-01-01

    A novel eutectic hydrogen storage system, LiBH4·NH 3-nNH3BH3, which exists in a liquid state at room temperature, was synthesized through a simple mixing of LiBH 4·NH3 and NH3BH3 (AB). In the temperature range of 90-110 °C, the eutectic system

  7. A comparative neutronic analysis of KALIMER breeder core using Na or Pb-Bi coolant

    International Nuclear Information System (INIS)

    Yoo, J. W.; Kim, S. J.; Kim, Y. I.

    2000-01-01

    A comparative neutronic study has been conducted on KALIMER breeder core according to the replacement of sodium coolant by Pb-Bi coolant. Since the atomic weight of Pb and Bi is about 9 times heavier than that of Na, the energy loss by neutron colliding with Pb-Bi nucleus will be very small. Therefore, the reactor with Pb-Bi coolant will have a harder neutron spectrum than that with Na coolant. Consequently, the breeding ratio and burnup reactivity swing is expected to be enhanced. In addition, when Pb-Bi coolant is voided, a negative coolant void coefficient can be obtained by the net effects of smaller spectrum hardening and large neutron leakage. As a result, the breeding ratio was increased from 1.18 to 1.23 and burnup reactivity swing was reduced from 631 pcm to 150 pcm. When the coolant in the whole region of active core is voided, the coolant void coefficient was found to be -539 and -264 pcm at BOEC and EOEC, respectively. In the local voided case, the smaller coolant void coefficient was obtained than that of Na coolant. Accordingly, the use of Pb-Bi coolant in KALIMER gives an advantage of higher breeding ratio, smaller burnup reactivity swing and negative coolant void coefficient without any significant degradation of nuclear performance

  8. Equilibrium evaporation behavior of polonium and its homologue tellurium in liquid lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Ohno, Shuji; Miyahara, Shinya; Kurata, Yuji; Katsura, Ryoei; Yoshida, Shigeru

    2006-01-01

    Experimental study using the transpiration method investigates equilibrium evaporation behavior of radionuclide polonium ( 210 Po) generated and accumulated in liquid lead-bismuth eutectic (LBE) cooled nuclear systems. The experiment consists of two series of tests: preliminary evaporation tests for homologue element tellurium (Te) in LBE, and evaporation tests for 210 Po-accumulated LBE in which test specimens are prepared by neutron irradiation. The evaporation tests of Te in LBE provide the suggestion that Te exists in a chemical form of PbTe as well as the information for confirming the validity of technique and conditions of Po test. From the evaporation tests of 210 Po in LBE, we obtain fundamental data and empirical equations such as 210 Po vapor concentration in the gas phase, 210 Po partial vapor pressure, thermodynamic activity coefficients, and gas-liquid equilibrium partition coefficient of 210 Po in LBE in the temperature range from 450 to 750degC. Additionally, radioactivity concentration of 210 Po and 210m Bi vapor in a cover gas region of a typical LBE-cooled nuclear system is specifically estimated based on the obtained experimental results, and the importance of 210 Po evaporation behavior is quantitatively demonstrated. (author)

  9. Brittle fracture of T91 steel in liquid lead–bismuth eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Changqing, E-mail: Changqing.ye@ed.univ-lille1.fr; Vogt, Jean-Bernard, E-mail: jean-bernard.vogt@univ-lille1.fr; Proriol-Serre, Ingrid, E-mail: ingrid.proriol-serre@univ-lille1.fr

    2014-12-15

    Highlights: • Tempering temperature is important for LBE embrittlement occurrence. • Brittle behaviour in LBE evidenced by small punch test and fatigue test. • Brittle behaviour in low oxygen LBE observed for low loading rate. - Abstract: The mechanical behaviour of the T91 martensitic steel has been studied in liquid lead–bismuth eutectic (LBE) and in inert atmosphere. Several conditions were considered to point out the most sensitive embrittling factors. Smooth and notched specimens were employed for respectively monotonic and cyclic loadings. The present investigation showed that T91 appeared in general as a ductile material, and became brittle in the considered conditions only if at least tests were performed in LBE. It turns out that the loading rate appeared as a critical parameter for the occurrence of liquid metal embrittlement of T91 in LBE. For the standard heat treatment condition, loading monotonically the T91 very slowly instead of rapidly in LBE resulted in brittle fracture. Also, under cyclic loading, the crack propagated in a brittle manner in LBE.

  10. Air-assisted dispersive liquid-liquid microextraction based on a new hydrophobic deep eutectic solvent for the preconcentration of benzophenone-type UV filters from aqueous samples.

    Science.gov (United States)

    Ge, Dandan; Zhang, Yi; Dai, Yixiu; Yang, Shumin

    2018-04-01

    Deep eutectic solvents are considered as new and green solvents that can be widely used in analytical chemistry such as microextraction. In the present work, a new dl-menthol-based hydrophobic deep eutectic solvent was synthesized and used as extraction solvents in an air-assisted dispersive liquid-liquid microextraction method for preconcentration and extraction of benzophenone-type UV filters from aqueous samples followed by high-performance liquid chromatography with diode array detection. In an experiment, the deep eutectic solvent formed by dl-menthol and decanoic acid was added to an aqueous solution containing the UV filters, and then the mixture was sucked up and injected five times by using a glass syringe, and a cloudy state was achieved. After extraction, the solution was centrifuged and the upper phase was subjected to high-performance liquid chromatography for analysis. Various parameters such as the type and volume of the deep eutectic solvent, number of pulling, and pushing cycles, solution pH and salt concentration were investigated and optimized. Under the optimum conditions, the developed method exhibited low limits of detection and limits of quantitation, good linearity, and precision. Finally, the proposed method was successfully applied to determine the benzophenone-type filters in environmental water samples with relative recoveries of 88.8-105.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Inherent Safety Features and Passive Prevention Approaches for Pb/Bi-cooled Accelerator-Driven Systems

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Johan

    2003-03-01

    This thesis is devoted to the investigation of passive safety and inherent features of subcritical nuclear transmutation systems - accelerator-driven systems. The general objective of this research has been to improve the safety performance and avoid elevated coolant temperatures in worst-case scenarios like unprotected loss-of-flow accidents, loss-of-heat-sink accidents, and a combination of both these accident initiators. The specific topics covered are emergency decay heat removal by reactor vessel auxiliary cooling systems, beam shut-off by a melt-rupture disc, safety aspects from locating heat-exchangers in the riser of a pool-type reactor system, and reduction of pressure resistance in the primary circuit by employing bypass routes. The initial part of the research was focused on reactor vessel auxiliary cooling systems. It was shown that an 80 MW{sub th} Pb/Bi-cooled accelerator-driven system of 8 m height and 6 m diameter vessel can be well cooled in the case of loss-of-flow accidents in which the accelerator proton beam is not switched off. After a loss-of-heat-sink accident the proton beam has to be interrupted within 40 minutes in order to avoid fast creep of the vessel. If a melt-rupture disc is included in the wall of the beam pipe, which breaks at 150 K above the normal core outlet temperature, the grace period until the beam has to be shut off is increased to 6 hours. For the same vessel geometry, but an operating power of 250 MW{sub th} the structural materials can still avoid fast creep in case the proton beam is shut off immediately. If beam shut-off is delayed, additional cooling methods are needed to increase the heat removal. Investigations were made on the filling of the gap between the guard and the reactor vessel with liquid metal coolant and using water spray cooling on the guard vessel surface. The second part of the thesis presents examinations regarding an accelerator-driven system also cooled with Pb/Bi but with heat-exchangers located

  12. Inherent Safety Features and Passive Prevention Approaches for Pb/Bi-cooled Accelerator-Driven Systems

    International Nuclear Information System (INIS)

    Carlsson, Johan

    2003-03-01

    This thesis is devoted to the investigation of passive safety and inherent features of subcritical nuclear transmutation systems - accelerator-driven systems. The general objective of this research has been to improve the safety performance and avoid elevated coolant temperatures in worst-case scenarios like unprotected loss-of-flow accidents, loss-of-heat-sink accidents, and a combination of both these accident initiators. The specific topics covered are emergency decay heat removal by reactor vessel auxiliary cooling systems, beam shut-off by a melt-rupture disc, safety aspects from locating heat-exchangers in the riser of a pool-type reactor system, and reduction of pressure resistance in the primary circuit by employing bypass routes. The initial part of the research was focused on reactor vessel auxiliary cooling systems. It was shown that an 80 MW th Pb/Bi-cooled accelerator-driven system of 8 m height and 6 m diameter vessel can be well cooled in the case of loss-of-flow accidents in which the accelerator proton beam is not switched off. After a loss-of-heat-sink accident the proton beam has to be interrupted within 40 minutes in order to avoid fast creep of the vessel. If a melt-rupture disc is included in the wall of the beam pipe, which breaks at 150 K above the normal core outlet temperature, the grace period until the beam has to be shut off is increased to 6 hours. For the same vessel geometry, but an operating power of 250 MW th the structural materials can still avoid fast creep in case the proton beam is shut off immediately. If beam shut-off is delayed, additional cooling methods are needed to increase the heat removal. Investigations were made on the filling of the gap between the guard and the reactor vessel with liquid metal coolant and using water spray cooling on the guard vessel surface. The second part of the thesis presents examinations regarding an accelerator-driven system also cooled with Pb/Bi but with heat-exchangers located in the

  13. Reply to "On Vaporization of liquid Pb-Li eutectic alloy from 1000 K to 1200 K- A high temperature mass spectrometric study"

    Science.gov (United States)

    Jain, Uttam; Mukherjee, Abhishek

    2018-03-01

    This communication is in response to a letter to editor commenting on the authors' earlier paper "Vaporization of liquid Pb-Li eutectic alloy from 1000 K to 1200 K - A high temperature mass spectrometric study".

  14. Thermally conductive of nanofluid from surfactant doped polyaniline nanoparticle and deep eutectic ionic liquid

    Science.gov (United States)

    Siong, Chew Tze; Daik, Rusli; Hamid, Muhammad Azmi Abdul

    2014-09-01

    Nanofluid is a colloidal suspension of nano-size particles in a fluid. Spherical shape dodecylbenzenesulfonic acid doped polyaniline (DBSA-PANI) nanoparticles were synthesized via reverse micellar polymerization in isooctane with average size of 50 nm- 60 nm. The aim of study is to explore the possibility of using deep eutectic ionic liquid (DES) as a new base fluid in heat transfer application. DES was prepared by heating up choline chloride and urea with stirring. DES based nanofluids containing DBSA-PANI nanoparticles were prepared using two-step method. Thermal conductivity of nanofluids was measured using KD2 Pro Thermal Properties Analyzer. When incorporated with DBSA-PANI nanoparticles, DES with water was found to exhibit a bigger increase in thermal conductivity compared to that of the pure DES. The thermal conductivity of DES with water was increased by 4.67% when incorporated with 0.2 wt% of DBSA-PANI nanoparticles at 50°C. The enhancement in thermal conductivity of DES based nanofluids is possibly related to Brownian motion of nanoparticles as well as micro-convection of base fluids and also interaction between dopants and DES ions.

  15. Molecular dynamics simulation of metallic impurity diffusion in liquid lead-bismuth eutectic (LBE)

    Science.gov (United States)

    Gao, Yun; Takahashi, Minoru; Cavallotti, Carlo; Raos, Guido

    2018-04-01

    Corrosion of stainless steels by lead-bismuth eutectic (LBE) is an important problem which depends, amongst other things, on the diffusion of the steel components inside this liquid alloy. Here we present the results of classical molecular dynamics simulations of the diffusion of Fe and Ni within LBE. The simulations complement experimental studies of impurity diffusion by our group and provide an atomic-level understanding of the relevant diffusion phenomena. They are based on the embedded atom method (EAM) to represent many-body interactions among atoms. The EAM potentials employed in our simulations have been validated against ab initio density functional calculations. We show that the experimental and simulation results for the temperature-dependent viscosity of LBE and the impurity diffusion coefficients can be reconciled by assuming that the Ni and Fe diffuse mainly as nanoscopic clusters below 1300 K. The average Fe and Ni cluster sizes decrease with increasing the temperature and there is essentially single-atom diffusion at higher temperatures.

  16. Quantification of the degradation of steels exposed to liquid lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Schroer, C.; Voss, Z.; Novotny, J.; Konys, J.

    2006-05-01

    Metallographic and gravimetric methods of measuring the degradation of steels are introduced and compared, with emphasis on the quantification of oxidation in molten lead-bismuth eutectic (LBE). In future applications of LBE or other molten lead alloys, additions of oxygen should prevent the dissolution of steel constituents in the liquid heavy metal. Therefore, also the amount of steel constituents transferred between the steel (including the oxide scale formed on the surface) and the LBE has to be assessed, in order to evaluate the efficiency of oxygen additions with respect to preventing dissolution of the steel. For testing the methods of quantification, specimens of martensitic steel T91 were exposed for 1500 h to stagnant, oxygen-saturated LBE at 550 C, whereby, applying both metallographic and gravimetric measurements, the recession of the cross-section of sound material deviated by ± 3 μm for a mean value of 11 μm. Although the transfer of steel constituents between the solid phases and the LBE is negligible under the considered exposure conditions, the investigation shows that a gravimetric analysis is most promising for quantifying such a mass transfer. For laboratory experiments on the behaviour of steels in oxygen-containing LBE, it is suggested to make provisions for both metallographic and gravimetric measurements, since both types of methods have specific benefits in the characterisation of the oxidation process. (Orig.)

  17. Synthesis and application of magnetic deep eutectic solvents: Novel solvents for ultrasound assisted liquid-liquid microextraction of thiophene.

    Science.gov (United States)

    Khezeli, Tahere; Daneshfar, Ali

    2017-09-01

    Two novel magnetic deep eutectic solvents (MDESs), comprised of cheap and simple components named [choline chloride/phenol] [FeCl 4 ] and [choline chloride/ethylene glycol] [FeCl 4 ] were prepared and characterized by CHN elemental analysis, proton nuclear magnetic resonance ( 1 H NMR), vibrating sample magnetometery (VSM), Raman, Fourier transform-infrared (FT-IR) and UV-Vis spectrometery. The extraction efficiency of the prepared MDESs has been investigated in ultrasound assisted liquid-liquid microextraction based MDES (UALLME-MDES). Briefly, MDESs were added to n-heptan containing thiophene. Then, MDESs were dispersed in n-heptane by sonication. After that, microdroplets of MDESs were collected by a magnet and the remained concentration of thiophene in n-heptane phase was analyzed by GC-FID. The results indicated that [choline chloride/phenol] [FeCl 4 ] has higher extraction efficiency than [choline chloride/ethylene glycol] [FeCl 4 ]. This work opens a new way to the application of MDESs. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Safety design of Pb-Bi-cooled direct contact boiling water fast reactor (PBWFR)

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Uchida, Shoji; Yamada, Yumi; Koyama, Kazuya

    2008-01-01

    In Pb-Bi-cooled direct contact boiling water small fast reactor (PBWFR), steam is generated by direct contact of feedwater with primary Pb-Bi coolant above the core, and Pb-Bi coolant is circulated by steam lift pump in chimneys. Safety design has been developed to show safety features of PBWFR. Negative void reactivity is inserted even if whole of the core and upper plenum are voided hypothetically by steam intrusion from above. The control rod ejection due to coolant pressure is prevented using in-vessel type control rod driving mechanism. At coolant leak from reactor vessel and feedwater pipes, Pb-Bi coolant level in the reactor vessel required for decay heat removal is kept using closed guard vessel. Dual pipes for feedwater are employed to avoid leak of water. Although there is no concern of loss of flow accident due to primary pump trip, feedwater pump trip initiates loss of coolant flow (LOF). Injection of high pressure water slows down the flow coast down of feedwater at the LOF event. The unprotected loss of flow and heat sink (ATWS) has been evaluated, which shows that the fuel temperatures are kept lower than the safety limits. (author)

  19. Properties for binary mixtures of (acetamide + KSCN) eutectic ionic liquid with ethanol at several temperatures

    International Nuclear Information System (INIS)

    Liu, Baoyou; Liu, Yaru

    2016-01-01

    Graphical abstract: Viscosity deviation (Δη) against mole fraction of ethanol for [ethanol(1) + [(acetamide + KSCN)](2)] mixtures at several temperatures. The solid lines represent the corresponding correlation by the Redlich–Kister equation. - Highlights: • Density, viscosity and conductivity of (acetamide + KSCN) ethanol solution were measured. • V"E and Δη were calculated from the measured density and viscosity respectively. • V"E and Δη were both well fitted by a third order Redlich–Kister equation. • The conductivity was described by a Castell–Amis equation. - Abstract: Density, viscosity and conductivity were determined for the binary mixture of (acetamide + KSCN) eutectic ionic liquid with ethanol at T = (298.15, 303.15, 308.15, 313.15, 318.15) K and atmospheric pressure. The density, viscosity values decrease with the increase of temperature while the conductivity values increase over the whole concentration range. The density and viscosity values decrease monotonically with the increase of the mole content of ethanol. From the experimental values, excess molar volumes V"E and viscosity deviations Δη for the binary mixture were calculated and V"E and Δη were both well fitted by a third order Redlich–Kister equation. With the increase mole fraction of ethanol, the conductivity values of the mixture increase gradually first and then decrease dramatically, and the highest conductivity values appear at 0.8562 mol fraction of ethanol. The relationship between the conductivity and the mole fraction of ethanol can be well described by a Castell–Amis equation. The interactions with ethanol molecular and ions of (acetamide + KSCN) ionic liquid were discussed by FTIR spectra.

  20. Investigation on the applicability of turbulent-Prandtl-number models for liquid lead-bismuth eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); North China University of Water Resources and Electric Power, Zhengzhou, Henan 450011 (China); Huai, Xiulan, E-mail: hxl@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Cai, Jun, E-mail: caijun@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Xunfeng, E-mail: lixunfeng@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Meng, Ruixue, E-mail: mengruixue@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-04-15

    Highlights: ► We examine the applicability of various Pr{sub t} models into the simulation of LBE flow. ► Reynolds analogy suitable for conventional fluids cannot accurately simulate the heat transfer characteristics of LBE flow. ► The different Pr{sub t} model should be selected for the different thermal boundary condition of LBE flow. -- Abstract: With the proposal of Accelerator Driven Sub-critical System (ADS) together with liquid lead-bismuth eutectic (LBE) as coolant for both reactor and spallation target, the use of accurate heat transfer correlation and reliable turbulent-Prandtl-number model of LBE in turbulent flows is essential when designing ADS components of primary loop and heat exchanger of secondary loop. Unlike conventional fluids, there is not an acknowledged turbulent-Prandtl-number model for LBE flows. This paper reviews and assesses the existing turbulent-Pandtl-number models and various heat transfer correlations in circular tubes. Computational fluid dynamics (CFD) analysis is employed to evaluate the applicability of various turbulent-Prandtl-number models for LBE in the circular tube under boundary conditions of constant heat flux and constant wall temperature. Based on the assessment of turbulent-Prandtl-number models, the reliable turbulent-Prandtl-number models are recommended for CFD applications to LBE flows under boundary conditions of constant heat flux and constant wall temperature. The present study indicates that turbulent Prandtl number has a significant difference in turbulent LBE flow between constant-heat-flux and constant-wall-temperature boundary conditions.

  1. Nucleation and growth of lead oxide particles in liquid lead-bismuth eutectic.

    Science.gov (United States)

    Gladinez, Kristof; Rosseel, Kris; Lim, Jun; Marino, Alessandro; Heynderickx, Geraldine; Aerts, Alexander

    2017-10-18

    Liquid lead-bismuth eutectic (LBE) is an important candidate to become the primary coolant of future, generation IV, nuclear fast reactors and Accelerator Driven System (ADS) concepts. One of the main challenges with the use of LBE as a coolant is to avoid its oxidation which results in solid lead oxide (PbO) precipitation. The chemical equilibria governing PbO formation are well understood. However, insufficient kinetic information is currently available for the development of LBE-based nuclear technology. Here, we report the results of experiments in which the nucleation, growth and dissolution of PbO in LBE during temperature cycling are measured by monitoring dissolved oxygen using potentiometric oxygen sensors. The metastable region, above which PbO nucleation can occur, has been determined under conditions relevant for the operation of LBE cooled nuclear systems and was found to be independent of setup geometry and thus thought to be widely applicable. A kinetic model to describe formation and dissolution of PbO particles in LBE is proposed, based on Classical Nucleation Theory (CNT) combined with mass transfer limited growth and dissolution. This model can accurately predict the experimentally observed changes in oxygen concentration due to nucleation, growth and dissolution of PbO, using the effective interfacial energy of a PbO nucleus in LBE as a fitting parameter. The results are invaluable to evaluate the consequences of oxygen ingress in LBE cooled nuclear systems under normal operating and accidental conditions and form the basis for the development of cold trap technology to avoid PbO formation in the primary reactor circuit.

  2. The interfacial free energy of solid Sn on the boundary interface with liquid Cd-Sn eutectic solution

    International Nuclear Information System (INIS)

    Saatci, B; Cimen, S; Pamuk, H; Guenduez, M

    2007-01-01

    Equilibrated grain boundary groove shapes for solid Sn in equilibrium with Cd-Sn liquid were directly observed after annealing a sample at the eutectic temperature for about 8 days. The thermal conductivities of the solid phase, K S , and the liquid phase, K L , for the groove shapes were measured. From the observed groove shapes, the Gibbs-Thomson coefficients were obtained with a numerical method, using the measured G, K S and K L values. The solid-liquid interfacial energy of solid Sn in equilibrium with Cd-Sn liquid was determined from the Gibbs-Thomson equation. The grain boundary energy for solid Sn was also calculated from the observed groove shapes

  3. Eutectic Gallium-Indium (EGaIn) : A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature

    NARCIS (Netherlands)

    Dickey, Michael D.; Chiechi, Ryan C.; Larsen, Ryan J.; Weiss, Emily A.; Weitz, David A.; Whitesides, George M.

    2008-01-01

    This paper describes the rheological behavior of the liquid metal eutectic gallium-indium (EGaIn) as it is injected into microfluidic channels to form stable microstructures of liquid metal. EGaIn is well-suited for this application because of its rheological properties at room temperature: it

  4. Comparative study for axial and radial shuffling scheme effect on the performance of Pb-Bi cooled fast reactors with natural uranium as fuel cycle input

    International Nuclear Information System (INIS)

    Zaki Suud; Indah Rosidah; Maryam Afifah; Ferhat Aziz; Sekimoto, H.

    2013-01-01

    Full text:Comparative study for the Design of Pb-Bi cooled fast reactors with natural uranium as fuel cycle input using special radial shuffling strategy and axial direction modified CANDLE burn-up scheme has been performed. The reactors utilizes UN-PuN as fuel, Eutectic Pb-Bi as coolant, and can be operated without refueling for 10 years in each batch. Reactor design optimization is performed to utilize natural uranium as fuel cycle input. This reactor subdivided into 6-10 regions with equal volume in radial directions. The natural uranium is initially put in region 1, and after one cycle of 10 years of burn-up it is shifted to region 2 and the region 1 is filled by fresh natural uranium fuel. This concept is basically applied to all regions. The calculation has been done by using SRAC-Citation system code and JENDL-3.2 library. The effective multiplication factor change increases monotonously during 10 years reactor operation time. There is significant power distribution change in the central part of the core during the BOC and the EOC in the radial shuffling system. It is larger than that in the case of modified CANDLE case which use axial direction burning region move. The burn-up level of fuel is slowly grows during the first 15 years but then grow faster in the rest of burn-up history. This pattern is a little bit different from the case of modified CANDLE burn-up scheme in Axial direction in which the slow growing burn-up period is relatively longer almost half of the burn-up history. (author)

  5. Neutron spectrum effects on TRU recycling in Pb-Bi cooled fast reactor core

    International Nuclear Information System (INIS)

    Kim, Yong Nam; Kim, Jong Kyung; Park, Won Seok

    2003-01-01

    This study is intended to evaluate the dependency of TRU recycling characteristics on the neutron spectrum shift in a Pb-Bi cooled core. Considering two Pb-Bi cooled cores with the soft and the hard spectrum, respectively, various characteristics of the recycled core are carefully examined and compared with each other. Assuming very simplified fuel cycle management with the homogeneous and single region fuel loading, the burnup calculations are performed until the recycled core reached to the (quasi-) equilibrium state. The mechanism of TRU recycling toward the equilibrium is analyzed in terms of burnup reactivity and the isotopic compositions of TRU fuel. In the comparative analyses, the difference in the recycling behavior between the two cores is clarified. In addition, the basic safety characteristics of the recycled core are also discussed in terms of the Doppler coefficient, the coolant loss reactivity coefficient, and the effective delayed neutron fraction

  6. Technologies for hydrogen production based on direct contact of gaseous hydrocarbons and evaporated water with Molten Pb or Pb-Bi

    International Nuclear Information System (INIS)

    Gulevich, A. V.; Martynov, P. N.; Gulevsky, V. A.; Ulyanov, V. V.

    2007-01-01

    Results of studies intended for the substantiation of a new energy-saving and safe technology for low cost hydrogen production have been presented. The technology's basis is direct mixing of water and (or) gaseous hydrocarbons with heavy liquid metal coolants (HLMC) Pb or Pb-Bi. Preliminary research has been done on thermal dynamics and kinetics of the processes taking place in the interaction of HLMC with hydrocarbon-containing gases. It has been shown as a result that water and gaseous hydrocarbons interact with molten Pb and Pb-Bi relatively quietly in chemical aspect (without ignition and explosions). Therefore, (and taking into account the thermal physics, physical and chemical properties of HLMC such as low pressure of saturated vapor of Pb and Pb- Bi in enhanced temperatures, their good heat conductivity and heat capacity, low viscosity, etc.) heat transfer is possible from the molten metal to water and hydrocarbons without heat transferring partitions (that is, by direct contact of the working media). Devices to implement this method of heating liquid and gaseous media provide essential advantages: - A simple design; - None heat-transferring surfaces subject to corrosion, contamination, thermal fatigue, vibration impacts; - A high effectiveness owing to a larger heat exchanging surface per volume unit; - A small hydraulic resistance. The possibility and effectiveness of heating various gaseous and liquid media in their direct contact with molten Pb and Pb-Bi has been substantiated convincingly by experimental results at IPPE. Besides, the following processes of hydrogen-containing media conversion have been proved feasible thereby. 1. Water decomposition into hydrogen and oxygen. The process can develop at temperatures of 400-1000 degree C. It is necessary to provide constant removal of oxygen from the reaction zone and maintain a minimum possible content of chemically active oxygen in the melt. 2. Pyrolytic decomposition of hydrocarbons into carbon and

  7. Physical properties of the eutectic NaF-LiF-LaF3 melt ionic liquid system

    Directory of Open Access Journals (Sweden)

    Yu. O. Plevachuk

    2012-06-01

    Full Text Available Results of experimental studies on electrical conductivity, viscosity and thermo-electromotive force temperature dependencies of eutectic NaF-LiF-LaF3 melt ionic liquid mixture in the temperature range of (580 ÷ 800 °C are presented. It has been found, that at the temperature of (675 ± 5 °C the ionic mixture thermo-electromotive force changes its sing to reverse, with this change being correlated with viscosity temperature dependence type readjustment occurring at the same temperature. It has been shown that the maximum value of liquid ionic mixture electrical conductivity is achieved at the temperature of (750 ± 5 °C. Obtained results could help in the molten salt reactor blanket design.

  8. Applicability of Al-powder-alloy coating to corrosion barriers of 316SS in liquid lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Kurata, Yuji; Sato, Hidetomo; Yokota, Hitoshi; Suzuki, Tetsuya

    2011-01-01

    A new Al-alloy coating method using Al, Ti and Fe powders has been applied to 316SS in order to develop corrosion resistant coating in liquid lead-bismuth eutectic (LBE). The 316SS plates with coating layers of different Al concentrations were exposed to liquid LBE with controlled oxygen concentrations of 10 -6 to 10 -4 mass% at 823 K for 3600 ks. While surface oxidation and grain boundary corrosion accompanied by liquid LBE penetration are observed in 316SS without Al-alloy coating, the Al-alloy coating is effective to protect such severe corrosion attacks in liquid LBE. Although the coating layer containing 2.8 mass% Al does not always keep sufficient corrosion resistance, good corrosion resistance is obtained through the Al-oxide film formed in liquid LBE in the coating layer where the average Al concentration is 4.2 mass%. Cracks are formed in the coating layer containing 17.8 mass% Al during the coating process. The Al-powder-alloy coating applied to 316SS is promising as a corrosion resistant coating method in liquid LBE environment. (author)

  9. Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents.

    Science.gov (United States)

    Prasad, Kamalesh; Mondal, Dibyendu; Sharma, Mukesh; Freire, Mara G; Mukesh, Chandrakant; Bhatt, Jitkumar

    2018-01-15

    Ion gels and self-healing gels prepared using ionic liquids (ILs) and deep eutectic solvents (DESs) have been largely investigated in the past years due to their remarkable applications in different research areas. Herewith we provide an overview on the ILs and DESs used for the preparation of ion gels, highlight the preparation and physicochemical characteristics of stimuli responsive gel materials based on co-polymers and biopolymers, with special emphasis on polysaccharides and discuss their applications. Overall, this review summarizes the fundamentals and advances in ion gels with switchable properties prepared using ILs or DESs, as well as their potential applications in electrochemistry, in sensing devices and as drug delivery vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Integrated photooxidative extractive deep desulfurization using metal doped TiO2 and eutectic based ionic liquid

    Science.gov (United States)

    Zaid, Hayyiratul Fatimah Mohd; Kait, Chong Fai; Mutalib, Mohamed Ibrahim Abdul

    2016-11-01

    A series of metal doped TiO2 namely Fe/TiO2, Cu/TiO2 and Cu-Fe/TiO2 were synthesized and characterized, to be used as a photocatalyst in the integrated photooxidative extractive deep desulfurization for model oil (dodecane) and diesel fuel. The order of the photocatalytic activity was Cu-Fe/TiO2 followed by Cu/TiO2 and then Fe/TiO2. Cu-Fe/TiO2 was an effective photocatalyst for sulfur conversion at ambient atmospheric pressure. Hydrogen peroxide was used as the source of oxidant and eutectic-based ionic liquid as the extractant. Sulfur conversion in model oil reached 100%. Removal of sulfur from model oil was done by two times extraction with a removal of 97.06% in the first run and 2.94% in the second run.

  11. Influence of PbBi environment on the low-cycle fatigue behavior of SNS target container materials

    International Nuclear Information System (INIS)

    Kalkhof, D.; Grosse, M.

    2003-01-01

    The low-cycle fatigue (LCF) behavior of the stainless steel 316L and the 10.5Cr-steel Manet-II was investigated at 260 deg. C in air and in stagnant lead-bismuth (PbBi). At low-strain levels, the fatigue lives for 316L in PbBi and air were comparable. At total strain amplitudes of 0.50% and higher a weak influence of PbBi was observed. In contrast to 316L, the results of LCF tests for Manet-II in PbBi showed a significant reduction of lifetime for all applied strain amplitudes. In the worst case the cycle number to crack initiation was reduced by a factor of ∼7 compared with the comparable test in air. For the low-strain amplitude of 0.30%, fatigue tests conducted at a frequency of 0.1 Hz had shorter fatigue lives than at a frequency of 1.0 Hz. For Manet-II the crack propagation in PbBi was much faster than in air, and failure immediate followed the formation of the first macroscopic crack

  12. Diffusivity, activity and solubility of oxygen in liquid lead and lead-bismuth eutectic alloy by electrochemical methods

    International Nuclear Information System (INIS)

    Ganesan, Rajesh; Gnanasekaran, T.; Srinivasa, Raman S.

    2006-01-01

    The diffusivity of oxygen in liquid lead and lead-bismuth eutectic (LBE) alloy was measured by a potentiostatic method and is given by log(D O Pb /cm 2 s -1 )=-2.554-2384/T(+/-0.070), 818-1061K, and log(D O LBE /cm 2 s -1 )=-0.813-3612/T(+/-0.091), 811-980K. The activity of oxygen in lead and LBE was determined by coulometric titration experiments. Using the measured data, the standard free energy of dissolution of oxygen in liquid lead and LBE was derived and is given byG O(Pb) xs =-121349+16.906T(+/-560)J(gatomO) -1 ,815-1090K,G O(LBE) xs = -127398+27.938T(+/-717)J(gatomO) -1 ,812-1012K.Using the above data, the Gibbs energy of formation of PbO(s) and equilibrium oxygen pressures measured over the oxygen-saturated LBE alloy, the solubility of oxygen in liquid lead and LBE were derived. The solubility of oxygen in liquid lead and LBE are given by log(S/at.%O)=-5100/T+4.32 (+/-0.04), 815-1090K and log(S/at.%O)=-4287/T+3.53 (+/-0.06), 812-1012K respectively.

  13. Characteristics and Liquid Metal Embrittlement of the steel T91 in contact with Lead–Bismuth Eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Hojna, Anna, E-mail: anna.hojna@cvrez.cz; Di Gabriele, Fosca; Klecka, Jakub

    2016-04-15

    This paper summarizes results of the work carried out on the evaluation of the susceptibility to LME (Liquid Metal Embrittlement) of the ferritic/martensitic steel T91 in contact with LBE (Lead–Bismuth Eutectic). The influence of LBE on the fracture toughness of the steel was studied using 0.5T CT specimen at 355 °C, pre-cracked by cyclic loading in the liquid metal. Tests were carried out in well-defined conditions and according to ASTM standard. It was observed that the LBE decreased the apparent fracture toughness, J{sub IC}, by more than 30%, compared to the value in air. The results are discussed based on examinations of the fracture surface evidencing LME occurrence. The stretch zone accompanying the pre-crack tip blunting was not observed in the specimens exhibiting LME. Therefore, a new fracture toughness, J{sub map}, determined as J integral at the maximum applied load, is proposed to be the appropriate value for fracture resistance evaluation in LBE. The J{sub map} can be applied for the assessment of a pre-existing LME crack stability.

  14. Theoretical analysis of the axial growth of nanowires starting with a binary eutectic droplet via vapor-liquid-solid mechanism

    Science.gov (United States)

    Liu, Qing; Li, Hejun; Zhang, Yulei; Zhao, Zhigang

    2018-06-01

    A series of theoretical analysis is carried out for the axial vapor-liquid-solid (VLS) growth of nanowires starting with a binary eutectic droplet. The growth model considering the entire process of axial VLS growth is a development of the approaches already developed by previous studies. In this model, the steady and unsteady state growth are considered both. The amount of solute species in a variable liquid droplet, the nanowire length, radius, growth rate and all other parameters during the entire axial growth process are treated as functions of growth time. The model provides theoretical predictions for the formation of nanowire shape, the length-radius and growth rate-radius dependences. It is also suggested by the model that the initial growth of single nanowire is significantly affected by Gibbs-Thompson effect due to the shape change. The model was applied on predictions of available experimental data of Si and Ge nanowires grown from Au-Si and Au-Ge systems respectively reported by other works. The calculations with the proposed model are in satisfactory agreement with the experimental results of the previous works.

  15. Selective separation of furfural and hydroxymethylfurfural from an aqueous solution using a supported hydrophobic deep eutectic solvent liquid membrane.

    Science.gov (United States)

    Dietz, Carin H J T; Kroon, Maaike C; Di Stefano, Michela; van Sint Annaland, Martin; Gallucci, Fausto

    2017-12-14

    For the first time, 12 different supported deep eutectic solvent (DES) liquid membranes were prepared and characterized. These membranes consist of a polymeric support impregnated with a hydrophobic DES. First, the different membranes were characterized and their stability in water and air was determined. Subsequently, the supported DES liquid membranes were applied for the recovery of furfural (FF) and hydroxymethylfurfural (HMF) from aqueous solutions. The effects of substrate properties (e.g. pore size), DES properties (e.g. viscosity) and concentrations of FF and HMF in the feed phase on the observed diffusivities and permeabilities were assessed. It was found that the addition of DES enhances the transport of FF and HMF through the polymeric membrane support. In particular, the use of the DES consisting of thymol + lidocaine (in the molar ratio 2 : 1) impregnated in a polyethylene support resulted in enhanced transport for both FF and HMF, and is most interesting for (in situ) isolation of FF and HMF from aqueous solutions, e.g. in biorefinery processes.

  16. Evaluation of Two 300 MWe Fourth Generation Pb-Bi Reactor System Concepts

    International Nuclear Information System (INIS)

    Miller, Laurence F.; Khuram Khan, M.; Williams, Wesley; Mynatt, F.R.

    2002-01-01

    This paper describes the evaluation of two 300 MWe modular Pb-Bi cooled reactor system concepts that can be field assembled from components shipped on standard rail cars or on trucks. Thus, the largest components must be smaller than 12' x 12' x 80' (3.66 m x 3.66 m x 24.4 m) and should weigh no more than 80 tons. One of these systems utilizes a cylindrical two-loop containment vessel for the core and the other is a slab design. The fuel for both designs consists of standard-sized metallic IFR fuel in 17 x 17 square array assemblies with a pitch-to-diameter ratio of 1.15. The coolant outlet temperature is limited by current material technology, which is estimated to be 550 C. The primary coolant inlet temperature is selected to be 350 C. This is well above the melting temperature of Pb-Bi, and it is expected to be sufficiently high to limit transient-induced thermal stresses to acceptable values. Coolant flow rates through the core and external piping are below 1 m/s. The results from neutronics calculations include power distributions, reactivity coefficients, and fuel depletion, and results from heat transfer calculations include temperatures and flow rates at various locations in the primary and secondary systems. The neutronic design calculations are accomplished by using a discrete ordinate transport code and a cross section processing system developed at Oak Ridge National Laboratory. Two-dimensional flux distributions are obtained with the DOORS system, and ORIGEN-S, coupled with KENO, is used for time-dependent depletion calculations. The thermal-hydraulic design of the core consists of heat transfer and fluid flow calculation for an average channel. The inlet and outlet temperatures, along with the fuel centerline temperature, are determined in conjunction with core flow rates, pumping power, and total power output. This is accomplished by using a lumped parameter steady-state model with a spreadsheet and by using a one-dimensional time-dependent model

  17. Mineralogical data on angelaite, Cu2AgPbBiS4, from the Los Manantiales District, Chubut, Argentina

    DEFF Research Database (Denmark)

    Topa, D.; Paar, W.H.; Putz, H.

    2010-01-01

    Angelaite, ideally Cu2AgPbBiS4, occurs as a hypogene mineral in polymetallic ores at the Ángela groups of veins in the mining district of Los Manantiales, in the province of Chubut, Argentina. The new mineral species is predominantly associated with pyrite, sphalerite, chalcopyrite, hematite...

  18. Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell

    OpenAIRE

    Pei Xu; Peng-Xuan Du; Min-Hua Zong; Ning Li; Wen-Yong Lou

    2016-01-01

    The efficient anti-Prelog asymmetric reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cells was successfully performed in a biphasic system consisting of deep eutectic solvent (DES) and water-immiscible ionic liquid (IL). Various DESs exerted different effects on the synthesis of (R)-2-octanol. Choline chloride/ethylene glycol (ChCl/EG) exhibited good biocompatibility and could moderately increase the cell membrane permeability thus leading to the better results. Adding ChCl/EG ...

  19. Uranium hexafluoride liquid thermal expansion, elusive eutectic with hydrogen fluoride, and very first production using chlorine trifluoride

    Energy Technology Data Exchange (ETDEWEB)

    Rutledge, G.P. [Central Environmental, Inc., Anchorage, AK (United States)

    1991-12-31

    Three unusual incidents and case histories involving uranium hexafluoride in the enrichment facilities of the USA in the late 1940`s and early 1950`s are presented. The history of the measurements of the thermal expansion of liquids containing fluorine atoms within the molecule is reviewed with special emphasis upon uranium hexafluoride. A comparison is made between fluorinated esters, fluorocarbons, and uranium hexafluoride. The quantitative relationship between the thermal expansion coefficient, a, of liquids and the critical temperature, T{sub c} is presented. Uranium hexafluoride has an a that is very high in a temperature range that is used by laboratory and production workers - much higher than any other liquid measured. This physical property of UF{sub 6} has resulted in accidents involving filling the UF{sub 6} containers too full and then heating with a resulting rupture of the container. Such an incident at a uranium gaseous diffusion plant is presented. Production workers seldom {open_quotes}see{close_quotes} uranium hexafluoride. The movement of UF{sub 6} from one container to another is usually trailed by weight, not sight. Even laboratory scientists seldom {open_quotes}see{close_quotes} solid or liquid UF{sub 6} and this can be a problem at times. This inability to {open_quotes}see{close_quotes} the UF{sub 6}-HF mixtures in the 61.2{degrees}C to 101{degrees}C temperature range caused a delay in the understanding of the phase diagram of UF{sub 6}-HF which has a liquid - liquid immiscible region that made the eutectic composition somewhat elusive. Transparent fluorothene tubes solved the problem both for the UF{sub 6}-HF phase diagram as well as the UF{sub 6}-HF-CIF{sub 3} phase diagram with a miscibility gap starting at 53{degrees}C. The historical background leading to the first use of CIF{sub 3} to produce UF{sub 6} in both the laboratory and plant at K-25 is presented.

  20. Compatibility of materials with liquid metal targets for SNS

    International Nuclear Information System (INIS)

    DiStefano, J.R.; Pawel, S.J.; DeVan, J.H.

    1996-01-01

    Several heavy liquid metals are candidates as the target in a spallation neutron source: Hg, Pb, Bi, and Pb-Bi eutectic. Systems with these liquid metals have been used in the past and a data-base on compatibility already exists. Two major compatibility issues have been identified when selecting a container material for these liquid metals: temperature gradient mass transfer and liquid metal embrittlement or LME. Temperature gradient mass transfer refers to dissolution of material from the high temperature portions of a system and its deposition in the lower temperature areas. Solution and deposition rate constants along with temperature, ΔT, and velocity are usually the most important parameters. For most candidate materials mass transfer corrosion has been found to be proportionately worse in Bi compared with Hg and Pb. For temperatures to ∼550 degrees C, ferritic/martensitic steels have been satisfactory in Pb or Hg systems and the maximum temperature can be extended to ∼650 degrees C with additions of inhibitors to the liquid metal, e.g. Mg, Ti, Zr. Above ∼600 degrees C, austenitic stainless steels have been reported to be unsatisfactory, largely because of the mass transfer of nickel. Blockage of flow from deposition of material is usually the life-limiting effect of this type of corrosion. However, mass transfer corrosion at lower temperatures has not been studied. At low temperatures (usually < 150 degrees C), LME has been reported for some liquid metal/container alloy combinations. Liquid metal embrittlement, like hydrogen embrittlement, results in brittle fracture of a normally ductile material

  1. Continuous monitoring of the composition of liquid Pb-17Li eutectic using electrical resistivity methods

    International Nuclear Information System (INIS)

    Hubberstey, P.; Sample, T.; Barker, M.G.

    1991-01-01

    The composition of liquid Pb-17Li alloys has been continously determined, using an electrical resistivity monitor, during their interaction with nitrogen, oxygen, hydrogen and water vapour. The operation of the monitor depends on the fact that the resistivity of liquid Pb-Li alloys is dependent on their composition. Accurate resistivity-composition isotherms have been derived from resistivity-temperature data for 15 Pb-Li alloys (0 Li -8 Ω m (mol% Li) -1 at 725 K) is such that a change of 0.05 mol% Li in the alloy composition can be measured. The addition of oxygen and water vapour resulted in a decrease in the resistivity of the liquid alloy. Neither nitrogen nor hydrogen had any effect. The observed changes were shown to be consistent with Li 2 O formation. (orig.)

  2. THE INFLUENCE OF HEAT TREATMENT WITH THE LIQUID PHASE ON FORMATION OF A MICROSTRUCTURE OF EUTECTIC Al-Si-ALLOY

    Directory of Open Access Journals (Sweden)

    A. Anikin

    2015-01-01

    Full Text Available The effect of heat treatment on the structure of the eutectic Al-Si-alloy, a theoretical substantiation process based on thermal analyzer and cooked microstructures was presented in this paper.

  3. The structure of liquid Li-Si at the eutectic composition

    International Nuclear Information System (INIS)

    Jonc, P.H.K. de; Verkerk, P.

    1993-01-01

    Neutron diffraction data concerning liquid Li 57 Si 43 at 615 deg C and 800 deg C have been analyzed with the Reverse Monte Carlo method (RMC). The obtained Si-Si partial pair correlation functions at these two temperatures are well defined and the first maximum indicates that covalently bonded Si is present at both temperatures. The major part of the Si atoms are present in large clusters. These entities partially dissociate at increasing temperature. The results are compared with results from an ab-initio MD simulation of K Si and with RMC results for Li 65 Si 35 . (authors) 4 figs., 1 tab., 8 refs

  4. The crystal structure of kudriavite, (Cd,Pb)Bi2S4

    DEFF Research Database (Denmark)

    Balic Zunic, Tonci; Makovicky, Emil

    2007-01-01

    The crystal structure of kudriavite, (Cd,Pb)Bi2S4, a new mineral species, was solved from single-crystal X-ray-diffraction data and refi ned to R = 4.9% (4.3% for a model with split mixed-cation sites). Lattice parameters are a 13.095(1), b 4.0032(3), c 14.711(1) Å, 115.59(1)°, V 695.6(1) Å3....... The structure is equivalent to that of synthetic CdBi2S4, space group C2/m, Z = 4, and represents a pavonite homologue, N = 3. It is built of three-octahedron-thick columns of (311)PbS-like slabs combined by "unitcell twinning" in a quasi-mirror-glide succession. The slabs, which are intrinsically of the same...... topology, differ in the coordination state of bordering cations because of the relative positions of the adjacent layers. In the slabs of type I (the "non-accreting" slab common to all pavonite homologues), the central columns of octahedra are fl anked by half-octahedral (square-pyramidal) coordinations...

  5. Evaporation Behavior and Characterization of Eutectic Solvent and Ibuprofen Eutectic Solution.

    Science.gov (United States)

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun; Charoensuksai, Purin

    2016-10-01

    Liquid eutectic system of menthol and camphor has been reported as solvent and co-solvent for some drug delivery systems. However, surprisingly, the phase diagram of menthol-camphor eutectic has not been reported previously. The evaporation behavior, physicochemical, and thermal properties of this liquid eutectic and ibuprofen eutectic solution were characterized in this study. Differential scanning calorimetry (DSC) analysis indicated that a eutectic point of this system was near to 1:1 menthol/camphor and its eutectic temperature was -1°C. The solubility of ibuprofen in this eutectic was 282.11 ± 6.67 mg mL(-1) and increased the drug aqueous solubility fourfold. The shift of wave number from Fourier transform infrared spectroscopy (FTIR) indicated the hydrogen bonding of each compound in eutectic mixture. The weight loss from thermogravimetric analysis of menthol and camphor related to the evaporation and sublimation, respectively. Menthol demonstrated a lower apparent sublimation rate than camphor, and the evaporation rate of eutectic solvent was lower than the sublimation rate of camphor but higher than the evaporation of menthol. The evaporation rate of the ibuprofen eutectic solution was lower than that of the eutectic solvent because ibuprofen did not sublimate. This eutectic solvent prolonged the ibuprofen release with diffusion control. Thus, the beneficial information for thermal behavior and related properties of eutectic solvent comprising menthol-camphor and ibuprofen eutectic solution was attained successfully. The rather low evaporation of eutectic mixture will be beneficial for investigation and tracking the mechanism of transformation from nanoemulsion into nanosuspension in the further study using eutectic as oil phase.

  6. Dissolution of kinetics of nanoscale liquid Pb/Bi inclusions at a grain boundary in aluminium

    DEFF Research Database (Denmark)

    Prokofjev, Sergei I.; Johnson, Erik; Zhilin, Victor M.

    2008-01-01

    of the inclusions was observed until their complete disappearance. Digitized video recordings of the process of dissolution were used to obtain the dependence of the inclusion size with time. The kinetics of the dissolution of the grain boundary inclusions can be described with a model where it is assumed...

  7. Thermal hydraulic analysis of Pb-Bi cooled HYPER fuel assemblies using SLTHEN code

    International Nuclear Information System (INIS)

    Tak, Nam Il; Song, Tae Y.; Park, Won S.; Kim, Chang Hyun

    2002-12-01

    In the present work, the existing SLTHEN code, which had been originally developed for subchannel analysis of sodium cooled fast reactors, was modified and applied to the Pb-Bi cooled HYPER core which consists of 237 fuel assemblies (TRU assemblies). In the analysis of single fuel assembly having chopped cosine power profile, the validation and the assessment of usefulness of the modified SLTHEN were focused. In the quantitative comparison, the results of the modified SLTHEN agreed well with those of analytical calculations and of MATRA. For the qualitative approaches, the sensitivity calculations for intra-assembly gap flow and turbulent mixing parameter were used. The sensitivity analysis results showed that the modified SLTHEN can provide reasonable simulations of subchannel thermal hydraulics. In particular, turbulent mixing parameter which is known as the most uncertain parameter in subchannel analyses did not affect largely the maximum cladding temperature. Therefore, it can be said that the results of single assembly show the usefulness of the modified SLTHEN code for thermal hydraulic analysis and design of HYPER under the conceptual design stage. In order to assess intra-assembly heat transfer, subchannel analyses were implemented for two types of 7 assemblies; 1) artificial 7 fuel assemblies to maximize intra-assembly heat transfer, 2) central 7 fuel assemblies in the HYPER reference core. The results showed that the modified SLTHEN can reasonably simulate intra-heat transfer and the amount of intra-assembly heat transfer is not so large in HYPER conditions. Particularly, intra-heat transfer did not affect the maximum coolant and the maximum cladding temperatures which are major parameters in conceptual core designs. The capability of full core thermal hydraulic analysis was confirmed by the analysis of 45 fuel assemblies in 1/6 HYPER core at the first cycle. The SLTHEN predicted that the reference design parameters are acceptable in terms of thermal

  8. Corrosion behavior of Al-Fe-sputtering-coated steel, high chromium steels, refractory metals and ceramics in high temperature Pb-Bi

    International Nuclear Information System (INIS)

    Abu Khalid, Rivai; Minoru, Takahashi

    2007-01-01

    Corrosion tests of Al-Fe-coated steel, high chromium steels, refractory metals and ceramics were carried out in high temperature Pb-Bi at 700 C degrees. Oxygen concentrations in this experiment were 6.8*10 -7 wt.% for Al-Fe-coated steels and 5*10 -6 wt.% for high chromium steels, refractory metals and ceramics. All specimens were immersed in molten Pb-Bi in a corrosion test pot for 1.000 hours. Coating was done with using the unbalanced magnetron sputtering (UBMS) technique to protect the steel from corrosion. Sputtering targets were Al and SUS-304. Al-Fe alloy was coated on STBA26 samples. The Al-Fe alloy-coated layer could be a good protection layer on the surface of steel. The whole of the Al-Fe-coated layer still remained on the base surface of specimen. No penetration of Pb-Bi into this layer and the matrix of the specimen. For high chromium steels i.e. SUS430 and Recloy10, the oxide layer formed in the early time could not prevent the penetration of Pb-Bi into the base of the steels. Refractory metals of tungsten (W) and molybdenum (Mo) had high corrosion resistance with no penetration of Pb-Bi into their matrix. Penetration of Pb-Bi into the matrix of niobium (Nb) was observed. Ceramic materials were SiC and Ti 3 SiC 2 . The ceramic materials of SiC and Ti 3 SiC 2 had high corrosion resistance with no penetration of Pb-Bi into their matrix. (authors)

  9. The growth of faceted/nonfaceted eutectics

    International Nuclear Information System (INIS)

    Suchtelen, J. van

    1976-01-01

    This paper is concerned with the unidirectional solidification of eutectic melts in which one of the phases has a faceted, the other a nonfaceted solid-liquid interface. The occurrence of complex microstructures in such eutectics is explained as a growth phenomenon. The essential condition for the occurrence of such structures is a non-isothermal solid-liquid interface, developing into a faceted-cellular structure. The faceted shape of the cells is imposed by the faceted component of the eutectic. Breakdown to such a cellular structure occurs not only in constitutional-supercooling conditions, but under any circumstances, the cellular period being a function of growth velocity, temperature gradient etc. The two-phase morphology of the eutectic structure is discussed in terms of the relative magnitude of the periods of the cellular and of the eutectic structure. (orig.) [de

  10. A review of Pb-Sb(As-S, Cu(Ag-Fe(Zn-Sb(As-S, Ag(Pb-Bi(Sb-S and Pb-Bi-S(Te sulfosalt systems from the Boranja orefield, West Serbia

    Directory of Open Access Journals (Sweden)

    Radosavljević Slobodan A.

    2016-01-01

    Full Text Available Recent mineralogical, chemical, physical, and crystallographic investigations of the Boranja orefield showed very complex mineral associations and assemblages where sulfosalts have significant role. The sulfosalts of the Boranja orefield can be divided in four main groups: (i Pb-Sb(As-S system with ±Fe and ±Cu; (ii Cu(Ag-Fe(Zn-Sb(As-S system; (iii Ag(Pb-Bi(Sb-S; (iv and Pb-Bi-S(Te system. Spatially, these sulfosalts are widely spread, however, they are the most abundant in the following polymetallic deposits and ore zones: Cu(Bi-FeS Kram-Mlakva; Pb(Ag-Zn-FeS2 Veliki Majdan (Kolarica-Centralni revir-Kojići; Sb-Zn-Pb-As Rujevac; and Pb-Zn-FeS2-BaSO4 Bobija. The multi stage formation of minerals, from skarnhydrothermal to complex hydrothermal with various stages and sub-stages has been determined. All hydrothermal stages and sub-stages of various polymetallic deposits and ore zones within the Boranja orefield are followed by a variety of sulfosalts. [Projekat Ministarstva nauke Republike Srbije, br. OI-176016: Magmatism and geodynamics of the Balkan Peninsula from Mesozoic to present day: Significance for the formation of metallic and non-metallic mineral deposits

  11. Reactor core design optimization of the 200 MWt Pb-Bi cooled fast reactor for hydrogen production

    International Nuclear Information System (INIS)

    Bahrum, Epung Saepul; Su'ud, Zaki; Waris, Abdul; Fitriyani, Dian; Wahjoedi, Bambang Ari

    2008-01-01

    In this study reactor core geometrical optimization of 200 MWt Pb-Bi cooled long life fast reactor for hydrogen production has been conducted. The reactor life time is 20 years and the fuel type is UN-PuN. Geometrical core configurations considered in this study are balance, pancake and tall cylindrical cores. For the hydrogen production unit we adopt steam membrane reforming hydrogen gas production. The optimum operating temperature for the catalytic reaction is 540degC. Fast reactor design optimization calculation was run by using FI-ITB-CHI software package. The design criteria were restricted by the multiplication factor that should be less than 1.002, the average outlet coolant temperature 550degC and the maximum coolant outlet temperature less than 700degC. By taking into account of the hydrogen production as well as corrosion resulting from Pb-Bi, the balance cylindrical geometrical core design with diameter and height of the active core of 157 cm each, the inlet coolant temperature of 350degC and the coolant flow rate of 7000 kg/s were preferred as the best design parameters. (author)

  12. A green deep eutectic solvent dispersive liquid-liquid micro-extraction (DES-DLLME) for the UHPLC-PDA determination of oxyprenylated phenylpropanoids in olive, soy, peanuts, corn, and sunflower oil.

    Science.gov (United States)

    Ferrone, Vincenzo; Genovese, Salvatore; Carlucci, Maura; Tiecco, Matteo; Germani, Raimondo; Preziuso, Francesca; Epifano, Francesco; Carlucci, Giuseppe; Taddeo, Vito Alessandro

    2018-04-15

    A green dispersive liquid-liquid microextraction (DLLME) using deep eutectic solvent (DES) as the extracting solvent has been developed and applied for the simultaneous quantification of ferulic acid, umbelliferone, boropinic acid, 7-isopentenyloxycoumarin, 4'-geranyloxyferulic acid (GOFA), and auraptene in some vegetable oils using ultra high performance liquid chromatography (UHPLC) with photodiode array detection (PDA). All parameters in the extraction step, including selection and loading of both extracting and dispersing solvents, amount of both extractant and disperser solvent were investigated and optimized. PhAA/TMG DES achieved higher recovery and enrichment factor compared to other DESs. The validated method showed good linearity with correlation coefficients, r 2 >0.9990 for all the analytes. Furthermore, this is the first time that eco-friendly solvents are used for the extraction of oxyprenylated phenylpropanoids and the corresponding extract analyzed with ultra high performance liquid chromatography with photodiode array detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Oil desulfurization using deep eutectic solvents as sustainable an economical extractants via liquid-liquid extraction: Experimental and PC-SAFT predictions

    NARCIS (Netherlands)

    Warrag, S.E.E.; Pototzki, Clarissa; Rodriguez Rodriguez, N.; van Sint Annaland, M.; Kroon, M.C.; Held, Christoph; Sadowski, G.; Peters, Cor

    2018-01-01

    The reduction of the sulfur content in crude oil is of utmost importance in order to meet the stringent environmental regulations. Thiophene and its derivatives are considered key substances to be separated from the crude oil. In previous works, six deep eutectic solvents (DESs) based on

  14. Thermodynamic properties of deep eutectic solvent and ionic liquid mixtures at temperatures from 293.15 K to 343.15 K

    Science.gov (United States)

    Achsah, R. S.; Shyam, S.; Mayuri, N.; Anantharaj, R.

    2018-04-01

    Deep eutectic solvents (DES) and ionic liquids (ILs) have their applications in various fields of research and in industries due to their attractive physiochemical properties. In this study, the combined thermodynamic properties of DES (choline chloride-glycerol) + IL1 (1-butyl-3-methylimiazolium acetate) and DES(choline chloride-glycerol) + IL2 (1-ethyl-3-methylimadzolium ethyl sulphate) have been studied. The thermodynamic properties such as excess molar volume, partial molar volume, excess partial molar volume and apparent molar volume were calculated for different mole fractions ranging from 0 to 1 and varying temperatures from 293.15 K to 343.15 K. In order to know the solvent properties of DESs and ILs mixtures at different temperatures and their molecular interactions to enhance the solvent performance and process efficiency at fixed composition and temperature the thermodynamic properties were analyzed.

  15. A liquid-based eutectic system: LiBH4·NH 3-nNH3BH3 with high dehydrogenation capacity at moderate temperature

    KAUST Repository

    Tan, Yingbin

    2011-01-01

    A novel eutectic hydrogen storage system, LiBH4·NH 3-nNH3BH3, which exists in a liquid state at room temperature, was synthesized through a simple mixing of LiBH 4·NH3 and NH3BH3 (AB). In the temperature range of 90-110 °C, the eutectic system showed significantly improved dehydrogenation properties compared to the neat AB and LiBH 4·NH3 alone. For example, in the case of the LiBH4·NH3/AB with a mole ratio of 1:3, over 8 wt.% hydrogen could be released at 90 °C within 4 h, while only 5 wt.% hydrogen released from the neat AB at the same conditions. Through a series of experiments it has been demonstrated that the hydrogen release of the new system is resulted from an interaction of AB and the NH3 group in the LiBH4·NH3, in which LiBH4 works as a carrier of ammonia and plays a crucial role in promoting the interaction between the NH3 group and AB. The enhanced dehydrogenation of LiBH 4·NH3/AB may result from the polar liquid state reaction environments and the initially promoted formation of the diammoniate of diborane, which will facilitate the B-H⋯H-N interaction between LiBH4·NH3 and AB. Kinetics analysis revealed that the rate-controlling steps of the dehydrogenation process are three-dimensional diffusion of hydrogen at temperatures ranging from 90 to 110 °C. This journal is © The Royal Society of Chemistry.

  16. Use of the transpiration method to study polonium evaporation from liquid lead-bismuth eutectic at high temperature

    International Nuclear Information System (INIS)

    Prieto, Borja Gonzalez; Lim, Jun; Rosseel, Kris; Bosch, Joris van den; Aerts, Alexander; Martens, Johan; Rizzi, Matthias; Neuhausen, Joerg

    2014-01-01

    Qualitative and quantitative understanding of Po volatilization under different conditions is of key importance for safety assessments of lead-bismuth eutectic (LBE) based nuclear reactors, spallation targets and accelerator driven systems. In this work we explore the possibilities of the transpiration method in combination with simple models to study the equilibrium and kinetics of Po evaporation from highly diluted solutions in lead-bismuth eutectic between 600 and 1000 C in Ar/5% H 2 and Ar. On the basis of evaporation experiments at various carrier gas flow rates, we identified the conditions of vapor saturation allowing the determination of equilibrium constants. From the limiting behavior at high flow rates, values for the maximal evaporation rate of Po from LBE were estimated. Measurements of evaporation as a function of time were consistent with the assumption that polonium dissolved in LBE obeys Henry's law. A theoretical analysis furthermore suggested that diffusion of polonium in LBE was not a rate limiting factor for evaporation under vapor saturation conditions. Newly determined values for the Henry constant of Po in LBE between 600 and 1000 C were consistent with previously derived correlations.

  17. Influence of liquid lead and lead-bismuth eutectic on tensile, fatigue and creep properties of ferritic/martensitic and austenitic steels for transmutation systems

    Energy Technology Data Exchange (ETDEWEB)

    Gorse, D., E-mail: dominique.gorse-pomonti@polytechnique.edu [CNRS-LSI, Ecole Polytechnique, route de Saclay, 91128, Palaiseau Cedex (France); Auger, T. [CNRS-MSSMAT, Ecole Centrale Paris, Grande Voie des Vignes, 92290, Chatenay-Malabry Cedex (France); Vogt, J.-B.; Serre, I. [CNRS-LMPGM, 59655, Villeneuve d' Ascq Cedex (France); Weisenburger, A. [ForschungszentrumKarlsruheGmbH, P.O. Box 3640, 76021 Karlsruhe (Germany); Gessi, A.; Agostini, P. [ENEA, CR Brasimone, 40032 Camugnano, Bologna (Italy); Fazio, C. [ForschungszentrumKarlsruheGmbH, P.O. Box 3640, 76021 Karlsruhe (Germany); Hojna, A.; Di Gabriele, F. [Ustav jaderneho vyzkumu Rez a.s., Husinec 130, Rez 25068 (Czech Republic); Van Den Bosch, J.; Coen, G.; Almazouzi, A. [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, 2400 Mol (Belgium); Serrano, M. [CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain)

    2011-08-31

    In this paper, the tensile, fatigue and creep properties of the Ferritic/Martensitic (F/M) steel T91 and of the Austenitic Stainless (AS) Steel 316L in lead-bismuth eutectic (LBE) or lead, obtained in the different organizations participating to the EUROTRANS-DEMETRA project are reviewed. The results show a remarkable consistency, referring to the variety of metallurgical and surface state conditions studied. Liquid Metal Embrittlement (LME) effects are shown, remarkable on heat-treated hardened T91 and also on corroded T91 after long-term exposure to low oxygen containing Liquid Metal (LM), but hardly visible on passive or oxidized smooth T91 specimens. For T91, the ductility trough was estimated, starting just above the melting point of the embrittler (T{sub M,E} = 123.5 deg. C for LBE, 327 deg. C for lead) with the ductility recovery found at 425 deg. C. LME effects are weaker on 316L AS steel. Liquid Metal Assisted Creep (LMAC) effects are reported for the T91/LBE system at 550 deg. C, and for the T91/lead system at 525 deg. C. Today, if the study of the LME effects on T91 and 316L in LBE or lead can be considered well documented, in contrast, complementary investigations are necessary in order to quantify the LMAC effects in these systems, and determine rigorously the threshold creep conditions.

  18. Natural deep eutectic solvents as the major mobile phase components in high-performance liquid chromatography-searching for alternatives to organic solvents.

    Science.gov (United States)

    Sutton, Adam T; Fraige, Karina; Leme, Gabriel Mazzi; da Silva Bolzani, Vanderlan; Hilder, Emily F; Cavalheiro, Alberto J; Arrua, R Dario; Funari, Cristiano Soleo

    2018-06-01

    Over the past six decades, acetonitrile (ACN) has been the most employed organic modifier in reversed-phase high-performance liquid chromatography (RP-HPLC), followed by methanol (MeOH). However, from the growing environmental awareness that leads to the emergence of "green analytical chemistry," new research has emerged that includes finding replacements to problematic ACN because of its low sustainability. Deep eutectic solvents (DES) can be produced from an almost infinite possible combinations of compounds, while being a "greener" alternative to organic solvents in HPLC, especially those prepared from natural compounds called natural DES (NADES). In this work, the use of three NADES as the main organic component in RP-HPLC, rather than simply an additive, was explored and compared to the common organic solvents ACN and MeOH but additionally to the greener ethanol for separating two different mixtures of compounds, one demonstrating the elution of compounds with increasing hydrophobicity and the other comparing molecules of different functionality and molar mass. To utilize NADES as an organic modifier and overcome their high viscosity monolithic columns, temperatures at 50 °C and 5% ethanol in the mobile phase were used. NADES are shown to give chromatographic performances in between those observed for ACN and MeOH when eluotropic strength, resolution, and peak capacity were taken into consideration, while being less environmentally impactful as shown by the HPLC-Environmental Assessment Tool (HPLC-EAT) metric. With the development of proper technologies, DES could open a new class of mobile phases increasing the possibilities of new separation selectivities while reducing the environmental impact of HPLC analyses. Graphical abstract Natural deep eutectic solvents versus traditional solvents in HPLC.

  19. A comparative design study of PB-BI cooled reactor cores with forced and natural convection cooling

    International Nuclear Information System (INIS)

    Mizuno, Tomoyasu; Enuma, Yasuhiro; Tanji, Mikio

    2003-01-01

    A comparative core design study is performed on Pb-Bi cooled reactors with forced and natural convection (FC and NC) cooling. Major interests of the study are core performance and core safety features. The designed core concepts with nitride fuel achieve reasonable breeding capability. The results of unprotected event analyses such as UTOP and ULOF show that both of concepts have possible features to withstand unprotected events due to negative reactivity feedback by Doppler effect, control rod drive line expansion, etc. These results lead to a conclusion that both of concepts have possible capability as one of future promising core concepts. A FC cooling core concept has more advantage if fuel recycle viewpoint is emphasized. (author)

  20. Structure of the aluminium-uranium eutectic

    International Nuclear Information System (INIS)

    Ambrozio Filho, F.; Vieira, R.R.

    1975-01-01

    The authors discuss the factors which might effect the eutectic structure, including external conditions during solidification as well as factors peculiar to each individual system. They studied the structure of the A1-U eutectic, consisting of the solid solution of uranium in aluminium and UA1 4 , as obtained in ingot moulds and by unidirectional solidification, and found a tendency for the structure to develop in a spiral, in the form of a rhombus. They discuss this structure in terms of certain variables with emphasis on the growth characteristics of the phases comprising the eutectic, the velocity of growth and thermal gradient in the liquid [pt

  1. Morphology of the aluminium-uranium eutectic

    International Nuclear Information System (INIS)

    Ambrozio Filho, F.; Vieira, R.R.

    1976-01-01

    The factors which might affect the eutectic structure including external condition during solidification as well as factors peculiar to each individual system is discussed. The structure of the Al-U eutectic, consisting of the solid solution of uranium in aluminium and UAl 4 , as obtained in ingot moulds and by unidirectional solidification. The extructure in terms of certain variables with emphasis on the growth characteristics of the phases comprising the eutectic the velocity of growth and thermal gradient in the liquid is also presented [pt

  2. Graphene and graphene oxide modified by deep eutectic solvents and ionic liquids supported on silica as adsorbents for solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoqin; Li, Guizhen; Row, Kyung Ho [Dept. of Chemistry and Chemical Engineering, Inha University, Incheon (Korea, Republic of)

    2017-02-15

    A novel deep eutectic solvent (DES) and ionic liquid (IL)-modified graphene (G) and graphene oxide (GO) were synthesized and used as effective adsorbents for the preconcentration of three chlorophenols (CPs), 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP), in environmental water samples prior to high-performance liquid chromatography (HPLC). The new materials were characterized by scanning electron microscopy (S-4200) and Fourier-transform infrared spectrometry. The prepared functionalized GO@silica shows remarkable adsorption capacity toward CPs. When used as solid-phase extraction (SPE) sorbents, a superior recovery (88.49–89.70%) could be obtained compared to commercial sorbents, such as silica and aminosilica. Based on this, a method for the analysis of CPs in water samples was established by coupling SPE with HPLC. These results highlight the potential new role of DES and IL-modified GO in the preparation of analytical samples.

  3. Deep eutectic solvent-based ultrasound-assisted dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the determination of ultraviolet filters in water samples.

    Science.gov (United States)

    Wang, Huazi; Hu, Lu; Liu, Xinya; Yin, Shujun; Lu, Runhua; Zhang, Sanbing; Zhou, Wenfeng; Gao, Haixiang

    2017-09-22

    In the present study, a simple and rapid sample preparation method designated ultrasound-assisted dispersive liquid-liquid microextraction based on a deep eutectic solvent (DES) followed by high-performance liquid chromatography with ultraviolet (UV) detection (HPLC-UVD) was developed for the extraction and determination of UV filters from water samples. The model analytes were 2,4-dihydroxybenzophenone (BP-1), benzophenone (BP) and 2-hydroxy-4-methoxybenzophenone (BP-3). The hydrophobic DES was prepared by mixing trioctylmethylammonium chloride (TAC) and decanoic acid (DecA). Various influencing factors (selection of the extractant, amount of DES, ultrasound duration, salt addition, sample volume, sample pH, centrifuge rate and duration) on UV filter recovery were systematically investigated. Under optimal conditions, the proposed method provided good recoveries in the range of 90.2-103.5% and relative standard deviations (inter-day and intra-day precision, n=5) below 5.9%. The enrichment factors for the analytes ranged from 67 to 76. The limits of detection varied from 0.15 to 0.30ngmL -1 , depending on the analytes. The linearities were between 0.5 and 500ngmL -1 for BP-1 and BP and between 1 and 500ngmL -1 for BP-3, with coefficients of determination greater than 0.99. Finally, the proposed method was applied to the determination of UV filters in swimming pool and river water samples, and acceptable relative recoveries ranging from 82.1 to 106.5% were obtained. Copyright © 2017. Published by Elsevier B.V.

  4. Comparison of lithium and the eutectic lead lithium alloy, two candidate liquid metal breeder materials for self-cooled blankets

    International Nuclear Information System (INIS)

    Malang, S.; Mattas, R.

    1994-06-01

    Liquid metals are attractive candidates for both near-term and long-term fusion applications. The subjects of this comparison are the differences between the two candidate liquid metal breeder materials Li and LiPb for use in breeding blankets in the areas of neutronics, magnetohydrodynamics, tritium control, compatibility with structural materials, heat extraction system, safety, and required R ampersand D program. Both candidates appear to be promising for use in self-cooled breeding blankets which have inherent simplicity with the liquid metal serving as both breeders and coolant. The remaining feasibility question for both breeder materials is the electrical insulation between liquid metal and duct walls. Different ceramic coatings are required for the two breeders, and their crucial issues, namely self-healing of insulator cracks and radiation induced electrical degradation are not yet demonstrated. Each liquid metal breeder has advantages and concerns associated with it, and further development is needed to resolve these concerns

  5. Pathways for the release of polonium from a lead-bismuth spallation target (thermochemical calculation); Verfluechtigungspfade des Poloniums aus einem Pb-Bi-Spallationstarget (Thermochemische Kalkulation)

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, B.; Neuhausen, J

    2004-06-01

    An analysis of literature data for the thermochemical constants of polonium reveals considerable discrepancies in the relations of these data among each other as well as in their expected trends within the chalcogen group. This fact hinders a reliable assessment of possible reaction paths for the release of polonium from a liquid lead-bismuth spallation target. In this work an attempt is made to construct a coherent data set for the thermochemical properties of polonium and some of its compounds that are of particular importance with respect to the behaviour of polonium in a liquid Pb-Bi target. This data set is based on extrapolations using general trends throughout the periodic table and, in particular, within the chalcogen group. Consequently, no high accuracy should be attributed to the derived data set. However, the data set derived in this work is consistent with definitely known experimental data. Furthermore, it complies with the general trends of physicochemical properties within the chalcogen group. Finally, well known relations between thermochemical quantities are fulfilled by the data derived in this work. Thus, given the lack of accurate experimental data it can be regarded as best available data. Thermochemical constants of polonium hydride, lead polonide and polonium dioxide are derived based on extrapolative procedures. Furthermore, the possibility of formation of the gaseous intermetallic molecule BiPo, which has been omitted from discussion up to now, is investigated. From the derived thermochemical data the equilibrium constants of formation, release and dissociation reactions are calculated for different polonium containing species. Furthermore equilibrium constants are determined for the reaction of lead polonide and polonium dioxide with hydrogen, water vapour and the target components lead and bismuth. The most probable release pathways are discussed. From thermochemical evaluations polonium is expected to be released from liquid lead

  6. The Development and Production of a Functionally Graded Composite for Pb-Bi Service

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, Ronald G

    2011-08-01

    A material that resists lead-bismuth eutectic (LBE) attack and retains its strength at 700°C would be an enabling technology for LBE-cooled reactors. No single alloy currently exists that can economically meet the required performance criteria of high strength and corrosion resistance. A Functionally Graded Composite (FGC) was developed with layers engineered to perform these functions. F91 was chosen as the structural layer of the composite for its strength and radiation resistance. Fe-12Cr-2Si, an alloy developed from previous work in the Fe-Cr-Si system, was chosen as the corrosion-resistant cladding layer because of its chemical similarity to F91 and its superior corrosion resistance in both oxidizing and reducing environments. Fe-12Cr-2Si experienced minimal corrosion due to its self-passivation in oxidizing and reducing environments. Extrapolated corrosion rates are below one micron per year at 700ï°C. Corrosion of F91 was faster, but predictable and manageable. Diffusion studies showed that 17 microns of the cladding layer will be diffusionally diluted during the three year life of fuel cladding. 33 microns must be accounted for during the sixty year life of coolant piping. 5 cm coolant piping and 6.35 mm fuel cladding preforms were produced on a commercial scale by weld-overlaying Fe-12Cr-2Si onto F91 billets and co-extruding them. An ASME certified weld was performed followed by the prescribed quench-and-tempering heat treatment for F91. A minimal heat affected zone was observed, demonstrating field weldability. Finally, corrosion tests were performed on the fabricated FGC at 700ï°C after completely breaching the cladding in a small area to induce galvanic corrosion at the interface. None was observed. This FGC has significant impacts on LBE reactor design. The increases in outlet temperature and coolant velocity allow a large increase in power density, leading to either a smaller core for the same power rating or more power output for the same size

  7. Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell

    Science.gov (United States)

    Xu, Pei; Du, Peng-Xuan; Zong, Min-Hua; Li, Ning; Lou, Wen-Yong

    2016-05-01

    The efficient anti-Prelog asymmetric reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cells was successfully performed in a biphasic system consisting of deep eutectic solvent (DES) and water-immiscible ionic liquid (IL). Various DESs exerted different effects on the synthesis of (R)-2-octanol. Choline chloride/ethylene glycol (ChCl/EG) exhibited good biocompatibility and could moderately increase the cell membrane permeability thus leading to the better results. Adding ChCl/EG increased the optimal substrate concentration from 40 mM to 60 mM and the product e.e. kept above 99.9%. To further improve the reaction efficiency, water-immiscible ILs were introduced to the reaction system and an enhanced substrate concentration (1.5 M) was observed with C4MIM·PF6. Additionally, the cells manifested good operational stability in the reaction system. Thus, the efficient biocatalytic process with ChCl/EG and C4MIM·PF6 was promising for efficient synthesis of (R)-2-octanol.

  8. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 °C

    Energy Technology Data Exchange (ETDEWEB)

    Lambrinou, Konstantina, E-mail: klambrin@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Charalampopoulou, Evangelia [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); University of Antwerp, Electron Microscopy for Materials Science (EMAT), Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Van der Donck, Tom [KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, 3001 Leuven (Belgium); Delville, Rémi [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Schryvers, Dominique [University of Antwerp, Electron Microscopy for Materials Science (EMAT), Groenenborgerlaan 171, 2020 Antwerpen (Belgium)

    2017-07-15

    This work addresses the dissolution corrosion behaviour of 316L austenitic stainless steels. For this purpose, solution-annealed and cold-deformed 316L steels were simultaneously exposed to oxygen-poor (<10{sup −8} mass%) static liquid lead-bismuth eutectic (LBE) for 253–3282 h at 500 °C. Corrosion was consistently more severe for the cold-drawn steels than the solution-annealed steel, indicating the importance of the steel thermomechanical state. The thickness of the dissolution-affected zone was non-uniform, and sites of locally-enhanced dissolution were occasionally observed. The progress of LBE dissolution attack was promoted by the interplay of certain steel microstructural features (grain boundaries, deformation twin laths, precipitates) with the dissolution corrosion process. The identified dissolution mechanisms were selective leaching leading to steel ferritization, and non-selective leaching; the latter was mainly observed in the solution-annealed steel. The maximum corrosion rate decreased with exposure time and was found to be inversely proportional to the depth of dissolution attack. - Highlights: •Dissolution corrosion was more severe in cold-deformed than solution-annealed 316L steels. •LBE penetration occurred along preferential paths in the steel microstructure. •The maximum dissolution rate was inversely proportionate to the depth of dissolution.

  9. Atomic-scale features of phase boundaries in hot deformed Nd–Fe–Co–B–Ga magnets infiltrated with a Nd–Cu eutectic liquid

    International Nuclear Information System (INIS)

    Woodcock, T.G.; Ramasse, Q.M.; Hrkac, G.; Shoji, T.; Yano, M.; Kato, A.; Gutfleisch, O.

    2014-01-01

    Hot deformed Nd–Fe–Co–B–Ga magnets were infiltrated with a Nd–Cu eutectic liquid, resulting in a 71% increase in coercivity to μ 0 H c = 2.4 T without the use of Dy, and a 22% decrease in remanence, attributed to the dilution effect. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy have been used to reveal the structure and chemical composition of phase boundaries in the magnets on the atomic scale. The results showed that the Nd–Cu liquid penetrated the ≈1 nm thick intergranular regions. The coercivity increase following infiltration was therefore attributed to improved volume fraction and distribution of the intergranular phases. Co enrichment in the outermost 1–2 unit cells at several {0 0 1} and {1 1 0} surfaces of the Nd 2 (Fe, Co) 14 B crystals was shown for the infiltrated sample. The as-deformed sample did not appear to show this Co enrichment. Molecular dynamics simulations indicated that the distorted layer at an {0 0 1} surface of a Nd 2 (Fe, Co) 14 B grain was significantly thicker with higher Co surface enrichment. The magnetocrystalline anisotropy may be reduced in such distorted regions, which could have a detrimental effect on coercivity. Such features may therefore play a role in limiting coercivity to a fraction of the anisotropy field. Interfacial segregation of Cu between Nd 2 (Fe, Co) 14 B and the Nd-rich intergranular phase occurred in the infiltrated sample. Step defects in Nd 2 (Fe, Co) 14 B {0 0 1} surfaces, a half or a whole unit cell in height, were also observed

  10. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Afifah, Maryam, E-mail: maryam.afifah210692@gmail.com; Su’ud, Zaki [Nuclear Research Group, FMIPA, Bandung Institute of Technology Jl. Ganesha 10, Bandung 40132 (Indonesia); Miura, Ryosuke; Takaki, Naoyuki [Department of Nuclear Safety Engineering, Tokyo City University 1-28-1 Tamazutsumi, Setagaya, Tokyo 158-8557 (Japan); Sekimoto, H. [Emerritus Prof. of Research Laboratory for Nuclear Reactors, Tokyo Inst. of Technology (Japan)

    2015-09-30

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don’t need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  11. Structure of eutectic alloys of Au with Si and Ge

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, S. [Faculty of Sciences, Kyushu University, 4-2-1, Ropponmatsu, Fukuoka 810-8560 (Japan)], E-mail: takeda@rc.kyushu-u.ac.jp; Fujii, H. [Graduate School of Sciences, Kyushu University, 4-2-1, Ropponmatsu, Fukuoka 810-8560 (Japan); Kawakita, Y. [Faculty of Sciences, Kyushu University, 4-2-1, Ropponmatsu, Fukuoka 810-8560 (Japan); Tahara, S.; Nakashima, S. [Graduate School of Sciences, Kyushu University, 4-2-1, Ropponmatsu, Fukuoka 810-8560 (Japan); Kohara, S.; Itou, M. [Japan Synchrotron Radiation Research Institute, 1-1-1 Koto Sayo-cho, Sayo Hyogo 679-5198 (Japan)

    2008-03-06

    Au-Si and Au-Ge alloy systems have a deep eutectic point in the Au-rich concentration region where the melting point falls down to 633 K. In order to investigate the liquid structure in relation to the glass-forming tendency of these alloys, high-energy X-ray diffraction measurements have been carried out at the eutectic composition and at compositions with excess amounts of Au or IVb element. The nearest neighbor correlations in the eutectic liquids are intense and sharp in the pair distribution function and exhibit a rather small temperature dependence in comparison with those alloys of other than the eutectic composition. Structural models for these liquid alloys are proposed with the aid of reverse Monte Carlo simulation. The reproduced atomic arrangements around the eutectic region exhibit a substitutional-type structure where the dense random packing of Au atoms is preserved and Si or Ge atoms occupy the Au-sites at random.

  12. Safety performance comparation of MOX, nitride and metallic fuel based 25-100 MWe Pb-Bi cooled long life fast reactors without on-site refuelling

    International Nuclear Information System (INIS)

    Su'ud, Zaki

    2008-01-01

    In this paper the safety performance of 25-100 MWe Pb-Bi cooled long life fast reactors based on three types of fuels: MOX, nitride and metal is compared and discussed. In the fourth generation NPP paradigm, especially for Pb-Bi cooled fast reactors, inherent safety capability is necessary against some standard accidents such as unprotected loss of flow (ULOF), unprotected rod run-out transient over power (UTOP), unprotected loss of heat sink (ULOHS). Selection of fuel type will have important impact on the overall system safety performance. The results of safety analysis of long life Pb-Bi cooled fast reactors without on-site fuelling using nitride, MOX and metal fuel have been performed. The reactors show the inherent safety pattern with enough safety margins during ULOF and UTOP accidents. For MOX fuelled reactors, ULOF accident is more severe than UTOP accident while for nitride fuelled cores UTOP accident may push power much higher than that comparable MOX fuelled cores. (author)

  13. Synthesis and structural characterization of a novel Sillén - Aurivillius bismuth oxyhalide, PbBi3VO7.5Cl, and its derivatives

    Science.gov (United States)

    Charkin, Dmitri O.; Plokhikh, Igor V.; Kazakov, Sergey M.; Kalmykov, Stepan N.; Akinfiev, Victor S.; Gorbachev, Anatoly V.; Batuk, Maria; Abakumov, Artem M.; Teterin, Yury A.; Maslakov, Konstantin I.; Teterin, Anton Yu; Ivanov, Kirill E.

    2018-01-01

    A new Sillén - Aurivillius family of layered bismuth oxyhalides has been designed and successfully constructed on the basis of PbBiO2X (X = halogen) synthetic perites and γ-form of Bi2VO5.5 solid electrolyte. This demonstrates, for the first time, the ability of the latter to serve as a building block in construction of mixed-layer structures. The parent compound PbBi3VO7.5-δCl (δ ≤ 0.05) has been investigated by powder XRD, TEM, XPS methods and magnetic susceptibility measurements. An unexpected but important condition for the formation of the mixed-layer structure is partial (ca. 5%) reduction of VV into VIV which probably suppresses competitive formation of apatite-like Pb - Bi vanadates. This reduction also stabilizes the γ polymorphic form of Bi2VO5.5 not only in the intergrowth structure, but in Bi2V1-xMxO5.5-y (M = Nb, Sb) solid solutions.

  14. Competing forces in liquid metal electrodes and batteries

    Science.gov (United States)

    Ashour, Rakan F.; Kelley, Douglas H.; Salas, Alejandro; Starace, Marco; Weber, Norbert; Weier, Tom

    2018-02-01

    Liquid metal batteries are proposed for low-cost grid scale energy storage. During their operation, solid intermetallic phases often form in the cathode and are known to limit the capacity of the cell. Fluid flow in the liquid electrodes can enhance mass transfer and reduce the formation of localized intermetallics, and fluid flow can be promoted by careful choice of the locations and topology of a battery's electrical connections. In this context we study four phenomena that drive flow: Rayleigh-Bénard convection, internally heated convection, electro-vortex flow, and swirl flow, in both experiment and simulation. In experiments, we use ultrasound Doppler velocimetry (UDV) to measure the flow in a eutectic PbBi electrode at 160 °C and subject to all four phenomena. In numerical simulations, we isolate the phenomena and simulate each separately using OpenFOAM. Comparing simulated velocities to experiments via a UDV beam model, we find that all four phenomena can enhance mass transfer in LMBs. We explain the flow direction, describe how the phenomena interact, and propose dimensionless numbers for estimating their mutual relevance. A brief discussion of electrical connections summarizes the engineering implications of our work.

  15. Martensitic transformation behavior in Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jai-young; Chun, Su-jin; Kim, Nam-suk; Cho, Jeung-won; Kim, Jae-hyun [School of Materials Science and Engineering, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of); Yeom, Jong-taek [Light Metal Division, Korea Institute of Materials Science (KIMS), Changwon 642-831 (Korea, Republic of); Kim, Jae-il [Materials Science and Engineering, University of Dong-A, Hadan-dong, Saha-gu, Busan 604-714 (Korea, Republic of); Nam, Tae-hyun, E-mail: tahynam@gnu.ac.kr [School of Materials Science and Engineering, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2013-12-15

    Graphical abstract: - Highlights: • Ag, In and Sn were soluble in TiNi matrix, while Sb, Te, Tl, Pb and Bi were not. • The B2-R-B19′transformation occurred in Ti-Ni-(Ag, In, Sn) alloys. • Solid solution hardening was essential for inducing the B2-R transformation. - Abstract: The microstructures and transformation behaviors of Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys were investigated using electron probe micro-analysis (EPMA), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Micro Vickers hardness tests. All specimens consisted of Ti–Ni matrices and second phase particles. Ag, In and Sn were soluble in Ti–Ni matrices with a limited solubility (≤1.0 at%), while Sb, Te, Tl, Pb and Bi were not soluble. Two-stage B2-R-B19′ transformation occurred in Ti–48.8Ni–1.2Ag, Ti–49.0Ni–1.0In and Ti–49.0Ni–1.0Sn alloys, while one-stage B2-B19′ transformation occurred in Ti–49.0Ni–1.0Ag, Ti–49.0Ni–1.0Sb, Ti–49.0Ni–1.0Te, Ti–49.0Ni–1.0Pb and Ti–49.0Ni–1.0Bi alloys. Micro Vickers hardness of the alloys displaying the B2-R-B19′ transformation (Hv 250–368) was much larger than that (

  16. Martensitic transformation behavior in Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys

    International Nuclear Information System (INIS)

    Jang, Jai-young; Chun, Su-jin; Kim, Nam-suk; Cho, Jeung-won; Kim, Jae-hyun; Yeom, Jong-taek; Kim, Jae-il; Nam, Tae-hyun

    2013-01-01

    Graphical abstract: - Highlights: • Ag, In and Sn were soluble in TiNi matrix, while Sb, Te, Tl, Pb and Bi were not. • The B2-R-B19′transformation occurred in Ti-Ni-(Ag, In, Sn) alloys. • Solid solution hardening was essential for inducing the B2-R transformation. - Abstract: The microstructures and transformation behaviors of Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys were investigated using electron probe micro-analysis (EPMA), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Micro Vickers hardness tests. All specimens consisted of Ti–Ni matrices and second phase particles. Ag, In and Sn were soluble in Ti–Ni matrices with a limited solubility (≤1.0 at%), while Sb, Te, Tl, Pb and Bi were not soluble. Two-stage B2-R-B19′ transformation occurred in Ti–48.8Ni–1.2Ag, Ti–49.0Ni–1.0In and Ti–49.0Ni–1.0Sn alloys, while one-stage B2-B19′ transformation occurred in Ti–49.0Ni–1.0Ag, Ti–49.0Ni–1.0Sb, Ti–49.0Ni–1.0Te, Ti–49.0Ni–1.0Pb and Ti–49.0Ni–1.0Bi alloys. Micro Vickers hardness of the alloys displaying the B2-R-B19′ transformation (Hv 250–368) was much larger than that (< Hv 200) of the alloys displaying the B2-B19′ transformation. Solid solution hardening was an important factor for inducing the B2-R transformation in Ti–Ni–X (X = non-transition elements) alloys

  17. Nitrogen injection in stagnant liquid metal. Eulerian-Eulerian and VOF calculations by fluent

    International Nuclear Information System (INIS)

    Pena, A.; Esteban, G.A.

    2004-01-01

    High power spallation sources are devices that can be very useful in different fields, as medicine, material science, and also in the Accelerator Driven Systems (ADS). This devices use Heavy Liquid Metals (HLM) as the spallation target. Furthermore, HLM are thought to be the coolant of those big energy sources produced by the process. Fast breeder reactors, advanced nuclear reactors, as well as the future designs of fusion reactors, also consider HLM as targets or coolants. Gas injection in liquid metal flows allows the enhancement of this coolant circulation. The difference in densities between the gas and the liquid metal is a big challenge for the multiphase models implemented in the Computational Fluid Dynamics (CFD) codes. Also the changing shape of the bubbles involves extra difficulties in the calculations. A N 2 flow in stagnant Lead-Bismuth eutectic (Pb-Bi), experiment available at Forschungszentrum Rossendorf e.V (FZR) in Germany, was used in one of the work-packages of the ASCHLIM project (EU contract number FIKW-CT-2001-80121). In this paper, calculations made by the UPV/EHU (University of the Basque Country) show measuring data compared with numerical results using the CFD (Computational Fluid Dynamics) code FLUENT and two multiphase models: the Eulerian-Eulerian and the Volume of Fluid (VOF). The interpretation of the experimental resulting velocities was difficult, because some parameters were not known, bubble trajectory and bubble shape, for example, as direct optical methods cannot be used, like it is done with water experiments. (author)

  18. Into the depths of deep eutectic solvents

    NARCIS (Netherlands)

    Rodriguez, N.; Alves da Rocha, M.A.; Kroon, M.C.

    2015-01-01

    Ionic liquids (ILs) have been successfully tested in a wide range of applications; however, their high price and complicated synthesis make them infeasible for large scale implementation. A decade ago, a new generation of solvents so called deep eutectic solvents (DESs) was reported for the first

  19. Reference Data for the Density, Viscosity, and Surface Tension of Liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn Eutectic Alloys

    Science.gov (United States)

    Dobosz, Alexandra; Gancarz, Tomasz

    2018-03-01

    The data for the physicochemical properties viscosity, density, and surface tension obtained by different experimental techniques have been analyzed for liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn eutectic alloys. All experimental data sets have been categorized and described by the year of publication, the technique used to obtain the data, the purity of the samples and their compositions, the quoted uncertainty, the number of data in the data set, the form of data, and the temperature range. The proposed standard deviations of liquid eutectic Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn alloys are 0.8%, 0.1%, 0.5%, 0.2%, and 0.1% for the density, 8.7%, 4.1%, 3.6%, 5.1%, and 4.0% for viscosity, and 1.0%, 0.5%, 0.3%, N/A, and 0.4% for surface tension, respectively, at a confidence level of 95%.

  20. Study of the influence of gravity on the thermodynamic equilibrium of a liquid alloy, and on its solidification: application to eutectic Al-Ge and monotectic Al-In alloys

    International Nuclear Information System (INIS)

    Vinet, Bernard

    1981-01-01

    After having recalled the meaning of gravity, this research thesis addresses the study of movements within the Earth gravity field to assess accelerations for a centrifuged system, and to describe conditions which create weightlessness. The various actions of gravity on fluid phases are analysed by highlighting phenomena of convection and segregation. In a second part, the author addresses the issue of local order. The third part addresses the influence of gravity conditions on the distribution of components of a binary liquid alloy in thermodynamic equilibrium. The fourth part addresses experimental means. The next parts address the eutectic Al-Ge alloy and the monotectic Al-In alloy. Results obtained for liquid alloy are presented, and the author analyse segregations which appeared during solidification in gravity conditions between 40 and 100 g. The influence of these conditions of the structure of both alloys is then studied

  1. A highly selective and sensitive ultrasonic assisted dispersive liquid phase microextraction based on deep eutectic solvent for determination of cadmium in food and water samples prior to electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Zounr, Rizwan Ali; Tuzen, Mustafa; Deligonul, Nihal; Khuhawar, Muhammad Yar

    2018-07-01

    A simple, fast, green, sensitive and selective ultrasonic assisted deep eutectic solvent liquid-phase microextraction technique was used for preconcentration and extraction of cadmium (Cd) in water and food samples by electrothermal atomic absorption spectrometry (ETAAS). In this technique, a synthesized reagent (Z)-N-(3,5-diphenyl-1H-pyrrol-2-yl)-3,5-diphenyl-2H-pyrrol-2-imine (Azo) was used as a complexing agent for Cd. The main factors effecting the pre-concentration and extraction of Cd such as effect of pH, type and composition of deep eutectic solvent (DES), volume of DES, volume of complexing agent, volume of tetrahydrofuran (THF) and ultrasonication time have been examined in detail. At optimum conditions the value of pH and molar ratio of DES were found to be 6.0 and 1:4 (ChCl:Ph), respectively. The detection limit (LOD), limit of quantification (LOQ), relative standard deviation (RSD) and preconcentration factor (PF) were observed as 0.023 ng L -1 , 0.161 ng L -1 , 3.1% and 100, correspondingly. Validation of the developed technique was observed by extraction of Cd in certified reference materials (CRMs) and observed results were successfully compared with certified values. The developed procedure was practiced to various food, beverage and water samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Solidification of eutectic system alloys in space (M-19)

    Science.gov (United States)

    Ohno, Atsumi

    1993-01-01

    It is well known that in the liquid state eutectic alloys are theoretically homogeneous under 1 g conditions. However, the homogeneous solidified structure of this alloy is not obtained because thermal convection and non-equilibrium solidification occur. The present investigators have clarified the solidification mechanisms of the eutectic system alloys under 1 g conditions by using the in situ observation method; in particular, the primary crystals of the eutectic system alloys never nucleated in the liquid, but instead did so on the mold wall, and the crystals separated from the mold wall by fluid motion caused by thermal convection. They also found that the equiaxed eutectic grains (eutectic cells) are formed on the primary crystals. In this case, the leading phase of the eutectic must agree with the phase of the primary crystals. In space, no thermal convection occurs so that primary crystals should not move from the mold wall and should not appear inside the solidified structure. Therefore no equiaxed eutectic grains will be formed under microgravity conditions. Past space experiments concerning eutectic alloys were classified into two types of experiments: one with respect to the solidification mechanisms of the eutectic alloys and the other to the unidirectional solidification of this alloy. The former type of experiment has the problem that the solidified structures between microgravity and 1 g conditions show little difference. This is why the flight samples were prepared by the ordinary cast techniques on Earth. Therefore it is impossible to ascertain whether or not the nucleation and growth of primary crystals in the melt occur and if primary crystals influence the formation of the equiaxed eutectic grains. In this experiment, hypo- and hyper-eutectic aluminum copper alloys which are near eutectic point are used. The chemical compositions of the samples are Al-32.4mass%Cu (Hypo-eutectic) and Al-33.5mass%Cu (hyper-eutectic). Long rods for the samples are

  3. Study on the morphology of Pb-Sn eutectics

    International Nuclear Information System (INIS)

    Ambrozio Filho, F.; Gentile, E.F.

    1976-01-01

    The influence of factors such as rate of growth of the solid phase, thermal gradient in the liquid and presence of impurities on the solidification of eutectic structures is studied. To emphasize certain aspects of the basic concept, the technique of unidirectional cooling was used in a specially constructed apparatus. Micrographs of the structure obtained with the eutectic Pb-Sn alloy are shown and a purely qualitative analysis of the factors described is given [pt

  4. On the stable eutectic solidification of iron–carbon–silicon alloys

    International Nuclear Information System (INIS)

    Stefanescu, Doru M.; Alonso, Gorka; Larrañaga, Pello; Suarez, Ramon

    2016-01-01

    Extensive effort was expanded to elucidate the growth and morphology of the stable eutectic grains during early solidification of continuous cooled Fe–C–Si alloys. To this purpose, quenching experiments at successive stages during solidification have been carried out on five cast irons with various magnesium and titanium levels designed to produce graphite morphologies ranging from lamellar to mixed compacted–spheroidal. The graphite shape factors were measured on the metallographic samples, and their evolution as a function of the chemical composition and the solid fraction was analyzed. Extensive scanning electron microscopy was carried on to evaluate the change in graphite shape during early solidification, to establish the fraction of solid at which the transition from spheroidal-to-compacted-to-lamellar graphite occurs, and to outline the early morphology of the eutectic grains. It was confirmed that solidification of Mg containing irons started with the development of spheroidal graphite even at Mg levels as low as 0.013 mass%. Then, as solidification proceeds, when some spheroids developed one or more tails (tadpole graphite), the spheroidal-to-compacted graphite transition occurs. The new findings were then integrated in previous knowledge to produce an understanding of the eutectic solidification of these materials. It was concluded that in hypoeutectic lamellar graphite iron austenite/graphite eutectic grains can nucleate at the austenite/liquid interface or in the bulk of the liquid, depending on the sulfur content and on the cooling rate. When graphite nucleation occurs on the primary austenite, several eutectic grains can nucleate and grow on the same dendrite. The primary austenite continues growing as eutectic austenite and therefore the two have the same crystallographic orientation. Thus, a final austenite grain may include several eutectic grains. In eutectic irons the eutectic grains nucleate and grow mostly in the liquid. The eutectic

  5. Distribution behavior of uranium, neptunium, rare-earth elements (Y, La, Ce, Nd, Sm, Eu, Gd) and alkaline-earth metals (Sr,Ba) between molten LiCl-KCl eutectic salt and liquid cadmium or bismuth

    International Nuclear Information System (INIS)

    Kurata, M.; Sakamura, Y.; Hijikata, T.; Kinoshita, K.

    1995-01-01

    Distribution coefficients of uranium neptunium, eight rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) and two alkaline-earth metals (Sr and Ba) between molten LiCl-KCl eutectic salt and either liquid cadmium or bismuth were measured at 773 K. Separation factors of trivalent rare-earth elements to uranium or neptunium in the LiCl-KCl/Bi system were by one or two orders of magnitude larger than those in the LiCl-KCl/Cd system. On the contrary, the separation factors of alkaline-earth metals and divalent rare-earth elements to trivalent rare-earth elements were by one or two orders of magnitude smaller in the LiCl-KCl/Bi system. (orig.)

  6. Organic alloy systems suitable for the investigation of regular binary and ternary eutectic growth

    Science.gov (United States)

    Sturz, L.; Witusiewicz, V. T.; Hecht, U.; Rex, S.

    2004-09-01

    Transparent organic alloys showing a plastic crystal phase were investigated experimentally using differential scanning calorimetry and directional solidification with respect to find a suitable model system for regular ternary eutectic growth. The temperature, enthalpy and entropy of phase transitions have been determined for a number of pure substances. A distinction of substances with and without plastic crystal phases was made from their entropy of melting. Binary phase diagrams were determined for selected plastic crystal alloys with the aim to identify eutectic reactions. Examples for lamellar and rod-like eutectic solidification microstructures in binary systems are given. The system (D)Camphor-Neopentylglycol-Succinonitrile is identified as a system that exhibits, among others, univariant and a nonvariant eutectic reaction. The ternary eutectic alloy close to the nonvariant eutectic composition solidifies with a partially faceted solid-liquid interface. However, by adding a small amount of Amino-Methyl-Propanediol (AMPD), the temperature of the nonvariant eutectic reaction and of the solid state transformation from plastic to crystalline state are shifted such, that regular eutectic growth with three distinct nonfaceted phases is observed in univariant eutectic reaction for the first time. The ternary phase diagram and examples for eutectic microstructures in the ternary and the quaternary eutectic alloy are given.

  7. General characteristics of eutectic alloy solidification mechanisms

    International Nuclear Information System (INIS)

    Lemaignan, Clement.

    1977-01-01

    The eutectic alloy sodification was studied in binary systems: solidification of non facetted - non facetted eutectic alloy (theoretical aspects, variation of the lamellar spacing, crystallographic relation between the various phases); solidification of facetted - non facetted eutectic alloy; coupled growth out of eutectic alloy; eutectic nucleation [fr

  8. The Development and Production of a Functionally Graded Composite for Pb-Bi Service.Final report

    International Nuclear Information System (INIS)

    Ballinger, Ronald G.

    2011-01-01

    A material that resists lead-bismuth eutectic (LBE) attack and retains its strength at 700 C would be an enabling technology for LBE-cooled reactors. No single alloy currently exists that can economically meet the required performance criteria of high strength and corrosion resistance. A Functionally Graded Composite (FGC) was developed with layers engineered to perform these functions. F91 was chosen as the structural layer of the composite for its strength and radiation resistance. Fe-12Cr-2Si, an alloy developed from previous work in the Fe-Cr-Si system, was chosen as the corrosion-resistant cladding layer because of its chemical similarity to F91 and its superior corrosion resistance in both oxidizing and reducing environments. Fe-12Cr-2Si experienced minimal corrosion due to its self-passivation in oxidizing and reducing environments. Extrapolated corrosion rates are below one micron per year at 700 C. Corrosion of F91 was faster, but predictable and manageable. Diffusion studies showed that 17 microns of the cladding layer will be diffusionally diluted during the three year life of fuel cladding. 33 microns must be accounted for during the sixty year life of coolant piping. 5 cm coolant piping and 6.35 mm fuel cladding preforms were produced on a commercial scale by weld-overlaying Fe-12Cr-2Si onto F91 billets and co-extruding them. An ASME certified weld was performed followed by the prescribed quench-and-tempering heat treatment for F91. A minimal heat affected zone was observed, demonstrating field weldability. Finally, corrosion tests were performed on the fabricated FGC at 700 C after completely breaching the cladding in a small area to induce galvanic corrosion at the interface. None was observed. This FGC has significant impacts on LBE reactor design. The increases in outlet temperature and coolant velocity allow a large increase in power density, leading to either a smaller core for the same power rating or more power output for the same size core

  9. Development of nuclear transmutation technology - A study on the thermal-hydraulic characteristics of Pb-Bi coolant material

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; You, Young Woo; Cho, Jae Seon; Kim, Ju Youl; Yang, Hui Chang; Huh, Byung Gil [Seoul National University, Seoul (Korea)

    2000-03-01

    The objective of this study is to provide the direction of HYPER design in terms of thermal hydraulics especially through the analysis of thermal hydraulic characteristics of lead-bismuth material as a HYPER coolant and of proton accelerator target system. In this study, in order to evaluate the thermal-hydraulic characteristics of HYPER system, the FLUENT calculation is performed with liquid metal lead-bismuth(43%) and the turbulent Prandtl number model is developed. Also, the heat transfer analyses including temperature rising are performed for accelerator beam window, solid tungsten target and liquid target which is composed of liquid lead and lead-bismuth, respectively and the thermal stress analyses are performed for accelerator beam window. Through this study, the BASECASE whose parameter is HYPER system design specification is calculated by FLUENT. It is shown that the coolant velocity must exceeds 1.6 m/s for supporting the core coolant temperature in operating temperature range. The suggested turbulent Prandtl number model is applicable to liquid metal. And in order to maintain the integrity of proton beam target system, it is necessary to investigate the target structure associated with smoothing the flow path and beam window cooling. 43 refs., 67 figs., 27 tabs. (Author)

  10. Coatings for directional eutectics

    Science.gov (United States)

    Rairden, J. R.; Jackson, M. R.

    1976-01-01

    Coatings developed to provide oxidation protection for the directionally-solidified eutectic alloy NiTaC-B (4.4 weight percent Cr) were evaluated. Of seven Co-, Fe- and Ni-base coatings that were initially investigated, best resistance to cyclic oxidation was demonstrated by duplex coatings fabricated by depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam source followed by deposition of an Al overlayer using the pack cementation process. It was found that addition of carbon to the coating alloy substantially eliminated the problem of fiber denudation in TaC-type eutectic alloys. Burner rig cycled NiTaC-B samples coated with Ni-20Cr-5Al-0.1C-0.1Y+Al and rupture-tested at 1100 deg C performed as well as or better than uncoated, vacuum cycled and air-tested NiTaC-13; however, a slight degradation with respect to uncoated material was noted in air-stress rupture tests at 870 deg C for both cycled and uncycled samples.

  11. Application of extended-crystal diffraction techniques to the symmetry and structure analysis of 221-PbBiSrCaCuO

    International Nuclear Information System (INIS)

    Goodman, P.; Miller, P.

    1993-01-01

    The discovery of a series of layer-perovskite superconducting compounds by Maeda et al. (1988) presented a challenge for present day electron diffraction techniques, due to their common occurrence as mixed phases, and the existence of complex structural modulations of more than one type. Cowley's (1976) theory developed specifically for describing diffraction effects from layered crystals having a micro-domainal sub-structure seems particularly well suited to the task of solving these structures, while the technique of extended-crystal diffraction is shown here to be capable of providing data of sufficient precision for this analysis. The present study is made on the 221 compound of PbBiSrCaCuO. Using the above diffraction techniques it is shown that the true symmetry of the whole structure is orthorhombic, Amaa, and not monoclinic as previously assumed, and that the superlattice reflections arise as a result of a basic microdomainal constitution, rather than from a uniform and incommensurate modulation. 8 figs

  12. Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr–1Mo steel under low cycle fatigue in lead–bismuth eutectic at 160–450 °C

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xing, E-mail: gongxingzfl@hotmail.com [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400 Mol (Belgium); KU Leuven, Department of Materials Engineering (MTM), Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Marmy, Pierre, E-mail: pmarmy@sckcen.be [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400 Mol (Belgium); Qin, Ling; Verlinden, Bert; Wevers, Martine [KU Leuven, Department of Materials Engineering (MTM), Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Seefeldt, Marc, E-mail: Marc.Seefeldt@mtm.kuleuven.be [KU Leuven, Department of Materials Engineering (MTM), Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium)

    2016-01-15

    Low cycle fatigue properties of a 9Cr–1Mo ferritic-martensitic steel (T91) have been tested in a low oxygen concentration (LOC) lead–bismuth eutectic (LBE) environment and in vacuum at 160–450 °C. The results show a clear fatigue endurance “trough” in LOC LBE, while no such a strong temperature dependence of the fatigue endurance is observed when the steel is tested in vacuum. The fractographic observations by means of scanning electron microscopy (SEM) show that ductile microdimples are prevalent on the fracture surfaces of the specimens tested in vacuum, whereas the fracture surfaces produced in LOC LBE at all the temperatures are characterized by quasi-cleavage. Interestingly, using electron backscatter diffraction (EBSD), martensitic laths close to the fatigue crack walls or to the fracture surfaces of the specimens tested in vacuum are found to have transformed into very fine equiaxed subgrains. Nevertheless, such microstructural modifications do not happen to the specimens tested in LOC LBE at 160–450 °C. These interesting microstructural distinctions indicate that liquid metal embrittlement (LME) is able to occur throughout the fatigue crack propagation phase in the full range of the temperatures investigated, i.e. LME is not very sensitive to temperature during the fatigue crack propagation.

  13. Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr-1Mo steel under low cycle fatigue in lead-bismuth eutectic at 160-450 °C

    Science.gov (United States)

    Gong, Xing; Marmy, Pierre; Qin, Ling; Verlinden, Bert; Wevers, Martine; Seefeldt, Marc

    2016-01-01

    Low cycle fatigue properties of a 9Cr-1Mo ferritic-martensitic steel (T91) have been tested in a low oxygen concentration (LOC) lead-bismuth eutectic (LBE) environment and in vacuum at 160-450 °C. The results show a clear fatigue endurance "trough" in LOC LBE, while no such a strong temperature dependence of the fatigue endurance is observed when the steel is tested in vacuum. The fractographic observations by means of scanning electron microscopy (SEM) show that ductile microdimples are prevalent on the fracture surfaces of the specimens tested in vacuum, whereas the fracture surfaces produced in LOC LBE at all the temperatures are characterized by quasi-cleavage. Interestingly, using electron backscatter diffraction (EBSD), martensitic laths close to the fatigue crack walls or to the fracture surfaces of the specimens tested in vacuum are found to have transformed into very fine equiaxed subgrains. Nevertheless, such microstructural modifications do not happen to the specimens tested in LOC LBE at 160-450 °C. These interesting microstructural distinctions indicate that liquid metal embrittlement (LME) is able to occur throughout the fatigue crack propagation phase in the full range of the temperatures investigated, i.e. LME is not very sensitive to temperature during the fatigue crack propagation.

  14. Application of SEM/EBSD and FEG-TEM/CBED to determine eutectic solidification mechanisms

    International Nuclear Information System (INIS)

    Nogita, K.; Dahle, A.K.; Drennan, J.

    2002-01-01

    Full text: This study shows the application of electron backscatter diffraction (EBSD) in SEM and convergent beam electron diffraction (CBED) in FEG-TEM to determine eutectic nucleation and growth in hypoeutectic Al-Si foundry alloys. Because the eutectic reaction is often the final stage of solidification it can be expected to have a significant impact on the formation of casting defects, particularly porosity. Previous EBSD work by Nogita and Dahle (2001), Dahle et al (2001), has shown that the eutectic nucleates on the primary phase in the unmodified alloy, and eutectic grains are nucleated in the intergranular liquid, instead of filling the dendrite envelopes, when Sr or Sb is added. However, the orientation relationship between silicon and aluminium in the eutectic has so far not been determined because of difficulties with sample preparation for EBSD and also detection limitations of Kikuchi refraction of silicon and aluminium, particularly in modified alloys with a refined eutectic. The combination of the EBSD technique in SEM and CBED in TEM analyses can provide crystallographic orientation relationships between primary aluminium dendrites, eutectic aluminium and silicon, which are important to explicitly define the solidification mode of the eutectic in hypoeutectic Al-Si alloys. These relationships are influenced, and altered, by the addition of certain elements. This paper also describes the sample preparation techniques for SEM and TEM for samples with different eutectic structures. The advantages the techniques are discussed. Copyright (2002) Australian Society for Electron Microscopy Inc

  15. Antimony Influence on Shape of Eutectic Silicium in Al-Si Based Alloys

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2017-12-01

    Full Text Available Liquid AI-Si alloys are usually given special treatments before they are cast to obtain finer or modified matrix and eutectic structures, leading to improved properties. For many years, sodium additions to hypoeutectic and eutectic AI-Si melts have been recognized as the most effective method of modifying the eutectic morphology, although most of the group IA or IIA elements have significant effects on the eutectic structure. Unfortunately, many of these approaches also have associated several founding difficulties, such as fading, forming dross in presence of certain alloying elements, reduced fluidity, etc. ln recent years, antimony additions to AI-Si castings have attracted considerable attention as an alternative method of refining the eutectic structure. Such additions eliminate many of the difficulties listed above and provide permanent (i.e. non-fading refining ability. In this paper, the authors summarize work on antimony treatment of Al-Si based alloys.

  16. Magnetic Solid-phase Extraction with Fe3O4/Molecularly Imprinted Polymers Modified by Deep Eutectic Solvents and Ionic Liquids for the Rapid Purification of Alkaloid Isomers (Theobromine and Theophylline from Green Tea

    Directory of Open Access Journals (Sweden)

    Guizhen Li

    2017-06-01

    Full Text Available Different kinds of deep eutectic solvents (DES based on choline chloride (ChCl and ionic liquids (ILs based on 1-methylimidazole were used to modify Fe3O4/molecularly imprinted polymers (Fe3O4/MIPs, and the resulting materials were applied for the rapid purification of alkaloid isomers (theobromine and theophylline from green tea with magnetic solid-phase extraction (M-SPE. The M-SPE procedure was optimized using the response surface methodology (RSM to analyze the maximum conditions. The materials were characterized by Fourier transform infrared spectroscopy (FI-IR and field emission scanning electron microscopy (FE-SEM. Compared to the ILs-Fe3O4/MIPs, the DESs-Fe3O4/MIPs were developed for the stronger recognition and higher recoveries of the isomers (theophylline and theobromine from green tea, particularly DES-7-Fe3O4/MIPs. With RSM, the optimal recovery condition for theobromine and theophylline in the M-SPE were observed with ratio of methanol (80% as the washing solution, methanol/acetic acid (HAc (8:2 as the eluent at pH 3, and an eluent volume of 4 mL. The practical recoveries of theobromine and theophylline in green tea were 92.27% and 87.51%, respectively, with a corresponding actual extraction amount of 4.87 mg•g−1 and 5.07 mg•g−1. Overall, the proposed approach with the high affinity of Fe3O4/MIPs might offer a novel method for the purification of complex isomer samples.

  17. Magnetic Solid-phase Extraction with Fe₃O₄/Molecularly Imprinted Polymers Modified by Deep Eutectic Solvents and Ionic Liquids for the Rapid Purification of Alkaloid Isomers (Theobromine and Theophylline) from Green Tea.

    Science.gov (United States)

    Li, Guizhen; Wang, Xiaoqin; Row, Kyung Ho

    2017-06-25

    Different kinds of deep eutectic solvents (DES) based on choline chloride (ChCl) and ionic liquids (ILs) based on 1-methylimidazole were used to modify Fe3O4/molecularly imprinted polymers (Fe3O4/MIPs), and the resulting materials were applied for the rapid purification of alkaloid isomers (theobromine and theophylline) from green tea with magnetic solid-phase extraction (M-SPE). The M-SPE procedure was optimized using the response surface methodology (RSM) to analyze the maximum conditions. The materials were characterized by Fourier transform infrared spectroscopy (FI-IR) and field emission scanning electron microscopy (FE-SEM). Compared to the ILs-Fe3O4/MIPs, the DESs-Fe3O4/MIPs were developed for the stronger recognition and higher recoveries of the isomers (theophylline and theobromine) from green tea, particularly DES-7-Fe3O4/MIPs. With RSM, the optimal recovery condition for theobromine and theophylline in the M-SPE were observed with ratio of methanol (80%) as the washing solution, methanol/acetic acid (HAc) (8:2) as the eluent at pH 3, and an eluent volume of 4 mL. The practical recoveries of theobromine and theophylline in green tea were 92.27% and 87.51%, respectively, with a corresponding actual extraction amount of 4.87 mg•g-1 and 5.07 mg•g-1. Overall, the proposed approach with the high affinity of Fe3O4/MIPs might offer a novel method for the purification of complex isomer samples.

  18. Ab initio molecular dynamics simulations on the structural change of liquid eutectic alloy Si15Te85 from 673 to 1373 k

    International Nuclear Information System (INIS)

    Wang Yubing; Zhao Gang; Liu Changsong; Zhu Zhengang

    2010-01-01

    Using ab initio molecular dynamics simulations and inherent structure formalism, the local atomic structure and electronic properties of liquid Si 15 Te 85 alloy were studied at eight different temperatures from 673 to 1373 K. In comparison with available experimental data, our calculated structure factors are acceptable. With increasing temperature from 773 to 1173 K, the calculated total coordination number N Total increases gradually in contrast to the behavior of a classical isotropic fluid. Our results of pair-correlation functions, bond-angle distribution functions and angular limited triplet correlation functions suggest that the temperature-dependence of the preserved sp 3 hybridization of Si atoms and Peierls-type distorted local structure around Te atoms both play important roles in the structural change of Si 15 Te 85 characterized by thermodynamic anomalies.

  19. Ab initio molecular dynamics simulations on the structural change of liquid eutectic alloy Si{sub 15}Te{sub 85} from 673 to 1373 k

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yubing, E-mail: ybwang1985@gmail.co [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Post Office 1129, Hefei 230031 (China); Zhao Gang [Department of Physics and Electronic Engineering, Ludong University, Hongqi Road, No. 186, Yantai 264025 (China); Liu Changsong; Zhu Zhengang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Post Office 1129, Hefei 230031 (China)

    2010-01-15

    Using ab initio molecular dynamics simulations and inherent structure formalism, the local atomic structure and electronic properties of liquid Si{sub 15}Te{sub 85} alloy were studied at eight different temperatures from 673 to 1373 K. In comparison with available experimental data, our calculated structure factors are acceptable. With increasing temperature from 773 to 1173 K, the calculated total coordination number N{sub Total} increases gradually in contrast to the behavior of a classical isotropic fluid. Our results of pair-correlation functions, bond-angle distribution functions and angular limited triplet correlation functions suggest that the temperature-dependence of the preserved sp{sup 3} hybridization of Si atoms and Peierls-type distorted local structure around Te atoms both play important roles in the structural change of Si{sub 15}Te{sub 85} characterized by thermodynamic anomalies.

  20. Corrosion mechanism of T91 steel by Pb-Bi eutectic used as spallation target:importance for accelerator driven system; Caracterisation de l'endommagement de parois de galeries par tomographie electrique: application en laboratoire souterrain

    Energy Technology Data Exchange (ETDEWEB)

    Grislin-Mouezy, A

    2005-07-01

    The electrical tomography monitoring is one of the basic technique used in applied geophysics. This method allows to obtain the electrical resistivity distribution from the electrical potential measurements. The excavation of a new gallery in the underground rock laboratory at Mont Terri offers the possibility to follow and characterize the damaged zone in a spatial and temporal way. Successive acquired data sets have been carried out during several months and the results have been compared with the geological observations and the studies of the stress field. These results show that the resistivity changes are correlated with the local tectonics, the bedding and the stress field near the barriers. On account of the cylindrical geometry of the gallery, a modelling program has been developed in cylindrical co-ordinates. A program of inversion by simulated annealing has been developed too and tested on synthetical data sets. (O.M.)

  1. Electrodeposition of a Au-Dy2O3 Composite Solid Oxide Fuel Cell Catalyst from Eutectic Urea/Choline Chloride Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Claudio Mele

    2012-12-01

    Full Text Available  In this research we have fabricated and tested Au/Dy2O3 composites for applications as Solid Oxide Fuel Cell (SOFC electrocatalysts. The material was obtained by a process involving electrodeposition of a Au-Dy alloy from a urea/choline chloride ionic liquid electrolyte, followed by selective oxidation of Dy to Dy2O3 in air at high temperature. The electrochemical kinetics of the electrodeposition bath were studied by cyclic voltammetry, whence optimal electrodeposition conditions were identified. The heat-treated material was characterised from the morphological (scanning electron microscopy, compositional (X-ray fluorescence spectroscopy and structural (X-ray diffractometry points of view. The electrocatalytic activity towards H2 oxidation and O2 reduction was tested at 650 °C by electrochemical impedance spectrometry. Our composite electrodes exhibit an anodic activity that compares favourably with the only literature result available at the time of this writing for Dy2O3 and an even better cathodic performance.

  2. First results on T91 claddings with and without modified FeCrAlY coatings exposed in PbBi under varying conditions

    International Nuclear Information System (INIS)

    Weisenburger, A.; Heinzel, A.; Miller, G.; Rousanov, A.

    2008-01-01

    It is well known that at temperatures above 500 deg C low activation austenitic steels suffer from severe corrosion in lead or lead-bismuth. Low activation martensitic steels instead form under similar conditions concerning temperature and oxygen content thick oxide scales that periodically may span off. Both groups of materials are therefore restricted to areas having lower temperature load. For parts that are intended to be used in high-temperature regions, like claddings, surface protection has to be applied. From gas turbines the role of elements forming thin stable oxide scales is well understood. The concept chosen here for thermally high loaded parts, the claddings, is the deposition of a FeCrAlY coating of about 30 vt,m thickness that is afterwards re-melted applying a pulsed electron beam (GESA). The beam energy is adjusted in a way to melt the entire coating together with a few thin region of the bulk to create a perfect intermixing at the boundary. This results in a new surface area of the cladding with an aluminium content of the order of 5 wt.% that will be sufficiently high to grow thin stable oxide scales. This concept is proven for austenitic cladding materials like 1.4970 as well as for martensitic ones like T91. In long-term corrosion tests the compatibility to Pb or PbBi, the resistance against corrosion and severe oxidation, was clearly demonstrated. No negative response of such a modified coating on the mechanical properties and the stability under irradiation has been observed as of yet. This paper will focus on the surface modification process, the corrosion results thus far obtained and on the evaluation of some mechanical properties. For example, the swelling of the fuel by irradiation will lead during operation to an increase of the internal pressure. This is simulated in experiments where an internal pressure of defined value was applied on T91 cladding tubes. The influence of flow velocity between to 3 m/s on the oxidation behaviour of T

  3. Oxygen partial pressure: a key to alloying and discovery in metal oxide--metal eutectic systems

    International Nuclear Information System (INIS)

    Holder, J.D.; Clark, G.W.; Oliver, B.F.

    1978-01-01

    Control of oxygen partial pressure is essential in the directional solidification of oxide--metal eutectic composites by techniques involving gas-solid and gas-liquid interactions. The existence of end components in the eutectic composite is Po 2 sensitive as are melt stoichiometry, solid phase compositions, and vapor losses due to oxidation-volatilization. Simple criteria are postulated which can aid the experimentalist in selecting the proper gas mixture for oxide--metal eutectic composite growth. The Cr 2 O 3 --Mo--Cr systems was used to verify certain aspects of the proposed criteria

  4. Experimental and Theoretical Investigations of the Solidification of Eutectic Al-Si Alloy

    Science.gov (United States)

    Sen, S.; Catalina, A. V.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The eutectic alloys have a wide spectrum of applications due to their good castability and physical and mechanical properties. The interphase spacing resulting during solidification is an important microstructural feature that significantly influences the mechanical behavior of the material. Thus, knowledge of the evolution of the interphase spacing during solidification is necessary in order to properly design the solidification process and optimize the material properties. While the growth of regular eutectics is rather well understood, the irregular eutectics such as Al-Si or Fe-graphite exhibit undercoolings and lamellar spacings much larger than those theoretically predicted. Despite of a considerable amount of experimental and theoretical work a clear understanding of the true mechanism underlying the spacing selection in irregular eutectics is yet to be achieved. A new experimental study of the solidification of the eutectic Al-Si alloy will be reported in this paper. The measured interface undercoolings and lamellar spacing will be compared to those found in the literature in order to get more general information regarding the growth mechanism of irregular eutectics. A modification of the present theory of the eutectic growth is also proposed. The results of the modified mathematical model, accounting for a non-isothermal solid/liquid interface, will be compared to the experimental measurements.

  5. Eutectic propeties of primitive Earth's magma ocean

    Science.gov (United States)

    Lo Nigro, G.; Andrault, D.; Bolfan-Casanova, N.; Perillat, J.-P.

    2009-04-01

    It is widely accepted that the early Earth was partially molten (if not completely) due to the high energy dissipated by terrestrial accretion [1]. After core formation, subsequent cooling of the magma ocean has led to fractional crystallization of the primitive mantle. The residual liquid corresponds to what is now called the fertile mantle or pyrolite. Melting relations of silicates have been extensively investigated using the multi-anvil press, for pressures between 3 and 25 GPa [2,3]. Using the quench technique, it has been shown that the pressure affects significantly the solidus and liquidus curves, and most probably the composition of the eutectic liquid. At higher pressures, up to 65 GPa, melting studies were performed on pyrolite starting material using the laser-heated diamond anvil cell (LH-DAC) technique [4]. However, the quench technique is not ideal to define melting criteria, and furthermore these studies were limited in pressure range of investigation. Finally, the use of pyrolite may not be relevant to study the melting eutectic temperature. At the core-mantle boundary conditions, melting temperature is documented by a single data point on (Mg,Fe)2SiO4 olivine, provided by shock wave experiments at around 130-140 GPa [5]. These previous results present large uncertainties of ~1000 K. The aim of this study is to determine the eutectic melting temperature in the chemically simplified system composed of the two major lower mantle phases, the MgSiO3 perovskite and MgO periclase. We investigated melting in-situ using the laser-heated diamond anvil cell coupled with angle dispersive X-ray diffraction at the ID27 beamline of the ESRF [6]. Melting relations were investigated in an extended P-T range comparable to those found in the Earth's lower mantle, i.e. from 25 to 120 GPa and up to more than 5000 K. Melting was evidenced from (a) disappearance of one of the two phases in the diffraction pattern, (b) drastic changes of the diffraction image itself, and

  6. Free energy change of off-eutectic binary alloys on solidification

    Science.gov (United States)

    Ohsaka, K.; Trinh, E. H.; Lin, J.-C.; Perepezko, J. H.

    1991-01-01

    A formula for the free energy difference between the undercooled liquid phase and the stable solid phase is derived for off-eutectic binary alloys in which the equilibrium solid/liquid transition takes place over a certain temperature range. The free energy change is then evaluated numerically for a Bi-25 at. pct Cd alloy modeled as a sub-subregular solution.

  7. Deep eutectic solvents for highly efficient separations in oil and gas industries

    NARCIS (Netherlands)

    Warrag, S.E.E.; Peters, C.J.; Kroon, M.C.

    2017-01-01

    Deep eutectic solvents (DESs) have captured a great scientific attention as a new, ‘green’ and sustainable class of tailor-made solvents. DESs share many properties with ionic liquids (ILs) including low vapor pressure, wide liquid range, thermal stability, low flammability, and high solvation

  8. Microstructure of directionally solidified Ti-Fe eutectic alloy with low interstitial and high mechanical strength

    Science.gov (United States)

    Contieri, R. J.; Lopes, E. S. N.; Taquire de La Cruz, M.; Costa, A. M.; Afonso, C. R. M.; Caram, R.

    2011-10-01

    The performance of Ti alloys can be considerably enhanced by combining Ti and other elements, causing an eutectic transformation and thereby producing composites in situ from the liquid phase. This paper reports on the processing and characterization of a directionally solidified Ti-Fe eutectic alloy. Directional solidification at different growth rates was carried out in a setup that employs a water-cooled copper crucible combined with a voltaic electric arc moving through the sample. The results obtained show that a regular fiber-like eutectic structure was produced and the interphase spacing was found to be a function of the growth rate. Mechanical properties were measured using compression, microindentation and nanoindentation tests to determine the Vickers hardness, compressive strength and elastic modulus. Directionally solidified eutectic samples presented high values of compressive strength in the range of 1844-3000 MPa and ductility between 21.6 and 25.2%.

  9. Critical current anisotropy in Ag/(Pb,Bi){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+x} multifilamentary tapes: influence of self-magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Majoros, M [IRC in Superconductivity, University of Cambridge, Cambridge (United Kingdom); Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava (Slovakia); Glowacki, B A [IRC in Superconductivity, University of Cambridge, Cambridge (United Kingdom); Department of Materials Science and Metallurgy, University of Cambridge, Cambridge (United Kingdom); Campbell, A M [IRC in Superconductivity, University of Cambridge, Cambridge (United Kingdom)

    2001-06-01

    Two factors affect critical current anisotropy in multifilamentary Ag/(Pb,Bi){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+x} tapes - the intrinsic material anisotropy and the geometry. Experimental results on the magnetic field dependence and anisotropy of the critical current in a multifilamentary Ag/(Pb,Bi){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+x} tape after correction for self-magnetic field effects were found to fit the anisotropic Kim relation. Based on this relation a finite-element-method numerical code for solving the nonlinear Poisson equation for vector magnetic potential was adopted. It allowed the experimental data to be reproduced by back calculation and made possible the study of the interplay of self and external magnetic fields in different cases with well defined physical parameters of the material. The model was used to analyse the distribution of the critical current in individual filaments as well as to evaluate the influence of their geometrical arrangements on the critical current of the tape. The self-field critical current of an individual filament 'extracted' from the tape was compared with the critical current of the overall tape. The effect of the self-magnetic field on critical current distribution obtained by the cutting method was determined. The critical currents of the tapes with different cross sections were calculated and compared with experiments and the influence of the self-field was analysed. The anisotropic properties of a low anisotropy architecture of a multifilamentary Ag/(Pb,Bi){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+x} conductor were studied. The dependence of critical currents (normalized to self-field critical currents) on external magnetic field corrected for the self-field was found to follow nearly the same curves as those for tapes with different critical current densities (in the range 20-70 kA cm{sup -2} in a self-field), which makes the numerical model applicable to different tapes. (author)

  10. Initial stages of solidification of eutectic alloys

    International Nuclear Information System (INIS)

    Lemaignan, Clement

    1980-01-01

    The study of the various initial stages of eutectic solidification - i.e. primary nucleation, eutectic structure formation and stable growth conditions - was undertaken with various techniques including low angle neutron diffusion, in-situ electron microscopy on solidifying alloys and classical metallography. The results obtained allow to discuss the effect of metastable states during primary nucleation, of surface dendrite during eutectic nucleation and also of the crystallographic anisotropy during growth. (author) [fr

  11. The formation mechanism of eutectic microstructures in NiAl-Cr composites.

    Science.gov (United States)

    Tang, Bin; Cogswell, Daniel A; Xu, Guanglong; Milenkovic, Srdjan; Cui, Yuwen

    2016-07-20

    NiAl-based eutectic alloys, consisting of an ordered bcc matrix (B2) and disordered bcc fibers (A2), have been a subject of intensive efforts aimed at tailoring the properties of many of the currently used nickel-based superalloys. A thermodynamic phase field model was developed on a thermodynamic foundation and fully integrated with a thermo-kinetic database of the Ni-Al-Cr ternary system to elucidate the resulting peculiar eutectic microstructure. Invoking a variation of the liquid/solid interfacial thickness with temperature, we simulated the characteristic sunflower-like eutectic microstructures in the NiAl-Cr composites, consistent with experimental observations. The mechanism that governs the formation of the peculiar eutectic morphology was envisioned from the modeled evolutions associated with six sequential steps. Our calculations show that the conditional spinodal decomposition occurring in sequence could further trim and revise the microstructure of the eutectics by generating fine-domain structures, thereby providing an additional method to explore the novel NiAl-based eutectic composites with tunable properties at elevated temperatures.

  12. Scaling-Up Eutectic Freeze Crystallization

    NARCIS (Netherlands)

    Genceli, F.E.

    2008-01-01

    A novel crystallization technology, Eutectic Freeze Crystallization (EFC) has been investigated and further developed in this thesis work. EFC operates around the eutectic temperature and composition of aqueous solutions and can be used for recovery of (valuable) dissolved salts (and/or or acids)

  13. Natural deep eutectic solvents as new potential media for green technology

    International Nuclear Information System (INIS)

    Dai, Yuntao; Spronsen, Jaap van; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

    2013-01-01

    Highlights: ► Natural products were used as a source for deep eutectic solvents and ionic liquids. ► We define own chemical and physical properties of natural deep eutectic solvents. ► Interaction between natural deep eutectic solvents and solutes was confirmed by NMR. ► The developed natural deep eutectic solvents were applied as green media. - Abstract: Developing new green solvents is one of the key subjects in Green Chemistry. Ionic liquids (ILs) and deep eutectic solvents, thus, have been paid great attention to replace current harsh organic solvents and have been applied to many chemical processing such as extraction and synthesis. However, current ionic liquids and deep eutectic solvents have still limitations to be applied to a real chemical industry due to toxicity against human and environment and high cost of ILs and solid state of most deep eutectic solvents at room temperature. Recently we discovered that many plant abundant primary metabolites changed their state from solid to liquid when they were mixed in proper ratio. This finding made us hypothesize that natural deep eutectic solvents (NADES) play a role as alternative media to water in living organisms and tested a wide range of natural products, which resulted in discovery of over 100 NADES from nature. In order to prove deep eutectic feature the interaction between the molecules was investigated by nuclear magnetic resonance spectroscopy. All the tested NADES show clear hydrogen bonding between components. As next step physical properties of NADES such as water activity, density, viscosity, polarity and thermal properties were measured as well as the effect of water on the physical properties. In the last stage the novel NADES were applied to the solubilization of wide range of biomolecules such as non-water soluble bioactive natural products, gluten, starch, and DNA. In most cases the solubility of the biomolecules evaluated in this study was greatly higher than water. Based on the

  14. Natural deep eutectic solvents as new potential media for green technology

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yuntao [Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden (Netherlands); Spronsen, Jaap van; Witkamp, Geert-Jan [Laboratory for Process Equipment, Delft University of Technology, Delft (Netherlands); Verpoorte, Robert [Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden (Netherlands); Choi, Young Hae, E-mail: y.choi@chem.leidenuniv.nl [Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden (Netherlands)

    2013-03-05

    Highlights: ► Natural products were used as a source for deep eutectic solvents and ionic liquids. ► We define own chemical and physical properties of natural deep eutectic solvents. ► Interaction between natural deep eutectic solvents and solutes was confirmed by NMR. ► The developed natural deep eutectic solvents were applied as green media. - Abstract: Developing new green solvents is one of the key subjects in Green Chemistry. Ionic liquids (ILs) and deep eutectic solvents, thus, have been paid great attention to replace current harsh organic solvents and have been applied to many chemical processing such as extraction and synthesis. However, current ionic liquids and deep eutectic solvents have still limitations to be applied to a real chemical industry due to toxicity against human and environment and high cost of ILs and solid state of most deep eutectic solvents at room temperature. Recently we discovered that many plant abundant primary metabolites changed their state from solid to liquid when they were mixed in proper ratio. This finding made us hypothesize that natural deep eutectic solvents (NADES) play a role as alternative media to water in living organisms and tested a wide range of natural products, which resulted in discovery of over 100 NADES from nature. In order to prove deep eutectic feature the interaction between the molecules was investigated by nuclear magnetic resonance spectroscopy. All the tested NADES show clear hydrogen bonding between components. As next step physical properties of NADES such as water activity, density, viscosity, polarity and thermal properties were measured as well as the effect of water on the physical properties. In the last stage the novel NADES were applied to the solubilization of wide range of biomolecules such as non-water soluble bioactive natural products, gluten, starch, and DNA. In most cases the solubility of the biomolecules evaluated in this study was greatly higher than water. Based on the

  15. Examination of Clustering in Eutectic Microstrcture

    Directory of Open Access Journals (Sweden)

    Bortnyik K.

    2017-06-01

    Full Text Available The eutectic microstructures are complex microstructures and a hard work to describe it with few numbers. The eutectics builds up eutectic cells. In the cells the phases are clustered. With the development of big databases the data mining also develops, and produces a lot of method to handling the large datasets, and earns information from the sets. One typical method is the clustering, which finds the groups in the datasets. In this article a partitioning and a hierarchical clustering is applied to eutectic structures to find the clusters. In the case of AlMn alloy the K-means algorithm work well, and find the eutectic cells. In the case of ductile cast iron the hierarchical clustering works better. With the combination of the partitioning and hierarchical clustering with the image transformation, an effective method is developed for clustering the objects in the microstructures.

  16. Corrosion behavior of steels in liquid lead bismuth with low oxygen concentrations

    Science.gov (United States)

    Kurata, Yuji; Futakawa, Masatoshi; Saito, Shigeru

    2008-02-01

    Corrosion tests in pots were conducted to elucidate corrosion behavior of various steels in liquid lead-bismuth for 3000 h under the condition of an oxygen concentration of 5 × 10 -8 wt% at 450 °C and an oxygen concentration of 3 × 10 -9 wt% at 550 °C, respectively. Significant corrosion was not observed at 450 °C for ferritic/martensitic steels, F82H, Mod.9Cr-1Mo steel, 410SS, 430SS except 2.25Cr-1Mo steel. Pb-Bi penetration into steels and dissolution of elements into Pb-Bi were severe at 550 °C even for ferritic/martensitic steels. Typical dissolution attack occurred for pure iron both at 550 °C without surface Fe 3O 4 and at 450 °C with a thin Fe 3O 4 film. Ferritization due to dissolution of Ni and Cr, and Pb-Bi penetration were recognized for austenitic stainless steels, 316SS and 14Cr-16Ni-2Mo steel at both temperatures of 450 °C and 550 °C. The phenomena were mitigated for 18Cr-20Ni-5Si steel. In some cases oxide films could not be a corrosion barrier in liquid lead-bismuth.

  17. Thermophysical properties and solubility of different sugar-derived molecules in deep eutectic solvents

    NARCIS (Netherlands)

    Dietz, C.H.J.T.; Kroon, M.C.; van Sint Annaland, M.; Gallucci, F.

    2017-01-01

    Deep eutectic solvents (DESs) are designer solvents analogous to ionic liquids but with lower preparation cost. Most known DESs are water-miscible, but recently water-immiscible DESs have also been presented, which are a combination of hydrogen bond donors and acceptors with long hydrophobic alkyl

  18. PC-SAFT modeling of CO2 solubilities in hydrophobic deep eutectic solvents

    NARCIS (Netherlands)

    Dietz, C.H.J.T.; van Osch, D.J.G.P.; Kroon, M.C.; Sadowski, G.; van Sint Annaland, M.; Gallucci, F.; Zubeir, L.F.; Held, C.

    2017-01-01

    The PC-SAFT 'pseudo-pure' approach was used for the modeling of CO2 solubilities in various hydrophobic deep eutectic solvents (DESs) for the first time. Only liquid density data were used to obtain the segment number, the temperature-independent segment diameter and the dispersion-energy parameter,

  19. Review of possible experiments in the eutectic growth and thermodiffusion fields

    International Nuclear Information System (INIS)

    Malmejac, Yves.

    1976-01-01

    The results now available from the SKYLAB and ASTP programmes give a clearer indication of the lines of the research to pursue in the years to come. The criteria necessary for the choice of experiments are analysed in the fields of eutectic solidification and diffusion along a temperature gradient in liquid alloys [fr

  20. Structural perfection of directionally solidified lamellar eutectics

    International Nuclear Information System (INIS)

    Attallah, T.; Gurzleski, J.E.

    1976-01-01

    The mechanisms for the formation of faults in lamellar eutectics are reviewed, and it is postulated that faults play several roles in eutectic freezing with their exact importance depending on the specific alloy system and the growth conditions. Faults are not the cause of lamellar spiralling although they are necessary for it to occur. Lamellar spiralling is found to occur only when the crystallographic orientations of the two eutectic phases lead to a growth component normal to the lamellar plane, and although some systems such as Pb-Sn normally spiral it is possible for them to achieve orientation relationships where no spiralling occurs

  1. Raman mapping in the elucidation of solid salt eutectic and near eutectic structures

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Kerridge, D. H.

    2002-01-01

    The distribution of the different components of solidified eutectic or near-eutectic salt mixtures (eutectics) was examined by use of Raman microscope mapping of the structures formed when these melts were slowly cooled. Seven binary and one ternary system were investigated. In most cases...... and the composition. When unidirectional cooling was applied it was possible for the system (KCl-Na2SO4, 60:40 mol/mol) to observe lamellar arrangements of the component phases, in an arrangement closely similar to what is frequently found among metallic or ceramic eutectics. Each area, conglomerate or lamellar, did...

  2. Effect of the type of ammonium salt on the extractive desulfurization of fuels using deep eutectic solvents

    NARCIS (Netherlands)

    Warrag, Samah E.E.; Adeyemi, Idowu; Rodriguez, Nerea R.; Nashef, Inas M.; van Sint Annaland, Martin; Kroon, Maaike C.; Peters, Cor J.

    2018-01-01

    In a previous work, we proved that the deep eutectic solvents (DESs) consisting of mixtures of tetraalkylammonium salts with polyols are promising candidates for oil desulfurization based on the obtained liquid-liquid equilibrium (LLE) data. In this study, the capability of DESs containing other

  3. Phase-field model of eutectic growth

    International Nuclear Information System (INIS)

    Karma, A.

    1994-01-01

    A phase-field model which describes the solidification of a binary eutectic alloy with a simple symmetric phase diagram is introduced and the sharp-interface limit of this model is explored both analytically and numerically

  4. Growth and solid/solid transformation in a Ni-Si eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, A.T. [Department of Materials Engineering, State University of Campinas, P.O. Box 6122, Campinas 13083-970, SP (Brazil); Ferrandini, P.L. [Department of Materials Engineering, State University of Campinas, P.O. Box 6122, Campinas 13083-970, SP (Brazil); Costa, C.A.R. [Institute of Chemistry, State University of Campinas, P.O. Box 6154, Campinas 13083-970, SP (Brazil); Goncalves, M.C. [Institute of Chemistry, State University of Campinas, P.O. Box 6154, Campinas 13083-970, SP (Brazil); Caram, R. [Department of Materials Engineering, State University of Campinas, P.O. Box 6122, Campinas 13083-970, SP (Brazil)]. E-mail: rcaram@fem.unicamp.br

    2005-08-16

    High temperature structural components demand materials that maintain satisfactory mechanical and chemical characteristics. These needs may be met by applying some eutectic alloys, including Ni-Ni{sub 3}Si. This paper deals with the directional solidification of Ni-Ni{sub 3}Si grown under several growth rates. The analysis of the eutectic microstructure was carried out using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The results obtained provided a precise analysis of the Ni{sub 3}Si phase. It could be noticed that the solid/solid transformations by which Ni{sub 3}Si phase goes through, deeply affects its morphology. In addition, quantitative information on the eutectic structure was obtained. It was confirmed that the growth rate variation deeply affects the final microstructure as it influences the efficiency of atomic diffusion along the solid/liquid interface.

  5. Growth and solid/solid transformation in a Ni-Si eutectic alloy

    International Nuclear Information System (INIS)

    Dutra, A.T.; Ferrandini, P.L.; Costa, C.A.R.; Goncalves, M.C.; Caram, R.

    2005-01-01

    High temperature structural components demand materials that maintain satisfactory mechanical and chemical characteristics. These needs may be met by applying some eutectic alloys, including Ni-Ni 3 Si. This paper deals with the directional solidification of Ni-Ni 3 Si grown under several growth rates. The analysis of the eutectic microstructure was carried out using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The results obtained provided a precise analysis of the Ni 3 Si phase. It could be noticed that the solid/solid transformations by which Ni 3 Si phase goes through, deeply affects its morphology. In addition, quantitative information on the eutectic structure was obtained. It was confirmed that the growth rate variation deeply affects the final microstructure as it influences the efficiency of atomic diffusion along the solid/liquid interface

  6. Molecular interactions in the betaine monohydrate-polyol deep eutectic solvents: Experimental and computational studies

    Science.gov (United States)

    Zahrina, Ida; Mulia, Kamarza; Yanuar, Arry; Nasikin, Mohammad

    2018-04-01

    DES (deep eutectic solvents) are a new class of ionic liquids that have excellent properties. The strength of interaction between molecules in the DES affects their properties and applications. In this work, the strength of molecular interactions between components in the betaine monohydrate salt and polyol (glycerol or/and propylene glycol) eutectic mixtures was studied by experimental and computational studies. The melting point and fusion enthalpy of the mixtures were measured using STA (Simultaneous Thermal Analyzer). The nature and strength of intermolecular interactions were observed by FT-IR and NMR spectroscopy. The molecular dynamics simulation was used to determine the number of H-bonds, percent occupancy, and radial distribution functions in the eutectic mixtures. The interaction between betaine monohydrate and polyol is following order: betaine monohydrate-glycerol-propylene glycol > betaine monohydrate-glycerol > betaine monohydrate-propylene glycol, where the latter is the eutectic mixture with the lowest stability, strength and extent of the hydrogen bonding interactions between component molecules. The presence of intra-molecular hydrogen bonding interactions, the inter-molecular hydrogen bonding interactions between betaine molecule and polyol, and also interactions between polyol and H2O of betaine monohydrate in the eutectic mixtures.

  7. Insertion of lead lithium eutectic mixture in RELAP/SCDAPSIM Mod 4.0 for Fusion Reactor Systems

    International Nuclear Information System (INIS)

    Tiwari, Ashutosh; Allison, Brian; Hohorst, J.K.; Wagner, R.J.; Allison, Chris

    2012-01-01

    Highlights: ► Thermodynamic and transport properties of lead lithium eutectic mixture have been inserted in RELAP/SCDAPSIM MOD 4.0 code. ► Code results are verified for a simple pipe problem with lead lithium eutectic mixture flowing in it. ► Code is calculating the inserted properties of lead lithium eutectic mixture to a fairly good agreement. - Abstract: RELAP/SCDAPSIM Mod 4.0 code was developed by Innovative System Software (ISS) for the analysis of nuclear power plants (NPPs) cooled by light water and heavy water. Later on the code was expanded to analyze the NPPs cooled by liquid metal, in this sequence: lead bismuth eutectic mixture, liquid sodium and lead lithium eutectic mixture (LLE) are inserted in the code. This paper focuses on the insertion of liquid LLE as a coolant for NPPs in the RELAP/SCDAPSIM Mod 4.0 code. Evaluation of the code was made for a simple pipe problem connected with heat structures having liquid LLE as a coolant in it. The code is predicting well all the thermodynamic and transport properties of LLE.

  8. Nucleation-controlled microstructures and anomalous eutectic formation in undercooled Co-Sn and Ni-Si eutectic melts

    Science.gov (United States)

    Li, Mingjun; Kuribayashi, Kazuhiko

    2003-12-01

    Co-20.5 at. pct Sn and Ni-21.4 at. pct Si eutectic alloys have been levitated and undercooled in an electromagnetic levitator (EML) and then solidified spontaneously at different undercoolings. The original surface and cross-sectional morphologies of these solidified samples consist of separate eutectic colonies regardless of melt undercooling, indicating that microstructures in the free solidification of the eutectic systems are nucleation controlled. Regular lamellae always grow from the periphery of an independent anomalous eutectic grain in each eutectic colony. This typical morphology shows that the basic unit should be a single eutectic colony, when discussing the solidification behavior. Special emphasis is focused on the anomalous eutectic formation after a significant difference in linear kinetic coefficients is recognized for terminal eutectic phases, in particular when a eutectic reaction contains a nonfaceted disordered solid solution and a faceted ordered intermetallic compound as the terminal eutectic phases. It is this remarkable difference in the linear kinetic coefficients that leads to a pronounced difference in kinetic undercoolings. The sluggish kinetics in the interface atomic attachment of the intermetallic compound originates the occurrence of the decoupled growth of two eutectic phases. Hence, the current eutectic models are modified to incorporate kinetic undercooling, in order to account for the competitive growth behavior of eutectic phases in a single eutectic colony. The critical condition for generating the decoupled growth of eutectic phases is proposed. Further analysis reveals that a dimensionless critical undercooling may be appropriate to show the tendency for the anomalous eutectic-forming ability when considering the difference in linear kinetic coefficients of terminal eutectic phases. This qualitative criterion, albeit crude with several approximations and assumptions, can elucidate most of the published experimental results

  9. Idaho National Laboratory Lead or Lead-Bismuth Eutectic (LBE) Test Facility - R&D Requirements, Design Criteria, Design Concept, and Concept Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Loewen; Paul Demkowicz

    2005-05-01

    The Idaho National Laboratory Lead-Bismuth Eutectic Test Facility will advance the state of nuclear technology relative to heavy-metal coolants (primarily Pb and Pb-Bi), thereby allowing the U.S. to maintain the pre-eminent position in overseas markets and a future domestic market. The end results will be a better qualitative understanding and quantitative measure of the thermal physics and chemistry conditions in the molten metal systems for varied flow conditions (single and multiphase), flow regime transitions, heat input methods, pumping requirements for varied conditions and geometries, and corrosion performance. Furthering INL knowledge in these areas is crucial to sustaining a competitive global position. This fundamental heavy-metal research supports the National Energy Policy Development Group’s stated need for energy systems to support electrical generation.1 The project will also assist the Department of Energy in achieving goals outlined in the Nuclear Energy Research Advisory Committee Long Term Nuclear Technology Research and Development Plan,2 the Generation IV Roadmap for Lead Fast Reactor development, and Advanced Fuel Cycle Initiative research and development. This multi-unit Lead-Bismuth Eutectic Test Facility with its flexible and reconfigurable apparatus will maintain and extend the U.S. nuclear knowledge base, while educating young scientists and engineers. The uniqueness of the Lead-Bismuth Eutectic Test Facility is its integrated Pool Unit and Storage Unit. This combination will support large-scale investigation of structural and fuel cladding material compatibility issues with heavy-metal coolants, oxygen chemistry control, and thermal hydraulic physics properties. Its ability to reconfigure flow conditions and piping configurations to more accurately approximate prototypical reactor designs will provide a key resource for Lead Fast Reactor research and development. The other principal elements of the Lead-Bismuth Eutectic Test Facility

  10. Growth and Morphology of Rod Eutectics

    Energy Technology Data Exchange (ETDEWEB)

    Jing Teng; Shan Liu; R. Trivedi

    2008-03-17

    The formation of rod eutectic microstructure is investigated systematically in a succinonitrile-camphor alloy of eutectic composition by using the directional solidification technique. A new rod eutectic configuration is observed in which the rods form with elliptical cylindrical shape. Two different orientations of the ellipse are observed that differ by a 90{sup o} rotation such that the major and the minor axes are interchanged. Critical experiments in thin samples, where a single layer of rods forms, show that the spacing and orientation of the elliptic rods are governed by the growth rate and the sample thickness. In thicker samples, multi layers of rods form with circular cross-section and the scaling law between the spacing and velocity predicted by the Jackson and Hunt model is validated. A theoretical model is developed for a two-dimensional array of elliptical rods that are arranged in a hexagonal or a square array, and the results are shown to be consistent with the experimental observations. The model of elliptic rods is also shown to reduce to that for the circular rod eutectic when the lengths of the two axes are equal, and to the lamellar eutectic model when one of the axes is much larger than the other one.

  11. Structural and phonon transmission study of Ge-Au-Ge eutectically bonded interfaces

    International Nuclear Information System (INIS)

    Knowlton, W.B.; Lawrence Berkeley Lab., CA

    1995-07-01

    This thesis presents a structural analysis and phonon transparency investigation of the Ge-Au-Ge eutectic bond interface. Interface development was intended to maximize the interfacial ballistic phonon transparency to enhance the detection of the dark matter candidate WIMPs. The process which was developed provides an interface which produces minimal stress, low amounts of impurities, and insures Ge lattice continuity through the interface. For initial Au thicknesses of greater than 1,000 angstrom Au per substrate side, eutectic epitaxial growth resulted in a Au dendritic structure with 95% cross sectional and 90% planar Au interfacial area coverages. In sections in which Ge bridged the interface, lattice continuity across the interface was apparent. Epitaxial solidification of the eutectic interface with initial Au thicknesses < 500 A per substrate side produced Au agglomerations thereby reducing the Au planar interfacial area coverage to as little as 30%. The mechanism for Au coalescence was attributed to lateral diffusion of Ge and Au in the liquid phase during solidification. Phonon transmission studies were performed on eutectic interfaces with initial Au thicknesses of 1,000 angstrom, 500 angstrom, and 300 angstrom per substrate side. Phonon imaging of eutectically bonded samples with initial Au thicknesses of 300 angstrom/side revealed reproducible interfacial percent phonon transmissions from 60% to 70%. Line scan phonon imaging verified the results. Phonon propagation TOF spectra distinctly showed the predominant phonon propagation mode was ballistic. This was substantiated by phonon focusing effects apparent in the phonon imaging data. The degree of interface transparency to phonons and resulting phonon propagation modes correlate with the structure of the interface following eutectic solidification. Structural studies of samples with initial Au thickness of 1,000 angstrom/side appear to correspond with the phonon transmission study

  12. Structural and phonon transmission study of Ge-Au-Ge eutectically bonded interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, W.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley Lab., CA (United States). Materials Sciences Div.

    1995-07-01

    This thesis presents a structural analysis and phonon transparency investigation of the Ge-Au-Ge eutectic bond interface. Interface development was intended to maximize the interfacial ballistic phonon transparency to enhance the detection of the dark matter candidate WIMPs. The process which was developed provides an interface which produces minimal stress, low amounts of impurities, and insures Ge lattice continuity through the interface. For initial Au thicknesses of greater than 1,000 {angstrom} Au per substrate side, eutectic epitaxial growth resulted in a Au dendritic structure with 95% cross sectional and 90% planar Au interfacial area coverages. In sections in which Ge bridged the interface, lattice continuity across the interface was apparent. Epitaxial solidification of the eutectic interface with initial Au thicknesses < 500 A per substrate side produced Au agglomerations thereby reducing the Au planar interfacial area coverage to as little as 30%. The mechanism for Au coalescence was attributed to lateral diffusion of Ge and Au in the liquid phase during solidification. Phonon transmission studies were performed on eutectic interfaces with initial Au thicknesses of 1,000 {angstrom}, 500 {angstrom}, and 300 {angstrom} per substrate side. Phonon imaging of eutectically bonded samples with initial Au thicknesses of 300 {angstrom}/side revealed reproducible interfacial percent phonon transmissions from 60% to 70%. Line scan phonon imaging verified the results. Phonon propagation TOF spectra distinctly showed the predominant phonon propagation mode was ballistic. This was substantiated by phonon focusing effects apparent in the phonon imaging data. The degree of interface transparency to phonons and resulting phonon propagation modes correlate with the structure of the interface following eutectic solidification. Structural studies of samples with initial Au thickness of 1,000 {angstrom}/side appear to correspond with the phonon transmission study.

  13. Eutectic growth under acoustic levitation conditions.

    Science.gov (United States)

    Xie, W J; Cao, C D; Lü, Y J; Wei, B

    2002-12-01

    Samples of Pb-Sn eutectic alloy with a high density of 8.5 x 10(3) kg/m(3) are levitated with a single-axis acoustic levitator, and containerlessly melted and then solidified in argon atmosphere. High undercoolings up to 38 K are obtained, which results in a microstructural transition of "lamellas-broken lamellas-dendrites." This transition is further investigated in the light of the coupled zone for eutectic growth and the effects of ultrasound. The breaking of regular eutectic lamellas and suppression of gravity-induced macrosegregation of (Pb) and (Sn) dendrites are explained by the complicated internal flow inside the levitated drop, which is jointly induced by the shape oscillation, bulk vibration and rotation of the levitated drop. The ultrasonic field is also found to drive forced surface vibration, which subsequently excites capillary ripples and catalyzes nucleation on the sample surface.

  14. Evolution with time of 12 metals (V, Cr, Mn, Co, Cu, Zn, Ag, Cd, Ba, Pb, Bi and U) and of lead isotopes in the snows of Coats Land (Antarctica) since the 1830's

    International Nuclear Information System (INIS)

    Planchon, F.

    2001-01-01

    This work shows that it is now possible to get reliable data on the occurrence of numerous heavy metals at ultra low levels in Antarctic snow, by combining ultra clean field sampling and laboratory sub-sampling procedures and the use of ultra sensitive analytical techniques such as ICP-SFMS and TIMS. It has allowed us to determine concentrations of twelve metals (V, Cr, Mn, Co, Cu, Zn, Ag, Cd, Ba, Pb, Bi et U) and lead isotopic composition in the ultra clean series of snow samples collected at Coats Land, in the Atlantic sector of Antarctica. This work presents a 150 years record of metal inputs from natural and anthropogenic sources to Antarctica from the 1830's to the early 1990's. Lead atmospheric pollution begins as early as the end of the 19. century, peaks during the 1970's-1980's and then falls sharply during recent decades. Evolution in lead isotopic abundance shows that Pb inputs to Antarctica reflect a complex blend of contributions originating from the Southern part of South America and Australia. For Cr, Cu, Zn, Ag, Bi and U, concentrations in the snow show significant increases from 1950 to 1980. These enhancements which cannot be explained by variations in natural inputs, illustrate that atmospheric pollution for heavy metals linked with anthropogenic activities in the Southern Hemisphere countries such as for example ferrous and non-ferrous metal mining and smelting is really global. Study of the time period 1920-1990, has allowed us to detail short-term (intra and inter annual) heavy metals concentration's changes. The large short-term variability, observed in Coats Land snow, shows the complex patterns of metal inputs to Antarctica, associated for instance to changes in long-range transport processes from mid-latitude to polar zone and to variability in the different natural sources, such local volcanic activity, sea-salt spray or crustal dust inputs. (author)

  15. Numerical analysis of bubble rising behavior in a liquid metal using MPS

    International Nuclear Information System (INIS)

    Chen Ronghua; Tian Wenxi; Zuo Juanli; Su Guanghui; Qiu Suizheng; Xu Jianhui

    2011-01-01

    Moving Particle Semi-Implicit (MPS) Method has advantages over the traditional mesh-based methods in the accurate capture of the vapor-liquid interface. In the present study, the numerical simulation of single bubble rising behavior in the liquid Pb-Bi alloy had been performed. The numerical results are provided for bubble shape deformation and rising velocity. Numerical simulation results indicate that as the bubble rises, the bubble exhibits in turn spherical, dimpled ellipsoidal, spherical-cap shapes. Terminal velocity of the bubble predicted by MPS agrees well with that predicted by Grace and increases with the initial bubble diameter. (authors)

  16. Effect of liquid metal embrittlement on low cycle fatigue properties and fatigue crack propagation behavior of a modified 9Cr–1Mo ferritic–martensitic steel in an oxygen-controlled lead–bismuth eutectic environment at 350 °C

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xing, E-mail: gongxingzfl@hotmail.com [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400 Mol (Belgium); KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Marmy, Pierre, E-mail: pierre.marmy@sckcen.be [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400 Mol (Belgium); Qin, Ling, E-mail: Ling.Qin@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Verlinden, Bert, E-mail: Bert.Verlinden@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Wevers, Martine, E-mail: Martine.Wevers@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Seefeldt, Marc, E-mail: Marc.Seefeldt@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium)

    2014-11-17

    The low cycle fatigue properties of a modified 9Cr–1Mo ferritic–martensitic steel (T91) have been tested in stagnant liquid lead–bismuth eutectic (LBE) with oxygen concentrations ranging from 1.16×10{sup −6} to 6.0×10{sup −10} wt% at 350 °C. The effect of liquid metal embrittlement (LME) on fatigue endurance, fatigue crack propagation modes and secondary cracking has been studied. The results showed that the fatigue lives of T91 steel in a low oxygen concentration LBE were drastically reduced compared to those in vacuum due to the presence of LME. The microstructural observations on the fatigue crack propagation modes revealed that fatigue cracks in LBE mainly propagate across prior-austenite grain boundaries and then cut through martensitic lath boundaries, simultaneously leaving a few plastic flow traces and characteristic brittle features. Intergranular and interlath cracking occurred occasionally and their occurrence depended on the orientation of the boundaries relative to the stress axis. The complexity of the LME-induced fracture features can be attributed to a mixture of the multiple failure modes. No obvious plastic shear strain localization was present around the crack tips when LME occurred. However, using a high resolution electron backscatter diffraction (EBSD) technique, highly localized plastic shear strain was observed in the vicinity of the crack tips in vacuum, manifested by the presence of very fine subgrains along the crack walls. A qualitative mechanism was proposed to account for the LME phenomenon in the T91/LBE system. In addition, the secondary cracking at fatigue striations was different in the presence of LBE compared to vacuum. This phenomenon was elucidated by taking into account the influence of the LME on the fatigue crack propagation rate.

  17. Microstructure Of MnBi/Bi Eutectic Alloy

    Science.gov (United States)

    Wilcox, William R.; Eisa, G. F.; Baskaran, B.; Richardson, Donald C.

    1988-01-01

    Collection of three reports describes studies of directional solidification of MnBi/Bi eutectic alloy. Two of the reports, "Influence of Convection on Lamellar Spacing of Eutectics" and "Influence of Convection on Eutectic Microstructure," establish theoretical foundation for remaining document. Reports seek to quantify effect of convection on concentration field of growing lamellar eutectic. Remaining report, "Study of Eutectic Formation," begins by continuing theoretical developments. New technique under development by one of the authors helps to reveal three-dimensional microstructures of alloys.

  18. Mechanical and fatigue properties of martensitic Fe-13Cr steel in contact with lead and lead-bismuth melts

    Energy Technology Data Exchange (ETDEWEB)

    Yaskiv, O.I., E-mail: oleh.yaskiv@ipm.lviv.ua; Fedirko, V.M.

    2014-01-15

    Highlights: •We investigated the influence of Pb and Pb-Bi melts on mechanical properties of Fe-13Cr steel at high temperatures. •We revealed the temperature interval of liquid metal embrittlement of Fe-13Cr steel. •Pb-Bi has more negative impact as compared with Pb for both plasticity and fatigue. -- Abstract: The influence of stagnant liquid-metal environments (Pb and Pb-Bi) on mechanical (strength and plasticity) and fatigue properties (low cycle fatigue) of martensitic Fe-13Cr steel in temperature interval of 250–600 °S have been investigated. Heavy liquid metals facilitate decreasing in ultimate strength by 10–20% against that in vacuum. The increase of temperature enhances this effect. Fe-13Cr steel is susceptible to liquid-metal embrittlement in the temperature interval of 350–450 °S, which manifests itself more substantially in lead-bismuth eutectic. The decrease of plasticity in Pb is 11% at 450 °S and in Pb-Bi is 30% in temperature interval 350–400 °S. Liquid metal environments significantly reduce fatigue life of Fe-13Cr steel. Pb-Bi has a more negative impact. In particular, with increasing total strain amplitude (up to 1.0%), the decrease in the cycle number to fracture by more than two orders of magnitude occurs.

  19. Calorimetric investigation of Pb-Bi system

    International Nuclear Information System (INIS)

    Agarwal, Renu; Jat, Ram Avtar; Sen, B.K.

    2008-01-01

    Enthalpy increment of Pb 0.71 Bi 0.29 compound was determined using high temperature Calvet calorimeter. The data was fit into the following polynomial equation. ΔH(T-298.15 K) J/mol = -10384.96 + 39.23 T - 0.014T 2 - 18970/T. By precipitation method, the enthalpy of formation of the compound of composition Pb 0.68 Bi 0.32 at 448 K, from Pb(l) and Bi(l) was determined to be -2450± 50 J/mol and from Pb(s) and Bi(s) at 298.15 K was calculated to be 4047 J/mol. (author)

  20. Influence of liquid surface segregation on the pitting corrosion behavior of semi-solid metal high pressure die cast alloy F357

    CSIR Research Space (South Africa)

    Moller, H

    2009-01-01

    Full Text Available Cl aqueous solution. It is shown that pitting attack occurs preferentially in the eutectic regions at the interface between silicon particles and the alpha phase in the eutectic. Since the surface liquid segregation layer consists of mainly eutectic...

  1. Transient and steady state creep response of ice I and magnesium sulfate hydrate eutectic aggregates

    Science.gov (United States)

    McCarthy, C.; Cooper, R.F.; Goldsby, D.L.; Durham, W.B.; Kirby, S.H.

    2011-01-01

    Using uniaxial compression creep experiments, we characterized the transient and steady state deformation behaviors of eutectic aggregates of system ice I and MgSO4 11H2O (MS11; meridianiite), which has significance because of its likely presence on moons of the outer solar system. Synthetic samples of eutectic liquid bulk composition, which produce eutectic colonies containing 0.35-0.50 volume fraction MS11, were tested as functions of colony size and lamellar spacing, temperature (230-250 K), and confining pressure (0.1 and 50 MPa) to strains ???0.2. Up to a differential stress of 6 MPa, the ice I-MS11 aggregates display an order of magnitude higher effective viscosity and higher stress sensitivity than do aggregates of pure polycrystalline ice at the same conditions. The creep data and associated microstructural observations demonstrate, however, that the aggregates are additionally more brittle than pure ice, approaching rate-independent plasticity that includes rupture of the hydrate phase at 6-8 MPa, depending on the scale of the microstructure. Microstructures of deformed samples reveal forms of semibrittle flow in which the hydrate phase fractures while the ice phase deforms plastically. Semibrittle flow in the icy shell of a planetary body would truncate the lithospheric strength envelope and thereby decrease the depth to the brittle-ductile transition by 55% and reduce the failure limit for compressional surface features from 10 to ???6 MPa. A constitutive equation that includes eutectic colony boundary sliding and intracolony flow is used to describe the steady state rheology of the eutectic aggregates. Copyright ?? 2011 by the American Geophysical Union.

  2. Vacuum distillation for the separation of LiCl-KCl eutectic salt and cadmium in pyro process

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Lee, S. J.; Park, S. B.; Woo, M. S.; Kim, K. R.; Kim, J. G.; Ahn, D. H.; Lee, H. S.

    2010-10-01

    Electrorefining is a key step in pyro processing. Electrorefining process is generally composed of two recovery steps- a deposit of uranium onto a solid cathode (electrorefining) and then the recovery of the remaining uranium and Tru (Transuranic) elements simultaneously by a liquid cadmium cathode (electrowinning). In this study, distillation experiments of a LiCl-KCl eutectic salt and cadmium metal were carried out to examine the distillation behaviors for the development of the electrorefining and the electrowinning processes. The experimental set-up was composed of a distillation tower with an evaporator and a condenser, vacuum pump, control unit, and an off gas treatment system. The solid-liquid separation prior to distillation of the LiCl-KCl eutectic salt was proposed and found to be feasible for the reduction of the burden of the distillation process. The LiCl-KCl eutectic salt was successfully distilled after the liquid salt separation. Distillation experiments for cadmium metal were also carried out. The apparent evaporation rates of LiCl-KCl eutectic salt and cadmium increased with an increasing temperature. The evaporation behaviors of cadmium metal and cadmium-cerium alloy were compared. Cadmium in the alloy was successfully distilled and separated from cerium. The evaporation rate of cadmium in the alloy was lower than that of cadmium metal. The low evaporation rate of the alloy was probably caused by the formation of an intermetallic compound and the residual salt during the preparation of the alloy. Therefore, the distillation temperature for the distillation of the liquid cathode should be higher than the distillation of cadmium metal. The measured evaporation rates of the eutectic salt and cadmium were compared with the values calculated by a relation based on the kinetics of gases. The theoretical values of the evaporation rate calculated by the Hertz-Langmuir relation were higher than the experimental values. The deviations were compensated for

  3. Modelling Eutectic Growth in Unmodified and Modified Near-Eutectic Al-Si Alloy

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Hattel, Jesper Henri; Taylor, John A.

    2013-01-01

    growth parameters from the literature that depend on the type of modification (unmodified, Na-modified or Sr-modified) are used to describe differences in growth of the alloys. Modelling results are compared with solidification experiments where an Al-12.5wt%Si alloy was cast in unmodified, Na modified......A numerical model that describes solidification of primary aluminium grains and nucleation and growth of eutectic cells is used to analyse the solidification of an Al-12.5wt% Si alloy. Nucleation of eutectic cells is modelled using an Oldfield-type nucleation model where the number of nuclei...... and Sr modified forms. The model confirms experimental observations of how modification and alloy composition influence nucleation, growth and finally the size of eutectic cells in the alloys. Modelling results are used to explain how cooling conditions in the casting act together with the nuclei density...

  4. Self-consistent theory of steady-state lamellar solidification in binary eutectic systems

    International Nuclear Information System (INIS)

    Nash, G.E.; Glicksman, M.E.

    1976-01-01

    The potential theoretic methods developed recently at NRL for solving the diffusion equation are applied to the free-boundary problem describing lamellar eutectic solidification. Using these techniques, the original boundary value problem is reduced to a set of coupled integro-differential equations for the shape of the solid/liquid interface and various quantities defined on the interface. The behavior of the solutions is discussed in a qualitative fashion, leading to some interesting inferences regarding the nature of the eutectic solidification process. Using the information obtained from the analysis referred to above, an approximate theory of the lamellar-rod transition is formulated. The predictions of the theory are shown to be in qualitative agreement with experimental observations of this transition. In addition, a simplified version of the general integro-differential equations is developed and is used to assess the effect of interface curvature on the interfacial solute concentrations, and to check the new theory for consistency with experiment

  5. Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian, E-mail: jliu12b@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Yan, Wei [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); Sha, Wei [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, Belfast, BT9 5AG (United Kingdom); Wang, Wei; Shan, Yiyin [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China)

    2016-05-15

    In order to assess the susceptibility of candidate structural materials to liquid metal embrittlement, this work investigated the tensile behaviors of ferritic-martensitic steel in static lead bismuth eutectic (LBE). The tensile tests were carried out in static lead bismuth eutectic under different temperatures and strain rates. Pronounced liquid metal embrittlement phenomenon is observed between 200 °C and 450 °C. Total elongation is reduced greatly due to the liquid metal embrittlement in LBE environment. The range of ductility trough is larger under slow strain rate tensile (SSRT) test. - Highlights: • The tensile behaviors of SIMP steel in LBE are investigated for the first time. • The SIMP is susceptible to LME at different strain rates and temperatures. • The total elongation is reduced greatly. • The ductility trough is wider under SSRT. • The tensile specimens rupture in brittle manner without obvious necking.

  6. Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic

    International Nuclear Information System (INIS)

    Liu, Jian; Yan, Wei; Sha, Wei; Wang, Wei; Shan, Yiyin; Yang, Ke

    2016-01-01

    In order to assess the susceptibility of candidate structural materials to liquid metal embrittlement, this work investigated the tensile behaviors of ferritic-martensitic steel in static lead bismuth eutectic (LBE). The tensile tests were carried out in static lead bismuth eutectic under different temperatures and strain rates. Pronounced liquid metal embrittlement phenomenon is observed between 200 °C and 450 °C. Total elongation is reduced greatly due to the liquid metal embrittlement in LBE environment. The range of ductility trough is larger under slow strain rate tensile (SSRT) test. - Highlights: • The tensile behaviors of SIMP steel in LBE are investigated for the first time. • The SIMP is susceptible to LME at different strain rates and temperatures. • The total elongation is reduced greatly. • The ductility trough is wider under SSRT. • The tensile specimens rupture in brittle manner without obvious necking.

  7. Precision of the eutectic points determination by the isopleths

    Energy Technology Data Exchange (ETDEWEB)

    Lutsyk, V I; Sumkina, O G; Savinov, V V; Zelenaya, A E, E-mail: vluts@pres.bscnet.ru [Physical Problems Department, Buryat Scientific Center of RAS (Siberian Branch), 8 Sakhyanova st., Ulan-Ude, 670047 (Russian Federation)

    2011-10-29

    An imitation of quaternary eutectic point searching techniques by means of two-dimensional sections set construction (tie-lines method) was made, using the model of T-x-y-z diagram of eutectic type without solid-phases solubility as an example. The errors, appearing in sections graphics of experimentally studied systems, are analyzed.

  8. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization

    Science.gov (United States)

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-03-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8-133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared.

  9. Investigation on cored-eutectic structure in Ni60/WC composite coatings fabricated by wide-band laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qunshuang, E-mail: maqunshuang@126.com; Li, Yajiang, E-mail: yajli@sdu.edu.cn; Wang, Juan, E-mail: jwang@sdu.edu.cn; Liu, Kun, E-mail: liu_kun@163.com

    2015-10-05

    Highlights: • Perfect composite coatings were fabricated using wide-band laser cladding. • Special cored-eutectic structure was synthesized in Ni60/WC composite coatings. • Cored-eutectic consists of hard carbide compounds and fine lamellar eutectic of M{sub 23}C{sub 6} carbides and γ-Ni(Fe). • Wear resistance of coating layer was significantly improved due to precipitation of M{sub 23}C{sub 6} carbides. - Abstract: Ni60 composite coatings reinforced with WC particles were fabricated on the surface of Q550 steel using LDF4000-100 fiber laser device. The wide-band laser and circular beam laser used in laser cladding were obtained by optical lens. Microstructure, elemental distribution, phase constitution and wear properties of different composite coatings were investigated. The results showed that WC particles were partly dissolved under the effect of wide-band fiber laser irradiation. A special cored-eutectic structure was synthesized due to dissolution of WC particles. According to EDS and XRD results, the inside cores were confirmed as carbides of M{sub 23}C{sub 6} enriched in Cr, W and Fe. These complex carbides were primarily separated out in the molten metal when solidification started. Eutectic structure composed of M{sub 23}C{sub 6} carbides and γ-Ni(Fe) grew around carbides when cooling. Element content of Cr and W is lower at the bottom of cladding layer. In consequence, the eutectic structure formed in this region did not have inside carbides. The coatings made by circular laser beam were composed of dendritic matrix and interdendritic eutectic carbides, lacking of block carbides. Compared to coatings made by circular laser spot, the cored-eutectic structure formed in wide-band coatings had advantages of well-distribution and tight binding with matrix. The uniform power density and energy distribution and the weak liquid convection in molten pool lead to the unique microstructure evolution in composite coatings made by wide-band laser

  10. Eutectics as improved pharmaceutical materials: design, properties and characterization.

    Science.gov (United States)

    Cherukuvada, Suryanarayan; Nangia, Ashwini

    2014-01-28

    Eutectics are a long known class of multi-component solids with important and useful applications in daily life. In comparison to other multi-component crystalline solids, such as salts, solid solutions, molecular complexes and cocrystals, eutectics are less studied in terms of molecular structure organization and bonding interactions. Classically, a eutectic is defined based on its low melting point compared to the individual components. In this article, we attempt to define eutectics not just based on thermal methods but from a structural organization view point, and discuss their microstructures and properties as organic materials vis-a-vis solid solutions and cocrystals. The X-ray crystal structure of a cocrystal is different from that of the individual components whereas the unit cell of a solid solution is similar to that of one of the components. Eutectics are closer to the latter species in that their crystalline arrangement is similar to the parent components but they are different with respect to the structural integrity. A solid solution possesses structural homogeneity throughout the structure (single phase) but a eutectic is a heterogeneous ensemble of individual components whose crystal structures are like discontinuous solid solutions (phase separated). Thus, a eutectic may be better defined as a conglomerate of solid solutions. A structural analysis of cocrystals, solid solutions and eutectics has led to an understanding that materials with strong adhesive (hetero) interactions between the unlike components will lead to cocrystals whereas those having stronger cohesive (homo/self) interactions will more often give rise to solid solutions (for similar structures of components) and eutectics (for different structures of components). We demonstrate that the same crystal engineering principles which have been profitably utilized for cocrystal design in the past decade can now be applied to make eutectics as novel composite materials, illustrated by

  11. Experimental (solid + liquid) or (liquid + liquid) phase equilibria of (amine + nitrile) binary mixtures

    International Nuclear Information System (INIS)

    Domanska, Urszula; Marciniak, Malgorzata

    2007-01-01

    (Solid + liquid) phase diagrams have been determined for (hexylamine, or octylamine, or 1,3-diaminopropane + acetonitrile) mixtures. Simple eutectic systems have been observed in these mixtures. (Liquid + liquid) phase diagrams have been determined for (octylamine, or decylamine + propanenitrile, or + butanenitrile) mixtures. Mixtures with propanenitrile and butanenitrile show immiscibility in the liquid phase with an upper critical solution temperature, UCST. (Solid + liquid) phase diagrams have been correlated using NRTL, NRTL 1, Wilson and UNIQUAC equations. (Liquid + liquid) phase diagrams have been correlated using NRTL equation

  12. Stable, low-cost phase change material for building applications: The eutectic mixture of decanoic acid and tetradecanoic acid

    International Nuclear Information System (INIS)

    Kahwaji, Samer; Johnson, Michel B.; Kheirabadi, Ali C.; Groulx, Dominic; White, Mary Anne

    2016-01-01

    Highlights: • Decanoic/tetradecanoic acid eutectic at 0.82 ± 0.02 mole fraction (78 ± 2 mass%) decanoic acid. • Melting of eutectic at 20.5 ± 1.5 °C, useful for building applications. • High enthalpy change, 153 ± 15 J g"−"1, is promising. • Negligible change in stability after 3000 melt–freeze cycles. - Abstract: We present a thorough characterization of the thermal properties and thermal reliability of the eutectic mixture of decanoic acid with tetradecanoic acid, as a phase change material (PCM) of potential interest for passive temperature control in buildings. From the temperature-composition binary phase diagram we found that the eutectic composition is 0.82 ± 0.02 mole fraction (78 ± 2 mass%) decanoic acid. We thoroughly characterized the thermal properties of the eutectic mixture. The eutectic composition has a high latent heat of fusion Δ_f_u_sH = 153 ± 15 J g"−"1 and a melting temperature T_o_n_s_e_t = 20.5 ± 1.5 °C. The heat capacity measured as a function of temperature for the solid and liquid phases just below and above the melting point is 1.9 and 2.1 ± 0.2 J K"−"1 g"−"1, respectively. The average value of the thermal conductivity of the solid phase measured between −33 and 9 °C is κ_s = 0.20 ± 0.02 W m"−"1 K"−"1 and for the liquid phase, the thermal conductivity is κ_l = 0.23 ± 0.03 W m"−"1 K"−"1 for 28 and 38 °C. The mixture has a good long-term thermal stability as indicated by negligible changes in Δ_f_u_sH and T_o_n_s_e_t after 3000 melt–freeze cycles. The parameters determined in this work allow more accurate modeling and optimization of the behavior of the eutectic mixture in preparation for implementation as a thermal energy storage PCM.

  13. Spatial profile of thermoelectric effects during Peltier pulsing in Bi and Bi/MnBi eutectic

    Science.gov (United States)

    Silberstein, R. P.; Larson, D. J., Jr.

    1987-01-01

    The spatial profile of the thermal transients that occur during and following the current pulsing associated with Peltier Interface Demarcation during directional solidification is studied. Results for pure Bi are presented in detail and compared with corresponding results for the Bi/MnBi eutectic. Significant thermal transients occur throughout the sample that can be accounted for by the Peltier effect, the Thomson effect, and Joule heating. These effects are separated and their behavior is studied as a function of time, current density, and position with respect to the solid/liquid interface.

  14. Containerless solidification of undercooled oxide and metallic eutectic melts

    International Nuclear Information System (INIS)

    Li Mingjun; Nagashio, Kosuke; Kuribayashi, Kazuhiko

    2004-01-01

    A high-speed video was employed to monitor the in situ recalescence of undercooled oxide Al 2 O 3 -36.8 at.% ZrO 2 and metallic Ni-18.7 at.% Sn eutectics that were processed on an aero-acoustic levitator and an electromagnetic levitator, respectively. For the oxide eutectic, the entire sample becomes brighter and brighter without any clear recalescence front during spontaneous crystallization. When the sample was seeded at desired undercoolings, crystallization started from the seeding point and then spread through the entire sample. Microstructures of the oxide solidified via both the spontaneous crystallization and external seeding consist of many independent eutectic colonies at the sample surface, indicating that copious nucleation takes place regardless of melt undercooling and solidification mode. For the metallic eutectics, two kinds of recalescence are visualized. The surface and cross sectional microstructures reveal that copious nucleation is also responsible for the formation of independent eutectic colonies distributing within the entire sample. It is not possible to measure the growth velocity of a single eutectic colony using optical techniques under the usual magnification. The conventional nucleation concept derived from single-phase alloys may not be applicable to the free solidification of the undercooled double-phase oxide and metallic eutectic systems

  15. Investigation of models to predict the corrosion of steels in flowing liquid lead alloys

    International Nuclear Information System (INIS)

    Balbaud-Celerier, F.; Barbier, F.

    2001-01-01

    Corrosion of steels exposed to flowing liquid lead alloys can be affected by hydrodynamic parameters. The rotating cylinder system is of interest for the practical evaluation of the fluid velocity effect on corrosion and for the prediction of the corrosion behavior in other geometries. Models developed in aqueous medium are tested in the case of liquid metal environments. It is shown that equations established for the rotating cylinder and the pipe flow geometry can be used effectively in liquid lead alloys (Pb-17Li) assuming the corrosion process is mass transfer controlled and the diffusion coefficient of dissolved species is known. The corrosion rate of martensitic steels in Pb-17Li is shown to be independent of the geometry when plotted as a function of the mass transfer coefficient. Predictions about the corrosion of steel in liquid Pb-Bi are performed but experiments are needed to validate the results obtained by modeling

  16. Containerless solidification of acoustically levitated Ni-Sn eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Geng, D.L.; Xie, W.J.; Wei, B. [Northwestern Polytechnical University, Department of Applied Physics, Xi' an (China)

    2012-10-15

    Containerless solidification of Ni-18.7at%Sn eutectic alloy has been achieved with a single-axis acoustic levitator. The temperature, motion, and oscillation of the sample were monitored by a high speed camera. The temperature of the sample can be determined from its image brightness, although the sample moves vertically and horizontally during levitation. The experimentally observed frequency of vertical motion is in good agreement with theoretical prediction. The sample undergoes shape oscillation before solidification finishes. The solidification microstructure of this alloy consists of a mixture of anomalous eutectic plus regular lamellar eutectic. This indicates the achievement of rapid solidification under acoustic levitation condition. (orig.)

  17. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies - 2015 Edition

    International Nuclear Information System (INIS)

    Fazio, Concetta; Sobolev, V.P.; Aerts, A.; Gavrilov, S.; Lambrinou, K.; Schuurmans, P.; Gessi, A.; Agostini, P.; Ciampichetti, A.; Martinelli, L.; Gosse, S.; Balbaud-Celerier, F.; Courouau, J.L.; Terlain, A.; Li, N.; Glasbrenner, H.; Neuhausen, J.; Heinitz, S.; Zanini, L.; Dai, Y.; Jolkkonen, M.; Kurata, Y.; Obara, T.; Thiolliere, N.; Martin-Munoz, F.J.; Heinzel, A.; Weisenburger, A.; Mueller, G.; Schumacher, G.; Jianu, A.; Pacio, J.; Marocco, L.; Stieglitz, R.; Wetzel, T.; Daubner, M.; Litfin, K.; Vogt, J.B.; Proriol-Serre, I.; Gorse, D.; Eckert, S.; Stefani, F.; Buchenau, D.; Wondrak, T.; Hwang, I.S.

    2015-01-01

    Heavy liquid metals such as lead or lead-bismuth have been proposed and investigated as coolants for fast reactors since the 1950's. More recently, there has been renewed interest worldwide in the use of these materials to support the development of systems for the transmutation of radioactive waste. Heavy liquid metals are also under evaluation as a reactor core coolant and accelerator-driven system neutron spallation source. Several national and international R and D programmes are ongoing for the development of liquid lead-alloy technology and the design of liquid lead-alloy-cooled reactor systems. In 2007, a first edition of the handbook was published to provide deeper insight into the properties and experimental results in relation to lead and lead-bismuth eutectic technology and to establish a common database. This handbook remains a reference in the field and is a valuable tool for designers and researchers with an interest in heavy liquid metals. The 2015 edition includes updated data resulting from various national and international R and D programmes and contains new experimental data to help understand some important phenomena such as liquid metal embrittlement and turbulent heat transfer in a fuel bundle. The handbook provides an overview of liquid lead and lead-bismuth eutectic properties, materials compatibility and testing issues, key aspects of thermal-hydraulics and existing facilities, as well as perspectives for future R and D. (authors)

  18. The UC{sub 2−x} – Carbon eutectic: A laser heating study

    Energy Technology Data Exchange (ETDEWEB)

    Manara, D., E-mail: dario.manara@ec.europa.eu; Boboridis, K.; Morel, S.; De Bruycker, F.

    2015-11-15

    The UC{sub 2−x} – carbon eutectic has been studied by laser heating and fast multi-wavelength pyrometry under inert atmosphere. The study has been carried out on three compositions, two of which close to the phase boundary of the UC{sub 2−x} – C miscibility gap (with C/U atomic ratios 2 and 2.1), and one, more crucial, with a large excess of carbon (C/U = 2.82). The first two compositions were synthesised by arc-melting. This synthesis method could not be applied to the last composition, which was therefore completed directly by laser irradiation. The U – C – O composition of the samples was checked by using a combustion method in an ELTRA{sup ®} analyser. The eutectic temperature, established to be 2737 K ± 20 K, was used as a radiance reference together with the cubic – tetragonal (α → β) solid state transition, fixed at 2050 K ± 20 K. The normal spectral emissivity of the carbon-richer compounds increases up to 0.7, whereas the value 0.53 was established for pure hypostoichiometric uranium dicarbide at the limit of the eutectic region. This increase is analysed in the light of the demixing of excess carbon, and used for the determination of the liquidus temperature (3220 K ± 50 K for UC{sub 2.82}). Due to fast solid state diffusion, also fostered by the cubic – tetragonal transition, no obvious signs of a lamellar eutectic structure could be observed after quenching to room temperature. The eutectic surface C/UC{sub 2−x} composition could be qualitatively, but consistently, followed during the cooling process with the help of the recorded radiance spectra. Whereas the external liquid surface is almost entirely constituted by uranium dicarbide, it gets rapidly enriched in demixed carbon upon freezing. Demixed carbon seems to quickly migrate towards the inner bulk during further cooling. At the α → β transition, uranium dicarbide covers again the almost entire external surface. - Highlights: • The melting behaviour

  19. Deep Eutectic Solvents Enable More Robust Chemoenzymatic Epoxidation Reactions

    NARCIS (Netherlands)

    Zhou, Pengfei; Wang, Xuping; Zeng, Chaoxi; Wang, Weifei; Yang, Bo; Hollmann, F.; Wang, Yonghua

    2017-01-01

    A chemoenzymatic method for the production of epoxidized vegetable oils was developed. The unique combination of the commercial lipase G from Penicillieum camembertii with certain deep eutectic solvents enabled the efficient production of epoxidized vegetable oils.

  20. The creep behavior of In-Ag eutectic solder joints

    International Nuclear Information System (INIS)

    Reynolds, H.L.; Kang, S.H.; Morris, J.W. Jr.; Univ. of California, Berkeley, CA

    1999-01-01

    The addition of 3 wt.% Ag to In results in a eutectic composition with improved mechanical properties while only slightly lowering the melting temperature. Steady-state creep properties of In-Ag eutectic solder joints have been measured using constant load tests at 0, 30, 60, and 90 C. Constitutive equations are derived to describe the creep behavior. The data are well represented by an equation of the form proposed by Dorn: a power-law equation applies to each independent creep mechanism. Two parallel mechanisms were observed for the In-Ag eutectic joints. The high-stress mechanism is a bulk mechanism with a thermal dependence dominated by the thermal dependence of creep in the In-rich matrix. The low-stress mechanism is a grain boundary mechanism. Results of this work are discussed with regard to creep behavior of typical eutectic systems

  1. Thermal properties and reliability of eutectic mixture of stearic acid-acetamide as phase change material for latent heat storage

    International Nuclear Information System (INIS)

    Ma, Guixiang; Han, Lipeng; Sun, Jinhe; Jia, Yongzhong

    2017-01-01

    Highlights: • The system of stearic acid-acetamide binary mixtures were studied as phase change material. • The eutectic mixtures featured low melting temperatures and high latent heats of fusion for latent heat storage. • Solid-liquid phase diagrams for the system were constructed. • Negligible change in stability after 500 heating/cooling cycles. - Abstract: The thermal properties and reliability of the stearic acid (SA) with acetamide (AC) binary mixture were characterized using differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), thermogravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR). The phase diagrams for the SA-AC binary mixture with AC in the metastable and the stable form were constructed. The eutectic system with stable AC is 0.604 mol fraction SA, and displayed a melting temperature (T m ) of 64.55 °C and latent heat of melting (ΔH m ) of 193.87 J·g −1 . The eutectic systems with metastable AC are 0.397 and 0.604 mol fraction SA. The melting temperatures are 62.23 °C and 62.54 °C, and latent heats of fusion are 222.10 J·g −1 and 194.28 J·g −1 , respectively. Following accelerated thermal cycling tests, TG and FT-IR analysis indicate that the eutectic mixture (χ SA = 0.397) with the metastable AC has good cyclic and thermal stability. The results show that the SA-AC eutectic mixture use as phase change material (PCM) possess good prospect for low temperature thermal energy storage (TES) applications.

  2. Extraction of phenolic compounds from extra virgin olive oil by a natural deep eutectic solvent: Data on UV absorption of the extracts

    Directory of Open Access Journals (Sweden)

    Vito Michele Paradiso

    2016-09-01

    Full Text Available This data article refers to the paper “Towards green analysis of virgin olive oil phenolic compounds: extraction by a natural deep eutectic solvent and direct spectrophotometric detection” [1]. A deep eutectic solvent (DES based on lactic acid and glucose was used as green solvent for phenolic compounds. Eight standard phenolic compounds were solubilized in the DES. Then, a set of extra virgin olive oil (EVOO samples (n=65 were submitted to liquid–liquid extraction by the DES. The standard solutions and the extracts were analyzed by UV spectrophotometry. This article reports the spectral data of both the standard solutions and the 65 extracts, as well as the total phenolic content of the corresponding oils, assessed by the Folin–Ciocalteu assay. Keywords: Natural deep eutectic solvents, Extra virgin olive oil, Phenolic compounds, UV spectrophotometry

  3. Numerical Modeling of Lead Oxidation in Controlled Lead Bismuth Eutectic Systems: Chemical Kinetics and Hydrodynamic Effects

    International Nuclear Information System (INIS)

    Wu, Chao; Kanthi Kiran Dasika; Chen, Yitung; Moujaes, Samir

    2002-01-01

    Using liquid Lead-Bismuth Eutectic (LBE) as coolant in nuclear systems has been studied for more than 50 years. And LBE has many unique nuclear, thermo physical and chemical attributes which are attractive for practical application. But, corrosion is one of the greatest concerns in using liquid Lead-Bismuth Eutectic (LBE) as spallation target in the Accelerator-driven Transmutation of Waste (ATW) program. Los Alamos National Laboratory has designed and built the Liquid Lead-Bismuth Materials Test Loop (MTL) to study the materials behavior in a flow of molten LBE. A difference of 100 deg. C was designed between the coldest and the hottest parts at a nominal flow rate of 8.84 GPM. Liquid LBE flow was activated by a mechanical sump pump or by natural convection. In order to maintain a self-healing protective film on the surface of the stainless steel pipe, a certain concentration of oxygen has to be maintained in the liquid metal. Therefore, it is of importance to understand what the oxygen concentrations are in the LBE loop related to the corrosion effects on the metal surface, the temperature profiles, the flow rates, and diffusion rates through the metal surface. The chemical kinetics also needs to be fully understood in the corrosion processes coupled with the hydrodynamics. The numerical simulation will be developed and used to analyze the system corrosion effects with different kind of oxygen concentrations, flow rates, chemical kinetics, and geometries. The hydrodynamics modeling of using computational fluid dynamics will provide the necessary the levels of oxygen and corrosion products close to the boundary or surface. This paper presents an approach towards the above explained tasks by analyzing the reactions between the Lead and oxygen at a couple of sections in the MTL. Attempt is also made to understand the surface chemistry by choosing an example model and estimating the near wall surface concentration values for propane and oxygen. (authors)

  4. Preparation, morphology and thermal properties of electrospun fatty acid eutectics/polyethylene terephthalate form-stable phase change ultrafine composite fibers for thermal energy storage

    International Nuclear Information System (INIS)

    Cai Yibing; Ke Huizhen; Lin Liang; Fei Xiuzhu; Wei Qufu; Song Lei; Hu Yuan; Fong Hao

    2012-01-01

    Highlights: ► Electrospun binary fatty acid eutectics/PET ultrafine composite fibers were prepared. ► Fatty acid eutectics had appropriate phase transition temperature and heat enthalpy. ► Their morphological structures and thermal properties were different from each other. ► Composite fibers could be innovative form-stable PCMs for thermal energy storage. - Abstract: The ultrafine composite fibers based on the composites of binary fatty acid eutectics and polyethylene terephthalate (PET) with varied fatty acid eutectics/PET mass ratios (50/100, 70/100, 100/100 and 120/100) were fabricated using the technique of electrospinning as form-stable phase change materials (PCMs). The five binary fatty acid eutectics including LA–MA, LA–PA, MA–PA, MA–SA and PA–SA were prepared according to Schrader equation, and then were selected as an innovative type of solid–liquid PCMs. The results characterized by differential scanning calorimeter (DSC) indicated that the prepared binary fatty acid eutectics with low phase transition temperatures and high heat enthalpies for climatic requirements were more suitable for applications in building energy storage. The structural morphologies, thermal energy storage and thermal stability properties of the ultrafine composite fibers were investigated by scanning electron microscope (SEM), DSC and thermogravimetric analysis (TGA), respectively. SEM images revealed that the electrospun binary fatty acid eutectics/PET ultrafine composite fibers possessed the wrinkled surfaces morphologies compared with the neat PET fibers with cylindrical shape and smooth surfaces; the grooves or ridges on the corrugated surface of the ultrafine composite fibers became more and more prominent with increasing fatty acid eutectics amount in the composite fibers. The fibers with the low mass ratio maintained good structural morphologies while the quality became worse when the mass ratio is too high (more than 100/100). DSC measurements

  5. Mechanism of eutectic formation upon compaction and its effects on tablet properties

    International Nuclear Information System (INIS)

    Bi, Mingda; Hwang, Sung-Joo; Morris, Kenneth R.

    2003-01-01

    The unique property of a eutectic mixture is a lower melting temperature than that of any of its pure components. What differentiates a eutectic mixture from a simple physical mixture is less well understood. This impedes the ability to anticipate and/or detect unintentional eutectic formation during pharmaceutical tablet manufacturing and any potential negative impact. In this study, a thermodynamic/heat transfer approach was used to explain the mechanism of eutectic formation upon exposure to a physical stress, i.e. compaction, and a differential scanning calorimetric (DSC) method was developed to detect and quantify the amount of eutectic formed in the compacts. Furthermore, the mechanism of eutectic formation upon compaction was tested experimentally by correlating the amount of eutectic formed in tablets with the particle size, compaction force, the estimated intimate contact area between the eutectic-forming materials, calculated tablet tensile strength, and tablet porosity. The effect of the presence of eutectics on tablet properties was also investigated. The results show that intimate contact and mutual solubility between eutectic-forming materials are the necessary and sufficient criteria for eutectic formation upon compaction. The systems of acetaminophen (APAP)/caffeine and APAP/propylphenazone were both shown to exhibit eutectic behavior upon compaction and the extent of formation was dependent upon the amount of intimate contact between eutectic-forming materials. Finally, it was found that eutectic had no negative effect on tablet hardness

  6. Pseudobinary eutectics in Cu–Ag–Ge alloy droplets under containerless condition

    International Nuclear Information System (INIS)

    Ruan, Y.; Wang, X.J.; Lu, X.Y.

    2013-01-01

    Highlights: ► Two pseudobinary eutectics form in Cu–Ag–Ge alloy. ► It is influenced by thermodynamic and kinetic factors of the alloy in the drop tube. ► As droplet size reduces, anomalous → lamellar → anomalous transition happens in (Ag + ζ). ► (Ag + ε 2 ) is a product of both peri-eutectic and pseudobinary eutectic transitions. -- Abstract: Pseudobinary eutectic generated by pseudobinary eutectic transition or peri-eutectic transition is a crucial structure in ternary alloy systems. Its formation mechanism strongly influences mechanical properties of these metallic materials. However, it was customarily neglected. In this paper, two pseudobinary eutectics, i.e. (Ag + ζ) and (Ag + ε 2 ), were investigated during the rapid solidification of Cu–Ag–Ge ternary alloy in a 3 m-drop tube. The sharp temperature variations and dramatic kinetic activities of the falling alloy droplets before solidification cause special microstructural characteristics. (Ag) dendrite is the heterogeneous nucleus for anomalous (Ag + ζ) pseudobinary eutectic in large droplets. Lamellar (Ag + ζ) pseudobinary eutectic grain forms independently on condition that primary (Ag) dendrite cannot form and its eutectic morphology becomes anomalous with the decrease of droplet size. Nanoscaled (Ag + ε 2 ) pseudobinary eutectic generating at the last stage of solidification is the product of both peri-eutectic and pseudobinary eutectic transitions. It distributes in the gaps of (Ag + ζ) pseudobinary eutectic grains and its morphology remains lamellar regardless of droplet size

  7. Influence of convection on eutectic microstructure

    Science.gov (United States)

    Baskaran, V.; Eisa, G. F.; Wilcox, W. R.

    1985-01-01

    When the MnBi-Bi eutectic is directionally solidified, it forms fibers of MnBi in a matrix of bismuth. When the material solidified in space at rates of 30 and 50 cm/hr, the average fiber spacing lambda was about one half of the value obtained in cases in which the same material solidified on earth. Neither an altered temperature gradient nor a fluctuating freezing rate are apparently responsible for the change in lambda, and the possibility is studied that natural convection increases lambda on earth by perturbing the compositional field in the melt ahead of the growing solid. A theoretical analysis is conducted along with some experiments. On the basis of the theoretical results for lamellar growth, it is concluded that the spacing lambda increases with increasing stirring, especially at small freezing rates. The experiments indicate that at low growth rates the cross-sectional area of the MnBi blades increases with increased stirring and with decreased growth rate.

  8. Review on Carbon Dioxide Absorption by Choline Chloride/Urea Deep Eutectic Solvents

    Directory of Open Access Journals (Sweden)

    Rima J. Isaifan

    2018-01-01

    Full Text Available In the recent past few years, deep eutectic solvents (DESs were developed sharing similar characteristics to ionic liquids but with more advantageous features related to preparation cost, environmental impact, and efficiency for gas separation processes. Amongst many combinations of DES solvents that have been prepared, reline (choline chloride as the hydrogen bond acceptor mixed with urea as the hydrogen bond donor was the first DES synthesized and is still the one with the lowest melting point. Choline chloride/urea DES has proven to be a promising solvent as an efficient medium for carbon dioxide capture when compared with amine alone or ionic liquids under the same conditions. This review sheds light on the preparation method, physical and chemical characteristics, and the CO2 absorption capacity of choline chloride/urea DES under different temperatures and pressures reported up to date.

  9. Deep Eutectic Solvents pretreatment of agro-industrial food waste.

    Science.gov (United States)

    Procentese, Alessandra; Raganati, Francesca; Olivieri, Giuseppe; Russo, Maria Elena; Rehmann, Lars; Marzocchella, Antonio

    2018-01-01

    Waste biomass from agro-food industries are a reliable and readily exploitable resource. From the circular economy point of view, direct residues from these industries exploited for production of fuel/chemicals is a winning issue, because it reduces the environmental/cost impact and improves the eco-sustainability of productions. The present paper reports recent results of deep eutectic solvent (DES) pretreatment on a selected group of the agro-industrial food wastes (AFWs) produced in Europe. In particular, apple residues, potato peels, coffee silverskin, and brewer's spent grains were pretreated with two DESs, (choline chloride-glycerol and choline chloride-ethylene glycol) for fermentable sugar production. Pretreated biomass was enzymatic digested by commercial enzymes to produce fermentable sugars. Operating conditions of the DES pretreatment were changed in wide intervals. The solid to solvent ratio ranged between 1:8 and 1:32, and the temperature between 60 and 150 °C. The DES reaction time was set at 3 h. Optimal operating conditions were: 3 h pretreatment with choline chloride-glycerol at 1:16 biomass to solvent ratio and 115 °C. Moreover, to assess the expected European amount of fermentable sugars from the investigated AFWs, a market analysis was carried out. The overall sugar production was about 217 kt yr -1 , whose main fraction was from the hydrolysis of BSGs pretreated with choline chloride-glycerol DES at the optimal conditions. The reported results boost deep investigation on lignocellulosic biomass using DES. This investigated new class of solvents is easy to prepare, biodegradable and cheaper than ionic liquid. Moreover, they reported good results in terms of sugars' release at mild operating conditions (time, temperature and pressure).

  10. Material properties influence on steam explosion efficiency. Prototypic versus simulant melts, eutectic versus non-eutectic melts

    International Nuclear Information System (INIS)

    Leskovar, M.; Mavko, B.

    2006-01-01

    A steam explosion may occur during a severe nuclear reactor accident if the molten core comes into contact with the coolant water. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. Details of processes taking place prior and during the steam explosion have been experimentally studied for a number of years with adjunct efforts in modelling these processes to address the scaling of these experiments. Steam explosion experiments have shown that there are important differences of behaviour between simulant and prototypical melts, and that also at prototypical melts the fuel coolant interactions depend on the composition of the corium. In experiments with prototypic materials no spontaneous steam explosions occurred (except with an eutectic composition), whereas with simulant materials the steam explosions were triggered spontaneously. The energy conversion ratio of steam explosions with prototypic melts is at least one order of magnitude lower than the energy conversion ratio of steam explosions with simulant melts. Although the different behaviour of prototypic and simulant melts has been known for a number of years, there is no reliable explanation for these differences. Consequently it is not possible to reliably estimate whether corium would behave so non-explosive also in reactor conditions, where the mass of poured melt is nearly three orders of magnitude larger than in experimental conditions. An even more fascinating material effect was observed recently at corium experiments with eutectic and non-eutectic compositions. It turned out that eutectic corium always exploded spontaneously, whereas non-eutectic corium never exploded spontaneously. In the paper, a possible explanation of both material effects (prototypic/simulant melts, eutectic/non-eutectic corium) on the steam explosion is provided. A model for the calculation of the

  11. Vibration Monitoring Using Fiber Optic Sensors in a Lead-Bismuth Eutectic Cooled Nuclear Fuel Assembly

    Directory of Open Access Journals (Sweden)

    Ben De Pauw

    2016-04-01

    Full Text Available Excessive fuel assembly vibrations in nuclear reactor cores should be avoided in order not to compromise the lifetime of the assembly and in order to prevent the occurrence of safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants, such as, for example, a molten lead-bismuth eutectic. The flow of molten heavy metal around and through the fuel assembly may cause the latter to vibrate and hence suffer degradation as a result of, for example, fretting wear or mechanical fatigue. In this paper, we demonstrate the use of optical fiber sensors to measure the fuel assembly vibration in a lead-bismuth eutectic cooled installation which can be used as input to assess vibration-related safety hazards. We show that the vibration characteristics of the fuel pins in the fuel assembly can be experimentally determined with minimal intrusiveness and with high precision owing to the small dimensions and properties of the sensors. In particular, we were able to record local strain level differences of about 0.2 μϵ allowing us to reliably estimate the vibration amplitudes and modal parameters of the fuel assembly based on optical fiber sensor readings during different stages of the operation of the facility, including the onset of the coolant circulation and steady-state operation.

  12. Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents.

    Science.gov (United States)

    Tang, Xing; Zuo, Miao; Li, Zheng; Liu, Huai; Xiong, Caixia; Zeng, Xianhai; Sun, Yong; Hu, Lei; Liu, Shijie; Lei, Tingzhou; Lin, Lu

    2017-07-10

    The scientific community has been seeking cost-competitive and green solvents with good dissolving capacity for the valorization of lignocellulosic biomass. At this point, deep eutectic solvents (DESs) are currently emerging as a new class of promising solvents that are generally liquid eutectic mixtures formed by self-association (or hydrogen-bonding interaction) of two or three components. DESs are attractive solvents for the fractionation (or pretreatment) of lignocellulose and the valorization of lignin, owing to the high solubility of lignin in DESs. DESs are also employed as effective media for the modification of cellulose to afford functionalized cellulosic materials, such as cellulose nanocrystals. More interestingly, biomassderived carbohydrates, such as fructose, can be used as one of the constituents of DESs and then dehydrated to 5-hydroxymethylfurfural in high yield. In this review, a comprehensive summary of recent contribution of DESs to the processing of lignocellulosic biomass and its derivatives is provided. Moreover, further discussion about the challenges of the application of DESs in biomass processing is presented. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A eutectic-alloy-infused soft actuator with sensing, tunable degrees of freedom, and stiffness properties

    Science.gov (United States)

    Hao, Yufei; Wang, Tianmiao; Xie, Zhexin; Sun, Wenguang; Liu, Zemin; Fang, Xi; Yang, Minxuan; Wen, Li

    2018-02-01

    This paper presents a soft actuator embedded with two types of eutectic alloys which enable sensing, tunable mechanical degrees of freedom (DOF), and variable stiffness properties. To modulate the stiffness of the actuator, we embedded a low melting point alloy (LMPA) in the bottom portion of the soft actuator. Different sections of the LMPA could be selectively melted by the Ni-Cr wires twined underneath. To acquire the curvature information, EGaIn (eutectic gallium indium) was infused into a microchannel surrounding the chambers of the soft actuator. Systematic experiments were performed to characterize the stiffness, tunable DOF, and sensing the bending curvature. We found that the average bending force and elasticity modulus could be increased about 35 and 4000 times, respectively, with the LMPA in a solid state. The entire LMPA could be melted from a solid to a liquid state within 12 s. In particular, up to six different motion patterns could be achieved under each pneumatic pressure of the soft actuator. Furthermore, the kinematics of the actuator under different motion patterns could be obtained by a mathematical model whose input was provided by the EGaIn sensor. For demonstration purposes, a two-fingered gripper was fabricated to grasp various objects by adjusting the DOF and mechanical stiffness.

  14. Catalytic Gasification of Coal using Eutectic Salt Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Atul Sheth; Pradeep Agrawal; Yaw D. Yeboah

    1998-12-04

    The objectives of this study are to: identify appropriate eutectic salt mixture catalysts for coal gasification; assess agglomeration tendency of catalyzed coal; evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts; and conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process. A review of the collected literature was carried out. The catalysts which have been used for gasification can be roughly classified under the following five groups: alkali metal salts; alkaline earth metal oxides and salts; mineral substances or ash in coal; transition metals and their oxides and salts; and eutectic salt mixtures. Studies involving the use of gasification catalysts have been conducted. However, most of the studies focused on the application of individual catalysts. Only two publications have reported the study of gasification of coal char in CO2 and steam catalyzed by eutectic salt mixture catalysts. By using the eutectic mixtures of salts that show good activity as individual compounds, the gasification temperature can be reduced possibly with still better activity and gasification rates due to improved dispersion of the molten catalyst on the coal particles. For similar metal/carbon atomic ratios, eutectic catalysts were found to be consistently more active than their respective single salts. But the exact roles that the eutectic salt mixtures play in these are not well understood and details of the mechanisms remain unclear. The effects of the surface property of coals and the application methods of eutectic salt mixture catalysts with coal chars on the reactivity of gasification will be studied. Based on our preliminary evaluation of the literature, a ternary

  15. Extraction of phenolic compounds from extra virgin olive oil by a natural deep eutectic solvent: Data on UV absorption of the extracts.

    Science.gov (United States)

    Paradiso, Vito Michele; Clemente, Antonia; Summo, Carmine; Pasqualone, Antonella; Caponio, Francesco

    2016-09-01

    This data article refers to the paper "Towards green analysis of virgin olive oil phenolic compounds: extraction by a natural deep eutectic solvent and direct spectrophotometric detection" [1]. A deep eutectic solvent (DES) based on lactic acid and glucose was used as green solvent for phenolic compounds. Eight standard phenolic compounds were solubilized in the DES. Then, a set of extra virgin olive oil (EVOO) samples (n=65) were submitted to liquid-liquid extraction by the DES. The standard solutions and the extracts were analyzed by UV spectrophotometry. This article reports the spectral data of both the standard solutions and the 65 extracts, as well as the total phenolic content of the corresponding oils, assessed by the Folin-Ciocalteu assay.

  16. Deep eutectic solvents as performance additives in biphasic reactions

    NARCIS (Netherlands)

    Lan, Dongming; Wang, Xuping; Zhou, Pengfei; Hollmann, F.; Wang, Yonghua

    2017-01-01

    Deep eutectic solvents act as surfactants in biphasic (hydrophobic/aqueous) reaction mixtures enabling higher interfacial surface areas at lower mechanical stress as compared to simple emulsions. Exploiting this effect the rate of a chemoenzymatic epoxidation reaction was increased more than

  17. Hydrophobic deep eutectic solvents as water-immiscible extractants

    NARCIS (Netherlands)

    Osch, van D.J.G.P.; Zubeir, L.F.; Bruinhorst, van den A.; Alves da Rocha, M.A.; Kroon, M.C.

    2015-01-01

    Hydrophobic deep eutectic solvents (DESs) are presented for the first time. They consist of decanoic acid and various quaternary ammonium salts. The effect of the alkyl chains on the hydrophobicity and the equilibrium of the two-phase DES–water system were investigated. These new DESs were

  18. Solidification with back-diffusion of irregular eutectics

    Directory of Open Access Journals (Sweden)

    M. Trepczyńska-Łent

    2008-10-01

    Full Text Available The definition of the α - parameter back-diffusion has been introduced in the work. The alternative models of solidification were describedtaking into consideration back-diffusion process. The possibility of using those models for eutectic alloys solidification is worthyof interest.

  19. Effect of titanium on the near eutectic grey iron

    DEFF Research Database (Denmark)

    Moumeni, Elham; Tiedje, Niels Skat; Hattel, Jesper Henri

    The effect of Titanium on the microstructure of grey iron was investigated experimentally in this work. Tensile test bars of grey cast iron of near eutectic alloys containing 0.01, 0.1, 0.26 and 0.35% Ti, respectively were made in green sand moulds. Chemical analysis, metallographic investigation...

  20. Preparation and properties of shape-stabilized phase change materials based on fatty acid eutectics and cellulose composites for thermal energy storage

    International Nuclear Information System (INIS)

    Cao, Lei; Tang, Yaojie; Fang, Guiyin

    2015-01-01

    Shape-stabilized fatty acid eutectics/carboxy methyl cellulose-1 composites as phase change materials (PCMs) were synthesized by absorbing liquid eutectics into the carboxy methyl cellulose-1 fibers. The chemical structure, crystalloid phase and morphology were determined by the Fourier transformation infrared spectroscope, X-ray diffractometer and scanning electronic microscope. The thermal properties and thermal stability were measured by the differential scanning calorimeter, thermogravimetric analyzer and the thermal cycling test, respectively. The results indicate that the eutectics are well adsorbed in the porous structure of the carboxy methyl cellulose-1. According to the DSC (differential scanning calorimeter) results, the composites melt at 32.2 °C with latent heat of 114.6 kJ/kg and solidify at 29.2 °C with latent heat of 106.8 kJ/kg. The thermal cycling test proves that the composites have good thermal reliability. It is envisioned that the prepared shape-stabilized PCMs have considerable potential for developing their roles in thermal energy storage. - Highlights: • The fatty acid eutectic/carboxy methyl cellulose-1 composites as PCMs were prepared. • Chemical structure and microstructure of composites were determined by FT-IR and SEM. • Thermal properties and stabilities were investigated by DSC and TGA. • The thermal cycling test confirmed that the composite has good thermal reliability

  1. Study of the thermal and kinetic parameters during directional solidification of zinc-aluminum eutectic alloys

    International Nuclear Information System (INIS)

    Gueijman, Sergio Fabian; Ares, Alicia Esther; Schvezov, Carlos Enrique

    2008-01-01

    Much work has been done recently on investigating zinc-based binary alloys, with different aluminum content, and modified or not with small amounts of other alloying elements. Some of these alloys have interesting properties, such as, the ZA alloys that have properties similar to some bronzes that are used in applications that require pieces with enough resistance to mechanical stresses. The longitudinal thermal gradients, the minimal gradients, the velocities of the liquid interphases, the velocities of the solid interphases and the accelerations of both interphases as a function of time and position were determined for each diluted alloy of the eutectic concentration considered (Zn-5%Al, % in weight), solidified horizontally with caloric extraction from both ends of the test pieces. The values obtained from the horizontal solidification with two directions of predominant caloric extraction are compared to previous values obtained for the same vertically solidified alloy system with a predominantly caloric extraction direction

  2. Molar volume of eutectic solvents as a function of molar composition and temperature☆

    Institute of Scientific and Technical Information of China (English)

    Farouq S. Mjalli

    2016-01-01

    The conventional Rackett model for predicting liquid molar volume has been modified to cater for the effect of molar composition of the Deep Eutectic Solvents (DES). The experimental molar volume data for a group of commonly used DES has been used for optimizing the improved model. The data involved different molar compositions of each DES. The validation of the new model was performed on another set of DESs. The average relative deviation of the model on the training and validation datasets was approximately 0.1%while the Rackett model gave a relative deviation of more than 1.6%. The modified model deals with variations in DES molar com-position and temperature in a more consistent way than the original Rackett model which exhibits monotonic performance degradation as temperature moves away from reference conditions. Having the composition of the DES as a model variable enhances the practical utilization of the predicting model in diverse design and process simulation applications.

  3. Thermoelectric and morphological effects of Peltier pulsing on directional solidification of eutectic Bi-Mn

    Science.gov (United States)

    Silberstein, R. P.; Larson, D. J., Jr.; Dressler, B.

    1984-01-01

    Extensive in situ thermal measurements using Peltier Interface Demarcation (PID) during directional solidification of eutectic Bi/MnBi were carried out. Observations indicate that significant thermal transients occur throughout the sample as a result of the Peltier pulsing. The contributions of the Peltier, Thomson, and Joule heats were separated and studied as a function of pulse intensity and polarity. The Joule and the combined Peltier and Thomson thermal contributions were determined as a function of time during and after the current pulses, close to the solid/liquid interface. Variations of the Bi/MnBi particle morphology clearly reveal the interface shape, changes in interface velocity, meltback, and temporary loss of cooperative growth, as a result of the pulsing.

  4. 3D CAFE modeling of grain structures: application to primary dendritic and secondary eutectic solidification

    International Nuclear Information System (INIS)

    Carozzani, T; Digonnet, H; Gandin, Ch-A

    2012-01-01

    A three-dimensional model is presented for the prediction of grain structures formed in casting. It is based on direct tracking of grain boundaries using a cellular automaton (CA) method. The model is fully coupled with a solution of the heat flow computed with a finite element (FE) method. Several unique capabilities are implemented including (i) the possibility to track the development of several types of grain structures, e.g. dendritic and eutectic grains, (ii) a coupling scheme that permits iterations between the FE method and the CA method, and (iii) tabulated enthalpy curves for the solid and liquid phases that offer the possibility to work with multicomponent alloys. The present CAFE model is also fully parallelized and runs on a cluster of computers. Demonstration is provided by direct comparison between simulated and recorded cooling curves for a directionally solidified aluminum–7 wt% silicon alloy

  5. Preparing of LiCl-KCl-UCl3 eutectic salt by a chlorination of Cd

    International Nuclear Information System (INIS)

    Kang, Hee Seok; Woo, Moon Sik; Lee, Han Soo

    2008-01-01

    Uranium trichloride salt(UCl 3 ) is supplied with the initial U in to the LiCl-KCl eutectic salt for a stabilization of the initial cell voltage during an electrorefining process in a reactor. The apparatus for producing UCl 3 consists of a chlorine gas generator, a chlorinator, and an off-gas wet scrubber. Gaseous chlorine in the chlorine gas generator was injected into a lower layer of liquid Cd where CdCl 2 formed. The CdCl 2 reacts with the uranium to form uranium trichloride and Cd. The throughput of the UCl 3 chlorinator is about. 1.4Kg UCl 3 /batch. During a production the temperature of the reactants are maintained at about 600 .deg. C

  6. A comparison of choline:urea and choline:oxalic acid deep eutectic solvents at 338 K

    Science.gov (United States)

    Gilmore, Mark; Moura, Leila M.; Turner, Adam H.; Swadźba-Kwaśny, Małgorzata; Callear, Samantha K.; McCune, Jade A.; Scherman, Oren A.; Holbrey, John D.

    2018-05-01

    1:2 choline chloride:urea and 1:1 choline chloride:oxalic acid deep eutectic solvents are compared at 338 K using liquid-phase neutron diffraction with H/D isotopic substitution to obtain differential neutron scattering cross sections and fitting of models to the experimental data using Empirical Potential Structure Refinement. In comparison to the previously reported study of choline chloride:urea at 303 K, we observed significant weakening and lengthening of choline-OH⋯Cl- and choline-OH⋯hydrogen-bond acceptor correlations.

  7. Preparation and characterization of the Li(17)Pb(83) eutectic alloy and the LiPb intermetallic compound

    International Nuclear Information System (INIS)

    Jauch, U.; Karcher, V.; Schulz, B.

    1986-01-01

    Li(17)Pb(83) and LiPb were prepared from the pure elements in amounts of several hundred grams. The resolidified samples were characterized by melting points (eutectic temperature), chemical analysis and metallography. Using differential thermal analysis the heats of fusion were determined and the behaviour of the intermetallic phase LiPb in vacuum and high purified He was studied. The results from these investigations were applied to characterize Li(17)Pb(83) prepared in high amounts for technical application as a potential liquid breeder material. (orig.)

  8. Development of metal-carbon eutectic cells for application as high temperature reference points in nuclear reactor severe accident tests: Results on the Fe-C, Co-C, Ti-C and Ru-C alloys' melting/freezing transformation temperature under electromagnetic induction heating

    International Nuclear Information System (INIS)

    Parga, Clemente J.; Journeau, Christophe; Parga, Clemente J.; Tokuhiro, Akira

    2012-01-01

    With the aim of reducing the high temperature measurement uncertainty of nuclear reactor severe accident experimental tests at the PLINIUS platform in Cadarache Research Centre, France, a variety of graphite cells containing a metal-carbon eutectic mix have been tested to assess the melting/freezing temperature reproducibility and their feasibility as calibration cells for thermometers. The eutectic cells have been thermally cycled in an induction furnace to assess the effect of heating/cooling rate, metal purity, graphite crucible design, and binary system constituents on the eutectic transformation temperature. A bi-chromatic pyrometer was used to perform temperature measurements in the graphite cell black cavity containing the metal-carbon eutectic mix. The eutectic points analyzed are all over 1100 C and cover an almost thousand degree span, i.e. from the Fe-Fe 3 C to the Ru-C eutectic. The induction heating permitted the attainment of heating and cooling rates of over 200 C/min under an inert atmosphere. The conducted tests allowed the determination of general trends and peculiarities of the solid. liquid transformation temperature under non-equilibrium and non-steady-state conditions of a variety of eutectic alloys (Fe-C, Co-C, Ti-C and Ru-C binary systems). (authors)

  9. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies

    International Nuclear Information System (INIS)

    2007-01-01

    As part of the development of advanced nuclear systems, including accelerator-driven systems (ADS) proposed for high-level radioactive waste transmutation and generation IV reactors, heavy liquid metals such as lead (Pb) or lead-bismuth eutectic (LBE) are under evaluation as reactor core coolant and ADS neutron target material. Heavy liquid metals are also being envisaged as target materials for high-power neutron spallation sources. The objective of this handbook is to collate and publish properties and experimental results on Pb and LBE in a consistent format in order to provide designers with a single source of qualified properties and data and to guide subsequent development efforts. The handbook covers liquid Pb and LBE properties, materials compatibility and testing issues, key aspects of the thermal-hydraulics and system technologies, existing test facilities, open issues and perspectives. (author)

  10. Investigation of corrosion, water reaction, polonium evaporation and bismuth resource in liquid metal lead-bismuth technology

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Hideki; Takizuka, Takakazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kitano, Teruaki [Mitsui Shipbuilding and Engineering Co. Ltd., Tokyo (Japan)

    2000-10-01

    Lead-bismuth is the first candidate material for liquid metal target find coolant of fueled blanket system in accelerator-driven system (ADS) studied at JAERI. Advantages of the lead-bismuth utilization are non-active material, very low capture cross section, low melting point of 125degC and high boiling point of 1670degC, and beside coolant void reactivity become negative. But problems are due to the high corrosivity to most of the structural materials and the corrosive data are scarcity. In this report, corrosivity, reaction with water, thermal-hydraulics, chemical toxicity etc. are studied by investigating some facilities utilized and researched really for lead or lead-bismuth. And, furthermore, polonium evaporation rate and bismuth resource are investigated. Main results obtained are as follows: (1) In a refinery, there are enough employment experience for liquid Pb-Bi in period of about 17 years and not corrosion for the thermal conductive materials (1Cr-0.5Mo steel) used under the condition of natural convection with temperature around 400degC. (2) In Russia, extensive experience in the use as Russian submarines and in R and D during about 50 years are available. And as a result, it will be able to lead approximately zero corrosion for Cr-Si materials by adjusting oxygen film with oxygen concentration control between 10{sup -7} to 10{sup -5}% mass. However, the corrosion data are not enough systematically collected involving them in radiation dose field. (3) In liquid-dropping experiment, it is shown that interaction between water and high temperature liquid Pb-Bi is reduced steeply with rising of atmosphere pressure. But, in order to design the second circuit removal model of ADS, the interaction should be evaluated by water continuous injection experiment. (4) Polonium forms PbPo in Pb-Bi, and the evaporation rate become less three factor than that of Po, and furthermore, the rate decreases in the atmosphere. The effects of Po on employee and environment

  11. Analysis of actual status of works on technology of heavy liquid metal coolants

    International Nuclear Information System (INIS)

    Martynov, P.N.; Askhadullin, R.Sh.; Orlov, Yu.I.; Storozhenko, A.N.

    2014-01-01

    Principle duties in heavy liquid metal coolant technology (HLMC) are provision of the purity of coolant and surfaces of circulation loop for maintenance of design thermohydraulic characteristics, prevention of structural materials corrosion and erosion during long service life and present-day safety precautions on different stages of reactor facility operation. For this reason, current HLMC (Pb-Bi, Pb) technology must include coolant pre-operation and charging; monitoring and regulating of coolant oxygen potential; hydrogen purification of coolant and surfaces of circulation loop from lead oxides-based slags; coolant filtration; reactor cover gas purification from coolant aerosols. The current topical problem is personnel training on the questions of HLMC technology [ru

  12. Corrosion of stainless steels in lead-bismuth eutectic up to 600 °C

    Science.gov (United States)

    Soler, L.; Martín, F. J.; Hernández, F.; Gómez-Briceño, D.

    2004-11-01

    An experimental program has been carried out to understand the differences in the corrosion behaviour between different stainless steels: the austenitic steels 304L and 316L, the martensitic steels F82Hmod, T91 and EM10, and the low alloy steel P22. The influence of oxygen level in Pb-Bi, temperature and exposure time is studied. At 600 °C, the martensitic steels and the P22 steel exhibit thick oxide scales that grow with time, following a linear law for the wet environment and a parabolic law for the dry one. The austenitic stainless steels show a better corrosion behaviour, especially AISI 304L. Under reducing conditions, the steels exhibit dissolution, more severe for the austenitic stainless steels. At 450 °C, all the materials show an acceptable behaviour provided a sufficient oxygen level in the Pb-Bi. At reducing conditions, the martensitic steels and the P22 steel have a good corrosion resistance, while the austenitic steels exhibit already dissolution at the longer exposures.

  13. Corrosion of stainless steels in lead-bismuth eutectic up to 600 deg. C

    International Nuclear Information System (INIS)

    Soler, L.; Martin, F.J.; Hernandez, F.; Gomez-Briceno, D.

    2004-01-01

    An experimental program has been carried out to understand the differences in the corrosion behaviour between different stainless steels: the austenitic steels 304L and 316L, the martensitic steels F82Hmod, T91 and EM10, and the low alloy steel P22. The influence of oxygen level in Pb-Bi, temperature and exposure time is studied. At 600 deg. C, the martensitic steels and the P22 steel exhibit thick oxide scales that grow with time, following a linear law for the wet environment and a parabolic law for the dry one. The austenitic stainless steels show a better corrosion behaviour, especially AISI 304L. Under reducing conditions, the steels exhibit dissolution, more severe for the austenitic stainless steels. At 450 deg. C, all the materials show an acceptable behaviour provided a sufficient oxygen level in the Pb-Bi. At reducing conditions, the martensitic steels and the P22 steel have a good corrosion resistance, while the austenitic steels exhibit already dissolution at the longer exposures

  14. Efficacy of bi-component cocrystals and simple binary eutectics screening using heat of mixing estimated under super cooled conditions.

    Science.gov (United States)

    Cysewski, Piotr

    2016-07-01

    The values of excess heat characterizing sets of 493 simple binary eutectic mixtures and 965 cocrystals were estimated under super cooled liquid condition. The application of a confusion matrix as a predictive analytical tool was applied for distinguishing between the two subsets. Among seven considered levels of computations the BP-TZVPD-FINE approach was found to be the most precise in terms of the lowest percentage of misclassified positive cases. Also much less computationally demanding AM1 and PM7 semiempirical quantum chemistry methods are likewise worth considering for estimation of the heat of mixing values. Despite intrinsic limitations of the approach of modeling miscibility in the solid state, based on components affinities in liquids under super cooled conditions, it is possible to define adequate criterions for classification of coformers pairs as simple binary eutectics or cocrystals. The predicted precision has been found as 12.8% what is quite accepted, bearing in mind simplicity of the approach. However, tuning theoretical screening to such precision implies the exclusion of many positive cases and this wastage exceeds 31% of cocrystals classified as false negatives. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Real-time X-ray transmission microscopy for fundamental studies solidification: Al-Al2Au eutectic

    International Nuclear Information System (INIS)

    Curreri, Peter A.; Kaukler, William F.; Sen, Subhayu

    1998-01-01

    High resolution real-time X-ray Transmission Microscopy, XTM, has been applied to obtain information fundamental to solidification of optically opaque metallic systems. We have previously reported the measurement of the solute profile in the liquid, phase growth, and detailed solid-liquid interfacial morphology of aluminum based alloys with exposure times less than 2 seconds. Recent advances in XTM furnace design have provided an increase in real-time magnification (during solidification) for the XTM from 40X to 160X. The increased magnification has enabled for the first time the XTM imaging of real-time growth of fibers and particles with diameters of 5 μm. We have previously applied this system to study the kinetics of formation and morphological evolution of secondary fibers and particles in Al-Bi monotectic alloys. In this paper we present the preliminary results of the first real-time observations of fiber morphology evolution in optically opaque bulk metal sample of Aluminum-Gold eutectic alloy. These studies show that the XTM can be applied to study the fundamentals of eutectic and monotectic solidification. We are currently attempting to apply this technology in the fundamentals of solidification in microgravity

  16. Effects of Electromagnetic Stirring on the Microstructure and High-Temperature Mechanical Properties of a Hyper-eutectic Al-Si-Cu-Ni Alloy

    Science.gov (United States)

    Jang, Youngsoo; Choi, Byounghee; Kang, Byungkeun; Hong, Chun Pyo

    2015-02-01

    A liquid treatment method by electromagnetic stirring was applied to a hyper-eutectic Al-15wt pctSi-4wt pctCu-3wt pctNi alloy for the piston manufacturing with diecasting process in order to improve high-temperature mechanical properties of the piston heads. The mechanical properties, such as hardness, high-temperature tensile stress, thermal expansion, and high-temperature relative wear resistance, were estimated using the specimens taken from the liquid-treated diecast products, and the results were compared with those of a conventional metal-mold-cast piston.

  17. Ge-Au eutectic bonding of Ge (100) single crystals

    International Nuclear Information System (INIS)

    Knowlton, W.B.; Beeman, J.W.; Emes, J.H.; Loretto, D.; Itoh, K.M.; Haller, E.E.

    1993-01-01

    The author present preliminary results on the eutectic bonding between two (100) Ge single crystal surfaces using thin films of Au ranging from 900 angstrom/surface to 300 angstrom/surface and Pd (10% the thickness of Au). Following bonding, plan view optical microscopy (OM) of the cleaved interface of samples with Au thicknesses ≤ 500 angstrom/surface show a eutectic morphology more conducive to phonon transmission through the bond interface. High resolution transmission electron microscopy (HRTEM) cross sectional interface studies of a 300 angstrom/surface Au sample show epitaxial growth of Ge. In sections of the bond, lattice continuity of the Ge is apparent through the interface. TEM studies also reveal heteroepitaxial growth of Au with a Au-Ge lattice mismatch of less than 2%. Eutectic bonds with 200 angstrom/surface Au have been attained with characterization pending. An optical polishing technique for Ge has been optimized to insure intimate contact between the Ge surfaces prior to bonding. Interferometry analysis of the optically polished Ge surface shows that surface height fluctuations lie within ±150 angstrom across an interval of lmm. Characterization of phonon transmission through the interface is discussed with respect to low temperature detection of ballistic phonons

  18. The preferential orientation and lattice misfit of the directionally solidified Fe-Al-Ta eutectic composite

    Science.gov (United States)

    Cui, Chunjuan; Wang, Pei; Yang, Meng; Wen, Yagang; Ren, Chiqiang; Wang, Songyuan

    2018-01-01

    Fe-Al intermetallic compound has been paid more attentions recently in many fields such as aeronautic, aerospace, automobile, energy and chemical engineering, and so on. In this paper Fe-Al-Ta eutectic was prepared by a modified Bridgman directional solidification technique, and it is found that microstructure of the Fe-Al-Ta eutectic alloy transforms from the broken-lamellar eutectic to cellular eutectic with the increase of the solidification rate. In the cellular eutectic structure, the fibers are parallel to each other within the same grain, but some fibers are deviated from the original orientation at the grain boundaries. To study the crystallographic orientation relationship (OR) between the two phases, the preferential orientation of the Fe-Al-Ta eutectic alloy at the different solidification rates was studied by Selected Area Electron Diffraction (SAED). Moreover, the lattice misfit between Fe2Ta(Al) Laves phase and Fe(Al,Ta) matrix phase was calculated.

  19. Alcohol based-deep eutectic solvent (DES) as an alternative green additive to increase rotenone yield

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Zetty Shafiqa; Hassan, Nur Hasyareeda; Zubairi, Saiful Irwan [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    Deep eutectic solvents (DESs) are basically molten salts that interact by forming hydrogen bonds between two added components at a ratio where eutectic point reaches a melting point lower than that of each individual component. Their remarkable physicochemical properties (similar to ionic liquids) with remarkable green properties, low cost and easy handling make them a growing interest in many fields of research. Therefore, the objective of pursuing this study is to analyze the potential of alcohol-based DES as an extraction medium for rotenone extraction from Derris elliptica roots. DES was prepared by a combination of choline chloride, ChCl and 1, 4-butanediol at a ratio of 1/5. The structure of elucidation of DES was analyzed using FTIR, {sup 1}H-NMR and {sup 13}C-NMR. Normal soaking extraction (NSE) method was carried out for 14 hours using seven different types of solvent systems of (1) acetone; (2) methanol; (3) acetonitrile; (4) DES; (5) DES + methanol; (6) DES + acetonitrile; and (7) [BMIM] OTf + acetone. Next, the yield of rotenone, % (w/w), and its concentration (mg/ml) in dried roots were quantitatively determined by means of RP-HPLC. The results showed that a binary solvent system of [BMIM] OTf + acetone and DES + acetonitrile was the best solvent system combination as compared to other solvent systems. It contributed to the highest rotenone content of 0.84 ± 0.05% (w/w) (1.09 ± 0.06 mg/ml) and 0.84 ± 0.02% (w/w) (1.03 ± 0.01 mg/ml) after 14 hours of exhaustive extraction time. In conclusion, a combination of the DES with a selective organic solvent has been proven to have a similar potential and efficiency as of ILs in extracting bioactive constituents in the phytochemical extraction process.

  20. Effect of length scale on mechanical properties of Al-Cu eutectic alloy

    Science.gov (United States)

    Tiwary, C. S.; Roy Mahapatra, D.; Chattopadhyay, K.

    2012-10-01

    This paper attempts a quantitative understanding of the effect of length scale on two phase eutectic structure. We first develop a model that considers both the elastic and plastic properties of the interface. Using Al-Al2Cu lamellar eutectic as model system, the parameters of the model were experimentally determined using indentation technique. The model is further validated using the results of bulk compression testing of the eutectics having different length scales.

  1. Directional solidification and characterization of the Al Nb2 - Al3 Nb eutectic system

    International Nuclear Information System (INIS)

    Trevisan, Eduardo A.O.; Andreotti, Fabio; Caram, Rubens

    1996-01-01

    The manufacturing of components to operate at high temperatures requires the use of metallic materials which can keep satisfactory mechanical and chemical properties, even at temperatures beyond 1000 deg C. An interesting alternative is the use of directionally solidified eutectic alloys. The eutectic alloy solidification makes possible the production of 'in situ' composite. A potentially useful system for manufacturing structural materials is the Al-Nb eutectic system. The aim of this work is to present the directional solidification of the Al-Nb eutectic alloy. (author)

  2. Deep eutectic solvents: sustainable media for nanoscale and functional materials.

    Science.gov (United States)

    Wagle, Durgesh V; Zhao, Hua; Baker, Gary A

    2014-08-19

    Deep eutectic solvents (DESs) represent an alternative class of ionic fluids closely resembling room-temperature ionic liquids (RTILs), although, strictly speaking, they are distinguished by the fact that they also contain an organic molecular component (typically, a hydrogen bond donor like a urea, amide, acid, or polyol), frequently as the predominant constituent. Practically speaking, DESs are attractive alternatives to RTILs, sharing most of their remarkable qualities (e.g., tolerance to humidity, negligible vapor pressure, thermostability, wide electrochemical potential windows, tunability) while overcoming several limitations associated with their RTIL cousins. Particularly, DESs are typically, less expensive, more synthetically accessible (typically, from bulk commodity chemicals using solvent/waste-free processes), nontoxic, and biodegradable. In this Account, we provide an overview of DESs as designer solvents to create well-defined nanomaterials including shape-controlled nanoparticles, electrodeposited films, metal-organic frameworks, colloidal assemblies, hierarchically porous carbons, and DNA/RNA architectures. These breakthroughs illustrate how DESs can fulfill multiple roles in directing chemistry at the nanoscale: acting as supramolecular template, metal/carbon source, sacrificial agent (e.g., ammonia release from urea), and/or redox agent, all in the absence of formal stabilizing ligand (here, solvent and stabilizer are one and the same). The ability to tailor the physicochemical properties of DESs is central to controlling their interfacial behavior. The preorganized "supramolecular" nature of DESs provides a soft template to guide the formation of bimodal porous carbon networks or the evolution of electrodeposits. A number of essential parameters (viscosity, polarity, surface tension, hydrogen bonding), plus coordination with solutes/surfaces, all play significant roles in modulating species reactivity and mass transport properties governing the

  3. Deacidification of palm oil using betaine monohydrate-based natural deep eutectic solvents.

    Science.gov (United States)

    Zahrina, Ida; Nasikin, Mohammad; Krisanti, Elsa; Mulia, Kamarza

    2018-02-01

    In the palm oil industry, the deacidification process is performed by steam stripping which causes the loss of most of palm oil's natural antioxidants due to high temperature. The liquid-liquid extraction process which is carried out at low temperature is preferable in order to preserve these compounds. The use of hydrated ethanol can reduce the losses of antioxidants, but the ability of this solvent to extract free fatty acids also decreases. Betaine monohydrate-based natural deep eutectic solvents (NADES) have extensive potential for this process. The selectivity of these NADES was determined to select a preferable solvent. The betaine monohydrate-glycerol NADES in a molar ratio of 1:8 was determined to be the preferred solvent with the highest selectivity. This solvent has an efficiency of palmitic acid extraction of 34.14%, and the amount of antioxidants can be preserved in the refined palm oil up to 99%. The compounds are stable during extraction. Copyright © 2017. Published by Elsevier Ltd.

  4. Modification mechanism of eutectic silicon in Al–6Si–0.3Mg alloy with scandium

    Energy Technology Data Exchange (ETDEWEB)

    Patakham, Ussadawut [Manufacturing and Systems Engineering Program, Department of Production Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand); Kajornchaiyakul, Julathep [National Metal and Material Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Klong Nueng, Klong Luang, Pathumthani 12120 (Thailand); Limmaneevichitr, Chaowalit, E-mail: chaowalit.lim@kmutt.ac.th [Manufacturing and Systems Engineering Program, Department of Production Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand)

    2013-10-25

    Highlights: •Morphologies and growth of Sc and Sr-modified eutectic silicon resemble those of dendrites. •Crystal orientation of eutectic aluminum depends on growth characteristics of eutectic silicon. •We report strong evidence of the occurrence of an impurity-induced twinning mechanism. -- Abstract: The modification mechanism of eutectic silicon in Al–6Si–0.3Mg alloy with scandium was studied. The crystallographic orientation relationships between primary dendrites and the eutectic phase of unmodified and modified Al–6Si–0.3 Mg alloys were determined using electron backscatter diffraction (EBSD). The orientation of aluminum modified with scandium in the eutectic phase was different from that of the neighboring primary dendrites. This result implies that eutectic aluminum grows epitaxially from the surrounding primary aluminum dendrites in the unmodified alloy and that eutectic aluminum grows competitively from the surrounding primary aluminum dendrites in the modified alloy. The pole figure maps of eutectic Si in the [1 0 0], [1 1 0] and [1 1 1] axes of the unmodified and Sc-modified alloys were different, suggesting that the eutectic Al and Si crystals in modified alloy growth are more isotropic and cover a larger set of directions. The lattice fringes of Si of the alloys with and without Sc modification were different in the TEM results. The lattice fringes of Si in modified alloy were found to be multiple twins. However, this was not observed in the unmodified alloy. The growth characteristic of eutectic Si crystal in modified alloy suggests the occurrence of multiple twinning reactions and the formation of a high density of twins. This modification mechanism by Sc is explained by the results of scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analysis, which provide strong evidence of the occurrence of the impurity-induced twinning (IIT) mechanism.

  5. Effect of Ni on eutectic structural evolution in hypereutectic Al-Mg2Si cast alloys

    International Nuclear Information System (INIS)

    Li Chong; Wu Yaping; Li Hui; Wu Yuying; Liu Xiangfa

    2010-01-01

    Research highlights: → By the injection of rod-like NiAl 3 phase in Al-Mg 2 Si alloys, Al-Mg 2 Si binary eutectic structure gradually evolves into Al-Mg 2 Si-NiAl 3 ternary eutectic. → The ternary eutectic presents a unique double rod structure that rod-like NiAl 3 and Mg 2 Si uniformly distribute in Al matrix. → The mechanism of structural evolution was analyzed in terms of the detailed microstructural observations. → The high temperature (350 deg. C) tensile strength of the alloy increases by 23% due to the eutectic structural evolution. - Abstract: The aim of this work is to investigate the eutectic structural evolution of hypereutectic Al-20% Mg 2 Si with Ni addition under a gravity casting process. Three-dimensional morphologies of eutectic phases were observed in detail using field emission scanning electron microscopy, after Al matrix was removed by deep etching or extraction. The results show that Al-Mg 2 Si binary eutectic gradually evolves into Al-Mg 2 Si-NiAl 3 ternary eutectic with the increase of Ni content, and flake-like eutectic Mg 2 Si transforms into rods. The ternary eutectic presents a unique double rod structure that rod-like NiAl 3 and Mg 2 Si uniformly distribute in Al matrix. Further, the high temperature (350 deg. C) tensile strength of the alloy increases by 23% due to the eutectic structure evolution, and the mechanism of structural evolution was discussed and analyzed in terms of the detailed microstructural observations.

  6. On the existence of PbBi3PO8

    International Nuclear Information System (INIS)

    Steinfink, H.; Dass, R.I.; Lynch, V.; Harlow, R.L.; Lee, P.L.

    2005-01-01

    The title compound crystallizes in the tetragonal system, a = 11.733(2) A, c = 15.587(3) A, I4 mm, Z = 10. Data were collected at the Argonne National Laboratory synchrotron source at λ = 0.15359 A. Least squares refinement on F 2 converged to R1 = 0.039. The oxygen coordination polyhedra around Bi and Pb display the distortions typical of 6s 2 lone-pair atoms. One Bi is disordered. Bi-O bonds vary from 2.08(2) to 2.96(1) A. One Pb is in cubic coordination to oxygen and the second Pb is bonded to six oxygen atoms that form a rectangular pyramid and a seventh oxygen is off one of the rectangular faces of the pyramid. Pb-O bonds vary from 2.303(6) to 2.804(17) A. Of the two crystallographically independent P one is in a single tetrahedral coordination while the second is at the center of two disordered tetrahedra. Units of OM 4 tetrahedra, M = Bi/Pb, articulate into a three-dimensional framework by corner and edge sharing that is strengthened by corner sharing with PO 4 moieties

  7. The Pb-Bi cooled XADS status of development

    International Nuclear Information System (INIS)

    Cinotti, Luciano; Gherardi, Giuseppe

    2001-01-01

    In 1998, the Research Ministers of France, Italy and Spain established a Technical Working Group (TWG) including R and D organisations and industrial companies in charge of reactor and accelerator studies, in order to identify the crucial technical issues for which R and D is needed. The recommendations of the TWG indicate the need to design and operate an experimental ADS (XADS) facility at a sufficiently large scale to become the precursor of the industrial, practical-scale transmuter. This interest is confirmed by the two-year programme which has recently started, sponsored by MURST (the Ministry of the University, Scientific and Technological Research), under the leadership of INFN for the Accelerator and of ENEA for the subcritical reactor. This programme is considered of particular relevance for the creation of a well mixed group of competencies, and it will provide important results in support to any related industrial programme. Since early 1998, the Italian ENEA, INFN, CRS4 and Ansaldo have set up a team, led by Ansaldo, to design an 80 MWth XADS, a key-step towards the assessment of the feasibility and operability of an ADS prototype. The results obtained so far allow to outline a consistent XADS configuration. The main issues investigated and the associated solutions adopted are concisely described in the paper

  8. Superconducting properties of clustered PbBi films

    International Nuclear Information System (INIS)

    Lobb, C.J.; Tinkham, M.; Klapwijk, T.M.; Smith, A.D.; Harvard Univ., Cambridge, MA

    1981-01-01

    Superconducting films with high resistance/square have been widely studied as a model of the Kosterlitz-Thouless transition. We show that the behavior of high R clean films near the thickness at which electrical conduction begins is dominated by a few paths across the film and thus should not be interpreted as a Kosterlitz-Thouless transition. Instead, this behavior is consistent with a simple percolation model for the connectivity fluctuations across the film. (orig.)

  9. Divorced Eutectic Solidification of Mg-Al Alloys

    Science.gov (United States)

    Monas, Alexander; Shchyglo, Oleg; Kim, Se-Jong; Yim, Chang Dong; Höche, Daniel; Steinbach, Ingo

    2015-08-01

    We present simulations of the nucleation and equiaxed dendritic growth of the primary hexagonal close-packed -Mg phase followed by the nucleation of the -phase in interdendritic regions. A zoomed-in region of a melt channel under eutectic conditions is investigated and compared with experiments. The presented simulations allow prediction of the final properties of an alloy based on process parameters. The obtained results give insight into the solidification processes governing the microstructure formation of Mg-Al alloys, allowing their targeted design for different applications.

  10. Development of high temperature fasteners using directionally solidified eutectic alloys

    Science.gov (United States)

    George, F. D.

    1972-01-01

    The suitability of the eutectics for high temperature fasteners was investigated. Material properties were determined as a function of temperature, and included shear parallel and perpendicular to the growth direction and torsion parallel to it. Techniques for fabricating typical fastener shapes included grinding, creep forming, and direct casting. Both lamellar Ni3Al-Ni3Nb and fibrous (Co,Cr,Al)-(Cr,Co)7C3 alloys showed promise as candidate materials for high temperature fastener applications. A brief evaluation of the performance of the best fabricated fastener design was made.

  11. Exploring orange peel treatment with deep eutectic solvents and diluted organic acids

    NARCIS (Netherlands)

    van den Bruinhorst, A.; Kouris, P.; Timmer, J.M.K.; de Croon, M.H.J.M.; Kroon, M.C.

    2016-01-01

    The disintegration of orange peel waste in deep eutectic solvents and diluted organic acids is presented in this work. The albedo and flavedo layers of the peel were studied separately, showing faster disintegration of the latter. Addition of water to the deep eutectic solvents lowered the amount of

  12. Interest and difficulties of O-g studies of the mechanisms of eutectic growth

    International Nuclear Information System (INIS)

    Lemaignan, Clement; Malmejac, Yves.

    1976-01-01

    The possible modifications of the very diverse mechanisms involved in a typical eutectic solidification due to the effects of O-g conditions are described. The convection effects, eutectic solidification, nucleation and relations between interlamellar spacing and growth rate are studied [fr

  13. Phase equilibrium, crystallization behavior and thermodynamic studies of (m-dinitrobenzene + vanillin) eutectic system

    International Nuclear Information System (INIS)

    Singh, Jayram; Singh, N.B.

    2015-01-01

    Graphical abstract: The phase diagram of (m-dinitrobenzene + vanillin) system. - Highlights: • (Thaw + melt) method has shown that (m-dinitrobenzene + vanillin) system forms simple eutectic type phase diagram. • Excess thermodynamic functions showed that eutectic mixture is non-ideal. • The flexural strength measurements have shown that in eutectic mixture, crystallization occurs in an ordered way. - Abstract: The phase diagram of (m-dinitrobenzene + vanillin) system has been studied by the thaw melt method and an eutectic type phase diagram was obtained. The linear velocities of crystallization of the parent components and the eutectic mixture were determined. The enthalpy of fusion of the components and the eutectic mixture were determined using the differential scanning calorimetric technique. Excess Gibbs energy, excess entropy, excess enthalpy of mixing, and interfacial energy have been calculated. FTIR spectroscopic studies and flexural strength measurements were also made. The results have shown that the eutectic is a non-ideal mixture of the two components. On the basis of Jackson’s roughness parameter, it is predicted that the eutectic has faceted morphology

  14. Structural models of faceted-faceted eutectic system vanillin-acenaphthene

    International Nuclear Information System (INIS)

    Sharma, B.L.

    2003-01-01

    Thermodynamic model for the eutectic system vanillin-acenaphthene has been developed by analysing the excess functions computed from its experimentally determined solidus-liquidus equilibrium data. Spontaneous nucleation model has been explored from the maximum limit of undercooling of the system and verified by the experimental evidences of dislocation mechanism governing the anisotropic velocity of crystallisation determined at different undercoolings. Viscosity measurements of eutectic and non-eutectic melts at different temperatures revealed the essence of peculiar structural changes and specific energy interactions in the eutectic melt in the temperature range near its melting temperature. The rheological activation energy, E vis for eutectic and non-eutectic melts is found to be a function of temperature. Crystalline faceted structure of the system has been furnished with morphological evidences obtained from microscopic studies at different growth rates, whereas whisker reinforced structural model has been accomplished with mechanical properties computed for both isotropic and anisotropic modes of growth. Of greater interest is the special reference of moderate anisotropic growth, since experimental confirmation was obtained for the theoretical shape of parabolic variation in the mechanical properties of eutectic composite material with growth velocity. Direct evidence of three- to four-fold increase in strength properties of the eutectic material at its moderate anisotropic growth velocity (3.11x10 -7 m 3 s -1 ) in comparison with its isotropic growth in an ice bath (∼273 K), confirms a complete composite microstructure with whiskers in equilibrium with the matrix, embedded parallel to the growth direction

  15. Thermodynamics of the Gd/sub 63.2/Co/sub 36.8/ glass-forming eutectic

    International Nuclear Information System (INIS)

    Baricco, M.; Antonione, C.; Battezzati, L.

    1987-01-01

    In the last years a tendency has consolidated to investigate the properties of the liquid phase in relation to amorphization. The thermodynamic properties of glass-forming liquids show some remarkable similarities and provide a unifying picture for the understanding of glass formation. In particular the specific heat difference between liquid and crystal phases, C/sub P/, seem always positive thus enabling the liquid entropy to approach that of the solid on under-cooling towards the glass transition temperature, T/sub g/. The enthalpy of mixing in glass-forming alloys is strongly negative and depends on temperature giving rise to an excess specific heat. As the liquid and crystalline pure elements have similar specific heat and the Newmann-Kopp law is usually obeyed by solid alloys, the excess specific heat can be assimilated to G. This last quantity, therefore, determines the trend of the thermodynamic properties in the undercooling regime and ultimately the glass-forming tendency of the liquid systems. Specific heat data are available for some liquid alloys but only a few of them refer to glass-forming systems. Typical examples are Au/sub 77/Ge/sub 13.6/Si/sub 9.4/ among metal-metalloid and Mg/sub 85.5/Cu/sub 14.5/ among metal-metal systems. The authors present here a complete determination of the thermodynamic properties of the Gd/sub 63.2/Co/sub 36.8/ eutectic as an example for anthanide transition metal glass-formers. This alloy is low melting so that its liquid state is accessible by differential scanning calorimetry. It forms glasses readily by means of liquid quenching

  16. The novel eutectic microstructures of Si-Mn-P ternary alloy

    International Nuclear Information System (INIS)

    Wu Yaping; Liu Xiangfa

    2010-01-01

    The microstructures of Si-Mn-P alloy manufactured by the technique of combining phosphorus transportation and alloy melting were investigated using electron probe micro-analyzer (EPMA). The phase compositions were determined by energy spectrum and the varieties of eutectic morphologies were discussed. It is found that there is no ternary compound but Si, MnP and MnSi 1.75-x could appear when the Si-Mn-P alloy's composition is proper. Microstructure is greatly refined by rapid solidification technique and the amount of eutectic phases change with faster cooling rates. Moreover, primary Si or MnP are surrounded firstly by the binary eutectic (Si + MnP) and then the ternary eutectic (Si + MnSi 1.75-x + MnP) which also exhibit binary structures due to divorced eutectic determined by the particularity of some Si-Mn-P alloys.

  17. Physico-mechanical properties of naphthalene-acenaphthene eutectic system by different modes of solidification

    International Nuclear Information System (INIS)

    Sharma, B.L.; Gupta, S.; Tandon, S.; Kant, R.

    2008-01-01

    Anisotropic crystal growth kinetics from compositional melts encompassing the entire naphthalene-acenaphthene eutectic system, evidentially, evinces the dislocation mechanism. Rheological properties of eutectic phase melts at different temperatures explore the occurrence of molecular interactions emanating molecular clusters, rich in one phase or the other, in the eutectic melt. Microscopic studies confirm the crystalline faceted-faceted structure of the naphthalene-acenaphthene eutectic system. Implicit in the present work is the concept of strength-growth relationship that follows an identical form of the Weibull probability distribution curve. The curve exhibits two cut-off points corresponding to a lower strength limit in the slow and fast growth regions, and an upper strength limit in the moderate growth region. Relational essence between microstructural parameters essentially structuring morphology and excess thermodynamic functions implicitly governing molten state of the naphthalene-acenaphthene eutectic system is extracted

  18. Divorced eutectic in a HPDC magnesium-aluminum alloy

    International Nuclear Information System (INIS)

    Barbagallo, S.; Laukli, H.I.; Lohne, O.; Cerri, E.

    2004-01-01

    The morphology of the eutectic in a thin-wall high pressure die cast (HPDC) U-shape AM60 magnesium box was investigated by light microscope, SEM, TEM and EPMA. The extremely fast cooling rate taking place in the solidification process produces a highly segregated zone near the boundaries of small grains and a fine distribution of β particles, which is typical of a completely divorced eutectic. It was shown that the segregated zone is coherent with the primary α-Mg grain core even if the increased aluminium content produces a deformation of the hexagonal crystal lattice, which was estimated through diffraction patterns (SADP). The variation of the alloying elements content through the grain boundaries was shown by means of EPMA line scanning. The β particle composition was quantitatively investigated and the results show that, in comparison with the equilibrium phase diagram, the non-equilibrium phase boundary of the Mg 17 Al 12 region is moved some percent towards the lower aluminium content, at the high cooling rate that occurs in high pressure die castings. The cubic structure of the β phase was revealed by diffraction pattern. The presence of small Al-Mn particles both inside the grain and in the boundary region was also put in evidence by TEM

  19. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation.

    Science.gov (United States)

    Xu, Guo-Chao; Ding, Ji-Cai; Han, Rui-Zhi; Dong, Jin-Jun; Ni, Ye

    2016-03-01

    In this study, an effective corn stover (CS) pretreatment method was developed for biobutanol fermentation. Deep eutectic solvents (DESs), consisted of quaternary ammonium salts and hydrogen donors, display similar properties to room temperature ionic liquid. Seven DESs with different hydrogen donors were facilely synthesized. Choline chloride:formic acid (ChCl:formic acid), an acidic DES, displayed excellent performance in the pretreatment of corn stover by removal of hemicellulose and lignin as confirmed by SEM, FTIR and XRD analysis. After optimization, glucose released from pretreated CS reached 17.0 g L(-1) and yield of 99%. The CS hydrolysate was successfully utilized in butanol fermentation by Clostridium saccharobutylicum DSM 13864, achieving butanol titer of 5.63 g L(-1) with a yield of 0.17 g g(-1) total sugar and productivity of 0.12 g L(-1)h(-1). This study demonstrates DES could be used as a promising and biocompatible pretreatment method for the conversion of lignocellulosic biomass into biofuel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Enhanced removal of lead from contaminated soil by polyol-based deep eutectic solvents and saponin

    Science.gov (United States)

    Mukhopadhyay, Soumyadeep; Mukherjee, Sumona; Hayyan, Adeeb; Hayyan, Maan; Hashim, Mohd Ali; Sen Gupta, Bhaskar

    2016-11-01

    Deep eutectic solvents (DESs) are a class of green solvents analogous to ionic liquids, but less costly and easier to prepare. The objective of this study is to remove lead (Pb) from a contaminated soil by using polyol based DESs mixed with a natural surfactant saponin for the first time. The DESs used in this study were prepared by mixing a quaternary ammonium salt choline chloride with polyols e.g. glycerol and ethylene glycol. A natural surfactant saponin obtained from soapnut fruit pericarp, was mixed with DESs to boost their efficiency. The DESs on their own did not perform satisfactory due to higher pH; however, they improved the performance of soapnut by up to 100%. Pb removal from contaminated soil using mixture of 40% DES-Gly and 1% saponin and mixture of 10% DES-Gly and 2% saponin were above 72% XRD and SEM studies did not detect any major corrosion in the soil texture. The environmental friendliness of both DESs and saponin and their affordable costs merit thorough investigation of their potential as soil washing agents.

  1. Removal of polonium contamination by lead-bismuth eutectic in nuclear systems

    International Nuclear Information System (INIS)

    Miura, Terumitsu; Obara, Toru; Sekimoto, Hiroshi

    2003-01-01

    Lead-Bismuth eutectic (LBE) is considered as a promising candidate of the coolant of liquid metal cooled fast reactor, and the coolant and/or target of accelerator driven system. LBE has various good characters for coolant, but it has also some problems such as polonium production. It is necessary to take polonium contamination into consideration, when LBE is used as the coolant. In the present paper, the removal of contaminating polonium from material surface is studied. Baking method is investigated for polonium removal from contaminated quartz glass plate in vacuum. Before and after baking, the mass of the contaminants on the surface and alpha particle counts from contaminated surface is measured. When the contaminated quartz glass plates are baked at more than 400degC for a few minutes, alpha particle counts from the surface decreases by more than 99.7%, and the mass of contaminants decreases by more than 50%. When the baking was performed at 300degC for 15 minutes and more, alpha particle count decreases by more than 80%, and the mass decreases in little. When, the baking temperature is lower than 200degC, alpha particle counts and mass do not decrease. (author)

  2. Carbon Dioxide Capture by Deep Eutectic Solvent Impregnated Sea Mango Activated Carbon

    Science.gov (United States)

    Zulkurnai, N. Z.; Ali, U. F. Md.; Ibrahim, N.; Manan, N. S. Abdul

    2018-03-01

    The increment amount of the CO2 emission by years has become a major concern worldwide due to the global warming issue. However, the influence modification of activated carbon (AC) has given a huge revolution in CO2 adsorption capture compare to the unmodified AC. In the present study, the Deep Eutectic Solvent (DES) modified surface AC was used for Carbon Dioxide (CO2) capture in the fixed-bed column. The AC underwent pre-carbonization and carbonization processes at 519.8 °C, respectively, with flowing of CO2 gas and then followed by impregnation with 53.75% phosphoric acid (H3PO4) at 1:2 precursor-to-activant ratios. The prepared AC known as sea mango activated carbon (SMAC) was impregnated with DES at 1:2 solid-to-liquid ratio. The DES is composing of choline chloride and urea with ratio 1:2 choline chloride to urea. The optimum adsorption capacity of SMAC was 33.46 mgco2/gsol and 39.40 mgco2/gsol for DES modified AC (DESAC).

  3. Choline chloride-based deep eutectic solvents as additives for optimizing chromatographic behavior of caffeic acid

    International Nuclear Information System (INIS)

    Li, Guizhen; Zhu, Tao; Lei, Yingjie

    2015-01-01

    A series of deep eutectic solvents (DESs) were prepared using glycerol and choline chloride (ChCl), and Fourier transform infrared spectrometer (FT-IR) was used to analyze the spectra of glycerol, choline chloride and DESs based on glycerol and choline chloride. Then DESs were used as the additives of mobile phase to optimize chromatographic behavior of caffeic acid in high performance liquid chromatography (HPLC). A 17-run Box-Behnken design (BBD) was employed to evaluate effect of DESs as additives by analyzing the maximum theoretical plate number. Three factors, reaction temperature (60 .deg. C, 80 .deg. C, 100 .deg. C), molar ratio of glycerol and choline chloride (2 : 1, 3 : 1, 4 : 1, n/n), and volume percent of additives (0.05%, 0.10%, 0.15%, v/v), were investigated in BBD. The optimum experiment condition was that of reaction temperature (80 .deg. C), molar ratio of glycerol and ChCl (3 : 1, n/n), and volume percent of additive (0.10%, v/v). The mean chromatographic theoretical plate number of the caffeic acid this condition was 1567.5, and DESs as additives shorten the retention time and modify the chromatogram shape, proving DESs as additives for effective theoretical plate number and column efficiency in HPLC.

  4. Choline chloride-based deep eutectic solvents as additives for optimizing chromatographic behavior of caffeic acid

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guizhen; Zhu, Tao; Lei, Yingjie [Tianjin University of Technology, Tianjin (China)

    2015-10-15

    A series of deep eutectic solvents (DESs) were prepared using glycerol and choline chloride (ChCl), and Fourier transform infrared spectrometer (FT-IR) was used to analyze the spectra of glycerol, choline chloride and DESs based on glycerol and choline chloride. Then DESs were used as the additives of mobile phase to optimize chromatographic behavior of caffeic acid in high performance liquid chromatography (HPLC). A 17-run Box-Behnken design (BBD) was employed to evaluate effect of DESs as additives by analyzing the maximum theoretical plate number. Three factors, reaction temperature (60 .deg. C, 80 .deg. C, 100 .deg. C), molar ratio of glycerol and choline chloride (2 : 1, 3 : 1, 4 : 1, n/n), and volume percent of additives (0.05%, 0.10%, 0.15%, v/v), were investigated in BBD. The optimum experiment condition was that of reaction temperature (80 .deg. C), molar ratio of glycerol and ChCl (3 : 1, n/n), and volume percent of additive (0.10%, v/v). The mean chromatographic theoretical plate number of the caffeic acid this condition was 1567.5, and DESs as additives shorten the retention time and modify the chromatogram shape, proving DESs as additives for effective theoretical plate number and column efficiency in HPLC.

  5. Determination and evaluation of the thermophysical properties of an alkali carbonate eutectic molten salt.

    Science.gov (United States)

    An, Xuehui; Cheng, Jinhui; Zhang, Peng; Tang, Zhongfeng; Wang, Jianqiang

    2016-08-15

    The thermal physical properties of Li2CO3-Na2CO3-K2CO3 eutectic molten salt were comprehensively investigated. It was found that the liquid salt can remain stable up to 658 °C (the onset temperature of decomposition) by thermal analysis, and so the investigations on its thermal physical parameters were undertaken from room temperature to 658 °C. The density was determined using a self-developed device, with an uncertainty of ±0.00712 g cm(-3). A cooling curve was obtained from the instrument, giving the liquidus temperature. For the first time, we report the obtainment of the thermal diffusivity using a laser flash method based on a special crucible design and establishment of a specific sample preparation method. Furthermore, the specific heat capacity was also obtained by use of DSC, and combined with thermal diffusivity and density, was used to calculate the thermal conductivity. We additionally built a rotating viscometer with high precision in order to determine the molten salt viscosity. All of these parameters play an important part in the energy storage and transfer calculation and safety evaluation for a system.

  6. The development of an all copper hybrid redox flow battery using deep eutectic solvents

    International Nuclear Information System (INIS)

    Lloyd, David; Vainikka, Tuomas; Kontturi, Kyösti

    2013-01-01

    Highlights: • A novel redox flow battery based on a deep eutectic solvent is reported. • Favourable kinetics of the positive electrode reaction are shown. • The cell potential is 0.7 V. • Coulombic and energy efficiency are 95% and 62% respectively. • A separator based on jellifying the electrolyte using polyvinyl alcohol is reported. -- Abstract: The performance of a redox flow battery based on chlorocuprates dissolved in an ionic liquid analogue is reported at 50 °C. The kinetics of the positive electrode reaction at a graphite electrode are favourable with a heterogeneous rate constant, k 0 , of 9.5 × 10 −4 cm s −1 . Coulombic efficiency was typically 94% and independent of current density. The small cell potential of 0.75 V and slow mass transport result in energy efficiencies of only 52% and 62% at current densities of 10 and 7.5 mA/cm 2 respectively. The successful development of a separator by jellifying the electrolyte using polyvinyl alcohol is reported

  7. Eutectic crystallization behavior of new Zr48Cu36Al8Ag8 alloy with high glass-forming ability

    International Nuclear Information System (INIS)

    Zhang, Q S; Zhang, W; Xie, G Q; Inoue, A

    2009-01-01

    A water quenching method is used to produce as-cast Zr 48 Cu 36 Al 8 Ag 8 rods with diameters from 20 mm to 25 mm. The microstructures of the as-cast samples were investigated by X-ray diffraction, optical microscopy and scanning electron microscopy. Furthermore, the crystallization behavior of the Zr 48 Cu 36 Al 8 Ag 8 glassy alloy was examined by XRD and transmission electron microscopy. Based on the results obtained one can assume that the simultaneous precipitation of the Zr 2 Cu+AlCu 2 Zr eutectic phases is the possible reason for the high stabilization of the quaternary Zr 48 Cu 36 Al 8 Ag 8 supercooled liquid.

  8. Development of a low tritium partial pressure permeation system for mass transport measurement in lead lithium eutectic

    International Nuclear Information System (INIS)

    Pawelko, R.; Shimada, M.; Katayama, K.; Fukada, S.; Terai, T.

    2014-01-01

    A new experimental system designed to investigate tritium mass transfer properties in materials important to fusion technology is operational at the Safety and Tritium Applied Research (STAR) facility located at the Idaho National Laboratory (INL). The tritium permeation measurement system was developed as part of the Japan/US TITAN collaboration to investigate tritium mass transfer properties in liquid lead lithium eutectic (LLE) alloy. The system is similar to a hydrogen/deuterium permeation measurement system developed at Kyushu University and also incorporates lessons learned from previous tritium permeation experiments conducted at the STAR facility. This paper describes the experimental system that is configured specifically to measure tritium mass transfer properties at low tritium partial pressures. We present preliminary tritium permeation results for α-Fe and α-Fe/LLE samples at 600degC and at tritium partial pressures between 1.0E-3 and 2.4 Pain helium. The preliminary results are compared with literature data. (author)

  9. Directionally solidified Al2O3/GAP eutectic ceramics by micro-pulling-down method

    Science.gov (United States)

    Cao, Xue; Su, Haijun; Guo, Fengwei; Tan, Xi; Cao, Lamei

    2016-11-01

    We reported a novel route to prepare directionally solidified (DS) Al2O3/GAP eutectic ceramics by micro-pulling-down (μ-PD) method. The eutectic crystallizations, microstructure characters and evolutions, and their mechanical properties were investigated in detail. The results showed that the Al2O3/GAP eutectic composites can be successfully fabricated through μ-PD method, possessed smooth surface, full density and large crystal size (the maximal size: φ90 mm × 20 mm). At the process of Diameter, the as-solidified Al2O3/GAP eutectic presented a combination of "Chinese script" and elongated colony microstructure with complex regular structure. Inside the colonies, the rod-type or lamellar-type eutectic microstructures with ultra-fine GAP surrounded by the Al2O3 matrix were observed. At an appropriate solidificational rate, the binary eutectic exhibited a typical DS irregular eutectic structure of "chinese script" consisting of interpenetrating network of α-Al2O3 and GAP phases without any other phases. Therefore, the interphase spacing was refined to 1-2 µm and the irregular microstructure led to an outstanding vickers hardness of 17.04 GPa and fracture toughness of 6.3 MPa × m1/2 at room temperature.

  10. Formation of anomalous eutectic in Ni-Sn alloy by laser cladding

    Science.gov (United States)

    Wang, Zhitai; Lin, Xin; Cao, Yongqing; Liu, Fencheng; Huang, Weidong

    2018-02-01

    Ni-Sn anomalous eutectic is obtained by single track laser cladding with the scanning velocity from 1 mm/s to 10 mm/s using the Ni-32.5 wt.%Sn eutectic powders. The microstructure of the cladding layer and the grain orientations of anomalous eutectic were investigated. It is found that the microstructure is transformed from primary α-Ni dendrites and the interdendritic (α-Ni + Ni3Sn) eutectic at the bottom of the cladding layer to α-Ni and β-Ni3Sn anomalous eutectic at the top of the cladding layer, whether for single layer or multilayer laser cladding. The EBSD maps and pole figures indicate that the spatially structure of α-Ni phase is discontinuous and the Ni3Sn phase is continuous in anomalous eutectic. The transformation from epitaxial growth columnar at bottom of cladding layer to free nucleation equiaxed at the top occurs, i.e., the columnar to equiaxed transition (CET) at the top of cladding layer during laser cladding processing leads to the generation of anomalous eutectic.

  11. A cellular automaton - finite volume method for the simulation of dendritic and eutectic growth in binary alloys using an adaptive mesh refinement

    Science.gov (United States)

    Dobravec, Tadej; Mavrič, Boštjan; Šarler, Božidar

    2017-11-01

    A two-dimensional model to simulate the dendritic and eutectic growth in binary alloys is developed. A cellular automaton method is adopted to track the movement of the solid-liquid interface. The diffusion equation is solved in the solid and liquid phases by using an explicit finite volume method. The computational domain is divided into square cells that can be hierarchically refined or coarsened using an adaptive mesh based on the quadtree algorithm. Such a mesh refines the regions of the domain near the solid-liquid interface, where the highest concentration gradients are observed. In the regions where the lowest concentration gradients are observed the cells are coarsened. The originality of the work is in the novel, adaptive approach to the efficient and accurate solution of the posed multiscale problem. The model is verified and assessed by comparison with the analytical results of the Lipton-Glicksman-Kurz model for the steady growth of a dendrite tip and the Jackson-Hunt model for regular eutectic growth. Several examples of typical microstructures are simulated and the features of the method as well as further developments are discussed.

  12. Thermal energy storage using chloride salts and their eutectics

    International Nuclear Information System (INIS)

    Myers, Philip D.; Goswami, D. Yogi

    2016-01-01

    Achieving the goals of the U.S. Department of Energy (DOE) Sunshot initiative requires (1) higher operating temperatures for concentrating solar power (CSP) plants to increase theoretical efficiency, and (2) effective thermal energy storage (TES) strategies to ensure dispatchability. Current inorganic salt-based TES systems in large-scale CSP plants generally employ molten nitrate salts for energy storage, but nitrate salts are limited in application to lower temperatures—generally, below 600 °C. These materials are sufficient for parabolic trough power plants, but they are inadequate for use at higher temperatures. At the higher operating temperatures achievable in solar power tower-type CSP plants, chloride salts are promising candidates for application as TES materials, owing to their thermal stability and generally lower cost compared to nitrate salts. In light of this, a recent study was conducted, which included a preliminary survey of chloride salts and binary eutectic systems that show promise as high temperature TES media. This study provided some basic information about the salts, including phase equilibria data and estimates of latent heat of fusion for some of the eutectics. Cost estimates were obtained through a review of bulk pricing for the pure salts among various vendors. This review paper updates that prior study, adding data for additional salt eutectic systems obtained from the literature. Where possible, data are obtained from the thermodynamic database software, FactSage. Radiative properties are presented, as well, since at higher temperatures, thermal radiation becomes a significant mode of heat transfer. Material compatibility for inorganic salts is another important consideration (e.g., with regard to piping and/or containment), so a summary of corrosion studies with various materials is also presented. Lastly, cost data for these systems are presented, allowing for meaningful comparison among these systems and other materials for TES

  13. Polymerisation of activated RNA in eutectic ice phases

    DEFF Research Database (Denmark)

    Dörr, Mark; Maurer, Sarah Elisabeth; Monnard, Pierre-Alain

    , metal catalyzed condensation reactions (s. micrograph, right). With a new, non-radioactive ex-perimental essay we are selectively monitoring the 5'-3' and 5'-2' elongation of 5'-fluorescence labeled RNA oligomers. At - 18.5 °C the polymerization reaction and its selectivity is expected to be much higher...... than at room temperature. In the case of a mixed dimer or oligomer experiment this might lead to a particular sequence distribution. The concurrence between polymerization and degradation seen in the previous work shall be further investigated, focusing on possible sequences stabilizing and increasing...... (“cooperative sequences”) or degrading (“parasitic sequences”) the RNA population. These eutectic phases in water-ice are plausible prebiotic micro-environments that should help to overcome the dilution problem in origin of life scenarios. They might have supported the production of libraries...

  14. The solvent extraction of ytterbium from a molten eutectic

    International Nuclear Information System (INIS)

    Lengyel, T.

    1977-01-01

    The paper summarizes the results which were obtained in measurements performed with different binary mixtures of solvents being capable of effectively extracting ytterbium from the molten eutectic lithium nitrate--ammonium nitrate. In the course of elaborating the possible ways of extractive separation of rare earths systematic investigations regarding the individual members of the group are required. The binary solvent mixtures consisted of thenoyl-trifluoracetone (TTA), β-isopropil-tropolone (IPT), tributyl phosphate (TBP), di-2-ethylhexyl phosphoric acid (HDEHP), 2,2'-bipyridyl (bipy), dibutyl phtalate (DBP) and Amberlite LA-2 (LA-2). The concentration of the central ion was kept at 5x10 -6 M by using Yb-169 of high specific activity as a tracer for the radiometric assay. (T.I.)

  15. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES; FINAL

    International Nuclear Information System (INIS)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-01-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO(sub x)). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process

  16. Characterization of tin films synthesized from ethaline deep eutectic solvent

    International Nuclear Information System (INIS)

    Ghosh, Swatilekha; Roy, Sudipta

    2014-01-01

    Highlights: • Tin deposition was achieved by galvanostatic method on the basic substrates from ethaline deep eutectic solvent without use of any additives. • The current potential behaviour of tin system changes with increase in concentration of hydrated tin chloride in ethaline. • The deposition rate in ethaline display three times lower value compared to aqueous electrolytes. • Fine grained crystals of 62 ± 10 nm were obtained for tin deposits. • The deposition process is economical and can be adapted for industrial applications. - Abstract: Tin (Sn) films were electrodeposited by galvanostatic method from ethaline deep eutectic solvent (DES), without any additives. The effect of various deposition parameters on the microstructure was studied. With increase in metal salt concentration from 0.01 to 0.1 M, changes in current–potential behaviour were observed in the polarization scans. This might be due to the existence of [SnCl 3 ] − , [Sn 2 Cl 5 ] − complexes in ethaline DES. Smooth and homogeneous deposits were obtained on a steel substrate surface by applying current density of 1.57 × 10 −3 A/cm 2 at 25 °C. Under these conditions the deposition rate was found to be 0.1 ± 10% μm/min and current efficiency was obtained as 84 ± 3%. XRD analysis of the deposit confirmed the polycrystalline tetragonal structure with mostly (2 0 0) orientation having a crystallite size about 62 ± 16% nm along with an internal strain of 0.0031 ± 22%. The present deposition method is simple, economical and can be adapted for industrial applications

  17. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  18. Study on extraction of cellulose from corn cobs by deep eutectic solvents

    Directory of Open Access Journals (Sweden)

    Hongjie LIU

    2017-12-01

    Full Text Available In order to explore a new method for the separation and extraction of cellulose, cellulose is extracted from waste biomass corn cobs by deep eutectic solvent(DES, in which 1,4-butanediol (BDO and choline chloride (ChCl are used as the donor and the acceptor of hydrogen bonds, respectively. The influence of the molar ration of ChCl to BDO, the treatment temperature, the interaction time and liquid-solid ratio to fiber material yield and cellulose content under ordinary pressure is investigated through experiment. The structures of raw materials and the products are characterized by using infrared spectroscopy (FT-IR, thermogravimetric (TG/DTG, X-ray diffraction (XRD and scanning electron microscopy (SEM. The result shows that the fiber material yield and cellulose content are 44.6% and 77.8%, respectively under the optimum conditions which are ChCl-BDO molar ration of 1∶3, treatment temperature of 180 ℃, reaction time of 4 h and liquid-solid ration of 20∶1(g∶g, and under the condition, the removal rate of lignin and hemicellulose are 95% and 75%, respectively, with only losing a little cellulose. The FT-IR, TG/DTG, XRD and SEM results show that the lignin and hemicellulose in the corn cobs are greatly removed after DES treatment. The fiber material internal is more loose and the structure of the cellulose is barely damaged. The result shows that DES has a good prospect in the field of cellulose separation and extraction.

  19. Electrodeposition of copper composites from deep eutectic solvents based on choline chloride.

    Science.gov (United States)

    Abbott, Andrew P; El Ttaib, Khalid; Frisch, Gero; McKenzie, Katy J; Ryder, Karl S

    2009-06-07

    Here we describe for the first time the electrolytic deposition of copper and copper composites from a solution of the metal chloride salt in either urea-choline chloride, or ethylene glycol-choline chloride based eutectics. We show that the deposition kinetics and thermodynamics are quite unlike those in aqueous solution under comparable conditions and that the copper ion complexation is also different. The mechanism of copper nucleation is studied using chronoamperometry and it is shown that progressive nucleation leads to a bright nano-structured deposit. In contrast, instantaneous nucleation, at lower concentrations of copper ions, leads to a dull deposit. This work also pioneers the use of the electrochemical quartz crystal microbalance (EQCM) to monitor both current efficiency and the inclusion of inert particulates into the copper coatings. This technique allows the first in situ quantification or particulate inclusion. It was found that the composition of composite material was strongly dependent on the amount of species suspended in solution. It was also shown that the majority of material was dragged onto the surface rather than settling on to it. The distribution of the composite material was found to be even throughout the coating. This technology is important because it facilitates deposition of bright copper coatings without co-ligands such as cyanide. The incorporation of micron-sized particulates into ionic liquids has resulted, in one case, in a decrease in viscosity. This observation is both unusual and surprising; we explain this here in terms of an increase in the free volume of the liquid and local solvent perturbation.

  20. Basic principles of lead and lead-bismuth eutectic application in blanket of fusion reactors

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Pinaev, S.S.; Muraviev, E.V.; Romanov, P.V.

    2005-01-01

    High magnetohydrodynamic pressure drop is an important issue for liquid metal blanket concepts. To decrease magnetohydrodynamic resistance authors propose to form insulating coatings on internal surface of blanket ducts at any moment of fusion reactor exploitation. It may be achieved easily if lead or lead-bismuth eutectic is used and technology of oxidative potential handling is applied. A number of experiments carried out in NNSTU show the availability of the proposed technology. It bases on formation of the insulating coatings that consist of the oxides of components of the structural materials and of the coolant components. In-situ value of the insulating coatings characteristics ρδ is ∼ 10 -5 Ohm·m 2 for steels and 5,0x10 -6 - 5,0x10 -5 Ohm·m 2 for vanadium alloys. Thermal cycling is possible during exploitation of a blanket. The experimental research of the insulating coatings properties during thermal cycling have shown that the coatings formed into the lead and lead-bismuth coolants save there insulating properties. Experience of many years is an undoubted advantage of the lead-bismuth coolant and less of the lead coolant in comparison with lithium. Russian Federation possesses of experience of exploitation of the research and industrial facilities, of experience of creation of the pumps, steamgenerators and equipment with heavy liquid metal coolants. The unique experience of designing, assembling and exploitation of the fission reactors with lead-bismuth coolant is also available. The problem of technology of lead and lead-bismuth coolants for power high temperature radioactive facilities has been solved. Accidents, emergency situations such as leakage of steamgenerators or depressurization of gas system in facilities with lead and lead-bismuth coolants have been explored and suppressed. (author)

  1. Generation IV concepts - Presentation at ACRS workshop 'Regulatory challenges for future nuclear power plants'

    International Nuclear Information System (INIS)

    Versluis, Rob M.

    2001-01-01

    The concept of the Near-Term Deployment Working Group was to define a technical approach for Generation IV system with enough detail to allow evaluation against the goal, bur broad enough to allow for optional features and trade. The following concepts were taken into account: water coolant (water or heavy water), gas coolant, liquid metal coolants. Concepts were grouped according to concept sets of technology base share and design approach. Water coolant concepts were grouped as follows: PWR loop reactors, integral primary system PWRs, Integral BWRs, pressure tube reactors, high conversion cores, supercritical water reactors, advanced fuel cycle concepts. Gas coolant concepts were grouped as follows: pebble bed modular reactors; prismatic modular reactors, very high temperature reactors, fast spectrum reactors, others (fluidized bed, moving ignition zone concept). Liquid metal concepts were grouped in four major categories: Medium-to-large oxide-fueled systems; Medium-sized metal-fueled systems; Medium-sized Pb/Pb-Bi systems; Small-sized Pb/Pb-Bi systems. The three supporting technology areas were examined: Fuels (oxide, metal, nitride); Coolants (Na, Pb/Pb-Bi); Fuel Cycle (advanced aqueous, pyroprocess). Non-classical concepts were also grouped as follows: Eutectic metallic fuel; Molten salt fuel; Gas core reactor; Molten salt cooled/solid fuel; Organic cooled reactor; Solid conduction/heat pipe; Fission product direct energy conversion. The Technical working Groups are analyzing the candidate concepts for performance potential relative to the goals; and technology gaps

  2. Local velocity measurements in lead-bismuth and sodium flows using the ultrasound doppler velocimetry

    International Nuclear Information System (INIS)

    Eckert, S.; Gerbeth, G.

    2003-01-01

    We will present measurements of the velocity profiles in liquid sodium and eutectic lead-bismuth by means of the Ultrasonic Doppler Velocimetry (UDV). A sodium flow in a rectangular duct exposed to an external, transverse magnetic field has been examined. To demonstrate the capability of UDV the transformation of the well-known turbulent, piston-like profile to an M-shaped velocity profile for growing magnetic field strength was observed. The significance of artifacts such as caused by the existence of reflecting interfaces in the measuring domain will be discussed. In the sodium case, the measurements were performed through the channel wall. An integrated ultrasonic sensor with acoustic wave-guide has been developed to overcome the limitation of ultrasonic transducers to temperatures lower than 200 .deg. C. This sensor can presently be applied at maximum temperatures up to 800 .deg. C. Stable and robust measurements have been performed in various PbBi flows in our laboratory at FZR as well as at the THESYS loop of the KALLA laboratory of the ForschungsZentrum Karlsruhe (FZK). We will also present experimental results obtained in a PbBi bubbly flow at 250...300 .deg. C. Argon bubbles were injected through a single orifice in a cylindrical container filled with stagnant PbBi. Velocity profiles were measured in the bubble plume. Mean values of the liquid as well as the bubble velocity were extracted from the data and will be presented as function of the gas flow rate

  3. Phase equilibria of toluene/heptane with deep eutectic solvents based on ethyltriphenylphosphonium iodide for the potential use in the separation of aromatics from naphtha

    International Nuclear Information System (INIS)

    Kareem, Mukhtar A.; Mjalli, Farouq S.; Hashim, Mohd Ali; Hadj-Kali, Mohamed K.O.; Ghareh Bagh, Fatemeh Saadat; Alnashef, Inas M.

    2013-01-01

    Highlights: • Ionic liquid analogues are introduced as potential replacements for ionic liquids. • Deep eutectic solvents presented in this work were successful for extracting aromatics. • Hand correlation was applied to ascertain the experimental measurements. • The NRTL thermodynamic model was capable for correlating the LLE experimental data. -- Abstract: In this work, the liquid–liquid extraction of toluene from hydrocarbons mixtures (toluene/heptane) was investigated using deep eutectic solvents as solvents. Ethyltriphenylphosphonium iodide as a salt with either ethylene glycol or sulfolane as hydrogen-bond donors (HBDs) were utilized for synthesizing six DESs. (Liquid + liquid) equilibria data were determined experimentally for the ternary system (toluene + heptane + DES) at (30, 40, 50, and 60) °C and atmospheric pressure. Hand correlation was applied to establish the reliability of the experimental data. In many cases the correlation factor is found close to unity which indicates high reliability of the data. The selectivities and distribution coefficients were used to determine the suitability of these DESs as solvents for this extraction process. Higher selectivities than those published for sulfolane as a commercial solvent were observed. The DES made from ethyltriphenylphosphonium iodide and sulfolane at salt:HBD of 1:4 showed the best separation capability at 30 °C. Thus, it was further characterized by measuring its viscosity and refractive index at a range of temperatures to help understand its physical behaviour needed for process design. The non-random two-liquid (NRTL) model was applied successfully to correlate the experimental tie-lines and to calculate the phase compositions of the ternary systems. It has been found that the third non-randomness parameter varies linearly with the HBD number of moles

  4. Evolution of fast reactor core spectra in changing a heavy liquid metal coolant by molten PB-208

    Energy Technology Data Exchange (ETDEWEB)

    Blokhin, D. A.; Mitenkova, E. F. [Nuclear Safety Inst., Russian Academy of Sciences, B. Tulskaya 52, Moscow, 115119 (Russian Federation); Khorasanov, G. L.; Zemskov, E. A.; Blokhin, A. I. [State Scientific Center, Russian Federation, Inst. of Physics and Power Engineering, Bondarenko Square 1, Obninsk, 249033 (Russian Federation)

    2012-07-01

    In the paper neutron spectra of fast reactor cooled with lead-bismuth or lead-208 are given. It is shown that in changing the coolant from lead-bismuth to lead-208 the core neutron spectra of the fast reactor FR RBEC-M are hardening in whole by several percents when a little share of low energy neutrons (5 eV - 50 keV) is slightly increasing. The shift of spectra to higher energies permits to enhance the fuel fission while the increased share of low energy neutrons provides more effective conversion of uranium-238 into plutonium due to peculiarity of {sup 238}U neutron capture cross section. Good neutron and physical features of molten {sup 208}Pb permit to assume it as perspective coolant for fast reactors and accelerator driven systems. The one-group cross sections of neutron radiation capture, {sigma}(n,g), by {sup 208}Pb, {sup 238}U, {sup 99}Tc, mix of lead and bismuth, {sup nat}Pb-Bi, averaged over neutron spectra of the fast reactor RBEC-M are given. It is shown that one-group cross sections of neutron capture by material of the liquid metal coolant consisted from lead enriched with the stable lead isotope, {sup 208}Pb, are by 4-7 times smaller {sigma}(n,g) for the coolant {sup nat}Pb-Bi. The economy of neutrons in the core cooled with {sup 208}Pb can be used for reducing reactor's initial fuel load, increasing fuel breeding and transmutation of long lived fission products, for example {sup 99}Tc. Good neutron and physical features of lead enriched with {sup 208}Pb permit to consider it as a perspective low neutron absorbing coolant for fast reactors and accelerator driven systems. (authors)

  5. Crystallization processes in Ni-Ti-B glassy alloys of near-ternary-eutectic composition

    International Nuclear Information System (INIS)

    Merk, N.; Morris, D.G.; Stadelmann, P.

    1987-01-01

    The crystallization kinetics and mechanisms of three Ni-Ti-B glasses have been examined with a view to elucidating the roles of chemical composition and quenched structure on behaviour. Alloys of composition near a ternary-eutectic point have been chosen because they represent a real and complex situation where several crystalline phases may form simultaneously. Crystallization processes are analysed in terms of nucleation and growth stages. Different nucleation mechanisms seem to be best explained in terms of the short range ordered structure of the quenched glass. Analysis of crystal glass interface energies indicates that it is not this energy term which controls the nucleation of crystals on annealing. Crystal growth may involve a eutectic mechanism or a single-phase mechanism controlled by interface or matrix-diffusion kinetics. Crystallization is fastest when eutectic nucleation and growth occurs. Formation of the eutectic colony requires the initial formation of the phase of complex structure followed by the phase of simpler structure

  6. Prospects for designing structural cast eutectic alloys on Al-Ce-Ni system base

    International Nuclear Information System (INIS)

    Belov, N.A.; Naumova, E.S.

    1996-01-01

    The phase diagram of Al-Ce-Ni system is built for an aluminium corner at component concentration up to 16 mass %Ce and 8 mass%Ni. A ternary eutectic reaction is established at 12%Ce, 5%Ni and 626 deg C. The ternary eutectic alloy is similar in structure to rapidly cooled Al base alloys with transition metals. The possibility to design new cast alloys based on three-phase (Al)+NiAl 3 +CeAl 4 eutectics is under consideration. Al-Zn-Mg-Cu, Al-Sc and Al-Zr base alloys can be used as (Al) constituent of the eutectics. The new alloys may be considered as heat resistant ones due to the fact that no structural changes are observed in castings on heating up to 350 deg C. 18 refs.; 4 figs.; 2 tabs

  7. Data supporting the prediction of the properties of eutectic organic phase change materials

    Directory of Open Access Journals (Sweden)

    Samer Kahwaji

    2018-04-01

    Full Text Available The data presented in this article include the molar masses, melting temperatures, latent heats of fusion and temperature-dependent heat capacities of fifteen fatty acid phase change materials (PCMs. The data are used in conjunction with the thermodynamic models discussed in Kahwaji and White (2018 [1] to develop a computational tool that calculates the eutectic compositions and thermal properties of eutectic mixtures of PCMs. The computational tool is part of this article and consists of a Microsoft Excel® file available in Mendeley Data repository [2]. A description of the computational tool along with the properties of nearly 100 binary mixtures of fatty acid PCMs calculated using this tool are also included in the present article. The Excel® file is designed such that it can be easily modified or expanded by users to calculate the properties of eutectic mixtures of other classes of PCMs. Keywords: Phase change materials, PCM, Eutectic, Thermal properties, Thermal energy storage

  8. Effect of Electric Field on the Wetting Behavior of Eutectic Gallium-Indium Alloys in Aqueous Environment

    Science.gov (United States)

    Yuan, Bo; He, Zhi-Zhu; Liu, Jing

    2018-02-01

    Room-temperature liquid metals have many intriguing properties that have not previously been fully understood. Among them, surface tension behaviors of such metals are especially critical in a group of newly emerging areas such as printed electronics, functional materials and soft machines, etc. This study is dedicated to clarifying the wettability of liquid metals on various substrate surfaces with varied roughness immersed in solutions when subject to an electric field. The contact angles of Ga75.5In24.5 in several typical liquids were comprehensively measured and interpreted, and were revealed to be affected by the components and concentration of the environmental solution. Meanwhile, the roughness of the substrates is also revealed to be an important parameter dominating the process. The dynamic wetting behaviors of liquid metal in aqueous environment under an electric field were quantified. The contact angle values of eutectic gallium-indium alloys (eGaIn) on titanium substrates with different roughness would lead to better electrowetting performances on rougher surfaces. In particular, using an electrical field to control the wetting status of liquid metal with the matching substrate have been illustrated, which would offer a practical way to flexibly control liquid metal-based functional devices working in an aqueous environment. Furthermore, Lippmann-Young's equation reveals the relationship between contact angle and applied voltage, explaining the excellent electrowetting property of eGaIn. The power law, R = αt β , was adopted to characterize the two-stage wetting process of eGaIn under different voltages. In the initial process, β ≈ 1/2 represents the complete wetting law, while the later one, β ≈ 1/10, meets with Tanner's law of a drop spontaneously spreading on a smooth surface.

  9. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    International Nuclear Information System (INIS)

    Shen, Junjun; Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; Santos, Jorge F. dos

    2014-01-01

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl 2 eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting

  10. The effect of the solidification mode on eutectic structure in Fe-C-V alloys

    International Nuclear Information System (INIS)

    Fras, E.; Guzik, E.

    1980-01-01

    The aim of the study was to determine such a chemical composition of Fe-C-V alloys which would ensure the formation of perfectly eutectic structures as well as to investigate the eutectic morphology of these alloys when undergoing bulk and directional solidification. Attempts have been done to get in situ composites from Fe-C-V alloys. The adopted testing methods as well as obtained results are described in detail. (H.M.)

  11. Experimental investigation of thermophysical properties of eutectic Mo–C, graphite and tantalum at high temperatures

    International Nuclear Information System (INIS)

    Senchenko, V N; Belikov, R S; Popov, V S

    2016-01-01

    An experimental technique based on fast electrical heating for investigation of thermophysical properties of refractory materials under high pressures and at high temperatures is considered. A set of thermophysical properties of refractory materials such as specific enthalpy, specific heat capacity, specific resistivity, melting heat of eutectic Mo-C and thermal expansion of graphite and tantalum were determined. The obtained temperature of eutectic melting of MoC 0.82 shows close agreement with equilibrium Mo-C phase diagram. (paper)

  12. Evaluation and modeling of the eutectic composition of various drug-polyethylene glycol solid dispersions.

    Science.gov (United States)

    Baird, Jared A; Taylor, Lynne S

    2011-06-01

    The purpose of this study was to gain a better understanding of which factors contribute to the eutectic composition of drug-polyethylene glycol (PEG) blends and to compare experimental values with predictions from the semi-empirical model developed by Lacoulonche et al. Eutectic compositions of various drug-PEG 3350 solid dispersions were predicted, assuming athermal mixing, and compared to experimentally determined eutectic points. The presence or absence of specific interactions between the drug and PEG 3350 were investigated using Fourier transform infrared (FT-IR) spectroscopy. The eutectic composition for haloperidol-PEG and loratadine-PEG solid dispersions was accurately predicted using the model, while predictions for aceclofenac-PEG and chlorpropamide-PEG were very different from those experimentally observed. Deviations in the model prediction from ideal behavior for the systems evaluated were confirmed to be due to the presence of specific interactions between the drug and polymer, as demonstrated by IR spectroscopy. Detailed analysis showed that the eutectic composition prediction from the model is interdependent on the crystal lattice energy of the drug compound (evaluated from the melting temperature and the heat of fusion) as well as the nature of the drug-polymer interactions. In conclusion, for compounds with melting points less than 200°C, the model is ideally suited for predicting the eutectic composition of systems where there is an absence of drug-polymer interactions.

  13. Monotonic and fatigue deformation of Ni--W directionally solidified eutectic

    International Nuclear Information System (INIS)

    Garmong, G.; Williams, J.C.

    1975-01-01

    Unlike many eutectic composites, the Ni--W eutectic exhibits extensive ductility by slip. Furthermore, its properties may be greatly varied by proper heat treatments. Results of studies of deformation in both monotonic and fatigue loading are reported. During monotonic deformation the fiber/matrix interface acts as a source of dislocations at low strains and an obstacle to matrix slip at higher strains. Deforming the quenched-plus-aged eutectic causes planar matrix slip, with the result that matrix slip bands create stress concentrations in the fibers at low strains. The aged eutectic reaches generally higher stress levels for comparable strains than does the as-quenched eutectic, and the failure strains decrease with increasing aging times. For the composites tested in fatigue, the aged eutectic has better high-stress fatigue resistance than the as-quenched material, but for low-stress, high-cycle fatigue their cycles to failure are nearly the same. However, both crack initiation and crack propagation are different in the two conditions, so the coincidence in high-cycle fatigue is probably fortuitous. The effect of matrix strength on composite performance is not simple, since changes in strength may be accompanied by alterations in slip modes and failure processes. (17 fig) (auth)

  14. Corrosion behaviour of welds and Ta in liquid lead

    Energy Technology Data Exchange (ETDEWEB)

    Heinzel, A., E-mail: Annette.heinzel@kit.edu; Müller, G.; Weisenburger, A.

    2016-02-15

    Four specimens, P91 welded by friction stir welding with and without post heat treatment, P91 electromagnetic pulse welded (EMP) and 14Cr ODS (explosive welding) were exposed at 550 °C for up to 2131 h to Pb containing 10{sup −6} wt% oxygen. After the exposure none of the samples showed dissolution attack, all were protected by an oxide layer at the surface. Nearly no effect on the oxidation due to welding was found in both friction stir welded specimens. Severe deformation and partial melting during explosive welding result in a slower oxide layer growth within the welding zone. The EMP sample was tested as delivered without post-heat treatment. No Pb penetrated into the tiny gap between the welded parts. After the test, the gap is filled up with oxides. Additionally, Ta, discussed as a pump impeller material, was exposed to Pb and PbBi at different temperatures (400–900 °C) and oxygen concentrations in liquid metal (saturated, 10{sup −6} wt%, 10{sup −8} wt% and reduced (<<10{sup −8} wt%). Only the Ta specimens exposed to Pb with highly reduced oxygen content showed nearly no attack. All the others exhibited oxide scale formation that becomes severe above 400 °C test temperature.

  15. Delayed neutrons in liquid metal spallation targets

    International Nuclear Information System (INIS)

    Ridikas, D.; Bokov, P.; David, J.C.; Dore, D.; Giacri, M.L.; Van Lauwe, A.; Plukiene, R.; Plukis, A.; Ignatiev, S.; Pankratov, D.

    2003-01-01

    The next generation spallation neutron sources, neutrino factories or RIB production facilities currently being designed and constructed around the world will increase the average proton beam power on target by a few orders of magnitude. Increased proton beam power results in target thermal hydraulic issues leading to new target designs, very often based on flowing liquid metal targets such as Hg, Pb, Pb-Bi. Radioactive nuclides produced in liquid metal targets are transported into hot cells, past electronics, into pumps with radiation sensitive components, etc. Besides the considerable amount of photon activity in the irradiated liquid metal, a significant amount of the delayed neutron precursor activity can be accumulated in the target fluid. The transit time from the front of a liquid metal target into areas, where delayed neutrons may be important, can be as short as a few seconds, well within one half-life of many delayed neutron precursors. Therefore, it is necessary to evaluate the total neutron flux (including delayed neutrons) as a function of time and determine if delayed neutrons contribute significantly to the dose rate. In this study the multi-particle transport code MCNPX combined with the material evolution program CINDER'90 will be used to evaluate the delayed neutron flux and spectra. The following scientific issues will be addressed in this paper: - Modeling of a typical geometry of the liquid metal spallation target; - Predictions of the prompt neutron fluxes, fission fragment and spallation product distributions; - Comparison of the above parameters with existing experimental data; - Time-dependent calculations of delayed neutron precursors; - Neutron flux estimates due to the prompt and delayed neutron emission; - Proposal of an experimental program to measure delayed neutron spectra from high energy spallation-fission reactions. The results of this study should be directly applicable in the design study of the European MegaPie (1 MW

  16. Response Surface Optimization of Rotenone Using Natural Alcohol-Based Deep Eutectic Solvent as Additive in the Extraction Medium Cocktail

    Directory of Open Access Journals (Sweden)

    Zetty Shafiqa Othman

    2017-01-01

    Full Text Available Rotenone is a biopesticide with an amazing effect on aquatic life and insect pests. In Asia, it can be isolated from Derris species roots (Derris elliptica and Derris malaccensis. The previous study revealed the comparable efficiency of alcohol-based deep eutectic solvent (DES in extracting a high yield of rotenone (isoflavonoid to binary ionic liquid solvent system ([BMIM]OTf and organic solvent (acetone. Therefore, this study intends to analyze the optimum parameters (solvent ratio, extraction time, and agitation rate in extracting the highest yield of rotenone extract at a much lower cost and in a more environmental friendly method by using response surface methodology (RSM based on central composite rotatable design (CCRD. By using RSM, linear polynomial equations were obtained for predicting the concentration and yield of rotenone extracted. The verification experiment confirmed the validity of both of the predicted models. The results revealed that the optimum conditions for solvent ratio, extraction time, and agitation rate were 2 : 8 (DES : acetonitrile, 19.34 hours, and 199.32 rpm, respectively. At the optimum condition of the rotenone extraction process using DES binary solvent system, this resulted in a 3.5-fold increase in a rotenone concentration of 0.49 ± 0.07 mg/ml and yield of 0.35 ± 0.06 (%, w/w as compared to the control extract (acetonitrile only. In fact, the rotenone concentration and yield were significantly influenced by binary solvent ratio and extraction time (P<0.05 but not by means of agitation rate. For that reason, the optimal extraction condition using alcohol-based deep eutectic solvent (DES as a green additive in the extraction medium cocktail has increased the potential of enhancing the rotenone concentration and yield extracted.

  17. Molar enthalpy of mixing and refractive indices of choline chloride-based deep eutectic solvents with water

    International Nuclear Information System (INIS)

    Ma, Chunyan; Guo, Yanhua; Li, Dongxue; Zong, Jianpeng; Ji, Xiaoyan; Liu, Chang

    2017-01-01

    Highlights: • Molar enthalpy of mixing and refractive indices for binary mixtures of different deep eutectic solvents with water. • The Redlich–Kister equation and the NRTL model was used to fit the experimental data. • The NRTL model with fitted parameters were used to predict the vapour pressure and compared with experimental data. - Abstract: The molar enthalpies of mixing were measured for binary systems of choline chloride-based deep eutectic solvents (glycerol, ethylene glycol and malonic acid) with water at 298.15 K and 308.15 K, and atmospheric pressure with an isothermal calorimeter. Refractive indices were also measured at 303.15 K and atmospheric pressure. The binary mixtures of {chcl/glycerol (1:2) + water, chcl/ethylene glycol (1:2) + water} showed exothermic behaviour over the entire range of composition, while the binary mixture of {chcl/malonic acid (1:1) + water} showed endothermic behaviour at first and then changed to be exothermic with the increasing content of chcl/malonic acid (1:1). Experimental refractive indices were fitted with the Redlich–Kister equation, and experimental molar enthalpies of mixing were correlated with the Redlich–Kister equation and the non-random two-liquid (NRTL) model. The NRTL model with the fitted parameters was used to predict the vapour pressures of these three mixtures. For mixtures of {chcl/glycerol (1:2) + water} and {chcl/ethylene glycol (1:2) + water}, the predicted vapour pressures agreed well with the experimental results from the literature. While for mixture of {chcl/malonic acid (1:1) + water}, the predicted vapour pressures showed deviation at the high concentration of chcl/malonic acid (1:1), and this was probably because of the complex molecular interaction between chcl/malonic acid (1:1) and water.

  18. Coupling the capabilities of different complexing agents into deep eutectic solvents to enhance the separation of aromatics from aliphatics

    International Nuclear Information System (INIS)

    Hizaddin, Hanee F.; Sarwono, Mulyono; Hashim, Mohd Ali; Alnashef, Inas M.; Hadj-Kali, Mohamed K.

    2015-01-01

    Highlights: • DESs made of three constituents are used for the separation of hydrocarbon mixture. • Ethylene glycol and pyridine are used as complexing agents for the DESs. • Addition of ethylene glycol results in increased selectivity of aromatics. • Increasing the molar ratio of pyridine improve the distribution ratio. • Ternary LLE results are well correlated with NRTL model and COSMO-RS prediction. - Abstract: (Liquid + liquid) extraction of ethylbenzene from n-octane by using tetrabutylammonium bromide-based deep eutectic solvents (DESs) containing pyridine, ethylene glycol, or a mixture of both complexing agents was investigated at 25 °C and atmospheric pressure. The performance of each DES was determined from the distribution ratio and selectivity values calculated using experimental (liquid + liquid) equilibrium data of the ternary systems ethylbenzene + n-octane + DESs. The DES with only ethylene glycol had a high selectivity but a low distribution ratio, whereas the DES with only pyridine had a high distribution ratio but a low selectivity. For the other DESs, adding pyridine increased the distribution ratio, and increasing the molar ratio of ethylene glycol increased the selectivity. Generally, whenever the selectivity increased, the distribution ratio decreased, and vice versa. The nonrandom two-liquid model was used to correlate the experimental data, and the average root mean square deviation (RMSD) between correlated and experimental tie lines was 1.4%. Moreover, the Conductor-like Screening Model for Real Solvents was successfully used to predict the ternary tie lines for the studied systems with an average RMSD of 3.7%

  19. Directional solidification of Al2-Cu-Al and Al3-Ni-Al eutectics during TEXUS rocket flight

    Science.gov (United States)

    Favier, J. J.; Degoer, J.

    1984-01-01

    One lamellar eutectic sample and one fiber-like eutectic sample were solidified directionally during the TEXUS-6 rocket flight. The microstructures and the results of the thermal analysis, obtained from the temperatures recorded on the cartridge skin, are compared. No appreciable modifications of the regularity of the eutectic structures were observed by passing from 1 g to 0.0001 g in these experiments. No steady state growth conditions were achieved in these experiments.

  20. Dissolution mechanism of austenitic stainless steels in lead-bismuth eutectic at 500 deg. C

    International Nuclear Information System (INIS)

    Roy, M.

    2012-01-01

    In the framework of the future nuclear power plants studies, lead-bismuth eutectic (LBE) is foreseen as a coolant in the primary or the secondary circuit in three nuclear systems. The use of this liquid alloy induces corrosion issues for structural steels. In liquid lead alloys, steels can undergo two corrosion phenomena: dissolution or oxidation depending on the temperature and the dissolved oxygen content in LBE. The goal of this study is to identify the dissolution mechanisms of austenitic steels in LBE at 500 deg. C. Four Fe-Cr-Ni model austenitic steels, the 316L steel and five other industrial steels were corroded in LBE up to, respectively, 3000, 6000 and 200 h. The dissolution mechanism is identical for all steels: it starts by a preferential dissolution of chromium and nickel. This dissolution leads to the formation of a ferritic corrosion layer penetrated by LBE and containing between 5 and 10 at% of chromium and almost no nickel. This study demonstrates that dissolutions of nickel and chromium are linked. Otherwise, the corrosion kinetics is linear whatever the tested austenitic steel. The controlling steps of the austenitic steels' corrosion rates have been identified. Natural convection in the LBE bath leads to the formation of a diffusion boundary layer at the steel surface. Chromium diffusion in this diffusion boundary layer seems to control the corrosion rates of the model and industrial austenitic steels except the 316L steel. Indeed, the corrosion rate of the 316L steel is controlled by an interfacial reaction which is either the simultaneous dissolution of nickel and chromium in Ni, Cr compounds or the nickel and chromium dissolution catalyzed by the dissolved oxygen in LBE. This study has permitted to highlight the major role of chromium on the corrosion mechanisms and the corrosion rates of austenitic steels: the corrosion rate increases when chromium activity increases. Finally, the impact of the dissolved oxygen and the minor alloying

  1. Assessing the toxicity and biodegradability of deep eutectic solvents.

    Science.gov (United States)

    Wen, Qing; Chen, Jing-Xin; Tang, Yu-Lin; Wang, Juan; Yang, Zhen

    2015-08-01

    Deep eutectic solvents (DESs) have emerged as a new type of promising ionic solvents with a broad range of potential applications. Although their ecotoxicological profile is still poorly known, DESs are generally regarded as "green" because they are composed of ammonium salts and H-bond donors (HBDs) which are considered to be eco-friendly. In this work, cholinium-based DESs comprised of choline chloride (ChCl) and choline acetate (ChAc) as the salt and urea (U), acetamide (A), glycerol (G) and ethylene glycol (EG) as the HBD were evaluated for their toxic effects on different living organisms such as Escherichia coli (a bacterium), Allium sativum (garlic, a plant) and hydra (an invertebrate), and their biodegradabilities were assessed by means of closed bottle tests. These DESs possessed an anti-bacterial property and exhibited inhibitory effects on the test organisms adopted, depending on the composition and concentration of the DES. The mechanism for the impact of DESs and their components on different living organisms can be associated to their interactions with the cellular membranes. Not all DESs can be considered readily biodegradable. By extending the limited knowledge about the toxicity and biodegradation of this particular solvent family, this investigation on DESs provides insight into our structure-based understanding of their ecotoxicological behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Micro-IBA analysis of Au/Si eutectic “crop-circles”

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Giampiero [The Quantum Research Lab, INRiM, Strada delle Cacce 91, 10135 Torino (Italy); Battiato, Alfio [Physics Department, NIS Research Centre and CNISM, University of Torino, via P. Giuria 1, 10125 Torino (Italy); Croin, Luca [The Quantum Research Lab, INRiM, Strada delle Cacce 91, 10135 Torino (Italy); Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Jaksic, Milko; Siketic, Zdravko [Department for Experimental Physics, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb (Croatia); Vignolo, Umberto [Physics Department, NIS Research Centre and CNISM, University of Torino, via P. Giuria 1, 10125 Torino (Italy); Vittone, Ettore, E-mail: ettore.vittone@unito.it [Physics Department, NIS Research Centre and CNISM, University of Torino, via P. Giuria 1, 10125 Torino (Italy)

    2015-04-01

    Highlights: •Gold “crop circles” after annealing Au thin films deposited onto native silicon oxide. •Morphological and IBA analysis confirms the model proposed by Matthews et al. [1]. •The shape of the Au central polygon is determined by the Si orientation. -- Abstract: When a thin gold layer is deposited onto the native oxide of a silicon wafer and is annealed at temperatures greater than 600 °C, peculiar circular features, few micrometers in diameter, with a regular polygon at the centre of each circle, reminiscent of so called “alien” crop circles, can be observed. A model has been recently proposed in Matthews et al. [1], where the formation of such circular structures is attributed to the interdiffusion of gold and silicon through holes in the native oxide induced by the weakening of the amorphous silica matrix occurring during the annealing process. The rupture of the liquid Au/Si eutectic disc surrounding the pinhole in the oxide causes the debris to be pulled to the edges of the disk, forming Au droplets around it and leaving an empty zone of bare silicon oxide. In this paper, we present a morphological study and a RBS/PIXE analyses of these circular structures, carried out by scanning electron microscopy and by 4 MeV C microbeam, respectively. The results confirm the depletion of gold in the denuded circular zones, and the presence of gold droplets in the centers, which can be attributed to the Au segregation occurring during the cooling stage.

  3. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique

    Directory of Open Access Journals (Sweden)

    Phaechamud T

    2016-06-01

    Full Text Available Thawatchai Phaechamud,1 Sarun Tuntarawongsa2 1Department of Pharmaceutical Technology, 2Pharmaceutical Intelligence Unit Prachote Plengwittaya, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand Abstract: Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (Tg of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and -31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully. Keywords

  4. Eutectic and solid-state wafer bonding of silicon with gold

    International Nuclear Information System (INIS)

    Abouie, Maryam; Liu, Qi; Ivey, Douglas G.

    2012-01-01

    Highlights: ► Eutectic and solid-state Au-Si bonding are compared for both a-Si and c-Si samples. ► Exchange of a-Si and Au layer was observed in both types of bonded samples. ► Use of c-Si for bonding resulted in formation of craters at the Au/c-Si interface. ► Solid-state Au-Si bonding produces better bonds in terms of microstructure. - Abstract: The simple Au-Si eutectic, which melts at 363 °C, can be used to bond Si wafers. However, faceted craters can form at the Au/Si interface as a result of anisotropic and non-uniform reaction between Au and crystalline silicon (c-Si). These craters may adversely affect active devices on the wafers. Two possible solutions to this problem were investigated in this study. One solution was to use an amorphous silicon layer (a-Si) that was deposited on the c-Si substrate to bond with the Au. The other solution was to use solid-state bonding instead of eutectic bonding, and the wafers were bonded at a temperature (350 °C) below the Au-Si eutectic temperature. The results showed that the a-Si layer prevented the formation of craters and solid-state bonding not only required a lower bonding temperature than eutectic bonding, but also prevented spill out of the solder resulting in strong bonds with high shear strength in comparison with eutectic bonding. Using amorphous silicon, the maximum shear strength for the solid-state Au-Si bond reached 15.2 MPa, whereas for the eutectic Au-Si bond it was 13.2 MPa.

  5. Observation of an Aligned Gas - Solid "Eutectic" during Controlled Directional Solidification Aboard the International Space Station - Comparison with Ground-based Studies

    Science.gov (United States)

    Grugel, R. N.; Anilkumar, A.

    2005-01-01

    Direct observation of the controlled melting and solidification of succinonitrile was conducted in the glovebox facility of the International Space Station (ISS). The experimental samples were prepared on ground by filling glass tubes, 1 cm ID and approximately 30 cm in length, with pure succinonitrile (SCN) in an atmosphere of nitrogen at 450 millibar pressure for eventual processing in the Pore Formation and Mobility Investigation (PFMI) apparatus in the glovebox facility (GBX) on board the ISS. Real time visualization during controlled directional melt back of the sample showed nitrogen bubbles emerging from the interface and moving through the liquid up the imposed temperature gradient. Over a period of time these bubbles disappear by dissolving into the melt. Translation is stopped after melting back of about 9 cm of the sample, with an equilibrium solid-liquid interface established. During controlled re-solidification, aligned tubes of gas were seen growing perpendicular to the planar solid/liquid interface, inferring that the nitrogen previously dissolved into the liquid SCN was now coming out at the solid/liquid interface and forming the little studied liquid = solid + gas eutectic-type reaction. The observed structure is evaluated in terms of spacing dimensions, interface undercooling, and mechanisms for spacing adjustments. Finally, the significance of processing in a microgravity environment is ascertained in view of ground-based results.

  6. Localization of electromagnetic field on the “Brouwer-island” and liquid metal embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Maksimenko, V.V.; Zagaynov, V.A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoe shosse, 115409 Moscow (Russian Federation); Karpov Institute of Physical Chemistry, Vorontsovo Pole, 10, 105064 Moscow (Russian Federation); Agranovski, I.E., E-mail: I.Agranovski@griffith.edu.au [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoe shosse, 115409 Moscow (Russian Federation); School of Engineering, Griffith University, Brisbane, 4111 QLD (Australia)

    2015-03-01

    Liquid metal embrittlement (LME) manifests itself as a sudden destruction of a metal sample if it is covered by a thin liquid film of eutectic mixture of specially selected metals. The proposed theoretical model of this phenomenon is based on an assumption related to the possibility of electromagnetic field localization in folds of interface between the phases or components of eutectic mixture filling cracks in solid metal surface (the typical example is In–Ga eutectic on Al-surface). Based on simultaneous presence of three different components in each space point of eutectic mixture (homogeneous In + Ga melt, solid In, and solid Ga), the system of interface folds could be simulated by the Brouwer surface – well known in topology. This surface separates three different components presented at each of its point. Such fractal surfaces posses by a finite volume. The volume occupied by the surface is defined as a difference between the eutectic mixture volume and the sum of volumes of its components. We investigate localization of external electromagnetic radiation in this system of folds. Due to very large magnitude of effective dielectric permeability of the considered system, at relative small volume change and fractal dimension of interface close to the value 3, the wave length of incident radiation inside the system is considerably decreased and multiscale folds are filled with localized photons. A probability of this process and the life time of the localized photons are calculated. The localized photons play crucial role in destruction of primary cracks in the metal surface. They are capable “to switch of” the Coulomb attraction of charge fluctuations on opposite “banks” of the crack filled with the eutectic. As a result, the crack could break down. - Highlights: • A new theoretical model of liquid metal embrittlement has been developed. • Light localization has a strong influence on liquid metal embrittlement. • Light is localized in folds at

  7. Localization of electromagnetic field on the “Brouwer-island” and liquid metal embrittlement

    International Nuclear Information System (INIS)

    Maksimenko, V.V.; Zagaynov, V.A.; Agranovski, I.E.

    2015-01-01

    Liquid metal embrittlement (LME) manifests itself as a sudden destruction of a metal sample if it is covered by a thin liquid film of eutectic mixture of specially selected metals. The proposed theoretical model of this phenomenon is based on an assumption related to the possibility of electromagnetic field localization in folds of interface between the phases or components of eutectic mixture filling cracks in solid metal surface (the typical example is In–Ga eutectic on Al-surface). Based on simultaneous presence of three different components in each space point of eutectic mixture (homogeneous In + Ga melt, solid In, and solid Ga), the system of interface folds could be simulated by the Brouwer surface – well known in topology. This surface separates three different components presented at each of its point. Such fractal surfaces posses by a finite volume. The volume occupied by the surface is defined as a difference between the eutectic mixture volume and the sum of volumes of its components. We investigate localization of external electromagnetic radiation in this system of folds. Due to very large magnitude of effective dielectric permeability of the considered system, at relative small volume change and fractal dimension of interface close to the value 3, the wave length of incident radiation inside the system is considerably decreased and multiscale folds are filled with localized photons. A probability of this process and the life time of the localized photons are calculated. The localized photons play crucial role in destruction of primary cracks in the metal surface. They are capable “to switch of” the Coulomb attraction of charge fluctuations on opposite “banks” of the crack filled with the eutectic. As a result, the crack could break down. - Highlights: • A new theoretical model of liquid metal embrittlement has been developed. • Light localization has a strong influence on liquid metal embrittlement. • Light is localized in folds at

  8. Microstructural evolution of ternary Ag33Cu42Ge25 eutectic alloy inside ultrasonic field

    Directory of Open Access Journals (Sweden)

    Wei Zhai

    2014-12-01

    Full Text Available Ultrasonic field with a frequency of 20 kHz is introduced into the solidification process of ternary Ag33Cu42Ge25 eutectic alloy from the sample bottom to its top. The ultrasound stimulates the nucleation of alloy melt and prevents its bulk undercooling. At low ultrasound power of 250 W, the primary ε2 phase in the whole alloy sample grows into non-faceted equiaxed grains, which differs to its faceted morphology of long strip under static condition. The pseudobinary (Ag+ε2 eutectic transits from dendrite shape grain composed of rod type eutectic to equiaxed chrysanthemus shape formed by lamellar structure. By contrast, the ultrasound produces no obvious variation in the morphology of ternary (Ag+Ge+ε2 eutectic except a coarsening effect. When ultrasound power rises to 500 W, divorced ternary (Ag+Ge+ε2 eutectic forms at the sample bottom. However, in the upper part, the ultrasonic energy weakens, and it only brings about prominent refining effect to primary ε2 phase. The microstructural evolution mechanism is investigated on the cavitation, acoustic streaming and acoustic attenuation.

  9. Lead-Bismuth-Eutectic Spallation Neutron Source for Nuclear Transmuter

    International Nuclear Information System (INIS)

    Gohar, Y.; Herceg, J.; Krajtl, L.; Micklich, B.; Pointer, D.; Saiveau, J.; Sofu, T.; Finck, P.

    2002-01-01

    A lead-bismuth eutectic (LBE) spallation target design concept has been developed for the subcritical multiplier (SCM) design of the accelerator-driven test facility (ADTF). The design is based on a coaxial geometrical configuration, which has been carefully analyzed and designed to achieve an optimum performance. The target design description, the results from the parametric studies, and the design analyses including neutronics, heat transfer, and hydraulics analyses are given in this paper. A detailed MCNPX geometrical model for the target has been developed to generate heating rates and nuclear responses in the structural material for the design process. The beam has a uniform distribution of 600 MeV protons and 5-MW total power. A small LBE buffer is optimized to reduce the irradiation damage in the SCM fuel elements from the scatter protons and the high-energy neutrons, to maximize the neutron yield to the SCM operation, and to provide inlet and outlet manifolds for the LBE coolant. A special attention has been given to the target window design to enhance its lifetime. The window volumetric heating is 766 W/cm 3 relative to 750 W/cm 3 in LBE for a 40-μA/cm 2 current density. The results show that the nuclear heating from the proton beam diminishes at about 32 cm along the beam axis in the LBE target material. The neutron contribution to the atomic displacement is in the range of 94 to ∼100% for the structure material outside the proton beam path. In the beam window, the neutron contribution is ∼74% and the proton beam is responsible for more than 95% of the total gas production. The proton contribution to the gas production vanishes outside the beam path. The LBE average velocity is ∼2 m/s. The heat transfer and the hydraulics analyses have been iterated to reduce the maximum temperature and the thermal stress level in the target window to enhance its operating life. (authors)

  10. Advances in liquid metal cooled ADS systems, and useful results for the design of IFMIF

    International Nuclear Information System (INIS)

    Massaut, V.; Debruyn, D.; Decreton, M.

    2007-01-01

    Full text of publication follows: Liquid metal cooled Accelerator Driven Systems (ADS) have a lot of design commonalities with the design of IFMIF. The use of a powerful accelerator and a liquid metal spallation source makes it similar to the main features of the IFMIF irradiator. Developments in the field of liquid metal ADS can thus be very useful for the design phase of IFMIF, and synergy between both domains should be enhanced to avoid dubbing work already done. The liquid metal ADS facilities are developed for testing materials under high fast (> 1 MeV) neutron flux, and also for studying the transmutation of actinides as foreseen in the P and T (Partitioning and Transmutation) strategy of future fission industry. The ADS are mostly constituted of a sub-critical fission fuel assembly matrix, a spallation source (situated at the centre of the fuel arrangement) and a powerful accelerator targeting the spallation source. In liquid metal ADS, the spallation source is a liquid metal (like Pb-Bi) which is actively cooled to remove the power generated by the particle beam, spallation reactions and neutrons. Based on an advanced ADS design (e.g. the MYRRHA/XT-ADS facility), the paper shows the various topics which are common for both facilities (ADS and IFMIF) and highlights their respective specificities, leading to focused R and D activities. This would certainly cover the common aspects related to high power accelerators, liquid metal targets and beam-target coupling. But problems of safety, radioprotection, source heating and cooling, neutrons shielding, etc... lead also to common features and developments. Results already obtained for the ADS development will illustrate this synergy. This paper will therefore allow to take profit of recent developments in both fission and fusion programs and enhance the collaboration among the R and D teams in both domains. (authors)

  11. Advances in liquid metal cooled ADS systems, and useful results for the design of IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Massaut, V.; Debruyn, D. [SCK CEN, Mol (Belgium); Decreton, M. [Ghent Univ., Dept. of Applied Physics (Belgium)

    2007-07-01

    Full text of publication follows: Liquid metal cooled Accelerator Driven Systems (ADS) have a lot of design commonalities with the design of IFMIF. The use of a powerful accelerator and a liquid metal spallation source makes it similar to the main features of the IFMIF irradiator. Developments in the field of liquid metal ADS can thus be very useful for the design phase of IFMIF, and synergy between both domains should be enhanced to avoid dubbing work already done. The liquid metal ADS facilities are developed for testing materials under high fast (> 1 MeV) neutron flux, and also for studying the transmutation of actinides as foreseen in the P and T (Partitioning and Transmutation) strategy of future fission industry. The ADS are mostly constituted of a sub-critical fission fuel assembly matrix, a spallation source (situated at the centre of the fuel arrangement) and a powerful accelerator targeting the spallation source. In liquid metal ADS, the spallation source is a liquid metal (like Pb-Bi) which is actively cooled to remove the power generated by the particle beam, spallation reactions and neutrons. Based on an advanced ADS design (e.g. the MYRRHA/XT-ADS facility), the paper shows the various topics which are common for both facilities (ADS and IFMIF) and highlights their respective specificities, leading to focused R and D activities. This would certainly cover the common aspects related to high power accelerators, liquid metal targets and beam-target coupling. But problems of safety, radioprotection, source heating and cooling, neutrons shielding, etc... lead also to common features and developments. Results already obtained for the ADS development will illustrate this synergy. This paper will therefore allow to take profit of recent developments in both fission and fusion programs and enhance the collaboration among the R and D teams in both domains. (authors)

  12. Algorithm of calculation of multicomponent system eutectics using electronic digital computer

    International Nuclear Information System (INIS)

    Posypajko, V.I.; Stratilatov, B.V.; Pervikova, V.I.; Volkov, V.Ya.

    1975-01-01

    A computer algorithm is proposed for determining low-temperature equilibrium regions for existing phases. The algorithm has been used in calculating nonvariant parameters (temperatures of melting of eutectics and the concentrations of their components) for a series of trinary systems, among which are Ksub(long)Cl, WO 4 , SO 4 (x 1 =K 2 WO 4 ; x 2 =K 2 SO 4 ), Ag, Cd, Pbsub(long)Cl(x 1 =CdCl 2 , x 2 =PbCl 2 ); Ksub(long)F, Cl, I (x 1 =KF, x 2 =KI). The proposed method of calculating eutectics permits the planning of the subsequent experiment in determining the parameters of the eutectics of multicomponent systems and the forecasting of chemical interaction in such systems. The algorithm can be used in calculating systems containing any number of components

  13. Data supporting the prediction of the properties of eutectic organic phase change materials.

    Science.gov (United States)

    Kahwaji, Samer; White, Mary Anne

    2018-04-01

    The data presented in this article include the molar masses, melting temperatures, latent heats of fusion and temperature-dependent heat capacities of fifteen fatty acid phase change materials (PCMs). The data are used in conjunction with the thermodynamic models discussed in Kahwaji and White (2018) [1] to develop a computational tool that calculates the eutectic compositions and thermal properties of eutectic mixtures of PCMs. The computational tool is part of this article and consists of a Microsoft Excel® file available in Mendeley Data repository [2]. A description of the computational tool along with the properties of nearly 100 binary mixtures of fatty acid PCMs calculated using this tool are also included in the present article. The Excel® file is designed such that it can be easily modified or expanded by users to calculate the properties of eutectic mixtures of other classes of PCMs.

  14. Modelling of Eutectic Saturation Influence on Microstructure in Thin Wall Ductile Iron Casting Using Cellular Automata

    Directory of Open Access Journals (Sweden)

    Burbelko A.A.

    2012-12-01

    Full Text Available The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular Automaton Finite Differences (CA-FD calculation method. Model has been used for studies of the primary austenite and of globular eutectic grains growth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniform temperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibrium nature of the interphase boundary migration. Calculation of eutectic saturation influence (Sc = 0.9 - 1.1 on microstructure (austenite and graphite fraction, density of austenite and graphite grains and temperature curves in 2 mm wall ductile iron casting has been done.

  15. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique

    Science.gov (United States)

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun

    2016-01-01

    Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (Tg) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and −31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully. PMID:27366064

  16. Turbulent heavy liquid metal heat transfer along a heated rod in an annular cavity

    International Nuclear Information System (INIS)

    Lefhalm, C.-H.; Tak, N.-I.; Piecha, H.; Stieglitz, R.

    2004-01-01

    Heavy liquid metals (HLM) are considered as coolant and spallation material in accelerator driven systems (ADS), because of their good molecular heat conductivity. This property leads to a separation of the spatial extension of thermal and viscous boundary layers. Commercially available computational fluid dynamic codes (CFD) assume an analogy of momentum and energy transfer, which is problematic for liquid metals flow. Therefore, benchmark experiments are required, in order to validate codes or modify existing models used therein. Within this article an experimental and numerical study of a thermally developing turbulent lead bismuth (PbBi) flow along a uniformly heated rod in a circular tube is presented. Local temperatures and velocity distributions are measured using thermocouples and Pitot tubes. The data are compared to simulation results computed with the CFX code package. The measured velocity profiles coincide nearly perfect with the simulation results. However, discrepancies up to 7% between the measured and computed temperatures appear. A minor part of the deviations can be explained by the imperfect experimental set-up. But, the measured shape of the thermal boundary is different to the calculated one, indicating the inadequateness of the presently used models describing the turbulent heat transport within the thermal boundary layer

  17. A potentiostatic and galvanostatic study of the selective dissolution of Cd/Pb eutectic alloy

    International Nuclear Information System (INIS)

    Sokharev, N.P.; Rabdel, A.A.; Zhadanov, V.V.

    1986-01-01

    The authors consider the selective dissolution (SD) of the electronegative component of a two-phase, eutectic alloy (Cd/Pb) under galvanostatic conditions. Treating this process as the extraction of a solid substance from a porous matrix, the distribution of the concentration of EC ions, c(x, t), can be described by a differential equation (presented). Experimental data are presented in two equations which are applicable for the description of the selective dissolution process of the electronegative component of a eutectic alloy under conditions of concentration polarization

  18. Eutectic fusion used for the survey of transport of mass in metallic solutions

    International Nuclear Information System (INIS)

    Savane, Y.S.; Katty, S.; Balde, M.L.; Cisse, S.; Rogov, V.I.

    1997-09-01

    The phenomenon of eutectic fusion could be used for the survey of transport of mass in metallic solutions, which allows to determine the part of the ionic conductibility in the solutions. The survey done in the system In 2 Bi Bi-In at a temperature of 72 deg. C with a current of 4A allowed to find a ionic current of 2,6.10 -3 which constitutes about 0,07% of the total current. So the part of ionic conductibility in the eutectic fusion of the system In 2 Bi Bi-In is of 0,07%. (author)

  19. Liquids and liquid mixtures

    CERN Document Server

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S

    2013-01-01

    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  20. Eutectic reaction analysis between TRU-50%Zr alloy fuel and HT-9 cladding, and temperature prediction of eutectic reaction under steady-state

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok

    2001-02-01

    Blanket fuel assembly for HYPER contains a bundle of pins arrayed in triangular pitch, which has hexagonal bundle structure. The reference blanket fuel pin consists of the fuel slug of TRU-50wt%Zr alloy and the cladding material of ferritic martensite steel, HT-9. Chemical interaction between fuel slug and cladding is one of the major concerns in metallic fuel rod design. The contact of metallic fuel slug and stainless steel cladding in a fuel rod forms a complex multi-component diffusion couple at elevated temperatures. The potential problem of inter-diffusion of fuel and cladding components is essentially two-fold weakening of cladding mechanical strength due to the formation of diffusion zones in the cladding, and the formation of comparatively low melting point phases in the fuel/cladding interface to develop eutectic reaction. The main components of fuel slug are composed of zirconium alloying element in plutonium matrix, including neptunium, americium and uranium additionally. Therefore basic eutectic reaction change of Pu-Fe binary system can be assessed, while it is estimated how much other elements zirconium, uranium, americium and neptunium influence on plutonium phase stability. Afterwards it is needed that eutectic reaction is verified through experimental necessarily.

  1. Eutectic reaction analysis between TRU-50%Zr alloy fuel and HT-9 cladding, and temperature prediction of eutectic reaction under steady-state

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok

    2001-02-01

    Blanket fuel assembly for HYPER contains a bundle of pins arrayed in triangular pitch, which has hexagonal bundle structure. The reference blanket fuel pin consists of the fuel slug of TRU-50wt%Zr alloy and the cladding material of ferritic martensite steel, HT-9. Chemical interaction between fuel slug and cladding is one of the major concerns in metallic fuel rod design. The contact of metallic fuel slug and stainless steel cladding in a fuel rod forms a complex multi-component diffusion couple at elevated temperatures. The potential problem of inter-diffusion of fuel and cladding components is essentially two-fold weakening of cladding mechanical strength due to the formation of diffusion zones in the cladding, and the formation of comparatively low melting point phases in the fuel/cladding interface to develop eutectic reaction. The main components of fuel slug are composed of zirconium alloying element in plutonium matrix, including neptunium, americium and uranium additionally. Therefore basic eutectic reaction change of Pu-Fe binary system can be assessed, while it is estimated how much other elements zirconium, uranium, americium and neptunium influence on plutonium phase stability. Afterwards it is needed that eutectic reaction is verified through experimental necessarily

  2. Interaction of hydrogen with Pb83Li17 eutectic alloy

    International Nuclear Information System (INIS)

    Kumar, Sanjay; Taxak, Manju; Krishnamurthy, N.

    2011-01-01

    Liquid Metal blankets are attractive candidates for both near-term and long-term fusion applications. Lead-lithium alloy appears to be promising for the use in self cooled breeding blanket, which has inherent simplicity with candidate material liquid lithium serving as both breeder and coolant. The crucial issues in case of lead lithium are the permeation loss of tritium (T) to the coolant and surroundings and the formation of new phase LiH/LiT, which eventually change the physical properties. Present investigation is based on the interaction process of hydrogen with the alloy and the relevant changes in physical properties. (author)

  3. Solubility of lithium deuteride in liquid lithium

    International Nuclear Information System (INIS)

    Veleckis, E.; Yonco, R.M.; Maroni, V.A.

    1977-01-01

    The solubility of LiD in liquid lithium between the eutectic and monotectic temperatures was measured using a direct sampling method. Solubilities were found to range from 0.0154 mol.% LiD at 199 0 C to 3.32 mol.% LiD at 498 0 C. The data were used in the derivation of an expression for the activity coefficient of LiD as a function of temperature and composition and an equation relating deuteride solubility and temperature, thus defining the liquidus curve. Similar equations were also derived for the Li-LiH system using the existing solubility data. Extrapolation of the liquidus curves yielded the eutectic concentrations (0.040 mol.% LiH and 0.035 mol.% LiD) and the freezing point depressions (0.23 0 C for Li-LiH and 0.20 0 C for Li-LiD) at the eutectic point. The results are compared with the literature data for hydrogen and deuterium. The implications of the relatively high solubility of hydrogen isotopes in lithium just above the melting point are discussed with respect to the cold trapping of tritium in fusion reactor blankets. (Auth.)

  4. Chemoenzymatic epoxidation of alkenes with Candida antarctica lipase B and hydrogen peroxide in deep eutectic solvents

    NARCIS (Netherlands)

    Zhou, Pengfei; Wang, Xuping; Yang, Bo; Hollmann, F.; Wang, Yonghua

    2017-01-01

    Epoxides are important synthetic intermediates for the synthesis of a broad range of industrial products. This study presents a promising solution to the current limitation of enzyme instability. By using simple deep eutectic solvents such as choline chloride/sorbitol, significant stabilization

  5. Al based ultra-fine eutectic with high room temperature plasticity and elevated temperature strength

    Energy Technology Data Exchange (ETDEWEB)

    Tiwary, C.S., E-mail: cst311@gmail.com [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka (India); Kashyap, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka (India); Kim, D.H. [Center for Non-Crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Chattopadhyay, K. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka (India)

    2015-07-15

    Developments of aluminum alloys that can retain strength at and above 250 °C present a significant challenge. In this paper we report an ultrafine scale Al–Fe–Ni eutectic alloy with less than 3.5 at% transition metals that exhibits room temperature ultimate tensile strength of ~400 MPa with a tensile ductility of 6–8%. The yield stress under compression at 300 °C was found to be 150 MPa. We attribute it to the refinement of the microstructure that is achieved by suction casting in copper mold. The characterization using scanning and transmission electron microscopy (SEM and TEM) reveals an unique composite structure that contains the Al–Al{sub 3}Ni rod eutectic with spacing of ~90 nm enveloped by a lamellar eutectic of Al–Al{sub 9}FeNi (~140 nm). Observation of subsurface deformation under Vickers indentation using bonded interface technique reveals the presence of extensive shear banding during deformation that is responsible for the origin of ductility. The dislocation configuration in Al–Al{sub 3}Ni eutectic colony indicates accommodation of plasticity in α-Al with dislocation accumulation at the α-Al/Al{sub 3}Ni interface boundaries. In contrast the dislocation activities in the intermetallic lamellae are limited and contain set of planner dislocations across the plates. We present a detailed analysis of the fracture surface to rationalize the origin of the high strength and ductility in this class of potentially promising cast alloy.

  6. Aliphatic-aromatic separation using deep eutectic solvents as extracting agents

    NARCIS (Netherlands)

    Rodriguez Rodriguez, Nerea; Fernandez Requejo, Patricia; Kroon, Maaike

    2015-01-01

    The separation of aliphatic and aromatic compounds is a great challenge for chemical engineers. There is no efficient separation process for mixtures with compositions lower than 20 wt % in aromatics. In this work, the feasibility of two different deep eutectic solvents (DESs) as novel extracting

  7. Carbon dioxide solubilities in decanoic acid-based hydrophobic deep eutectic solvents

    NARCIS (Netherlands)

    Zubeir, Lawien F.; Van Osch, Dannie J.G.P.; Rocha, Marisa A.A.; Banat, Fawzi; Kroon, Maaike C.

    2018-01-01

    The solubility of CO2 in hydrophobic deep eutectic solvents (DESs) has been measured for the first time. Six different hydrophobic DESs are studied in the temperature range from 298 to 323 K and at CO2 pressures up to 2 MPa. The results are evaluated by comparing the solubility data with existing

  8. Dimethylurea/citric acid as a highly efficient deep eutectic solvent

    Indian Academy of Sciences (India)

    Dimethylurea/citric acid deep eutectic solvent was used as a dual catalyst and a green reaction medium for the efficient synthesis of bis(indolyl)methanes, quinolines and aryl-4, 5-diphenyl-1H-imidazoles. Ease of recovery and reusability of DES with high activity makes this method efficient and eco-friendly.

  9. Modeling of Eutectic Formation in Al-Si Alloy Using A Phase-Field Method

    Directory of Open Access Journals (Sweden)

    Ebrahimi Z.

    2017-12-01

    Full Text Available We have utilized a phase-field model to investigate the evolution of eutectic silicon in Al-Si alloy. The interfacial fluctuations are included into a phase-field model of two-phase solidification, as stochastic noise terms and their dominant role in eutectic silicon formation is discussed. We have observed that silicon spherical particles nucleate on the foundation of primary aluminum phase and their nucleation continues on concentric rings, through the Al matrix. The nucleation of silicon particles is attributed to the inclusion of fluctuations into the phase-field equations. The simulation results have shown needle-like, fish-bone like and flakes of silicon phase by adjusting the noise coefficients to larger values. Moreover, the role of primary Al phase on nucleation of silicon particles in Al-Si alloy is elaborated. We have found that the addition of fluctuations plays the role of modifiers in our simulations and is essential for phase-field modeling of eutectic growth in Al-Si system. The simulated finger-like Al phases and spherical Si particles are very similar to those of experimental eutectic growth in modified Al-Si alloy.

  10. Estimation of the Critical Temperatures of Some More Deep Eutectic Solvents from Their Surface Tensions

    Directory of Open Access Journals (Sweden)

    Yizhak Marcus

    2018-01-01

    Full Text Available The critical temperatures of two dozen deep eutectic solvents, for only some of which these have been estimated previously, were estimated from the temperature dependences of their surface tensions and densities available in the literature according to the Eötvös and the Guggenheim expressions.

  11. Preparation, heat treatment, and mechanical properties of the uranium-5 weight percent chromium eutectic alloy

    International Nuclear Information System (INIS)

    Townsend, A.B.

    1980-10-01

    The eutectic alloy of uranium-5 wt % chromium (U-5Cr) was prepared from high-purity materials and cast into 1-in.-thick ingots. This material was given several simple heat treatments, the mechanical properties of these heat-treated samples were determined; and the microstructure was examined. Some data on the melting point and transformation temperatures were obtained

  12. Establishment of the Co-C Eutectic Fixed-Point Cell for Thermocouple Calibrations at NIMT

    Science.gov (United States)

    Ongrai, O.; Elliott, C. J.

    2017-08-01

    In 2015, NIMT first established a Co-C eutectic temperature reference (fixed-point) cell measurement capability for thermocouple calibration to support the requirements of Thailand's heavy industries and secondary laboratories. The Co-C eutectic fixed-point cell is a facility transferred from NPL, where the design was developed through European and UK national measurement system projects. In this paper, we describe the establishment of a Co-C eutectic fixed-point cell for thermocouple calibration at NIMT. This paper demonstrates achievement of the required furnace uniformity, the Co-C plateau realization and the comparison data between NIMT and NPL Co-C cells by using the same standard Pt/Pd thermocouple, demonstrating traceability. The NIMT measurement capability for noble metal type thermocouples at the new Co-C eutectic fixed point (1324.06°C) is estimated to be within ± 0.60 K (k=2). This meets the needs of Thailand's high-temperature thermocouple users—for which previously there has been no traceable calibration facility.

  13. Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications

    International Nuclear Information System (INIS)

    Tuncbilek, Kadir; Sari, Ahmet; Tarhan, Sefa; Erguenes, Gazanfer; Kaygusuz, Kamil

    2005-01-01

    Palmitic acid (PA, 59.8 deg. C) and lauric acid (LA, 42.6 deg. C) are phase change materials (PCM) having quite high melting temperatures which can limit their use in low temperature solar applications such as solar space heating and greenhouse heating. However, their melting temperatures can be tailored to appropriate value by preparing a eutectic mixture of the lauric and the palmitic acids. In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of 69.0 wt% LA and 31 wt% PA forms a eutectic mixture having melting temperature of 35.2 deg. C and the latent heat of fusion of 166.3 J g -1 . This study also considers the experimental determination of the thermal characteristics of the eutectic mixture during the heat charging and discharging processes. Radial and axial temperature distribution, heat transfer coefficient between the heat transfer fluid (HTF) pipe and the PCM, heat recovery rate and heat charging and discharging fractions were experimentally established employing a vertical concentric pipe-in-pipe energy storage system. The changes of these characteristics were evaluated with respect to the effect of inlet HTF temperature and mass flow rate. The DSC thermal analysis and the experimental results indicate that the LA-PA eutectic mixture can be a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics

  14. Phase Evolution in and Creep Properties of Nb-Rich Nb-Si-Cr Eutectics

    Science.gov (United States)

    Gang, Florian; Kauffmann, Alexander; Heilmaier, Martin

    2018-03-01

    In this work, the Nb-rich ternary eutectic in the Nb-Si-Cr system has been experimentally determined to be Nb-10.9Si-28.4Cr (in at. pct). The eutectic is composed of three main phases: Nb solid solution (Nbss), β-Cr2Nb, and Nb9(Si,Cr)5. The ternary eutectic microstructure remains stable for several hundred hours at a temperature up to 1473 K (1200 °C). At 1573 K (1300 °C) and above, the silicide phase Nb9(Si,Cr)5 decomposes into α-Nb5Si3, Nbss, and β-Cr2Nb. Under creep conditions at 1473 K (1200 °C), the alloy deforms by dislocation creep while the major creep resistance is provided by the silicide matrix. If the silicide phase is fragmented and, thus, its matrix character is destroyed by prior heat treatment [ e.g., at 1773 K (1500 °C) for 100 hours], creep is mainly controlled by the Laves phase β-Cr2Nb, resulting in increased minimum strain rates. Compared to state of the art Ni-based superalloys, the creep resistance of this three-phase eutectic alloy is significantly higher.

  15. Eutectic cell and nodule count as the quality factors of cast iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2008-10-01

    Full Text Available In this work the predictions based on a theoretical analysis aimed at elucidating of eutectic cell count or nodule counts N wereexperimentally verified. The experimental work was focused on processing flake graphite and ductile iron under various inoculationconditions in order to achieve various physicochemical states of the experimental melts. In addition, plates of various wall thicknesses, s were cast and the resultant eutectic cell or nodule counts were established. Moreover, thermal analysis was used to find out the degree of maximum undercooling for the graphite eutectic, Tm. A relationship was found between the eutectic cell or nodule count and the maximum undercooling Tm.. In addition it was also found that N can be related to the wall thickness of plate shaped castings. Finally, the present work provides a rational for the effect of technological factors such as the melt chemistry, inoculation practice, and holding temperature and time on the resultant cell count or nodule count of cast iron. In particular, good agreement was found between the predictions of the theoretical analysis and the experimental data.

  16. Coupled growth of Al-Al2Cu eutectics in Al-Cu-Ag alloys

    International Nuclear Information System (INIS)

    Hecht, U; Witusiewicz, V; Drevermann, A

    2012-01-01

    Coupled eutectic growth of Al and Al 2 Cu was investigated in univariant Al-Cu-Ag alloys during solidification with planar and cellular morphology. Experiments reveal the dynamic selection of small spacings, below the minimum undercooling spacing and show that distinct morphological features pertain to nearly isotropic or anisotropic Al-Al 2 Cu interfaces.

  17. On the relation between primary and eutectic solidification structures in gray iron

    International Nuclear Information System (INIS)

    Elmquist, L; Sonawane, P A

    2012-01-01

    The solidification of hypoeutectic gray cast iron starts with the nucleation of primary austenite crystals. Before graphite is nucleated, and the eutectic structure is formed, these crystals start to grow as columnar or equiaxed dendrites. However, very little is known about these dendrites, and especially how they influence the subsequent eutectic structure. Besides, it has previously been shown that the primary solidification structure influences the formation of defects. Shrinkage porosity was found between the dendrites, in the grain boundaries, and the formation of the primary solidification structure was found to influence problems related to metal expansion penetration. Therefore a better understanding about the formation of this structure is of importance. In this work, different inoculants and their influence on the formation of the micro- and macrostructures has been investigated. The inoculants considered are commercially used inoculants, i.e. inoculants used in the foundries, as well as different iron powders. The addition of iron powder is used to promote the primary solidification structure. It is shown that the nucleation of the dendrites is influenced by the amount of iron powder. Secondary dendrite arm spacing is a quantitative measurement in the microstructure related to these dendrites, which in turn depends on the solidification time. Eutectic cell size, on the other hand, is found to depend on secondary dendrite arm spacing. It is shown how the addition of inoculants influences both primary and eutectic solidification structures, and how they are related to each other.

  18. Optimization process condition for deacidification of palm oil by liquid-liquid extraction using NADES (Natural Deep Eutectic Solvent)

    Science.gov (United States)

    Israyandi, Zahrina, Ida; Mulia, Kamarza

    2017-03-01

    One of many steps in palm oil refining process is deacidification which aims to separate free fatty acids and other compounds from the oil. The deacidification process was using a green solvent, known as NADES, that consisted of betaine monohydrate and propionic acid at molar ratio of 1:8. In this study, the process conditions were optimized using the response surface method (RSM) through central composite design in order to predict the maximum distribution coefficient of palmitic acid. The obtained regression equation of the basic model for optimization was: y = 0.717 + 0.003x1 + 0.043 x2 + 0.148x3 - 0.005 x1x1 - 0.030 x2x2 + 0.047 x3x3 - 0.008 x1x2 + 0.008 x1x3 + 0.033 x2x3. The independent variables are x1 ≡ temperature (40, 60, 80 °C), x2≡ amount of palmitic acid in the palm oil (2, 5, 8 %) and x3 ≡ mass ratios of oil to NADES (1:2, 1:1, 2:1). The optimum process condition found was temperature of 62.3°C, palmitic acid content of 8%, and NADES to palm oil mass ratio of 1:2, resulting in the maximum distribution coefficient of 0.96.

  19. Coupling Fluid Dynamics and Multiphase Disequilibria: Applications to Eutectic and Peritectic Systems

    Science.gov (United States)

    Tweed, L. E. L.; Spiegelman, M. W.; Kelemen, P. B.

    2017-12-01

    Computational thermodynamics has yielded great insights into petrological processes. However, on its own it cannot capture the inherently dynamic nature of many of these processes which depend on the interaction between time-dependent processes including advection, diffusion and chemical reaction. To understand this interplay, and to move away from a purely equilibrium view, requires the integration of computational thermodynamics and fluid mechanics. A key aspect of doing this is the treatment of chemical reactions as time-dependent, irreversible processes. Such a development is integral to understanding a host of petrological questions from the open system evolution of magma chambers to the dynamics of melt migration beneath mid-ocean ridges and flux melting of the mantle wedge in subduction zones. A simple thermodynamically consistent reactive model is developed that can be integrated with conservation equations for mass, momentum and energy. The model rests on the thermodynamic characterization of an independent set of reactions and has the advantage of being completely general and easily extensible to systems comprising multiple solid and liquid phases. The underlying theory is described in detail in another contribution in this session. Here we apply the framework to experimentally constrained simple systems of petrological interest including the fo-qz binary and the fo-qz-k2o ternary. These systems contain a variety of phase topologies including eutectic and peritectic reactions. As the model allows for the seamless exhaustion and stabilization of phases, we can explore the effect that these discontinuous changes have on the compositional and dynamic evolution of the system. To do this we track how the systems respond to sudden changes in intensive variables that perturb them from equilibrium. Such changes are rife in crustal magmatic systems. Simulations for decompression melting are also run to explore the interplay between reactive and advective fluxes

  20. Hydrothermal liquefaction of de-oiled Jatropha curcas cake using Deep Eutectic Solvents (DESs) as catalysts and co-solvents.

    Science.gov (United States)

    Alhassan, Yahaya; Kumar, Naveen; Bugaje, Idris M

    2016-01-01

    Biomass liquefaction using ionic liquids (ILs) as catalysts has received appreciable attention, in renewable fuels and chemicals production, recently. However, issues associated with the production cost, long reaction time and use of volatile solvents are undeniably challenging. Thus, Deep Eutectic Solvents (DESs) emerged as promising and potential ILs substitutes. The hydrothermal liquefaction of de-oiled Jatropha curcas cake was catalyzed by four synthesized DESs as catalysts and co-solvents for selective extraction. Proximate and ultimate analyses including ash, moisture and carbon contents of bio-crude produced varied slightly. The higher heating values found ranges from 21.15 ± 0.82 MJ/kg to 24.30 ± 0.98 MJ/kg. The bio-crude yields obtained using ChCl-KOH DES was 43.53 wt% and ChCl-p-TsOH DES was 38.31 wt%. Bio-crude yield using ChCl-FeCl3 DES was 30.80 wt%. It is suggested that, the selectivity of bio-crude could be improved, by using DESs as catalyst and co-solvent in HTL of biomass such as de-oiled J. curcas cake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Experimental investigation of the thermal hydraulics in lead bismuth eutectic-helium experimental loop of an accelerator-driven system

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Wenxuan; Wang, Yong Wei; Li, Xun Feng; Huai, Xiulan; Cal, Jun [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing (China)

    2016-10-15

    The heat transfer characteristics between liquid lead bismuth eutectic (LBE) and helium are of great significance for the two-loop cooling system based on an accelerator-driven system (ADS). This paper presents an experimental study on the resistance characteristics and heat transfer performance in a LBE-helium experimental loop of ADS. Pressure drops in the LBE loop, the main heat transfer, and the coupled heat transfer characteristics between LBE and helium are investigated experimentally. The temperature of LBE has a significant effect on the LBE thermo-physical properties, and is therefore considered in the prediction of pressure drops. The results show that the overall heat transfer coefficient increases with the increasing helium flow rate and the decreasing inlet temperature of helium. Increasing the LBE Reynolds number and LBE inlet temperature promotes the heat transfer performance of main heat transfer and thus the overall heat transfer coefficient. The experimental results give an insight into the flow and heat transfer properties in a LBE-helium heat exchanger and are helpful for the optimization of an ADS system design.

  2. Bright metal coatings from sustainable electrolytes: the effect of molecular additives on electrodeposition of nickel from a deep eutectic solvent.

    Science.gov (United States)

    Abbott, Andrew P; Ballantyne, Andrew; Harris, Robert C; Juma, Jamil A; Ryder, Karl S

    2017-01-25

    Organic and inorganic additives are often added to nickel electroplating solutions to improve surface finish, reduce roughness and promote uniform surface morphology of the coatings. Such additives are usually small molecules and often referred to as brighteners or levellers. However, there have been limited investigations into the effect of such additives on electrodeposition from ionic liquids (ILs) and deep eutectic solvents (DESs). Here we study the effect of four additives on electrolytic nickel plating from an ethyleneglycol based DES; these are nicotinic acid (NA), methylnicotinate (MN), 5,5-dimethylhydantoin (DMH) and boric acid (BA). The additives show limited influence on the bulk Ni(ii) speciation but have significant influence on the electrochemical behaviour of Ni deposition. Small concentrations (ca. 15 mM) of NA and MN show inhibition of Ni(ii) reduction whereas high concentrations of DMH and BA are required for a modest difference in behaviour from the additive free system. NA and MN also show that they significantly alter the nucleation and growth mechanism when compared to the additive free system and those with DMH and BA. Each of the additive systems had the effect of producing brighter and flatter bulk electrodeposits with increased coating hardness but XRD shows that NA and MN direct crystal growth to the [111] orientation whereas DMH and BA direct crystal growth to the [220] orientation.

  3. Density of molten salt Mixtures of eutectic LiCl-KCl containing UCl{sub 3}, CeCl{sub 3}, or LaCl{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.; Simpson, M. F. [Dept. of Metallurgical Engineering, University of Utah, Salt Lake City (United States)

    2017-06-15

    Densities of molten salt mixtures of eutectic LiCl-KCl with UCl{sub 3}, CeCl{sub 3}, or LaCl{sub 3} at various concentrations (up to 13 wt%) were measured using a liquid surface displacement probe. Linear relationships between the mixture density and the concentration of the added salt were observed. For LaCl{sub 3} and CeCl{sub 3}, the measured densities were signifcantly higher than those previously reported from Archimedes’ method. In the case of LiCl-KCl-UCl{sub 3}, the data ft the ideal mixture density model very well. For the other salts, the measured densities exceeded the ideal model prediction by about 2%.

  4. Thermodynamic and morphological analysis of eutectic formation of CBZ-L-Asp and L-PheOMe.HCl mixtures

    International Nuclear Information System (INIS)

    Kim, Hyun Jung; Kim, Jong Hoon; Youn, Sung Hun; Shin, Chul Soo

    2006-01-01

    The eutectic melting of a CBZ-L-Asp/L-PheOMe.HCl model mixture was investigated in kinetic, thermal, thermodynamic, rheological, and morphological aspects. From TX-phase diagrams, the eutectic composition was determined to be 0.55 M fraction of CBZ-L-Asp. The highest melting rate and the lowest apparent viscosity in the range of 55-75 deg. C were obtained at the eutectic composition. Using Arrhenius plots of melting rates and apparent viscosities, minimum activation energies in the range of 60-80 deg. C were obtained at the eutectic composition, whereas maximum values were attained below 60 deg. C. At the eutectic composition, the maximum heat of fusion, the lowest excess free energy, and the highest excess entropy values were observed by differential scanning calorimetry (DSC). A highly homogeneous morphology due to rearrangement of molecules was observed in the eutectic mixture via scanning electron microscopy and X-ray diffraction analysis. IR spectra revealed that hydrogen bonding in the mixture increases during eutectic melting

  5. Investigating microstructural evolution during the electroreduction of UO{sub 2} to U in LiCl-KCl eutectic using focused ion beam tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.D.; Abdulaziz, R.; Tjaden, B.; Inman, D.; Brett, D.J.L.; Shearing, P.R., E-mail: p.shearing@ucl.ac.uk

    2016-11-15

    Reprocessing of spent nuclear fuels using molten salt media is an attractive alternative to liquid-liquid extraction techniques. Pyroelectrochemical processing utilizes direct, selective, electrochemical reduction of uranium dioxide, followed by selective electroplating of a uranium metal. Thermodynamic prediction of the electrochemical reduction of UO{sub 2} to U in LiCl-KCl eutectic has shown to be a function of the oxide ion activity. The pO{sup 2−} of the salt may be affected by the microstructure of the UO{sub 2} electrode. A uranium dioxide filled “micro-bucket” electrode has been partially electroreduced to uranium metal in molten lithium chloride-potassium chloride eutectic. This partial electroreduction resulted in two distinct microstructures: a dense UO{sub 2} and a porous U metal structure were characterised by energy dispersive X-ray spectroscopy. Focused ion beam tomography was performed on five regions of this electrode which revealed an overall porosity ranging from 17.36% at the outer edge to 3.91% towards the centre, commensurate with the expected extent of reaction in each location. The pore connectivity was also seen to reduce from 88.32% to 17.86% in the same regions and the tortuosity through the sample was modelled along the axis of propagation of the electroreduction, which was seen to increase from a value of 4.42 to a value of infinity (disconnected pores). These microstructural characteristics could impede the transport of O{sup 2−} ions resulting in a change in the local pO{sup 2−} which could result in the inability to perform the electroreduction. - Highlights: • The microstructural evolution of the reduction from UO{sub 2} to U has been investigated. • The porosity and tortuosity is seen to change significantly during electroreduction. • Low porosity and high tortuosity associated with the UO{sub 2} phase may impede O{sup 2−} transport.

  6. Eutectic melting temperature of the lowermost Earth's mantle

    Science.gov (United States)

    Andrault, D.; Lo Nigro, G.; Bolfan-Casanova, N.; Bouhifd, M.; Garbarino, G.; Mezouar, M.

    2009-12-01

    Partial melting of the Earth's deep mantle probably occurred at different stages of its formation as a consequence of meteoritic impacts and seismology suggests that it even continues today at the core-mantle boundary. Melts are important because they dominate the chemical evolution of the different Earth's reservoirs and more generally the dynamics of the whole planet. Unfortunately, the most critical parameter, that is the temperature profile inside the deep Earth, remains poorly constrained accross the planet history. Experimental investigations of the melting properties of materials representative of the deep Earth at relevant P-T conditions can provide anchor points to refine past and present temperature profiles and consequently determine the degree of melting at the different geological periods. Previous works report melting relations in the uppermost lower mantle region, using the multi-anvil press [1,2]. On the other hand, the pyrolite solidus was determined up to 65 GPa using optical observations in the laser-heated diamond anvil cell (LH-DAC) [3]. Finally, the melting temperature of (Mg,Fe)2SiO4 olivine is documented at core-mantle boundary (CMB) conditions by shock wave experiments [4]. Solely based on these reports, experimental data remain too sparse to draw a definite melting curve for the lower mantle in the relevant 25-135 GPa pressure range. We reinvestigated melting properties of lower mantle materials by means of in-situ angle dispersive X-ray diffraction measurements in the LH-DAC at the ESRF [5]. Experiments were performed in an extended P-T range for two starting materials: forsterite and a glass with chondrite composition. In both cases, the aim was to determine the onset of melting, and thus the eutectic melting temperatures as a function of pressure. Melting was evidenced from drastic changes of diffraction peak shape on the image plate, major changes in diffraction intensities in the integrated pattern, disappearance of diffraction rings

  7. Evaluation of the response time of H-concentration probes for tritium sensors in lead–lithium eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Llivina, L.; Colominas, S.; Abellà, J., E-mail: jordi.abella@iqs.edu

    2014-10-15

    Highlights: • Synthesis and chemical characterization of proton conductor ceramics. • Qualification of ceramics for hydrogen sensors in molten lithium–lead. • Ceramics have well-defined grains with a wide distribution of sizes. • Good agreement with predictions obtained with BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−δ} ceramic. - Abstract: Dynamic tritium concentration measurement in lead–lithium eutectic is of major interest for a reliable tritium testing program in ITER TBM and for an experimental proof of tritium self-sufficiency in liquid metal breeding systems. Potentiometric hydrogen sensors using different solid-state electrolytes for molten lead–lithium eutectic have been reported and tested by the Electrochemical Methods Lab at Institut Quimic de Sarria (IQS). In the present work the following ceramic elements have been synthesized and characterized by X-ray diffraction (XRD) in order to be tested as a Proton Exchange Membranes (PEM) H-probes: BaCeO{sub 3}, BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−δ} and Sr(Ce{sub 0.9}–Zr{sub 0.1}){sub 0.95}Yb{sub 0.05}O{sub 3−δ}. Potentiometric measurements of the synthesized ceramic elements have been performed shifting from a fixed hydrogen partial pressure at the working electrode to high purity argon. In this experimental campaign a fixed and known hydrogen pressure has been used in the reference electrode. The goal of these experiments is to evaluate the sensor response time when the hydrogen concentration in the environment is rapidly changed. All experiments have been done at 500 °C and 600 °C. The sensor constructed using the proton conductor element BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−δ} exhibited stable output potential and its value was close to the theoretical value calculated with the Nernst equation. In contrast, the sensors constructed using the proton conductor elements BaCeO{sub 3} and Sr(Ce{sub 0.9}–Zr{sub 0.1}){sub 0.95}Yb{sub 0.05}O{sub 3−δ} showed higher

  8. Deep eutectic solvent (DES) as a pretreatment for oil palm empty fruit bunch (OPEFB) in production of sugar

    Science.gov (United States)

    Nor, Nur Atikah Md; Mustapha, Wan Aida Wan; Hassan, Osman

    2015-09-01

    Oil Palm Empty Fruit Bunch (OPEFB) was pretreated using Deep Eutectic Solvent (DES) at different parameters to enable a highest yield of sugar. DES is a combination of two or more cheap and safe components to form a eutectic mixture through hydrogen bond interaction, which has a melting point lower than that of each component. DES can be used to replace ionic liquids (ILs), which are more expensive and toxic. In this study, OPEFB was pretreated with DES mixture of choline chloride: urea in 1:2 molar ratio. The pretreatment was performed at temperature 110°C and 80°C for 4 hours and 1 hour. Pretreatment A (110°C, 4 hours), B (110°C, 1 hour), C (80°C, 4 hours) and D (80°C, 1 hour). Enzymatic hydrolysis was done by using the combination of two enzymes, namely, Cellic Ctec2 and Cellic Htec2. The treated fiber is tested for crystallinity using XRD and functional group analysis using FTIR, to check the effect of the pretreatment on the fiber and compared it with the untreated fiber. From XRD analysis, DES successfully gave an effect towards degree of crystallinity of cellulose. Pretreatment A (110°C, 4 hours) and B (110°C, 1 hour) successfully reduce the percentage of crystallinity while pretreatment C (80°C, 4 hours) and D (80°C, 1 hour) increased the percentage of crystallinity. From FTIR analysis, DES cannot remove the functional group of lignin and hemicellulose but it is believed that DES can expose the structure of cellulose. Upon enzymatic hydrolysis, DES-treated fiber successfully produced sugar but not significantly when compared with raw. Pretreatment A (110°C, 4 hours), B (110°C, 1 hour), C (80°C, 4 hours) and D (80°C, 1 hour) produced glucose at the amount of 60.47 mg/ml, 66.33 mg/ml, 61.96 mg/ml and 59.12 mg/ml respectively. However, pretreatment C gave the highest xylose (70.01 mg/ml) production compared to other DES pretreatments.

  9. Experimental testing facilities for ultrasonic measurements in heavy liquid metal

    International Nuclear Information System (INIS)

    Cojocaru, V.; Ionescu, V.; Nicolescu, D.; Nitu, A.

    2016-01-01

    The thermo-physical properties of Heavy Liquid Metals (HLM), like lead or its alloy, Lead Bismuth Eutectic (LBE), makes them attractive as coolant candidates in advanced nuclear systems. The opaqueness, that is common to all liquid metals, disables all optical methods. For this reason ultrasound waves are used in different applications in heavy liquid metal technology, for example for flow and velocity measurements and for inspection techniques. The practical use of ultrasound in heavy liquid metals still needs to be demonstrated by experiments. This goal requires heavy liquid metal technology facility especially adapted to this task. In this paper is presented an experimental testing facility for investigations of Heavy Liquid Metals acoustic properties, designed and constructed in RATEN ICN. (authors)

  10. Microstructural and mechanical properties of binary Ni–Si eutectic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gogebakan, Musa, E-mail: gogebakan@ksu.edu.tr [Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100 (Turkey); Kursun, Celal [Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100 (Turkey); Gunduz, Kerem Ozgur; Tarakci, Mehmet; Gencer, Yucel [Department of Materials Science and Engineering, Gebze Institute of Technology, Gebze, 41400 Kocaeli (Turkey)

    2015-09-15

    Highlights: • Ni{sub 80}Si{sub 20}, Ni{sub 70}Si{sub 30}, Ni{sub 55}Si{sub 45} and Ni{sub 45}Si{sub 55} were prepared by arc melting method. • The maximum microhardness value of 1126 HV obtained for Ni{sub 70}Si{sub 30} alloy. • The microhardness values decreases with increase of Si/Ni ratio. • Ni{sub 80}Si{sub 20} and Ni{sub 55}Si{sub 45} are soft ferromagnetic, Ni{sub 70}Si{sub 30} and Ni{sub 45}Si{sub 55} are paramagnetic. - Abstract: In the present work, Ni–Si eutectic alloys with nominal compositions of Ni{sub 80}Si{sub 20}, Ni{sub 70}Si{sub 30}, Ni{sub 55}Si{sub 45} and Ni{sub 45}Si{sub 55} (Ni and Si with the purity of 99.99%) were prepared by arc melting method under vacuum/argon atmosphere. The effects of Si/Ni ratio on the microstructural properties, thermal transformation behavior, micro-hardness and magnetic properties of the Ni–Si eutectic alloys were investigated. These alloys were characterized by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), differential thermal analysis (DTA), Vickers microhardness measurement and Vibrating Sample Magnetometer (VSM). The phases expected according to Ni–Si phase diagram for conventional solidified eutectic Ni–Si alloys are considerably consistent with phase detected by XRD in this study. The quantitative results confirm that the chemical composition of the alloys very close to eutectic compositions and the microstructures are in typical lamellar eutectic morphology. The maximum microhardness value of 1126 HV obtained for Ni{sub 70}Si{sub 30} alloy which has highest melting temperature amongst Ni–Si eutectics. The microhardness values decreases with increase of Si/Ni ratio. Ni{sub 80}Si{sub 20} and Ni{sub 55}Si{sub 45} alloys are soft ferromagnetic, Ni{sub 70}Si{sub 30} and Ni{sub 45}Si{sub 55} alloys are paramagnetic with no magnetic saturation.

  11. Role of bismuth on solidification, microstructure and mechanical properties of a near eutectic Al-Si alloys

    Science.gov (United States)

    Farahany, Saeed; Ourdjini, Ali; Bakar, Tuty Asma Abu; Idris, Mohd Hasbullah

    2014-09-01

    Computer aided thermal analysis and microstructural observation showed that addition of bismuth (Bi) within the range of 0.25 and 2 wt% produced a greater effect on the Al-Si eutectic phase than on primary aluminium and Al2Cu phases. Results showed that with addition of 1 wt% Bi the eutectic silicon structure was refined from flake-like morphology into lamellar. Bi refines rather than modifies the Si structure and increases the Al-Si eutectic fraction solid and more significantly there was no fading even up to 180 min of melt holding. Transmission electron microscopy study showed that the Si twin spacing decreased from 160 to 75 nm which is likely attributed to the refining effect of Bi. It was also found that addition of 1 wt% Bi increased the tensile strength, elongation and the absorbed energy for fracture due to the refined eutectic silicon structure.

  12. Liquid metal flow measurement by neutron radiography

    International Nuclear Information System (INIS)

    Takenaka, N.; Ono, A.; Matsubayashi, M.; Tsuruno, A.

    1996-01-01

    Visualization of a liquid metal flow and image processing methods to measure the vector field are carried out by real-time neutron radiography. The JRR-3M real-time thermal neutron radiography facility in the Japan Atomic Energy Research Institute was used. Lead-bismuth eutectic was used as a working fluid. Particles made from a gold-cadmium intermetallic compound (AuCd 3 ) were used as the tracer for the visualization. The flow vector field was obtained by image processing methods. It was shown that the liquid metal flow vector field was obtainable by real-time neutron radiography when the attenuation of neutron rays due to the liquid metal was less than l/e and the particle size of the tracer was larger than one image element size digitized for the image processing. (orig.)

  13. On the performance of a novel grain refiner in hyper-eutectic Al-Si cast alloys

    OpenAIRE

    Bolzoni, L; Nowak, M; Hari Babu, N

    2014-01-01

    The stringent requirements for pollution reduction are pushing the automotive industry towards the employment of lightweight structures and, therefore, aluminium and its alloys play a remarkable role. Al-Si casting alloy with eutectic or hyper- eutectic compositions are, normally, employed for the production of high performance automotive products such as pistons and engine blocks which have to withstand critical loading conditions (i.e. high temperature, high pressure and corrosive exhaust g...

  14. Use of liquid metals in nuclear and thermonuclear engineering, and in other innovative technologies

    Science.gov (United States)

    Rachkov, V. I.; Arnol'dov, M. N.; Efanov, A. D.; Kalyakin, S. G.; Kozlov, F. A.; Loginov, N. I.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    By now, a good deal of experience has been gained with using liquid metals as coolants in nuclear power installations; extensive knowledge has been gained about the physical, thermophysical, and physicochemical properties of these coolants; and the scientific principles and a set of methods and means for handling liquid metals as coolants for nuclear power installations have been elaborated. Prototype and commercialgrade sodium-cooled NPP power units have been developed, including the BOR-60, BN-350, and BN-600 power units (the Soviet Union); the Rapsodie, Phenix, and Superphenix power units (France), the EBR-II power unit (the United States); and the PFR power unit (the United Kingdom). In Russia, dedicated nuclear power installations have been constructed, including those with a lead-bismuth coolant for nuclear submarines and with sodium-potassium alloy for spacecraft (the Buk and Topol installations), which have no analogs around the world. Liquid metals (primarily lithium and its alloy with lead) hold promise for use in thermonuclear power engineering, where they can serve not only as a coolant, but also as tritium-producing medium. In this article, the physicochemical properties of liquid metal coolants, as well as practical experience gained from using them in nuclear and thermonuclear power engineering and in innovative technologies are considered, and the lines of further research works are formulated. New results obtained from investigations carried out on the Pb-Bi and Pb for the SVBR and BREST fast-neutron reactors (referred to henceforth as fast reactors) and for controlled accelerator systems are described.

  15. Studies on SiC(p) reinforced Al-Al sub 3 Ni eutectic matrix composites

    International Nuclear Information System (INIS)

    Masrom, A.K.; Foo, L.C.; Ismail, A.B.

    1996-01-01

    An investigation on processing of Al-5.69wt% Ni eutectic with SiC particulate composites is reported. The intermetallic composites are prepared by elemental powder metallurgy route and sintered at two different temperatures, i.e., 600 degree C and 620 degree C. Results show that the metal matrix was Al-Al sub 3 Ni eutectic. The phase analysis by XRD identified the presence of Al sub 3 Ni and Al as dominant phases together with silicon and Al sub 4 C sub 3 phase as minor phases. The Al sub 4 C sub 3 and Si phases are formed during sintering due to SiC-Al interface reaction. SEM micrographs also reveal the formation of microvoid surrounding the SiC particle

  16. Flux flow and proximity effects in aligned Pb--Cd eutectic lamellar structures

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, C. R.

    1977-09-01

    A high speed directional solidification technique was used to fabricate lamellar Pb-Cd and (Pb-Mg)--(Cd-Mg) superconductor-normal metal composites in which all the lamellae are oriented perpendicular to the broad surface of the sample. These lamellar composites are found to behave like a large number (approximately 1000) of superconducting-normal-superconducting junctions. For the Pb-Cd eutectic system, the critical current densities and critical fields have shown no dependence upon the lamellar periods between 1.0 and 3.1 microns. The critical current density of the aligned lamellar Pb-Cd structures was enhanced approximately 50% when compared to quenched eutectic alloy and to pure Pb. The superconducting transition temperature, T/sub c/, varies inversely with the square of the thickness of the superconducting material as expected from Ginzburg-Landau theory. Upon annealing, the Pb lamellae change from type II to type I superconductivity.

  17. Filtration of aluminum alloys and its influence on mechanical properties and shape of eutectical silicium

    Directory of Open Access Journals (Sweden)

    M. Brůna

    2008-07-01

    Full Text Available Filtration during casting of high quality aluminum alloys belongs to main refining methods. Even when there are many years of experiences and experimental works on this subject, there are still some specific anomalies. While using ceramic filtration media during casting of aluminum alloys, almost in all experiments occurred increase of strength limit and atypical increase of extension. This anomaly was not explained with classical metallurgical methods, black-white contrast after surface etching neither with color surface etching. For that reason was used deep etching on REM. By using pressed ceramic filters, by studying morphology eutectical silicon was observed modification morphology of eutectical silicon, this explains increase extension after filtration. Pressed ceramic filters were used on experimental works. Casting was executed on hardenable alloy AlSi10MgMn.

  18. Chip bonding of low-melting eutectic alloys by transmitted laser radiation

    Science.gov (United States)

    Hoff, Christian; Venkatesh, Arjun; Schneider, Friedrich; Hermsdorf, Jörg; Bengsch, Sebastian; Wurz, Marc C.; Kaierle, Stefan; Overmeyer, Ludger

    2017-06-01

    Present-day thermode bond systems for the assembly of radio-frequency identification (RFID) chips are mechanically inflexible, difficult to control, and will not meet future manufacturing challenges sufficiently. Chip bonding, one of the key processes in the production of integrated circuits (ICs), has a high potential for optimization with respect to process duration and process flexibility. For this purpose, the technologies used, so far, are supposed to be replaced by a transmission laser-bonding process using low-melting eutectic alloys. In this study, successful bonding investigations of mock silicon chips and of RFID chips on flexible polymer substrates are presented using the low-melting eutectic alloy, 52In48Sn, and a laser with a wavelength of 2 μm.

  19. Flux flow and proximity effects in aligned Pb--Cd eutectic lamellar structures

    International Nuclear Information System (INIS)

    Spencer, C.R.

    1977-09-01

    A high speed directional solidification technique was used to fabricate lamellar Pb-Cd and (Pb-Mg)--(Cd-Mg) superconductor-normal metal composites in which all the lamellae are oriented perpendicular to the broad surface of the sample. These lamellar composites are found to behave like a large number (approximately 1000) of superconducting-normal-superconducting junctions. For the Pb-Cd eutectic system, the critical current densities and critical fields have shown no dependence upon the lamellar periods between 1.0 and 3.1 microns. The critical current density of the aligned lamellar Pb-Cd structures was enhanced approximately 50% when compared to quenched eutectic alloy and to pure Pb. The superconducting transition temperature, T/sub c/, varies inversely with the square of the thickness of the superconducting material as expected from Ginzburg-Landau theory. Upon annealing, the Pb lamellae change from type II to type I superconductivity

  20. Metal-ion catalyzed polymerization in the eutectic phase in water-ice

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain; Szostak, Jack W.

    2008-01-01

    The emergence of an RNA world requires among other processes the non-enzymatic, template-directed replication of genetic polymers such as RNA or related nucleic acids, possibly catalyzed by metal ions. The absence of uridilate derivative polymerization on adenine containing templates has been...... the main issue preventing an efficient template-directed RNA polymerization. We report here the investigation of template-directed RNA polymerization in the eutectic phase in water-ice. In particular, it was found that activated Uridilate monomers in the presence of metal-ion catalysts could efficiently......-pairing opportunities. These results suggest that a template-directed RNA polymerization catalyzed by metal-ions could be carried out under eutectic phase in water-ice conditions....

  1. Phase-field-lattice Boltzmann study for lamellar eutectic growth in a natural convection melt

    Directory of Open Access Journals (Sweden)

    Ang Zhang

    2017-11-01

    Full Text Available In the present study, the influence of natural convection on the lamellar eutectic growth is determined by a phase-field-lattice Boltzmann study for Al-Cu eutectic alloy. The mass difference resulting from concentration difference led to the fluid flow, and a robust parallel and adaptive mesh refinement algorithm was employed to improve the computational efficiency without any compromising accuracy. Results show that the existence of natural convection would affect the growth undercooling and thus control the interface shape by adjusting the lamellar width. In particular, by alternating the magnitude of the solute expansion coefficient, the strength of the natural convection is changed. Corresponding microstructure patterns are discussed and compared with those under no-convection conditions.

  2. Directional solidification of Zn-Al-Cu eutectic alloy by the vertical Bridgman method

    Directory of Open Access Journals (Sweden)

    Büyük U.

    2015-01-01

    Full Text Available In the present work, the effect of growth rate and temperature gradient on microstructure and mechanical properties of Zn-7wt.%Al-4wt.%Cu eutectic alloy has been investigated. Alloys prepared under steady-state conditions by vacuumed hot filing furnace. Then, the alloys were directionally solidified upward with different growth rates (V=11.62-230.77 mm/s at a constant temperature gradient (G=7.17 K/mm and with different temperature gradients (G=7.17-11.04 K/mm at a constant growth rate (V=11.62 mm/s by a Bridgman furnace. The microstructures were observed to be lamellae of Zn, Al and broken lamellae CuZn4 phases from quenched samples. The values of eutectic spacing, microhardness and ultimate tensile strength of alloys were measured. The dependency of the microstructure and mechanical properties on growth rate and temperature gradient were investigated using regression analysis.

  3. Mechanical properties of thermomechanical treated hyper-eutectic Al-Si-(Fe, Mn, Cu) materials

    OpenAIRE

    Umezawa, Osamu

    2005-01-01

    Tensile and high-cycle fatigue behavior of thermomechanical treated hyper-eutectic Al-Si-(Fe, Mn, Cu) materials were studied. Through the repeated thermomechanical treatment (RTMT) which is a repeat of the multi steps cold-working followed by heat treatment, Si crystals and/or intermetallic compounds were broken into some fragments and dispersed in the aluminum matrix. Fine dispersion of the second phase particles exhibited good ductility, since early fracture was overcome. A few large Si cry...

  4. Stabilizing Effects of Deep Eutectic Solvents on Alcohol Dehydrogenase Mediated Systems

    OpenAIRE

    Fatima Zohra Ibn Majdoub Hassani; Ivan Lavandera; Joseph Kreit

    2016-01-01

    This study explored the effects of different organic solvents, temperature, and the amount of glycerol on the alcohol dehydrogenase (ADH)-catalysed stereoselective reduction of different ketones. These conversions were then analyzed by gas chromatography. It was found that when the amount of deep eutectic solvents (DES) increases, it can improve the stereoselectivity of the enzyme although reducing its ability to convert the substrate into the corresponding alcohol. Moreover, glycerol was fou...

  5. The effect of the electrode material on the electrodeposition of zinc from deep eutectic solvents

    International Nuclear Information System (INIS)

    Vieira, L.; Schennach, R.; Gollas, B.

    2016-01-01

    Highlights: • Mechanistic insight into zinc electrodeposition from deep eutectic solvents. • Overpotential for hydrogen evolution affects the electrodeposition of zinc. • Electrodeposited zinc forms surface alloys on Cu, Au, and Pt. • In situ PM-IRRAS of a ZnCl_2 containing deep eutectic solvent on glassy carbon. - Abstract: The voltammetric behaviour of the ZnCl_2 containing deep eutectic solvent choline chloride/ethylene glycol 1:2 was investigated on glassy carbon, stainless steel, Au, Pt, Cu, and Zn electrodes. While cyclic voltammetry on glassy carbon and stainless steel showed a cathodic peak for zinc electrodeposition only in the anodic reverse sweep, a cathodic peak was found also in the cathodic forward sweep on Au, Pt, Cu, and Zn. This behaviour is in agreement with the proposed mechanism of zinc deposition from an intermediate species Z, whose formation depends on the cathodic reduction potential of the solvent. The voltammetric reduction of the electrolyte involves hydrogen evolution and as a result the formation of Z and its reduction to zinc depend on the hydrogen overpotential for each electrode material. On Au, Pt, and Cu also the anodic stripping was different from that on glassy carbon and steel due to the formation of surface zinc alloys with the three former metals. The morphology of the zinc layers on Cu has been characterised by scanning electron microscopy and focussed ion beam. X-ray diffraction confirmed the presence of crystalline zinc and a Cu_4Zn phase. Spectroelectrochemistry by means of polarization modulation reflection-absorption spectroscopy (PM-IRRAS) on a glassy carbon electrode in the ZnCl_2 containing deep eutectic solvent showed characteristic potential dependent changes. The variation of band intensities at different applied potentials correlate with the voltammetry and suggest the formation of a compact blocking layer on the electrode surface, which inhibits the electrodeposition of zinc at sufficiently negative

  6. The influence of high gravity in PbSn eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, F.E.; Toledo, R.C.; Poli, A.K.S.; An, C.Y.; Bandeira, I.N., E-mail: filipe.estevao@gmail.com, E-mail: chen@las.inpe.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2014-07-01

    The study of materials processed in centrifuges improves the understanding of the acceleration influence in the convection behavior in materials processing. This work aims to study the influence of high gravity in PbSn eutectic alloy solidification using a small centrifuge designed and built in the Associate Laboratory of Sensors and Materials of the Brazilian Space Research Institute (LAS/INPE). The samples were analyzed by densitometry and scanning electron microscopy (SEM). (author)

  7. Temperature-dependent viscosities of eutectic Al-Si alloys modified with Sr and P

    Energy Technology Data Exchange (ETDEWEB)

    Song Xigui [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan, 250061 (China)], E-mail: sxglm@126.com; Bian Xiufang; Zhang Jingxiang; Zhang Jie [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan, 250061 (China)

    2009-06-24

    The viscosities of eutectic Al-12 wt.%Si alloy and those modified with Sr and P were investigated using high-temperature torsional oscillation viscometer. Strontium decreased melt's viscosity, while phosphorus increased viscosity. Both additional level and means of addition affected the variation of viscosity. The activation energy of viscous flow was strengthened after modification, but the influence of modification on the molar volume was perplexing.

  8. Experimental investigation of thermophysical properties of eutectic Re-C at high temperatures

    Science.gov (United States)

    Belikov, R. S.; Senchenko, V. N.; Sulyanov, S. N.

    2018-01-01

    Using the previously described experimental setup for investigation of thermophysical properties of refractory materials under high pressures and temperatures a few experiments with samples of cast eutectic Re-C were carried out. The experimental technique was extended for millisecond electrical heating of the samples under the high static pressure of inert gas. First experimental data on the specific enthalpy, specific heat capacity and linear thermal expansion of ReC0.3 were obtained.

  9. Chemical and electrochemical properties in the molten lithium chloride-potassium chloride eutectic

    International Nuclear Information System (INIS)

    Delarue, G.

    1960-12-01

    We have studied the behaviour of several chemical species in the molten LiCI-KCI eutectic. The solubility of certain oxides and sulphides has made it possible for us to show the existence of O 2- and S 2- ions. We have been able to show the existence of a certain number of chemical reactions: oxido-reduction precipitation, complex formation; we have studied, amongst others, the oxidation of O 2- and of S 2- . (author) [fr

  10. Chemical interaction of the In-Ga eutectic with Al and Al-base alloys

    International Nuclear Information System (INIS)

    Trenikhin, M.V.; Bubnov, A.V.; Duplyakin, V.K.; Nizovskij, A.I.

    2006-01-01

    The chemical interaction of the indium-gallium eutectic with Al and Al-base alloys is studied by X-ray diffraction, optical microscopy, and electron microscopy. Experimental data are presented that shed light on the reaction mechanism and the diffusion processes responsible for the subsequent disintegration of the material and its dissolution in water. Mechanical tests show that the activation of aluminum leads to a transition from plastic to brittle fracture [ru

  11. Metallurgical Parameters Controlling the Eutectic Silicon Charateristics in Be-Treated Al-Si-Mg Alloys.

    Science.gov (United States)

    Ibrahim, Mohamed F; Elgallad, Emad M; Valtierra, Salvador; Doty, Herbert W; Samuel, Fawzy H

    2016-01-27

    The present work was carried out on Al-7%Si-0.4%Mg-X alloy (where X = Mg, Fe, Sr or Be), where the effect of solidification rate on the eutectic silicon characteristics was investigated. Two solidification rates corresponding to dendrite arm spacings (DAS) of 24 and 65 μm were employed. Samples with 24 μm DAS were solution heat-treated at 540 °C for 5 and 12 h prior to quenching in warm water at 65 °C. Eutectic Si particle charateristics were measured using an image analyzer. The results show that the addition of 0.05% Be leads to partial modification of the Si particles. Full modification was only obtained when Sr was added in an amount of 150-200 ppm, depending on the applied solidification rate. Increasing the amount of Mg to 0.8% in Sr-modified alloys leads to a reduction in the effectiveness of Sr as the main modifier. Similar observations were made when the Fe content was increased in Be-treated alloys due to the Be-Fe interaction. Over-modification results in the precipitation of hard Sr-rich particles, mainly Al₄SrSi₂, whereas overheating causes incipient melting of the Al-Cu eutectic and hence the surrounding matrix. Both factors lead to a deterioration in the alloy mechanical properties. Furthermore, the presence of long, acicular Si particles accelerates the occurrence of fracture and, as a result, yields poor ductility. In low iron (less than 0.1 wt%) Al-Si-Mg alloys, the mechanical properties in the as cast, as well as heat treated conditions, are mainly controlled by the eutectic Si charatersitics. Increasing the iron content and, hence, the volume fraction of Fe-based intermetallics leads to a complex fracture mode.

  12. Metallurgical Parameters Controlling the Eutectic Silicon Charateristics in Be-Treated Al-Si-Mg Alloys

    Directory of Open Access Journals (Sweden)

    Mohamed F. Ibrahim

    2016-01-01

    Full Text Available The present work was carried out on Al-7%Si-0.4%Mg-X alloy (where X = Mg, Fe, Sr or Be, where the effect of solidification rate on the eutectic silicon characteristics was investigated. Two solidification rates corresponding to dendrite arm spacings (DAS of 24 and 65 μm were employed. Samples with 24 μm DAS were solution heat-treated at 540 °C for 5 and 12 h prior to quenching in warm water at 65 °C. Eutectic Si particle charateristics were measured using an image analyzer. The results show that the addition of 0.05% Be leads to partial modification of the Si particles. Full modification was only obtained when Sr was added in an amount of 150–200 ppm, depending on the applied solidification rate. Increasing the amount of Mg to 0.8% in Sr-modified alloys leads to a reduction in the effectiveness of Sr as the main modifier. Similar observations were made when the Fe content was increased in Be-treated alloys due to the Be-Fe interaction. Over-modification results in the precipitation of hard Sr-rich particles, mainly Al4SrSi2, whereas overheating causes incipient melting of the Al-Cu eutectic and hence the surrounding matrix. Both factors lead to a deterioration in the alloy mechanical properties. Furthermore, the presence of long, acicular Si particles accelerates the occurrence of fracture and, as a result, yields poor ductility. In low iron (less than 0.1 wt% Al-Si-Mg alloys, the mechanical properties in the as cast, as well as heat treated conditions, are mainly controlled by the eutectic Si charatersitics. Increasing the iron content and, hence, the volume fraction of Fe-based intermetallics leads to a complex fracture mode.

  13. Brazing characteristics of a Zr-Ti-Cu-Fe eutectic alloy filler metal for Zircaloy-4

    Science.gov (United States)

    Lee, Jung G.; Lim, C. H.; Kim, K. H.; Park, S. S.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    A Zr-Ti-Cu-Fe quaternary eutectic alloy was employed as a new Be-free brazing filler metal for Zircaloy-4 to supersede physically vapor-deposited Be coatings used conventionally with several disadvantages. The quaternary eutectic composition of Zr58Ti16Cu10Fe16 (at.%) showing a low melting temperature range from 832 °C to 853 °C was designed by a partial substitution of Zr with Ti based on a Zr-Cu-Fe ternary eutectic system. By applying an alloy ribbon with the determined composition, a highly reliable joint was obtained with a homogeneous formation of predominantly grown α-Zr phases owing to a complete isothermal solidification, exhibiting strength higher than that of Zircaloy-4. The homogenization of the joint was rate-controlled by the diffusion of the filler elements (Ti, Cu, and Fe) into the Zircaloy-4 base metal, and the detrimental segregation of the Zr2Fe phase in the central zone was completely eliminated by an isothermal holding at a brazing temperature of 920 °C for 10 min.

  14. Electrochemical behaviour of ThF4 in LiCl-KCl eutectic

    International Nuclear Information System (INIS)

    Agarwal, Renu; Mukerjee, S.K.; Ramakumar, K.L.

    2016-01-01

    Pyrochemical processing of nuclear fuels is an integral part of molten salt reactor technology. Thorium containing molten salt reactors are relevant for transmutation of minor actinides and utilizations of vast thorium resources. Understanding chemical and electrochemical behavior of actinide and lanthanide ions in chloride melts is an important task in this process. A eutectic of lithium and potassium chloride is found to be the most suitable salt for this study due to its low melting, high reduction potential and significant solubility of most of the actinide and lanthanide salts. However, electrochemistry of thorium in chloride melt is inconsistent due to dispute over the presence of Th(II) cation along with Th(IV). In the present experiments, cyclic-voltammograms of ThF 4 in LiCl-KCl eutectic salt were measured using three electrodes cell, where all the electrodes were 1 mm molybdenum wires and counter electrode wire was twisted into a spiral shape to increase surface area and was used for mixing the salts in molten state. Cyclic-voltammograms of pure eutectic melt and with ThF 4 were measured at scanning rates 50-300 mV/s, at 648 K and 723 K. Diffusion coefficient of Th 4+ was calculated using Delahay equation

  15. Experimental specifications for eutectic reaction between metallic fuel and HT-9

    International Nuclear Information System (INIS)

    Hwang, Woan; Nam, Cheol; Lee, Byoung Oon; Ryu, Woo Seog

    1998-10-01

    The chemical interaction between metallic fuel and cladding is important in designing the fuel pin of the KALIMER. When metal fuel and cladding are contacted, the elements in fuel and cladding are inter-diffuse each other, forming the reaction layers at interface. The reaction layers may cause two important factors in aspects of fuel pin integrity. Firstly, it degrades cladding strength by reducing effective cladding thickness. Secondly, these layers accelerate eutectic reaction at transient conditions. To evaluate these phenomena, the diffusion couple experiment is planned by using metal fuels with various zirconium contents and HT-9 steel. The U-Zr fuel alloys will be used for the experiment with the different zirconium contents, these are 8, 10 and 12 weight %. This experiment aims to evaluate the effects of zirconium content on the chemical reaction. Furthermore, the reaction rate and threshold temperature of the eutectic melting will be determined as a function of the zirconium content. This document describes the detail experimental specifications for the eutectic reaction such as test setup, test requirements and test procedure. (author). 10 refs

  16. The effect of deep eutectic solvents on catalytic function and structure of bovine liver catalase.

    Science.gov (United States)

    Harifi-Mood, Ali Reza; Ghobadi, Roohollah; Divsalar, Adeleh

    2017-02-01

    Aqueous solutions of reline and glyceline, the most common deep eutectic solvents, were used as a medium for Catalase reaction. By some spectroscopic methods such as UV-vis, fluorescence and circular dichroism (CD) function and structure of Catalase were investigated in aqueous solutions of reline and glyceline. These studies showed that the binding affinity of the substrate to the enzyme increased in the presence of 100mM glyceline solution, which contrasts with reline solution that probably relates to instructive changes in secondary structure of protein. Meanwhile, enzyme remained nearly 70% and 80% active in this concentration of glyceline and reline solutions respectively. In the high concentration of DES solutions, enzyme became mainly inactive but surprisingly stayed in nearly 40% active in choline chloride solution, which is the common ion species in reline and glyceline solvents. It is proposed that the chaotropic nature of choline cation might stop the reducing trend of activity in concentrated choline chloride solutions but this instructive effect is lost in aqueous deep eutectic solvents. In this regard, the presence of various concentrations of deep eutectic solvents in the aqueous media of human cells would be an activity adjuster for this important enzyme in its different operation conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Potential Process for the Decontamination of Pyro-electrometallurgical LiCl-KCl Eutectic Salt Electrolyte

    International Nuclear Information System (INIS)

    Griffith, Christopher S.; Sizgek, Erden; Sizgek, Devlet; Luca, Vittorio

    2008-01-01

    Presented here is a potential option with experimental validation for the decontamination of LiCl-KCl eutectic salt electrolyte from a pyro-electrometallurgical process by employing already developed inorganic ion exchange materials. Adsorbent materials considered include titano-silicates and molybdo- and tungstophosphates for Cs extraction, Si-doped antimony pyrochlore for Sr extraction and hexagonal tungsten bronzes for lanthanide (LN) and minor actinide (MA) polishing. Encouraging results from recent investigations on the removal of target elements (Cs, Sr and LN) from aqueous solutions containing varying concentrations of alkali and alkali metal contaminants which would be akin to a solution formed from the dissolution of spent LiCl-KCl eutectic salt electrolyte are presented. Further investigations have also shown that the saturated adsorbents can be treated at relatively low temperatures to afford potential waste forms for the adsorbed elements. Efficient evaporation and drying of a solution of dissolved LiCl-KCl eutectic salt electrolyte (50 L, 5 L.h -1 ) has been demonstrated using a Microwave-Heated Mechanical Fluidized Bed (MWMFB) apparatus. (authors)

  18. Potential Process for the Decontamination of Pyro-electrometallurgical LiCl-KCl Eutectic Salt Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Christopher S.; Sizgek, Erden; Sizgek, Devlet; Luca, Vittorio [Australian Nuclear Science and Technology Organisation (ANSTO), Institute of Materials Engineering, New Illawarra Road, Lucas Heights, New South Wales, 2234 (Australia)

    2008-07-01

    Presented here is a potential option with experimental validation for the decontamination of LiCl-KCl eutectic salt electrolyte from a pyro-electrometallurgical process by employing already developed inorganic ion exchange materials. Adsorbent materials considered include titano-silicates and molybdo- and tungstophosphates for Cs extraction, Si-doped antimony pyrochlore for Sr extraction and hexagonal tungsten bronzes for lanthanide (LN) and minor actinide (MA) polishing. Encouraging results from recent investigations on the removal of target elements (Cs, Sr and LN) from aqueous solutions containing varying concentrations of alkali and alkali metal contaminants which would be akin to a solution formed from the dissolution of spent LiCl-KCl eutectic salt electrolyte are presented. Further investigations have also shown that the saturated adsorbents can be treated at relatively low temperatures to afford potential waste forms for the adsorbed elements. Efficient evaporation and drying of a solution of dissolved LiCl-KCl eutectic salt electrolyte (50 L, 5 L.h{sup -1}) has been demonstrated using a Microwave-Heated Mechanical Fluidized Bed (MWMFB) apparatus. (authors)

  19. A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte.

    Science.gov (United States)

    Zhang, Changkun; Ding, Yu; Zhang, Leyuan; Wang, Xuelan; Zhao, Yu; Zhang, Xiaohong; Yu, Guihua

    2017-06-19

    Nonaqueous redox-flow batteries are an emerging energy storage technology for grid storage systems, but the development of anolytes has lagged far behind that of catholytes due to the major limitations of the redox species, which exhibit relatively low solubility and inadequate redox potentials. Herein, an aluminum-based deep-eutectic-solvent is investigated as an anolyte for redox-flow batteries. The aluminum-based deep-eutectic solvent demonstrated a significantly enhanced concentration of circa 3.2 m in the anolyte and a relatively low redox potential of 2.2 V vs. Li + /Li. The electrochemical measurements highlight that a reversible volumetric capacity of 145 Ah L -1 and an energy density of 189 Wh L -1 or 165 Wh kg -1 have been achieved when coupled with a I 3 - /I - catholyte. The prototype cell has also been extended to the use of a Br 2 -based catholyte, exhibiting a higher cell voltage with a theoretical energy density of over 200 Wh L -1 . The synergy of highly abundant, dendrite-free, multi-electron-reaction aluminum anodes and environmentally benign deep-eutectic-solvent anolytes reveals great potential towards cost-effective, sustainable redox-flow batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Influence of Cr on the Solidification Behavior of Polycrystalline γ(Ni)/ γ'(Ni3Al)- δ(Ni3Nb) Eutectic Ni-Base Superalloys

    Science.gov (United States)

    Xie, Mengtao; Helmink, Randolph; Tin, Sammy

    2012-04-01

    In the current investigation, the effect of Cr on the solidification characteristics and as-cast microstructure of pseudobinary γ- δ eutectic alloys based on a near-eutectic composition (Ni-5.5Al-13.5Nb at. pct) was investigated. It was found that Cr additions promote the formation of a higher volume fraction of γ- δ eutectic microstructure in the interdendritic region. Increasing levels of Cr also triggered morphological changes in the γ- δ eutectic and the formation of γ- γ'- δ ternary eutectic during the last stage of solidification. A detailed characterization of the as-cast alloys also revealed that Cr additions suppressed the liquidus, solidus, and γ' precipitation temperature of these γ/ γ'- δ eutectic alloys. A comparison of the experimental results with thermodynamic calculations using the CompuTherm Pandat database (CompuTherm LLC, Madison, WI) showed qualitative agreement.

  1. Printed environmentally friendly supercapacitors with ionic liquid electrolytes on paper

    Science.gov (United States)

    Pettersson, F.; Keskinen, J.; Remonen, T.; von Hertzen, L.; Jansson, E.; Tappura, K.; Zhang, Y.; Wilén, C.-E.; Österbacka, R.

    2014-12-01

    Environmentally friendly supercapacitors are fabricated using commercial grade aluminum coated paper as a substrate and symmetrical activated carbon electrodes as large area electrodes. Different choline chloride-based eutectic solvents are used as electrolyte. These are inexpensive, environmentally friendly and have a larger operating window compared to that of water electrolytes. As the entire device is printed and the materials used are inexpensive, both small- and large-area power sources can be fabricated to be used in cheap, disposable and recyclable devices. Supercapacitors with different eutectic solvents are measured using cyclic charge-discharge and impedance spectroscopy measurements and compared to one widely used and one "green" imidazolium ionic liquid; EMIM:TFSI and EcoEng 212™, respectively. A mixture of ethylene glycol and choline chloride, Glyceline™, show the highest capacitance and power densities of the electrolytes being tested, including the imidazolium alternatives.

  2. Gibbs free energy of formation of UPb(s) compound

    International Nuclear Information System (INIS)

    Samui, Pradeep; Agarwal, Renu; Mishra, Ratikanta

    2012-01-01

    Liquid lead and lead-bismuth eutectic (LBE) are being explored as primary candidates for coolants in accelerator driven systems and in advanced nuclear reactors due to their favorable thermo-physical and chemical properties. They are also proposed to be used as spallation neutron source in ADS Reactor Systems. However, corrosion of structural materials (i.e. steel) presents a critical challenge for the use of liquid lead or LBE in advanced nuclear reactors. The interactions of liquid lead or LBE with clad and fuel is of great scientific and technological importance in the development of advanced nuclear reactors. Clad failure/breach can lead to reaction of coolant elements with fuel components. Thus the study of fuel-coolant interaction of U with Pb/Bi is important. The paper deals with the determination of Gibbs free energy of formation of U-rich phase i.e. UPb in Pb-U system, employing Knudsen effusion mass loss technique

  3. Real Time Corrosion Monitoring in Lead and Lead-Bismuth Systems

    Energy Technology Data Exchange (ETDEWEB)

    James F. Stubbins; Alan Bolind; Ziang Chen

    2010-02-25

    The objective of this research program is to develop a real-time, in situ corrosion monitoring technique for flowing liquid Pb and eutectic PbBi (LBE) systems in a temperature range of 400 to 650 C. These conditions are relevant to future liquid metal cooled fast reactor operating parameters. THis program was aligned with the Gen IV Reactor initiative to develp technologies to support the design and opertion of a Pb or LBE-cooled fast reactor. The ability to monitor corrosion for protection of structural components is a high priority issue for the safe and prolonged operation of advanced liquid metal fast reactor systems. In those systems, protective oxide layers are intentionally formed and maintained to limit corrosion rates during operation. This program developed a real time, in situ corrosion monitoring tecnique using impedance spectroscopy (IS) technology.

  4. Solubility of uranium in liquid gallium, indium and their alloys

    International Nuclear Information System (INIS)

    Volkovich, Vladimir A.; Maltsev, Dmitry S.; Yamschikov, Leonid F.; Osipenko, Alexander G.; Kormilitsyn, Mikhail V.

    2014-01-01

    Pyrochemical reprocessing of spent nuclear fuels (SNF) employing molten salts and liquid metals as working media is considered as a possible alternative to the existing liquid extraction (PUREX) processes. Liquid salts and metals allow reprocessing highly irradiated high burn-up fuels with short cooling times, including the fuels of fast neutron reactors. Pyrochemical technology opens a way to practical realization of short closed fuel cycle. Liquid low-melting metals are immiscible with molten salts and can be effectively used for separation (or selective extraction) of SNF components dissolved in fused salts. Binary or ternary alloys of eutectic compositions can be employed to lower the melting point of the metallic phase. However, the information on SNF components behaviour and properties in ternary liquid metal alloys is very scarce

  5. Purification of used eutectic (LiCl-KCl) salt electrolyte from pyroprocessing

    Science.gov (United States)

    Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Choi, Jung-Hoon; Kim, In-Tae; Park, Geun-Il

    2013-06-01

    The separation characteristics of surrogate rare-earth fission products in a eutectic (LiCl-KCl) molten salt were investigated. This system is based on the eutectic salt used for the pyroprocessing treatment of used nuclear fuel (UNF). The investigation was performed using an integrated rare-earth separation apparatus comprising a precipitation reactor, a solid detachment device, and a layer separation device. To separate rare-earth fission products, a phosphate precipitation method using both Li3PO4 and K3PO4 as a precipitant was performed. The use of an equivalent phosphate precipitant composed of 0.408 molar ratio-K3PO4 and 0.592 molar ratio-Li3PO4 can preserve the original eutectic ratio, LiCl-0.592 molar ratio (or 45.2 wt%), as well as provide a high separation efficiency of over 99.5% under conditions of 550 °C and Ar sparging when using La, Nd, Ce, and Pr chlorides. The mixture of La, Nd, Ce, and Pr phosphate had a typical monoclinic (or monazite) structure, which has been proposed as a reliable host matrix for the permanent disposal of a high-level waste form. To maximize the reusability of purified eutectic waste salt after rare-earth separation, the successive rare-earth separation process, which uses both phosphate precipitation and an oxygen sparging method, were introduced and tested with eight rare-earth (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) chlorides. In the successive rare-earth separation process, the phosphate reaction was terminated within 1 h at 550 °C, and a 4-8 h oxygen sparging time were required to obtain over a 99% separation efficiency at 700-750 °C. The mixture of rare-earth precipitates separated by the successive rare-earth separation process was found to be phosphate, oxychloride, and oxide. Through the successive rare-earth separation process, the eutectic ratio of purified salt maintained its original value, and impurity content including the residual precipitant of purified salt can be minimized.

  6. Effect of scandium on structure and hardening of Al–Ca eutectic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Belov, N.A., E-mail: nikolay-belov@yandex.ru [National Research and Technological University “MISIS”, 4, Leninsky pr., Moscow 119049 (Russian Federation); Naumova, E.A. [Bauman Moscow State Technical University, 5, 2 ul. Baumanskaya, Moscow, 105005 (Russian Federation); Alabin, A.N. [National Research and Technological University “MISIS”, 4, Leninsky pr., Moscow 119049 (Russian Federation); UC RUSAL, 13/1, Nikoloyamskaya st., Moscow, 109240 (Russian Federation); Matveeva, I.A. [UC RUSAL, 13/1, Nikoloyamskaya st., Moscow, 109240 (Russian Federation)

    2015-10-15

    The phase composition, structure and hardening of alloys in the aluminium corner of the Al–Ca–Sc system were studied in the range up to 10% Ca and up to 1% S≿. The experimental study (optical, scanning and transmission electron microscopy with electron-microprobe analysis, differential thermal analysis and hardness measurements) was combined with Thermo-Calc software simulation for the optimization of the alloy composition. It was shown that only phases of the binary systems (Al{sub 4}Ca and Al{sub 3}Sc) might be in equilibrium with the aluminium solid solution. It was shown that the (Al) + Al{sub 4}Ca eutectic had a much finer structure as compared with the Al–Si eutectic, which suggests a possibility of reaching higher mechanical properties as compared to commercial alloys of the A356 type. The influence of the annealing temperature within the range up to 600 °C on the structure and hardness of the Al–Ca–Sc experimental alloys was studied. It was determined that the maximum hardening corresponded to the annealing at 300 °C, which was due to the precipitation of Al{sub 3}Sc nanoparticles with their further coarsening. With an example of an Al-7.6% Ca-0.3% Sc model experimental alloy, a principal possibility of manufacturing aluminium casting alloys based on the (Al) + Al{sub 4}Ca eutectic was demonstrated. Unlike commercial alloys of the A356 type, the model alloy does not require quenching, as hardening particles are formed in the course of annealing of casting. - Highlights: • Al–Ca–Sc phase diagram in aluminum corner. • Formation of Al{sub 3}Sc nanoparticles in eutectic (Al) + Al{sub 4}Ca during heating at 300–450 °C. • Hardening and thermal stability of proposed (Al–Ca–Sc) and commercial (Al–Si–Mg, 356 type) eutectic alloys.

  7. Thermo-physical stability of fatty acid eutectic mixtures subjected to accelerated aging for thermal energy storage (TES) application

    International Nuclear Information System (INIS)

    Fauzi, Hadi; Metselaar, Hendrik S.C.; Mahlia, T.M.I.; Silakhori, Mahyar

    2014-01-01

    The thermo-physical stability of fatty acids eutectic mixtures subjected to accelerated number of melting/solidification processes has been identified using thermal cycling test in this study. Myristic acid/palmitic acid (MA/PA) (70/30, wt.%) and myristic acid/palmitic acid/sodium stearate (MA/PA/SS) (70/30/5, wt.%) were selected as eutectic phase change materials (PCMs) to evaluate their stability of phase transition temperature, latent heat of fusion, chemical structure, and volume changes after 200, 500, 1000, and 1500 thermal cycles. The thermal properties of each eutectic PCMs measured by differential scanning calorimetric (DSC) indicated the phase transition temperature and latent heat of fusion values of MA/PA/SS has a smallest changes after 1500 thermal cycles than MA/PA eutectic mixture. MA/PA/SS also has a better chemical structure stability and smaller volume change which is 1.2%, compared to MA/PA with a volume change of 1.6% after 1500 cycles. Therefore, it is concluded that the MA/PA/SS eutectic mixture is suitable for use as a phase change material in thermal energy storage (TES) such as solar water heating and solar space heating applications. - Highlights: •The prepared MA/PA and MA/PA/SS were used as eutectic phase change materials (PCM). •Thermo-physical reliability of eutectic PCMs evaluated using a thermal cycling test. •MA/PA/SS has a great thermo-physical stability than MA/PA after 1500 thermal cycles

  8. Simulations of thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model

    Science.gov (United States)

    Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg

    2017-11-01

    Operating a liquid-metal battery produces Ohmic losses in the electrolyte layer that separates both metal electrodes. As a consequence, temperature gradients establish which potentially cause thermal convection since density and interfacial tension depend on the local temperature. In our numerical investigations, we considered three plane, immiscible layers governed by the Navier-Stokes-Boussinesq equations held at a constant temperature of 500°C at the bottom and top. A homogeneous current is applied that leads to a preferential heating of the mid electrolyte layer. We chose a typical material combination of Li separated by LiCl-KCl (a molten salt) from Pb-Bi for which we analyzed the linear stability of pure thermal conduction and performed three-dimensional direct-numerical simulations by a pseudospectral method probing different: electrolyte layer heights, overall heights, and current densities. Four instability mechanisms are identified, which are partly coupled to each other: buoyant convection in the upper electrode, buoyant convection in the molten salt layer, and Marangoni convection at both interfaces between molten salt and electrode. The global turbulent heat transfer follows scaling predictions for internally heated buoyant convection. Financial support by the Deutsche Forschungsgemeinschaft under Grant No. KO 5515/1-1 is gratefully acknowledged.

  9. Hydrodynamic problems of heavy liquid metal coolants technology in loop-type and mono-block-type reactor installations

    International Nuclear Information System (INIS)

    Orlov, Yuri I.; Efanov, Alexander D.; Martynov, Pyotr N.; Gulevsky, Valery A.; Papovyants, Albert K.; Levchenko, Yuri D.; Ulyanov, Vladimir V.

    2007-01-01

    In the report, the influence of hydrodynamics of the loop with heavy liquid metal coolants (Pb and Pb-Bi) on the realization methods and efficiency of the coolant technology for the reactor installations of loop, improved loop and mono-block type of design has been studied. The last two types of installations, as a rule, are characterized by the following features: availability of loop sections with low hydraulic head and low coolant velocities, large squares of coolant free surfaces; absence of stop and regulating valve, auxiliary pumps on the coolant pumping-over lines. Because of the different hydrodynamic conditions in the installation types, the tasks of the coolant technology have specific solutions. The description of the following procedures of coolant technology is given in the report: purification by hydrogen (purification using gas mixture containing hydrogen), regulation of dissolved oxygen concentration in coolant, coolant filtrating, control of dissolved oxygen concentration in coolant. It is shown that change of the loop design made with economic purpose and for improvement of the installation safety cause additional requirements to the procedures and apparatuses of the coolant technology realization

  10. Effects of Eutectic Si Particles on Mechanical Properties and Fracture Toughness of Cast A356 Aluminum Alloys

    International Nuclear Information System (INIS)

    Lee, Kyu Hong; Lee, Sung Hak; Kwon, Yong Nam

    2007-01-01

    The present study aims at investigating the effects of eutectic Si particles on mechanical properties and fracture toughness of three A356 aluminum alloys. These A356 alloys were fabricated by casting processes such as rheo-casting, squeeze-casting, and casting-forging, and their mechanical properties and fracture toughness were analyzed in relation with microfracture mechanism study. All the cast A356 alloys contained eutectic Si particles mainly segregated along solidification cells, and the distribution of Si particles was modified by squeeze-casting and casting-forging processes. Microfracture observation results showed that eutectic Si particles segregated along cells were cracked first, but that aluminum matrix played a role in blocking crack propagation. Tensile properties and fracture toughness of the squeeze cast and cast-forged alloys having homogeneous distribution of eutectic Si particles were superior to those of the rheo-cast alloy. In particular, the cast-forged alloy had excellent hardness, strength, ductility, and fracture toughness because of the matrix strengthening and homogeneous distribution of eutectic Si particles due to forging process

  11. Length-scale dependent mechanical properties of Al-Cu eutectic alloy: Molecular dynamics based model and its experimental verification

    Science.gov (United States)

    Tiwary, C. S.; Chakraborty, S.; Mahapatra, D. R.; Chattopadhyay, K.

    2014-05-01

    This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al2Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al2Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.

  12. Formation of Al2O3-HfO2 Eutectic EBC Film on Silicon Carbide Substrate

    Directory of Open Access Journals (Sweden)

    Kyosuke Seya

    2015-01-01

    Full Text Available The formation mechanism of Al2O3-HfO2 eutectic structure, the preparation method, and the formation mechanism of the eutectic EBC layer on the silicon carbide substrate are summarized. Al2O3-HfO2 eutectic EBC film is prepared by optical zone melting method on the silicon carbide substrate. At high temperature, a small amount of silicon carbide decomposed into silicon and carbon. The components of Al2O3 and HfO2 in molten phase also react with the free carbon. The Al2O3 phase reacts with free carbon and vapor species of AlO phase is formed. The composition of the molten phase becomes HfO2 rich from the eutectic composition. HfO2 phase also reacts with the free carbon and HfC phase is formed on the silicon carbide substrate; then a high density intermediate layer is formed. The adhesion between the intermediate layer and the substrate is excellent by an anchor effect. When the solidification process finished before all of HfO2 phase is reduced to HfC phase, HfC-HfO2 functionally graded layer is formed on the silicon carbide substrate and the Al2O3-HfO2 eutectic structure grows from the top of the intermediate layer.

  13. Eutectic mixtures of some fatty acids for latent heat storage: Thermal properties and thermal reliability with respect to thermal cycling

    International Nuclear Information System (INIS)

    Sari, Ahmet

    2006-01-01

    Accelerated thermal cycle tests have been conducted to study the change in melting temperatures and latent heats of fusion of the eutectic mixtures of lauric acid (LA)-myristic acid (MA), lauric acid (LA)-palmitic acid (PA) and myristic acid (MA)-stearic acid (SA) as latent heat storage materials. The thermal properties of these materials were determined by the differential scanning calorimetry (DSC) analysis method. The thermal reliability of the eutectic mixtures after melt/freeze cycles of 720, 1080 and 1460 was also evaluated using the DSC curves. The accelerated thermal cycle tests indicate that the melting temperatures usually tend to decrease, and the variations in the latent heats of fusion are irregular with increasing number of thermal cycles. Moreover, the probable reasons for the change in thermal properties of the eutectic mixtures after repeated thermal cycles were investigated. Fourier Transform Infrared (FT-IR) spectroscopic analysis indicates that the accelerated melt/freeze processes do not cause any degradation in the chemical structure of the mixtures. The change in thermal properties of the eutectic mixtures with increasing number of thermal cycles is only because of the presence of certain amounts of impurities in the fatty acids used in their preparation. It is concluded that the tested eutectic mixtures have reasonable thermal properties and thermal reliability as phase change materials (PCMs) for latent heat storage in any solar heating applications that include a four year utilization period

  14. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein

    International Nuclear Information System (INIS)

    Liu, Yanjin; Wang, Yuzhi; Dai, Qingzhou; Zhou, Yigang

    2016-01-01

    A novel and facile magnetic deep eutectic solvents (DES) molecularly imprinted polymers (MIPs) for the selective recognition and separation of Bovine hemoglobin (BHb) was prepared. The new-type DES was adopted as the functional monomer which would bring molecular imprinted technology to a new direction. The amounts of DES were optimized. The obtained magnetic DES-MIPs were characterized with fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), dynamic light scattering (DLS), elemental analysis and vibrating sample magnetometer (VSM). The results suggested that the imprinted polymers were successfully formed and possessed a charming magnetism. The maximum adsorption capability (Q_m_a_x) and dissociation constant (K_L) were analyzed by Langmuir isotherms (R"2 = 0.9983) and the value were estimated to be 175.44 mg/g and 0.035 mg/mL for the imprinted particles. And the imprinted particles showed a high imprinting factor of 4.77. In addition, the magnetic DES-MIPs presented outstanding recognition specificity and selectivity so that it can be utilized to separate template protein from the mixture of proteins and real samples. Last but not least, the combination of deep eutectic solvents and molecular imprinted technology in this paper provides a new perspective for the recognition and separation of proteins. - Highlights: • Combined green deep eutectic solvents (DES) and molecular imprinted technology in recognition and separation of proteins. • DES was adopted as a new-type functional monomer. • The obtained magnetic DES-MIPs can separate proteins rapidly by an external magnetic field. • Adsorption and selectivity properties were discussed.

  15. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanjin [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Wang, Yuzhi, E-mail: wyzss@hnu.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Dai, Qingzhou [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Zhou, Yigang [Department of Microbiology, College of Basic Medicine, Central South University, Changsha, 410083 (China)

    2016-09-14

    A novel and facile magnetic deep eutectic solvents (DES) molecularly imprinted polymers (MIPs) for the selective recognition and separation of Bovine hemoglobin (BHb) was prepared. The new-type DES was adopted as the functional monomer which would bring molecular imprinted technology to a new direction. The amounts of DES were optimized. The obtained magnetic DES-MIPs were characterized with fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), dynamic light scattering (DLS), elemental analysis and vibrating sample magnetometer (VSM). The results suggested that the imprinted polymers were successfully formed and possessed a charming magnetism. The maximum adsorption capability (Q{sub max}) and dissociation constant (K{sub L}) were analyzed by Langmuir isotherms (R{sup 2} = 0.9983) and the value were estimated to be 175.44 mg/g and 0.035 mg/mL for the imprinted particles. And the imprinted particles showed a high imprinting factor of 4.77. In addition, the magnetic DES-MIPs presented outstanding recognition specificity and selectivity so that it can be utilized to separate template protein from the mixture of proteins and real samples. Last but not least, the combination of deep eutectic solvents and molecular imprinted technology in this paper provides a new perspective for the recognition and separation of proteins. - Highlights: • Combined green deep eutectic solvents (DES) and molecular imprinted technology in recognition and separation of proteins. • DES was adopted as a new-type functional monomer. • The obtained magnetic DES-MIPs can separate proteins rapidly by an external magnetic field. • Adsorption and selectivity properties were discussed.

  16. Excited-state dynamics of mononucleotides and DNA strands in a deep eutectic solvent.

    Science.gov (United States)

    Zhang, Yuyuan; de La Harpe, Kimberly; Hariharan, Mahesh; Kohler, Bern

    2018-04-17

    The photophysics of several mono- and oligonucleotides were investigated in a deep eutectic solvent for the first time. The solvent glyceline, prepared as a 1 : 2 mole ratio mixture of choline chloride and glycerol, was used to study excited-state deactivation in a non-aqueous solvent by the use of steady-state and time-resolved spectroscopy. DNA strands in glyceline retain the secondary structures that are present in aqueous solution to some degree, thus enabling a study of the effects of solvent properties on the excited states of stacked bases and stacked base pairs. The excited-state lifetime of the mononucleotide 5'-AMP in glyceline is 630 fs, or twice as long as in aqueous solution. Even slower relaxation is seen for 5'-TMP in glyceline, and a possible triplet state with a lifetime greater than 3 ns is observed. Circular dichroism spectra show that the single strand (dA)18 and the duplex d(AT)9·d(AT)9 adopt similar structures in glyceline and in aqueous solution. Despite having similar conformations in both solvents, femtosecond transient absorption experiments reveal striking changes in the dynamics. Excited-state decay and vibrational cooling generally take place more slowly in glyceline than in water. Additionally, the fraction of long-lived excited states in both oligonucleotide systems is lower in glyceline than in aqueous solution. For a DNA duplex, water is suggested to favor decay pathways involving intrastrand charge separation, while the deep eutectic solvent favors interstrand deactivation channels involving neutral species. Slower solvation dynamics in the viscous deep eutectic solvent may also play a role. These results demonstrate that the dynamics of excitations in stacked bases and stacked base pairs depend not only on conformation, but are also highly sensitive to the solvent.

  17. The Au/Si eutectic bonding compatibility with KOH etching for 3D devices fabrication

    Science.gov (United States)

    Liang, Hengmao; Liu, Mifeng; Liu, Song; Xu, Dehui; Xiong, Bin

    2018-01-01

    KOH etching and Au/Si eutectic bonding are cost-efficient technologies for 3D device fabrication. Aimed at investigating the process compatibility of KOH etching and Au/Si bonding, KOH etching tests have been carried out for Au/bulk Si and Au/amorphous Si (a-Si) bonding wafers in this paper. For the Au/bulk Si bonding wafer, a serious underetch phenomenon occurring on the damage layer in KOH etching definitely results in packaging failure. In the microstructure analysis, it is found that the formation of the damage layer between the bonded layer and bulk Si is attributed to the destruction of crystal Si lattices in Au/bulk Si eutectic reaction. Considering the occurrence of underetch for Au/Si bonding must meet two requirements: the superfluous Si and the defective layer near the bonded layer, the Au/a-Si bonding by regulating the a-Si/Au thickness ratio is presented in this study. Only when the a-Si/Au thickness ratio is relatively low are there not underetch phenomena, of which the reason is the full reaction of the a-Si layer avoiding the formation of the damage layer for easy underetch. Obviously, the Au/a-Si bonding via choosing a moderate a-Si/Au thickness ratio (⩽1.5:1 is suggested) could be reliably compatible with KOH etching, which provides an available and low-cost approach for 3D device fabrication. More importantly, the theory of the damage layer proposed in this study can be naturally applied to relevant analyses on the eutectic reaction of other metals and single crystal materials.

  18. Biodiesel production from ethanolysis of palm oil using deep eutectic solvent (DES) as co-solvent

    Science.gov (United States)

    Manurung, R.; Winarta, A.; Taslim; Indra, L.

    2017-06-01

    Biodiesel produced from ethanolysis is more renewable and have better properties (higher oxidation stability, lower cloud and pour point) compared to methanolysis, but it has a disadvantage such as complicated purification. To improve ethanolysis process, deep eutectic solvent (DES) can be prepared from choline chloride and glycerol and used as co-solvent in ethanolysis. The deep eutectic solvent is formed from a quaternary ammonium salt (choline chloride) and a hydrogen bond donor (Glycerol), it is a non-toxic, biodegradable solvent compared to a conventional volatile organic solvent such as hexane. The deep eutectic solvent is prepared by mixing choline chloride and glycerol with molar ratio 1:2 at temperature 80 °C, stirring speed 300 rpm for 1 hour. The DES is characterized by its density and viscosity. The ethanolysis is performed at a reaction temperature of 70 °C, ethanol to oil molar ratio of 9:1, potassium hydroxide as catalyst concentration of 1.2 wt. DES as co-solvent with concentration 0.5 to 3 wt. stirring speed 400 rpm, and a reaction time 1 hour. The obtained biodiesel is then characterized by its density, viscosity, and ester content. The oil - ethanol phase condition is observed in the reaction tube. The oil - ethanol phase with DES tends to form meniscus compared to without DES, showed that oil and ethanol become more slightly miscible, which favors the reaction. Using DES as co-solvent in ethanolysis showed increasing in yield and easier purification. The esters properties meet the international standards ASTM D6751, with the highest yield achieved 83,67 with 99,77 conversion at DES concentration 2 . Increasing DES concentration above 2 in ethanolysis decrease the conversion and yield, because of the excessive glycerol in the systems makes the reaction equilibrium moves to the reactant side.

  19. Detection of gas entrainment into liquid metals

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, T., E-mail: t.vogt@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, 01328 Dresden (Germany); Boden, S. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, 01328 Dresden (Germany); Andruszkiewicz, A. [Faculty of Mechanical and Power Engineering, Wroclaw University of Technology (Poland); Eckert, K. [Technische Universität Dresden, Institute of Fluid Mechanics, 01062 Dresden (Germany); Eckert, S.; Gerbeth, G. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, 01328 Dresden (Germany)

    2015-12-01

    Highlights: • We present liquid metal experiments dedicated to gas entrainment on the free surface. • Ultrasonic and X-ray attenuation techniques have been used to study the mechanisms of gas entrainment. • A comparison between bubbly flow in water and GaInSn showed substantial differences. • Our results emphasize the importance of liquid metal experiments which are able to provide a suitable data base for numerical code validation. - Abstract: Entrainment of cover gas into the liquid metal coolant is one of the principal safety issues in the design of innovative liquid metal-cooled fast reactors. We present generic experimental studies of this phenomenon in low-melting metals. Ultrasonic and X-ray diagnostic tools were considered for a visualization of gas entrainment at the free surface of the melt. Laboratory experiments were conducted using the eutectic alloy GaInSn, which is liquid at room temperature. Vortex-activated entrainment of air at the free surface of a rotating flow was revealed by ultrasonic techniques. X-ray radioscopy was used to visualize the behavior of argon bubbles inside a slit geometry. The measurements reveal distinct differences between water and GaInSn, especially with respect to the process of bubble formation and the coalescence and breakup of bubbles. Our results emphasize the importance of liquid metal experiments which are able to provide a suitable data base for numerical code validation.

  20. Dissolution of cellulose in ionic liquid: A review

    Science.gov (United States)

    Mohd, N.; Draman, S. F. S.; Salleh, M. S. N.; Yusof, N. B.

    2017-02-01

    Dissolution of cellulose with ionic liquids (IL) and deep eutectic solvent (DES) lets the comprehensive dissolution of cellulose. Basically, cellulose can be dissolved, in some hydrophilic ionic liquids, such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-allyl-3-methylimidazolium chloride (AMIMCl). Chloride based ionic liquids are suitable solvents for cellulose dissolution. Although the ILs is very useful in fine chemical industry, its application in the pharmaceutical and food industry have been very limited due to issues with toxicity, purity, and high cost. Seeing to these limitations, new green alternative solvent which is DES was used. This green solvents, may be definitely treated as the next-generation reagents for more sustainable industrial development. Thus, this review aims to discuss the dissolution of cellulose either with ionic liquids or DES and its application.

  1. Preparation and Thermal Properties of Eutectic Hydrate Salt Phase Change Thermal Energy Storage Material

    OpenAIRE

    Liang, Lin; Chen, Xi

    2018-01-01

    In this study, a new cold storage phase change material eutectic hydrate salt (K2HPO4·3H2O–NaH2PO4·2H2O–Na2S2O3·5H2O) was prepared, modified, and tested. The modification was performed by adding a nucleating agent and thickener. The physical properties such as viscosity, surface tension, cold storage characteristics, supercooling, and the stability during freeze-thaw cycles were studied. Results show that the use of nucleating agents, such as sodium tetraborate, sodium fluoride, and nanoparti...

  2. Chemical properties of some elements in a molten lithium chloride, potassium chloride eutectic (1962)

    International Nuclear Information System (INIS)

    Molina, R.

    1961-12-01

    The increasing use of molten media especially in chemical preparations and for certain technological applications, has made it more necessary to have a knowledge of the chemical properties of elements in these solvents. Structural studies on molten solutions show the existence of certain species such as ions and complexes known to exist in aqueous solutions. This fact, together with certain experiments on chemical reactions in molten media has led us to establish a comparison between these media and aqueous solutions. We wish to show that the same fundamental phenomena occur in these media as are found in the chemistry of aqueous solutions and that this makes it possible to predict certain reactions. We have taken as examples the chemical properties of vanadium, uranium and sulphur in a LiCl-KCl eutectic melted at 480 deg. C. The first problem is to identify the various degrees of oxidation of these elements existing in the solvent chosen. We have tried to resolve it by comparing the absorption spectra obtained in aqueous solution and in the molten eutectic. We consider the possibilities of this method in a chapter on absorption spectrophotometry in the LiCl-KCl eutectic. During the study of the chemical properties we stress the various methods of displacing the equilibria: complex formation, variation of the oxidation-reduction properties with complex formation. The complexes of the O 2- ion are considered in particular. The study of the exchange of this particle is facilitated by the use of a classification of some of its complexes which we call the pO 2- scale by analogy with the pH scale; the value pO 2- is defined by the relationship: pO 2- = log O 2- Similarly, the use of apparent potential diagrams pO 2- makes it possible to predict and to interpret reactions involving the simultaneous exchange of electrons and O 2- ions between the various degrees of oxidation of the same element. It is possible, by studying some reactions of this type between two elements

  3. Design of a Eutectic Freeze Crystallization process for multicomponent waste water stream

    DEFF Research Database (Denmark)

    Lewis, Alison E.; Nathoo, J.; Thomsen, Kaj

    2010-01-01

    Complex, hypersaline brines originating from the mining and extractive metallurgical industries have the potential to be treated using Eutectic Freeze Crystallization (EFC). Although EFC has been shown to be effective in separating a single salt and water, it has yet to be applied to the complex...... hypersaline brines that are typical of reverse osmosis retentates in South Africa. This paper focuses on the application of EFC for the purification of a typical brine containing high levels of sodium, chlorine, sulphate and ammonia that cannot be achieved with other separation techniques. The presence...

  4. Study on corrosion test techniques in lead bismuth eutectic flow. Joint research report in JFY2002

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Sekimoto, Hiroshi

    2003-03-01

    The evaluation of corrosion behaviors of core and structural materials in lead bismuth eutectic is one of the key issues for the utilization of lead bismuth eutectic as a coolant of the primary loops of lead bismuth cooled fast breeder reactors (FBRs) and the intermediate heat transport media of new-type steam generators of the sodium cooled FBRs. The purpose of the present study is to establish corrosion test techniques in lead bismuth eutectic flow. The techniques of steel corrosion test and oxygen control in flowing lead bismuth eutectic, and the technologies of a lead bismuth flow test at high temperature and high velocity were developed through corrosion test using a lead bismuth flow test loop of the Tokyo Institute of Technology in JFY2002. The major results are summarized as follows: (1) Techniques of fabrication, mount and rinse of corrosion specimens, measurement method of weight loss, and SEM/EDX analysis method have been established through lead bismuth corrosion test. (2) Weight losses were measured, corrosion and lead bismuth-adhered layers and eroded parts were observed in two 1000 hr-corrosion tests, and the results were compared with each other for twelve existing steels including ODS, F82H and SUH-3. (3) An oxygen sensor made of zirconia electrolyte structurally resistant to thermal stress and thermal shock was developed and tested in the lead bismuth flow loop. Good performance has been obtained. (4) An oxygen control method by injecting argon and hydrogen mixture gas containing steam into lead bismuth was applied to the lead bismuth flow loop, and technical issues for the development of the oxygen control method were extracted. (5) Technical measures for freezing and leakage of lead bismuth in the flow loop were accumulated. (6) Technical measures for flow rate decrease/blockage due to precipitation of oxide and corrosion products in a low temperature section of the lead bismuth flow loop were accumulated. (7) Electromagnetic flow meters with MI

  5. Directional solidification of filamentary shapes of Pb--Cd and Pb--Sn eutectic alloys

    International Nuclear Information System (INIS)

    Dhindaw, B.K.; Verhoeven, J.D.; Spencer, C.R.; Gibson, E.D.

    1978-01-01

    Eutectic alloys of Pb--Cd and Pb--Sn were directionally solidified as thin filamentary strips contained in stainless steel and quartz capillaries. As the solidification rate increased the filament width, w, had to be reduced to maintain complete alignment of the lamellae clear across the filament. It was determined that in order to achieve complete alignment the ratio of filament width to lamellar spacing, w/lambda had to be less than about 30. Experiments were carried out at rates of 2-400 μm/s and at temperature gradients of 130 and 320 0 C/cm

  6. Fundamental study on the salt distillation from the mixtures of rare earth precipitates and LiCl-KCl eutectic salt

    International Nuclear Information System (INIS)

    Yang, H. C.; Eun, H. C.; Cho, Y. Z.; Lee, H. S.; Kim, I. T.

    2008-01-01

    An electrorefining process of spent nuclear fuel generates waste salt containing some radioactive metal chlorides. The most effective method to reduce salt waste volume is to separate radioactive metals from non-radioactive salts. A promising approach is to change radioactive metal chlorides into salt-insoluble oxides by an oxygen sparging. Following this, salt distillation process is available to effectively separate the precipitated particulate metal oxides from salt. This study investigated the distillation rates of LiCl-KCl eutectic salt under different vacuums at elevated temperatures. The first part study investigated distillation rates of eutectic salt under different vacuums at high temperatures by using thermo-gravimetric furnace system. In the second part, we tested the removal of eutectic salt from the RE precipitates by using the laboratory vacuum distillation furnace system. Investigated variables were the temperature of mixture, the degree of vacuum and the time

  7. Effects of Eutectic Si and Secondary Dendrite Arm Spacing on the Mechanical Properties of Al-Si-Cu Cast Alloys

    International Nuclear Information System (INIS)

    Lee, Kyungmin; Kim, Yumi; Kim, Youngman; Hong, Sungkil; Choi, Seweon; Kim, Youngchan; Kang, Changseok

    2014-01-01

    The present study aims at investigating the effects of eutectic Si and Secondary dendrite arm spacing (SDAS) on mechanical properties of Al-Si-Cu alloy. Heat treatment and controlling of solidification rate affect to microstructure of Al-Si-Cu alloy. Al-Si-Cu alloy was dissolved in an electric furnace. The alloy cast in STD61 mold which had been pre-heated to 95 ℃ and 200 ℃. Eutectic Si and SDAS were finer as cooling rate increased. Image analysis technique has been utilized to examine the microstructure. Microstructure observation results showed that T6 heat treatment has a strong influence eutectic Si particle morphology. The mechanical properties, such as tensile strength, yield strength, elongation, were improved by ASTM E8 standard. Tensile properties of the Al-Si-Cu alloys prepared by different cooling rates were the same as each other by T6 heat treatment.

  8. Thermal properties and stabilities of the eutectic mixture: 1,6-hexanediol/lauric acid as a phase change material for thermal energy storage

    International Nuclear Information System (INIS)

    Han, Lipeng; Ma, Guixiang; Xie, Shaolei; Sun, Jinhe; Jia, Yongzhong; Jing, Yan

    2017-01-01

    Highlights: • The eutectic mixture of 1,6-hexanediol/lauric acid was studied as a phase change material. • The mass fraction of 1,6-hexanediol in eutectic point is 70%. • The melting point and latent heat are measured to be 36.92 °C and 177.11 J g −1 . • The eutectic mixture showed good thermal and cyclic stabilities. - Abstract: Thermal properties and stabilities of the eutectic mixture: 1,6-hexanediol (HE) and lauric acid (LA) as a new phase change material (PCM) for latent heat thermal energy storage (TES) were investigated. Differential scanning calorimetry (DSC) results indicated that the aforementioned HE/LA mixture with eutectic composition (70/30 wt.%) was a suitable PCM in terms of melting point (T peak = 36.92 ± 0.71 °C) and latent heat of fusion (ΔH m = 177.11 ± 7.93 J g −1 ). After 1000 thermal cycles, the change in melting point for the eutectic mixture was in the range of −0.49% to −1.19%, and the change in latent heat of fusion was in the range of −0.22% to −3.24%. The eutectic mixture was thermally and chemically stable according to results of thermogravimetric analysis (TGA), volatile test and Fourier Transform Infrared (FT-IR) spectroscopic analysis. Therefore, the HE/LA eutectic mixture is an effective TES material to reduce energy consumption.

  9. High temperature diffusion induced liquid phase joining of a heat resistant alloy

    International Nuclear Information System (INIS)

    Wikstrom, N.P.; Egbewande, A.T.; Ojo, O.A.

    2008-01-01

    Transient liquid phase bonding (TLP) of a nickel base superalloy, Waspaloy, was performed to study the influence of holding time and temperature on the joint microstructure. Insufficient holding time for complete isothermal solidification of liquated insert caused formation of eutectic-type microconstituent along the joint centerline region in the alloy. In agreement with prediction by conventional TLP diffusion models, an increase in bonding temperature for a constant gap size, resulted in decrease in the time, t f, required to form a eutectic-free joint by complete isothermal solidification. However, a significant deviation from these models was observed in specimens bonded at and above 1175 deg. C. A reduction in isothermal solidification rate with increased temperature was observed in these specimens, such that a eutectic-free joint could not be achieved by holding for a time period that produced complete isothermal solidification at lower temperatures. Boron-rich particles were observed within the eutectic that formed in the joints prepared at the higher temperatures. An overriding effect of decrease in boron solubility relative to increase in its diffusivity with increase in temperature, is a plausible important factor responsible for the reduction in isothermal solidification rate at the higher bonding temperatures

  10. Phase formation in contact of dissimilar metals

    Energy Technology Data Exchange (ETDEWEB)

    Savvin, V S; Kazachkova, Yu A; Povzner, A A [Ural State Technical University-UPI, Mira st., 19, A-203, Yekaterinburg 620002 (Russian Federation)], E-mail: savvin-vs@yandex.ru

    2008-02-15

    Formation and growth of intermediate phases in contact of the crystalline samples forming a two-component eutectic system is considered. It is shown that during the competition to a growing liquid phase the intermediate solid phases cannot grow by diffusion. The alternative is formation of metastable areas of a liquid phase. Measurements of liquid layers extent in Pb-Bi and In-Bi systems have allowed to define the composition of liquid on interface where formation of metastable liquid is possible. The results show that the concentration interval of a liquid layer corresponds to a stable constitution diagram. In order to explain the experimental results the hypothesis according to which the intermediate solid phases are formed as a result of precipitation from metastable melt is considered. The experimental confirmation of formation and crystallization of a metastable liquid is the fact that intergrowth of the samples forming system with an intermetallic phase at temperatures below the temperature of fusion of the most low-melting eutectic is observed. The possibility of the processes concerned with the occurrence of metastable areas of a liquid is showed by means of computer imitation.

  11. Tunable colorimetric performance of Al{sub 2}O{sub 3}-YAG:Ce{sup 3+} eutectic crystal by Ce{sup 3+} concentration

    Energy Technology Data Exchange (ETDEWEB)

    Sai, Qinglin, E-mail: saiql@siom.ac.cn; Xia, Changtai, E-mail: xia_ct@siom.ac.cn

    2017-06-15

    Ce-doped Al{sub 2}O{sub 3}-YAG eutectics with different percentage of Ce were successfully grown by the optical floating zone technique. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the structure. The results show that they have typical eutectic structure of interpenetrating sapphire and garnet phases with the tens of microns lamella spacing. The photoluminescence spectra of the eutectics showed that they have wide excitation band, and samples with 1.6 mol% Ce-doped has the highest emission intensity. The eutectic-packaged LED has high luminous efficiency and its color can be modulated by changing Ce concentration. The results reveal that Ce-doped Al{sub 2}O{sub 3}-YAG eutectic is a promising phosphor for white LED applications.

  12. Directional crystallization of B4C-NbB2 and B4C-MoB2 eutectic compositions

    International Nuclear Information System (INIS)

    Paderno, Varvara; Paderno, Y.B.; Filippov, Vladimir; Liashchenko, Alfred

    2004-01-01

    We studied the directional crystallization of different compositions in B 4 C-NbB 2 and B 4 C-MoB 2 systems. The eutectic compositions for both systems are evaluated. It is shown that in the first system the rod-like eutectic structure is formed, in second, the 'Chinese hieroglyphics'. In both cases high hardness and high microplasticity are observed, which are much more than for individual component phases. These compositions may be considered as a new kind of self-strengthening composite materials

  13. Limets 2: a hot-cell test set-up for Liquid Metal Embrittlement (LME) studies in liquid lead alloys

    International Nuclear Information System (INIS)

    Van den Bosch, J.; Bosch, R.W.; Al Mazouzi, A.

    2008-01-01

    Full text of publication follows. In the nuclear energy sector one of the main candidate designs for the accelerator driven system (ADS) uses liquid lead or lead bismuth eutectic both as a coolant and as spallation target. In the fusion community liquid lead lithium eutectic is considered as a possible coolant for the blanket and as a tritium source. Therefore the candidate materials for such structural components should not only comply with the operating conditions but in addition need to guarantee chemical and physical integrity when coming into contact with the lead alloys. The latter phenomena can be manifested in terms of erosion/corrosion. and/or of the so called liquid metal embrittlement (LME). Thus the susceptibility to LME of the structural materials under consideration to be used in such applications should be investigated in contact with the various lead alloys. LME, if occurring in any solid metal/liquid meta] couple, is likely to increase with irradiation hardening as localised stresses and crack initiations can promote it. To investigate the mechanical response of irradiated materials in contact with a liquid metal under representative conditions, a dedicated testing facility has recently been developed and built at our centre. It consists of an instrumented hot cell. equipped with a testing machine that allows mechanical testing of active materials in contact with active liquid lead lithium and liquid lead bismuth under well controlled chemistry conditions. The specificity of the installation is to handle highly activated and contaminated samples. Also a dedicated dismantling set-up has been developed that allows to retrieve the samples from the irradiation rig without any supplementary damage. In this presentation we will focus on the technical design of this new installation, its special features that have been developed to allow testing in a hot environment and the modifications and actions that have been taken to allow testing in liquid lead

  14. Effect of rare earth elements on uranium electrodeposition in LiCl-KCI eutectic salt

    International Nuclear Information System (INIS)

    Park, Sung Bin; Kang, Young Ho; Hwang, Sung Chan; Lee, Han Soo; Peak, Seung Woo; Ahn, Do Hee

    2015-01-01

    It is necessary to investigate the electrodeposition behavior of uranium and other elements on the cathode in the electrorefining process to recover the uranium selectively from the reduced metals of the electrolytic reduction process since transuranic elements and rare earth elements is dissolved in the LiCl-KCl eutectic salt. Study on separation factors of U, Ce, Y and Nd based on U and Ce was performed to investigate the deposition behavior of the cathode with respect to the concentration of rare earth elements in LiCl-KCl eutectic salt. After electrorefining with constant current mode by using Ce metal as a sacrifice anode, the contents of U, Ce, Y and Nd in the salt phase and the deposit phase of the cathode were analyzed, and separation factors of the elements were obtained from the analyses. Securing conditions of pure uranium recovery in the electrorefining process was investigated by considering the separation factors with respect to UCl 3 and CeCl 3 /UCl 3 ratio

  15. Electrochemical study in the molten sodium acid sulphate - potassium acid sulphate eutectic

    International Nuclear Information System (INIS)

    Le Ber, F.

    1964-01-01

    The general properties of the NaHSO 4 - KHSO 4 molten eutectic resemble those of neutral sulphates and those of concentrated H 2 SO 4 . We have been able to show the existence in solution of the ions HSO - 4 SO 2- 4 , and H 3 O + , these last being formed by the action of the HSO - 4 ions on dissolved H 2 O. The electro-active zone with a polished platinum electrode is limited in oxidation by the ions H 3 O + and SO 2- 4 , and in reduction by the protons of HSO - 4 . We have compared the electro-active zones obtained with different electrodes (Ag-Au-graphite-mercury). We have considered the dissolution of a few metallic oxides and halides. This work shows the role as O 2- ion acceptors of HSO - 4 ions. We have undertaken an electro-chemical study of a few oxido-reduction Systems: H + / H 2 , Ag↓ / Ag (1), the vanadium and uranium Systems, those of mercury Hg↓ / Hg 2- 2 and of gold Au/Au 3+ , then of the attack by the solvent of a few common metals such as aluminium, iron, copper and nickel. The study of silver Systems has made it possible to obtain the solubility products of AgCl and AgBr and to consider the possibility of coulometric titration Cl - ions with Ag + ions. We have shown the existence of various chemical species of vanadium which may exist in the molten eutectic. (author) [fr

  16. Recovery of Residual LiCl-KCl Eutectic Salts in Radioactive Rare Earth Precipitates

    International Nuclear Information System (INIS)

    Eun, Hee Chul; Yang, Hee Chul; Kim, In Tae; Lee, Han Soo; Cho, Yung Zun

    2010-01-01

    For the pyrochemical process of spent nuclear fuels, recovery of LiCl-KCl eutectic salts is needed to reduce radioactive waste volume and to recycle resource materials. This paper is about recovery of residual LiCl-KCl eutectic salts in radioactive rare earth precipitates (rare earth oxychlorides or oxides) by using a vacuum distillation process. In the vacuum distillation test apparatus, the salts in the rare earth precipitates were vaporized and were separated effectively. The separated salts were deposited in three positions of the vacuum distillation test apparatus or were collected in the filter and it is difficult to recover them. To resolve the problem, a vacuum distillation and condensation system, which is subjected to the force of a temperature gradient at a reduced pressure, was developed. In a preliminary test of the vacuum distillation/condensation recovery system, it was confirmed that it was possible to condense the vaporized salts only in the salt collector and to recover the condensed salts from the salt collector easily

  17. Natural deep eutectic solvents (NADES) as green solvents for carbon dioxide capture

    Science.gov (United States)

    Mulia, Kamarza; Putri, Sylvania; Krisanti, Elsa; Nasruddin

    2017-03-01

    This study was conducted to determine the effectiveness of Natural Deep Eutectic Solvent (NADES), consisting of choline chloride and a hydrogen bonding donor (HBD) compound, in terms of carbon dioxide absorption. Solubility of carbon dioxide in NADES was found to be influenced HBD compound used and choline chloride to HBD ratio, carbon dioxide pressure, and contact time. HBD and choline/HBD ratios used were 1,2-propanediol (1:2), glycerol (1:2), and malic acid (1:1). The carbon dioxide absorption measurement was conducted using an apparatus that utilizes the volumetric method. Absorption curves were obtained up to pressures of 30 bar, showing a linear relationship between the amount absorbed and the final pressure of carbon dioxide. The choline and 1,2-propanediol eutectic mixture absorbs the highest amount of carbon dioxide, approaching 0.1 mole-fraction at 3.0 MPa and 50°C. We found that NADES ability to absorb carbon dioxide correlates with its polarity as tested using Nile Red as a solvatochromic probe.

  18. Thermal Characterization of Lauric-Stearic Acid/Expanded Graphite Eutectic Mixture as Phase Change Materials.

    Science.gov (United States)

    Zhu, Hua; Zhang, Peng; Meng, Zhaonan; Li, Ming

    2015-04-01

    The eutectic mixture of lauric acid (LA) and stearic acid (SA) is a desirable phase change material (PCM) due to the constant melting temperature and large latent heat. However, its poor thermal conductivity has hampered its broad utilization. In the present study, pure LA, SA and the mixtures with various mass fractions of LA-SA were used as the basic PCMs, and 10 wt% expanded graphite (EG) was added to enhance the thermal conductivities. The phase change behaviors, microstructural analysis, thermal conductivities and thermal stabilities of the mixtures of PCMs were investigated by differential scanning calorimetry (DSC), scanning electronic microscope (SEM), transient plane source (TPS) and thermogravimetric analysis (TGA), respectively. The results show that the LA-SA binary mixture of mixture ratio of 76.3 wt%: 23.7 wt% forms an eutectic mixture, which melts at 38.99 °C and has a latent heat of 159.94 J/g. The melted fatty acids are well absorbed by the porous network of EG and they have a good thermal stability. Furthermore, poor thermal conductivities can be well enhanced by the addition of EG.

  19. Creep deformation behavior in eutectic Sn-Ag solder joints using a novel mapping technique

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, J.P.; Guo, F.; McDougall, J.; Bieler, T.R.; Subramanian, K.N.; Park, J.K.

    1999-11-01

    Creep deformation behavior was measured for 60--100 {micro}m thick solder joints. The solder joints investigated consisted of: (1) non-composite solder joints made with eutectic Sn-Ag solder, and (2) composite solder joints with eutectic Sn-Ag solder containing 20 vol.%, 5 {micro}m diameter in-situ Cu{sub 6}Sn{sub 5} intermetallic reinforcements. All creep testing in this study was carried out at room temperature. Qualitative and quantitative assessment of creep deformation was characterized on the solder joints. Creep deformation was analyzed using a novel mapping technique where a geometrical-regular line pattern was etched over the entire solder joint using excimer laser ablation. During creep, the laser-ablation (LA) pattern becomes distorted due to deformation in the solder joint. By imaging the distortion of laser-ablation patterns using the SEM, actual deformation mapping for the entire solder joint is revealed. The technique involves sequential optical/digital imaging of the deformation versus time history during creep. By tracing and recording the deformation of the LA patterns on the solder over intervals of time, local creep data are obtained in many locations in the joint. This analysis enables global and localized creep shear strains and strain rate to be determined.

  20. Density functional theory study of the interfacial properties of Ni/Ni3Si eutectic alloy

    International Nuclear Information System (INIS)

    Zhao, Yuhong; Wen, Zhiqin; Hou, Hua; Guo, Wei; Han, Peide

    2014-01-01

    In order to clarify the heterogeneous nucleation potential of α-Ni grains on Ni 3 Si particles in Ni-Ni 3 Si eutectic alloy, the work of adhesion (W ad ), fracture toughness (G), interfacial energy (γ i ), and electronic structure of the index (0 0 1), (1 1 0) and (1 1 1) Ni/Ni 3 Si interfaces with two different cohesive manners are investigated using first-principles method based on density functional theory. Results indicate that the center site stacking sequence (OM) is preferable to continue the natural stacking sequence of bulk Ni and Ni 3 Si. Since OM stacking interfaces have larger W ad , G and γ i than that of the top site stacking (OT) interfaces. The Ni/Ni 3 Si (1 1 0) interface with OM stacking has the best mechanical properties. Therefore, the formation of this interface can improve the stability, ductility and fracture toughness of Ni-Ni 3 Si eutectic alloy. The calculated interfacial energy of Ni/Ni 3 Si (0 0 1), (1 1 0) and (1 1 1) interfaces with OM stacking proves the excellent nucleation potency of Ni 3 Si particles for α-Ni phase from thermodynamic considerations. Besides, the electronic structure and chemical bonding of (1 1 0) interface with OM stacking are also discussed.

  1. Crystallization behavior of Ge-doped eutectic Sb70Te30 films in optical disks

    International Nuclear Information System (INIS)

    Khulbe, Pramod K.; Hurst, Terril; Mansuripur, Masud; Horie, Michikazu

    2002-01-01

    We report laser-induced crystallization behavior of binary Sb-Te and ternary Ge-doped eutectic Sb70Te30 thin film samples in a typical quadrilayer stack as used in phase-change optical disk data storage. Several experiments have been conducted on a two-laser static tester in which one laser operating in pulse mode writes crystalline marks on amorphous film or amorphous marks on crystalline film, while the second laser operating at low-power cw mode simultaneously monitors the progress of the crystalline or amorphous mark formation in real time in terms of the reflectivity variation. The results of this study show that the crystallization kinetics of this class of film is strongly growth dominant, which is significantly different from the crystallization kinetics of stochiometric Ge-Sb-Te compositions. In Sb-Te and Ge-doped eutectic Sb70Te30 thin-film samples, the crystallization behavior of the two forms of amorphous states, namely, as-deposited amorphous state and melt-quenched amorphous state, remains approximately same. We have also presented experiments showing the effect of the variation of the Sb/Te ratio and Ge doping on the crystallization behavior of these films

  2. Synthesis of a Novel Allyl-Functionalized Deep Eutectic Solvent to Promote Dissolution of Cellulose

    Directory of Open Access Journals (Sweden)

    Hongwei Ren

    2016-08-01

    Full Text Available Deep eutectic solvents (DESs offer attractive options for the “green” dissolution of cellulose. However, the protic hydroxyl group causes weak dissolving ability of DESs, requiring the substitution of hydroxyl groups in the cation. In this study, a novel allyl-functionalized DES was synthesized and characterized, and its possible effect on improved dissolution of cellulose was investigated. The DES was synthesized by a eutectic mixture of allyl triethyl ammonium chloride ([ATEAm]Cl and oxalic acid (Oxa at a molar ratio of 1:1 and a freezing point of 49 °C. The [ATEAm]Cl-Oxa exhibited high polarity (56.40 kcal/mol, dipolarity/polarizability effects (1.10, hydrogen-bond donating acidity (0.41, hydrogen-bond basicity (0.89, and low viscosity (76 cP at 120 °C owing to the π-π conjugative effect induced by the allyl group. The correlation between temperature and viscosity on the [ATEAm]Cl-Oxa fit the Arrhenius equation well. The [ATEAm]Cl-Oxa showed low pseudo activation energy for viscous flow (44.56 kJ/mol. The improved properties of the [ATEAm]Cl-Oxa noticeably promoted the solubility (6.48 wt.% of cellulose.

  3. Thermodynamic properties of thulium and ytterbium in fused NaCl-KCl-CsCl eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Novoselova, A., E-mail: A.Novoselova@ihte.uran.ru [Institute of High-Temperature Electrochemistry, Ural Division, Russian Academy of Science, S. Kovalevskaya Str., 22, Ekaterinburg 620990 (Russian Federation); Smolenski, V. [Institute of High-Temperature Electrochemistry, Ural Division, Russian Academy of Science, S. Kovalevskaya Str., 22, Ekaterinburg 620990 (Russian Federation)

    2011-07-15

    Research highlights: > Tm and Yb chloride compounds as fission products. > The investigation of electrochemical properties of lanthanides. > Determination of the apparent standard redox potentials of the couple Ln(III)/Ln(II) in fused NaCl-KCl-CsCl eutectic at (823 to 973) K. > The calculation of the basic thermodynamic properties of redox reaction in molten salt. - Abstract: This work presents the results of a study of the Tm{sup 3+}/Tm{sup 2+} and Yb{sup 3+}/Yb{sup 2+} couple redox potentials vs. Cl{sup -}/Cl{sub 2} reference electrode at the temperature range (823 to 973) K in fused NaCl-KCl-CsCl eutectic by direct potentiometric method. Initial concentrations of TmCl{sub 3} and YbCl{sub 3} in solvents did not exceed 5.0 mol%. Basic thermodynamic properties of the reactions TmCl{sub 2(l)} + 1/2 Cl{sub 2(g)} {r_reversible} TmCl{sub 3(l)} and YbCl{sub 2(l)} + 1/2 Cl{sub 2(g)} {r_reversible} YbCl{sub 3(l)} were calculated using the temperature dependencies of apparent standard potentials of the couples E{sub Tm{sup 3+}/Tm{sup 2+*}} and E{sub Yb{sup 3+}/Yb{sup 2+*}}.

  4. Improved mechanical properties of near-eutectic Al-Si piston alloy through ultrasonic melt treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae-Gil; Lee, Sang-Hwa [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Lee, Jung-Moo, E-mail: jmoolee@kims.re.kr [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Cho, Young-Hee [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Kim, Su-Hyeon [Metal Materials Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Yoon, Woon-Ha [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of)

    2016-07-04

    The effects of ultrasonic melt treatment (UST) on the microstructure and mechanical properties of Al-12.2Si-3.3Cu-2.4Ni-0.8Mg-0.1Fe (wt%) piston alloy were systematically investigated. Rigid colonies consisting of primary Si, eutectic Si, Mg{sub 2}Si and various aluminides (ε-Al{sub 3}Ni, δ-Al{sub 3}CuNi, π-Al{sub 8}FeMg{sub 3}Si{sub 6}, γ-Al{sub 7}Cu{sub 4}Ni, Q-Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and θ-Al{sub 2}Cu) were observed in the as-cast alloys. The sizes of the secondary phases, eutectic cell and grain were significantly decreased by UST because of the enhanced nucleation of each phase under ultrasonic irradiation. The yield strength, tensile strength and elongation at 25 °C were significantly improved by UST mainly because of the refinement of the microstructures. Both tensile strength and elongation at 350 °C were also improved by UST despite the unchanged yield strength.

  5. Influence of Lanthanum on Solidification, Microstructure, and Mechanical Properties of Eutectic Al-Si Piston Alloy

    Science.gov (United States)

    Ahmad, R.; Asmael, M. B. A.

    2016-07-01

    The effects of Lanthanum (La) concentration on the solidification parameters of the α-Al, Al-Si, and Al-Cu phases and on the microstructure, tensile, and hardness properties of eutectic Al-Si-Cu-Mg alloy were systematically investigated. The solidification parameters were examined using computer-aided cooling curve thermal analysis (CA-CCTA). The cooling curve and microstructure analysis showed that La altered the Si structure. The nucleation and growth temperatures of eutectic Si decreased when 0.3 wt.% La was added, and a high depression temperature was obtained with 1.0 wt.% La. High amounts of La considerably modified the Si structure and decreased the area and aspect ratio by 69.9 and 51%, respectively. The thermal analysis result recorded a faster freezing time with the La addition and a 36% alteration in the secondary dendrite arm spacing. Two secondary or ternary La-rich intermetallic phases were formed with needle- and plate-like structures. Furthermore, the mechanical properties were investigated by hardness and tensile tests with different La concentrations. The addition of small amounts of La (0.1 wt.%) significantly improved the ultimate tensile strength and quality index of the Al-Si-Cu-Mg alloy. In addition, the hardness value of Al-11Si-Cu increased by 7-8% with the increasing amount of La added.

  6. Ionic Liquids to Replace Hydrazine

    Science.gov (United States)

    Koelfgen, Syri; Sims, Joe; Forton, Melissa; Allan, Barry; Rogers, Robin; Shamshina, Julia

    2011-01-01

    A method for developing safe, easy-to-handle propellants has been developed based upon ionic liquids (ILs) or their eutectic mixtures. An IL is a binary combination of a typically organic cation and anion, which generally produces an ionic salt with a melting point below 100 deg C. Many ILs have melting points near, or even below, room temperature (room temperature ionic liquids, RTILs). More importantly, a number of ILs have a positive enthalpy of formation. This means the thermal energy released during decomposition reactions makes energetic ILs ideal for use as propellants. In this specific work, to date, a baseline set of energetic ILs has been identified, synthesized, and characterized. Many of the ILs in this set have excellent performance potential in their own right. In all, ten ILs were characterized for their enthalpy of formation, density, melting point, glass transition point (if applicable), and decomposition temperature. Enthalpy of formation was measured using a microcalorimeter designed specifically to test milligram amounts of energetic materials. Of the ten ILs characterized, five offer higher Isp performance than hydrazine, ranging between 10 and 113 seconds higher than the state-of-the-art propellant. To achieve this level of performance, the energetic cations 4- amino-l,2,4-triazolium and 3-amino-1,2,4-triazolium were paired with various anions in the nitrate, dicyanamide, chloride, and 3-nitro-l,2,4-triazole families. Protonation, alkylation, and butylation synthesis routes were used for creation of the different salts.

  7. Overview of EU activities on DEMO liquid metal breeder blanket

    International Nuclear Information System (INIS)

    Giancarli, L.; Proust, E.; Malang, S.; Reimann, J.; Perujo, A.

    1994-01-01

    The present paper gives an overview of both design and experimental activities within the European Union (EU) concerning the development of liquid metal breeder blankets for DEMO. After several years of studies on breeding blankets, two blanket concepts are presently considered, both using the eutectic Pb-17Li: the dual-coolant concept and the water-cooled concept. The analysis of such concepts has permitted to identify the experimental areas where further data are required. Tritium control and MHD-issues are, at present, the activities on which is devoted the greatest effort within the EU. (authors). 4 figs., 4 tabs., 39 refs

  8. Synthesis of novel lidocaine-releasing poly(diol-co-citrate) elastomers by using deep eutectic solvents.

    Science.gov (United States)

    Serrano, M Concepción; Gutiérrez, María C; Jiménez, Ricardo; Ferrer, M Luisa; del Monte, Francisco

    2012-01-14

    Poly(octanediol-co-citrate) elastomers containing high loading of lidocaine were synthesized at temperatures below 100 °C by means of using deep eutectic mixtures of 1,8-octanediol and lidocaine. The preservation of lidocaine integrity resulted in high-capacity drug-eluting elastomers. This journal is © The Royal Society of Chemistry 2012

  9. Quantitative Comparison of Ternary Eutectic Phase-Field Simulations with Analytical 3D Jackson-Hunt Approaches

    Science.gov (United States)

    Steinmetz, Philipp; Kellner, Michael; Hötzer, Johannes; Nestler, Britta

    2018-02-01

    For the analytical description of the relationship between undercoolings, lamellar spacings and growth velocities during the directional solidification of ternary eutectics in 2D and 3D, different extensions based on the theory of Jackson and Hunt are reported in the literature. Besides analytical approaches, the phase-field method has been established to study the spatially complex microstructure evolution during the solidification of eutectic alloys. The understanding of the fundamental mechanisms controlling the morphology development in multiphase, multicomponent systems is of high interest. For this purpose, a comparison is made between the analytical extensions and three-dimensional phase-field simulations of directional solidification in an ideal ternary eutectic system. Based on the observed accordance in two-dimensional validation cases, the experimentally reported, inherently three-dimensional chain-like pattern is investigated in extensive simulation studies. The results are quantitatively compared with the analytical results reported in the literature, and with a newly derived approach which uses equal undercoolings. A good accordance of the undercooling-spacing characteristics between simulations and the analytical Jackson-Hunt apporaches are found. The results show that the applied phase-field model, which is based on the Grand potential approach, is able to describe the analytically predicted relationship between the undercooling and the lamellar arrangements during the directional solidification of a ternary eutectic system in 3D.

  10. Assessing the thermal performance of three cold energy storage materials with low eutectic temperature for food cold chain

    International Nuclear Information System (INIS)

    Li, Yu-Chu M.; Chen, Yen-Hong A.

    2016-01-01

    Development a novel inorganic salt eutectic solution for cold energy storage material (ESM) have succeeded conducted in this study. The eutectic solutions shows a low melting temperature and high latent heat of fusion value as effect of addition nano copper powder into the eutectic solution. We report a new simulation technique of thermal property as well as test results of three inorganic salts. The thermal property of three inorganic salts were simulated using the differential scanning calorimetry (DSC) method with the help of three binary phase diagrams. The simulation shows the liquidus temperature of each binary phase diagram conforming nicely to the theoretical prediction of the Gibbs-Duhem equation. In order to predict cold storage keeping time, we derived a heat transfer model based on energy conservation law. Three ESMs were tested for their cold energy storage performance and thermal properties aging for durability. The empirical results indicate that, for food cold chain, the melting point rule is superior with less deviation. With this information, one can pre-estimate the basic design parameters with great accuracy; the cost of design and development for a new cold storage logistics system can be dramatically reduced. - Highlights: • For these three ESMs, their modified values of melting point and latent heat are presented in Table 2. • But, TC is usually not a constant like TE. • The freezing time underwent a drop ∼10% in the binary eutectic region.

  11. Identification of intermetallic phases in a eutectic Al-Si casting alloy using electron backscatter diffraction pattern analysis

    International Nuclear Information System (INIS)

    Kral, M.V.; McIntyre, H.R.; Smillie, M.J.

    2004-01-01

    Intermetallic phases in sand cast eutectic Al-Si alloys were characterized using a combination of SEM, EDS and EBSD pattern analysis. Chinese script α-phase particles were consistent with cubic Al 19 (Fe,Mn) 5 Si 2 . Plate-shaped β-phase particles were consistent with tetragonal Al 3 (Fe,Mn)Si 2

  12. Basic visualization experiments on eutectic reaction of boron carbide and stainless steel under sodium-cooled fast reactor conditions

    International Nuclear Information System (INIS)

    Yamano, Hidemasa; Suzuki, Tohru; Kamiyama, Kenji; Kudo, Isamu

    2016-01-01

    This paper describes basic visualization experiments on eutectic reaction and relocation of boron carbide (B 4 C) and stainless steel (SS) under a high temperature condition exceeding 1500degC as well as the importance of such behaviors in molten core during a core disruptive accident in a Generation-IV sodium-cooled fast reactor (750 MWe class) designed in Japan. At first, a reactivity history was calculated using an exact perturbation calculation tool taking into account expected behaviors. This calculation indicated the importance of a relocation behavior of the B 4 C-SS eutectic because its behavior has a large uncertainty in the reactivity history. To clarify this behavior, basic experiments were carried out by visualizing the reaction of a B 4 C pellet contacted with molten SS in a high temperature-heating furnace. The experiments have shown the eutectic reaction visualization as well as freezing and relocation of the B 4 C-SS eutectic in upper part of the solidified test piece due to the density separation. (author)

  13. Determining the thermodynamic melting parameters of sulfamethoxazole, trimethoprim, urea, nicodin, and their double eutectics by differential scanning calorimetry

    Science.gov (United States)

    Agafonova, E. V.; Moshchenskii, Yu. V.; Tkachenko, M. L.

    2013-08-01

    The literature data on the thermodynamic melting characteristics of sulfamethoxazole, urea, trimethoprim, and nicodin are analyzed for individual compounds. Their enthalpies and melting points, either individually or in the composition of eutectics, are found by means of DSC. The entropies of fusion and the cryoscopic constants of individual compounds are calculated.

  14. Renewable and high efficient syngas production from carbon dioxide and water through solar energy assisted electrolysis in eutectic molten salts

    KAUST Repository

    Wu, Hongjun; Liu, Yue; Ji, Deqiang; Li, Zhida; Yi, Guanlin; Yuan, Dandan; Wang, Baohui; Zhang, Zhonghai; Wang, Peng

    2017-01-01

    sustainable energy sources: concentrated solar light heats molten salt and solar cell supplies electricity for electrolysis. The eutectic Li0.85Na0.61K0.54CO3/nLiOH molten electrolyte is rationally designed with low melting point (<450 °C). The synthesized

  15. Thermal characteristic investigation of eutectic composite fatty acid as heat storage material for solar heating and cooling application

    Science.gov (United States)

    Thaib, R.; Fauzi, H.; Ong, H. C.; Rizal, S.; Mahlia, T. M. I.; Riza, M.

    2018-03-01

    A composite phase change material (CPCM) of myristic acid/palmitic acid/sodium myristate (MA/PA/SM) and of myristic acid/palmitic acid/sodium laurate (MA/PA/SL) were impregnated with purified damar gum as called Shorea Javanica (SJ) to improve the thermal conductivity of CPCM. The thermal properties, thermal conductivity, and thermal stability of both CPCM have investigated by using a Differential Scanning Calorimetry (DSC) thermal analysis, hot disc thermal conductivity analyzer, and Simultaneous Thermal Analyzer (STA), simultaneously. However, a chemical compatibility between both fatty acid eutectic mixtures and SJ in composite mixtures measured by Fourier Transform Infra-Red (FT-IR) spectrophotometer. The results were obtained that the thermal conductivity of MA/PA/SM/SJ and MA/PA/SL/SJ eutectic composite phase change material (CPCM) were improved by addition 3 wt.% and 2 wt.% of Shorea javanica (SJ), respectively, without occur a significant change on thermal properties of CPCM. Moreover, the absorbance spectrum of FT-IR shows the good compatibility of SJ with both MA/PA/SM and MA/PA/SL eutectic mixtures, the composite PCM also present good thermal performance and good thermal stability. Therefore, it can be noted that the purified Shorea Javanica proposed, the as high conductive material in this study was able to improve the thermal conductivity of eutectic PCM without any significant reduction on its thermo-physical and chemical properties and can be recommended as novelty composite phase change material for thermal energy storage application.

  16. A thermodynamic investigation of liquid gold-antimony alloys

    International Nuclear Information System (INIS)

    Hayer, E.; Castanet, R.

    1995-01-01

    The enthalpies of mixing of liquid Au-Sb alloys were determined between 906 and 1028 K giving Δ mix H o m = x Sb x Au (-11.234-1.1078x Sb + 5.713x Sb 2 ) kJ mol -1 . The minimum was found at x Sb = 0.45 with Δ mix H o m = -2.62 ± 0.2 kJ mol -1 contrary to published measurements on liquid Au-Sb alloys. The limiting partial molar enthalpy of Au in Sb at 935 K was measured to Δ mix h o m (Au, liq, in ∞Sb, liq) = -6.05 ± 0.4 kJ mol -1 . The enthalpy of formation of the solid compound AuSb 2 determined at 298 K by solution calorimetry in liquid Sb, Δ f H o m (AuSb 2 ) = -5.40 ± 0.6 kJ mol -1 , is found in fair agreement with literature data. DTA measurements were performed on the Au-rich part of the liquidus and a new liquidus curve is suggested between Au and the eutectic concentration. The eutectic point was found at 630.37 ± 0.25 K and x Sb 0.350. (orig.)

  17. Diffusion barrier characteristics and shear fracture behaviors of eutectic PbSn solder/electroless Co(W,P) samples

    International Nuclear Information System (INIS)

    Pan, Hung-Chun; Hsieh, Tsung-Eong

    2012-01-01

    Highlights: ► Diffusion barrier features, activation energies of IMC growth and mechanical behaviors of electroless Co(W,P)/PbSn joints. ► Amorphous Co(W,P) is a sacrificial- plus stuffed-type barrier while polycrystalline Co(W,P) is a sacrificial-type barrier. ► Ductile mode dominates the failure of Co(W,P)/PbSn joints. ► Phosphorus content of Co(W,P) is crucial to the barrier capability and microstructure evolution at Co(W,P)/PbSn interface. ► Diffusion barrier capability is governed by the nature of chemical bonds, rather than the crystallinity of materials. - Abstract: Diffusion barrier characteristics, activation energy (E a ) of IMC growth and bonding properties of amorphous and polycrystalline electroless Co(W,P) (termed as α-Co(W,P) and poly-Co(W,P)) to eutectic PbSn solder are presented. Intermetallic compound (IMC) spallation and an nano-crystalline P-rich layer were observed in PbSn/α-Co(W,P) samples subjected to liquid-state aging at 250 °C. In contrast, IMCs resided on the P-rich layer in PbSn/α-Co(W,P) samples subjected to solid-state aging at 150 °C. Thick IMCs neighboring to an amorphous W-rich layer was seen in PbSn/poly-Co(W,P) samples regardless of the aging type. α-Co(W,P) was found to be a sacrificial- plus stuffed-type barrier while poly-Co(W,P) is mainly a sacrificial-type barrier. The values of E a 's for PbSn/α-Co(W,P) and PbSn/poly-Co(W,P) systems were 338.6 and 167.5 kJ/mol, respectively. Shear test revealed the ductile mode dominates the failure in both α- and poly-Co(W,P) samples. Analytical results indicated the high P content in electroless layer might enhance the barrier capability but degrade the bonding strength.

  18. Ferrofluid of magnetic clay and menthol based deep eutectic solvent: Application in directly suspended droplet microextraction for enrichment of some emerging contaminant explosives in water and soil samples.

    Science.gov (United States)

    Zarei, Ali Reza; Nedaei, Maryam; Ghorbanian, Sohrab Ali

    2018-06-08

    In this work, for the first time, ferrofluid of magnetic montmorillonite nanoclay and deep eutectic solvent was prepared and coupled with directly suspended droplet microextraction. Incorporation of ferrofluid in a miniaturized sample preparation technique resulted in achieving high extraction efficiency while developing a green analytical method. The prepared ferrofluid has strong sorbing properties and hydrophobic characteristics. In this method, a micro-droplet of ferrofluid was suspended into the vortex of a stirring aqueous solution and after completing the extraction process, was easily separated from the solution by a magnetic rod without any operational problems. The predominant experimental variables affecting the extraction efficiency of explosives were evaluated. Under optimal conditions, the limits of detection were in the range 0.22-0.91 μg L -1 . The enrichment factors were between 23 and 93 and the relative standard deviations were <10%. The relative recoveries were ranged from 88 to 104%. This method was successfully applied for the extraction and preconcentration of explosives in water and soil samples, followed their determination by high performance liquid chromatography with ultraviolet detection (HPLC-UV). Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Die-cast of a hypo-eutectic AL-SI alloy: influence of injection temperature on microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Santos, Silvano Leal dos; Santos, Sydney Ferreira

    2014-01-01

    Die-casting is widely used for manufacturing light alloy components for automotive industry. Among others, hypo-eutectic Al-Si alloys are currently processed by die-casting. To obtain high quality die-cast components, a better understanding on the correlations between processing parameters, microstructures, and mechanical properties are of utmost importance. In this study, we investigate the effect of injection temperature of liquid metal on the microstructure and mechanical properties of Al-Si alloy EN AC 46000 (DIN designation). The injection temperatures were 579, 589, 643, and 709 deg C. As-cast components had their microstructures analyzed by X-ray diffraction, optical and scanning electron microscopy, and X-ray energy dispersive spectroscopy. The mechanical properties were examined by micro-hardness and tensile tests. It was observed that the ultimate tensile strength slightly increased with the increase of injection temperature. The same trend was observed for micro-hardness. The amount of porosity in the samples varies in a small amount for different injection temperatures. On the other hand, the microstructure of the alloys seems more refined for higher temperatures of injection. This refinement in microstructure might play a major role on the mechanical properties of the Al-Si die-cast alloy. (author)

  20. Glass transition dynamics and conductivity scaling in ionic deep eutectic solvents: The case of (acetamide + lithium nitrate/sodium thiocyanate) melts

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Satya N., E-mail: satyanarayantripathy@gmail.com; Wojnarowska, Zaneta; Knapik, Justyna; Paluch, Marian [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow (Poland); Shirota, Hideaki [Department of Nanomaterial Science and Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522 (Japan); Biswas, Ranjit [Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700098 (India)

    2015-05-14

    A detailed investigation on the molecular dynamics of ionic deep eutectic solvents (acetamide + lithium nitrate/sodium thiocyanate) is reported. The study was carried out employing dielectric relaxation spectroscopy covering seven decades in frequency (10{sup −1}-10{sup 6} Hz) and in a wide temperature range from 373 K down to 173 K, accessing the dynamic observables both in liquid and glassy state. The dielectric response of the ionic system has been presented in the dynamic window of modulus formalism to understand the conductivity relaxation and its possible connection to the origin of localized motion. Two secondary relaxation processes appear below glass transition temperature. Our findings provide suitable interpretation on the nature of secondary Johari-Goldstein process describing the ion translation and orientation of dipoles in a combined approach using Ngai’s coupling model. A nearly constant loss feature is witnessed at shorter times/lower temperatures. We also discuss the ac conductivity scaling behavior using Summerfield approach and random free energy barrier model which establish the time-temperature superposition principle. These experimental observations have fundamental importance on theoretical elucidation of the conductivity relaxation and glass transition phenomena in molten ionic conductors.

  1. Low temperature synthesis of CaZrO3 nanoceramics from CaCl2–NaCl molten eutectic salt

    Directory of Open Access Journals (Sweden)

    Rahman Fazli

    2015-06-01

    Full Text Available CaZrO3 nanoceramics were successfully synthesized at 700 C using the molten salt method, and the effects of processing parameters, such as temperature, holding time, and amount of salt on the crystallization of CaZrO3 were investigated. CaCl2, Na2CO3, and nano-ZrO2 were used as starting materials. On heating, CaCl2–NaCl molten eutectic salt provided a liquid medium for the reaction of CaCO3 and ZrO2 to form CaZrO3. The results demonstrated that CaZrO3 started to form at about 600C and that, after the temperature was increased to 1,000C, the amounts of CaZrO3 in the resultant powders increased with a concomitant decrease in CaCO3and ZrO2 contents. After washing with hot distilled water, the samples heated for 3 h at 700C were single-phase CaZrO3 with 90–95 nm particle size. Furthermore, the synthesized CaZrO3 particles retained the size and morphology of the ZrO2 powders which indicated that a template mechanism dominated the formation of CaZrO3 by molten-salt method.

  2. A Double-Blind, Randomised, Placebo-Controlled Trial of EMLA® Cream (Eutectic Lidocaine/Prilocaine Cream) for Analgesia Prior to Cryotherapy of Plantar Warts in Adults.

    Science.gov (United States)

    Lee, Siew Hui; Pakdeethai, Janthorn; Toh, Matthias P H S; Aw, Derrick C W

    2014-10-01

    Cryotherapy with liquid nitrogen is an effective, safe and convenient form of treatment for plantar warts. EMLA® cream (eutectic mixture of lidocaine 2.5% and prilocaine 2.5%) is a topical local anaesthetic agent that has proven to be effective and well tolerated in the relief of pain associated with various minor interventions in numerous clinical settings. In a single-centre, double-blind, randomised placebo-controlled study, 64 subjects were randomised into 2 groups. The subjects had a thick layer of EMLA® cream or placebo cream applied to pared plantar wart(s) and onto the surrounding margin of 1 mm to 2 mm under occlusion for 60 minutes prior to receiving cryotherapy. The pain of cryotherapy was evaluated by the subjects using a self-administered Visual Analogue Scale (VAS) immediately after the cryotherapy. There was no statistical difference between the mean VAS score for EMLA® cream (47.0 ± 21.4 mm) and placebo (48.9 ± 22.0 mm). Those with more than 1 wart had a significantly higher VAS score than those with only 1 wart (59.1 ± 21.8 vs. 44.3 ± 20.4, P cryotherapy. We conclude that the application of EMLA® cream prior to cryotherapy does not reduce the pain associated with cryotherapy.

  3. The SAM, not the electrodes, dominates charge transport in metal-monolayer//Ga2O3/gallium-indium eutectic junctions.

    Science.gov (United States)

    Reus, William F; Thuo, Martin M; Shapiro, Nathan D; Nijhuis, Christian A; Whitesides, George M

    2012-06-26

    The liquid-metal eutectic of gallium and indium (EGaIn) is a useful electrode for making soft electrical contacts to self-assembled monolayers (SAMs). This electrode has, however, one feature whose effect on charge transport has been incompletely understood: a thin (approximately 0.7 nm) film-consisting primarily of Ga(2)O(3)-that covers its surface when in contact with air. SAMs that rectify current have been measured using this electrode in Ag(TS)-SAM//Ga(2)O(3)/EGaIn (where Ag(TS) = template-stripped Ag surface) junctions. This paper organizes evidence, both published and unpublished, showing that the molecular structure of the SAM (specifically, the presence of an accessible molecular orbital asymmetrically located within the SAM), not the difference between the electrodes or the characteristics of the Ga(2)O(3) film, causes the observed rectification. By examining and ruling out potential mechanisms of rectification that rely either on the Ga(2)O(3) film or on the asymmetry of the electrodes, this paper demonstrates that the structure of the SAM dominates charge transport through Ag(TS)-SAM//Ga(2)O(3)/EGaIn junctions, and that the electrical characteristics of the Ga(2)O(3) film have a negligible effect on these measurements.

  4. Research on the behavior of polonium produced in lead-bismuth eutectic irradiated with neutrons. JAERI's nuclear research promotion program, H10-026. Contract research

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Igashira, Masayuki; Yano, Toyohiko; Obara, Toru; Ohsaki, Toshiro

    2002-03-01

    Lead-Bismuth Eutectic (LBE) is proposed by several research institutes as a coolant of liquid metal cooled fast reactors, instead of sodium, and a target of accelerator driven subcritical nuclear reactor systems (ADS). LBE has some advantages that it is chemically inert compared to sodium and that its melting point is low like sodium. A problem might be that bismuth produces polonium, which is an alpha emitter, by irradiation of neutrons. The purpose of the study is to get information for quantitative estimations of the release of polonium on LBE cooled fast reactors and on ADSs by making it clear about production rate of polonium (information about cross section) by neutron irradiation of LBE, release rate of the produced polonium from LBE, and adsorption rate of the polonium on various materials. To get the information about production rate of polonium, neutron cross sections of bismuth were measured in keV energy region, which was important in fast reactors, by using the Pelletron accelerator in Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology. The obtained neutron capture cross sections were from 1/2 to 1/3 of the evaluated values in JENDL and the obtained polonium production cross sections were almost 1/3 of it. At the same time, an experimental device was designed for heating and adsorption experiments and the performance was tested. The performance of alpha spectrometer was tested also. By those the method was established for the measurement of polonium released from melted LBE after neutron irradiation. (author)

  5. Characterization of age-hardening behavior of eutectic region in squeeze-cast A356-T5 alloy using nanoindenter and atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Youn, S.W. [Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564 (Japan)]. E-mail: youn.sung-won@aist.go.jp; Kang, C.G. [National Laboratory of Thixo/Rheo Forming, School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)]. E-mail: cgkang@pusan.ac.kr

    2006-06-15

    The nano/microstructure, the aging response (in T5 heat treatment), and the mechanical/tribological properties of the eutectic regions in squeeze-cast A356 alloy parts were investigated using nano/micro-indentation and mechanical scratching, combined with optical microscopy and atomic force microscope (AFM). Most eutectic Si crystals in the A356 alloy showed a modified morphology as fine-fibers. The loading curve for the eutectic region was more irregular than that of the primary Al region due to the presence of various particles of varying strength. In addition, the eutectic region showed lower pile-up and higher elastic recovery than the primary Al region. The aging responses of the eutectic regions in the squeeze-cast A356 alloys aged at 150 deg. C for different times (0, 2, 4, 8, 10, 16, 24, 36, and 72 h) were investigated. As the aging time increased, acicular Si particles in the eutectic regions gradually came to a fine structure. Both Vickers hardness (H {sub V}) and indentation (H {sub IT}) test results showed almost the same trend of aging curves, and the peak was obtained at the same aging time of 10 h. A remarkable size-dependence of the tests was found. The friction coefficient for the eutectic region was lower than that for the primary Al region.

  6. Progress on the development of H-concentration probes in eutectic lead-lithium: Synthesis and characterization of electrochemical sensor materials

    Energy Technology Data Exchange (ETDEWEB)

    Llivina, L.; Colominas, S. [Universitat Ramon Llull, ETS Institut Quimic de Sarria, Electrochemical Methods Laboratory - Analytical Chemistry Department Via Augusta, 390, 08017 Barcelona (Spain); Reyes, G. [Universitat Ramon Llull, ETS Institut Quimic de Sarria, Industrial Engineering Department, Via Augusta, 390, 08017 Barcelona (Spain); Abella, J., E-mail: jordi.abella@iqs.es [Universitat Ramon Llull, ETS Institut Quimic de Sarria, Electrochemical Methods Laboratory - Analytical Chemistry Department Via Augusta, 390, 08017 Barcelona (Spain)

    2012-08-15

    Dynamic tritium concentration measurement in lithium-lead eutectic (17% Li-83% Pb) is of major interest for a reliable tritium testing program in ITER TBM and for an experimental proof of tritium self-sufficiency in liquid metal breeding systems. Potentiometric hydrogen sensors for molten lithium-lead eutectic have been designed at the Electrochemical Methods Lab at Institut Quimic de Sarria (IQS) at Barcelona and are under development and qualification. The probes are based on the use of solid state electrolytes and works as Proton Exchange Membranes (PEM). In this work, the following compounds have been synthesized in order to be tested as PEM H-probes: BaCeO{sub 3}, BaCe{sub 0.9}Y{sub 0.1}O{sub 3-{delta}}, SrCe{sub 0.9}Y{sub 0.1}O{sub 3-{delta}} and Sr(Ce{sub 0.9}-Zr{sub 0.1}){sub 0.95}Yb{sub 0.05}O{sub 3-{delta}}. Potentiometric measurements of the synthesized ceramic elements have been performed at different hydrogen concentrations at 500 Degree-Sign C. In this campaign, a fixed and known hydrogen pressure has been used in the reference electrode. The sensors constructed using the proton conductor elements BaCeO{sub 3}, SrCe{sub 0.9}Y{sub 0.1}O{sub 3-{delta}} and Sr(Ce{sub 0.9}-Zr{sub 0.1}){sub 0.95}Yb{sub 0.05}O{sub 3-{delta}} exhibited quite stable output potential and its value was quite close to the theoretical value calculated with the Nernst equation (deviation less than 100 mV). Unstable measurement was obtained using BaCe{sub 0.9}Y{sub 0.1}O{sub 3-{delta}} as a solid state electrolyte in the sensor.

  7. Part I: Virtual laboratory versus traditional laboratory: Which is more effective for teaching electrochemistry? Part II: The green synthesis of aurones using a deep eutectic solvent

    Science.gov (United States)

    Hawkins, Ian C.

    liquids. Aurones are a unique biological product in many plants and preliminary research has shown that these chemicals could be viable drug candidates. The use of the deep eutectic solvent provides a green and inexpensive way to make large numbers of different aurones quickly. In this dissertation, we show the synthesis of 12 different aurones using this method.

  8. Transverse peltier effect in Pb-Bi{sub 2}Te{sub 3} multilayer structures

    Energy Technology Data Exchange (ETDEWEB)

    Reitmaier, Christina; Walther, Franziska; Kyarad, Amir; Lengfellner, Hans [University of Regensburg (Germany)

    2009-07-01

    Metal-semiconductor multilayer structures show, according to model calculations, large anisotropy in their electrical and thermal transport properties. Multilayer stacks consisting of alternating layers of Pb and n-type Bi{sub 2}Te{sub 3} and prepared by a heating procedure displayed large thermoelectric anisotropy up to {delta}S{approx}200 {mu} V/K, depending on the thickness ratio p=d{sub BiTe}/d{sub Pb}, where d{sub BiTe} and d{sub Pb} are the thicknesses of Bi{sub 2}Te{sub 3} and Pb layers, respectively. From multilayer stacks, tilted samples with layers inclined with respect to the sample surface where obtained by cutting stacks obliquely to the stack axis. Non-zero off-diagonal elements in the Seebeck-tensor describing the thermopower of tilted samples allow for the occurance of a transverse Peltier effect. Experimental results demonstrate cooling by the transverse Peltier effect and are compared to model calculations.

  9. The nuclear design optimization of a Pb-Bi alloy cooled transmuter, PEACER-300

    International Nuclear Information System (INIS)

    Lim, Jae-Yong; Kim, Myung-Hyun

    2006-01-01

    A core design of lead-bismuth cooled fast reactor, PEACER-300 has been investigated to maximize its transmutation capability within safety criteria. Transmutation of minor actinide under a closed recycling was analyzed with assumption on decontamination factors in pyro-reprocessing plant data at reasonably high values. To acquire high transmutation performance, feed fuel composition, P/D ratio, active core height and fuel cycle strategy were changed. For preventing the fuel meting and guaranteeing long plant life-time, the number of fuel assembly array and normal operation temperature were decided. The optimized design parameter were chosen as of a flat core shape with 50 cm of active core height and 5 m core diameter, loaded with 17 x 17 arrayed fuel assemblies. A pitch to diameter ratio is 2.2, operating coolant temperature range is 300 deg. C to 400 deg. C, and core consists of 3 different enrichment zones with one year cycle length. Performance of designed core showed a high transmutation capability with support ratio of 2.085, large negative temperature feedback coefficients, and sufficient shutdown margin with 28 B 4 C control assemblies. (authors)

  10. Natural Radioisotopes of Pb, Bi and Po in the Atmosphere of Coal Burning Area

    Directory of Open Access Journals (Sweden)

    Asnor Azrin Sabuti

    2011-07-01

    Full Text Available This paper is discussing the changes of natural radionuclides 210Pb, 210Bi and 210Po in atmospheric samples (rainwater and solid fallout caused by Sultan Salahuddin Abdul Aziz coal-fired Power Plant (SSAAPP operation. We also describe the seasonal changes of 210Pb, 210Bi and 210Po to the monsoon seasons in Peninsular Malaysia. Bulk atmospheric trap was used to collect atmospheric samples for five months (7 Feb 2007 to 27 July 2007 and placed within the SSAAPP area. The natural radionuclide activity levels in the atmosphere were affected by local meteorological conditions to impact their variance over time. As a result, the natural radionulides were increased from the ambient value in atmospheric particles (solid fallout, which related to coal combustion by-product releases into atmosphere. In contrast, this was giving relatively lower or in the same magnitude from most places of radionuclides in rainwater samples. Degree of changes between 210Pb, 210Bi and 210Po affected by high temperature combustions were found to be different for each nuclide due to their respective volatility. 210Po in rainwater and solid fallout were considerably low during early inter-monsoon period which mainly controlled by the rainfall pattern. On the other hand, 210Pb and 210Bi in solid fallout were recorded higher concentrations which associated to drier conditions and more particulate content in air column during southwest monsoon. The mean activity ratio of 210BiRW/210PbRW and 210PoRW/210PbRW are 0.47 ± 0.04 and 0.52 ± 0.17, respectively. Whereas for 210BiSF/210PbSF and 210PoSF/210PbSF are 0.52 ± 0.05 and 0.71 ± 0.13, respectively. Some results showed high activity ratios, reaching to 1.87 ± 0.08 for 210Bi/210Pb and 4.58 ± 0.55 for 210Po/210Pb, of which due to additional of 210Bi and 210Po excess. These ratios also indicating that 210Pb and 210Bi could potentially come from the same source, compared to 210Po which varied differently, showing evidence it came from different source. The excess for 210Pb, 210Bi and 210Po in solid fallout samples was more significant compared to rainwater samples.

  11. Long-lived isotopes production in Pb-Bi target irradiated by high energy protons

    Energy Technology Data Exchange (ETDEWEB)

    Korovin, Y.A.; Konobeyev, A.Y.; Pereslavtsev, P.E. [Obninsk Institute of Nuclear Power Engineering, Obninsk (Russian Federation)

    1995-10-01

    Concentration of long-lived isotopes has been calculated for lead and lead-bismuth targets irradiated by protons with energy 0.4, 0.8, 1.0 and 1.6 GeV. The time of irradiation is equal from 1 month up to 2 years. The data libraries BROND, ADL and MENDL have been used to obtain the rate of nuclide transmutation. All calculations have been performed using the SNT code.

  12. Preliminary design concept of HYPER cooling system using Pb-Bi coolant

    Energy Technology Data Exchange (ETDEWEB)

    Tak, Nam Il; Song, Tae Y.; Park, Won S.; Kim, Chang H

    2001-09-01

    The present study focuses on providing the basic concept of HYPER's cooling system based on simple and fundamental calculations. The system operating temperature was preliminarily determined as 340/510 .deg. C. The total system flow rate of HYPER is {approx} 40,000kg/sec and the flow velocity in the core is preliminarily designed to be {approx}1.5 m/sec. For hot conditions of HYPER core, the simple analytic calculation predicted that the maximum temperature of the cladding outer surface is 634 .deg. C, which is below the design limit, 650 .deg. C. However, the SLTHEN code modified for HYPER's subchannel analysis predicted that the maximum temperature of the cladding outer surface in the same conditions is higher than the design limit by 4.7 .deg. C. The comparison with the results of the analytic model and additional sensitivity calculations showed that the modified SLTHEN code can reasonably simulate the heat transfer between subchannels of the HYPER core and be used effectively for thermal hydraulic design of the HYPER core in conceptual design stage. A forced circulation is inevitable during a full power condition since natural circulation is not sufficient to cool the core with reasonable system pressure drop and reasonable system height. However, a natural circulation can be an excellent method for decay heat removal when the height difference between the core and the heat exchanger is above 10 m. In order to avoid high pressure loads on the vessel, loop configuration was chosen. The simplification of cooling system and high system efficiency were attained by removing independent target cooling system and intermediate heat transport system. A superheated rankle cycle was chosen since it is technically matured and its thermal efficiency is reasonably high.

  13. Hydrostatic compression of galenobismutite (PbBi2S4)

    DEFF Research Database (Denmark)

    Olsen, Lars Arnskov; Balic Zunic, Tonci; Makovicky, Emil

    2007-01-01

    in galenobismutite have stereochemically active lone electron pairs, which distort the cation polyhedra at room pressure. The cation eccentricities decrease at higher pressure but are still pronounced at 9 GPa. Galenobismutite is isotypic with CaFe2O4 (CF) but moves away from the idealised CF-type structure during...

  14. SiC/SiC composites through transient eutectic-phase route for fusion applications

    International Nuclear Information System (INIS)

    Katoh, Y.; Kohyama, A.; Nozawa, T.; Sato, M.

    2004-01-01

    Factors that may limit attractiveness of silicon-carbide-based ceramic composites to fusion applications include thermal conductivity, applicable design stress, chemical compatibility, hermeticity, radiation stability and fabrication cost. A novel SiC/SiC composite, which has recently been developed through nano-infiltration and transient eutectic-phase (NITE) processing route, surpasses conventional materials in many of these properties. In this paper, the latest development, property evaluation and prospect of the NITE SiC/SiC composites are briefly reviewed. The topics range from fundamental aspects of process development to industrial process development. Elevated temperature strength, fracture behavior, and thermo-physical properties in various environments are summarized. Future directions of materials and application technology development are also discussed

  15. Development of salt hydrate eutectics as latent heat storage for air conditioning and cooling

    International Nuclear Information System (INIS)

    Efimova, Anastasia; Pinnau, Sebastian; Mischke, Matthias; Breitkopf, Cornelia; Ruck, Michael; Schmidt, Peer

    2014-01-01

    Graphical abstract: - Highlights: • Inorganic salt hydrates. • Latent heat thermal energy storage. • Thermal behavior of melting and crystallization. • Cycling stability. • Nucleation. - Abstract: Sustainable air conditioning systems require heat reservoirs that operate between 4 and 20 °C. A systematic search for binary and ternary eutectics of inorganic salts and salt hydrates with melting temperatures in this temperature regime and with high enthalpies of fusion has been performed by means of differential scanning calorimetry (DSC). Promising results were obtained for the pseudo-ternary system Zn(NO 3 ) 2 ·6H 2 O, Mn(NO 3 ) 2 ·4H 2 O, and KNO 3 with the melting temperature range 18–21 °C and the enthalpy of fusion of about 110 kJ kg −1 . Suitable nucleating and thickening agents have been found and tested to prevent the mixture from supercooling and phase separation

  16. Microstructural characterization of LaB6-ZrB2 eutectic composites

    International Nuclear Information System (INIS)

    Wang Shengchang; Wei, W.J.; Zhang Litong

    2003-01-01

    Detail microstructure of LaB 6 -ZrB 2 composites has been characterized by TEM and HRTEM. The directionally solidified ZrB 2 fibers in LaB 6 matrix near LaB 6 -ZrB 2 eutectics present at least three growing relationship systems. In addition to previous report of [001]LaB 6 / [0001]ZrB 2 relationship, [0 anti 11]LaB 6 / [0001]ZrB 2 and [1 anti 20]LaB 6 / [0001]ZrB 2 . were identified. Different with [001]LaB 6 / [0001]ZrB 2 system, the interfaces of [0 anti 11]LaB 6 / [0001]ZrB 2 and [1 anti 20]LaB 6 / [0001]ZrB 2 . show non-coherent and clean interfaces. There is neither glassy phase nor reaction products found at the interfaces (orig.)

  17. Voltammetry of uranyl chloride in the LiCl - KCl eutectic

    International Nuclear Information System (INIS)

    Fondanaiche, J.C.

    1965-01-01

    Spent UO 2 - PuO 2 fuels can be reprocessed in a molten salt media. Uranium dioxide can easily be dissolved as UO 2 Cl 2 in a molten salt bath using chlorine gas. A study of quantitative analysis of an uranyl chloride solution in the LiCl-KCl eutectic at 400 C has been performed here using voltammetry (a large area-graphite indicator electrode has been employed). The precision which is obtained is around 6 per cent for concentrations below 10 -2 M. Precision decreases slightly for more concentrated solutions. The study of polarization curves allowed to give a reduction mechanism for the UO 2 ++ ion. For dilute solutions, this reduction proceeds through the UO 2 + ion. But interpretation of current-potential curves is made difficult by the dismutation reaction of the UO 2 ion and by the fact that the surface of the indicator electrode is not renewed. (author) [fr

  18. Template Directed Oligomer Ligation in Eutectic Phases in Water-Ice

    DEFF Research Database (Denmark)

    Dörr, Mark; Löffler, Philipp M. G.; Wieczorek, Rafal

    2011-01-01

    achieved, if small, activated, oligonucleotides are ligated on a template. A template directed ligation can lead to autocatalytic or cross- catalytic replication and thus maintain a certain pool of catalyitc species. Important for these processes is a destabilization of the formed douplex....../multiplex to overcome product inhibition. The latest results of our template directed ligation experiments in the eutectic ice phase are presented. Different activation strategies are compared and an outlook towards applications in molecular evolution and artifical cell systems (« protocells ») will be given. Figure 1....... (a) Reaction scheme of the condensation reaction of two oligoribonucleotides : The leaving group in this example is imidazole. (b) Illustration of a possible spatial arrangement of a template (15nt) directed ligation. The 7-mer is activated with imidazole at the 5' phosphate (apical moiety...

  19. Characteristics of polonium contamination from neutral irradiated lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Miura, T.; Obara, T.; Sekimoto, H.

    2004-01-01

    After neutron capture, bismuth-209 changes to polonium-210 that emits α-particles. Lead-Bismuth eutectic (LBE) in reactor system contaminates the system by polonium. We analyzed adsorbed materials from melted LBE on quartz glass plate. Lead, bismuth and their oxides were confirmed in adsorbed materials. And, we evaluated the baking method in vacuum for removal of polonium and adsorbed materials on quartz glass plate. It was evaluated that it is possible to remove almost all the polonium from the quartz glass plate by baking at temperature more than 300 C. degrees. Unfolding method was applied to calculate polonium distribution in LBE ingot. From measured α-particle pulse height distribution, the polonium distribution in depth of LBE ingot was calculated using quadratic programming code, where response functions are calculated by Monte Carlo method. (authors)

  20. Synthesis of gold nanoflowers using deep eutectic solvent with high surface enhanced Raman scattering properties

    Science.gov (United States)

    Aghakhani Mahyari, Farzaneh; Tohidi, Maryam; Safavi, Afsaneh

    2016-09-01

    A facile, seed-less and one-pot method was developed for synthesis of gold nanoflowers with multiple tips through reduction of HAuCl4 with deep eutectic solvent at room temperature. This solvent is eco-friendly, low-cost, non-toxic and biodegradable and can act as both reducing and shape-controlling agent. In this protocol, highly branched and stable gold nanoflowers were obtained without using any capping agent. The obtained products were characterized by different techniques including, field emission scanning electron microscopy, transmission electron microscopy, x-ray diffraction and UV-vis spectroscopy. The as-prepared gold nanoflowers exhibit efficient surface-enhanced Raman scattering (SERS) properties which can be used as excellent substrates for SERS.

  1. Flow characteristics of natural circulation in a lead-bismuth eutectic loop

    Institute of Scientific and Technical Information of China (English)

    Chen-Chong Yue; Liu-Li Chen; Ke-Feng Lyu; Yang Li; Sheng Gao; Yue-Jing Liu; Qun-Ying Huang

    2017-01-01

    Lead and lead-alloys are proposed in future advanced nuclear system as coolant and spallation target.To test the natural circulation and gas-lift and obtain thermal-hydraulics data for computational fluid dynamics (CFD) and system code validation,a lead-bismuth eutectic rectangular loop,the KYLIN-Ⅱ Thermal Hydraulic natural circulation test loop,has been designed and constructed by the FDS team.In this paper,theoretical analysis on natural circulation thermal-hydraulic performance is described and the steady-state natural circulation experiment is performed.The results indicated that the natural circulation capability depends on the loop resistance and the temperature and center height differences between the hot and cold legs.The theoretical analysis results agree well with,while the CFD deviate from,the experimental results.

  2. Evidence of eutectic crystallization and transient nucleation in Al89La6Ni5 amorphous alloy

    International Nuclear Information System (INIS)

    Zhuang, Y. X.; Jiang, J. Z.; Lin, Z. G.; Mezouar, M.; Crichton, W.; Inoue, A.

    2001-01-01

    The phase evolution with the temperature and time in the process of crystallization of Al 89 La 6 Ni 5 amorphous alloy has been investigated by in situ high-temperature and high-pressure x-ray powder diffraction using synchrotron radiation. Two crystalline phases, fcc-Al and a metastable bcc-(AlNi) 11 La 3 -like phase, were identified after the first crystallization reaction, revealing a eutectic reaction instead of a primary reaction suggested in the literature. Time-dependent nucleation in the amorphous alloy is detected and the experimental data can be fitted by both the Zeldovich's and Kashchiev's transient nucleation models with transient nucleation times of 220 and 120 min, respectively. Copyright 2001 American Institute of Physics

  3. Superconductivity in filamentary eutectic composites. Progress report, June 1, 1980-May 31, 1980

    International Nuclear Information System (INIS)

    Zaitlin, M.P.

    1980-01-01

    Measurements of electrical resistivity and magnetic susceptibility have been performed as a function of temperature on samples of Nb-Th eutectic composite. Samples with Nb filament radii as small as 38A were used which is considerably less than the coherence length xi in Nb of approx. 380A. Surprisingly, measurements of all samples showed a drop in electrical resistance near the transition temperature of bulk Nb and an unmeasurably small resistance by approx. 8K. The magnetic susceptibility showed essentially perfect diamagnetism below approx. 7 to 9K even for samples with the smallest of filament radii. This is in contradiction to theories of the proximity effect which predict a sharp decrease in the transition temperature for samples with a radius smaller than xi. Some measurements in a static magnetic field have also been made

  4. The buoyancy convection during directional solidification of AlZn eutectic

    International Nuclear Information System (INIS)

    Prazak, M.; Procio, M.; Holecek, S.

    1993-01-01

    A study has been made of the effect of buoyancy convection during the directional solidification of AlZn eutectic alloy. Experiments have been conducted using a Bridgman-Stockbarger arrangement with the furnace moving along the specimen. The apparatus rotated around the horizontal axis, which made it possible to carry out measurements at different angles β contained by the gravity and temperature gradient vectors in the specimen. The anisotropy of both the linear thermal expansion coefficient a and the hardness HK measured by the Knoop method has been studied. The dilatation measurements confirmed the expected anisotropy of the linear thermal expansion of directionally solidified specimens. The values of HK correspond with the lamellar spacing measured in the metallographic study. (orig.)

  5. Direct construction of diverse metallophthalocyanines by manifold substrates in a deep eutectic solvent

    Science.gov (United States)

    Shaabani, Ahmad; Hooshmand, Seyyed Emad; Afshari, Ronak; Shaabani, Shabnam; Ghasemi, Vahid; Atharnezhad, Mojtaba; Akbari, Masoud

    2018-02-01

    Direct access to a wide range of metal-free phthalocyanines and metallophthalocyanines in deep eutectic solvents (DESs), is reported. Substituted and unsubstituted phthalocyanines of Mn, Fe, Co, Ni, Cu, Zn, Pd, In, and Pt with various raw materials such as phthalonitriles, phthalimides, phthalic anhydrides and phthalic acids are successfully prepared in the DES based on choline chloride and urea in a very short reaction time with appropriate yields. It has been shown that DES as a green and rapidly degraded reaction medium in the environment plays a triple role as a solvent, organocatalyst, and reactant in this process. Moreover, the DES system could be separated and reused in four consecutive reaction runs with no considerable loss in catalytic activity.

  6. Drainage effect in eutectic Al-Si foam using similar alporas process

    International Nuclear Information System (INIS)

    Filho, M.O.; Junior, A.C.S; Ferrandini, P.L.; Nakazato, A.Z.; Assis, W.L.S.

    2016-01-01

    Cellular materials have particular properties. This properties are very interesting in various type of industries, as construction, automobile and shipbuilding. Two reasons why metal foams are apply in more companies are difficult process control and high production costs. Therefore, this study aims to analyze the drainage effect in four samples produced with alloy Al-Si eutectic using CaCO 3 as foaming agent, since this is low cost than TiH 2 used normally in Alporas process and this foam have well pores uniform. For these samples has been used 700°C during all process, mixing time was 180 seconds, holding time was 150 seconds and 3,5 w.t% CaCO3. Therefore, these samples were cut transversally and analyzed what were the drainage effect on the apparent density, relative density and porosity. The free zone bubbles were noticed in all the samples. (author)

  7. Towards eco-friendly crop protection: natural deep eutectic solvents and defensive secondary metabolites.

    Science.gov (United States)

    Mouden, Sanae; Klinkhamer, Peter G L; Choi, Young Hae; Leiss, Kirsten A

    2017-01-01

    With mounting concerns over health and environmental effects of pesticides, the search for environmentally acceptable substitutes has amplified. Plant secondary metabolites appear in the horizon as an attractive solution for green crop protection. This paper reviews the need for changes in the techniques and compounds that, until recently, have been the mainstay for dealing with pest insects. Here we describe and discuss main strategies for selecting plant-derived metabolites as candidates for sustainable agriculture. The second part surveys ten important insecticidal compounds, with special emphasis on those involved in human health. Many of these insecticidal metabolites, however, are crystalline solids with limited solubility which might potentially hamper commercial formulation. As such, we introduce the concept of natural deep eutectic solvents for enhancing solubility and stability of such compounds. The concept, principles and examples of green pest control discussed here offer a new suite of environmental-friendly tools designed to promote and adopt sustainable agriculture.

  8. A green deep eutectic solvent-based aqueous two-phase system for protein extracting

    International Nuclear Information System (INIS)

    Xu, Kaijia; Wang, Yuzhi; Huang, Yanhua; Li, Na; Wen, Qian

    2015-01-01

    Highlights: • A strategy for the protein purification with a deep eutectic solvent(DES)-based aqueous two-phase system. • Choline chloride-glycerin DES was selected as the extraction solvent. • Bovine serum albumin and trypsin were used as the analytes. • Aggregation phenomenon was detected in the mechanism research. - Abstract: As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n = 3), 1.6057% (n = 3) and 1.6132% (n = 3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV–vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES–protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins

  9. Electrochemical behaviour of dysprosium in the eutectic LiCl-KCl at W and Al electrodes

    International Nuclear Information System (INIS)

    Castrillejo, Y.; Bermejo, M.R.; Barrado, A.I.; Pardo, R.; Barrado, E.; Martinez, A.M.

    2005-01-01

    The electrochemical behaviour of DyCl 3 was studied in the eutectic LiCl-KCl at different temperatures. The cathodic reaction can be written:Dy(III)+3e-bar Dy(0)which can be divided in two very close cathodic steps:Dy(III)+1e-bar Dy(II)andDy(II)+2e-bar Dy(0)Transient electrochemical techniques, such as cyclic voltammetry, chronopotentiometry, and chronoamperometry were used in order to study the reaction mechanism and the transport parameters of electroactive species at a tungsten electrode. The results showed that in the eutectic LiCl-KCl, electrocrystallization of dysprosium seems to be the controlling electrochemical step. Chronoamperometric studies indicated instantaneous nucleation of dysprosium with three dimensional growth of the nuclei whatever the applied overpotential.Mass transport towards the electrode is a simple diffusion process, and the diffusion coefficient of the electroactive species, i.e. Dy(III), has been calculated. The validity of the Arrhenius law was also verified by plotting the variation of the logarithm of the diffusion coefficient versus 1/T.In addition, the electrode reactions of the LiCl-KCl-DyCl 3 solutions at an Al wire were also investigated by cyclic voltammetry and open circuit chronopotentiometry. The redox potential of the Dy(III)/Dy couple at the Al electrode was observed at more positive potentials values than those at the inert electrode. This potential shift was thermodynamically analyzed by a lowering of activity of Dy in the metal phase due to the formation of intermetallic compounds

  10. Fuel research for subcritical and critical GEN-IV systems cooled by heavy liquid metal

    International Nuclear Information System (INIS)

    Sobolev, V.; Verwerft, M.

    2009-01-01

    The participation of the Belgian Nuclear Research Centre SCK-CEN in the worldwide GEN-IV research can be considered as an opportunity. Today's GEN-IV research at SCK-CEN is mainly driven by the interests of the project MYRRHA (Multipurpose hYbrid Research Reactor for High-tech Applications). The main goal of this project is to build at SCK-CEN in Mol a new generation fast spectrum, subcritical, research and materials testing reactor MYRRHA driven by a high-energy proton accelerator. This GEN-IV MTR is cooled by heavy liquid metal (Pb-Bi) and will be used for the ADS concept demonstration, testing and qualification of new fuels, transmutation targets and innovative materials. On the European scale, MYRRHA is integrated in the Euratom FP6 Integrated Project (IP) EUROTRANS (EUROpean research programme for TRANSmutation of high level nuclear waste in an accelerator driven system), as the small-scale experimental machine for transmutation demonstration called XT-ADS. Last but not least, this experimental facility will also demonstrate the technological feasibility of the LFR (Lead-cooled Fast Reactor) GEN-IV concept; in EU the LFR design studies are performed in the framework of the Euratom FP6 ELSY (European Lead-cooled SYstem) project, where SCK-CEN is a partner. Among the research needed to ensure a safe and reliable operation of the MYRRHA/XT ADS reactor, the development and qualification of fuel and cladding materials have been recognized as one of the main key issues to be addressed

  11. Ultrasound-Assisted Transient Liquid Phase Bonding of Magnesium Alloy Using Brass Interlayer in Air

    Institute of Scientific and Technical Information of China (English)

    Zhiwei Lai; Ruishan Xie; Chuan Pan; Xiaoguang Chen; Lei Liu; Wenxian Wang; Guisheng Zou

    2017-01-01

    The microstructure evolution and oxide film behavior in ultrasound-assisted transient liquid phase (U-TLP) bonding of Mg alloy were investigated by applying different ultrasonic time at 460℃ withbrass interlayer in air.The results indicated that with increasing ultrasonic time,brass interlayer disappeared gradually and the Mg-Cu-Zn eutectic compounds were formed.The eutectic compounds in the joint decreased as the ultrasonic time increased further.The oxide removal process was divided into four steps.Continuous oxide film at the interface was partially fractured by ultrasonic vibration,and then suspended into liquid by undermining eutectic reaction.After that,the suspended oxide film was broken into small oxide fragments by ultrasonic cavitation effect,which was finally squeezed out of the joint by ultrasonic squeeze action.In addition,the mechanical properties of the joints were investigated.The maximum shear strength of the joint reached 105 MPa,which was 100% of base metal.

  12. Enlarging the surface area of an electrolytic capacitor of porous niobium by Mg−Ce eutectic liquid dealloying

    International Nuclear Information System (INIS)

    Kim, Joung Wook; Wada, Takeshi; Kim, Sung Gyoo; Kato, Hidemi

    2016-01-01

    To increase the surface area while decreasing the ligament size of an Nb anode pellet for use as a capacitor, we added Ce to an Mg melt; the dealloying reaction occurred at temperatures lower than 1023 K, the previously lowest recorded temperature for such a reaction. By analyzing the dealloying kinetics, we found the optimum dealloying conditions to produce a minimum ligament size of 100 nm in the Mg_9_5_._7Ce_4_._3 melt: 923 K for 420 s. Using these conditions, we increased the specific surface area of the Nb anode pellet to 4.3 m"2/g, which increased its mass-specific capacitance to 875,000 μFV/g.

  13. Performance of solid electrolyte type oxygen sensor in flowing lead bismuth

    International Nuclear Information System (INIS)

    Kondo, Masatoshi; Takahashi, Minoru

    2005-01-01

    A solid electrolyte type oxygen sensor for liquid 45%lead-55%bismuth (Pb-Bi) was developed. The performance of the oxygen sensor in the flowing lead-bismuth (Pb-Bi) was investigated. The initial performance of the sensor was not reliable, since the reference fluid of the oxygen saturated bismuth in the sensor cell was not compact initially. The electromotive force (EMF) obtained from the yttria stabilized zirconia (YSZ) cell was the same as that from the magnesia stabilized zirconia (MSZ) cell in the flowing Pb-Bi. The EMF of the sensor in the flowing Pb-Bi was lower than that in the stagnant Pb-Bi. However, the difference was small. The sensor showed repeatability after the long term interruption and the Pb-Bi drain/charge operation. After the performance tests, the corrosion of the sensor cells were investigated metallurgically. The YSZ cell was eroded around the free surface of the flowing Pb-Bi after 3500 hour-exposure in the flowing Pb-Bi. The MSZ cell showed smooth surface without the erosion. Although the YSZ cell worked more stably than the MSZ cell, the mechanical strength of the YSZ cell is weaker than that of the MSZ cell. (author)

  14. Directionally solidified Eu doped CaF.sub.2./sub./Li.sub.3./sub.AlF.sub.6./sub. eutectic scintillator for neutron detection

    Czech Academy of Sciences Publication Activity Database

    Kamada, K.; Hishinuma, K.; Kurosawa, S.; Shoji, Y.; Pejchal, Jan; Ohashi, Y.; Yokota, Y.; Yoshikawa, A.

    2015-01-01

    Roč. 50, Dec (2015), 71-75 ISSN 0925-3467 Institutional support: RVO:68378271 Keywords : scintillator * eutectic * micro-pulling down Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2015

  15. Fusion technology for the production of PbLi eutectic alloys; Obtencion de aleaciones eutecticas PbLi mediante procesos de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Barrena, M. J.; Gomez de Salazar, J. M.; Quinones, J.; Pascual, L.; Soria, A.

    2012-07-01

    The development of thermonuclear experimental reactor (ITER), whose objective is to produce energy from nuclear fusion, has raised the study of Pb-Li eutectic alloys, as they have been selected for the manufacture of test blanket modules (TBM). However, during the manufacturing process of the Pb-Li alloys, thermal conditions used result in a loss of litium element, which inhibits the formation of eutectic structures. In this work we have done fusion of pure lead and lithium, evaluating different process parameters to obtain Pb-Li (17 at. %) eutectic alloys. The alloys manufactured were characterized by DSC, SEM-EDX and microhardness tests. From these studies we noted that the used of an induction reactor and the process parameters optimized to obtain Pb-Li alloy allow for completely eutectic ingots and high chemical homogeneity and microstructural. (Author) 26 refs.

  16. 3D flow simulation of liquid lead in the erosion test facility for ADS materials

    International Nuclear Information System (INIS)

    Muscher, Heinrich; Kieser, Martin; Weisenburger, Alfons; Mueller, Georg

    2009-01-01

    Future nuclear reactor concepts, such as GEN IV or ADS use liquid lead for neutron multiplication and coolant purposes. The design concepts assumes that the structural material is in contact with the liquid metal at temperatures up to 600 C and a flow rate of 20 m/s. Therefore a significant effect of liquid metal corrosion/erosion is expected. The paper describes the fluid dynamical simulation of the ADS erosion test facility. Earlier studies on the laminar flow modeling were completed by introduction of transient behavior and extended to 3D-models. The results for liquid lead should be transferable to LBE (lead bismuth eutectic). Further work has to include a mass transport model for modeling of the global isothermal erosion rate of the structural material dependent on time (for liquid lead and LBE).

  17. Phase equilibrium study of the binary systems (N-hexyl-3-methylpyridinium tosylate ionic liquid + water, or organic solvent)

    International Nuclear Information System (INIS)

    Domanska, Urszula; Krolikowski, Marek

    2011-01-01

    Highlights: → Synthesis, DSC, and measurements of phase equilibrium of N-hexyl-3-methylpyridinium tosylate. → Solvents used: water, alcohols, benzene, alkylbenzenes, and aliphatic hydrocarbons. → Correlation with UNIQUAC, Wilson and NRTL models. → Comparison with different tosylate-based ILs. - Abstract: The (solid + liquid) phase equilibrium (SLE) and (liquid + liquid) phase equilibrium (LLE) for the binary systems ionic liquid (IL) N-hexyl-3-methylpyridinium tosylate (p-toluenesulfonate), {([HM 3 Py][TOS] + water, or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol), or an aromatic hydrocarbon (benzene, toluene, or ethylbenzene, or propylbenzene), or an alkane (n-hexane, n-heptane, n-octane)} have been determined at ambient pressure using a dynamic method. Simple eutectic systems with complete miscibility in the liquid phase were observed for the systems involving water and alcohols. The phase equilibrium diagrams of IL and aromatic or aliphatic hydrocarbons exhibit eutectic systems with immiscibility in the liquid phase with an upper critical solution temperature as for most of the ILs. The correlation of the experimental data has been carried out using the UNIQUAC, Wilson and the non-random two liquid (NRTL) correlation equations. The results reported here have been compared with analogous phase diagrams reported by our group previously for systems containing the tosylate-based ILs.

  18. Initial Stages of GaAs/Au Eutectic Alloy Formation for the Growth of GaAs Nano wires

    International Nuclear Information System (INIS)

    Rosnita, M.; Yussof, W.; Zuhairi, I.; Zulkafli, O.; Samsudi, S.

    2012-01-01

    Annealing temperature plays an important role in the formation of an Au-Ga eutectic alloy. The effects of the annealing temperature on gold nanoparticles colloid and substrate surface were studied using AFM, FE-SEM and TEM. At 600 degree Celsius, the layer of gold colloids particle formed an island in the state of molten eutectic alloy and absorbed evaporated metal-organics to formed nano wire (NW) underneath the alloy. Pit formed on the substrate surface due to the chemical reactions during the annealing process have an impact on the direction of growth of the NW. Without annealing, the NW formed vertically on the GaAs (100) surface. The growth direction depends on the original nucleation facets and surface energy when annealed. When annealed, the wire base is large and curved due to the migration of Ga atoms on the substrate surface towards the tip of the wire and the line tension between the substrate surface and gold particle. (author)

  19. LIQUID-LIQUID EXTRACTION COLUMNS

    Science.gov (United States)

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  20. Tensile properties of several 800 MeV proton-irradiated bcc metals and alloys

    International Nuclear Information System (INIS)

    Brown, R.D.; Wechsler, M.S.; Tschalar, C.

    1987-01-01

    A spallation neutron source for the 600-MeV proton accelerator facility at the Swiss Institute for Nuclear Research (SIN) consists of a vertical cylinder filled with molten Pb-Bi. The proton beam enters the cylinder, passing upward through a window in contact with the Pb-Bi eutectic liquid that must retain reasonable strength and ductility upon irradiation at about 673 K to fluence of about 1 x 10/sup 25/ protons/m/sup 2/. Investigations are underway at the 800-MeV proton accelerator at the Los Alamos Meson Physics Facility (LAMPF) to test the performance of candidate SIN window materials under appropriate conditions of temperature, irradiation, and environment. Based on considerations of chemical compatibility with molten Pb-Bi, as well as interest in identifying fundamental radiation damage mechanisms, Fe, Ta, Fe-2.25Cr-1Mo, and Fe-12Cr-1Mo(HT-9) were chosen as candidate materials. Sheet tensile samples, 0.5-mm thick, of the four materials were fabricated and heat treated. The samples were sealed inside capsules containing Pb-Bi and were proton-irradiated at LAMPF to two fluences, 4.8 and 54 x 10/sup 23/ p/m/sup 2/. The beam current was approximately equal to the 1 mA anticipated for the upgraded SIN accelerator. The power deposited by the proton beam in the capsules was sufficient to maintain sample temperatures of about 673 K. Post-irradiation tensile tests were conducted at room temperature at a strain rate of 9 x 10/sup -4/s/sup -1/. The yield and ultimate strengths increased upon irradiation in all materials, while the ductility decreased, as indicated by the uniform strain. The pure metals, Ta and Fe, exhibited the greatest radiation hardening and embrittlement. The HT-9 alloy showed the smallest changes in strength and ductility. The increase in strength following irradiation is discussed in terms of a dispersed-barrier hardening model, for which the barrier sizes and formation cross sections are calculated

  1. Growth of LiF/LiBaF.sub.3./sub. eutectic scintillator crystals and their optical properties

    Czech Academy of Sciences Publication Activity Database

    Kurosawa, S.; Yamaji, A.; Pejchal, Jan; Yokota, Y.; Ohashi, Y.; Kamada, K.; Yoshikawa, A.

    2017-01-01

    Roč. 52, č. 10 (2017), s. 5531-5536 ISSN 0022-2461 Grant - others:AV ČR(CZ) JSPS-17-18 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : scintillators * eutectics * crystal growth Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.599, year: 2016

  2. On the thermal cyclic loading behaviour of a directional eutectic superalloy based on the Co-Cr-C system

    International Nuclear Information System (INIS)

    Hildebrandt, U.W.; Nicoll, A.R.

    1981-01-01

    Various modifications of the eutectic, directionally solidified superalloy 73 C were investigated with respect to creep fatigue effects. This was carried out using a thermal cycling apparatus where a mechanical uniaxial load could be applied. A high volume fraction of carbides had an impairing effect on fatigue life. An improvement, however, could be obtained using low concentrations of refractory elements which form monocarbides. (orig.) [de

  3. Thermal properties and thermal reliability of eutectic mixtures of some fatty acids as latent heat storage materials

    International Nuclear Information System (INIS)

    Sari, Ahmet; Sari, Hayati; Oenal, Adem

    2004-01-01

    The present study deals with two subjects. The first one is to determine the thermal properties of lauric acid (LA)-stearic acid (SA), myristic acid (MA)-palmitic acid (PA) and palmitic acid (PA)-stearic acid (SA) eutectic mixtures as latent heat storage material. The properties were measured by the differential scanning calorimetry (DSC) analysis technique. The second one is to study the thermal reliability of these materials in view of the change in their melting temperatures and latent heats of fusion with respect to repeated thermal cycles. For this aim, the eutectic mixtures were subjected to 360 repeated melt/freeze cycles, and their thermal properties were measured after 0, 90,180 and 360 thermal cycles by the technique of DSC analysis. The DSC thermal analysis results show that the binary systems of LA-SA in the ratio of 75.5:24.5 wt.%, MA-PA in the ratio of 58:42 wt.% and PA-SA in the ratio of 64.2:35.8 wt.% form eutectic mixtures with melting temperatures of 37.0, 42.60 and 52.30 deg. C and with latent heats of fusion of 182.7, 169.7 and 181.7 J g -1 , respectively. These thermal properties make them possible for heat storage in passive solar heating applications with respect to climate conditions. The accelerated thermal cycle tests indicate that the changes in the melting temperatures and latent heats of fusion of the studied eutectic mixtures are not regular with increasing number of thermal cycles. However, these materials, latent heat energy storage materials, have good thermal reliability in terms of the change in their thermal properties with respect to thermal cycling for about a one year utility period

  4. Identification of Flavonoids (Quercetin, Gallic acid and Rutin from Catharanthus roseus Plant Parts using Deep Eutectic Solvent

    Directory of Open Access Journals (Sweden)

    Asma Nisar

    2017-02-01

    Full Text Available Green technology is the most important topic in the pharmaceutical field because it reduces the cost of medicines and minimizes the environmental impact of the field and is better for human health and safety. Green chemistry emphasizes that the solvent should be nontoxic, safe, cheap, green, readily available, recyclable, and biodegradable. Deep eutectic solvents, a new type of green solvent, have some renowned properties—for instance, high thermal stability, low vapor pressure, low cost, biodegradability, and high viscosity. In this study, deep eutectic solvents made up of choline chloride-glycerol (1:2 were used for the extraction and isolation of flavonoid (rutin, gallic acid, and quercetin from Catharanthus roseus plant parts, flower petal, leaves, stem, and root. The amounts of rutin and quercetin in flower petal are 29.46 and 6.51%, respectively, whereas, rutin, gallic acid, and quercetin amounts in leaves are 25.16, 8.57, and 10.47%, respectively. In stem the amounts of rutin, gallic acid, and quercetin are 13.02, 5.89, and 7.47%, respectively. In root, only quercetin has been obtained that is 13.49%. The HPLC is an analytical method, which was found to be an excellent technique for determination of rutin, gallic acid, and quercetin using deep eutectic solvent extraction from plant parts of Catharanthus roseus.

  5. Capture and Solidification of Rare Earth Nuclide (Nd) in LiCl-KCl Eutectic Salt Using a Synthetic Inorganic Composite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Na-Young; Eun, Hee-Chul; Park, Hwan-Seo; Ahn, Do-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    In this study, neodymium (Nd) nuclides in LiCl-KCl eutectic salts were captured and solidified using a synthetic inorganic composite (Li{sub 2}O-SiO{sub 2}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}), a process that allows the selective capture of Nd and fabrication of a composite with Nd captured from waste, without additional additives or mixing. The Nd nuclides in the LiCl-KCl eutectic salt were mainly captured in the form of LiNdSiO{sub 4}, and it was confirmed that NdSiO{sub 3} can be formed in the composite with captured Nd when the content of Nd in the composite is increased. The capture efficiency was higher than about 98 wt%. It was thought that the salt recovered from the Nd capture test was a renewable form could be reused in the pyroprocessing of used nuclear fuel, because the composite has high chemical durability in a LiCl-KCl eutectic salt at 900 ℃. The composite captured Nd was fabricated into a homogeneous glass form and a stable ceramic form.

  6. Deep Eutectic Solvent Synthesis of LiMnPO₄/C Nanorods as a Cathode Material for Lithium Ion Batteries.

    Science.gov (United States)

    Wu, Zhi; Huang, Rong-Rong; Yu, Hang; Xie, Yong-Chun; Lv, Xiao-Yan; Su, Jing; Long, Yun-Fei; Wen, Yan-Xuan

    2017-02-06

    Olivine-type LiMnPO₄/C nanorods were successfully synthesized in a chloride/ethylene glycol-based deep eutectic solvent (DES) at 130 °C for 4 h under atmospheric pressure. As-synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and electrochemical tests. The prepared LiMnPO₄/C nanorods were coated with a thin carbon layer (approximately 3 nm thick) on the surface and had a length of 100-150 nm and a diameter of 40-55 nm. The prepared rod-like LiMnPO₄/C delivered a discharge capacity of 128 mAh·g -1 with a capacity retention ratio of approximately 93% after 100 cycles at 1 C. Even at 5 C, it still had a discharge capacity of 106 mAh·g -1 , thus exhibiting good rate performance and cycle stability. These results demonstrate that the chloride/ethylene glycol-based deep eutectic solvents (DES) can act as a new crystal-face inhibitor to adjust the oriented growth and morphology of LiMnPO₄. Furthermore, deep eutectic solvents provide a new approach in which to control the size and morphology of the particles, which has a wide application in the synthesis of electrode materials with special morphology.

  7. Highly Simple Deep Eutectic Solvent Extraction of Manganese in Vegetable Samples Prior to Its ICP-OES Analysis.

    Science.gov (United States)

    Bağda, Esra; Altundağ, Hüseyin; Soylak, Mustafa

    2017-10-01

    In the present work, simple and sensitive extraction methods for selective determination of manganese have been successfully developed. The methods were based on solubilization of manganese in deep eutectic solvent medium. Three deep eutectic solvents with choline chloride (vitamin B4) and tartaric/oxalic/citric acids have been prepared. Extraction parameters were optimized with using standard reference material (1573a tomato leaves). The quantitative recovery values were obtained with 1.25 g/L sample to deep eutectic solvent (DES) volume, at 95 °C for 2 h. The limit of detection was found as 0.50, 0.34, and 1.23 μg/L for DES/tartaric, DES/oxalic, and DES/citric acid, respectively. At optimum conditions, the analytical signal was linear for the range of 10-3000 μg/L for all studied DESs with the correlation coefficient >0.99. The extraction methods were applied to different real samples such as basil herb, spinach, dill, and cucumber barks. The known amount of manganese was spiked to samples, and good recovery results were obtained.

  8. Sr-Al-Si co-segregated regions in eutectic Si phase of Sr-modified Al-10Si alloy.

    Science.gov (United States)

    Timpel, M; Wanderka, N; Schlesiger, R; Yamamoto, T; Isheim, D; Schmitz, G; Matsumura, S; Banhart, J

    2013-09-01

    The addition of 200 ppm strontium to an Al-10 wt% Si casting alloy changes the morphology of the eutectic silicon phase from coarse plate-like to fine fibrous networks. In order to clarify this modification mechanism the location of Sr within the eutectic Si phase has been investigated by a combination of high-resolution methods. Whereas three-dimensional atom probe tomography allows us to visualise the distribution of Sr on the atomic scale and to analyse its local enrichment, transmission electron microscopy yields information about the crystallographic nature of segregated regions. Segregations with two kinds of morphologies were found at the intersections of Si twin lamellae: Sr-Al-Si co-segregations of rod-like morphology and Al-rich regions of spherical morphology. Both are responsible for the formation of a high density of multiple twins and promote the anisotropic growth of the eutectic Si phase in specific crystallographic directions during solidification. The experimental findings are related to the previously postulated mechanism of "impurity induced twinning". Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Validated thermodynamic prediction of AlP and eutectic (Si) solidification sequence in Al-Si cast alloys

    International Nuclear Information System (INIS)

    Liang, S M; Schmid-Fetzer, R

    2016-01-01

    The eutectic microstructure in hypoeutectic Al-Si cast alloys is strongly influenced by AlP particles which are potent nuclei for the eutectic (Si) phase. The solidification sequence of AlP and (Si) phases is, thus, crucial for the nucleation of eutectic silicon with marked impact on its morphology. This study presents this interdependence between Si- and P-compositions, relevant for Al-Si cast alloys, on the solidification sequence of AlP and (Si). These data are predicted from a series of thermodynamic calculations. The predictions are based on a self-consistent thermodynamic description of the Al-Si-P ternary alloy system developed recently. They are validated by independent experimental studies on microstructure and undercooling in hypoeutectic Al-Si alloys. A constrained Scheil solidification simulation technique is applied to predict the undercooling under clean heterogeneous nucleation conditions, validated by dedicated experimental observations on entrained droplets. These specific undercooling values may be very large and their quantitative dependence on Si and P content of the Al alloy is presented. (paper)

  10. Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage

    International Nuclear Information System (INIS)

    Alva, Guruprasad; Huang, Xiang; Liu, Lingkun; Fang, Guiyin

    2017-01-01

    Highlights: •Myristic acid–palmitic acid eutectic was microencapsulated with silica shell. •Structure, morphology of microencapsulated phase change material were investigated. •Thermal capacity, stability of microencapsulated phase change material were analyzed. •Silica shell improved thermal stability of microencapsulated phase change material. -- Abstract: In this work microencapsulation of myristic acid–palmitic acid (MA–PA) eutectic mixture with silica shell using sol−gel method has been attempted. The core phase change material (PCM) for thermal energy storage was myristic acid−palmitic acid eutectic mixture and the shell material to prevent the PCM core from leakage was silica prepared from methyl triethoxysilane (MTES). Thermal properties of the microcapsules were measured by differential scanning calorimeter (DSC). The morphology and particle size of the microcapsules were examined by scanning electronic microscope (SEM). Fourier transformation infrared spectrophotometer (FT–IR) and X–ray diffractometer (XRD) were used to investigate the chemical structure and crystalloid phase of the microcapsules respectively. The DSC results indicated that microencapsulated phase change material (MPCM) melts at 46.08 °C with a latent heat of 169.69 kJ kg −1 and solidifies at 44.35 °C with a latent heat of 159.59 kJ kg −1 . The thermal stability of the microcapsules was analyzed by a thermogravimeter (TGA). The results indicated that the MPCM has good thermal stability and is suitable for thermal energy storage application.

  11. A reactive distillation process for the treatment of LiCl-KCl eutectic waste salt containing rare earth chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Eun, H.C., E-mail: ehc2004@kaeri.re.kr; Choi, J.H.; Kim, N.Y.; Lee, T.K.; Han, S.Y.; Lee, K.R.; Park, H.S.; Ahn, D.H.

    2016-11-15

    The pyrochemical process, which recovers useful resources (U/TRU metals) from used nuclear fuel using an electrochemical method, generates LiCl-KCl eutectic waste salt containing radioactive rare earth chlorides (RECl{sub 3}). It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste salt in a hot-cell facility. For this reason, a reactive distillation process using a chemical agent was achieved as a method to separate rare earths from the LiCl-KCl waste salt. Before conducting the reactive distillation, thermodynamic equilibrium behaviors of the reactions between rare earth (Nd, La, Ce, Pr) chlorides and the chemical agent (K{sub 2}CO{sub 3}) were predicted using software. The addition of the chemical agent was determined to separate the rare earth chlorides into an oxide form using these equilibrium results. In the reactive distillation test, the rare earth chlorides in LiCl-KCl eutectic salt were decontaminated at a decontamination factor (DF) of more than 5000, and were mainly converted into oxide (Nd{sub 2}O{sub 3}, CeO{sub 2}, La{sub 2}O{sub 3}, Pr{sub 2}O{sub 3}) or oxychloride (LaOCl, PrOCl) forms. The LiCl-KCl was purified into a form with a very low concentration (<1 ppm) for the rare earth chlorides.

  12. Scintillation properties of LiF–SrF2 and LiF–CaF2 eutectic

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Kawaguchi, Noriaki; Fujimoto, Yutaka; Fukuda, Kentaro; Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira

    2013-01-01

    Dopant free eutectic scintillators 6 LiF–SrF 2 and 6 LiF–CaF 2 were developed by the vertical Bridgeman method for the purpose of thermal neutron detection. The molar ratio of LiF and Ca/SrF 2 was 4:1 on its eutectic composition. The α-ray induced radioluminescence spectra of the scintillators showed intense emission peak at 300 nm due to the emission from the self-trapped exciton in Ca/SrF 2 layers. When the samples were irradiated with 252 Cf neutrons, 6 LiF–SrF 2 and 6 LiF–CaF 2 exhibited the light yields of 4700 and 9400 ph/n, respectively. Scintillation decay times of 6 LiF–SrF 2 and 6 LiF–CaF 2 were accepted for scintillation detectors, 90 and 250 ns, respectively. -- Highlights: • Nondoped LiF–CaF 2 and LiF–SrF 2 eutectic scinitillators are reported for the first time. • Two sample showed self-trapped exciton emission. • LiF–SrF 2 sample exhibited the light yield of 9400 ph/n and this value was comparable to conventional materials doped with rare earth ions. • Scintillation decay times of LiF–CaF 2 and LiF–SrF 2 were 250 and 90 ns, respectively

  13. Liquid Ventilation

    Directory of Open Access Journals (Sweden)

    Qutaiba A. Tawfic

    2011-01-01

    Full Text Available Mammals have lungs to breathe air and they have no gills to breath liquids. When the surface tension at the air-liquid interface of the lung increases, as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen, as the inert carrier of oxygen and carbon dioxide offers a number of theoretical advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. The potential for multiple clinical applications for liquid-assisted ventilation will be clarified and optimized in future. Keywords: Liquid ventilation; perfluorochemicals; perfluorocarbon; respiratory distress; surfactant.

  14. Physical properties of a new Deep Eutectic Solvent based on lithium bis[(trifluoromethyl)sulfonyl]imide and N-methylacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors

    International Nuclear Information System (INIS)

    Boisset, Aurélien; Jacquemin, Johan; Anouti, Mérièm

    2013-01-01

    Highlights: • Preparation of new Deep Eutectic Solvent (DES) based on N-methylacetamide and TFSI. • Characterization of conductivity, viscosity and thermal properties of DES. • DES presents a superionic character in Walden classification. • DES is suitable electrolyte for lithium ion batteries and electric double layer capacitors. -- Abstract: Herein we present a study on the physical/chemical properties of a new Deep Eutectic Solvent (DES) based on N-methylacetamide (MAc) and lithium bis[(trifluoromethyl)sulfonyl]imide (LiTFSI). Due to its interesting properties, such as wide liquid-phase range from −60 °C to 280 °C, low vapor pressure, and high ionic conductivity up to 28.4 mS cm −1 at 150 °C and at x LiTFSI = 1/4, this solution can be practically used as electrolyte for electrochemical storage systems such as electric double-layer capacitors (EDLCs) and/or lithium ion batteries (LiBs). Firstly, relationships between its transport properties (conductivity and viscosity) as a function of composition and temperature were discussed through Arrhenius’ Law and Vogel–Tamman–Fulcher (VTF) equations, as well as by using the Walden classification. From this investigation, it appears that this complex electrolyte possesses a number of excellent transport properties, like a superionic character for example. Based on which, we then evaluated its electrochemical performances as electrolyte for EDLCs and LiBs applications by using activated carbon (AC) and lithium iron phosphate (LiFePO 4 ) electrodes, respectively. These results demonstrate that this electrolyte has a good compatibility with both electrodes (AC and LiFePO 4 ) in each testing cell driven also by excellent electrochemical properties in specific capacitance, rate and cycling performances, indicating that the LiTFSI/MAc DES can be a promising electrolyte for EDLCs and LiBs applications especially for those requiring high safety and stability

  15. Subsidizing Liquidity

    DEFF Research Database (Denmark)

    Malinova, Katya; Park, Andreas

    2015-01-01

    the breakdown of trading fees between liquidity demanders and suppliers matters. Posted quotes adjust after the change in fee composition, but the transaction costs for liquidity demanders remain unaffected once fees are taken into account. However, as posted bid-ask spreads decline, traders (particularly......Facing increased competition over the last decade, many stock exchanges changed their trading fees to maker-taker pricing, an incentive scheme that rewards liquidity suppliers and charges liquidity demanders. Using a change in trading fees on the Toronto Stock Exchange, we study whether and why...... retail) use aggressive orders more frequently, and adverse selection costs decrease....

  16. Liquid Lead-Bismuth Materials Test Loop

    International Nuclear Information System (INIS)

    Tcharnotskaia, Valentina; Ammerman, Curtt; Darling, Timothy; King, Joe; Li, Ning; Shaw, Don; Snodgrass, Leon; Woloshun, Keith

    2002-01-01

    We designed and built the Liquid Lead-Bismuth Materials Test Loop (MTL) to study the materials behavior in a flow of molten lead-bismuth eutectic (LBE). In this paper we present a description of the loop with main components and their functions. Stress distribution in the piping due to sustained, occasional and expansion loads is shown. The loop is designed so that a difference of 100 deg. C can be attained between the coldest and the hottest parts at a nominal flow rate of 8.84 GPM. Liquid LBE flow can be activated by a mechanical sump pump or by natural convection. In order to maintain a self-healing protective film on the surface of the stainless steel pipe, a certain concentration of oxygen has to be maintained in the liquid metal. We developed oxygen sensors and an oxygen control system to be implemented in the loop. The loop is outfitted with a variety of instruments that are controlled from a computer based data acquisition system. Initial experiments include preconditioning the loop, filling it up with LBE, running at uniform temperature and tuning the oxygen control system. We will present some preliminary results and discuss plans for the future tests. (authors)

  17. Liquid-liquid extraction from molten alkaline nitrates by using nitrogenous and organophosphorus derivatives

    International Nuclear Information System (INIS)

    Vittori, Olivier

    1971-01-01

    This research thesis reports the use of a system made of the LiNO 3 -KNO 3 eutectic at 160 deg. C and poly-phenyls in order to study the behaviour of phosphine and arsine oxides as extracting agents in a liquid-liquid process. In a first part, the author presents the studied system, its physical characteristics and its preparation, and the various analytical methods which have used. He discusses existing computation methods adapted to the separation of molten salts and organic phase, and proposes a specific method. Then, he reports the study of the behaviour of a phosphine oxide with Cobalt II and Nickel II, and discusses its application to the separation of this pair, Co II and Ni II. He highlights the different possibilities of three agents which are derivatives of phosphine and arsine in their ability to extract rare earths. A study of separation of rare earths is then addressed. The author reports the application of extraction equilibriums to the study of equilibriums in environments of molten salts with the Co II - chloride ions system. The author finally addresses the synergic phenomenon that pairs of neutral complexing agents of neighbouring structure or different donor central atom may display in liquid-liquid extraction

  18. The solubility of metals in Pb-17Li liquid alloy

    International Nuclear Information System (INIS)

    Borgstedt, H.U.; Feuerstein, H.

    1992-01-01

    The solubility data of iron in the eutectic alloy Pb-17Li which were evaluated from corrosion tests in a turbulent flow of the molten alloy are discussed in the frame of solubilities of the transition metals in liquid lead. It is shown that the solubility of iron in the alloy is close to that in lead. This is also the fact for several other alloying elements of steels. A comparison of all known data shows that they are in agreement with generally shown trends for the solubility of the transition metals in low melting metals. These trends indicate comparably high solubilities of nickel and manganese in the liquid metals, lower saturation concentration of vanadium, chromium, iron, and cobalt, and extremely low solubility of molybdenum. (orig.)

  19. Corrosion behavior of welds in oxygen containing liquid lead

    Energy Technology Data Exchange (ETDEWEB)

    Heinzel, A.; Weisenburger, A.; Mueller, G. [Karlsruhe Institute of Technology (Germany). Inst. for Pulsed Power and Microwave Technology

    2012-11-01

    Liquid lead (Pb) and lead-bismuth eutectic (LBE) have been considered as coolant and/or spallation target in future accelerator driven systems (ADS). Therefore, in the recent years a lot of corrosion experiments on conventional steels were carried out in these heavy liquid metals. Beside these experiments, also tests on welded joints are required. Therefore ferritic/martensitic (F/M) steels (P91, P92) as well as an ODS steel were joint with TIG (Tungsten-Inert-Gas), EB (Electron Beam) and friction stir welding. After that, specimens were exposed to 10{sup -6} and 10{sup -8}wt% oxygen containing lead at 550 C for about 2000h. Weld regions having similar chemical composition and similar structure due to a heat treatment after the welding process show a corrosion behaviour under these conditions that is similar to that of the respective bulk material. (orig.)

  20. Supported Silver Nanoparticle and Near-Interface Solution Dynamics in a Deep Eutectic Solvent

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, Joshua A.; Ustarroz, Jon; Muselle, Thibault; Torriero, Angel A. J.; Terryn, Herman; Suthar, Kamlesh; Ilavsky, Jan

    2016-01-28

    Type III deep eutectic solvents (DES) have attracted significant interest as both environmentally friendly and functional solvents that are, in some ways, advantageous to traditional aqueous systems. While these solvents continue to produce remarkable thin films and nanoparticle assemblies, their interactions with metallic surfaces are complex and difficult to manipulate. In this study, the near-surface region (2–600 nm) of a carbon surface is investigated immediately following silver nanoparticle nucleation and growth. This is accomplished, in situ, using a novel grazing transmission small-angle X-ray scattering approach with simultaneous voltammetry and electrochemical impedance spectroscopy. With this physical and electrochemical approach, the time evolution of three distinct surface interaction phenomena is observed: aggregation and coalescence of Ag nanoparticles, multilayer perturbations induced by nonaggregated Ag nanoparticles, and a stepwise transport of dissolved Ag species from the carbon surface. The multilayer perturbations contain charge-separated regions of positively charged choline-ethylene and negatively charged Ag and Cl species. Both aggregation-coalescence and the stepwise decrease in Ag precursor near the surface are observed to be very slow (~2 h) processes, as both ion and particle transport are significantly impeded in a DES as compared to aqueous electrolytes. Finally, altogether, this study shows how the unique chemistry of the DES changes near the surface and in the presence of nanoparticles that adsorb the constituent species.