WorldWideScience

Sample records for liquid lithium limiters

  1. Liquid lithium limiter experiments in CDX-U

    International Nuclear Information System (INIS)

    Majeski, R.; Jardin, S.; Kaita, R.; Gray, T.; Marfuta, P.; Spaleta, J.; Timberlake, J.; Zakharov, L.; Antar, G.; Doerner, R.; Luckhardt, S.; Seraydarian, R.; Soukhanovskii, V.; Maingi, R.; Finkenthal, M.; Stutman, D.; Rodgers, D.

    2005-01-01

    Recent experiments in the Current Drive eXperiment - Upgrade provide a first-ever test of large area liquid lithium surfaces as a tokamak first wall, to gain engineering experience with a liquid metal first wall, and to investigate whether very low recycling plasma regimes can be accessed with lithium walls. The CDX-U is a compact (R=34 cm, a=22 cm, B toroidal 2 kG, I P =100 kA, T e (0)∼100 eV, n e (0)∼ 5 x 10 19 m -3 ) spherical torus at the Princeton Plasma Physics Laboratory. A toroidal liquid lithium tray limiter with an area of 2000 cm 2 (half the total plasma limiting surface) has been installed in CDX-U. Tokamak discharges which used the liquid lithium limiter required a fourfold lower loop voltage to sustain the plasma current, and a factor of 5-8 increase in gas fueling to achieve a comparable density, indicating that recycling is strongly reduced. Modeling of the discharges demonstrated that the lithium limited discharges are consistent with Z effective <1.2 (compared to 2.4 for the pre-lithium discharges), a broadened current channel, and a 25% increase in the core electron temperature. Spectroscopic measurements indicate that edge oxygen and carbon radiation are strongly reduced. (author)

  2. Liquid Lithium Limiter Experiments in CDX-U

    International Nuclear Information System (INIS)

    Majeski, R.; Jardin, S.; Kaita, R.; Gray, T.; Marfuta, P.; Spaleta, J.; Timberlake, J.; Zakharov, L.; Antar, G.; Doerner, R.; Luckhardt, S.; Seraydarian, R.; Soukhanovskii, V.; Maingi, R.; Finkenthal, M.; Stutman, D.; Rodgers, D.

    2004-01-01

    Recent experiments in the Current Drive Experiment-Upgrade provide a first-ever test of large area liquid lithium surfaces as a tokamak first wall, to gain engineering experience with a liquid metal first wall, and to investigate whether very low recycling plasma regimes can be accessed with lithium walls. The CDX-U is a compact (R = 34 cm, a = 22 cm, B toroidal = 2 kG, I P = 100 kA, T e (0) = 100 eV, n e (0) ∼ 5 x 10 19 m -3 ) spherical torus at the Princeton Plasma Physics Laboratory. A toroidal liquid lithium tray limiter with an area of 2000 cm 2 (half the total plasma limiting surface) has been installed in CDX-U. Tokamak discharges which used the liquid lithium limiter required a fourfold lower loop voltage to sustain the plasma current, and a factor of 5-8 increase in gas fueling to achieve a comparable density, indicating that recycling is strongly reduced. Modeling of the discharges demonstrated that the lithium-limited discharges are consistent with Z effective < 1.2 (compared to 2.4 for the pre-lithium discharges), a broadened current channel, and a 25% increase in the core electron temperature. Spectroscopic measurements indicate that edge oxygen and carbon radiation are strongly reduced

  3. Testing of Liquid Lithium Limiters in CDX-U

    International Nuclear Information System (INIS)

    Majeski, R.; Kaita, R.; Boaz, M.; Efthimion, P.; Gray, T.; Jones, B.; Hoffman, D.; Kugel, H.; Menard, J.; Munsat, T.; Post-Zwicker, A.; Soukhanovskii, V.; Spaleta, J.; Taylor, G.; Timberlake, J.; Woolley, R.; Zakharov, L.; Finkenthal, M.; Stutman, D.; Antar, G.; Doerner, R.; Luckhardt, S.; Seraydarian, R.; Maingi, R.; Maiorano, M.; Smith, S.; Rodgers, D.

    2004-01-01

    Part of the development of liquid metals as a first wall or divertor for reactor applications must involve the investigation of plasma-liquid metal interactions in a functioning tokamak. Most of the interest in liquid-metal walls has focused on lithium. Experiments with lithium limiters have now been conducted in the Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory. Initial experiments used a liquid-lithium rail limiter (L3) built by the University of California at San Diego. Spectroscopic measurements showed some reduction of impurities in CDX-U plasmas with the L3, compared to discharges with a boron carbide limiter. While no reduction in recycling was observed with the L3, which had a plasma-wet area of approximately 40 cm2, subsequent experiments with a larger area fully toroidal lithium limiter demonstrated significant reductions in both recycling and in impurity levels. Two series of experiments with the toroidal limiter have now be en performed. In each series, the area of exposed, clean lithium was increased, until in the latest experiments the liquid-lithium plasma-facing area was increased to 2000 cm2. Under these conditions, the reduction in recycling required a factor of eight increase in gas fueling in order to maintain the plasma density. The loop voltage required to sustain the plasma current was reduced from 2 V to 0.5 V. This paper summarizes the technical preparations for lithium experiments and the conditioning required to prepare the lithium surface for plasma operations. The mechanical response of the liquid metal to induced currents, especially through contact with the plasma, is discussed. The effect of the lithium-filled toroidal limiter on plasma performance is also briefly described

  4. Testing of Liquid Lithium Limiters in CDX-U

    Energy Technology Data Exchange (ETDEWEB)

    R. Majeski; R. Kaita; M. Boaz; P. Efthimion; T. Gray; B. Jones; D. Hoffman; H. Kugel; J. Menard; T. Munsat; A. Post-Zwicker; V. Soukhanovskii; J. Spaleta; G. Taylor; J. Timberlake; R. Woolley; L. Zakharov; M. Finkenthal; D. Stutman; G. Antar; R. Doerner; S. Luckhardt; R. Seraydarian; R. Maingi; M. Maiorano; S. Smith; D. Rodgers

    2004-07-30

    Part of the development of liquid metals as a first wall or divertor for reactor applications must involve the investigation of plasma-liquid metal interactions in a functioning tokamak. Most of the interest in liquid-metal walls has focused on lithium. Experiments with lithium limiters have now been conducted in the Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory. Initial experiments used a liquid-lithium rail limiter (L3) built by the University of California at San Diego. Spectroscopic measurements showed some reduction of impurities in CDX-U plasmas with the L3, compared to discharges with a boron carbide limiter. While no reduction in recycling was observed with the L3, which had a plasma-wet area of approximately 40 cm2, subsequent experiments with a larger area fully toroidal lithium limiter demonstrated significant reductions in both recycling and in impurity levels. Two series of experiments with the toroidal limiter have now be en performed. In each series, the area of exposed, clean lithium was increased, until in the latest experiments the liquid-lithium plasma-facing area was increased to 2000 cm2. Under these conditions, the reduction in recycling required a factor of eight increase in gas fueling in order to maintain the plasma density. The loop voltage required to sustain the plasma current was reduced from 2 V to 0.5 V. This paper summarizes the technical preparations for lithium experiments and the conditioning required to prepare the lithium surface for plasma operations. The mechanical response of the liquid metal to induced currents, especially through contact with the plasma, is discussed. The effect of the lithium-filled toroidal limiter on plasma performance is also briefly described.

  5. Testing of liquid lithium limiters in CDX-U

    International Nuclear Information System (INIS)

    Majeski, R.; Kaita, R.; Boaz, M.; Efthimion, P.; Gray, T.; Jones, B.; Hoffman, D.; Kugel, H.; Menard, J.; Munsat, T.; Post-Zwicker, A.; Spaleta, J.; Taylor, G.; Timberlake, J.; Woolley, R.; Zakharov, L.; Finkenthal, M.; Stutman, D.; Antar, G.; Doerner, R.; Luckhardt, S.; Seraydarian, R.; Maingi, R.; Maiorano, M.; Smith, S.; Rodgers, D.; Soukhanovskii, V.

    2004-01-01

    Part of the development of liquid metals as a first wall or divertor for reactor applications must involve the investigation of plasma-liquid metal interactions in a functioning tokamak. Most of the interest in liquid metal walls has focused on lithium. Experiments with lithium limiters have now been conducted in the Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory. Initial experiments used a liquid lithium rail limiter (L3) built by the University of California at San Diego. Spectroscopic measurements showed some reduction of impurities in CDX-U plasmas with the L3, compared to discharges with a boron carbide limiter. While no reduction in recycling was observed with the L3, which had a plasma-wet area of approximately 40 cm 2 , subsequent experiments with a larger area fully toroidal lithium limiter demonstrated significant reductions in both recycling and in impurity levels. Two series of experiments with the toroidal limiter have now been performed. In each series, the area of exposed, clean lithium was increased, until in the latest experiments, the liquid lithium plasma-facing area was increased to 2000 cm 2 . Under these conditions, the reduction in recycling required a factor of eight increase in gas fueling in order to maintain the plasma density. The loop voltage required to sustain the plasma current was reduced from 2 V to 0.5 V. This paper summarizes the technical preparations for lithium experiments and the conditioning required to prepare the lithium surface for plasma operations. The mechanical response of the liquid metal to induced currents, especially through contact with the plasma, is discussed. The effect of the lithium-filled toroidal limiter on plasma performance is also briefly described

  6. Liquid Lithium Limiter Effects on Tokamak Plasmas and Plasma-Liquid Surface Interactions

    Energy Technology Data Exchange (ETDEWEB)

    R. Kaita; R. Majeski; R. Doerner; G. Antar; M. Baldwin; R. Conn; P. Efthimion; M. Finkenthal; D. Hoffman; B. Jones; S. Krashenninikov; H. Kugel; S. Luckhardt; R. Maingi; J. Menard; T. Munsat; D. Stutman; G. Taylor; J. Timberlake; V. Soukhanovskii; D. Whyte; R. Woolley; L. Zakharov

    2002-10-15

    We present results from the first experiments with a large area liquid lithium limiter in a magnetic fusion device, and its effect on improving plasma performance by reducing particle recycling. Using large area liquid metal surfaces in any major fusion device is unlikely before a test on a smaller scale. This has motivated its demonstration in the CDX-U spherical torus with a unique, fully toroidal lithium limiter. The highest current discharges were obtained with a liquid lithium limiter. There was a reduction in recycling, as indicated by a significant decrease in the deuterium-alpha emission and oxygen radiation. How these results might extrapolate to reactors is suggested in recycling/retention experiments with liquid lithium surfaces under high-flux deuterium and helium plasma bombardment in PISCES-B. Data on deuterium atoms retained in liquid lithium indicate retention of all incident ions until full volumetric conversion to lithium deuteride. The PISCES-B results also show a material loss mechanism that lowers the maximum operating temperature compared to that for the liquid surface equilibrium vapor pressure. This may restrict the lithium temperature in reactors.

  7. Liquid Lithium Limiter Effects on Tokamak Plasmas and Plasma-Liquid Surface Interactions

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Doerner, R.; Antar, G.; Baldwin, M.; Conn, R.; Efthimion, P.; Finkenthal, M.; Hoffman, D.; Jones, B.; Krashenninikov, S.; Kugel, H.; Luckhardt, S.; Maingi, R.; Menard, J.; Munsat, T.; Stutman, D.; Taylor, G.; Timberlake, J.; Soukhanovskii, V.; Whyte, D.; Woolley, R.; Zakharov, L.

    2002-01-01

    We present results from the first experiments with a large area liquid lithium limiter in a magnetic fusion device, and its effect on improving plasma performance by reducing particle recycling. Using large area liquid metal surfaces in any major fusion device is unlikely before a test on a smaller scale. This has motivated its demonstration in the CDX-U spherical torus with a unique, fully toroidal lithium limiter. The highest current discharges were obtained with a liquid lithium limiter. There was a reduction in recycling, as indicated by a significant decrease in the deuterium-alpha emission and oxygen radiation. How these results might extrapolate to reactors is suggested in recycling/retention experiments with liquid lithium surfaces under high-flux deuterium and helium plasma bombardment in PISCES-B. Data on deuterium atoms retained in liquid lithium indicate retention of all incident ions until full volumetric conversion to lithium deuteride. The PISCES-B results also show a material loss mechanism that lowers the maximum operating temperature compared to that for the liquid surface equilibrium vapor pressure. This may restrict the lithium temperature in reactors

  8. Liquid lithium limiter effects on tokamak plasmas and plasma-liquid surface interactions

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Doerner, R.

    2003-01-01

    We present results from the first experiments with a large area liquid lithium limiter in a magnetic fusion device, and its effect on improving plasma performance by reducing particle recycling. Using large area liquid metal surfaces in any major fusion device is unlikely before a test on a smaller scale. This has motivated its demonstration in the CDX-U spherical torus with a unique, fully toroidal lithium limiter. The highest current discharges were obtained with a liquid lithium limiter. There was a reduction in recycling, as indicated by a significant decrease in the deuterium-alpha emission and oxygen radiation. How these results might extrapolate to reactors is suggested in recycling/retention experiments with liquid lithium surfaces under high-flux deuterium and helium plasma bombardment in PISCES-B. Data on deuterium atoms retained in liquid lithium indicate retention of all incident ions until full volumetric conversion to lithium deuteride. The PISCES-B results also show a material loss mechanism that lowers the maximum operating temperature compared to that for the liquid surface equilibrium vapor pressure. This may restrict the lithium temperature in reactors. (author)

  9. Recent Liquid Lithium Limiter Experiments in CDX-U

    International Nuclear Information System (INIS)

    Majeski, R.; Jardin, S.; Kaita, R.; Gray, T.; Marfuta, P.; Spaleta, J.; Timberlake, J.; Zakharov, L.; Antar, G.; Doerner, R.; Luckhardt, S.; Seraydarian, R.; Soukhanovskii, V.; Maingi, R.; Finkenthal, M.; Stutman, D.; Rodgers, D.; Angelini, S.

    2005-01-01

    Recent experiments in the Current Drive eXperiment-Upgrade (CDX-U) provide a first-ever test of large area liquid lithium surfaces as a tokamak first wall, to gain engineering experience with a liquid metal first wall, and to investigate whether very low recycling plasma regimes can be accessed with lithium walls. The CDX-U is a compact (R=34 cm, a=22 cm, B toroidal = 2 kG, I P =100 kA, T e (0) ∼ 100 eV, n e (0) ∼ 5 x 10 19 m -3 ) spherical torus at the Princeton Plasma Physics Laboratory. A toroidal liquid lithium pool limiter with an area of 2000 cm 2 (half the total plasma limiting surface) has been installed in CDX-U. Tokamak discharges which used the liquid lithium pool limiter required a fourfold lower loop voltage to sustain the plasma current, and a factor of 5-8 increase in gas fueling to achieve a comparable density, indicating that recycling is strongly reduced. Modeling of the discharges demonstrated that the lithium limited discharges are consistent with Z effective < 1.2 (compared to 2.4 for the pre-lithium discharges), a broadened current channel, and a 25% increase in the core electron temperature. Spectroscopic measurements indicate that edge oxygen and carbon radiation are strongly reduced

  10. Investigations on interactions between the flowing liquid lithium limiter and plasmas

    International Nuclear Information System (INIS)

    Ren, J.; Zuo, G.Z.; Hu, J.S.; Sun, Z.; Li, J.G.; Zakharov, L.E.; Ruzic, D.N.; Xu, W.Y.

    2016-01-01

    Two different designs of flowing liquid lithium limiter were first tested for power exhaust and particle removal in HT-7 in 2012 autumn campaign. During the experiments, the reliability and compatibility of the limiters within Tokamak were experimentally demonstrated, and some positive results were achieved. It was found that the flowing liquid lithium limiter was effective for suppressing H concentration and led to a low ratio of H/(H + D). O impurity was slightly decreased by using limiters as well as when using a Li coating. A significant increase of the wall retention ratio was also observed which resulted from the outstanding D particles pumping ability of flowing liquid lithium limiters. The strong interaction between plasma and lithium surface could cause lithium ejection into plasma and lead to disruptions. The stable plasmas produced by uniform Li flow were in favor of lithium control. While the limiters were applied with a uniform Li flow, the normal plasma was easy to be obtained, and the energy confinement time increased from ∼0.025 s to 0.04 s. Furthermore, it was encouraging to note that the application of flowing liquid lithium limiters could further improve the confinement of plasma by ∼10% on the basis of Li coating. These remarkable results will help for the following design of flowing liquid lithium limiter in EAST to improve the plasma operation.

  11. Effects of large area liquid lithium limiters on spherical torus plasmas

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Boaz, M.; Efthimion, P.; Gettelfinger, G.; Gray, T.; Hoffman, D.; Jardin, S.; Kugel, H.; Marfuta, P.; Munsat, T.; Neumeyer, C.; Raftopoulos, S.; Soukhanovskii, V.; Spaleta, J.; Taylor, G.; Timberlake, J.; Woolley, R.; Zakharov, L.; Finkenthal, M.; Stutman, D.; Delgado-Aparicio, L.; Seraydarian, R.P.; Antar, G.; Doerner, R.; Luckhardt, S.; Baldwin, M.; Conn, R.W.; Maingi, R.; Menon, M.; Causey, R.; Buchenauer, D.; Ulrickson, M.; Jones, B.; Rodgers, D.

    2005-01-01

    Use of a large-area liquid lithium surface as a limiter has significantly improved the plasma performance in the Current Drive Experiment-Upgrade (CDX-U) at the Princeton Plasma Physics Laboratory. Previous CDX-U experiments with a partially-covered toroidal lithium limiter tray have shown a decrease in impurities and the recycling of hydrogenic species. Improvements in loading techniques have permitted nearly full coverage of the tray surface with liquid lithium. Under these conditions, there was a large drop in the loop voltage needed to sustain the plasma current. The data are consistent with simulations that indicate more stable plasmas having broader current profiles, higher temperatures, and lowered impurities with liquid lithium walls. As further evidence for reduced recycling with a liquid lithium limiter, the gas puffing had to be increased by up to a factor of eight for the same plasma density achieved with an empty toroidal tray limiter

  12. The Liquid Lithium Limiter control system on FTU

    International Nuclear Information System (INIS)

    Bertocchi, A.; Panella, M.; Vitale, V.; Sinibaldi, S.

    2006-01-01

    In the second half of 2005, a liquid lithium limiter (LLL) with capillary porous system configuration was installed for testing on the FTU tokamak. The liquid lithium flows through capillaries from a reservoir to the side facing the plasma to form a thin liquid lithium film. The system is composed of three stainless steel sections, which contain two thermocouples each. A heating system brings the Li temperature to about 200 o C allowing the liquid to flow. This temperature, monitored by thermocouples, needs to be controlled. [M. Apicella, G. Mazzitelli et al., First experiment with Lithium Limiter on FTU, 17 o International Conference on Plasma Surface Interaction in Controlled Fusion Devices, 22 - 26 May 2006, Hefei Anhui, China]. To carry out this experimental procedure, some new features have been introduced in the existent control system based on Opto22 TM modules and a CORBA/PHP/MySQL software architecture [A. Bertocchi, S. Podda, V. Vitale, Fusion Eng. Des. 74 (2005) 787-791]. The historical data storage to keep the lithium temperature evolution has been added. Two graphical tools - developed in MATLab and Java environments respectively to monitor the lithium temperature coming from thermocouples - have been also implemented. The control system allows regulating the heater temperature in each section of the LLL to reach operational conditions, where the temperature adjustment can be performed either automatically through a specific control law or manually by the operator. During plasma operations the system switches off the limiter power supply to prevent instruments damage. Moreover, in the same experimental context, a first approach to automatically obtain executable code - starting from control laws designed by Simulink TM tool - has been realized. (author)

  13. Effects of Large Area Liquid Lithium Limiters on Spherical Torus Plasmas

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Boaz, M.; Efthimion, P.; Gettelfinger, G.; Gray, T.; Hoffman, D.; Jardin, S.; Kugel, H.; Marfuta, P.; Munsat, T.; Neumeyer, C.; Raftopoulos, S.; Soukhanovskii, V.; Spaleta, J.; Taylor, G.; Timberlake, J.; Woolley, R.; Zakharov, L.; Finkenthal, M.; Stutman, D.; Delgado-Aparicio, L.; Seraydarian, R.P.; Antar, G.; Doerner, R.; Luckhardt, S.; Baldwin, M.; Conn, R.W.; Maingi, R.; Menon, M.; Causey, R.; Buchenauer, D.; Ulrickson, M.; Jones, B.; Rodgers, D.

    2004-01-01

    Use of a large-area liquid lithium surface as a first wall has significantly improved the plasma performance in the Current Drive Experiment-Upgrade (CDX-U) at the Princeton Plasma Physics Laboratory. Previous CDX-U experiments with a partially-covered toroidal lithium limiter tray have shown a decrease in impurities and the recycling of hydrogenic species. Improvements in loading techniques have permitted nearly full coverage of the tray surface with liquid lithium. Under these conditions, there was a large drop in the loop voltage needed to sustain the plasma current. The data are consistent with simulations that indicate more stable plasmas having broader current profiles, higher temperatures, and lowered impurities with liquid lithium walls. As further evidence for reduced recycling with a liquid lithium limiter, the gas puffing had to be increased by up to a factor of eight for the same plasma density achieved with an empty toroidal tray limiter

  14. The Liquid Lithium Limiter control system on FTU

    Energy Technology Data Exchange (ETDEWEB)

    Bertocchi, A; Panella, M; Vitale, V [Associazione EURATOM- ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati (RM) (Italy); Sinibaldi, S [Rome University ' ' Tor Vergata ' ' , Informatics, Systems and Production Dept., Via del Politecnico 1, 00133 Rome (Italy)

    2006-07-01

    In the second half of 2005, a liquid lithium limiter (LLL) with capillary porous system configuration was installed for testing on the FTU tokamak. The liquid lithium flows through capillaries from a reservoir to the side facing the plasma to form a thin liquid lithium film. The system is composed of three stainless steel sections, which contain two thermocouples each. A heating system brings the Li temperature to about 200 {sup o}C allowing the liquid to flow. This temperature, monitored by thermocouples, needs to be controlled. [M. Apicella, G. Mazzitelli et al., First experiment with Lithium Limiter on FTU, 17{sup o} International Conference on Plasma Surface Interaction in Controlled Fusion Devices, 22 - 26 May 2006, Hefei Anhui, China]. To carry out this experimental procedure, some new features have been introduced in the existent control system based on Opto22{sup TM} modules and a CORBA/PHP/MySQL software architecture [A. Bertocchi, S. Podda, V. Vitale, Fusion Eng. Des. 74 (2005) 787-791]. The historical data storage to keep the lithium temperature evolution has been added. Two graphical tools - developed in MATLab and Java environments respectively to monitor the lithium temperature coming from thermocouples - have been also implemented. The control system allows regulating the heater temperature in each section of the LLL to reach operational conditions, where the temperature adjustment can be performed either automatically through a specific control law or manually by the operator. During plasma operations the system switches off the limiter power supply to prevent instruments damage. Moreover, in the same experimental context, a first approach to automatically obtain executable code - starting from control laws designed by Simulink{sup TM} tool - has been realized. (author)

  15. The liquid lithium limiter control system on FTU

    Energy Technology Data Exchange (ETDEWEB)

    Bertocchi, A. [EURATOM-ENEA Association, Frascati Research Center, Via E. Fermi 45, 00044 Frascati (Rome) (Italy)], E-mail: bertocchi@frascati.enea.it; Di Donna, M [Department of Informatics, Systems and Productions, University of Rome Tor Vergata, Rome (Italy); Panella, M; Vitale, V [EURATOM-ENEA Association, Frascati Research Center, Via E. Fermi 45, 00044 Frascati (Rome) (Italy)

    2007-10-15

    In the second half of 2005, a liquid lithium limiter (LLL) with capillary porous system (CPS) configuration was installed to test on Tokamak FTU. The liquid lithium flows through capillaries from a reservoir to the side faced to the plasma to form a thin lithium film as wall coating. The system includes three stainless steel cases, which contain two thermocouples each one. A heating system brings the Li temperature about 200 deg. C to allow the liquid to flow. This temperature, monitored by thermocouples, needs to be controlled. To carry out this experimental procedure, some new features have been introduced in the existent control system based on Opto22{sup TM} modules and a CORBA/PHP/MySQL software architecture. The historical data storage to keep the lithium temperature evolution has been added. Two graphical tools - developed in MATLAB{sup TM} and Java environments, respectively, to monitor the lithium temperature coming from thermocouples - have been also implemented. The LLL control system allows to regulate the heater temperature in each unit to reach operational conditions, where the temperature adjustment can be performed either automatically through a specific control law or manually by the operator. During the plasma shot the system switches off the limiter power supply to prevent instruments damage. Moreover, in the same experimental context, a first approach to automatically obtain executable code - starting from control laws designed by Simulink{sup TM} tool - has been realized.

  16. The liquid lithium limiter control system on FTU

    International Nuclear Information System (INIS)

    Bertocchi, A.; Di Donna, M.; Panella, M.; Vitale, V.

    2007-01-01

    In the second half of 2005, a liquid lithium limiter (LLL) with capillary porous system (CPS) configuration was installed to test on Tokamak FTU. The liquid lithium flows through capillaries from a reservoir to the side faced to the plasma to form a thin lithium film as wall coating. The system includes three stainless steel cases, which contain two thermocouples each one. A heating system brings the Li temperature about 200 deg. C to allow the liquid to flow. This temperature, monitored by thermocouples, needs to be controlled. To carry out this experimental procedure, some new features have been introduced in the existent control system based on Opto22 TM modules and a CORBA/PHP/MySQL software architecture. The historical data storage to keep the lithium temperature evolution has been added. Two graphical tools - developed in MATLAB TM and Java environments, respectively, to monitor the lithium temperature coming from thermocouples - have been also implemented. The LLL control system allows to regulate the heater temperature in each unit to reach operational conditions, where the temperature adjustment can be performed either automatically through a specific control law or manually by the operator. During the plasma shot the system switches off the limiter power supply to prevent instruments damage. Moreover, in the same experimental context, a first approach to automatically obtain executable code - starting from control laws designed by Simulink TM tool - has been realized

  17. CDX-U Operation with a Large Area Liquid Lithium Limiter

    International Nuclear Information System (INIS)

    R. Majeski; M. Boaz; D. Hoffman; B. Jones; R. Kaita; H. Kugel; T. Munsat; J. Spaleta; V. Soukhanovskii; J. Timberlake; L. Zakharov; G. Antar; R. Doerner; S. Luckhardt; R.W. Conn; M. Finkenthal; D. Stutman; R. Maingi; M. Ulrickson

    2002-01-01

    The Current Drive experiment-Upgrade (CDX-U) at the Princeton Plasma Physics Laboratory has begun experiments with a fully toroidal liquid lithium limiter. CDX-U is a compact [R = 34 cm, a = 22 cm, B(subscript)toroidal = 2 kG, I(subscript)P = 100 kA, T(subscript)e(0) ∼ 100 eV, n(subscript)e(0) ∼ 5 x 10 19 m -3 ] short-pulse (<25 msec) spherical torus with extensive diagnostics. The limiter, which consists of a shallow circular stainless steel tray of radius 34 cm and width 10 cm, can be filled with lithium to a depth of a few millimeters, and forms the lower limiting surface for the discharge. Heating elements beneath the tray are used to liquefy the lithium prior to the experiment. Surface coatings are evident on part of the lithium. Despite the surface coatings, tokamak discharges operated in contact with the lithium-filled tray show evidence of reduced impurities and recycling. The reduction in recycling is largest when the lithium is liquefied by heating to 250 degrees Celsius

  18. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Capece, A.; Koel, B.; Roszell, J. [Princeton University, Princeton, New Jersey 08544 (United States); Biewer, T. M.; Gray, T. K. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kubota, S. [University of California at Los Angeles, Los Angeles, California 90095 (United States); Beiersdorfer, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2015-05-15

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.

  19. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    International Nuclear Information System (INIS)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G.; Capece, A.; Koel, B.; Roszell, J.; Biewer, T. M.; Gray, T. K.; Kubota, S.; Beiersdorfer, P.

    2015-01-01

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started

  20. Spectroscopic measurements of lithium influx from an actively water-cooled liquid lithium limiter on FTU

    Energy Technology Data Exchange (ETDEWEB)

    Apruzzese, G.M., E-mail: gerarda.apruzzese@enea.it; Apicella, M.L.; Maddaluno, G.; Mazzitelli, G.; Viola, B.

    2017-04-15

    Since 2006, experiments using a liquid lithium limiter (LLL) were successfully performed on FTU, pointing out the problem of the quantity of lithium in the plasma, especially in conditions of strong evaporation due to the high temperature of limiter surface. In order to avoid the strong evaporation it is necessary to control the temperature by removing the heat from the limiter during the plasma exposure. To explore this issue a new actively cooled lithium limiter (CLL) has been installed and tested in FTU. Suitable monitors to detect the presence of lithium in the plasma are the spectroscopic diagnostics in the visible range that permit to measure the flux of lithium, coming from the limiter surface, through the brightness of the LiI spectral lines. For this aim an Optical Multichannel Analyser (OMA) spectrometer and a single wavelength impurities monitor have been used. The analysis of the Li influx signals has permitted to monitor the effects of interaction between the plasma and the limiter connected to the thermal load. Particular attention has been paid on the possible occurrence of sudden rise of the signals, which is an index of a strong interaction that could lead to a disruption. On the other hand, the appearance of significant signals gives useful indication if the interaction with the plasma has taken place.

  1. FTU cooled liquid lithium upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Iafrati, M., E-mail: matteo.iafrati@enea.it [Associazione Euratom-ENEA sulla Fusione, C. R. Frascati, C. P. 65-00044 Frascati, Rome (Italy); Apicella, M.L.; Boncagni, L. [Associazione Euratom-ENEA sulla Fusione, C. R. Frascati, C. P. 65-00044 Frascati, Rome (Italy); Lyublinski, I. [JSC “RED STAR”, Moscow (Russian Federation); Mazzitelli, G. [Associazione Euratom-ENEA sulla Fusione, C. R. Frascati, C. P. 65-00044 Frascati, Rome (Italy); Vertkov, A. [JSC “RED STAR”, Moscow (Russian Federation)

    2017-04-15

    In the framework of the liquid lithium limiter experiment in Frascati a new auxiliary system was developed in order to provide a better control of the energy fluid vector. The cooled liquid lithium system (CLL) was installed for the first time at the end of 2013, it uses overheated water to heat the lithium and to extract, at the same time, the heat from the metal surface when it gets wet by the plasma. A first version of the system, developed and presented in previous papers, has been modified to optimize the heat flux measurement on the liquid lithium surface. The changes include a new power supply logic for the heating system, new sensors and new read-out electronics compatible with the implementation of a real time control system. The prototype was updated with the aim of achieving a low cost and versatile control system.

  2. Control of nitrogen concentration in liquid lithium by hot trapping

    International Nuclear Information System (INIS)

    Sakurai, Toshiharu; Yoneoka, Toshiaki; Tanaka, Satoru; Suzuki, Akihiro; Muroga, Takeo

    2002-01-01

    Nitrogen concentration in liquid lithium was controlled by the method of hot trapping. V-Ti alloy and chromium were used as nitrogen gettering materials. Chromium is known to form ternary nitride with lithium. Gettering experiments were conducted at 823 K for 0.8-2.2 Ms. Under high nitrogen concentration in liquid lithium, above 10 -2 mass%, nitrogen gettering effect of chromium was found to be larger than that of V-10at.% Ti alloy. Nitrogen gettering by chromium at 823 K reached a limit at about 6.5x10 -3 mass% of nitrogen concentration in liquid lithium. Instability of ternary nitride of chromium and lithium below this nitrogen concentration in liquid lithium was considered to be the reason for this limit. The composition of the ternary nitride that was formed in this study was considered to be Li 6 Cr(III) 3 N 5 . In addition, immersion experiments of yttrium with V-10at.% Ti alloy were performed. It was found that nitriding of yttrium in liquid lithium is controlled by nitrogen gettering effect of V-10at.% Ti alloy

  3. Diagnostics for liquid lithium experiments in CDX-U

    International Nuclear Information System (INIS)

    Kaita, R.; Efthimion, P.; Hoffman, D.; Jones, B.; Kugel, H.; Majeski, R.; Munsat, T.; Raftopoulos, S.; Taylor, G.; Timberlake, J.; Soukhanovskii, V.; Stutman, D.; Iovea, M.; Finkenthal, M.; Doerner, R.; Luckhardt, S.; Maingi, R.; Causey, R.

    2000-01-01

    A flowing liquid lithium first wall or diverter target could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls in fusion reactors. To investigate the interaction of a spherical torus plasma with liquid lithium limiters, large area diverter targets, and walls, discharges will be established in the Current Drive Experiment-Upgrade (CDX-U) where the plasma-wall interactions are dominated by liquid lithium surfaces. Among the unique CDX-U lithium diagnostics is a multi-layer mirror (MLM) array, which will monitor the 135 (angstrom) LiIII line for core lithium concentrations. Additional spectroscopic diagnostics include a grazing incidence XUV spectrometer (STRS) and a filterscope system to monitor D α and various impurity lines local to the lithium limiter. Profile data will be obtained with a multichannel tangential bolometer and a multipoint Thomson scattering system configured to give enhanced edge resolution. Coupons on th e inner wall of the CDX-U vacuum vessel will be used for surface analysis. A 10,000 frame per second fast visible camera and an IR camera will also be available

  4. Operational Characteristics of Liquid Lithium Divertor in NSTX

    Science.gov (United States)

    Kaita, R.; Kugel, H.; Abrams, T.; Bell, M. G.; Bell, R. E.; Gerhardt, S.; Jaworski, M. A.; Kallman, J.; Leblanc, B.; Mansfield, D.; Mueller, D.; Paul, S.; Roquemore, A. L.; Scotti, F.; Skinner, C. H.; Timberlake, J.; Zakharov, L.; Maingi, R.; Nygren, R.; Raman, R.; Sabbagh, S.; Soukhanovskii, V.

    2010-11-01

    Lithium coatings on plasma-facing components (PFC's) have resulted in improved plasma performance on NSTX in deuterium H-mode plasmas with neutral beam heating.^ Salient results included improved electron confinement and ELM suppression. In CDX-U, the use of lithium-coated PFC's and a large-area liquid lithium limiter resulted in a six-fold increase in global energy confinement time. A Liquid Lithium Divertor (LLD) has been installed in NSTX for the 2010 run campaign. The LLD PFC consists of a thin film of lithium on a temperature-controlled substrate to keep the lithium liquefied between shots, and handle heat loads during plasmas. This capability was demonstrated when the LLD withstood a strike point on its surface during discharges with up to 4 MW of neutral beam heating.

  5. Wetting properties of liquid lithium on lithium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Krat, S.A., E-mail: stepan.krat@gmail.com [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Popkov, A.S. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Gasparyan, Yu. M.; Pisarev, A.A. [National Research Nuclear University MEPhI, Moscow (Russian Federation); Fiflis, Peter; Szott, Matthew; Christenson, Michael; Kalathiparambil, Kishor; Ruzic, David N. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States)

    2017-04-15

    Highlights: • Contact angles of liquid lithium and Li{sub 3}N, Li{sub 2}O, Li{sub 2}CO{sub 3} were measured. • Liquid lithium wets lithium compounds at relatively low temperatures: Li{sub 3}N at 257 °C, Li{sub 2}O at 259 °C, Li{sub 2}CO{sub 3} at 323 °C. • Li wets Li{sub 2}O and Li{sub 3}N better than previously measured fusion-relevant materials (W, Mo, Ta, TZM, stainless steel). • Li wets Li{sub 2}CO{sub 3} better than most previously measured fusion-relevant materials (W, Mo, Ta). - Abstract: Liquid metal plasma facing components (LMPFC) have shown a potential to supplant solid plasma facing components materials in the high heat flux regions of magnetic confinement fusion reactors due to the reduction or elimination of concerns over melting, wall damage, and erosion. To design a workable LMPFC, one must understand how liquid metal interacts with solid underlying structures. Wetting is an important factor in such interaction, several designs of LMPFC require liquid metal to wet the underlying solid structures. The wetting of lithium compounds (lithium nitride, oxide, and carbonate) by 200 °C liquid lithium at various surface temperature from 230 to 330 °C was studied by means of contact angle measurements. Wetting temperatures, defined as the temperature above which the contact angle is less than 90°, were measured. The wetting temperature was 257 °C for nitride, 259 °C for oxide, and 323 °C for carbonate. Surface tensions of solid lithium compounds were calculated from the contact angle measurements.

  6. Spherical Torus Plasma Interactions with Large-area Liquid Lithium Surfaces in CDX-U

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Boaz, M.; Efthimion, P.; Jones, B.; Hoffman, D.; Kugel, H.; Menard, J.; Munsat, T.; Post-Zwicker, A.; Soukhanovskii, V.; Spaleta, J.; Taylor, G.; Timberlake, J.; Woolley, R.; Zakharov, L.; Finkenthal, M.; Stutman, D.; Antar, G.; Doerner, R.; Luckhardt, S.; Maingi, R.; Maiorano, M.; Smith, S.

    2002-01-01

    The Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory (PPPL) is a spherical torus (ST) dedicated to the exploration of liquid lithium as a potential solution to reactor first-wall problems such as heat load and erosion, neutron damage and activation, and tritium inventory and breeding. Initial lithium limiter experiments were conducted with a toroidally-local liquid lithium rail limiter (L3) from the University of California at San Diego. Spectroscopic measurements showed a clear reduction of impurities in plasmas with the L3, compared to discharges with a boron carbide limiter. The evidence for a reduction in recycling was less apparent, however. This may be attributable to the relatively small area in contact with the plasma, and the presence of high-recycling surfaces elsewhere in the vacuum chamber. This conclusion was tested in subsequent experiments with a fully toroidal lithium limiter that was installed above the floor of the vacuum vessel. The new limiter covered over ten times the area of the L3 facing the plasma. Experiments with the toroidal lithium limiter have recently begun. This paper describes the conditioning required to prepare the lithium surface for plasma operations, and effect of the toroidal liquid lithium limiter on discharge performance

  7. Spherical Torus Plasma Interactions with Large-area Liquid Lithium Surfaces in CDX-U

    Energy Technology Data Exchange (ETDEWEB)

    R. Kaita; R. Majeski; M. Boaz; P. Efthimion; B. Jones; D. Hoffman; H. Kugel; J. Menard; T. Munsat; A. Post-Zwicker; V. Soukhanovskii; J. Spaleta; G. Taylor; J. Timberlake; R. Woolley; L. Zakharov; M. Finkenthal; D. Stutman; G. Antar; R. Doerner; S. Luckhardt; R. Maingi; M. Maiorano; S. Smith

    2002-01-18

    The Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory (PPPL) is a spherical torus (ST) dedicated to the exploration of liquid lithium as a potential solution to reactor first-wall problems such as heat load and erosion, neutron damage and activation, and tritium inventory and breeding. Initial lithium limiter experiments were conducted with a toroidally-local liquid lithium rail limiter (L3) from the University of California at San Diego. Spectroscopic measurements showed a clear reduction of impurities in plasmas with the L3, compared to discharges with a boron carbide limiter. The evidence for a reduction in recycling was less apparent, however. This may be attributable to the relatively small area in contact with the plasma, and the presence of high-recycling surfaces elsewhere in the vacuum chamber. This conclusion was tested in subsequent experiments with a fully toroidal lithium limiter that was installed above the floor of the vacuum vessel. The new limiter covered over ten times the area of the L3 facing the plasma. Experiments with the toroidal lithium limiter have recently begun. This paper describes the conditioning required to prepare the lithium surface for plasma operations, and effect of the toroidal liquid lithium limiter on discharge performance.

  8. Liquid Lithium Wall Experiments in CDX-U

    International Nuclear Information System (INIS)

    Doerner, R.; Kaita, R.; Majeski, R.; Luckhardt, S.

    1999-01-01

    The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance in reactor design, since it could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls. Sputtering and erosion tests are currently underway in the PISCES device at the University of California at San Diego (UCSD). To complement this effort, plasma interaction questions in a toroidal plasma geometry will be addressed by a proposed new groundbreaking experiment in the Current Drive eXperiment-Upgrade (CDX-U) spherical torus (ST). The CDX-U plasma is intensely heated and well diagnosed, and an extensive liquid lithium plasma-facing surface will be used for the first time with a toroidal plasma. Since CDX-U is a small ST, only approximately1 liter or less of lithium is required to produce a toroidal liquid lithium limiter target, leading to a quick and cost-effective experiment

  9. Mechanical Design of the NSTX Liquid Lithium Divertor

    Energy Technology Data Exchange (ETDEWEB)

    R. Ellis, R. Kaita, H. Kugel, G. Paluzzi, M. Viola and R. Nygren

    2009-02-19

    The Liquid Lithium Divertor (LLD) on NSTX will be the first test of a fully-toroidal liquid lithium divertor in a high-power magnetic confinement device. It will replace part of the lower outboard divertor between a specified inside and outside radius, and ultimately provide a lithium surface exposed to the plasma with enough depth to absorb a significant particle flux. There are numerous technical challenges involved in the design. The lithium layer must be as thin as possible, and maintained at a temperature between 200 and 400 degrees Celsius to minimize lithium evaporation. This requirement leads to the use of a thick copper substrate, with a thin stainless steel layer bonded to the plasma-facing surface. A porous molybdenum layer is then plasma-sprayed onto the stainless steel, to provide a coating that facilitates full wetting of the surface by the liquid lithium. Other challenges include the design of a robust, vacuumcompatible heating and cooling system for the LLD. Replacement graphite tiles that provided the proper interface between the existing outer divertor and the LLD also had to be designed, as well as accommodation for special LLD diagnostics. This paper describes the mechanical design of the LLD, and presents analyses showing the performance limits of the LLD.

  10. Mechanical Design of the NSTX Liquid Lithium Divertor

    International Nuclear Information System (INIS)

    Ellis, R.; Kaita, R.; Kugel, H.; Paluzzi, G.; Viola, M.; Nygren, R.

    2009-01-01

    The Liquid Lithium Divertor (LLD) on NSTX will be the first test of a fully-toroidal liquid lithium divertor in a high-power magnetic confinement device. It will replace part of the lower outboard divertor between a specified inside and outside radius, and ultimately provide a lithium surface exposed to the plasma with enough depth to absorb a significant particle flux. There are numerous technical challenges involved in the design. The lithium layer must be as thin as possible, and maintained at a temperature between 200 and 400 degrees Celsius to minimize lithium evaporation. This requirement leads to the use of a thick copper substrate, with a thin stainless steel layer bonded to the plasma-facing surface. A porous molybdenum layer is then plasma-sprayed onto the stainless steel, to provide a coating that facilitates full wetting of the surface by the liquid lithium. Other challenges include the design of a robust, vacuum compatible heating and cooling system for the LLD. Replacement graphite tiles that provided the proper interface between the existing outer divertor and the LLD also had to be designed, as well as accommodation for special LLD diagnostics. This paper describes the mechanical design of the LLD, and presents analyses showing the performance limits of the LLD.

  11. Preliminary experimental study of liquid lithium water interaction

    International Nuclear Information System (INIS)

    You, X.M.; Tong, L.L.; Cao, X.W.

    2015-01-01

    Highlights: • Explosive reaction occurs when lithium temperature is over 300 °C. • The violence of liquid lithium water interaction increases with the initial temperature of liquid lithium. • The interaction is suppressed when the initial water temperature is above 70 °C. • Steam explosion is not ignorable in the risk assessment of liquid lithium water interaction. • Explosion strength of liquid lithium water interaction is evaluated by explosive yield. - Abstract: Liquid lithium is the best candidate for a material with low Z and low activation, and is one of the important choices for plasma facing materials in magnetic fusion devices. However, liquid lithium reacts violently with water under the conditions of loss of coolant accidents. The release of large heats and hydrogen could result in the dramatic increase of temperature and pressure. The lithium–water explosion has large effect on the safety of fusion devices, which is an important content for the safety assessment of fusion devices. As a preliminary investigation of liquid lithium water interaction, the test facility has been built and experiments have been conducted under different conditions. The initial temperature of lithium droplet ranged from 200 °C to 600 °C and water temperature was varied between 20 °C and 90 °C. Lithium droplets were released into the test section with excess water. The shape of lithium droplet and steam generated around the lithium were observed by the high speed camera. At the same time, the pressure and temperature in the test section were recorded during the violent interactions. The preliminary experimental results indicate that the initial temperature of lithium and water has an effect on the violence of liquid lithium water interaction.

  12. Preliminary experimental study of liquid lithium water interaction

    Energy Technology Data Exchange (ETDEWEB)

    You, X.M.; Tong, L.L.; Cao, X.W., E-mail: caoxuewu@sjtu.edu.cn

    2015-10-15

    Highlights: • Explosive reaction occurs when lithium temperature is over 300 °C. • The violence of liquid lithium water interaction increases with the initial temperature of liquid lithium. • The interaction is suppressed when the initial water temperature is above 70 °C. • Steam explosion is not ignorable in the risk assessment of liquid lithium water interaction. • Explosion strength of liquid lithium water interaction is evaluated by explosive yield. - Abstract: Liquid lithium is the best candidate for a material with low Z and low activation, and is one of the important choices for plasma facing materials in magnetic fusion devices. However, liquid lithium reacts violently with water under the conditions of loss of coolant accidents. The release of large heats and hydrogen could result in the dramatic increase of temperature and pressure. The lithium–water explosion has large effect on the safety of fusion devices, which is an important content for the safety assessment of fusion devices. As a preliminary investigation of liquid lithium water interaction, the test facility has been built and experiments have been conducted under different conditions. The initial temperature of lithium droplet ranged from 200 °C to 600 °C and water temperature was varied between 20 °C and 90 °C. Lithium droplets were released into the test section with excess water. The shape of lithium droplet and steam generated around the lithium were observed by the high speed camera. At the same time, the pressure and temperature in the test section were recorded during the violent interactions. The preliminary experimental results indicate that the initial temperature of lithium and water has an effect on the violence of liquid lithium water interaction.

  13. Experiments with liquid metal walls: Status of the lithium tokamak experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, Robert, E-mail: kaita@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Berzak, Laura; Boyle, Dennis; Gray, Timothy; Granstedt, Erik; Hammett, Gregory; Jacobson, Craig M.; Jones, Andrew; Kozub, Thomas; Kugel, Henry; Leblanc, Benoit; Logan, Nicholas; Lucia, Matthew; Lundberg, Daniel; Majeski, Richard; Mansfield, Dennis; Menard, Jonathan; Spaleta, Jeffrey; Strickler, Trevor; Timberlake, John [Princeton Plasma Physics Laboratory, Princeton, NJ (United States)

    2010-11-15

    Abstarct: Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The lithium tokamak experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the current drive experiment-upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in ohmically heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating the shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy (CHERS). Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions.

  14. Experiments with Liquid Metal Walls: Status of the Lithium Tokamak Experiment

    International Nuclear Information System (INIS)

    Kaita, Robert; Berzak, Laura; Boyle, Dennis; Gray, Timothy; Granstedt, Erik; Hammett, Gregory; Jacobson, Craig M.; Jones, Andrew; Kozub, Thomas; Kugel, Henry; Leblanc, Benoit; Logan, Nicholas; Lucia, Matthew; Lundberg, Daniel; Majeski, Richard; Mansfield, Dennis; Menard, Jonathan; Spaleta, Jeffrey; Strickler, Trevor; Timberlak, John

    2010-01-01

    Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating the shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy. Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions.

  15. NSTX plasma operation with a Liquid Lithium Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, H.W., E-mail: hkugel@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Allain, J.P. [Purdue University, West Lafayette, IN 47907 (United States); Bell, M.G.; Bell, R.E.; Diallo, A.; Ellis, R.; Gerhardt, S.P. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Heim, B. [Purdue University, West Lafayette, IN 47907 (United States); Jaworski, M.A.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Maingi, R.; McLean, A. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Menard, J.; Mueller, D. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Nygren, R. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Ono, M.; Paul, S.F. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); and others

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer NSTX 2010 experiments tested the effectiveness of maintaining the deuterium retention properties of a static liquid lithium molybdenum divertor surface when refreshed by lithium evaporation as an approximation to a flowing liquid lithium surface. Black-Right-Pointing-Pointer Noteworthy improvements in plasma performance with the plasma strike point on the liquid lithium molybdenum divertor were obtained similar to those obtained previously with lithiated graphite. The role of lithium impurities in this result is discussed. Black-Right-Pointing-Pointer Inspection of the liquid lithium molybdenum divertor after the Campaign indicated mechanical damage to supports, and other hardware resulting from forces following plasma current disruptions. - Abstract: NSTX 2010 experiments were conducted using a molybdenum Liquid Lithium Divertor (LLD) surface installed on the outer part of the lower divertor. This tested the effectiveness of maintaining the deuterium retention properties of a static liquid lithium surface when refreshed by lithium evaporation as an approximation to a flowing liquid lithium surface. The LLD molybdenum front face has a 45% porosity to provide sufficient wetting to spread 37 g of lithium, and to retain it in the presence of magnetic forces. Lithium Evaporators were used to deposit lithium on the LLD surface. At the beginning of discharges, the LLD lithium surface ranged from solid to liquefied depending on the amount of applied and plasma heating. Noteworthy improvements in plasma performance were obtained similar to those obtained previously with lithiated graphite, e.g., ELM-free, quiescent edge, H-modes. During these experiments with the plasma outer strike point on the LLD, the rate of deuterium retention in the LLD, as indicated by the fueling needed to achieve and maintain stable plasma conditions, was the about the same as that for solid lithium coatings on the graphite prior to the installation of the

  16. Electrochemical Model for Ionic Liquid Electrolytes in Lithium Batteries

    International Nuclear Information System (INIS)

    Yoo, Kisoo; Deshpande, Anirudh; Banerjee, Soumik; Dutta, Prashanta

    2015-01-01

    ABSTRACT: Room temperature ionic liquids are considered as potential electrolytes for high performance and safe lithium batteries due to their very low vapor pressure and relatively wide electrochemical and thermal stability windows. Unlike organic electrolytes, ionic liquid electrolytes are molten salts at room temperature with dissociated cations and anions. These dissociated ions interfere with the transport of lithium ions in lithium battery. In this study, a mathematical model is developed for transport of ionic components to study the performance of ionic liquid based lithium batteries. The mathematical model is based on a univalent ternary electrolyte frequently encountered in ionic liquid electrolytes of lithium batteries. Owing to the very high concentration of components in ionic liquid, the transport of lithium ions is described by the mutual diffusion phenomena using Maxwell-Stefan diffusivities, which are obtained from atomistic simulation. The model is employed to study a lithium-ion battery where the electrolyte comprises ionic liquid with mppy + (N-methyl-N-propyl pyrrolidinium) cation and TFSI − (bis trifluoromethanesulfonyl imide) anion. For a moderate value of reaction rate constant, the electric performance results predicted by the model are in good agreement with experimental data. We also studied the effect of porosity and thickness of separator on the performance of lithium-ion battery using this model. Numerical results indicate that low rate of lithium ion transport causes lithium depleted zone in the porous cathode regions as the porosity decreases or the length of the separator increases. The lithium depleted region is responsible for lower specific capacity in lithium-ion cells. The model presented in this study can be used for design of optimal ionic liquid electrolytes for lithium-ion and lithium-air batteries

  17. Deuterium retention in liquid lithium

    International Nuclear Information System (INIS)

    Baldwin, M.J.; Doerner, R.P.; Luckhardt, S.C.; Conn, R.W.

    2002-01-01

    Measurements of deuterium retention in samples of lithium exposed in the liquid state to deuterium plasma are reported. Retention was measured as a function of plasma ion dose in the range 6x10 19 -4x10 22 D atoms and exposure temperature between 523 and 673 K using thermal desorption spectrometry. The results are consistent with the full uptake of all deuterium ions incident on the liquid metal surface and are found to be independent of the temperature of the liquid lithium over the range explored. Full uptake, consistent with very low recycling, continues until the sample is volumetrically converted to lithium deuteride. This occurs for exposure temperatures where the gas pressure during exposure was both below and slightly above the corresponding decomposition pressure for LiD in Li. (author)

  18. Hydrogen extraction from liquid lithium-lead alloy by gas-liquid contact method

    International Nuclear Information System (INIS)

    Xie Bo; Weng Kuiping; Hou Jianping; Yang Guangling; Zeng Jun

    2013-01-01

    Hydrogen extraction experiment from liquid lithium-lead alloy by gas-liquid contact method has been carried out in own liquid lithium-lead bubbler (LLLB). Experimental results show that, He is more suitable than Ar as carrier gas in the filler tower. The higher temperature the tower is, the greater hydrogen content the tower exports. Influence of carrier gas flow rate on the hydrogen content in the export is jagged, no obvious rule. Although the difference between experimental results and literature data, but it is feasible that hydrogen isotopes extraction experiment from liquid lithium-lead by gas-liquid contact method, and the higher extraction efficiency increases with the growth of the residence time of the alloy in tower. (authors)

  19. Preparation and transport properties of novel lithium ionic liquids

    International Nuclear Information System (INIS)

    Shobukawa, Hitoshi; Tokuda, Hiroyuki; Tabata, Sei-Ichiro; Watanabe, Masayoshi

    2004-01-01

    Novel lithium salts of borates having two electron-withdrawing groups (either 1,1,1,3,3,3-hexafluoro-2-propoxy or pentafluorophenoxy group) and two methoxy-oligo(ethylene oxide) groups (number of repeating unit: n = 3, 4, 7.2) were prepared by successive substitution-reactions from LiBH 4 . The obtained lithium salts were clear and colorless liquids at room temperature. The density, thermal property, viscosity, and ionic conductivity were measured for the lithium ionic liquids. The pulsed-gradient spin-echo NMR (PGSE-NMR) method was used to independently determine self-diffusion coefficients of the lithium cation ( 7 Li NMR) and the anion ( 19 F NMR) in the bulk. The ionic conductivity of the new lithium salts was 10 -5 to 10 -4 S cm -1 at 30 deg. C, which was lower than that of typical ionic liquids by two orders of magnitude. However, the degree of self-dissociation of the lithium ionic liquids; the ratio of the molar conductivity determined by the complex impedance method to that calculated from the self-diffusion coefficients and the Nernst-Einstein equation, ranged from 0.1 to 0.4, which are comparable values to those of a highly dissociable salt in an aprotic polar solvent and of typical ionic liquids. The main reason for the meager conductivity was high viscosities of the lithium ionic liquids. It should be noted that the lithium ionic liquids have self-dissociation ability and conduct the ions in the absence of organic solvents

  20. Experiments for liquid metal embrittlement of fusion reactor materials by liquid lithium

    International Nuclear Information System (INIS)

    Grundmann, M.; Borgstedt, H.U.

    1984-10-01

    The liquid metal embrittlement behaviour of two martensitic-ferritic steels [X22CrMoV121 (Nr. 1.4923) and X18CrMoVNb 121 (Nr. 1,4914)] and one austenite chromium-nickel-steel X5CrNi189 (Nr. 1.4301) was investigated. Tensile tests in liquid lithium at 200 and 250 0 C with two different strain rates on precorroded samples (1000 h at 550 0 C in lithium) were carried out. Reference values were gained from tensile tests in air (RT, 250 0 C). It is concluded that there is sufficient compatibility of the austenitic steel with liquid lithium. The use of the ferritic-martensitic steels in liquid lithium on the other hand, especially at temperatures of about 550 0 C, seems to be problematic. The experimental results led to a better understanding of LME, applying the theory of this material failure. (orig./IHOE) [de

  1. Chemical processing of liquid lithium fusion reactor blankets

    International Nuclear Information System (INIS)

    Weston, J.R.; Calaway, W.F.; Yonco, R.M.; Hines, J.B.; Maroni, V.A.

    1979-01-01

    A 50-gallon-capacity lithium loop constructed mostly from 304L stainless steel has been operated for over 6000 hours at temperatures in the range from 360 to 480 0 C. This facility, the Lithium Processing Test Loop (LPTL), is being used to develop processing and monitoring technology for liquid lithium fusion reactor blankets. Results of tests of a molten-salt extraction method for removing impurities from liquid lithium have yielded remarkably good distribution coefficients for several of the more common nonmetallic elements found in lithium systems. In particular, the equilibrium volumetric distribution coefficients, D/sub v/ (concentration per unit volume of impurity in salt/concentration per unit volume of impurity in lithium), for hydrogen, deuterium, nitrogen and carbon are approx. 3, approx. 4, > 10, approx. 2, respectively. Other studies conducted with a smaller loop system, the Lithium Mini-Test Loop (LMTL), have shown that zirconium getter-trapping can be effectively used to remove selected impurities from flowing lithium

  2. Corrosion of ferrous alloys in nitrogen contaminated liquid lithium

    International Nuclear Information System (INIS)

    Olson, D.L.; Bradley, W.L.

    1976-01-01

    Liquid lithium penetration of 304L stainless steel and Armco iron grain boundaries has been studied. The penetration kinetics for the 304L stainless steel was found to be diffusion controlled. The measured temperature dependent delay time has been associated with the initial formation of the corrosion product at the grain boundary. Nitrogen in the stainless steel or the liquid lithium has been found to accelerate the rate of attack without changing the apparent activation energy. Grain boundary grooving of Armco iron in liquid lithium indicates that the controlling mass transport is also through a corrosion product present as a surface film. Stresses as small as 12 MPa have been found to give rise to a fifty-fold increase in the rate of penetration of Armco iron by liquid lithium

  3. Ion transport properties of lithium ionic liquids and their ion gels

    International Nuclear Information System (INIS)

    Shobukawa, Hitoshi; Tokuda, Hiroyuki; Susan, Md. Abu Bin Hasan; Watanabe, Masayoshi

    2005-01-01

    A new series of lithium ionic liquids were prepared by introducing of two electron-withdrawing trifluoroacetyl groups in borate salts containing two methoxy-oligo(ethylene oxide) groups in the structures. Successive substitution reactions of oligo-ethylene glycol monomethyl ether and trifluroacetic acid from LiBH 4 yielded the lithium salts, which were clear and colorless liquids at room temperature. The fundamental physicochemical properties, such as density, thermal property, viscosity, ionic conductivity, self-diffusion coefficients, and electrochemical stability, were measured. The lithium ionic liquids had self-dissociation ability and conducted ions even in the absence of organic solvents. New polymer electrolytes, named 'ion gels', were prepared by radical cross-linking reactions of a poly(ethylene oxide-co-propylene oxide)tri-acrylate macromonomer in the presence the lithium ionic liquid. An increase in the glass transition temperatures (T g ) of the ion gels was very small even with increasing lithium ionic liquid concentration, and the T g 's were lower than that of the ionic liquid itself. The ionic conductivity of the ion gels surpassed that of the lithium ionic liquid in the bulk at certain compositions

  4. Development and implementation of flowing liquid lithium limiter control system for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, XiaoLin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230031 (China); Chen, Yue [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, JianSheng, E-mail: hujs@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, JianGang; Zuo, GuiZhong; Ren, Jun; Zhou, Yue; Li, ChangZheng; Sun, Zheng; Xu, Wei; Meng, XianCai; Huang, Ming; Zheng, XingWei; Yao, Xingjia [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • Development of a FLiLi remote control system for EAST. • Intelligent instruments are used to realize FLiLi remote control. • Good operating results of the control system were obtained in the EAST campaign. - Abstract: A control system of a flowing liquid lithium (FLiLi) limiter for the Experimental Advanced Superconducting Tokamak (EAST) was developed and implemented. The control system is not only able to control the direct current (DC) electromagnetic pump and heating power but can also set scanning parameters, receive the shot number, acquire the temperature, etc. The system consists of multifunctional LAN eXtensions for Instrumentation (LXI) instrument, temperature-acquisition module, programmable DC power supply, and programmable logic controller (PLC). The multi-range DC power supply is programmed to meet the operational requirements of the DC electromagnetic pump. The LXI instrument and temperature-acquisition module are used to obtain temperature data. The PLC is adopted to control the temperature of the FLiLi limiter. A safety interlock and protection function was developed for the FLiLi limiter control system. The software was designed by using LabVIEW to achieve data interaction between multiple protocols. The FLiLi limiter control system can acquire experimental data at a speed of 100 S/s and store it for later analysis. The control system was successfully applied to a FLiLi limiter to study the interaction between plasma and a fixed wall in the EAST campaign. This paper presents the framework, the implementation details, and results of the control system.

  5. Plasma interaction with liquid lithium: Measurements of retention and erosion

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, M.J. E-mail: mbaldwin@ferp.ucsd.edu; Doerner, R.P.; Luckhardt, S.C.; Seraydarian, R.; Whyte, D.G.; Conn, R.W

    2002-11-01

    This paper reports on recent studies of high flux deuterium and helium plasma interaction with liquid lithium in the Pisces-B edge plasma simulator facility. Deuterium retention is explored as a function of plasma ion fluence in the range 6x10{sup 19}-4x10{sup 22} atoms cm{sup -2} and exposure temperatures of 523-673 K. The results are consistent with full uptake of the deuterium ions incident on the liquid metal surface, independent of the temperature of the liquid lithium. Full uptake continues until the sample is volumetrically converted to lithium deuteride. Helium retention is not observed for fluences up to 5x10{sup 21} He atoms cm{sup -2}. Measurements of the erosion of lithium are found to be consistent with physical sputtering for the lithium solid phase. However, a mechanism that provides an increased evaporative-like yield and is related to ion impact events on the surface, dominates during the liquid phase leading to an enhanced loss rate for liquid lithium that is greater than the expected loss rate due to evaporation at elevated temperatures. Further, the material loss rate is found to depend linearly on the incident ion flux, even at very high temperature.

  6. Factors influencing the thermodynamic isotope effect of lithium in polyetherlithium liquid-liquid extraction systems

    International Nuclear Information System (INIS)

    Fu Lian; Fang Shengqiang; Yao Zhongqi; Gao Zhichang; Tan Ganzhu

    1989-01-01

    The published data up to now concerning polyether-lithium liquid-liquid extraction systems, can be summarized by the equation, ε p = (α-1)/[1 + 0.46(1-P)], where α denotes the isotope separation factor; P - the ratio of the lithium concentration in the organic phase to the initial concentration of crown ethers; ε p -the enrichment coefficient as P = 100%. Based on the changes in ε p , P, α and D(distribution ratio), the functions of factors such as polyether's structure, polyether's side group, polyether's concentration, organic solvent, negative ion of lithium salt and lithium salt's concentration, are discussed and reported

  7. A molecular dynamics study of lithium-containing aprotic heterocyclic ionic liquid electrolytes

    Science.gov (United States)

    Lourenço, Tuanan C.; Zhang, Yong; Costa, Luciano T.; Maginn, Edward J.

    2018-05-01

    Classical molecular dynamics simulations were performed on twelve different ionic liquids containing aprotic heterocyclic anions doped with Li+. These ionic liquids have been shown to be promising electrolytes for lithium ion batteries. Self-diffusivities, lithium transference numbers, densities, and free volumes were computed as a function of lithium concentration. The dynamics and free volume decreased with increasing lithium concentration, and the trends were rationalized by examining the changes to the liquid structure. Of those examined in the present work, it was found that (methyloxymethyl)triethylphosphonium triazolide ionic liquids have the overall best performance.

  8. Trace hydrogen extraction from liquid lithium tin alloy

    International Nuclear Information System (INIS)

    Xie Bo; Hu Rui; Xie Shuxian; Weng Kuiping

    2010-01-01

    In order to finish the design of tritium extraction system (TES) of fusion fission hybrid reactor (FFHR) tritium blanket, involving the dynamic mathematical model of liquid metal in contact with a gaseous atmosphere, approximate mathematical equation of tritium in lithium tin alloy was deduced. Moreover, carrying process used for trace hydrogen extraction from liquid lithium tin alloy was investigated with hydrogen being used to simulate tritium in the study. The study results indicate that carrying process is effective way for hydrogen extraction from liquid lithium tin alloy, and the best flow velocity of carrier gas is about 4 L/min under 1 kg alloy temperatures and carrying numbers are the main influencing factors of hydrogen number. Hydrogen extraction efficiency can reach 85% while the alloy sample is treated 6 times at 823 K. (authors)

  9. The design of a liquid lithium lens for a muon collider

    International Nuclear Information System (INIS)

    Balbekov, V.; Geer, S.; Hassanein, A.; Holtkamp, N.; Lebrun, P.; Neuffer, D.; Norem, J.; Palmer, R.; Reed, C.; Silvestrov, G.; Spentzouris, P.; Tollestrup, A.; Vsevolozhskaya, T. A.

    1999-01-01

    The last stage of ionization cooling for the muon collider requires a multistage liquid lithium lens. This system uses a large (approximately0.5 MA) pulsed current through liquid lithium to focus the beam while energy loss in the lithium removes momentum which is replaced by linacs. The beam optics are designed to maximize the 6 dimensional transmission from one lens to the next while minimizing emittance growth. The mechanical design of the lithium vessel is constrained by a pressure pulse due to the sudden ohmic heating, and the stress on the Be window. The authors describe beam optics, the liquid lithium pressure vessel, pumping, power supplies, as well as the overall optimization of the system

  10. Experimental system design of liquid lithium-lead alloy bubbler for DFLL-TBM

    International Nuclear Information System (INIS)

    Xie Bo; Li Junge; Xu Shaomei; Weng Kuiping

    2011-01-01

    The liquid lithium-lead alloy bubbler is a very important composition in the tritium unit of Chinese Dual-Functional Lithium Lead Test Blanket Module (DFLL-TBM). In order to complete the construction and run of the bubbler experimental system,overall design of the system, main circuit design and auxiliary system design have been proposed on the basis of theoretical calculations for the interaction of hydrogen isotope with lithium-lead alloy and experiment for hydrogen extraction from liquid lithium-lead alloy by bubbling with rotational jet nozzle. The key of this design is gas-liquid exchange packed column, to achieve the measurement and extraction of hydrogen isotopes from liquid lithium-lead alloy. (authors)

  11. High-power liquid-lithium jet target for neutron production

    OpenAIRE

    Halfon, S.; Arenshtam, A.; Kijel, D.; Paul, M.; Berkovits, D.; Eliyahu, I.; Feinberg, G.; Friedman, M.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Tessler, M.; Silverman, I.

    2013-01-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy (BNCT). The liquid-lithium jet target acts both as ...

  12. Extraction of tritium from liquid lithium by permeation

    International Nuclear Information System (INIS)

    Alire, R.M.

    1978-01-01

    This paper assesses a method for extracting tritium from liquid lithium for specific application to the conceptual laser fusion reactor that uses a continuous lithium ''waterfall.'' The tritium diffuses through a refractory metal that contains a getter and is then stored in a hydride-forming alloy. There are various uncertainties with this method including helium-4 extraction, unknown impurities that may accumulate in liquid lithium, the effects of these impurities on tritium separation, and the maintenance of tritium-contaminated equipment. Our study indicates that major tritium losses will occur during equipment maintenance rather than as a result of permeation losses through the primary vessel

  13. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    International Nuclear Information System (INIS)

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-01-01

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were ∼ 4 x 10 -7 cm 2 /s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10 -5 to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form

  14. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-12-14

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were {approx} 4 x 10{sup -7} cm{sup 2}/s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10{sup -5} to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form.

  15. High-power liquid-lithium jet target for neutron production

    Science.gov (United States)

    Halfon, S.; Arenshtam, A.; Kijel, D.; Paul, M.; Berkovits, D.; Eliyahu, I.; Feinberg, G.; Friedman, M.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Tessler, M.; Silverman, I.

    2013-12-01

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm3) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the 7Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ˜200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm2 and volume power density of ˜2 MW/cm3 at a lithium flow of ˜4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91-2.5 MeV, 1-2 mA) at SARAF.

  16. Kinetics of liquid lithium reaction with oxygen-nitrogen mixtures

    International Nuclear Information System (INIS)

    Gil, T.K.; Kazimi, M.S.

    1986-01-01

    A series of experiments have been conducted in order to characterize the kinetics of lithium chemical reaction with a mixture of oxygen and nitrogen. Three mixed gas compositions were used; 80% N 2 and 20% O 2 , 90% N 2 and 10% O 2 , and 95% N 2 and 5% O 2 . The reaction rate was obtained as a function of lithium temperature and the oxygen fraction. Liquid lithium temperature varied from 400 to 1100 0 C. By varying the composition, the degree of inhibition of the lithium-nitrogen reaction rate due to the presence of oxygen was observed. The results indicate that the lithium-nitrogen reaction rate depended on both the fraction of oxygen present and lithium temperature. The lithium nitride layer formed from the reaction also had a significant inhibition effect on the lithium-nitrogen reaction rate while the lithium-oxygen reaction rate was not as greatly hindered. LITFIRE, a computer code which simulates temperature and pressure history in a containment building following lithium spills, was modified by including (1) an improved model for the lithium-nitrogen reaction rate and (2) a model for the lithium-CO 2 reaction. LITFIRE was used to simulate HEDL's LC-2 and LA-5 experiments, and the predicted temperatures and pressures were in a reasonable agreement. Furthermore, LITFIRE was applied to a prototypical fusion reactor containment in order to simulate the consequences of a lithium spill accident. The result indicated that if nitrogen was used as containment building gas during the accident, the consequences of the accident would be less severe than those with air. The pressure rise in the building was found to be reduced by 50% and the maximum temperature of the combustion zone was limited to 900 0 C instead of 1200 0 C in the case of air

  17. Electrical detection of liquid lithium leaks from pipe joints

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, J. A., E-mail: jschwart@pppl.gov; Jaworski, M. A.; Mehl, J.; Kaita, R.; Mozulay, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

    2014-11-15

    A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 kΩ trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.

  18. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying

    2014-08-10

    Rechargeable lithium, sodium and aluminium metal-based batteries are among the most versatile platforms for high-energy, cost-effective electrochemical energy storage. Non-uniform metal deposition and dendrite formation on the negative electrode during repeated cycles of charge and discharge are major hurdles to commercialization of energy-storage devices based on each of these chemistries. A long-held view is that unstable electrodeposition is a consequence of inherent characteristics of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid electrolytes reinforced with halogenated salt blends exhibit stable long-term cycling at room temperature, often with no signs of deposition instabilities over hundreds of cycles of charge and discharge and thousands of operating hours. We rationalize these observations with the help of surface energy data for the electrolyte/lithium interface and impedance analysis of the interface during different stages of cell operation. Our findings provide support for an important recent theoretical prediction that the surface mobility of lithium is significantly enhanced in the presence of lithium halide salts. Our results also show that a high electrolyte modulus is unnecessary for stable electrodeposition of lithium.

  19. Effect of a novel amphipathic ionic liquid on lithium deposition in gel polymer electrolytes

    International Nuclear Information System (INIS)

    Choi, Nam-Soon; Koo, Bonjae; Yeon, Jin-Tak; Lee, Kyu Tae; Kim, Dong-Won

    2011-01-01

    Highlights: · Synthesis of a dimeric ionic liquid. · Gel polymer electrolytes providing uniform lithium deposit pathway. · An amphipathic ionic liquid locates at the interface between an electrolyte-rich phase and a polymer matrix in a gel polymer electrolyte. · The presence of PDMITFSI ionic liquid leads to the suppression of dendritic lithium formation on a lithium metal electrode. - Abstract: A novel dimeric ionic liquid based on imidazolium cation and bis(trifluoromethanesulfonyl) imide (TFSI) anion has been synthesized through a metathesis reaction. Its chemical shift values and thermal properties are identified via 1 H nuclear magnetic resonance (NMR) imaging and differential scanning calorimetry (DSC). The effect of the synthesized dimeric ionic liquid on the interfacial resistance of gel polymer electrolytes is described. Differences in the SEM images of lithium electrodes after lithium deposition with and without the 1,1'-pentyl-bis(2,3-dimethylimidazolium) bis(trifluoromethane-sulfonyl)imide (PDMITFSI) ionic liquid in gel polymer electrolytes are clearly discernible. This occurs because the PDMITFSI ionic liquid with hydrophobic moieties and polar groups modulates lithium deposit pathways onto the lithium metal anode. Moreover, high anodic stability for a gel polymer electrolyte with the PDMITFSI ionic liquid was clearly observed.

  20. Liquid lithium blanket processing studies

    International Nuclear Information System (INIS)

    Talbot, J.B.; Clinton, S.D.

    1979-01-01

    The sorption of tritium on yttrium from flowing molten lithium and the subsequent release of tritium from yttrium for regeneration of the metal sorbent were investigated to evaluate the feasibility of such a tritium-recovery process for a fusion reactor blanket of liquid lithium. In initial experiments with the forced convection loop, yttrium samples were contacted with lithium at 300 0 C. A mass transfer coefficient of 2.5 x 10 - cm/sec, which is more than an order of magnitude less than the value measured in earlier static experiments, was determined for the flowing lithium system. Rates of tritium release from yttrium samples were measured to evaluate possible thermal regeneration of the sorbent. Values for diffusion coefficients at 505, 800, and 900 0 C were estimated to be 1.1 x 10 -13 , 4.9 x 10 -12 , and 9.3 x 10 -10 cm 2 /sec, respectively. Tritium release from yttrium was investigated at higher temperatures and with hydrogen added to the argon sweep gas to provide a reducing atmosphere

  1. A new facility for studying plasma interacting with flowing liquid lithium surface

    International Nuclear Information System (INIS)

    Cao, X.; Ou, W.; Tian, S.; Wang, C.; Zhu, Z.; Wang, J.; Gou, F.; Yang, D.; Chen, S.

    2014-01-01

    A new facility to study plasmas interacting with flowing liquid lithium surface was designed and is constructing in Sichuan University. The integrated setup includes the liquid lithium circulating part and linear high density plasma generator. The circulating part is consisted of main loop, on-line monitor system, lithium purification system and temperature programmed desorption system. In our group a linear high density plasma generator was built in 2012. Three coils were mounted along the vessel to produce an axial magnetic field inside. The magnetic field strength is up to 0.45 T and work continuously. Experiments on plasmas interacting with free flowing liquid lithium surface will be performed

  2. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.

    2014-01-01

    of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid

  3. High-flux neutron source based on a liquid-lithium target

    Science.gov (United States)

    Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.

    2013-04-01

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  4. Upgrades toward high-heat flux, liquid lithium plasma-facing components in the NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Jaworski, M.A., E-mail: mjaworsk@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Brooks, A.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Lopes-Cardozo, N. [TU/Eindhoven, Eindhoven (Netherlands); Menard, J.; Ono, M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Rindt, P. [TU/Eindhoven, Eindhoven (Netherlands); Tresemer, K. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2016-11-15

    Highlights: • An upgrade path for the NSTX-U tokamak is proposed that maintains scientific productivity while enabling exploration of novel, liquid metal PFC. • Pre-filled liquid metal divertor targets are proposed as an intermediate step that mitigates technical and scientific risks associated with liquid metal PFC. • Analysis of leading edge features show a strong link between engineering design considerations and expected performance as a PFC. • A method for optimizing porous liquid metal targets restrained by capillary forces is provided indicating pore-sizes well within current technical capabilities. - Abstract: Liquid metal plasma-facing components (PFCs) provide numerous potential advantages over solid-material components. One critique of the approach is the relatively less developed technologies associated with deploying these components in a fusion plasma-experiment. Exploration of the temperature limits of liquid lithium PFCs in a tokamak divertor and the corresponding consequences on core operation are a high priority informing the possibilities for future liquid lithium PFCs. An all-metal NSTX-U is envisioned to make direct comparison between all high-Z wall operation and liquid lithium PFCs in a single device. By executing the all-metal upgrades incrementally, scientific productivity will be maintained while enabling physics and engineering-science studies to further develop the solid- and liquid-metal components. Six major elements of a flowing liquid-metal divertor system are described and a three-step program for implementing this system is laid out. The upgrade steps involve the first high-Z divertor target upgrade in NSTX-U, pre-filled liquid metal targets and finally, an integrated, flowing liquid metal divertor target. Two example issues are described where the engineering and physics experiments are shown to be closely related in examining the prospects for future liquid metal PFCs.

  5. Hydrogen extraction from liquid lithium-lead alloy by bubbling with rotational jet nozzle

    International Nuclear Information System (INIS)

    Xie Bo; Yang Tongzai; Guan Rui; Weng Kuiping

    2010-01-01

    The technology of tritium extraction from lithium-lead alloy has been simulated, hydrogen extraction from lithium-lead alloy by bubbling with rotational jet nozzle being used to simulate tritium in the study based on the introduction of fluid dynamics to establish algebraic model. The results show that the higher than lithium-lead melting temperature, the higher cumulative hydrogen extraction efficiency, and gas holdup of bubble column is little affected by the impeller diameter. Gas holdup when using small aperture is slightly higher when using large aperture only at a high helium flow rate, but the smaller the aperture, the greater the bubble surface area, and a marked increase in intensity of flow circulation for liquid lithium-lead with the increase of helium flow rate, hydrogen extraction rate increases too. Moreover, influence of the jet rotational velocity on hydrogen extraction is limited. (authors)

  6. Design of liquid lithium pumps for FMIT

    International Nuclear Information System (INIS)

    Adkins, H.E.

    1983-01-01

    In the Fusion Materials Irradiation Test (FMIT) facility, a jet of liquid lithium is bombarded by accelerated deuterons to generate high energy neutrons for materials testing. The lithium system will include two electromagnetic pumps, a 750 gpm main pump and a 10 gpm auxiliary pump. The larger pump was designed and built in 1982, following extensive testing of a similar pump in the Experimental Lithium System. Design of the auxiliary pump has been completed, but fabrication has not started. This paper discusses the design considerations leading to selection of the Annular Linear Induction Pump (ALIP) concept for these applications. Design parameters, fabrication procedures, and results of pump testing are also reviewed

  7. Evaluation of compatibility of flowing liquid lithium curtain for blanket with core plasma in fusion reactors

    International Nuclear Information System (INIS)

    Deng Baiquan; Huang Jinhua; Peng Lilin; Yan Jiancheng

    2003-01-01

    A global model analysis of the compatibility of flowing liquid lithium curtain for blanket with core plasma has been performed. The relationships between the surface temperature of lithium curtain and mean effective plasma charges, fuel dilution and produced fusion power have been obtained. Results show that under normal circumstances, the evaporation of liquid lithium does not affect Z eff seriously, but affects fuel dilution and fusion power sensitively. The authors have investigated the relationships between the flow velocity of liquid lithium and its surface temperature rise based on the conditions of the option II of the fusion experimental breeder (FEB-E) design with reversed shear configuration and fairly high power density. The authors concluded that the effects of evaporation from liquid lithium curtain for FEB-E on plasma are negligible even if the flow velocity of liquid lithium is as low as 0.5 m·s -1 . Finally, the sputtering yield of liquid lithium saturated by hydrogen isotopes is briefly discussed

  8. Ionic Liquid-Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium-Metal Batteries

    KAUST Repository

    Lu, Yingying; Das, Shyamal K.; Moganty, Surya S.; Archer, Lynden A.

    2012-01-01

    Ionic liquid-tethered nanoparticle hybrid electrolytes comprised of silica nanoparticles densely grafted with imidazolium-based ionic liquid chains are shown to retard lithium dendrite growth in rechargeable batteries with metallic lithium anodes

  9. Hydrogen and helium recycling from stirred liquid lithium under steady state plasma bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, Yoshi, E-mail: hirooka.yoshihiko@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); The Graduate School for Advanced Studies, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Zhou, Haishan [The Graduate School for Advanced Studies, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Ono, Masa [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States)

    2014-12-15

    For improved core performance via edge plasma-wall boundary control, solid and liquid lithium has been used as a plasma-facing material in a number of confinement experiments over the past several decades. Unfortunately, it is unavoidable that lithium is saturated in the surface region with implanted hydrogenic species as well as oxygen-containing impurities. For steady state operation, a flowing liquid lithium divertor with forced convection would probably be required. In the present work, the effects of liquid stirring to simulate forced convection have been investigated on the behavior of hydrogen and helium recycling from molten lithium at temperatures up to ∼350 °C. Data indicate that liquid stirring reactivates hydrogen pumping via surface de-saturation and/or uncovering impurity films, but can also induce helium release via surface temperature change.

  10. Liquid-liquid extraction to lithium isotope separation based on room-temperature ionic liquids containing 2,2'-binaphthyldiyl-17-crown-5

    International Nuclear Information System (INIS)

    Sun Xiaoli; Zhou Wen; Gu Lin; Qiu Dan; Ren Donghong; Gu Zhiguo; Li Zaijun

    2015-01-01

    A novel liquid-liquid extraction system was investigated for the selective separation of lithium isotopes using ionic liquids (ILs = C 8 mim + PF 6 - , C 8 mim + BF 4 - , and C 8 mim + NTf 2 - ) as extraction solvent and 2,2'-binaphthyldiyl-17-crown-5 (BN-17-5) as extractant. The effects of the concentration of lithium salt, counter anion of lithium salt, initial pH of aqueous phase, extraction temperature, and time on the lithium isotopes separation were discussed. Under optimized conditions, the maximum single-stage separation factor α of 6 Li/ 7 Li obtained in the present study was 1.046 ± 0.002, indicating the lighter isotope 6 Li was enriched in IL phase while the heavier isotope 7 Li was concentrated in the solution phase. The formation of 1:1 complex Li(BN-17-5) + in the IL phase was determined on the basis of slope analysis method. The large value of the free energy change (-ΔG° = 92.89 J mol -1 ) indicated the high separation capability of the Li isotopes by BN-17-5/IL system. Lithium in Li(BN-17-5) + complex was stripped by 1 mol L -1 HCl solution. The extraction system offers high efficiency, simplicity, and green application prospect to lithium isotope separation. (author)

  11. VUV/XUV measurements of impurity emission in plasmas with liquid lithium surfaces on LTX

    International Nuclear Information System (INIS)

    Tritz, Kevin; Finkenthal, Michael; Stutman, Dan; Bell, Ronald E; Boyle, Dennis; Kaita, Robert; Kozub, Tom; Lucia, Matthew; Majeski, Richard; Merino, Enrique; Schmitt, John; Beiersdorfer, Peter; Clementson, Joel; Kubota, Shigeyuki

    2014-01-01

    The VUV/XUV spectrum has been measured on the Lithium Tokamak eXperiment (LTX) using a transmission grating imaging spectrometer (TGIS) coupled to a direct-detection x-ray charge-coupled device camera. TGIS data show significant changes in the ratios between the lithium and oxygen impurity line emission during discharges with varying lithium wall conditions. Lithium coatings that have been passivated by lengthy exposure to significant levels of impurities contribute to a large O/Li ratio measured during LTX plasma discharges. Furthermore, previous results have indicated that a passivated lithium film on the plasma facing components will function as a stronger impurity source when in the form of a hot liquid layer compared to a solid lithium layer. However, recent TGIS measurements of plasma discharges in LTX with hot stainless steel boundary shells and a fresh liquid lithium coating show lower O/Li impurity line ratios when compared to discharges with a solid lithium film on cool shells. These new measurements help elucidate the somewhat contradictory results of the effects of solid and liquid lithium on plasma confinement observed in previous experiments. (paper)

  12. Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate

    International Nuclear Information System (INIS)

    Shi, Chenglong; Jia, Yongzhong; Zhang, Chao; Liu, Hong; Jing, Yan

    2015-01-01

    Highlights: • We proposed a new system for Li recovery from salt lake brine by extraction using an ionic liquid. • Cation exchange was proposed to be the mechanism of extraction followed in ionic liquid. • This ionic liquid system shown considerable extraction ability for lithium and the single extraction efficiency of lithium reached 87.28% under the optimal conditions. - Abstract: Lithium is known as the energy metal and it is a key raw material for preparing lithium isotopes which have important applications in nuclear energy source. In this work, a typical room temperature ionic liquid (RTILs), 1-butyl-3-methyl-imidazolium hexafluorophosphate ([C 4 mim][PF 6 ]), was used as an alternative solvent to study liquid/liquid extraction of lithium from salt lake brine. In this system, the ionic liquid, NaClO 4 and tributyl phosphate (TBP) were used as extraction medium, co-extraction reagent and extractant respectively. The effects of solution pH value, phase ratio, ClO 4 − amount and other factors on lithium extraction efficiency had been investigated. Optimal extraction conditions of this system include the ratio of TBP/IL at 4/1 (v/v), O/A at 2:1, n(ClO 4 − )/n(Li + ) at 2:1, the equilibration time of 10 min and unadjusted pH. Under the optimal conditions, the single extraction efficiency of lithium was 87.28% which was much higher than the conventional extraction system. Total extraction efficiency of 99.12% was obtained by triple-stage countercurrent extraction. Study on the mechanism revealed that the use of ionic liquid increased the extraction yield of lithium through cation exchange in this system. Preliminary results indicated that the use of [C 4 mim][PF 6 ] as an alternate solvent to replace traditional organic solvents (VOCs) in liquid/liquid extraction was very promising

  13. Liquid Crystals of Lithium Dodecylbenzenesulfonate for Electric Double Layer Capacitors

    International Nuclear Information System (INIS)

    Kuzmin, Andrey Vasil’evich; Yurtov, Evgeny V.

    2016-01-01

    Ionic lyotropic liquid crystals based on lithium dodecylbenzenesulfonate were used as electrolytes for electric double layer capacitors with carbon fibrous electrodes. The capacitors were tasted by cyclic voltammetry, galvanostatic charge and discharge, and impedance spectroscopy. The highest specific capacitance was achieved for electrical double layer capacitor equipped with ionic lyotropic liquid crystal of lithium dodecylbenzenesulfonate 35 wt% in water. The specific capacitance of capacitor was calculated from galvanostatic discharge curves – 15 F/g of carbon fibrous material

  14. Dissolved nitrogen in liquid lithium - a problem in fusion reactor chemistry

    International Nuclear Information System (INIS)

    Hubberstey, P.

    1984-01-01

    When dissolved in liquid lithium, nitrogen adopts the role filled by oxygen in liquid sodium systems, reacting readily with stainless steel containment materials to form Li 9 CrN 5 as a surface product; extended reaction leads to pronounced corrosion and embrittlement problems. It also interacts with both carbon and silicon impurities forming Li 2 NCN and Li 5 SiN 3 , respectively; it is inert, however, to oxygen impurity. Although dissolved nitrogen reacts with neither the tritium generated in the breeding process nor the lead added to act as a neutron multiplier, its presence may seriously influence tritium recovery processes since it reacts with and hence may poison the majority of the transition metals (Y,Ti,Zr) presently being considered as tritium getter materials. Its reactivity with these metals forms the basis of the hot trapping technique used to remove dissolved nitrogen from liquid lithium systems; cold trapping is ineffective because of its large solubility even at temperatures just above the melting point of pure lithium (453.6K). Whenever possible, the chemistry of nitrogen dissolved in liquid lithium is rationalised using the thermodynamic concepts and its significance to fusion reactor technology stressed. (author)

  15. Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries

    Science.gov (United States)

    Zhang, Ruisi; Chen, Yuanfen; Montazami, Reza

    2015-01-01

    Application of gel polymer electrolytes (GPE) in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol %) were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.

  16. Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Chenglong [Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 810008 Xining (China); University of Chinese Academy of Sciences, 100049 Beijing (China); Jia, Yongzhong [Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 810008 Xining (China); Zhang, Chao [Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 810008 Xining (China); University of Chinese Academy of Sciences, 100049 Beijing (China); Liu, Hong [Qinghai Salt Chemical Products Supervision and Inspection Center, 816000 Golmud (China); Jing, Yan, E-mail: 1580707906@qq.com [Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 810008 Xining (China)

    2015-01-15

    Highlights: • We proposed a new system for Li recovery from salt lake brine by extraction using an ionic liquid. • Cation exchange was proposed to be the mechanism of extraction followed in ionic liquid. • This ionic liquid system shown considerable extraction ability for lithium and the single extraction efficiency of lithium reached 87.28% under the optimal conditions. - Abstract: Lithium is known as the energy metal and it is a key raw material for preparing lithium isotopes which have important applications in nuclear energy source. In this work, a typical room temperature ionic liquid (RTILs), 1-butyl-3-methyl-imidazolium hexafluorophosphate ([C{sub 4}mim][PF{sub 6}]), was used as an alternative solvent to study liquid/liquid extraction of lithium from salt lake brine. In this system, the ionic liquid, NaClO{sub 4} and tributyl phosphate (TBP) were used as extraction medium, co-extraction reagent and extractant respectively. The effects of solution pH value, phase ratio, ClO{sub 4}{sup −} amount and other factors on lithium extraction efficiency had been investigated. Optimal extraction conditions of this system include the ratio of TBP/IL at 4/1 (v/v), O/A at 2:1, n(ClO{sub 4}{sup −})/n(Li{sup +}) at 2:1, the equilibration time of 10 min and unadjusted pH. Under the optimal conditions, the single extraction efficiency of lithium was 87.28% which was much higher than the conventional extraction system. Total extraction efficiency of 99.12% was obtained by triple-stage countercurrent extraction. Study on the mechanism revealed that the use of ionic liquid increased the extraction yield of lithium through cation exchange in this system. Preliminary results indicated that the use of [C{sub 4}mim][PF{sub 6}] as an alternate solvent to replace traditional organic solvents (VOCs) in liquid/liquid extraction was very promising.

  17. Extraction of lithium ion from alkaline aqueous media by a liquid surfactant membrane

    International Nuclear Information System (INIS)

    Kinugasa, Takumi; Ono, Yuri; Kawamura, Yuko; Watanabe, Kunio; Takeuchi, Hiroshi.

    1995-01-01

    Extraction of lithium ion from aqueous alkaline media by a liquid surfactant membrane was performed using a mixture of LIX54 and TOPO as the extractant. Stripping of lithium from the kerosene solution to the acid solution was suppressed with increasing content of polyamine (ECA) surfactant. The extraction rate of lithium by the liquid membrane could be interpreted taking account of an interfacial resistance due to ECA. It was confirmed that swelling of the (W/O) emulsion drops by water permeation through the liquid membrane is evaluated in terms of a change in osmotic pressure gradient between the external and internal aqueous phases during the lithium extraction. In the present operation, the extraction ratio of Li + from the external feed and the uptake into the internal phase reached as high as 95%. (author)

  18. The effect of lead concentration on the corrosion susceptibility of 2 1/4Cr-1Mo steel in a lead-lithium liquid

    International Nuclear Information System (INIS)

    Wilkinson, B.D.; Edwards, G.R.; Hoffman, N.J.

    1982-01-01

    The intergranular penetration of 21/4Cr-1Mo steel by lead-lithium liquids containing 0, 17.6, and 53 w/o lead has been investigated at temperatures from 300 0 C to 600 0 C for times up to 1000 hours. Limited tests using a 99.3 w/o lead-lithium liquid were also conducted. Tempering was found to remove the susceptibility of as-quenched 21/4Cr-1Mo steel to penetration at 500 0 C by lead-lithium liquids containing up to 53 w/o lead. Penetration by the 99.3 w/o lead-lithium liquid in 1000 hours at 500 0 C was found to be negligible even when the steel was in the as-quenched condition. An Arrhenius analysis yielded the same low initial activation energy (approx. equal to25 kJ/mole) for liquids containing 0, 17.6, and 53 w/o lead. The initial penetration rate for lead-free lithium was significantly greater than that for the lead-bearing liquids, a factor thought to be related to the effect of lead on the wettability of the liquid. The same secondary activation energy (approx. equal to120 kJ/mole) was also found for the three liquids. Furthermore, the secondary penetration rate was found to be insensitive to lead content. Anomalous behavior at 500 0 C, observed in this study as well as in previous studies, is discussed, and a hypothetical explanation for the behavior is presented. (orig.)

  19. High-efficiency technology for lithium isotope separation using an ionic-liquid impregnated organic membrane

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi; Terai, Takayuki

    2011-01-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6 Li) in tritium breeding materials. New lithium isotope separation technique using ionic-liquid impregnated organic membranes (Ionic-Liquid-i-OMs) have been developed. Lithium ions are able to move by electrodialysis through certain Ionic-Liquid-i-OMs between the cathode and the anode in lithium solutions. In this report, the effects of protection cover and membrane thickness on the durability of membrane and the efficiency of isotope separation were evaluated. In order to improve the durability of the Ionic-Liquid-i-OM, we developed highly-durable Ionic-Liquid-i-OM. Both surfaces of the Ionic-Liquid-i-OM were covered by a nafion 324 overcoat or a cation exchange membrane (SELEMION TM CMD) to prevent the outflow of the ionic liquid. It was observed that the durability of the Ionic-Liquid-i-OM was improved by a nafion 324 overcoat. On the other hand, the organic membrane selected was 1, 2 or 3 mm highly-porous Teflon film, in order to efficiently impregnate the ionic liquid. The 6 Li isotope separation factor by electrodialysis using highly-porous Teflon film of 3 mm thickness was larger than using that of 1 or 2 mm thickness.

  20. Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries

    Directory of Open Access Journals (Sweden)

    Ruisi Zhang

    2015-05-01

    Full Text Available Application of gel polymer electrolytes (GPE in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol % were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.

  1. Understanding the role of lithium polysulfide solubility in limiting lithium-sulfur cell capacity

    International Nuclear Information System (INIS)

    Shen, Chao; Xie, Jianxin; Zhang, Mei; Andrei, Petru; Hendrickson, Mary; Plichta, Edward J.; Zheng, Jim P.

    2017-01-01

    Highlights: •At normal rate, LiPS soluble reaction pathway dominates the discharge process. •Reduction of sulfur to Li 2 S 8 is not inhibited by high Li 2 S 8 concentration. •Subsequent LiPS electrochemical reactions are restricted by LiPS solubility. •Specific energy of the Li-S cell was reevaluated considering LiPS solubility. -- Abstract: Although the cathode of lithium-sulfur (Li-S) batteries has a theoretical specific capacity of 1,672 mAh g −1 , its practical capacity is much smaller than this value and depends on the electrolyte/sulfur ratio. The operation of Li-S batteries under lean electrolyte conditions can be challenging, especially in the case when the solubility of lithium polysulfide (LiPS) sets an upper bound for polysulfide dissolution. In this work, specially designed cathode structures and electrolyte configurations were built in order to analyze the effects of LiPS solubility on cell capacity. Two reaction pathways involving the reduction of LiPS in liquid and solid phase are proposed and analyzed. We show that at discharge rates above 0.4 mA cm −2 the reaction in the liquid phase dominates the discharge process. Once the electrolyte becomes saturated, the solid phase LiPS cannot be further reduced and does not contribute to the capacity of the cells. This phenomenon prevents Li-S batteries from achieving their high theoretical specific capacity. Finally, the specific energy of the Li-S cell is reevaluated and discussed considering the limitation imposed by LiPS solubility.

  2. Interactions of liquid lithium with various atmospheres, concretes, and insulating materials; and filtration of lithium aerosols

    International Nuclear Information System (INIS)

    Jeppson, D.W.

    1979-06-01

    This report describes the facilities and experiments and presents test results of a program being conducted at the hanford Engineering Development Laboratory (HEDL) in support of the fusion reactor development effort. This experimental program is designed to characterize the interaction of liquid lithium with various atmospheres, concretes, and insulating materials. Lithium-atmosphere reaction tests were conducted in normal humidity air, pure nitrogen, and carbon dioxide. These tests are described and their results, such as maximum temperatures, aerosol generated, and reaction rates measured, are reported. Initial lithium temperatures for these tests ranged between 224 0 C and 843 0 C. A lithium-concrete reaction test, using 10 kg of lithium at 327 0 C, and lithium-insulating materials reaction tests, using a few grams of lithium at 350 0 C and 600 0 C, are also described and results are presented. In addition, a lithium-aerosol filter loading test was conducted to determine the mass loading capacity of a commercial high efficiency particulate air (HEPA) filter. The aerosol was characterized, and the loading-capacity-versus-pressure-buildup across the filter is reported

  3. Research and development of lithium isotope separation using an ionic-liquid impregnated organic membrane

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi

    2013-01-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6 Li) in tritium breeding materials. However, natural Li contains only about 7.6 at.% 6 Li. In Japan, new lithium isotope separation technique using ionic-liquid impregnated organic membranes have been developed. The improvement in the durability of the ionic-liquid impregnated organic membrane is one of the main issues for stable, long-term operation of electrodialysis cells while maintaining good performance. Therefore, we developed highly-durable ionic-liquid impregnated organic membrane. Both ends of the ionic-liquid impregnated organic membrane were covered by a nafion 324 overcoat to prevent the outflow of the ionic liquid. The transmission of Lithium aqueous solution after 10 hours under the highly-durable ionic-liquid impregnated organic membrane is almost 13%. So this highly-durable ionic-liquid impregnated organic membrane for long operating of electrodialysis cells has been developed through successful prevention of ion liquid dissolution. (J.P.N.)

  4. Solubility of lithium deuteride in liquid lithium

    International Nuclear Information System (INIS)

    Veleckis, E.; Yonco, R.M.; Maroni, V.A.

    1977-01-01

    The solubility of LiD in liquid lithium between the eutectic and monotectic temperatures was measured using a direct sampling method. Solubilities were found to range from 0.0154 mol.% LiD at 199 0 C to 3.32 mol.% LiD at 498 0 C. The data were used in the derivation of an expression for the activity coefficient of LiD as a function of temperature and composition and an equation relating deuteride solubility and temperature, thus defining the liquidus curve. Similar equations were also derived for the Li-LiH system using the existing solubility data. Extrapolation of the liquidus curves yielded the eutectic concentrations (0.040 mol.% LiH and 0.035 mol.% LiD) and the freezing point depressions (0.23 0 C for Li-LiH and 0.20 0 C for Li-LiD) at the eutectic point. The results are compared with the literature data for hydrogen and deuterium. The implications of the relatively high solubility of hydrogen isotopes in lithium just above the melting point are discussed with respect to the cold trapping of tritium in fusion reactor blankets. (Auth.)

  5. Interactions of solid and liquid lithium with steady state hydrogen and helium plasmas

    International Nuclear Information System (INIS)

    Hirooka, Y.; Nishikawa, M.; Ohgaki, H.; Ohtsuka, Y.

    2005-01-01

    A variety of innovative Plasma-Facing Component (PFC) concepts, employing moving solid or liquid surfaces, have recently been proposed in order to resolve technical issues, associated with the applications of currently used PFCs in future steady state fusion devices. As the first step to evaluate the concept using flowing-liquids for PFCs, steady state hydrogen and helium plasma interactions with solid and standing liquid lithium have been investigated in the present work, using the H α and He-I spectroscopy at the ion bombarding energies up to 150eV and at the lithium temperatures between room temperature and 480 deg C. Data indicate that hydrogen recycling over liquid lithium is clearly reduced, relative to that over solid lithium, whereas helium recycling does not show the same trend. From the kinetic analysis of these recycling time constant data, the activation energies for the overall recycling processes have been evaluated to be 0.02±0.01eV, both for hydrogen and helium plasmas. Also, it has been found that the activation energy is nearly independent of ion bombarding energy. (author)

  6. Hydrophobic ionic liquids based on the 1-butyl-3-methylimidazolium cation for lithium/seawater batteries

    Science.gov (United States)

    Zhang, Yancheng; Urquidi-Macdonald, Mirna

    Two hydrophobic ionic liquids (room temperature molten salts) based on 1-butyl-3-methylimidazolium cation (BMI +), BMI +PF 6- and BMI +Tf 2N -, were used in developing a highly efficient lithium anode system for lithium/seawater batteries. The lithium anode system was composed of lithium metal/ionic liquid/Celgard membrane. Both BMI +PF 6-and BMI +Tf 2N - maintained high apparent anodic efficiency (up to 100%) under potentiostatic polarization (at +0.5 V versus open-circuit potential (OCP)) in a 3% NaCl solution. Eventually, traces of water contaminated the ionic liquid and a bilayer film (LiH and LiOH) on the lithium surface was formed, decreasing the rate of lithium anodic reaction and hence the discharge current density. BMI +Tf 2N - prevented traces of water from reaching the lithium metal surface longer than BMI +PF 6- (60 h versus 7 h). However, BMI +PF 6- was better than BMI +Tf 2N - in keeping a constant current density (˜0.2 mA cm -2) before the traces of water contaminated the lithium surface due to the non-reactivity of BMI +PF 6- with the lithium metal that kept the bare lithium surface. During the discharge process, BMI +PF 6- and BMI +Tf 2N - acted as ion transport media of Li +, Cl -, OH - and H 2O, but did not react with them because of the excellent chemical stability, high conductivity, and high hydrophobicity of these two ionic liquids. Both BMI +PF 6- and BMI +Tf 2N - gels were tentative approaches used to delay the traces of water coming in contact with the lithium surface.

  7. Control of nitrogen concentration in liquid lithium by iron-titanium alloy

    International Nuclear Information System (INIS)

    Hirakane, Shinji; Yoneoka, Toshiaki; Tanaka, Satoru

    2006-01-01

    Reducing the nitrogen concentration in liquid lithium is one of the most important steps in creating a liquid lithium blanket system. In this study, in order to verify the nitrogen gettering performance of Fe-Ti alloy, the variation in the nitrogen concentration in liquid lithium, into which Fe-10 at.% Ti or Fe-5 at.% Ti getter was immersed, was examined. The results confirmed a gettering performance of Fe-Ti alloy comparable to that of V-Ti alloy, although the effects were not durable in either the Fe-Ti or the V-Ti alloy. After the immersion test, the existing states of nitrogen absorbed in the gettering material were analyzed by means of XRD, XMA and XPS. TiN and some nitrogen dissolved in α-Fe without forming TiN were observed. It was indicated that nitrogen gettering is prevented not only by the surface nitrides, but also by the internal diffusion barriers originating from the absorbed nitrogen

  8. Theoretical study and experimental detection of cavitation phenomena in Liquid Lithium Target Facility for IFMIF

    International Nuclear Information System (INIS)

    Orco, G. Dell; Horiike, H.; Ida, M.; Nakamura, H.

    2006-01-01

    In the IFMIF (International Fusion Materials Irradiation Facility) testing facility, the required high energy neutrons emission will be produced by reaction of two D + beams with a free surface liquid Lithium jet target flowing along concave back-wall at 20 m/s. The Lithium height in the experimental loop and its relevant static pressure, the high flow velocities and the presence of several devices for the flow control and the pressure reduction increase the risk of cavitation onset in the target system. Special attention has to be taken in the primary pump, in the flow straightener, in the nozzle and their interconnections where the local pressure decreases and/or velocity increases or flow separations could promote the emission of cavitation vapour bubbles. The successive bubble re-implosions, in the higher pressure liquid bulk, could activate material erosion and transportation of activated particulates. These bubbles, if emitted close to the free jet flow, could also procure hydraulic instability and disturbance of the neutron field in the D + beams-Lithium target zone. Therefore, the cavitation risk must be properly foreseen along the whole IFMIF Lithium target circuit and its occurrence at different operating condition should be also monitored by special instrumentation. ENEA, in close cooperation with JAEA, has demonstrated the capability to detect the onset of the cavitation noises in liquid Lithium, by using the ENEA patented accelerometric gauge called CASBA-2000, during hydraulic test campaigns carried-out at Osaka University Lithium facility on a straight mock-up of the IFMIF back plate target. Comparison with the Thoma' cavitation similitude criteria have also determined the critical threshold limit for the estimation of the onset. Theoretical study on the conditions of cavitations generation in the IFMIF Lithium Target Circuit were also launched between ENEA and JAEA aiming at analysing the risk of the cavitation occurrence in the Lithium flow by

  9. Results of neutron irradiation of liquid lithium saturated with deuterium

    International Nuclear Information System (INIS)

    Tazhibayeva, Irina; Ponkratov, Yuriy; Kulsartov, Timur; Gordienko, Yuriy; Skakov, Mazhyn; Zaurbekova, Zhanna; Lyublinski, Igor; Vertkov, Alexey; Mazzitelli, Giuseppe

    2017-01-01

    Highlights: • The results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1M research reactor are described. • At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10 9 exp(−144/RT). • The T 2 molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise. - Abstract: This paper describes the results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1 M research reactor. The neutron flux at the reactor core center at 2 MW was 5 10 −13 cm −2 s −1 . The efficiency coefficients of helium and tritium release from lithium saturated with deuterium were calculated. The tritium interaction with lithium atoms (formation and dissociation of lithium tritide) has an effect on tritium release. An increment of sample’s temperature results in tritium release acceleration due to rising of the dissociation rate of lithium tritide. At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10 9 exp(-144/RT). The T 2 molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise.

  10. Physics Design Requirements for the National Spherical Torus Experiment Liquid Lithium Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, W.; Bell, M.; Berzak,L.; Brooks, A.; Ellis, R.; Gerhardt, S.; Harjes, H.; Kaita, R.; Kallman, J.; Maingi, R.; Majeski, R.; Mansfield, D.; Menard, J.; Nygren,R. E.; Soukhanovskii, V.; Stotler, D.; Wakeland, P.; Zakharov L. E.

    2008-09-26

    Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on PFC's to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is installation of a liquid lithium divertor (LLD) to achieve density control for inductionless current drive capability (e.g., about a 15-25% ne decrease from present highest non-inductionless fraction discharges which often evolve toward the density limit, ne/nGW~1), to enable ne scan capability (x2) in the H-mode, to test the ability to operate at significantly lower density for future ST-CTF reactor designs (e.g., ne/nGW = 0.25), and eventually to investigate high heat-flux power handling (10 MW/m2) with longpulse discharges (>1.5s). The first step (LLD-1) physics design encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.

  11. Physics Design Requirements for the National Spherical Torus Experiment Liquid Lithium Divertor

    International Nuclear Information System (INIS)

    Kugel, W.; Bell, M.; Berzak, L.; Brooks, A.; Ellis, R.; Gerhardt, S.; Harjes, H.; Kaita, R.; Kallman, J.; Maingi, R.; Majeski, R.; Mansfield, D.; Menard, J.; Nygren, R. E.; Soukhanovskii, V.; Stotler, D.; Wakeland, P.; Zakharov, L. E.

    2008-01-01

    Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on PFC's to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is installation of a liquid lithium divertor (LLD) to achieve density control for inductionless current drive capability (e.g., about a 15-25% ne decrease from present highest non-inductionless fraction discharges which often evolve toward the density limit, ne/nGW∼1), to enable ne scan capability (x2) in the H-mode, to test the ability to operate at significantly lower density for future ST-CTF reactor designs (e.g., ne/nGW = 0.25), and eventually to investigate high heat-flux power handling (10 MW/m2) with long pulse discharges (>1.5s). The first step (LLD-1) physics design encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization

  12. Results of neutron irradiation of liquid lithium saturated with deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Ponkratov, Yuriy; Kulsartov, Timur; Gordienko, Yuriy; Skakov, Mazhyn; Zaurbekova, Zhanna [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Lyublinski, Igor [JSC «Red Star», Moscow (Russian Federation); NRNU «MEPhI», Moscow (Russian Federation); Vertkov, Alexey [JSC «Red Star», Moscow (Russian Federation); Mazzitelli, Giuseppe [ENEA, RC Frascati, Frascati (Italy)

    2017-04-15

    Highlights: • The results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1M research reactor are described. • At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10{sup 9} exp(−144/RT). • The T{sub 2} molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise. - Abstract: This paper describes the results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1 M research reactor. The neutron flux at the reactor core center at 2 MW was 5 10{sup −13} cm{sup −2} s{sup −1}. The efficiency coefficients of helium and tritium release from lithium saturated with deuterium were calculated. The tritium interaction with lithium atoms (formation and dissociation of lithium tritide) has an effect on tritium release. An increment of sample’s temperature results in tritium release acceleration due to rising of the dissociation rate of lithium tritide. At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10{sup 9} exp(-144/RT). The T{sub 2} molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise.

  13. Ionic Liquid-Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium-Metal Batteries

    KAUST Repository

    Lu, Yingying

    2012-07-12

    Ionic liquid-tethered nanoparticle hybrid electrolytes comprised of silica nanoparticles densely grafted with imidazolium-based ionic liquid chains are shown to retard lithium dendrite growth in rechargeable batteries with metallic lithium anodes. The electrolytes are demonstrated in full cell studies using both high-energy Li/MoS2 and high-power Li/TiO2 secondary batteries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Some safety considerations of liquid lithium as a fusion breeder material

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Muhlestein, L.D.

    1986-01-01

    Test results and conclusions are presented for the reaction of steam with a high temperature lithium pool and for the reaction of high temperature lithium spray with a nitrogen atmosphere. The reactions are characterized and evaluated in regard to the potential for mobilization of radioactive species associated with the liquid breeder under postulated fusion reactor accident conditions. These evaluations include measured lithium temperature responses, atmosphere temperature and pressure responses, gas consumption and generation, aerosol quantities and particle size characterization, and potentially radioactive species releases. Conclusions are made as to the consequences of these safety considerations for the use of lithium as a fusion reactor breeder material

  15. Verification of the hydraulic design of the FMIT liquid lithium target

    International Nuclear Information System (INIS)

    Miles, R.R.; Annese, C.E.; Ingham, J.G.

    1983-01-01

    A liquid lithium target is being developed to generate a neutron flux for material testing in a fusion-like environment. The target consists of a thin, high speed, curved wall jet of lithium which is formed by an asymmetric nozzle. A prototype target was designed using potential flow analysis and was tested in water. Measurements of jet thickness and velocity in water and thickness in lithium were compared with isothermal design predictions and were shown to match within 1% for thickness and 5% for jet velocity

  16. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Baklanov, Viktor; Ponkratov, Yuriy [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Abdullin, Khabibulla [Institute of Experimental and Theoretical Physics of Kazakh National University, Almaty (Kazakhstan); Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Lyublinski, Igor [JSC «Red Star», Moscow (Russian Federation); NRNU «MEPhI», Moscow (Russian Federation); Vertkov, Alexey [JSC «Red Star», Moscow (Russian Federation); Skakov, Mazhyn [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan)

    2017-04-15

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  17. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    International Nuclear Information System (INIS)

    Tazhibayeva, Irina; Baklanov, Viktor; Ponkratov, Yuriy; Abdullin, Khabibulla; Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna; Lyublinski, Igor; Vertkov, Alexey; Skakov, Mazhyn

    2017-01-01

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  18. Development of aluminide coatings on vanadium-base alloys in liquid lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Dragel, D.

    1993-01-01

    Aluminide coatings were produced on vanadium and vanadium-base alloys by exposure of the materials to liquid lithium that contained 3/5 at.% dissolved aluminum in sealed V and V-20 wt.% Ti capsules at temperatures between 775 and 880 degrees C. After each test, the capsules were opened and the samples were examined by optical microscopy and scanning electron microscopy (SEM), and analyzed by electron-energy-dispersive spectroscopy (EDS) and X-ray diffraction. Hardness of the coating layers and bulk alloys was determined by microidentation techniques. The nature of the coatings, i.e., surface coverage, thickness, and composition, varied with exposure time and temperature, solute concentration in lithium, and alloy composition. Solute elements that yielded adherent coatings on various substrates can provide a means of developing in-situ electrical insulator coatings by reaction of the reactive layers with dissolved nitrogen in liquid lithium

  19. Thermal Aging of Anions in Ionic Liquids containing Lithium Salts by IC/ESI-MS

    International Nuclear Information System (INIS)

    Pyschik, Marcelina; Kraft, Vadim; Passerini, Stefano; Winter, Martin; Nowak, Sascha

    2014-01-01

    Highlights: • Thermal aging investigation of TFSI- and FSI- based ionic liquids and their mixtures with Li salts. • PYR 13 FSI shows thermal decomposition when mixed with LiPF 6 and LiClO 4 . • PYR 13 TFSI does not show any decomposition products with the electrolyte salts. • LiPF 6 dissolved in ionic liquids suffers of thermal aging as in conventional Li-ion battery electrolytes. - Abstract: The stability of 1-methyl-1-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR 13 TFSI) and 1-methyl-1-propylpyrrolidinium bis(fluorosulfonyl)imide (PYR 13 FSI) ionic liquids at elevated temperatures (60 °C) is investigated by ion chromatography. Additionally, the influence of the electrolyte salts, lithium hexafluorophosphate (LiPF 6 ), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium perchlorate (LiClO 4 ), on the decomposition of both the ionic liquids was analysed over a long term stability study. It has been found out that TFSI has a much higher thermal stability than FSI. The addition of LiTFSI did not show any effect on the aging of both ionic liquid anions. However, PYR 13 FSI degraded when mixed with the electrolyte salts LiPF 6 and LiClO 4 , while PYR 13 TFSI did not. Finally, LiPF 6 forms the same hydrolysis products in the investigated ionic liquids as in the commonly used electrolytes based on organic solvents in lithium-ion batteries

  20. The solubility of carbon in low-nitrogen liquid lithium

    International Nuclear Information System (INIS)

    Yonco, R.M.; Homa, M.I.

    1986-01-01

    The solubility of carbon in liquid lithium containing 0 C and compared with the solubility in lithium containing proportional 2600 wppm nitrogen in that same temperature range. A direct sampling method was employed in which filtered samples of the saturated solution were taken at randomly selected temperatures. The entire sample was analyzed for carbon by the acetylene evolution method. The analytical method was examined critically and it was found that (1) all of the carbon in solution, including carbon introduced as lithium cyanamide is detected and (2) ethylene and ethane must also be measured and included with the acetylene to get complete recovery of the carbon content of the sample. The solubility of carbon in low-nitrogen lithium can be expressed by the equations ln S=6.731-8617T -1 and log Ssup(*)=7.459-3740T -1 , where S is the mole percent Li 2 C 2 and Ssup(*) is in weight parts per million carbon. The presence of proportional 2600 wppm nitrogen does not affect the solubility of carbon in lithium at temperatures above proportional 350 0 C, but at lower temperatures it increased the solubility by as much as an order of magnitude compared to the solubility in low-nitrogen lithium. (orig.)

  1. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Response of NSTX liquid lithium divertor to high heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, T., E-mail: tabrams@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Jaworski, M.A. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Kallman, J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Foley, E.L. [Nova Photonics, Inc., Princeton, NJ 08543 (United States); Gray, T.K. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kugel, H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Levinton, F. [Nova Photonics, Inc., Princeton, NJ 08543 (United States); McLean, A.G. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2013-07-15

    Samples of the NSTX Liquid Lithium Divertor (LLD) with and without an evaporative Li coating were directly exposed to a neutral beam ex-situ at a power of ∼1.5 MW/m{sup 2} for 1–3 s. Measurements of front face and bulk sample temperature were obtained. Predictions of temperature evolution were derived from a 1D heat flux model. No macroscopic damage occurred when the “bare” sample was exposed to the beam but microscopic changes to the surface were observed. The Li-coated sample developed a lithium hydroxide (LiOH) coating, which did not change even when the front face temperature exceeded the pure Li melting point. These results are consistent with the lack of damage to the LLD surface and imply that heating alone may not expose pure liquid Li if the melting point of surface impurities is not exceeded. This suggests that flow and heat are needed for future PFCs requiring a liquid Li surface.

  3. Susceptibility of 2 1/4 Cr-1Mo steel to liquid metal induced embrittlement by lithium-lead solutions

    International Nuclear Information System (INIS)

    Eberhard, B.A.; Edwards, G.R.

    1984-08-01

    An investigation has been conducted on the liquid metal induced embrittlement susceptibility of 2 1/4Cr-1Mo steel exposed to lithium and 1a/o lead-lithium at temperatures between 190 0 C and 525 0 C. This research was part of an ongoing effort to evaluate the compatibility of liquid lithium solutions with potential fusion reactor containment materials. Of particular interest was the microstructure present in a weld heat-affected zone, a microstructure known to be highly susceptible to corrosive attack by liquid lead-lithium solutions. Embrittlement susceptibility was determined by conducting tension tests on 2 1/4Cr-1Mo steel exposed to an inert environment as well as to a lead-lithium liquid and observing the change in tensile behavior. The 2 1/4Cr-1Mo steel was also given a base plate heat treatment to observe its embrittlement susceptibility to 1a/o lead-lithium. The base plate microstructure was severely embrittled at temperatures less than 500 0 C. Tempering the base plate was effective in restoring adequate ductility to the steel

  4. Advantages and Challenges of Radiative Liquid Lithium Divertor

    Science.gov (United States)

    Ono, Masayuki

    2017-10-01

    Steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid Li divertor (RLLD) concept and its variant, the active liquid Li divertor concept (ARLLD), taking advantage of the enhanced Li radiation in relatively poorly confined divertor plasmas. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest Li-loop could provide a possible solution for the outstanding fusion reactor technology issues such as divertor heat flux mitigation and real time dust removal, while potentially improving the reactor plasma performance. Laboratory tests are also planned to investigate the Li-T recover efficiency and other relevant research topics of the RLLD. This work supported by DoE Contract No. DE-AC02-09CH11466.

  5. Physics design requirements for the National Spherical Torus Experiment liquid lithium divertor

    International Nuclear Information System (INIS)

    Kugel, H.; Bell, M.; Berzak, L.; Brooks, A.; Ellis, R.; Gerhardt, S.P.; Kaita, R.; Kallman, J.; Majeski, R.; Mansfield, D.K.; Menard, J.; Stotler, D.; Zakharov, L.E.; Maingi, Rajesh; Nygren, R.E.; Soukhanovskii, V.; Wakeland, P.

    2009-01-01

    Recent National Spherical Tokamak Experiment (NSTX) high-power divertor experiments have shown significant and recurring benefits of solid lithium coatings on plasma facing components (PFCs) to the performance of divertor plasmas in both L- and H-mode confinement regimes heated by high-power neutral beams. The next step in this work is installation of a liquid lithium divertor (LLD) to achieve density control for inductionless current drive capability (e.g., about a 15 25% ne decrease from present highest non-inductionless fraction discharges which often evolve toward the density limit, ne/nGW 1), to enable ne scan capability (2) in the H-mode, to test the ability to operate at significantly lower density (e.g., ne/nGW = 0.25), for future reactor designs based on the Spherical Tokamak, and eventually to investigate high heat-flux power handling (10 MW/m2) with long pulse discharges (>1.5 s). The first step (LLD-1) physics design encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.

  6. Development of liquid-lithium film jet-flow for the target of (7)Li(p,n)(7)Be reactions for BNCT.

    Science.gov (United States)

    Kobayashi, Tooru; Miura, Kuniaki; Hayashizaki, Noriyosu; Aritomi, Masanori

    2014-06-01

    A feasibility study on liquid lithium target in the form of a flowing film was performed to evaluate its potential use as a neutron generation target of (7)Li(p,n)(7)Be reaction in BNCT. The target is a windowless-type flowing film on a concave wall. Its configuration was adapted for a proton beam which is 30mm in diameter and with energy and current of up to 3MeV and 20mA, respectively. The flowing film of liquid lithium was 0.6mm in thickness, 50mm in width and 50mm in length. The shapes of the nozzle and concave back wall, which create a stable flowing film jet, were decided based on water experiments. A lithium hydrodynamic experiment was performed to observe the stability of liquid lithium flow behavior. The flowing film of liquid lithium was found to be feasible at temperatures below the liquid lithium boiling saturation of 342°C at the surface pressure of 1×10(-3)Pa. Using a proto-type liquid lithium-circulating loop for BNCT, the stability of the film flow was confirmed for velocities up to 30m/s at 220°C and 250°C in vacuum at a pressure lower than 10(-3) Pa. It is expected that for practical use, a flowing liquid lithium target of a windowless type can solve the problem of radiation damage and target cooling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Ferrous alloy metallurgy, liquid lithium corrosion and welding. Final report, April 1, 1973-March 31, 1984

    International Nuclear Information System (INIS)

    Olson, D.L.; Matlock, D.K.

    1984-01-01

    This research program consists of two parts: an evaluation of the corrosion behavior of ferrous alloys in liquid lithium, and a study of microstructure development and properties of dissimilar metal weldments. A ten-year overview of the research accomplishments made is presented. The effects of liquid lithium on both uniform corrosion and grain boundary penetration in ferrous alloys has been investigated as a function of time, temperature, base metal alloy content, and liquid lithium nitrogen content. Kinetic equations for the various corrosion processes have been developed and analyzed with respect to models for corrosion and corrosion product development. The effects of liquid lithium on mechanical properties, particularly fatigue, have been studied. Results have shown that in both austenitic stainless steels and ferritic steels, liquid lithium significantly reduces the mechanical integrity of all materials by inducing liquid metal embrittlement. A model for liquid metal embrittlement induced damage during fatigue was developed and shown to correlate with the experimental results. Microstructural development in austenitic weld metal, with particular emphasis on new grades with reduced chromium contents, has been investigated. The microstructures have been correlated with alloy content and the basics of a thermodynamic model for predicting weld metal microstructure has been developed. The high temperature mechanical behavior of dissimilar metal weldments (austenitic stainless steel to ferritic steel) has been investigated with the impression-creep test technique. Observed microstructural changes with position across the weldment are shown to correlate directly with creep behavior. A model based on deformation of composite materials was developed

  8. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    Energy Technology Data Exchange (ETDEWEB)

    Kartini, Evvy [Center for Science and Technology of Advanced Materials – National Nuclear Energy Agency, Kawasan Puspiptek Serpong, Tangerang Selatan15314, Banten (Indonesia); Manawan, Maykel [Post Graduate Program of Materials Science, University of Indonesia, Jl.Salemba Raya No.4, Jakarta 10430 (Indonesia)

    2016-02-08

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say “the most important emerging energy technology” is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner’s cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  9. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    International Nuclear Information System (INIS)

    Kartini, Evvy; Manawan, Maykel

    2016-01-01

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say “the most important emerging energy technology” is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner’s cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  10. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    Science.gov (United States)

    Kartini, Evvy; Manawan, Maykel

    2016-02-01

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say "the most important emerging energy technology" is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner's cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  11. Compatibility of yttria (Y{sub 2}O{sub 3}) with liquid lithium

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuyama, Takaaki; Yoneoka, Toshiaki; Terai, Takayuki; Tanaka, Satoru [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    Compatibility of Y{sub 2}O{sub 3} sintered specimens with liquid lithium was tested at 773K. No configuration change was observed with a slight increase of thickness for 1419 hr. Lithium-yttrium complex oxide (LiYO{sub 2}) was formed on the surface, and the inner part changed to gray or black nonstoichiometric Y{sub 2}O{sub 3-X} with lower electrical resistibility. It is concluded that Y{sub 2}O{sub 3} has a possibility as a ceramic coating material for liquid blankets if it can be made into a dense coating on the surface of piping materials. (author)

  12. D-shaped configurations in FTU for testing liquid lithium limiter: Preliminary studies and experiments

    Directory of Open Access Journals (Sweden)

    G. Ramogida

    2017-08-01

    A possible alternative connection of the poloidal field coils in FTU is here proposed, with the aim of achieving a true X-point configuration with a magnetic single null well inside the plasma chamber and strike points on the lithium limiter. A preliminary assessment of this design allowed estimating the required power supply upgrade and showed its compatibility with the existing mechanical structure and cooling system, at least for plasmas with current up to 300 kA and flat-top duration up to 4s.

  13. Formation of electrically insulating coatings on aluminided vanadium-base alloys in liquid lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Dragel, G.

    1993-01-01

    Aluminide coatings were produced on vanadium and vanadium-base alloys by exposure of the materials to liquid lithium that contained 3-5 at.% dissolved aluminum in sealed capsules at temperatures between 775 and 880 degrees C. Reaction of the aluminide layer with dissolved nitrogen in liquid lithium provides a means of developing an in-situ electrical insulator coating on the surface of the alloys. The electrical resistivity of A1N coatings on aluminided V and V-20 wt.% Ti was determined in-situ

  14. Deuterium trapping in liquid lithium irradiated by deuterium plasma

    International Nuclear Information System (INIS)

    Pisarev, A.; Moshkunov, K.; Vizgalov, I.; Gasparyan, Yu.

    2013-01-01

    Liquid lithium was irradiated by deuterium plasma to a low fluence of 10 22 –10 23 D/m 2 , cooled down to room temperature, and then slowly heated. The temperature and release rate were measured during heating. Two plateaus on the temperature–time dependence were observed at 180 °C and 660 °C. The first one corresponds to melting of Li and the second one – either to melting or to decomposition of solid LiD. Features of deuterium release in TDS were interpreted in terms of decomposition of lithium deuterides formed during plasma irradiation

  15. Cycling performance of lithium polymer cells assembled by in situ polymerization of a non-flammable ionic liquid monomer

    International Nuclear Information System (INIS)

    Lee, Yoon-Sung; Kim, Dong-Won

    2013-01-01

    Highlights: • Gel polymer electrolytes were synthesized by in situ polymerization of ionic liquid in the lithium polymer cells. • Flammability of the electrolyte was significantly reduced by polymerizing electrolyte containing a non-flammable ionic liquid monomer. • The cells assembled with polymeric ionic liquid-based electrolytes exhibited reversible cycling behavior with good capacity retention. -- Abstract: Lithium polymer cells composed of a lithium negative electrode and a LiCoO 2 positive electrode were assembled with a gel polymer electrolyte obtained by in situ polymerization of an electrolyte solution containing an ionic liquid monomer with vinyl groups. The polymerization of the electrolyte solution containing the non-flammable ionic liquid monomer resulted in a significant reduction of the flammability of the gel polymer electrolytes. The lithium polymer cell assembled with the stable gel polymer electrolyte delivered a discharge capacity of 134.3 mAh g −1 at ambient temperature and exhibited good capacity retention

  16. Development of a high energy pulsed plasma simulator for the study of liquid lithium trenches

    Energy Technology Data Exchange (ETDEWEB)

    Jung, S., E-mail: jung73@illinois.edu [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Christenson, M.; Curreli, D. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Bryniarski, C. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Andruczyk, D.; Ruzic, D.N. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States)

    2014-12-15

    Highlights: • A pulse device for a liquid lithium trench study is developed. • It consists of a coaxial plasma gun, a theta pinch, and guiding magnets. • A large energy enhancement is observed with the use of the plasma gun. • A further increase in energy and velocity is observed with the theta pinch. - Abstract: To simulate detrimental events in a tokamak and provide a test-stand for a liquid-lithium infused trench (LiMIT) device [1], a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. The plasma is characterized using a triple Langmuir probe, optical methods, and a calorimeter. Clear advantages have been observed with the application of a coaxial plasma accelerator as a pre-ionization source. The experimental results of the plasma gun in conjunction with the existing theta pinch show a significant improvement from the previous energy deposition by a factor of 14 or higher, resulting in a maximum energy and heat flux of 0.065 ± 0.002 MJ/m{sup 2} and 0.43 ± 0.01 GW/m{sup 2}. A few ways to further increase the plasma heat flux for LiMIT experiments are discussed.

  17. Development of a high energy pulsed plasma simulator for the study of liquid lithium trenches

    International Nuclear Information System (INIS)

    Jung, S.; Christenson, M.; Curreli, D.; Bryniarski, C.; Andruczyk, D.; Ruzic, D.N.

    2014-01-01

    Highlights: • A pulse device for a liquid lithium trench study is developed. • It consists of a coaxial plasma gun, a theta pinch, and guiding magnets. • A large energy enhancement is observed with the use of the plasma gun. • A further increase in energy and velocity is observed with the theta pinch. - Abstract: To simulate detrimental events in a tokamak and provide a test-stand for a liquid-lithium infused trench (LiMIT) device [1], a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. The plasma is characterized using a triple Langmuir probe, optical methods, and a calorimeter. Clear advantages have been observed with the application of a coaxial plasma accelerator as a pre-ionization source. The experimental results of the plasma gun in conjunction with the existing theta pinch show a significant improvement from the previous energy deposition by a factor of 14 or higher, resulting in a maximum energy and heat flux of 0.065 ± 0.002 MJ/m 2 and 0.43 ± 0.01 GW/m 2 . A few ways to further increase the plasma heat flux for LiMIT experiments are discussed

  18. Rapid and simple pretreatment of human body fluids using electromembrane extraction across supported liquid membrane for capillary electrophoretic determination of lithium.

    Science.gov (United States)

    Strieglerová, Lenka; Kubáň, Pavel; Boček, Petr

    2011-05-01

    Electromembrane extraction was used for simultaneous sample cleanup and preconcentration of lithium from untreated human body fluids. The sample of a body fluid was diluted 100 times with 0.5 mM Tris solution and lithium was extracted by electromigration through a supported liquid membrane composed of 1-octanol into 100 mM acetic acid acceptor solution. Matrix compounds, such as proteins, red blood cells, and other high-molecular-weight compounds were efficiently retained on the supported liquid membrane. The liquid membrane was anchored in pores of a short segment of a polypropylene hollow fiber, which represented a low cost, single use, disposable extraction unit and was discarded after each use. Acceptor solutions were analyzed using capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4) D) and baseline separation of lithium was achieved in a background electrolyte solution consisting of 18 mM L-histidine and 40 mM acetic acid at pH 4.6. Repeatability of the electromembrane extraction-CE-C(4) D method was evaluated for the determination of lithium in standard solutions and real samples and was better than 0.6 and 8.2% for migration times and peak areas, respectively. The concentration limit of detection of 9 nM was achieved. The developed method was applied to the determination of lithium in urine, blood serum, blood plasma, and whole blood at both endogenous and therapeutic concentration levels. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Efficient Electrolytes for Lithium-Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Natarajan eAngulakshmi

    2015-05-01

    Full Text Available This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium-sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium-sulfur batteries. The electrolytes for lithium-sulfur batteries are broadly classified as (i non-aqueous liquid electrolytes, (ii ionic liquids, (iii solid polymer and (iv glass-ceramic electrolytes. This article presents the properties, advantages and limitations of each type of electrolytes. Also the importance of electrolyte additives on the electrochemical performance of Li-S cells is discussed.

  20. Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces

    Science.gov (United States)

    Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David

    2014-10-01

    An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.

  1. Surface Treatment of a Lithium Limiter for Spherical Torus Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, R.; Majeski, R.; Doerner, R.; Antar, G.; Timberlake, J.; Spaleta, J.; Hoffman, D.; Jones, B.; Munsat, T.; Kugel, H.; Taylor, G.; Stutman, D.; Soukhanovskii, V.; Maingi, R.; Molesa, S.; Efthimion, P.; Menard, J.; Finkenthal, M.; Luckhardt, S.

    2001-03-20

    The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance in reactor design, since it could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls. As part of investigations to determine the feasibility of this approach, plasma interaction questions in a toroidal plasma geometry are being addressed in the Current Drive eXperiment-Upgrade (CDX-U) spherical torus (ST). The first experiments involved a toroidally local lithium limiter (L3). Measurements of pumpout rates indicated that deuterium pumping was greater for the L3 compared to conventional boron carbide limiters. The difference in the pumpout rates between the two limiter types decreased with plasma exposure, but argon glow discharge cleaning was able to restore the pumping effectiveness of the L3. At no point, however, was the extremely low recycling regime reported in previous lithium experiments achieved. This may be due to the much larger lithium surfaces that were exposed to the plasma in the earlier work. The possibility will be studied in the next set of CDX-U experiments, which are to be conducted with a large area, fully toroidal lithium limiter.

  2. Surface Treatment of a Lithium Limiter for Spherical Torus Plasma Experiments

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Doerner, R.; Antar, G.; Timberlake, J.; Spaleta, J.; Hoffman, D.; Jones, B.; Munsat, T.; Kugel, H.; Taylor, G.; Stutman, D.; Soukhanovskii, V.; Maingi, R.; Molesa, S.; Efthimion, P.; Menard, J.; Finkenthal, M.; Luckhardt, S.

    2001-01-01

    The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance in reactor design, since it could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls. As part of investigations to determine the feasibility of this approach, plasma interaction questions in a toroidal plasma geometry are being addressed in the Current Drive eXperiment-Upgrade (CDX-U) spherical torus (ST). The first experiments involved a toroidally local lithium limiter (L3). Measurements of pumpout rates indicated that deuterium pumping was greater for the L3 compared to conventional boron carbide limiters. The difference in the pumpout rates between the two limiter types decreased with plasma exposure, but argon glow discharge cleaning was able to restore the pumping effectiveness of the L3. At no point, however, was the extremely low recycling regime reported in previous lithium experiments achieved. This may be due to the much larger lithium surfaces that were exposed to the plasma in the earlier work. The possibility will be studied in the next set of CDX-U experiments, which are to be conducted with a large area, fully toroidal lithium limiter

  3. Solutions of group IV elements in liquid lithium

    International Nuclear Information System (INIS)

    Dadd, A.T.; Hubberstey, P.; Roberts, P.G.

    1982-01-01

    The solubilities of tin (0.00 = 22 Sn 5 . A simple thermochemical cycle is used to demonstrate that, whereas carbon dissolves endothermically in both liquid lithium and liquid sodium, the heavier Group IV elements dissolve exothermically. A similar cycle is used to derive solvation enthalpies (for the neutral gaseous species) for all Group IV elements in the two solvents. The trend in solvation enthalpy: C > Si > Ge > Sn > Pb is indicative of a diminishing affinity of solvent for solute and is attributed to the increasing metallic character of the solute as the Group is descended. (author)

  4. Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes.

    Science.gov (United States)

    Grande, Lorenzo; von Zamory, Jan; Koch, Stephan L; Kalhoff, Julian; Paillard, Elie; Passerini, Stefano

    2015-03-18

    In this study, we report on the electroplating and stripping of lithium in two ionic liquid (IL) based electrolytes, namely N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl) imide (Pyr14FSI) and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI), and mixtures thereof, both on nickel and lithium electrodes. An improved method to evaluate the Li cycling efficiency confirmed that homogeneous electroplating (and stripping) of Li is possible with TFSI-based ILs. Moreover, the presence of native surface features on lithium, directly observable via scanning electron microscope imaging, was used to demonstrate the enhanced electrolyte interphase (SEI)-forming ability, that is, fast cathodic reactivity of this class of electrolytes and the suppressed dendrite growth. Finally, the induced inhomogeneous deposition enabled us to witness the SEI cracking and revealed previously unreported bundled Li fibers below the pre-existing SEI and nonrod-shaped protuberances resulting from Li extrusion.

  5. Thermodynamic analysis of chromium solubility data in liquid lithium containing nitrogen: Comparison between experimental data and computer simulation

    International Nuclear Information System (INIS)

    Krasin, Valery P.; Soyustova, Svetlana I.

    2015-01-01

    The mathematical formalism for description of solute interactions in dilute solution of chromium and nitrogen in liquid lithium have been applied for calculating of the temperature dependence of the solubility of chromium in liquid lithium with the various nitrogen contents. It is shown that the derived equations are useful to provide understanding of a relationship between thermodynamic properties and local ordering in the Li–Cr–N melt. Comparison between theory and data reported in the literature for solubility of chromium in nitrogen-contaminated liquid lithium, was allowed to explain the reasons of the deviation of the experimental semi-logarithmic plot of chromium content in liquid lithium as a function of the reciprocal temperature from a straight line. - Highlights: • The activity coefficient of chromium in ternary melt can be obtained by means of integrating the Gibbs–Duhem equation. • In lithium with the high nitrogen content, the dependence of a logarithm of chromium solubility as a function of the reciprocal temperature has essentially nonlinear character. • At temperatures below a certain threshold, the process of dissolution of chromium in lithium will be controlled by the equilibrium concentration of nitrogen required for the formation of ternary nitride Li_9CrN_5at a given temperature.

  6. Status of National Spherical Torus Experiment Liquid Lithium Divertor

    Science.gov (United States)

    Kugel, H. W.; Viola, M.; Ellis, R.; Bell, M.; Gerhardt, S.; Kaita, R.; Kallman, J.; Majeski, R.; Mansfield, D.; Roquemore, A. L.; Schneider, H.; Timberlake, J.; Zakharov, L.; Nygren, R. E.; Allain, J. P.; Maingi, R.; Soukhanovskii, V.

    2009-11-01

    Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on plasma facing components to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is the 2009 installation of a Liquid Lithium Divertor (LLD). The 20 cm wide LLD located on the lower outer divertor, consists of four, 80 degree sections; each section is separated by a row of graphite diagnostic tiles. The temperature controlled LLD structure consists of a 0.01cm layer of vacuum flame-sprayed, 50 percent porous molybdenum, on top of 0.02 cm, 316-SS brazed to a 1.9 cm Cu base. The physics design of the LLD encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.

  7. Development of windowless liquid lithium targets for fragmentation and fission of 400-kW uranium beams

    CERN Document Server

    Nolen, J A; Hassanein, A; Novick, V J; Plotkin, P; Specht, J R

    2003-01-01

    The driver linac of the proposed rare isotope accelerator facility is designed to deliver 2x10 sup 1 sup 3 uranium ions per second at 400 MeV/u on target for radionuclide production via the fission and fragmentation mechanisms. The ion optics of the large acceptance, high-resolution fragment separators that follow the production target require primary beam spot widths of 1 mm. To cope with the resulting high power densities, windowless liquid lithium targets are being developed. The present designs build on existing experience with liquid lithium and liquid sodium systems that have been used for fusion and fission applications. However, no completely windowless systems have been developed or tested to date. For the beam power indicated above (400 kW), the flow requirements are up to about 20 m/s and 10 l/s linear and volume flow rates, respectively. The required target thickness is 1-1.5 g/cm sup 2 (2-3 cm lithium thickness). At this time a prototype windowless system with a lithium thickness of 1-2 cm is und...

  8. Control of the nitrogen concentration in liquid lithium by the hot trap method

    International Nuclear Information System (INIS)

    Sakurai, Toshiharu; Yoneoka, Toshiaki; Tanaka, Satoru; Suzuki, Akihiro; Muroga, Takeo

    2002-01-01

    The nitrogen concentration in liquid lithium was controlled by the hot-trap method. Titanium, vanadium and a V-Ti alloy were used as nitrogen gettering materials. Gettering experiments were conducted at 673, 773 and 823 K for 0.4-2.8 Ms. After immersion, the nitrogen concentration increased in titanium and V-Ti were tested at 823 K. Especially the nitrogen gettering effect by the V-10at.%Ti alloy was found to be large. Nitrogen was considered to exist mainly as solid solution in the V-10at.%Ti alloy. The decrease of the nitrogen concentration in liquid lithium by the V-Ti gettering was also confirmed

  9. The solid-liquid extraction separation of lithium isotopes by porous composite materials doped with ionic liquids and 2,2'-binaphthyldiyl-17-crown-5

    International Nuclear Information System (INIS)

    Xiao-Li Sun; Ling Gu; Dan Qiu; Dong-Hong Ren; Zaijun Li; Zhi-Guo Gu; Jiangnan University, Wuxi

    2015-01-01

    A green and efficient solid-liquid extraction method of lithium isotopes separation by porous composite materials doped with imidazolium ionic liquids and 2,2'-binaphthyldiyl-17-crown-5 has been reported in this paper. The composite materials of mesoporous silica and impregnated resin were synthesized by sol-gel and direct impregnation process, respectively. Various extraction parameters such as the concentration of lithium salt, anion of lithium salt, initial pH, time and temperature were investigated. Under optimized conditions, the maximum single-stage separation factor of 6 Li/ 7 Li was 1.048 ± 0.002, the maximum extraction efficiency was 15.86 %. The sorbents can be regenerated easily with HCl solution and reused repeatedly. (author)

  10. Experiments with Liquid Metal Walls: Status of the Lithium Tokamak Experiment

    OpenAIRE

    Boyle, Dennis; Gray, Timothy; Granstedt, Erik; Kozub, Thomas; Berzak, Laura; Hammett, Gregory; Kugel, Henry; Leblanc, Benoit; Logan, Nicholas; Jacobson, Craig M.; Lucia, Matthew; Jones, Andrew; Lundberg, Daniel; Timberlake, John; Majeski, Richard

    2010-01-01

    Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas wa...

  11. Soft X-ray emission spectroscopy of liquids and lithium battery materials

    International Nuclear Information System (INIS)

    Augustsson, Andreas

    2004-01-01

    Lithium ion insertion into electrode materials is commonly used in rechargeable battery technology. The insertion implies changes in both the crystal structure and the electronic structure of the electrode material. Side-reactions may occur on the surface of the electrode which is exposed to the electrolyte and form a solid electrolyte interface (SEI). The understanding of these processes is of great importance for improving battery performance. The chemical and physical properties of water and alcohols are complicated by the presence of strong hydrogen bonding. Various experimental techniques have been used to study geometrical structures and different models have been proposed to view the details of how these liquids are geometrically organized by hydrogen bonding. However, very little is known about the electronic structure of these liquids, mainly due to the lack of suitable experimental tools. In this thesis examples of studies of lithium battery electrodes and liquid systems using soft x-ray emission spectroscopy will be presented. Monochromatized synchrotron radiation has been used to accomplish selective excitation, in terms of energy and polarization. The electronic structure of graphite electrodes has been studied, before and after lithium intercalation. Changes in the electronic structure upon lithiation due to transfer of electrons into the graphite π-bands have been observed. Transfer of electrons in to the 3d states of transition metal oxides upon lithiation have been studied, through low energy excitations as dd- and charge transfer-excitations. A SEI was detected on cycled graphite electrodes. By the use of selective excitation different carbon sites were probed in the SEI. The local electronic structure of water, methanol and mixtures of the two have been examined using a special liquid cell, to separate the liquid from the vacuum in the experimental chamber. Results from the study of liquid water showed a strong influence on the 3a1 molecular

  12. Pyrrolidinium-based ionic liquid electrolyte with organic additive and LiTFSI for high-safety lithium-ion batteries

    International Nuclear Information System (INIS)

    Yang, Binbin; Li, Cuihua; Zhou, Junhui; Liu, Jianhong; Zhang, Qianling

    2014-01-01

    Highlights: • New ionic liquid electrolytes composed by PYR 13 TFSI and EC/DMC-5%VC. • Mixed electrolyte for use in high-safety lithium-ion batteries. • LiTFSI concentration in IL electrolyte greatly affects the rate capability of the cell. • The optimal mixed electrolyte is ideal for applications at high temperature. - Abstract: In this paper, we report on the physicochemical properties of mixed electrolytes based on an ionic liquid N-propyl-N-methylpyrrolidiniumbis (trifluoromethanesulfonyl) imide (PYR 13 TFSI), organic additives, and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) for high safety lithium-ion batteries. The proposed optimal content of ionic liquid in the mixed electrolyte is 65 vol%, which results in non- flammability, high thermal stability, a wide electrochemical window of 4.8 V, low viscosity, low bulk resistance and the lowest interface resistance to lithium anode. The effects of the concentration of LiTFSI in the above electrolyte are critical to the rate performance of the LiFePO 4 -based battery. We have found the suitable LiTFSI concentration (0.3 M) for good capacity retention and rate capability

  13. Measurement of free-surface of liquid metal lithium jet for IFMIF target

    International Nuclear Information System (INIS)

    Hiroo Kondo; Nobuo Yamaoka; Takuji Kanemura; Seiji Miyamoto; Hiroshi Horiike; Mizuho Ida; Hiroo Nakamura; Izuru Matsushita; Takeo Muroga

    2006-01-01

    This reports an experimental study on flow characteristics of a lithium target flow of International Fusion Materials Irradiation Facility (IFMIF). Surface shapes of the target were tried to measure by pattern projection method that is a three dimensional image measurement method. Irregularity of the surface shape caused by surface wakes was successfully measured by the method. IFMIF liquid lithium target is formed a flat plane jet of 25 mm in depth and 260 mm in width, and flows in a flow velocity range of 10 to 20 m/s. Aim of this study is to develop measurement techniques for monitoring of the target when IFMIF is in operation. The lithium target flow is high speed jet and the temperature high is more than 500 K. Also, light is not transmitted into liquid metal lithium. Therefore, almost of all flow measurement techniques developed for water are not used for lithium flow. In this study, pattern projection method was employed to measure the surface irregularity of the target. In the method, stripe patterns are projected onto the flow surface. The projected patterns are deformed according the surface shape. Three-dimensional surface shape is measured by analyzing the deformed patterns recorded using a CCD camera. The method uses the property that lithium dose not transmit visible lights. The experiments were carried out using a lithium loop at Osaka University. In this facility, lithium plane jet of 10 mm in depth and 70 mm width is obtained in the velocity range of less than 15 m/s using a two contractions nozzle. The pattern projection method was used to measure the amplitude of surface irregularity caused by surface wakes. The surface wakes were generated from small damaged at the nozzle edge caused by erosion, and those were successfully measured by the method. The measurement results showed the amplitude of the surface wakes were approximately equal to a size of damage of a nozzle. The amplitude was decreasing with distance to down stream and with decreasing

  14. Characterization of fueling NSTX H-mode plasmas diverted to a liquid lithium divertor

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, R., E-mail: kaita@pppl.gov [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Kugel, H.W.; Abrams, T. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Allain, J.P. [Purdue University, West Lafayette, IN 47907 (United States); Bell, M.G.; Bell, R.E.; Diallo, A.; Gerhardt, S.P. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Heim, B. [Purdue University, West Lafayette, IN 47907 (United States); Jaworski, M.A., E-mail: mjaworsk@pppl.gov [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Kallman, J. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Kaye, S.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Mansfield, D. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); McLean, A. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Menard, J.; Mueller, D. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Nygren, R. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Ono, M. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); and others

    2013-07-15

    Deuterium fueling experiments were conducted with the NSTX Liquid Lithium Divertor (LLD). Lithium evaporation recoated the LLD surface to approximate flowing liquid Li to sustain D retention. In the first experiment with the diverted outer strike point on the LLD, the difference between the applied D gas input and the plasma D content reached very high values without disrupting the plasma, as would normally occur in the absence of Li pumping, and there was also little change in plasma D content. In the second experiment, constant fueling was applied, as the LLD temperature was varied to change the surface from solid to liquid. The D retention was relatively constant, and about the same as that for solid Li coatings on graphite, or twice that achieved without Li PFC coatings. Contamination of the LLD surface was also possible due to compound formation and erosion and redeposition from carbon PFCs.

  15. A Compact Self-Driven Liquid Lithium Loop for Industrial Neutron Generation

    Science.gov (United States)

    Stemmley, Steven; Szott, Matt; Kalathiparambil, Kishor; Ahn, Chisung; Jurczyk, Brian; Ruzic, David

    2017-10-01

    A compact, closed liquid lithium loop has been developed at the University of Illinois to test and utilize the Li-7(d,n) reaction. The liquid metal loop is housed in a stainless steel trench module with embedded heating and cooling. The system was designed to handle large heat and particle fluxes for use in neutron generators as well as fusion devices, solely operating via thermo-electric MHD. The objectives of this project are two-fold, 1) produce a high energy, MeV-level, neutron source and 2) provide a self-healing, low Z, low recycling plasma facing component. The flowing volume will keep a fresh, clean, lithium surface allowing Li-7(d,n) reactions to occur as well as deuterium adsorption in the fluid, increasing the overall neutron output. Expected yields of this system are 107 n/s for 13.5 MeV neutrons and 108 n/s for 2.45 MeV neutrons. Previous work has shown that using a tapered trench design prevents dry out and allows for an increase in velocity of the fluid at the particle strike point. For heat fluxes on the order of 10's MW/m2, COMSOL models have shown that high enough velocities ( 70 cm/s) are attainable to prevent significant lithium evaporation. Future work will be aimed at addressing wettability issues of lithium in the trenches, experimentally determine the velocities required to prevent dry out, and determine the neutron output of the system. The preliminary results and discussion will be presented. DOE SBIR project DE-SC0013861.

  16. Results and future plans of the Lithium Tokamak eXperiment (LTX)

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, J.C., E-mail: jschmitt@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Abrams, T. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Baylor, L.R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Berzak Hopkins, L. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Biewer, T. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Bohler, D.; Boyle, D.; Granstedt, E. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Gray, T. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Hare, J.; Jacobson, C.M.; Jaworski, M.; Kaita, R.; Kozub, T.; LeBlanc, B.; Lundberg, D.P.; Lucia, M. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Majeski, R.; Merino, E. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); and others

    2013-07-15

    The Lithium Tokamak eXperiment (LTX) is a spherical tokamak with the unique capability of studying the low-recycling regime by coating nearly 90% of the first wall with lithium in either solid or liquid form. Several grams of lithium are evaporated onto the plasma-facing side of the first wall. Without lithium coatings, the plasma discharge is limited to less than 5 ms and only 10 kA of plasma current, and the first wall acts as a particle source. With cold lithium coatings, plasma discharges last up to 20 ms with plasma currents up to 70 kA. The lithium coating provides a low-recycling first wall condition for the plasma and higher fueling rates are required to realize plasma densities similar to that of pre-lithium walls. Traditional puff fueling, supersonic gas injection, and molecular cluster injection (MCI) are used. Liquid lithium experiments will begin in 2012.

  17. Results and future plans of the Lithium Tokamak eXperiment (LTX)

    International Nuclear Information System (INIS)

    Schmitt, J.C.; Abrams, T.; Baylor, L.R.; Berzak Hopkins, L.; Biewer, T.; Bohler, D.; Boyle, D.; Granstedt, E.; Gray, T.; Hare, J.; Jacobson, C.M.; Jaworski, M.; Kaita, R.; Kozub, T.; LeBlanc, B.; Lundberg, D.P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.

    2013-01-01

    The Lithium Tokamak eXperiment (LTX) is a spherical tokamak with the unique capability of studying the low-recycling regime by coating nearly 90% of the first wall with lithium in either solid or liquid form. Several grams of lithium are evaporated onto the plasma-facing side of the first wall. Without lithium coatings, the plasma discharge is limited to less than 5 ms and only 10 kA of plasma current, and the first wall acts as a particle source. With cold lithium coatings, plasma discharges last up to 20 ms with plasma currents up to 70 kA. The lithium coating provides a low-recycling first wall condition for the plasma and higher fueling rates are required to realize plasma densities similar to that of pre-lithium walls. Traditional puff fueling, supersonic gas injection, and molecular cluster injection (MCI) are used. Liquid lithium experiments will begin in 2012

  18. Design data, liquid distributors and condenser for a distillation column to enrich tritium in metallic lithium

    International Nuclear Information System (INIS)

    Barnert, E.

    1984-01-01

    Tritium, one fuel component of the fusion reactor is bred from the reactors blanket material lithium. Before extracting the tritium from, for instance, metallic lithium by permeation it has to be enriched in the lithium by high temperature distillation. In this report design data for a column for high temperature distillation are given. About the testing of two distributors for small liquid quantities and of a condenser is reported. (orig.) [de

  19. Ferrous alloy metallurgy - liquid lithium corrosion and welding. Progress report, January 1-December 31, 1980

    International Nuclear Information System (INIS)

    Olson, D.L.; Matlock, D.K.

    1980-01-01

    Fatigue crack growth has been used to evaluate the interaction between liquid lithium and an imposed stress. Fatigue crack growth data on type 304L stainless steel at 700C and 2 1/4Cr-1Mo steel between 500 and 700C show that for all imposed test conditions (i.e. frequency, temperature, and nitrogen content in the lithium) the interaction of lithium with the strain at the crack tip results in enhanced crack growth rates. The enhanced growth rates result from the effects of either enhanced grain boundary penetration or a change in crack propagation mechanism due to liquid metal embrittlement. Auger spectroscopy of grain boundary penetrated specimen shows that a lithium-oxygen compound forms at the grain boundary. Moessbauer evaluations of the ferrite layer of corroded type 304 stainless steel are being used to develop a model for weight loss in liquid lithium. The welding research in progress is directed to characterize the influence of variations of the austenitic weld metal composition on the microstructural and mechanical properties of dissimilar metal weldments. Weldments of 2 1/4Cr-1Mo steel to 316 stainless steel have been investigated for fusion microstructure, thermal expansion impact strength and characterization of specific long time in-service failures. Modification of weld metal microstructures by microalloy additions is being investigated as a concept to improve weld metal properties. The behavior of a strip electrode in a gas metal arc is being investigated to determine the feasibility of gas metal arc weld strip overlay cladding

  20. Development of fast video recording of plasma interaction with a lithium limiter on T-11M tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lazarev, V.B., E-mail: v_lazarev@triniti.ru [SSC RF TRINITI Troitsk, Moscow (Russian Federation); Dzhurik, A.S.; Shcherbak, A.N. [SSC RF TRINITI Troitsk, Moscow (Russian Federation); Belov, A.M. [NRC “Kurchatov Institute”, Moscow (Russian Federation)

    2016-11-15

    Highlights: • The paper presents the results of the study of tokamak plasma interaction with lithium capillary-porous system limiters and PFC by high-speed color camera. • Registration of emission near the target in SOL in neutral lithium light and e-folding length for neutral Lithium measurements. • Registration of effect of MHD instabilities on CPS Lithium limiter. • A sequence of frames shows evolution of lithium bubble on the surface of lithium limiter. • View of filament structure near the plasma edge in ohmic mode. - Abstract: A new high-speed color camera with interference filters was installed for fast video recording of plasma-surface interaction with a Lithium limiter on the base of capillary-porous system (CPS) in T-11M tokamak vessel. The paper presents the results of the study of tokamak plasma interaction (frame exposure time up to 4 μs) with CPS Lithium limiter in a stable stationary phase, unstable regimes with internal disruption and results of processing of the image of the light emission around the probe, i.e. e-folding length for neutral Lithium penetration and e-folding length for Lithium ion flux in SOL region.

  1. A 20 kw beam-on-target test of a high-power liquid lithium target for RIA

    International Nuclear Information System (INIS)

    Reed, Claude B.; Nolen, Jerry A.; Specht, James R.; Novick, Vincent J.; Plotkin, Perry

    2004-01-01

    The high-power heavy-ion beams produced by the Rare Isotope Accelerator (RIA) driver linac have large energy deposition density in solids and in many cases no solid materials would survive the full beam power. Liquid lithium technology has been proposed to solve this problem in RIA. Specifically, a windowless target for the production of radioactive ions via fragmentation, consisting of a jet of about 3 cm thickness of flowing liquid lithium, exposed to the beamline vacuum [1,2] is being developed. To demonstrate that power densities equivalent to a 200-kW RIA uranium beam, deposited in the first 4 mm of a flowing lithium jet, can be handled by the windowless target design, a high power 1 MeV Dynamitron was leased and a test stand prepared to demonstrate the target's capability of absorbing and carrying away a 20kW heat load without disrupting either the 5 mm x 10 mm flowing lithium jet target or the beam line vacuum

  2. Lithium vapor trapping at a high-temperature lithium PFC divertor target

    Science.gov (United States)

    Jaworski, Michael; Abrams, T.; Goldston, R. J.; Kaita, R.; Stotler, D. P.; de Temmerman, G.; Scholten, J.; van den Berg, M. A.; van der Meiden, H. J.

    2014-10-01

    Liquid lithium has been proposed as a novel plasma-facing material for NSTX-U and next-step fusion devices but questions remain on the ultimate temperature limits of such a PFC during plasma bombardment. Lithium targets were exposed to high-flux plasma bombardment in the Magnum-PSI experimental device resulting in a temperature ramp from room-temperature to above 1200°C. A stable lithium vapor cloud was found to form directly in front of the target and persist to temperature above 1000°C. Consideration of mass and momentum balance in the pre-sheath region of an attached plasma indicates an increase in the magnitude of the pre-sheath potential drop with the inclusion of ionization sources as well as the inclusion of momentum loss terms. The low energy of lithium emission from a surface measured in previous experiments (Contract DE-AC02-09CH11466.

  3. Ionic liquids and derived materials for lithium and sodium batteries.

    Science.gov (United States)

    Yang, Qiwei; Zhang, Zhaoqiang; Sun, Xiao-Guang; Hu, Yong-Sheng; Xing, Huabin; Dai, Sheng

    2018-03-21

    The ever-growing demand for advanced energy storage devices in portable electronics, electric vehicles and large scale power grids has triggered intensive research efforts over the past decade on lithium and sodium batteries. The key to improve their electrochemical performance and enhance the service safety lies in the development of advanced electrode, electrolyte, and auxiliary materials. Ionic liquids (ILs) are liquids consisting entirely of ions near room temperature, and are characterized by many unique properties such as ultralow volatility, high ionic conductivity, good thermal stability, low flammability, a wide electrochemical window, and tunable polarity and basicity/acidity. These properties create the possibilities of designing batteries with excellent safety, high energy/power density and long-term stability, and also provide better ways to synthesize known materials. IL-derived materials, such as poly(ionic liquids), ionogels and IL-tethered nanoparticles, retain most of the characteristics of ILs while being endowed with other favourable features, and thus they have received a great deal of attention as well. This review provides a comprehensive review of the various applications of ILs and derived materials in lithium and sodium batteries including Li/Na-ion, dual-ion, Li/Na-S and Li/Na-air (O 2 ) batteries, with a particular emphasis on recent advances in the literature. Their unique characteristics enable them to serve as advanced resources, medium, or ingredient for almost all the components of batteries, including electrodes, liquid electrolytes, solid electrolytes, artificial solid-electrolyte interphases, and current collectors. Some thoughts on the emerging challenges and opportunities are also presented in this review for further development.

  4. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Erck, R.; Park, E.T. [Argonne National Lab., IL (United States)] [and others

    1997-04-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10{sup {minus}4} torr at temperatures between 250 and 700{degrees}C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R {approx} 10 and 100 at 700 and 250{degrees}C, respectively). However at <267{degrees}C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy.

  5. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    International Nuclear Information System (INIS)

    Park, J.H.; Erck, R.; Park, E.T.

    1997-01-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10 -4 torr at temperatures between 250 and 700 degrees C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R ∼ 10 and 100 at 700 and 250 degrees C, respectively). However at <267 degrees C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy

  6. Thermally-responsive, nonflammable phosphonium ionic liquid electrolytes for lithium metal batteries: operating at 100 degrees celsius.

    Science.gov (United States)

    Lin, X; Kavian, R; Lu, Y; Hu, Q; Shao-Horn, Y; Grinstaff, M W

    2015-11-13

    Rechargeable batteries such as Li ion/Li metal batteries are widely used in the electronics market but the chemical instability of the electrolyte limits their use in more demanding environmental conditions such as in automotive, oil exploration, or mining applications. In this study, a series of alkyl phosphonium ionic liquid electrolyte are described with high thermal stability and solubility for LiTFSI. A lithium metal battery (LMB) containing a tailored phosphonium ionic liquid/LiTFSI electrolyte operates at 100 °C with good specific capacities and cycling stability. Substantial capacity is maintained during 70 cycles or 30 days. Instant on-off battery operation is realized via the significant temperature dependence of the electrolyte material, demonstrating the robustness and potential for use at high temperature.

  7. Laboratory studies of H retention and LiH formation in liquid lithium

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Rojo, A.B. [Ass. Euratom-Ciemat, Av. Complutense 22, 28040 Madrid (Spain); UC3M Madrid, 126, 28903 Getafe (Spain); Oyarzabal, E. [Ass. Euratom-Ciemat, Av. Complutense 22, 28040 Madrid (Spain); U.N.E.D. Ciudad Universitaria, S/N, 28040, Madrid Spain (Spain); Tabarés, F.L., E-mail: tabares@ciemat.es [Ass. Euratom-Ciemat, Av. Complutense 22, 28040 Madrid (Spain)

    2014-12-15

    Highlights: • Absorption and thermal desorption experiments of hydrogen isotopes in liquid lithium have been performed at exposure temperatures up to 400 °C. • The kinetics of the involved processes indicate a two-stage mechanism for hydride production. • TDS peaks at temperatures well below the expected one for thermal decomposition of the hydride were systematically recorded, although only a small fraction of the absorbed gas was released during the TDS cycle. • The absorption of H{sub 2} in a D{sub 2}-loaded sample was investigated at two temperatures, and no obvious influence of the preexisting species in the rate of absorption of H{sub 2} was seen. • Deuterium absorption takes place at a higher rate than that of hydrogen. - Abstract: Laboratory experiments on H/D retention on liquid lithium followed by thermal desorption spectrometry (TDS) have been performed at Ciemat. Two different experimental set ups were used in order to expose liquid Li to hydrogen gas or to hydrogen glow discharge plasmas at temperatures up to 673 K. In the present work the results concerning the gas phase absorption are addressed. Two different kinetics of absorption were identified from the time evolution of the uptake. Alternate exposures to H{sub 2} and D{sub 2} were carried out in order to study the isotope exchange and its possible use for tritium retention control in Fusion Reactor. Although important differences were found in the absorption kinetics of both species, the total retention seems to be governed by the total sum of hydrogenic isotopes, and only small differences were found in the corresponding TDS spectra, on which evidence of some isotope exchange is observed. The results are discussed in relation to the potential use of liquid lithium walls in a Fusion Reactor.

  8. Laboratory studies of H retention and LiH formation in liquid lithium

    International Nuclear Information System (INIS)

    Martín-Rojo, A.B.; Oyarzabal, E.; Tabarés, F.L.

    2014-01-01

    Highlights: • Absorption and thermal desorption experiments of hydrogen isotopes in liquid lithium have been performed at exposure temperatures up to 400 °C. • The kinetics of the involved processes indicate a two-stage mechanism for hydride production. • TDS peaks at temperatures well below the expected one for thermal decomposition of the hydride were systematically recorded, although only a small fraction of the absorbed gas was released during the TDS cycle. • The absorption of H 2 in a D 2 -loaded sample was investigated at two temperatures, and no obvious influence of the preexisting species in the rate of absorption of H 2 was seen. • Deuterium absorption takes place at a higher rate than that of hydrogen. - Abstract: Laboratory experiments on H/D retention on liquid lithium followed by thermal desorption spectrometry (TDS) have been performed at Ciemat. Two different experimental set ups were used in order to expose liquid Li to hydrogen gas or to hydrogen glow discharge plasmas at temperatures up to 673 K. In the present work the results concerning the gas phase absorption are addressed. Two different kinetics of absorption were identified from the time evolution of the uptake. Alternate exposures to H 2 and D 2 were carried out in order to study the isotope exchange and its possible use for tritium retention control in Fusion Reactor. Although important differences were found in the absorption kinetics of both species, the total retention seems to be governed by the total sum of hydrogenic isotopes, and only small differences were found in the corresponding TDS spectra, on which evidence of some isotope exchange is observed. The results are discussed in relation to the potential use of liquid lithium walls in a Fusion Reactor

  9. Electromagnetic pumping of liquid lithium in inertial confinement fusion reactors

    International Nuclear Information System (INIS)

    Baker, R.S.; Blink, J.A.; Tessier, M.J.

    1983-01-01

    The basic operating principles and geometries of ten electromagnetic pumps are described. Two candidate pumps, the annular-linear-induction pump and the helical-rotor electromagnetic pump, are compared for possible use in a full-scale liquid-lithium inertial confinement fusion reactor. A parametric design study completed for the helical-rotor pump is shown to be valid when applied to an experimental sodium pump. Based upon the preliminary HYLIFE requirements for a lithium flow rate per pump of 8.08 m 3 /s at a head of 82.5 kPa, a complete set of 70 variables are specified for a helical-rotor pump with either a normally conducting or a superconducting winding. The two alternative designs are expected to perform with efficiencies of 50 and 60%, respectively

  10. Tritium permeation barriers in contact with liquid lithium-lead eutectic (Pb-17Li)

    International Nuclear Information System (INIS)

    Forcey, K.S.; Perujo, A.

    1995-01-01

    The permeation of deuterium through coated stainless steel tubes containing liquid lithium-lead eutectic (Pb-17Li) has been studied and compared to measurements through tubes without the lithium compound. The measurements form part of an investigation into the effect of a potential tritium breeder material on permeation barriers for fusion reactors. The coatings studied were CVD TiC and Al 2 O 3 and a pack aluminised layer. Without the lithium-lead, the CVD coatings reduced the permeation rate up to 1 order of magnitude, and the aluminised layer up to 2 orders of magnitude. A CVD layer was unaffected by Pb-17Li whilst in the case of the aluminised tube, the lithium-lead completely removed the permeation barrier, presumably by attacking the surface oxide. Furthermore, the aluminised sample presented a large number of cracks and poor adheren ce to the substrate. ((orig.))

  11. The use of lithium as a marker for the retention of liquids in the oral cavity after rinsing.

    Science.gov (United States)

    Hanning, Sara M; Kieser, Jules A; Ferguson, Martin M; Reid, Malcolm; Medlicott, Natalie J

    2014-01-01

    The aim of this study was to validate the use of lithium as a marker to indicate the retention of simple liquids in the oral cavity and use this to determine how much liquid is retained in the oral cavity following 30 s of rinsing. This is a validation study in which saliva was spiked with known concentrations of lithium. Twenty healthy participants then rinsed their mouths with either water or a 1 % w/v carboxymethylcellulose (CMC) solution for 30 s before expectorating into a collection cup. Total volume and concentration of lithium in the expectorant were then measured, and the percentage of liquid retained was calculated. The mean amount of liquid retained was 10.4 ± 4.7 % following rinsing with water and 15.3 ± 4.1 % following rinsing with 1 % w/v CMC solution. This difference was significant (p < 0.01). Lithium was useful as a marker for the retention of liquids in the oral cavity, and a value for the amount of water and 1 % w/v CMC solution remaining in the oral cavity following a 30-s rinse was established. The present study quantifies the retention of simple fluids in the oral cavity, validating a technique that may be applied to more complex fluids such as mouth rinses. Further, the application of this method to specific population groups such as those with severe xerostomia may assist in developing effective saliva substitutes.

  12. A liquid-nitrogen monitor for lithium-drifted germanium detectors

    International Nuclear Information System (INIS)

    Andeweg, A.H.

    1977-11-01

    An instrument has been developed that makes use of a load cell to monitor the liquid nitrogen in the Dewar flask of a lithium-drifted germaniun detector. The contents are recorded on a chart recorder, and an alarm is sounded when the previously set content has been reached. A signal switches off the high-voltage power supply 30 minutes after the alarm is triggered. The calibration of the load-cell monitor is described in an appendix [af

  13. Improved liquid-lithium target for the FMIT facility

    International Nuclear Information System (INIS)

    Miles, R.R.; Greenwell, R.K.; Hassberger, J.A.; Ingham, J.G.

    1982-11-01

    An improved target for the Fusion Materials Irradiation Testing Facility was designed. The purpose of the target is to produce a high neutron flux (10 19 n/m 2 sec) for testing of candidate first wall materials for fusion reactors. The neutrons are produced through a Li(d,n) stripping reaction between accelerated deuterons (35 MeV, 0.1A) and a thin jet of flowing liquid lithium. The target consists of a high speed (approx. 17 m/s), free surface wall jet which is exposed to the high (10 -4 Pa) accelerator vacuum. The energy deposited by the deuteron beam in the lithium is sufficient to heat the jet internally to a maximum temperature of roughly 740 0 C, 430 0 C greater than the saturation temperature at the jet free surface. For this reason, the jet flows along a curved wall which provides the pressurization required to prevent sperheat internal to the jet. Supporting hardware for the jet and a drain line which controls the jet beyond the beam intercept region

  14. Liquid lithium loop system to solve challenging technology issues for fusion power plant

    Science.gov (United States)

    Ono, M.; Majeski, R.; Jaworski, M. A.; Hirooka, Y.; Kaita, R.; Gray, T. K.; Maingi, R.; Skinner, C. H.; Christenson, M.; Ruzic, D. N.

    2017-11-01

    Steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues, while potentially improving reactor plasma performance. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor concept and its variant, the active liquid lithium divertor concept, taking advantage of the enhanced or non-coronal Li radiation in relatively poorly confined divertor plasmas. To maintain the LL purity in a 1 GW-electric class fusion power plant, a closed LL loop system with a modest circulating capacity of ~1 l s-1 is envisioned. We examined two key technology issues: (1) dust or solid particle removal and (2) real time recovery of tritium from LL while keeping the tritium inventory level to an acceptable level. By running the LL-loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to the outside where the dust/impurities can be removed by relatively simple dust filter, cold trap and/or centrifugal separation systems. With ~1 l s-1 LL flow, even a small 0.1% dust content by weight (or 0.5 g s-1) suggests that the LL-loop could carry away nearly 16 tons of dust per year. In a 1 GW-electric (or ~3 GW fusion power) fusion power plant, about 0.5 g s-1 of tritium is needed to maintain the fusion fuel cycle

  15. Liquid lithium surface control and its effect on plasma performance in the HT-7 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, G.Z.; Ren, J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, J.S., E-mail: hujs@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Sun, Z.; Yang, Q.X.; Li, J.G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zakharov, L.E. [Princeton University Plasma Physics Laboratory Princeton, NJ 08543 (United States); Ruzic, David N. [University of Illinois, Urbana, IL 61801 (United States)

    2014-12-15

    Highlights: • Strong interaction between plasma and Li would cause strong Li emission and lead to disruptive plasmas, and probable reasons were analyzed. • Serious Li would be emitted from the free statics surface mainly due to J × B force leading to plasma instable and disruptions. • CPS surface would partially suppress the emission and be beneficial for plasma operation. • Li emission from flowing LLLs on free surfaces on SS trenches and on SS plate were compared. - Abstract: Experiments with liquid lithium limiters (LLLs) have been successfully performed in HT-7 since 2009 and the effects of different limiter surface structures on the ejection of Li droplets have been studied and compared. The experiments have demonstrated that strong interaction between the plasma and the liquid surface can cause intense Li efflux in the form of ejected Li droplets – which can, in turn, lead to plasma disruptions. The details of the LLL plasma-facing surface were observed to be extremely important in determining performance. Five different LLLs were evaluated in this work: two types of static free-surface limiters and three types of flowing liquid Li (FLLL) structures. It has been demonstrated that a FLLL with a slowly flowing thin liquid Li film on vertical flow plate which was pre-treated with evaporated Li was much less susceptible to Li droplet ejection than any of the other structures tested in this work. It was further observed that the plasmas run against this type of limiter were reproducibly well-behaved. These results provide technical references for the design of FLLLs in future tokamaks so as to avoid strong Li ejection and to decrease disruptive plasmas.

  16. Knight shift of 23Na and 7Li nuclei in liquid sodium-lithium alloys

    International Nuclear Information System (INIS)

    Feitsma, P.D.

    1977-01-01

    The Knight shift of 23 Na and 7 Li nuclei in liquid sodium-lithium alloys has been measured. Some aspects of the theoretical interpretation of the Knight shift within the diffraction model, are clarified

  17. Self-consistent description of local density dynamics in simple liquids. The case of molten lithium.

    Science.gov (United States)

    Mokshin, A V; Galimzyanov, B N

    2018-02-28

    The dynamic structure factor is the quantity, which can be measured by means of Brillouin light-scattering as well as by means of inelastic scattering of neutrons and x-rays. The spectral (or frequency) moments of the dynamic structure factor define directly the sum rules of the scattering law. The theoretical scheme formulated in this study allows one to describe the dynamics of local density fluctuations in simple liquids and to obtain the expression of the dynamic structure factor in terms of the spectral moments. The theory satisfies all the sum rules, and the obtained expression for the dynamic structure factor yields correct extrapolations into the hydrodynamic limit as well as into the free-particle dynamics limit. We discuss correspondence of this theory with the generalized hydrodynamics and with the viscoelastic models, which are commonly used to analyze the data of inelastic neutron and x-ray scattering in liquids. In particular, we reveal that the postulated condition of the viscoelastic model for the memory function can be directly obtained within the presented theory. The dynamic structure factor of liquid lithium is computed on the basis of the presented theory, and various features of the scattering spectra are evaluated. It is found that the theoretical results are in agreement with inelastic x-ray scattering data.

  18. Self-consistent description of local density dynamics in simple liquids. The case of molten lithium

    Science.gov (United States)

    Mokshin, A. V.; Galimzyanov, B. N.

    2018-02-01

    The dynamic structure factor is the quantity, which can be measured by means of Brillouin light-scattering as well as by means of inelastic scattering of neutrons and x-rays. The spectral (or frequency) moments of the dynamic structure factor define directly the sum rules of the scattering law. The theoretical scheme formulated in this study allows one to describe the dynamics of local density fluctuations in simple liquids and to obtain the expression of the dynamic structure factor in terms of the spectral moments. The theory satisfies all the sum rules, and the obtained expression for the dynamic structure factor yields correct extrapolations into the hydrodynamic limit as well as into the free-particle dynamics limit. We discuss correspondence of this theory with the generalized hydrodynamics and with the viscoelastic models, which are commonly used to analyze the data of inelastic neutron and x-ray scattering in liquids. In particular, we reveal that the postulated condition of the viscoelastic model for the memory function can be directly obtained within the presented theory. The dynamic structure factor of liquid lithium is computed on the basis of the presented theory, and various features of the scattering spectra are evaluated. It is found that the theoretical results are in agreement with inelastic x-ray scattering data.

  19. Extremely low recycling and high power density handling in CDX-U lithium experiments

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Doerner, R.; Gray, T.; Kugel, H.; Lynch, T.; Maingi, R.; Mansfield, D.; Soukhanovskii, V.; Spaleta, J.; Timberlake, J.; Zakharov, L.

    2007-01-01

    The mission of the Current Drive eXperiment-Upgrade (CDX-U) spherical tokamak is to investigate lithium as a plasma-facing component (PFC). The latest CDX-U experiments used a combination of a toroidal liquid lithium limiter and lithium wall coatings applied between plasma shots. Recycling coefficients for these plasmas were deduced to be 30% or below, and are the lowest ever observed in magnetically-confined plasmas. The corresponding energy confinement times showed nearly a factor of six improvement over discharges without lithium PFC's. An electron beam (e-beam) for evaporating lithium from the toroidal limiter was one of the techniques used to create lithium wall coatings in CDX-U. The evaporation was not localized to the e-beam spot, but occurred only after the entire volume of lithium in toroidal limiter was liquefied. This demonstration of the ability of lithium to handle high heat loads can have significant consequences for PFC's in future burning plasma devices

  20. Developments of Electrolyte Systems for Lithium-Sulfur Batteries: A Review

    Directory of Open Access Journals (Sweden)

    Zhan eLin

    2015-02-01

    Full Text Available With a theoretical specific energy 5 times higher than that of lithium-ion (Li-ion batteries (2,600 vs. ~500 Wh kg-1, lithium-sulfur (Li-S batteries have been considered as one of the most promising energy storage systems for the electrification of vehicles. However, both the polysulfide shuttle effects of the sulfur cathode and dendrite formation of the lithium anode are still key limitations to practical use of traditional Li-S batteries. In this review, we focus on the recent developments in electrolyte systems. First we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with traditional liquid cells. We then introduce the most recent progresses in liquid systems, including ether-based, carbonate-based, and ionic liquid-based electrolytes. And then we move on to the advances in solid systems, including polymer and non-polymer electrolytes. Finally, the opportunities and perspectives for future research in both the liquid and solid Li-S batteries are presented.

  1. A green strategy for lithium isotopes separation by using mesoporous silica materials doped with ionic liquids and benzo-15-crown-5

    International Nuclear Information System (INIS)

    Wen Zhou; Xiao-Li Sun; Lin Gu; Fei-Fei Bao; Xin-Xin Xu; Chun-Yan Pang; Zaijun Li; Zhi-Guo Gu; Jiangnan University, Wuxi

    2014-01-01

    Three new mesoporous silica materials IL15SGs (HF15SG, TF15SG and DF15SG) doped with benzo-15-crown-5 and imidazolium based ionic liquids (C 8 mim + PF 6 - , C 8 mim + BF 4 - or C 8 mim + NTf 2 - ) have been prepared by a simple approach to separating lithium isotopes. The formed mesoporous structures of silica gels have been confirmed by transmission electron microscopy image and N 2 gas adsorption-desorption isotherm. Imidazolium ionic liquids acted as templates to prepare mesoporous materials, additives to stabilize extractant within silica gel, and synergetic agents to separate the lithium isotopes. Factors such as lithium salt concentration, initial pH, counter anion of lithium salt, extraction time, and temperature on the lithium isotopes separation were examined. Under optimized conditions, the extraction efficiency of HF15SG, TF15SG and DF15SG were found to be 11.43, 10.59 and 13.07 %, respectively. The heavier isotope 7 Li was concentrated in the solution phase while the lighter isotope 6 Li was enriched in the gel phase. The solid-liquid extraction maximum single-stage isotopes separation factor of 6 Li- 7 Li in the solid-liquid extraction was up to 1.046 ± 0.002. X-ray crystal structure analysis indicated that the lithium salt was extracted into the solid phase with crown ether forming [(Li 0.5 ) 2 (B 15 ) 2 (H 2 O)] + complexes. IL15SGs were also easily regenerated by stripping with 20 mmol L -1 HCl and reused in the consecutive removal of lithium ion in five cycles. (author)

  2. New Ether-functionalized Morpholinium- and Piperidinium-based Ionic Liquids as Electrolyte Components in Lithium and Lithium-Ion Batteries.

    Science.gov (United States)

    Navarra, Maria Assunta; Fujimura, Kanae; Sgambetterra, Mirko; Tsurumaki, Akiko; Panero, Stefania; Nakamura, Nobuhumi; Ohno, Hiroyuki; Scrosati, Bruno

    2017-06-09

    Here, two ionic liquids, N-ethoxyethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide (M 1,2O2 TFSI) and N-ethoxyethyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide (P 1,2O2 TFSI) were synthesized and compared. Fundamental relevant properties, such as thermal and electrochemical stability, density, and ionic conductivity were analyzed to evaluate the effects caused by the presence of the ether bond in the side chain and/or in the organic cation ring. Upon lithium salt addition, two electrolytes suitable for lithium batteries applications were found. Higher conducting properties of the piperidinium-based electrolyte resulted in enhanced cycling performances when tested with LiFePO 4 (LFP) cathode in lithium cells. When mixing the P 1,2O2 TFSI/LiTFSI electrolyte with a tailored alkyl carbonate mixture, the cycling performance of both Li and Li-ion cells greatly improved, with prolonged cyclability delivering very stable capacity values, as high as the theoretical one in the case of Li/LFP cell configurations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A conceptual composite blanket design for the Tokamak type of thermonuclear reactor incorporating thermoelectric pumping of liquid lithium

    International Nuclear Information System (INIS)

    Dutta Gupta, P.B.

    1981-01-01

    The conceptual liquid lithium blanket design for the tokamak type of thermonuclear reactor put forward is a modification of the initial simple but novel design concept enunciated earlier that exploits the availability of suitably oriented magnetic fields and temperature gradients within the blanket to pump the liquid as has been shown feasible by laboratory model experiments. The modular construction of the blanket cells is retained but the earlier simple back to back double spiralling channel module is replaced by a composite unit of three radially nested layer-structures to optimise heat and tritium extraction from the blanket. The layer-structure at the first wall generates liquid lithium circulation by thermoelectric magnetohydrodynamic forces and the segregated double spiralling channels serve as inlet-outlet driving devices. The outermost layer-structure is cooled by helium. Liquid lithium in the intermediate layer-structure is pumped at a very slow rate. The choice of the relative dimensional proportions of the three layer-structure and the channel cross-section, material property and the spiralling contour is of critical importance for the design. This paper presents the design data for a conceptual design of such a blanket with a 5000 MW (th) rating. (author)

  4. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: halfon@phys.huji.ac.il; Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Steinberg, D. [Biofilm Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University-Hadassah (Israel); Nagler, A.; Arenshtam, A.; Kijel, D. [Soreq NRC, Yavne 81800 (Israel); Polacheck, I. [Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center (Israel); Srebnik, M. [Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University, Jerusalem 91120 (Israel)

    2009-07-15

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction {sup 7}Li(p,n){sup 7}Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  5. Conductivity of liquid lithium electrolytes with dispersed mesoporous silica particles

    International Nuclear Information System (INIS)

    Sann, K.; Roggenbuck, J.; Krawczyk, N.; Buschmann, H.; Luerßen, B.; Fröba, M.; Janek, J.

    2012-01-01

    Highlights: ► The conductivity of disperse lithium electrolytes with mesoporous fillers is studied. ► In contrast to other investigations in literature, no conductivity enhancement could be observed for standard battery electrolytes and typical mesoporous fillers in various combinations. ► Disperse electrolytes can become relevant in terms of battery safety. ► Dispersions of silicas and electrolyte with LiPF 6 as conducting salt are not stable, although the silicas were dried prior to preparation and the electrolyte water content was controlled. Surface modification of the fillers improved the stability. ► The observed conductivity decrease varied considerably for various fillers. - Abstract: The electrical conductivity of disperse electrolytes was systematically measured as a function of temperature (0 °C to 60 °C) and filler content for different types of fillers with a range of pore geometry, pore structure and specific surface area. As fillers mesoporous silicas SBA-15, MCM-41 and KIT-6 with pore ranges between 3 nm and 15 nm were dispersed in commercially available liquid lithium electrolytes. As electrolytes 1 M of lithium hexafluorophosphate (LiPF 6 ) in a mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) at the ratio 3:7 (wt/wt) and the same solvent mixture with 0.96 M lithium bis(trifluoromethanesulfon)imide (LiTFSI) were used. No conductivity enhancement could be observed, but with respect to safety aspects the highly viscous disperse pastes might be useful. The conductivity decrease varied considerably for the different fillers.

  6. Interactions between drops of a molten aluminum-lithium alloy and liquid water

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1994-01-01

    In certain hypothesized nuclear reactor accident scenarios, 1- to 10-g drops of molten aluminum-lithium alloys might contact liquid water. Because vigorous steam explosions have occurred when large amounts of molten aluminum-lithium alloys were released into water or other coolants, it becomes important to know whether there will be explosions if smaller amounts of these molten alloys similarly come into contact with water. Therefore, the authors released drops of molten Al-3.1 wt pct Li alloy into deionized water at room temperature. The experiments were performed at local atmospheric pressure (0.085 MPa) without pressure transient triggers applied to the water. The absence of these triggers allowed them to (a) investigate whether spontaneous initiation of steam explosions would occur with these drops and (b) study the alloy-water chemical reactions. The drop sizes and melt temperatures were chosen to simulate melt globules that might form during the hypothesized melting of the aluminum-lithium alloy components

  7. Rock-salt structure lithium deuteride formation in liquid lithium with high-concentrations of deuterium: a first-principles molecular dynamics study

    Science.gov (United States)

    Chen, Mohan; Abrams, T.; Jaworski, M. A.; Carter, Emily A.

    2016-01-01

    Because of lithium’s possible use as a first wall material in a fusion reactor, a fundamental understanding of the interactions between liquid lithium (Li) and deuterium (D) is important. We predict structural and dynamical properties of liquid Li samples with high concentrations of D, as derived from first-principles molecular dynamics simulations. Liquid Li samples with four concentrations of inserted D atoms (LiDβ , β =0.25 , 0.50, 0.75, and 1.00) are studied at temperatures ranging from 470 to 1143 K. Densities, diffusivities, pair distribution functions, bond angle distribution functions, geometries, and charge transfer between Li and D atoms are calculated and analyzed. The analysis suggests liquid-solid phase transitions can occur at some concentrations and temperatures, forming rock-salt LiD within liquid Li. We also observe formation of some D2 molecules at high D concentrations.

  8. CaO insulator coatings on a vanadium-base alloy in liquid 2 at.% calcium-lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Kassner, T.F.

    1996-01-01

    The electrical resistance of CaO coatings produced on V-4%Cr-4%Ti and V-15%Cr-5%Ti by exposure of the alloy (round bottom samples 6-in. long by 0.25-in. dia.) to liquid lithium that contained 2 at.% dissolved calcium was measured as a function of time at temperatures between 300-464 degrees C. The solute element, calcium in liquid lithium, reacted with the alloy substrate at these temperatures for 17 h to produce a calcium coating ∼7-8 μm thick. The calcium-coated vanadium alloy was oxidized to form a CaO coating. Resistance of the coating layer on V-15Cr-5Ti, measured in-situ in liquid lithium that contained 2 at.% calcium, was 1.0 x 10 10 Ω-cm 2 at 300 degrees C and 400 h, and 0.9 x 10 10 Ω-cm 2 at 464 degrees C and 300 h. Thermal cycling between 300 and 464 degrees C changed the resistance of the coating layer, which followed insulator behavior. Examination of the specimen after cooling to room temperature revealed no cracks in the CaO coating. The coatings were evaluated by optical microscopy, scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), and X-ray analysis. Adhesion between CaO and vanadium alloys was enhanced as exposure time increased

  9. Reaction rates and electrical resistivities of the hydrogen isotopes with, and their solubilities in, liquid lithium

    International Nuclear Information System (INIS)

    Pulham, R.J.; Adams, P.F.; Hubberstey, P.; Parry, G.; Thunder, A.E.

    1976-01-01

    The rate of reaction, k, of hydrogen and of deuterium with liquid lithium have been determined up to pressures of 20kNm -2 and at temperatures between 230 and 270 0 C. The reaction is first order with an apparent activation energy of 52.8 and 55.2 kJmol -1 for hydrogen and deuterium, respectively. The deuterium isotope effect, k/sub H/k/sub D/, decreases from 2.95 at 230 to 2.83 at 270 0 C. Tritium is predicted to react even more slowly than deuterium. The freezing point of lithium is depressed by 0.082 and 0.075 0 C, respectively, by dissolved hydride and deuteride giving eutectics at 0.016 mol percent H and 0.012 mol percent D in the metal-salt phase diagrams. The depression and eutectic concentration are expected to be less for tritium. The increase in the resistivity of liquid lithium caused by dissolved hydrogen isotopes is linear and relatively large, 5 x 10 -8 Ωm (mol percent H or D) -1 . The solubility of lithium hydride and deuteride was determined from the marked change in resistivity on saturation. The liquidus of the metal-salt phase diagram rises steeply from the eutectic point to meet the two-immiscible liquid region. Tritium is expected to be less soluble than deuterium. The partial molar enthalpies of solution are 44.2 and 55.0 kJmol -1 for hydrogen and deuterium, respectively. These values are used to calculate the solvation enthalpies of the isotope anions in the metal

  10. Lithium polymer cell assembled by in situ chemical cross-linking of ionic liquid electrolyte with phosphazene-based cross-linking agent

    International Nuclear Information System (INIS)

    Choi, Ji-Ae; Kang, Yongku; Kim, Dong-Won

    2013-01-01

    Highlights: ► Ionic liquid-based cross-linked gel polymer electrolytes were synthesized and their electrochemical properties were investigated. ► Lithium polymer cells with in situ cross-linked gel polymer electrolytes exhibited reversible cycling behavior with good capacity retention. ► The use of ionic liquid-based cross-linked gel polymer electrolytes significantly improved the thermal stability of the cells. -- Abstract: Ionic liquid-based cross-linked gel polymer electrolytes were prepared with a phosphazene-based cross-linking agent, and their electrochemical properties were investigated. Lithium polymer cells composed of lithium anode and LiCoO 2 cathode were assembled with ionic liquid-based cross-linked gel polymer electrolyte and their cycling performance was evaluated. The interfacial adhesion between the electrodes and the electrolyte by in situ chemical cross-linking resulted in stable capacity retention of the cell. A reduction in the ionic mobility in both the electrolyte and the electrode adversely affected discharge capacity and high rate performance of the cell. DSC studies demonstrated that the use of ionic liquid-based cross-linked gel polymer electrolytes provided a significant improvement in the thermal stability of the cell

  11. Evaluation of liquid metal protection of a limiter/divertor in fusion reactors

    International Nuclear Information System (INIS)

    Hassanein, A.M.; Smith, D.L.

    1988-01-01

    The liquid metal protection concept is proposed mainly to prolong the lifetime of a divertor or a limiter in a fusion reactor. This attractive idea for protection requires studying a wide range of problems associated with the use of liquid-metals in fusion reactors. In this work the protection by liquid-metals has concentrated on predictions of the loss rate of the film to the plasma, the operating surface temperatures required for the film, and the potential tritium inventory requirement. The effect of plasma disruptions on the liquid metal film is also evaluated. Other problems such as liquid metal compatibility with structural materials, magnetic field effects, and the effect of liquid metal contamination on plasma performance are discussed. Three candidate liquid-metals are evaluated, i.e., lithium, gallium, and tin. A wide range of reactor operating conditions valid for both near term machines (INTOR and ITER) and for the next generation commercial reactors (TPSS) are considered. This study has indicated that the evaporation rate for candidate liquid metals can be kept below the sputtering range for reasonable operating temperatures and plasma edge conditions. At higher temperatures, evaporation dominates the losses. Impurity transport calculations indicate that impurities from the plate should not reach the main plasma. One or two millimeters of liquid films can protect the structure from severe plasma disruptions. Depending on the design of the liquid metal protection system, the tritium inventory in the liquid film is predicted to be on the order of a few grams. 16 refs., 5 figs

  12. First experiments with a liquid-lithium based high-intensity 25-keV neutron source

    International Nuclear Information System (INIS)

    Paul, M.

    2014-01-01

    A high-intensity neutron source based on a Liquid-Lithium Target (LiLiT) and the 7 Li(p,n) reaction was developed at SARAF (Soreq Applied Research Accelerator Facility, Israel) and is used for nuclear astrophysics experiments. The setup was commissioned with a 1.3 mA proton beam at 1.91 MeV, producing a neutron yield of ~ 2 ×10 10 n/s, more than one order of magnitude larger than conventional 7 Li(p,n)-based neutron sources and peaked at ~25 keV. The LiLiT device consists of a high-velocity (> 4 m/s) vertical jet of liquid lithium (~200 °C) whose free surface is bombarded by the proton beam. The lithium jet acts both as the neutron-producing target and as a power beam dump. The target dissipates a peak power areal density of 2.5 kW/cm 2 and peak volume density of 0.5 MW/cm 3 with no change of temperature or vacuum regime in the vacuum chamber. Preliminary results of Maxwellian-averaged cross section measurements for stable isotopes of Zr and Ce, performed by activation in the neutron flux of LiLiT, and nuclear-astrophysics experiments in planning will be described. (author)

  13. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, Kevin G.; Trask, Stephen E.; Bauer, Christoph; Woehrle, Thomas; Lux, Simon; Tschech, Matthias; Polzin, Bryant J.; Ha, Seungbum; Long, Brandon R.; Wu, Qingliu; Lu, Wenquan; Dees, Dennis W.; Jansen, Andrew N.

    2016-01-01

    Increasing the areal capacity or electrode thickness in lithium ion batteries is one possible means to increase pack level energy density while simultaneously lowering cost. The physics that limit use of high areal capacity as a function of battery power to energy ratio are poorly understood and thus most currently produced automotive lithium ion cells utilize modest loadings to ensure long life over the vehicle battery operation. Here we show electrolyte transport limits the utilization of the positive electrode at critical C-rates during discharge; whereas, a combination of electrolyte transport and polarization lead to lithium plating in the graphite electrode during charge. Experimental measurements are compared with theoretical predictions based on concentrated solution and porous electrode theories. An analytical expression is derived to provide design criteria for long lived operation based on the physical properties of the electrode and electrolyte. Finally, a guideline is proposed that graphite cells should avoid charge current densities near or above 4 mA/cm2 unless additional precautions have been made to avoid deleterious side reaction.

  14. Gelled Electrolyte Containing Phosphonium Ionic Liquids for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Mélody Leclère

    2018-06-01

    Full Text Available In this work, new gelled electrolytes were prepared based on a mixture containing phosphonium ionic liquid (IL composed of trihexyl(tetradecylphosphonium cation combined with bis(trifluoromethanesulfonimide [TFSI] counter anions and lithium salt, confined in a host network made from an epoxy prepolymer and amine hardener. We have demonstrated that the addition of electrolyte plays a key role on the kinetics of polymerization but also on the final properties of epoxy networks, especially thermal, thermo-mechanical, transport, and electrochemical properties. Thus, polymer electrolytes with excellent thermal stability (>300 °C combined with good thermo-mechanical properties have been prepared. In addition, an ionic conductivity of 0.13 Ms·cm−1 at 100 °C was reached. Its electrochemical stability was 3.95 V vs. Li0/Li+ and the assembled cell consisting in Li|LiFePO4 exhibited stable cycle properties even after 30 cycles. These results highlight a promising gelled electrolyte for future lithium ion batteries.

  15. Liquid lithium applications for solving challenging fusion reactor issues and NSTX-U contributions

    Energy Technology Data Exchange (ETDEWEB)

    Ono, M., E-mail: mono@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Jaworski, M.A.; Kaita, R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Hirooka, Y. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Gray, T.K. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States)

    2017-04-15

    Steady-state fusion reactor operation presents major divertor technology challenges, including high divertor heat flux both steady-state and transients. In addition, there are unresolved issues of long term dust accumulation and associated tritium inventory and safety concerns (Federici et al., 2001) . It has been suggested that radiative liquid lithium divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues, while potentially improving reactor plasma performance (Ono et al., 2013, 2014) . The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium (LL) divertor (RLLD) concept (Ono et al., 2013) and its variant, the active liquid lithium divertor concept (ARLLD) (Ono et al., 2014) , taking advantage of the enhanced non-coronal Li radiation in relatively poorly confined divertor plasmas. It was estimated that only a few moles/s of lithium injection would be needed to significantly reduce the divertor heat flux in a tokamak fusion power plant. By operating at lower temperatures ≤450 °C than the first wall ∼600–700 °C, the LL-covered divertor chamber wall surfaces can serve as an effective particle pump, as impurities generally migrate toward lower temperature LL divertor surfaces. To maintain the LL purity, a closed LL loop system with a modest circulating capacity of ∼1 l/s (l/s) is envisioned to sustain the steady-state operation of a 1 GW-electric class fusion power plant. By running the Li loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to outside where the dust/impurities are removed by relatively simple filter and cold/hot trap systems. Using a

  16. Small scale lithium-lead/water-interaction studies

    International Nuclear Information System (INIS)

    Kranert, O.; Kottowski, H.

    1991-01-01

    One current concept in fusion blanket design is to utilize water as the coolant and liquid lithium-lead as the breeding/neutron multiplier material. Considering the complex design of the blanket module, it is likely that a water leakage into the liquid alloy may occur due to a tube rupture provoking an intolerable pressure increase in the blanket module. The pressure increase is caused by the combined chemical and thermohydraulic reaction of lithium-lead with water. Experiments which simulate such a transient event are necessary to obtain information which is important for the blanket module design. The interaction has been investigated by conducting small-scale experiments at various injection pressures, alloy- and coolant temperatures. Besides using eutectic Li 17 Pb 83 , Li 7 Pb 2 , lithium and lead have been used. Among other results, the experiments indicate increasing chemical reaction with increasing lithium concentration. At the same time, the chemical reaction inhibits violent thermohydaulic reactions due to the attenuating effect of the hydrogen produced. The preliminary epxerimental results from Li 17 Pb 83 and Li 7 Pb 2 reveal that the pressure- and temperature transients caused by the chemical and thermohydraulic reactions lie within technically manageable limits. (orig.)

  17. The impact of lithium wall coatings on NSTX discharges and the engineering of the Lithium Tokamak eXperiment (LTX)

    International Nuclear Information System (INIS)

    Majeski, R.; Kugel, H.; Kaita, R.; Avasarala, S.; Bell, M.G.; Bell, R.E.; Berzak, L.; Beiersdorfer, P.; Gerhardt, S.P.; Gransted, E.; Gray, T.; Jacobson, C.; Kallman, J.; Kaye, S.; Kozub, T.; LeBlanc, B.P.; Lepson, J.; Lundberg, D.P.; Maingi, R.; Mansfield, D.; Paul, S.F.; Pereverzev, G.V.; Schneider, H.; Soukhanovskii, V.; Strickler, T.; Stotler, D.; Timberlake, J.; Zakharov, L.E.

    2010-01-01

    Recent experiments on the National Spherical Torus eXperiment (NSTX) have shown the benefits of solid lithium coatings on carbon PFC's to diverted plasma performance, in both L- and H-mode confinement regimes. Better particle control, with decreased inductive flux consumption, and increased electron temperature, ion temperature, energy confinement time, and DD neutron rate were observed. Successive increases in lithium coverage resulted in the complete suppression of ELM activity in H-mode discharges. A liquid lithium divertor (LLD), which will employ the porous molybdenum surface developed for the LTX shell, is being installed on NSTX for the 2010 run period, and will provide comparisons between liquid walls in the Lithium Tokamak eXperiment (LTX) and liquid divertor targets in NSTX. LTX, which recently began operations at the Princeton Plasma Physics Laboratory, is the world's first confinement experiment with full liquid metal plasma-facing components (PFCs). All materials and construction techniques in LTX are compatible with liquid lithium. LTX employs an inner, heated, stainless steel-faced liner or shell, which will be lithium-coated. In order to ensure that lithium adheres to the shell, it is designed to operate at up to 500-600 degrees C to promote wetting of the stainless by the lithium, providing the first hot wall in a tokamak to Operate at reactor-relevant temperatures. The engineering of LTX will be discussed.

  18. Spectroscopic diagnostics for liquid lithium divertor studies on National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Soukhanovskii, V. A.; Roquemore, A. L.; Bell, R. E.; Kaita, R.; Kugel, H. W.

    2010-01-01

    The use of lithium-coated plasma facing components for plasma density control is studied in the National Spherical Torus Experiment (NSTX). A recently installed liquid lithium divertor (LLD) module has a porous molybdenum surface, separated by a stainless steel liner from a heated copper substrate. Lithium is deposited on the LLD from two evaporators. Two new spectroscopic diagnostics are installed to study the plasma surface interactions on the LLD: (1) A 20-element absolute extreme ultraviolet (AXUV) diode array with a 6 nm bandpass filter centered at 121.6 nm (the Lyman-α transition) for spatially resolved divertor recycling rate measurements in the highly reflective LLD environment, and (2) an ultraviolet-visible-near infrared R=0.67 m imaging Czerny-Turner spectrometer for spatially resolved divertor D I, Li I-II, C I-IV, Mo I, D 2 , LiD, CD emission and ion temperature on and around the LLD module. The use of photometrically calibrated measurements together with atomic physics factors enables studies of recycling and impurity particle fluxes as functions of LLD temperature, ion flux, and divertor geometry.

  19. Improvement in Plasma Performance with Lithium Coatings in NSTX

    International Nuclear Information System (INIS)

    Kaita, R.

    2009-01-01

    Lithium as a plasma-facing material has attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Dramatic effects on plasma performance with lithium-coated plasma-facing components (PFC's) have been demonstrated on many fusion devices, including TFTR, T-11M, and FT-U. Using a liquid-lithium-filled tray as a limiter, the CDX-U device achieved very significant enhancement in the confinement time of ohmically heated plasmas. The recent NSTX experiments reported here have demonstrated, for the first time, significant and recurring benefits of lithium PFC coatings on divertor plasma performance in both L- and H- mode regimes heated by neutral beams.

  20. Liquid metal magnetohydrodynamic flows in manifolds of dual coolant lead lithium blankets

    Energy Technology Data Exchange (ETDEWEB)

    Mistrangelo, C., E-mail: chiara.mistrangelo@kit.edu; Bühler, L.

    2014-10-15

    Highlights: • MHD flows in model geometries of DCLL blanket manifolds. • Study of velocity, pressure distributions and flow partitioning in parallel ducts. • Flow partitioning affected by 3D MHD pressure drop and velocity distribution in the expanding zone. • Reduced pressure drop in a continuous expansion compared to a sudden expansion. - Abstract: An attractive blanket concept for a fusion reactor is the dual coolant lead lithium (DCLL) blanket where reduced activation steel is used as structural material and a lead lithium alloy serves both to produce tritium and to remove the heat in the breeder zone. Helium is employed to cool the first wall and the blanket structure. Some critical issues for the feasibility of this blanket concept are related to complex induced electric currents and 3D magnetohydrodynamic (MHD) phenomena that occur in distributing and collecting liquid metal manifolds. They can result in large pressure drop and undesirable flow imbalance in parallel poloidal ducts forming blanket modules. In the present paper liquid metal MHD flows are studied for different design options of a DCLL blanket manifold with the aim of identifying possible sources of flow imbalance and to predict velocity and pressure distributions.

  1. Progress in design and development of series liquid lithium-lead expeirmental loops in China

    International Nuclear Information System (INIS)

    Wu Yican; Huang Qunying; Zhu Zhiqiang; Gao Sheng; Song Yong; Li Chunjing; Peng Lei; Liu Shaojun; Wu qingsheng; Liu Songlin; Chen Hongli; Bai Yunqing; Jin Ming; Lv Ruojun; Wang Weihua; Guo Zhihui; Chen Yaping; Ling Xinzhen; Zhang Maolian; Wang Yongliang; Wu Zhaoyang; Wang Hongyan

    2009-01-01

    Liquid LiPb (lithium-lead) experimental loops are the important platforms to investigate the key technologies of liquid LiPb breeder blankets for fusion reactors. Based on the development strategy for liquid LiPb breeder blankets, the technologies development of liquid LiPb experimental loops have been explored by the FDS Team for years, and a series of LiPb experimental loops named DRAGON have been designed and developed, which have independence intellectual property and multi-functional parameters. In this paper, the development route suggestion of Chinese LiPb experimental loops was elaborated, and some information for the senes experimental loops were introduced, such as the design principles, structural features, functions and related experimental researches, etc. (authors)

  2. Numerical analysis of high-speed liquid lithium free-surface flow

    International Nuclear Information System (INIS)

    Gordeev, Sergej; Heinzel, Volker; Stieglitz, Robert

    2012-01-01

    Highlights: ► The free surface behavior of a high speed lithium jet is investigated by means of a CFD LES analysis. ► The study is aiming to validate adequate LES technique. ► The Osaka University experiments with liquid lithium jet have been simulated. ► Four cases with jet flow velocities of 4, 9, 13 and 15 m/s are analyzed. ► Calculation results show a good qualitative and a quantitative agreement with the experimental data. - Abstract: The free-surface stability of the target of the International Fusion Material Irradiation Facility (IFMIF) is one of the crucial issues, since the spatio-temporal behavior of the free-surface determines the neutron flux to be generated. This article investigates the relation between the evolution of a wall boundary layer in a convergent nozzle and the free surface shape of a high speed lithium jet by means of a CFD LES analysis using the Osaka University experiments. The study is aiming to validate adequate LES technique to analyze the individual flow phenomena observed. Four cases with jet flow velocities of 4, 9, 13 and 15 m/s are analyzed. First analyses of calculation results show that the simulation exhibits a good qualitative and a quantitative agreement with the experimental data, which allows in the future a more realistic prediction of the IFMIF target behavior.

  3. Examination results on reaction of lithium

    International Nuclear Information System (INIS)

    Asada, Takashi

    2000-12-01

    Before the material corrosion tests in lithium, the reactions of lithium with air and ammonia that will be used for lithium cleaning were examined, and the results were as follows. 1. When lithium put into air, surface of lithium changes to black first but soon to white, and the white layer becomes gradually thick. The first black of lithium surface is nitride (Li 3 N) and it changes to white lithium hydroxide (LiOH) by reaction with water in air, and it grows. The growth rate of the lithium hydroxide is about 1/10 in the desiccator (humidity of about 10%) compare with in air. 2. When lithium put into nitrogen, surface of lithium changes to black, and soon changes to brown and cracks at surface. At the same time with this cracking, weight of lithium piece increases and nitridation progresses respectively rapidly. This nitridation completed during 1-2 days on lithium rod of 10 mm in diameter, and increase in weight stopped. 3. Lithium melts in liquid ammonia and its melting rate is about 2-3 hour to lithium of 1 g. The liquid ammonia after lithium melting showed dark brown. (author)

  4. Extraction of lanthanide elements and bismuth in molten lithium chloride-liquid bismuth-lithium alloy system

    International Nuclear Information System (INIS)

    Harada, Makoto; Adachi, Motonari; Kai, Yuichi; Koike, Kenichi

    1987-01-01

    The equilibrium distributions of neodymium and samarium between molten LiCl and liquid Bi-Li alloy were measured in a wide range of Li-mole fraction in the alloy phase, X Li . These lanthanide elements were extracted through redox reactions. In high X Li range, X Li > 0.03, the distributions of neodymium and bismuth in the salt phase increased markedly. The anomalous increase is attributed to the formation of the compound comprized of Nd, Li, Bi and oxygen in the salt phase. The reaction processes in samarium and neodymium were very fast and the extraction rates are controlled by the diffusion processes of the solutes and metallic lithium. (author)

  5. Properties and Structure of the LiCl-films on Lithium Anodes in Liquid Cathodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hennesø, Erik

    2016-01-01

    Lithium anodes passivated by LiCl layers in different types of liquid cathodes (catholytes) based on LiAlCl4 in SOCl2 or SO2 have been studied by means of impedance spectroscopy. The impedance spectra have been fitted with two equivalent circuits using a nonlinear least squares fit program...

  6. Improved Cyclability of Liquid Electrolyte Lithium/Sulfur Batteries by Optimizing Electrolyte/Sulfur Ratio

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2012-12-01

    Full Text Available A liquid electrolyte lithium/sulfur (Li/S cell is a liquid electrochemical system. In discharge, sulfur is first reduced to highly soluble Li2S8, which dissolves into the organic electrolyte and serves as the liquid cathode. In solution, lithium polysulfide (PS undergoes a series of complicated disproportionations, whose chemical equilibriums vary with the PS concentration and affect the cell’s performance. Since the PS concentration relates to a certain electrolyte/sulfur (E/S ratio, there is an optimized E/S ratio for the cyclability of each Li/S cell system. In this work, we study the optimized E/S ratio by measuring the cycling performance of Li/S cells, and propose an empirical method for determination of the optimized E/S ratio. By employing an electrolyte of 0.25 m LiSO3CF3-0.25 m LiNO3 dissolved in a 1:1 (wt:wt mixture of dimethyl ether (DME and 1,3-dioxolane (DOL in an optimized E/S ratio, we show that the Li/S cell with a cathode containing 72% sulfur and 2 mg cm−2 sulfur loading is able to retain a specific capacity of 780 mAh g−1 after 100 cycles at 0.5 mA cm−2 between 1.7 V and 2.8 V.

  7. Performance Projections For The Lithium Tokamak Experiment (LTX)

    International Nuclear Information System (INIS)

    Majeski, R.L.; Berzak, T.; Gray, R.; Kaita, T.; Kozub, F.; Levinton, D.P.; Lundberg, J.; Manickam, G.V.; Pereverzev, K.; Snieckus, V.; Soukhanovskii, J.; Spaleta, D.; Stotler, T.; Strickler, J.; Timberlake, J.; Zakharov, L.; Zakharov, Y.

    2009-01-01

    Use of a large-area liquid lithium limiter in the CDX-U tokamak produced the largest relative increase (an enhancement factor of 5-10) in Ohmic tokamak confinement ever observed. The confinement results from CDX-U do not agree with existing scaling laws, and cannot easily be projected to the new lithium tokamak experiment (LTX). Numerical simulations of CDX-U low recycling discharges have now been performed with the ASTRA-ESC code with a special reference transport model suitable for a diffusion-based confinement regime, incorporating boundary conditions for nonrecycling walls, with fueling via edge gas puffing. This model has been successful at reproducing the experimental values of the energy confinement (4-6 ms), loop voltage (<0.5 V), and density for a typical CDX-U lithium discharge. The same transport model has also been used to project the performance of the LTX, in Ohmic operation, or with modest neutral beam injection (NBI). NBI in LTX, with a low recycling wall of liquid lithium, is predicted to result in core electron and ion temperatures of 1-2 keV, and energy confinement times in excess of 50 ms. Finally, the unique design features of LTX are summarized

  8. Polarization behavior of lithium electrode in polymetric solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Yoshiharu (Dept. of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi Univ., Ube (Japan)); Morita, Masayuki (Dept. of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi Univ., Ube (Japan)); Tsutsumi, Hiromori (Dept. of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi Univ., Ube (Japan))

    1993-04-15

    Complexes of novel polymer matrices and lithium salts have been prepared as polymeric solid electrolytes for lithium batteries. Poly(ethylene oxide)-grafted poly(methylmethacrylate) (PEO-PMMA) and poly(methylsiloxane) (PMS) were used as the matrices. The conductance behavior of the complexes and the basic polarization characteristics of the lithium electrode in the polymeric electrolytes were studied. As high conductivities as 10[sup -3] S cm[sup -1] were obtained at room temperature for the PMMA-based electrolytes containing some liquid plasticizer. Limiting current densities of 3 to 5 mA cm[sup -2] were observed for the anodic and cathodic polarization of the lithium electrode. The transport number of Li[sup +] was approximately unity in 'single-ion type' PMS-based electrolyte, in which the polarization curve of the lithium electrode showed no current hysteresis. (orig.)

  9. Design, calculation and experimental studies for liquid metal system main parameters in support of the liquid lithium fusion reactor

    International Nuclear Information System (INIS)

    Evtikhin, V.A.; Lyublinski, I.E.; Vertkov, A.V.

    1999-01-01

    A new concept of a Liquid Lithium Fusion Reactor and the first experimental results were presented at the 16th IAEA Conference on Fusion Energy. During the past two years theoretical estimations have been made, and calculated and experimental results have been obtained in confirmation of this concept and supporting its progress. The main results of this work are given in the paper. (author)

  10. Design, calculation and experimental studies for liquid metal system main parameters in support of the liquid lithium fusion reactor

    International Nuclear Information System (INIS)

    Evtikhin, V.A.; Lyublinski, I.E.; Vertkov, A.V.

    2001-01-01

    A new concept of a Liquid Lithium Fusion Reactor and the first experimental results were presented at the 16th IAEA Conference on Fusion Energy. During the past two years theoretical estimations have been made, and calculated and experimental results have been obtained in confirmation of this concept and supporting its progress. The main results of this work are given in the paper. (author)

  11. Evidence of formation of lithium compounds on FTU tiles and dust

    Science.gov (United States)

    Ghezzi, F.; Laguardia, L.; Apicella, M. L.; Bressan, C.; Caniello, R.; Cippo, E. Perelli; Conti, C.; De Angeli, M.; Maddaluno, G.; Mazzitelli, G.

    2018-01-01

    Since 2006 lithium as an advanced plasma facing material has been tested on the Frascati Tokamak Upgrade (FTU). Lithium in the liquid phase acts both as plasma facing component, i.e. limiter, and plays also a role in plasma operation because by depositing a lithium film on the walls (lithization) oxygen is gettered. As in all deposition processes, even for the lithization, the presence of impurities in plasma phase strongly affects the properties of the deposited film. During the 2008 campaigns of FTU it was observed a strong release of carbon dioxide (during disruptions), resulting in successive serious difficulty of operation. In order to find the possible reactions occurred, we have analyzed the surface of two tiles of the toroidal limiter close to the Liquid Lithium Limiter (LLL). The presence of molybdenum oxides and carbides suggested that the surface temperatures could have exceeded 1000 K, likely during disruptions. lithium oxides and hydroxides have been found on the tiles and in the dust collected in the vessel, confirming the presence of LiO and LiOH and a not negligible concentration of Li2CO3 especially at the LLL location. On the basis of the above results, we propose here a simple rationale, based on a two reactions mechanism, which can explain the formation of Li2CO3 and its subsequent decomposition during disruption with release of CO2 in the vessel. Admitting surface temperatures above 1000 K during a disruption, relatively high partial pressures of CO2 are also predicted by the equilibrium constant for Li2CO3 decomposition.

  12. Module of lithium divertor for KTM tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lyublinski, I., E-mail: yublinski@yandex.ru [FSUE ' Red Star' , Moscow (Russian Federation); Vertkov, A.; Evtikhin, V.; Balakirev, V.; Ionov, D.; Zharkov, M. [FSUE ' Red Star' , Moscow (Russian Federation); Tazhibayeva, I. [IAE NNC RK, Kurchatov (Kazakhstan); Mirnov, S. [TRINITI, Troitsk, Moscow Region (Russian Federation); Khomiakov, S.; Mitin, D. [OJSC Dollezhal Institute, Moscow (Russian Federation); Mazzitelli, G. [ENEA RC Frascati (Italy); Agostini, P. [ENEA RC Brasimone (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Black-Right-Pointing-Pointer Capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. Black-Right-Pointing-Pointer Lithium divertor module for KTM tokamak is under development. Black-Right-Pointing-Pointer Lithium filled tungsten felt is offered as the base plasma facing material of divertor. Black-Right-Pointing-Pointer Results of this project addresses to the progress in the field of fusion neutrons source and fusion energy source creation. - Abstract: Activity on projects of ITER and DEMO reactors has shown that solution of problems of divertor target plates and other plasma facing elements (PFEs) based on the solid plasma facing materials cause serious difficulties. Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Application of lithium will allow to create a self-renewal and MHD stable liquid metal surface of the in-vessel devices possessing practically unlimited service life; to reduce power flux due to intensive re-irradiation on lithium atoms in plasma periphery that will essentially facilitate a problem of heat removal from PFE; to reduce Z{sub eff} of plasma to minimally possible level close to 1; to exclude tritium accumulation, that is provided with absence of dust products and an opportunity of the active control of the tritium contents in liquid lithium. Realization of these advantages is based on use of so-called lithium capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. The progress in development of lithium technology and also activity in lithium experiments in the tokamaks TFTR, T-11M, T-10, FTU, NSTX, HT-7 and stellarator TJ II permits of solving the problems in development of

  13. Diagnostics of high-speed liquid lithium jet for IFMIF/EVEDA lithium test loop

    International Nuclear Information System (INIS)

    Kanemura, Takuji; Kondo, Hiroo; Furukawa, Tomohiro; Sugiura, Hirokazu; Horiike, Hiroshi; Yamaoka, Nobuo; Ida, Mizuho; Nakamura, Kazuyuki; Matsushita, Izuru

    2011-01-01

    Regarding R and Ds on the International Fusion Materials Irradiation Facility (IFMIF), hydraulic stability of the liquid Li jet simulating the IFMIF Li target is planned to be validated using EVEDA Li Test Loop (ELTL). IFMIF is an accelerator-based deuteron-lithium (Li) neutron source for research and development of fusion reactor materials. The stable Li target is required in IFMIF to maintain the quality of the neutron fluence and integrity of the Li target itself. This paper presents diagnostics of the Li jet to be implemented in validation tests of the jet stability in ELTL, and those specifications and methodologies are introduced. In the tests, the following physical parameters need to be measured; thickness of the jet; surface structure (height, length/width and frequency of free-surface waves); local flow velocity at the free surface; and Li evaporation rate. With regard to measurement of jet thickness and the surface wave height, a contact-type liquid level sensor is to be used. As for measurement of wave velocity and visual understanding of detailed free-surface structure, a high-speed video camera is to be leveraged. With respect to Li evaporation measurement, weight change of specimens installed near the free surface and frequency change of a crystal quartz are utilized. (author)

  14. Towards quantification of toxicity of lithium ion battery electrolytes - development and validation of a liquid-liquid extraction GC-MS method for the determination of organic carbonates in cell culture materials.

    Science.gov (United States)

    Strehlau, Jenny; Weber, Till; Lürenbaum, Constantin; Bornhorst, Julia; Galla, Hans-Joachim; Schwerdtle, Tanja; Winter, Martin; Nowak, Sascha

    2017-10-01

    A novel method based on liquid-liquid extraction with subsequent gas chromatography separation and mass spectrometric detection (GC-MS) for the quantification of organic carbonates in cell culture materials is presented. Method parameters including the choice of extraction solvent, of extraction method and of extraction time were optimised and the method was validated. The setup allowed for determination within a linear range of more than two orders of magnitude. The limits of detection (LODs) were between 0.0002 and 0.002 mmol/L and the repeatability precisions were in the range of 1.5-12.9%. It could be shown that no matrix effects were present and recovery rates between 98 and 104% were achieved. The methodology was applied to cell culture models incubated with commercial lithium ion battery (LIB) electrolytes to gain more insight into the potential toxic effects of these compounds. The stability of the organic carbonates in cell culture medium after incubation was studied. In a porcine model of the blood-cerebrospinal fluid (CSF) barrier, it could be shown that a transfer of organic carbonates into the brain facing compartment took place. Graphical abstract Schematic setup for the investigation of toxicity of lithium ion battery electrolytes.

  15. The Thomson Scattering System on the Lithium Tokamak eXperiment (LTX)

    International Nuclear Information System (INIS)

    Strickler, T.; Majeski, R.; Kaita, R.; LeBlanc, B.

    2008-01-01

    The Lithium Tokamak eXperiment (LTX) is a spherical tokamak with R0 = 0.4m, a = 0.26m, BTF ∼ 3.4kG, IP ∼ 400kA, and pulse length ∼ 0.25s. The goal of LTX is to investigate tokamak plasmas that are almost entirely surrounded by a lithium-coated plasma-facing shell conformal to the last closed magnetic flux surface. Based on previous experimental results and simulation, it is expected that the low-recycling liquid lithium surfaces will result in higher temperatures at the plasma edge, flatter overall temperature profiles, centrally-peaked density profiles, and an increased confinement time. To test these predictions, the electron temperature and density profiles in LTX will be measured by a multi-point Thomson scattering system (TVTS). Initially, TS measurements will be made at up to 12 simultaneous points between the plasma center and plasma edge. Later, high resolution edge measurements will be deployed to study the lithium edge physics in greater detail. Technical challenges to implementing the TS system included limited 'line of sight' access to the plasma due to the plasma-facing shell and problems associated with the presence of liquid lithium.

  16. Overhauser effect in metallic lithium; Effet Overhauser dans le lithium metallique

    Energy Technology Data Exchange (ETDEWEB)

    Gueron, J.; Ryter, Ch. [Commissariat a l' energie atomique et aux energies alternatives - CEA, Centre d' Etudes Nucleaires de Saclay (France)

    1960-07-01

    The Overhauser effect has been observed: a) at ordinary temperatures, by measuring the increase in the nuclear resonance signal of Li{sup 7}; b) at the temperature of liquid helium, by observing the electron resonance shift due to the secular part of the electron-nucleus coupling. The metallic lithium particles are produced by irradiating lithium hydride with thermal neutrons. Reprint of a paper published in Physical Review Letters, vol. 3, no. 7, 1959, p. 338-340 [French] L'effet Overhauser est mis en evidence: a) a la temperature ordinaire, en mesurant l'augmentation du signal de resonance nucleaire du Li{sup 7}; b) a la temperature de l'helium liquide, en observant le deplacement de la raie de resonance electronique du a la partie seculaire du couplage electron-noyau. Les particules de lithium metallique sont produites par irradiations aux neutrons thermiques de l'hydrure de lithium Li{sup 7}. Reproduction d'un article publie dans Physical Review Letters, vol. 3, no. 7, 1959, p. 338-340.

  17. Vapor-liquid equilibria of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems

    Energy Technology Data Exchange (ETDEWEB)

    Mun, S Y; Lee, H

    1999-12-01

    Vapor-liquid equilibrium data of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems were measured at 60, 160, 300, and 760 mmHg at temperatures ranging from 315 to 488 K. The apparatus used in this work is a modified still especially designed for the measurement of low-pressure VLE, in which both liquid and vapor are continuously recirculated. For the analysis of salt-containing solutions, a method incorporating refractometry and gravimetry was used. From the experimental measurements, the effect of lithium bromide on the VLE behavior of water + 1,3-propanediol was investigated. The experimental data of the salt-free system were successfully correlated using the Wilson, NRTL, and UNIQUAC models. In addition, the extended UNIQUAC model of Sander et al. was applied to the VLE calculation of salt-containing mixtures.

  18. Heteroaromatic-based electrolytes for lithium and lithium-ion batteries

    Science.gov (United States)

    Cheng, Gang; Abraham, Daniel P.

    2017-04-18

    The present invention provides an electrolyte for lithium and/or lithium-ion batteries comprising a lithium salt in a liquid carrier comprising heteroaromatic compound including a five-membered or six-membered heteroaromatic ring moiety selected from the group consisting of a furan, a pyrazine, a triazine, a pyrrole, and a thiophene, the heteroaromatic ring moiety bearing least one carboxylic ester or carboxylic anhydride substituent bound to at least one carbon atom of the heteroaromatic ring. Preferred heteroaromatic ring moieties include pyridine compounds, pyrazine compounds, pyrrole compounds, furan compounds, and thiophene compounds.

  19. Scientific opportunities at SARAF with a liquid lithium jet target neutron source

    Science.gov (United States)

    Silverman, Ido; Arenshtam, Alex; Berkovits, Dan; Eliyahu, Ilan; Gavish, Inbal; Grin, Asher; Halfon, Shlomi; Hass, Michael; Hirsh, T. Y.; Kaizer, Boaz; Kijel, Daniel; Kreisel, Arik; Mardor, Israel; Mishnayot, Yonatan; Palchan, Tala; Perry, Amichay; Paul, Michael; Ron, Guy; Shimel, Guy; Shor, Asher; Tamim, Noam; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo

    2018-05-01

    SARAF (Soreq Applied Research Accelerator Facility) is based on a 5 mA, 40 MeV, proton/deuteron accelerator. Phase-I, operational since 2010, provides proton and deuteron beams up to 4 and 5 MeV, respectively, for basic and applied research activities. The high power Liquid-Lithium jet Target (LiLiT), with 1.912 MeV proton beam, provides high flux quasi-Maxwellian neutrons at kT 30 keV (about 2 × 1010 n/s/cm2/mA on the irradiated sample, about 1 cm from the target), enabling studies of s-process reactions relevant to nucleo-synthesis of the heavy elements in giant AGB stars. With higher energy proton beams and with deuterons, LiLiT can provide higher fluxes of high energy neutrons up to 20 MeV. The experimental program with SARAF phase-I will be enhanced shortly with a new target room complex which is under construction. Finally, SARAF phase-II, planned to start operation at 2023, will enable full capabilities with proton/ deuteron beams at 5 mA and 40 MeV. Liquid lithium targets will then be used to produce neutron sources with intensities of 1015 n/s, which after thermalization will provide thermal neutron (25 meV) fluxes of about 1012 n/s/cm2 at the entrance to neutron beam lines to diffraction and radiography stations.

  20. Lithium capillary porous system behavior as PFM in FTU Tokamak experiments

    International Nuclear Information System (INIS)

    Apichela, M.L.; Mazzitelli, G.; Lyublinski, I.E.; Lazarev, V.; Mirnov, S.; Vertkov, A.

    2007-01-01

    Full text of publication follows: Liquid lithium use on the base of capillary porous systems (CPS) application as plasma facing material (PFM) of tokamaks is advanced way to solve the problems of plasma contamination with high Z impurity, PFM degradation and tritium retention. In frame of joint program between ENEA (Italy) and FSUE 'Red Star' and TRINITI (RF) started at the end of 2005 die test of liquid lithium limiter (LLL) with CPS in a high field, medium size, carbon free tokamak FTU have been performed successfully. The LLL has been inserted in ohmic plasma discharges and at additional heating with LH and ECR at power levels in the MW range without any particular problem (BT = 6 T, Ip = 0.5- 0.9 MA, n e = 0.2 -2.6x10 20 m -3 , t = 1.5 s, P∼ 2-5 MW/m 2 at a normal discharge). The behavior of lithium CPS based on stainless steel wire mesh and its surface modification in normal discharges and at disruptions has been studied. Results of microscopic analyses of CPS structure after experimental campaigns are presented. The possibility to withstand heat load exceeding 5 MW/m 2 without damage, lithium surface renewal, mechanical stabilization of liquid lithium against MHD forces have been confirmed. Application of W, Mo as the base material and possible structure types of CPS have been considered for operating parameters improvement of long-living plasma facing components. (authors)

  1. Corrosion behavior of materials selected for FMIT lithium system

    International Nuclear Information System (INIS)

    Bazinet, G.D.; Down, M.G.; Matlock, D.K.

    1983-01-01

    The corrosion program consisted of a multi-disciplinary approach utilizing the liquid lithium test resources and capabilities of several laboratories. Specific concerns associated with the overall objective of materials corrosion behavior were evaluated at each laboratory. Testing conditions included: approx. 3700 hours of exposure to flowing lithium at temperatures from 230 0 C to 270 0 C and approx. 6500 hours of exposure to flowing lithium at an isothermal temperature of 270 0 C. Principal areas of investigation, to be discussed here briefly, included lithium corrosion effects on the following: (1) types 304 and 304L austenitic stainless steels, which are specified as reference materials for the FMIT lithium system; (2) type 304 stainless steel weldments (w/type 308 stainless steel filler) typical of specified tube and butt welds in the lithium system design; (3) titanium, zirconium and yttrium, which represent potential hot trap getter materials; (4) BNi4 braze alloy, used as a potential attachement method in the plug/seat fabrication of liquid lithium valves; and (5) type 321 stainless steel bellows, typical of bellows used in potential liquid lithium valve designs

  2. Compositional depth profiles of the type 316 stainless steel undergone the corrosion in liquid lithium using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Li, Ying; Ke, Chuan; Liu, Xiang; Gou, Fujun; Duan, Xuru; Zhao, Yong

    2017-12-01

    Liquid metal lithium cause severe corrosion on the surface of metal structure material that used in the blanket and first wall of fusion device. Fast and accurate compositional depth profile measurement for the boundary layer of the corroded specimen will reveal the clues for the understanding and evaluation of the liquid lithium corrosion process as well as the involved corrosion mechanism. In this work, the feasibility of laser-induced breakdown spectroscopy for the compositional depth profile analysis of type 316 stainless steel which was corroded by liquid lithium in certain conditions was demonstrated. High sensitivity of LIBS was revealed especially for the corrosion medium Li in addition to the matrix elements of Fe, Cr, Ni and Mn by the spectral analysis of the plasma emission. Compositional depth profile analysis for the concerned elements which related to corrosion was carried out on the surface of the corroded specimen. Based on the verified local thermodynamic equilibrium shot-by-shot along the depth profile, the matrix effect was evaluated as negligible by the extracted physical parameter of the plasmas generated by each laser pulse in the longitudinal depth profile. In addition, the emission line intensity ratios were introduced to further reduce the impact on the emission line intensity variations arise from the strong inhomogeneities on the corroded surface. Compositional depth profiles for the matrix elements of Fe, Cr, Ni, Mn and the corrosion medium Li were constructed with their measured relative emission line intensities. The distribution and correlations of the concerned elements in depth profile may indicate the clues to the complicated process of composition diffusion and mass transfer. The results obtained demonstrate the potentiality of LIBS as an effective technique to perform spectrochemical measurement in the research fields of liquid metal lithium corrosion.

  3. Method of producing spherical lithium aluminate particles

    International Nuclear Information System (INIS)

    Yang, L.; Medico, R.R.; Baugh, W.A.

    1983-01-01

    Spherical particles of lithium aluminate are formed by initially producing aluminium hydroxide spheroids, and immersing the spheroids in a lithium ion-containing solution to infuse lithium ions into the spheroids. The lithium-infused spheroids are rinsed to remove excess lithium ion from the surface, and the rinsed spheroids are soaked for a period of time in a liquid medium, dried and sintered to form lithium aluminate spherical particles. (author)

  4. Lithium bis(fluorosulfonyl)imide-PYR14TFSI ionic liquid electrolyte compatible with graphite

    Czech Academy of Sciences Publication Activity Database

    Nádherná, Martina; Reiter, Jakub; Moškon, J.; Dominko, R.

    2011-01-01

    Roč. 196, č. 18 (2011), s. 7700-7706 ISSN 0378-7753 R&D Projects: GA AV ČR(CZ) KJB200320801; GA AV ČR KJB200320901; GA MŠk(CZ) LC523 Institutional research plan: CEZ:AV0Z40320502 Keywords : Graphite * Ionic liquid * Bis(fluorosulfonyl)imide * Lithium -ion battery * Solid electrolyte interface Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 4.951, year: 2011

  5. Cation effect on small phosphonium based ionic liquid electrolytes with high concentrations of lithium salt

    Science.gov (United States)

    Chen, Fangfang; Kerr, Robert; Forsyth, Maria

    2018-05-01

    Ionic liquid electrolytes with high alkali salt concentrations have displayed some excellent electrochemical properties, thus opening up the field for further improvements to liquid electrolytes for lithium or sodium batteries. Fundamental computational investigations into these high concentration systems are required in order to gain a better understanding of these systems, yet they remain lacking. Small phosphonium-based ionic liquids with high concentrations of alkali metal ions have recently shown many promising results in experimental studies, thereby prompting us to conduct further theoretical exploration of these materials. Here, we conducted a molecular dynamics simulation on four small phosphonium-based ionic liquids with 50 mol. % LiFSI salt, focusing on the effect of cation structure on local structuring and ion diffusional and rotational dynamics—which are closely related to the electrochemical properties of these materials.

  6. Ionic diffusion and salt dissociation conditions of lithium liquid crystal electrolytes.

    Science.gov (United States)

    Saito, Yuria; Hirai, Kenichi; Murata, Shuuhei; Kishii, Yutaka; Kii, Keisuke; Yoshio, Masafumi; Kato, Takashi

    2005-06-16

    Salt dissociation conditions and dynamic properties of ionic species in liquid crystal electrolytes of lithium were investigated by a combination of NMR spectra and diffusion coefficient estimations using the pulsed gradient spin-echo NMR techniques. Activation energies of diffusion (Ea) of ionic species changed with the phase transition of the electrolyte. That is, Ea of the nematic phase was lower than that of the isotropic phase. This indicates that the aligned liquid crystal molecules prepared efficient conduction pathways for migration of ionic species. The dissociation degree of the salt was lower compared with those of the conventional electrolyte solutions and polymer gel electrolytes. This is attributed to the low concentration of polar sites, which attract the dissolved salt and promote salt dissociation, on the liquid crystal molecules. Furthermore, motional restriction of the molecules due to high viscosity and molecular oriented configuration in the nematic phase caused inefficient attraction of the sites for the salt. With a decreased dissolved salt concentration of the liquid crystal electrolyte, salt dissociation proceeded, and two diffusion components attributed to the ion and ion pair were detected independently. This means that the exchange rate between the ion and the ion pair is fairly slow once the salt is dissociated in the liquid crystal electrolytes due to the low motility of the medium molecules that initiate salt dissociation.

  7. Experiments on 18-8 stainless steels exposed to liquid lithium. I. 1,100-hour corrosion tests in lithium of 400, 500 and 6000C in natural circulation type testing apparatus

    International Nuclear Information System (INIS)

    Nihei, I.; Sumiya, I.; Fukaya, Y.; Yamazaki, Y.

    The Japan Atomic Energy Research Institute has planned and started to carry out a series of experiments concerning fusion reactor materials. This report gives the results of the first experiments. The first test materials selected were 18-8 stainless steels, and the experiments were designed to test their behavior when exposed to liquid lithium. Natural circulation type corrosion testing devices (pots) were used as the testing apparatus, and the tests were conducted with lithium temperatures up to 600 0 C

  8. Lithium-modulated conduction band edge shifts and charge-transfer dynamics in dye-sensitized solar cells based on a dicyanamide ionic liquid.

    Science.gov (United States)

    Bai, Yu; Zhang, Jing; Wang, Yinghui; Zhang, Min; Wang, Peng

    2011-04-19

    Lithium ions are known for their potent function in modulating the energy alignment at the oxide semiconductor/dye/electrolyte interface in dye-sensitized solar cells (DSCs), offering the opportunity to control the associated multichannel charge-transfer dynamics. Herein, by optimizing the lithium iodide content in 1-ethyl-3-methylimidazolium dicyanamide-based ionic liquid electrolytes, we present a solvent-free DSC displaying an impressive 8.4% efficiency at 100 mW cm(-2) AM1.5G conditions. We further scrutinize the origins of evident impacts of lithium ions upon current density-voltage characteristics as well as photocurrent action spectra of DSCs based thereon. It is found that, along with a gradual increase of the lithium content in ionic liquid electrolytes, a consecutive diminishment of the open-circuit photovoltage arises, primarily owing to a noticeable downward movement of the titania conduction band edge. The conduction band edge displacement away from vacuum also assists the formation of a more favorable energy offset at the titania/dye interface, and thereby leads to a faster electron injection rate and a higher exciton dissociation yield as implied by transient emission measurements. We also notice that the adverse influence of the titania conduction band edge downward shift arising from lithium addition upon photovoltage is partly compensated by a concomitant suppression of the triiodide involving interfacial charge recombination. © 2011 American Chemical Society

  9. Particle control and plasma performance in the Lithium Tokamak eXperiment

    Energy Technology Data Exchange (ETDEWEB)

    Majeski, R.; Abrams, T.; Boyle, D.; Granstedt, E.; Hare, J.; Jacobson, C. M.; Kaita, R.; Kozub, T.; LeBlanc, B.; Lundberg, D. P.; Lucia, M.; Merino, E.; Schmitt, J.; Stotler, D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Biewer, T. M.; Canik, J. M.; Gray, T. K.; Maingi, R.; McLean, A. G. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kubota, S. [University of California at Los Angeles, Los Angeles, California 90095 (United States); and others

    2013-05-15

    The Lithium Tokamak eXperiment is a small, low aspect ratio tokamak [Majeski et al., Nucl. Fusion 49, 055014 (2009)], which is fitted with a stainless steel-clad copper liner, conformal to the last closed flux surface. The liner can be heated to 350 °C. Several gas fueling systems, including supersonic gas injection and molecular cluster injection, have been studied and produce fueling efficiencies up to 35%. Discharges are strongly affected by wall conditioning. Discharges without lithium wall coatings are limited to plasma currents of order 10 kA, and discharge durations of order 5 ms. With solid lithium coatings discharge currents exceed 70 kA, and discharge durations exceed 30 ms. Heating the lithium wall coating, however, results in a prompt degradation of the discharge, at the melting point of lithium. These results suggest that the simplest approach to implementing liquid lithium walls in a tokamak—thin, evaporated, liquefied coatings of lithium—does not produce an adequately clean surface.

  10. Corrosion behavior of materials selected for FMIT lithium system

    Energy Technology Data Exchange (ETDEWEB)

    Bazinet, G.D.; Down, M.G.; Matlock, D.K.

    1983-01-01

    The corrosion program consisted of a multi-disciplinary approach utilizing the liquid lithium test resources and capabilities of several laboratories. Specific concerns associated with the overall objective of materials corrosion behavior were evaluated at each laboratory. Testing conditions included: approx. 3700 hours of exposure to flowing lithium at temperatures from 230/sup 0/C to 270/sup 0/C and approx. 6500 hours of exposure to flowing lithium at an isothermal temperature of 270/sup 0/C. Principal areas of investigation, to be discussed here briefly, included lithium corrosion effects on the following: (1) types 304 and 304L austenitic stainless steels, which are specified as reference materials for the FMIT lithium system; (2) type 304 stainless steel weldments (w/type 308 stainless steel filler) typical of specified tube and butt welds in the lithium system design; (3) titanium, zirconium and yttrium, which represent potential hot trap getter materials; (4) BNi4 braze alloy, used as a potential attachement method in the plug/seat fabrication of liquid lithium valves; and (5) type 321 stainless steel bellows, typical of bellows used in potential liquid lithium valve designs.

  11. Green and efficient extraction strategy to lithium isotope separation with double ionic liquids as the medium and ionic associated agent

    International Nuclear Information System (INIS)

    Xu Jingjing; Li Zaijun; Gu Zhiguo; Wang Guangli; Liu Junkang

    2013-01-01

    The paper reported a green and efficient extraction strategy to lithium isotope separation. A 4-methyl-10-hydroxybenzoquinoline (ROH), hydrophobic ionic liquid-1,3-di(isooctyl)imidazolium hexafluorophosphate ([D(i-C 8 )IM][PF 6 ]), and hydrophilic ionic liquid-1-butyl-3-methylimidazolium chloride (ILCl) were used as the chelating agent, extraction medium and ionic associated agent. Lithium ion (Li + ) first reacted with ROH in strong alkali solution to produce a lithium complex anion. It then associated with IL + to form the Li(RO) 2 IL complex, which was rapidly extracted into the organic phase. Factors for effect on the lithium isotope separation were examined. To obtain high extraction efficiency, a saturated ROH in the [D(i-C 8 )IM][PF 6 ] (0.3 mol l -1 ), mixed aqueous solution containing 0.3 mol l -1 lithium chloride, 1.6 mol l -1 sodium hydroxide and 0.8 mol l -1 ILCl and 3:1 were selected as the organic phase, aqueous phase and phase ratio (o/a). Under optimized conditions, the single-stage extraction efficiency was found to be 52 %. The saturated lithium concentration in the organic phase was up to 0.15 mol l -1 . The free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS) of the extraction process were -0.097 J mol -1 , -14.70 J mol K -1 and -48.17 J mol -1 K -1 , indicating a exothermic process. The partition coefficients of lithium will enhance with decrease of the temperature. Thus, a 25 deg C of operating temperature was employed for total lithium isotope separation process. Lithium in Li(RO) 2 IL was stripped by the sodium chloride of 5 mol l -1 with a phase ratio (o/a) of 4. The lithium isotope exchange reaction in the interface between organic phase and aqueous phase reached the equilibrium within 1 min. The single-stage isotope separation factor of 7 Li- 6 Li was up to 1.023 ± 0.002, indicating that 7 Li was concentrated in organic phase and 6 Li was concentrated in aqueous phase. All chemical reagents used can be well recycled

  12. Preliminary assessment of interactions between the FMIT deuteron beam and liquid-lithium target

    International Nuclear Information System (INIS)

    Hassberger, J.A.

    1983-03-01

    Scoping calculations were performed to assess the limit of response of the FMIT lithium target to the deuteron-beam interactions. Results indicate that most response modes have acceptably minor impacts on the lithium-target behavior. Individual modes of response were studied separately to assess sensitivity of the target to various phenomena and to identify those needing detailed evaluation. A few responses are of sufficient magnitude to warrant further investigation. Potential for several different responses combining additively is identified as the major area requiring further consideration

  13. Effect of lithium salts addition on the ionic liquid based extraction of essential oil from Farfarae Flos.

    Science.gov (United States)

    Li, Zhen-Yu; Zhang, Sha-Sha; Jie-Xing; Qin, Xue-Mei

    2015-01-01

    In this study, an ionic liquids (ILs) based extraction approach has been successfully applied to the extraction of essential oil from Farfarae Flos, and the effect of lithium chloride was also investigated. The results indicated that the oil yields can be increased by the ILs, and the extraction time can be reduced significantly (from 4h to 2h), compared with the conventional water distillation. The addition of lithium chloride showed different effect according to the structures of ILs, and the oil yields may be related with the structure of cation, while the chemical compositions of essential oil may be related with the anion. The reduction of extraction time and remarkable higher efficiency (5.41-62.17% improved) by combination of lithium salt and proper ILs supports the suitability of the proposed approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Liquid gallium jet as a limiter in tokamak: design of the stand

    International Nuclear Information System (INIS)

    Lielausis, O.; Platacis, E.; Klukins, A.

    2005-01-01

    Full text: Plasma facing surfaces should be considered as the most loaded components of the proposed fusion devices. Load densities (up to 1 GW/m 2 ) would result in unacceptably high levels of thermal stresses and erosion. Solutions have been proposed when plasma is contacting not a solid material but a liquid metal in permanent motion. Usually, because of its low Z-number, lithium is considered as the most compatible with plasma. In the given research gallium is used - an essentially more convenient in practice material, outstanding by its low saturated vapor pressure. On tokamak ISTTOK (Portugal, R=0.46m; a=0.085m; B T =0.45 T; I p =8 kA) it is proposed to replace the existing metallic limiter by a liquid gallium jet. The jet forming nozzle is connected with the constant pressure vessel (at the level 1.3 m) by a 1/4 '' SS tube. For an exact determination of the jets length on the level 0.7 m an electrically controlled flow interrupting valve is installed. The metal is brought up into the pressure vessel by an e.m. pump on permanent magnets. The loop is designed in such a way that the liquid metal remains properly insulated both from the plasma vessel walls as well as from the plasma potential

  15. Molecular beam epitaxy growth of niobium oxides by solid/liquid state oxygen source and lithium assisted metal-halide chemistry

    Science.gov (United States)

    Tellekamp, M. Brooks; Greenlee, Jordan D.; Shank, Joshua C.; Doolittle, W. Alan

    2015-09-01

    In order to consistently grow high quality niobium oxides and lithium niobium oxides, a novel solid/liquid state oxygen source, LiClO4, has been implemented in a molecular beam epitaxy (MBE) system. LiClO4 is shown to decompose into both molecular and atomic oxygen upon heating. This allows oxidation rates similar to that of molecular oxygen but at a reduced overall beam flux, quantified by in situ Auger analysis. LiClO4 operation is decomposition limited to less than 400 °C, and other material limitations are identified. The design of a custom near-ambient NbCl5 effusion cell is presented, which improves both short and long term stability. Films of Nb oxidation state +2, +3, and +5 are grown using these new tools, including the multi-functional sub-oxide LiNbO2.

  16. Lithium conducting ionic liquids based on lithium borate salts

    Energy Technology Data Exchange (ETDEWEB)

    Zygadlo-Monikowska, E.; Florjanczyk, Z.; Sluzewska, K.; Ostrowska, J.; Langwald, N.; Tomaszewska, A. [Warsaw University of Technology, Faculty of Chemistry, ul. Noakowskiego 3, 00-664 Warsaw (Poland)

    2010-09-15

    The simple reaction of trialkoxyborates with butyllithium resulted in the obtaining of new lithium borate salts: Li{l_brace}[CH{sub 3}(OCH{sub 2}CH{sub 2}){sub n}O]{sub 3}BC{sub 4}H{sub 9}{r_brace}, containing oxyethylene substituents (EO) of n=1, 2, 3 and 7. Salts of n {>=} 2 show properties of room temperature ionic liquid (RTIL) of low glass transition temperature, T{sub g} of the order from -70 to -80 C. The ionic conductivity of the salts depends on the number of EO units, the highest conductivity is shown by the salt with n = 3; in bulk its ambient temperature conductivity is 2 x 10{sup -5} S cm{sup -1} and in solution in cyclic propylene sulfite or EC/PC mixture, conductivity increases by an order of magnitude. Solid polymer electrolytes with borate salts over a wide concentration range, from 10 to 90 mol.% were obtained and characterized. Three types of polymeric matrices: poly(ethylene oxide) (PEO), poly(trimethylene carbonate) (PTMC) and two copolymers of acrylonitrile and butyl acrylate p(AN-BuA) were used in them as polymer matrices. It has been found that for systems of low salt concentration (10 mol.%) the best conducting properties were shown by solid polymer electrolytes with PEO, whereas for systems of high salt concentration, of the polymer-in-salt type, good results were achieved for PTMC as polymer matrix. (author)

  17. Design Constraints for Liquid-Protected Divertors

    International Nuclear Information System (INIS)

    Shin, S.; Abdel-Khalik, S.I.; Yoda, M.

    2005-01-01

    Recent work on liquid-surface-protected plasma facing components has resulted in the establishment of operating windows for candidate liquids, as well as limits on the maximum allowable liquid surface temperature in order to limit plasma impurities from liquid evaporation. In this study, an additional constraint on the maximum allowable surface temperature gradient (i.e., heat flux gradient) has been quantified. Spatial variations in the wall and liquid surface temperatures are expected due to variations in the incident radiation and particle fluxes. Thermocapillary forces created by such temperature gradients can lead to film rupture and dry spot formation in regions of elevated local temperatures. Here, attention has been focused on ''non-flowing'' thin liquid films similar to those formed on the surface of porous wettedwall components. Future analyses will include the effects of macroscopic fluid motion, and MHD forces.A numerical model using the level contour reconstruction method was used to follow the evolution of the liquid free surface above a non-isothermal solid surface. The model was used to develop generalized charts for the maximum allowable spatial temperature gradients (i.e., the critical Marangoni number) as a function of the governing non-dimensional variables, viz. the Weber, Froude, and Prandtl numbers, and aspect ratio. Attention was focused on the asymptotic limit for thin liquid films (i.e., low aspect ratio) which provides a lower bound for the maximum allowable temperature gradients. Specific examples for lithium, Flibe, lithium-lead, tin, and gallium are presented. The generalized charts developed in this investigation will allow reactor designers to identify design windows for successful operation of liquid-protected plasma facing components for various coolants, film thicknesses, and operating conditions

  18. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X.; Boudin, F. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  19. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X; Boudin, F [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1997-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  20. General directions and recently test modelling results of lithium capillary-pore systems as plasma facing components for tokamak-reactor

    International Nuclear Information System (INIS)

    Evtikhin, V.A.; Lyublinski, I.E.; Vertkov, A.V.; Azizov, E.A.; Mirnov, S.V.; Lazaret, V.B.; Safronov, V.M.

    2003-01-01

    Full text: At present the most promising principal solution of the divertor problem appears to be the use of liquid metals and primarily of lithium Capillary-Pore Systems (CPS) as of plasma facing material. A solid CPS filled with liquid lithium will have high resistance to surface and volume damage because of neutron radiation effects, melting, splashing and thermal stress induced cracking in steady state and during plasma transitions (disruptions, ELMs, VDEs, runaways) to provide the normal operation of divertor target plates and first wall protection elements. These materials would not be the sources of impurities inducing the raise of Z eff and they will not be collected as dust in the divertor area and in ducts. The key directions of experimental investigation of lithium CPS behaviour in first wall and divertor operation simulating conditions are considered. Experiments with lithium CPS in plasma disruption simulation conditions on the hydrogen plasma accelerator MK-200UG (∼10-15 MJ/m 2 , ∼50 μs) have been performed. Shielding lithium plasma layer formation and high stability of these systems have been shown. The new lithium limiter with a thermal regulation system tests on up graded T-11M tokamak (plasma current up to 100 kA, pulse length ∼0.3 s) have been performed. Sorption and desorption of plasma-forming gas, lithium emission into discharge, lithium erosion, limiter deposited power are investigated in this tests

  1. Facile preparation of polymer electrolytes based on the polymerized ionic liquid poly((4-vinylbenzyl)trimethylammonium bis(trifluoromethanesulfonylimide)) for lithium secondary batteries

    International Nuclear Information System (INIS)

    Li, Mingtao; Wang, Lu; Yang, Bolun; Du, Tingting; Zhang, Ying

    2014-01-01

    Graphical abstract: (A) The main components of PIL electrolytes, (B) A PIL electrolyte sample. - Highlights: • A new polymer electrolyte incorporating a DEME-TFSI liquid is prepared. • The ionic conductivity of the electrolytes reaches 7.58 × 10 −4 S cm −1 at 60 °C. • Batteries discharge 130 mAh g −1 at 0.1 C rates with good capacity retention. - Abstract: The polymer electrolytes based on a novel poly((4-vinylbenzyl)trimethylammonium bis(trifluoromethanesulfonylimide)) polymeric ionic liquid (PIL) as polymer host and containing DEME-TFSI ionic liquid, LiTFSI salt and nano silica are prepared. The polymer electrolyte is chemically stable even at a higher temperature of 60 °C in contact with lithium anode. Particularly, the electrolyte exhibits high lithium ion conductivity, wide electrochemical stability window and good lithium stripping/plating performance. When the IL content reaches 60% (the weight ratio of DEME-TFSI/PIL), the PIL electrolyte presents a higher ionic conductivity, and it is 7.58 × 10 −4 S cm −1 at 60 °C. Preliminary battery tests show that Li/LiFePO 4 cells with the PIL electrolytes are capable to deliver above 130 mAh g −1 at 60 °C with very good capacity retention

  2. Lithium-system corrosion/erosion studies for the FMIT project

    Energy Technology Data Exchange (ETDEWEB)

    Bazinet, G D [comp.

    1983-04-01

    The corrosion behavior of selected materials in a liquid lithium environment has been studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. The liquid lithium test resources and the capabilities of several laboratories were used to study specific concerns associated with the overall objective. Testing conditions ranged from approx. 3700 hours to approx. 6500 hours of exposure to flowing lithium at temperatures from 230/sup 0/C to 270/sup 0/C and static lithium at temperatures from 200/sup 0/C to 500/sup 0/C. Principal areas of investigation included lithium corrosion/erosion effects of FMIT lithium system materials (largely Type 304 and Type 304L austenitic stainless steels) and candidate materials for major system components.

  3. Lithium-system corrosion/erosion studies for the FMIT project

    International Nuclear Information System (INIS)

    Bazinet, G.D.

    1983-04-01

    The corrosion behavior of selected materials in a liquid lithium environment has been studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. The liquid lithium test resources and the capabilities of several laboratories were used to study specific concerns associated with the overall objective. Testing conditions ranged from approx. 3700 hours to approx. 6500 hours of exposure to flowing lithium at temperatures from 230 0 C to 270 0 C and static lithium at temperatures from 200 0 C to 500 0 C. Principal areas of investigation included lithium corrosion/erosion effects of FMIT lithium system materials (largely Type 304 and Type 304L austenitic stainless steels) and candidate materials for major system components

  4. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M

    2015-12-01

    A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Corrosion resistance investigation of vanadium alloys in liquid lithium

    Energy Technology Data Exchange (ETDEWEB)

    Borovitskaya, I. V., E-mail: symp@imet.ac.ru [Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation); Lyublinskiy, I. E. [JSC Red Star (Russian Federation); Bondarenko, G. G. [National Research University Higher School of Economics (Russian Federation); Paramonova, V. V. [Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation); Korshunov, S. N.; Mansurova, A. N. [National Research Center Kurchatov Institute (Russian Federation); Lyakhovitskiy, M. M. [Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation); Zharkov, M. Yu. [JSC Red Star (Russian Federation)

    2016-12-15

    A major concern in using vanadium alloys for first wall/blanket systems in fusion reactors is their activity with regard to nonmetallic impurities in the coolants. This paper presents the results of studying the corrosion resistance in high-purity liquid lithium (with the nitrogen and carbon content of less than 10{sup –3} wt %) of vanadium and vanadium alloys (V–1.86Ga, V–3.4Ga–0.62Si, V–4.81Ti–4.82Cr) both in the initial state and preliminarily irradiated with Ar+ ions with energy of 20 keV to a dose of 10{sup 22} m{sup –2} at an irradiation temperature of ~400°C. The degree of corrosion was estimated by measuring the changes in the weight and microhardness. Corrosion tests were carried out under static isothermal conditions at a temperature of 600°C for 400 h. The identity of corrosion mechanisms of materials both irradiated with Ar ions and not irradiated, which consisted in an insignificant penetration of nitrogen into the materials and a substantial escape of oxygen from the materials, causing the formation of a zone with a reduced microhardness near the surface, was established. The influence of the corrosive action of lithium on the surface morphology of the materials under study was found, resulting in the manifestation of grain boundaries and slip lines on the sample surface, the latter being most clearly observed in the case of preliminary irradiation with Ar ions.

  6. Symmetric lithium-ion cell based on lithium vanadium fluorophosphate with ionic liquid electrolyte

    International Nuclear Information System (INIS)

    Plashnitsa, Larisa S.; Kobayashi, Eiji; Okada, Shigeto; Yamaki, Jun-ichi

    2011-01-01

    Lithium vanadium fluorophosphate, LiVPO 4 F, was utilized as both cathode and anode for fabrication of a symmetric lithium-ion LiVPO 4 F//LiVPO 4 F cell. The electrochemical evolution of the LiVPO 4 F//LiVPO 4 F cell with the commonly used organic electrolyte LiPF 6 /EC-DMC has shown that this cell works as a secondary battery, but exhibits poor durability at room temperature and absolutely does not work at increased operating temperatures. To improve the performance and safety of this symmetric battery, we substituted a non-flammable ionic liquid (IL) LiBF 4 /EMIBF 4 electrolyte for the organic electrolyte. The symmetric battery using the IL electrolyte was examined galvanostatically at different rates and operating temperatures within the voltage range of 0.01-2.8 V. It was demonstrated that the IL-based symmetric cell worked as a secondary battery with a Coulombic efficiency of 77% at 0.1 mA cm -2 and 25 o C. It was also found that the use of the IL electrolyte instead of the organic one resulted in the general reduction of the first discharge capacity by about 20-25% but provided much more stable behavior and a longer cycle life. Moreover, an increase of the discharge capacity of the IL-based symmetric battery up to 120 mA h g -1 was observed when the operating temperature was increased up to 80 o C at 0.1 mA cm -2 . The obtained electrochemical behavior of both symmetric batteries was confirmed by complex-impedance measurements at different temperatures and cycling states. The thermal stability of LiVPO 4 F with both the IL and organic electrolytes was also examined.

  7. Effect of lithium tetrafluoroborate on the solubility of carbon dioxide in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate

    NARCIS (Netherlands)

    Durano Arno, S.; Lucas, S.; Shariati - Sarabi, A.; Peters, C.J.

    2012-01-01

    In this work, the phase behavior of the ternary system of carbon dioxide +1-butyl-3-methylimidazolium tetrafluoroborate + lithium tetrafluoroborate has been investigated. Mixtures of known concentrations of the salt, ionic liquid and carbon dioxide were prepared and their bubble point pressures were

  8. Liquid tin limiter for FTU tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Vertkov, A., E-mail: avertkov@yandex.ru [JSC “Red Star”, Moscow (Russian Federation); Lyublinski, I. [JSC “Red Star”, Moscow (Russian Federation); NRNU MEPhI, Moscow (Russian Federation); Zharkov, M. [JSC “Red Star”, Moscow (Russian Federation); Mazzitelli, G.; Apicella, M.L.; Iafrati, M. [Associazione EURATOM-ENEA sulla Fusione, C. R. Frascati, Frascati, Rome, Italy, (Italy)

    2017-04-15

    Highlights: • First steady state operating liquid tin limiter TLL is under study on FTU tokamak. • The cooling system with water spray coolant for TLL has been developed and tested. • High corrosion resistance of W and Mo in molten Sn confirmed up to 1000 °C. • Wetting process with Sn has been developed for Mo and W. - Abstract: The liquid Sn in a matrix of Capillary Porous System (CPS) has a high potential as plasma facing material in steady state operating fusion reactor owing to its physicochemical properties. However, up to now it has no experimental confirmation in tokamak conditions. First steady state operating limiter based on the CPS with liquid Sn installed on FTU tokamak and its experimental study is in progress. Several aspects of the design, structural materials and operation parameters of limiter based on tungsten CPS with liquid Sn are considered. Results of investigation of corrosion resistance of Mo and W in Sn and their wetting process are presented. The heat removal for limiter steady state operation is provided by evaporation of flowing gaswater spray. The effectiveness of such heat removal system is confirmed in modelling tests with power flux up to 5 MW/m2.

  9. Reduced cost design of liquid lithium target for international fusion material irradiation facility (IFMIF)

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi; Yutani, Toshiaki

    2001-01-01

    The International Fusion Materials Irradiation Facility (IFMIF) is being jointly planned to provide an accelerator-based D-Li neutron source to produce intense high energy neutrons (2 MW/m 2 ) up to 200 dpa and a sufficient irradiation volume (500 cm 3 ) for testing the candidate materials and components up to about a full lifetime of their anticipated use in ITER and DEMO. To realize such a condition, 40 MeV deuteron beam with a current of 250 mA is injected into high speed liquid lithium flow with a speed of 20 m/s. Following Conceptual Design Activity (1995-1998), a design study with focus on cost reduction without changing its original mission has been done in 1999. The following major changes to the CAD target design have been considered in the study and included in the new design: i) number of the Li target has been changed from 2 to 1, ii) spare of impurity traps of the Li loop was removed although the spare will be stored in a laboratory for quick exchange, iii) building volume was reduced via design changes in lithium loop length. This paper describes the reduced cost design of the lithium target system and recent status of Key Element Technology activities. (author)

  10. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors. © 2013 Elsevier Ltd. All rights reserved.

  11. Lithium-ion batteries having conformal solid electrolyte layers

    Science.gov (United States)

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  12. The production of lithium oxide microspheres from the disintegration of a liquid jet

    International Nuclear Information System (INIS)

    Al-Ubaidi, M.R.; Anno, J.N.

    1989-01-01

    Microspheres of lithium hydroxide (LiOH) were produced from in-flight solidification of droplets formed by the disintegration of an acoustically driven, mechanically vibrated cylindrical liquid jet of molten LiOH. The molten material at 470 to 480 degrees C was fed through a 25-gauge (0.0267-cm bore diameter) nozzle, interiorly electroplated with silver, under ∼27.6-kPa (4-psig) pressure, and at a mechanical vibration frequency of 10 Hz. The resulting jet issued into a 5.5-cm-diam vertical glass drop tube entraining a 94.5 cm 3 /s (12 ft 3 /h) argon gas stream at 75 degrees C. The 100-cm-long drop tube was sufficient to allow the droplets of molten LiOH resulting from jet disintegration to solidify in-flight without catastrophic thermal shock, being then collected a solid microspheres. These LiOH microspheres were then vacuum processed to lithium oxide (Li 2 O). Preliminary experiments resulted in microspheres with diameters varying from 120 to 185 μm, but with evidence of impurity contamination occurring during the initial stages of the process

  13. Experimental study of gaseous lithium deuterides and lithium oxides. Implications for the use of lithium and Li2O as breeding materials in fusion reactor blankets

    International Nuclear Information System (INIS)

    Ihle, H.R.; Wu, C.H.; Kudo, H.

    1980-01-01

    In addition to LiH, which has been studied extensively by optical spectroscopy, the existence of a number of other stable lithium hydrides has been predicted theoretically. By analysis of the saturated vapour over dilute solutions of the hydrogen isotopes in lithium, using Knudsen effusion mass spectrometry, all lithium hydrides predicted to be stable were found. Solutions of deuterium in lithium were used predominantly because of practical advantages for mass spectrometric measurements. The heats of dissociation of LiD, Li 2 D, LiD 2 and Li 2 D 2 , and the binding energies of their singly charged positive ions were determined, and the constants of the gas/liquid equilibria were calculated. The existence of these lithium deuterides in the gas phase over solutions of deuterium in lithium leads to enrichment of deuterium in the gas above 1240 K. The enrichment factor, which increases exponentially with temperature and is independent of concentration for low concentrations of deuterium in the liquid, was determined by Rayleigh distillation experiments. It was found that it is thermodynamically possible to separate deuterium from lithium by distillation. One of the alternatives to the use of lithium in (D,T)-fusion reactors as tritium-breeding blanket material is to employ solid lithium oxide. This has a high melting point, a high lithium density and still favourable tritium-breeding properties. Because of its rather high volatility, an experimental study of the vaporization of Li 2 O was undertaken by mass spectrometry. It vaporizes to give lithium and oxygen, and LiO, Li 2 O, Li 3 O and Li 2 O 2 . The molecule Li 3 O was found as a new species. Heats of dissociation, binding energies of the various ions and the constants of the gas/solid equilibria were determined. The effect of using different materials for the Knudsen cells and the relative thermal stabilities of lithium-aluminium oxides were also studied. (author)

  14. Study on the electrochemical of the metal deposition from ionic liquids for lithium, titanium and dysprosium

    International Nuclear Information System (INIS)

    Berger, Claudia A.

    2017-01-01

    The thesis was aimed to the characterization of electrochemically deposited film of lithium, titanium and dysprosium on Au(111) from different ionic liquids, finally dysprosium on neodymium-iron-boron magnate for industrial applications. The investigation of the deposits were performed using cyclic voltametry, in-situ scanning tunneling microscopy, electrochemical quartz microbalance, XPS and Auger electron spectroscopy. The sample preparation is described in detail. The deposition rate showed a significant temperature dependence.

  15. Fusion Materials Irradiation Test (FMIT) facility lithium system: a design and development status

    International Nuclear Information System (INIS)

    Brackenbury, P.J.; Bazinet, G.D.; Miller, W.C.

    1983-01-01

    The design and development of the Fusion Materials Irradiation Test (FMIT) Facility lithium system is outlined. This unique liquid lithium recirculating system, the largest of its kind in the world, is described with emphasis on the liquid lithium target assembly and other important components necessary to provide lithium flow to the target. The operational status and role of the Experimental Lithium System (ELS) in the design of the FMIT lithium system are discussed. Safety aspects of operating the FMIT lithium system in a highly radioactive condition are described. Potential spillage of the lithium is controlled by cell liners, by argon flood systems and by remote maintenance features. Lithium chemistry is monitored and controlled by a side-stream loop, where impurities measured by instruments are collected by hot and cold traps

  16. Fusion Materials Irradiation Test (FMIT) facility lithium system: a design and development status

    Energy Technology Data Exchange (ETDEWEB)

    Brackenbury, P.J.; Bazinet, G.D.; Miller, W.C.

    1983-01-01

    The design and development of the Fusion Materials Irradiation Test (FMIT) Facility lithium system is outlined. This unique liquid lithium recirculating system, the largest of its kind in the world, is described with emphasis on the liquid lithium target assembly and other important components necessary to provide lithium flow to the target. The operational status and role of the Experimental Lithium System (ELS) in the design of the FMIT lithium system are discussed. Safety aspects of operating the FMIT lithium system in a highly radioactive condition are described. Potential spillage of the lithium is controlled by cell liners, by argon flood systems and by remote maintenance features. Lithium chemistry is monitored and controlled by a side-stream loop, where impurities measured by instruments are collected by hot and cold traps.

  17. Towards room-temperature performance for lithium-polymer batteries

    International Nuclear Information System (INIS)

    Kerr, J.B.; Liu, Gao; Curtiss, L.A.; Redfern, Paul C.

    2003-01-01

    Recent work on molecular simulations of the mechanisms of lithium ion conductance has pointed towards two types of limiting process. One has involved the commonly cited segmental motion while the other is related to energy barriers in the solvation shell of polymeric ether oxygens around the lithium ions. Calculations of the barriers to lithium ion migration have provided important indicators as to the best design of the polymer. The theoretical work has coincided with and guided some recent developments on polymer synthesis for lithium batteries. Structural change of the polymer solvation shell has been pursued by the introduction of trimethylene oxide (TMO) units into the polymer. The conductivity measurements on polymers containing TMO unit are encouraging. The architecture of the polymer networks has been varied upon which the solvating groups are attached and significant improvements in sub-ambient performance are observed as a result. However, the above-ambient temperature performance appears controlled by an Arrhenius process that is not completely consistent with the theoretical calculations described here and may indicate the operation of a different mechanism. The new polymers possess significantly lower T g values in the presence of lithium salts, which indicates weaker binding of the lithium ions by the polymers. These properties provide considerable improvement in the transport properties close to the electrode surfaces resulting in decreased impedances at the surfaces both at lithium metal and in composite electrodes. The greater flexibility of the solvation groups combined with appropriate architecture not only has applications in lithium metal-polymer batteries but also in lithium ion liquid and gel systems as well as in fuel cell electrodes

  18. Liquid lithium target as a high intensity, high energy neutron source

    Science.gov (United States)

    Parkin, Don M.; Dudey, Norman D.

    1976-01-01

    This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

  19. Liquid lithium target as a high intensity, high energy neutron source

    International Nuclear Information System (INIS)

    Parkin, D.M.; Dudey, N.D.

    1976-01-01

    The invention described provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then ''boil off'' or evaporate a neutron

  20. Shielding consideration for a deuteron activated liquid lithium system

    International Nuclear Information System (INIS)

    Huang, S.T.; Shapiro, A.M.; Lee, J.B.; Miller, W.C.

    1979-09-01

    A parametric study was conducted to evaluate the potential shielding implication due to the 7 Be plateout on the lithium piping in the FMIT facility. Various parameters such as plateout percentage, hot flush efficiency and 7 Be trapping efficiency were varied to assess the overall shielding requirement relationship. The 7 Be plateout was found to place severe limitations on the hands-on maintenance access. Hot flush and 7 Be traps are effective ways of minimizing the 7 Be plateout. To be effective in reducing local shielding requirements, the combined 7 Be trapping and hot flush efficiency shall be greater than 95%

  1. Liquid oxygen LOX compatibility evaluations of aluminum lithium (Al-Li) alloys: Investigation of the Alcoa 2090 and MMC weldalite 049 alloys

    Science.gov (United States)

    Diwan, Ravinder M.

    1989-01-01

    The behavior of liquid oxygen (LOX) compatibility of aluminum lithium (Al-Li) alloys is investigated. Alloy systems of Alcoa 2090, vintages 1 to 3, and of Martin Marietta Corporation (MMC) Weldalite 049 were evaluated for their behavior related to the LOX compatibility employing liquid oxygen impact test conditions under ambient pressures and up to 1000 psi. The developments of these aluminum lithium alloys are of critical and significant interest because of their lower densities and higher specific strengths and improved mechanical properties at cryogenic temperatures. Of the different LOX impact tests carried out at the Marshall Space Flight Center (MSFC), it is seen that in certain test conditions at higher pressures, not all Al-Li alloys are LOX compatible. In case of any reactivity, it appears that lithium makes the material more sensitive at grain boundaries due to microstructural inhomogeneities and associated precipitate free zones (PFZ). The objectives were to identify and rationalize the microstructural mechanisms that could be relaxed to LOX compatibility behavior of the alloy system in consideration. The LOX compatibility behavior of Al-Li 2090 and Weldalite 049 is analyzed in detail using microstructural characterization techniques with light optical metallography, scanning electron microscopy (SEM), electron microprobe analysis, and surface studies using secondary ion mass spectrometry (SIMS), electron spectroscopy in chemical analysis (ESCA) and Auger electron spectroscopy (AES). Differences in the behavior of these aluminum lithium alloys are assessed and related to their chemistry, heat treatment conditions, and microstructural effects.

  2. Universality of the high-temperature viscosity limit of silicate liquids

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Mauro, John C.; Ellison, Adam J.

    2011-01-01

    We investigate the high-temperature limit of liquid viscosity by analyzing measured viscosity curves for 946 silicate liquids and 31 other liquids including metallic, molecular, and ionic systems. Our results show no systematic dependence of the high-temperature viscosity limit on chemical...... composition for the studied liquids. Based on theMauro-Yue-Ellison-Gupta-Allan (MYEGA) model of liquid viscosity, the high-temperature viscosity limit of silicate liquids is 10−2.93 Pa·s. Having established this value, there are only two independent parameters governing the viscosity-temperature relation...

  3. Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid.

    Science.gov (United States)

    Yang, Chunpeng; Fu, Kun; Zhang, Ying; Hitz, Emily; Hu, Liangbing

    2017-09-01

    High-energy lithium-metal batteries are among the most promising candidates for next-generation energy storage systems. With a high specific capacity and a low reduction potential, the Li-metal anode has attracted extensive interest for decades. Dendritic Li formation, uncontrolled interfacial reactions, and huge volume effect are major hurdles to the commercial application of Li-metal anodes. Recent studies have shown that the performance and safety of Li-metal anodes can be significantly improved via organic electrolyte modification, Li-metal interface protection, Li-electrode framework design, separator coating, and so on. Superior to the liquid electrolytes, solid-state electrolytes are considered able to inhibit problematic Li dendrites and build safe solid Li-metal batteries. Inspired by the bright prospects of solid Li-metal batteries, increasing efforts have been devoted to overcoming the obstacles of solid Li-metal batteries, such as low ionic conductivity of the electrolyte and Li-electrolyte interfacial problems. Here, the approaches to protect Li-metal anodes from liquid batteries to solid-state batteries are outlined and analyzed in detail. Perspectives regarding the strategies for developing Li-metal anodes are discussed to facilitate the practical application of Li-metal batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Design principles for solid-state lithium superionic conductors.

    Science.gov (United States)

    Wang, Yan; Richards, William Davidson; Ong, Shyue Ping; Miara, Lincoln J; Kim, Jae Chul; Mo, Yifei; Ceder, Gerbrand

    2015-10-01

    Lithium solid electrolytes can potentially address two key limitations of the organic electrolytes used in today's lithium-ion batteries, namely, their flammability and limited electrochemical stability. However, achieving a Li(+) conductivity in the solid state comparable to existing liquid electrolytes (>1 mS cm(-1)) is particularly challenging. In this work, we reveal a fundamental relationship between anion packing and ionic transport in fast Li-conducting materials and expose the desirable structural attributes of good Li-ion conductors. We find that an underlying body-centred cubic-like anion framework, which allows direct Li hops between adjacent tetrahedral sites, is most desirable for achieving high ionic conductivity, and that indeed this anion arrangement is present in several known fast Li-conducting materials and other fast ion conductors. These findings provide important insight towards the understanding of ionic transport in Li-ion conductors and serve as design principles for future discovery and design of improved electrolytes for Li-ion batteries.

  5. Operation of the lithium pellet injector

    International Nuclear Information System (INIS)

    Khlopenkov, K.V.; Sudo, S.; Sergeev, V.Yu.

    1996-05-01

    A lithium pellet injection requires an accurate handling with lithium and special technique of loading the pellets. Thus, the technology for this has been developed based on the following conditions: 1) Because of chemical activity of lithium it is necessary to operate in a glove-box with the noble gas atmosphere (He, Ar, etc.). 2) A special procedure of replacing the glove-box atmosphere allows to achieve high purity of the noble gas. 3) When making the pellets it is better to keep the clean lithium in the liquid hexane so as to maintain lithium purity. 4) The pressure of the accelerating gas for Li pellets should be not less than 30 atm. (author)

  6. Spreading of lithium on a stainless steel surface at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C.H., E-mail: cskinner@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Capece, A.M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Roszell, J.P.; Koel, B.E. [Department of Chemical and Biological Engineering, Princeton University, NJ 08540 (United States)

    2016-01-15

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. The spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separate experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (E{sub des} = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (E{sub des} = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium–lithium bonding.

  7. Tribological Behavior of Si3N4/Ti3SiC2 Contacts Lubricated by Lithium-Based Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Haizhong Wang

    2014-01-01

    Full Text Available The tribological performance of Si3N4 ball sliding against Ti3SiC2 disc lubricated by lithium-based ionic liquids (ILs was investigated using an Optimol SRV-IV oscillating reciprocating friction and wear tester at room temperature (RT and elevated temperature (100°C. Glycerol and the conventional imidazolium-based IL 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonylimide (L-F106 were used as references under the same experimental conditions. The results show that the lithium-based ILs had higher thermal stabilities than glycerol and lower costs associated with IL preparation than L-F106. The tribotest results show that the lithium-based ILs were effective in reducing the friction and wear of Si3N4/Ti3SiC2 contacts. [Li(urea]TFSI even produced better tribological properties than glycerol and L-F106 both at RT and 100°C. The SEM/EDS and XPS results reveal that the excellent tribological endurance of Si3N4/Ti3SiC2 contacts lubricated by lithium-based ILs was mainly attributed to the formation of surface protective films composed of various tribochemical products.

  8. Acquisition of Co metal from spent lithium-ion battery using emulsion liquid membrane technology and emulsion stability test

    Science.gov (United States)

    Yuliusman; Wulandari, P. T.; Amiliana, R. A.; Huda, M.; Kusumadewi, F. A.

    2018-03-01

    Lithium-ion batteries are the most common type to be used as energy source in mobile phone. The amount of lithium-ion battery wastes is approximated by 200 – 500 ton/year. In one lithium-ion battery, there are 5 – 20% of cobalt metal, depend on the manufacturer. One of the way to recover a valuable metal from waste is leaching process then continued with extraction, which is the aim of this study. Spent lithium-ion batteries will be characterized with EDX and AAS, the result will show the amount of cobalt metal with form of LiCoO2 in the cathode. Hydrochloric acid concentration used is 4 M, temperature 80°C, and reaction time 1 hour. This study will discuss the emulsion stability test on emulsion liquid membrane. The purpose of emulsion stability test in this study was to determine optimum concentration of surfactant and extractant to produce a stable emulsion. Surfactant and extractant used were SPAN 80 and Cyanex 272 respectively with both concentrations varied. Membrane and feed phase ratios used in this experiment was 1 : 2. The optimum results of this study were SPAN 80 concentrations of 10% w/v and Cyanex 272 0.7 M.

  9. Selective solid-liquid extraction of lithium halide salts using a ditopic macrobicyclic receptor.

    Science.gov (United States)

    Mahoney, Joseph M; Beatty, Alicia M; Smith, Bradley D

    2004-11-29

    A ditopic salt receptor that is known to bind and extract solid NaCl, KCl, NaBr, and KBr into organic solution as their contact ion pairs is now shown by NMR and X-ray crystallography to bind and extract solid LiCl and LiBr as water-separated ion pairs. The receptor can transport these salts from an aqueous phase through a liquid organic membrane with a cation selectivity of K+ > Na+ > Li+. However, the selectivity order is strongly reversed when the receptor extracts solid alkali metal chlorides and bromides into organic solution. For a three-component mixture of solid LiCl, NaCl, and KCl, the ratio of salts extracted and complexed to the receptor in CDCl3 was 94:4:2, respectively. The same strong lithium selectivity was also observed in the case of a three-component mixture of solid LiBr, NaBr, and KBr where the ratio of extracted salts was 92:5:3. This observation is attributed to the unusually high solubility of lithium salts in organic solvents. The study suggests that ditopic receptors with an ability to extract solid salts as associated ion pairs may have application in separation processes.

  10. Results and code prediction comparisons of lithium-air reaction and aerosol behavior tests

    International Nuclear Information System (INIS)

    Jeppson, D.W.

    1986-03-01

    The Hanford Engineering Development Laboratory (HEDL) Fusion Safety Support Studies include evaluation of potential safety and environmental concerns associated with the use of liquid lithium as a breeder and coolant for fusion reactors. Potential mechanisms for volatilization and transport of radioactive metallic species associated with breeder materials are of particular interest. Liquid lithium pool-air reaction and aerosol behavior tests were conducted with lithium masses up to 100 kg within the 850-m 3 containment vessel in the Containment Systems Test Facility. Lithium-air reaction rates, aerosol generation rates, aerosol behavior and characterization, as well as containment atmosphere temperature and pressure responses were determined. Pool-air reaction and aerosol behavior test results were compared with computer code calculations for reaction rates, containment atmosphere response, and aerosol behavior. The volatility of potentially radioactive metallic species from a lithium pool-air reaction was measured. The response of various aerosol detectors to the aerosol generated was determined. Liquid lithium spray tests in air and in nitrogen atmospheres were conducted with lithium temperatures of about 427 0 and 650 0 C. Lithium reaction rates, containment atmosphere response, and aerosol generation and characterization were determined for these spray tests

  11. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.

    Science.gov (United States)

    Tu, Zhengyuan; Nath, Pooja; Lu, Yingying; Tikekar, Mukul D; Archer, Lynden A

    2015-11-17

    Secondary batteries based on lithium are the most important energy storage technology for contemporary portable devices. The lithium ion battery (LIB) in widespread commercial use today is a compromise technology. It compromises high energy, high power, and design flexibility for long cell operating lifetimes and safety. Materials science, transport phenomena, and electrochemistry in the electrodes and electrolyte that constitute such batteries are areas of active study worldwide because significant improvements in storage capacity and cell lifetime are required to meet new demands, including the electrification of transportation and for powering emerging autonomous aircraft and robotics technologies. By replacing the carbonaceous host material used as the anode in an LIB with metallic lithium, rechargeable lithium metal batteries (LMBs) with higher storage capacity and compatibility with low-cost, high-energy, unlithiated cathodes such as sulfur, manganese dioxide, carbon dioxide, and oxygen become possible. Large-scale, commercial deployment of LMBs are today limited by safety concerns associated with unstable electrodeposition and lithium dendrite formation during cell recharge. LMBs are also limited by low cell operating lifetimes due to parasitic chemical reactions between the electrode and electrolyte. These concerns are greater in rechargeable batteries that utilize other, more earth abundant metals such as sodium and to some extent even aluminum. Inspired by early theoretical works, various strategies have been proposed for alleviating dendrite proliferation in LMBs. A commonly held view among these early studies is that a high modulus, solid-state electrolyte that facilitates fast ion transport, is nonflammable, and presents a strong-enough physical barrier to dendrite growth is a requirement for any commercial LMB. Unfortunately, poor room-temperature ionic conductivity, challenging processing, and the high cost of ceramic electrolytes that meet the

  12. Control of beryllium-7 in liquid lithium

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Brehm, W.F.; Baldwin, D.L.; Bevan, J.L.

    1978-12-01

    Radiation fields created by the production of 7 Be in lithium of the Fusion Materials Irradiation Test (FMIT) Facility can be sufficiently high to prevent contact maintenance of system components. Preliminary experiments have shown that 7 Be will adhere strongly to the FMIT piping and components and a good control method for 7 Be must be developed. The initial experiments have been conducted in static stainless steel capsules and a Modified Thermal Convection Loop (MTCL). The average lithium film thickness on stainless steel was found to be 11 μm in the temperature range 495 0 to 571 0 K from the capsule experiments. The diffusion coefficient for 7 Be in stainless steel at 543 0 K was calculated to be 5.31 x 10 -15 cm 2 /sec. The cold leg of the MTCL picked up much of the 7 Be activity released into the loop. The diffusion trap, located in the cold leg of the MTCL, was ineffective in removing 7 Be from lithium, at the very slow flow rates ( -4 m 3 /s) used in the MTCL. Pure iron has been shown to be superior to coblat and nickel as a getter material for 7 Be

  13. Measurement and modeling of surface temperature dynamics of the NSTX liquid lithium divertor

    Science.gov (United States)

    McLean, A. G.; Gan, K. F.; Ahn, J.-W.; Gray, T. K.; Maingi, R.; Abrams, T.; Jaworski, M. A.; Kaita, R.; Kugel, H. W.; Nygren, R. E.; Skinner, C. H.; Soukhanovskii, V. A.

    2013-07-01

    Dual-band infrared (IR) measurements of the National Spherical Torus eXperiment (NSTX) Liquid Lithium Divertor (LLD) are reported that demonstrate liquid Li is more effective at removing plasma heat flux than Li-conditioned graphite. Extended dwell of the outer strike point (OSP) on the LLD caused an incrementally larger area to be heated above the Li melting point through the discharge leading to enhanced D retention and plasma confinement. Measurement of Tsurface near the OSP demonstrates a significant reduction of the LLD surface temperature compared to that of Li-coated graphite at the same major radius. Modeling of these data with a 2-D simulation of the LLD structure in the DFLUX code suggests that the structure of the LLD was successful at handling up to q⊥,peak = 5 MW/m2 inter-ELM and up to 10 MW/m2 during ELMs from its plasma-facing surface as intended, and provide an innovative method for inferring the Li layer thickness.

  14. A lithium-oxygen battery with a long cycle life in an air-like atmosphere.

    Science.gov (United States)

    Asadi, Mohammad; Sayahpour, Baharak; Abbasi, Pedram; Ngo, Anh T; Karis, Klas; Jokisaari, Jacob R; Liu, Cong; Narayanan, Badri; Gerard, Marc; Yasaei, Poya; Hu, Xuan; Mukherjee, Arijita; Lau, Kah Chun; Assary, Rajeev S; Khalili-Araghi, Fatemeh; Klie, Robert F; Curtiss, Larry A; Salehi-Khojin, Amin

    2018-03-21

    Lithium-air batteries are considered to be a potential alternative to lithium-ion batteries for transportation applications, owing to their high theoretical specific energy. So far, however, such systems have been largely restricted to pure oxygen environments (lithium-oxygen batteries) and have a limited cycle life owing to side reactions involving the cathode, anode and electrolyte. In the presence of nitrogen, carbon dioxide and water vapour, these side reactions can become even more complex. Moreover, because of the need to store oxygen, the volumetric energy densities of lithium-oxygen systems may be too small for practical applications. Here we report a system comprising a lithium carbonate-based protected anode, a molybdenum disulfide cathode and an ionic liquid/dimethyl sulfoxide electrolyte that operates as a lithium-air battery in a simulated air atmosphere with a long cycle life of up to 700 cycles. We perform computational studies to provide insight into the operation of the system in this environment. This demonstration of a lithium-oxygen battery with a long cycle life in an air-like atmosphere is an important step towards the development of this field beyond lithium-ion technology, with a possibility to obtain much higher specific energy densities than for conventional lithium-ion batteries.

  15. Size effects on the transport coefficient of liquid lithium, sodium and potassium using a soft sphere potential

    International Nuclear Information System (INIS)

    Adebayo, G.A.; Anusionwu, B.C.

    2004-08-01

    The dependence of the self diffusion coefficient of atoms in liquid Lithium, Sodium and Potassium, interacting through a soft sphere potential, on the number of atoms have been investigated using Molecular Dynamics Simulation at various temperatures. Our calculations predict non-linear relationship between the diffusion coefficient and the number of particles at high densities and medium or low temperatures. The radial distribution function obtained agrees well with experiment. (author)

  16. Lithium-vanadium advanced blanket development. ITER final report on U.S. contribution: Task T219/T220

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Mattas, R.F. [comps.

    1997-07-01

    The objective of this task is to develop the required data base and demonstrate the performance of a liquid lithium-vanadium advanced blanket design. The task has two main activities related to vanadium structural material and liquid lithium system developments. The vanadium alloy development activity included four subtasks: (1.1) baseline mechanical properties of non irradiated base metal and weld metal joints; (1.2) compatibility with liquid lithium; (1.3) material irradiation tests; and (1.4) development of material manufacturing and joining methods. The lithium blanket technology activity included four subtasks: (2.1) electrical insulation development and testing for liquid metal systems; (2.2) MHD pressure drop and heat transfer study for self-cooled liquid metal systems; (2.3) chemistry of liquid lithium; and (2.4) design, fabrication and testing of ITER relevant size blanket mockups. A summary of the progress and results obtained during the period 1995 and 1996 in each of the subtask areas is presented in this report.

  17. Lithium-vanadium advanced blanket development. ITER final report on U.S. contribution: Task T219/T220

    International Nuclear Information System (INIS)

    Smith, D.L.; Mattas, R.F.

    1997-07-01

    The objective of this task is to develop the required data base and demonstrate the performance of a liquid lithium-vanadium advanced blanket design. The task has two main activities related to vanadium structural material and liquid lithium system developments. The vanadium alloy development activity included four subtasks: (1.1) baseline mechanical properties of non irradiated base metal and weld metal joints; (1.2) compatibility with liquid lithium; (1.3) material irradiation tests; and (1.4) development of material manufacturing and joining methods. The lithium blanket technology activity included four subtasks: (2.1) electrical insulation development and testing for liquid metal systems; (2.2) MHD pressure drop and heat transfer study for self-cooled liquid metal systems; (2.3) chemistry of liquid lithium; and (2.4) design, fabrication and testing of ITER relevant size blanket mockups. A summary of the progress and results obtained during the period 1995 and 1996 in each of the subtask areas is presented in this report

  18. On the Development of Hydrogen Isotope Extraction Technologies for a Full LiMIT-Style PFC Liquid Lithium Loop

    Science.gov (United States)

    Christenson, Michael; Szott, Matthew; Stemmley, Steven; Mettler, Jeremy; Wendeborn, John; Moynihan, Cody; Ahn, Chisung; Andruczyk, Daniel; Ruzic, David

    2017-10-01

    Lithium has proven over numerous studies to improve core confinement, allowing access to operational regimes previously unattainable when using solid, high-Z divertor and limiter modules in magnetic confinement devices. Lithium readily absorbs fuel species, and while this is advantageous, it is also detrimental with regards to tritium inventory and safety concerns. As such, extraction technologies for the recovery of hydrogenic isotopes captured by lithium require development and testing in the context of a larger lithium loop recycling system. Proposed reclamation technologies at the University of Illinois at Urbana-Champaign (UIUC) will take advantage of the thermophysical properties of the lithium-hydrogen-lithium hydride system as the driving force for recovery. Previous work done at UIUC indicates that hydrogen release from pure lithium hydride reaches a maximum of 7 x 1018 s-1 at 665 °C. While this recovery rate is appreciable, reactor-scale scenarios will require isotope recycling to happen on an even faster timescale. The ratio of isotope dissolution to hydride precipitate formation must therefore be determined, along with the energy needed to recoup trapped hydrogen isotopes. Extraction technologies for use with a LiMIT-style loop system will be discussed and results will be presented. DOE/ALPS DE-FG02-99ER54515.

  19. Method and apparatus to produce and maintain a thick, flowing, liquid lithium first wall for toroidal magnetic confinement DT fusion reactors

    Science.gov (United States)

    Woolley, Robert D.

    2002-01-01

    A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.

  20. Lithium pellet production (LiPP): A device for the production of small spheres of lithium

    Science.gov (United States)

    Fiflis, P.; Andrucyzk, D.; Roquemore, A. L.; McGuire, M.; Curreli, D.; Ruzic, D. N.

    2013-06-01

    With lithium as a fusion material gaining popularity, a method for producing lithium pellets relatively quickly has been developed for NSTX. The Lithium Pellet Production device is based on an injector with a sub-millimeter diameter orifice and relies on a jet of liquid lithium breaking apart into small spheres via the Plateau-Rayleigh instability. A prototype device is presented in this paper and for a pressure difference of ΔP = 5 Torr, spheres with diameters between 0.91 < D < 1.37 mm have been produced with an average diameter of D = 1.14 mm, which agrees with the developed theory. Successive tests performed at Princeton Plasma Physics Laboratory with Wood's metal have confirmed the dependence of sphere diameter on pressure difference as predicted.

  1. Aerospace gas/liquid separator for terrestrial applications

    International Nuclear Information System (INIS)

    Mondt, J.F.

    1996-01-01

    The space gas/liquid separator, a key component in the heat transport subsystem of a space reactor power system, was developed to remove helium gas from liquid lithium in zero gravity. Helium is generated from lithium irradiation in the reactor core and would reach saturation in lithium after 48 hours of full power operations. The gas/liquid separator is also applicable for large commercial powerplants to deaerate the water before and after the feedwater heaters. Another terrestrial application is for industrial companies to use the gas/liquid separator and wet chemistry to remove all the gases from the air and only discharge clean air to the atmosphere. An additional application that resulted from this gas/liquid separator technology, was separating liquid carbon dioxide from nitrogen. This application is opposite from the space application in that it is removing a liquid from a gas rather than a gas from a liquid

  2. Tensile property of low activation vanadium alloy after liquid lithium exposure

    International Nuclear Information System (INIS)

    Nagasaka, Takuya; Muroga, Takeo; Li, Meimei; Hoelzer, David T.; Zinkle, Steven J.; Grossbeck, Martin L.; Matsui, Hideki

    2005-10-01

    A candidate low activation vanadium (V) alloy, V-4Cr-4Ti (NIFS-HEAT-2), was exposed to liquid lithium (Li) at 973 and 1073 K for up to 1963 hr. Contamination by carbon (C) and nitrogen (N) from the Li on the order of thousands of wppm were observed. Oxygen (O) levels were reduced to the several 10 wppm level by Li exposure at 1073 K, but not at 973 K. The Li exposure caused strength degradation as measured by tensile tests at 973 and 1073 K. On the other hand, good ductility was demonstrated after the Li exposure even with the significant contamination of C and N. From microstructural observations, C and N are likely to be scavenged by Ti-C-N type precipitates. Reduction of O was attributed to disappearance of Ti-C-O type precipitates. (author)

  3. Safety considerations of lithium lead alloy as a fusion reactor breeding material

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Muhlestein, L.D.

    1985-01-01

    Test results and conclusions are presented for lithium lead alloy interactions with various gas atmospheres, concrete and potential reactor coolants. The reactions are characterized to evaluate the potential of volatilizing and transporting radioactive species associated with the liquid breeder under postulated fusion reactor accident conditions. The safety concerns identified for lithium lead alloy reactions with the above materials are compared to those previously identified for a reference fusion breeder material, liquid lithium. Conclusions made from this comparison are also included

  4. Ionic liquids-lithium salts pretreatment followed by ultrasound-assisted extraction of vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside and vitexin from Phyllostachys edulis leaves.

    Science.gov (United States)

    Hou, Kexin; Chen, Fengli; Zu, Yuangang; Yang, Lei

    2016-01-29

    An efficient method for the extraction of vitexin, vitexin-4″-O-glucoside, and vitexin-2″-O-rhamnoside from Phyllostachys edulis leaves comprises heat treatment using an ionic liquid-lithium salt mixture (using 1-butyl-3-methylimidazolium bromide as the solvent and lithium chloride as the additive), followed by ultrasound-assisted extraction. To obtain higher extraction yields, the effects of the relevant experimental parameters (including heat treatment temperature and time, relative amounts of 1-butyl-3-methylimidazolium bromide and lithium chloride, power and time of the ultrasound irradiation, and the liquid-solid ratio) are evaluated and response surface methodology is used to optimize the significant factors. The morphologies of the treated and untreated P. edulis leaves are studied by scanning electron microscopy. The improved extraction method proposed provides high extraction yield, good repeatability and precision, and has wide potential applications in the analysis of plant samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Structure and electrical resistivity of alkali-alkali and lithium-based liquid binary alloys

    International Nuclear Information System (INIS)

    Mishra, A.K.; Mukherjee, K.K.

    1990-01-01

    Harmonic model potential, developed and used for simple metals is applied here to evaluate hardsphere diameters, which ensure minimum interionic pair potential for alkali-alkali (Na-K, Na-Rb, Na-Cs, K-Rb, K-Cs) and lithium-based (Li-Na, Li-Mg, Li-In, Li-Tl) liquid binary alloys as a function of composition for use in the determination of their partial structure factors. These structure factors are then used to calculate electrical resistivities of alloys considered. The computed values of electrical resistivity as a function of composition agree both, in magnitude and gradient reasonably well with experimental values in all cases except in Cs systems, where the disagreement is appreciable. (author)

  6. Lithium in the barium stars

    International Nuclear Information System (INIS)

    Pinsonneault, M.H.; Sneden, C.

    1984-01-01

    New high-resolution spectra of the lithium resonance doublet have provided lithium abundances or upper limits for 26 classical and mild barium stars. The lithium lines always are present in the classical barium stars. Lithium abundances in these stars obey a trend with stellar masses consistent with that previously derived for ordinary K giants. This supports the notion that classical barium stars are post-core-He-flash or core-He-burning stars. Lithium contents in the mild barium stars, however, often are much smaller than those of the classical barium stars sometimes only upper limits may be determined. The cause for this difference is not easily understood, but may be related to more extensive mass loss by the mild barium stars. 45 references

  7. Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries

    KAUST Repository

    Tu, Zhengyuan

    2015-11-17

    © 2015 American Chemical Society. ConspectusSecondary batteries based on lithium are the most important energy storage technology for contemporary portable devices. The lithium ion battery (LIB) in widespread commercial use today is a compromise technology. It compromises high energy, high power, and design flexibility for long cell operating lifetimes and safety. Materials science, transport phenomena, and electrochemistry in the electrodes and electrolyte that constitute such batteries are areas of active study worldwide because significant improvements in storage capacity and cell lifetime are required to meet new demands, including the electrification of transportation and for powering emerging autonomous aircraft and robotics technologies. By replacing the carbonaceous host material used as the anode in an LIB with metallic lithium, rechargeable lithium metal batteries (LMBs) with higher storage capacity and compatibility with low-cost, high-energy, unlithiated cathodes such as sulfur, manganese dioxide, carbon dioxide, and oxygen become possible. Large-scale, commercial deployment of LMBs are today limited by safety concerns associated with unstable electrodeposition and lithium dendrite formation during cell recharge. LMBs are also limited by low cell operating lifetimes due to parasitic chemical reactions between the electrode and electrolyte. These concerns are greater in rechargeable batteries that utilize other, more earth abundant metals such as sodium and to some extent even aluminum.Inspired by early theoretical works, various strategies have been proposed for alleviating dendrite proliferation in LMBs. A commonly held view among these early studies is that a high modulus, solid-state electrolyte that facilitates fast ion transport, is nonflammable, and presents a strong-enough physical barrier to dendrite growth is a requirement for any commercial LMB. Unfortunately, poor room-temperature ionic conductivity, challenging processing, and the high cost

  8. Equilibrium lithium-ion transport between nanocrystalline lithium-inserted anatase TiO2 and the electrolyte.

    Science.gov (United States)

    Ganapathy, Swapna; van Eck, Ernst R H; Kentgens, Arno P M; Mulder, Fokko M; Wagemaker, Marnix

    2011-12-23

    The power density of lithium-ion batteries requires the fast transfer of ions between the electrode and electrolyte. The achievable power density is directly related to the spontaneous equilibrium exchange of charged lithium ions across the electrolyte/electrode interface. Direct and unique characterization of this charge-transfer process is very difficult if not impossible, and consequently little is known about the solid/liquid ion transfer in lithium-ion-battery materials. Herein we report the direct observation by solid-state NMR spectroscopy of continuous lithium-ion exchange between the promising nanosized anatase TiO(2) electrode material and the electrolyte. Our results reveal that the energy barrier to charge transfer across the electrode/electrolyte interface is equal to or greater than the barrier to lithium-ion diffusion through the solid anatase matrix. The composition of the electrolyte and in turn the solid/electrolyte interface (SEI) has a significant effect on the electrolyte/electrode lithium-ion exchange; this suggests potential improvements in the power of batteries by optimizing the electrolyte composition. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ultrashort pulsed laser ablation for decollation of solid state lithium-ion batteries

    Science.gov (United States)

    Hördemann, C.; Anand, H.; Gillner, A.

    2017-08-01

    Rechargeable lithium-ion batteries with liquid electrolytes are the main energy source for many electronic devices that we use in our everyday lives. However, one of the main drawbacks of this energy storage technology is the use of liquid electrolyte, which can be hazardous to the user as well as the environment. Moreover, lithium-ion batteries are limited in voltage, energy density and operating temperature range. One of the most novel and promising battery technologies available to overcome the above-mentioned drawbacks is the Solid-State Lithium-Ion Battery (SSLB). This battery type can be produced without limitations to the geometry and is also bendable, which is not possible with conventional batteries1 . Additionally, SSLBs are characterized by high volumetric and gravimetric energy density and are intrinsically safe since no liquid electrolyte is used2-4. Nevertheless, the manufacturing costs of these batteries are still high. The existing production-technologies are comparable to the processes used in the semiconductor industry and single cells are produced in batches with masked-deposition at low deposition rates. In order to decrease manufacturing costs and to move towards continuous production, Roll2Roll production methods are being proposed5, 6. These methods offer the possibility of producing large quantities of substrates with deposited SSLB-layers. From this coated substrate, single cells can be cut out. For the flexible decollation of SSLB-cells from the substrate, new manufacturing technologies have to be developed since blade-cutting, punching or conventional laser-cutting processes lead to short circuiting between the layers. Here, ultra-short pulsed laser ablation and cutting allows the flexible decollation of SSLBs. Through selective ablation of individual layers, an area for the cutting kerf is prepared to ensure a shortcut-free decollation.

  10. Measurement and modeling of surface temperature dynamics of the NSTX liquid lithium divertor

    Energy Technology Data Exchange (ETDEWEB)

    McLean, A.G., E-mail: mclean@fusion.gat.com [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Gan, K.F. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Ahn, J.-W.; Gray, T.K.; Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Abrams, T.; Jaworski, M.A.; Kaita, R.; Kugel, H.W. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Nygren, R.E. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2013-07-15

    Dual-band infrared (IR) measurements of the National Spherical Torus eXperiment (NSTX) Liquid Lithium Divertor (LLD) are reported that demonstrate liquid Li is more effective at removing plasma heat flux than Li-conditioned graphite. Extended dwell of the outer strike point (OSP) on the LLD caused an incrementally larger area to be heated above the Li melting point through the discharge leading to enhanced D retention and plasma confinement. Measurement of T{sub surface} near the OSP demonstrates a significant reduction of the LLD surface temperature compared to that of Li-coated graphite at the same major radius. Modeling of these data with a 2-D simulation of the LLD structure in the DFLUX code suggests that the structure of the LLD was successful at handling up to q{sub ⊥,peak} = 5 MW/m{sup 2} inter-ELM and up to 10 MW/m{sup 2} during ELMs from its plasma-facing surface as intended, and provide an innovative method for inferring the Li layer thickness.

  11. Preliminary Evaluation of the Adequacy of Lithium Resources of the World and China for D-T Fusion Reactors

    Science.gov (United States)

    Wang, Yongliang; Ni, Muyi; Jiang, Jieqiong; Wu, Yican; FDS-Team

    2012-07-01

    This paper studied the adequacy of the World and China lithium resources, considering the most promising uses in the future, involving nuclear fusion and electric-vehicles. The lithium recycle model for D-T fusion power plant and electric-vehicles, and the logistic growth prediction model of the primary energy for the World and China were constructed. Based on these models, preliminary evaluation of lithium resources adequacy of the World and China for D-T fusion reactors was presented under certain assumptions. Results show that: a. The world terrestrial reserves of lithium seems too limited to support a significant D-T power program, but the lithium reserves of China are relatively abundant, compared with the world case. b. The lithium resources contained in the oceans can be called the “permanent" energy. c. The change in 6Li enrichment has no obvious effect on the availability period of the lithium resources using FDS-II (Liquid Pb-17Li breeder blanket) type of reactors, but it has a stronger effect when PPCS-B (Solid Li4 SiO4 ceramics breeder blanket) is used.

  12. Lithium limits trimethyltin-induced cytotoxicity and proinflammatory response in microglia without affecting the concurrent autophagy impairment.

    Science.gov (United States)

    Fabrizi, Cinzia; Pompili, Elena; Somma, Francesca; De Vito, Stefania; Ciraci, Viviana; Artico, Marco; Lenzi, Paola; Fornai, Francesco; Fumagalli, Lorenzo

    2017-02-01

    Trimethyltin (TMT) is a highly toxic molecule present as an environmental contaminant causing neurodegeneration particularly of the limbic system both in humans and in rodents. We recently described the occurrence of impairment in the late stages of autophagy in TMT-intoxicated astrocytes. Here we show that similarly to astrocytes also in microglia, TMT induces the precocious block of autophagy indicated by the accumulation of the autophagosome marker, microtubule associated protein light chain 3. Consistent with autophagy impairment we observe in TMT-treated microglia the accumulation of p62/SQSTM1, a protein specifically degraded through this pathway. Lithium has been proved effective in limiting neurodegenerations and, in particular, in ameliorating symptoms of TMT intoxication in rodents. In our in vitro model, lithium displays a pro-survival and anti-inflammatory action reducing both cell death and the proinflammatory response of TMT-treated microglia. In particular, lithium exerts these activities without reducing TMT-induced accumulation of light chain 3 protein. In fact, the autophagic block imposed by TMT is unaffected by lithium administration. These results are of interest as defects in the execution of autophagy are frequently observed in neurodegenerative diseases and lithium is considered a promising therapeutic agent for these pathologies. Thus, it is relevant that this cation can still maintain its pro-survival and anti-inflammatory role in conditions of autophagy block. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. A study on liquid lithium flow in rectangular duck perpendicular to a intense magnetic field

    International Nuclear Information System (INIS)

    Shen Xiuzhong; Chen Ke; Liu Yang; Zhang Qinshun

    2001-01-01

    A research on high-speed liquid-metal lithium flow through a non-expanding rectangular duck under uniform intense magnetic field is presented. A equations set with Poisson equation and Helmholtz equation, which control the electrical field and flow field respectively, has been deduced by analysis and PHsolver, a program to solve the equations set, has also been finished. The current density distribution and flow field in the non-expanding rectangular channel with intense magnetic field have been obtained from PHsolver by applying the wall-function in the boundary wall. The velocity profile in the duck appears M-shaped

  14. Recycling positive-electrode material of a lithium-ion battery

    Science.gov (United States)

    Sloop, Steven E.

    2017-11-21

    Examples are disclosed of methods to recycle positive-electrode material of a lithium-ion battery. In one example, the positive-electrode material is heated under pressure in a concentrated lithium hydroxide solution. After heating, the positive-electrode material is separated from the concentrated lithium hydroxide solution. After separating, the positive electrode material is rinsed in a basic liquid. After rinsing, the positive-electrode material is dried and sintered.

  15. An approach of ionic liquids/lithium salts based microwave irradiation pretreatment followed by ultrasound-microwave synergistic extraction for two coumarins preparation from Cortex fraxini.

    Science.gov (United States)

    Liu, Zaizhi; Gu, Huiyan; Yang, Lei

    2015-10-23

    Ionic liquids/lithium salts solvent system was successfully introduced into the separation technique for the preparation of two coumarins (aesculin and aesculetin) from Cortex fraxini. Ionic liquids/lithium salts based microwave irradiation pretreatment followed by ultrasound-microwave synergy extraction (ILSMP-UMSE) procedure was developed and optimized for the sufficient extraction of these two analytes. Several variables which can potentially influence the extraction yields, including pretreatment time and temperature, [C4mim]Br concentration, LiAc content, ultrasound-microwave synergy extraction (UMSE) time, liquid-solid ratio, and UMSE power were optimized by Plackett-Burman design. Among seven variables, UMSE time, liquid-solid ratio, and UMSE power were the statistically significant variables and these three factors were further optimized by Box-Behnken design to predict optimal extraction conditions and find out operability ranges with maximum extraction yields. Under optimum operating conditions, ILSMP-UMSE showed higher extraction yields of two target compounds than those obtained by reference extraction solvents. Method validation studies also evidenced that ILSMP-UMSE is credible for the preparation of two coumarins from Cortex fraxini. This study is indicative of the proposed procedure that has huge application prospects for the preparation of natural products from plant materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. RECOVERY OF LITHIUM FROM WASTE MATERIALS

    Directory of Open Access Journals (Sweden)

    JITKA JANDOVÁ

    2012-03-01

    Full Text Available In this study, processes based on roasting-leaching-crystallization steps and condensation-precipitation steps for Li2CO3 separation from spent Li/MnO2 batteries and lithium-containing wastewaters were developed and verified on a laboratory scale. Spent Li/MnO2 batteries were roasted under reduced pressure at 650°C, which split the castings and deactivated the batteries by reduction of LiMnO2 and MnO2 with residual lithium metal and graphite to form MnO and Li2CO3. The resultant lithium carbonate was selectively solubilised in water with manganese remaining in the leach residue. Li2CO3 of 99.5 % purity was obtained after evaporation of 95 % water. Processing of lithium-containing alkaline wastewaters from the production of liquid rubber comprises condensation up to lithium concentration of 12-13 g/l Li and a two-step precipitation of lithium carbonate using CO2 as a precipitation agent. Sparingly soluble Li2CO3 was produced in the second step at 95°C, whilst most impurities remain in the solution. Obtained lithium carbonate products contained on average more than 99.5 % Li2CO3. The lithium precipitation efficiency was about 90 %.

  17. Large lithium loop experience

    International Nuclear Information System (INIS)

    Kolowith, R.; Owen, T.J.; Berg, J.D.; Atwood, J.M.

    1981-10-01

    An engineering design and operating experience of a large, isothermal, lithium-coolant test loop are presented. This liquid metal coolant loop is called the Experimental Lithium System (ELS) and has operated safely and reliably for over 6500 hours through September 1981. The loop is used for full-scale testing of components for the Fusion Materials Irradiation Test (FMIT) Facility. Main system parameters include coolant temperatures to 430 0 C and flow to 0.038 m 3 /s (600 gal/min). Performance of the main pump, vacuum system, and control system is discussed. Unique test capabilities of the ELS are also discussed

  18. Corrosion behaviour of materials selected for FMIT lithium system

    Energy Technology Data Exchange (ETDEWEB)

    Bazinet, G.D.; Brehm, W.F.

    1983-09-01

    The corrosion behavior of selected materials in a liquid lithium environment was studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. Testing conditions ranged from about 3700 to about6500 hours of exposure to flowing lithium at temperatures from 230/sup 0/ to 270/sup 0/C and static lithium at temperatures from 200/sup 0/ to 500/sup 0/C. Principal areas of investigation included lithium corrosion/erosion effects on FMIT lithium system baseline and candidate materials. Material coupons and full-size prototypic components were evaluated to determine corrosion rates, fatigue crack growth rates, structural compatibility, and component acceptability for the lithium system. Based on the results of these studies, concerns regarding system materials and component designs were satisfactorily resolved to support a 20-year design life requirement for the FMIT lithium system.

  19. Corrosion behaviour of materials selected for FMIT lithium system

    International Nuclear Information System (INIS)

    Bazinet, G.D.; Brehm, W.F.

    1983-01-01

    The corrosion behavior of selected materials in a liquid lithium environment was studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. Testing conditions ranged from about 3700 to about6500 hours of exposure to flowing lithium at temperatures from 230 0 to 270 0 C and static lithium at temperatures from 200 0 to 500 0 C. Principal areas of investigation included lithium corrosion/erosion effects on FMIT lithium system baseline and candidate materials. Material coupons and full-size prototypic components were evaluated to determine corrosion rates, fatigue crack growth rates, structural compatibility, and component acceptability for the lithium system. Based on the results of these studies, concerns regarding system materials and component designs were satisfactorily resolved to support a 20-year design life requirement for the FMIT lithium system

  20. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry.

    Science.gov (United States)

    Kasnatscheew, Johannes; Wagner, Ralf; Winter, Martin; Cekic-Laskovic, Isidora

    2018-04-18

    Energy storage is considered a key technology for successful realization of renewable energies and electrification of the powertrain. This review discusses the lithium ion battery as the leading electrochemical storage technology, focusing on its main components, namely electrode(s) as active and electrolyte as inactive materials. State-of-the-art (SOTA) cathode and anode materials are reviewed, emphasizing viable approaches towards advancement of the overall performance and reliability of lithium ion batteries; however, existing challenges are not neglected. Liquid aprotic electrolytes for lithium ion batteries comprise a lithium ion conducting salt, a mixture of solvents and various additives. Due to its complexity and its role in a given cell chemistry, electrolyte, besides the cathode materials, is identified as most susceptible, as well as the most promising, component for further improvement of lithium ion batteries. The working principle of the most important commercial electrolyte additives is also discussed. With regard to new applications and new cell chemistries, e.g., operation at high temperature and high voltage, further improvements of both active and inactive materials are inevitable. In this regard, theoretical support by means of modeling, calculation and simulation approaches can be very helpful to ex ante pre-select and identify the aforementioned components suitable for a given cell chemistry as well as to understand degradation phenomena at the electrolyte/electrode interface. This overview highlights the advantages and limitations of SOTA lithium battery systems, aiming to encourage researchers to carry forward and strengthen the research towards advanced lithium ion batteries, tailored for specific applications.

  1. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    International Nuclear Information System (INIS)

    Allain, J.P.; Rokusek, D.L.; Harilal, S.S.; Nieto-Perez, M.; Skinner, C.H.; Kugel, H.W.; Heim, B.; Kaita, R.; Majeski, R.

    2009-01-01

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  2. Modelling transport-limited discharge capacity of lithium-sulfur cells

    International Nuclear Information System (INIS)

    Zhang, Teng; Marinescu, Monica; Walus, Sylwia; Offer, Gregory J.

    2016-01-01

    Highlights: • We modelled the rate capability of a Li-S cell based on mass-transport limitation • The model predicts a discharged Li-S cell to regain capacity upon short relaxation • Modelled rate capability and capacity recovery effect validated with measurements - Abstract: Lithium-sulfur (Li-S) battery could bring a step-change in battery technology with a potential specific energy density of 500 - 600 Wh/kg. A key challenge for further improving the specific energy-density of Li-S cells is to understand the mechanisms behind reduced sulfur utilisation at low electrolyte loadings and high discharge currents. While several Li-S models have been developed to explore the discharge mechanisms of Li-S cells, they so far fail to capture the discharge profiles at high currents. In this study, we propose that the slow ionic transport in concentrated electrolyte is limiting the rate capability of Li-S cells. This transport-limitation mechanism is demonstrated through a one-dimensional Li-S model which qualitatively captures the discharge capacities of a sulfolane-based Li-S cell at different currents. Furthermore, our model predicts that a discharged Li-S cell is able regain some capacity with a short period of relaxation. This capacity recovery phenomenon is validated experimentally for different discharge currents and relaxation durations. The transport-limited discharge behavior of Li-S cells highlights the importance of optimizing the electrolyte loading and electrolyte transport property in Li-S cells.

  3. Liquid jet experiments: relevance to inertial confinement fusion reactors

    International Nuclear Information System (INIS)

    Hoffman, M.A.

    1981-01-01

    In order to try to find a reactor design which offered protection against neutron damage, studies were undertaken at LLNL (the Lawrence Livermore National Laboratory) of self-healing, renewable liquid-wall reactor concepts. In conjuction with these studies, were done a seris of small-scale aer jet experiments were done over the past several years at UCD (University of California, Davis Campus) to simulate the behavior of liquid lithium (or lithium-lead) jets in these liquid-wall fusion reactor concepts. Extropolating the results of these small-scale experiments to the large-scale lithium jets, tentatively concluded that the lithium jet can be re-established after the microexplosion, and with careful design the jets should not breakup due to instabilities during the relatively quiscent period between MICROEXPLOSIONS

  4. Direct tritium measurement in lithium titanate for breeding blanket mock-up experiments with D-T neutrons

    International Nuclear Information System (INIS)

    Klix, A.; Ochiai, K.; Nishitani, T.; Takahashi, A.

    2004-01-01

    At Fusion Neutronics Source (FNS) of JAERI, tritium breeding experiments with blanket mock-ups consisting of advanced fusion reactor materials are in progress. The breeding zones are thin layers of lithium titanate which is one of the candidate tritium breeder materials for the DEMO fusion power reactor. It is anticipated that the application of small pellet-shaped lithium titanate detectors manufactured from the same material as the breeding layer will reduce experimental uncertainties arising from necessary corrections due to different isotopic lithium volume concentrations in breeding material and detector. Therefore, a method was developed to measure the local tritium production by means of lithium titanate pellet detectors and a liquid scintillation counting technique. The lithium titanate pellets were dissolved in concentrated hydrochloric acid solution and the resulting acidic solution was neutralized. Two ways of further processing were followed: direct incorporation into a liquid scintillation cocktail and distillation of the solution followed by mixing with liquid scintillator. Two types of lithium titanate pellets were investigated with different 6 Li enrichment and manufacturing procedure. It was found that lithium titanate is suitable for tritium production measurements. However some discrepancies in the measurement accuracy remained with one of the investigated pellet detectors when compared with a well-established lithium carbonate measurement technique and this issue needs further investigation

  5. Determination of tritium generation and release parameters at lithium CPS under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ponkratov, Yuriy, E-mail: ponkratov@nnc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Baklanov, Viktor; Skakov, Mazhyn; Kulsartov, Timur; Tazhibayeva, Irina; Gordienko, Yuriy; Zaurbekova, Zhanna; Tulubayev, Yevgeniy [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Chikhray, Yevgeniy [Institute of Experimental and Theoretical Physics of Kazakh National University, Almaty (Kazakhstan); Lyublinski, Igor [JSC “Star”, Moscow (Russian Federation); NRNU “MEPhI”, Moscow (Russian Federation); Vertkov, Alexey [JSC “Star”, Moscow (Russian Federation)

    2016-11-01

    Highlights: • The main parameters of tritium generation and release from lithium capillary-porous system (CPS) under neutron irradiation at the IVG.1 M research reactor is described in paper. • In the experiments a very small tritium release was fixed likely due to its high solubility in liquid lithium. • If the lithium CPS will be used as a plasma facing material in temperature range up to 773 K under neutron irradiation only helium will release from lithium CPS into a vacuum chamber. - Abstract: This paper describes the main parameters of tritium generation and release from lithium capillary-porous system (CPS) under neutron irradiation at the IVG.1 M research reactor. The experiments were carried out using the method of mass-spectrometric registration of released gases and using a specially constructed ampoule device. Irradiation was carried out at different reactor thermal powers (1, 2 and 6 MW) and sample temperatures from 473 to 773 K. In the experiments a very small tritium release was detected likely due to its high solubility in liquid lithium. It can be caused by formation of lithium tritide during tritium diffusion to the lithium surface.

  6. Recent progress of NSTX lithium program and opportunities for magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, M., E-mail: mono@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Bell, M.G.; Kaita, R.; Kugel, H.W. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Ahn, J.-W. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Allain, J.P.; Battaglia, D. [Purdue University, West Lafayette, IN 47907 (United States); Bell, R.E. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Canik, J.M. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Ding, S. [Academy of Science Institute of Plasma Physics, Hefei (China); Gerhardt, S. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Gray, T.K. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Guttenfelder, W.; Hosea, J.; Jaworski, M.A.; Kallman, J.; Kaye, S.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Maingi, R. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Mansfield, D.K. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); and others

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer In this paper, we review the recent progress on the NSTX lithium research. Black-Right-Pointing-Pointer We summarize positive features of lithium effects on plasma. Black-Right-Pointing-Pointer We also point out unresolved issues and unanswered questions on the lithium research. Black-Right-Pointing-Pointer We describe a possible closed liquid lithium divertor tray concept. Black-Right-Pointing-Pointer We note opportunities and challenges of lithium applications for magnetic fusion. - Abstract: Lithium wall coating techniques have been experimentally explored on National Spherical Torus Experiment (NSTX) for the last six years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a dual lithium evaporation system which can evaporate up to {approx}160 g of lithium onto the lower divertor plates between re-loadings. The unique feature of the NSTX lithium research program is that it can investigate the effects of lithium coated plasma-facing components in H-mode divertor plasmas. This lithium evaporation system has produced many intriguing and potentially important results. In 2010, the NSTX lithium program has focused on the effects of liquid lithium divertor (LLD) surfaces including the divertor heat load, deuterium pumping, impurity control, electron thermal confinement, H-mode pedestal physics, and enhanced plasma performance. To fill the LLD with lithium, 1300 g of lithium was evaporated into the NSTX vacuum vessel during the 2010 operations. The routine use of lithium in 2010 has significantly improved the plasma shot availability resulting in a record number of plasma shots in any given year. In this paper, as a follow-on paper from the 1st lithium symposium [1], we review the recent progress toward developing fundamental understanding of the NSTX lithium experimental observations as well as the opportunities and associated R and D required

  7. Liquid-phase plasma synthesis of silicon quantum dots embedded in carbon matrix for lithium battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ying [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121000 (China); Yu, Hang; Li, Haitao; Ming, Hai; Pan, Keming; Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China)

    2013-10-15

    Graphical abstract: - Highlights: • Silicon quantum dots embedded in carbon matrix (SiQDs/C) were fabricated. • SiQDs/C exhibits excellent battery performance as anode materials with high specific capacity. • The good performance was attributed to the marriage of small sized SiQDs and carbon. - Abstract: Silicon quantum dots embedded in carbon matrix (SiQDs/C) nanocomposites were prepared by a novel liquid-phase plasma assisted synthetic process. The SiQDs/C nanocomposites were demonstrated to show high specific capacity, good cycling life and high coulmbic efficiency as anode materials for lithium-ion battery.

  8. Liquid-phase plasma synthesis of silicon quantum dots embedded in carbon matrix for lithium battery anodes

    International Nuclear Information System (INIS)

    Wei, Ying; Yu, Hang; Li, Haitao; Ming, Hai; Pan, Keming; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2013-01-01

    Graphical abstract: - Highlights: • Silicon quantum dots embedded in carbon matrix (SiQDs/C) were fabricated. • SiQDs/C exhibits excellent battery performance as anode materials with high specific capacity. • The good performance was attributed to the marriage of small sized SiQDs and carbon. - Abstract: Silicon quantum dots embedded in carbon matrix (SiQDs/C) nanocomposites were prepared by a novel liquid-phase plasma assisted synthetic process. The SiQDs/C nanocomposites were demonstrated to show high specific capacity, good cycling life and high coulmbic efficiency as anode materials for lithium-ion battery

  9. Semi-empirical master curve concept describing the rate capability of lithium insertion electrodes

    Science.gov (United States)

    Heubner, C.; Seeba, J.; Liebmann, T.; Nickol, A.; Börner, S.; Fritsch, M.; Nikolowski, K.; Wolter, M.; Schneider, M.; Michaelis, A.

    2018-03-01

    A simple semi-empirical master curve concept, describing the rate capability of porous insertion electrodes for lithium-ion batteries, is proposed. The model is based on the evaluation of the time constants of lithium diffusion in the liquid electrolyte and the solid active material. This theoretical approach is successfully verified by comprehensive experimental investigations of the rate capability of a large number of porous insertion electrodes with various active materials and design parameters. It turns out, that the rate capability of all investigated electrodes follows a simple master curve governed by the time constant of the rate limiting process. We demonstrate that the master curve concept can be used to determine optimum design criteria meeting specific requirements in terms of maximum gravimetric capacity for a desired rate capability. The model further reveals practical limits of the electrode design, attesting the empirically well-known and inevitable tradeoff between energy and power density.

  10. Synthesis of Lithium Fluoride from Spent Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Daniela S. Suarez

    2017-05-01

    Full Text Available Lithium (Li is considered a strategic element whose use has significantly expanded. Its current high demand is due to its use in lithium ion batteries for portable electronic devices, whose manufacture and market are extensively growing every day. These days there is a great concern about the final disposal of these batteries. Therefore, the possibility of developing new methodologies to recycle their components is of great importance, both commercially and environmentally. This paper presents results regarding important operational variables for the dissolution of the lithium and cobalt mixed-oxide (LiCoO2 cathodes from spent lithium ion batteries (LIBs with hydrofluoric acid. The recovery and synthesis of Co and Li compounds were also investigated. The dissolution parameters studied were: temperature, reaction time, solid-liquid ratio, stirring speed, and concentration of HF. The investigated recovery parameters included: pH, temperature, and time with and without stirring. The final precipitation of lithium fluoride was also examined. The results indicate that an increase in the HF concentration, temperature, and reaction time favors the leaching reaction of the LiCoO2. Dissolutions were close to 60%, at 75 °C and 120 min with a HF concentration of 25% (v/v. The recovery of Co and Li were 98% and 80%, respectively, with purities higher than 94%. Co and Li compounds, such as Co3O4 and LiF, were synthesized. Furthermore, it was possible to almost completely eliminate the F− ions as CaF2.

  11. A compact self-flowing lithium system for use in an industrial neutron source

    Science.gov (United States)

    Kalathiparambil, Kishor Kumar; Szott, Matthew; Jurczyk, Brian; Ahn, Chisung; Ruzic, David

    2016-10-01

    A compact trench module to flow liquid lithium in closed loops for handling high heat and particle flux have been fabricated and tested at UIUC. The module was designed to demonstrate the proof of concept in utilizing liquid metals for two principal objectives: i) as self-healing low Z plasma facing components, which is expected to solve the issues facing the current high Z components and ii) using flowing lithium as an MeV-level neutron source. A continuously flowing lithium loop ensures a fresh lithium interface and also accommodate a higher concentration of D, enabling advanced D-Li reactions without using any radioactive tritium. Such a system is expected to have a base yield of 10e7 n/s. For both the applications, the key success factor of the module is attaining the necessary high flow velocity of the lithium especially over the impact area, which will be the disruptive plasma events in fusion reactors and the incident ion beam for the neutron beam source. This was achieved by the efficient shaping of the trenches to exploit the nozzle effect in liquid flow. The compactness of the module, which can also be scaled as desired, was fulfilled by the use of high Tc permanent magnets and air cooled channels attained the necessary temperature gradient for driving the lithium. The design considerations and parameters, experimental arrangements involving lithium filling and attaining flow, data and results obtained will be elaborated. DOE SBIR project DE-SC0013861.

  12. A Lithium Vapor Box Divertor Similarity Experiment

    Science.gov (United States)

    Cohen, Robert A.; Emdee, Eric D.; Goldston, Robert J.; Jaworski, Michael A.; Schwartz, Jacob A.

    2017-10-01

    A lithium vapor box divertor offers an alternate means of managing the extreme power density of divertor plasmas by leveraging gaseous lithium to volumetrically extract power. The vapor box divertor is a baffled slot with liquid lithium coated walls held at temperatures which increase toward the divertor floor. The resulting vapor pressure differential drives gaseous lithium from hotter chambers into cooler ones, where the lithium condenses and returns. A similarity experiment was devised to investigate the advantages offered by a vapor box divertor design. We discuss the design, construction, and early findings of the vapor box divertor experiment including vapor can construction, power transfer calculations, joint integrity tests, and thermocouple data logging. Heat redistribution of an incident plasma-based heat flux from a typical linear plasma device is also presented. This work supported by DOE Contract No. DE-AC02-09CH11466 and The Princeton Environmental Institute.

  13. Molecular dynamics study of thermodynamic stability and dynamics of [Li(glyme)]+ complex in lithium-glyme solvate ionic liquids

    Science.gov (United States)

    Shinoda, Wataru; Hatanaka, Yuta; Hirakawa, Masashi; Okazaki, Susumu; Tsuzuki, Seiji; Ueno, Kazuhide; Watanabe, Masayoshi

    2018-05-01

    Equimolar mixtures of glymes and organic lithium salts are known to produce solvate ionic liquids, in which the stability of the [Li(glyme)]+ complex plays an important role in determining the ionic dynamics. Since these mixtures have attractive physicochemical properties for application as electrolytes, it is important to understand the dependence of the stability of the [Li(glyme)]+ complex on the ion dynamics. A series of microsecond molecular dynamics simulations has been conducted to investigate the dynamic properties of these solvate ionic liquids. Successful solvate ionic liquids with high stability of the [Li(glyme)]+ complex have been shown to have enhanced ion dynamics. Li-glyme pair exchange rarely occurs: its characteristic time is longer than that of ion diffusion by one or two orders of magnitude. Li-glyme pair exchange most likely occurs through cluster formation involving multiple [Li(glyme)]+ pairs. In this process, multiple exchanges likely take place in a concerted manner without the production of energetically unfavorable free glyme or free Li+ ions.

  14. Control System for the NSTX Lithium Pellet Injector

    International Nuclear Information System (INIS)

    Sichta, P.; Dong, J.; Gernhardt, R.; Gettelfinger, G.; Kugel, H.

    2003-01-01

    The Lithium Pellet Injector (LPI) is being developed for the National Spherical Torus Experiment (NSTX). The LPI will inject ''pellets'' of various composition into the plasma in order to study wall conditioning, edge impurity transport, liquid limiter simulations, and other areas of research. The control system for the NSTX LPI has incorporated widely used advanced technologies, such as LabVIEW and PCI bus I/O boards, to create a low-cost control system which is fully integrated into the NSTX computing environment. This paper will present the hardware and software design of the computer control system for the LPI

  15. Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy.

    Science.gov (United States)

    Xiao, Jiefeng; Li, Jia; Xu, Zhenming

    2017-10-17

    Lithium is a rare metal because of geographical scarcity and technical barrier. Recycling lithium resource from spent lithium ion batteries (LIBs) is significant for lithium deficiency and environmental protection. A novel approach for recycling lithium element as Li 2 CO 3 from spent LIBs is proposed. First, the electrode materials preobtained by mechanical separation are pyrolyzed under enclosed vacuum condition. During this process the Li is released as Li 2 CO 3 from the crystal structure of lithium transition metal oxides due to the collapse of the oxygen framework. An optimal Li recovery rate of 81.90% is achieved at 973 K for 30 min with a solid-to-liquid ratio of 25 g L -1 , and the purity rate of Li 2 CO 3 is 99.7%. The collapsed mechanism is then presented to explain the release of lithium element during the vacuum pyrolysis. Three types of spent LIBs including LiMn 2 O 4 , LiCoO 2 , and LiCo x Mn y Ni z O 2 are processed to prove the validity of in situ recycling Li 2 CO 3 from spent LIBs under enclosed vacuum condition. Finally, an economic assessment is taken to prove that this recycling process is positive.

  16. Performance investigations of liquid-metal heat pipes for space and terrestrial applications

    International Nuclear Information System (INIS)

    Kemme, J.E.; Keddy, E.S.; Phillips, J.R.

    1978-01-01

    The high heat transfer capacity of liquid-metal heat pipes is demonstrated in performance tests with mercury, potassium, sodium, and lithium working fluids and wick structures which serve to minimize liquid pressure losses and vapor/liquid interactions. Appropriate wicks for horizontal and vertical operation are described. It is shown that heat-transfer with these wicks is limited by vapor flow effects. Examples are given of particular effects associated with a long adiabatic section between evaporator and condenser and with a heat source of uniform temperature as opposed to a source of uniform power

  17. Tabular equation of state of lithium for laser-fusion reactor studies

    International Nuclear Information System (INIS)

    Young, D.A.; Ross, M.; Rogers, F.J.

    1979-01-01

    A tabular lithium equation of state was formulated from three separate equation-of-state models to carry out hydrodynamic simulations of a lithium-waterfall laser-fusion reactor. The models we used are: ACTEX for the ionized fluid, soft-sphere for the liquid and vapor, and pseudopotential for the hot, dense liquid. The models are smoothly joined over the range of density and temperature conditions appropriate for a laser-fusion reactor. We also fitted the models into two forms suitable for hydrodynamic calculations

  18. Tabular equation of state of lithium for laser-fusion reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.A.; Ross, M.; Rogers, F.J.

    1979-01-19

    A tabular lithium equation of state was formulated from three separate equation-of-state models to carry out hydrodynamic simulations of a lithium-waterfall laser-fusion reactor. The models we used are: ACTEX for the ionized fluid, soft-sphere for the liquid and vapor, and pseudopotential for the hot, dense liquid. The models are smoothly joined over the range of density and temperature conditions appropriate for a laser-fusion reactor. We also fitted the models into two forms suitable for hydrodynamic calculations.

  19. A Liquid Inorganic Electrolyte Showing an Unusually High Lithium Ion Transference Number: A Concentrated Solution of LiAlCl4 in Sulfur Dioxide

    Directory of Open Access Journals (Sweden)

    Martin Winter

    2013-08-01

    Full Text Available We report on studies of an inorganic electrolyte: LiAlCl4 in liquid sulfur dioxide. Concentrated solutions show a very high conductivity when compared with typical electrolytes for lithium ion batteries that are based on organic solvents. Our investigations include conductivity measurements and measurements of transference numbers via nuclear magnetic resonance (NMR and by a classical direct method, Hittorf’s method. For the use of Hittorf’s method, it is necessary to measure the concentration of the electrolyte in a selected cell compartment before and after electrochemical polarization very precisely. This task was finally performed by potentiometric titration after hydrolysis of the salt. The Haven ratio was determined to estimate the association behavior of this very concentrated electrolyte solution. The measured unusually high transference number of the lithium cation of the studied most concentrated solution, a molten solvate LiAlCl4 × 1.6SO2, makes this electrolyte a promising alternative for lithium ion cells with high power ability.

  20. Secondary lithium solid polymer electrolyte cells

    International Nuclear Information System (INIS)

    Fix, K.A.; Sammells, A.F.

    1988-01-01

    A strategy for developing morphologically invariant lithium/solid polymer electrolyte interface is being investigated via the use of lithium intercalated electrodes. Emphasis is being placed upon the rutile material Li/sub x/WO/sub 2/ 0.1 < x < 1.0. An absence of shape change at this interface is expected to result in both long cycle life electrochemical cells and the simultaneous maintenance of small interelectrode spacing so that low IR losses can be maintained. During fabrication of cells investigated here both electrochemical and chemical lithium intercalation of WO/sub 2/ was pursued. In the case of larger WO/sub 2/ electrodes initially prepared for fully discharged state cells, electrochemical intercalation during cell charge was found to require significant time, and the reproducible achievement of complete uniform intercalation across the negative electrode became an issue. Emphasis was consequently placed upon cells fabricated using Li/sub x/WO/sub 2/ electrodes initially chemically intercalated by lithium prior to cell assembly. Previous work has demonstrated direct lithium intercalation of metal dichalcogenides using n-BuLi. Lithium activity in n-BuLi is, however, insufficient to achieve lithium intercalation of WO/sub 2//sup 4/. However, recent work has shown that WO/sub 2/ can be directly lithium intercalated upon immersion in lithium naphthalide. Li/sub x/WO/sub 2/ electrodes prepared in this work were intercalated using lithium naphthalide (0.8M) in 2MeTHF. Lithium intercalation was found to readily occur at room temperature, being initially rapid and slowing as bulk intercalation within the electrode proceeded. For electrodes intercalated in this manner, a relationship was identified between the degree of lithium intercalation and initial open-circuit potential in liquid non-aqueous electrolyte

  1. Ionic-Liquid-Tethered Nanoparticles: Hybrid Electrolytes

    KAUST Repository

    Moganty, Surya S.

    2010-10-22

    A new class of solventless electrolytes was created by tethering ionic liquids to hard inorganic ZrO2 nanostructures (see picture; NIM=nanoscale ionic material). These hybrid fluids exhibit exceptional redox stability windows, excellent thermal stability, good lithium transference numbers, long-term interfacial stability in the presence of a lithium anode and, when doped with lithium salt, reasonable ionic conductivities.

  2. The isolation of beryllium and mercury from lithium chloride solution by means of gas extraction

    International Nuclear Information System (INIS)

    Sevast'yanov, A.I.; Chepovoj, V.I.

    1988-01-01

    The possibility and optimal conditions of beryllium and mercury extraction using acetylacetone (HAA) from lithium chloride solution by argon blowing through the solution are determined. Dependences of extraction degrees and distribution coefficients on different parameters of liquid phase: initial pH value, lithium chloride concentration and initial content of HAA, are presented. The degree of beryllium extraction reaches the maximum at liquid phase pH of 4.4-5.25 and concentration of lithium chloride of 8.5 mol/l. Distribution coefficient changes in inverse proportion to the extraction degree

  3. Electrolyte compositions for lithium ion batteries

    Science.gov (United States)

    Sun, Xiao-Guang; Dai, Sheng; Liao, Chen

    2016-03-29

    The invention is directed in a first aspect to an ionic liquid of the general formula Y.sup.+Z.sup.-, wherein Y.sup.+ is a positively-charged component of the ionic liquid and Z.sup.- is a negatively-charged component of the ionic liquid, wherein Z.sup.- is a boron-containing anion of the following formula: ##STR00001## The invention is also directed to electrolyte compositions in which the boron-containing ionic liquid Y.sup.+Z.sup.- is incorporated into a lithium ion battery electrolyte, with or without admixture with another ionic liquid Y.sup.+X.sup.- and/or non-ionic solvent and/or non-ionic solvent additive.

  4. Note: Proton irradiation at kilowatt-power and neutron production from a free-surface liquid-lithium target

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S.; Feinberg, G. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Arenshtam, A.; Kijel, D.; Weissman, L.; Aviv, O.; Berkovits, D.; Dudovitch, O.; Eisen, Y.; Eliyahu, I.; Haquin, G.; Hazenshprung, N.; Kreisel, A.; Mardor, I.; Shimel, G.; Shor, A.; Silverman, I.; Yungrais, Z. [Soreq NRC, Yavne 81800 (Israel); Paul, M., E-mail: paul@vms.huji.ac.il; Tessler, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2014-05-15

    The free-surface Liquid-Lithium Target, recently developed at Soreq Applied Research Accelerator Facility (SARAF), was successfully used with a 1.9 MeV, 1.2 mA (2.3 kW) continuous-wave proton beam. Neutrons (∼2 × 10{sup 10} n/s having a peak energy of ∼27 keV) from the {sup 7}Li(p,n){sup 7}Be reaction were detected with a fission-chamber detector and by gold activation targets positioned in the forward direction. The setup is being used for nuclear astrophysics experiments to study neutron-induced reactions at stellar energies and to demonstrate the feasibility of accelerator-based boron neutron capture therapy.

  5. Optimized Wavelength-Tuned Nonlinear Frequency Conversion Using a Liquid Crystal Clad Waveguide

    Science.gov (United States)

    Stephen, Mark A. (Inventor)

    2018-01-01

    An optimized wavelength-tuned nonlinear frequency conversion process using a liquid crystal clad waveguide. The process includes implanting ions on a top surface of a lithium niobate crystal to form an ion implanted lithium niobate layer. The process also includes utilizing a tunable refractive index of a liquid crystal to rapidly change an effective index of the lithium niobate crystal.

  6. Liquid-metal aspects of HYLIFE

    International Nuclear Information System (INIS)

    Meier, W.R.; Hoffman, N.J.; McDowell, M.W.

    1980-01-01

    The High Yield Lithium Injection Fusion Energy (HYLIFE) converter is a reactor concept for an inertial fusion electric power plant. In this concept, flowing molten lithium protects the structures of the fusion chamber from the deleterious effects of deuterium-tritium (DT) fusion reactions and converts the pulsed fusion energy into steay thermal power. Lithium is circulated as the primary coolant to transfer heat to an intermediate sodium loop which drives a superheated steam cycle. Lithium is also the source of the tritium fuel which is recovered via a molten-salt extraction process. The liquid-metal aspects of the HYLIFE plant with particular emphasis on the lithium systems

  7. Physicochemical characterization of a new family of small alkyl phosphonium imide ionic liquids

    International Nuclear Information System (INIS)

    Hilder, M.; Girard, G.M.A.; Whitbread, K.; Zavorine, S.; Moser, M.; Nucciarone, D.; Forsyth, M.; MacFarlane, D.R.; Howlett, P.C.

    2016-01-01

    Despite their promising properties, phosphonium based ionic liquids have attracted little attention as compared to their nitrogen-based cation counterparts. This study focuses on the properties of a family of small phosphonium imide ionic liquids, as well as the effect of lithium salt addition to these. The 6 ionic liquids were either alkyl, cyclic or nitrile functionalised phoshonium cations with bis(trifluoromethanesulfonyl)imide, NTf_2, or bis(fluorosulfonyl)imide (FSI) as anion. Amongst the properties investigated were ionic conductivity, viscosity, thermal behaviour, electrochemical stability and the reversibility of electrochemical lithium cycling. All ionic liquids showed very promising properties e.g. having low transition temperatures, high electrochemical stabilities, low viscosities and high conductivities. Particularly the trimethyl phosphonium ionic liquids showed some of the highest conductivities reported amongst phosphonium ionic liquids generally. The combination of electrochemical stability, high conductivity and reversible lithium cycling makes them promising systems for energy storage devices such as lithium batteries.

  8. Insertion of lead lithium eutectic mixture in RELAP/SCDAPSIM Mod 4.0 for Fusion Reactor Systems

    International Nuclear Information System (INIS)

    Tiwari, Ashutosh; Allison, Brian; Hohorst, J.K.; Wagner, R.J.; Allison, Chris

    2012-01-01

    Highlights: ► Thermodynamic and transport properties of lead lithium eutectic mixture have been inserted in RELAP/SCDAPSIM MOD 4.0 code. ► Code results are verified for a simple pipe problem with lead lithium eutectic mixture flowing in it. ► Code is calculating the inserted properties of lead lithium eutectic mixture to a fairly good agreement. - Abstract: RELAP/SCDAPSIM Mod 4.0 code was developed by Innovative System Software (ISS) for the analysis of nuclear power plants (NPPs) cooled by light water and heavy water. Later on the code was expanded to analyze the NPPs cooled by liquid metal, in this sequence: lead bismuth eutectic mixture, liquid sodium and lead lithium eutectic mixture (LLE) are inserted in the code. This paper focuses on the insertion of liquid LLE as a coolant for NPPs in the RELAP/SCDAPSIM Mod 4.0 code. Evaluation of the code was made for a simple pipe problem connected with heat structures having liquid LLE as a coolant in it. The code is predicting well all the thermodynamic and transport properties of LLE.

  9. Thermal hydraulic and power cycle analysis of liquid lithium blanket designs

    International Nuclear Information System (INIS)

    Misra, B.; Stevens, H.C.; Maroni, V.A.

    1977-01-01

    Thermal hydraulic and power cycle analyses were performed for the first-wall and blanket systems of tokamak-type fusion reactors under a typical set of design and operating conditions. The analytical results for lithium-cooled blanket cells show that with stainless steel as construction material and with no divertor present, the maximum allowable neutron wall loading is approximately 2 MW/m 2 and is limited by thermal stress criteria. With vanadium alloy as construction material and no divertor present, the maximum allowable neutron wall loading is approximately 8 MW/m 2 and is limited by an interplay of constraints imposed on the maximum allowable structural temperature and the minimum allowable coolant inlet temperature. With a divertor these wall loadings can be increased by from 40 to 90 percent. The cost of the vanadium system is found to be competitive with the stainless steel system because of the higher allowable structural temperatures and concomitant higher thermal efficiencies afforded by the vanadium alloys

  10. Recent experimental results on solutions of deuterium in lithium

    International Nuclear Information System (INIS)

    Ihle, H.R.; Wu, C.H.

    1976-01-01

    The existence of a number of stable molecules containing lithium and hydrogen isotopes in the saturated vapor over dilute solutions of hydrogen isotopes in lithium causes an unexpectedly high density of hydrogen isotopes in the vapor at high temperature. An evaluation of the partial pressures of the gas species Li, Li 2 , LiD, Li 2 D, LiD 2 and D 2 over solutions of deuterium in lithium measured in the temperature range 770 to 970 0 K, and extrapolation to higher temperatures, leads to the conclusion that the ratio of the atom fraction of deuterium in the gas to its atom fraction in the liquid exceeds unity above approximately 1240 0 K; this ratio is independent of the deuterium atom fraction in the liquid at low concentrations. Therefore the thermodynamic supposition that hydrogen isotopes can be separated from lithium by fractional distillation even at extremely low concentration exists. A direct verification of this phenomenon was made by Rayleigh distillation of Li-D solutions in the temperature range 970 to 1600 0 K. These measurements yield also the ratio of the deuterium atom fraction in the gas to that in the liquid and are in good agreement with the data obtained by extrapolation of partial pressures. The enrichment and depletion of deuterium in dependence on the number of theoretical plates of a distillation column at total reflux is calculated using the results

  11. Nanoconfinement of LiBH4 for High Ionic Conductivity in Lithium Ion Batteries

    DEFF Research Database (Denmark)

    Lefevr, Jessica Emilia Avlina; Das, Supti; Blanchard, Didier

    2016-01-01

    Efficient energy conversion and storage is crucial for development of systems based on renewable energy sources. For electricity storage, Li-ion batteries are commonly used in electronics devices but require many improvements to obtain longer life-time and higher energy densities. The current use...... of organic liquids and gels electrolytes limits these improvements because of lithium dendrites formation, reducing the lifetime of the battery and which can possibly be hazardous due to risks of short circuits....

  12. Piperidinium tethered nanoparticle-hybrid electrolyte for lithium metal batteries

    KAUST Repository

    Korf, Kevin S.

    2014-06-23

    We report on the synthesis of novel piperidinium-based ionic liquid tethered nanoparticle hybrid electrolytes and investigate their physical and electrochemical properties. Hybrid electrolytes based on the ionic liquid 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO2-PP-TFSI) were blended with propylene carbonate-1 M lithium bis(trifluoromethanesulfone) imide (LiTFSI). We employed NMR analysis to confirm the successful creation of the hybrid material. Dielectric and rheological measurements show that these electrolytes exhibit exceptional room-temperature DC ionic conductivity (10-2 to 10 -3 S cm-1) as well as high shear mechanical moduli (105 to 106 Pa). Lithium transference numbers were found to increase with particle loading and to reach values as high as 0.22 at high particle loadings where the particle jam to form a soft glassy elastic medium. Analysis of lithium electrodeposits obtained in the hybrid electrolytes using SEM and EDX spectra show that the SiO2-PP-TFSI nanoparticles are able to smooth lithium deposition and inhibit lithium dendrite proliferation in Li metal batteries. LTOSiO2-PP-TFSI/PC in 1 M LiTFSILi half-cells based on the SiO2-PP-TFSI hybrid electrolytes exhibit attractive voltage profiles and trouble-free extended cycling behavior over more than 1000 cycles of charge and discharge. This journal is © the Partner Organisations 2014.

  13. Primordial lithium abundance from interstellar lithium lines towards SN 1987A

    International Nuclear Information System (INIS)

    Sahu, K.C.; Pottasch, S.R.; Sahu, M.

    1989-01-01

    The primoridal lithium abundance is known to be one of the best probes to test the standard as well as the non-standard Big Bang nucleosynthesis theories, and to measure the nucleon abundance in the early universe in the standard Big Bang (SSB) model. We have obtained high-resolution ((λ)/(δλ)congruent 100,000), high signal-to-noise (S/N approx-gt 1,500) spectra of SN 1987A around the Li:I λ6708 A region, using the ESO 1.4m CAT and the Coude Echelle Spectrograph. The non-detection of any lithium feature in our sepctra places an upper limit on the lithium abundance

  14. Lithium-lead/water interaction. Large break experiments

    International Nuclear Information System (INIS)

    Savatteri, C.; Gemelli, A.

    1991-01-01

    One current concept in fusion blanket module design is to utilize water as coolant and liquid lithium-lead as breeding/neutron-multiplier material. Considering the possibility of certain off-normal events, it is possible that water leakage into the liquid metal may occur due to a tube rupture. The lithium-lead/water contact can lead to a thermal and chemical reaction which should provoke an intolerable pressure increase in the blanket module. For realistic simulation of such in-blanket events, the Blanket Safety Test (BLAST) facility has been built. It simulates the transient event by injecting subcooled water under high pressure into a stagnant pool of about 500 kg liquid Pb-17Li. Eight fully instrumented large break tests were carried out under different conditions. The aim of the experiments is to study the chemical and thermal process and particularly: The pressurization history of the reaction vessel, the formation and deposition of the reaction products, the identification and propagation of the reaction zones and the temperature transient in the liquid metal. In this paper the results of all tests performed are presented and discussed. (orig.)

  15. Development of lithium target system in engineering validation and engineering design activity of the international fusion materials irradiation facility (IFMIF/EVEDA)

    International Nuclear Information System (INIS)

    Wakai, Eiichi; Kondo, Hiroo; Sugimoto, Masayoshi; Ida, Mizuho; Kanemura, Takuji; Watanabe, Kazuyoshi; Fujishiro, Kouji; Edao, Yuuki; Niitsuma, Shigeto; Kimura, Haruyuki; Fukada, Satoshi; Hiromoto, Tetsushi; Shigeharu, Satoshi; Yagi, Jyuro; Furukawa, Tomohiro; Hirakawa, Yasushi; Suzuki, Akihiro; Terai, Takayuki; Horiike, Hiroshi; Hoashi, Eiji; Suzuki, Sachiko; Yamaoka, Nobuo; Serizawa, Hisashi; Kawahito, Yosuke; Tsuji, Yoshiyuki; Furuya, Kazuyuki; Takeo, Fumio

    2012-01-01

    Engineering validation and engineering design activity (EVEDA) for the international fusion materials irradiation facility (IFMIF) has been conducted since 2007. Research and development of the Lithium target facility is an important part of this activity. We constructed a world largest liquid Lithium test loop with a capacity of 5000 L in 2010 and successfully completed the first stage validation tests (functional tests of components and Lithium flow test (flow velocity 15 m/s at the target). In the present article, recent results of the EVEDA activity for the Lithium target facility and related technologies on liquid Lithium are reviewed. (author)

  16. Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes

    Science.gov (United States)

    Meador, Mary Ann B.; Tigelaar, Dean M.

    2009-01-01

    Polyimide-PEO copolymers (PEO signifies polyethylene oxide) that have branched rod-coil molecular structures and that can be cured into film form at room temperature have been invented for use as gel electrolytes for lithium-ion electric-power cells. These copolymers offer an alternative to previously patented branched rod-coil polyimides that have been considered for use as polymer electrolytes and that must be cured at a temperature of 200 C. In order to obtain sufficient conductivity for lithium ions in practical applications at and below room temperature, it is necessary to imbibe such a polymer with a suitable carbonate solvent or ionic liquid, but the high-temperature cure makes it impossible to incorporate and retain such a liquid within the polymer molecular framework. By eliminating the high-temperature cure, the present invention makes it possible to incorporate the required liquid.

  17. Study on surface wave characteristics of free surface flow of liquid metal lithium for IFMIF

    International Nuclear Information System (INIS)

    Hoashi, Eiji; Sugiura, Hirokazu; Yoshihashi-Suzuki, Sachiko; Yamaoka, Nobuo; Horiike, Hiroshi; Kanemura, Takuji; Kondo, Hiroo

    2011-01-01

    The international fusion materials irradiation facility (IFMIF) presents an intense neutron source to develop fusion reactor materials. The free surface flow of a liquid metal Lithium (Li) is planned as a target irradiated by two deuteron beams to generate intense neutrons and it is thus important to obtain knowledge of the surface wave characteristic for the safety and the efficiency of system in the IFMIF. We have been studying on surface wave characteristics experimentally using the liquid metal Li circulation facility at Osaka University and numerically using computational fluid dynamics (CFD) code, FLUENT. This paper reports the results of the surface fluctuation, the wave height and the surface velocity in the free surface flow of the liquid metal Li examined experimentally and numerically. In the experiment, an electro-contact probe apparatus was used to obtain the surface fluctuation and the wave height, and a high speed video was used to measure the surface velocity. We resulted in knowledge of the surface wave growth mechanism. On the other hand, a CFD simulation was also conducted to obtain information on the relation of the free surface with the inner flow. In the simulation, the model included from a two-staged contraction nozzle to a flow channel with a free surface flow region and simulation results were compared with the experimental data. (author)

  18. 76 FR 55799 - Outbound International Mailings of Lithium Batteries

    Science.gov (United States)

    2011-09-09

    ... POSTAL SERVICE 39 CFR Part 20 Outbound International Mailings of Lithium Batteries AGENCY: Postal... would incorporate new maximum limits for the outbound mailing of lithium batteries to international, or... equipment with lithium metal or lithium-ion batteries that were to be effective October 3, 2011. These...

  19. Stable lithium electrodeposition in salt-reinforced electrolytes

    KAUST Repository

    Lu, Yingying

    2015-04-01

    © 2015 Elsevier B.V. Development of high-energy lithium-based batteries that are safe remains a challenge due to the non-uniform lithium electrodeposition during repeated charge and discharge cycles. We report on the effectiveness of lithium bromide (LiBr) salt additives in a common liquid electrolyte (i.e. propylene carbonate (PC)) on the stability of lithium electrodeposition. From galvanostatic cycling measurements, we find that the presence of LiBr in PC provides more than 20-fold enhancement in cell lifetime over the control LiTFSI/PC electrolyte. Batteries containing 30 mol% LiBr additive in the electrolytes are able to cycle stably for at least 1.8 months with no observations of cell failure. From galvanostatic polarization measurements, an electrolyte containing 30 mol% LiBr shows a maximum improvement in lifetime. The formation of uneven lithium electrodeposits is significantly suppressed by the Br-containing SEI layers, evidenced by impedance spectra, post-mortem SEM and XPS analyses. The study also concludes that good solubility of halogenated salts is not necessary for achieving the observed improvements in cell lifetime.

  20. Lithium vapor/aerosol studies. Interim summary report

    International Nuclear Information System (INIS)

    Whitlow, G.A.; Bauerle, J.E.; Down, M.G.; Wilson, W.L.

    1979-04-01

    The temperature/cover gas pressure regime, in which detectable lithium aerosol is formed in a static system has been mapped for argon and helium cover gases using a portable He--Ne laser device. At 538 0 C (1000 0 F), lithium aerosol particles were observed over the range 0.5 to 20 torr and 2 to 10 torr for argon and helium respectively. The experimental conditions in this study were more conducive to aerosol formation than in a fusion reactor. In the real reactor system, very high intensity mechanical and thermal disturbances will be made to the liquid lithium. These disturbances, particularly transient increases in lithium vapor pressure appear to be capable of producing high concentrations of optically-dense aerosol. A more detailed study is, therefore, proposed using the basic information generated in these preliminary experiments, as a starting point. Areas recommended include the kinetics of aerosol formation and the occurrence of supersaturated vapor during rapid vapor pressure transients, and also the effect of lithium agitation (falls, jets, splashing, etc.) on aerosol formation

  1. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport

    KAUST Repository

    Choudhury, Snehashis; Tu, Zhengyuan; Stalin, Sanjuna; Vu, Duylinh; Fawole, Kristen; Gunceler, Deniz; Sundararaman, Ravishankar; Archer, Lynden A.

    2017-01-01

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes.

  2. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport

    KAUST Repository

    Choudhury, Snehashis

    2017-08-17

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes.

  3. Safety Analysis of the US Dual Coolant Liquid Lead-Lithium ITER Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Brad; Reyes, Susana; Sawan, Mohamed; Wong, Clement

    2006-07-01

    The US is proposing a prototype of a dual coolant liquid lead-lithium (DCLL) DEMO blanket concept for testing in the International Thermonuclear Experimental Reactor (ITER) as an ITER Test Blanket Module (TBM). Because safety considerations are an integral part of the design process to ensure that this TBM does not adversely impact the safety of ITER, a safety assessment has been conducted for this TBM and its ancillary systems as requested by the ITER project. Four events were selected by the ITER International Team (IT) to address specific reactor safety concerns, such as VV pressurization, confinement building pressure build-up, TBM decay heat removal capability, tritium and activation products release from the TBM system, and hydrogen and heat production from chemical reactions. This paper summarizes the results of this safety assessment conducted with the MELCOR computer code.

  4. Stability limit of liquid water in metastable equilibrium with subsaturated vapors.

    Science.gov (United States)

    Wheeler, Tobias D; Stroock, Abraham D

    2009-07-07

    A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapairhumiditynucleation theory or molecular simulations (Pcav=-140 to -180 MPa). To determine the cause of the disparity between the observed and predicted stability limit, we examine experimentally the likelihood of several nonhomogeneous mechanisms of nucleation: (i) heterogeneous nucleation caused by hydrophobic patches on void walls, (ii) nucleation caused by the presence of dissolved solute, (iii) nucleation caused by the presence of pre-existing vapor nuclei, and (iv) invasion of air through the hydrogel membrane into the voids. We conclude that, of these possibilities, (i) and (ii) cannot be discounted, whereas (iii) and (iv) are unlikely to play a role in determining the stability limit.

  5. In-situ study of the dendritic growth in lithium/polymer electrolyte-salt/lithium cells; Etude in-situ de la croissance dendritique dans des cellules lithium/POE-sel/lithium

    Energy Technology Data Exchange (ETDEWEB)

    Brissot, C.; Rosso, M.; Chazalviel, J.N. [Ecole Polytechnique, 91 - Palaiseau (France); Baudry, P.; Lascaud, S. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches

    1996-12-31

    The in-situ observation of dendritic growth in lithium/polymer electrolyte-LiTFSI/lithium battery cells shows that dendrites grow up with about the same rate as anion migration. Memory effects have been evidenced in cycling experiments and limit the dendrites length. An overall movement of the electrolyte due to variations of electrolyte concentration in the vicinity of the electrodes has been observed too. (J.S.) 13 refs.

  6. In-situ study of the dendritic growth in lithium/polymer electrolyte-salt/lithium cells; Etude in-situ de la croissance dendritique dans des cellules lithium/POE-sel/lithium

    Energy Technology Data Exchange (ETDEWEB)

    Brissot, C; Rosso, M; Chazalviel, J N [Ecole Polytechnique, 91 - Palaiseau (France); Baudry, P; Lascaud, S [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches

    1997-12-31

    The in-situ observation of dendritic growth in lithium/polymer electrolyte-LiTFSI/lithium battery cells shows that dendrites grow up with about the same rate as anion migration. Memory effects have been evidenced in cycling experiments and limit the dendrites length. An overall movement of the electrolyte due to variations of electrolyte concentration in the vicinity of the electrodes has been observed too. (J.S.) 13 refs.

  7. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries.

    Science.gov (United States)

    Fang, Xin; Peng, Huisheng

    2015-04-01

    As a promising candidate for future batteries, the lithium-sulfur battery is gaining increasing interest due to its high capacity and energy density. However, over the years, lithium-sulfur batteries have been plagued by fading capacities and the low Coulombic efficiency derived from its unique electrochemical behavior, which involves solid-liquid transition reactions. Moreover, lithium-sulfur batteries employ metallic lithium as the anode, which engenders safety vulnerability of the battery. The electrodes play a pivotal role in the performance of lithium-sulfur batteries. A leap forward in progress of lithium-sulfur batteries is always accompanied by a revolution in the electrode technology. In this review, recent progress in rechargeable lithium-sulfur batteries is summarized in accordance with the evolution of the electrodes, including the diversified cathode design and burgeoning metallic-lithium-free anodes. Although the way toward application has still many challenges associated, recent progress in lithium-sulfur battery technology still paints an encouraging picture of a revolution in rechargeable batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Lithium technologies for edge plasma control

    International Nuclear Information System (INIS)

    Sergeev, Vladimir Yu.; Kuteev, Boris V.; Bykov, Aleksey S.; Krylov, Sergey V.; Skokov, Viacheslav G.; Timokhin, Vladimir M.

    2012-01-01

    Highlights: ► We have investigated two new modes of operation been in T-10 limiter tokamak experiments with a novel rotary feeder of lithium dust. ► The observed decreases of bolometer and D β signals, with increase of the electron density during the lithium dust injection, reveal the effects of the first wall conditioning. ► The lithium technology may provide inherent safety mission for major disruption mitigation in a tokamak reactor, which requires demonstration in contemporary tokamak experiments. - Abstract: We have investigated two new modes of operation been in T-10 limiter tokamak experiments with a novel rotary feeder of lithium dust. Quasi steady-state mode I and pulse mode II of dust delivery were realized in both OH and OH + ECRH disruption free plasmas at the lithium flow rate up to 2 × 10 21 atoms/s. A higher flow rate in mode II with injection rate of ∼5 × 10 21 atoms/s caused a series of minor disruptions, which was completed by discharge termination after the major disruption. The observed decreases of bolometer and D β signals, with increase of the electron density during the lithium dust injection, reveal the effects of the first wall conditioning. The lithium technology may provide inherent safety pathway for major disruption mitigation in a tokamak reactor, which requires demonstration in contemporary tokamak experiments.

  9. The Lithium Battery: assessing the neurocognitive profile of lithium in bipolar disorder.

    Science.gov (United States)

    Malhi, Gin S; McAulay, Claire; Gershon, Samuel; Gessler, Danielle; Fritz, Kristina; Das, Pritha; Outhred, Tim

    2016-03-01

    The aim of the present study was to characterize the neurocognitive effects of lithium in bipolar disorder to inform clinical and research approaches for further investigation. Key words pertaining to neurocognition in bipolar disorder and lithium treatment were used to search recognized databases to identify relevant literature. The authors also retrieved gray literature (e.g., book chapters) known to them and examined pertinent articles from bibliographies. A limited number of studies have examined the effects of lithium on neurocognition in bipolar disorder and, although in some domains a consistent picture emerges, in many domains the findings are mixed. Lithium administration appears to reshape key components of neurocognition - in particular, psychomotor speed, verbal memory, and verbal fluency. Notably, it has a sophisticated neurocognitive profile, such that while lithium impairs neurocognition across some domains, it seemingly preserves others - possibly those vulnerable to the effects of bipolar disorder. Furthermore, its effects are likely to be direct and indirect (via mood, for example) and cumulative with duration of treatment. Disentangling the components of neurocognition modulated by lithium in the context of a fluctuating and complex illness such as bipolar disorder is a significant challenge but one that therefore demands a stratified and systematic approach, such as that provided by the Lithium Battery. In order to delineate the effects of lithium therapy on neurocognition in bipolar disorder within both research and clinical practice, a greater understanding and measurement of the relatively stable neurocognitive components is needed to examine those that indeed change with lithium treatment. In order to achieve this, we propose a Lithium Battery-Clinical and a Lithium Battery-Research that can be applied to these respective settings. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Solvent effect on the extraction and transport of lithium ions by polyethylene glycols

    International Nuclear Information System (INIS)

    Mishra, D; Sharma, U

    1999-01-01

    Extraction of lithium picrate, 2,4-dinitrophenolate and 2-nitrophenolate and their transport through membranes by di-, tri- and tetraethylene glycols as carriers are studied. Organic solvents considered as extractants and liquid membranes in terms of lithium ions extraction and transfer are arranged in the following series: methylene chloride ≥ dichloroethane ≥ chloroform ≥ carbon tetrachloride. Diethylene glycol proved the most effective solvent for lithium ions extraction and transport [ru

  11. Review of JAEA activities on the IFMIF liquid lithium target in FY2006

    International Nuclear Information System (INIS)

    Ida, Mizuho; Nakamura, Hiroo; Miyashita, Makoto; Sugimoto, Masayoshi; Chida, Teruo; Furuya, Kazuyuki; Yoshida, Eiichi; Hirakawa, Yasuhi; Miyake, Osamu; Hirabayashi, Masaru; Ara, Kuniaki

    2008-03-01

    Engineering Validation Design and Engineering Design Activity (EVEDA) of the International Fusion Materials Irradiation Facility (IFMIF) is under going. IFMIF is an accelerator-based Deuterium-Lithium (D-Li) neutron source to produce intense high energy neutrons and a sufficient irradiation volume for testing candidate materials for fusion reactors. To realize such a condition, 40 MeV deuteron beam with a current of 250 mA is injected into high speed liquid Li flow with a speed of 20 m/s. In target system, nuclear heating due to neutron causes thermal stress especially on a back-wall of the target assembly. In addition, radioactive species such as beryllium-7, tritium and activated corrosion products are generated. In this report, thermal stress analyses of the back-wall, mechanical tests on weld specimen made of the back-wall material, estimations of beryllium-7 behavior and worker dose at the IFMIF Li loop and consideration on major EVEDA tasks are summarized. (author)

  12. NSTX Plasma Response to Lithium Coated Divertor

    Energy Technology Data Exchange (ETDEWEB)

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  13. NSTX plasma response to lithium coated divertor

    International Nuclear Information System (INIS)

    Kugel, H.W.; Bell, M.G.; Allain, J.P.; Bell, R.E.; Ding, S.; Gerhardt, S.P.; Jaworski, M.A.; Kaita, R.; Kallman, J.; Kaye, S.M.; LeBlanc, B.P.; Maingi, Rajesh; Majeski, R.; Maqueda, R.J.; Mansfield, D.K.; Mueller, D.; Nygren, R.E.; Paul, S.F.; Raman, R.; Roquemore, A.L.; Sabbagh, S.A.; Schneider, H.; Skinner, C.H.; Soukhanovskii, V.A.; Taylor, C.N.; Timberlake, J.; Wampler, W.R.; Zakharov, L.E.; Zweben, S.J.

    2011-01-01

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma-facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Z(eff) and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, < 0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  14. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    1995-09-01

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

  15. New Polymer and Liquid Electrolytes for Lithium Batteries

    International Nuclear Information System (INIS)

    McBreen, J.; Lee, H. S.; Yang, X. Q.; Sun, X.

    1999-01-01

    All non-aqueous lithium battery electrolytes are Lewis bases that interact with cations. Unlike water, they don't interact with anions. The result is a high degree of ion pairing and the formation of triplets and higher aggregates. This decreases the conductivity and the lithium ion transference and results in polarization losses in batteries. Approaches that have been used to increase ion dissociation in PEO based electrolytes are the use of salts with low lattice energy, the addition of polar plasticizers to the polymer, and the addition of cation completing agents such as crown ethers or cryptands. Complexing of the anions is a more promising approach since it should increase both ion dissociation and the lithium transference. At Brookhaven National Laboratory (BNL) we have synthesized two new families of neutral anion completing agents, each based on Lewis acid centers. One is based on electron deficient nitrogen sites on substituted aza-ethers, wherein the hydrogen on the nitrogen is replaced by electron withdrawing groups such as CF 3 SO 3- . The other is based on electron deficient boron sites on borane or borate compounds with various fluorinated aryl or alkyl groups. Some of the borane based anion receptors can promote the dissolution of LiF in several solvents. Several of these compounds, when added in equivalent amounts, produce 1.2M LiF solutions in DME, an increase in volubility of LiF by six orders of magnitude. Some of these LiF electrolytes have conductivities as high as 6 x 10 -3 Scm -1 . The LiF electrolytes with borane anion acceptors in PC:EC:DEC solvents have excellent electrochemical stability. This has been demonstrated in small Li/LiMn 2 O 4 cells

  16. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid.

    Science.gov (United States)

    Zeng, Xianlai; Li, Jinhui; Shen, Bingyu

    2015-09-15

    With the booming of consumer electronics (CE) and electric vehicle (EV), a large number of spent lithium-ion battery (LIBs) have been generated worldwide. Resource depletion and environmental concern driven from the sustainable industry of CE and EV have motivated spent LIBs should be recovered urgently. However, the conventional process combined with leaching, precipitating, and filtering was quite complicated to recover cobalt and lithium from spent LIBs. In this work, we developed a novel recovery process, only combined with oxalic acid leaching and filtering. When the optimal parameters for leaching process is controlled at 150 min retention time, 95 °C heating temperature, 15 g L(-1) solid-liquid ratio, and 400 rpm rotation rate, the recovery rate of lithium and cobalt from spent LIBs can reach about 98% and 97%, respectively. Additionally, we also tentatively discovered the leaching mechanism of lithium cobalt oxide (LiCoO2) using oxalic acid, and the leaching order of the sampling LiCoO2 of spent LIBs. All the obtained results can contribute to a short-cut and high-efficiency process of spent LIBs recycling toward a sound closed-loop cycle. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The design status of the liquid lithium target facility of IFMIF at the end of the engineering design activities

    Energy Technology Data Exchange (ETDEWEB)

    Nitti, F.S., E-mail: francesco.nitti@enea.it [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Ibarra, A. [CIEMAT, Madrid (Spain); Ida, M. [IHI Corporation, Tokyo (Japan); Favuzza, P. [ENEA Research Center Firenze (Italy); Furukawa, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Groeschel, F. [KIT Research Center, Karlsruhe (Germany); Heidinger, R. [F4E Research Center, Garching (Germany); Kanemura, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Knaster, J. [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Kondo, H. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Micchiche, G. [ENEA Research Center, Brasimone (Italy); Sugimoto, M. [JAEA Research Center, Rokkasho Japan (Japan); Wakai, E. [JAEA Research Center, Tokai-mura, Ibaraki (Japan)

    2015-11-15

    Highlights: • Results of validation and design activity for the Li loop facility of IFMIF. • Demonstration of Li target stability, with surface disturbance <1 mm. • Demonstration of start-up and shut down procedures of Li loop. • Complete design of the heat removal system and C and O purification system. • Conceptual design of N and H isotopes purification systems. - Abstract: The International Fusion Material Irradiation Facility (IFMIF) is an experimental facility conceived for qualifying and characterizing structural materials for nuclear fusion applications. The Engineering Validation and Engineering Design Activity (EVEDA) is a fundamental step towards the final design. It presented two mandates: the Engineering Validation Activities (EVA), still on-going, and the Engineering Design Activities (EDA) accomplished on schedule in June 2013. Five main facilities are identified in IFMIF, among which the Lithium Target Facility constituted a technological challenge overcome thanks to the success of the main validation challenges impacting the design. The design of the liquid Lithium Target Facility at the end of the EDA phase is here detailed.

  18. The design status of the liquid lithium target facility of IFMIF at the end of the engineering design activities

    International Nuclear Information System (INIS)

    Nitti, F.S.; Ibarra, A.; Ida, M.; Favuzza, P.; Furukawa, T.; Groeschel, F.; Heidinger, R.; Kanemura, T.; Knaster, J.; Kondo, H.; Micchiche, G.; Sugimoto, M.; Wakai, E.

    2015-01-01

    Highlights: • Results of validation and design activity for the Li loop facility of IFMIF. • Demonstration of Li target stability, with surface disturbance <1 mm. • Demonstration of start-up and shut down procedures of Li loop. • Complete design of the heat removal system and C and O purification system. • Conceptual design of N and H isotopes purification systems. - Abstract: The International Fusion Material Irradiation Facility (IFMIF) is an experimental facility conceived for qualifying and characterizing structural materials for nuclear fusion applications. The Engineering Validation and Engineering Design Activity (EVEDA) is a fundamental step towards the final design. It presented two mandates: the Engineering Validation Activities (EVA), still on-going, and the Engineering Design Activities (EDA) accomplished on schedule in June 2013. Five main facilities are identified in IFMIF, among which the Lithium Target Facility constituted a technological challenge overcome thanks to the success of the main validation challenges impacting the design. The design of the liquid Lithium Target Facility at the end of the EDA phase is here detailed.

  19. Crossover to Fermi-liquid behavior for weakly-coupled Luttinger liquids in the anisotropic large-dimension limit

    OpenAIRE

    Arrigoni, E.

    1999-01-01

    We study the problem of the crossover from one- to higher-dimensional metals by considering an array of Luttinger liquids (one-dimensional chains) coupled by a weak interchain hopping {\\tp.} We evaluate the exact asymptotic low-energy behavior of the self-energy in the anisotropic infinite-dimension limit. This limit extends the dinamical mean field concept to the case of a chain embedded in a self-consistent medium. The system flows to a Fermi-liquid fixed point for energies below the dimens...

  20. Lithium Carbonate Recovery from Cathode Scrap of Spent Lithium-Ion Battery: A Closed-Loop Process.

    Science.gov (United States)

    Gao, Wenfang; Zhang, Xihua; Zheng, Xiaohong; Lin, Xiao; Cao, Hongbin; Zhang, Yi; Sun, Zhi

    2017-02-07

    A closed-loop process to recover lithium carbonate from cathode scrap of lithium-ion battery (LIB) is developed. Lithium could be selectively leached into solution using formic acid while aluminum remained as the metallic form, and most of the other metals from the cathode scrap could be precipitated out. This phenomenon clearly demonstrates that formic acid can be used for lithium recovery from cathode scrap, as both leaching and separation reagent. By investigating the effects of different parameters including temperature, formic acid concentration, H 2 O 2 amount, and solid to liquid ratio, the leaching rate of Li can reach 99.93% with minor Al loss into the solution. Subsequently, the leaching kinetics was evaluated and the controlling step as well as the apparent activation energy could be determined. After further separation of the remaining Ni, Co, and Mn from the leachate, Li 2 CO 3 with the purity of 99.90% could be obtained. The final solution after lithium carbonate extraction can be further processed for sodium formate preparation, and Ni, Co, and Mn precipitates are ready for precursor preparation for cathode materials. As a result, the global recovery rates of Al, Li, Ni, Co, and Mn in this process were found to be 95.46%, 98.22%, 99.96%, 99.96%, and 99.95% respectively, achieving effective resources recycling from cathode scrap of spent LIB.

  1. Thermally-responsive, nonflammable phosphonium ionic liquid electrolytes for lithium metal batteries: operating at 100 degrees celsius† †Electronic supplementary information (ESI) available: Detailed ionic liquids synthesis, characterization, conductivity, cyclic voltammetry, battery cycling and those of other compositions; SEM images; energy density calculation. See DOI: 10.1039/c5sc01518a Click here for additional data file.

    Science.gov (United States)

    Lin, X.; Kavian, R.; Lu, Y.; Hu, Q.; Shao-Horn, Y.

    2015-01-01

    Rechargeable batteries such as Li ion/Li metal batteries are widely used in the electronics market but the chemical instability of the electrolyte limits their use in more demanding environmental conditions such as in automotive, oil exploration, or mining applications. In this study, a series of alkyl phosphonium ionic liquid electrolyte are described with high thermal stability and solubility for LiTFSI. A lithium metal battery (LMB) containing a tailored phosphonium ionic liquid/LiTFSI electrolyte operates at 100 °C with good specific capacities and cycling stability. Substantial capacity is maintained during 70 cycles or 30 days. Instant on-off battery operation is realized via the significant temperature dependence of the electrolyte material, demonstrating the robustness and potential for use at high temperature. PMID:28757963

  2. Transport of 7Be in a lithium loop

    International Nuclear Information System (INIS)

    Katsuta, H.; Anantatmula, R.P.; Bechtold, R.A.; Brehm, W.F.

    1982-07-01

    Beryllium-7 will be produced in the lithium target of the Fusion Materials Irradiation Test (FMIT) facility by the interaction of the deuteron beam with lithium by the two reactions 7 Li(d,2n) 7 Be and 6 Li(d,n) 7 Be. Recent estimates have shown that an equilibrium concentration of 45,000 curies of 7 Be will be present in FMIT lithium. Although this inventory of 7 Be corresponds to only 0.042 wt ppM in FMIT lithium, the radiation fields created can impose special design and maintenance requirements on the facility. A development program has been started at the Hanford Engineering Development Laboratory (HEDL) to investigate the transport of 7 Be in liquid lithium. Results obtained thus far indicated preferential deposition of 7 Be not only in the cold leg but also in the higher temperature region in a nonisothermal lithium system with a temperature gradient similar to that expected in FMIT. The results showed that 7 Be can diffuse into AISI 304 stainless steel (304) at FMIT operating temperatures; the diffusion coefficient of 7 Be in 304 was also calculated

  3. Dynamic loading of the structural wall in a lithium fall fusion reactor

    International Nuclear Information System (INIS)

    Glenn, L.A.

    1979-01-01

    In one version of an inertial confinement fusion (ICF) power reactor, the laser-imploded pellet is surrounded by a thick, annular 'waterfall' of liquid lithium. The fall has three functions: to breed tritium for pellet resupply, to act as an energy sink and heat exchange mdeium with an external power loop, and to protect the first wall of the reactor from excessive neutronic and hydrodynamic loading. Our primary concern here is with this last function. We formulated a simple model of a lithium-fall ICF reactor and calculated the fall disassembly and the subsequent fluid-wall interaction resulting from the energy deposition by the imploded pellet. Two potential mechanisms for wall damage were identified: surface erosion and hoop failure. For single fall designs, the erosion problem appears to be serious. Concentric annuli (multiple fall) or packed jet configurations may be feasible but experiments are needed to clarify the physical model, especially with reg (orig.)ard to /orig.the characteristics of the cavitated liquid lithium and of the two-phase liquid-vapor region.

  4. Liquid-Solid-Solution Assembly of CoFe2O4/Graphene Nanocomposite as a High-Performance Lithium-Ion Battery Anode

    International Nuclear Information System (INIS)

    Zhu, Yanfang; Lv, Xingbin; Zhang, Lili; Guo, Xiaodong; Liu, Daijun; Chen, Jianjun; Ji, Junyi

    2016-01-01

    Graphical abstract: CoFe 2 O 4 /rGO composites are fabricated via a liquid-solid-solution assemble strategy with a well controlled CoFe 2 O 4 size, the composite exhibits a high rate performance for lithium ion batteries anode. - Highlights: • Crumpled CoFe 2 O 4 @graphene composite with uniform CoFe 2 O 4 nanoparticles intimately anchored on graphene sheets was fabricated. • The novel fabrication strategy: liquid-solid-solution strategy where the CoFe 2 O 4 are nucleation and controlled growth at the oil/water interface. • High reversible specific capacity of 1102 mAh g −1 after 100 cycles and high rate capability of 410 mAh g −1 within 230 s charging. - Abstract: CoFe 2 O 4 /graphene composites were fabricated via a novel one-pot liquid-solid-solution (LSS) hydrothermal process. Through ions electrostatic adsorption onto graphene sheets and oil microemulsion encapsulation, CoFe 2 O 4 nanoparticles can be uniformly anchored on crumpled graphene sheets without aggregation, and the size distribution of CoFe 2 O 4 particles can be controlled by the microemulsion shell in the range of 50–100 nm. With the synergistic effect between CoFe 2 O 4 and graphene, the CoFe 2 O 4 /graphene hybrid exhibits a high reversible specific capacity of 1102 mAh g −1 at 0.2 A g −1 after 100 cycles, and a good cycling stability as well. Moreover, the composite has good rate capability. The specific capacity can reach a high value of 410 mAh g −1 even under a high current density of 6.4 A g −1 (corresponds to a charge time of ∼230 s), indicating its promising application as an anode material for lithium ion batteries.

  5. High performance batteries with carbon nanomaterials and ionic liquids

    Science.gov (United States)

    Lu, Wen [Littleton, CO

    2012-08-07

    The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

  6. Testing of the prototype FMIT target with liquid lithium

    International Nuclear Information System (INIS)

    Miller, W.C.; Annese, C.E.; Berg, J.D.; Miles, R.R.

    1984-01-01

    Testing of a molten lithium target was performed to evaluate hydraulic stability, determine surface evaporation rates, and map the detailed contour of the high speed, free surface wall jet. The results confirmed predictions by demonstrating acceptable performance of a prototype target

  7. Interphase Evolution of a Lithium-Ion/Oxygen Battery.

    Science.gov (United States)

    Elia, Giuseppe Antonio; Bresser, Dominic; Reiter, Jakub; Oberhumer, Philipp; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2015-10-14

    A novel lithium-ion/oxygen battery employing Pyr14TFSI-LiTFSI as the electrolyte and nanostructured LixSn-C as the anode is reported. The remarkable energy content of the oxygen cathode, the replacement of the lithium metal anode by a nanostructured stable lithium-alloying composite, and the concomitant use of nonflammable ionic liquid-based electrolyte result in a new and intrinsically safer energy storage system. The lithium-ion/oxygen battery delivers a stable capacity of 500 mAh g(-1) at a working voltage of 2.4 V with a low charge-discharge polarization. However, further characterization of this new system by electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy reveals the progressive decrease of the battery working voltage, because of the crossover of oxygen through the electrolyte and its direct reaction with the LixSn-C anode.

  8. Tritium recovery from lithium oxide pellets

    International Nuclear Information System (INIS)

    Bertone, P.C.; Jassby, D.L.

    1984-01-01

    The TFTR Lithium Blanket Module is an assembly containing 650 kg of lithium oxide that will be used to test the ability of neutronics codes to model the tritium breeding characteristics of limited-coverage breeding zones in a tokamak. It is required that tritium concentrations as low as 0.1 nCi/g bred in both metallic lithium samples and lithium oxide pellets be measured with an uncertainty not exceeding +- 6%. A tritium assay technique for the metallic samples which meets this criterion has been developed. Two assay techniques for the lithium oxide pellets are being investigated. In one, the pellets are heated in a flowing stream of hydrogen, while in the other, the pellets are dissolved in 12 M hydrochloric acid

  9. Electroless formation of hybrid lithium anodes for fast interfacial ion transport

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Snehashis; Stalin, Sanjuna; Vu, Duylinh; Fawole, Kristen; Archer, Lynden A. [School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY (United States); Tu, Zhengyuan [Department of Material Science and Engineering, Cornell University, Ithaca, NY (United States); Gunceler, Deniz [Department of Physics, Cornell University, Ithaca, NY (United States); Sundararaman, Ravishankar [Material Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States)

    2017-10-09

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Fragmentation of suddenly heated liquids

    International Nuclear Information System (INIS)

    Blink, J.A.

    1985-03-01

    Fragmentation of free liquids in Inertial Confinement Fusion reactors could determine the upper bound on reactor pulse rate. The x-ray ablated materials must cool and recondense to allow driver beam propagation. The increased surface area caused by fragmentation will enhance the cooling and condensation rates. Relaxation from the suddenly heated state will move a liquid into the negative pressure region under the liquid-vapor P-V dome. The lithium equation of state was used to demonstrate that neutron-induced vaporization uses only a minor fraction of the added heat, much less than would be required to drive the expansion. A 77% expansion of the lithium is required before the rapid vaporization process of spinodal decomposition could begin, and nucleation and growth are too slow to contribute to the expansion

  11. Electrospun polymer membrane activated with room temperature ionic liquid: Novel polymer electrolytes for lithium batteries

    Science.gov (United States)

    Cheruvally, Gouri; Kim, Jae-Kwang; Choi, Jae-Won; Ahn, Jou-Hyeon; Shin, Yong-Jo; Manuel, James; Raghavan, Prasanth; Kim, Ki-Won; Ahn, Hyo-Jun; Choi, Doo Seong; Song, Choong Eui

    A new class of polymer electrolytes (PEs) based on an electrospun polymer membrane incorporating a room-temperature ionic liquid (RTIL) has been prepared and evaluated for suitability in lithium cells. The electrospun poly(vinylidene fluoride- co-hexafluoropropylene) P(VdF-HFP) membrane is activated with a 0.5 M solution of LiTFSI in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI) or a 0.5 M solution of LiBF 4 in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF 4). The resulting PEs have an ionic conductivity of 2.3 × 10 -3 S cm -1 at 25 °C and anodic stability at >4.5 V versus Li +/Li, making them suitable for practical applications in lithium cells. A Li/LiFePO 4 cell with a PE based on BMITFSI delivers high discharge capacities when evaluated at 25 °C at the 0.1 C rate (149 mAh g -1) and the 0.5 C rate (132 mAh g -1). A very stable cycle performance is also exhibited at these low current densities. The properties decrease at the higher, 1 C rate, when operated at 25 °C. Nevertheless, improved properties are obtained at a moderately elevated temperature of operation, i.e. 40 °C. This is attributed to enhanced conductivity of the electrolyte and faster reaction kinetics at higher temperatures. At 40 °C, a reversible capacity of 140 mAh g -1 is obtained at the 1 C rate.

  12. Elucidating the Performance Limitations of Lithium-ion Batteries due to Species and Charge Transport through Five Characteristic Parameters

    Science.gov (United States)

    Jiang, Fangming; Peng, Peng

    2016-01-01

    Underutilization due to performance limitations imposed by species and charge transports is one of the key issues that persist with various lithium-ion batteries. To elucidate the relevant mechanisms, two groups of characteristic parameters were proposed. The first group contains three characteristic time parameters, namely: (1) te, which characterizes the Li-ion transport rate in the electrolyte phase, (2) ts, characterizing the lithium diffusion rate in the solid active materials, and (3) tc, describing the local Li-ion depletion rate in electrolyte phase at the electrolyte/electrode interface due to electrochemical reactions. The second group contains two electric resistance parameters: Re and Rs, which represent respectively, the equivalent ionic transport resistance and the effective electronic transport resistance in the electrode. Electrochemical modeling and simulations to the discharge process of LiCoO2 cells reveal that: (1) if te, ts and tc are on the same order of magnitude, the species transports may not cause any performance limitations to the battery; (2) the underlying mechanisms of performance limitations due to thick electrode, high-rate operation, and large-sized active material particles as well as effects of charge transports are revealed. The findings may be used as quantitative guidelines in the development and design of more advanced Li-ion batteries. PMID:27599870

  13. 77 FR 2437 - Special Conditions: Gulfstream Aerospace Corporation, Model GVI Airplane; Rechargeable Lithium...

    Science.gov (United States)

    2012-01-18

    ... delivery of the affected aircraft. In addition, the substance of these special conditions has been subject... Ni-Cd and lead-acid cells, some types of lithium-battery cells use flammable liquid electrolytes. The... lithium batteries. The flammable-fluid fire-protection requirements of Sec. 25.863. In the past, this rule...

  14. Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2013-12-01

    Full Text Available Liquid electrolyte lithium/sulfur (Li/S batteries cannot come into practical applications because of many problems such as low energy efficiency, short cycle life, and fast self-discharge. All these problems are related to the dissolution of lithium polysulfide, a series of sulfur reduction intermediates, in the liquid electrolyte, and resulting parasitic reactions with the Li anode. Covalently binding sulfur onto carbon surface is a solution to completely eliminate the dissolution of lithium polysulfide and make the Li/S battery viable for practical applications. This can be achieved by replacing elemental sulfur with sulfurized carbon as the cathode material. This article reviews the current efforts on this subject and discusses the syntheses, electrochemical properties, and prospects of the sulfurized carbon as a cathode material in the rechargeable Li/S batteries.

  15. Hot filament technique for measuring the thermal conductivity of molten lithium fluoride

    Science.gov (United States)

    Jaworske, Donald A.; Perry, William D.

    1990-01-01

    Molten salts, such as lithium fluoride, are attractive candidates for thermal energy storage in solar dynamic space power systems because of their high latent heat of fusion. However, these same salts have poor thermal conductivities which inhibit the transfer of heat into the solid phase and out of the liquid phase. One concept for improving the thermal conductivity of the thermal energy storage system is to add a conductive filler material to the molten salt. High thermal conductivity pitch-based graphite fibers are being considered for this application. Although there is some information available on the thermal conductivity of lithium fluoride solid, there is very little information on lithium fluoride liquid, and no information on molten salt graphite fiber composites. This paper describes a hot filament technique for determining the thermal conductivity of molten salts. The hot filament technique was used to find the thermal conductivity of molten lithium fluoride at 930 C, and the thermal conductivity values ranged from 1.2 to 1.6 W/mK. These values are comparable to the slightly larger value of 5.0 W/mK for lithium fluoride solid. In addition, two molten salt graphite fiber composites were characterized with the hot filament technique and these results are also presented.

  16. 76 FR 53056 - Outbound International Mailings of Lithium Batteries

    Science.gov (United States)

    2011-08-25

    ... POSTAL SERVICE 39 CFR Part 20 Outbound International Mailings of Lithium Batteries AGENCY: Postal... incorporate new maximum limits for the outbound mailing of lithium batteries. This is consistent with [email protected] , with a subject line of ``International Lithium Batteries.'' Faxed comments are not...

  17. Recent advances in solid polymer electrolytes for lithium batteries

    Institute of Scientific and Technical Information of China (English)

    Qingqing Zhang; Kai Liu; Fei Ding; Xingjiang Liu

    2017-01-01

    Solid polymer electrolytes are light-weight,flexible,and non-flammable and provide a feasible solution to the safety issues facing lithium-ion batteries through the replacement of organic liquid electrolytes.Substantial research efforts have been devoted to achieving the next generation of solid-state polymer lithium batteries.Herein,we provide a review of the development of solid polymer electrolytes and provide comprehensive insights into emerging developments.In particular,we discuss the different molecular structures of the solid polymer matrices,including polyether,polyester,polyacrylonitrile,and polysiloxane,and their interfacial compatibility with lithium,as well as the factors that govern the properties of the polymer electrolytes.The discussion aims to give perspective to allow the strategic design of state-of-the-art solid polymer electrolytes,and we hope it will provide clear guidance for the exploration of high-performance lithium batteries.

  18. In-situ measurement of the lithium distribution in Li-ion batteries using micro-IBA techniques

    International Nuclear Information System (INIS)

    Yamazaki, A.; Orikasa, Y.; Chen, K.; Uchimoto, Y.; Kamiya, T.; Koka, M.; Satoh, T.; Mima, K.; Kato, Y.; Fujita, K.

    2016-01-01

    Direct observation of lithium concentration distribution in lithium-ion battery composite electrodes has been performed for the first time. Lithium-ion battery model cells for particle induced X-ray emission (PIXE) and particle induced gamma ray emission (PIGE) measurements were designed and fabricated. Two dimensional images of lithium concentration in LiFePO_4 composite electrodes were obtained with PIXE and PIGE by scanning the proton microbeam for various charged states of the electrodes. Lithium concentration in LiFePO_4 composite electrodes was decreased from the contact interface between LiFePO_4 electrode and liquid electrolyte during the charge reaction.

  19. Examination of Deposited Layers Composition on the Discharge Chamber Constructional Elements Tokamak T-11M after Two-Year Operation with Lithium Limiter

    International Nuclear Information System (INIS)

    Buzhinskij, O.; Barsuk, V.

    2006-01-01

    In this work the results of the research of internal structural elements state of the T11-M tokamak discharge chamber after two-year operation with lithium limiter are given [V.B. Lazarev, E.A. Azizov et al., Compatibility of the Lithium Capillary Limiter with Plasma in T-11M, 26 th EPS Conf. on Contr. Fusion Plasma Physics, ECA, vol. 231, pp. 845-848, 1999, V.A. Evtikhin, I.E. Lyublinski, A.V. Vertkov et al., Technology Aspects of Lithium Capillary pore Systems Application in Tokamak Device, SOFT-21 (Madrid), A-37, 2000]. The condition of molybdenic wall surface of the discharge chamber and internal steel surface of diagnostic ports has been investigated. X-ray microanalysis of deposited surface of the first wall has shown, that in deposited layer are contained in the main Mo and small amount Cu. In a composition of deposited layer on the ports surface, except the above-named elements, in a small amount is Fe. Because of the instrumental restrictions of this method of analysis, detection opportunity of lithium traces was missing. X-ray diffractometer analysis of deposited layer on the first wall surface has detected a mixture of several phases. The main phase is Li 2 CO 3 , one third from all deposited substance is Li 2 MoO 4 , there is also LiOH-HO phase. The deposited layer on diagnostic ports in the main consists of LiOH-H 2 O phase, there is also Li 2 CO 3 phase. The results of X-ray analysis of a dust probe from the B 4 C coated graphite limiter surface have not detected whatever extra phases, except a crystalline boron carbide phase. (author)

  20. Deposition of lithium on a plasma edge probe in TFTR -- Behavior of lithium-painted walls interacting with edge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, Y. [Univ. of California, San Diego, La Jolla, CA (United States); Ashida, K. [Toyama Univ. (Japan); Kugel, H. [Princeton Univ., NJ (United States)] [and others

    1998-05-01

    Recent observations have indicated that lithium pellet injection wall conditioning plays an important role in achieving the enhanced supershot regime in TFTR. However, little is understood about the behavior of lithium-coated limiter walls, interacting with edge plasmas. In the final campaign of TFTR, a cylindrical carbon fiber composite probe was inserted into the boundary plasma region and exposed to ohmically-heated deuterium discharges with lithium pellet injection. The ion-drift side probe surface exhibits a sign of codeposition of lithium, carbon, oxygen, and deuterium, whereas the electron side essentially indicates high-temperature erosion. It is found that lithium is incorporated in these codeposits in the form of oxide at the concentration of a few percent. In the electron side, lithium has been found to penetrate deeply into the probe material, presumably via rapid diffusion through interplane spaces in the graphite crystalline. Though it is not conclusive, materials mixing in the carbon and lithium system appears to be a key process in successful lithium wall conditioning.

  1. Lithium adduct as precursor ion for sensitive and rapid quantification of 20 (S)-protopanaxadiol in rat plasma by liquid chromatography/quadrupole linear ion trap mass spectrometry and application to rat pharmacokinetic study.

    Science.gov (United States)

    Bao, Yuanwu; Wang, Quanying; Tang, Pingming

    2013-03-01

    A novel, rapid and sensitive liquid chromatography/quadrupole linear ion trap mass spectrometry [LC-ESI-(QqLIT)MS/MS] method was developed and validated for the quantification of protopanaxadiol (PPD) in rat plasma. Oleanolic acid (OA) was used as internal standard (IS). A simple protein precipitation based on acetonitrile (ACN) was employed. Chromatographic separation was performed on a Sepax GP-C18 column (50 × 2.1 mm, 5 μM) with a mobile phase consisting of ACN-water and 1.5 μM formic acid and 25 mM lithium acetate (90 : 10, v/v) at a flow rate of 0.4 ml/min for 3.0 min. Multiple-reaction-monitoring mode was performed using lithium adduct ion as precursor ion of m/z 467.5/449.4 and 455.6/407.4 for the drug and IS, respectively. Calibration curve was recovered over a concentration range of 0.5-100 ng/ml with a correlation coefficient >0.99. The limit of detection was 0.2 ng/ml in rat plasma for PPD. The results of the intraday and interday precision and accuracy studies were well within the acceptable limits. The validated method was successfully applied to investigate the pharmacokinetic study of PPD after intravenous and gavage administration to rat. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xianlai; Li, Jinhui, E-mail: jinhui@tsinghua.edu.cn; Shen, Bingyu

    2015-09-15

    Highlights: • Short-cut recovery of cobalt and lithium was directly obtained using oxalic acid. • Short-cut recovery process was optimized for a high recovery rate. • Leaching process was controlled by chemical reaction. • Leaching order of the sampling LiCoO{sub 2} using oxalic acid was first proposed. - Abstract: With the booming of consumer electronics (CE) and electric vehicle (EV), a large number of spent lithium-ion battery (LIBs) have been generated worldwide. Resource depletion and environmental concern driven from the sustainable industry of CE and EV have motivated spent LIBs should be recovered urgently. However, the conventional process combined with leaching, precipitating, and filtering was quite complicated to recover cobalt and lithium from spent LIBs. In this work, we developed a novel recovery process, only combined with oxalic acid leaching and filtering. When the optimal parameters for leaching process is controlled at 150 min retention time, 95 °C heating temperature, 15 g L{sup −1} solid–liquid ratio, and 400 rpm rotation rate, the recovery rate of lithium and cobalt from spent LIBs can reach about 98% and 97%, respectively. Additionally, we also tentatively discovered the leaching mechanism of lithium cobalt oxide (LiCoO{sub 2}) using oxalic acid, and the leaching order of the sampling LiCoO{sub 2} of spent LIBs. All the obtained results can contribute to a short-cut and high-efficiency process of spent LIBs recycling toward a sound closed-loop cycle.

  3. New polymer lithium secondary batteries based on ORMOCER (R) electrolytes-inorganic-organic polymers

    DEFF Research Database (Denmark)

    Popall, M.; Buestrich, R.; Semrau, G.

    2001-01-01

    Based on new plasticized inorganic-organic polymer electrolytes CM. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, B. Olsowski,'ORMOCERs as Inorganic-organic Electrolytes for New Solid State Lithium Batteries and Supercapacitors', Electrochim. Acta 43 (1998) 1155] new flexible foil-batteries...... electrolyte, typical for polymer electrolytes. Cycling tests (more than 900 cycles) proved that the unplasticized electrolyte can act as binder in composite cathodes of lithium secondary batteries [2]. Charge/discharge cycles of complete batteries like (Cu/active carbon/ORMOCER(R)/LiCoO2/Al) with an ORMOCER......(R) as separator electrolyte were measured. The voltage drop of these batteries is very similar to cells with standard liquid electrolytes and the efficiency is close to 100%. Cycling the batteries with a current density of 0.25 mA cm(-2) between the voltage limits of 3.1 and 4.1 V results in a charge...

  4. Pyrrolidinium FSI and TFSI-Based Polymerized Ionic Liquids as Electrolytes for High-Temperature Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Manfred Kerner

    2018-02-01

    Full Text Available Promising electrochemical and dynamical properties, as well as high thermal stability, have been the driving forces behind application of ionic liquids (ILs and polymerized ionic liquids (PILs as electrolytes for high-temperature lithium-ion batteries (HT-LIBs. Here, several ternary lithium-salt/IL/PIL electrolytes (PILel have been investigated for synergies of having both FSI and TFSI anions present, primarily in terms of physico-chemical properties, for unique application in HT-LIBs operating at 80 °C. All of the electrolytes tested have low Tg and are thermally stable ≥100 °C, and with TFSI as the exclusive anion the electrolytes (set A have higher thermal stabilities ≥125 °C. Ionic conductivities are in the range of 1 mS/cm at 100 °C and slightly higher for set A PILel, which, however, have lower oxidation stabilities than set B PILel with both FSI and TFSI anions present: 3.4–3.7 V vs. 4.2 V. The evolution of the interfacial resistance increases for all PILel during the first 40 h, but are much lower for set B PILel and generally decrease with increasing Li-salt content. The higher interfacial resistances only influence the cycling performance at high C-rates (1 C, where set B PILel with high Li-salt content performs better, while the discharge capacities at the 0.1 C rate are comparable. Long-term cycling at 0.5 C, however, shows stable discharge capacities for 100 cycles, with the exception of the set B PILel with high Li-salt content. Altogether, the presence of both FSI and TFSI anions in the PILel results in lower ionic conductivities and decreased thermal stabilities, but also higher oxidation stabilities and reduced interfacial resistances and, in total, result in an improved rate capability, but compromised long-term capacity retention. Overall, these electrolytes open for novel designs of HT-LIBs.

  5. Battery of circular cell shape with central lithium anode and non-aqueous electrolytes. Galvanisches Element in Rundzellenform mit zentrisch angeordneter Lithium-Anode und nichtwaessrigem Elektrolyten

    Energy Technology Data Exchange (ETDEWEB)

    Kretzschmar, R

    1987-06-11

    The separation of such a cell situated between the negative and positive electrode is formed by a loose plastic vliess cut into a strip, which during assembly of the cells, is laid with central orientation on the open cell cup already provided with a circular cathode and filled with electrolyte and is pressed directly through the bar-shaped lithium electrode into the hollow space of the annular cathode, where it surrounds the lithium electrode as a compressed, closed sheath. Excess electrolyte flows into the sheath from the uncompressed top part of the separator vliess over the electrodes, to the extent that the lithium electrode is electrochemically dissolved and the expanding vliess maintaining contact with the lithium takes up liquid so that there is no interruption of ion conduction between the electrodes.

  6. Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies

    Science.gov (United States)

    Lewandowski, Andrzej; Świderska-Mocek, Agnieszka

    The paper reviews properties of room temperature ionic liquids (RTILs) as electrolytes for lithium and lithium-ion batteries. It has been shown that the formation of the solid electrolyte interface (SEI) on the anode surface is critical to the correct operation of secondary lithium-ion batteries, including those working with ionic liquids as electrolytes. The SEI layer may be formed by electrochemical transformation of (i) a molecular additive, (ii) RTIL cations or (iii) RTIL anions. Such properties of RTIL electrolytes as viscosity, conductivity, vapour pressure and lithium-ion transport numbers are also discussed from the point of view of their influence on battery performance.

  7. Tritium breeding experiments with lithium titanate in thermal-type mockups

    International Nuclear Information System (INIS)

    Klix, Axel; Takahashi, Akito; Ochiai, Kentaro; Nishitani, Takeo

    2004-01-01

    Lithium titanate, an advanced tritium breeding material, is currently investigated in integral mock-up experiments at FNS. A method was developed which allows to measure low tritium concentrations directly in this material. The local tritium production rate was obtained by small lithium titanate pellet detectors inserted into the breeding layers which are dissolved after irradiation of the assemblies, and the accumulated tritium was counted by liquid scintillation techniques. The measurement method was applied in mock0-up experiments with candidate materials for the future DEMO reactor breeding blanket. Experimental assemblies consisted of sheets of low activation ferritic steel F82H, lithium titanate, and berylium. Tritium production rate profiles were obtained and compared with results from calculations with the Monte Carlo neutron transport code MCNP-4C. In case of the mock-ups with 95% enriched lithium titanate, the C/E ratios were within the error estimate while larger discrepancies were observed in case of 40% enriched lithium titanate. (author)

  8. Hemispherand-Strapped Calix[4]pyrrole: An Ion-pair Receptor for the Recognition and Extraction of Lithium Nitrite.

    Science.gov (United States)

    He, Qing; Zhang, Zhan; Brewster, James T; Lynch, Vincent M; Kim, Sung Kuk; Sessler, Jonathan L

    2016-08-10

    The hemispherand-strapped calix[4]pyrrole (1) acts as an ion pair receptor that exhibits selectivity for lithium salts. In organic media (CD2Cl2 and CD3OD, v/v, 9:1), receptor 1 binds LiCl with high preference relative to NaCl, KCl, and RbCl. DFT calculations provided support for the observed selectivity. Single crystal structures of five different lithium ion-pair complexes of 1 were obtained. In the case of LiCl, a single bridging water molecule between the lithium cation and chloride anion was observed, while tight contact ion pairs were observed in the case of the LiBr, LiI, LiNO3, and LiNO2 salts. Receptor 1 proved effective as an extractant for LiNO2 under both model solid-liquid and liquid-liquid extraction conditions.

  9. Composite anode for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    de Guzman, Rhet C.; Ng, K.Y. Simon; Salley, Steven O.

    2018-03-06

    A composite anode for a lithium-ion battery is manufactured from silicon nanoparticles having diameters mostly under 10 nm; providing an oxide layer on the silicon nanoparticles; dispersing the silicon nanoparticles in a polar liquid; providing a graphene oxide suspension; mixing the polar liquid containing the dispersed silicone nanoparticles with the graphene oxide suspension to obtain a composite mixture; probe-sonicating the mixture for a predetermined time; filtering the composite mixture to obtain a solid composite; drying the composite; and reducing the composite to obtain graphene and silicon.

  10. Comparative studies of H absorption/desorption kinetics and evaporation of liquid lithium in different porous systems and free surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Oyarzabal, E., E-mail: eider.oyarzabal@externos.ciemat.es [Ass. Euratom-Ciemat, Av. Complutense 22, 28040 Madrid (Spain); Calle de Guzmán el Bueno, 133, 28003 Madrid (Spain); Martín-Rojo, A.B. [Ass. Euratom-Ciemat, Av. Complutense 22, 28040 Madrid (Spain); Calle de Guzmán el Bueno, 133, 28003 Madrid (Spain); Tabarés, F.L. [Ass. Euratom-Ciemat, Av. Complutense 22, 28040 Madrid (Spain)

    2017-04-15

    In the present work, a study of the two most relevant properties of liquid lithium with respect to its suitability as a Plasma Facing Component (PFC) element in a Reactor, namely, its evaporation rate and the uptake/release of hydrogen, eventually leading to the formation of a stable hydride was carried out for Li in different porous systems and Li as a free surface. These properties were characterized in a temperature range of 200–500 °C. The H{sub 2} absorption kinetics at low pressure (<1torr) were measured for the different studied porous systems and then outgassed. Particle balance and chemical analysis were used to assess the retention properties of lithium for each case. Thermal Desorption Spectroscopy (TDS) analysis was used for the assessment of possible hydride formation. Evaporation rates were determined by using a Quartz Microbalance (QMB). A significant reduction of the evaporation rate was observed when Li was trapped in a microstructure of sintered stainless steel with a characteristic porous size of 5–10 μm. On the other hand, a negligible rate of H{sub 2} uptake was found at temperatures above 500 °C in all cases.

  11. Exposure of liquid lithium confined in a capillary structure to high plasma fluxes in PILOT-PSI—Influence of temperature on D retention

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Rojo, A.B., E-mail: anabmr2010@hotmail.com [Ciemat, Laboratorio Nacional de Fusión, Av Complutense 22, 28040 Madrid (Spain); Oyarzabal, E. [Ciemat, Laboratorio Nacional de Fusión, Av Complutense 22, 28040 Madrid (Spain); Fundación UNED Guzman el Bueno, 133, 28003 Madrid (Spain); Morgan, T.W. [FOM Institute for Plasma Physics Rijnhuizen, Edisonbaan 14, 3439 MN, Nieuwegein (Netherlands); Tabarés, F.L. [Ciemat, Laboratorio Nacional de Fusión, Av Complutense 22, 28040 Madrid (Spain)

    2017-04-15

    Experiments on deuterium retention on liquid lithium confined in a capillary structure followed by ex-situ thermal desorption spectrometry (TDS) at high plasma fluxes (∼10{sup 23} m{sup 2} s{sup −1}) and high temperatures (440 °C and 580 °C) have been performed. Deuterium plasmas were generated at the PILOT-PSI linear plasma device and the targets were a 30 mm diameter stainless steel disc, 5 mm thick, covered with a porous mesh and filled with lithium. The settings (current) of the plasma source were varied in order to get different sample surface temperatures during irradiation. The targets were kept at floating potential during the exposure. Hydrogen and Li emission signals were monitored during the plasma exposure and TDS analysis was made afterwards in a separated system. Decreased retention at high exposure temperatures was deduced from the analysis of the hydrogen emission signals. Nevertheless, the results from TDS signal analysis were not conclusive.

  12. Sources of pressure in lithium thionyl chloride batteries

    Science.gov (United States)

    McDonald, R. C.

    1982-11-01

    The generation of pressure in Li/SOCl2 batteries has been investigated. Hydrogen, sulfur dioxide, and nitrogen are the principal gases evolved. Reaction of lithium metal with protic species in the liquid electrolyte produces hydrogen gas on open circuit and more rapidly on discharge. Sulfur dioxide is a product of electrochemical discharge. Nitrogen, trapped in lithium metal as dissolved gas or as lithium nitride is released during discharge. In addition, smaller amounts of gas, trapped in cathode pores and adsorbed on the surface of carbon, are evolved when discharge products are deposited in the cathode. Hydrogen pressure is very sensitive to the care used in drying the electrolyte and cathodes. Alternate cycles of evacuation and backfill with SO2 eliminate much of the moisture and trapped gas from the cell prior to filling with electrolyte.

  13. In-situ measurement of the lithium distribution in Li-ion batteries using micro-IBA techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, A., E-mail: yamazaki@tac.tsukuba.ac.jp [Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Orikasa, Y.; Chen, K.; Uchimoto, Y. [Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsucho, Sakyo-ku, Kyoto 606-8501 (Japan); Kamiya, T.; Koka, M.; Satoh, T. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233, Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Mima, K.; Kato, Y.; Fujita, K. [The Graduate School for the Creation of New Photonics Industries, 1955-1, Kurematsu, NIshi-ku, Hamamatsu, Shizuoka 431-1202 (Japan)

    2016-03-15

    Direct observation of lithium concentration distribution in lithium-ion battery composite electrodes has been performed for the first time. Lithium-ion battery model cells for particle induced X-ray emission (PIXE) and particle induced gamma ray emission (PIGE) measurements were designed and fabricated. Two dimensional images of lithium concentration in LiFePO{sub 4} composite electrodes were obtained with PIXE and PIGE by scanning the proton microbeam for various charged states of the electrodes. Lithium concentration in LiFePO{sub 4} composite electrodes was decreased from the contact interface between LiFePO{sub 4} electrode and liquid electrolyte during the charge reaction.

  14. Effect of liquid oil additive on lithium-ion battery ceramic composite separator prepared with an aqueous coating solution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Woo [Division of Advanced Materials Engineering, Kongju National University, 1223–24, Cheonan-daero, Cheonan, Chungnam, 31080 (Korea, Republic of); Ryou, Myung-Hyun [Department of Chemical & Biological Engineering, Hanbat National University, 125, Dongseodaero, Yuseong-gu, Daejeon, 34158 (Korea, Republic of); Lee, Yong Min, E-mail: yongmin.lee@hanbat.ac.kr [Department of Chemical & Biological Engineering, Hanbat National University, 125, Dongseodaero, Yuseong-gu, Daejeon, 34158 (Korea, Republic of); Cho, Kuk Young, E-mail: kycho@hanyang.ac.kr [Department of Materials Science and Chemical Engineering, Hanyang University, 55, Hanyangdaehak-ro, Sangrok-gu, Ansan, Gyeonggi-do, 15588 (Korea, Republic of)

    2016-08-05

    Ceramic composite separators (CCSs) play a critical role in ensuring safety for lithium-ion batteries (LIBs), especially for mid- and large-sized devices. However, production of CCSs using organic solvents has some cost and environmental concerns. An aqueous process for fabricating CCSs is attractive because of its cost-effectiveness and environmental-friendliness because organic solvents are not used. The success of an aqueous coating system for LIBs is dependent upon minimizing moisture content, as moisture has a negatively impact on LIB performance. In this study, CCSs were fabricated using an aqueous coating solution containing Al{sub 2}O{sub 3} and an acrylic binder. Compared with polyethylene (PE) separators, CCSs coated with an aqueous coating solution showed improved thermal stability, electrolyte uptake, puncture strength, ionic conductivity, and rate capability. In addition, our new approach of introducing a small amount of an oily liquid to the aqueous coating solution reduced the water adsorption by 11.7% compared with coatings that do not contain the oily liquid additive. - Highlights: • Ceramic composite separator is fabricated using aqueous coating process. • Coated separator showed enhanced mechanical and thermal stability. • Liquid oil additive in coating solution reduce moisture reabsorption of separator. • Oil additive in aqueous coating solution does not deteriorate LIB performance.

  15. The Incorporation of Lithium Alloying Metals into Carbon Matrices for Lithium Ion Battery Anodes

    Science.gov (United States)

    Hays, Kevin A.

    An increased interest in renewable energies and alternative fuels has led to recognition of the necessity of wide scale adoption of the electric vehicle. Automotive manufacturers have striven to produce an electric vehicle that can match the range of their petroleum-fueled counterparts. However, the state-of-the-art lithium ion batteries used to power the current offerings still do not come close to the necessary energy density. The energy and power densities of the lithium ion batteries must be increased significantly if they are going to make electric vehicles a viable option. The chemistry of the lithium ion battery, based on lithium cobalt oxide cathodes and graphite anodes, is limited by the amount of lithium the cathode can provide and the anode will accept. While these materials have proven themselves in portable electronics over the past two decades, plausible higher energy alternatives do exist. The focus is of this study is on anode materials that could achieve a capacity of more than 3 times greater than that of graphite anodes. The lithium alloying anode materials investigated and reported herein include tin, arsenic, and gallium arsenide. These metals were synthesized with nanoscale dimensions, improving their electrochemical and mechanical properties. Each exhibits their own benefits and challenges, but all display opportunities for incorporation in lithium ion batteries. Tin is incorporated in multilayer graphene nanoshells by introducing small amounts of metal in the core and, separately, on the outside of these spheres. Electrolyte decomposition on the anode limits cycle life of the tin cores, however, tin vii oxides introduced outside of the multilayer graphene nanoshells have greatly improved long term battery performance. Arsenic is a lithium alloying metal that has largely been ignored by the research community to date. One of the first long term battery performance tests of arsenic is reported in this thesis. Anodes were made from nanoscale

  16. The use of anions with sulfate function in electrolyte for lithium battery. Study of transport mechanism; Utilisation d'anions a fonction sulfate dans des electrolytes pour batterie au lithium. Etude des mecanismes de transport

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, Ch.

    2005-05-15

    Lithium salts based on oligo-ether sulfate were synthesized and characterised. They incorporate oxy-ethylene units which enable the lithium cation salvation and, potentially, their use as ionic liquids. Their properties as lithium salts dissolved in liquid or polymer electrolytes were evaluated. Their electrochemical and thermal stabilities are sufficient for lithium battery application. Due to their weak dissociation in POE, their conductivities are fairly low. On the other hand, they have high cationic transference numbers. In mixture with usual salts as LiTFSI, they provide a good compromise between conductivities/transference number/cost. The second part of this study deals with the synthesis and characterisation of an ionomer with sulfate function and polyether backbone. The electrochemical, physical and chemical properties of this material show that it could be used as polymer electrolyte. Its potential as cross-linked gelled polymer electrolyte is outstanding. Structural analyses on an ionomeric monocrystal have been corroborated with quantum chemistry calculations. (author)

  17. Materials Compositions for Lithium Ion Batteries with Extended Thermal Stability

    Science.gov (United States)

    Kalaga, Kaushik

    Advancements in portable electronics have generated a pronounced demand for rechargeable energy storage devices with superior capacity and reliability. Lithium ion batteries (LIBs) have evolved as the primary choice of portable power for several such applications. While multiple variations have been developed, safety concerns of commercial technologies limit them to atmospheric temperature operability. With several niche markets such as aerospace, defense and oil & gas demanding energy storage at elevated temperatures, there is a renewed interest in developing rechargeable batteries that could survive temperatures beyond 100°C. Instability of critical battery components towards extreme thermal and electrochemical conditions limit their usability at high temperatures. This study deals with developing material configurations for LIB components to stabilize them at such temperatures. Flammable organic solvent based electrolytes and low melting polymer based separators have been identified as the primary bottleneck for LIBs to survive increasing temperature. Furthermore, thermally activated degradation processes in oxide based electrodes have been identified as the reason for their limited lifetime. A quasi-solid composite comprising of room temperature ionic liquids (RTILs) and Clay was developed as an electrolyte/separator hybrid and tested to be stable up to 120°C. These composites facilitate complete reversible Li intercalation in lithium titanate (LTO) with a stable capacity of 120 mAh g-1 for several cycles of charge and discharge while simultaneously resisting severe thermal conditions. Modified phosphate based electrodes were introduced as a reliable alternative for operability at high temperatures in this study. These systems were shown to deliver stable reversible capacity for numerous charge/discharge cycles at elevated temperatures. Higher lithium intercalation potential of the developed cathode materials makes them interesting candidates for high voltage

  18. Study of the corrosion behaviors of 304 austenite stainless steel specimens exposed to static liquid lithium at 600 K

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiancai [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zuo, Guizhong; Ren, Jun; Xu, Wei; Sun, Zhen; Huang, Ming [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Wangyu [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Hu, Jiansheng, E-mail: hujs@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Deng, Huiqiu, E-mail: hqdeng@hnu.edu.cn [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China)

    2016-11-15

    Investigation of corrosion behavior of stainless steel served as one kind of structure materials exposed to liquid lithium (Li) is one of the keys to apply liquid Li as potential plasma facing materials (PFM) or blanket coolant in the fusion device. Corrosion experiments of 304 austenite stainless steel (304 SS) were carried out in static liquid Li at 600 K and up to1584 h at high vacuum with pressure less than 4 × 10{sup −4} Pa. After exposure to liquid Li, it was found that the weight of 304 SS slightly decreased with weight loss rate of 5.7 × 10{sup −4} g/m{sup 2}/h and surface hardness increased by about 50 HV. Lots of spinel-like grains and holes were observed on the surface of specimens measured by SEM. By further EDS, XRD and metallographic analyzing, it was confirmed that the main compositions of spinel-like grains were M{sub 23}C{sub 6} carbides, and 304 SS produced a non-uniform corrosion behavior by preferential grain boundary attack, possibly due to the easy formation of M{sub 23}C{sub 6} carbides and/or formation of Li compound at grain boundaries.

  19. Temperature dependence of electrochemical properties of cross-linked poly(ethylene oxide)–lithium bis(trifluoromethanesulfonyl)imide–N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide solid polymer electrolytes for lithium batteries

    International Nuclear Information System (INIS)

    Wetjen, Morten; Kim, Guk-Tae; Joost, Mario; Winter, Martin; Passerini, Stefano

    2013-01-01

    Highlights: ► Solid-state electrolyte for lithium batteries. ► Polymer electrolyte with improved mechanical properties by cross-linking. ► Enhanced performance of polymer electrolytes using water- and air-stable ionic liquids as co-salts. ► Polymer electrolyte with high rate capability at moderate temperatures. - Abstract: An advanced electrochemical characterization of cross-linked ternary solid polymer electrolytes (SPEs), prepared by a solvent-free hot-pressing process, is reported. Ionic conductivity, electrochemical stability window and limiting current measurements were performed as a function of the temperature by using both potentiodynamic and galvanostatic techniques. Additionally, the lithium cycleability was evaluated with respect to its dependence on both the operating temperature and the current density by using a new multi-rate Li-stripping-plating procedure. The results clearly indicate the beneficial effect of higher operating temperatures on the rate-capability, without major degradation of the electrochemical stability of the SPE. All-solid-state lithium metal polymer batteries (LMPBs), comprising a lithium metal anode, the cross-linked ternary solid polymer electrolyte and a LiFePO 4 composite cathode, were manufactured and investigated in terms of the interdependencies of the delivered capacity, operating temperature and discharge rate. The results prove quite exceptional delivered capacities both at medium current densities at ambient temperatures and even more impressive capacities above 160 mAh g −1 at high discharge rates (1 C) and temperatures above 60 °C.

  20. A high-speed beam of lithium droplets for collecting diverted energy and particles in ITER [International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Werley, K.A.

    1989-01-01

    A high-speed (160m/s) beam (0.14 x 0.86m) of liquid-lithium droplets passing through the divertor region(s) below (and above) the main plasma has the potential to replace and out-perform ''conventional'' solid divertor plates in both heat and particle removal. In addition to superior heat-collection properties, the lithium beam would: remove impurities; require low power to circulate the lithium; exhibit low-recycle divertor operation compatible with lower-hybrid current drive, H-mode plasma confinement, and no flow reversal in the edge plasma; be insensitive to plasma shifts; and finally protect solid structures from the plasma thermal energy for those disruptions that deposit energy preferentially into the divertor while simultaneously being rapidly re-established after a major disruption. Scoping calculations identifying the beam configuration and the droplet dynamics, including formation, MHD effects, gravitational effects, thermal response and hydrodynamics, are presented. Limitations and uncertainties are also discussed. 20 refs., 6 figs., 3 tabs

  1. Separation of beryllium and mercury from lithium chloride solution by gaseous extraction

    International Nuclear Information System (INIS)

    Sevast'yanov, A.I.; Chepovol, V.I.

    1989-01-01

    The possibility is shown of extracting beryllium and mercury by acetylacetone (HAA) from lithium chloride solution by passing argon through the solution and the optimum conditions have been determined. The dependence of the degree of extraction and the distribution coefficients on various parameters of the liquid phase are presented, viz. the initial pH value, the lithium chloride concentration, and the initial HAA content

  2. Reduction of Al2O3 in niobium--lithium systems at 10000C

    International Nuclear Information System (INIS)

    Selle, J.E.; DeVan, J.H.

    1977-07-01

    Various grades of aluminum oxide (Al 2 O 3 ) were sealed inside capsules of niobium and niobium-1% zirconium alloy which were then exposed to liquid lithium for 3000 hr at 1000 0 C. Similar unsealed capsules were exposed to a high vacuum. Reduction of the Al 2 O 3 occurred in the lithium-treated capsules, but no reaction occurred in the vacuum-treated capsules. Metallography and electron-microprobe analysis showed that reaction products in the form of compounds of niobium, aluminum, and zirconium were formed. Lithium acted as a sink for oxygen

  3. Press forging and optical properties of lithium fluoride

    Science.gov (United States)

    Ready, J. F.; Vora, H.

    1980-07-01

    Lithium fluoride is an important candidate material for windows on high power, short-pulse ultraviolet and visible lasers. Lithium fluoride crystals were press forged in one step over the temperature range 300 to 600 C to obtain fine grained polycrystalline material with improved mechanical properties. The deformation that can be given to a lithium fluoride crystal during forging is limited by the formation of internal cloudiness (veiling) with the deformation limit increasing with increasing forging temperature from about 40 percent at 400 C to 65 percent at 600 C. To suppress veiling, lithium fluoride crystals were forged in two steps over the temperature range 300 to 600 C, to total deformations of 69 to 76 percent, with intermediate annealing at 700 C. This technique yields a material which has lower scattering with more homogeneous microstructure than that obtained in one step forging. The results of characterization of various optical and mechanical properties of single crystal and forged lithium fluoride, including scattering, optical homogeneity, residual absorption, damage thresholds, environmental stability, and thresholds for microyield are described.

  4. Press forging and optical properties of lithium fluoride

    International Nuclear Information System (INIS)

    Ready, J.F.; Vora, H.

    1979-01-01

    Lithium fluoride is an important candidate material for windows on high-power, short-pulse ultraviolet and visible lasers. Lithium fluoride crystals have been press forged in one step over the temperature range 300 to 600 0 c to obtain fine-grained polycrystalline material with improved mechanical properties. The deformation that can be given to a lithium fluoride crystal during forging is limited by the formation of internal cloudiness (veiling) with the deformation limit increasing with increasing forging temperature from about 40% at 400 0 C to 65% at 600 0 C. To suppress veiling, lithium fluoride crystals were forged in two steps over the temperature range 300 to 600 0 C, to total deformations of 69-76%, with intermediate annealing at 700 0 C. This technique yields a material which has lower scattering with more homogeneous microstructure than that obtained in one-step forging. The results of characterization of various optical and mechanical properties of single-crystal and forged lithium fluoride, including scattering, optical homogeneity, residual absorption, damage thresholds, environmental stability, and thresholds for microyield are described

  5. Study on high speed lithium jet for neutron source of boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Kobayashi, Tooru; Zhang, Mingguang; Mak, Michael; Stefanica, Jiri; Dostal, Vaclav; Zhao Wei

    2012-01-01

    The feasibility study of a liquid lithium type proton beam target was performed for the neutron source of the boron neutron capture therapy (BNCT). As the candidates of the liquid lithium target, a thin sheet jet and a thin film flow on a concave wall were chosen, and a lithium flow experiment was conducted to investigate the hydrodynamic stability of the targets. The surfaces of the jets and film flows with a thickness of 0.5 mm and a width of 50 mm were observed by means of photography. It has been found that a stable sheet jet and a stable film flow on a concave wall can be formed up to certain velocities by using a straight nozzle and a curved nozzle with the concave wall, respectively. (author)

  6. Lithium

    Science.gov (United States)

    Bradley, Dwight C.; Stillings, Lisa L.; Jaskula, Brian W.; Munk, LeeAnn; McCauley, Andrew D.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Lithium, the lightest of all metals, is used in air treatment, batteries, ceramics, glass, metallurgy, pharmaceuticals, and polymers. Rechargeable lithium-ion batteries are particularly important in efforts to reduce global warming because they make it possible to power cars and trucks from renewable sources of energy (for example, hydroelectric, solar, or wind) instead of by burning fossil fuels. Today, lithium is extracted from brines that are pumped from beneath arid sedimentary basins and extracted from granitic pegmatite ores. The leading producer of lithium from brine is Chile, and the leading producer of lithium from pegmatites is Australia. Other potential sources of lithium include clays, geothermal brines, oilfield brines, and zeolites. Worldwide resources of lithium are estimated to be more than 39 million metric tons, which is enough to meet projected demand to the year 2100. The United States is not a major producer at present but has significant lithium resources.

  7. Stability of high-speed lithium sheet jets for the neutron source in Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Nakagawa, Masamichi; Takahashi, Minoru; Aritomi, Masanori; Kobayashi, Toru

    2014-01-01

    The stability of high-speed liquid lithium sheet jets was analytically studied for the neutron source in Boron Neutron Capture Therapy (BNCT), which makes cancers and tumors curable with cell-level selections and hence high QOL. The object of our research is to realize the thin and high-speed plane sheet jets of liquid lithium in a high-vacuum as an accelerator target. Linear analysis approach is made to the stability on thin plane sheet jets of liquid lithium in a high-vacuum, and then our analytical results were compared with the previous experimental ones. We proved that the waves of surface tension on thin lithium sheet jets in a high-vacuum are of supercritical flows and neutral stable under about 17.4 m/s in flow velocity and that the fast non-dispersive anti-symmetric waves are more significant than the very slow dispersive symmetric waves. We also formulated the equation of shrinking angle in isosceles-triangularly or isosceles-trapezoidal shrinking sheet jets corresponding to the Mach angle of supersonic gas flows. This formula states universally the physical meaning of Weber number of sheet jets on the wave of surface tension in supercritical flows. We obtained satisfactory prospects (making choice of larger flow velocity U and larger thickness of sheet a) to materialize a liquid target of accelerator in BNCT. (author)

  8. Preliminary study on lithium-salt aqueous solution blanket

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Naruse, Yuji; Yamaoka, Mitsuaki; Ohara, Atsushi; Ono, Kiyoshi; Kobayashi, Shigetada.

    1992-06-01

    Aqueous solution blanket using lithium salts such as LiNO 3 and LiOH have been studied in the US-TIBER program and ITER conceptual design activity. In the JAERI/LANL collaboration program for the joint operation of TSTA (Tritium Systems Test Assembly), preliminary design work of blanket tritium system for lithium ceramic blanket, aqueous solution blanket and liquid metal blanket, have been performed to investigate technical feasibility of tritium demonstration tests using the TSTA. Detail study of the aqueous solution blanket concept have not been performed in the Japanese fusion program, so that this study was carried out to investigate features of its concept and to evaluated its technical problems. The following are the major items studied in the present work: (i) Neutronics of tritium breeding ratio and shielding performance Lithium concentration, Li-60 enrichment, beryllium or lead, composition of structural material/beryllium/solution, heavy water, different lithium-salts (ii) Physicochemical properties of salts Solubility, corrosion characteristics and compatibility with structural materials, radiolysis (iii) Estimation of radiolysis in ITER aqueous solution blanket. (author)

  9. Conceptual design study of the hylife lithium waterfall laser fusion chamber. FY 1978 annual report to Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    1978-01-01

    Conceptual design studies of the target chamber defined the general configuration and dimensions of the chamber and the inlet plenum, orifice plate, and nozzle plate concepts required to generate the desired lithium jet fall. Preliminary studies were performed of the target chamber interfaces with the liquid lithium supply system, the laser system, the pellet injection system, and the target chamber mounting and support system. Target chamber environmental effects resulting from typical thermonuclear burns were evaluated. The outlet region of the target chamber was outlined conceptually, and preliminary design considerations were given to the annular graphite reflector regions of the target chamber and the associated liquid lithium coolant passages

  10. Thawing of lithium in the SP-100 reactor core configuration

    International Nuclear Information System (INIS)

    Magee, P.M.; Malovrh, J.W.; REineking, W.H.

    1986-01-01

    The General Electric SP-100 Liquid Metal Reactor is designed to be launched with the lithium coolant in the reactor and primary loops frozen. Initial startup of the system in space, after a satisfactory orbit is achieved, will be accomplished by slowly increasing the power in the reactor core and using the heat generated to melt the lithium, first in the reactor, and then progressively down the primary loops. This technique significantly facilitates ground handling, reduces vibrational loads during vehicle launch and minimized the shuttle bay heat load. The challenge is to thaw the coolant and startup the system within an acceptable time without structural damage. The test results clearly demonstrate that thawing of the lithium in the SP-100 reactor core can be done rapidly without structural damage and, thus, support the selected concept of SP-100 launch with frozen lithium and thaw/startup in space

  11. High-Performance Lithium-Air Battery with a Coaxial-Fiber Architecture.

    Science.gov (United States)

    Zhang, Ye; Wang, Lie; Guo, Ziyang; Xu, Yifan; Wang, Yonggang; Peng, Huisheng

    2016-03-24

    The lithium-air battery has been proposed as the next-generation energy-storage device with a much higher energy density compared with the conventional lithium-ion battery. However, lithium-air batteries currently suffer enormous problems including parasitic reactions, low recyclability in air, degradation, and leakage of liquid electrolyte. Besides, they are designed into a rigid bulk structure that cannot meet the flexible requirement in the modern electronics. Herein, for the first time, a new family of fiber-shaped lithium-air batteries with high electrochemical performances and flexibility has been developed. The battery exhibited a discharge capacity of 12,470 mAh g(-1) and could stably work for 100 cycles in air; its electrochemical performances were well maintained under bending and after bending. It was also wearable and formed flexible power textiles for various electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A detailed study of lithium in 107 CHEPS dwarf stars

    Science.gov (United States)

    Pavlenko, Ya. V.; Jenkins, J. S.; Ivanyuk, O. M.; Jones, H. R. A.; Kaminsky, B. M.; Lyubchik, Yu. P.; Yakovina, L. A.

    2018-03-01

    Context. We report results from lithium abundance determinations using high resolution spectral analysis of the 107 metal-rich stars from the Calan-Hertfordshire Extrasolar Planet Search programme. Aims: We aim to set out to understand the lithium distribution of the population of stars taken from this survey. Methods: The lithium abundance taking account of non-local thermodynamical equilibrium effects was determined from the fits to the Li I 6708 Å resonance doublet profiles in the observed spectra. Results: We find that a) fast rotators tend to have higher lithium abundances; b) log N(Li) is higher in more massive and hot stars; c) log N(Li) is higher in stars of lower log g; d) stars with the metallicities >0.25 dex do not show the lithium lines in their spectra; e) most of our planet hosts rotate slower; and f) a lower limit of lithium isotopic ratio is 7Li/6Li > 10 in the atmospheres of two stars with planets (SWP) and two non-SWP stars. Conclusions: Measurable lithium abundances were found in the atmospheres of 45 stars located at distances of 20-170 pc from the Sun, for the other 62 stars the upper limits of log N(Li) were computed. We found well defined dependences of lithium abundances on Teff, V sin i, and less pronounced for the log g. In case of V sin i we see two sequences of stars: with measurable lithium and with the upper limit of log N(Li). About 10% of our targets are known to host planets. Only two SWP have notable lithium abundances, so we found a lower proportion of stars with detectable Li among known planet hosts than among stars without planets. However, given the small sample size of our planet-host sample, our analysis does not show any statistically significant differences in the lithium abundance between SWP and stars without known planets.

  13. Thermodynamic interrelation between excess limiting partial molar characteristics of a liquid nonelectrolyte

    International Nuclear Information System (INIS)

    Ivanov, Evgeniy V.

    2012-01-01

    Highlights: ► Excess limiting molar volume may be regarded as a solvation-related characteristic. ► Volumetric and enthalpic effects of dissolution are interrelated thermodynamically. ► Possibility to estimate the partial change in solute compressibility is described. - Abstract: On the basis of thermodynamic analysis, it is concluded that the excess limiting partial molar volume, like the excess limiting partial molar enthalpy, can be considered as a solvation-related characteristic of a liquid nonelectrolyte. A thermodynamically grounded interrelation between standard volumetric and enthalpic effects of solution of a liquid nonelectrolyte (or series of nonelectrolytes) is suggested.

  14. Methods of tritium recovery from molten lithium

    International Nuclear Information System (INIS)

    Farookhi, R.; Rogers, J.E.

    1968-01-01

    It is important to keep the tritium inventory in a blanket of a thermonuclear reactor at a low level both to eliminate possible hydriding of structural components and to reduce inventory cost. Removing the tritium from a lithium blanket by fractional distillation, flash vaporization, and fractional crystallization was investigated. No definitive data are available either on the vapor-liquid equilibrium between lithium and tritium at low T 2 concentrations, or on the rate of formation and decomposition of lithium tritide. The final distinction between the recovery systems discussed in this report will depend on such data, but presently distillation appears to be the best alternate to the diffusion scheme proposed by A.P. Fraas. The capital cost of equipment necessary to remove tritium by distillation appears to be greater than 10 million dollars for a 5000 MW system, whereas the capital cost associated with the diffusion process has been estimated to be 4 million dollars

  15. Serum lithium levels and suicide attempts: a case-controlled comparison in lithium therapy-naive individuals.

    Science.gov (United States)

    Kanehisa, Masayuki; Terao, Takeshi; Shiotsuki, Ippei; Kurosawa, Keiko; Takenaka, Ryuichi; Sakamoto, Teruo; Shigemitsu, Osamu; Ishii, Nobuyoshi; Hatano, Koji; Hirakawa, Hirofumi

    2017-11-01

    Several epidemiological studies have shown the inverse association of lithium levels in drinking water and suicide rates; however, it is necessary to perform a clinical study dealing with individual patients. We analyzed 199 patients including 31 patients with suicide attempts, 21 patients with self-harm, and 147 control patients. All were transferred to a university emergency department suffering from intoxication or injury, were aged 20 or more years, and were alive at the start of the study. The exclusion criteria consisted of suffering from schizophrenia and a past or present history of lithium therapy. These exclusions were applied because it is difficult to determine whether their suicide attempt was induced by the intent to end their life or by psychotic symptoms such as auditory hallucinations, and if the patient had received lithium therapy, the association between the small amount of lithium taken from drinking water and food and serum lithium levels cannot be detected. There was a significant difference (p = 0.043) between the three groups whereby patients with suicide attempts had significantly lower lithium levels than control patients (p = 0.012) in males but not females. Multivariate logistic regression analysis with adjustment for age and gender revealed that patients with suicide attempts had significantly lower lithium levels than control patients (p = 0.032, odds ratio 0.228, 95% CI 0.059-0.883). The limitations of the present study are the nature of observational research which cannot reveal a causal relationship and the relatively small number of subjects. The present findings suggest that higher serum lithium levels may be protective against suicide attempts in lithium therapy-naive individuals.

  16. Investigation of wetting property between liquid lead lithium alloy and several structural materials for Chinese DEMO reactor

    Science.gov (United States)

    Lu, Wei; Wang, Weihua; Jiang, Haiyan; Zuo, Guizhong; Pan, Baoguo; Xu, Wei; Chu, Delin; Hu, Jiansheng; Qi, Junli

    2017-10-01

    The dual-cooled lead lithium (PbLi) blanket is considered as one of the main options for the Chinese demonstration reactor (DEMO). Liquid PbLi alloy is used as the breeder material and coolant. Reduced activation ferritic/martensitic (RAFM) steel, stainless steel and the silicon carbide ceramic matrix composite (SiCf) are selected as the substrate materials for different use. To investigate the wetting property and inter-facial interactions of PbLi/RAFM steel, PbLi/SS316L, PbLi/SiC and PbLi/SiCf couples, in this paper, the special vacuum experimental device is built, and the 'dispensed droplet' modification for the classic sessile droplet technique is made. Contact angles are measured between the liquid PbLi and the various candidate materials at blanket working temperature from 260 to 480 °C. X-ray photoelectron spectroscopy (XPS) is used to characterize the surface components of PbLi droplets and substrate materials, in order to study the element trans-port and corrosion mechanism. Results show that SiC composite (SiCf) and SiC ceramic show poor wetting properties with the liquid PbLi alloy. Surface roughness and testing temperature only provide tiny improvements on the wetting property below 480 °C. RAFM steel performs better wetting properties and corrosion residence when contacted with molten PbLi, while SS316L shows low corrosion residence above 420 °C for the decomposition of protective surface film mainly consisted of chromic sesquioxide. The results could provide meaningful compatibility database of liquid PbLi alloy and valuable reference in engineering design of candidate structural and functional materials for future fusion blanket.

  17. Improvement of lithium-ion battery performance at low temperature by adopting polydimethylsiloxane-based electrolyte additives

    International Nuclear Information System (INIS)

    Kim, Kwang Man; Ly, Nguyen Vu; Won, Jung Ha; Lee, Young-Gi; Cho, Won Il; Ko, Jang Myoun; Kaner, Richard B.

    2014-01-01

    Three kinds of polydimethylsiloxane (PDMS)-based grafted and ungrafted copolymers such as poly[dimethylsiloxane-co-(siloxane-g-acrylate)] (PDMS-A), poly(dimethylsiloxane-co-phenylsiloxane) (PDMS-P), and poly[dimethylsiloxane-co-(siloxane-g-ethylene oxide)] (PDMS-EO) are used as additives to standard liquid electrolyte solutions to enhance the lithium-ion battery performance at low temperatures. Liquid electrolyte solutions with PDMS-based additives are electrochemically stable under 5.0 V and have adequate ionic conductivities of 10 −4 S cm −1 at -20 °C. Particularly, liquid electrolytes with PDMS-P and PDMS-EO exhibit higher ionic conductivities of around 5 × 10 −4 S cm −1 at -20 °C, indicating a specific resisting property against the freezing of the liquid electrolyte components. As a result, the addition of PDMS-based additives to liquid electrolytes improves the capacity retention ratio and rate-capability of lithium-ion batteries at low temperatures

  18. Basic technology for {sup 6}Li enrichment using an ionic-liquid impregnated organic membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Tsuyoshi, E-mail: hoshino.tsuyoshi@jaea.go.jp [Blanket Irradiation and Analysis Group, Fusion Research and Development Directorate, Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Higashi Ibaraki-gun, Ibaraki 311-1393 (Japan); Terai, Takayuki [The Institute of Engineering Innovation and Department of Nuclear Engineering and Management School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2011-10-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ({sup 6}Li) in tritium breeding materials. However, natural Li contains only about 7.6 at.% {sup 6}Li. In this paper, a new lithium isotope separation technique using an ionic-liquid impregnated organic membrane is proposed. In order to separate and concentrate lithium isotopes, only lithium ions are able to move through the membrane by electrodialysis between the cathode and the anode in lithium solutions. Preliminary experiments of lithium isotope separation were conducted using this phenomenon. Organic membranes impregnated with TMPA-TFSI and PP13-TFSI as ionic liquids were prepared, and the relationship between the {sup 6}Li separation coefficient and the applied electrodialytic conditions was evaluated using them. The results showed that the {sup 6}Li isotope separation coefficient in this method (about 1.1-1.4) was larger than that in the mercury amalgam method (about 1.06).

  19. Corrosion and compatibility in liquid alkali metals

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The literature dealing with liquid alkali metal corrosion of vanadium and its alloys is reviewed in the following subsections. Attention is given to both lithium and sodium data. Preceding this review, a brief outline of the current state of understanding of liquid metal corrosion mechanisms is provided

  20. Design and Characterisation of Solid Electrolytes for All-Solid-State Lithium Batteries

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn

    The development of all-solid-state lithium batteries, in which the currently used liquid electrolytes are substituted for solid electrolyte materials, could lead to safer batteries offering higher energy densities and longer cycle lifetimes. Designing suitable solid electrolytes with sufficient...... chemical and electrochemical stability, high lithium ion conduction and negligible electronic conduction remains a challenge. The highly lithium ion conducting LiBH4-LiI solid solution is a promising solid electrolyte material. Solid solutions with a LiI content of 6.25%-50% were synthesised by planetary......-rich microstructures during ball milling is found to significantly influence the conductivity of the samples. The long-range diffusion of lithium ions was measured using quasi-elastic neutron scattering. The solid solutions are found to exhibit two-dimensional conduction in the hexagonal plane of the crystal structure...

  1. Design of the FMIT lithium target

    International Nuclear Information System (INIS)

    Hassberger, J.A.; Annese, C.E.; Greenwell, R.K.; Ingham, J.G.; Miles, R.R.; Miller, W.C.

    1981-01-01

    Development of the liquid lithium target for the Fusion Materials Irradiation Test (FMIT) Facility is described. The target concept, major design goals and design requirements are presented. Progress made in the research and development areas leading to detailed design of the target is discussed. This progress, including experimental and analytic results, demonstrates that the FMIT target design is capable of meeting its major design goals and requirements

  2. Study on property-gradient polymer electrolyte for rechargeable lithium batteries; Lithium niji denchi no tame no keisha tokusei kobunshi denkaishitsu no sosei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kokumi, Z; Kanemura, S; Inaba, M; Takehara, Z; Yao, K; Uchimoto, Y [Kyoto University, Kyoto (Japan)

    1997-02-01

    This paper describes the fundamental experiments for creating property-gradient polymer electrolyte for rechargeable lithium batteries. The rechargeable lithium battery is composed of an anodic composite agent section with high ion conductivity, a separator equivalent section with high mechanical strength (high bridging degree), and a section surpressing the precipitation of metal lithium by contacting with it. The continuous property-gradient polymer electrolyte was tried to be synthesized by means of the plasma polymerization method. As a result, plasma polymerization electrolyte with high ion conductivity could be prepared from the liquid phase by using a monomer with low vapor pressure. Porous material simulating the anodic composite agent was impregnated by the monomer, which was plasma-polymerized. As a result, it was found that the bridging degree decreased from the surface towards the inside of the plasma-polymerized porous material. In addition, polymer was prepared using fluorine-base monomer. Thus, LiF thin film could be prepared through the reaction between the polymer and metal lithium. 3 figs.

  3. Capacity loss and faradaic efficiency of lithium thionyl chloride cells

    Energy Technology Data Exchange (ETDEWEB)

    Hoier, S. [Sandia National Labs., Albuquerque, NM (United States); Schlaikjer, C.; Johnson, A.; Riley, S. [Battery Engineering, Inc., Boston, MA (United States)

    1996-05-01

    In lithium/thionyl chloride (Li/TC) cells, a lithium limited design was thought to be safer than a cathode limited design because the amount of lithium left in discharged cells would be minimal. However, lithium corrosion reduces the capacity faster than does cathode degradation during storage. The optimization of the ratio of lithium to carbon was studied, considering storage time and temperature. The efficiency of converting chemical energy into electrical energy has been studied for the case of D cells with surface area from 45 to 345 cm{sup 2}, under constant and various pulsed loads. Microcalorimetric monitoring of the heat output during discharge allowed the direct measurement of faradaic efficiency, and showed that self discharge is far more pervasive that previously acknowledged. Typical faradaic efficiencies for constant load varied from 30% at low current density to 90% at moderate and 75 % at high current density. Pulsed current further depresses these efficiencies, except at very low average current density.

  4. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes

    International Nuclear Information System (INIS)

    Ogihara, Wataru; Sun Jiazeng; Forsyth, Maria; MacFarlane, Douglas R.; Yoshizawa, Masahiro; Ohno, Hiroyuki

    2004-01-01

    We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10 -4 to 10 -3 S cm -1 at room temperature. Gelation was found to cause little change in the 7 Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids

  5. Role of perfluoropolyether-based electrolytes in lithium metal batteries: Implication for suppressed Al current collector corrosion and the stability of Li metal/electrolytes interfaces

    Science.gov (United States)

    Cong, Lina; Liu, Jia; Armand, Michel; Mauger, Alain; Julien, Christian M.; Xie, Haiming; Sun, Liqun

    2018-03-01

    The development of safe and high performance lithium metal batteries represents a major technological challenge for this new century. Historically, intrinsic instabilities of conventional liquid organic electrolytes induced battery failures and safety issues that hinder the practical utilization of advanced rechargeable lithium metal batteries. Herein, we report a multifunctional perfluoropolyether-based liquid polymer electrolyte (PFPE-MC/LiTFSI), presenting a unique "anion-solvent" interaction. This interaction optimizes the interfacial chemistry of lithium metal batteries, which effectively inhibits the corrosion of aluminum current collectors, suppresses lithium dendrite growth, and also facilitates the formation of a thin and stable SEI layer on Li anode. Even at a high current density of 0.7 mA cm-2, the lithium dendrites do not form after 1360 h of continuous operation. The LiFePO4|PFPE-MC/LiTFSI|Li cell delivers a stable cycling performance with over 99.9% columbic efficiency either at ambient temperature or high temperature, which is significantly superior to those using traditional carbonate electrolytes. In addition, PFPE-MC/LiTFSI electrolyte also possesses eye-catching properties, such as being non-flammable, non-volatile, non-hygroscopic, and existing in the liquid state between -90 °C and 200 °C, which further ensures the high safety of the lithium metal batteries, making this electrolyte promising for the development of high energy lithium metal batteries.

  6. Structural effects on fusion reactor blankets due to liquid metals in magnetic fields

    International Nuclear Information System (INIS)

    Lehner, J.R.; Reich, M.; Powell, J.R.

    1976-01-01

    The transient stress distribution caused in the blanket structure when the plasma current suddenly switches off in a time short compared to the L/R decay time of the liquid metal blanket was studied. Poloidal field of the plasma will induce a current to flow in the liquid metal and blanket walls. Since the resistance of the liquid lithium will be much less than that of the metal walls, the current can be considered as flowing around the blanket near the cross section perimeter, but in the lithium

  7. Ultradense Nuclear Fusion in Metallic Lithium Liquid. A report on research performed at the R and D Center, Sakaguchi E.H VOC Co. under the auspices of the Swedish Energy Agency

    International Nuclear Information System (INIS)

    Ikegami, Hidetsugu; Pettersson, Roland

    2006-10-01

    This report is concerned with research and development on a new fusion scheme, 'chemonuclear fusion'. In this scheme, lithium or deuterium ions are implanted in liquid lithium whereby huge reaction rate enhancements, as much as up to 10 15 compared to what is expected for a free two-body deuterium-lithium interaction, are obtained. The enhancement is suggested to be a result of nuclear, atomic and chemical reactions taking place cooperatively. Experimental studies on the Li - D chemonuclear fusion is supported financially by the Swedish Energy Agency and were initiated at the Dept. of Analytical Chemistry, Uppsala University. The studies were continued in a collaboration with the R and D Centre, Sakaguchi E.H VOC Co. in Tokyo where a new and modified setup was constructed. Here, besides the Li - D chemonuclear fusion, the Li - Li fusion and the D 2 - 2Li molecular chemonuclear fusion were developed. In 2005 at the R and D Centre, molecular ions D 2 + of energies 30keV were implanted on a surface of metallic Li liquid. Product alpha particles were identified and measured by a single solid state detector. The energies were around 7.6MeV corresponding to what would be expected for the reaction 7 Li + D → 2x 4 He + n. Under some conditions of the Li liquid, the reaction rate was intermittently so high that the particle detector was saturated and stopped counting simultaneously with an appreciable temperature rise in the Li liquid. The results were discussed in March at the University of Tokyo and in October at the Royal Swedish Academy of Sciences, The Royal Swedish Engineering Academy of Sciences and at Uppsala University. This report presents a full description of the results. It also contains more recent results where an additional detector setup, a ΔE-E detector was used for validation of the results in particular the identity of the alpha particles

  8. A QuaternaryPoly(ethylene carbonate)-Lithium Bis(trifluoromethanesulfonyl)imide-Ionic Liquid-Silica Fiber Composite Polymer Electrolyte for Lithium Batteries

    International Nuclear Information System (INIS)

    Kimura, Kento; Matsumoto, Hidetoshi; Hassoun, Jusef; Panero, Stefania; Scrosati, Bruno; Tominaga, Yoichi

    2015-01-01

    Highlights: • A quaternary PEC-LiTFSI-Pyr 14 TFSI-Silica fiber electrolyte was prepared by a solvent casting method. • Both electrochemical and mechanical properties were improved by the presence of the Silica fiber. • The electrolyte showed a t Li+ value of 0.36 with an anodic stability extended up to 4.5 V vs. Li/Li + . • A prototype Li/LiFePO 4 polymer cell delivered a discharge capacity of about 100 mAh g −1 (75 °C, C/15). - Abstract: Poly(ethylene carbonate) (PEC) is known as an alternating copolymer derived from carbon dioxide (CO 2 ) and an epoxide as monomers. Here, we describe a new quaternary PEC-based composite electrolyte containing lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt, N-n-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (Pyr 14 TFSI) ionic liquid, and an electrospun silica (SiO 2 ) fiber (SiF) with a submicron diameter in view of its possible applications in solid-state Li polymer batteries. A free-standing electrolyte membrane is prepared by a solvent casting method. The Pyr 14 TFSI ionic liquid enhances the ionic conductivity of the electrolyte as a result of its plasticizing effect. The electrochemical properties, such as ionic conductivity and Li transference number (t Li+ ), as well as mechanical strength of the electrolyte, are further improved by the SiF. We show that the quaternary electrolyte has a conductivity of the order of 10 −7 S cm −1 at ambient temperature and a high t Li+ value of 0.36 with an excellent flexibility. A prototype Li polymer cell using LiFePO 4 as a cathode material is assembled and tested. We demonstrate that this battery delivers a reversible charge-discharge capacity close to 100 mAh g −1 at 75 °C and C/15 rate. We believe that this work may pave the road to utilize CO 2 as a carbon source for highly-demanded, functional battery materials in future

  9. Effect of lithium PFC coatings on NSTX density control

    International Nuclear Information System (INIS)

    Kugel, H.W.; Bell, M.G.; Bell, R.; Bush, C.; Gates, D.; Gray, T.; Kaita, R.; Leblanc, B.; Maingi, R.; Majeski, R.; Mansfield, D.; Mueller, D.; Paul, S.; Raman, R.; Roquemore, A.L.; Sabbagh, S.; Skinner, C.H.; Soukhanovskii, V.; Stevenson, T.; Zakharov, L.

    2007-01-01

    Lithium coatings on the graphite plasma facing components (PFCs) in NSTX are being investigated as a tool for density profile control and reducing the recycling of hydrogen isotopes. Repeated lithium pellet injection into Center Stack Limited and Lower Single Null ohmic helium discharges were used to coat graphite surfaces that had been pre-conditioned with ohmic helium discharges of the same shape to reduce their contribution to hydrogen isotope recycling. The following deuterium NBI reference discharges exhibited a reduction in density by a factor of about 3 for limited and 2 for diverted plasmas, respectively, and peaked density profiles. Recently, a lithium evaporator has been used to apply thin coatings on conditioned and unconditioned PFCs. Effects on the plasma density and the impurities were obtained by pre-conditioning the PFCs with ohmic helium discharges, and performing the first deuterium NBI discharge as soon as possible after applying the lithium coating

  10. The Effects of Temperature and Oxidation on Deuterium Retention in Solid and Liquid Lithium Films on Molybdenum Plasma-Facing Components

    Science.gov (United States)

    Capece, Angela

    2014-10-01

    Liquid metal plasma-facing components (PFCs) enable in-situ renewal of the surface, thereby offering a solution to neutron damage, erosion, and thermal fatigue experienced by solid PFCs. Lithium in particular has a high chemical affinity for hydrogen, which has resulted in reduced recycling and enhanced plasma performance on many fusion devices including TFTR, T11-M, FTU, CDX-U, LTX, TJ-II, and NSTX. A key component to the improvement in plasma performance is deuterium retention in Li; however, this process is not well understood in the complex tokamak environment. Recent surface science experiments conducted at the Princeton Plasma Physics Laboratory have used electron spectroscopy and temperature programmed desorption to understand the mechanisms for D retention in Li coatings on Mo substrates. The experiments were designed to give monolayer-control of Li films and were conducted in ultrahigh vacuum under controlled environments. An electron cyclotron resonance plasma source was used to deliver a beam of deuterium ions to the surface over a range of ion energies. Our work shows that D is retained as LiD in metallic Li films. However, when oxygen is present in the film, either by diffusion from the subsurface at high temperature or as a contaminant during the deposition process, Li oxides are formed that retain D as LiOD. Experiments indicate that LiD is more thermally stable than LiOD, which decomposes to liberate D2 gas and D2O at temperatures 100 K lower than the LiD decomposition temperature. Other experiments show how D retention varies with substrate temperature to provide insight into the differences between solid and liquid lithium films. This work was supported by DOE Contract No. DE AC02-09CH11466.

  11. LITHIUM TOXICITY IN ELDERLY-A CASE REPORT AND DISCUSSION

    Directory of Open Access Journals (Sweden)

    Mariana D. Arnaoudova

    2014-07-01

    Full Text Available Background: The therapeutic effect of Lithium as a mono therapy or as an augmenting agent in a variety of medical and psychiatric disorders is under doubt. However, lithium is associated with a number of adverse effects. Method and objective: A review of the literature on lithium use in older adults and a case report presentation. Summary of results: The literature, concerning current uses of Lithium in older patients, especially for patients with neurologic or cognitive impairments is limited due to the lack of well-designed, large clinical trials. Elderly patients are at higher risk to develop neurotoxicity in the course of lithium therapy. We present a case of 66 years old female patient, suffering bipolar disorder, who developed lithium toxicity and was admitted at the gerontopsychiatric department due to a confusional state, tremor and gait abnormality. Lithium toxicity was suspected when sufficient information about previous medical history of lithium therapy has been obtained. Lithium level found to be 1.69mmol/L. The patient has developed intoxication during maintenance therapy with a lithium dosage which had been unchanged for months. Conclusion: Elderly patients require lower doses of Lithium to achieve similar serum concentrations as those in younger adults. Neurotoxicity could be suspected at serum lithium levels which are considered therapeutic in younger adults. When prescribing lithium agents in elderly we should consider age-related changes in pharmacokinetics. The best way to prevent lithium toxicity is to control the serum concentration regularly during therapy.

  12. Current status of environmental, health, and safety issues of lithium polymer electric vehicle batteries

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D; Hammel, C J

    1995-02-01

    Lithium solid polymer electrolyte (SPE) batteries are being investigated by researchers worldwide as a possible energy source for future electric vehicles (EVs). One of the main reasons for interest in lithium SPE battery systems is the potential safety features they offer as compared to lithium battery systems using inorganic and organic liquid electrolytes. However, the development of lithium SPE batteries is still in its infancy, and the technology is not envisioned to be ready for commercialization for several years. Because the research and development (R&D) of lithium SPE battery technology is of a highly competitive nature, with many companies both in the United States and abroad pursuing R&D efforts, much of the information concerning specific developments of lithium SPE battery technology is proprietary. This report is based on information available only through the open literature (i.e., information available through library searches). Furthermore, whereas R&D activities for lithium SPE cells have focused on a number of different chemistries, for both electrodes and electrolytes, this report examines the general environmental, health, and safety (EH&S) issues common to many lithium SPE chemistries. However, EH&S issues for specific lithium SPE cell chemistries are discussed when sufficient information exists. Although lithium batteries that do not have a SPE are also being considered for EV applications, this report focuses only on those lithium battery technologies that utilize the SPE technology. The lithium SPE battery technologies considered in this report may contain metallic lithium or nonmetallic lithium compounds (e.g., lithium intercalated carbons) in the negative electrode.

  13. Lithium-based neutron detectors

    International Nuclear Information System (INIS)

    Yursova, L.

    1977-01-01

    The problems of using scintillation lithium-based detectors (LiJ(Eu) and 6 LiJ(Eu)), as well as lithium glasses for neutron detection are described. As compared with the glasses the LiJ(Eu) monocrystal possesses substantially higher energy resolution, its luminescence yield is considerably higher (in some cases ten fold), its application makes possible gamma radiation discrimination with the energy approximately four times higher and its higher specific mass ensures better efficiency of gamma radiation counting. The only 6 LiJ(Eu) drawback is its high hydroscopicity as well as its possibility to be used only in a limited temperature range (maximum temperature +35 deg C). The lithium glass can be used (with the exception of spectrometric measurements and radiation mixed regions measurement) with more than 1 MeV gamma radiation energy in a wide temperature range, in agressive, corroding and acid media

  14. Shock-wave compression of lithium niobate from 2.4 to 44 GPa

    International Nuclear Information System (INIS)

    Stanton, P.L.; Graham, R.A.

    1979-01-01

    Shock compression of lithium niobate above the Hugoniot elastic limit (about 2.5 GPa) reveals a succession of unusual features. Just above the Hugoniot elastic limit, the shock velocity is observed to be well below the bulk sound speed, indicative of a drastic reduction of shear strength. The shock velocity is observed to increase with particle velocity at an unusually large rate due to the reduction of strength in a very stiff material and an anomalously large pressure derivative of the bulk modulus. This later behavior may be due to the effects of localized shock heating resulting from heterogeneous shear deformation in ferroelectrics like lithium niobate and lithium tantalate in which increases in temperature are shown to have a strong effect on bulk modulus. A shock-induced polymorphic phase transition occurs at 13.9 GPa. Above the transition point the slope of the Hugoniot curve relating shock velocity and particle velocity is unusually low, indicative of a broad mixed phase region of undetermined extent. Limited work is reported on the isomorphous crystal, lithium tantalate, which exhibits features similar to lithium niobate with a Hugoniot elastic limit of 4 GPa and a phase transition in the vicinity of 19 GPa

  15. Robust Pinhole-free Li3N Solid Electrolyte Grown from Molten Lithium

    Directory of Open Access Journals (Sweden)

    Yanbin Li

    2017-12-01

    Full Text Available Lithium metal is the ultimate anode choice for high energy density rechargeable lithium batteries. However, it suffers from inferior electrochemical performance and safety issues due to its high reactivity and the growth of lithium dendrites. It has long been desired to develop a materials coating on Li metal, which is pinhole-free, mechanically robust without fracture during Li metal deposition and stripping, and chemically stable against Li metal and liquid electrolytes, all while maintaining adequate ionic conductivity. However, such an ideal material coating has yet to be found. Here we report a novel synthesis method by reacting clean molten lithium foil directly with pure nitrogen gas to generate instantaneously a pinhole-free and ionically conductive α-Li3N film directly bonded onto Li metal foil. The film consists of highly textured large Li3N grains (tens of μm with (001 crystalline planes parallel to the Li metal surface. The bonding between textured grains is strong, resulting in a mechanically robust film which does not crack even when bent to a 0.8 cm curvature radius and is found to maintain pinhole-free coverage during Li metal deposition and stripping. The measured ionic conductivity is up to 5.2 × 10–4 S cm–1, sufficient for maintaining regular current densities for controllable film thicknesses ranging from 2 to 30 μm. This Li3N coating is chemically stable, isolating the reactive metallic lithium from liquid electrolyte, prevents continuous electrolyte consumption during battery cycling, and promotes dendrite-free uniform lithium plating/stripping underneath. We demonstrated Li|Li4Ti5O12 cells with stable and flat potential profiles for 500 cycles without capacity decay or an increase in potential hysteresis.

  16. Lithium Intoxication

    Directory of Open Access Journals (Sweden)

    Sermin Kesebir

    2011-09-01

    Full Text Available Lithium has been commonly used for the treatment of several mood disorders particularly bipolar disorder in the last 60 years. Increased intake and decreased excretion of lithium are the main causes for the development of lithium intoxication. The influence of lithium intoxication on body is evaluated as two different groups; reversible or irreversible. Irreversible damage is usually related with the length of time passed as intoxicated. Acute lithium intoxication could occur when an overdose of lithium is received mistakenly or for the purpose of suicide. Patients may sometimes take an overdose of lithium for self-medication resulting in acute intoxication during chronic, while others could develop chronic lithium intoxication during a steady dose treatment due to a problem in excretion of drug. In such situations, it is crucial to be aware of risk factors, to recognize early clinical symptoms and to conduct a proper medical monitoring. In order to justify or exclude the diagnosis, quantitative evaluation of lithium in blood and toxicologic screening is necessary. Following the monitoring schedules strictly and urgent intervention in case of intoxication would definitely reduce mortality and sequela related with lithium intoxication. In this article, the etiology, frequency, definition, clinical features and treatment approaches to the lithium intoxication have been briefly reviewed.

  17. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Manis Kumar, E-mail: mkjha@nmlindia.org; Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

    2013-09-15

    Graphical abstract: Recovery of valuable metals from scrap batteries of mobile phone. - Highlights: • Recovery of Co and Li from spent LIBs was performed by hydrometallurgical route. • Under the optimum condition, 99.1% of lithium and 70.0% of cobalt were leached. • The mechanism of the dissolution of lithium and cobalt was studied. • Activation energy for lithium and cobalt were found to be 32.4 kJ/mol and 59.81 kJ/mol, respectively. • After metal recovery, residue was washed before disposal to the environment. - Abstract: In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H{sub 2}O{sub 2} (v/v) at a pulp density of 100 g/L and 75 °C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H{sub 2}O{sub 2} in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 − (1 − X){sup 1/3} = k{sub c}t. Leaching kinetics of cobalt fitted well to the model ‘ash diffusion control dense constant sizes spherical particles’ i.e. 1 − 3(1 − X){sup 2/3} + 2(1 − X) = k{sub c}t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.

  18. Potential design modifications for the High Yield Lithium Injection Fusion Energy (HYLIFE) reaction chamber

    International Nuclear Information System (INIS)

    Pitts, J.H.; Hovingh, J.; Meier, W.R.; Monsler, M.J.; Powell, E.G.; Walker, P.E.

    1979-01-01

    Generation of electric power from inertial confinement fusion requires a reaction chamber. One promising type, the High Yield Lithium Injection Fusion Energy (HYLIFE) chamber, includes a falling array of liquid lithium jets. These jets act as: (1) a renewable first wall and blanket to shield metal components from x-ray and neutron exposure, (2) a tritium breeder to replace tritium burned during the fusion process, and (3) an absorber and transfer medium for fusion energy. Over 90% of the energy produced in the reaction chamber is absorbed in the lithium jet fall. Design aspects are included

  19. Limets 2: a hot-cell test set-up for Liquid Metal Embrittlement (LME) studies in liquid lead alloys

    International Nuclear Information System (INIS)

    Van den Bosch, J.; Bosch, R.W.; Al Mazouzi, A.

    2008-01-01

    Full text of publication follows. In the nuclear energy sector one of the main candidate designs for the accelerator driven system (ADS) uses liquid lead or lead bismuth eutectic both as a coolant and as spallation target. In the fusion community liquid lead lithium eutectic is considered as a possible coolant for the blanket and as a tritium source. Therefore the candidate materials for such structural components should not only comply with the operating conditions but in addition need to guarantee chemical and physical integrity when coming into contact with the lead alloys. The latter phenomena can be manifested in terms of erosion/corrosion. and/or of the so called liquid metal embrittlement (LME). Thus the susceptibility to LME of the structural materials under consideration to be used in such applications should be investigated in contact with the various lead alloys. LME, if occurring in any solid metal/liquid meta] couple, is likely to increase with irradiation hardening as localised stresses and crack initiations can promote it. To investigate the mechanical response of irradiated materials in contact with a liquid metal under representative conditions, a dedicated testing facility has recently been developed and built at our centre. It consists of an instrumented hot cell. equipped with a testing machine that allows mechanical testing of active materials in contact with active liquid lead lithium and liquid lead bismuth under well controlled chemistry conditions. The specificity of the installation is to handle highly activated and contaminated samples. Also a dedicated dismantling set-up has been developed that allows to retrieve the samples from the irradiation rig without any supplementary damage. In this presentation we will focus on the technical design of this new installation, its special features that have been developed to allow testing in a hot environment and the modifications and actions that have been taken to allow testing in liquid lead-lithium

  20. An improved high-performance lithium-air battery.

    Science.gov (United States)

    Jung, Hun-Gi; Hassoun, Jusef; Park, Jin-Bum; Sun, Yang-Kook; Scrosati, Bruno

    2012-06-10

    Although dominating the consumer electronics markets as the power source of choice for popular portable devices, the common lithium battery is not yet suited for use in sustainable electrified road transport. The development of advanced, higher-energy lithium batteries is essential in the rapid establishment of the electric car market. Owing to its exceptionally high energy potentiality, the lithium-air battery is a very appealing candidate for fulfilling this role. However, the performance of such batteries has been limited to only a few charge-discharge cycles with low rate capability. Here, by choosing a suitable stable electrolyte and appropriate cell design, we demonstrate a lithium-air battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh g(carbon)(-1) and 3 A g(carbon)(-1), respectively. For this battery we estimate an energy density value that is much higher than those offered by the currently available lithium-ion battery technology.

  1. Lithium mass transport in ceramic breeder materials

    International Nuclear Information System (INIS)

    Blackburn, P.E.; Johnson, C.E.

    1990-01-01

    The objective of this activity is to measure the lithium vaporization from lithium oxide breeder material under differing temperature and moisture partial pressure conditions. Lithium ceramics are being investigated for use as tritium breeding materials. The lithium is readily converted to tritium after reacting with a neutron. With the addition of 1000 ppM H 2 to the He purge gas, the bred tritium is readily recovered from the blanket as HT and HTO above 400 degree C. Within the solid, tritium may also be found as LiOT which may transport lithium to cooler parts of the blanket. The pressure of LiOT(g), HTO(g), or T 2 O(g) above Li 2 O(s) is the same as that for reactions involving hydrogen. In our experiments we were limited to the use of hydrogen. The purpose of this work is to investigate the transport of LiOH(g) from the blanket material. 8 refs., 1 fig., 3 tabs

  2. Stationary Flowing Liquid Lithium (SFLiLi) systems for tokamaks

    Science.gov (United States)

    Zakharov, Leonid; Gentile, Charles; Roquemore, Lane

    2013-10-01

    The present approach to magnetic fusion which relies on high recycling plasma-wall interaction has exhausted itself at the level of TFTR, JET, JT-60 devices with no realistic path to the burning plasma. Instead, magnetic fusion needs a return to its original idea of insulation of the plasma from the wall, which was the dominant approach in the 1970s and upon implementations has a clear path to the DEMO device with PDT ~= 100 MW and Qelectric > 1 . The SFLiLi systems of this talk is the technology tool for implementation of the guiding idea of magnetic fusion. It utilizes the unique properties of flowing LiLi to pump plasma particles and, thus, insulate plasma from the walls. The necessary flow rate, ~= 1 g3/s, is very small, thus, making the use of lithium practical and consistent with safety requirements. The talk describes how chemical activity of LiLi, which is the major technology challenge of using LiLi in tokamaks, is addressed by SFLiLi systems at the level of already performed (HT-7) experiment, and in ongoing implementations for a prototype of SFLiLi for tokamak divertors and the mid-plane limiter for EAST tokamak (to be tested in the next experimental campaign). This work is supported by US DoE contract No. DE-AC02-09-CH11466.

  3. The effects of reduced dopamine transporter function and chronic lithium on motivation, probabilistic learning, and neurochemistry in mice: Modeling bipolar mania.

    Science.gov (United States)

    Milienne-Petiot, Morgane; Kesby, James P; Graves, Mary; van Enkhuizen, Jordy; Semenova, Svetlana; Minassian, Arpi; Markou, Athina; Geyer, Mark A; Young, Jared W

    2017-02-01

    Bipolar disorder (BD) mania patients exhibit poor cognition and reward-seeking/hypermotivation, negatively impacting a patient's quality of life. Current treatments (e.g., lithium), do not treat such deficits. Treatment development has been limited due to a poor understanding of the neural mechanisms underlying these behaviors. Here, we investigated putative mechanisms underlying cognition and reward-seeking/motivational changes relevant to BD mania patients using two validated mouse models and neurochemical analyses. The effects of reducing dopamine transporter (DAT) functioning via genetic (knockdown vs. wild-type littermates), or pharmacological (GBR12909- vs. vehicle-treated C57BL/6J mice) means were assessed in the probabilistic reversal learning task (PRLT), and progressive ratio breakpoint (PRB) test, during either water or chronic lithium treatment. These tasks quantify reward learning and effortful motivation, respectively. Neurochemistry was performed on brain samples of DAT mutants ± chronic lithium using high performance liquid chromatography. Reduced DAT functioning increased reversals in the PRLT, an effect partially attenuated by chronic lithium. Chronic lithium alone slowed PRLT acquisition. Reduced DAT functioning increased motivation (PRB), an effect attenuated by lithium in GBR12909-treated mice. Neurochemical analyses revealed that DAT knockdown mice exhibited elevated homovanillic acid levels, but that lithium had no effect on these elevated levels. Reducing DAT functioning recreates many aspects of BD mania including hypermotivation and improved reversal learning (switching), as well as elevated homovanillic acid levels. Chronic lithium only exerted main effects, impairing learning and elevating norepinephrine and serotonin levels of mice, not specifically treating the underlying mechanisms identified in these models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Lee, Dong-Hyoung; Han, Sol-Chan; Kim, Tae-Hyeong; Yun, Jong-Il

    2011-12-15

    We have applied a dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) to sensitively detect concentrations of boron and lithium in aqueous solution. Sequential laser pulses from two separate Q-switched Nd:YAG lasers at 532 nm wavelength have been employed to generate laser-induced plasma on a water jet. For achieving sensitive elemental detection, the optimal timing between two laser pulses was investigated. The optimum time delay between two laser pulses for the B atomic emission lines was found to be less than 3 μs and approximately 10 μs for the Li atomic emission line. Under these optimized conditions, the detection limit was attained in the range of 0.8 ppm for boron and 0.8 ppb for lithium. In particular, the sensitivity for detecting boron by excitation of laminar liquid jet was found to be excellent by nearly 2 orders of magnitude compared with 80 ppm reported in the literature. These sensitivities of laser-induced breakdown spectroscopy are very practical for the online elemental analysis of boric acid and lithium hydroxide serving as neutron absorber and pH controller in the primary coolant water of pressurized water reactors, respectively.

  5. Liquidity dynamics in an electronic open limit order book: An event study approach

    OpenAIRE

    Gomber, Peter; Schweickert, Uwe; Theissen, Erik

    2011-01-01

    We analyze the dynamics of liquidity in Xetra, an electronic open limit order book. We use the Exchange Liquidity Measure (XLM), a measure of the cost of a roundtrip trade of given size V. This measure captures the price and the quantity dimension of liquidity. We present descriptive statistics, analyze the cross-sectional determinants of the XLM measure and document its intraday pattern. Our main contribution is an analysis of the dynamics of the XLM measure around liquidity shocks. We use i...

  6. Liquid gallium jet-plasma interaction studies in ISTTOK tokamak

    International Nuclear Information System (INIS)

    Gomes, R.B.; Fernandes, H.; Silva, C.; Sarakovskis, A.; Pereira, T.; Figueiredo, J.; Carvalho, B.; Soares, A.; Duarte, P.; Varandas, C.; Lielausis, O.; Klyukin, A.; Platacis, E.; Tale, I.; Alekseyv, A.

    2009-01-01

    Liquid metals have been pointed out as a suitable solution to solve problems related to the use of solid walls submitted to high power loads allowing, simultaneously, an efficient heat exhaustion process from fusion devices. The most promising candidate materials are lithium and gallium. However, lithium has a short liquid state temperature range when compared with gallium. To explore further this property, ISTTOK tokamak is being used to test the interaction of a free flying liquid gallium jet with the plasma. ISTTOK has been successfully operated with this jet without noticeable discharge degradation and no severe effect on the main plasma parameters or a significant plasma contamination by liquid metal. Additionally the response of an infrared sensor, intended to measure the jet surface temperature increase during its interaction with the plasma, has been studied. The jet power extraction capability is extrapolated from the heat flux profiles measured in ISTTOK plasmas.

  7. Novel Pyrrolinium-based Ionic Liquids for Lithium Ion Batteries: Effect of the Cation on Physicochemical and Electrochemical Properties

    International Nuclear Information System (INIS)

    Kim, Hyung-Tae; Kwon, Oh Min; Mun, Junyoung; Oh, Seung M.; Yim, Taeeun; Kim, Young Gyu

    2017-01-01

    Lithium ion batteries (LIBs) are one of the most promising energy conversion/storage systems, but the low thermal stability of the current electrolytes in LIBs should be improved to expand their potential applications. To enhance the safety properties of LIBs, novel pyrrolinium-based ionic liquids (ILs) were proposed as an alternative electrolyte to the current carbonate electrolyte, which have some task-specific functional groups, i.e., a planar C=N double bond, a C-O ether linkage, and no unstable C-H bond, designed to improve their electrochemical performances as well as the physicochemical properties. As a result, the pyrrolinium-based ILs exhibited much improved physicochemical and electrochemical properties compared to those of the known ILs. Among the prepared ILs, N-allyl-2-methoxypyrrolinium bis(fluorosulfonyl)imide (A(OMe)Pyrl-FSI, 4) showed the high ionic conductivity (10.2 mS cm −1 ), the very good cycling performance (99.3% of retention ratio after 50 cycles) with a LiFePO 4 electrode, and the much improved lithium ion transference number (0.19). IL 4 also had the remarkable rate capability at 5 C-rate with the retention ratio of 81.2% (124.8 mA h g −1 ), compared to the initial discharge capacity of 153.7 mA h g −1 at 0.1 C-rate. In addition, both their high thermal stability and non-flammability were also confirmed.

  8. Nanomaterials for lithium-ion batteries fundamentals and applications

    CERN Document Server

    Yazami, Rachid

    2013-01-01

    ""The book has good technical depth, yet is still very readable. It contains many photos, illustrations, tables, and graphs of data that provide the reader with the insight needed to understand the phenomena being described and the processes occurring in lithium battery chemistry. Researchers as well as students studying lithium-ion batteries will find this book well worth reading. It provides insight into many different avenues for potentially improving lithium-ion battery performance. The reader will learn about these new ideas and gain a better understanding of what currently limits batt

  9. Free-form Flexible Lithium-Ion Microbattery

    KAUST Repository

    Kutbee, Arwa T.

    2016-03-02

    Wearable electronics need miniaturized, safe and flexible power sources. Lithium ion battery is a strong candidate as high performance flexible battery. The development of flexible materials for battery electrodes suffers from the limited material choices. In this work, we present integration strategy to rationally design materials and processes to report flexible inorganic lithium-ion microbattery with no restrictions on the materials used. The battery shows an enhanced normalized capacity of 147 μAh/cm2 when bent.

  10. Hydrogen retention in lithium on metallic walls from “in vacuo” analysis in LTX and implications for high-Z plasma-facing components in NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, R., E-mail: kaita@pppl.gov [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Lucia, M. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Allain, J.P.; Bedoya, F. [Department of Nuclear, Plasma, & Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Bell, R.; Boyle, D. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Capece, A. [Department of Physics, The College of New Jersey, Ewing, NJ (United States); Jaworski, M. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Koel, B.E. [Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ (United States); Majeski, R. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Roszell, J. [Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ (United States); Schmitt, J. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Scotti, F. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Soukhanovskii, V. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2017-04-15

    The application of lithium to plasma-facing components (PFCs) has long been used as a technique for wall conditioning in magnetic confinement devices to improve plasma performance. Determining the characteristics of PFCs at the time of exposure to the plasma, however, is difficult because they can only be analyzed after venting the vacuum vessel and removing them at the end of an operational period. The Materials Analysis and Particle Probe (MAPP) addresses this problem by enabling PFC samples to be exposed to plasmas, and then withdrawn into an analysis chamber without breaking vacuum. The MAPP system was used to introduce samples that matched the metallic PFCs of the Lithium Tokamak Experiment (LTX). Lithium that was subsequently evaporated onto the walls also covered the MAPP samples, which were then subject to LTX discharges. In vacuo extraction and analysis of the samples indicated that lithium oxide formed on the PFCs, but improved plasma performance persisted in LTX. The reduced recycling this suggests is consistent with separate surface science experiments that demonstrated deuterium retention in the presence of lithium oxide films. Since oxygen decreases the thermal stability of the deuterium in the film, the release of deuterium was observed below the lithium deuteride dissociation temperature. This may explain what occurred when lithium was applied to the surface of the NSTX Liquid Lithium Divertor (LLD). The LLD had segments with individual heaters, and the deuterium-alpha emission was clearly lower in the cooler regions. The plan for NSTX-U is to replace the graphite tiles with high-Z PFCs, and apply lithium to their surfaces with lithium evaporation. Experiments with lithium coatings on such PFCs suggest that deuterium could still be retained if lithium compounds form, but limiting their surface temperatures may be necessary.

  11. Liquid metal engineering aspects of a commercial-sized power plant based on the hylife converter concept

    International Nuclear Information System (INIS)

    Hoffman, N.J.; McDowell, M.W.

    1979-12-01

    A study of a commercial fusion plant based on the High Yield Lithium Injection Fusion Energy (HYLIFE) converter has been performed. A net efficiency of 33.3% was derived for a plant using 2-1/4 Cr - 1 Mo ferritic steel as structural alloy. Use of a thick lithium fall to protect structural materials from the deleterious effects of pellet thermonuclear burn allows the structure to last the life of the plant without replacement. Both mechanical pumps and EM pumps are analyzed for this application. The power requirement for the lithium fall mechanical pumps is approx. 20 MWe. This is a relatively insignificant 1.6% of the gross electrical power output of the plant of approx. 1250 MWe. An EM pump has a greater electrical requirement but the lesser head (NPSH) requirement of an EM pump appears to be a marked advantage since this affects the size of the lithium inventory. The preferred tritium separation method appears to be that developed by Argonne National Laboratory which involves mixing lithium into an immiscible liquid having a greater affinity for hydrogen isotopes, with subsequent electrolytic separation. The immiscible liquid under consideration is a lithium bromide-lithium fluoride-lithium chloride mixture

  12. Development of liquid type TBM technology for ITER

    International Nuclear Information System (INIS)

    Lee, Dong Won; Kim, S. K.; Yoon, J. S.

    2012-03-01

    The final objectives of this project are as follows; Development of the key techniques for the liquid type TBM for ITER: Developing plan for leading and participating liquid TBM concepts; Estimating cost and schedule according to development schedule and managing technologies; Developing integrated design system and completing the engineering design for liquid TBM; Developing the key technologies for the liquid TBM; Construction of performance test systems for liquid TBM and verification of the performance. We are technically surveying the ITER system design data, the insufficient part of ITER design, and required R and D items and so on. In Korea, HCML TBM, liquid type breeder with lithium or lead lithium, has been studied during the past years to develop a tritium breeding technology for tritium self-sufficiency of nuclear fusion reactor and the TBM was proposed to be tested in ITER. In this study, we can obtain the key technology of nuclear fusion reactor especially on the TBM design, analysis and manufacturing technology through the present project and these technologies will help the construction of Korea fusion DEMO reactor and the development of commercial nuclear fusion reactor in Korea

  13. Conceptual design of the liquid metal laboratory of the TECHNOFUSION facility

    International Nuclear Information System (INIS)

    Abánades, A.; García, A.; Casal, N.; Perlado, J.M.; Ibarra, A.

    2012-01-01

    Highlights: ► Conceptual design of a liquid Li facility. ► Components and cost estimation. ► Liquid metal laboratory into TEHNOFUSION proposal. - Abstract: The application of liquid metal technology in fusion devices requires R and D related to many phenomena: interaction between liquid metals and structural material as corrosion, erosion and passivation techniques; magneto-hydrodynamics; free surface fluid-dynamics and any other physical aspect that will be needed for their safe reliable operation. In particular, there is a significant shortage of experimental facilities dedicated to the development of the lithium technology. In the framework of the TECHNOFUSION project, an experimental laboratory devoted to the lithium technology development is proposed, in order to shed some light in the path to IFMIF and the design of chamber's first wall and divertors. The conceptual design foresee a development in two stages, the first one consisting on a material testing loop. The second stage proposes the construction of a mock-up of the IFMIF target that will allow to assess the behaviour of a free-surface lithium target under vacuum conditions. In this paper, such conceptual design is addressed.

  14. Process for recovery of lithium from spent lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kunugita, Eiichi; Jonghwa, Kim; Komasawa, Isao [Osaka Univ., Faculty of Engineering Science, Osaka, (Japan)

    1989-07-10

    An experimental study of the recovery and purification of lithium from spent lithium batteries was carried out, taking advantage of the characterisitics of lithium ion and its carbonate. More than 75% of the lithium contained in the whole battery or its anode component can be leached with sulfuric acid where the pH of the final pregnant liquor is 7.7 or higher, the other metals being left in the residue is their hydroxides. The extracted liquor is evaporated/concentrated, added with saturated sodium carbonate solution at around 100{sup 0}C to precipitate lithium as a carbonate. The coprecipitated sodium carbonate is washed/removed with a hotwater to give 99% pure lithium carbonate. Separation of lithium and sodium in the barren liquor is conducted with LIX 51, a chelating/extracting agent, and TOPO, a neutral organic phosphate, which have a synergic effect, to selectively extract lithium; the organic phase is reverse-extracted with a dilute hydrochloric acid to obtain lithium of 99% purity. 9 refs., 4 figs., 5 tabs.

  15. The use of lithium compounds for inhibiting alkali-aggregate reaction effects in pavement structures

    Science.gov (United States)

    Zapała-Sławeta, J.; Owsiak, Z.

    2018-05-01

    Internal corrosion of concrete caused by the reaction of reactive aggregate with sodium and potassium hydroxides from cement is a threat to the durability of concrete pavements. Traditional methods for reducing the negative effects of the reaction include the use of unreactive aggregates, low alkali cements, mineral additives or chemical admixtures, incorporated during mixing. Lowering the relative humidity of the concrete below 80% is another measure for limiting the destructive reaction. The incorporation of lithium compounds, in particular lithium nitrate and lithium hydroxide, to the concrete mix is a method of limiting alkali-silica reaction effects. The challenge is to reduce the negative effects of aggregate reactivity in members in which the reaction has occurred because the aggregate happened to be reactive. The paper presents ways of limiting the deterioration of ASR-affected concrete in road pavements and other forms of transportation infrastructure, mainly through the use of lithium compounds, i.e. lithium nitrate. Impregnation methods that allow the penetration of lithium ions into the concrete structure were characterized, as was the effectiveness of the solutions applied.

  16. Lithium coatings on NSTX plasma facing components and its effects on boundary control, core plasma performance, and operation

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, H.W., E-mail: hkugel@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Bell, M.G.; Schneider, H. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Allain, J.P. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47907 (United States); Bell, R.E.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.P.; Mansfield, D. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Nygren, R.E. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Menard, J.; Mueller, D.; Ono, M.; Paul, S.; Gerhardt, S. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Raman, R. [University of Washington, Seattle, WA 98195 (United States); Sabbagh, S. [Columbia University, New York, NY 10027 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States)

    2010-11-15

    NSTX high power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following the wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a liquid lithium divertor surface on the outer part of the lower divertor.

  17. Lithium Coatings on NSTX Plasma Facing Components and Its Effects On Boundary Control, Core Plasma Performance, and Operation

    Energy Technology Data Exchange (ETDEWEB)

    H.W.Kugel, M.G.Bell, H.Schneider, J.P.Allain, R.E.Bell, R Kaita, J.Kallman, S. Kaye, B.P. LeBlanc, D. Mansfield, R.E. Nygen, R. Maingi, J. Menard, D. Mueller, M. Ono, S. Paul, S.Gerhardt, R.Raman, S.Sabbagh, C.H.Skinner, V.Soukhanovskii, J.Timberlake, L.E.Zakharov, and the NSTX Research Team

    2010-01-25

    NSTX high-power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a Liquid Lithium Divertor surface on the outer part of the lower divertor.

  18. Lithium Coatings on NSTX Plasma Facing Components and Its Effects On Boundary Control, Core Plasma Performance, and Operation

    International Nuclear Information System (INIS)

    Kugel, H.W.; Bell, M.G.; Schneider, H.; Allain, J.P.; Bell, R.E.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.P.; Mansfield, D.; Nygen, R.E.; Maingi, R.; Menard, J.; Mueller, D.; Ono, M.; Paul, S.; Gerhardt, S.; Raman, R.; Sabbagh, S.; Skinner, C.H.; Soukhanovskii, V.; Timberlake, J.; Zakharov, L.E.; NSTX Research Team

    2010-01-01

    NSTX high-power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a Liquid Lithium Divertor surface on the outer part of the lower divertor.

  19. Liquid momentum removal using rod arrays applied to the HYLIFE ICF reactor

    International Nuclear Information System (INIS)

    Raffray, A.R.; Hoffman, M.A.

    1986-01-01

    This research relates to the multiple liquid-lithium-jet blanket concept for the HYLIFE inertial-confinement fusion (ICF) reactor. The fusion micro-explosion would result in part of the liquid lithium being propelled towards the vacuum chamber wall where the resulting impact would cause high peak stresses. In an attempt to reduce these peak stresses, it was proposed to set up an array of bars between the vacuum vessel first wall and the liquid jets so that part of the liquid momentum would be removed as the liquid passed through the bars. A series of small-scale scoping experiments were run to obtain a preliminary evaluation of the effectiveness of such rod arrays in removing momentum from impinging liquid slugs. The impact force of an unconfined cylindrical water jet on in-line and staggered rod arrays was measured. The results indicate that the fraction of momentum removed from liquid slugs could probably exceed 18% for a staggered rod arrangement in the HYLIFE reactor

  20. Novel configuration of polyimide matrix-enhanced cross-linked gel separator for high performance lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Hong; Zhang, Yin; Yao, Zhikan; John, Angelin Ebanezar; Li, Yang; Li, Weishan; Zhu, Baoku

    2016-01-01

    Highlights: • For the first time, a cross-linked gel polymer electrolyte with additional lithium ions, was introduced into a nonwoven separator. • The PI nonwoven is employed to ensure enhanced thermal stability and mechanical strength of the IACS. • With the introduction of PAMPS(Li"+), the migration and mobility rate of anions could be hindered by the -SO_3"− group, giving rise to a high lithium ion transference number. • This IACS is recommended as a promising candidate for the high-power and high-safety lithium ion batteries. - Abstract: A novel composite nonwoven separator exhibiting high heat resistance, high ionic conductivity and high lithium ion transference number is fabricated by a simple dip-coating and heat treatment method. The thermal stable polyimide (PI) nonwoven matrix is chosen as a mechanical support and contributes to improving the thermal shrinkage of the composite nonwoven separator (abbreviated as IACS). The cross-linked poly(2-acrylamido-2-methylpropanesulfonic acid) PAMPS(Li"+) gel polymer electrolyte (GPE), lithium ion sources of a single ion conductor, is introduced into the PI nonwoven matrix and acts as a functional filler. This PAMPS (Li"+) GPE is proved to be able to provide internal short circuit protection, to alleviate liquid electrolyte leakage effectively, to supply more lithium ions dissociating from PAMPS (Li"+) by liquid electrolyte solvent, to contribute a more stable interfacial resistance, and thus resulting in an excellent cyclability. More notably, the migration and mobility rate of anions could be hindered by the −SO_3"− group in the PAMPS (Li"+) polymer based on electrostatic interaction, giving rise to a very high lithium ion transference number. These fascinating characteristics endow the IACS a great promise for the application in the high power and high safety lithium ion batteries.

  1. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone.

    Science.gov (United States)

    Jha, Manis Kumar; Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

    2013-09-01

    In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2M sulfuric acid with the addition of 5% H(2)O(2) (v/v) at a pulp density of 100 g/L and 75°C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H(2)O(2) in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1-(1-X)(1/3)=k(c)t. Leaching kinetics of cobalt fitted well to the model 'ash diffusion control dense constant sizes spherical particles' i.e. 1-3(1-X)(2/3)+2(1-X)=k(c)t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A Lithium-Air Battery Stably Working at High Temperature with High Rate Performance.

    Science.gov (United States)

    Pan, Jian; Li, Houpu; Sun, Hao; Zhang, Ye; Wang, Lie; Liao, Meng; Sun, Xuemei; Peng, Huisheng

    2018-02-01

    Driven by the increasing requirements for energy supply in both modern life and the automobile industry, the lithium-air battery serves as a promising candidate due to its high energy density. However, organic solvents in electrolytes are likely to rapidly vaporize and form flammable gases under increasing temperatures. In this case, serious safety problems may occur and cause great harm to people. Therefore, a kind of lithium-air that can work stably under high temperature is desirable. Herein, through the use of an ionic liquid and aligned carbon nanotubes, and a fiber shaped design, a new type of lithium-air battery that can effectively work at high temperatures up to 140 °C is developed. Ionic liquids can offer wide electrochemical windows and low vapor pressures, as well as provide high thermal stability for lithium-air batteries. The aligned carbon nanotubes have good electric and heat conductivity. Meanwhile, the fiber format can offer both flexibility and weavability, and realize rapid heat conduction and uniform heat distribution of the battery. In addition, the high temperature has also largely improved the specific powers by increasing the ionic conductivity and catalytic activity of the cathode. Consequently, the lithium-air battery can work stably at 140 °C with a high specific current of 10 A g -1 for 380 cycles, indicating high stability and good rate performance at high temperatures. This work may provide an effective paradigm for the development of high-performance energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Engineering validation for lithium target facility of the IFMIF under IFMIF/EVEDA project

    Directory of Open Access Journals (Sweden)

    E. Wakai

    2016-12-01

    Full Text Available The International Fusion Materials Irradiation Facility (IFMIF, presently in the Engineering Validation and Engineering Design Activities (EVEDA phase was started from 2007 under the frame of the Broader Approach (BA agreement. In the activities, a prototype Li loop with the world's highest flow rate of 3000L/min was constructed in 2010, and it succeeded in generating a 100mm wide and 25mm thick with a free-surface lithium flow along a concave back plate steadily at a high-speed of 15m/s at 250°C for 1300h. In the demonstration operation it was needed to develop the Li flowing measurement system with precious resolution less than 0.1mm, and a new wave height measuring method which is laser-probe method was developed for measurements of the 3D geometry of the liquid Li target surface. Using the device, the stability of the variation in the Li flowing thickness which is required in the IFMIF specification was ±1mm or less as the liquid Li target, and the result was satisfied with it and the feasibility of the long-term stable liquid Li flow was also verified. The results of the other engineering validation tests such as lithium purification tests of lithium target facility have also been evaluated and summarized.

  4. Flexible lithium-ion planer thin-film battery

    KAUST Repository

    Kutbee, Arwa T.

    2016-02-03

    Commercialization of wearable electronics requires miniaturized, flexible power sources. Lithium ion battery is a strong candidate as the next generation high performance flexible battery. The development of flexible materials for battery electrodes suffers from the limited material choices. In this work, we present a flexible inorganic lithium-ion battery with no restrictions on the materials used. The battery showed an enhanced normalized capacity of 146 ??Ah/cm2.

  5. Synthesis and properties of new carboxyborate lithium salts as electrolytes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Gładka, Dorota; Krajewski, Mariusz; Młynarska, Sandra; Galińska, Justyna; Zygadło-Monikowska, Ewa

    2017-01-01

    Bis(carboxytrifluoroborate lithium) salts [R(CH 2 COOBF 3 Li) 2 ] with oxyethylene groups R of oligomeric molar masses [R = O(CH 2 CH 2 O) n , where n = 3 or 11, BCB3 and BCB11, respectively] were synthesized via reaction of carboxylates salts with boron fluoride. The new salts were characterized by spectroscopic analysis. The physical properties of the salts were determined by oxyethylene chain length. For n = 3 the salt was crystalline with m p = 197 °C and for n = 11 it showed properties of an ionic liquid at ambient temperature. Their thermal stability was at least 250 °C. The values of lithium-ion transference numbers (T + ) of the solutions in polar aprotic solvents, determined by a well established steady-state technique, were in the range of 0.2–0.6. Electrochemical impedance spectroscopy analysis of solid polymer electrolytes (SPEs) based on PEO and studied salts with different concentration (from 24 to 94 wt %) was carried out. The ionic conductivity of SPEs was in the order of 10 −8 –10 −7 S cm −1 at room temperature and 10 −4 S cm −1 at 80 °C. A distinguishing feature of SPEs with the studied new salts is the high immobilization of anions, which causes almost a monoconducting character of charge transport. Lithium transference numbers (T + ) exceed 0.9.

  6. Core-shell Si/Cu nanocomposites synthesized by self-limiting surface reaction as anodes for lithium ion batteries

    Science.gov (United States)

    Xu, Kaiqi; Zhang, Zhizhen; Su, Wei; Huang, Xuejie

    Core-shell Si/Cu nanocomposites were synthesized via a flexible self-limiting surface reaction without extra reductant for the first time. The nano Si was uniformly coated with Cu nanoparticles with a diameter of 5-10nm, which can enhance the electronic conductivity of the nanocomposites and buffer the huge volume change during charge/discharge owing to its high ductility. Benefited from the unique structure, the Si/Cu nanocomposites exhibited a good electrochemical performance as anodes for lithium ion batteries, which exhibited a capacity retention of 656mAh/g after 50 cycles and a coulombic efficiency of more than 99%.

  7. Imidazolium ionic liquid induced one-step synthesis of -Fe2O3 nanorods and nanorod assemblies for lithium-ion battery

    Directory of Open Access Journals (Sweden)

    Shuting Xie

    2016-12-01

    Full Text Available α-Fe2O3 nanorods and nanorod assemblies are prepared via a facile one-step method with the assistance of imidazolium-based ionic liquid. The aspect ratio of synthesized nanorods is determined by the alkyl chain length of [Cnmim]+. The inter-molecular π−π interaction and intra-molecular dipole-dipole interaction among imidazole rings of [C4mim]+[PhCOO]− play critical roles in both nucleation and assembly processes of α-Fe2O3 nanorods. The α-Fe2O3 nanorod assemblies show an excellent performance in lithium-ion batteries with a reversible capacity of 1007.3 mA h g−1 at the rate of 500 mA g−1 after 150 cycles.

  8. Compatibility of AlN ceramics with molten lithium

    Energy Technology Data Exchange (ETDEWEB)

    Yoneoka, Toshiaki; Sakurai, Toshiharu; Sato, Toshihiko; Tanaka, Satoru [Tokyo Univ., Department of Quantum Engineering and Systems Science, Tokyo (Japan)

    2002-04-01

    AlN ceramics were a candidate for electrically insulating materials and facing materials against molten breeder in a nuclear fusion reactor. In the nuclear fusion reactor, interactions of various structural materials with solid and liquid breeder materials as well as coolant materials are important. Therefore, corrosion tests of AlN ceramics with molten lithium were performed. AlN specimens of six kinds, different in sintering additives and manufacturing method, were used. AlN specimens were immersed into molten lithium at 823 K. Duration for the compatibility tests was about 2.8 Ms (32 days). Specimens with sintering additive of Y{sub 2}O{sub 3} by about 5 mass% formed the network structure of oxide in the crystals of AlN. It was considered that the corrosion proceeded by reduction of the oxide network and the penetration of molten lithium through the reduced pass of this network. For specimens without sintering additive, Al{sub 2}O{sub 3} containing by about 1.3% in raw material was converted to fine oxynitride particles on grain boundary or dissolved in AlN crystals. After immersion into lithium, these specimens were found to be sound in shape but reduced in electrical resistivity. These degradation of the two types specimens were considered to be caused by the reduction of oxygen components. On the other hand, a specimen sintered using CaO as sintering additive was finally became appreciably high purity. This specimen showed good compatibility for molten lithium at least up to 823 K. It was concluded that the reduction of oxygen concentration in AlN materials was essential in order to improve the compatibility for molten lithium. (author)

  9. Le concept d'électrodes liquides de carbone appliqué au domaine des batteries en flux : étude et application aux matériaux d'intercalation du lithium

    OpenAIRE

    Parant , Hélène

    2017-01-01

    This project deals with flow batteries, which are very promising technologies for large scale energy storage, especially for intermittent energies. This work aims at developing new types of electrolytes with carbon particles to enhance power of batteries. This concept is called "liquid electrode" and is implemented in flow batteries with redox lithium intercalation particles in aqueous media. The first objective is to formulate the carbon electrolyte, with a good electronic conductivity (1-4 ...

  10. Review of lithium iron-base alloy corrosion studies

    International Nuclear Information System (INIS)

    DeVan, J.H.; Selle, J.E.; Morris, A.E.

    1976-01-01

    An extensive literature search was conducted on the compatibility of ferrous alloys with lithium, with the emphasis on austenitic stainless steels. The information is summarized and is divided into two sections. The first section gives a brief summary and the second is an annotated bibliography. Comparisons of results are complicated by differences in lithium purity, alloy composition, alloy treatment, flow rates, and lithium handling procedures. For long-term application, austenitic stainless steels appear to be limited to about 500 0 C. While corrosion can probably not be decreased to zero, a considerable reduction to tolerable and predictable amounts appears possible

  11. Potential Environmental and Human Health Impacts of Rechargeable Lithium Batteries in Electronic Waste

    Science.gov (United States)

    Kang, Daniel Hsing Po; Chen, Mengjun; Ogunseitan, Oladele A.

    2013-01-01

    Rechargeable lithium-ion (Li-ion) and lithium-polymer (Li-poly) batteries have recently become dominant in consumer electronic products because of advantages associated with energy density and product longevity. However, the small size of these batteries, the high rate of disposal of consumer products in which they are used, and the lack of uniform regulatory policy on their disposal means that lithium batteries may contribute substantially to environmental pollution and adverse human health impacts due to potentially toxic materials. In this research, we used standardized leaching tests, life-cycle impact assessment (LCIA), and hazard assessment models to evaluate hazardous waste classification, resource depletion potential, and toxicity potentials of lithium batteries used in cellphones. Our results demonstrate that according to U.S. federal regulations, defunct Li-ion batteries are classified hazardous due to their lead (Pb) content (average 6.29 mg/L; σ = 11.1; limit 5). However, according to California regulations, all lithium batteries tested are classified hazardous due to excessive levels of cobalt (average 163 544 mg/kg; σ = 62 897; limit 8000), copper (average 98 694 mg/kg; σ = 28 734; limit 2500), and nickel (average 9525 mg/kg; σ = 11 438; limit 2000). In some of the Li-ion batteries, the leached concentrations of chromium, lead, and thallium exceeded the California regulation limits. The environmental impact associated with resource depletion and human toxicity is mainly associated with cobalt, copper, nickel, thallium, and silver, whereas the ecotoxicity potential is primarily associated with cobalt, copper, nickel, thallium, and silver. However, the relative contribution of aluminum and lithium to human toxicity and ecotoxicity could not be estimated due to insufficient toxicity data in the models. These findings support the need for stronger government policy at the local, national, and international levels to encourage recovery, recycling, and

  12. Lithium isotope effect accompanying electrochemical intercalation of lithium into graphite

    CERN Document Server

    Yanase, S; Oi, T

    2003-01-01

    Lithium has been electrochemically intercalated from a 1:2 (v/v) mixed solution of ethylene carbonate (EC) and methylethyl carbonate (MEC) containing 1 M LiClO sub 4 into graphite, and the lithium isotope fractionation accompanying the intercalation was observed. The lighter isotope was preferentially fractionated into graphite. The single-stage lithium isotope separation factor ranged from 1.007 to 1.025 at 25 C and depended little on the mole ratio of lithium to carbon of the lithium-graphite intercalation compounds (Li-GIC) formed. The separation factor increased with the relative content of lithium. This dependence seems consistent with the existence of an equilibrium isotope effect between the solvated lithium ion in the EC/MEC electrolyte solution and the lithium in graphite, and with the formation of a solid electrolyte interfaces on graphite at the early stage of intercalation. (orig.)

  13. Lithium test module on ITER: engineering design of the tritium recovery system

    International Nuclear Information System (INIS)

    Finn, P.A.

    1988-01-01

    The design presented is an overview of the tritium recovery system for a lithium module on an ITER type reactor. The design of a tritium recovery system for larger blanket units, sectors, etc. could use the information developed in this report. A goal of this design was to ensure that a reliable, integrated performance of the tritium recovery system could be demonstrated. An equally important goal was to measure and account for the tritium in the liquid lithium blanket module and its recovery system in order to validate the operation of the blanket module

  14. Diagnostics for Evaluating Performance of NSTX Liquid Lihium Divertor

    Science.gov (United States)

    Kaita, R.; Kugel, H.; Kallman, J.; Leblanc, B.; Paul, S.; Roquemore, A. L.; Skinner, C.; Soukhanovskii, V.; Maingi, R.; Ahn, J.-W.; Wilgen, J.; Allain, J.-P.; Taylor, C.

    2009-11-01

    A Liquid Lithium Divertor (LLD) is being installed on NSTX to investigate particle control and power handling with liquid lithium as plasma-facing component (PFC). The LLD is expected to provide a low-recycling plasma-facing component (PFC). To study the effects of such a PFC on plasma performance, a variety of edge measurements are required. Since its surface is highly reflective at visible wavelengths, a Lyman-alpha detector array will be used to monitor the recycling. To understand changes in edge transport, electron temperature and density measurements will be made with Langmuir probes mounted in PFC's near the LLD, and the edge sightlines of a multipoint Thomson scattering system. A frequency-scanning reflectometer will also provide scrapeoff layer electron density profiles. The LLD response to heat loads will be examined with infrared cameras and thermocouples. Diagnostics are also needed to measure the erosion and codeposition of lithium. They include quartz deposition monitors and a retractable probe for exposing samples to the plasma.

  15. On the role of quantum ion dynamics for the anomalous melting of lithium

    Science.gov (United States)

    Elatresh, Sabri; Bonev, Stanimir

    2011-03-01

    Lithium has attracted a lot of interest in relation to a number of counterintuitive electronic and structural changes that it exhibits under pressure. One of the most remarkable properties of dense lithium is its anomalous melting. This behavior was first predicted theoretically based on first-principles molecular dynamics (FPMD) simulations, which treated the ions classically. The lowest melting temperature was determined to be about 275~K at 65~GPa. Recent experiments measured a melting temperature about 100~K lower at the same pressure. In this talk, we will present FPMD calculations of solid and liquid lithium free energies up to 100 GPa that take into account ion quantum dynamics. We examine the significance of the quantum effects for the finite-temperature phase boundaries of lithium and, in particular, its melting curve. Work supported by NSERC, Acenet, and LLNL under Contract DE-AC52-07NA27344.

  16. Liquid metal corrosion considerations in alloy development

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1984-01-01

    Liquid metal corrosion can be an important consideration in developing alloys for fusion and fast breeder reactors and other applications. Because of the many different forms of liquid metal corrosion (dissolution, alloying, carbon transfer, etc.), alloy optimization based on corrosion resistance depends on a number of factors such as the application temperatures, the particular liquid metal, and the level and nature of impurities in the liquid and solid metals. The present paper reviews the various forms of corrosion by lithium, lead, and sodium and indicates how such corrosion reactions can influence the alloy development process

  17. Neutron dosimetry using aqueous solutions of lithium acetate

    International Nuclear Information System (INIS)

    Rakovan, L.J.

    1996-01-01

    A thermal neutron dosimetry system using the 6 Li(n,α) 3 H reaction and liquid scintillation counting of tritium was developed. Lithium acetate was chosen to supply the 6 Li in the aqueous dosimetry solutions. Neutron irradiations were completed using The Ohio State University Research Reactor. After two sets of samples were irradiated, variables in the system such as the mass of lithium acetate in the solutions and the counting window of the liquid scintillation counter used to analyze the sample were chosen. The system was evaluated by completing two sets of 23 minute irradiations with the reactor at 500 kW, 50 kW, 5 kW, and one irradiation at 500 W. The samples irradiated at 500 W were below the threshold of the system, and could not be used. Prompt analysis was essential due to loss of detectable emissions in the dosimetry solutions over time. The thermal neutron fluences calculated with the data from the samples were compared to the fluences determined from gold wire irradiations. The fluence values differed at most by 6%. The fluence values calculated from the samples were consistently less than those determined from the gold wires

  18. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    Science.gov (United States)

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  19. Lithium Poisoning

    DEFF Research Database (Denmark)

    Baird-Gunning, Jonathan; Lea-Henry, Tom; Hoegberg, Lotte C G

    2017-01-01

    Lithium is a commonly prescribed treatment for bipolar affective disorder. However, treatment is complicated by lithium's narrow therapeutic index and the influence of kidney function, both of which increase the risk of toxicity. Therefore, careful attention to dosing, monitoring, and titration...... is required. The cause of lithium poisoning influences treatment and 3 patterns are described: acute, acute-on-chronic, and chronic. Chronic poisoning is the most common etiology, is usually unintentional, and results from lithium intake exceeding elimination. This is most commonly due to impaired kidney...... function caused by volume depletion from lithium-induced nephrogenic diabetes insipidus or intercurrent illnesses and is also drug-induced. Lithium poisoning can affect multiple organs; however, the primary site of toxicity is the central nervous system and clinical manifestations vary from asymptomatic...

  20. Test of lithium capillary-pore systems on the T-11M tokamak

    International Nuclear Information System (INIS)

    Evtikhin, V.A.

    2002-01-01

    In this work the divertor plate behavior has been simulated in the quasi-stationary condition. In the previous experiments on T-11M the CPS quasi-stationary heat state has not been achieved for pulse length (≤0.1 s). The T-11M tokamak up-grade allowed its performance to be increased as follows: plasma current up to 100 kA, pulse length 0.2-0.3 s. The new lithium limiter unlike the previous versions has a thermal regulation system which permits a lithium surface initial temperature to be given from -196 to 600 deg. C. This provides for an increase in test parameter range: sorption and desorption of plasma-forming gas, lithium emission into discharge, lithium erosion, limiter deposited power and so on. The first results of experiments were presented. (author)

  1. Corrosion Behavior of Superalloys in Hot Lithium Molten Salt

    International Nuclear Information System (INIS)

    Cho, Soo-Haeng; Hur, Jin-Mok; Seo, Chung-Seok; Park, Seoung-Won

    2006-01-01

    The Li-reduction process involves the chemical reduction of spent fuel oxides by liquid lithium metal in a molten LiCl salt bath at 650 .deg. C followed by a separate electrochemical reduction of lithium oxide (Li 2 O), which builds up in the salt bath. This process requires a high purity inert gas atmosphere inside remote hot cell nuclear facility to prevent unwanted Li oxidation and fires during the handling of chemically active Li metal. In light of the limitations of the Li-reduction process, a direct electrolytic reduction technology is being developed by KAERI to enhance process safety and economic viability. The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. Even so, the electrochemical process vessel must be resilient at ∼ 650 .deg. C in the presence of oxygen to enable high processing rates and an extended service life. But, the mechanism and the rate of the corrosion of metals in LiCl-Li 2 O molten salt under oxidation condition are not clear. In the present work, the corrosion behavior and corrosion mechanism of superalloys have been studied in the molten salt of LiCl-Li 2 O under oxidation condition

  2. [Lithium carbonate-induced hyperparathyroidism in a patient after removal of a parathyroid adenoma].

    Science.gov (United States)

    Krysiak, Robert; Okopień, Bogusław

    2015-01-01

    Lithium compounds are widely used and effective drugs in the treatment of mood disorders. However, despite their efficacy, the use of lithium salts is limited by their narrow therapeutic window. Treatment with lithium salts may be associated with the risk of development of numerous adverse effects. Endocrine complications include: thyroid dysfunction, nephrogenic diabetes insipidus and hyperparathyroidism. Because symptoms of lithium-induced hyperparathyroidism may resemble those of the underlying disorder, hyperparathyroidism sometimes remains undetected. The pathogenic mechanism for parathyroid dysfunction in lithium-treated patients is still unclear. We report a patient who had undergone removal of a parathyroid adenoma and later developed lithium-induced hyperparathyroidism. Cessation of lithium treatment normalised parathyroid function. The described case suggests that patients with pre-existing parathyroid disorders may be particularly susceptible to the development of lithium-induced hyperparathyroidism.

  3. Compatibility between vandium-base alloys and flowing lithium: Partitioning of hydrogen at elevated temperatures

    International Nuclear Information System (INIS)

    Hull, A.B.; Chopra, O.K.; Loomis, B.; Smith, D.

    1989-12-01

    A major concern in fusion reactor design is possible hydrogen-isotope-induced embrittlement of structural alloys in the neutron environment expected in these reactors. Hydrogen fractionation occurs between lithium and various refractory metals according to a temperature-dependent distribution coefficient, K H , that is defined as the ration of the hydrogen concentration in the metallic specimen to that in the liquid lithium. In the present work, K H was determined for pure vanadium and several binary and ternary alloys, and the commercial Vanstar 7. Hydrogen distribution studies were performed in an austenitic steel forced-circulation lithium loop. Equilibrium concentrations of hydrogen in vanadium-base alloys exposed to flowing lithium at temperatures of 350 to 550 degree C were measured by inert gas fusion techniques and residual gas analysis. Thermodynamic calculations are consistent with the effect of chromium and titanium in the alloys on the resultant hydrogen fractionation. Experimental and calculated results indicate that K H values are very low; i.e., the hydrogen concentrations in the lithium-equilibrated vanadium-base alloy specimens are about two orders of magnitude lower than those in the lithium. Because of this low distribution coefficient, embrittlement of vanadium alloys by hydrogen in lithium would not be expected. 15 refs., 5 figs., 4 tabs

  4. Jet stability in the lithium fall reactor

    International Nuclear Information System (INIS)

    Kang, S.W.

    1978-01-01

    A preliminary analysis has been made of the various hydrodynamic aspects involved in the stability of a liquid-lithium jet in a laser-fusion reactor, which comprises a part of LLL's laser fusion power-generation concept. Various physical factors that may affect the jet breakup are delineated, and some approximate calculations are performed to determine their relative influences. Areas of uncertainty are pointed out, along with plans for experimental verification or further theoretical analysis

  5. Free-form Flexible Lithium-Ion Microbattery

    KAUST Repository

    Kutbee, Arwa T.; Ghoneim, Mohamed T.; Ahmed, Sally; Hussain, Muhammad Mustafa

    2016-01-01

    Wearable electronics need miniaturized, safe and flexible power sources. Lithium ion battery is a strong candidate as high performance flexible battery. The development of flexible materials for battery electrodes suffers from the limited material

  6. Comparison of Liquid Limit of Highly Plastic Clay by Means of Casagrande and Fall Cone Apparatus

    DEFF Research Database (Denmark)

    Grønbech, Gitte Lyng; Nielsen, Benjaminn Nordahl; Ibsen, Lars Bo

    2011-01-01

    The connection between the Liquid Limit found using the Casagrande and the Fall Cone Apparatus is tested for the Danish Eocene Clay that has Liquid Limits up to 350% and Plasticity Index up to 300%, which is well outside the normal range of Casagrande’s Plasticity Chart. Based on the high plastic...

  7. Comparison of MHD pressure losses of liquid-lithium flows in coaxial and parallel ducts, passing through strong transverse magnetic fields

    International Nuclear Information System (INIS)

    Trommer, G.

    1979-08-01

    This report deals with theoretical calculations of MHD pressure losses of liquid-lithium flows in tubes of circular cross-section exposed to strong magnetic fields. Some simplifying assumptions were introduced, yielding an analytical solution which allows the pressure drop and losses in double tubes of coaxial geometry to be compared with those in normal flow pipes. The investigations show that coaxial ducts require much more pumping power than normal ones under similar conditions. This great difference of the properties of the two duct types will decrease if the pipes are embedded in materials of good electrical conductivity. In this case the normal duct will afford a drastic increase in the pressure drop, while the coaxial one will be nearly unaffected. But even under these conditions the losses of the latter will dominate. (orig.)

  8. A search for lithium-rich giant stars

    International Nuclear Information System (INIS)

    Brown, J.A.; Sneden, C.; Lambert, D.L.; Dutchover, E. Jr.

    1989-01-01

    Lithium abundances or upper limits have been determined for 644 bright G-K giant stars selected from the DDO photometric catalog. Two of these giants possess surface lithium abundances approaching the cosmic value of the interstellar medium and young main-sequence stars, and eight more giants have Li contents far in excess of standard predictions. At least some of these Li-rich giants are shown to be evolved to the stage of having convectively mixed envelopes, either from the direct evidence of low surface carbon isotope ratios, or from the indirect evidence of their H-R diagram positions. Suggestions are given for the unique conditions that might have allowed these stars to produce or accrete new lithium for their surface layers, or simply to preserve from destruction their initial lithium contents. The lithium abundance of the remaining stars demonstrates that giants only very rarely meet the expectations of standard first dredge-up theories; the average extra Li destruction required is about 1.5 dex. The evolutionary states of these giants and their average masses are discussed briefly, and the Li distribution of the giants is compared to predictions of Galactic chemical evolution. 110 refs

  9. Lithium implantation at low temperature in silicon for sharp buried amorphous layer formation and defect engineering

    International Nuclear Information System (INIS)

    Oliviero, E.; David, M. L.; Beaufort, M. F.; Barbot, J. F.; Fichtner, P. F. P.

    2013-01-01

    The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 °C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 °C annealing, complete recrystallization takes place and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {311} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.

  10. Approach to lithium burn-up effect in lithium ceramics

    International Nuclear Information System (INIS)

    Rasneur, B.

    1994-01-01

    The lithium burn-up in Li 2 ZrO 3 is simulated by removing lithium under Li 2 O form and trapping it in high specific surface area powder while heating during 15 days or 1 month at moderate temperature so that lithium mobility be large enough without causing any sintering neither of the specimens nor of the powder. In a first treatment at 775 deg C during 1 month. 30% of the lithium content could be removed inducing a lithium concentration gradient in the specimen and the formation of a lithium-free monoclinic ZrO 2 skin. Improvements led to similar results at 650 deg C and 600 deg C, the latter temperatures are closer to the operating temperature of the ceramic breeder blanket of a fusion reactor. (author) 4 refs.; 4 figs.; 1 tab

  11. Mixtures of glyme and aprotic-protic ionic liquids as electrolytes for energy storage devices

    Science.gov (United States)

    Stettner, T.; Huang, P.; Goktas, M.; Adelhelm, P.; Balducci, A.

    2018-05-01

    Ionic liquids (ILs) have been proven to be promising electrolytes for electrochemical energy storage devices such as supercapacitors and lithium ion batteries. In the last years, due to deficiency in storage of lithium on earth, innovative systems, such as sodium-based devices, attracted considerable attention. IL-based electrolytes have been proposed also as electrolytes for these devices. Nevertheless, in the case of these systems, the advantages and limits of IL-based electrolytes need to be further investigated. In this work we report an investigation about the chemical-physical properties of mixtures containing bis(2-methoxyethyl)ether diglyme (2G), which is presently considered as one of the most interesting solvents for sodium-based devices, and the ionic liquids 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) and 1-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PyrH4TFSI). The conductivities, viscosities, and densities of several mixtures of 2G and these ILs have been investigated. Furthermore, their impact on the electrochemical behaviour of activated carbon composite electrodes has been considered. The results of this investigation indicate that these mixtures are promising electrolytes for the realization of advanced sodium-based devices.

  12. Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes.

    Science.gov (United States)

    Li, Liwei; Bryant, Doug; Van Heugten, Tony; Bos, Philip J

    2013-04-08

    A near-diffraction-limited, low-haze and tunable liquid crystal (LC) lens is presented. Building on an understanding of the key factors that have limited the performance of lenses based on liquid crystals, we show a simple design whose optical quality is similar to a high quality glass lens. It uses 'floating' electrodes to provide a smooth, controllable applied potential profile across the aperture to manage the phase profile.

  13. Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: morphology and performance as a cathode material for lithium ion batteries.

    Science.gov (United States)

    Kim, Yongseon

    2012-05-01

    Li(Ni(0.8)Co(0.1)Mn(0.1))O(2) (NCM811) was synthesized using alkali chlorides as a flux and the performance as a cathode material for lithium ion batteries was examined. Primary particles of the powder were segregated and grown separately in the presence of liquid state fluxes, which induced each particle to be composed of one primary particle with well-developed facet planes, not the shape of agglomerates as appears with commercial NCMs. The new NCM showed far less gas emission during high temperature storage at charged states, and higher volumetric capacity thanks to its high bulk density. The material is expected to provide optimal performances for pouch type lithium ion batteries, which require high volumetric capacity and are vulnerable to deformation caused by gas generation from the electrode materials.

  14. Tritium isolation from lithium inorganic compounds applicable to thermonuclear reactor breeding blanket

    International Nuclear Information System (INIS)

    Vasil'ev, V.G.; Ershova, Z.V.; Nikiforov, A.S.

    1982-01-01

    Tritium separation from inorganic lithium compounds: Li 2 O, LiAlO 2 , Li 2 SiO 3 , Li 4 SiO 4 , LiF, LiBeF 3 , Li 2 BeF 4 irradiated with a beam of a gamma facility and a nuclear reactor, has been studied. In the first case the gas phase is absent. In the latter one- the tritium amount in the gas does not exceed 1-2% of its total amount in the salt. Based on the EPR spectra of irradiated salts the concentrations of paramagnetic centres are calculated. It is shown that during thermal annealing the main portion of tritium in the gas phase is in the form of oxide (HTO, T 2 O). Tritium is separated from lithium fluoroberyllates in the form of hydrogen (HT, T 2 ). The kinetics of tritium oxide isolation from irradiated lithium oxide aluminate, metha- and orthosilicates, lithium sulphate has been studied. The activation energies of tritium oxide separation process are presented. A supposition is made that chemical reaction of the HTO (T 2 O) or HT(T 2 ) or HF(TF) formation is a limiting stage. Clarification of the process stage limiting the rate of tritium recovery will permit to evaluate conditions for the optimum work of lithium material in the blanket, lithium zone to select the lithium element structure and temperature regime of irradiation

  15. Advances of aqueous rechargeable lithium-ion battery: A review

    Science.gov (United States)

    Alias, Nurhaswani; Mohamad, Ahmad Azmin

    2015-01-01

    The electrochemical characteristic of the aqueous rechargeable lithium-ion battery has been widely investigated in efforts to design a green and safe technology that can provide a highly specific capacity, high efficiency and long life for high power applications such as the smart grid and electric vehicle. It is believed that the advantages of this battery will overcome the limitations of the rechargeable lithium-ion battery with organic electrolytes that comprise safety and create high fabrication cost issues. This review focuses on the opportunities of the aqueous rechargeable lithium-ion battery compared to the conventional rechargeable lithium-ion battery with organic-based electrolytes. Previously reported studies are briefly summarised, together with the presentation of new findings based on the conductivity, morphology, electrochemical performance and cycling stability results. The factors that influence the electrochemical performance, the challenges and potential of the aqueous rechargeable lithium-ion battery are highlighted in order to understand and maintained the excellent battery performance.

  16. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zu, Chenxi; Manthiram, Arumugam

    2014-08-07

    Lithium-metal anode degradation is one of the major challenges of lithium-sulfur (Li-S) batteries, hindering their practical utility as next-generation rechargeable battery chemistry. The polysulfide migration and shuttling associated with Li-S batteries can induce heterogeneities of the lithium-metal surface because it causes passivation by bulk insulating Li2S particles/electrolyte decomposition products on a lithium-metal surface. This promotes lithium dendrite formation and leads to poor lithium cycling efficiency with complicated lithium surface chemistry. Here, we show copper acetate as a surface stabilizer for lithium metal in a polysulfide-rich environment of Li-S batteries. The lithium surface is protected from parasitic reactions with the organic electrolyte and the migrating polysulfides by an in situ chemical formation of a passivation film consisting of mainly Li2S/Li2S2/CuS/Cu2S and electrolyte decomposition products. This passivation film also suppresses lithium dendrite formation by controlling the lithium deposition sites, leading to a stabilized lithium surface characterized by a dendrite-free morphology and improved surface chemistry.

  17. Expanding the Operational Limits of the Single-Point Impedance Diagnostic for Internal Temperature Monitoring of Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Spinner, Neil S.; Love, Corey T.; Rose-Pehrsson, Susan L.; Tuttle, Steven G.

    2015-01-01

    Highlights: • Single-point impedance diagnostic technique demonstrated for lithium-ion batteries • Correlation between imaginary impedance and internal temperature determined • Instantaneous monitoring of commercial lithium-ion battery internal temperature • Expanded temperature range from −10°C up to 95°C • Non-invasive method useful for practical temperature monitoring of commercial cells - Abstract: Instantaneous internal temperature monitoring of a commercial 18650 LiCoO 2 lithium-ion battery was performed using a single-point EIS measurement. A correlation between the imaginary impedance, –Z imag , and internal temperature at 300 Hz was developed that was independent of the battery’s state of charge. An Arrhenius-type dependence was applied, and the activation energy for SEI ionic conductivity was found to be 0.13 eV. Two separate temperature-time experiments were conducted with different sequences of temperature, and single-point impedance tests at 300 Hz were performed to validate the correlation. Limitations were observed with the upper temperature range (68°C < T < 95°C), and consequently a secondary, empirical fit was applied for this upper range to improve accuracy. Average differences between actual and fit temperatures decreased around 3-7°C for the upper range with the secondary correlation. The impedance response at this frequency corresponded to the anode/SEI layer, and the SEI is reported to be thermally stable up to around 100°C, at which point decomposition may occur leading to battery deactivation and/or total failure. It is therefore of great importance to be able to track internal battery temperatures up to this critical point of 100°C, and this work demonstrates an expansion of the single-point EIS diagnostic to these elevated temperatures

  18. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liang, Chu; Gao, Mingxia; Pan, Hongge; Liu, Yongfeng; Yan, Mi

    2013-01-01

    Highlights: •Progress in lithium alloys and metal oxides as anode materials for lithium-ion batteries is reviewed. •Electrochemical characteristics and lithium storage mechanisms of lithium alloys and metal oxides are summarized. •Strategies for improving electrochemical lithium storage properties of lithium alloys and metal oxides are discussed. •Challenges in developing lithium alloys and metal oxides as commercial anodes for lithium-ion batteries are pointed out. -- Abstract: Lithium alloys and metal oxides have been widely recognized as the next-generation anode materials for lithium-ion batteries with high energy density and high power density. A variety of lithium alloys and metal oxides have been explored as alternatives to the commercial carbonaceous anodes. The electrochemical characteristics of silicon, tin, tin oxide, iron oxides, cobalt oxides, copper oxides, and so on are systematically summarized. In this review, it is not the scope to retrace the overall studies, but rather to highlight the electrochemical performances, the lithium storage mechanism and the strategies in improving the electrochemical properties of lithium alloys and metal oxides. The challenges and new directions in developing lithium alloys and metal oxides as commercial anodes for the next-generation lithium-ion batteries are also discussed

  19. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  20. Growth and decomposition of Lithium and Lithium hydride on Nickel

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane Hvolbæk

    2006-01-01

    In this paper we have investigated the deposition, structure and decomposition of lithium and lithium-hydride films on a nickel substrate. Using surface sensitive techniques it was possible to quantify the deposited Li amount, and to optimize the deposition procedure for synthesizing lithium......-hydride films. By only making thin films of LiH it is possible to study the stability of these hydride layers and compare it directly with the stability of pure Li without having any transport phenomena or adsorbed oxygen to obscure the results. The desorption of metallic lithium takes place at a lower...... temperature than the decomposition of the lithium-hydride, confirming the high stability and sintering problems of lithium-hydride making the storage potential a challenge. (c) 2006 Elsevier B.V. All rights reserved....

  1. Electrolytic method for the production of lithium using a lithium-amalgam electrode

    Science.gov (United States)

    Cooper, John F.; Krikorian, Oscar H.; Homsy, Robert V.

    1979-01-01

    A method for recovering lithium from its molten amalgam by electrolysis of the amalgam in an electrolytic cell containing as a molten electrolyte a fused-salt consisting essentially of a mixture of two or more alkali metal halides, preferably alkali metal halides selected from lithium iodide, lithium chloride, potassium iodide and potassium chloride. A particularly suitable molten electrolyte is a fused-salt consisting essentially of a mixture of at least three components obtained by modifying an eutectic mixture of LiI-KI by the addition of a minor amount of one or more alkali metal halides. The lithium-amalgam fused-salt cell may be used in an electrolytic system for recovering lithium from an aqueous solution of a lithium compound, wherein electrolysis of the aqueous solution in an aqueous cell in the presence of a mercury cathode produces a lithium amalgam. The present method is particularly useful for the regeneration of lithium from the aqueous reaction products of a lithium-water-air battery.

  2. Electrode Materials for Lithium/Sodium-Ion Batteries

    DEFF Research Database (Denmark)

    Shen, Yanbin

    2014-01-01

    The synthesis of electrode materials for lithium/sodium ion batteries and their structural stability during lithium/sodium insertion/extraction are the two essential issues that have limited battery application in the fields requiring long cycle life and high safety. During her PhD studies, Yanbin...... Shen systematically investigated the controlled synthesis of electrode materials for lithium/sodium ion batteries. She also investigated their formation mechanisms and structural evolution during the operation of batteries using in situ/operando X-ray diffraction techniques. The research findings...... provide insights into formation mechanisms of Li4Ti5O12 anode material from both hydrothermal and solid-state reaction. The results also contribute to a thorough understanding of the intercalation and decay mechanisms of O3/P2 layered sodium cathode materials in sodium ion batteries....

  3. Crown-ether functionalized carbon nanotubes for purification of lithium compounds: computational and experimental study

    International Nuclear Information System (INIS)

    Singha Deb, A.K.; Arora, S.K.; Joshi, J.M.; Ali, Sk. M.; Shenoy, K.T.; Goyal, Aiana

    2015-01-01

    Lithium compounds finds several applications in nuclear science and technology, viz, lithium fluoride/hydroxide/alloys are used as dosimetric materials in luminescence devices, molten-salt breeder reactor, international thermonuclear experimental reactor, single crystal based neutron detectors etc. The lithium compounds should be in a proper state of purity; especially it should not contain other alkali metal cations which can downgrade the performance. Hence, there is a need to develop a process for purification of the lithium salt to achieve the desired quality. Therefore an attempt has been made to develop advanced nanomaterials for purification of the lithium salts. In this work, benzo-15-crown-5(B15C5) functionalized carbon nanotubes (CNTs), owing to the good adsorption properties of CNT and alkali metal encapsulation behaviour of B15C5, were showed to bind preferentially with sodium and potassium ions compared to lithium ions. DFT based computation calculations have shown that the free energy of complexation of Na + and K + by B15C5-CNT is higher than that of Li + , implying that B15C5-CNT selectively binds Na + and K + . The experimental batch solid-liquid extraction has also revealed the same trend as in the calculations. The crown-ethers functionalized CNTs have the potentiality for use in purifying lithium compounds. (author)

  4. Lithium batteries; Les accumulateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop on lithium batteries is divided into 4 sections dealing with: the design and safety aspects, the cycling, the lithium intercalation and its modeling, and the electrolytes. These 4 sections represent 19 papers and are completed by a poster session which corresponds to 17 additional papers. (J.S.)

  5. Lithium batteries; Les accumulateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop on lithium batteries is divided into 4 sections dealing with: the design and safety aspects, the cycling, the lithium intercalation and its modeling, and the electrolytes. These 4 sections represent 19 papers and are completed by a poster session which corresponds to 17 additional papers. (J.S.)

  6. Performance Characterization of a Lithium-ion Gel Polymer Battery Power Supply System for an Unmanned Aerial Vehicle

    Science.gov (United States)

    Reid, Concha M.; Manzo, Michelle A.; Logan, Michael J.

    2004-01-01

    Unmanned aerial vehicles (UAVs) are currently under development for NASA missions, earth sciences, aeronautics, the military, and commercial applications. The design of an all electric power and propulsion system for small UAVs was the focus of a detailed study. Currently, many of these small vehicles are powered by primary (nonrechargeable) lithium-based batteries. While this type of battery is capable of satisfying some of the mission needs, a secondary (rechargeable) battery power supply system that can provide the same functionality as the current system at the same or lower system mass and volume is desired. A study of commercially available secondary battery cell technologies that could provide the desired performance characteristics was performed. Due to the strict mass limitations and wide operating temperature requirements of small UAVs, the only viable cell chemistries were determined to be lithium-ion liquid electrolyte systems and lithium-ion gel polymer electrolyte systems. Two lithium-ion gel polymer cell designs were selected as candidates and were tested using potential load profiles for UAV applications. Because lithium primary batteries have a higher specific energy and energy density, for the same mass and volume allocation, the secondary batteries resulted in shorter flight times than the primary batteries typically provide. When the batteries were operated at lower ambient temperatures (0 to -20 C), flight times were even further reduced. Despite the reduced flight times demonstrated, for certain UAV applications, the secondary batteries operated within the acceptable range of flight times at room temperature and above. The results of this testing indicate that a secondary battery power supply system can provide some benefits over the primary battery power supply system. A UAV can be operated for hundreds of flights using a secondary battery power supply system that provides the combined benefits of rechargeability and an inherently safer

  7. Development of new anodes for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sandi, G. [Argonne National Laboratory, Argonne, IL (United States)

    2001-10-01

    Lithium ion batteries have been introduced in the early 1990s by Sony Corporation. Ever since their introduction carbonaceous materials have received considerable attention for use as anodes because of their potential safety and reliability advantages. Natural graphite, cokes, carbon fibres, non-graphitizable carbon, and pyrolytic carbon have been used as sources for carbon materials. Recently metal alloys and metal oxides have been studied as alternatives to carbon as negative electrodes in lithium-ion cells. This paper reviews the performance of some of the carbonaceous materials used in lithium-ion batteries as well as some of the new metallic alloys of aluminum, silica, selenium, lead, bismuth, antimony and arsenic, as alternatives to carbon as negative electrodes in lithium-ion batteries. It is concluded that while some of these materials are promising, practical applications will continue to be limited until after the volume expansion and the irreversibility problems are resolved. 50 refs., 5 figs.

  8. High-performance lithium battery anodes using silicon nanowires.

    Science.gov (United States)

    Chan, Candace K; Peng, Hailin; Liu, Gao; McIlwrath, Kevin; Zhang, Xiao Feng; Huggins, Robert A; Cui, Yi

    2008-01-01

    There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and implantable medical devices. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity (4,200 mAh g(-1); ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than various nitride and oxide materials, silicon anodes have limited applications because silicon's volume changes by 400% upon insertion and extraction of lithium which results in pulverization and capacity fading. Here, we show that silicon nanowire battery electrodes circumvent these issues as they can accommodate large strain without pulverization, provide good electronic contact and conduction, and display short lithium insertion distances. We achieved the theoretical charge capacity for silicon anodes and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.

  9. Beryllium and lithium resource requirements for solid blanket designs for fusion reactors

    International Nuclear Information System (INIS)

    Powell, J.R.

    1975-01-01

    The lithium and beryllium requirements are analyzed for an economy of 10 6 MW(e) CTR 3 capacity using solid blanket fusion reactors. The total lithium inventory in fusion reactors is only approximately 0.2 percent of projected U. S. resources. The lithium inventory in the fusion reactors is almost entirely 6 Li, which must be extracted from natural lithium. Approximately 5 percent of natural lithium can be extracted as 6 Li. Thus the total feed of natural lithium required is approximately 20 times that actually used in fusion reactors, or approximately 4 percent of U. S. resources. Almost all of this feed is returned to the U. S. resource base after 6 Li is extracted, however. The beryllium requirements are on the order of 10 percent of projected U. S. resources. Further, the present cost of lithium and the cost of beryllium extraction could both be increased tenfold with only minor effects on CTR capital cost. Such an increase should substantially multiply the economically recoverable resources of lithium and beryllium. It is concluded that there are no lithium or beryllium resource limitations preventing large-scale implementation of solid blanket fusion reactors. (U.S.)

  10. On the use of voltammetric methods to determine electrochemical stability limits for lithium battery electrolytes

    Science.gov (United States)

    Georén, Peter; Lindbergh, Göran

    In previous studies a novel amphiphilic co-polymer was developed for use in lithium-ion batteries. In order to evaluate the electrochemical stability of that electrolyte and compare it with others, a voltammetric method was applied on a set of electrolytes with different salts, solvents and polymers. However, initially the voltammetric methodology was studied. Platinum was found to be the most suited electrode material, experiencing no significant interfering reactions and a proper diffusion-controlled kinetic behaviour when sweep rate was varied. Furthermore, the influence on the voltammograms of adding water traces to the electrolytes was studied. It could be established that the oxidation peak around 3.8 V versus Li was related to water reactions. It was concluded that quantitative voltage values of the stability limits were difficult to assess using voltammetry. On the other hand, the method seemed well suited for comparison of electrolytes and to investigate the influences of electrolyte components on the stability. The voltammetric results varied little between the different electrolytes evaluated and the anodic and cathodic limits, as defined here, were in the range of 1 and 4.5 V vs. Li, respectively. Although the novel polymer did not affect the stability limit significantly it seemed to promote the breakdown reaction rate in all electrolytes tested. Furthermore, the use of LiTFSI salt reduced the stability window.

  11. Boronic ionogel electrolytes to improve lithium transport for Li-ion batteries

    International Nuclear Information System (INIS)

    Lee, Albert S.; Lee, Jin Hong; Hong, Soon Man; Lee, Jong-Chan; Hwang, Seung Sang; Koo, Chong Min

    2016-01-01

    Boron containing ionogels were fabricated through chemical crosslinking of boron allyloxide with polyethylene glycol dimethacrylate in an ionic liquid electrolyte solution to obtain mechanically robust gels. Because of the relatively small concentration of crosslinking agent required to fully solidify the ionic liquid electrolyte, good characters of high ionic conductivity, high thermal stability, and good electrochemical stability were observed. A spectroscopic investigation of the boronic ionogels revealed that the lithium mobility was noticeably enhanced compared with ionogels fabricated without the boronic crosslinker, leading to promising Li-ion battery performance at elevated temperatures.

  12. Crosslinkable fumed silica-based nanocomposite electrolytes for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yangxing; Yerian, Jeffrey A.; Khan, Saad A.; Fedkiw, Peter S. [Department of Chemical & amp; Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905 (United States)

    2006-10-27

    Electrochemical and rheological properties are reported of composite polymer electrolytes (CPEs) consisting of dual-functionalized fumed silica with methacrylate and octyl groups+low-molecular weight poly(ethylene glycol) dimethyl ether (PEGdm)+lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, lithium imide)+butyl methacrylate (BMA). The role of butyl methacrylate, which aids in formation of a crosslinked network by tethering adjacent fumed silica particles, on rheology and electrochemistry is examined together with the effects of fumed silica surface group, fumed silica weight percent, salt concentration, and solvent molecular weight. Chemical crosslinking of the fumed silica with 20% BMA shows a substantial increase in the elastic modulus of the system and a transition from a liquid-like/flocculated state to an elastic network. In contrast, no change in lithium transference number and only a modest decrease (factor of 2) on conductivity of the CPE are observed, indicating that a crosslinked silica network has minimal effect on the mechanism of ionic transport. These trends suggest that the chemical crosslinks occur on a microscopic scale, as opposed to a molecular scale, between adjacent silica particles and therefore do not impede the segmental mobility of the PEGdm. The relative proportion of the methacrylate and octyl groups on the silica surface displays a nominal effect on both rheology and conductivity following crosslinking although the pre-cure rheology is a function of the surface groups. Chemical crosslinked nanocomposite polymer electrolytes offer significant higher elastic modulus and yield stress than the physical nanocomposite counterpart with a small/negligible penalty of transport properties. The crosslinked CPEs exhibit good interfacial stability with lithium metal at open circuit, however, they perform poorly in cycling of lithium-lithium cells. (author)

  13. Accessibility evaluation of the IFMIF liquid lithium loop considering activated erosion/corrosion materials deposition

    International Nuclear Information System (INIS)

    Nakamura, H.; Takemura, M.; Yamauchi, M.; Fischer, U.; Ida, M.; Mori, S.; Nishitani, T.; Simakov, S.; Sugimoto, M.

    2005-01-01

    This paper presents an evaluation of accessibility of the Li loop piping considering activated corrosion product. International Fusion Materials Irradiation Facility (IFMIF) is a deuteron-lithium (Li) stripping reaction neutron source for fusion materials testing. Target assembly and back wall are designed as fully remote maintenance component. Accessibility around the Li loop piping will depend on activation level of the deposition materials due to the back wall erosion/corrosion process under liquid Li flow. Activation level of the corrosion products coming from the AISI 316LN back wall is calculated by the ACT-4 of the THIDA-2 code system. The total activities after 1 day, 1 week, 1 month and 1 year cooling are 3.1 x 10 14 , 2.8 x 10 14 , 2.3 x 10 14 and 7.5 x 10 13 Bq/kg, respectively. Radiation dose rate around the Li loop pipe is calculated by QAD-CGGP2R code. Activated area of the back wall is 100 cm 2 . Corrosion rate is assumed 1 μm/year. When 10% of the corrosion material is supposed to be deposited on the inner surface of the pipe, the dose rate is calculated to be less than a permissible level of 10 μSv/h for hands-on maintenance, therefore, the maintenance work is assessed to be possible

  14. The thermochemistry of lithium silicates in view of their use as breeder materials

    International Nuclear Information System (INIS)

    Ihle, H.R.; Penzhorn, R.D.; Schuster, P.

    1989-01-01

    Employing Knudsen effusion mass spectrometry the partial pressures of Li, O 2 , Li 2 O, LiO and Li 3 O over solid and/or liquid Li 4 SiO 4 were measured as a function of temperature. From the data it is deduced that the main vaporization process for solid and liquid Li 4 SiO 4 can be described by the equations: Li 4 SiO 4 (cr)=2 Li(g)+0.5 O 2 (g)+Li 2 SiO 3 (cr) (1), ΔH 0 298 =(960.70±2.38) kJ/mol and Li 4 SiO 4 (I)=2 Li(g)+0.5 O 2 (g)+Li 2 SiO 3 (l) (2), ΔH 0 298 =(946.34±0.73) kJ/mol. The enthalpy changes for the reactions Li 4 SiO 4 (cr)=Li 2 O(g)+Li 2 SiO 3 (cr) (3) and Li 2 O(g)=2 Li(g)+0.5 O 2 (g) (5) were als determined and found to be thermodynamically consistent with that of reaction (1). The same is observed for the corresponding equilibria over the liquid. Assuming thermodynamic equilibrium and excluding effects from structural materials and/or reducing gas streams which lower the oxygen activity, tritium will be released from lithium orthosilicate predominantly as T 2 O in the temperature range of operation of a reactor blanket. An examination of the ceramic compounds of the systems, Li 2 O/Al 2 O 3 , Li 2 O/ZrO 2 and Li 2 O/SiO 2 reveals that among the ceramics of each particular system the reaction enthalpy, ΔH 0 298,r , of formation from the constituent oxides per mol Li 2 O varies in the reversed order of the lithium density, which is related to the tritium breeding capability. Of the three systems discussed, the lithium silicates show the highest thermal stability among the ceramics of comparable lithium density. (orig.)

  15. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xianlai; Li, Jinhui, E-mail: jinhui@tsinghua.edu.cn

    2014-04-01

    Highlights: • Manual dismantling is superior in spent high-power LiBs recycling. • Heated ionic liquid can effectively separate Al and cathode materials. • Fourier’s law was adopted to determine the heat transfer mechanism. • The process of spent LiBs recycling with heated ionic liquid dismantling was proposed. - Abstract: Because of the increasing number of electric vehicles, there is an urgent need for effective recycling technologies to recapture the significant amount of valuable metals contained in spent lithium-ion batteries (LiBs). Previous studies have indicated, however, that Al and cathode materials were quite difficult to separate due to the strong binding force supplied by the polyvinylidene fluoride (PVDF), which was employed to bind cathode materials and Al foil. This research devoted to seek a new method of melting the PVDF binder with heated ionic liquid (IL) to separate Al foil and cathode materials from the spent high-power LiBs. Theoretical analysis based on Fourier’s law was adopted to determine the heat transfer mechanism of cathode material and to examine the relationship between heating temperature and retention time. All the experimental and theoretic results show that peel-off rate of cathode materials from Al foil could reach 99% when major process parameters were controlled at 180 °C heating temperature, 300 rpm agitator rotation, and 25 min retention time. The results further imply that the application of IL for recycling Al foil and cathode materials from spent high-power LiBs is highly efficient, regardless of the application source of the LiBs or the types of cathode material. This study endeavors to make a contribution to an environmentally sound and economically viable solution to the challenge of spent LiB recycling.

  16. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  17. Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: Effect of lithium salt addition

    Science.gov (United States)

    Pandey, G. P.; Hashmi, S. A.

    2013-12-01

    Performance characteristics of the solid-state supercapacitors fabricated with ionic liquid (IL) incorporated gel polymer electrolyte and acid treated multiwalled carbon nanotube (MWCNT) electrodes have been studied. The effect of Li-salt (LiPF6) addition in the IL (1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate, EMImFAP) based gel electrolyte on the performance of supercapacitors has been specifically investigated. The LiPF6/IL/poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) gel electrolyte film possesses excellent electrochemical window of 4 V (from -2.0 to 2.0 V), high ionic conductivity ∼2.6 × 10-3 S cm-1 at 20 °C and high enough thermal stability. The comparative performance of supercapacitors employing electrolytes with and without lithium salt has been evaluated by impedance spectroscopy and cyclic voltammetric studies. The acid-treated MWCNT electrodes show specific capacitance of ∼127 F g-1 with IL/LiPF6 containing gel polymer electrolyte as compared to that with the gel polymer electrolyte without Li-salt, showing the value of ∼76 F g-1. The long cycling stability of the solid state supercapacitor based on the Li-salt containing gel polymer electrolyte confirms the electrochemical stability of the electrolyte.

  18. The testing report of the development for the lithium grains and lithium rod automatic machine

    International Nuclear Information System (INIS)

    Qian Zongkui; Kong Xianghong; Huang Yong

    2008-06-01

    With the development of lithium industry, the lithium grains and lithium rod, as additive or catalyzer, having a big comparatively acreage and a strong activated feature, have a broad application. The lithium grains and lithium rod belong to the kind of final machining materials. The principle of the lithium grains and lithium rod that how to take shape through the procedures of extrusion, cutting, anti-conglutination, threshing and so on are analysed, A sort of lithium grains and lithium rod automatic machine is developed. (authors)

  19. Vanadium—lithium in-pile loop for comprehensive tests of vanadium alloys and multipurpose coatings

    Science.gov (United States)

    Lyublinski, I. E.; Evtikhin, V. A.; Ivanov, V. B.; Kazakov, V. A.; Korjavin, V. M.; Markovchev, V. K.; Melder, R. R.; Revyakin, Y. L.; Shpolyanskiy, V. N.

    1996-10-01

    The reliable information on design and material properties of self-cooled Li sbnd Li blanket and liquid metal divertor under neutron radiation conditions can be obtained using the concept of combined technological and material in-pile tests in a vanadium—lithium loop. The method of in-pile loop tests includes studies of vanadium—base alloys resistance, weld resistance under mechanical stress, multipurpose coating formation processes and coatings' resistance under the following conditions: high temperature (600-700°C), lithium velocities up to 10 m/s, lithium with controlled concentration of impurities and technological additions, a neutron load of 0.4-0.5 MW/m 2 and level of irradiation doses up to 5 dpa. The design of such an in-pile loop is considered. The experimental data on corrosion and compatibility with lithium, mechanical properties and welding technology of the vanadium alloys, methods of coatings formation and its radiation tests in lithium environment in the BOR-60 reactor (fast neutron fluence up to 10 26 m -2, irradiation temperature range of 500-523°C) are presented and analyzed as a basis for such loop development.

  20. Lithium Resources for the 21st Century

    Science.gov (United States)

    Kesler, S.; Gruber, P.; Medina, P.; Keolian, G.; Everson, M. P.; Wallington, T.

    2011-12-01

    Lithium is an important industrial compound and the principal component of high energy-density batteries. Because it is the lightest solid element, these batteries are widely used in consumer electronics and are expected to be the basis for battery electric vehicles (BEVs), hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs) for the 21st century. In view of the large incremental demand for lithium that will result from expanded use of various types of EVs, long-term estimates of lithium demand and supply are advisable. For GDP growth rates of 2 to 3% and battery recycling rates of 90 to 100%, total demand for lithium for all markets is expected to be a maximum of 19.6 million tonnes through 2100. This includes 3.2 million tonnes for industrial compounds, 3.6 million tonnes for consumer electronics, and 12.8 million tonnes for EVs. Lithium-bearing mineral deposits that might supply this demand contain an estimated resource of approximately 39 million tonnes, although many of these deposits have not been adequately evaluated. These lithium-bearing mineral deposits are of two main types, non-marine playa-brine deposits and igneous deposits. Playa-brine deposits have the greatest immediate resource potential (estimated at 66% of global resources) and include the Salar de Atacama (Chile), the source of almost half of current world lithium production, as well as Zabuye (China/Tibet) and Hombre Muerto (Argentina). Additional important playa-brine lithium resources include Rincon (Argentina), Qaidam (China), Silver Peak (USA) and Uyuni (Bolivia), which together account for about 35% of the estimated global lithium resource. Information on the size and continuity of brine-bearing aquifers in many of these deposits is limited, and differences in chemical composition of brines from deposit to deposit require different extraction processes and yield different product mixes of lithium, boron, potassium and other elements. Numerous other brines in playas