WorldWideScience

Sample records for liquid helium cryostat

  1. European standardization activities on safety of liquid helium cryostats

    CERN Document Server

    CERN. Geneva

    2016-01-01

    This talk gives a general overview on the challenges of designing safety units for liquid helium cryostats with regard to existing industry standards. It reviews the work of a national working group that published the technical guideline DIN SPEC 4683 in April 2015, which is dedicated to the particular conditions in liquid helium cryostats. Based on both this guideline and equivalent documents from e.g. CEA, CERN, a working group is being formed at the European Committee for Standardization, associated to CEN/TC 268, which will work on a European standard on safety of liquid helium cryostats. The actual status and the schedule of this project are presented.

  2. Recondensation performance of liquid helium cryostat for a 28 GHz electron cyclotron resonance ion source

    Science.gov (United States)

    Choi, Seyong; Lee, Byoung-Seob; Park, Jin Yong; Ok, Jung-Woo; Shin, Chang Seouk; Yoon, Jang-Hee; Won, Mi-Sook; Kim, Byoung-Chul

    2014-02-01

    Cryostat performance is essential for the stable operation of a superconducting magnet. A closed-cycle liquid helium cryostat was adopted for use for a superconducting electron cyclotron resonance (ECR) ion source by recondensing liquid helium vapor. The goal was to maintain the liquid helium filled reservoir at a constant level without transferring any liquid helium during the normal operation of the ECR ion source. To accomplish this, Gifford-McMahon (GM) refrigerators, which have two cold heads, were installed on the top of the cryostat. The cooling power of the GM cryocooler is 1.5 W at the second stage and 50 W at the first stage. Each stage was connected to the liquid helium reservoir, a radiation shield including high-Tc current lead, and related items. Before commissioning the ECR ion source, a preliminary evaluation of the recondensation performance was carried out with the magnet in partial operation. The design of the cryostat, its fabrication, and the experimental results are reported.

  3. Liquid helium-free cryostat and hermetically sealed cryogenic microwave cavity for hyperfine spectroscopy of antiprotonic helium.

    Science.gov (United States)

    Massiczek, O; Friedreich, S; Juhász, B; Widmann, E; Zmeskal, J

    2011-12-11

    The design and properties of a new cryogenic set-up for laser-microwave-laser hyperfine structure spectroscopy of antiprotonic helium - an experiment performed at the CERN-Antiproton Decelerator (AD), Geneva, Switzerland - are described. Similar experiments for (4)He have been performed at the AD for several years. Due to the usage of a liquid helium operated cryostat and therefore necessary refilling of coolants, a loss of up to 10% beamtime occurred. The decision was made to change the cooling system to a closed-circuit cryocooler. New hermetically sealed target cells with minimised (3)He gas volume and different dimensions of the microwave resonator for measuring the (3)He transitions were needed. A new set-up has been designed and tested at Stefan Meyer Institute in Vienna before being used for the 2009 and 2010 beamtimes at the AD.

  4. Liquid helium-free cryostat and hermetically sealed cryogenic microwave cavity for hyperfine spectroscopy of antiprotonic helium

    Energy Technology Data Exchange (ETDEWEB)

    Massiczek, O., E-mail: oswald.massiczek@cern.ch [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna (Austria); Friedreich, S.; Juhasz, B.; Widmann, E.; Zmeskal, J. [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna (Austria)

    2011-12-11

    The design and properties of a new cryogenic set-up for laser-microwave-laser hyperfine structure spectroscopy of antiprotonic helium - an experiment performed at the CERN-Antiproton Decelerator (AD), Geneva, Switzerland - are described. Similar experiments for {sup 4}He have been performed at the AD for several years. Due to the usage of a liquid helium operated cryostat and therefore necessary refilling of coolants, a loss of up to 10% beamtime occurred. The decision was made to change the cooling system to a closed-circuit cryocooler. New hermetically sealed target cells with minimised {sup 3}He gas volume and different dimensions of the microwave resonator for measuring the {sup 3}He transitions were needed. A new set-up has been designed and tested at Stefan Meyer Institute in Vienna before being used for the 2009 and 2010 beamtimes at the AD.

  5. Simplified Methodology to Estimate the Maximum Liquid Helium (LHe) Cryostat Pressure from a Vacuum Jacket Failure

    Science.gov (United States)

    Ungar, Eugene K.; Richards, W. Lance

    2015-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared astronomical observation experiments. These experiments carry sensors cooled to liquid helium temperatures. The liquid helium supply is contained in large (i.e., 10 liters or more) vacuum-insulated dewars. Should the dewar vacuum insulation fail, the inrushing air will condense and freeze on the dewar wall, resulting in a large heat flux on the dewar's contents. The heat flux results in a rise in pressure and the actuation of the dewar pressure relief system. A previous NASA Engineering and Safety Center (NESC) assessment provided recommendations for the wall heat flux that would be expected from a loss of vacuum and detailed an appropriate method to use in calculating the maximum pressure that would occur in a loss of vacuum event. This method involved building a detailed supercritical helium compressible flow thermal/fluid model of the vent stack and exercising the model over the appropriate range of parameters. The experimenters designing science instruments for SOFIA are not experts in compressible supercritical flows and do not generally have access to the thermal/fluid modeling packages that are required to build detailed models of the vent stacks. Therefore, the SOFIA Program engaged the NESC to develop a simplified methodology to estimate the maximum pressure in a liquid helium dewar after the loss of vacuum insulation. The method would allow the university-based science instrument development teams to conservatively determine the cryostat's vent neck sizing during preliminary design of new SOFIA Science Instruments. This report details the development of the simplified method, the method itself, and the limits of its applicability. The simplified methodology provides an estimate of the dewar pressure after a loss of vacuum insulation that can be used for the initial design of the liquid helium dewar vent stacks. However, since it is not an exact

  6. Dynamics of a liquid helium I SRF cryostat at the Canadian Light Source

    Science.gov (United States)

    Regier, Chris

    2012-06-01

    The Canadian Light Source (CLS) is a third-generation synchrotron located inSaskatoon, Canada. A superconducting radio frequency (SRF) cavity contained in a 4.43 Kliquid helium I cryostat is used at the CLS to replenish energy loss in the electron beam. Adynamic simulation of this cryostat has been generated to examine pressure and levelfluctuations due to variations in heat loading or other system parameters. This simulatorhas led to some interesting observations in system behavior, which have been shown tooccur in the actual system as well. For example, mass rates of vaporization appear to dropas heat loading increases under certain conditions. Also, the relationship between pressureand SRF tuning characteristics is examined, and the abilities and limitations of thesimulator are presented.

  7. Development of a helium cryostat for laser spectroscopy of atoms with unstable nuclei in superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Kei, E-mail: kimamura@riken.jp [Department of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571 (Japan); Furukawa, Takeshi [Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Wakui, Takashi [Cyclotron and Radioisotope Center, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai, Miyagi 980-8578 (Japan); Yang, Xiaofei [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); School of Physics, Peking University, Chengfu Road, Haidian District, Beijing 100871 (China); Yamaguchi, Yasuhiro [Department of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571 (Japan); Tetsuka, Hiroki [Department of Physics, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501 (Japan); Mitsuya, Yosuke [Department of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571 (Japan); Tsutsui, Yoshiki [Department of Physics, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501 (Japan); Fujita, Tomomi [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Ebara, Yuta; Hayasaka, Miki [Department of Physics, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501 (Japan); Arai, Shino; Muramoto, Sosuke [Department of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571 (Japan); Ichikawa, Yuichi [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, Tokyo Instutute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Ishibashi, Yoko [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); and others

    2013-12-15

    We are developing a new nuclear laser spectroscopic technique for the study of nuclear structure that can be applied to short-lived low-yield atoms with unstable nuclei. The method utilizes superfluid helium (He II) as a trapping medium for high-energy ion beams. A liquid helium cryostat with optical windows is a key apparatus for this type of experiment. We describe the design and the performance of the cryostat which is developed for the present project.

  8. Design and optimisation of low heat load liquid helium cryostat to house cryogenic current comparator in antiproton decelerator at CERN

    Science.gov (United States)

    Lees, A.; Koettig, T.; Fernandes, M.; Tan, J.

    2017-02-01

    The Cryogenic Current Comparator (CCC) is installed in the low-energy Antiproton Decelerator (AD) at CERN to make an absolute measurement of the beam intensity. Operating below 4.2 K, it is based on a superconducting quantum interference device (SQUID) and employs a superconducting niobium shield to supress magnetic field components not linked to the beam current. The AD contains no permanent cryogenic infrastructure so the local continuous liquefaction of helium using a pulse-tube is required; limiting the available cooling power to 0.69 W at 4.2K. Due to the sensitivity of the SQUID to variations in magnetic fields, the CCC is highly sensitive to mechanical vibration which is limited to a minimum by the support systems of the cryostat. This article presents the cooling system of the cryostat and discusses the design challenges overcome to minimise the transmission of vibration to the CCC while operating within the cryogenic limits imposed by the cooling system.

  9. Liquid Argon Barrel Cryostat Arrived

    CERN Multimedia

    Pailler, P

    Last week the first of three cryostats for the ATLAS liquid argon calorimeter arrived at CERN. It had travelled for 46 days over several thousand kilometers from Japan to CERN. During three years it has been fabricated by Kawasaki Heavy Industries Ltd. at Harima, close to Kobe, under contract from Brookhaven National Laboratory (BNL) of the U.S.. This cryostat consists of two concentric cylinders made of aluminium: the outer vacuum vessel with a diameter of 5.5 m and a length of 7 m, and the inner cold vessel which will contain the electromagnetic barrel calorimeter immersed in liquid argon. The total weight will be 270 tons including the detectors and the liquid argon. The cryostat is now located in building 180 where it will be equipped with 64 feed-throughs which serve for the passage of 122,880 electrical lines which will carry the signals of the calorimeter. After integration of the calorimeter, the solenoidal magnet of ATLAS will be integrated in the vacuum vessel. A final cold test of the cryostat inc...

  10. Liquid helium

    CERN Document Server

    Atkins, K R

    1959-01-01

    Originally published in 1959 as part of the Cambridge Monographs on Physics series, this book addresses liquid helium from the dual perspectives of statistical mechanics and hydrodynamics. Atkins looks at both Helium Three and Helium Four, as well as the properties of a combination of the two isotopes. This book will be of value to anyone with an interest in the history of science and the study of one of the universe's most fundamental elements.

  11. Reduction of helium loss from a superconducting accelerating cavity during initial cool-down and cryostat exchange by pre-cooling the re-condensing cryostat

    Science.gov (United States)

    O'Rourke, B. E.; Minehara, E. J.; Hayashizaki, N.; Oshima, N.; Suzuki, R.

    2015-03-01

    A Zero-Boil-Off (ZBO) cryostat is designed to realize a compact, stand-alone cryogenic system for the AIST superconducting accelerator (SCA). Under normal operation there is no evaporative helium loss from the cryomodule and therefore operating costs associated with the supply of liquid helium can be eliminated. The only significant loss of helium from the module occurs during the initial cavity cool-down procedure or when the re-condensing cryostat is replaced. It takes about 3 h to cool down the cryostat head from room temperature (300 K) to 4 K. During this time around 100 L of liquid helium is lost due to evaporation. By pre-cooling the cryostat inside a low heat load vacuum tube before transfer to the cryomodule, this evaporative loss could be essentially eliminated, significantly reducing the volume of liquid helium required for the initial cryomodule cool-down. The pre-cooling system also provides an efficient method to test the cryostat prior to use.

  12. Polystyrene cryostat facilitates testing tensile specimens under liquid nitrogen

    Science.gov (United States)

    Shogan, R. P.; Skalka, R. J.

    1967-01-01

    Lightweight cryostat made of expanded polystyrene reduces eccentricity in a tensile system being tested under liquid nitrogen. The cryostat is attached directly to the tensile system by a special seal, reducing misalignment effects due to cryostat weight, and facilitates viewing and loading of the specimens.

  13. THERMAL UNIFORMITY OF LIQUID HELIUM IN ELECTRON BUBBLE CHAMBER.

    Energy Technology Data Exchange (ETDEWEB)

    WANG,L.; JIA,L.

    2002-07-22

    A CRYOGENIC RESEARCH APPARATUS TO MEASURE THE MOVEMENT OF ELECTRONS UNDER A HIGH ELECTRIC FIELD IN A LIQUID HELIUM BATH WAS DESIGNED AND BUILT AT THE BROOKHAVEN NATIONAL LABORATORY AND THE NEVIS LABORATORY OF COLUMBIA UNIVERSITY. THE LIQUID HELIUM CHAMBER IS A DOUBLE WALLED CYLINDRICAL CONTAINER EQUIPPED WITH 5 OPTICS WINDOWS AND 10 HIGH VOLTAGE CABLES. TO SHIELD THE LIQUID HELIUM CHAMBER AGAINST THE EXTERNAL HEAT LOADS AND TO PROVIDE THE THERMAL UNIFORMITY IN THE LIQUID HELIUM CHAMBER, THE DOUBLE WALLED JACKET WAS COOLED BY A PUMPED HELIUM BATH. THE HELIUM CHAMBER WAS BUILT INTO A COMMERICAL LN2 / LHE CRYOSTAT. THIS PAPER PRESENTS THE DESIGN AND THE NUMERICAL SIMULATION ANALYSIS ON THERMAL UNIFORMITY OF THE ELECTRON BUBBLE CHAMBER.

  14. Development of membrane cryostats for large liquid argon neutrino detectors

    CERN Document Server

    Montanari, D; Gendotti, A; Geynisman, M; Hentschel, S; Loew, T; Mladenov, D; Montanari, C; Murphy, S; Nessi, M; Norris, B; Noto, F; Rubbia, A; Sharma, R; Smargianaki, D; Stewart, J; Vignoli, C; Wilson, P; Wu, S

    2015-01-01

    A new collaboration is being formed to develop a multi-kiloton Long-Baseline neutrino experiment that will be located at the Surf Underground Research Facility (SURF) in Lead, SD. In the present design, the detector will be located inside cryostats filled with 68,400 ton of ultrapure liquid argon (less than 100 parts per trillion of oxygen equivalent contamination). To qualify the membrane technology for future very large-scale and underground implementations, a strong prototyping effort is ongoing: several smaller detectors of growing size with associated cryostats and cryogenic systems will be designed and built at Fermilab and CERN. They will take physics data and test different detector elements, filtration systems, design options and installation procedures. In addition, a 35 ton prototype is already operational at Fermilab and will take data with single-phase detector in early 2016. After the prototyping phase, the multi-kton detector will be constructed. After commissioning, it will detect and study ne...

  15. Cavitation in liquid helium

    Energy Technology Data Exchange (ETDEWEB)

    Finch, R. D.; Kagiwada, R.; Barmatz, M.; Rudnick, I.

    1963-11-15

    Ultrasonic cavitation was induced in liquid helium over the temperature range 1.2 to 2.3 deg K, using a pair of identical transducers. The transducers were calibrated using a reciprocity technique and the cavitation threshold was determined at 90 kc/s. It was found that this threshold has a sharp peak at the lambda point, but is, at all temperatures quite low, with an approximate range of 0.001 to 0.01 atm. The significance of the results is discussed. (auth)

  16. Installation of signal feedthroughs on an ATLAS liquid-argon calorimeter end-cap cryostat

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The liquid-argon calorimeters used for hadronic energy measurements in the end-cap regions of the ATLAS detector are housed in cryostats to maintain the argon at the very low temperature required. The cryostats are equipped with signal feedthroughs, through which pass the electrical lines carrying signals from the calorimeters. Photos 01, 02, 03: Installation of the signal feedthroughs on the first of the two end-cap cryostats.

  17. A cryostat device for liquid nitrogen convection experiments

    Science.gov (United States)

    Dubois, Charles; Duchesne, Alexis; Caps, Herve

    2015-11-01

    When a horizontal layer of expansible fluid heated from below is submitted to a large vertical temperature gradient, one can observe convective cells. This phenomenon is the so-called Rayleigh-Bénard instability. In the literature, this instability is mainly studied when the entire bottom surface of a container heats the liquid. Under these conditions, the development of regularly spaced convective cells in the liquid bulk is observed. Cooling applications led us to consider this instability in a different geometry, namely a resistor immersed in a bath of cold liquid. We present here experiments conducted with liquid nitrogen. For this purpose, we developed a cryostat in order to be able to perform Particle Image Velocimetry. We obtained 2D maps of the flow and observed, as expected, two Rayleigh-Bénard convective cells around the heater. We particularly investigated the vertical velocity in the central column between the two cells. We compared these data to results we obtained with silicone oil and water in the same geometry. We derived theoretical law from classical models applied to the proposed geometry and found a good agreement with our experimental data. This project has been financially supported by ARC SuperCool contract of the University of Liege.

  18. Performance of the Signal Vacuum Cables of the Liquid Argon Calorimeter Endcap Cryostat Signal Feedthroughs

    CERN Document Server

    Axen, D A; Dowling, A; Dowling, A S; Fincke-Keeler, M; Hodges, T; Holness, F; Ince, T; Keeler, Richard K; Langstaf, R; Lefebvre, M; Lenckowski, M; Lindner, J; MacDonald, R; McDonald, R; Muzzeral, E; Poffenberger, P R; Van Uytven, J; Vowles, G; Wiggins, W

    2003-01-01

    This note presents of brief summary of the design specification and the performance under test of the signal vacuum cables which are used in the signal feedthroughs of the ATLAS liquid argon calorimeter endcap cryostats.

  19. Resistor monitors transfer of liquid helium

    Science.gov (United States)

    Hesketh, W. D.

    1966-01-01

    Large resistance change of a carbon resistor at the liquid helium temperature distinguishes between the transfer of liquid helium and gaseous helium into a closed Dewar. The resistor should be physically as small as possible to reduce the heat load to the helium.

  20. Negative ions in liquid helium

    Science.gov (United States)

    Khrapak, A. G.; Schmidt, W. F.

    2011-05-01

    The structure of negative ions in liquid 4He is analyzed. The possibility of cluster or bubble formation around impurity ions of both signs is discussed. It is shown that in superfluid helium, bubbles form around negative alkaline earth metal ions and clusters form around halogen ions. The nature of "fast" and "exotic" negative ions is also discussed. It is assumed that "fast" ions are negative ions of helium excimer molecules localized inside bubbles. "Exotic" ions are stable negative impurity ions, which are always present in small amounts in gas discharge plasmas. Bubbles or clusters with radii smaller the radius of electron bubbles develop around these ions.

  1. Does One Need a 4.5 K Screen in Cryostats of Superconducting Accelerator Devices Operating in Superfluid Helium? Lessons from the LHC

    CERN Document Server

    Lebrun, Ph; Tavian, L

    2014-01-01

    Superfluid helium is increasingly used as a coolant for superconducting devices in particle accelerators: the lower temperature enhances the performance of superconductors in high-field magnets and reduces BCS losses in RF acceleration cavities, while the excellent transport properties of superfluid helium can be put to work in efficient distributed cooling systems. The thermodynamic penalty of operating at lower temperature however requires careful management of the heat loads, achieved inter alia through proper design and construction of the cryostats. A recurrent question appears to be that of the need and practical feasibility of an additional screen cooled by normal helium at around 4.5 K surrounding the cold mass at about 2 K, in such cryostats equipped with a standard 80 K screen. We introduce the issue in terms of first principles applied to the configuration of the cryostats, discuss technical constraints and economical limitations, and illustrate the argumentation with examples taken from large proj...

  2. New design of an adiabatic demagnetization cryostat for space application

    Science.gov (United States)

    Yamamoto, Junya; Sato, Akio; Sahashi, Masashi

    A new adiabatic demagnetization cryostat for cooling (in the region of 0.1 K) spaceborne far-infrared detectors is described. The cryostat contains a superconducting magnetic coil indirectly cooled by liquid helium, with the liquid nitrogen and helium vessels being connected by gas-filled thermal switches; the adiabatic demagnetization cell of the cryostat is set in vacuum at the center of the coil. The magnetic field of 3 T was obtained by a current of 11.5 A. The magnetic salt (single crystals of manganese ammonium alum) was prepared by the falling temperature technique.

  3. Contribution to the experimental study of the polarized liquid helium-3; Contributions a l'etude experimentale de l'helium-3 liquide polarise

    Energy Technology Data Exchange (ETDEWEB)

    Villard, B

    1999-07-15

    Spin-polarized liquid helium-3 is prepared by laser optical pumping in low magnetic field and at room temperature, prior to fast liquefaction of the polarized sample. The use of a new helium-3 cryostat enabled us to obtain liquid helium-3 with polarization rates up to 25 % at well-stabilized temperatures (around 0.5 K). We could thereby study the effect of nuclear polarization on liquid-vapour equilibrium, and particularly on the saturated vapour pressure. Very sensitive capacitive gauges were developed. We estimated (to first order in M{sup 2}) the expected effects when the polarization M is suddenly destroyed. These effects were experimentally observed in helium-3/helium-4 mixtures, in pure helium-3, only a transient increase in pressure has been recorded. We then describe in a third part a preliminary experiment which aimed at determining the longitudinal relaxation time T1 in mixtures. Relaxation on the walls is efficiently reduced by a cesium coating and T1s of order 20 minutes were observed. A careful determination of the helium-3 concentration in the liquid phase was made. Finally we studied the effects of dipolar field on transverse polarisation decay in our strongly polarized samples. We observed the free precession of polarization after a NMR pulse, and analysed in detail its decay time constant as a function of different parameters. This time constant drastically varied with the tipping angle, an effect which could be linked to NMR dynamical instabilities. (author)

  4. ATLAS endcap liquid argon calorimeters. Description and construction of the cryostats

    Energy Technology Data Exchange (ETDEWEB)

    Mace, Guy; Prat, Serge; Veillet, Jean-Jacques [Laboratoire de l' Accelerateur Lineaire IN2P3-CNRS et Universite de Paris-Sud 11, BP 34, F-91898 Orsay Cedex (France)

    2006-05-15

    All forward calorimeters of the ATLAS detector use the same detection technique, energy loss in passive plates, followed by ionisation and charge detection in liquid argon. They are therefore all grouped in the same vessel which must basically support and keep in place the heavy plates and the detection electrodes and maintain liquid argon at cold and stable temperature. Taking into account all the constraints as detailed below, and the overall detector size, 5 meter diameter by 3 meter length this was quite a challenge. The design, construction and tests of these two cryostats, up to their delivery at CERN, are described in this document. These two cryostats are a joint 'in kind' contribution to the Atlas experiment of LAL (Orsay), Max Planck Institute (Muenchen) and Wuppertal University (Wuppertal) and have been designed and built under the responsibility of LAL (Orsay) with contributions of the technical groups of the above institutions and of ATLAS-CERN. (authors)

  5. A high signal-to-noise ratio passive near-field microscope equipped with a helium-free cryostat

    Science.gov (United States)

    Lin, Kuan-Ting; Komiyama, Susumu; Kim, Sunmi; Kawamura, Ken-ichi; Kajihara, Yusuke

    2017-01-01

    We have developed a passive long-wavelength infrared (LWIR) scattering-type scanning near-field optical microscope (s-SNOM) installed in a helium-free mechanically cooled cryostat, which facilitates cooling of an LWIR detector and optical elements to 4.5 K. To reduce mechanical vibration propagation from a compressor unit, we have introduced a metal bellows damper and a helium gas damper. These dampers ensure the performance of the s-SNOM to be free from mechanical vibration. Furthermore, we have introduced a solid immersion lens to improve the confocal microscope performance. To demonstrate the passive s-SNOM capability, we measured thermally excited surface evanescent waves on Au/SiO2 gratings. A near-field signal-to-noise ratio is 4.5 times the improvement with an acquisition time of 1 s/pixel. These improvements have made the passive s-SNOM a more convenient and higher-performance experimental tool with a higher signal-to-noise ratio for a shorter acquisition time of 0.1 s.

  6. A high signal-to-noise ratio passive near-field microscope equipped with a helium-free cryostat.

    Science.gov (United States)

    Lin, Kuan-Ting; Komiyama, Susumu; Kim, Sunmi; Kawamura, Ken-Ichi; Kajihara, Yusuke

    2017-01-01

    We have developed a passive long-wavelength infrared (LWIR) scattering-type scanning near-field optical microscope (s-SNOM) installed in a helium-free mechanically cooled cryostat, which facilitates cooling of an LWIR detector and optical elements to 4.5 K. To reduce mechanical vibration propagation from a compressor unit, we have introduced a metal bellows damper and a helium gas damper. These dampers ensure the performance of the s-SNOM to be free from mechanical vibration. Furthermore, we have introduced a solid immersion lens to improve the confocal microscope performance. To demonstrate the passive s-SNOM capability, we measured thermally excited surface evanescent waves on Au/SiO2 gratings. A near-field signal-to-noise ratio is 4.5 times the improvement with an acquisition time of 1 s/pixel. These improvements have made the passive s-SNOM a more convenient and higher-performance experimental tool with a higher signal-to-noise ratio for a shorter acquisition time of 0.1 s.

  7. Cryostat with Foil and MLI

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Peter K.F.; Gung, Chen-yu

    2005-10-06

    Induction cores are used to accelerate heavy ion beam array, which are built around the outer diameter of the cryostat housing the superconducting quadruple array. Compact cryostat is highly desirable to reduce the cost of the induction cores. Recent experiences in fabrication of a cryostat for single beam transport revealed that it is possible to reduce the spacing in the cryostat vacuum jacket by using low-emissivity thermal insulation material instead of conventional MLI. However, it is labor-intensive to install the new type of insulation as compared with using MLI. It is promising to build a cost-effective compact cryostat for quadruple magnet array for heavy ion beam array transport by using low-emissivity material combined with conventional MLI as radiation insulation. A matrix of insulation designs and tests will be performed as the feasibility study and for the selection of the optimal thermal insulation as the Phase I work. The selected mixed insulation will be used to build prototype compact cryostats in the Phase II project, which are aiming for housing quadruple doublet array. In this STTR phase I study, a small cryostat has been designed and built to perform calorimetric characterization of the heat load in a liquid helium vessel insulated with a vacuum layer with a nominal clearance of 3.5 mm. The vacuum clearance resembled that used in the warm-bore beam tube region in a prototype cryostat previously built for the heavy ion beam transport experiment. The vacuum clearance was geometrically restricted with a heater shell with the temperature controlled at near 300 K. Various combinations of radiation and thermal shields were installed in the tight vacuum clearance for heat load measurements. The measured heat loads are reported and compared with previous test result using a compact vacuum layer. Further developments of the thermal insulations used in the present study are discussed. The compact cryostat with foil and MLI insulation may be used in the

  8. A Liquid-Cryogen-Free Cryostat for Ultrahigh Resolution Gamma-Ray Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, J G; Hertrich, T; Drury, O B; Hohne, J; Friedrich, S

    2008-06-30

    We are developing ultra-high energy resolution gamma-ray detectors based on superconducting transition edge sensors (TESs) for nuclear non-proliferation and fundamental science applications. They use bulk tin absorbers attached to molybdenum-copper multilayer TESs, and have achieved an energy resolution between 50 and 90 eV FWHM for gamma-ray energies below 122 keV. For increased user-friendliness, we have built a cryostat that attains the required detector operating temperature of 0.1 K at the push of a button without the use of cryogenic liquids. It uses a two-stage mechanical pulse tube refrigerator for precooling to {approx}3 K, and a two-stage adiabatic demagnetization refrigerator for cooling to the base temperature. The cryostat is fully automated, attains a base temperature below 30 mK without the use of cryogenic liquids, and has a hold time of {approx}2 days at 0.1 K between 1-hour demagnetization cycles. Here we discuss the performance of the cryostat for operation in a Gamma-spectrometer with 112-pixel arrays of superconducting TES detectors.

  9. Helium Droplets as Nano-Cryostats for Molecular Spectroscopy: Aggregation, State Selection and Electron Spin Resonance

    Science.gov (United States)

    Ernst, Wolfgang E.

    2009-06-01

    Droplets of about 10^{4} helium atoms generated in a supersonic expansion, represent a nanometer-sized superfluid medium of 0.4 K temperature and can be doped with one or several atoms or molecules that may form complexes in this cold environment. Using two-laser excitation schemes, we were able to identify the alkali trimers K_3, Rb_3, K_2Rb and KRb_2 in their lowest quartet states formed on helium droplets loaded with potassium and rubidium atoms and assign several excited states that underlie both Jahn-Teller and spin-orbit coupling. As helium provides a gentle and only weakly perturbing matrix, it appeared desirable to look for ways to measure fine and hyperfine structure directly in the microwave or radiofrequency regime. In preparation for experiments involving optical detection of electron spin transitions in cold molecules, we studied the electronic spin relaxation in alkali atoms and molecules that reside on the surface of a droplet. Measurements of the circular dichroism in the presence of a magnetic field showed that the populations of Zeeman sublevels in alkali atoms are not thermalized, while for dimers and trimers a temperature of 0.4 K was found, implicitly providing a first determination of the droplet's surface temperature. Optical detection of spin resonance is achieved in an optical pump-probe experiment with the electron spin transition induced in a microwave cavity in a magnetic field between the pump and probe regions. With the pump laser depleting a particular spin state by desorption of the species from the droplet beam or by optical pumping, the probe laser detects the successful spin flip induced by the microwave field. Examples will be presented showing up to 50 Rabi cycles of an electron spin transition on an alkali doped helium droplet during the flight time of 57 μs through the cavity. J. Nagl, G. Auböck, A. W. Hauser, O. Allard, C. Callegari, and W. E. Ernst, Phys. Rev. Lett. 100, 063001(2008)} G. Auböck, J. Nagl, C. Callegari, and

  10. In-situ measurement of the light attenuation in liquid argon in the GERDA cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Birgit [IKTP, TU Dresden (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    GERDA is an experiment searching for neutrinoless double beta decay in {sup 76}Ge. It uses germanium detectors which are enriched in {sup 76}Ge and operates them naked in liquid argon (LAr), which serves both as a coolant and a shield for external radiation. For phase II of GERDA it is planned to reach an exposure of 100 kg . yr with a BI of 10{sup -3} cts/(kg . yr . keV). One of the major improvements to further reduce the BI is to instrument the LAr to act as an additional background veto. The attenuation of the scintillation light in LAr creates a constraint on the effective active volume of the LAr veto and is therefore a key parameter to characterize the instrumentation. In order to measure the light attenuation in LAr, a setup was designed that could be deployed directly into the GERDA cryostat. This setup contains a movable beta source and a PMT to detect the scintillation light at different distances. The talk will describe in detail the construction of the setup, its successful deployment in the GERDA cryostat and the consecutive analysis of the acquired data.

  11. Catching proteins in liquid helium droplets

    CERN Document Server

    Kupser, Peter; Meijer, Gerard; von Helden, Gert

    2010-01-01

    An experimental approach is presented that allows for the incorporation of large mass/charge selected ions in liquid helium droplets. It is demonstrated that droplets can be efficiently doped with a mass/charge selected amino acid as well as with the much bigger m$\\approx$12 000 amu protein Cytochrome C in selected charge states. The sizes of the ion-doped droplets are determined via electrostatic deflection. Under the experimental conditions employed, the observed droplet sizes are very large and range, dependent on the incorporated ion, from 10$^{10}$ helium atoms for protonated Phenylalanine to 10$^{12}$ helium atoms for Cytochrome C. As a possible explanation, a simple model based on the size- and internal energy-dependence of the pickup efficiency is given.

  12. A vibration free cryostat using pulse tube cryocooler

    Science.gov (United States)

    Wang, Chao; Hartnett, John G.

    2010-05-01

    This paper introduces a new vibration free cryostat cooled by liquid helium and a 4 K pulse tube cryocooler. The cryogenic device mounts on the sample cooling station which is cooled by liquid helium. The boil off helium is recondensed by the pulse tube cryocooler, thus the cryostat maintains zero boil off. There is no mechanical contact between the cryogenic part of the cryocooler and the sample cooling station. A bellows is used to isolate the vibration which could transfer from the cryocooler flange to the cryostat flange at the room temperature. Any vibrations generated by the operation of the cryocooler are almost entirely isolated from the cryogenic device. The cryostat provides a cooling capacity of 0.65 W at 4.21 K on the sample cooling station while maintaining a vapor pressure of 102 kPa. The sample cooling station has a very stable temperature with oscillations of less than ±3 mK during all the operations. A cryogenic microwave oscillator has been successfully cooled and operated with the cryostat.

  13. Cryostat design case studies, principles and engineering

    CERN Document Server

    2016-01-01

    This book enables the reader to learn the fundamental and applied aspects of practical cryostat design by examining previous design choices and resulting cryostat performance. Through a series of extended case studies the book presents an overview of existing cryostat design covering a wide range of cryostat types and applications, including the magnet cryostats that comprise the majority of the Large Hadron Collider at CERN, space-borne cryostats containing sensors operating below 1 K, and large cryogenic liquid storage vessels. It starts with an introductory section on the principles of cryostat design including practical data and equations. This section is followed by a series of case studies on existing cryostats, describing the specific requirements of the cryostat, the challenges involved and the design choices made along with the resulting performance of the cryostat. The cryostat examples used in the studies are chosen to cover a broad range of cryostat applications and the authors of each case are ...

  14. Laser-Induced Breakdown in Liquid Helium

    Science.gov (United States)

    Sirisky, S.; Yang, Y.; Wei, W.; Maris, H. J.

    2017-10-01

    We report on experiments in which focused laser light is used to induce optical breakdown in liquid helium-4. The threshold intensity has been measured over the temperature range from 1.1 to 2.8 K with light of wavelength 1064 nm. In addition to the measurement of the threshold, we have performed experiments to study how the breakdown from one pulse modifies the probability that a subsequent pulse will result in breakdown.

  15. Correlation of Helium Solubility in Liquid Nitrogen

    Science.gov (United States)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2012-01-01

    A correlation has been developed for the equilibrium mole fraction of soluble gaseous helium in liquid nitrogen as a function of temperature and pressure. Experimental solubility data was compiled and provided by National Institute of Standards and Technology (NIST). Data from six sources was used to develop a correlation within the range of 0.5 to 9.9 MPa and 72.0 to 119.6 K. The relative standard deviation of the correlation is 6.9 percent.

  16. An Optical Cryostat with $^{3}$He Sorption Refrigerator

    CERN Document Server

    Trofimov, V N; Perminov, V G; Vdovin, V F; Vystavkin, A N

    2005-01-01

    An optical cryostat with $^{3}$He sorption refrigerator is described. The refrigerator is mounted on a copper plate with temperature 4.2 K in vacuum volume of a helium cryostat. It has two sorption steps: the first with working gas $^4$He is intended for condensation of $^{3}$He, the second with $^{3}$He for cooling down to 0.3 K. The cryostat is an independent device that does not contain the external gas communications aimed at reaching low temperatures, and working gases are stored in cans integrated with the cryostat. The refrigerator can be used together with the cryocoolers of Gifford--McMahon or pulse tube types with cooling power not less than 0.3 W/4 K, thus allowing operating without any liquid cryoagents.

  17. A liquid-He cryostat for structural and thermal disorder studies by X-ray absorption.

    Science.gov (United States)

    Bouamrane, F; Ribbens, M; Fonda, E; Adjouri, C; Traverse, A

    2003-07-01

    A new device operating from 4.2 to 300 K is now installed on the hard X-ray station of the DCI ring in LURE in order to measure absorption coefficients. This liquid-He bath device has three optical windows. One allows the incident beam to impinge on the sample, one located at 180 degrees with respect to the sample allows transmitted beams to be detected, and another located at 90 degrees is used to detect emitted photons. Total electron yield detection mode is also possible thanks to a specific sample holder equipped with an electrode that collects the charges created by the emitted electrons in the He gas brought from the He bath around the sample. The performance of the cryostat is described by measurements of the absorption coefficients versus the temperature for Cu and Co foils. For comparison, the absorption coefficient is also measured for Cu clusters. As expected from dimension effects, the Debye temperature obtained for the clusters is lower than that of bulk Cu.

  18. Design of the Cryostat for HT—7U superconducting Tokamak

    Institute of Scientific and Technical Information of China (English)

    郁杰; 武松涛; 等

    2002-01-01

    The cryostat of HT-7U tokamak is a large vacuum vessel surrounding the entire basic machine with a cylindrical shell,a dished top and a flat bottom.The main function of HT-7U cryostat is to provide a thermal barrier between an ambient temperature test hall and a liquid helium-cooled superconducting magnet.The loads applied to the cryostat are from sources of vacuum pressure,dead weight,seismic events and electromagnetic forces originated by eddy currents.It also provides feed-through penetrations for all the conecting elements inside and outside the cryostat.The main material selected for the cryostat is stainless steel 304L.The structural analyses including buckling for the cryostat vessel under the plasma operation condition have been carried out by using a finite element code.Stress analysis results show that the maximum stress intensity was below the allowable value.In this paper,the structural analyses and design of HT-7U cryostat are emphasized.

  19. Liquid uranium alloy-helium fission reactor

    Science.gov (United States)

    Minkov, V.

    1984-06-13

    This invention describes a nuclear fission reactor which has a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200 to 1800/sup 0/C range, and even higher to 2500/sup 0/C.

  20. A flow cryostat for cooling of eight independent pipe guns

    DEFF Research Database (Denmark)

    Sørensen, H.; Hansen, J.E.; Sass, B.

    1991-01-01

    A flow cryostat allowing independent cooling of eight pipe guns in a multishot deuterium pellet injector is described. The pipe guns are placed symmetrically around the flow cryostat and with a liquid helium consumption of 4-5 l/h the cooling is sufficient for simultaneous formation of eight...... pellets at 8-9 K with a diameter of 2.1 mm containing up to 8 x 10(20) atoms/pellet. The thermal interaction between the eight pipe guns is sufficiently low to allow successive firing of the guns with time intervals of up to 1 s....

  1. Neutrons on a surface of liquid helium

    Science.gov (United States)

    Grigoriev, P. D.; Zimmer, O.; Grigoriev, A. D.; Ziman, T.

    2016-08-01

    We investigate the possibility of ultracold neutron (UCN) storage in quantum states defined by the combined potentials of the Earth's gravity and the neutron optical repulsion by a horizontal surface of liquid helium. We analyze the stability of the lowest quantum state, which is most susceptible to perturbations due to surface excitations, against scattering by helium atoms in the vapor and by excitations of the liquid, comprised of ripplons, phonons, and surfons. This is an unusual scattering problem since the kinetic energy of the neutron parallel to the surface may be much greater than the binding energies perpendicular. The total scattering time of these UCNs at 0.7 K is found to exceed 1 h, and rapidly increases with decreasing temperature. Such low scattering rates should enable high-precision measurements of the sequence of discrete energy levels, thus providing improved tests of short-range gravity. The system might also be useful for neutron β -decay experiments. We also sketch new experimental propositions for level population and trapping of ultracold neutrons above a flat horizontal mirror.

  2. Neutrons on a surface of liquid helium

    CERN Document Server

    Grigoriev, P D; Ziman, T; Grigoriev, A D

    2015-01-01

    We investigate the possibility of ultracold neutron (UCN) storage in quantum states defined by the combined potentials of the Earth's gravity and the neutron optical repulsion by a horizontal surface of liquid helium. We analyse the stability of the lowest quantum state, which is most susceptible to perturbations due to surface excitations, against scattering by helium atoms in the vapor and by excitations of the liquid, comprised of ripplons, phonons and surfons. This is an unusual scattering problem since the kinetic energy of the neutron parallel to the surface may be much greater than the binding energies perpendicular. The total scattering time constant of these UCNs at 0.7 K is found to exceed one hour, and rapidly increasing with decreasing temperature. Such low scattering rates should enable high-precision measurements of the scheme of discrete energy levels, thus providing improved access to short-range gravity. The system might also be useful for neutron beta-decay experiments. We also sketch new ex...

  3. Standard test method for tension testing of structural alloys in liquid helium

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method describes procedures for the tension testing of structural alloys in liquid helium. The format is similar to that of other ASTM tension test standards, but the contents include modifications for cryogenic testing which requires special apparatus, smaller specimens, and concern for serrated yielding, adiabatic heating, and strain-rate effects. 1.2 To conduct a tension test by this standard, the specimen in a cryostat is fully submerged in normal liquid helium (He I) and tested using crosshead displacement control at a nominal strain rate of 10−3 s−1 or less. Tests using force control or high strain rates are not considered. 1.3 This standard specifies methods for the measurement of yield strength, tensile strength, elongation, and reduction of area. The determination of the elastic modulus is treated in Test Method E 111. Note 1—The boiling point of normal liquid helium (He I) at sea level is 4.2 K (−269°C or −452.1°F or 7.6°R). It decreases with geographic elevation and is...

  4. Existence of liquid helium above melting curve pressures

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, A.L.; Brewer, D.F.; Naji, T.; Haynes, S. (Sussex Univ., Brighton (UK). Dept. of Physics); Reppy, J.D. (Cornell Univ., Ithaca, NY (USA))

    Data are presented on the specific heat of helium confined at a high externally applied pressure within the 60 A pores of vycor glass. The specific heat shows that the helium within the pores remains in the liquid state down to temperatures well below 1 K. On the other hand the helium outside the vycor behaves normally, changing phase from solid to liquid as it warms.

  5. Cryostat Design

    CERN Document Server

    Parma, V

    2014-01-01

    This paper aims to give non-expert engineers and scientists working in the domain of accelerators a general introduction to the main disciplines and technologies involved in the design and construction of accelerator cryostats. Far from being an exhaustive coverage of these topics, an attempt is made to provide simple design and calculation rules for a preliminary design of cryostats. Recurrent reference is made to the Large Hadron Collider magnet cryostats, as most of the material presented is taken from their design and construction at CERN.

  6. Liquid Oxygen Thermodynamic Vent System Testing with Helium Pressurization

    Science.gov (United States)

    VanDresar, Neil T.

    2014-01-01

    This report presents the results of several thermodynamic vent system (TVS) tests with liquid oxygen plus a test with liquid nitrogen. In all tests, the liquid was heated above its normal boiling point to 111 K for oxygen and 100 K for nitrogen. The elevated temperature was representative of tank conditions for a candidate lunar lander ascent stage. An initial test series was conducted with saturated oxygen liquid and vapor at 0.6 MPa. The initial series was followed by tests where the test tank was pressurized with gaseous helium to 1.4 to 1.6 MPa. For these tests, the helium mole fraction in the ullage was quite high, about 0.57 to 0.62. TVS behavior is different when helium is present than when helium is absent. The tank pressure becomes the sum of the vapor pressure and the partial pressure of helium. Therefore, tank pressure depends not only on temperature, as is the case for a pure liquid-vapor system, but also on helium density (i.e., the mass of helium divided by the ullage volume). Thus, properly controlling TVS operation is more challenging with helium pressurization than without helium pressurization. When helium was present, the liquid temperature would rise with each successive TVS cycle if tank pressure was kept within a constant control band. Alternatively, if the liquid temperature was maintained within a constant TVS control band, the tank pressure would drop with each TVS cycle. The final test series, which was conducted with liquid nitrogen pressurized with helium, demonstrated simultaneous pressure and temperature control during TVS operation. The simultaneous control was achieved by systematic injection of additional helium during each TVS cycle. Adding helium maintained the helium partial pressure as the liquid volume decreased because of TVS operation. The TVS demonstrations with liquid oxygen pressurized with helium were conducted with three different fluid-mixer configurations-a submerged axial jet mixer, a pair of spray hoops in the tank

  7. Turbine flowmeter for liquid helium with the rotor magnetically levitated

    Science.gov (United States)

    Rivetti, A.; Martini, G.; Goria, R.; Lorefice, S.

    A turbine flowmeter with no mechanical contact between rotor and body is described, to be used as a reference standard in our liquid helium flow rate calibration facility. The absence of contact, zeroing the bearings friction factor, ensures a good measurement repeatability, even at very low liquid helium flow rate values. The rotor is magnetically suspended by the Meissner effect: at liquid helium temperatures two magnetic fields generate sustaining forces against the surface of the two rotor ends, which are made of niobium. Due to the repulsive nature of the acting forces, the rotor equilibrium is intrinsically stable and no external electronics are required for its levitation. A particular configuration of the superconducting windings and of the rotor ends allow the rotor to levitate and hold good axial and radial stability. A detailed description of the solutions adopted for the realization of the prototype and the operation conditions are reported. The first results, made with the absolute liquid helium calibration facility, are shown.

  8. Shock Compression of Liquid Helium to 56 GPa (560) Kbar

    Science.gov (United States)

    Nellis, W. J.; Holmes, N. C.; Mitchell, A. C.; Trainor, R. J.; Governo, G. K.; Ross, M.; Young, D. A.

    1985-01-01

    Shock-wave data are presented for liquid helium which has been compressed to densities up to five times greater than the normal liquid. The helium was heated to temperatures up to 21,000 K, while the maximum pressure attained was 56 GPa. The properties of helium and hydrogen are important for modeling the giant planets Saturn and Jupiter where these elements are the major constituents. Conditions on Saturn are of particular interest because studies have suggested that this planet has an internal energy source which is associated with unmixing and gravitational separation the hydrogen-helium fluid at pressures below 1 TPa. The existence of this phase transition depends very sensitively on the hydrogen and helium equation of state. In the experiments, strong shock waves were generated by the impact of planar projectiles into cryogenic specimen holders.

  9. Shock compression of liquid helium to 56 GPa (560 kbar)

    Science.gov (United States)

    Nellis, W. J.; Holmes, N. C.; Mitchell, A. C.; Governo, G. K.; Ross, M.; Young, D. A.; Trainor, R. J.

    1984-01-01

    Shock-wave data are presented for liquid helium which has been compressed to densities up to five times greater than the normal liquid. The helium was heated to temperatures up to 21,000 K, while the maximum pressure attained was 56 GPa. The properties of helium and hydrogen are important for modeling the giant planets Saturn and Jupiter where these elements are the major constituents. Conditions on Saturn are of particular interest because studies have suggested that this planet has an internal energy source which is associated with unmixing and gravitational separation of the hydrogen-helium fluid at pressures below 1 TPa. The existence of this phase transition depends very sensitively on the hydrogen and helium equation of state. In the experiments, strong shock waves were generated by the impact of planar projectiles into cryogenic specimen holders.

  10. HL-LHC vertical cryostat during construction

    CERN Multimedia

    Lanaro, Andrea

    2016-01-01

    7m high "Cluster D" vertical test cryostat during construction at contractor's premises, Alca Technology Srl, in Schio, Italy. The inner helium vessel with its heat exchanger are visible. To be installed in the D pit in SMA18.

  11. Liquid Argon Calorimeter - Barrel Cryostat Construction and Testing May-June 2000

    CERN Multimedia

    US, ATLAS

    1999-01-01

    Photo 1 - Outer Cold Cryostat showing 'Y' support. Photo 2 - Outer Cold Vessel half showing 'X' and 'Z' stops and 'Y' supports. Photo 3 - Cold Vessel Bulkhead, End 'C'. Photo 4 - Outer Cold Vessel half, showing EM Calorimeter support rail. Photo 5 - End of Outer Cold Vessel showing EM Calorimeter support rail. Photo 6 - Al/SST Transitions for Signal and High Voltage feedthroughs. Test weld blocks shown in background. Photo 7 - Welding of Al/SST Transitions onto Outer Cold Vessel. Photo 8 - Al/SST Transitions, including test pumpouts. Photo 9 - Machining of Inner Cold vessel. Photo 10 - Warm Vessel being assembled for leak testing Photo 11 - Setting up Warm Vessel on test stand. Photo 12 - Warm Vessel assembly for testing complete. Photo 13 - Dial indicators mounted against the Warm Vessel Bulkhead during testing. Photo 14 - Pumping on Warm Vessel. Photo 15 - Pumping on the Warm Vessel. Photo 16 - Checking the Solenoid Chimney. Photo 17 - Leak checking the Inner Warm Vessel/Bulkhead flange in the area of ID co...

  12. Design of horizontal test cryostat for testing two 650 MHz cavities: cryogenic considerations

    Science.gov (United States)

    Khare, P.; Gilankar, S.; Kush, P. K.; Lakshminarayanan, A.; Choubey, R.; Ghosh, R.; Jain, A.; Patel, H.; Gupta, P. D.; Hocker, A.; Ozelis, J. P.; Geynisman, M.; Reid, C.; Poloubotko, V.; Mitchell, D.; Peterson, T. J.; Nicol, T. H.

    2017-02-01

    Horizontal Test Cryostat has been designed for testing two 650 MHz "dressed" Superconducting Radio Frequency (SCRF) cavities in a single testing cycle at Raja Ramanna Centre for Advanced Technology, India (RRCAT) in collaboration with Fermi National Accelerator Laboratory, USA (FNAL). This cryostat will facilitate testing of two 5-cell 650 MHz SCRF cavities, in CW or pulsed regime, for upcoming High Intensity Superconducting Proton Accelerator projects at both countries. Two such HTS facilities are planned, one at RRCAT for Indian Spallation Neutron Source project (ISNS), which is on the horizon, and the other at FNAL, USA. A test cryostat, a part of horizontal test stand-2 (HTS-2) will be set up at RRCAT for Indian project. In order to maximize the utility of this facility, it can also be used to test two dressed 9-cell 1.3 GHz cavities and other similarly-sized devices. The facility assumes, as an input, the availability of liquid nitrogen at 80 K and liquid helium at 4.5 K and 2 K, with a refrigeration capacity of approximately 50 W at 2 K. Design work of cryostat has been completed and now procurement process is in progress. This paper discusses salient features of the cryostat. It also describes different design calculations and ANSYS analysis for cool down of few subsystems like cavity support system and liquid nitrogen cooled thermal radiation shield of horizontal test cryostat..

  13. Operation of an opamp at liquid helium temperature.

    Science.gov (United States)

    Ng, K.-W.

    1994-02-01

    The stray capacitance between long wires in a cryogenics systems will slow down measurement rate, and also introduce unnecessary noise pick up. It is necessary to install the preamplifier as close to the signal source as possible to diminish the capacitive coupling effects. The most commonly used semiconducting device for this purpose is the MOSFET, which can function at liquid helium temperatures. Under special operation procedures, an all MOSFET operational amplifier can also be operated at liquid helium temperature. The use of opamp will simplify the construction of more complicated circuitry for low temperature applications.

  14. The Thermal Design, Characterization, and Performance of the SPIDER Long-Duration Balloon Cryostat

    CERN Document Server

    Gudmundsson, J E; Amiri, M; Benton, S J; Bock, J J; Bond, J R; Bryan, S A; Chiang, H C; Contaldi, C R; Crill, B P; Doré, O; Filippini, J P; Fraisse, A A; Gambrel, A; Gandilo, N N; Hasselfield, M; Halpern, M; Hilton, G C; Holmes, W; Hristov, V V; Irwin, K D; Jones, W C; Kermish, Z; MacTavish, C J; Mason, P V; Megerian, K; Moncelsi, L; Montroy, T E; Morford, T A; Nagy, J M; Netterfield, C B; Rahlin, A S; Reintsema, C D; Ruhl, J E; Runyan, M C; Shariff, J A; Soler, J D; Trangsrud, A; Tucker, C; Tucker, R S; Turner, A D; Wiebe, D V; Young, E

    2015-01-01

    We describe the SPIDER flight cryostat, which is designed to cool six millimeter-wavelength telescopes during an Antarctic long-duration balloon flight. The cryostat, one of the largest to have flown on a stratospheric payload, uses liquid helium-4 to deliver cooling power to stages at 4.2 and 1.6 K. Stainless steel capillaries facilitate a high flow impedance connection between the main liquid helium tank and a smaller superfluid tank, allowing the latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank. Each telescope houses a closed cycle helium-3 adsorption refrigerator that further cools the focal planes down to 300 mK. Liquid helium vapor from the main tank is routed through heat exchangers that cool radiation shields, providing negative thermal feedback. The system performed successfully during a 17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold time of 16.8 days, with 15.9 days occurring during flight.

  15. Thermal architecture for the SPIDER flight cryostat

    CERN Document Server

    Gudmundsson, J E; Amiri, M; Benton, S J; Bihary, R; Bock, J J; Bond, J R; Bonetti, J A; Bryan, S A; Chiang, H C; Contaldi, C R; Crill, B P; O'Dea, D; Farhang, M; Filippini, J P; Fissel, L M; Gandilo, N N; Golwala, S R; Halpern, M; Hasselfield, M; Helson, K R; Hilton, G; Holmes, W; Hristov, V V; Irwin, K D; Jones, W C; Kuo, C L; MacTavish, C J; Mason, P V; Montroy, T E; Morford, T A; Netterfield, C B; Rahlin, A S; Reintsema, C D; Ruhl, J E; Runyan, M C; Schenker, M A; Shariff, J A; Soler, J D; Trangsrud, A; Tucker, C; Tucker, R S; Turner, A D; 10.1117/12.857925

    2011-01-01

    We describe the cryogenic system for SPIDER, a balloon-borne microwave polarimeter that will map 8% of the sky with degree-scale angular resolution. The system consists of a 1284 L liquid helium cryostat and a 16 L capillary-filled superfluid helium tank, which provide base operating temperatures of 4 K and 1.5 K, respectively. Closed-cycle helium-3 adsorption refrigerators supply sub-Kelvin cooling power to multiple focal planes, which are housed in monochromatic telescope inserts. The main helium tank is suspended inside the vacuum vessel with thermally insulating fiberglass flexures, and shielded from thermal radiation by a combination of two vapor cooled shields and multi-layer insulation. This system allows for an extremely low instrumental background and a hold time in excess of 25 days. The total mass of the cryogenic system, including cryogens, is approximately 1000 kg. This enables conventional long duration balloon flights. We will discuss the design, thermal analysis, and qualification of the cryog...

  16. Radiation hardness tests of piezoelectric actuators with fast neutrons at liquid helium temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fouaidy, M.; Martinet, G.; Hammoudi, N.; Chatelet, F.; Olivier, A.; Blivet, S.; Galet, F. [CNRS-IN2P3-IPN Orsay, Orsay (France)

    2007-07-01

    Piezoelectric actuators, which are integrated into the cold tuning system and used to compensate the small mechanical deformations of the cavity wall induced by Lorentz forces due to the high electromagnetic surface field, may be located in the radiation environment during particle accelerator operation. In order to provide for a reliable operation of the accelerator, the performance and life time of piezoelectric actuators ({approx}24.000 units for ILC) should not show any significant degradation for long periods (i.e. machine life duration: {approx}20 years), even when subjected to intense radiation (i.e. gamma rays and fast neutrons). An experimental program, aimed at investigating the effect of fast neutrons radiation on the characteristics of piezoelectric actuators at liquid helium temperature (i.e. T{approx}4.2 K), was proposed for the working package WPNo.8 devoted to tuners development in the frame of CARE project. A neutrons irradiation facility, already installed at the CERI cyclotron located at Orleans (France), was upgraded and adapted for actuators irradiations tests purpose. A deuterons beam (maximum energy and beam current: 25 MeV and 35{mu}A) collides with a thin (thickness: 3 mm) beryllium target producing a high neutrons flux with low gamma dose ({approx}20%): a neutrons fluence of more than 10{sup 14} n/cm{sup 2} is achieved in {approx}20 hours of exposure. A dedicated cryostat was developed at IPN Orsay and used previously for radiation hardness test of calibrated cryogenic thermometers and pressure transducers used in LHC superconducting magnets. This cryostat could be operated either with liquid helium or liquid argon. This irradiation facility was upgraded for allowing fast turn-over of experiments and a dedicated experimental set-up was designed, fabricated, installed at CERI and successfully operated for radiation hardness tests of several piezoelectric actuators at T{approx}4.2 K. This new apparatus allows on-line automatic measurements

  17. Long flexible transfer lines for gaseous and liquid helium

    CERN Document Server

    Laeger, H; Rohner, P

    1978-01-01

    Screened flexible four-fold coaxial transfer lines for gaseous and liquid helium with lengths of 5 to 50 m have been successfully built and tested. The lines for gaseous helium have to supply and return a mass flow of 5 to 10 g s−1 at temperatures ranging between 350 and 20 K for cooldown or warmup of superconducting magnets. The lines for liquid helium have to supply up to 100 ℓ h−1 for final cooldown or up to 25 ℓ h−1 for normal operation of superconducting magnets. The hydrodynamic and thermal performance characteristics of the lines have been measured. The results are encouraging and it can be envisaged to use this kind of lines for superconducting magnets in high energy accelerators.

  18. Inside the ATLAS solenoid cryostat

    CERN Multimedia

    Claudia Marcelloni

    2006-01-01

    Scientists are seen working on the inside of the ATLAS cryostat, which will be used to cool liquid argon to 90 K in the electromagnetic calorimeter. Thin lead plates immersed in the cooled liquid will produce electromagnetic showers of particles when an electron, positron or photon enter the detector. This causes the argon to glow, allowing the initial particle energy to be measured.

  19. A critical review of liquid helium temperature high frequency pulse tube cryocoolers for space applications

    Science.gov (United States)

    Wang, B.; Gan, Z. H.

    2013-08-01

    The importance of liquid helium temperature cooling technology in the aerospace field is discussed, and the results indicate that improving the efficiency of liquid helium cooling technologies, especially the liquid helium high frequency pulse tube cryocoolers, is the principal difficulty to be solved. The state of the art and recent developments of liquid helium high frequency pulse tube cryocoolers are summarized. The main scientific challenges for high frequency pulse tube cryocoolers to efficiently reach liquid helium temperatures are outlined, and the research progress addressing those challenges are reviewed. Additionally some possible solutions to the challenges are pointed out and discussed.

  20. Deep Cryogenic Low Power 24 Bits Analog to Digital Converter with Active Reverse Cryostat

    Science.gov (United States)

    Turqueti, Marcos; Prestemon, Soren; Albright, Robert

    LBNL is developing an innovative data acquisition module for superconductive magnets where the front-end electronics and digitizer resides inside the cryostat. This electronic package allows conventional electronic technologies such as enhanced metal-oxide-semiconductor to work inside cryostats at temperatures as low as 4.2 K. This is achieved by careful management of heat inside the module that keeps the electronic envelop at approximately 85 K. This approach avoids all the difficulties that arise from changes in carrier mobility that occur in semiconductors at deep cryogenic temperatures. There are several advantages in utilizing this system. A significant reduction in electrical noise from signals captured inside the cryostat occurs due to the low temperature that the electronics is immersed in, reducing the thermal noise. The shorter distance that signals are transmitted before digitalization reduces pickup and cross-talk between channels. This improved performance in signal-to-noise rate by itself is a significant advantage. Another important advantage is the simplification of the feedthrough interface on the cryostat head. Data coming out of the cryostat is digital and serial, dramatically reducing the number of lines going through the cryostat feedthrough interface. It is important to notice that all lines coming out of the cryostat are digital and low voltage, reducing the possibility of electric breakdown inside the cryostat. This paper will explain in details the architecture and inner workings of this data acquisition system. It will also provide the performance of the analog to digital converter when the system is immersed in liquid helium, and in liquid nitrogen. Parameters such as power dissipation, integral non-linearity, effective number of bits, signal-to-noise and distortion, will be presented for both temperatures.

  1. Thermal architecture for the SPIDER flight cryostat

    Science.gov (United States)

    Gudmundsson, J. E.; Ade, P. A. R.; Amiri, M.; Benton, S. J.; Bihary, R.; Bock, J. J.; Bond, J. R.; Bonetti, J. A.; Bryan, S. A.; Burger, B.; Chiang, H. C.; Contaldi, C. R.; Crill, B. P.; Doré, O.; Farhang, M.; Filippini, J.; Fissel, L. M.; Gandilo, N. N.; Golwala, S. R.; Halpern, M.; Hasselfield, M.; Hilton, G.; Holmes, W.; Hristov, V. V.; Irwin, K. D.; Jones, W. C.; Kuo, C. L.; MacTavish, C. J.; Mason, P. V.; Montroy, T. E.; Morford, T. A.; Netterfield, C. B.; O'Dea, D. T.; Rahlin, A. S.; Reintsema, C. D.; Ruhl, J. E.; Runyan, M. C.; Schenker, M. A.; Shariff, J. A.; Soler, J. D.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.

    2010-07-01

    We describe the cryogenic system for SPIDER, a balloon-borne microwave polarimeter that will map 8% of the sky with degree-scale angular resolution. The system consists of a 1284 L liquid helium cryostat and a 16 L capillary-filled superfluid helium tank, which provide base operating temperatures of 4 K and 1.5 K, respectively. Closed-cycle 3He adsorption refrigerators supply sub-Kelvin cooling power to multiple focal planes, which are housed in monochromatic telescope inserts. The main helium tank is suspended inside the vacuum vessel with thermally insulating fiberglass flexures, and shielded from thermal radiation by a combination of two vapor cooled shields and multi-layer insulation. This system allows for an extremely low instrumental background and a hold time in excess of 25 days. The total mass of the cryogenic system, including cryogens, is approximately 1000 kg. This enables conventional long duration balloon flights. We will discuss the design, thermal analysis, and qualification of the cryogenic system.

  2. Communication: Dopant-induced solvation of alkalis in liquid helium nanodroplets

    Science.gov (United States)

    Renzler, Michael; Daxner, Matthias; Kranabetter, Lorenz; Kaiser, Alexander; Hauser, Andreas W.; Ernst, Wolfgang E.; Lindinger, Albrecht; Zillich, Robert; Scheier, Paul; Ellis, Andrew M.

    2016-11-01

    Alkali metal atoms and small alkali clusters are classic heliophobes and when in contact with liquid helium they reside in a dimple on the surface. Here we show that alkalis can be induced to submerge into liquid helium when a highly polarizable co-solute, C60, is added to a helium nanodroplet. Evidence is presented that shows that all sodium clusters, and probably single Na atoms, enter the helium droplet in the presence of C60. Even clusters of cesium, an extreme heliophobe, dissolve in liquid helium when C60 is added. The sole exception is atomic Cs, which remains at the surface.

  3. A liquid-helium-free superconducting coil system forming a flat minimum-magnetic-field distribution of an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ken-ichi, E-mail: yoshida.kennichi71@jaea.go.jp; Nara, Takayuki; Saitoh, Yuichi; Yokota, Watalu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    A flat distribution of the minimum magnetic field (flat-B{sub min}) of an electron cyclotron resonance ion source (ECRIS) is expected to perform better in highly charged ion production than classical B{sub min}. To form a flat-B{sub min} structure with a liquid helium-free superconducting device, a coil system of seven coils with four current leads has been designed. The lead number was reduced by connecting the plural coils in series to maintain the flat-B{sub min} structure even when the coil currents are changed for adjustment. This coil system can be operated with a helium-free cryostat, since the estimation of heat from the leads to the coils is nearly equivalent to the existing superconducting ECRIS of a similar type.

  4. An Optical Cryostat for Use in Microscopy Cooled by Stirling-Type Pulse Tube Cryocooler

    Science.gov (United States)

    Liubiao, Chen; Qiang, Zhou; Xiaoshuang, Zhu; Yuan, Zhou; Junjie, Wang

    The few products of an optical cryostat for use in microscopy in commercialapplications are generally cooled by liquid nitrogen, liquid helium or cryocoolers such as G-M cryocooler or G-M type pulse tube cryocooler (PTC). Sometimes it is not convenient to use G-M cryocooler or G-M type PTC because of its noise and big size; and in some places, liquid nitrogen, especially liquid helium, is not easily available. To overcome this limitation, an optical cryostat for use in microscopy cooled by a Stirling-type pulse tube cryocooler (SPTC) has been designed, built and tested. The refrigerator system SPTC is an important component of the optical cryostat; it has the advantages of compactness, high efficiency, and low vibration. For simplification and compactness, single-stage configuration with coaxial arrangement was employed in the developed SPTC. In order to lower the vibration, the separated configuration was adopted; its compressor and pulse tube are connected with a flexible connecting tube. At present, a lowest temperature of 20 K could be achieved. The temperature fluctuation can be controlled at ±10 mK by adjusting the input electric power to the compressor; and some considerations for further improvement will also be described in this paper.

  5. The thermal design, characterization, and performance of the SPIDER long-duration balloon cryostat

    Science.gov (United States)

    Gudmundsson, J. E.; Ade, P. A. R.; Amiri, M.; Benton, S. J.; Bock, J. J.; Bond, J. R.; Bryan, S. A.; Chiang, H. C.; Contaldi, C. R.; Crill, B. P.; Dore, O.; Filippini, J. P.; Fraisse, A. A.; Gambrel, A.; Gandilo, N. N.; Hasselfield, M.; Halpern, M.; Hilton, G.; Holmes, W.; Hristov, V. V.; Irwin, K. D.; Jones, W. C.; Kermish, Z.; MacTavish, C. J.; Mason, P. V.; Megerian, K.; Moncelsi, L.; Montroy, T. E.; Morford, T. A.; Nagy, J. M.; Netterfield, C. B.; Rahlin, A. S.; Reintsema, C. D.; Ruhl, J. E.; Runyan, M. C.; Shariff, J. A.; Soler, J. D.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.; Wiebe, D. V.; Young, E.

    2015-12-01

    We describe the SPIDER flight cryostat, which is designed to cool six millimeter-wavelength telescopes during an Antarctic long-duration balloon flight. The cryostat, one of the largest to have flown on a stratospheric payload, uses liquid 4 He to deliver cooling power to stages at 4.2 and 1.6 K. Stainless steel capillaries facilitate a high flow impedance connection between the main liquid helium tank and a smaller superfluid tank, allowing the latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank. Each telescope houses a closed cycle 3 He adsorption refrigerator that further cools the focal planes down to 300 mK. Liquid helium vapor from the main tank is routed through heat exchangers that cool radiation shields, providing negative thermal feedback. The system performed successfully during a 17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold time of 16.8 days, with 15.9 days occurring during flight.

  6. A Cryogen-free Cryostat for Scientific Experiment in Pulsed High Magnetic Fields

    Science.gov (United States)

    Wang, Shaoliang; Li, Liang; Zuo, Huakun; Liu, Mengyu; Peng, Tao

    Traditional cryostats for scientific experiments in pulsed high magnetic fields use liquid helium as the cooling source. To reduce the running cost and to increase the operational efficiency, a cryogen-free cryostat based on a GM cryocooler has been developed for a 60 T pulsed field measurement cell at Wuhan National High Magnetic Field Center. A double layer temperature-control insert was designed to obtain a stable temperature in the sample chamber of the cryostat. In order to eliminate the sample temperature fluctuation caused by the eddy current heating during the pulse, the inner layer is made from a fiberglass tubing with an epoxy coating. Different from the traditional cryostat, the sample and the temperature controller are not immerged in the 4He bath. Instead, they are separated by helium gas under sub-atmospheric pressure, which makes the heat transfer smoother. At the sample position, a resistance heater wound with antiparallel wires is mounted on the inner layer to heat the sample. Using the temperature-control insert, the temperature can be controlled with an accuracy of ±0.01 K in the range of 1.4 K-20 K, and ±0.05 K between 20 K and 300 K.

  7. Charged-Surface Instability Development in Liquid Helium; Exact Solutions

    CERN Document Server

    Zubarev, N M

    2000-01-01

    The nonlinear dynamics of charged-surface instability development was investigated for liquid helium far above the critical point. It is found that, if the surface charge completely screens the field above the surface, the equations of three-dimensional (3D) potential motion of a fluid are reduced to the well-known equations describing the 3D Laplacian growth process. The integrability of these equations in 2D geometry allows the analytic description of the free-surface evolution up to the formation of cuspidal singularities at the surface.

  8. Research activities at liquid helium temperatures in India

    Science.gov (United States)

    Chopra, V.; Chaudhuri, K. D.

    The number of laboratories in India equipped with a liquid helium facility has steadily increased to about twelve, and more liquifiers are expected to be installed in the near future. In this article the cryogenic research works being carried out at various institutions are reviewed. Although the output of the work is rather nominal, one expects a reasonable growth in the near future in both developmental and fundamental work. The slow rate of progress may be attributed to the non-existence of any cryogenic industry, which is very much needed to assist the cryogenic personnel engaged in this field of research.

  9. Exploding and Imaging of Electron Bubbles in Liquid Helium

    Science.gov (United States)

    Yadav, Neha; Vadakkumbatt, Vaisakh; Maris, Humphrey J.; Ghosh, Ambarish

    2016-11-01

    An electron bubble in liquid helium-4 under the saturated vapor pressure becomes unstable and explodes if the pressure becomes more negative than -1.9 bars. In this paper, we use focused ultrasound to explode electron bubbles. We then image at 30,000 frames per second the growth and subsequent collapse of the bubbles. We find that bubbles can grow to as large as 1 mm in diameter within 2 ms after the cavitation event. We examine the relation between the maximum size of the bubble and the lifetime and find good agreement with the experimental results.

  10. The hydraulic jump and ripples in liquid helium

    Energy Technology Data Exchange (ETDEWEB)

    Rolley, E. [Laboratoire de Physique Statistique de l' ENS, associe au CNRS et aux Universites Paris 6 et Paris 7, 24 rue Lhomond, 75005 Paris (France)]. E-mail: rolley@lps.ens.fr; Guthmann, C. [Laboratoire de Physique Statistique de l' ENS, associe au CNRS et aux Universites Paris 6 et Paris 7, 24 rue Lhomond, 75005 Paris (France); Pettersen, M.S. [Washington and Jefferson College, 60 S. Lincoln St., Washington, PA 15301 (United States)

    2007-05-01

    We have studied the characteristics of the circular hydraulic jump using liquid helium. Surprisingly, the radius of the jump does not change at the superfluid transition. We think that the flow is still dissipative below the lambda point because the velocity exceeds the critical one. The jump radius R{sub j} is compared with various models. In our parameter range, we find that the jump can be treated as a shock, and that capillary effects are important. Below the superfluid transition, we observed a standing capillary wave between the impact of the jet and the jump. Assuming that the superfluid flow can be described with an effective viscosity, we calculate the wave vector and thus obtain the value of the liquid thickness, which is in reasonable agreement with predictions. However, the spatial variation of the wave amplitude depends much more strongly on temperature than we calculate.

  11. HFE and Spherical Cryostats MC Study

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Jason P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-26

    The copper vessel containing the nEXO TPC is surrounded by a buffer of HFE, a liquid refrigerant with very low levels of radioactive element contamination. The HFE is contained within the cryostat’s inner vessel, which is in turn inside the outer vessel. While some HFE may be necessary for stable cooling of nEXO, it is possible that using substantially more than necessary for thermal reasons will help reduce backgrounds originating in the cryostats. Using a larger amount of HFE is accomplished by making the cryostat vessels larger. By itself, increasing the cryostat size somewhat increases the background rate, as the thickness of the cryostat wall must increase at larger sizes. However, the additional space inside the cryostat will be filled with HFE which can absorb gamma rays headed for the TPC. As a result, increasing the HFE reduces the number of backgrounds reaching the TPC. The aim of this study was to determine the relationship between HFE thickness and background rate. Ultimately, this work should support choosing a cryostat and HFE size that satisfies nEXO’s background budget. I have attempted to account for every consequence of changing the cryostat size, although naturally this remains a work in progress until a final design is achieved. At the moment, the scope of the study includes only the spherical cryostat design. This study concludes that increasing cryostat size reduces backgrounds, reaching neglible backgrounds originating from the cryostat at the largest sizes. It also shows that backgrounds originating from the inherent radioactivity of the HFE plateau quickly, so may be considered essentially fixed at any quantity of HFE.

  12. Advanced helium purge seals for Liquid Oxygen (LOX) turbopumps

    Science.gov (United States)

    Shapiro, Wilbur; Lee, Chester C.

    1989-01-01

    Program objectives were to determine three advanced configurations of helium buffer seals capable of providing improved performance in a space shuttle main engine (SSME), high-pressure liquid oxygen (LOX) turbopump environment, and to provide NASA with the analytical tools to determine performance of a variety of seal configurations. The three seal designs included solid-ring fluid-film seals often referred to as floating ring seals, back-to-back fluid-film face seals, and a circumferential sectored seal that incorporated inherent clearance adjustment capabilities. Of the three seals designed, the sectored seal is favored because the self-adjusting clearance features accommodate the variations in clearance that will occur because of thermal and centrifugal distortions without compromising performance. Moreover, leakage can be contained well below the maximum target values; minimizing leakage is important on the SSME since helium is provided by an external tank. A reduction in tank size translates to an increase in payload that can be carried on board the shuttle. The computer codes supplied under this program included a code for analyzing a variety of gas-lubricated, floating ring, and sector seals; a code for analyzing gas-lubricated face seals; a code for optimizing and analyzing gas-lubricated spiral-groove face seals; and a code for determining fluid-film face seal response to runner excitations in as many as five degrees of freedom. These codes proved invaluable for optimizing designs and estimating final performance of the seals described.

  13. Neutron Irradiation Tests of Pressure Transducers in Liquid Helium

    CERN Document Server

    Amand, J F; Casas-Cubillos, J; Thermeau, J P

    1999-01-01

    The superconducting magnets of the future Large Hadron Collider (LHC) at CERN will operate in pressurised superfluid helium (1 bar, 1.9 K). About 500 pressure transducers will be placed in the liquid helium bath for monitoring the filling and the pressure transients after resistive transitions. Their precision must remain better than 100 mbar at pressures below 2 bar and better than 5% for higher pressures (up to 20 bar), with temperatures ranging from 1.8 K to 300 K. All the tested transducers are based on the same principle: the fluid or gas is separated from a sealed reference vacuum by an elastic membrane; its deformation indicates the pressure. The transducers will be exposed to high neutron fluence (2 kGy, 1014 n/cm2 per year) during the 20 years of machine operation. This irradiation may induce changes both on the membranes characteristics (leakage, modification of elasticity) and on gauges which measure their deformations. To investigate these effects and select the transducer to be used in the LHC, a...

  14. Interferometric measurements of silicon carbide mirrors at liquid helium temperature

    Science.gov (United States)

    Robb, Paul N.; Huff, Lynn W.; Forney, Paul B.; Petrovsky, Gury T.; Ljubarsky, Sergey V.; Khimitch, Yuri P.

    1995-10-01

    This paper presents the results of interferometric tests of two silicon carbide mirrors tested at room temperature and 6 K. The first mirror has a spherical f/1.73 surface, a diameter of 170 mm, and is of solid, plano-concave construction. The other mirror, a plano measuring 308 mm by 210 mm, is of lightweighted, closed-back construction. The mirrors were manufactured by the Vavilov State Optical Institute, St. Petersburg, Russia, and were loaned to Lockheed for these tests. Optical tests on both mirrors were performed using the Lockheed cryogenic optical test facility at liquid helium temperature and a Zygo Mark II interferometer. There was no change in the surface figure of the mirrors, within the test uncertainty of approximately plus or minus 0.02 waves at 0.6328-micrometer wavelength.

  15. Thermal conductance of pressed brass contacts at liquid helium temperatures

    Science.gov (United States)

    Salerno, L. J.; Kittel, P.; Brooks, W. F.; Spivak, A. L.; Marks, W. G., Jr.

    1986-01-01

    An apparatus has been designed and fabricated which will measure the thermal conductance of pressed contacts at liquid helium temperatures as a function of applied force, with surface finish as a parameter. The apparatus is automated and was used to measure thermal conductance at temperatures from 1.5 to 6.5 K at applied forces up to 700 N for brass sample pairs having surface finishes from 0.1 to 1.6 micron rms. The experimental data were found to fit a simple power law where the thermal conductance is given by k = alpha T exp n, where k is the thermal conductance, T is the absolute temperature, and alpha and n are empirically determined constants.

  16. Thermal conductance of pressed contacts at liquid helium temperatures

    Science.gov (United States)

    Salerno, L. J.; Kittel, P.; Spivak, A. L.

    1983-01-01

    It is pointed out that the optimum design of cryogenic instruments requires accurate thermal models. The present models are limited by a lack of knowledge of the low temperature thermal conductance of the bolted joints which are typically used in the instrument-to-system interface. In connection with studies of pressed contacts, it has been found that the thermal conductance does not obey the Wiedemann-Franz law. The present investigation is concerned with the characterization of the thermal conductance of pressed contacts at liquid helium-4 temperatures, taking into account the dependence of thermal contact conductance on applied force and temperature. It is shown that for the 0.4 micron OFHC copper pressed contact pair, the thermal conductance varies roughly as the second power of the temperature, and increases with increasing applied force.

  17. INVESTIGATION STUDIES ON SUB-COOLING OF CRYOGENIC LIQUIDS USING HELIUM INJECTION METHOD

    Directory of Open Access Journals (Sweden)

    T. Ramesh

    2014-01-01

    Full Text Available In cryogenic propellants, the sub-cooling of cryogenic propellants contained in tanks is an important and effective method for bringing down the lift-off mass of launch vehicle and thus the performance of the rocket engine is greatly improved. This study presents the technical and experimental studies conducted on cryogenic liquids such as Liquid Oxygen, Liquid Nitrogen and Liquid Hydrogen using helium injection method. The influence of cooled Helium on the degree of sub-cooling and the variation in flow rate of Helium gas admitted are discussed. The experimental and theoretical studies indicate that the sub-cooling technique using helium injection is a very simple method and can be very well adopted in propellant tanks used for ground and launch vehicle applications. The overall cooling effect for rocket application is also discussed. The critical values of the non-dimensional parameters and injected helium temperatures are also estimated.

  18. Design and Test of a Liquid Oxygen / Liquid Methane Thruster with Cold Helium Pressurization Heat Exchanger

    Science.gov (United States)

    Melcher, John C.; Morehead, Robert L.; Atwell, Matthew J.; Hurlbert, Eric A.

    2015-01-01

    A liquid oxygen / liquid methane 2,000 lbf thruster was designed and tested in conjuction with a nozzle heat exchanger for cold helium pressurization. Cold helium pressurization systems offer significant spacecraft vehicle dry mass savings since the pressurant tank size can be reduced as the pressurant density is increased. A heat exchanger can be incorporated into the main engine design to provide expansion of the pressurant supply to the propellant tanks. In order to study the systems integration of a cold-helium pressurization system, a 2,000 lbf thruster with a nozzle heat exchanger was designed for integration into the Project Morpheus vehicle at NASA Johnson Space Center. The testing goals were to demonstrate helium loading and initial conditioning to low temperatures, high-pressure/low temperature storage, expansion through the main engine heat exchanger, and propellant tank injection/pressurization. The helium pressurant tank was an existing 19 inch diameter composite-overwrap tank, and the targert conditions were 4500 psi and -250 F, providing a 2:1 density advantage compared to room tempatrue storage. The thruster design uses like-on-like doublets in the injector pattern largely based on Project Morpheus main engine hertiage data, and the combustion chamber was designed for an ablative chamber. The heat exchanger was installed at the ablative nozzle exit plane. Stand-alone engine testing was conducted at NASA Stennis Space Center, including copper heat-sink chambers and highly-instrumented spoolpieces in order to study engine performance, stability, and wall heat flux. A one-dimensional thermal model of the integrated system was completed. System integration into the Project Morpheus vehicle is complete, and systems demonstrations will follow.

  19. A compact and versatile dynamic flow cryostat for photon science.

    Science.gov (United States)

    van der Linden, Peter J E M; Moretti Sala, Marco; Henriquet, Christian; Rossi, Matteo; Ohgushi, Kenya; Fauth, François; Simonelli, Laura; Marini, Carlo; Fraga, Edmundo; Murray, Claire; Potter, Jonathan; Krisch, Michael

    2016-11-01

    We have developed a helium gas flow cryostat for use on synchrotron tender to hard X-ray beamlines. Very efficient sample cooling is achieved because the sample is placed directly in the cooling helium flow on a removable sample holder. The cryostat is compact and easy to operate; samples can be changed in less than 5 min at any temperature. The cryostat has a temperature range of 2.5-325 K with temperature stability better than 0.1 K. The very wide optical angle and the ability to operate in any orientation mean that the cryostat can easily be adapted for different X-ray techniques. It is already in use on different beamlines at the European Synchrotron Radiation Facility (ESRF), ALBA Synchrotron Light Facility (ALBA), and Diamond Light Source (DLS) for inelastic X-ray scattering, powder diffraction, and X-ray absorption spectroscopy. Results obtained at these beamlines are presented here.

  20. A compact and versatile dynamic flow cryostat for photon science

    Science.gov (United States)

    van der Linden, Peter J. E. M.; Moretti Sala, Marco; Henriquet, Christian; Rossi, Matteo; Ohgushi, Kenya; Fauth, François; Simonelli, Laura; Marini, Carlo; Fraga, Edmundo; Murray, Claire; Potter, Jonathan; Krisch, Michael

    2016-11-01

    We have developed a helium gas flow cryostat for use on synchrotron tender to hard X-ray beamlines. Very efficient sample cooling is achieved because the sample is placed directly in the cooling helium flow on a removable sample holder. The cryostat is compact and easy to operate; samples can be changed in less than 5 min at any temperature. The cryostat has a temperature range of 2.5-325 K with temperature stability better than 0.1 K. The very wide optical angle and the ability to operate in any orientation mean that the cryostat can easily be adapted for different X-ray techniques. It is already in use on different beamlines at the European Synchrotron Radiation Facility (ESRF), ALBA Synchrotron Light Facility (ALBA), and Diamond Light Source (DLS) for inelastic X-ray scattering, powder diffraction, and X-ray absorption spectroscopy. Results obtained at these beamlines are presented here.

  1. Performance Studies on Sub-cooling of Cryogenic Liquids Used for Rocket Propulsion Using Helium Bubbling

    Directory of Open Access Journals (Sweden)

    Ramesh T

    2014-03-01

    Full Text Available The sub-cooling of cryogenic propellants contained in tanks is an important and effective method for bringing down the lift-off mass of launch vehicle and thus the performance of the rocket engine is greatly improved. This paper presents the technical and experimental studies conducted on cryogenic liquids such as Liquid Oxygen, Liquid Nitrogen, and Liquid Hydrogen using helium bubbling method. The influence of cooled Helium on the degree of sub-cooling and the variation in flow rate of Helium gas admitted are discussed. The experimental and theoretical studies indicate that the sub-cooling technique using helium injection is a very simple method and can be very well adopted in propellant tanks used for ground and launch vehicle applications.

  2. Cool Down Analysis of a Cryocooler Based Quadrupole Magnet Cryostat

    Science.gov (United States)

    Choudhury, A.; Kar, S.; Chacko, J.; Kumar, M.; Babu, S.; Sahu, S.; Kumar, R.; Antony, J.; Datta, T. S.

    A superconducting quadrupole doublet magnet with cold superferric iron cover for the Hybrid Recoil Mass Analyzer (HYRA) beam line has been commissioned. The total cold mass of the helium vessel with iron yoke and pole is 2 ton. A set of two Sumitomo cryocoolers take care of various heat loads to the cryostat. The first successful cool down of the cryostat has been completed recently, magnets have been powered and magnetic field profiling has been done inside theroom temperature beam tube. This paper will highlight the cryostat details along with the cool down and operational test results obtained from the first cool down.

  3. Development of a Mass Flowmeter based on the Coriolis Acceleration for Liquid, Supercritical and Superfluid Helium

    CERN Document Server

    De Jonge, T; Rivetti, A; Serio, L

    2002-01-01

    Beginning in the 1980's, Coriolis meters have gained generalised acceptance in liquid applications with a worldwide installed base of over 300,000 units. To meet the demands of cryogenic applications below 20 K, off-the-shelf Coriolis meters have been used, with minor design modifications and operational changes. The meters were originally calibrated on water and tested on liquid helium at 4.5 K, supercritical helium around 5 K and superfluid helium below 2 K. The meters maintain their intrinsic robustness and accuracy of better than 1% of measured value; accuracy is independent of density and temperature.

  4. Cryogenic system for X-ray Compton scattering measurements of superfluid helium below 2 K

    Science.gov (United States)

    Tanaka, Hiroyuki; Yamaguchi, Akira; Koizumi, Akihisa; Kawasaki, Ikuto; Sumiyama, Akihiko; Itou, Masayoshi; Sakurai, Yoshiharu

    2017-07-01

    A cryostat was constructed for high-resolution X-ray Compton scattering measurements at temperature down to 1.7 K, in order to investigate superfluid helium-4. Compton profiles of helium were measured using synchrotron X-rays for gas and liquid phases, respectively. In the measurement of the liquid phase, we succeeded in measuring the Compton profile of the superfluid helium at 1.7 K. Comparison of the results with theoretical calculation reveals importance of many-body effects beyond the mean-field treatment of electron systems.

  5. Low Friction Cryostat for HTS Power Cable of Dutch Project

    DEFF Research Database (Denmark)

    Chevtchenko, Oleg; Zuijderduin, Roy; Smit, Johan;

    2012-01-01

    Particulars of 6km long HTS AC power cable for Amsterdam project are: a cable has to fit in an annulus of 160mm, with only two cooling stations at the cable ends [1]. Application of existing solutions for HTS cables would result in excessively high coolant pressure drop in the cable, possibly...... affecting public acceptance of the project. In order to solve this problem, a model cryostat was developed consisting of alternating rigid and flexible sections and hydraulic tests were conducted using sub-cooled liquid nitrogen. In the 47 m-long cryostat, containing a full-size HTS cable model, measured....... A flexible dummy HTS cable was inserted into this cryostat and sub-cooled liquid nitrogen was circulated in the annulus between the dummy cable surface and the inner cryostat surface. In the paper details are presented of the cryostat, of the measurement setup, of the experiment and of the results....

  6. Simple operated multipurpose temperature control cryostat

    Institute of Scientific and Technical Information of China (English)

    ABBAS T.A.; OMAR M.S.

    2007-01-01

    A suitable simple optical cryostat for optical, magneto-optical, electrical and thermo-electrical measurements was designed. It is suitable for use in a magnetic pool gap as narrow as less than 1 cm. Throughout a long period of time, the heat diffusion process of the cryostat can be easily operated at slow increase in sample temperature in a range 1.25 K/min at 200 K that will be reduced gradually to 0.66 K at room temperature. Liquid nitrogen was used to cool down the temperature. During the operation, the change in the measured energy gap of a semiconductor sample and other physical parameters resulting from the change of temperature can be corrected through the temperature coefficient of that parameter at the corresponding temperature.The cryostat was successfully used for all experiments mentioned above to measure the properties of a single crystal of GaP (Gallium Phosphate) semiconductor.

  7. Superconducting Quadrupole for the ISR high luminosity insertion assembly in its cryostat

    CERN Multimedia

    1979-01-01

    The picture shows the insertion of the quadrupole magnet active part with its thermal shield into the cryostat. Above the cylindrical part of the cryostat one sees the funnel containing the current leads and the helium feed and exhaust lines. Standing onthe left side is Pierre Pugin. See also 7704022, 7906592X, 7812211,7904252,7702690X.

  8. Are there Helium-like Protonic States of Individual Water Molecules in Liquid H2O?

    CERN Document Server

    Mueller-Herold, Ulrich

    2015-01-01

    Are there indications that individual H2O molecules in liquid water can loose their bent structure, i.e. that the protons give up their rigid angular correlation and behave largely uncorrelated, similar to electrons in the ground-state of helium? In agreement with the two-state picture of liquid water this would allow for the thermal coexistence of tetraedrically coordinated and spherical water molecules in the liquid. In the Hooke-Calogero model of a confined triatomic of XY2-type it is shown that energetically low-lying zero orbital-momentum states, which are bent if unconfined can change to helium-like shape under increasing confinement strength f. For the respective states this occurs at different values for f. It turns out that at f = 2.79 a bent and a helium-like state can thermally coexist. In order to characterize more precisely 'helium-like' angular correlation a maximum entropy estimate for the marginal correlation of electrons in the helium ground state is given. KEY WORDS: Liquid water, molecular ...

  9. A three-cell liquid hydrogen target for an extended focal plane polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Golovanov, L.B.; Borzounov, Yu.T.; Piskunov, N.M.; Tsvinev, A.P. [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Lab. of High Energy; Ball, J.; Chesny, Ph.; Gheller, J.M.; Guillier, G.; Ladygin, V.P.; Theure, Ph.; Tomasi-Gustafsson, E. [Laboratoire National Saturne, Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1996-12-31

    This article describes the design and working principle of a 3-cell liquid hydrogen target produced for the high-energy deuteron polarimeter HYPOM. This target uses liquid Helium as a cooling agent. After a general description of the apparatus, tests and operating modes are thoroughly explained. In particular the air controlled self regulation of Helium flow in the cryostat to stabilize the liquid hydrogen level is presented. (author). 12 refs.; Submitted to Nuclear Instruments and Methods, A (NL).

  10. Solutions for Liquid Nitrogen Pre-Cooling in Helium Refrigeration Cycles

    CERN Document Server

    Wagner, U

    2000-01-01

    Pre-cooling of helium by means of liquid nitrogen is the oldest and one of the most common process features used in helium liquefiers and refrigerators. Its two principle tasks are to allow or increase the rate of pure liquefaction, and to permit the initial cool-down of large masses to about 80 K. Several arrangements for the pre-cooling process are possible depending on the desired application. Each arrangement has its proper advantages and drawbacks. The aim of this paper is to review the possible process solutions for liquid nitrogen pre-cooling and their particularities.

  11. Liquid Metallic Hydrogen II. A Critical Assessment of Current and Primordial Helium Levels in the Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-04-01

    Full Text Available Before a solar model becomes viable in astrophysics, one mus t consider how the ele- mental constitution of the Sun was ascertained, especially relative to its principle com- ponents: hydrogen and helium. Liquid metallic hydrogen has been proposed as a solar structural material for models based on condensed matter (e .g. Robitaille P.-M. Liq- uid Metallic Hydrogen: A Building Block for the Liquid Sun. Progr. Phys. , 2011, v. 3, 60–74. There can be little doubt that hydrogen plays a d ominant role in the uni- verse and in the stars; the massive abundance of hydrogen in t he Sun was established long ago. Today, it can be demonstrated that the near isointe nse nature of the Sun’s Balmer lines provides strong confirmatory evidence for a dis tinct solar surface. The situation relative to helium remains less conclusive. Stil l, helium occupies a prominent role in astronomy, both as an element associated with cosmol ogy and as a byproduct of nuclear energy generation, though its abundances within the Sun cannot be reliably estimated using theoretical approaches. With respect to th e determination of helium lev- els, the element remains spectroscopically silent at the le vel of the photosphere. While helium can be monitored with ease in the chromosphere and the prominences of the corona using spectroscopic methods, these measures are hig hly variable and responsive to elevated solar activity and nuclear fragmentation. Dire ct assays of the solar winds are currently viewed as incapable of providing definitive in formation regarding solar helium abundances. As a result, insight relative to helium r emains strictly based on the- oretical estimates which couple helioseismological appro aches to metrics derived from solar models. Despite their “state of the art” nature, heliu m estimates based on solar models and helioseismology are suspect on several fronts, i ncluding their reliance on solar opacities. The best knowledge can only come from the so

  12. Dynamics of liquid helium boil-off experiments with a step change in pressure

    Science.gov (United States)

    Cha, Y. S.; Niemann, R. C.; Hull, J. R.

    The results of dynamic analysis of the effect of pressure variations during helium boil-off experiments are presented. A general solution of the diffusion equation with a time-dependent boundary condition is employed to describe the dynamic response of the liquid helium system under variable pressure conditions, and a solution is obtained for the special case when the system is subjected to a step change in pressure. The calculated temperature response of the liquid indicates that most of the experiments were not likely to have reached equilibrium as a result of the low thermal diffusivity of liquid helium. The initial rate of evaporation or condensation is large, and the rate decreases sharply with time. A method is proposed to account for the transient effect that is observed during calculation of the heat loss rate from a helium boil-off experiment. By assuming that there is no mixing at all, the present analysis provides an estimate of the upper (condensation) or lower (evaporation) bound of the heat loss rate as a result of a pressure increase or decrease in the system. A previously reported equilibrium analysis is expected to apply to situations where complete mixing occurred in the bulk liquid and provides the opposite limits.

  13. A liquid-helium cooled large-area silicon PIN photodiode x-ray detector

    CERN Document Server

    Inoue, Y; Hara, H; Minowa, M; Shimokoshi, F; Inoue, Yoshizumi; Moriyama, Shigetaka; Hara, Hideyuki; Minowa, Makoto; Shimokoshi, Fumio

    1995-01-01

    An x-ray detector using a liquid-helium cooled large-area silicon PIN photodiode has been developed along with a tailor-made charge sensitive preamplifier whose first-stage JFET has been cooled. The operating temperature of the JFET has been varied separately and optimized. The x- and \\gamma-ray energy spectra for an \

  14. A vibration free closed-cycle 1 K cryostat with a 4 K pulse tube cryocooler

    Science.gov (United States)

    Wang, Chao; Lichtenwalter, Ben

    2014-01-01

    A 1 K closed-cycle cryostat, pre-cooled by a 4 K pulse tube cryocooler, has been developed. The Cryomech PT410 pulse tube cryocooler liquefies helium in a vacuum insulated sleeve at a pressure of ˜1 atm. Liquid helium flows through a JT valve and into a 1 K pot that is evacuated by a vacuum pump. The discharged gas from the vacuum is routed to the top of the sleeve to be liquefied. This design accomplishes closed-cycle 1 K refrigeration and provides continuous cooling below 2 K. Using two XDS10 vacuum pumps and with the JT valve optimized for maximum cooling capacity, the 1 K cooling station can reach a no-load temperature of 1.51 K and provide a capacity of 225 mW at 1.76 K. The temperature oscillations on the 4 K and 1 K cooling stations are ± 3 mK. The cryostat is designed so that there is no direct mechanical contact between the pulse tube cryocooler heat exchangers and the 1 K cooling station. This design feature enables exceptionally low vibration operation at the 1 K cooling station.

  15. A Cryogen Recycler with Pulse Tube Cryocooler for Recondensing Helium and Nitrogen

    Science.gov (United States)

    Wang, C.; Lichtenwalter, B.

    2015-12-01

    We have developed a cryogen recycler using a 4 K pulse tube cryocooler for recondensing helium and nitrogen in a NMR magnet. The liquid helium cooled NMR magnet has a liquid nitrogen cooled radiation shield. The magnet boils off 0.84 L/day of liquid helium and 6 L/day of liquid nitrogen. The recycler is designed with both a liquid helium return tube and a liquid nitrogen return tube, which are inserted into the fill ports of liquid helium and nitrogen. Therefore the recycler forms closed loops for helium and nitrogen. A two-stage 4 K pulse tube cryocooler, Cryomech model PT407 (0.7W at 4.2 K), is selected for the recycler. The recycler was first tested with a Cryomech's test cryostat and resulted in the capacities of recondensing 8.2 L/day of nitrogen and liquefying 4 L/day of helium from room temperature gas. The recycler has been installed in the NMR magnet at University of Sydney since August, 2014 and continuously maintains a zero boil off for helium and nitrogen.

  16. Plasma Modes of the Three-Chain Electron System Over Liquid Helium

    Science.gov (United States)

    Sokolov, S. S.; Syvokon, V. E.

    2016-12-01

    We simulate the surface electron system over liquid helium subjected to a confinement potential in the electron layer plane. In the solid phase, the two-dimensional system is observed to transform first into a multi-chain system and, finally, into a three chain, a zigzag structure and a single chain. Both longitudinal and transversal plasma oscillations of the three-chain electron system are determined. One of the longitudinal oscillation modes is acoustic, whereas the other two are optical. On turn, all transversal oscillations branches are optical. The theoretical results obtained can be used to identify experimentally the configurations of the low-dimensional electron system over helium under confinement potential.

  17. Thermal-hydraulic optimization of flexible transfer lines for liquid helium; Thermohydraulische Optimierung flexibler Transferleitungen fuer Fluessighelium

    Energy Technology Data Exchange (ETDEWEB)

    Dittmar, Nico; Haberstroh, Christoph; Hesse, U. [Technische Univ. Dresden (Germany). Bitzer-Stiftungsprofessur fuer Kaelte-, Kryo- und Kompressorentechnik; Wolfram, M.; Krzyzowski, M.; Raccanelli, A. [CryoVac Gesellschaft fuer Tieftemperaturtechnik mbH und Co. KG, Troisdorf (Germany)

    2014-07-01

    Cooling systems and applications at very low temperatures are based on the use of liquid helium as cryogenic agent; the normal boiling temperature of helium-4 is 4.2 K. Due to the restricted economic production possibilities and the high energetic expenditure for helium liquefaction an efficient and sustainable handling with the resources is recommended. In university facilities the liquid helium is usually stored in containers and filled into smaller containers for transport using cryogenic transfer lines. This procedure can cause 20% loss by evaporation due to heat input and friction pressure losses. The gaseous helium has to be collected for re-liquefaction. The contribution shows that using systematic measurements an increase of the transfer rate and the efficiency of the helium filling system can be reached by a modified transfer line design.

  18. Low gravity thermal stratification of liquid helium on SHOOT. [Superfluid Helium On-Orbit Transfer

    Science.gov (United States)

    Shirron, P. J.; Dipirro, M. J.

    1992-01-01

    Estimates of the extent and impact of thermal stratification are presented as well as predictions of the behavior of the HeI/HeII boundary. Although thermal stratification of cryogens can be problematic and lead to their inefficient use in low gravity, for SHOOT the occurrence is beneficial both during ground hold and in orbit and presents no hazards. On the ground the parasitic heat load is both reduced and more efficiently removed. In orbit the pumpdown proceeds at a much more rapid rate, allowing orbital operations to begin earlier. The thermal conductivity of the aluminum tank and the normal liquid plus cooling at the liquid/vapor interface as the vapor bubble grows are sufficient to prevent undesirably high vapor pressures in the tank.

  19. Liquid-drop-like model for cylindrical helium systems

    Science.gov (United States)

    Szybisz, Leszek

    2000-08-01

    Free liquid 4He at T=0 K with cylindrical symmetry is studied. The ground-state energy and chemical potential are computed by using a density functional approach. A liquid-drop-like model is formulated for analyzing the behavior of these observables as a function of the size of the systems. It is shown that such a model allows to get precise information about the asymptotic values of the energy per particle and surface tension.

  20. Design and development of a helium injection system to improve external leakage detection during liquid nitrogen immersion tests

    Science.gov (United States)

    Townsend, Andrew; Mishra, Rakesh

    2016-10-01

    The testing of assemblies for use in cryogenic systems commonly includes evaluation at or near operating (therefore cryogenic) temperature. Typical assemblies include valves and pumps for use in liquid oxygen-liquid hydrogen rocket engines. One frequently specified method of cryogenic external leakage testing requires the assembly, pressurized with gaseous helium (GHe), be immersed in a bath of liquid nitrogen (LN2) and allowed to thermally stabilize. Component interfaces are then visually inspected for leakage (bubbles). Unfortunately the liquid nitrogen will be boiling under normal, bench-top, test conditions. This boiling tends to mask even significant leakage. One little known and perhaps under-utilized property of helium is the seemingly counter-intuitive thermodynamic property that when ambient temperature helium is bubbled through boiling LN2 at a temperature of -195.8 °C, the temperature of the liquid nitrogen will reduce. This paper reports on the design and testing of a novel proof-of-concept helium injection control system confirming that it is possible to reduce the temperature of an LN2 bath below boiling point through the controlled injection of ambient temperature gaseous helium and then to efficiently maintain a reduced helium flow rate to maintain a stabilized liquid temperature, enabling clear visual observation of components immersed within the LN2. Helium saturation testing is performed and injection system sizing is discussed.

  1. A closed-cycle 1 K refrigeration cryostat

    Science.gov (United States)

    Wang, Chao; Lichtenwalter, Ben; Friebel, Aaron; Tang, Hong X.

    2014-11-01

    A 1 K closed-cycle cryostat has been developed to provide continuous cooling to a photon detector below 2 K. A two-stage 4 K pulse tube cryocooler is used to liquefy evacuated vapor from a 1 K pumping port to form a closed-cycle refrigeration loop. A 1 K instrumentation chamber, attached to the 1 K cooling station, is designed to operate with helium inside and provide more uniform cooling. The design of the cryostat has no direct mechanical contact between the pulse tube cryocooler heat exchangers and the 1 K cooling station resulting in almost no vibration transfer to instrumentation chamber. The cryostat can reach a no-load temperature of 1.62 K and provide 250 mW cooling power at 1.84 K.

  2. Liquid Helium and Liquid Neon - Sensitive, Low Background Scintillation Media For the Detection of Low Energy Neutrinos

    CERN Document Server

    McKinsey, D N

    1999-01-01

    The use of liquid helium and neon as scintillators for neutrino detection is investigated. Several unique properties of these cryogens make them promising candidates for real-time solar neutrino spectroscopy: large ultraviolet scintillation yields from ionizing radiation, transparency to their own scintillation light, and low levels of radioactive impurities. When neutrinos scatter from electrons in liquid helium or neon, ultraviolet light is emitted. The ultraviolet scintillation light can be efficiently converted to the visible with wavelength shifting films. In this way the neutrino-electron scattering events can be detected by photomultiplier tubes at room temperature. We conclude that the solar neutrino flux from the $\\rm p+p\\to e^{+}+d+\

  3. Spectral line shifts of alkali atoms in liquid helium: a relativistic density functional approach

    Energy Technology Data Exchange (ETDEWEB)

    Anton, J [Universitaet Kassel, Institut fuer Physik, 34109 Kassel (Germany); Mukherjee, P K [Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032 (India); Fricke, B [Universitaet Kassel, Institut fuer Physik, 34109 Kassel (Germany); Fritzsche, S [Universitaet Kassel, Institut fuer Physik, 34109 Kassel (Germany)

    2007-06-28

    Excitation line shifts of the principal resonance transitions in alkali atoms sodium and cesium embedded inside the liquid helium environment have been calculated using four-component relativistic density functional theory. The effect of the liquid helium environment is assumed to be represented by a cluster of 14 atoms surrounding the central alkali atom. The estimated blue shift of the principal resonance line {sup 2}S {yields}{sup 2}P is 22.8 nm for Na and 16.7 nm for Cs. The result for Cs is in good agreement with the experimental shift of 18.2 nm. In the absence of the experimental data for Na, our result is compared with those of other theoretical estimates.

  4. Stick-Slip Motion of the Wigner Solid on Liquid Helium

    Science.gov (United States)

    Rees, David G.; Beysengulov, Niyaz R.; Lin, Juhn-Jong; Kono, Kimitoshi

    2016-05-01

    We present time-resolved transport measurements of a Wigner solid (WS) on the surface of liquid helium confined in a micron-scale channel. At rest, the WS is "dressed" by a cloud of quantized capillary waves (ripplons). Under a driving force, we find that repeated WS-ripplon decoupling leads to stick-slip current oscillations, the frequency of which can be tuned by adjusting the temperature, pressing electric field, or electron density. The WS on liquid He is a promising system for the study of polaronlike decoupling dynamics.

  5. Cryostat for Testing HIE-Isolde Superconducting RF Cavities

    CERN Document Server

    Capatina, O; Cuccuru, G; Pasini, M; Renaglia, T; Therasse, M; Vullierme, B

    2011-01-01

    The High Intensity and Energy ISOLDE (HIE-ISOLDE) project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities at CERN [1], with the objective of increasing the energy and intensity of the delivered radioactive ion beams (RIB). This project aims to fill the request for a more energetic post-accelerated beam by means of a new superconducting (SC) linac based on Quarter Wave Resonators (QWR). A research and development (R&D) programme looking at all the different aspects of the SC linac started in 2008 and continued throughout 2010. The R&D effort has particularly focused on the development of the high β cavities (β = 10.3%) for which the Nb sputtered on Cu substrate technology has been adopted. Two prototype cavities were manufactured and are undergoing RF cold tests. The pre-series cavity manufacturing is under way using 3D forged Cu billets. A single vacuum cryostat was designed and built to test these cavities at liquid helium temperatures. This paper details the main design concep...

  6. Radiation and gas conduction heat transport across a helium dewer multilayer insulation system

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulated a 4K liquid helium cryostat. The method described permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included.

  7. Optical absorption properties of electron bubbles and experiments on monitoring individual electron bubbles in liquid helium

    Science.gov (United States)

    Guo, Wei

    When a free electron is injected into liquid helium, it forms a microscopic bubble essentially free of helium atoms, which is referred to as an electron bubble. It represents a fine example of a quantum-mechanical particle confined in a potential well. In this dissertation, we describe our studies on bubble properties, especially the optical absorption properties of ground state electron bubbles and experiments on imaging individual electron bubbles in liquid helium. We studied the effect of zero-point and thermal fluctuations on the shape of ground state electron bubbles in liquid helium. The results are used to determine the line shape for the 1S to 1P optical transition. The calculated line shape is in very good agreement with the experimental measurements of Grimes and Adams. For 1S to 2P transition, the obtained transition line width agrees well with the measured data of Zipfel over a range of pressure up to 15 bars. Fluctuations in the bubble shape also make other "unallowed" transitions possible. The transition cross-sections from the 1S state to the 1D and 2D states are calculated with magnitude approximately two orders smaller than that of the 1S to 1P and 2P transitions. In our electron bubble imaging experiments, a planar ultrasonic transducer was used to generate strong sound wave pulse in liquid helium. The sound pulse passed through the liquid so as to produce a transient negative pressure over a large volume (˜ 1 cm3). An electron bubble that was passed by the sound pulse exploded for a fraction of a microsecond and grew to have a radius of around 10 microns. While the bubble had this large size it was illuminated with a flash lamp and its position was recorded. In this way, we can determine its position. Through the application of a series of sound pulses, we can then take images along the track of individual electrons. The motion of individual electron bubbles has been successfully monitored. Interesting bubble tracks that may relate to electrons

  8. First scientific application of the membrane cryostat technology

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, David; Adamowski, Mark; Baller, Bruce R.; Barger, Robert K.; Chi, Edward C.; Davis, Ronald P.; Johnson, Bryan D.; Kubinski, Bob M.; Najdzion, John J.; Rucinski, Russel A.; Schmitt, Rich L.; Tope, Terry E. [Particle Physics Division, Fermilab, P.O. Box 500, Batavia, IL 60510 (United States); Mahoney, Ryan; Norris, Barry L.; Watkins, Daniel J. [Technical Division, Fermilab, P.O. Box 500, Batavia, IL 60510 (United States); McCluskey, Elaine G. [LBNE Project, Fermilab, P.O. Box 500, Batavia, IL 60510 (United States); Stewart, James [Physics Department, Brookhaven National Laboratory, P.O. Box 5000, Uptown, NY 11973 (United States)

    2014-01-29

    We report on the design, fabrication, performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with IHI Corporation (IHI). Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon, and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the purity requirements in a membrane cryostat without evacuation and using only a controlled gaseous argon purge; to demonstrate that we can achieve and maintain the purity requirements of the liquid argon during filling, purification, and maintenance mode using mole sieve and copper filters from the Liquid Argon Purity Demonstrator (LAPD) R and D project. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion oxygen equivalent. This paper gives the requirements, design, construction, and performance of the LBNE membrane cryostat prototype, with experience and results important to the development of the LBNE detector.

  9. 2001, the ATLAS Cryostat Odyssey

    CERN Multimedia

    2001-01-01

    After a journey of several thousand kilometres, over sea and land, by canal and highway, the cryogenics barrel of the ATLAS electromagnetic calorimeter finally arrived at CERN last week. Installed in Hall 180, the cryogenics barrel of the ATLAS electromagnetic calorimeter will be fitted out to take the central superconducting solenoid and the electromagnetic calorimeter. On Monday 2 July, different French police units and EDF officials were once again keeping careful watch around the hairpin bends of the road twisting down from the Col de la Faucille: a special load weighing 100 tonnes, 7 metres high, 5.8 metres wide and 7.2 metres long was being brought down into the Pays de Gex to the Meyrin site of CERN. This time the destination was the ATLAS experiment. A huge blue tarpaulin cover concealed the cryogenics barrel of the experiment's liquid argon electromagnetic calorimeter. The cryostat consists of a vacuum chamber, a cylinder that is 5.5 metres in diameter, 7 metres long, and a concentric cold chamber ...

  10. Design of the LHC US ATLAS Barrel Cryostat

    CERN Document Server

    Rehak, M L; Farah, Y; Grandinetti, R; Müller, T; Norton, S; Sondericker, J

    2002-01-01

    One of the experiments of CERN's Large Hadron Collider (LHC) is the ATLAS Liquid Argon detector. The Liquid Argon Barrel Cryostat is part of the United States contribution to the LHC project and its design is presented here. The device is made up of four concentric cylinders: the smallest and largest of which form a vacuum vessel enclosing a cold vessel cryostat filled with liquid argon. The Cryostat serves as the housing for an electromagnetic barrel calorimeter, supports and provides space in vacuum for a solenoid magnet while the toroidal opening furnishes room for a tracker detector. Design requirements are determined by its use in a collider experiment: the construction has to be compact, the material between the interaction region and the calorimeter has to be minimal and made of aluminum to reduce the amount of absorbing material. The design complies with code regulations while being optimized for its use in a physics environment. (2 refs).

  11. Static Heat Loads in the LHC Arc Cryostats: Final Assessment

    CERN Document Server

    Parma, V

    2010-01-01

    This note presents the final assessment of the static heat loads in the LHC arc cryostats, using different experimental methods during the first commissioning period in 2007. This assessment further develops and completes previous estimates made during the commissioning of sector 7_8 [1]. The estimate of the helium inventory, a prerequisite for the heat load calculation, is also presented. Heat loads to the cold mass are evaluated from the internal energy balance during natural as well as powered warm-ups of the helium baths in different subsector. The helium inventory is calculated from the internal energy balance during powered warm-ups and matched with previous assessments. Furthermore, heat loads to the thermal shield are estimated from the non-isothermal cooling of the supercritical helium in line E. The comparison of measured heat loads with previous estimates and with budgeted values is then presented, while their correlation with some important parameters like insulation vacuum pressure and some heat ...

  12. Cryocooled Facilities for Superconducting Coils Testing in Gaseous Helium

    Science.gov (United States)

    Naumov, A. V.; Keilin, V. E.; Kovalev, I. A.; Surin, M. I.; Shcherbakov, V. I.; Shevchenko, S. A.; Ilin, A. A.

    Two superconducting coil test facilities equipped by Sumitomo SRDK-415D cryocoolers were developed, manufactured and tested. The motivation for their constructing was to make cheaper the testing (and especially training of LTS magnets) by liquid helium (LHe) saving. It is well known that the helium price increases rapidly and this tendency most probably will continue for a long time, as the demand of helium grows faster than its production. The utilization of heat-exchange gas considerably reduces many problems, that arise in the design of completely dry LTS magnets. The goal was to decrease or even completely avoid the consumption of rather expensive liquid helium for testing the laboratory size Nb-Ti and Nb3Sn coils including their training process. Several superconducting magnets were tested by using these facilities. For example, the first facility was successfully used for testing of 13 T, 60 kg coil cooled by cryocooler in helium gas (several torr pressure) heat exchange atmosphere. The precooling time was about 45 hours. The quench current (240 A at 4.2 K) was equal to that reached in the pool boiling LHe cryostat. The second facility with 420 mm wide access bore can be used for testing of corresponding size superconducting coils with very modest consumption of liquid helium with its level well below the lower flange of the coil. Each test facility is equipped by 2 pairs of HTS current leads. Design and operational experience of one of them is described.

  13. The viscosity and the thermal conductivity of normal liquid Helium 3 in the LOCV frame-work

    Science.gov (United States)

    Modarres, M.; Rahmat, M.

    2017-01-01

    The lowest order constrained variational (LOCV) method is used to evaluate the transport properties of normal liquid Helium-3 (3 He) within the Landau-Abrikosov-Khalatnikov (LAK) formalism. The LOCV effective two-body interaction of the liquid Helium 3 is used to calculate the differential cross-section and the scattering probability, which is needed to solve the LAK equations. It is shown that, the choice of effective mass has crucial role on the resulting viscosity and thermal conductivity of normal liquid 3 He. Our LOCV-LAK calculations are compared with the other theoretical and experimental results.

  14. Cryostat system for investigation on new neutron moderator materials at reactor TRIGA PUSPATI

    Energy Technology Data Exchange (ETDEWEB)

    Dris, Zakaria bin, E-mail: zakariadris@gmail.com [College of Graduate Studies, Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Centre for Nuclear Energy, Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Mohamed, Abdul Aziz bin; Hamid, Nasri A. [Centre for Nuclear Energy, Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Azman, Azraf; Ahmad, Megat Harun Al Rashid Megat; Jamro, Rafhayudi; Yazid, Hafizal [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    A simple continuous flow (SCF) cryostat was designed to investigate the neutron moderation of alumina in high temperature co-ceramic (HTCC) and polymeric materials such as Teflon under TRIGA neutron environment using a reflected neutron beam from a monochromator. Cooling of the cryostat will be carried out using liquid nitrogen. The cryostat will be built with an aluminum holder for moderator within stainless steel cylinder pipe. A copper thermocouple will be used as the temperature sensor to monitor the moderator temperature inside the cryostat holder. Initial measurements of neutron spectrum after neutron passing through the moderating materials have been carried out using a neutron spectrometer.

  15. Quartz Tuning Fork Pressure Gauge for High-Pressure Liquid Helium

    Science.gov (United States)

    Botimer, J.; Velasco, A.; Taborek, P.

    2017-01-01

    We have measured the quality factor Q and the frequency f of a 32-kHz quartz tuning fork immersed in liquid ^4He between 0.9 and 3.0 K, over pressures ranging from the saturated vapor pressure to ≈ 25 atm. At constant pressure, as a function of temperature, the quality factor and frequency have strong features related to the temperature dependence of the superfluid fraction. At constant temperature, Q depends on the superfluid fraction, while the frequency is a smooth function of pressure. The behavior is explained using a simple hydrodynamic model. The liquid helium viscosity is obtained from measured values of Q, and together with tabulated values of the helium density as a function of pressure and temperature, the frequency shift can be parameterized as a function of temperature and pressure. The observed sensitivity is ≈ 7.8 Hz/atm. The quartz tuning fork provides a compact low power method of measuring the pressure in the bulk liquid.

  16. Liquid helium centrifugal pump characteristics from 80 g/s to 1200 g/s

    CERN Document Server

    Pengo, R; Junker, S

    2010-01-01

    The large amount of data collected from three different centrifugal liquid helium pumps tested, namely with 80, 600 and 1200 g/s nominal mass flow are reviewed. The data include the analysis of the characteristic curves, their total efficiencies, their Net Positive Suction Head (NPSH) and the slip factor. The 1200 g/s pumps tested are of the full emission type, with curved blades, whilst the other pumps have straight blades. The pumps were also tested at different rotary speeds. The pumps were manufactured by Barber \\& Nichols (Denver, USA). (C) 2009 Elsevier Ltd. All rights reserved.

  17. Performance Study on ST/JT Hybrid Cryocoolers Working at Liquid Helium Temperature

    Science.gov (United States)

    Dongli, Liu; Xuan, Tao; Xiao, Sun; Zhihua, Gan

    The ST/JT hybridcryocooler consists of a Stirling-typecryocooler and a J-T loop. The common process of steady-state operation is given. Pressure-Enthalpy map analysis and thermodynamic calculation showhow the precooling temperature, high pressure and recuperator effectiveness affect thecooling powerat liquid helium temperature. Applying the current performance level of the Stirling cooler,the overall COP of the hybrid cryocooleris roughly optimized. This performance study shows that the hybrid cryocooler can develop its performance potential with improved J-T compressors with larger pressure ratio and aprecooler working at lower temperature.

  18. Development of a Cryogenic Capability for Shock Compression of Liquid Helium on the Z machine

    Science.gov (United States)

    Lopez, Andrew; Root, Seth; Shelton, Keegan; Villalva, Jose; Hanson, David

    2015-06-01

    A cryogenic system has been developed to generate liquid helium (LHe) samples at 2.1 K for high precision equation-of-state (EOS) and isentropic compression measurements using the Z machine. Accurate data on He properties at Mbar pressures are critical to understanding gas giant planetary interiors and for validating first principles density functional simulations; however, limited high pressure He EOS data exist due to difficulty in condensing LHe samples (Administration under Contract No. DE-AC04-94AL85000.

  19. Using second-sound shock waves to probe the intrinsic critical velocity of liquid helium II

    Science.gov (United States)

    Turner, T. N.

    1983-01-01

    A critical velocity truly intrinsic to liquid helium II is experimentally sought in the bulk fluid far from the apparatus walls. Termed the 'fundamental critical velocity,' it necessarily is caused by mutual interactions which operate between the two fluid components and which are activated at large relative velocities. It is argued that flow induced by second-sound shock waves provides the ideal means by which to activate and isolate the fundamental critical velocity from other extraneous fluid-wall interactions. Experimentally it is found that large-amplitude second-sound shock waves initiate a breakdown in the superfluidity of helium II, which is dramatically manifested as a limit to the maximum attainable shock strength. This breakdown is shown to be caused by a fundamental critical velocity. Secondary effects include boiling for ambient pressures near the saturated vapor pressure or the formation of helium I boundary layers at higher ambient pressures. When compared to the intrinsic critical velocity discovered in highly restricted geometries, the shock-induced critical velocity displays a similar temperature dependence and is the same order of magnitude.

  20. Use of TVO sensors for level monitoring in mixed liquid helium container; Einsatz von TVO-Sensoren zur Fuellstandsueberwachung im durchmischten Fluessigheliumbehaelter

    Energy Technology Data Exchange (ETDEWEB)

    Richter, T.; Hollik, M.; Lietzow, R. [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Technische Physik

    2015-07-01

    For the acceptance test of 26 current leads for the fusion test reactor JT-60SA in Japan the Karlsruhe Institute of Technology (KIT) constructed a current lead test system CuLTKa (Current Lead Test Facility Karlsruhe). The facility consists of a total of five cryostat and is connected with a refrigeration system. One of cryostats is used for the temperature control of a cooling flow for the experiment and contains therefore a 400 liter liquid helium container. In this there is a coiled tube located through which the helium flow (4 bar and 5.5 K) for cooling the cold contacts is cooled to bath temperature (4.5 K). During normal operation a continuous liquefaction takes place in this tank. The level is measured by a superconducting level probe and controlled by a heater via a corresponding heating load. These processes result in a permanent mixing and thus homogeneous temperature distribution throughout the container. To hedge disruption of the level probe or the heater a lower (tank empty) and an upper (tank full) cut-off point were provided. For this TVO sensors are used which act as limit switches for automatic operation of the helium cooler. This paper presents the detailed construction and the encountered obstacles in using this approach in the plant CuLTKa. It highlights the reasons and explains the followed modifications, whereby a use of TVO sensors for the said purpose has been made possible in CuLTKa. Here are holistically both the mechanical also metrological aspects described. [German] Fuer die Abnahmetests von 26 Stromzufuehrungen fuer den Fusionstestreaktor JT-60SA in Japan wurde im Karlsruher Institut fuer Technologie (KIT) eine Stromzufuehrungstestanlage CuLTKa (Current Lead Test Facility Karlsruhe) aufgebaut. Die Anlage besteht aus insgesamt fuenf Kryostaten und ist mit einer Kaelteanlage verbunden. Einer der Kryostate dient zur Temperierung eines Kuehlstromes fuer das Experiment und enthaelt dafuer einen 400 l Fluessigheliumbehaelter. In diesem

  1. Safety Analysis Results for Cryostat Ingress Accidents in ITER

    Science.gov (United States)

    Merrill, B. J.; Cadwallader, L. C.; Petti, D. A.

    1997-06-01

    Accidents involving the ingress of air, helium, or water into the cryostat of the International Thermonuclear Experimental Reactor (ITER) tokamak design have been analyzed with a modified version of the MELCOR code for the ITER Non-site Specific Safety Report (NSSR-1). The air ingress accident is the result of a postulated breach of the cryostat boundary into an adjoining room. MELCOR results for this accident demonstrate that the condensed air mass and increased heat loads are not a magnet safety concern, but that the partial vacuum in the adjoining room must be accommodated in the building design. The water ingress accident is the result of a postulated magnet arc that results in melting of a Primary Heat Transport System (PHTS) coolant pipe, discharging PHTS water and PHTS water activated corrosion products and HTO into the cryostat. MELCOR results for this accident demonstrate that the condensed water mass and increased heat loads are not a magnet safety concern, that the cryostat pressure remains below design limits, and that the corrosion product and HTO releases are well within the ITER release limits.

  2. Development of liquid helium-3 target for experimental studies of antikaon-nucleon interaction at J-PARC

    CERN Document Server

    Iio, M; Sato, M; Enomoto, S; Hashimoto, T; Suzuki, S; Iwasaki, M; Hayano, R S

    2012-01-01

    A liquid helium-3 target system was developed for experimental studies of kaonic atoms and kaonic nuclei at J-PARC. helium-3 gas is liquefied in a heat exchanger cooled below 3.2 K by decompression of liquid helium-4. To maintain a large acceptance of the cylindrical detector system for decay particles of kaonic nuclei, efficient heat transport between the separate target cell and the main unit is realized using circulation of liquid helium-3. To minimize the amount of material, a vacuum vessel containing a carbon fiber reinforced plastic cylinder having an inside diameter of 150 mm and a thickness of 1 mm was produced. A target cell made of pure beryllium and beryllium-aluminum alloy was developed not only to minimize the amount of material but to obtain also high x-ray transmission. During a cooling test, the target cell was kept at 1.3 K at a pressure of 33 mbar. The total estimated heat load to the components including the target cell and heat exchanger cooled by liquid helium-4 decompression, was 0.21 W,...

  3. A helium liquefier using three 4 k pulse tube cryocoolers

    Science.gov (United States)

    Wang, Chao; Oviedo, Abner

    2012-06-01

    We have developed a helium liquefier which can be used for recondensing/reliquefying helium vapor in a helium cryostat or liquefying helium gas in a storage dewar. The helium liquefier employs three 4 K pulse tube cryocoolers, Cryomech model PT415. Each PT415 has remote motor/rotary valve assembly to minimize vibration, providing ≥ 1.5W at 4.2K. The liquefier can liquefy room temperature helium gas with a liquefaction rate of 62 Liter/day. When installing it in the cryostat, it can recondense and reliquefy helium vapor with a rate of 78 L/day. The liquefier will be installed in a gravitational wave detector in Brazil to recondense/reliquefy the helium boil off from the cryostat.

  4. Main components and performances of the IMGC calibration facilities for liquid helium flow rate measurements

    Science.gov (United States)

    Rivetti, A.; Martini, G.; Goria, R.; Lorefice, S.

    Within the framework of a National Project on superconductivity two facilities have been designed and built at the Istituto di Metrologia 'G. Colonnetti' (IMGC) with the purpose of studying and calibrating liquid helium flowmeters in the range 1-20 g s -1 of liquid helium (LHe). After a brief description of these set-ups, this Paper examines in detail the solutions adopted in the design of the main calibration facility, particularly with regard to the circulating pump and the submerged driving motor. The latter has been devised for working only at LHe temperature, having an a.c. three-phase stator winding made of thin superconducting wire. The construction characteristics and operation conditions are discussed. As a flow rate reference, a new turbine flowmeter with its rotor magnetically suspended by the Meissner effect (described in another paper presented at the workshop), is used. A LHe flow rate transducer, based upon the measurement of the transit time of short thermal pulses, has been designed and tested with these facilities: the good results obtained using commercial low cost diodes as ΔT sensors are reported.

  5. Improved operation of graded-channel SOI nMOSFETs down to liquid helium temperature

    Science.gov (United States)

    Pavanello, Marcelo Antonio; de Souza, Michelly; Ribeiro, Thales Augusto; Martino, João Antonio; Flandre, Denis

    2016-11-01

    This paper presents the operation of Graded-Channel (GC) Silicon-On-Insulator (SOI) nMOSFETs at low temperatures down to liquid helium temperature in comparison to standard uniformly doped transistors. Devices from two different technologies have been measured and show that the mobility increase rate with temperature for GC SOI transistors is similar to uniformly doped devices for temperatures down to 90 K. However, at liquid helium temperature the rate of mobility increase is larger in GC SOI than in standard devices because of the different mobility scattering mechanisms. The analog properties of GC SOI devices have been investigated down to 4.16 K and show that because of its better transconductance and output conductance, an intrinsic voltage gain improvement with temperature is also obtained for devices in the whole studied temperature range. GC devices are also capable of reducing the impact ionization due to the high electric field in the drain region, increasing the drain breakdown voltage of fully-depleted SOI MOSFETs at any studied temperature and the kink voltage at 4.16 K.

  6. Electronic absorption spectroscopy of PAHs in supersonic jets and ultracold liquid helium droplets

    Science.gov (United States)

    Huisken, Friedrich; Staicu, Angela; Krasnokutski, Serge; Henning, Thomas

    Neutral and cationic polycyclic aromatic hydrocarbons (PAHs) are discussed as possible carriers of the diffuse interstellar bands (DIBs), still unassigned astrophysical absorption features observed in the spectra of reddened stars (Salama et al. 1999). Despite the importance of this class of molecules for astrophysics and nanophysics (PAHs can be regarded as nanoscale fragments of a sheet of graphite), the spectroscopic characterization of PAHs under well-defined conditions (low temperature and collision-free environment) has remained a challenge. Recently we have set up a cavity ring-down spectrometer combined with a pulsed supersonic jet expansion to study neutral and cationic PAHs under astrophysical conditions. PAHs studied so far include the neutral molecules anthracene (Staicu et al. 2004) and pyrene (Rouillé et al. 2004) as well as the cationic species naphthalene+ and anthracene+ (Sukhorukov et al. 2004). Employing another molecular beam apparatus, the same molecules (except of the cationic species) were also studied in liquid helium droplets (Krasnokutski et al. 2005, Rouillé et al. 2004). This novel technique combines several advantages of conventional matrix spectroscopy with those of gas phase spectroscopy. Notable advantages are the possibility to study molecules with low vapor pressure and to use a mass spectrometer facilitating spectral assignments. The most recent studies were devoted to phenanthrene and the more complicated (2,3)-benzofluorene. These molecules were investigated in the gas phase by cavity ring-down spectroscopy and in liquid helium droplets using depletion spectroscopy. For benzofluorene the present studies constitute the first reported measurements both in the gas phase and in helium droplets. The origin of the S1 ← S0 gas phase transition could be located at 29 894.3 cm-1, and a series of vibronic bands was recorded below 31 500 cm-1. In contrast to previously studied PAHs, the shift induced by the helium droplets was very

  7. The ATLAS cryostat comes into the lime-light

    CERN Multimedia

    2002-01-01

    Jean-Jacques Aubert, director of IN2P3, addresses the teams involved in the ATLAS electromagnetic calorimeter. At the rear, the barrel cryostat being equipped. In response to an invitation from IN2P3, the French national institute for nuclear and particle physics, the ATLAS experiment teams have celebrated progress made in the construction of their Liquid Argon Detector. In particular they wanted to salute the arrival of the cryostat for one of the end-caps, built by the company Simic in Italy. The second is expected at the end of January 2003. The cryostats are the fruit of a collaboration between IN2P3, the Max Planck Institute in Munich and the German Ministry for education and research (BMBF). The barrel cryostat arrived from Japan last year. The three cryostats will contain four types of different detectors made by the collaboration. They will contain in total nearly 400 modules including electromagnetic modules. More than half the modules for one of the two electromagnetic calorimeter barrels have bee...

  8. ITER In-Cryostat inspection and repair feasibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Reich, J., E-mail: Jens.Reich@iter.org [ITER Organization, CS 90 046, 13115 St Paul lez Durance Cedex (France); Cordier, J.-J.; Houtte, D. van [ITER Organization, CS 90 046, 13115 St Paul lez Durance Cedex (France); Evrard, D. [Sogeti High Tech, 180 rue Rene Descartes, 13857 Aix en Provence (France); Mercier, E. [AREVA CNIM KAH System Engineering Support, CS 50497, 13593 Aix en Provence Cedex 3 (France); Popa, T.; Doshi, B. [ITER Organization, CS 90 046, 13115 St Paul lez Durance Cedex (France)

    2011-10-15

    The ITER In-Cryostat maintenance study is an important precondition to guarantee the operation over the ITER lifetime. The ITER operation is subdivided mainly into two phases: 1.Hydrogen phase (non-nuclear operation phase). 2.Deuterium/Tritium phase (nuclear DT phase). The commissioning phase includes the initial phase of assembly. Within the first phase the ITER components will be tested; afterwards they will go into operation. The In-Cryostat maintenance shall facilitate all operations that could be required by In-Cryostat systems and the Cryostat itself. In cases of failures or unlikely events (e.g. earthquakes) it is necessary to provide man and tool access to In-Cryostat components. Overall functions which have to be implemented are: {center_dot}Inspection of components including leak localization (helium, water, air). {center_dot}Repair and replacement of component (instrumentation, parts or complete components). {center_dot}Regulatory inspections. It is presumed that most of component failure would occur at the beginning of the operational phase. This failure rate is expected to be very unlikely when ITER is being operating during the nuclear phase. For maintenance activities it is assumed that: {center_dot}The intervention frequency on each component is limited during its lifetime (e.g. inspections/repair during global shutdown). {center_dot}Most of these interventions will be required during the inactive phase. According to ALARA (As Low as Reasonable Achievable) rules maintenance activities will be planned in order to minimize the required human interventions during the active phase. Different tools have to be designed to perform the maintenance actions. As there are quiet all heavy components to be handled and removed, humans cannot perform the work without semi hands-on tools. The required permanent fixtures and tools are considered and pre-designed.

  9. 薄膜光电性能表征用小型液氮低温恒温器%A small liquid-nitrogen cryostat for studying the optical-electrical properties of thin films

    Institute of Scientific and Technical Information of China (English)

    李建昌; 李宏宇; 巴德纯

    2012-01-01

    本文介绍了一种高真空低温环境下用于薄膜光电性能研究的小型液氮低温恒温器,它能提供稳定低温并与外界隔绝的真空环境,可广泛用于薄膜材料的光学、磁热、超导和电学性能研究领域.系统通过液氮杜瓦和基片加热装置使样品维持在所需的低温高真空条件下,既能通过外接光源将光线引入真空室并辐照在样品上或通过真空电极引线测试样品的电学特性,也可实现薄膜的光电性能表征.热负荷计算与分析表明,该系统可长时间保持所需的低温真空环境,且该装置具有结构简单、体积小和温控稳定等优点,适于薄膜器件的真空低温变温研究.%This paper presents a simple liquid-nitrogen cryostat for studying the optical-electrical properties of thin films at variable low temperature (90K ~300K) under high vacuum conditions. It provides a stable and insulated low temperature condition, which can be widely used in the fields of optical, thermo-magnetic and superconductic materials. The sample can be maintained at any required temperature through a combination of a liquid-nitrogen Dewar apparatus and a heating unit. To measure the sample's photoelectrical properties, current-voltage characteristics of the samples can be studied under specific light illumination through an optical window on the cryostat. The heat load calculation indicates that the system can guarantee the desired low temperature environment long enough for studying the sample and it has advantages of simple structure, small space and stable temperature. It is suitable for the investigation of the optical-electrical properties of thin films and devices under variable low temperatures.

  10. Characterisation and optimisation of flexible transfer lines for liquid helium. Part II: Thermohydraulic modelling

    Science.gov (United States)

    Dittmar, N.; Haberstroh, Ch.; Hesse, U.; Krzyzowski, M.

    2016-10-01

    In part one of this publication experimental results for a single-channel transfer line used at liquid helium (LHe) decant stations are presented. The transfer of LHe into mobile dewars is an unavoidable process since the places of storage and usage are generally located apart from each other. The experimental results have shown that reasonable amounts of LHe evaporate due to heat leak and pressure drop. Thus, generated helium cold gas has to be collected and reliquefied, demanding a huge amount of electrical energy. Although this transfer process is common in cryogenic laboratories, no existing code could be found to model it. Therefore, a thermohydraulic model has been developed to model the LHe flow at operating conditions using published heat transfer and pressure drop correlations. This paper covers the basic equations used to calculate heat transfer and pressure drop, as well as the validation of the thermohydraulic code, and its application within the optimisation process. The final transfer line design features reduced heat leak and pressure drop values based on a combined measurement and modelling campaign in the range of 0.112 < pin < 0.148 MPa, 190 < G < 450 kg/(m2 s), and 0.04 < xout < 0.12.

  11. Integration of a Cryocooler into a SQUID Magnetospinography System for Reduction of Liquid Helium Consumption

    Science.gov (United States)

    Adachi, Yoshiaki; Oyama, Daisuke; Kawai, Jun; Ogata, Hisanao; Uehara, Gen

    We are currently developing a magnetospinography (MSG) system for noninvasive functional imaging of the spinal cord. The MSG system is a device for observing a weak magnetic field accompanied by the neural activity of the spinal cord by using an array of low-temperature superconducting quantum interference device (SQUID) magnetic flux sensors. As in the case of other biomagnetic measurement systems such as the magnetoencephalography (MEG) system, the running cost of the MSG system is mainly dependent on the liquid helium (LHe) consumption of a dewar vessel. We integrated a cryocooler into the MSG system to reduce LHe consumption. A pulse tube cryocooler with a cooling power of 0.5Wat 4 K was placed adjacent to a magnetically shielded room and was directly connected to the thermal radiation shield of the dewar by an electrically isolated transfer tube. Cold helium gas was circulated between the cryocooler and the radiation shield. Consequently, the temperature of the radiation shield decreased below 40 K. Previous studies have shown that the detection of a weak magnetic field is often hindered by severe low-frequency band noise from the cryocooler. However, the band of the MSG signals is much higher than that of the cryocooler noise. Therefore, the noise can be filtered out and has a less detrimental effect on MSG measurement than on other biomagnetic field measurements such as MEG measurement. As a result, LHe consumption was reduced by 46%, with no increase in the noise floor.

  12. Thermodynamic Vent System Performance Testing with Subcooled Liquid Methane and Gaseous Helium Pressurant

    Science.gov (United States)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S. P.

    2007-01-01

    Due to its high specific impulse and favorable thermal properties for storage, liquid methane (LCH4) is being considered as a candidate propellant for exploration architectures. In order to gain an -understanding of any unique considerations involving micro-gravity pressure control with LCH4, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the performance of a spray-bar thermodynamic vent system (TVS) with subcooled LCH4 and gaseous helium (GHe) pressurant. Thirteen days of testing were performed in November 2006, with total tank heat leak conditions of about 715 W and 420 W at a fill level of approximately 90%. The TVS system was used to subcool the LCH4 to a liquid saturation pressure of approximately 55.2 kPa before the tank was pressurized with GHe to a total pressure of 165.5 kPa. A total of 23 TVS cycles were completed. The TVS successfully controlled the ullage pressure within a prescribed control band but did not maintain a stable liquid saturation pressure. This was likely. due to a TVS design not optimized for this particular propellant and test conditions, and possibly due to a large artificially induced heat input directly into the liquid. The capability to reduce liquid saturation pressure as well as maintain it within a prescribed control band, demonstrated that the TVS could be used to seek and maintain a desired liquid inlet temperature for an engine (at a cost of propellant lost through the TVS vent). One special test was conducted at the conclusion of the planned test activities. Reduction of the tank ullage pressure by opening the Joule-Thomson valve (JT) without operating the pump was attempted. The JT remained open for over 9300 seconds, resulting in an ullage pressure reduction of 30 kPa. The special test demonstrated the feasibility of using the JT valve for limited ullage pressure reduction in the event of a pump failure.

  13. Acoustic Characterization of Fluorinert FC-43 Liquid with Helium Gas Bubbles: Numerical Experiments

    Directory of Open Access Journals (Sweden)

    Christian Vanhille

    2017-01-01

    Full Text Available In this work, we define the acoustic characteristics of a biphasic fluid consisting of static helium gas bubbles in liquid Fluorinert FC-43 and study the propagation of ultrasound of finite amplitudes in this medium. Very low sound speed and high sound attenuation are found, in addition to a particularly high acoustic nonlinear parameter. This result suggests the possibility of using this medium as a nonlinear enhancer in various applications. In particular, parametric generation of low ultrasonic frequencies is studied in a resonator cavity as a function of driving pressure showing high conversion efficiency. This work suggests that this medium could be used for applications such as parametric arrays, nondestructive testing, diagnostic medicine, sonochemistry, underwater acoustics, and ultrasonic imaging and to boost the shock formation in fluids.

  14. Preparation of cluster states with trapped electrons on a liquid helium surface

    Institute of Scientific and Technical Information of China (English)

    Ai Ling-Yan; Shi Yan-Li; Zhang Zhi-Ming

    2011-01-01

    We present a scheme for the preparation of one-dimensional (1D) and two-dimensional (2D) cluster states with electrons trapped on a liquid helium surface and driven by a classical laser beam.The two lowest levels of the vertical motion of the electron act as a two-level system,and the quantized vibration of the electron along one of the parallel directions (the x direction) serves as the bosonic mode.The degrees of freedom of the vertical and parallel motions of the trapped electron can be coupled together by a classical laser field.With the proper frequency of the laser field,the cluster states can be realized.

  15. The Cryostat and Subsystems Development at ITER

    Science.gov (United States)

    Sekachev, Igor; Meekins, Michael; Sborchia, Carlo; Vitupier, Guillaume; Xie, Han; Zhou, Caipin

    ITER is a large experimental tokamak being built to research fusion power. The ITER cryostat is a multifunctional system which provides vacuum insulation for the superconducting magnets operating at 4.5 K and for the thermal shield operating at 80 K. It also serves as a structural support for the tokamak and provides access ways and corridors to the vacuum vessel for diagnostic lines of sight, additional heating beams and the deployment of remote handling equipment. The cryostat has feed-through penetrations for all the equipment connecting elements of systems outside the cryostat to the corresponding elements inside the cryostat. The cryostat is a vacuum containment vessel having a very large volume of ∼16000 m3 designed to be evacuated to a base pressure of 10-4 Pa. Design details of the cryostat and associated systems, including Torus Cryopump Housing (TCPH), are discussed. Status report of the cryostat developments is presented.

  16. Liquid Hydrogen Propellant Tank Sub-Surface Pressurization with Gaseous Helium

    Science.gov (United States)

    Stephens, J. R.; Cartagena, W.

    2015-01-01

    A series of tests were conducted to evaluate the performance of a propellant tank pressurization system with the pressurant diffuser intentionally submerged beneath the surface of the liquid. Propellant tanks and pressurization systems are typically designed with the diffuser positioned to apply pressurant gas directly into the tank ullage space when the liquid propellant is settled. Space vehicles, and potentially propellant depots, may need to conduct tank pressurization operations in micro-gravity environments where the exact location of the liquid relative to the diffuser is not well understood. If the diffuser is positioned to supply pressurant gas directly to the tank ullage space when the propellant is settled, then it may become partially or completely submerged when the liquid becomes unsettled in a microgravity environment. In such case, the pressurization system performance will be adversely affected requiring additional pressurant mass and longer pressurization times. This series of tests compares and evaluates pressurization system performance using the conventional method of supplying pressurant gas directly to the propellant tank ullage, and then supplying pressurant gas beneath the liquid surface. The pressurization tests were conducted on the Engineering Development Unit (EDU) located at Test Stand 300 at NASA Marshall Space Flight Center (MSFC). EDU is a ground based Cryogenic Fluid Management (CFM) test article supported by Glenn Research Center (GRC) and MSFC. A 150 ft3 propellant tank was filled with liquid hydrogen (LH2). The pressurization system used regulated ambient helium (GHe) as a pressurant, a variable position valve to maintain flow rate, and two identical independent pressurant diffusers. The ullage diffuser was located in the forward end of the tank and was completely exposed to the tank ullage. The submerged diffuser was located in the aft end of the tank and was completely submerged when the tank liquid level was 10% or greater

  17. Majorana One-Tonne Cryostat Cooling Conceptual Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Douglas J.; Orrell, John L.; Fast, James E.; Aguayo Navarrete, Estanislao

    2011-02-17

    This report evaluates the conceptual plans for a one-tonne (S4) cryostat cooling design. This document is based upon previous design work and experimental results used to evaluate the current MAJORANA DEMONSTRATOR (MJD) thermal design. A feasibility study of a cooling system for S4 based on the MJD thermosyphon experiment is presented. The one-tonne experiment will be a scaled up version of the MJD. There will be many cryostats for the S4 experiment. In this document a cryostat with up to 19 strings of Germanium crystals is analyzed. Aside from an extra outer ring of crystals, the geometry of both systems’ cryostats is very similar. The materials used in the fabrication of both ultra-low background experiments will be underground electroformed copper. The current MJD uses a two-phase liquid-gas cooling system to ensure constant operating temperature. This document presents a theoretical investigation of a cooling system for the S4 experiment and evaluates the heat transfer performance requirements for such a system.

  18. Shock compression of liquid helium and helium-hydrogen mixtures : development of a cryogenic capability for shock compression of liquid helium on Z, final report for LDRD Project 141536.

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Andrew J.; Knudson, Marcus D.; Shelton, Keegan P.; Hanson, David Lester

    2010-10-01

    This final report on SNL/NM LDRD Project 141536 summarizes progress made toward the development of a cryogenic capability to generate liquid helium (LHe) samples for high accuracy equation-of-state (EOS) measurements on the Z current drive. Accurate data on He properties at Mbar pressures are critical to understanding giant planetary interiors and for validating first principles density functional simulations, but it is difficult to condense LHe samples at very low temperatures (<3.5 K) for experimental studies on gas guns, magnetic and explosive compression devices, and lasers. We have developed a conceptual design for a cryogenic LHe sample system to generate quiescent superfluid LHe samples at 1.5-1.8 K. This cryogenic system adapts the basic elements of a continuously operating, self-regulating {sup 4}He evaporation refrigerator to the constraints of shock compression experiments on Z. To minimize heat load, the sample holder is surrounded by a double layer of thermal radiation shields cooled with LHe to 5 K. Delivery of LHe to the pumped-He evaporator bath is controlled by a flow impedance. The LHe sample holder assembly features modular components and simplified fabrication techniques to reduce cost and complexity to levels required of an expendable device. Prototypes have been fabricated, assembled, and instrumented for initial testing.

  19. Photo-excited states in germanium at liquid-helium temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Culbertson, J.C.

    1982-12-01

    A wide variety of experimental work dealing with the basic properties of photoexcited states in Ge at liquid helium temperatures is presented. The primary emphasis is on the electron-hole liquid (EHL) and the free exciton (FE). The EHL is composed of two interpenetrating Fermi liquids, one of electrons and one of holes, each with its own Fermi level. The FE dealt with here is a mobile, loosely bound state of an electron and a hole. We report the first absolute measurement of the density dependence of the enhancement factor g/sub eh/(0) for the EHL in Ge. This factor g/sub eh/(0) is a measure of the electron-hole spatial correlation function, and provides a valuable and sensitive test for the predictions of various many-body-theory approximations. An EHL droplet - FE gas system confined to a strain induced potential well was used. The measurement approach relied on only a few simple and verifiable assumptions. A byproduct of this work was the measurement as a function of stress of: the electron and hole Fermi levels E/sub F//sup e/ and E/sub F//sup h/, the EHL density n/sub l/, the condensation energy phi of a FE relative to the EHL, and the binding energy of a FE (E/sub x/) relative to free carriers (FC). The decay of a FE-FC system confined to a strain induced potential well is studied. The first direct measurement of the FE diffusivity D/sub x/ is reported. The evolution in time of spatial profiles of FE luminescence were measured. From these FE density profiles, D/sub x/(4.2K) approx. = to 300 cm/sup 2/ s/sup -1/, the surface recombination velocity S approx. = 3000 cm s/sup -1/, and the FE lifetime tau/sub x/ = 27 ..mu..s with surface effects excluded were determined. (WHK)

  20. Computation of the properties of liquid neon, methane, and gas helium at low temperature by the Feynman-Hibbs approach.

    Science.gov (United States)

    Tchouar, N; Ould-Kaddour, F; Levesque, D

    2004-10-15

    The properties of liquid methane, liquid neon, and gas helium are calculated at low temperatures over a large range of pressure from the classical molecular-dynamics simulations. The molecular interactions are represented by the Lennard-Jones pair potentials supplemented by quantum corrections following the Feynman-Hibbs approach. The equations of state, diffusion, and shear viscosity coefficients are determined for neon at 45 K, helium at 80 K, and methane at 110 K. A comparison is made with the existing experimental data and for thermodynamical quantities, with results computed from quantum numerical simulations when they are available. The theoretical variation of the viscosity coefficient with pressure is in good agreement with the experimental data when the quantum corrections are taken into account, thus reducing considerably the 60% discrepancy between the simulations and experiments in the absence of these corrections.

  1. High Voltage Test Apparatus for a Neutron EDM Experiment and Lower Limit on the Dielectric Strength of Liquid Helium at Large Volumes

    CERN Document Server

    Long, J C; Boissevain, J G; Clark, D J; Cooper, M D; Gómez, J J; Lamoreaux, S K; Mischke, R E; Penttila, S I

    2006-01-01

    A new search for a permanent electric dipole moment (EDM) of the neutron is underway using ultracold neutrons produced and held in a bath of superfluid helium. Attaining the target sensitivity requires maintaining an electric field of several tens of kilovolts per centimeter across the experimental cell, which is nominally 7.5 cm wide and will contain about 4 liters of superfluid. The electrical properties of liquid helium are expected to be sufficient to meet the design goals, but little is known about these properties for volumes and electrode spacings appropriate to the EDM experiment. Furthermore, direct application of the necessary voltages from an external source to the experimental test cell is impractical. An apparatus to amplify voltages in the liquid helium environment and to test the electrical properties of the liquid for large volumes and electrode spacings has been constructed. The device consists of a large-area parallel plate capacitor immersed in a 200 liter liquid helium dewar. Preliminary r...

  2. Characteristics of a liquid-helium-free calibration apparatus for cryogenic thermometers

    Energy Technology Data Exchange (ETDEWEB)

    Shimazaki, T. [National Metrology Institute of Japan, AIST, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563 (Japan)

    2013-09-11

    Closed-cycle Joule-Thomson (JT) cryocoolers have been developed at National Metrology Institute of Japan (NMIJ)/National Institute of Advanced Industrial Science and Technology (AIST) with the aim of realizing a liquid-helium-free calibration apparatus for cryogenic thermometers between 0.65 K and 25 K. The latest JT cryocooler at NMIJ/AIST consists of a {sup 3}He JT cooling circuit and a pulse tube mechanical refrigerator. The characteristics of the apparatus including a residual gas analysis of the JT cooling circuit are presented in this paper. Currently the initial cool-down is performed using a heat-exchange gas. It normally takes about 30 h to reduce the temperature from room temperature to 5 K at the thermometer comparison block of the apparatus. The correct timing of the removal of the heatexchange gas is important for the efficient operation of the apparatus. Incomplete removal of the heat-exchange gas induces excess heat load on the apparatus and thermal disturbances. Some examples of abrupt temperature bursts are discussed in this paper. Mechanical refrigerators generate cyclic mechanical vibrations, and precision resistance thermometers are usually very sensitive to a mechanical vibration. The measured vibration level of the developed apparatus is reported. The damage to the apparatus due to the magnitude 9.0 earthquake on March 11, 2011, and possible countermeasures in the case of future earthquakes are also discussed.

  3. Characteristics of a liquid-helium-free calibration apparatus for cryogenic thermometers

    Science.gov (United States)

    Shimazaki, T.

    2013-09-01

    Closed-cycle Joule-Thomson (JT) cryocoolers have been developed at National Metrology Institute of Japan (NMIJ)/National Institute of Advanced Industrial Science and Technology (AIST) with the aim of realizing a liquid-helium-free calibration apparatus for cryogenic thermometers between 0.65 K and 25 K. The latest JT cryocooler at NMIJ/AIST consists of a 3He JT cooling circuit and a pulse tube mechanical refrigerator. The characteristics of the apparatus including a residual gas analysis of the JT cooling circuit are presented in this paper. Currently the initial cool-down is performed using a heat-exchange gas. It normally takes about 30 h to reduce the temperature from room temperature to 5 K at the thermometer comparison block of the apparatus. The correct timing of the removal of the heatexchange gas is important for the efficient operation of the apparatus. Incomplete removal of the heat-exchange gas induces excess heat load on the apparatus and thermal disturbances. Some examples of abrupt temperature bursts are discussed in this paper. Mechanical refrigerators generate cyclic mechanical vibrations, and precision resistance thermometers are usually very sensitive to a mechanical vibration. The measured vibration level of the developed apparatus is reported. The damage to the apparatus due to the magnitude 9.0 earthquake on March 11, 2011, and possible countermeasures in the case of future earthquakes are also discussed.

  4. Electronic properties of physisorbed helium

    Energy Technology Data Exchange (ETDEWEB)

    Kossler, Sarah

    2011-09-22

    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  5. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere VI. Helium in the Chromosphere

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available Molecular hydrogen and hydrides have recently been advanced as vital agents in the generation of emission spectra in the chromosphere. This is a result of the role they play in the formation of condensed hydrogen structures (CHS within the chromosphere (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Progr. Phys., 2013, v. 3, 15–21. Next to hydrogen, helium is perhaps the most intriguing component in this region of the Sun. Much like other elements, which combine with hydrogen to produce hydrides, helium can form the well-known helium hydride molecular ion, HeH+, and the excited neutral helium hydride molecule, HeH∗. While HeH+ is hypothesized to be a key cosmologicalmolecule, its possible presence in the Sun, and that of its excited neutral counterpart, has not been considered. Still, these hydrides are likely to play a role in the synthesis of CHS, as the He I and He II emission lines strongly suggest. In this regard, the study of helium emission spectra can provide insight into the condensed nature of the Sun, especially when considering the 10830 Å line associated with the 23P→2 3S triplet state transition. This line is strong in solar prominences and can be seen clearly on the disk. The excessive population of helium triplet states cannot be adequately explained using the gaseous models, since these states should be depopulated by collisional processes. Conversely, when He-based molecules are used to build CHS in a liquid metallic hydrogen model, an ever increasing population of the 23S and 23P states might be expected. The overpopulation of these triplet states leads to the conclusion that these emission lines are unlikely to be produced through random collisional or photon excitation, as required by the gaseous models. This provides a significant hurdle for these models. Thus, the strong 23P→2 3S lines and the overpopulation of the helium triplet

  6. Impact of nuclear irradiation on helium bubble nucleation at interfaces in liquid metals coupled to permeation through stainless steels

    CERN Document Server

    Fradera, Jorge

    2013-01-01

    The impact of nucleating gas bubbles in the form of a dispersed gas phase on hydrogen isotope permeation at interfaces between liquid metals, like LLE, and structural materials, like stainless steel, has been studied. Liquid metal to structural material interfaces involving surfaces, may lower the nucleation barrier promoting bubble nucleation at active sites. Hence, hydrogen isotope absorption into gas bubbles modelling and control at interfaces may have a capital importance regarding design, operation and safety. He bubbles as a permeation barrier principle is analysed showing a significant impact on hydrogen isotope permeation, which may have a significant effect on liquid metal systems, e.g., tritium extraction systems. Liquid metals like LLE under nuclear irradiation in, e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles...

  7. Construction and Testing of a Low-power Cryostat for MARS

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, Craig E.; Caggiano, Joseph A.; Day, Anthony R.; Fast, James E.; Fuller, Erin S.

    2007-10-01

    A low-power cryostat was designed and built for the Multi-sensor Airborne Radiation Survey (MARS) project for the purpose of housing a close-packed high-purity germanium (HPGe) detector array of 14 HPGe detectors. The power consumption of the cold mass in the cryostat was measured to be 4.07(11) watts, sufficient for 5.5 days of continuous operation using only 8 liters of liquid nitrogen. Temperatures throughout the cryostat were measured by platinum resistance temperature detectors. These measurements were used to determine the emissivity of the copper used in the floating radiation shield and outer cryostat wall, which was constructed using chemically cleaned and passivated copper metal. Using a PNNL-developed passivation process, an emissivity of 2.5(3)% was achieved for copper.

  8. A precision cryostat design for manual and semi-automated cryo-plunge instruments

    Science.gov (United States)

    Russo, Christopher J.; Scotcher, Steve; Kyte, Martin

    2016-11-01

    Here we describe a bench-top cryostat system to control the temperature of liquid ethane in a cryo-plunge apparatus designed for biological specimen preparation for electron cryomicroscopy. It comprises a foam insulated Dewar containing a copper cryostat cup, whose temperature is controlled via an active feedback system to within 0.1 K. The device can easily be incorporated into existing manual and semi-automatic cryo-plunge instruments that are not equipped with cryogenic temperature control. Over the course of normal use, we find that using a cryostat is convenient, fast, and does not require special mixtures of cryogens like ethane/propane. This simple cryostat improves the reliability and reproducibility of biological specimen preparation for electron cryomicroscopy.

  9. First cold test of TESLA superconducting RF cavity in horizontal cryostat (CHECHIA)

    Energy Technology Data Exchange (ETDEWEB)

    Kuzminski, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); TESLA Collaboration

    1996-04-01

    In the framework of the TESLA project, the horizontal cryostat (CHECHIA) was built to test a superconducting RF cavity equipped with its helium vessel, magnetic shielding, cold tuner, main coupler and higher order modes couplers under realistic conditions before final assembly of eight cavities into TESLA Test Facility cryo-module. The results of the first cold tests in CHECHIA, performed at DESY with a 9-cell cavity (C19) to be used in the TTF injector are presented. (author). 3 refs.

  10. ISR Superconducting Quadrupole in its cryostat

    CERN Multimedia

    1978-01-01

    The picture shows a superconducting quadrupole for the ISR high luminosity (low beta) insertion in its cryostat during final tests before installation in the ISR.The person is W.Burgess. See also photo 7702690X.

  11. A high-resolution NMR probe in which the coil and preamplifier are cooled with liquid helium

    Science.gov (United States)

    Styles, P.; Soffe, N. F.; Scott, C. A.; Cragg, D. A.; Row, F.; White, D. J.; White, P. C. J.

    2011-12-01

    In a well designed NMR spectrometer, the noise originates predominantly from the resistance of the receiver coil. Significant improvements in sensitivity can be achieved by cooling the coil to cryogenic temperatures, provided that a preamplifier can be designed to match the coil's performance. A probe is described in which the coil and preamplifier are cooled with liquid helium, but the sample is maintained at room temperature. Carbon-l3 spectra at 45 MHz demonstrate improved sensitivity over conventional probes at the same field.

  12. The EBEX Cryostat and Supporting Electronics

    OpenAIRE

    2010-01-01

    We describe the cryostat and supporting electronics for the EBEX experiment. EBEX is a balloon-borne polarimeter designed to measure the B-mode polarization of the cosmic microwave background radiation. The instrument includes a 1.5 meter Gregorian-type telescope and 1432 bolometric transition edge sensor detectors operating at 0.3 K. Electronics for monitoring temperatures and controlling cryostat refrigerators is read out over CANbus. A timing system ensures the data from all subsystems is ...

  13. Overview and status of ITER Cryostat manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Anil K., E-mail: anil.bhardwaj@iter-india.org [ITER-India, Institute For Plasma Research, A-29, GIDC Electronics Estate, Sector-25, Gandhinagar 382016 (India); Gupta, Girish; Prajapati, Rajnikant; Joshi, Vaibhav; Patel, Mitul; Bhavsar, Jagrut; More, Vipul; Jindal, Mukesh; Bhattacharya, Avik; Jogi, Gourav; Palaliya, Amit; Jha, Saroj; Pandey, Manish; Shukla, Dileep [ITER-India, Institute For Plasma Research, A-29, GIDC Electronics Estate, Sector-25, Gandhinagar 382016 (India); Iyer, Ganesh; Jadhav, Pandurang; Goyal, Dipesh; Desai, Anish [Larsen & Toubro Limited, Heavy Engineering, Hazira Manufacturing Complex, Gujarat (India); Sekachev, I.; Vitupier, Guillaume [ITER Organization, Route de Vinon sur Verdon – CS 90046, 13067 Saint Paul Lez Durance Cedex (France); and others

    2016-11-01

    Highlights: • Manufacturing status of one of the largest and the heaviest fully welded stainless steel vacuum chambers in the world (ITER Cryostat). • Overview of manufacturing stages and its segmentation. • Overview of manufacturing procedures and assembly and installation. - Abstract: One of ITER-India's commitments to the ITER Organization is procurement of the ITER Cryostat. It is a large vacuum vessel (∼29 m dia. and ∼29 m height), which is made up of 304/304 L dual marked stainless steel and has a total mass over 3500 t. The thickness of the vessel wall varies from 50 mm to 190 mm. It is one of the largest and the heaviest fully welded stainless steel vacuum chambers in the world which provides vacuum thermal insulation for the superconducting magnets operating at 4.5 K and for the thermal shield operating at 80 K. It also mechanically supports the magnet system along with the vacuum vessel (VV). The cryostat is designed and constructed according to ASME Section-VIII Division-2 with additional ITER Vacuum Handbook requirements and it is classified as protection important component (PIC-2). Manufacturing of cryostat segments is ongoing in India; sub-assembly of four major sections of the cryostat from the segments will be done at the ITER site in a temporary workshop building and the final assembly will be done in the pit of the tokamak building, the final location. The cryostat manufacturing contract has been awarded to Larsen and Toubro Limited in August 2012 after completion of design [4] and signing of Procurement Arrangement [1] with ITER Organization. Manufacturing of the cryostat was started in January 2014 after approval of the manufacturing drawings and procedures. The temporary workshop of 44 m × 110 m × 26 m in height has been completed in November 2014 at the ITER site with a 200 t crane installed. This paper gives an overview and the status of the cryostat manufacturing.

  14. Development of GM cryocooler separate type liquid-helium-free 3He-4He dilution refrigerator system

    Science.gov (United States)

    Yamanaka, Y.; Ito, T.; Umeno, T.; Suzuki, Y.; Yoshida, S.; Kamioka, Y.; Maehata, K.

    2009-02-01

    We developed the new liquid-helium-free dilution refrigerator system, in which the Gifford-McMahon (GM) cycle cryocooler and dilution refrigerator (DR) unit are separated. We obtained the base temperature below 50 mK in this DR system. In usual liquid-helium-free DR systems, the DR unit directly couples with GM-cryocooler in the same vacuum chamber. Therefore the mechanical vibration of GM-cryocooler is hardly removed from DR unit. In order to eliminate the vibration problem, the separated vacuum chamber contacting the GM-cryocooler is connected with the DR unit chamber by the flexible hose with length of about 1 meter. Thin flexible tubes used for circulation of the refrigerant gas and radiation shield are installed in the connection hose. The 4He gas, cooled in the GM-cryocooler unit, transfers to the DR unit throw the thin flexible tubes. After cooling the DR unit, the gas returns to GM-cryocooler unit with cooling of the radiation shield. We expect that our separate-type dilution refrigerator becomes a useful piece of apparatus for the low temperature experiments.

  15. Development of GM cryocooler separate type liquid-helium-free {sup 3}He-{sup 4}He dilution refrigerator system

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Y; Ito, T; Umeno, T; Suzuki, Y; Yoshida, S; Kamioka, Y [Taiyo Nippon Sanso Corporation, 10 Okubo, Tsukuba-shi, 300-2611 (Japan); Maehata, K [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka-shi, 819-0395 (Japan)], E-mail: Yoshihiro.Yamanaka@tn-sanso.co.jp

    2009-02-01

    We developed the new liquid-helium-free dilution refrigerator system, in which the Gifford-McMahon (GM) cycle cryocooler and dilution refrigerator (DR) unit are separated. We obtained the base temperature below 50 mK in this DR system. In usual liquid-helium-free DR systems, the DR unit directly couples with GM-cryocooler in the same vacuum chamber. Therefore the mechanical vibration of GM-cryocooler is hardly removed from DR unit. In order to eliminate the vibration problem, the separated vacuum chamber contacting the GM-cryocooler is connected with the DR unit chamber by the flexible hose with length of about 1 meter. Thin flexible tubes used for circulation of the refrigerant gas and radiation shield are installed in the connection hose. The {sup 4}He gas, cooled in the GM-cryocooler unit, transfers to the DR unit throw the thin flexible tubes. After cooling the DR unit, the gas returns to GM-cryocooler unit with cooling of the radiation shield. We expect that our separate-type dilution refrigerator becomes a useful piece of apparatus for the low temperature experiments.

  16. Manufacturing of JT-60SA Cryostat Base

    Energy Technology Data Exchange (ETDEWEB)

    Medrano, Mercedes, E-mail: mercedes.medrano@ciemat.es [Association EURATOM – CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Alonso, Javier; Botija, José; Fernández, Pilar; Ramos, Francisco; Rincon, Esther; Soleto, Alfonso [Association EURATOM – CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Davis, Sam; Di Pietro, Enrico [Fusion for Energy, JT-60SA European Home Team, 85748 Garching bei Munchen (Germany); Masaki, Kei; Sakasai, Akira [JAEA, Japan Atomic Energy Agency, Naka Fusion Institute, Ibaraki 311-0193 (Japan)

    2013-10-15

    Highlights: ► JT-60SA Cryostat Base has been fabricated in seven structures fastened by bolts. ► The pieces are fully welded structures further machined to get required tolerances. ► The pre-assembly of the Cryostat Base will be done at the factory to check final tolerances as well as to anticipate problems which could be encountered during final assembly. -- Abstract: JT-60SA is a superconducting tokamak to be assembled and operated at the JAEA laboratories in Naka (Japan) [1]. The tokamak has been designed to prepare, support and complement the ITER experimental programme and will be manufactured and operated under the funding of the Broader Approach Agreement (between the government of Japan and the European Commission) and of the Japan Fusion National Programme. Within the European contribution to JT-60SA, Spain has to provide the cryostat. Due to functional purposes, the cryostat has been divided in two large assemblies: the Cryostat Base (CB) and the Cryostat Vessel Body the latter subdivided into Cryostat Vessel Body Cylindrical Section (CVBCS) and the Top Lid. Spain is committed to provide the design and subsequent manufacturing of the CB and CVBCS (excluding the Top Lid) through the National Laboratory of Fusion at Ciemat. The design of both components has been concluded and the CB is currently being manufactured by a Spanish company, IDESA. This paper aims to present the status of the manufacturing and pre-assembly at the factory of the CB that has to be delivered in November 2012.

  17. Second sound shock waves and critical velocities in liquid helium 2. Ph.D. Thesis

    Science.gov (United States)

    Turner, T. N.

    1979-01-01

    Large amplitude second-sound shock waves were generated and the experimental results compared to the theory of nonlinear second-sound. The structure and thickness of second-sound shock fronts are calculated and compared to experimental data. Theoretically it is shown that at T = 1.88 K, where the nonlinear wave steepening vanishes, the thickness of a very weak shock must diverge. In a region near this temperature, a finite-amplitude shock pulse evolves into an unusual double-shock configuration consisting of a front steepened, temperature raising shock followed by a temperature lowering shock. Double-shocks are experimentally verified. It is experimentally shown that very large second-sound shock waves initiate a breakdown in the superfluidity of helium 2, which is dramatically displayed as a limit to the maximum attainable shock strength. The value of the maximum shock-induced relative velocity represents a significant lower bound to the intrinsic critical velocity of helium 2.

  18. Thermodynamic, Structural and Transport Properties of Lennard-Jones Liquid Systems. A Molecular Dynamics Simulations of Liquid Helium, Neon, Methane and Nitrogen

    Directory of Open Access Journals (Sweden)

    F. Ould Kadour

    2003-12-01

    Full Text Available Abstract: Molecular dynamics calculations are carried out in order to find the properties of Lennard Jones liquids in different state points of their phase diagram. The spherical shape and the stability of the helium, neon, methane and nitrogen make the liquids easily accessible to numerical simulation. Thermodynamic, structural, and transport properties are studied and compared with both experimental data and recent theoretical investigations. In the present work, up to 22 state points are covered, some of which are near or at the triple point. It will be shown that the classical approach leads to data that are in very good agreement with experiments and other types of calculations. At high temperatures and low densities, we observe a decrease in the uncertainties in the stress autocorrelation function by increasing the number of iterations.

  19. Theoretical Modeling and Experimental Investigation of the Thermal Performance of the LHC Prototype Lattice Cryostats

    CERN Document Server

    Riddone, G

    1997-01-01

    This thesis presents the thermal performance of the LHC (Large Hadron Collider) prototype cryostats both in steady-state and in transient conditions. LHC will be built in the 27 km LEP tunnel and will provide proton-proton collisions. It will make use of superconducting magnets operating in static bath of superfluid helium at 1.9 K. The thesis is mainly divided in three parts. The first part cont ains three chapters which present a brief overview of the LHC project. Part 1-Chapter 1 gives a short introduction to the LHC design layout and performance. Part 1-Chapter 2 refers to LHC cryogenic s ystem and describes the general architecture of the cryogenic plants, the temperature levels and the heat loads. The 50 m long LHC prototype half-cell contains one twin-bore quadrupole and four twin-a perture dipoles. In Part 1-Chapter 3 the design and construction of the prototype dipole and quadrupole cryostats are presented. The LHC prototype cryostats have integrated cryogenic lines, while the final LHC cryostats hav...

  20. Pierre Gorce working on a helium pump.

    CERN Multimedia

    1975-01-01

    This type of pump was designed by Mario Morpurgo, to circulate liquid helium in superconducting magnets wound with hollow conductors. M. Morpurgo, Design and construction of a pump for liquid helium, CRYIOGENICS, February 1977, p. 91

  1. Magnetic resonance studies of atomic hydrogen at zero field and low temperature. Recombination and binding on liquid helium

    Energy Technology Data Exchange (ETDEWEB)

    Jochemsen, R.; Morrow, M.; Berlinsky, A.J.; Hardy, W.N. (British Columbia Univ., Vancouver (Canada). Dept. of Physics)

    1982-07-01

    Magnetic resonance studies at zero field are reported for atomic hydrogen gas confined in a closed glass bulb with helium-coated walls for T<1 K in a dilution refrigerator. Low-energy r.f. discharge pulses have been used to produce H atoms at temperatures as low as T=0.06 K. The atom density nsub(H) (10/sup 9/..H/sub 2/+wall. From the temperature dependence of the rate constant K we have determined the binding energy of H on liquid /sup 4/He and /sup 3/He, and also the cross section for recombination on the surface.

  2. Vacuum-Insulated, Flexible Cryostats for Long HTS Cables: Requirements, Status, and Prospects.

    Energy Technology Data Exchange (ETDEWEB)

    Gouge, Michael J [ORNL; Demko, Jonathan A [ORNL; Roden, Mark L [ORNL; Maguire, J. F. [American Superconductor Corporation, Westborough, MA; Weber, C. S. [SuperPower Incorporated, Schenectady, New York

    2008-01-01

    Several high temperature superconducting (HTS) cable demonstration projects have begun operation on the electric grid in the last few years with the liquid nitrogen-cooled cable contained in one or more vacuum-insulated, flexible cryostats with lengths up to 600 meters. These grid demonstration projects are prototypes of the anticipated commercial market which will require superconducting cable lengths in the multiple kilometer range with the vacuum-jacketed cryostats in underground ducts providing acceptable thermal insulation for decades. The current state-of-the art for flexible cryostats (installation constraints, heat loads with a good and degraded vacuum, impact of cable bends, getter lifetime and reliability) is discussed. Further development needed to meet the challenging commercial HTS cable application is outlined.

  3. Thermodynamic characteristics of pumping line in nitrogen cryostat with narrow tail

    Science.gov (United States)

    Xu, X. N.; Jin, X.; Zhang, Y. T.; Shen, J. C.; Yao, X. X.

    This paper describes the structure of a nitrogen cryostat with a narrow tail used for electromagnetic measurements, and the experimental and theoretical results of its characteristic thermodynamic parameters such as the refrigerating temperature and the pressure in the pumping line. The conductance equations relating pressure drop and mass flow rate for laminar continuous flow in a circular and annular flow tube, and the vapour pressure equations of liquid and solid nitrogen are used to calculate the parameters of the pumping line. An analytical method is depicted to provide theoretical guidance for designing this sort of cryostat so as to obtain as low a working temperature as possible. According to the experimental data and theoretical calculations, lowering the surface pressure of solid nitrogen leads to the lowest working temperature of the nitrogen cryostat with a narrow tail, which is ≈45 K.

  4. Evaluating cryostat performance for naval applications

    Science.gov (United States)

    Knoll, David; Willen, Dag; Fesmire, James; Johnson, Wesley; Smith, Jonathan; Meneghelli, Barry; Demko, Jonathan; George, Daniel; Fowler, Brian; Huber, Patti

    2012-06-01

    The Navy intends to use High Temperature Superconducting Degaussing (HTSDG) coil systems on future Navy platforms. The Navy Metalworking Center (NMC) is leading a team that is addressing cryostat configuration and manufacturing issues associated with fabricating long lengths of flexible, vacuum-jacketed cryostats that meet Navy shipboard performance requirements. The project includes provisions to evaluate the reliability performance, as well as proofing of fabrication techniques. Navy cryostat performance specifications include less than 1 Wm-1 heat loss, 2 MPa working pressure, and a 25-year vacuum life. Cryostat multilayer insulation (MLI) systems developed on the project have been validated using a standardized cryogenic test facility and implemented on 5-meterlong test samples. Performance data from these test samples, which were characterized using both LN2 boiloff and flow-through measurement techniques, will be presented. NMC is working with an Integrated Project Team consisting of Naval Sea Systems Command, Naval Surface Warfare Center-Carderock Division, Southwire Company, nkt cables, Oak Ridge National Laboratory (ORNL), ASRC Aerospace, and NASA Kennedy Space Center (NASA-KSC) to complete these efforts. Approved for public release; distribution is unlimited. This material is submitted with the understanding that right of reproduction for governmental purposes is reserved for the Office of Naval Research, Arlington, Virginia 22203-1995.

  5. Impedance magnitude optimization of the regenerator in Stirling pulse tube cryocoolers working at liquid-helium temperatures

    Science.gov (United States)

    Cao, Q.; Qiu, L. M.; Zhi, X. Q.; Han, L.; Gan, Z. H.; Zhang, X. B.; Zhang, X. J.; Sun, D. M.

    2013-12-01

    The impedance magnitude is important for the design and operation of a Stirling pulse tube cryocooler (SPTC). However, the influence of the impedance magnitude on the SPTC working at liquid-helium temperatures is still not clear due to the complexity of refrigeration mechanism at this temperature range. In this study, the influence of the impedance magnitude on the viscous and thermal losses has been investigated, which contributes to the overall refrigeration efficiency. Different from the previous study at liquid nitrogen temperatures, it has been found and verified experimentally that a higher impedance magnitude may result in a larger mass flow rate accompanied with larger losses in the warmer region, hence the refrigeration efficiency is lowered. Numerical simulation is carried out in SPTCs of different geometry dimensions and working parameters, and the experimental study is carried out in a three-stage SPTC. A minimum no-load refrigeration temperature is achieved with an appropriate impedance magnitude that is determined by the combination of frequency and precooling temperature. A lowest temperature of 4.76 K is achieved at 28 Hz and a precooling temperature of 22.6 K, which is the lowest temperature ever achieved with He-4 for SPTCs. Impedance magnitude optimization is clearly an important consideration for the design of a 4 K SPTC.

  6. Proposal for the award of an industrial services contract for the operation and maintenance of liquid helium cryogenic plants

    CERN Document Server

    2000-01-01

    This document concerns the award of an Industrial Services contract for the operation and maintenance of liquid helium cryogenic plants. Following a market survey carried out among 54 firms in twelve Member States, a call for tenders (IT-2719/LHC) was sent on 18 August 2000 to two firms and four consortia, two consisting of two firms and two consisting of three firms, in five Member States. By the closing date, CERN had received tenders from one firm and three consortia, in four Member States. The Finance Committee is invited to agree to the negotiation of a contract with the consortium AIR LIQUIDE (FR) - LINDE KRYOTECHNIK (CH) - SERCO (DE), the lowest bidder, for an initial period of four years from 17 July 2001 for a total amount of 19 804 400 Swiss francs, not subject to revision until 16 July 2005. The contract will include options for two one-year extensions beyond the initial four-year period. The consortium has indicated the following distribution by country of the contract value covered by this adjudi...

  7. Conceptual design and structural analysis of the CFETR cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen, E-mail: wangzhen@ipp.ac.cn; Yang, Qingxi; Xu, Hao

    2015-04-15

    Highlights: • The CFETR cryostat is a large vacuum container surrounding the tokamak basic machine. • Two conceptual design schemes of CFETR cryostat were proposed. • A series of structural analyses were performed for cryostat cylinder. • The design of base section is feasible for cryostat. - Abstract: CFETR (China Fusion Engineering Test Reactor) is a new tokamak device, one important component of which is cryostat and it is now under designing by China national integration design group. The CFETR cryostat is a large single-wall vacuum-tight container surrounding the tokamak basic machine, which consists of top dome-shape lid, two cylindrical sections with circumferential stiffening ribs and bottom flat head. It shall provide a vacuum environment (10{sup −4} Pa) for the operation of the superconducting coils and all the loads that derive from cryostat itself and inner components should be transferred to the floor of tokamak pit. In this paper, two schemes of cryostat were proposed and then the structural analyses including seismic response analysis, elastic stress analysis and buckling analysis were performed to validate the conceptual design of CFETR cryostat. Based on the analysis results, it can be inferred that the cryostat II has a higher stiffness and stability. The structure of cryostat I needs to be improved against buckling and it is more difficult to manufacture for cryostat II due to its complex curved surface compared with cryostat I. Finally, the structural analysis for base section was performed and the design of main support was proved to be feasible. The design of CFETR cryostat has not been finalized and structural optimization still need to be proceeded based on the analysis results.

  8. First cold test of TESLA superconducting RF cavity in horizontal cryostat (CHECHIA)

    Energy Technology Data Exchange (ETDEWEB)

    Kuzminski, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); TESLA Collaboration

    1996-01-01

    In the framework of the TESLA project, the horizontal cryostat (CHECHIA) was built to test a superconducting RF cavity equipped with its helium vessel, magnetic shielding, cold tuner, main coupler and higher order modes couplers under realistic conditions before final assembly of eight cavities into TESLA Test Facility cryo-module. The results of the first cold tests in CHECHIA, performed at DESY with a 9-cell cavity (C19) to be used in the TTF injector are presented. Additional measurements of mechanical stability under RF operation (frequency variation with He pressure, Lorentz detuning) and cryogenic and electric measurements of power dissipation are presented. (author). 3 refs.

  9. A novel coupled VM-PT cryocooler operating at liquid helium temperature

    Science.gov (United States)

    Pan, Changzhao; Zhang, Tong; Zhou, Yuan; Wang, Junjie

    2016-07-01

    This paper presents experimental results on a novel two-stage gas-coupled VM-PT cryocooler, which is a one-stage VM cooler coupled a pulse tube cooler. In order to reach temperatures below the critical point of helium-4, a one-stage coaxial pulse tube cryocooler was gas-coupled on the cold end of the former VM cryocooler. The low temperature inertance tube and room temperature gas reservoir were used as phase shifters. The influence of room temperature double-inlet was first investigated, and the results showed that it added excessive heat loss. Then the inertance tube, regenerator and the length of the pulse tube were researched experimentally. Especially, the DC flow, whose function is similar to the double-orifice, was experimentally studied, and shown to contribute about 0.2 K for the no-load temperature. The minimum no-load temperature of 4.4 K was obtained with a pressure ratio near 1.5, working frequency of 2.2 Hz, and average pressure of 1.73 MPa.

  10. Proposal for the award of a contract for the supply, assembly and testing in liquid helium of bypass-diode stacks for the LHC magnets

    CERN Document Server

    1999-01-01

    This document concerns the award of a contract for the supply, assembly and testing in liquid helium of 1250 dipole and 400 quadrupole bypass-diode stacks. Following a market survey carried out among 61 firms in eleven Member States, a call for tenders (IT-2648/LHC/LHC) was sent on 7 July 1999 to thirteen firms and one consortium consisting of two firms, in six Member States. By the closing date, CERN had received eleven tenders. The Finance Committee is invited to approve the negotiation of a contract with the firm O.C.E.M. (IT), the lowest bidder after realignment, for the supply, assembly and testing in liquid helium of 1250 dipole and 400 quadrupole bypass-diode stacks for a total amount of 6 591 369 Swiss francs, subject to revision, with an option for the supply, assembly and testing in liquid helium of up to 125 dipole and 40 quadrupole bypass-diode stacks, for a total amount of 620 990 Swiss francs, subject to revision, bringing the overall total amount to a maximum of 7 212 359 Swiss francs, subject ...

  11. Liquid helium boil-off measurements of heat leakage from sinter-forged BSCCO current leads under DC and AC conditions

    Science.gov (United States)

    Cha, Y. S.; Niemann, R. C.; Hull, J. R.; Youngdahl, C. A.; Lanagan, M. T.; Nakade, M.; Hara, T.

    1995-06-01

    Liquid helium boil-off experiments are conducted to determine the heat leakage rate of a pair of BSCCO 2223 high-temperature superconductor current leads made by sinter forging. The experiments are carried out in both DC and AC conditions and with and without an intermediate heat intercept. Current ranges are from 0-500 A for DC tests and 0-1,000 A(sub rms) for AC tests. The leads are self-cooled. Results show that magnetic hysteresis (AC) losses for both the BSCCO leads and the low-temperature superconductor current jumper are small for the current range. It is shown that significant reduction in heat leakage rate (liquid helium boil-off rate) is realized by using the BSCCO superconductor leads. At 100 A, the heat leakage rate of the BSCCO/copper binary lead is approximately 29% of that of the conventional copper lead. Further reduction in liquid helium boil-off rate can be achieved by using an intermediate heat intercept. For example, at 500 K, the heat leakage rate of the BSCCO/copper binary lead is only 7% of that of the conventional copper lead when an intermediate heat intercept is used.

  12. Transport coefficients of normal liquid helium-4 calculated by path integral centroid molecular dynamics simulation

    Science.gov (United States)

    Imaoka, Haruna; Kinugawa, Kenichi

    2017-03-01

    Thermal conductivity, shear viscosity, and bulk viscosity of normal liquid 4He at 1.7-4.0 K are calculated using path integral centroid molecular dynamics (CMD) simulations. The calculated thermal conductivity and shear viscosity above lambda transition temperature are on the same order of magnitude as experimental values, while the agreement of shear viscosity is better. Above 2.3 K the CMD well reproduces the temperature dependences of isochoric shear viscosity and of the time integral of the energy current and off-diagonal stress tensor correlation functions. The calculated bulk viscosity, not known in experiments, is several times larger than shear viscosity.

  13. Note on the cryostatic stability of superconducting composites

    Energy Technology Data Exchange (ETDEWEB)

    Gauster, W. F.

    1978-02-01

    A careful discussion is given of the ''equal area condition'' developed by Maddock et al. In order to make the essential points as clear as possible, analytical solutions are derived under simplifying assumptions (simple model for heat transfer by nucleate and film boiling liquid helium; constant heat conduction and specific heat) instead of using more realistic but less controllable computer calculations. A quantitative definition of the concept of a long wire is given. Numerical examples for the Maddock transition characterized by the equal area condition are given for a long superconducting composite with linear cooling and for a liquid helium-cooled resistance wire of finite length. In addition, cases are shown where instead of applying the equal area stability condition, time-dependent solutions should be considered.

  14. The On-Site Status of the Kstar Helium Refrigeration System

    Science.gov (United States)

    Chang, H.-S.; Park, D. S.; Joo, J. J.; Moon, K. M.; Cho, K. W.; Kim, Y. S.; Bak, J. S.; Kim, H. M.; Cho, M. C.; Kwon, I. K.; Fauve, E.; Bernhardt, J.-M.; Dauguet, P.; Beauvisage, J.; Andrieu, F.; Yang, S.-H.; Baguer, G. M. Gistau

    2008-03-01

    Since the first design of the KSTAR helium refrigeration system (HRS) in year 2000, many modifications and changes have been applied due to both system optimization and improved knowledge of the KSTAR cold components. The present specification of the HRS had been fixed on March, 2005. Consequent manufacturing of main equipment, such as "Compressor Station" (C/S), "Cold Box" (C/B), and "Distribution Box ♯1" (D/B ♯1) was completed by or under the supervision of Air Liquide DTA by the end of year 2006. The major components of the C/S are 2 low and 2 high pressure compressor units and an oil-removal system. The cooling power of the C/B at 4.5 K equivalent is 9 kW achieved by using 6 turbo-expanders. The D/B ♯1 is a cryostat housing 49 cryogenic valves, 2 supercritical helium circulators, 1 cold compressor, and 7 heat exchangers immersed in a 6 m3 liquid helium storage. In this proceeding, the on-site installation and commissioning status of the HRS will be presented. In addition, the final specification and design features of the HRS and the

  15. Majorana One-Tonne Cryostat Cooling Conceptual Feasibility Study Rev 1

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Douglas J.; Fast, James E.; Orrell, John L.; Aguayo Navarrete, Estanislao

    2011-06-27

    This report evaluates the conceptual plans for a cryostat cooling design for the MAJORANA DEMONSTRATOR (MJD) one-tonne (S4) experiment. This document is based upon previous design work and experimental results used to evaluate the current MJD thermal design. A feasibility study of a cooling system for S4 based on the MJD thermosiphon experiment is presented. The one-tonne experiment will be a scaled up version of the MJD. There will be many cryostats in the S4 experiment. In this document a cryostat with up to 19 strings of germanium crystals is analyzed. Aside from an extra outer ring of crystals, the geometry of the cryostat for S4 is very similar to that for the MJD thermosiphon experiment. The materials used in the fabrication of both of these ultra-low background experiments will be underground-electroformed copper. The current MJD uses a two-phase liquid-gas cooling system to provide constant operating temperature. This document presents a theoretical investigation of a cooling system for the S4 experiment and evaluates the heat transfer performance requirements for such a system.

  16. Liquid nitrogen historical and current usage of the central helium liquefier at SNS

    Science.gov (United States)

    DeGraff, B.; Howell, M.; Kim, S.; Neustadt, T.

    2015-12-01

    The main cryogenic system for the Spallation Neutron Source (SNS) is comprised of a 4-K cold box, a 2-K cold box, six warm compressors, and ancillary support equipment. This system has been cold and operating with little disruption since 2005. Design and operation of liquid nitrogen (LN2) supplied from a single 20,000-gallon supply Dewar will be discussed. LN2 used to precool the 4-K cold box heat exchanger started to increase around 2011. LN2 Consumption during 2012 and 2013 was almost double the nominal usage rate. Studies of this data, plant parameter changes to respond to this information, and current interpretations are detailed in this paper. The usage rate of LN2 returned to normal in late 2013 and remained there until recent additional changes. Future study plans to understand potential causes of this including contamination migration within the 4-K cold box will also be addressed.

  17. Reducing the Liquid Helium Consumption of Superconducting Rock Magnetometers (SRMs) used in Paleomagnetic and Rock Magnetic studies: Gallium Lubrication of Gifford-McMahon Cryocoolers Leads to a Dramatic Increase in Cool-down Efficiency, and a Drop in Liquid Helium Consumption

    Science.gov (United States)

    Kirschvink, J. L.

    2015-12-01

    Two-stage Gifford-McMahon helium-gas cryocoolers have been used for the past 40+ years in a wide variety of cryogenic applications, including reducing the liquid helium consumption of SRMs. However, the cooling efficiency depends greatly on the friction of the displacement pistons, which need to be replaced every few years. This and the rising cost of liquid helium are major headaches in the operation of modern paleomagnetic laboratories. Although the development of efficient pulse-tube cryocoolers has eliminated the need for liquid helium in new superconducting magnetometers, there are still nearly 100 older SRMs around the globe that use liquid helium. In a failed attempt to replace the Gifford-McMahon unit on one of Caltech's SRMs with a pulse-tube, we irreversibly contaminated the cylindrical surfaces of the stainless-steel heat exchanger with a thin film of gallium, a non-toxic metal that has a melting temperature of ~ 30˚C. Liquid gallium will diffuse into other metals, altering their surface properties. We noticed that the next cryocooler-assisted cool down of the SRM went nearly twice as fast as in previous cycles, and the helium boiloff rate for the past 2 years has stabilized at less than half of its average over the past 30 years. It seems that the thin layer of gallium may be reducing the sliding friction of the Gifford-McMahon cryocoolers. We recently tested this on a second SRM, with similar results. We found that the inner cryocooler surface reached its equilibrium temperature in about 1/3 of the time that it took in previous cool-down cycles. WSGI also confirmed that this cool-down was unusually efficient compared to other instruments they have built. Subsequent records of the helium gas boiloff show that this system is also running at about half of its former loss rate. Based on these two results, we tentatively recommend this simple procedure any time cold-head swaps are performed on these cryocoolers.

  18. Test Results of a 1.2 kg/s Centrifugal Liquid Helium Pump for the ATLAS Superconducting Toroid Magnet System

    CERN Document Server

    Pengo, R; Passardi, Giorgio; Pirotte, O; ten Kate, H H J

    2002-01-01

    The toroid superconducting magnet of ATLAS-LHC experiment at CERN will be indirectly cooled by means of forced flow of liquid helium at about 4.5 K. A centrifugal pump will be used, providing a mass flow of 1.2 kg/s and a differential pressure of 40 kPa (ca. 400 mbar) at about 4300 rpm. Two pumps are foreseen, one for redundancy, in order to feed in parallel the cooling circuits of the Barrel and the two End-Caps toroid magnets. The paper describes the tests carried out at CERN to measure the characteristic curves, i.e. the head versus the mass flow at different rotational speeds, as well as the pump total efficiency. The pump is of the "fullemission" type, i.e. with curved blades and it is equipped with an exchangeable inducer. A dedicated pump test facility has been constructed at CERN, which includes a Coriolis-type liquid helium mass flow meter. This facility is connected to the helium refrigerator used for the tests at CERN of the racetrack magnets of the Barrel and of the End-Cap toroids.

  19. Observation of dynamic atom-atom correlation in liquid helium in real space.

    Science.gov (United States)

    Dmowski, W; Diallo, S O; Lokshin, K; Ehlers, G; Ferré, G; Boronat, J; Egami, T

    2017-05-04

    Liquid (4)He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom-atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that (4)He atoms in the Bose-Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDF peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom-atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.

  20. Experience with helium leak and thermal shocks test of SST-1 cryo components

    Science.gov (United States)

    Sharma, Rajiv; Nimavat, Hiren; Srikanth, G. L. N.; Bairagi, Nitin; Shah, Pankil; Tanna, V. L.; Pradhan, S.

    2012-11-01

    A steady state superconducting Tokamak SST-1 is presently under its assembly stage at the Institute for Plasma Research. The SST-1 machine is a family of Superconducting SC coils for both Toroidal field and Poloidal Field. An ultra high vacuum compatible vacuum vessel, placed in the bore of the TF coils, houses the plasma facing components. A high vacuum cryostat encloses all the SC coils and the vacuum vessel. Liquid Nitrogen (LN2) cooled thermal shield between the vacuum vessel & SC coils as well as between cryostat and the SC coils. There are number of crucial cryogenic components as Electrical isolators, 80 K thermal shield, Cryogenic flexible hose etc., which have to be passed the performance validation tests as part of fulfillment of the stringent QA/QC before incorporated in the main assembly. The individual leak tests of components at RT as well as after thermal cycle from 300 K to 77 K ensure us to make final overall leak proof system. These components include, Large numbers of Electrical Isolators for Helium as well as LN2 services, Flexible Bellows and Hoses for Helium as well as LN2 services, Thermal shock tests of large numbers of 80 K Bubble shields In order to validate the helium leak tightness of these components, we have used the calibrated mass spectrometer leak detector (MSLD) at 300 K, 77 K and 4.2. Since it is very difficult to locate the leaks, which are appearing at rather lower temperatures e.g. less than 20 K, We have invented different approaches to resolve the issue of such leaks. This paper, in general describes the design of cryogenic flexible hose, assembly, couplings for leak testing, test method and techniques of thermal cycles test at 77 K inflow conditions and leak testing aspects of different cryogenic components. The test results, the problems encountered and its solutions techniques are discussed.

  1. Connection Cryostats for LHC Dispersion Suppressors

    CERN Document Server

    Marque, S; Genet, M; Skoczen, B

    2004-01-01

    The lattice of the Large Hadron Collider (LHC) being built at CERN is based on 8 standard arcs of 2.5 km length. Each arc is bounded on either side by Dispersion Suppressors connected to the arc by connection cryostats providing 15m long drift spaces. As for a dipole magnet, the connection cryostat provides a continuity of beam and insulation vacuum, electrical powering, cryogenic circuits, thermal and radiation shielding. In total 16 modules will be constructed. The stringent functional specification has led to various design options. Among them, a light mechanical structure has been developed with a stiffness comparable to that of a dipole magnet, for alignment purpose. Thermal studies, including lambda front propagation, have been performed to ensure a cooling down time to 1.9 K within the time budget. A special cooling scheme around the beam tubes has been chosen to cope with heat loads produced during operation. We report on the general design of these modules and on the adopted manufacturing process whi...

  2. The EBEX Cryostat and Supporting Electronics

    Science.gov (United States)

    Sagiv, Ilan Shai

    EBEX is a balloon-borne polarimeter designed to measure the B-mode polarization of the cosmic microwave background radiation. The instrument includes a 1.5 meter Gregorian-type telescope and a cryogenic receiver housing 1432 bolometric transition edge sensor detectors operating at 0.3 ° K. In this thesis I describe my work on the development and characterization of the EBEX cryogenic system and of several electronics sub-systems. I developed CANbus-based software to monitor temperatures inside the receiver and to control the operation of two sub-Kelvin adsorption refrigerators. I commissioned and tested an experiment-wide timing system that tags data from all subsystems with an accuracy that is a factor of 10 better than required. I constructed and tested two pressure vessels that store data on board. Data collected during the EBEX test flight in June 2009 show that all these subsystems performed according to predictions. The temperatures of the cryostat were stable. An analysis of the temperature data finds no scan synchronous signal in the cryostat temperatures. The timing system and pressure vessels operated as expected. A calibrator was installed inside the receiver to monitor detector responsivity variations. I analyzed the data from the test flight and show that in its current configuration the calibrator is inadequate.

  3. Operation of Silicon, Diamond and liquid Helium Detectors in the range of Room Temperature to 1.9 K and after an Irradiation Dose of several Mega Gray

    CERN Document Server

    Kurfuerst, C; Dehning, B; Eisel, T; Sapinski, M; Eremin, V

    2013-01-01

    At the triplet magnets, close to the interaction regions of the Large Hadron Collider (LHC), the current Beam Loss Monitoring (BLM) system is sensitive to the debris from the collision points. For future beams, with higher energy and intensity the expected increase in luminosity implicate an increase of the debris from interaction products covering the quench-provoking beam losses from the primary proton beams. The investigated option is to locate the detectors as close as possible to the superconducting coil, where the signal ratio of both is optimal. Therefore the detectors have to be located inside the cold mass of the superconducting magnets in superfluid helium at 1.9 Kelvin. Past measurements have shown that a liquid helium ionisation chamber, diamond and silicon detectors are promising candidates for cryogenic beam loss monitors. The carrier parameter, drift velocity, and the leakage current changes will be shown as a function of temperature. New high irradiation test beam measurements at room temperat...

  4. Cryogenic and thermal design for the Superfluid Helium On-Orbit Transfer (SHOOT) experiment

    Science.gov (United States)

    Lee, J. H.; Maa, S.; Brooks, W. F.; Ng, Y. S.

    1988-01-01

    The analysis and trade-offs of the external thermal design of the two 200-liter dewars required in the SHOOT experiment to extend space mission life by superfluid helium replenishment are discussed. Also considered are the support electronics and the optimization and prediction of the performance of the dewar and cryostat assemblies. Particular attention is given to the ground-hold and standby performance of the dewars, along with the temperature of the helium bath during high-flow-rate helium transfers.

  5. Rapidly pulsed helium droplet source

    Energy Technology Data Exchange (ETDEWEB)

    Pentlehner, Dominik; Riechers, Ricarda; Dick, Bernhard; Slenczka, Alkwin [Institute for Physical and Theoretical Chemistry, University of Regensburg, 93053 Regensburg (Germany); Even, Uzi; Lavie, Nachum; Brown, Raviv; Luria, Kfir [Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv (Israel)

    2009-04-15

    A pulsed valve connected to a closed-cycle cryostat was optimized for producing helium droplets. The pulsed droplet beam appeared with a bimodal size distribution. The leading part of the pulse consists of droplets suitable for doping with molecules. The average size of this part can be varied between 10{sup 4} and 10{sup 6} helium atoms, and the width of the distribution is smaller as compared to a continuous-flow droplet source. The system has been tested in a single pulse mode and at repetition rates of up to 500 Hz with almost constant intensity. The droplet density was found to be increased by more than an order of magnitude as compared to a continuous-flow droplet source.

  6. 1 K cryostat with sub-millikelvin stability based on a pulse-tube cryocooler

    Science.gov (United States)

    DeMann, A.; Mueller, Sara; Field, S. B.

    2016-01-01

    A cryogenic system has been designed and tested that reaches a temperature below 1.1 K, with an rms temperature stability of 25 μ K. In this system a commercial pulse-tube cryocooler is used to liquify helium gas supplied from an external source. This liquid helium enters a 1 K pot through a large-impedance capillary tube, similar to a conventional 1 K system operated from a liquid helium bath. Unlike a conventional system, however, the molar flow rate of the system can be varied by changing the pressure of the incoming helium. This allows for a trade-off between helium usage and cooling power, which has a maximum value of 27 mW. The measured cooling power and fraction of helium exiting the capillary as liquid agree well with predictions based on an isenthalpic model of helium flow through the capillary. The system is simple to use and inexpensive to operate: The system can be cooled to base temperature in about 3 h and, with a flow rate giving a cooling power of 13 mW, the helium cost is around 6 per day.

  7. Cryogenic System for the Test Facilities of the ATLAS Liquid Argon Calorimeter Modules

    CERN Document Server

    Bremer, J; Chalifour, M; Haug, F; Passardi, Giorgio; Tischhauser, Johann

    1998-01-01

    To perform cold tests on the different modules of the ATLAS liquid argon calorimeter, a cryogenic system has been constructed and is now operated at the CERN North Experimental Area. Three different test cryostats will house the modules, which can also be exposed to particle beams for calibration purposes. The three cryostats share a common liquid argon and liquid nitrogen distribution system. The system is rather complex since it has to allow operations of the three cryostats at the same time. Liquid nitrogen is used as cold source for both the cool-down of the cryostats and for normal operation of the cryostats filled with liquid argon.

  8. Validation and implementation of sandwich structure bottom plate to rib weld joint in the base section of ITER Cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Prajapati, Rajnikant, E-mail: rajnikant@iter-india.org [ITER-India, Institute For Plasma Research, A-29, GIDC Electronics Estate, Sector-25, Gandhinagar 382016 (India); Bhardwaj, Anil K.; Gupta, Girish; Joshi, Vaibhav; Patel, Mitul; Bhavsar, Jagrut; More, Vipul; Jindal, Mukesh; Bhattacharya, Avik; Jogi, Gaurav; Palaliya, Amit; Jha, Saroj; Pandey, Manish [ITER-India, Institute For Plasma Research, A-29, GIDC Electronics Estate, Sector-25, Gandhinagar 382016 (India); Jadhav, Pandurang; Desai, Hemal [Larsen & Toubro Limited, Heavy Engineering, Hazira Manufacturing Complex, Gujarat (India)

    2016-11-01

    Highlights: • ITER Cryostat base section sandwich structure bottom plate to rib weld joint is qualified through mock-up. • Established welding sequence was successfully implemented on all six sectors of cryostat base section. • Each layer liquid penetrant examination has been carried out for these weld joints and found satisfactory. - Abstract: Cryostat is a large stainless steel vacuum vessel providing vacuum environment to ITER machine components. The cryostat is ∼30 m in diameter and ∼30 m in height having variable thickness from 25 mm to 180 mm. Sandwich structure of cryostat base section withstands vacuum loading and limits the deformation under service conditions. Sandwich structure consists of top and bottom plates internally strengthened with radial and circular ribs. In current work, sandwich structure bottom plate to rib weld joint has been designed with full penetration joint as per ITER Vacuum Handbook requirement considering nondestructive examinations and welding feasibility. Since this joint was outside the scope of ASME Section VIII Div. 2, it was decided to validate through mock-up of bottom plate to rib joint. Welding sequence was established to control the distortion. Tensile test, macro-structural examination and layer by layer LPE were carried out for validation of this weld joint. However possibility of ultrasonic examination method was also investigated. The test results from the welded joint mock-up were found to confirm all code and specification requirements. The same was implemented in first sector (0–60°) of base section sandwich structure.

  9. Helium in Earth's early core

    Science.gov (United States)

    Bouhifd, M. A.; Jephcoat, Andrew P.; Heber, Veronika S.; Kelley, Simon P.

    2013-11-01

    The observed escape of the primordial helium isotope, 3He, from the Earth's interior indicates that primordial helium survived the energetic process of planetary accretion and has been trapped within the Earth to the present day. Two distinct reservoirs in the Earth's interior have been invoked to account for variations in the 3He/4He ratio observed at the surface in ocean basalts: a conventional depleted mantle source and a deep, still enigmatic, source that must have been isolated from processing throughout Earth history. The Earth's iron-based core has not been considered a potential helium source because partitioning of helium into metal liquid has been assumed to be negligible. Here we determine helium partitioning in experiments between molten silicates and iron-rich metal liquids at conditions up to 16GPa and 3,000K. Analyses of the samples by ultraviolet laser ablation mass spectrometry yield metal-silicate helium partition coefficients that range between 4.7×10-3 and 1.7×10-2 and suggest that significant quantities of helium may reside in the core. Based on estimated concentrations of primordial helium, we conclude that the early core could have incorporated enough helium to supply deep-rooted plumes enriched in 3He throughout the age of the Earth.

  10. Design of cryostat for testing high-Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ho Myung; Baik, Joun Hoon; Lee, Hoon; Kim, Young Kwon; Park, Jeong Soo; Song, Seung Jae [Hongik University, Seoul (Korea, Republic of)

    1997-07-01

    This project is proposed to develop several design techniques concerning the gas-cooled or the refrigerator-cooled cryostats to test the HTS at temperature ranges between 20 K and 100 K. (1) It is shown by a numerical analysis that the thermal stability of HTS in a gas-cooled cryostat is satisfactory, mainly because of large heat capacity. The feasibility of the gas-cooled cryostat is demonstrated after the cooling load calculation, the selection of the cryocooler, and the detailed design and fabrication. It is also found that the current leads in the gas-cooled cryostat increases the cooling load but can make the cool-down time shorter to a considerable degree. (2) The thermal stability and the cooling load of HTS in a refrigerator-cooled cryostat do not differ much from those in a gas-cooled cryostat. On the other hand, it has been known that the thermal switches and the soft-contact materials in the refrigerator-superconductor interface are necessary to shorten the coo-down time and to provide a flexibility in the configuration of cryostat. Various shapes and designs are demonstrated for the refrigerator-cooled cryostat. (3) Binary current leads are indispensable in a refrigerator-cooled cryostat. The current lead is a series combination of a normal metal at warm side and a HTS at cold side. It is shown that the optimal diameter-length relation exits for the minimum refrigeration work. It is also found that the refrigerator work decreases as the length of HTS increases. For a given length of HTS, there is an optimal cross-sectional area and it increases with the length. 54 refs., 9 tabs., 56 figs. (author)

  11. Cryostat for Ultra-low-energy Threshold Germanium Spectrometers

    CERN Document Server

    Aalseth, Craig E; Fast, James E; Hossbach, Todd W; Orrell, John L; Overman, Cory T; Vandevender, Brent A

    2012-01-01

    This paper presents progress on the development of a cryostat intended to improve upon the low-energy threshold (below 0.5 keV) of p-type point contact germanium gamma-ray spectrometers. Ultra-low energy thresholds are important in the detection of low-energy nuclear recoils, an event class relevant to both dark matter direct detection and measurement of coherent neutrino-nucleus scattering. The cryostat design, including a thermal and electrical-field model, is given. A prototype cryostat has been assembled and data acquired to evaluate its vacuum and thermal performance.

  12. Advances in Helium Cryogenics

    Science.gov (United States)

    Sciver, S. W. Van

    This review provides a survey of major advances that have occurred in recent years in the area of helium cryogenics. Helium-temperature cryogenics is the enabling technology for a substantial and growing number of low-temperature systems from superconducting magnets to space-based experimental facilities. In recent years there have been many advances in the technology of low-temperature helium, driven mostly by new applications. However, to keep the review from being too broad, this presentation focuses mainly on three of the most significant advances. These are: (1) the development of large-scale recuperative refrigeration systems mainly for superconducting magnet applications in accelerators and other research facilities; (2) the use of stored superfluid helium (He II) as a coolant for spacebased astrophysics experiments; and (3) the application of regenerative cryocoolers operating at liquid helium temperatures primarily for cooling superconducting devices. In each case, the reader should observe that critical technologies were developed to facilitate these applications. In addition to these three primary advances, other significant helium cryogenic technologies are briefly reviewed at the end of this chapter, along with some vision for future developments in these areas.

  13. Infrared transmission at the 3.39 micron helium-neon laser wavelength in liquid-core quartz fibers

    Science.gov (United States)

    Majumdar, A. K.; Hinkley, E. D.; Menzies, R. T.

    1979-01-01

    Infrared transmission at the 3.39 micron helium-neon laser wavelength has been measured in a tetrachloroethylene-filled fused-quartz fiber. The loss measurements were taken for three different settings of laser light intensity using a series of neutral density filters. The average value of transmission loss at this wavelength was found to be 56 dB/km.

  14. Performance of compact liquid helium free {sup 3}He-{sup 4}He dilution refrigerator directly coupled with GM cooler in TES microcalorimeter operation

    Energy Technology Data Exchange (ETDEWEB)

    Umeno, T; Kamioka, Y; Yoshida, S [Taiyo Nippon Sanso Corporation, 1-3-26 Koyama, Shinagawa-ku, 142-8558 (Japan); Maehata, K; Ishibashi, K [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka-shi, 819-0395 (Japan); Takasaki, K [Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki-ken, 319-1194 (Japan); Tanaka, K [SII NanoTechnology Inc., 36-1 Takenoshita, Oyama-cho, Suntou-gun, Shizuoka-ken, 410-1393 (Japan)], E-mail: Takahiro.Umeno@tn-sanso.co.jp

    2009-02-01

    A superconducting transition edge thermosensor (TES) microcalorimeter was cooled by a compact liquid-helium-free {sup 3}He-{sup 4}He dilution refrigerator with loading a Gifford-McMahon (GM) cooler for detection of LX-ray photons emitted from an {sup 241}Am source. The first and second stages of the GM cooler are directly coupled with the first and the second precool heat exchangers of a stick shaped dilution unit through copper plates in the vacuum chamber, respectively. The circulating {sup 3}He-{sup 4}He gas through the precooled heat exchangers is condensed into a liquid of condense mixture by the isoenthalpic expansion through the Joule-Thomson impedance. A cascade of two mixing chambers are employed for achieving sufficient cooling power. The helium-free dilution refrigerator performs the cooling power of 20 {mu}W at 100 mK. The TES and SQUID chips suffered from mechanical vibrations induced by a reciprocating motion of the displacer of the GM cooler. Detection signals of LX-ray photons emitted from {sup 241}Am source were observed by operating the TES microcalorimeter in severe noise environment induced by mechanical vibrations.

  15. Transferring superfluid helium in space

    Science.gov (United States)

    Kittel, Peter

    1986-01-01

    A simple thermodynamic model of a transfer system for resupplying liquid helium in space is presented, with application to NASA projects including the Space Infrared Telescope Facility, the Large Deployable Reflector, and the Hubble Space Telescope. The relations between different thermodynamic regimes that can be expected in the transfer line are used to study the relative efficiencies of various possible transfer techniques. Low heat leak into the transfer line, particularly at point sources such as the coupling, is necesssary for efficient transfer of liquid helium, and proper selection of supply tank temperature is important during helium resupply.

  16. Insertion of the first half-barrel of the ATLAS electromagnetic calorimeter into its cryostat

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The first cylinder of the ATLAS electromagnetic calorimeter barrel and the presampler have been inserted in the cryostat.The ATLAS electromagnetic calorimeter is intended to detect electrons, positrons and photons by measuring the energy they deposit on being absorbed. The cylinder of the calorimeter is in two halves, that will be sunk in a liquid-argon bath cooled to 90 kelvin (-180°C). Each half-barrel is 3.2 metres long, 53 cm thick and formed by assembling 16 modules. Each module is made up of alternate lead absorbers and electrodes pressed into 64 layers folded accordion-fashion. The presampler, set up inside the cylinder, is an integral part of the calorimeter system: It measures the energy lost by a particle before it reaches the calorimeter. To ensure an ultra-clean environment, a tent (visible here) was erected round the calorimeter and entry point to the cryostat. The detector and presampler, fitted together, could then be slid gradually into the cryostat like a drawer. To do so, the insertion team...

  17. Insertion of the first half-barrel of the ATLAS electromagnetic calorimeter into its cryostat

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The first cylinder of the ATLAS electromagnetic calorimeter barrel and the presampler have been inserted in the cryostat. The ATLAS electromagnetic calorimeter is intended to detect electrons, positrons and photons by measuring the energy they deposit on being absorbed. The cylinder of the calorimeter is in two halves, that will be sunk in a liquid-argon bath cooled to 90 kelvin (-180°C). Each half-barrel is 3.2 metres long, 53 cm thick and formed by assembling 16 modules. Each module is made up of alternate lead absorbers and electrodes pressed into 64 layers folded accordion-fashion. The presampler, set up inside the cylinder, is an integral part of the calorimeter system: It measures the energy lost by a particle before it reaches the calorimeter. To ensure an ultra-clean environment, a tent was erected round the calorimeter and entry point to the cryostat. The detector and presampler, fitted together, could then be slid gradually into the cryostat like a drawer. To do so, the insertion team had to fine-t...

  18. Portable He-3 detector cryostat for the far infrared

    Science.gov (United States)

    Radostitz, J. V.; Nolt, I. G.; Kittel, P.; Donnelly, R. J.

    1978-01-01

    The design of a portable He-3 cryostat for far infrared detection applications is described, with a cutaway drawing of the cryostat, including bolometer and cooled optics, provided. Consideration is given to the selection and testing of various bolometer materials, including Ge:Ga and Ge:InSb; the resistance-temperature coefficients of the materials examined are presented. The absolute flux calibration of the detector system using a new temperature-modulated cold source method is described.

  19. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  20. High-performance MgB2 superconducting wires for use under liquid-helium-free conditions fabricated using an internal Mg diffusion process

    Science.gov (United States)

    Ye, ShuJun; Song, Minghui; Matsumoto, Akiyoshi; Togano, Kazumasa; Takeguchi, Masaki; Ohmura, Takahito; Kumakura, Hiroaki

    2013-12-01

    MgB2 has a superconducting transition temperature (Tc) of 39 K, which is much higher than that for practical metallic superconductors. Thus, it is hoped that MgB2 can not only replace metallic superconductors, but can be used under liquid-helium-free conditions, for example, at temperatures of 10-20 K that can easily be achieved using cryocooling systems. However, to date, the reported critical current density (Jc) for MgB2 wires is not high enough for large-scale applications in liquid-helium-free conditions. In the present study, successful fabrication of high-performance MgB2 superconducting wires was carried out using an internal Mg diffusion (IMD) process, involving a p-dimethylbenzene (C8H10) pre-treatment of carbon-coated B powder with nanometer-sized particles. The resulting wires exhibited the highest ever Jc of 1.2 × 105 A cm-2 at 4.2 K and 10 T, and an engineering critical current density (Je) of about 1 × 104 A cm-2. Not only in 4.2 K, but also in 10 K, the Jc values for the wires fabricated in the present study are in fact higher than that for Nb-Ti wires at 4.2 K for the magnetic fields at which the measurements were carried out. At 20 K and 5 T, the Jc and Je were about 7.6 × 105 A cm-2 and 5.3 × 103 A cm-2, respectively, which are the highest values reported for MgB2 wires to date. The results of a detailed microstructural analysis suggested that the main reason for the superior electrical performance was the high density of the MgB2 layer rather than just the small grain size, and that the critical current could be further increased by suitable control of the microstructure. These high-performance IMD-processed MgB2 wires are thus promising superconductors for applications such as magnetic resonance imaging and maglev trains that can operate under liquid-helium-free conditions.

  1. Experimental evaluation of quantum computing elements (qubits) made of electrons trapped over a liquid helium film; Evaluation experimentale d'elements de calcul quantique (qubit) formes d'electrons pieges sur l'helium liquide

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, E

    2006-12-15

    An electron on helium presents a quantized energy spectrum. The interaction with the environment is considered sufficiently weak in order to allow the realization of a quantum bit (qubit) by using the first two energy levels. The first stage in the realization of this qubit was to trap and control a single electron. This is carried out thanks to a set of micro-fabricated electrodes defining a well of potential in which the electron is trapped. We are able with such a sample to trap and detect a variables number of electrons varying between one and around twenty. This then allowed us to study the static behaviour of a small number of electrons in a trap. They are supposed to crystallize and form structures called Wigner molecules. Such molecules have not yet been observed yet with electrons above helium. Our results bring circumstantial evidence for of Wigner crystallization. We then sought to characterize the qubit more precisely. We sought to carry out a projective reading (depending on the state of the qubit) and a measurement of the relaxation time. The results were obtained by exciting the electron with an incoherent electric field. A clean measurement of the relaxation time would require a coherent electric field. The conclusion cannot thus be final but it would seem that the relaxation time is shorter than calculated theoretically. That is perhaps due to a measurement of the relaxation between the oscillating states in the trap and not between the states of the qubit. (author)

  2. Antiprotonic helium

    CERN Multimedia

    Eades, John

    2005-01-01

    An exotic atom in w hich an electron and an antiproton orbit a helium nucleus could reveal if there are any differences between matter and antimatter. The author describes this unusual mirror on the antiworld (5 pages)

  3. Infrared Spectroscopy of Deuterated Acetylene in Solid Parahydrogen and the Helium Recovery Initiative

    Science.gov (United States)

    Strom, Aaron I.; Anderson, David T.

    2016-06-01

    The linear tetratomic organic molecule acetylene, HCCH, has been studied extensively throughout the past century via numerous spectroscopic experiments, exploiting wavelengths across the electromagnetic spectrum. Both the mono- and di-deutero acetylene isotopologues have also been widely studied, namely HCCD and DCCD. In this presentation, I will present the Fourier transform infrared (FTIR) spectroscopy of DCCD in solid parahydrogen (pH2) in the low-temperature regime (1.5-5.0 K). We intend to perform UV photochemical studies on DCCD doped solid pH2 and, therefore, the infrared spectroscopy must be characterized prior. The FTIR spectrum of DCCD isolated in solid pH2 exhibits rich fine structure in the νb{3} asymmetric C-D stretch region. Some of the observed peaks may arise from the formation of weakly bound acetylene dimers, or potentially even larger clusters. We can test this hypothesis by varying the DCCD concentration in separate experiments and temperature cycling the matrix to look for irreversible cluster growth. In preliminary experiments we observe trace amounts of the lighter isotopologues (HCCD and HCCH) and so these species can also cluster with DCCD, adding to the complexity of the spectra. We remark that ortho-hydrogen clustering to DCCD may also be occurring and we have ways to check that as well. In order to make better sense of the FTIR spectrum of DCCD doped pH2, a comparison with the simulated low temperature gas-phase spectrum will also be presented. This will allow us to address issues related to the extent of the rotational motion of DCCD in solid pH2. A liquid helium bath cryostat is used to grow and maintain the DCCD doped pH2 crystals for spectroscopic characterization. Helium is a non-renewable resource and in recent years the Anderson group has been building a helium recovery system. This Helium Recovery Initiative (HRI) will be discussed in an effort to describe how we implemented this new experimental system in our laboratory and to

  4. Comparison of FEA Calculations with Cryostat Dummy Weight Test Results

    CERN Document Server

    Guarino, V

    2004-01-01

    Extensive Finite Element analyses were performed to determine the loads and stresses acting on the EB and Barrel during assembly and in its final configuration. Up to now it has been difficult to verify the FEA results due to the unusual compression at the inner radius shims has resulted in larger than anticipated deflections. The cryostat dummy load test offers the first real chance for a direct comparison between the deflections of the Tilecal and the FEA model. By comparing the difference in position of the FM's before the cryostat load was applied and afterwards it is possible to eliminate all other variables and compare directly with the FEA model. This paper will present a comparison between the FEA model and the survey measurements for when the cryostat dummy weight load was applied at 32 modules and 46 modules in place.

  5. LHC interaction region quadrupole cryostat design and fabrication

    CERN Document Server

    Nicol, T H; Huang, Y; Page, Thomas M

    2002-01-01

    The cryostat of a Large Hadron Collider (LHC) Interaction Region (IR) quadrupole magnet consists of all components of the inner triplet except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, to house all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations, and must be able to be manufactured at low cost. The major components of the cryostat are the vacuum vessel, thermal shield, multilayer insulation system, cryogenic piping, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course of their...

  6. Comparative study of high voltage bushing designs suitable for apparatus containing cryogenic helium gas

    Science.gov (United States)

    Rodrigo, H.; Graber, L.; Kwag, D. S.; Crook, D. G.; Trociewitz, B.

    2013-10-01

    The high voltage bushing forms a critical part of any termination on cables, transformers and other power system devices. Cryogenic entities such as superconducting cables or fault current limiters add more complexity to the design of the bushing. Even more complex are bushings designed for superconducting devices which are cooled by high pressure helium gas. When looking for a bushing suitable for dielectric cable tests in a helium gas cryostat no appropriate device could be found that fulfilled the criterion regarding partial discharge inception voltage level. Therefore we decided to design and manufacture a bushing in-house. In the present work we describe the dielectric tests and operational experience on three types of bushings: One was a modified commercially available ceramics feed through which we adopted for our special need. The second bushing was made of an epoxy resin, with an embedded copper squirrel cage arrangement at the flange, extending down about 30 cm into the cold end of the bushing. This feature reduced the electric field on the surface of the bushing to a negligible value. The third bushing was based on a hollow body consisting of glass fiber reinforced polymer and stainless steel filled with liquid nitrogen. The measurements showed that the dielectric quality of all three bushings exceeded the requirements for the intended purpose. The partial discharge (PD) data from these studies will be used for the design and fabrication of a cable termination for a specialized application on board a US Navy ship.

  7. Thermal Performance of the XRS Helium Insert

    Science.gov (United States)

    Breon, Susan R.; DiPirro, Michael J.; Tuttle, James G.; Shirron, Peter J.; Warner, Brent A.; Boyle, Robert F.; Canavan, Edgar R.

    1999-01-01

    The X-Ray Spectrometer (XRS) is an instrument on the Japanese Astro-E satellite, scheduled for launch early in the year 2000. The XRS Helium Insert comprises a superfluid helium cryostat, an Adiabatic Demagnetization Refrigerator (ADR), and the XRS calorimeters with their cold electronics. The calorimeters are capable of detecting X-rays over the energy range 0.1 to 10 keV with a resolution of 12 eV. The Helium Insert completed its performance and verification testing at Goddard in January 1999. It was shipped to Japan, where it has been integrated with the neon dewar built by Sumitomo Heavy Industries. The Helium Insert was given a challenging lifetime requirement of 2.0 years with a goal of 2.5 years. Based on the results of the thermal performance tests, the predicted on-orbit lifetime is 2.6 years with a margin of 30%. This is the result of both higher efficiency in the ADR cycle and the low temperature top-off, more than compensating for an increase in the parasitic heat load. This paper presents a summary of the key design features and the results of the thermal testing of the XRS Helium Insert.

  8. Insulation Test Cryostat with Lift Mechanism

    Science.gov (United States)

    Fesmire, James E. (Inventor); Dokos, Adam G. (Inventor)

    2016-01-01

    A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). An inner vessel receives liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including upper and lower guard chambers and middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid allowing easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.

  9. Manufactured by Kawasaki Heavy Industries Ltd of Harima, in Japan, the cryostat of the ATLAS electromagnetic calorimeter barrel underwent very strict cryogenic tests before being shipped to Europe

    CERN Multimedia

    2001-01-01

    The cryostat consists of a vacuum chamber, a cylinder that is 5.5 metres in diameter, 7 metres long, and a concentric cold chamber to be filled with liquid argon that will house the detector. The whole unit is made out of aluminium 5083 and will weigh 210 tonnes when put together with the detector.

  10. Critical Landau velocity in helium nanodroplets.

    Science.gov (United States)

    Brauer, Nils B; Smolarek, Szymon; Loginov, Evgeniy; Mateo, David; Hernando, Alberto; Pi, Marti; Barranco, Manuel; Buma, Wybren J; Drabbels, Marcel

    2013-10-11

    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective excitations of the helium atoms in the liquid. In the present work we determine to what extent this concept can still be applied to nanometer-scale, finite size helium systems. To this end, atoms and molecules embedded in helium nanodroplets of various sizes are accelerated out of the droplets by means of optical excitation, and the speed distributions of the ejected particles are determined. The measurements reveal the existence of a critical velocity in these systems, even for nanodroplets consisting of only a thousand helium atoms. Accompanying theoretical simulations based on a time-dependent density functional description of the helium confirm and further elucidate this experimental finding.

  11. Structural analysis of the JT-60SA cryostat vessel body

    Energy Technology Data Exchange (ETDEWEB)

    Botija, José, E-mail: jose.botija@ciemat.es [Association EURATOM – CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Alonso, Javier; Fernández, Pilar; Medrano, Mercedes; Ramos, Francisco; Rincon, Esther; Soleto, Alfonso [Association EURATOM – CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Davis, Sam; Di Pietro, Enrico; Tomarchio, Valerio [Fusion for Energy, JT-60SA European Home Team, 85748 Garching bei Munchen (Germany); Masaki, Kei; Sakasai, Akira; Shibama, Yusuke [JAEA – Japan Atomic Energy Agency, Naka Fusion Institute, Ibaraki 311-0193 (Japan)

    2013-10-15

    Highlights: ► Structural analysis to validate the JT-60SA cryostat vessel body design. ► Design code ASME 2007 “Boiler and Pressure Vessel Code. Section VIII”. ► First buckling mode: load multiplier of 10.644, higher than the minimum factor 4.7. ► Elastic and elastic–plastic stress analysis meets ASME against plastic collapse. ► Bolted fasteners have been analyzed showing small gaps closed by strong welding. -- Abstract: The JT-60SA cryostat is a stainless steel vacuum vessel (14 m diameter, 16 m height) which encloses the Tokamak providing the vacuum environment (10{sup −3} Pa) necessary to limit the transmission of thermal loads to the components at cryogenic temperature. It must withstand both external atmospheric pressure during normal operation and internal overpressure in case of an accident. The paper summarizes the structural analyses performed in order to validate the JT-60SA cryostat vessel body design. It comprises several analyses: a buckling analysis to demonstrate stability under the external pressure; an elastic and an elastic–plastic stress analysis according to ASME VIII rules, to evaluate resistance to plastic collapse including localized stress concentrations; and, finally, a detailed analysis with bolted fasteners in order to evaluate the behavior of the flanges, assuring the integrity of the vacuum sealing welds of the cryostat vessel body.

  12. Alternate Design of ITER Cryostat Skirt Support System

    Science.gov (United States)

    Pandey, Manish Kumar; Jha, Saroj Kumar; Gupta, Girish Kumar; Bhattacharya, Avik; Jogi, Gaurav; Bhardwaj, Anil Kumar

    2017-04-01

    The skirt support of ITER cryostat is a support system which takes all the load of cryostat cylinder and dome during normal and operational condition. The present design of skirt support has full penetration weld joints at the bottom (shell to horizontal plate joint). To fulfil the requirements of tolerances and control the welding distortions, we have proposed to change the full penetration weld into fillet weld. A detail calculation is done to check the feasibility and structural impact due to proposed design. The calculations provide the size requirements of fillet weld. To verify the structural integrity during most severe load case, finite element analysis (FEA) has been done in line with ASME section VIII division 2 [1]. By FEA ‘Plastic Collapse’ and ‘Local Failure’ modes has been assessed. 5° sector of skirt clamp has been modelled in CATIA V5 R21 and used in FEA. Fillet weld at shell to horizontal plate joint has been modelled and symmetry boundary condition at ± 2.5° applied. ‘Elastic Plastic Analysis’ has been performed for the most severe loading case i.e. Category IV loading. The alternate design of Cryostat Skirt support system has been found safe by analysis against Plastic collapse and Local Failure Modes with load proportionality factor 2.3. Alternate design of Cryostat skirt support system has been done and validated by FEA. As per alternate design, the proposal of fillet weld has been implemented in manufacturing.

  13. Cryostat for a high-temperature superconducting power cable

    NARCIS (Netherlands)

    Chevtchenko, O.A.; Smit, J.J.; Geschiere, A.

    2010-01-01

    Cryostat for a high-temperature superconducting power cable, comprising concentric tubes, an annular region between said tubes, wherein a multilayer thermal insulation and getter material for supporting high vacuum conditions are provided in said annular region, and wherein the multilayer insulation

  14. Helium II level measurement techniques

    Science.gov (United States)

    Celik, D.; Hilton, D. K.; Zhang, T.; Van Sciver, S. W.

    2001-05-01

    In this paper, a survey of cryogenic liquid level measurement techniques applicable to superfluid helium (He II) is given. The survey includes both continuous and discrete measurement techniques. A number of different probes and controlling circuits for this purpose have been described in the literature. They fall into one of the following categories: capacitive liquid level gauges, superconducting wire liquid level gauges, thermodynamic (heat transfer-based) liquid level gauges, resistive gauges, ultrasound and transmission line-based level detectors. The present paper reviews these techniques and their suitability for He II service. In addition to these methods, techniques for measuring the total liquid volume and mass gauging are also discussed.

  15. Helium Recovery in the LHC Cryogenic System following Magnet Resistive Transitions

    CERN Document Server

    Chorowski, M; Serio, L; Tavian, L; Wagner, U; Van Weelderen, R

    1998-01-01

    A resistive transition (quench) of the Large Hadron Collider magnets provokes the expulsion of helium from the magnet cryostats to the helium recovery system. A high-volume, vacuum-insulated recovery line connected to several uninsulated medium-pressure gas storage tanks, forms the main constituents of the system. Besides a dedicated hardware configuration, helium recovery also implies specific procedures that should follow a quench, in order to conserve the discharged helium and possibly make use of its refrigeration capability. The amount of energy transferred after a quench from the magnets to the helium leaving the cold mass has been estimated on the basis of experimental data. Based on these data, the helium thermodynamic state in the recovery system is calculated using a lumped parameter approach. The LHC magnet quenches are classified ina parametric way from their cryogenic consequences and procedures that should follow the quench are proposed.

  16. Temperature effects on the retention of n-alkanes and arenes in helium-squalane gas-liquid chromatography. Experiment and molecular simulation.

    Science.gov (United States)

    Wick, Collin D; Siepman, J Ilja; Klotz, Wendy L; Schure, Mark R

    2002-04-19

    Experiments and molecular simulations were carried out to study temperature effects (in the range of 323 to 383 K) on the absolute and relative retention of n-hexane, n-heptane, n-octane, benzene, toluene and the three xylene isomers in gas-liquid chromatography. Helium and squalane were used as the carrier gas and retentive phase, respectively. Both the experiments and the simulations show a markedly different temperature dependence of the retention for the n-alkanes compared to the arenes. For example, over the 60 K temperature range studied, the Kovats retention index of benzene is found to increase by about 16 or 18+/-10 retention index units determined from the experiments or simulations, respectively. For toluene and the xylenes, the experimentally measured increases are similar in magnitude and range from 14 to 17 retention index units for m-xylene to o-xylene. The molecular simulation data provide an independent method of obtaining the transfer enthalpies and entropies. The change in retention indices is shown to be the result of the larger entropic penalty and the larger heat capacity for the transfer of the alkane molecules.

  17. An apparatus for studying electrical breakdown in liquid helium at 0.4 K and testing electrode materials for the SNS nEDM experiment

    CERN Document Server

    Ito, T M; Yao, W; Beck, D H; Cianciolo, V; Clayton, S M; Crawford, C; Currie, S A; Filippone, B W; Griffith, W C; Makela, M; Schmid, R; Seidel, G M; Tang, Z; Wagner, D; Wei, W; Williamson, S E

    2015-01-01

    We have constructed an apparatus to study DC electrical breakdown in liquid helium at temperatures as low as 0.4 K and at pressures between the saturated vapor pressure and $\\sim$600 torr. The apparatus can house a set of electrodes that are 12 cm in diameter with a gap of $1-2$ cm between them, and a potential up to $\\pm 50$ kV can be applied to each electrode. Initial results demonstrated that it is possible to apply fields exceeding 100 kV/cm in a 1 cm gap between two electropolished stainless steel electrodes 12 cm in diameter for a wide range of pressures at 0.4 K. We also measured the current between two electrodes. Our initial results, $I 5\\times10^{18}$ $\\Omega\\cdot$cm. This lower bound is 5 times larger than the bound previously measured. We report the design, construction, and operational experience of the apparatus, as well as initial results.

  18. Optical Fiber Distributed Sensing Structural Health Monitoring (SHM) Strain Measurements Taken During Cryotank Y-Joint Test Article Load Cycling at Liquid Helium Temperatures

    Science.gov (United States)

    Allison, Sidney G.; Prosser, William H.; Hare, David A.; Moore, Thomas C.; Kenner, Winfred S.

    2007-01-01

    This paper outlines cryogenic Y-joint testing at Langley Research Center (LaRC) to validate the performance of optical fiber Bragg grating strain sensors for measuring strain at liquid helium temperature (-240 C). This testing also verified survivability of fiber sensors after experiencing 10 thermal cool-down, warm-up cycles and 400 limit load cycles. Graphite composite skins bonded to a honeycomb substrate in a sandwich configuration comprised the Y-joint specimens. To enable SHM of composite cryotanks for consideration to future spacecraft, a light-weight, durable monitoring technology is needed. The fiber optic distributed Bragg grating strain sensing system developed at LaRC is a viable substitute for conventional strain gauges which are not practical for SHM. This distributed sensing technology uses an Optical Frequency Domain Reflectometer (OFDR). This measurement approach has the advantage that it can measure hundreds of Bragg grating sensors per fiber and the sensors are all written at one frequency, greatly simplifying fiber manufacturing. Fiber optic strain measurements compared well to conventional strain gauge measurements obtained during these tests. These results demonstrated a high potential for a successful implementation of a SHM system incorporating LaRC's fiber optic sensing system on the composite cryotank and other future cryogenic applications.

  19. Optical fiber distributed sensing structural health monitoring (SHM) strain measurements taken during cryotank Y-joint test article load cycling at liquid helium temperatures

    Science.gov (United States)

    Allison, Sidney G.; Prosser, William H.; Hare, David A.; Moore, Thomas C.; Kenner, W. S.

    2007-09-01

    This paper outlines cryogenic Y-joint testing at Langley Research Center (LaRC) to validate the performance of optical fiber Bragg grating strain sensors for measuring strain at liquid helium temperature (-240°C). This testing also verified survivability of fiber sensors after experiencing 10 thermal cool-down, warm-up cycles and 400 limit load cycles. Graphite composite skins bonded to a honeycomb substrate in a sandwich configuration comprised the Y-joint specimens. To enable SHM of composite cryotanks for consideration to future spacecraft, a light-weight, durable monitoring technology is needed. The fiber optic distributed Bragg grating strain sensing system developed at LaRC is a viable substitute for conventional strain gauges which are not practical for SHM. This distributed sensing technology uses an Optical Frequency Domain Reflectometer (OFDR). This measurement approach has the advantage that it can measure hundreds of Bragg grating sensors per fiber and the sensors are all written at one frequency, greatly simplifying fiber manufacturing. Fiber optic strain measurements compared well to conventional strain gauge measurements obtained during these tests. These results demonstrated a high potential for a successful implementation of a SHM system incorporating LaRC's fiber optic sensing system on the composite cryotank and other future cryogenic applications.

  20. Maximum Expected Wall Heat Flux and Maximum Pressure After Sudden Loss of Vacuum Insulation on the Stratospheric Observatory for Infrared Astronomy (SOFIA) Liquid Helium (LHe) Dewars

    Science.gov (United States)

    Ungar, Eugene K.

    2014-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared observation experiments. The experiments carry sensors cooled to liquid helium (LHe) temperatures. A question arose regarding the heat input and peak pressure that would result from a sudden loss of the dewar vacuum insulation. Owing to concerns about the adequacy of dewar pressure relief in the event of a sudden loss of the dewar vacuum insulation, the SOFIA Program engaged the NASA Engineering and Safety Center (NESC). This report summarizes and assesses the experiments that have been performed to measure the heat flux into LHe dewars following a sudden vacuum insulation failure, describes the physical limits of heat input to the dewar, and provides an NESC recommendation for the wall heat flux that should be used to assess the sudden loss of vacuum insulation case. This report also assesses the methodology used by the SOFIA Program to predict the maximum pressure that would occur following a loss of vacuum event.

  1. Operation of cryostat vacuum vessel of HT-7 superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)]. E-mail: yangyu@ipp.ac.cn; Su, M. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2006-11-15

    The superconducting tokamak HT-7 has been in operation for over 10 years. The safe and reliable operation of its cryostat vacuum vessel, which contains the superconducting coils is essential for each experimental run since the superconducting toroidal field coils are contained inside the vessel. In this paper, the operation is reviewed with the emphasis on the analysis on anomalous pressure rises and the corresponding solutions. It is shown that under close monitoring and timely handling, the cryostat vacuum vessel could still satisfy the requirements of the experimental operation despite of the material aging. This provides guideline for vacuum operating of HT-7. The experiences should be valuable for other superconducting projects as well, including a whole superconducting tokamak under construction, EAST.

  2. Particle detection by evaporation from superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, S.R.; Lanou, R.E.; Maris, H.J.; More, T.; Porter, F.S.; Seidel, G.M.; Torii, R.H. (Department of Physics, Brown University, Providence, Rhode Island 02912 (United States))

    1992-04-20

    We report the first experiments in which 5-MeV alpha particles are detected via evaporation from a bath of superfluid helium. The {alpha} excites phonons and rotons in the liquid helium, and these excitations are sufficiently energetic to evaporate helium atoms when they reach the free surface of the liquid. The approximate overall efficiency of this process has been determined, and we compare this with expectations. We have also been able to detect evaporation induced by a flux of {gamma}'s from a {sup 137}Cs source.

  3. Autometallographic silver enhancement of zinc sulfide crystals created in cryostat sections from human brain biopsies

    DEFF Research Database (Denmark)

    Danscher, G; Juhl, S; Stoltenberg, M

    1997-01-01

    We present a new technique that allows zinc ions in synaptic and secretory vesicles of biopsy and early autopsy material (Human brain biopsies, or other tissue...... samples containing zinc-enriched (ZEN) cells, are frozen in liquid nitrogen or by CO2 gas immediately after removal. The tissue blocks are cut in a cryostat and the sections placed on glass slides. The slides are transferred to an H2S exposure chamber placed in a -15 C freezer. After 1-24 hr of gas...... exposure the sections are removed from the chamber, fixed while thawing, and dehydrated. The sections are then exposed to an AMG developer. AMG causes silver enhancement of zinc sulfide crystal lattices created in the tissues through the H2S exposure, making them visible. It is imperative that the tissues...

  4. Leak-Tight Welding Experience from the Industrial Assembly of the LHC Cryostats at CERN

    CERN Document Server

    Bourcey, N; Chiggiato, P; Limon, P; Mongelluzzo, A; Musso, G; Poncet, A; Parma, V

    2008-01-01

    The assembly of the approximately 1700 LHC main ring cryostats at CERN involved extensive welding of cryogenic lines and vacuum vessels. More than 6 km of welding requiring leak tightness to a rate better than 1.10-9 mbar.l.s-1 on stainless steel and aluminium piping and envelopes was made, essentially by manual welding but also making use of orbital welding machines. In order to fulfil the safety regulations related to pressure vessels and to comply with the leak-tightness requirements of the vacuum systems of the machine, welds were executed according to high qualification standards and following a severe quality assurance plan. Leak detection by He mass spectrometry was extensively used. Neon leak detection was used successfully to locate leaks in the presence of helium backgrounds. This paper presents the quality assurance strategy adopted for welds and leak detection. It presents the statistics of non-conformities on welds and leaks detected throughout the entire production and the advances in the use...

  5. Shaft Cryostat on the Basis of a Closed-Circuit Refrigerator for Neutron Powder Diffraction Studies in the Temperature Range 6-300 K

    CERN Document Server

    Chernikov, A N; Kolkhidashvili, M P; Trunov, V A; Ulyanov, V A; Zhuravlev, V V; Petersburg Univ. Petersburg. Nuclear Physics InstitutePetersburg

    2005-01-01

    A description of a cryostat on the basis of the closed cycle refrigerator CoolPower 5/100T for operation in the temperature range 6.2-300 K is presented. The cryostat is intended for a sample up to 18~mm in diameter and up to 100~mm of length. The reload of the sample placed into the ampoule, which is made of TiZr alloy, is performed at any temperature of the refrigerator with the help of an insert. Thermal connection between the sample and the heat exchanger of the refrigerator second step is performed with the help of heat exchange gas helium-4. The minimal temperature of the sample is 6.2~K at the accuracy of the temperature stabilization of the sample 0.1~K. Measurement and temperature stabilization is performed by a controller connected with a computer. Dependences of temperature measurements on time at cooling and heating are presented. The shaft cryostat was developed to carry out the experiments on neutron diffraction from powder samples.

  6. LOX Tank Helium Removal for Propellant Scavenging

    Science.gov (United States)

    Chato, David J.

    2009-01-01

    System studies have shown a significant advantage to reusing the hydrogen and oxygen left in these tanks after landing on the Moon in fuel cells to generate power and water for surface systems. However in the current lander concepts, the helium used to pressurize the oxygen tank can substantially degrade fuel cell power and water output by covering the reacting surface with inert gas. This presentation documents an experimental investigation of methods to remove the helium pressurant while minimizing the amount of the oxygen lost. This investigation demonstrated that significant quantities of Helium (greater than 90% mole fraction) remain in the tank after draining. Although a single vent cycle reduced the helium quantity, large amounts of helium remained. Cyclic venting appeared to be more effective. Three vent cycles were sufficient to reduce the helium to small (less than 0.2%) quantities. Two vent cycles may be sufficient since once the tank has been brought up to pressure after the second vent cycle the helium concentration has been reduced to the less than 0.2% level. The re-pressurization process seemed to contribute to diluting helium. This is as expected since in order to raise the pressure liquid oxygen must be evaporated. Estimated liquid oxygen loss is on the order of 82 pounds (assuming the third vent cycle is not required).

  7. 用于发动机羽流试验研究的液氦热沉设计%Liquid helium heat sink design for experimental study of engine's plume and vacuum effects

    Institute of Scientific and Technical Information of China (English)

    凌桂龙; 王文龙; 蔡国飙; 张建华

    2011-01-01

    超低温大型卧式热沉采用液氦制冷,将在国内实现热沉表面温度低于10K,主要用于航天发动机羽流效应试验,同时兼顾卫星等热真空试验.热沉主体结构为卧式圆筒型,为减小热损失,液氦热沉去掉了骨架,外部装有液氮热沉,两者采用一体化设计,液氮热沉既做液氦热沉的防辐射屏,又做液氦热沉的支撑.为增大抽速,舱体封头端设计了可拆卸的羽流吸附泵.羽流试验时液氦热沉、羽流吸附泵通液氦制冷,液氮热沉通液氮制冷,各部分热沉单独供液.对此大型热沉进行了方案设计、参数计算,对热沉预冷及稳态工况时的液氮、液氦消耗量进行了估算,分析了羽流试验时热沉抽气速率随试验工质温度的变化关系,得出液氦热沉对氮气的抽气速率可以达到107 L/s量级.%The large horizontal ultra-low temperature heat sink,based on liquid helium cooling,could firstly realize heat sink surface temperature below 10 K in China,and is mainly applied to spacecraft-thruster vacuum plume effects' experimental study and the thermal vacuum test of satellite simultaneously.In order to minimize heat loss,the main structure of heat sink frame was removed,and the liquid helium heat sink was enclosed by a liquid nitrogen heat sink.Both of them were designed integrally so that the liquid nitrogen heat sink is not only the anti-radiation panel for liquid helium heat sink,but also the frame brace.To increase the pumping speed of heat sink,a plume adsorption pump was developed and mounted on the end of the vacuum chamber.At the experiment of vacuum plume,vacuum plume adsorption pump and liquid nitrogen heat sink were cooled by liquid helium and liquid nitrogen,respectively.The analysis was conducted for key parameters of heat sink,such as estimating the liquid nitrogen,liquid helium consumption in pre-cooling process and steady-state condition,and comparing the relationship between pumping speed of heat sink and

  8. Suspension of superfluid helium using cesium-coated surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C.; Giese, C.F.; Halley, J.W. [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    1996-03-01

    We report results of an experiment which demonstrates that a layer of superfluid helium can be suspended over a cesium-coated orifice. By measuring the layer thickness with a capacitance bridge, we have shown in two runs that fluid layers up to 2 mm thick were suspended over a 70-{mu}m-diam cesium-coated orifice in a platinum foil for over 2 h in a cryostat held at 1.2 K. The effect depends on the recently established fact that superfluid helium does not wet cesium-coated surfaces. As a consequence, superfluid helium is expected to form a stable meniscus across such a cesium-coated hole. The observed depths of suspended helium are consistent with a simple theoretical model based on this picture. We briefly discuss the possible application of this method to the performance of a proposed experiment to study quantum coherence in superfluid helium by directing pulsed beams of helium atoms at such a suspended layer of fluid. {copyright} {ital 1996 The American Physical Society.}

  9. Preliminary test of the prototype modular cryostat for a 10 MW offshore superconducting wind turbine

    Science.gov (United States)

    Sun, Jiuce; Ramalingam, R.; Sanz, Santiago; Neumann, Holger

    2017-02-01

    The SUPerconducting Reliable lightweight And more POWERful offshore wind turbine (SUPRAPOWER), an EU FP7 funded research project, are under development for an innovative superconducting 10 MW class offshore wind turbine. Due to the requirements of handling, maintenance, reliability of long term and offshore operation, the cryostats are divided in two major parts: the modular cryostat able to accommodate a single coil and a thermal collector that links all the modules. The prototype modular cryostat was designed, manufactured and assembled in Karlsruhe Institute of Technology (KIT). The paper reports preliminary test results of proto-type modular cryostat with a two-stage Gifford-McMahon (GM) cryocooler.

  10. 空间液氦温区机械式制冷技术发展现状及趋势%Status and development trends of space mechanical refrigeration system at liquid helium temperature

    Institute of Scientific and Technical Information of China (English)

    甘智华; 王博; 刘东立; 王任卓; 张学军

    2012-01-01

    On the basis of an overall introduction of mission objectives and cryogenics system performance requirements of the launched and developing cryogenic detectors at liquid helium temperature, this work analyzed the design methods and working performance of space oriented mechanical cryogenic technologies at liquid helium temperature, and also predicted the future trends of technical development. Space mechanical cryogenic technologies at liquid helium temperature mainly adopt linear compressor to drive pre-cooled 4He and 3He J-T throttling refrigeration technology, but for Stirling cryocoolers, sorption cryocoolers and high-frequency pulse tube cryocoolers which provide pre-cooling, further improvement of refrigeration efficiency is the key to realize the high efficiency of the entire machine.%在介绍已发射和在研液氦温区低温探测器的任务目标和对低温系统性能要求的基础上,分析了空间用液氦温区机械式制冷技术的设计方法和工作性能,并对其发展趋势进行了展望.当前空间液氦温区机械式制冷技术主要采用线性压缩机驱动的预冷型4 He和3HeJ-T节流制冷技术,而对于提供预冷的斯特林制冷机、吸附制冷机和高频脉管制冷机而言,进一步提高制冷效率是实现整机高效运行的关键.

  11. Capacity enhancement of indigenous expansion engine based helium liquefier

    Science.gov (United States)

    Doohan, R. S.; Kush, P. K.; Maheshwari, G.

    2017-02-01

    Development of technology and understanding for large capacity helium refrigeration and liquefaction at helium temperature is indispensable for coming-up projects. A new version of helium liquefier designed and built to provide approximately 35 liters of liquid helium per hour. The refrigeration capacity of this reciprocating type expansion engine machine has been increased from its predecessor version with continuous improvement and deficiency debugging. The helium liquefier has been built using components by local industries including cryogenic Aluminum plate fin heat exchangers. Two compressors with nearly identical capacity have been deployed for the operation of system. Together they consume about 110 kW of electric power. The system employs liquid Nitrogen precooling to enhance liquid Helium yield. This paper describes details of the cryogenic expander design improvements, reconfiguration of heat exchangers, performance simulation and their experimental validation.

  12. Trace Detection of Metastable Helium Molecules in Superfluid Helium by Laser-Induced Fluorescence

    CERN Document Server

    McKinsey, D N; Nikkel, J A; Rellergert, W

    2005-01-01

    We describe an approach to detecting ionizing radiation that combines the special properties of superfluid helium with the sensitivity of quantum optics techniques. Ionization in liquid helium results in the copious production of metastable helium molecules, which can be detected by laser-induced fluorescence. Each molecule can be probed many times using a cycling transition, resulting in the detection of individual molecules with high signal to noise. This technique could be used to detect neutrinos, weakly interacting massive particles, and ultracold neutrons, and to image superfluid flow in liquid He-4.

  13. Superfluid Helium On-Orbit Transfer (SHOOT) operations

    Science.gov (United States)

    Kittel, P.; Dipirro, M. J.

    1989-01-01

    The in-flight tests and the operational sequences of the Superfluid Helium On-Orbit Transfer (SHOOT) experiment are outlined. These tests include the transfer of superfluid helium at a variety of rates, the transfer into cold and warm receivers, the operation of an extravehicular activity coupling, and tests of a liquid acquisition device. A variety of different types of instrumentation will be required for these tests. These include pressure sensors and liquid flow meters that must operate in liquid helium, accurate thermometry, two types of quantity gauges, and liquid-vapor sensors.

  14. Paramagnetic Attraction of Impurity-Helium Solids

    Science.gov (United States)

    Bernard, E. P.; Boltnev, R. E.; Khmelenko, V. V.; Lee, D. M.

    2003-01-01

    Impurity-helium solids are formed when a mixture of impurity and helium gases enters a volume of superfluid helium. Typical choices of impurity gas are hydrogen deuteride, deuterium, nitrogen, neon and argon, or a mixture of these. These solids consist of individual impurity atoms and molecules as well as clusters of impurity atoms and molecules covered with layers of solidified helium. The clusters have an imperfect crystalline structure and diameters ranging up to 90 angstroms, depending somewhat on the choice of impurity. Immediately following formation the clusters aggregate into loosely connected porous solids that are submerged in and completely permeated by the liquid helium. Im-He solids are extremely effective at stabilizing high concentrations of free radicals, which can be introduced by applying a high power RF dis- charge to the impurity gas mixture just before it strikes the super fluid helium. Average concentrations of 10(exp 19) nitrogen atoms/cc and 5 x 10(exp 18) deuterium atoms/cc can be achieved this way. It shows a typical sample formed from a mixture of atomic and molecular hydrogen and deuterium. It shows typical sample formed from atomic and molecular nitrogen. Much of the stability of Im-He solids is attributed to their very large surface area to volume ratio and their permeation by super fluid helium. Heat resulting from a chance meeting and recombination of free radicals is quickly dissipated by the super fluid helium instead of thermally promoting the diffusion of other nearby free radicals.

  15. Arrival of the last cryostat for the ATLAS LAr calorimeter at CERN

    CERN Multimedia

    Aleksa, M; Oberlack, H

    On Wednesday, 4th June the last cryostat for the ATLAS LAr calorimeter (end-cap A) arrived at CERN and was immediately unloaded from the truck in building 180 (see Figures 1 and 2), where the integration of the LAr calorimeters into their cryostats takes place. The transport from the Italian company SIMIC, where both end-cap calorimeters have been produced took longer than expected due to delays because of the G8 summit. Thanks to the great effort by the CERN Host State office and the French-German steering group that supplies the end-cap cryostat as an in-kind contribution to the LAr collaboration, an exceptional convoy was finally available and the cryostat could make its way to CERN. Fig.1 (left): Truck with the end-cap cryostat. Fig.2 (right): Unloading the cryostat in bldg. 180. Each end-cap cryostat will contain an electromagnetic calorimeter wheel, two wheels of a hadronic calorimeter, and a forward calorimeter. The design of the cryostat as a double vessel structure made of Aluminum fulfills t...

  16. Particle detection using superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, S.R.; Lanou, R.E.; Maris, H.J.; More, T.; Porter, F.S.; Seidel, G.M.; Torii, R.

    1991-01-01

    We have observed 5 MeV {alpha} particles stopped in volumes-up to two liters of liquid helium at 70 mK. A fraction of the kinetic energy of an {alpha} particle is converted to elementary excitations (rotons and phonons), which progagate ballistically in isotopically pure {sup 4}He below 0.1 K. Most of these excitations have sufficient energy to evaporate helium atoms on hitting a free surface. The evaporated helium atoms can be detected calorimetrically when adsorbed on a thin silicon wafer ({approximately}1.7 g, 35 cm{sup 2}) suspended above the liquid. Temperature changes of the silicon are measured with a NTD germanium bolometer. For the geometry studied the observed temperature change of the silicon resulting from an {alpha} event in the liquid is approximately 5% of the temperature rise from an {alpha} hitting the silicon directly. The implications of these measurements will be discussed as they relate to the possible construction of a large scale detector of solar neutrinos.

  17. Particle detection using superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, S.R.; Lanou, R.E.; Maris, H.J.; More, T.; Porter, F.S.; Seidel, G.M.; Torii, R.

    1991-12-31

    We have observed 5 MeV {alpha} particles stopped in volumes-up to two liters of liquid helium at 70 mK. A fraction of the kinetic energy of an {alpha} particle is converted to elementary excitations (rotons and phonons), which progagate ballistically in isotopically pure {sup 4}He below 0.1 K. Most of these excitations have sufficient energy to evaporate helium atoms on hitting a free surface. The evaporated helium atoms can be detected calorimetrically when adsorbed on a thin silicon wafer ({approximately}1.7 g, 35 cm{sup 2}) suspended above the liquid. Temperature changes of the silicon are measured with a NTD germanium bolometer. For the geometry studied the observed temperature change of the silicon resulting from an {alpha} event in the liquid is approximately 5% of the temperature rise from an {alpha} hitting the silicon directly. The implications of these measurements will be discussed as they relate to the possible construction of a large scale detector of solar neutrinos.

  18. Simplicity works for superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bowley, Roger [University of Nottingham, Nottingham (United Kingdom)

    2000-02-01

    The famous philosopher Karl Popper once said that ''science is the art of systematic oversimplification''. Indeed, when faced with a new puzzle the trick is to simplify it without losing the essential physics - something that is easier said than done. However, this approach has paid off recently in low-temperature physics. Last year Richard Packard, Seamus Davis and co-workers at the University of California at Berkeley encountered a puzzling new phenomenon in superfluid helium-3, a quantum fluid that remains a liquid close to absolute zero and exhibits unusual properties such as the ability to flow without friction (A Machenkov et al. 1999 Phys. Rev. Lett. 83 3860). Previous experiments had revealed that certain effects in liquid helium are analogous to effects observed in superconductors, materials that lose all resistance to electric current at low temperatures. When the Berkeley researchers connected two reservoirs of superfluid helium-3, the superfluid flowed back and forth through apertures that formed a ''weak link'' between the two containers. This behaviour is similar to the oscillatory current of electrons that can flow across an insulating gap separating two superconductors - a device that is known as a Josephson junction. What was puzzling about the Berkeley results was that the helium-3 had two different stable configurations, both of which behaved in an unconventional way compared with a Josephson junction. This puzzle has now been solved independently by Sidney Yip at the National Center for Theoretical Sciences in Taiwan, and by Janne Viljas and Erkki Thuneberg at the Helsinki University of Technology in Finland (Phys. Rev. Lett. 1999 83 3864 and 3868). In this article the author describes the latest research on superfluid helium. (UK)

  19. Mu2e production solenoid cryostat conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, T.H.; Kashikhin, V.V.; Page, T.M.; Peterson, T.J.; /Fermilab

    2011-06-01

    Mu2e is a muon-to-electron conversion experiment being designed by an international collaboration of more than 65 scientists and engineers from more than 20 research institutions for installation at Fermilab. The experiment is comprised of three large superconducting solenoid magnet systems, production solenoid (PS), transport solenoid (TS) and detector solenoid (DS). A 25 kW, 8 GeV proton beam strikes a target located in the PS creating muons from the decay of secondary particles. These muons are then focused in the PS and the resultant muon beam is transported through the TS towards the DS. The production solenoid presents a unique set of design challenges as the result of high radiation doses, stringent magnetic field requirements, and large structural forces. This paper describes the conceptual design of the PS cryostat and will include discussions of the vacuum vessel, thermal shield, multi-layer insulation, cooling system, cryogenic piping, and suspension system.

  20. Alignment of ADS beta cryostat with wire position monitor

    Institute of Scientific and Technical Information of China (English)

    朱洪岩; 董岚; 门瓴玲; 刘璨; 李波

    2015-01-01

    Wire position monitor (WPM) is designed to monitor contraction of the cold masses during the cooling-down operation in an accelerator driven system. Because of material difference, machining error, assembly error, etc., each WPM has to be calibrated. The sensing voltage and wire position are of a nonlinear relationship, which is expressed by high order polynomial. Root mean square (RMS) of the polynomial fitting error were 3.8 µm and 7.4 µm at x and y directions, respectively. The alignment test was carried out on the beta cryostat. Optical instruments were used to verify the WPM measuring results. The differences between WPM measuring results and optical measurements were 0.044 and 0.05 mm in x and y direction, respectively. A significant asymmetric contraction was detected, and asymmetry of material was taken as the main reason through analysis.

  1. Development of liquid nitrogen Centrifugal Pump

    Energy Technology Data Exchange (ETDEWEB)

    Abe, M; Sagiyama, R; Tsuchiya, H [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Takayama, T [Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585 (Japan); Torii, Y [OMNIX, 1-15-3 Nishishinjuku, Shinjuku, Tokyo, 160-0023 (Japan); Nakamura, M [YN Nakamura Ltd, 3-9-25 Ohjima, Koto, Tokyo, 136-0072 (Japan); Hoshino, Y [JECC TORISHA Co. Ltd, 2-8-52 Yoshinodai, Kawagoe-shi, Saitama, 350-0833 (Japan); Odashima, Y [Department of Basic Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan)], E-mail: mirei@issp.u-tokyo.ac.jp

    2009-02-01

    Usually liquid nitrogen (LN{sub 2}) transfer from a container to a laboratory equipment takes place by applying pressure to the container to push out liquid or pouring liquid into the cryostat directly by lifting the container. In order to overcome inconvenience of pressuring or lifting containers, we have been developing the Liquid Nitrogen Centrifugal Pump of a small electric turbine pump. Significant advantages that both reducing time to fill LN{sub 2}and controlling the flow rate of liquid into the cryostat are obtained by introducing this pump. We have achieved the lift of about 800mm with the vessel's opening diameter of 28mm.

  2. The Federal Helium supply: How we got here and where we might be going

    Science.gov (United States)

    Elsesser, Mark

    2015-03-01

    Helium is a limited, non-renewable resource with large uncertainties in both supply and price. It's essential for academic researchers across the physical sciences and engineering disciplines who depend on liquid helium to perform experiments and maintain critical instruments. However, because only about three percent of helium is used for scientific research, academic users have little leverage in the helium marketplace. With the Federal Helium Reserve required to sell off its remaining supply and close its doors within the next decade, many in academia are wondering ``what's next''? I will discuss the history of the Federal Helium Reserve, including legislation that shaped its development, and possibilities going forward. Additionally, I will describe a new APS initiative where we have formed a small consortium of academic liquid helium users and are allowing the Defense Logistics Agency to represent the consortium in liquid helium contract negotiations.

  3. Solid helium, a superfluid?; L'helium solide, un superfluide?

    Energy Technology Data Exchange (ETDEWEB)

    Balibar, S. [Centre National de la Recherche Scientifique (CNRS), Lab. de Physique Statistique de l' Ecole Normale Superieure, 75 - Paris (France)

    2007-06-15

    At very low temperature, liquid helium becomes superfluid, meaning that it can flow practically without any friction. But what about solid helium? A recent experiment carried out at the Ecole Normale Superieure of Paris (France) has given amazing results: in some conditions some matter can flow through helium without friction. This article makes a synthesis of the experiments carried out on solid helium since the end of the 1960's and which have tried to explain this 'super-solidity' effect. The recent results indicate that the super-solidity of solid helium is linked to its disorder and probably localized at the grain joints, but is not a fundamental property of its crystalline state. (J.S.)

  4. Charged Condensate and Helium Dwarf Stars

    CERN Document Server

    Gabadadze, Gregory

    2008-01-01

    White dwarf stars composed of carbon, oxygen or heavier elements are expected to crystallize as they cool down below certain temperatures. Yet, simple arguments suggest that the helium white dwarf cores may not solidify, mostly because of zero-point oscillations of the helium ions that would dissolve the crystalline structure. We argue that the interior of the helium dwarfs may instead form a macroscopic quantum state in which the charged helium-4 nuclei are in a Bose-Einstein condensate, while the relativistic electrons form a neutralizing degenerate Fermi liquid. We discuss the electric charge screening, and the spectrum of this substance, showing that the bosonic long-wavelength fluctuations exhibit a mass gap. Hence, there is a suppression at low temperatures of the boson contribution to the specific heat -- the latter being dominated by the specific heat of the electrons near the Fermi surface. This state of matter may have observational signatures.

  5. Primary helium heater for propellant pressurization systems

    Science.gov (United States)

    Reichmuth, D. M.; Nguyen, T. V.; Pieper, J. L.

    1991-01-01

    The primary helium heater is a unique design that provides direct heating of pressurant gas for large pressure fed propulsion systems. It has been conceptually designed to supply a heated (800-1000 R) pressurization gas to both a liquid oxygen and an RP-1 propellant tank. This pressurization gas is generated within the heater by mixing super critical helium (40-300 R and 3000-1600 psi) with an appropriate amount of combustion products from a 4:1 throttling stoichiometric LO2/LH2 combustor. This simple, low cost and reliable mixer utilizes the large quantity of helium to provide stoichiometric combustor cooling, extend the throttling limits and enhance the combustion stability margin. Preliminary combustion, thermal, and CFD analyses confirm that this low-pressure-drop direct helium heater can provide the constant-temperature pressurant suitable for tank pressurization of both fuel and oxidizer tanks of large pressure fed vehicles.

  6. Helium liquefier cycles with saturated vapor compression

    Science.gov (United States)

    Minta, M.; Smith, J. L., Jr.

    The three refrigeration stages of the conventional helium liquefaction cycle are related to liquid nitrogen precooling, the use of expansion engines, and a J-T expansion. For an operation of helium refrigerators at temperatures below 4.2 K reduced pressure levels are required. Such an operation makes it necessary to enhance the compressor size and the heat exchanger surface area. In the case of 1.8 K refrigerators, practical cycles with three pressure levels are employed. It is pointed out that the saturated-vapor-compression (SVC) helium cycle provides an alternative solution to these problems. The present investigation is concerned with the design study of a SVC helium liquifier operating at elevated pressures. The study was conducted to demonstrate the potential of the SVC cycle on the basis of a direct comparison with a conventional cycle using the same precooling expanders and a supercritical wet expander instead of a J-T valve.

  7. Investigations of levitated helium drops

    Science.gov (United States)

    Whitaker, Dwight Lawrence

    1999-11-01

    We report on the development of two systems capable of levitating drops of liquid helium. Helium drops of ˜20 mum have been levitated with the radiation pressure from two counter-propagating Nd:YAG laser beams. Drops are produced with a submerged piezoelectric transducer, and could be held for up to three minutes in our optical trap. Calculations show that Brillouin and Raman scattering of the laser light in the liquid helium produces a negligible rate of evaporation of the drop. Evaporation caused by the enhanced vapor pressure of the curved drop surfaces appears to be a significant effect limiting the drop lifetimes. Helium drops as large as 2 cm in diameter have been suspended in the earth's gravitational field with a magnetic field. A commercial superconducting solenoid provides the necessary field, field-gradient product required to levitate the drops. Drops are cooled to 0.5 K with a helium-3 refrigerator, and can be held in the trap indefinitely. We have found that when two or more drops are levitated in the same magnetic trap, the drops often remain in a state of apparent contact without coalescing. This effect is a result of the evaporation of liquid from between the two drops, and is found to occur only for normal fluid drops. We can induce shape oscillations in charged, levitated drops with an applied ac electric field. We have measured the resonance frequencies and damping rates for the l = 2 mode of oscillation as function of temperature. We have also developed a theory to describe the small amplitude shape oscillations of a He II drop surrounded by its saturated vapor. In our theory, we have considered two sets of boundary conditions---one where the drop does not evaporate and another in which the liquid and vapor are in thermodynamic equilibrium. We have found that both solutions give a frequency that agrees well with experiment, but that the data for the damping rate agree better with the solution without evaporation.

  8. A close-up of the lower part of a 13 kA current lead. The high-temperature superconductor (on the left in the photo) with the low-temperature superconductor (on the right). Resting in liquid helium, the low-temperature superconductor is connected to the bus-bars conveying the current to the LHC magnets.

    CERN Multimedia

    2004-01-01

    A close-up of the lower part of a 13 kA current lead. The high-temperature superconductor (on the left in the photo) with the low-temperature superconductor (on the right). Resting in liquid helium, the low-temperature superconductor is connected to the bus-bars conveying the current to the LHC magnets.

  9. Design of a 2 Slot VLPC Cryostat Cooled by a Cryocooler

    Energy Technology Data Exchange (ETDEWEB)

    Rucinski, Russell A.; /Fermilab

    2004-04-22

    The conceptual design and preliminary engineering calculations have been completed for a two cassette cryostat. This report summarizes the design. A cryocooler is permanently mounted in the center of a stainless steel, 0.75 inch thick top lid. The cryocooler sits upon a spacer which raises the cooling stage elevations to favorably match the cassette heat intercept elevations. The top lid (32.0-inch outside diameter) mates to a 24-inch pipe size flange with o-ring. The 24-inch pipe size vacuum vessel with end plate has a minimum internal depth of 16-inch to give adequate clearance for the depth of the cryocooler and multilayer insulation blankets. Support stand legs elevate the container to a convenient height and allow for placement of the AFE power supply underneath. Two cassette slots are located on either side of the cryocooler. The slots are positioned parallel to each other, 10.5-inch center to center (6 standard cassette slot widths) so that the standard 8 slot AFE backplane can be used. The slot opening through the lid is approximately 1.422-inch x 16.782-inch. A 0.016-inch thick titanium (Ti-6AI-4V) envelope with sealing lip is inserted through lid and defines the gas helium boundary that the VLPC cassette resides. The internal dimensions of the titanium envelope are 1.390-inch x 16.75-inch x 10.531-inch deep. When the cassette is inserted the clearances will be 0.015-inch on the long side, 0.063-inch on the short side, and 0.032-inch at the bottom. The cassette gasket seals against the top lip of the titanium envelope. A soft gasket or thin vacuum sealant tape seals the underside of the titanium envelope to the top surface of the lid. A clamping hold down bar may be necessary to make this vacuum seal. Gas helium for the cassette space is supplied through a fitting and port that is added to the cassette bulkhead assembly. This is the only modification necessary the standard D-Zero cassette. Evacuation and backfilling and then stagnant positive pressure are

  10. An apparatus for studying electrical breakdown in liquid helium at 0.4 K and testing electrode materials for the neutron electric dipole moment experiment at the Spallation Neutron Source

    Science.gov (United States)

    Ito, T. M.; Ramsey, J. C.; Yao, W.; Beck, D. H.; Cianciolo, V.; Clayton, S. M.; Crawford, C.; Currie, S. A.; Filippone, B. W.; Griffith, W. C.; Makela, M.; Schmid, R.; Seidel, G. M.; Tang, Z.; Wagner, D.; Wei, W.; Williamson, S. E.

    2016-04-01

    We have constructed an apparatus to study DC electrical breakdown in liquid helium at temperatures as low as 0.4 K and at pressures between the saturated vapor pressure and ˜600 Torr. The apparatus can house a set of electrodes that are 12 cm in diameter with a gap of 1-2 cm between them, and a potential up to ±50 kV can be applied to each electrode. Initial results demonstrated that it is possible to apply fields exceeding 100 kV/cm in a 1 cm gap between two electropolished stainless steel electrodes 12 cm in diameter for a wide range of pressures at 0.4 K. We also measured the current between two electrodes. Our initial results, I 5 × 1018 Ω cm. This lower bound is 5 times larger than the bound previously measured. We report the design, construction, and operational experience of the apparatus, as well as initial results.

  11. Experiments testing the abatement of radiation damage in D-xylose isomerase crystals with cryogenic helium.

    Science.gov (United States)

    Hanson, B Leif; Harp, Joel M; Kirschbaum, Kristin; Schall, Constance A; DeWitt, Ken; Howard, Andrew; Pinkerton, A Alan; Bunick, Gerard J

    2002-11-01

    Helium is a more efficient cryogen than nitrogen, and for macromolecular data collection at high-flux beamlines will deliver lower temperatures. An open-flow helium cryostat developed at the University of Toledo (the Pinkerton Device) has been used for macromolecular data collection. This device differs from standard commercial He cryostats by having a much narrower aperture providing a high velocity stream of He around the crystal that maximizes convective and conductive heat exchange between the crystal and the cryogen. This paper details a series of experiments conducted at the IMCA-CAT 17ID beamline using one crystal for each experimental condition to examine whether helium at 16 K provided better radiation-damage abatement compared with nitrogen at 100 K. These studies used matched high-quality crystals (0.94 A diffraction resolution) of D-xylose isomerase derived from the commercial material Gensweet SGI. Comparisons show that helium indeed abates the indicators of radiation damage, in this case resulting in longer crystal diffractive lifetimes. The overall trend suggests that crystals maintain order and that high-resolution data are less affected by increased radiation load when crystals are cooled with He rather than N(2). This is probably the result of a lower effective temperature at the crystal with concomitant reduction in free-radical diffusion. Other features, such as an apparent phase transition in macromolecular crystals at lower temperatures, require investigation to broaden the utility of He use.

  12. A 3He Cryostat for Scientific Measurements in Pulsed High Magnetic Fields

    Science.gov (United States)

    Wang, Shaoliang; Li, Liang; Liu, Mengyu; Zuo, Huakun; Peng, Tao

    A top loading 3He cryostat has been developed for scientific experiments with a 60 T pulsed magnetic field facility at Wuhan National High Magnetic Field Center. The cryostat consists of a 4He bath cryostat, a 3He insert and a closed circulation system for 3He gas handling. To eliminate the eddy current heating during the pulse, the tail of the 3He insert with a vacuum space at the bottom is made from fiberglass tubing coated with epoxy. The 3He bath is separated from the 4He bath with the vacuum space. The 4He bath cryostat provides cooling power to condense 3He gas by a neck tube on top of the tail. Experimental results have shown that the sample can be cooled down to 385 mK and kept cold for more than 150 second by one-shot cooling, which is sufficiently long for an experiment in a pulsed high magnetic field.

  13. Critical Landau Velocity in Helium Nanodroplets

    NARCIS (Netherlands)

    N.B. Brauer; S. Smolarek; E. Loginov; D. Mateo; A. Hernando; M. Pi; M. Barranco; W.J. Buma; M. Drabbels

    2013-01-01

    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective excitatio

  14. Cooling with Superfluid Helium

    CERN Document Server

    Lebrun, P

    2014-01-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics

  15. Cryogenic helium gas circulation system for advanced characterization of superconducting cables and other devices

    Science.gov (United States)

    Pamidi, Sastry; Kim, Chul Han; Kim, Jae-Ho; Crook, Danny; Dale, Steinar

    2012-04-01

    A versatile cryogenic test bed, based on circulating cryogenic helium gas, has been designed, fabricated, and installed at the Florida State University Center for Advanced Power Systems (FSU-CAPS). The test bed is being used to understand the benefits of integrating the cryogenic systems of multiple superconducting power devices. The helium circulation system operates with four sets of cryocooler and heat exchanger combinations. The maximum operating pressure of the system is 2.1 MPa. The efficacy of helium circulation systems in cooling superconducting power devices is evaluated using a 30-m-long simulated superconducting cable in a flexible cryostat. Experiments were conducted at various mass flow rates and a variety of heat load profiles. A 1-D thermal model was developed to understand the effect of the gas flow parameters on the thermal gradients along the cable. Experimental results are in close agreement with the results from the thermal model.

  16. Putting in operation a full-scale ultracold-neutron source model with superfluid helium

    Science.gov (United States)

    Serebrov, A. P.; Lyamkin, V. A.; Prudnikov, D. V.; Keshishev, K. O.; Boldarev, S. T.; Vasil'ev, A. V.

    2017-02-01

    A project of the source of ultracold neutrons for the WWR-M reactor based on superfluid helium for ultracold-neutron production has been developed. The full-scale source model, including all required cryogenic and vacuum equipment, the cryostat, and the ultracold-neutron source model has been created. The superfluid helium temperature T = 1.08 K without a heat load and T = 1.371 K with a heat load on the simulator of P = 60 W has been achieved in experiments at a technological complex of the ultracold-neutron source. The result proves the feasibility of implementing the ultracold-neutron source at the WWR-M reactor and the possibility of applying superfluid helium in nuclear engineering.

  17. The automatic liquid nitrogen filling system for GDA detectors

    Indian Academy of Sciences (India)

    Rakesh Kumar; A J Malyadri; S Muralithar; Ruby Shanti; S K Saini Kusum Rani; B P Ajith Kumar; Rajesh Kumar; R K Bhowmik

    2001-07-01

    An indigenously developed automatic liquid nitrogen (LN2) filling system has been installed in gamma detector array (GDA) facility at Nuclear Science Centre. Electro-pneumatic valves are used for filling the liquid nitrogen into the high purity germanium detector cryostat. The temperature of the out-flowing gas/liquid from the cryostat is monitored using platinum resistor thermometer. The program allows for automatic filling at regular intervals with temperature monitoring from a remote terminal.

  18. Helium the disappearing element

    CERN Document Server

    Sears, Wheeler M

    2015-01-01

    The subject of the book is helium, the element, and its use in myriad applications including MRI machines, particle accelerators, space telescopes, and of course balloons and blimps. It was at the birth of our Universe, or the Big Bang, where the majority of cosmic helium was created; and stellar helium production continues. Although helium is the second most abundant element in the Universe, it is actually quite rare here on Earth and only exists because of radioactive elements deep within the Earth. This book includes a detailed history of the discovery of helium, of the commercial industry built around it, how the helium we actually encounter is produced within the Earth, and the state of the helium industry today. The gas that most people associate with birthday party balloons is running out. “Who cares?” you might ask. Well, without helium, MRI machines could not function, rockets could not go into space, particle accelerators such as those used by CERN could not operate, fiber optic cables would not...

  19. Turnkey Helium Purification and Liquefaction Plant for DARWIN, Australia

    Science.gov (United States)

    Lindemann, U.; Boeck, S.; Blum, L.; Kurtcuoglu, K.

    2010-04-01

    The Linde Group, through its Australian subsidiary BOC Limited, has signed an agreement with Darwin LNG Pty Ltd for the supply of feed-gas to Linde's new helium refining and liquefaction facility in Darwin, Australia. Linde Kryotechnik AG, located in Switzerland, has carried out the engineering and fabrication of the equipment for the turn key helium plant. The raw feed gas flow of 20'730 Nm3/h contains up to of 3 mol% helium. The purification process of the feed gas consists of partial condensation of nitrogen in two stages, cryogenic adsorption and finally catalytic oxidation of hydrogen followed by a dryer system. Downstream of the purification the refined helium is liquefied using a modified Bryton process and stored in a 30'000 gal LHe tank. For further distribution and export of the liquid helium there are two stations available for filling of truck trailers and containers. The liquid nitrogen, required for refrigeration capacity to the nitrogen removal stages in the purification process as well as for the pre-cooling of the pure helium in the liquefaction process, is generated on site during the feed gas purification process. The optimized process provides low power consumption, maximum helium recovery and a minimum helium loss.

  20. The First End-Cap Cryostat is being Tested at Cold

    CERN Multimedia

    Aleksa, M

    The integration of the LAr end-cap detector wheels - one electromagnetic calorimeter wheel and two hadronic calorimeter wheels - was finished at the end of 2003 (see Fig. 1). Fig. 1: ECC cryostat after the insertion of the second hadronic end-cap wheel (Dec. 2003), and before the insertion of the forward calorimeter. After the insertion of the forward calorimeter, in summer 2004, the cryostat was closed and welded. Cool-down of the End-Cap C Cryostat: On Nov. 26, 2004, the cool-down of the cryostat started in B180 using forced convection of gaseous N2 in the heat exchangers and He gas in the cryostat (see Fig. 2). The cool-down speed during this time was on average 0.2K/h, hence arriving at a temperature of approximately 120K after about 6 weeks. The speed of the cool down was limited by stringent requirements on the temperature gradients in the detector wheels, which were established from mechanical constraints. The most severe limit was the maximum allowed temperature difference of 6K for the el...

  1. Superfluid helium-4 in one dimensional channel

    Science.gov (United States)

    Kim, Duk Y.; Banavar, Samhita; Chan, Moses H. W.; Hayes, John; Sazio, Pier

    2013-03-01

    Superfluidity, as superconductivity, cannot exist in a strict one-dimensional system. However, the experiments employing porous media showed that superfluid helium can flow through the pores of nanometer size. Here we report a study of the flow of liquid helium through a single hollow glass fiber of 4 cm in length with an open id of 150 nm between 1.6 and 2.3 K. We found the superfluid transition temperature was suppressed in the hollow cylinder and that there is no flow above the transition. Critical velocity at temperature below the transition temperature was determined. Our results bear some similarity to that found by Savard et. al. studying the flow of helium through a nanohole in a silicon nitrite membrane. Experimental study at Penn State is supported by NSF Grants No. DMR 1103159.

  2. Design, Manufacturing and Integration of LHC Cryostat Components an Example of Collaboration between CERN and Industry

    CERN Document Server

    Slits, Ivo; Canetti, Marco; Colombet, Thierry; Gangini, Fabrizio; Parma, Vittorio; Tock, Jean-Philippe

    2006-01-01

    The components for the LHC cryostats and interconnections are supplied by European industry. The manufacturing, assembly and testing of these components in accordance with CERN technical specifications require a close collaboration and dedicated approach from the suppliers. This paper presents the different phases of design, manufacturing, testing and integration of four LHC cryostat components supplied by RIAL Vacuum (Parma, Italy), including 112 Insulation Vacuum Barriers (IVB), 482 Cold-mass Extension Tubes (CET), 121 cryostat vacuum vessel Jumper Elbows (JE) and 10800 Interconnection Sleeves (IS). The Quality Assurance Plan, which the four projects have in common, is outlined. The components are all leak-tight thin stainless steel assemblies (<10-8 mbar l/s), most of them operating at cryogenic temperature (2 K), however each having specific requirements. The particularities of each component are presented with respect to manufacturing, assembly and testing. These components are being integrated ...

  3. Visible camera cryostat design and performance for the SuMIRe Prime Focus Spectrograph (PFS)

    CERN Document Server

    Smee, Stephen A; Golebiowski, Mirek; Hope, Stephen C; Madec, Fabrice; Gabriel, Jean-Francois; Loomis, Craig; Fur, Arnaud Le; Dohlen, Kjetil; Mignant, David Le; Barkhouser, Robert; Carr, Michael; Hart, Murdock; Tamura, Naoyuki; Shimono, Atsushi; Takato, Naruhisa

    2016-01-01

    We describe the design and performance of the SuMIRe Prime Focus Spectrograph (PFS) visible camera cryostats. SuMIRe PFS is a massively multi-plexed ground-based spectrograph consisting of four identical spectrograph modules, each receiving roughly 600 fibers from a 2394 fiber robotic positioner at the prime focus. Each spectrograph module has three channels covering wavelength ranges 380~nm -- 640~nm, 640~nm -- 955~nm, and 955~nm -- 1.26~um, with the dispersed light being imaged in each channel by a f/1.07 vacuum Schmidt camera. The cameras are very large, having a clear aperture of 300~mm at the entrance window, and a mass of $\\sim$280~kg. In this paper we describe the design of the visible camera cryostats and discuss various aspects of cryostat performance.

  4. Commissioning of the 4 K Outer Cryostat for the CUORE Experiment

    CERN Document Server

    Ferri, E; Biassoni, M; Bucci, C; Ceruti, G; Chiarini, A; Clemenza, M; Cremonesi, O; Datskov, V; Dossena, S; Faverzani, M; Franceschi, M A; Gaigher, R; Gorla, P; Guetti, M; Ligi, C; Napolitano, T; Nucciotti, A; Pelosi, A; Perego, M; Previtali, E; Sisti, M; Taffarello, L; Terranova, F

    2014-01-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a 1-ton scale bolometric experiment. The CUORE detector is an array of 988 TeO crystals arranged in a cylindrical, compact, and granular structure of 19 towers. These detectors will need a base temperature lower than 10 mK in order to meet the performance specifications. To cool the CUORE detector, a large cryogen free cryostat with five pulse tubes and one custom designed high power dilution refrigerator has been designed. The three vessels that form the outer shell of the CUORE cryostat were produced in 2012 and are now assembled in the Gran Sasso National Laboratories (LNGS). We report here the detailed description of the 4 K outer cryostat for the CUORE experiment together with the results of the validation tests done at the production site in 2012 and of the first commissioning to 4 K at LNGS in 2013.

  5. Assembly and test of the W7-X demo-cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Schauer, F. E-mail: schauer@ipp.mpg.de; Bau, H.; Bojko, I.; Brockmann, R.; Feist, J.-H.; Hein, B.; Pieger-Frey, M.; Pirsch, H.; Sapper, J.; Sombach, B.; Stadlbauer, J.; Volzke, O.; Wald, I.; Wanner, M

    2001-10-01

    An overview is given on the status of the demo-cryostat project for the WENDELSTEIN 7-X stellarator. Construction and assembly of the prototype are finished, and the test period is near completion. The intention of this project was to get experience with design and construction of W7-X-components, as well as with assembly of this complex system. The goal is now practically achieved, and it could be demonstrated that the W7-X cryostat can be built with reasonable effort. Many of the solutions found can be adopted directly for W7-X, or are starting points for further improvements. A short description is given of the cryostat, its assembly, and of the most important tests which were performed so far.

  6. Use of microwave oven improves morphology and staining of cryostat sections.

    Science.gov (United States)

    Kennedy, A; Foulis, A K

    1989-01-01

    The quality of microscopic image of cryostat sections that had been subjected to microwave assisted fixation was compared with that resulting from conventional air drying of the sections. The role of microwaves in producing rapid special stains on cryostat sections was also assessed. Methods used permitted stains such as periodic acid Schiff, alcian blue, Gordon and Sweets's reticulin, Masson Fontana, Elastica, Prussian blue and Van Gieson to be performed within three minutes of cutting a cryostat section. The cytological detail of nuclei was much clearer using the microwave technique, allowing more accurate determination of cell type. The microwave oven seems to have major potential in improving the diagnostic accuracy of surgical frozen sections. Images Fig 1 Fig 2 Fig 3 Fig 4 Fig 5 PMID:2466053

  7. The Liquid Argon Purity Demonstrator

    CERN Document Server

    Adamowski, M; Dvorak, E; Hahn, A; Jaskierny, W; Johnson, C; Jostlein, H; Kendziora, C; Lockwitz, S; Pahlka, B; Plunkett, R; Pordes, S; Rebel, B; Schmitt, R; Stancari, M; Tope, T; Voirin, E; Yang, T

    2014-01-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  8. The Liquid Argon Purity Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  9. Transport and extraction of radioactive ions stopped in superfluid helium

    CERN Document Server

    Huang Wan Xia; Gloos, K; Takahashi, N; Arutyunov, K; Pekola, J P; Äystö, J

    2003-01-01

    A new approach to convert a high energy beam to a low energy one, which is essential for the next generation radioactive ion beam facilities, has been proposed and tested at Jyvaeskylae, Finland. An open sup 2 sup 2 sup 3 Ra alpha-decay-recoil source has been used to produce radioactive ions in superfluid helium. The alpha spectra demonstrate that the recoiling sup 2 sup 1 sup 9 Rn ions have been extracted out of liquid helium. This first observation of the extraction of heavy positive ions across the superfluid helium surface was possible thanks to the high sensitivity of radioactivity detection. An efficiency of 36% was obtained for the ion extraction out of liquid helium.

  10. Nucleation, solvation and boiling of helium excimer clusters

    CERN Document Server

    Luna, Luis G Mendoza; Watkins, Mark J; Bonifaci, Nelly; Aitken, Frederic; von Haeften, Klaus

    2015-01-01

    Helium excimers generated by a corona discharge were investigated in the gas and normal liquid phases of helium as a function of temperature and pressure between 3.8 and 5.0 K and 0.2 and 5.6 bar. Intense fluorescence in the visible region showed the rotationally resolved $d^3\\Sigma_u^+ \\rightarrow b^3\\Pi_g$ transition of He$_2^*$. With increasing pressure, the rotational lines merged into single features. The observed pressure dependence of linewidths, shapes and lineshifts established phases of coexistence and separation of excimer-helium mixtures, providing detailed insight into nucleation, solvation and boiling of He$_2^*$-He$_n$ clusters.

  11. Solvation of Na+, K+, and Their Dimers in Helium

    OpenAIRE

    An der Lan, Lukas; Bartl, Peter; Leidlmair, Christian; Jochum, Roland; Denifl, Stephan; Echt, Olof; Scheier, Paul

    2012-01-01

    Helium atoms bind strongly to alkali cations which, when embedded in liquid helium, form so-called snowballs. Calculations suggest that helium atoms in the first solvation layer of these snowballs form rigid structures and that their number (n) is well defined, especially for the lighter alkalis. However, experiments have so far failed to accurately determine values of n. We present high-resolution mass spectra of Na+He n , K+He n , Na2 +He n and K2 +He n , formed by electron ionization of do...

  12. Roles and expectations of cold compressor for helium refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Nobuyoshi; Asakura, Hiroshi; Yoshinaga, Seiichiro; Ishizawa, Takehiko [Ishikawajima-Harima Heavy Industries Co., Ltd., Yokohama, Kanagawa (Japan)

    2002-12-01

    Since around 1970, cryogenic systems have required the use of cold compressors. The requirement appeared for two reasons. The first was reduce the pressure of liquid helium with the intention of realizing the stable operation of large superconducting magnets with the best superconducting ability by decreasing operating temperature. The other was to improve the reliability of helium refrigerator compressors by introducing a turbo-compressor with oil-free bearings. This paper describes the circumstances and particular development of cold compressors, requirements related to helium refrigeration systems and cold compressors and future prospects. (author)

  13. Multi-objective Optimization on Helium Liquefier Using Genetic Algorithm

    Science.gov (United States)

    Wang, H. R.; Xiong, L. Y.; Peng, N.; Meng, Y. R.; Liu, L. Q.

    2017-02-01

    Research on optimization of helium liquefier is limited at home and abroad, and most of the optimization is single-objective based on Collins cycle. In this paper, a multi-objective optimization is conducted using genetic algorithm (GA) on the 40 L/h helium liquefier developed by Technical Institute of Physics and Chemistry of the Chinese Academy of Science (TIPC, CAS), steady solutions are obtained in the end. In addition, the exergy loss of the optimized system is studied in the case of with and without liquid nitrogen pre-cooling. The results have guiding significance for the future design of large helium liquefier.

  14. Pressure-Volume-Temperature (PVT) Gauging of an Isothermal Cryogenic Propellant Tank Pressurized with Gaseous Helium

    Science.gov (United States)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2014-01-01

    Results are presented for pressure-volume-temperature (PVT) gauging of a liquid oxygen/liquid nitrogen tank pressurized with gaseous helium that was supplied by a high-pressure cryogenic tank simulating a cold helium supply bottle on a spacecraft. The fluid inside the test tank was kept isothermal by frequent operation of a liquid circulation pump and spray system, and the propellant tank was suspended from load cells to obtain a high-accuracy reference standard for the gauging measurements. Liquid quantity gauging errors of less than 2 percent of the tank volume were obtained when quasi-steady-state conditions existed in the propellant and helium supply tanks. Accurate gauging required careful attention to, and corrections for, second-order effects of helium solubility in the liquid propellant plus differences in the propellant/helium composition and temperature in the various plumbing lines attached to the tanks. On the basis of results from a helium solubility test, a model was developed to predict the amount of helium dissolved in the liquid as a function of cumulative pump operation time. Use of this model allowed correction of the basic PVT gauging calculations and attainment of the reported gauging accuracy. This helium solubility model is system specific, but it may be adaptable to other hardware systems.

  15. Rotation of the solenoid magnet of the CMS experiment before the insertion into its cryostat

    CERN Multimedia

    Patrice Loiez

    2005-01-01

    At one side of the 27 km ring of the future Large Hadron Collider (LHC), the 230 tonne solenoid magnet for the CMS experiment has been rotated through 90° prior to insertion into its cryostat - the jacket that will cool the magnet to 4.2 K (-269° C).

  16. Design and Fabrication of Cryostat Interface and Electronics for High Performance Antimatter Trap (HI-PAT)

    Science.gov (United States)

    Smith, Gerald A.

    1999-01-01

    Included in Appendix I to this report is a complete set of design and assembly schematics for the high vacuum inner trap assembly, cryostat interfaces and electronic components for the MSFC HI-PAT. Also included in the final report are summaries of vacuum tests, and electronic tests performed upon completion of the assembly.

  17. Methods and devices for hyperpolarising and melting NMR samples in a cryostat

    DEFF Research Database (Denmark)

    Ardenkjaer-Larsen, Jan Henrik; Axelsson, Oskar H. E.; Golman, Klaes Koppel;

    2006-01-01

    The present invention relates to devices and method for melting solid polarised sample while retaining a high level of polarisation. In an embodiment of the present invention a sample is polarised in a sample-retaining cup 9 in a strong magnetic field in a polarising means 3a, 3b, 3c in a cryostat...

  18. A 5 tesla superconducting magnet and cryostats for an EPR/FMR spectrometer

    NARCIS (Netherlands)

    Reuvekamp, E.M.C.M.; Gerritsma, G.J.; Kate, ten H.H.J.; Klundert, van de L.J.M.

    1988-01-01

    A description is given of the cryogenic part of an electron paramagnetic resonance (EPR)/ferromagnetic resonance (FMR) spectrometer using Ka-band (26.5-40 GHz) and U-band (40-60 GHz) frequencies for resonance measurements on large magnetic thin-films. The unit has two cryostats; the first has a room

  19. Development of a Cryostat to Characterize Nano-scale Superconducting Quantum Interference Devices

    Science.gov (United States)

    Longo, Mathew; Matheny, Matthew; Knudsen, Jasmine

    2016-03-01

    We have designed and constructed a low-noise vacuum cryostat to be used for the characterization of nano-scale superconducting quantum interference devices (SQUIDs). Such devices are very sensitive to magnetic fields and can measure changes in flux on the order of a single electron magnetic moment. As a part of the design process, we calculated the separation required between the cryogenic preamplifier and superconducting magnet, including a high-permeability magnetic shield, using a finite-element model of the apparatus. The cryostat comprises a vacuum cross at room temperature for filtered DC and shielded RF electrical connections, a thin-wall stainless steel support tube, a taper-sealed cryogenic vacuum can, and internal mechanical support and wiring for the nanoSQUID. The Dewar is modified with a room-temperature flange with a sliding seal for the cryostat. The flange supports the superconducting 3 Tesla magnet and thermometry wiring. Upon completion of the cryostat fabrication and Dewar modifications, operation of the nanoSQUIDs as transported from our collaborator's laboratory in Israel will be confirmed, as the lead forming the SQUID is sensitive to oxidation and the SQUIDs must be shipped in a vacuum container. After operation of the nanoSQUIDs is confirmed, the primary work of characterizing their high-speed properties will begin. This will include looking at the measurement of relaxation oscillations at high bandwidth in comparison to the theoretical predictions of the current model.

  20. ITER cryostat main chamber and vacuum vessel pressure suppression system design

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Akira; Nakahira, Masataka; Takahashi, Hiroyuki; Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakashima, Yoshitane; Ueno, Osamu

    1999-03-01

    Design of Cryostat Main Chamber and Vacuum Vessel Pressure Suppression System (VVPS) of International Thermonuclear Experimental Reactor (ITER) has been conducted. The cryostat is a cylindrical vessel that includes in-vessel component such as vacuum vessel, superconducting toroidal coils and poloidal coils. This cryostat provides the adiabatic vacuum about 10{sup -4} Pa for the superconducting coils operating at 4 K and forms the second confinement barrier to tritium. The adiabatic vacuum is to reduce thermal loads applied to the superconducting coils and their supports so as to keep their temperature 4 K. The VVPS consists of a suppression tank located under the lower bio-shield and 4 relief pipes to connect the vacuum vessel and the suppression tank. The VVPS is to keep the maximum pressure rise of the vacuum vessel below the design value of 0.5 MPa in case of the in-vessel LOCA (water spillage from in-vessel component). The spilled water and steam are lead to the suppression tank through the relief pipes when the internal pressure of vacuum vessel is over 0.2 MPa, and then the internal pressure is kept below 0.5 MPa. This report summarizes the structural design of the cryostat main chamber and pressure suppression system, together with their fabrication and installation. (author)

  1. Two-circuit cryogenic system for cooling and cryostating a superconductive turbogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Vishnev, I.P.; Kalitin, P.P.; Krauze, A.I.

    1985-01-01

    This paper reports the results of experimentation with a cryogenic system which indicate that the system meets the refrigeration and cryostating requirements of superconductive turbogenerators and the thermal, hydraulic, mechanical and electrical calculation procedures which they have developed and tested and which make it possible to plan similar high-power superconductive electrical devices.

  2. Design, construction and start up by Air Liquide of two 18 kW at 45 K helium refrigerators for the new CERN accelerator (LHC)

    CERN Document Server

    Dauguet, P; Delcayre, F; Ghisolfi, A; Gistau-Baguer, Guy M; Guerin, C A; Hilbert, B; Marot, G; Monneret, E

    2004-01-01

    CERN in Switzerland is presently building a new particle accelerator labeled as the LHC. This 27 km accelerator will, for the first time at such a large scale, operate at cryogenic temperatures with superconducting magnets and radio-frequency cavities. For that purpose, Air Liquide has designed, constructed and started up two custom designed refrigerators. The cryogenic power of each of these refrigerators is equivalent to 18 kW at 4.5 K. In order to produce the cryogenic power requested by the LHC accelerator at the different temperature levels with a very high efficiency, a custom design thermodynamic cycle has been chosen. This cycle, the major components of the refrigerators and the results obtained during the reception tests of the refrigerators are presented in this paper.

  3. Cosmic Ray Helium Hardening

    CERN Document Server

    Ohira, Yutaka

    2010-01-01

    Recent observations by CREAM, ATIC-2 and PAMELA experiments suggest that (1) the spectrum of cosmic ray (CR) helium is harder than that of CR proton below the knee $10^15 eV$ and (2) all CR spectra become hard at $\\gtrsim 10^{11} eV/n$. We propose a new picture that higher energy CRs are generated in more helium-rich region to explain the hardening (1) without introducing different sources for CR helium. The helium to proton ratio at $\\sim 100$ TeV exceeds the Big Bang abundance $Y=0.25$ by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in the chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium when escaping from the supernova remnant (SNR) shock. We provide a simple analytical spectrum that also fits well the hardening (2) because of the decreasing Mach number in the hot superbubble with $\\sim 10^6$ K. Our model predicts hard and con...

  4. A Cryostat for Automated mK-Level Thermometer Calibrations from -202 °C to 250 °C

    Science.gov (United States)

    Ballico, Mark; Freund, Chris

    2011-12-01

    The National Measurement Institute of Australia (NMIA) has developed a vacuum cryostat capable of calibrating precision electronic thermometers with a transfer error less than 2 mK over the range from -202 °C to 250 °C. The calibration of precision temperature measurement probes such as platinum resistance thermometers is usually performed in circulated fluid baths to achieve mK-level calibration uncertainties, and requires the use of several baths to cover the commonly used range of -80 °C to 250°C. Below -80 °C, dry-well systems cooled by liquid nitrogen are available down to -196 °C, but achieve poor uniformity and stability. The increased use of cryogenic preservation in the biomedical area has seen an increase in demand for precision calibration of electronic thermometer systems, in particular, down to a few degrees below the boiling point of nitrogen (-196 °C). This has prompted NMIA to develop a new design of a dry-well calibrator, based around a 380 mm long, 50 mm diameter, oxygen-free copper block insulated by gold-plated radiation and guard shields. Temperatures down to -202 °C are achieved by controlling the flow of liquid nitrogen through a restricting orifice into an evacuated heat exchanger. Computer control of the nitrogen flow and of several immersion heaters achieve a temperature stability of a few mK at all temperatures over the operational range, requiring typically 60 min to equilibrate at each new setpoint. Radiative transfer limits operation to 250 °C where the uniformity is 0.5 mK · cm-1 (and becoming negligible at lower temperatures). A significant design innovation is the thermometer entry region, which has a purge system to keep the wells free of condensed moisture or atmospheric gases without the need for a seal. As the block is only 50 mm from the face of the cryostat, thermometers as short as 250 mm can be calibrated. The system is now in regular use at NMIA providing fully automated calibrations of precison temperature

  5. Study of Transient Heat Transport Mechanisms in Superfluid Helium Cooled Rutherford-Cables

    CERN Document Server

    AUTHOR|(CDS)2100615

    The Large Hadron Collider leverages superconducting magnets to focus the particle beam or keep it in its circular track. These superconducting magnets are composed of NbTi-cables with a special insulation that allows superfluid helium to enter and cool the superconducting cable. Loss mechanisms, e.g. continuous random loss of particles escaping the collimation system heating up the magnets. Hence, a local temperature increase can occur and lead to a quench of the magnets when the superconductor warms up above the critical temperature. A detailed knowledge about the temperature increases in the superconducting cable (Rutherford type) ensures a secure operation of the LHC. A sample of the Rutherford cable has been instrumented with temperature sensors. Experiments with this sample have been performed within this study to investigate the cooling performance of the helium in the cable due to heat deposition. The experiment uses a superconducting coil, placed in a cryostat, to couple with the magnetic field loss m...

  6. Status and development trends of refrigerator range in liquid helium temperature%液氦温区小型节流制冷机发展现状及趋势

    Institute of Scientific and Technical Information of China (English)

    周振君; 王娟; 梁惊涛

    2011-01-01

    随着国际空间与地面制冷技术的不断发展,对液氦温区甚至超流氦温区的冷环境需求场合越来越广.针对目前国外在深低温超小型节流制冷器方面的研究已经开展并取得可观成果,介绍了有关J-T节流的原理、J-T节流制冷机的结构等有关知识,概述了当前国外10 K以下温区J-T节流制冷机的应用情况,对液氦温区J-T节流制冷机的发展前景进行了展望.%In the fields of infrared detection and other high-tech technology, many components need to work at low temperatures to reduce the thermal interference and improve the sensitivity, thereby increasing the reliability and working life of the device. Currently there is no domestic research on liquid helium temperature throttling cryocoolers, while this study was carried out in some countries and achieved impressive results. The principle and the structure of J-T throttling was introduced, then the current application of lower than 10 K J-T throttling cryocooler was reviewed. Finally, the future development of J-T throttling refrigeration system was discussed.

  7. A self-circulation helium liquefaction system with five 4 K G-M cryocoolers

    Science.gov (United States)

    Xu, Dong; Gong, Linghui; Li, Laifeng; Xu, Xiangdong; Xie, Zuqi; Zhao, Hongwei; Guo, Xiaohong

    2011-06-01

    A self-circulation helium liquefaction system (SCHLS) with five 4 K G-M cryocoolers is developed to supply liquid helium (LHe) for SECRAL (a superconducting ECR ion source used in Lanzhou city, China). LHe is vaporized in SECRAL and warmed up to room temperature. SCHLS will re-liquefy the helium gas at a rate of 83.2 L/day under normal atmosphere pressure. With SCHLS, SECRAL system can run online without any interruption of refilling LHe.

  8. Development and implementation of a model of permeation of tritium in the presence of bubbles of helium to tritigenic wraps of liquid metal wraps; Desarrollo e implementacion de un modelo de permeacion de tritio en presencia de burbujas de helio para envolturas tritigenicas de metal liquido

    Energy Technology Data Exchange (ETDEWEB)

    Batet, L.; Mas de les Valls, E.; Sedano, L. A.

    2013-07-01

    In the channels of liquid metal (ML) regenerating sheaths of a fusion reactor, the possibility of bubbles of helium is not remote. Bubbles adhering to the wall of the ML channels would affect heat transfer and the permeation of tritium. Detailed analysis has been conducted (fine mesh), using OpenFOAM, from the environment of a bubble attached to the wall and has developed a model for permeation of tritium through a partially covered with bubbles of helium surface of contact Ml-solid. The model developed has implemented as wall function in OpenFOAM, has validated and has been applied to a case study, using a relatively thick mesh. The developed model substantially reduces the need for computing on the detailed calculation power.

  9. Broken symmetry makes helium

    CERN Multimedia

    Gray, P L

    2003-01-01

    "The subatomic pion particle breaks the charge symmetry rule that governs both fusion and decay. In experiments performed at the Indiana University Cyclotron Laboratory, physicists forced heavy hydrogen (1 proton + 1 neutron) to fuse into helium in a controlled, measurable environment" (1 paragraph).

  10. High-pressure-low-temperature cryostat designed for use with fourier transform infrared spectrometers and time-resolved infrared spectroscopy.

    Science.gov (United States)

    Calladine, James A; Love, Ashley; Fields, Peter A; Wilson, Richard G M; George, Michael W

    2014-01-01

    The design for a new high-pressure-low-temperature infrared (IR) cell for performing experiments using conventional Fourier transform infrared or fast laser-based time-resolved infrared spectroscopy, in a range of solvents, is described. The design builds upon a commercially available compressor and cold end (Polycold PCC(®) and CryoTiger(®)), which enables almost vibration-free operation, ideal for use with sensitive instrumentation. The design of our cell and cryostat allows for the study of systems at temperatures from 77 to 310 K and at pressures up to 250 bar. The CaF2 windows pass light from the mid-IR to the ultraviolet (UV), enabling a number of experiments to be performed, such as Raman, UV-visible absorption spectroscopy, and time-resolved techniques where sample excitation/probing using continuous wave or pulsed lasers is required. We demonstrate the capabilities of this cell by detailing two different applications: (i) the reactivity of a range of Group V-VII organometallic alkane complexes using time-resolved spectroscopy on the millisecond timescale and (ii) the gas-to-liquid phase transition of CO2 at low temperature, which is applicable to measurements associated with transportation issues related to carbon capture and storage.

  11. Absence of grain boundary melting in solid helium

    Energy Technology Data Exchange (ETDEWEB)

    Caupin, Frederic; Sasaki, Satoshi; Balibar, Sebastien [Laboratoire de Physique Statistique de l' Ecole Normale Superieure, associe au CNRS et aux Universites Paris 6 et 7, 24 rue Lhomond, 75005 Paris (France)], E-mail: caupin@lps.ens.fr

    2008-12-10

    Crystals are often expected to start melting at their free surface or at the interface between grains. Grain boundary melting corresponds to the situation where the interface between grains is invaded by a thick liquid film at the bulk melting temperature T{sub m}. In some cases, premelting is predicted, with liquid-like layers appearing between grains at temperatures below T{sub m}. We review this topic, and describe our experiments on solid helium 4. We find that grain boundaries are not wetted by the liquid at T{sub m}: they emerge at the liquid-solid interface with a non-zero contact angle. This is consistent with a general argument which predicts that, although systems with short-range forces might show grain boundary melting and premelting, in systems with long-range forces (like helium), grain boundaries can only be wetted incompletely by the liquid at T{sub m}.

  12. Evaluation of helium cooling for fusion divertors

    Energy Technology Data Exchange (ETDEWEB)

    Baxi, C.B.

    1993-09-01

    The divertors of future fusion reactors will have a power throughput of several hundred MW. The peak heat flux on the diverter surface is estimated to be 5 to 15 MW/m{sup 2} at an average heat flux of 2 MW/m{sup 2}. The divertors have a requirement of both minimum temperature (100{degrees}C) and maximum temperature. The minimum temperature is dictated by the requirement to reduce the absorption of plasma, and the maximum temperature is determined by the thermo-mechanical properties of the plasma facing materials. Coolants that have been considered for fusion reactors are water, liquid metals and helium. Helium cooling has been shown to be very attractive from safety and other considerations. Helium is chemically and neutronically inert and is suitable for power conversion. The challenges associated with helium cooling are: (1) Manifold sizes; (2) Pumping power; and (3) Leak prevention. In this paper the first two of the above design issues are addressed. A variety of heat transfer enhancement techniques are considered to demonstrate that the manifold sizes and the pumping power can be reduced to acceptable levels. A helium-cooled diverter module was designed and fabricated by GA for steady-state heat flux of 10 MW/m{sup 2}. This module was recently tested at Sandia National Laboratories. At an inlet pressure of 4 MPa, the module was tested at a steady-state heat flux of 10 MW/m{sup 2}. The pumping power required was less than 1% of the power removed. These results verified the design prediction.

  13. Some design features, non-features, and ex-non-features of the Cornell microkelvin cryostat

    Science.gov (United States)

    Smith, E. N.

    1989-10-01

    Cryostats intended for very low temperature use must meet very stringent demands in the areas of vibrational isolation, electrical isolation, and reliable thermometry. The efforts which have been made in these areas during the construction of the new microkelvin cryostat at Cornell have met with varying success. In this paper will be described both a number of our ideas which we feel have worked well (features, in the jargon of the American advertising industry), some which seemed like good ideas at the time, but which should not be repeated elsewhere (non-features, by logical extension). Also corrections to some of the less successful approaches will be discussed, which have lead to the production of some ex-non-features.

  14. The CUORE Cryostat: A 1-Ton Scale Setup for Bolometric Detectors

    Science.gov (United States)

    Ligi, C.; Alduino, C.; Alessandria, F.; Biassoni, M.; Bucci, C.; Caminata, A.; Canonica, L.; Cappelli, L.; Chott, N. I.; Copello, S.; D'Addabbo, A.; Dell'Oro, S.; Drobizhev, A.; Franceschi, M. A.; Gladstone, L.; Gorla, P.; Napolitano, T.; Nucciotti, A.; Orlandi, D.; Ouellet, J.; Pagliarone, C.; Pattavina, L.; Rusconi, C.; Santone, D.; Singh, V.; Taffarello, L.; Terranova, F.; Uttaro, S.

    2016-08-01

    The cryogenic underground observatory for rare events (CUORE) is a 1-ton scale bolometric experiment whose detector consists of an array of 988 TeO_2 crystals arranged in a cylindrical compact structure of 19 towers. This will be the largest bolometric mass ever operated. The experiment will work at a temperature around or below 10 mK. CUORE cryostat consists of a cryogen-free system based on pulse tubes and a custom high power dilution refrigerator, designed to match these specifications. The cryostat has been commissioned in 2014 at the Gran Sasso National Laboratories and reached a record temperature of 6 mK on a cubic meter scale. In this paper, we present results of CUORE commissioning runs. Details on the thermal characteristics and cryogenic performances of the system will be also given.

  15. The CUORE Cryostat: A 1-Ton Scale Setup for Bolometric Detectors

    CERN Document Server

    Ligi, C; Alessandria, F; Biassoni, M; Bucci, C; Caminata, A; Canonica, L; Cappelli, L; Chott, N I; Copello, S; D'Addabbo, A; Dell'Oro, S; Drobizhev, A; Franceschi, M A; Gladstone, L; Gorla, P; Napolitano, T; Nucciotti, A; Orlandi, D; Ouellet, J; Pagliarone, C; Pattavina, L; Rusconi, C; Santone, D; Singh, V; Taffarello, L; Terranova, F; Uttaro, S

    2016-01-01

    The cryogenic underground observatory for rare events (CUORE) is a 1-ton scale bolometric experiment whose detector consists of an array of 988 TeO2 crystals arranged in a cylindrical compact structure of 19 towers. This will be the largest bolometric mass ever operated. The experiment will work at a temperature around or below 10 mK. CUORE cryostat consists of a cryogen-free system based on pulse tubes and a custom high power dilution refrigerator, designed to match these specifications. The cryostat has been commissioned in 2014 at the Gran Sasso National Laboratories and reached a record temperature of 6 mK on a cubic meter scale. In this paper, we present results of CUORE commissioning runs. Details on the thermal characteristics and cryogenic performances of the system will be also given.

  16. Thermal Modeling and Cryogenic Design of a Helical Superconducting Undulator Cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Shiroyanagi, Y.; Fuerst, J.; Hasse, Q.; Ivanyushenkov, Y.

    2017-06-01

    A conceptual design for a helical superconducting undulator (HSCU) for the Advanced Photon Source (APS) at Argonne National Laboratory (ANL) has been completed. The device differs sufficiently from the existing APS planar superconducting undulator (SCU) design to warrant development of a new cryostat based on value engineering and lessons learned from the existing planar SCU. Changes include optimization of the existing cryocooler-based refrigeration system and thermal shield as well as cost reduction through the use of standard vacuum hardware. The end result is a design that provides significantly larger 4.2 K refrigeration margin in a smaller package for greater installation flexibility in the APS storage ring. This paper presents ANSYS-based thermal analysis of the cryostat, including estimated static and dynamic

  17. Pressure relief protection in cryostats: CERN’s experience on LHC and HIE Isolde

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Cryostats contain large cold surfaces, cryogenic fluids, and sometimes large stored energy (e.g. energized magnets), with the potential risk of sudden liberation of energy through thermodynamic transformations of the fluids, which can be uncontrolled and lead to a dangerous increase of pressure inside the cryostat envelopes. The consequence, in the case of a rupture of the envelopes, may be serious for personnel (injuries from deflagration, burns, and oxygen deficiency hazard) as well as for the equipment. Performing a thorough risk analysis is an essential step to identify and understand risk hazards that may cause a pressure increase and in order to assess consequences, define mitigation actions, and design adequate safety relief devices to limit pressure accordingly. Lessons learnt from real cases are essential for improving safety awareness for future projects: LHC and HIE Isolde are amongst these examples.

  18. Acquisition of He3 Cryostat Insert for Experiments on Topological Insulators

    Science.gov (United States)

    2016-02-03

    facilitated transport experiments on topological insulators and Dirac and Weyl semimetals. These experiments resulted in several notable achievements and...Approved for Public Release; Distribution Unlimited Final Report: Acquisition of He3 Cryostat Insert for Experiments on Topological Insulators. The views...P.O. Box 12211 Research Triangle Park , NC 27709-2211 Cryogenic equipment with 9 Tesla magnet, low temperature experiments REPORT DOCUMENTATION PAGE

  19. Optimization of the outer support in the ITER lower cryostat thermal shield

    Energy Technology Data Exchange (ETDEWEB)

    Noh, C.H., E-mail: chnoh@nfri.re.kr [National Fusion Research Institute, Daejeon, 305-333 (Korea, Republic of); Korea Advanced Institute of Science and Technology, Daejeon, 305-338 (Korea, Republic of); Chung, W., E-mail: whchung@nfri.re.kr [National Fusion Research Institute, Daejeon, 305-333 (Korea, Republic of); Lim, J., E-mail: jongmin.lim@kaist.ac.kr [Korea Advanced Institute of Science and Technology, Daejeon, 305-338 (Korea, Republic of); Lee, B.C., E-mail: bclee@kaist.ac.kr [Korea Advanced Institute of Science and Technology, Daejeon, 305-338 (Korea, Republic of)

    2016-02-15

    Highlights: • Design methodology for the ITER lower cryostat thermal shield support is described. • Design optimization is performed using the kriging meta-model. • Single plate support design is proposed as an alternative design. • Proposed design has 24% reduced weight compared with the initial design. - Abstract: ITER Lower Cryostat Thermal Shield (LCTS) is fixed to the cryostat floor by a thin flexible plate support. Double plate made of titanium alloy is adopted as a reference design. Double plate is effective to get structural reliability for the high inertia load and buckling load. Thin plate with titanium alloy has good flexibility to the thermal movement and reduces conduction heat load from cryostat floor to the thermal shield. Double plate support has enough structural margin. In addition, titanium alloy requires high cost for fabrication. Design optimization is required to save manufacturing expenses. In addition to the mass minimization, design modification from double plate to single plate is proposed, because welding of double plate is difficult due to narrow gap between two plates. In this paper, design process to find optimal design of LCTS support is described. The sensitivities of the design variables such as thickness, height, width and gap between two plates are investigated. Optimal design solution is obtained by Sequential Quadratic Programming (SQP) algorithm based on the meta-model developed by randomly selected experimental samples. Through the design optimization process, optimal designs of the LCTS support are obtained. The weight of the support plates can be reduced to 24% compared with the initial design.

  20. Performance of the Helium Circulation System on a Commercialized MEG

    Science.gov (United States)

    T, Takeda; M, Okamoto; T, Miyazaki; K, Katagiri

    2012-12-01

    We report the performance of a helium circulation system (HCS) mounted on a MEG (Magnetoencephalography) at Nagoya University, Japan. This instrument is the first commercialized version of an HCS. The HCS collects warm helium gas at approximately 300 K and then cools it to approximately 40 K. The gas is returned to the neck tube of a Dewar of the MEG to keep it cold. It also collects helium gas in the region just above the liquid helium surface while it is still cold, re-liquefies the gas and returns it to the Dewar. A special transfer tube (TT) of approximately 3 m length was developed to allow for dual helium streams. This tube separates the HCS using a MEG to reduce magnetic noise. A refiner was incorporated to effectively collect contaminating gases by freezing them. The refiner was equipped with an electric heater to remove the frozen contaminants as gases into the air. A gas flow controller was also developed, which automatically controlled the heater and electric valves to clean up contamination. The developed TT exhibited a very low heat inflow of less than 0.1 W/m to the liquid helium, ensuring efficient operation. The insert tube diameter, which was 1.5 in. was reduced to a standard 0.5 in. size. This dimensional change enabled the HCS to mount onto any commercialized MEG without any modifications to the MEG. The HCS can increase liquid helium in the Dewar by at least 3 liters/Day using two GM cryocoolers (SRDK-415D, Sumitomo Heavy Industries, Ltd.). The noise levels were virtually the same as before this installation.

  1. Helium extraction and nitrogen removal from LNG boil-off gas

    Science.gov (United States)

    Xiong, L.; Peng, N.; Liu, L.; Gong, L.

    2017-02-01

    The helium bearing boil off gas (BOG) from liquid natural gas (LNG) storage tank in LNG plant, which has a helium concentration of about 1%, has attracted the attention in China as a new helium source. As the BOG is usually reused by re-condensing to recover methane, it is likely to cause continuous accumulation of nitrogen in the unit, thus a nitrogen removal process must be integrated. This paper describes a conceptional cryogenic separation system aiming at recovering methane, helium and nitrogen from BOG based on cryogenic distillation and condensation process.

  2. Education in Helium Refrigeration

    Science.gov (United States)

    Gistau Baguer, G. M.

    2004-06-01

    On the one hand, at the end of the time I was active in helium refrigeration, I noticed that cryogenics was stepping into places where it was not yet used. For example, a conventional accelerator, operating at room temperature, was to be upgraded to reach higher particle energy. On the other hand, I was a little bit worried to let what I had so passionately learned during these years to be lost. Retirement made time available, and I came gradually to the idea to teach about what was my basic job. I thought also about other kinds of people who could be interested in such lessons: operators of refrigerators or liquefiers who, often by lack of time, did not get a proper introduction to their job when they started, young engineers who begin to work in cryogenics… and so on. Consequently, I have assembled a series of lessons about helium refrigeration. As the audiences have different levels of knowledge in the field of cryogenics, I looked for a way of teaching that is acceptable for all of them. The course is split into theory of heat exchangers, refrigeration cycles, technology and operation of main components, process control, and helium purity.

  3. Helium anion formation inside helium droplets

    Science.gov (United States)

    Maalouf, Elias Jabbour Al; Reitshammer, Julia; Ribar, Anita; Scheier, Paul; Denifl, Stephan

    2016-07-01

    The formation of He∗- is examined with improved electron energy resolution of about 100 meV utilizing a hemispherical electron monochromator. The work presented provides a precise determination of the three previously determined resonance peak positions that significantly contribute to the formation of He∗- inside helium nanodroplets in the energy range from 20 eV to 29.5 eV. In addition, a new feature is identified located at 27.69 ± 0.18 eV that we assign to the presence of O2 as a dopant inside the droplet. With increasing droplet size a small blue shift of the resonance positions is observed. Also for the relatively low electron currents used in the present study (i.e., 15-70 nA) a quadratic dependence of the He∗- ion yield on the electron current is observed. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  4. Liquid-helium-cooled Michelson interferometer

    Science.gov (United States)

    Augason, G. C.; Young, N.

    1972-01-01

    Interferometer serves as a rocket-flight spectrometer for examination of the far infrared emission spectra of astronomical objects. The double beam interferometer is readily adapted to make spectral scans and for use as a detector of discrete line emissions.

  5. Helium-3 and Helium-4 acceleration by high power laser pulses for hadron therapy

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Leemans, W P; Bulanov, S V; Margarone, D; Korn, G; Haberer, T

    2015-01-01

    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (Magnetic Vortex Acceleration and hole-boring Radiation Pressure Acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the ...

  6. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    Directory of Open Access Journals (Sweden)

    S. S. Bulanov

    2015-06-01

    Full Text Available The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He^{3} ions, having almost the same penetration depth as He^{4} with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.

  7. Atomically resolved phase transition of fullerene cations solvated in helium droplets

    Science.gov (United States)

    Kuhn, M.; Renzler, M.; Postler, J.; Ralser, S.; Spieler, S.; Simpson, M.; Linnartz, H.; Tielens, A. G. G. M.; Cami, J.; Mauracher, A.; Wang, Y.; Alcamí, M.; Martín, F.; Beyer, M. K.; Wester, R.; Lindinger, A.; Scheier, P.

    2016-11-01

    Helium has a unique phase diagram and below 25 bar it does not form a solid even at the lowest temperatures. Electrostriction leads to the formation of a solid layer of helium around charged impurities at much lower pressures in liquid and superfluid helium. These so-called `Atkins snowballs' have been investigated for several simple ions. Here we form HenC60+ complexes with n exceeding 100 via electron ionization of helium nanodroplets doped with C60. Photofragmentation of these complexes is measured by merging a tunable narrow-bandwidth laser beam with the ions. A switch from red- to blueshift of the absorption frequency of HenC60+ on addition of He atoms at n=32 is associated with a phase transition in the attached helium layer from solid to partly liquid (melting of the Atkins snowball). Elaborate molecular dynamics simulations using a realistic force field and including quantum effects support this interpretation.

  8. Laser Spectroscopy of Antiprotonic Helium Atoms

    CERN Multimedia

    2002-01-01

    %PS205 %title\\\\ \\\\Following the discovery of metastable antiprotonic helium atoms ($\\overline{p}He^{+} $) at KEK in 1991, systematic studies of their properties were made at LEAR from 1991 to 1996. In the first two years the lifetime of $\\overline{p}He^{+}$ in liquid and gaseous helium at various temperatures and pressures was measured and the effect of foreign gases on the lifetime of these atoms was investigated. Effects were also discovered which gave the antiproton a 14\\% longer lifetime in $^4$He than in $^3$He, and resulted in important differences in the shape of the annihilation time spectra in the two isotopes.\\\\ \\\\Since 1993 laser spectroscopy of the metastable $\\overline{p}He^{+}$ atoms became the main focus of PS205. Transitions were stimulated between metastable and non-metastable states of the $\\overline{p}He^{+}$ atom by firing a pulsed dye laser beam into the helium target every time an identified metastable atom was present (Figure 1). If the laser frequency matched the transition energy, the...

  9. Electrical breakdown in helium cells at low temperature

    Science.gov (United States)

    Sethumadhavan, Bhaskar

    2007-05-01

    We have encountered a new phenomenon in the development of a prototype detector of solar neutrinos using liquid helium in which recoil electrons from neutrino scattering are to be detected by extracting them from the liquid and accelerating them in the vacuum by an electric field. In order to understand the possible constraints on such a particle detector using superfluid helium, we have studied the currents produced by a radioactive source in a helium cell having a liquid/vacuum interface at 100 mK. A number of phenomena have been observed that have not been described in the literature. These include the following. (1) The current at very low voltages, V ˜ 0, in a cell having a free surface can be up to 100 times greater than in a filled cell. (2) There is a large amplification of current in modest electric fields with a free surface present in the cell. (3) The amplification becomes sufficiently large such that a breakdown occurs at potential differences across the vacuum on the order of 1000 V. The results for a partially filled cell can be understood in terms of Penning ionization of excimers on the surface of the helium and the subsequent acceleration of electrons across the vacuum. Triplet excimers are created in the liquid by the radioactive source. These excimers propagate with a mean free path that is determined by scattering from 3He atoms and quasiparticles in the superfluid He. If an excimer reaches the surface, it is bound there but is free to move in the plane of the surface. Once bound to the surface these mobile excimers become distributed uniformly over all surfaces (bulk liquid and the film). They move about and annihilate in pairs through the Penning ionization process to create electrons and positive helium ions in the vacuum. An electron in the vacuum in the presence of an electric field is always destined to hit liquid helium, either the bulk liquid or the film on the top surface of the cell. If the energy of the electron is sufficient to

  10. High Efficiency Regenerative Helium Compressor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Helium plays several critical rolls in spacecraft propulsion. High pressure helium is commonly used to pressurize propellant fuel tanks. Helium cryocoolers can be...

  11. Heating requirements for the BARREL toroid coil cryostat of ATLAS in case of vacuum loss

    CERN Document Server

    Vila-Nova-Goncalves, L

    2002-01-01

    The ATLAS Barrel Toroid cryostat external surface has to be heated by means of heating tapes in order to avoid air condensation in case a major vacuum leak occurs in the coil system. The present note concentrates on the evaluation of the strategies for placing the heating tapes as a basis for calculating their necessary overall length. After a brief description of the ATLAS Barrel Toroid system, the problem is described. A 2D model of a representative portion of the vacuum vessel, on which finite element studies will be performed, is then introduced. The results of the simulations and the conclusions will follow.

  12. A reverse pendulum bath cryostat design suitable for low temperature scanning probe microscopy

    Science.gov (United States)

    Heyde, M.; Thielsch, G.; Rust, H.-P.; Freund, H.-J.

    2005-03-01

    A new low temperature, ultrahigh vacuum cryostat design has been developed for atomic force and scanning tunnelling microscopy measurements. A microscope can be operated at 5 K in ultrahigh vacuum. The microscope body is thermally connected to a reverse pendulum and completely surrounded by a radiation shield. The design allows in situ dosing and irradiation of the sample as well as for easy access of tip and sample. The temperature performance and the vibrational properties of the reverse pendulum design are demonstrated in detail. A brief overview of low temperature instrumentation in scanning probe microscopy is given.

  13. PLC-controlled cryostats for the BlackGEM and MeerLICHT detectors

    Science.gov (United States)

    Raskin, Gert; Morren, Johan; Pessemier, Wim; Bloemen, Steven; Klein-Wolt, Marc; Roelfsema, Ronald; Groot, Paul; Aerts, Conny

    2016-08-01

    BlackGEM is an array of telescopes, currently under development at the Radboud University Nijmegen and at NOVA (Netherlands Research School for Astronomy). It targets the detection of the optical counterparts of gravitational waves. The first three BlackGEM telescopes are planned to be installed in 2018 at the La Silla observatory (Chile). A single prototype telescope, named MeerLICHT, will already be commissioned early 2017 in Sutherland (South Africa) to provide an optical complement for the MeerKAT radio array. The BlackGEM array consists of, initially, a set of three robotic 65-cm wide-field telescopes. Each telescope is equipped with a single STA1600 CCD detector with 10.5k x 10.5k 9-micron pixels that covers a 2.7 square degrees field of view. The cryostats for housing these detectors are developed and built at the KU Leuven University (Belgium). The operational model of BlackGEM requires long periods of reliable hands-off operation. Therefore, we designed the cryostats for long vacuum hold time and we make use of a closed-cycle cooling system, based on Polycold PCC Joule-Thomson coolers. A single programmable logic controller (PLC) controls the cryogenic systems of several BlackGEM telescopes simultaneously, resulting in a highly reliable, cost-efficient and maintenance-friendly system. PLC-based cryostat control offers some distinct advantages, especially for a robotic facility. Apart of temperature monitoring and control, the PLC also monitors the vacuum quality, the power supply and the status of the PCC coolers (compressor power consumption and temperature, pressure in the gas lines, etc.). Furthermore, it provides an alarming system and safe and reproducible procedures for automatic cool down and warm up. The communication between PLC and higher-level software takes place via the OPC-UA protocol, offering a simple to implement, yet very powerful interface. Finally, a touch-panel display on the PLC provides the operator with a user-friendly and robust

  14. Development of cryogenic installations for large liquid argon neutrino detectors

    CERN Document Server

    Adamowski, M; Geynisman, M; Hentschel, S; Montanari, D; Nessi, M; Norris, B

    2015-01-01

    A proposal for a very large liquid argon (68,000 kg) based neutrino detector is being studied. To validate the design principles and the detector technology, and to gain experience in the development of the cryostats and the cryogenic systems needed for such large experiments, several smaller scale installations will be developed and implemented, at Fermilab and CERN. The cryogenic systems for these installations will be developed, constructed, installed and commissioned by an international engineering team. These installations shall bring the required cooling power under specific conditions to the experiments for the initial cool-down and the long term operation, and shall also guarantee the correct distribution of the cooling power within the cryostats to ensure a homogeneous temperature distribution within the cryostat itself. The cryogenic systems shall also include gaseous and liquid phase argon purification devices to be used to reach and maintain the very stringent purity requirements needed for these...

  15. Experience with two large-scale Hell-cryostats for a superconducting RF particle separator working in closed cycle with a 300 W refrigerator

    CERN Document Server

    Barth, W

    1976-01-01

    The contribution of the Karlsruhe Institut fur Experimental Kernphysik to the RF particle separator at the SPS/CERN consists of the two superconducting deflectors and their Hell-cryostats with the cryogenic and vacuum accessories. The cryostats have to fulfil specifications concerning tightness, thermal insulation, adjustment of the cavities to the beam and reliability. Corresponding cryogenic and RF tests are performed in Karlsruhe before a 300 W refrigerator simulating normal and emergency conditions. Following a description of cryostats design the results of these measurements are compared with the specifications. Operating experience with the cryostats in closed circuit with the refrigerator are reported. (5 refs).

  16. Detection and Imaging of He_2 Molecules in Superfluid Helium

    CERN Document Server

    Rellergert, W G; Garvan, A; Hanson, J C; Lippincott, W H; Nikkel, J A; McKinsey, D N

    2007-01-01

    We present data supporting our previous proposal [1] for using cycling transitions to detect and image metastable He_2 triplet molecules in superfluid helium. We demonstrate that limitations on the cycling efficiency due to the vibrational structure of the molecule can be mitigated by the use of repumping lasers. Images of the molecules obtained using the method are also shown. This technique gives rise to a new kind of ionizing radiation detector. The use of He_2 triplet molecules as tracer particles in the superfluid promises to be a powerful tool for visualization of both quantum [2-4] and classical [5] turbulence in liquid helium.

  17. Nucleation, solvation and boiling of helium excimer clusters

    OpenAIRE

    Luna, Luis G. Mendoza; Siltagh, Nagham M.; Watkins, Mark J.; Bonifaci, Nelly; Aitken, Frederic; von Haeften, Klaus

    2015-01-01

    Helium excimers generated by a corona discharge were investigated in the gas and normal liquid phases of helium as a function of temperature and pressure between 3.8 and 5.0 K and 0.2 and 5.6 bar. Intense fluorescence in the visible region showed the rotationally resolved $d^3\\Sigma_u^+ \\rightarrow b^3\\Pi_g$ transition of He$_2^*$. With increasing pressure, the rotational lines merged into single features. The observed pressure dependence of linewidths, shapes and lineshifts established phase...

  18. Regimes Of Helium Burning

    CERN Document Server

    Timmes, F X

    2000-01-01

    The burning regimes encountered by laminar deflagrations and ZND detonations propagating through helium-rich compositions in the presence of buoyancy-driven turbulence are analyzed. Particular attention is given to models of X-ray bursts which start with a thermonuclear runaway on the surface of a neutron star, and the thin shell helium instability of intermediate-mass stars. In the X-ray burst case, turbulent deflagrations propagating in the lateral or radial directions encounter a transition from the distributed regime to the flamlet regime at a density of 10^8 g cm^{-3}. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than 10^6 g cm^{-3}. Self-sustained laminar deflagrations travelling in the radial direction cannot exist below this density. Similarily, the planar ZND detonation width becomes larger than the pressure scale height at 10^7 g cm^{-3}, suggesting that a steady-state, self-sustained detonations cannot come into exista...

  19. Helium diffusion in carbonates

    Science.gov (United States)

    Amidon, W. H.; Cherniak, D. J.; Watson, E. B.; Hobbs, D.

    2013-12-01

    The abundance and large grain size of carbonate minerals make them a potentially attractive target for 4He thermochronology and 3He cosmogenic dating, although the diffusive properties of helium in carbonates remain poorly understood. This work characterizes helium diffusion in calcite and dolomite to better understand the crystal-chemical factors controlling He transport and retentivity. Slabs of cleaved natural calcite and dolomite, and polished sections of calcite cut parallel or normal to c, were implanted with 3He at 3 MeV with a dose of 5x1015/cm2. Implanted carbonates were heated in 1-atm furnaces, and 3He distributions following diffusion anneals were profiled with Nuclear Reaction Analysis using the reaction 3He(d,p)4He. For 3He transport normal to cleavage surfaces in calcite, we obtain the following Arrhenius relation over the temperature range 78-300°C: Dcalcite = 9.0x10-9exp(-55 × 6 kJ mol-1/RT) m2sec-1. Diffusion in calcite exhibits marked anisotropy, with diffusion parallel to c about two orders of magnitude slower than diffusion normal to cleavage faces. He diffusivities for transport normal to the c-axis are similar in value to those normal to cleavage surfaces. Our findings are broadly consistent with helium diffusivities from step-heating measurements of calcite by Copeland et al. (2007); these bulk degassing data may reflect varying effects of diffusional anisotropy. Helium diffusion normal to cleavage surfaces in dolomite is significantly slower than diffusion in calcite, and has a much higher activation energy for diffusion. For dolomite, we obtain the following Arrhenius relation for He diffusion over the temperature range 150-400°C: Ddolomite = 9.0x10-8exp(-92 × 9 kJ mol-1/RT) m2sec-1. The role of crystallographic structure in influencing these differences among diffusivities was evaluated using the maximum aperture approach of Cherniak and Watson (2011), in which crystallographic structures are sectioned along possible diffusion

  20. Helium in near Earth orbit

    CERN Document Server

    Alcaraz, J; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Babucci, E; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Béné, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Bizzaglia, S; Blasko, S; Bölla, G; Boschini, M; Bourquin, Maurice; Brocco, L; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Camps, C; Cannarsa, P; Capell, M; Casadei, D; Casaus, J; Castellini, G; Cecchi, C; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Tzi Hong Chiueh; Chuang, Y L; Cindolo, F; Commichau, V; Contin, A; Cristinziani, M; Da Cunha, J P; Dai, T S; Deus, J D; Dinu, N; Djambazov, L; D'Antone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, Pierre; Favier, Jean; Fiandrini, E; Fisher, P H; Flügge, G; Fouque, N; Galaktionov, Yu; Gervasi, M; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Huang, M A; Hungerford, W; Ionica, M; Ionica, R; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kenny, J; Kim, W; Klimentov, A; Kossakowski, R; Koutsenko, V F; Kräber, M H; Laborie, G; Laitinen, T; Lamanna, G; Laurenti, G; Lebedev, A; Lee, S C; Levi, G; Levchenko, P M; Liu, C L; Liu Hong Tao; Lopes, I; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mihul, A; Mourão, A M; Mujunen, A; Palmonari, F; Papi, A; Park, I H; Pauluzzi, M; Pauss, Felicitas; Perrin, E; Pesci, A; Pevsner, A; Pimenta, M; Plyaskin, V; Pozhidaev, V; Pohl, M; Postolache, V; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Röser, U; Roissin, C; Sagdeev, R; Sartorelli, G; Schultz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shoutko, V; Shoumilov, E; Siedling, R; Son, D; Song, T; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torsti, J; Trümper, J E; Ulbricht, J; Urpo, S; Usoskin, I; Valtonen, E; Van den Hirtz, J; Velcea, F; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, Gert M; Vitè, Davide F; Von Gunten, H P; Waldmeier-Wicki, S; Wallraff, W; Wang, B C; Wang, J Z; Wang, Y H; Wiik, K; Williams, C; Wu, S X; Xia, P C; Yan, J L; Yan Lu Guang; Yang, C G; Yang, M; Ye Shu Wei; Yeh, P; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B; Zuccon, P

    2000-01-01

    The helium spectrum from 0.1 to 100 GeV/nucleon was measured by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at altitudes near 380 km. Above the geomagnetic cutoff the spectrum is parameterized by a power law. Below the geomagnetic cutoff a second helium spectrum was observed. In the second helium spectra over the energy range 0.1 to 1.2 GeV/nucleon the flux was measured to be (6.3+or-0.9)*10/sup -3/ (m/sup 2/ sec sr)/sup -1/ and more than ninety percent of the helium was determined to be /sup 3/He (at the 90% CL). Tracing helium from the second spectrum shows that about half of the /sup 3/He travel for an extended period of time in the geomagnetic field and that they originate from restricted geographic regions similar to protons and positrons. (22 refs).

  1. Single-particle Cryo-EM data collected on a 300-kV liquid helium-cooled electron cryomicroscope%300千伏液氦冷冻电镜的单颗粒低温电子显微数据的研究

    Institute of Scientific and Technical Information of China (English)

    谌东华; JOANITA Jakana; 赵华

    2007-01-01

    液氮和液氦在低温电子显微镜中都可以作为冷冻剂来保持样品处于含水冷冻状态.本文分析了收集于一台300千伏的日本电子(JEOL)低温电镜和样品处于液氦温度4 K的两组生物大分子单颗粒数据:第一组为噬菌体epsilon 15的数据,成像于Gatan 4 k×4 k电荷耦合器件;第二组是记录在Kodak SO-163底片上的噬菌体P22的数据.对这两组数据的频谱分析显示这些数据的信号分辨率均可达5~6埃.并用实验B因子对这两组数据的质量进行了定量分析.本文结果显示液氦冷冻电镜可用来收集单颗粒生物大分子的高分辨三维结构重构所需的数据.%Both liquid nitrogen and liquid helium can be used as cryogens to keep biological specimens in their frozen hydrated state in an electron cryomicroscope. Here we have analyzed two sets of biological single-particle image data collected in a JEOL 300-kV electron cryomicroscope with the specimens kept at liquid helium temperature 4 K. The first dataset was the epsilon 15 bacteriophage recorded on a Gatan Ultrascan 4 k × 4 k charged-coupled device (CCD). The second dataset was the P22 bacteriophage recorded on Kodak SO-163 photographic film. Both data contain detectable signal to at least 5 ~ 6 (A) as judged from the incoherently averaged Fourier transform (FT) of the boxed-out particle images. The data quality of both datasets was further quantified by the experimental B-factor, which describes the overall Fourier amplitude decay for the FT of the boxed-out particle images fiom each CCD frame or electron micrograph. These analyses suggest that the liquid helium-cooled electron cryomicroscope can yield single-particle image data suitable for high resolution reconstruction.

  2. Effects of helium on titanium films and the helium diffusion

    Institute of Scientific and Technical Information of China (English)

    SONG YingMin; LUO ShunZhong; LONG XingGui; AN Zhu; LIU Ning; PANG HongChao; WU XingChun; YANG BenFu; ZHENG SiXiao

    2008-01-01

    Using direct current-magnetron sputtering, Helium-trapped Ti films with a He/Ar mixture was studied. The relative helium content, helium depth profiles for the Ti films and crystallization capacity were analyzed by Enhanced Proton Backscattering Spectrometry (EPBS) and X-ray diffraction (XRD). It was found that helium diffusion enhanced as more helium trapping into Ti films, and the He holding ratios were 95.9%, 94.9%, 93.9%, 82.8% when the Ti films with the He/Ti of concentrations of 9.7 at.Q, 19.5 at.Q, 19.7 at.Q, 48.3 at.% were measured again 4 months later, respectively. The diffraction peaks be-came weak and wider, the peak of (002) plane was shifted to smaller diffraction angles and the relevant interplanar spacing d(hkl) increased gradually as more helium trapping into Ti films. The main peak was made trending to the (101) plane by both higher deposition temperature and more helium trapping.

  3. Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load

    Science.gov (United States)

    Garcia, Sam; Meagher, Daniel; Linza, Robert; Saheli, Fariborz; Vargas, Gerardo; Lauterbach, John; Reis, Carl; Ganni, Venkatarao (Rao); Homan, Jonathan

    2008-01-01

    NASA s Johnson Space Center (JSC) Building 32 houses two large thermal-vacuum chambers (Chamber A and Chamber B). Within these chambers are liquid nitrogen shrouds to provide a thermal environment and helium panels which operate at 20K to provide cryopumping. Some amount of air leakage into the chambers during tests is inevitable. This causes "air fouling" of the helium panel surfaces due to the components of the air that adhere to the panels. The air fouling causes the emittance of the helium panels to increase during tests. The increase in helium panel emittance increases the heat load on the helium refrigerator that supplies the 20K helium for those panels. Planning for thermal-vacuum tests should account for this increase to make sure that the helium refrigerator capacity will not be exceeded over the duration of a test. During a recent test conducted in Chamber B a known-size air leak was introduced to the chamber. Emittance change of the helium panels and the affect on the helium refrigerator was characterized. A description of the test and the results will be presented.

  4. PLC-controlled cryostats for the BlackGEM and MeerLICHT detectors

    CERN Document Server

    Raskin, Gert; Pessemier, Wim; Bloemen, Steven; Klein-Wolt, Marc; Roelfsema, Ronald; Groot, Paul; Aerts, Conny

    2016-01-01

    BlackGEM (BG) is an array of telescopes, currently under development at the Radboud University Nijmegen and at NOVA. It targets the detection of the optical counterparts of gravitational waves. The first 3 BG telescopes are planned to be installed in 2018 at the La Silla observatory. A single prototype telescope, named MeerLICHT, will already be commissioned early 2017 in Sutherland to provide an optical complement for the MeerKAT radio array. The BG array consists of, initially, a set of 3 robotic 65-cm wide-field telescopes. Each telescope is equipped with a single STA1600 CCD detector with 10.5k x 10.5k 9-mum pixels that covers a 2.7 square degrees field of view. The cryostats for housing these detectors are developed and built at the KU Leuven University. The operational model of BG requires long periods of reliable ands-off operation. Therefore, we designed the cryostats for long vacuum hold time and we make use of a closed-cycle cooling system, based on Polycold PCC Joule-Thomson coolers. A single progr...

  5. Two phase coexistence for the hydrogen-helium mixture

    CERN Document Server

    Fantoni, Riccardo

    2015-01-01

    We use our newly constructed quantum Gibbs ensemble Monte Carlo algorithm to perform computer experiments for the two phase coexistence of a hydrogen-helium mixture. Our results are in quantitative agreement with the experimental results of C. M. Sneed, W. B. Streett, R. E. Sonntag, and G. J. Van Wylen. The difference between our results and the experimental ones is in all cases less than 15% relative to the experiment, reducing to less than 5% in the low helium concentration phase. At the gravitational inversion between the vapor and the liquid phase, at low temperatures and high pressures, the quantum effects become relevant. At extremely low temperature and pressure the first component to show superfluidity is the helium in the vapor phase.

  6. Phonon amplification using evaporation and adsorption of helium

    Energy Technology Data Exchange (ETDEWEB)

    More, T.; Adams, J.S.; Bandler, S.R.; Broueer, S.M.; Lanou, R.E.; Maris, H.J.; Seidel, G.M. [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States)

    1996-07-01

    We report the results of experiments designed to investigate the feasibility of amplifying a phonon signal using the evaporation of helium from a superfluid film and its subsequent readsorption onto a helium-free surface. We envision a multistage amplifier in which helium is evaporated from a wafer with a helium film only on one side and then adsorbed onto the film-free surface of a similar wafer. The phonons created by the adsorption reach the film on the opposite side of the wafer and potentially desorb more helium than was evaporated by the first wafer. The amplification would come from the high ratio of the binding energy of a helium atom to a film-free surface relative to the binding energy to the liquid. A number of experiments are reported that investigate the efficiencies of the individual steps of the process. The gain per stage is found to be about 3 for high-energy densities in which multiphonon processes are possible. At low-energy densities, the energy deposited into a film-free wafer is found to be less than the original input energy, with the ratio of output to input energy 0.2. Since in applications requiring amplification the phonon density produced by the adsorption of helium on a wafer will be low, the configuration we have studied{emdash}phonons produced in silicon coated with a saturated {sup 4}He film{emdash}will not result in amplification. However, other configurations might improve the efficiency enough to make an amplifier possible. {copyright} {ital 1996 The American Physical Society.}

  7. Alkali-helium snowball complexes formed on helium nanodroplets.

    Science.gov (United States)

    Müller, S; Mudrich, M; Stienkemeier, F

    2009-07-28

    We systematically investigate the formation and stability of snowballs formed by femtosecond photoionization of small alkali clusters bound to helium nanodroplets. For all studied alkali species Ak = (Na,K,Rb,Cs) we observe the formation of snowballs Ak(+)He(N) when multiply doping the droplets. Fragmentation of clusters Ak(N) upon ionization appears to enhance snowball formation. In the case of Na and Cs we also detect snowballs Ak(2) (+)He(N) formed around Ak dimer ions. While the snowball progression for Na and K is limited to less than 11 helium atoms, the heavier atoms Rb and Cs feature wide distributions at least up to Ak(+)He(41). Characteristic steps in the mass spectra of Cs-doped helium droplets are found at positions consistent with predictions on the closure of the first shell of helium atoms around the Ak(+) ion based on variational Monte Carlo simulations.

  8. Validation of Helium Inlet Design for ITER Toroidal Field Coil

    CERN Document Server

    Boyer, C; Hamada, K; Foussat, A; Le Rest, M; Mitchell, N; Decool, P; Savary, F; Sgobba, S; Weiss, K-P

    2014-01-01

    The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA-Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb3Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, are pr...

  9. Analysis of a low-temperature magnetic helium pump

    Science.gov (United States)

    Prenger, Coyne; Stewart, Walter

    In an effort to improve reliability of cryocoolers, concepts involving no moving parts are being investigated. One concept utilizes an Active Magnetic Regenerator, AMR, to produce refrigeration. However, circulation of the helium working fluid is required for operation of the device. Currently available helium pumps have moving parts and; therefore, result in poor reliability. We propose a magnetically driven pump to provide the helium circulation for the AMR. The pump utilizes the magnetocaloric effect to produce an oscillatory helium flow and; has no moving parts. An analytical model has been developed to analyze the pump's performance in conjunction with an AMR operating between 7 and 20 K. At a frequency of 1 Hz a 0.5 liter pump can produce a 0.75 g/s flow rate at 20 K at an operating pressure of 5 atm. At the liquid helium temperature a two-phase version of this pump would perform substantially better than the single-phase version. A design concept has been developed and will be presented along with the model results.

  10. Trapping fermionic and bosonic helium atoms

    NARCIS (Netherlands)

    Stas, R.J.W.

    2005-01-01

    This thesis presents experimental and theoretical work performed at the Laser Centre of the Vrije Universiteit in Amsterdam to study laser-cooled metastable triplet helium atoms. Samples containing about 3x10^8 helium atoms-either fermionic helium-3 atoms, bosonic helium-4 atoms or mixtures thereof

  11. Trapping fermionic and bosonic helium atoms

    NARCIS (Netherlands)

    Stas, R.J.W.

    2005-01-01

    This thesis presents experimental and theoretical work performed at the Laser Centre of the Vrije Universiteit in Amsterdam to study laser-cooled metastable triplet helium atoms. Samples containing about 3x10^8 helium atoms-either fermionic helium-3 atoms, bosonic helium-4 atoms or mixtures thereof

  12. Trapping fermionic and bosonic helium atoms

    NARCIS (Netherlands)

    Stas, R.J.W.

    2005-01-01

    This thesis presents experimental and theoretical work performed at the Laser Centre of the Vrije Universiteit in Amsterdam to study laser-cooled metastable triplet helium atoms. Samples containing about 3x10^8 helium atoms-either fermionic helium-3 atoms, bosonic helium-4 atoms or mixtures

  13. Modular cryostat for ion trapping with surface-electrode ion traps

    CERN Document Server

    Vittorini, Grahame; Brown, Kenneth R; Harter, Alexa W; Doret, S Charles

    2013-01-01

    We present a simple cryostat purpose built for use with surface-electrode ion traps, designed around an affordable, large cooling power commercial pulse tube refrigerator. A modular vacuum enclosure with a single vacuum space facilitates interior access, and enables rapid turnaround and flexiblity for future modifications. Long rectangular windows provide nearly 360 degrees of optical access in the plane of the ion trap, while a circular bottom window near the trap enables NA 0.4 light collection without the need for in-vacuum optics. We evaluate the system's mechanical and thermal characteristics, and we quantify ion trapping performance by trapping 40Ca+, finding small stray electric fields, long ion lifetimes, and low ion heating rates.

  14. Modular cryostat for ion trapping with surface-electrode ion traps

    Science.gov (United States)

    Vittorini, Grahame; Wright, Kenneth; Brown, Kenneth R.; Harter, Alexa W.; Doret, S. Charles

    2013-04-01

    We present a simple cryostat purpose built for use with surface-electrode ion traps, designed around an affordable, large cooling power commercial pulse tube refrigerator. A modular vacuum enclosure with a single vacuum space facilitates interior access and enables rapid turnaround and flexibility for future modifications. Long rectangular windows provide nearly 360° of optical access in the plane of the ion trap, while a circular bottom window near the trap enables NA 0.4 light collection without the need for in-vacuum optics. We evaluate the system's mechanical and thermal characteristics and we quantify ion trapping performance by trapping 40Ca+, finding small stray electric fields, long ion lifetimes, and low ion heating rates.

  15. Assembly and Quality Control of the LHC Cryostats at CERN Motivations, Means, Results and Lessons Learnt

    CERN Document Server

    Poncet, A; Parma, V; Strubin, P; Tock, JP; Tommasini, D

    2007-01-01

    In 2001, the project management decided to perform at CERN the final assembly of the LHC superconducting magnets with cryostat parts and cold masses produced by European Industry in large series. This industrial-like production has required a very significant investment in tooling, production facilities, engineering and quality control efforts, in contractual partnership with a consortium of firms. This unusual endeavour of a limited lifetime represented more than 850,000 working hours spanning over five years, the work being done on a result-oriented basis by the contractor. This paper presents the reasons for having conducted this project at CERN, summarizes the work breakdown structure, the production means and methods, the infrastructure specially developed, the tooling, logistics and quality control aspects of the work performed and the results achieved, in analytical form. Finally, the lessons learnt are outlined.

  16. A Closed-Cycle Optical Cryostat and Improved Optical Elements for Studies of Dissipation at the Molecular Scale

    Science.gov (United States)

    2016-02-05

    dependent resistivity of the Au film constituting the wire . The heating is considerably enhanced when the incident polarization is aligned...Zolotavin, Douglas Natelson. Plasmonic Heating in Au nanowires at Low Temperatures, ACS Nano (02 2016) TOTAL: 1 Books Number of Manuscripts: Patents...Inventions (DD882) Scientific Progress See attachment. Technology Transfer Final report: A closed-cycle optical cryostat and

  17. ALMA Band 1 Optics (35-50 GHz): Tolerance Analysis, Effect of Cryostat Infrared Filters and Cold Beam Measurements

    Science.gov (United States)

    Gonzalez, A.; Tapia, V.; Finger, R.; Huang, C.-D.; Asayama, S.; Huang, Y.-D.

    2017-10-01

    The Atacama Large Millimeter/Sub-millimeter Array (ALMA) is currently the largest (sub-)mm wave telescope in the world and will be used for astronomical observations in all atmospheric windows from 35 to 950 GHz when completed. The ALMA band 1 (35-50 GHz) receiver will be used for the longest wavelength observations with ALMA. Because of the longer wavelength, the size of optics and waveguide components will be larger than for other ALMA bands. In addition, all components will be placed inside the ALMA cryostat in each antenna, which will impose severe mechanical constraints on the size and position of receiver optics components. Due to these constraints, the designs of the corrugated feed horn and lens optics are highly optimized to comply with the stringent ALMA optical requirements. In this paper, we perform several tolerance analyses to check the impact of fabrication errors in such an optimized design. Secondly, we analyze the effects of operating this optics inside the ALMA cryostat, in particular the effects of having the cryostat IR filters placed next to the band 1 feed horn aperture, with the consequent near-field effects. Finally, we report on beam measurements performed on the first three ALMA band 1 receivers inside test cryostats, which satisfy ALMA specifications. In these measurements, we can clearly observe the effects of fabrication tolerances and IR filter effects on prototype receiver performance.

  18. ITER helium ash accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. (Oak Ridge National Lab., TN (USA)); Dippel, K.H.; Finken, K.H. (Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1990-01-01

    Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.

  19. Final report on the Controlled Cold Helium Spill Test in the LHC tunnel at CERN

    CERN Document Server

    Dufay-Chanat, L; Casas-Cubillos, J; Chorowski, M; Grabowski, M; Jedrusyna, A; Lindell, G; Nonis, M; Koettig, T; Vauthier, N; van Weelderen, R; Winkler, T

    2015-01-01

    The 27 km circumference LHC underground tunnel is a space in which the helium cooled LHC magnets are installed. The vacuum enclosures of the superconducting magnets are protected by over-pressure safety relief devices that open whenever cold helium escapes either from the magnet cold enclosure or from the helium supply headers, into this vacuum enclosure. A 3-m long no stay zone around these devices is defined based on scale model studies, protecting the personnel against cold burns or asphyxia caused by such a helium release event. Recently, several simulation studies have been carried out modelling the propagation of the helium/air mixture, resulting from the opening of such a safety device, along the tunnel. The released helium flows vary in the range between 1 kg/s and 0.1 kg/s. To validate these different simulation studies, real life mock-up tests have been performed inside the LHC tunnel, releasing helium flow rates of 1 kg/s, 0.3 kg/s and 0.1 kg/s. For each test, up to 1000 liters of liquid helium wer...

  20. Source localization of brain activity using helium-free interferometer

    Science.gov (United States)

    Dammers, Jürgen; Chocholacs, Harald; Eich, Eberhard; Boers, Frank; Faley, Michael; Dunin-Borkowski, Rafal E.; Jon Shah, N.

    2014-05-01

    To detect extremely small magnetic fields generated by the human brain, currently all commercial magnetoencephalography (MEG) systems are equipped with low-temperature (low-Tc) superconducting quantum interference device (SQUID) sensors that use liquid helium for cooling. The limited and increasingly expensive supply of helium, which has seen dramatic price increases recently, has become a real problem for such systems and the situation shows no signs of abating. MEG research in the long run is now endangered. In this study, we report a MEG source localization utilizing a single, highly sensitive SQUID cooled with liquid nitrogen only. Our findings confirm that localization of neuromagnetic activity is indeed possible using high-Tc SQUIDs. We believe that our findings secure the future of this exquisitely sensitive technique and have major implications for brain research and the developments of cost-effective multi-channel, high-Tc SQUID-based MEG systems.

  1. Controlled Phase Gate Based on an Electron Floating on Helium

    Institute of Scientific and Technical Information of China (English)

    SHI Yan-Li; MEI Feng; YU Ya-Fei; ZHANG Zhi-Ming

    2011-01-01

    We propose a scheme to generate the controlled phase gate by using an electron floating on liquid helium. The electron is also driven by a classical laser beam and by an oscillating magnetic field. In the process, the vibration of the electron is used as the qubus to couple the energy level qubit (1D Stark-shifted hydrogen) and spin qubit Ultimately. the controlled phase gate can be generated.%@@ We propose a scheme to generate the controlled phase gate by using an electron floating on liquid helium.The electron is also driven by a classical laser beam and by an oscillating magnetic field.In the process,the vibration of the electron is used as the qubus to couple the energy level qubit(1D Stark-shifted hydrogen) and spin qubit.Ultimately,the controlled phase gate can be generated.

  2. Purge Monitoring Technology for Gaseous Helium (GHe) Conservation

    Science.gov (United States)

    Dickey, Jonathan; Lansaw, John

    2010-01-01

    John C. Stennis Space Center provides rocket engine propulsion testing for the NASA space programs. Since the development of the Space Shuttle, every Space Shuttle Main Engine (SSME) has gone through acceptance testing before going to Kennedy Space Center for integration into the Space Shuttle. The SSME is a large cryogenic rocket engine that used Liquid Oxygen (LO2) and Liquid Hydrogen (LH2) as propellants. Due to the extremely cold cryogenic conditions of this environment, an inert gas, helium, is used as a purge for the engine and propellant lines since it can be used without freezing in the cryogenic environment. As NASA moves forward with the development of the new ARES V launch system, the main engines as well as the upper stage engine will use cryogenic propellants and will require gaseous helium during the development testing of each of these engines. The main engine for the ARES V will be similar in size to the SSME.

  3. Source localization of brain activity using helium-free interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Dammers, Jürgen, E-mail: J.Dammers@fz-juelich.de; Chocholacs, Harald; Eich, Eberhard; Boers, Frank [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich (Germany); Faley, Michael; Dunin-Borkowski, Rafal E. [Peter Grünberg Institute (PGI-5), Forschungszentrum Jülich, Jülich (Germany); Jon Shah, N. [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich (Germany); Department of Neurology, RWTH Aachen University, Aachen (Germany); Jülich Aachen Research Alliance (JARA)—Translational Brain Medicine, Jülich (Germany)

    2014-05-26

    To detect extremely small magnetic fields generated by the human brain, currently all commercial magnetoencephalography (MEG) systems are equipped with low-temperature (low-T{sub c}) superconducting quantum interference device (SQUID) sensors that use liquid helium for cooling. The limited and increasingly expensive supply of helium, which has seen dramatic price increases recently, has become a real problem for such systems and the situation shows no signs of abating. MEG research in the long run is now endangered. In this study, we report a MEG source localization utilizing a single, highly sensitive SQUID cooled with liquid nitrogen only. Our findings confirm that localization of neuromagnetic activity is indeed possible using high-T{sub c} SQUIDs. We believe that our findings secure the future of this exquisitely sensitive technique and have major implications for brain research and the developments of cost-effective multi-channel, high-T{sub c} SQUID-based MEG systems.

  4. The Thermodynamical Instability Induced by Pressure Ionization in Fluid Helium

    CERN Document Server

    Li, Qiong; Zhang, Gong-Mu; Zhao, Yan-Hong; Lu, Guo; Tian, Ming-Feng; Song, Hai-Feng

    2016-01-01

    A systematic study of pressure ionization is carried out in the chemical picture by the example of fluid helium. By comparing the variants of the chemical model, it is demonstrated that the behavior of pressure ionization depends on the construction of the free energy function. In the chemical model with the Coulomb free energy described by the Pad\\'e interpolation formula, thermodynamical instability induced by pressure ionization is found to be manifested by a discontinuous drop or a continuous fall and rise along the pressure-density curve as well as the pressure-temperature curve, which is very much like the first order liquid-liquid phase transition of fluid hydrogen from the first principles simulations. In contrast, in the variant chemical model with the Coulomb free energy term empirically weakened, no thermodynamical instability is induced when pressure ionization occurs, and the resulting equation of state achieves good agreement with the first principles simulations of fluid helium.

  5. Submersion of potassium clusters in helium nanodroplets

    Science.gov (United States)

    An der Lan, Lukas; Bartl, Peter; Leidlmair, Christian; Schöbel, Harald; Denifl, Stephan; Märk, Tilmann D.; Ellis, Andrew M.; Scheier, Paul

    2012-03-01

    Small alkali clusters do not submerge in liquid helium nanodroplets but instead survive predominantly in high spin states that reside on the surface of the nanodroplet. However, a recent theoretical prediction by Stark and Kresin [Phys. Rev. BPLRBAQ1098-012110.1103/PhysRevB.81.085401 81, 085401 (2010)], based on a classical description of the energetics of bubble formation for a fully submerged alkali cluster, suggests that the alkali clusters can submerge on energetic grounds when they exceed a critical size. Following recent work on sodium clusters, where ion yield data from electron impact mass spectrometry was used to obtain the first experimental evidence for alkali cluster submersion, we report here on similar experiments for potassium clusters. Evidence is presented for full cluster submersion at n>80 for Kn clusters, which is in good agreement with the recent theoretical prediction. In an additional observation, we report “magic number” sizes for both Kn+ and Kn2+ ions derived from helium droplets, which are found to be consistent with the jellium model.

  6. Cryogenic infrastructure for superfluid helium testing of LHC prototype superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Benda, V.; Duraffour, G.; Guiard-Marigny, A.; Lebrun, Ph.; Momal, F.; Saban, R.; Sergo, V.; Tavian, L.; Vullierme, B. [CERN, Geneva (Switzerland)

    1994-12-31

    The Large Hadron Collider (LHC) project at CERN will require about 1800 high-field superconducting magnets, operating below 1.9 K in pressurized helium II. All magnets will be reception-tested before their installation in the 26.7 km circumference ring tunnel. For this purpose, the authors have installed large-capacity cryogenic facilities, beginning to operate for tests of full-scale prototype magnets produced by European industry. Based around a 6 kW@4.5 K helium refrigerator and a 25 m{sup 3} liquid helium storage, the system includes a low-pressure, 6 to 18 g/s helium pumping unit for 1.8 K refrigeration, a set of magnet cooldown and warmup units delivering each up to 120 kW of refrigeration at precisely controlled temperature, and a network of cryogenic lines for transferring liquid nitrogen, liquid helium and cold gaseous helium. All components are controlled by embedded PLCs, connected to a general supervision system for operator interface. The authors present the system layout and describe the design and performance of the main components.

  7. Cold Helium Gas Pressurization For Spacecraft Cryogenic Propulsion Systems

    Science.gov (United States)

    Morehead, Robert L.; Atwell. Matthew J.; Hurlbert, Eric A.; Melcher, J. C.

    2017-01-01

    To reduce the dry mass of a spacecraft pressurization system, helium pressurant may be stored at low temperature and high pressure to increase mass in a given tank volume. Warming this gas through an engine heat exchanger prior to tank pressurization both increases the system efficiency and simplifies the designs of intermediate hardware such as regulators, valves, etc. since the gas is no longer cryogenic. If this type of cold helium pressurization system is used in conjunction with a cryogenic propellant, though, a loss in overall system efficiency can be expected due to heat transfer from the warm ullage gas to the cryogenic propellant which results in a specific volume loss for the pressurant, interpreted as the Collapse Factor. Future spacecraft with cryogenic propellants will likely have a cold helium system, with increasing collapse factor effects as vehicle sizes decrease. To determine the collapse factor effects and overall implementation strategies for a representative design point, a cold helium system was hotfire tested on the Integrated Cryogenic Propulsion Test Article (ICPTA) in a thermal vacuum environment at the NASA Glenn Research Center Plum Brook Station. The ICPTA vehicle is a small lander-sized spacecraft prototype built at NASA Johnson Space Center utilizing cryogenic liquid oxygen/liquid methane propellants and cryogenic helium gas as a pressurant to operate one 2,800lbf 5:1 throttling main engine, two 28lbf Reaction Control Engines (RCE), and two 7lbf RCEs (Figure 1). This vehicle was hotfire tested at a variety of environmental conditions at NASA Plum Brook, ranging from ambient temperature/simulated high altitude, deep thermal/high altitude, and deep thermal/high vacuum conditions. A detailed summary of the vehicle design and testing campaign may be found in Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing, AIAA JPC 2017.

  8. Bed system performance in helium circulation mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yean Jin; Jung, Kwang Jin; Ahn, Do Hee; Chung, Hong Suk [UST, Daejeon (Korea, Republic of); Kang, Hee Suk [KAERI, Daejeon (Korea, Republic of); Yun, Sei Hun [NFRI, Deajeon (Korea, Republic of)

    2016-05-15

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, We have conducted an experiment for storing hydrogen to depleted uranium and zirconium cobalt. The helium blanket effect has been observed in experiments using metal hydrides. The collapse of the hydrogen isotopes are accompanied by the decay heat and helium-3. Helium-3 dramatically reduces the hydrogen isotope storage capacity by surrounding the metal. This phenomenon is called a helium blanket effect. In addition the authors are working on the recovery and removal techniques of helium-3. In this paper, we discuss the equipment used to test the helium blanket effect and the results of a helium circulation experiment. The helium-3 produced surrounds the storage material surface and thus disturbs the reaction of the storage material and the hydrogen isotope. Even if the amount of helium-3 is small, the storage capacity of the SDS bed significantly drops. This phenomenon is the helium blanket effect. To resolve this phenomenon, a circulating loop was introduced. Using a circulating system, helium can be separated from the storage material. We made a helium loop that includes a ZrCo bed. Then using a metal bellows pump, we tested the helium circulation.

  9. Rogue mantle helium and neon.

    Science.gov (United States)

    Albarède, Francis

    2008-02-15

    The canonical model of helium isotope geochemistry describes the lower mantle as undegassed, but this view conflicts with evidence of recycled material in the source of ocean island basalts. Because mantle helium is efficiently extracted by magmatic activity, it cannot remain in fertile mantle rocks for long periods of time. Here, I suggest that helium with high 3He/4He ratios, as well as neon rich in the solar component, diffused early in Earth's history from low-melting-point primordial material into residual refractory "reservoir" rocks, such as dunites. The difference in 3He/4He ratios of ocean-island and mid-ocean ridge basalts and the preservation of solar neon are ascribed to the reservoir rocks being stretched and tapped to different extents during melting.

  10. Helium release during shale deformation: Experimental validation

    Science.gov (United States)

    Bauer, Stephen J.; Gardner, W. Payton; Heath, Jason E.

    2016-07-01

    This work describes initial experimental results of helium tracer release monitoring during deformation of shale. Naturally occurring radiogenic 4He is present in high concentration in most shales. During rock deformation, accumulated helium could be released as fractures are created and new transport pathways are created. We present the results of an experimental study in which confined reservoir shale samples, cored parallel and perpendicular to bedding, which were initially saturated with helium to simulate reservoir conditions, are subjected to triaxial compressive deformation. During the deformation experiment, differential stress, axial, and radial strains are systematically tracked. Release of helium is dynamically measured using a helium mass spectrometer leak detector. Helium released during deformation is observable at the laboratory scale and the release is tightly coupled to the shale deformation. These first measurements of dynamic helium release from rocks undergoing deformation show that helium provides information on the evolution of microstructure as a function of changes in stress and strain.

  11. Solvation of Na+, K+, and their dimers in helium.

    Science.gov (United States)

    An der Lan, Lukas; Bartl, Peter; Leidlmair, Christian; Jochum, Roland; Denifl, Stephan; Echt, Olof; Scheier, Paul

    2012-04-02

    Helium atoms bind strongly to alkali cations which, when embedded in liquid helium, form so-called snowballs. Calculations suggest that helium atoms in the first solvation layer of these snowballs form rigid structures and that their number (n) is well defined, especially for the lighter alkalis. However, experiments have so far failed to accurately determine values of n. We present high-resolution mass spectra of Na(+)He(n), K(+)He(n), Na(2)(+)He(n) and K(2)(+)He(n), formed by electron ionization of doped helium droplets; the data allow for a critical comparison with several theoretical studies. For sodium and potassium monomers the spectra indicate that the value of n is slightly smaller than calculated. Na(2)(+)He(n) displays two distinct anomalies at n=2 and n=6, in agreement with theory; dissociation energies derived from experiment closely track theoretical values. K(2)(+)He(n) distributions are fairly featureless, which also agrees with predictions.

  12. TOPICAL REVIEW: Black silicon method X: a review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment

    Science.gov (United States)

    Jansen, H V; de Boer, M J; Unnikrishnan, S; Louwerse, M C; Elwenspoek, M C

    2009-03-01

    impact (due to metallic masks and/or exposed silicon) are the main sources of heat that might raise the wafer temperature uncontrollably, and they show the weakness of the helium backside technique using mechanical clamping. Electrostatic clamping, an alternative technique, should minimize this problem because it is less susceptible to heat transfer when its thermal resistance and the gap of the helium backside cavity are minimized; however, it is not a subject of the current study. Because oxygen-growth-based etch processes (due to their ultra thin inhibiting layer) rely more heavily on a constant wafer temperature than fluorocarbon-based processes, oxygen etches are more affected by temperature fluctuations and drifts during the etching. The fourth outcome of this review is a phenomenological model, which explains and predicts many features with respect to loading, flow and pressure behaviour in DRIE equipment including a diffusion zone. The model is a reshape of the flow model constructed by Mogab, who studied the loading effect in plasma etching. Despite the downside of needing a cryostat, it is shown that—when selecting proper conditions—a cryogenic two-step pulsed mode can be used as a successful technique to achieve high speed and selective plasma etching with an etch rate around 25 µm min-1 (physics and applications are, for example, books, reviews, general topics, fluorine-based plasmas, plasma mixtures with oxygen at room temperature, wafer heat transfer and high aspect ratio trench (HART) etching. For readers 'new' to this field, it is advisable to study at least one (but rather more than one) of the reviews concerning plasma as found in the first 30 references. In many cases, a paper can be classified into more than one category. In such cases, the paper is directed to the subject most suited for the discussion of the current review. For example, many papers on heat transfer also treat cryogenic conditions and all the references dealing with highly

  13. The cosmic production of Helium

    CERN Document Server

    Jiménez, R; MacDonald, J; Gibson, B K; Jimenez, Raul; Flynn, Chris; Donald, James Mac; Gibson, Brad K.

    2003-01-01

    We estimate the cosmic production rate of helium relative to metals ($\\Delta Y/\\Delta Z$) using K dwarf stars in the Hipparcos catalog with accurate spectroscopic metallicities. The best fitting value is $\\Delta Y/\\Delta Z=2.1 \\pm 0.4$ at the 68% confidence level. Our derived value agrees with determinations from HII regions and with theoretical predictions from stellar yields with standard assumptions for the initial mass function. The amount of helium in stars determines how long they live and therefore how fast they will enrich the insterstellar medium with fresh material.

  14. Thermohydraulics of a horizontal diphasic flow of superfluid helium; Thermo-hydraulique d'un ecoulement horizontal d'helium superfluide diphasique

    Energy Technology Data Exchange (ETDEWEB)

    Perraud, S

    2007-12-15

    This study aims at characterizing helium two phase flows, and to identify the dependence of their characteristics on various thermo-hydraulic parameters: vapour velocity, liquid height, vapour density, specificities of superfluidity. Both the engineer and the physicist's points of view are taken into consideration: the first one in terms of optimization of a particular cooling scheme based on a two-phase flow, and these second one in terms of more fundamental atomization-related questions. It has been shown that for velocities around 3 to 4 m/s, the liquid phase that was initially stratified undergoes an atomization through the presence of a drop haze carried by the vapor phase.This happens for superfluid helium as well as for normal helium without main differences on atomization.

  15. Testing of a vacuum insulated flexible line with flowing liquid nitrogen during the loss of insulating vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Demko, Jonathan A [ORNL; Duckworth, Robert C [ORNL; Gouge, Michael J [ORNL; Roden, Mark L [ORNL

    2008-01-01

    Long length vacuum insulated lines are used to carry flowing liquid nitrogen in several high temperature superconducting cable projects. An important, but rare, failure scenario is the abrupt or catastrophic loss of the thermal insulating vacuum producing a rapid increase in heat transfer to the liquid nitrogen stream. In this experimental investigation, a vacuum superinsulated 3 inch by 5 inch NPS (88.9 mm by 141.3 mm) flexible cryostat is subjected to an abrupt loss of vacuum in order to measure the thermal response of a flowing liquid nitrogen stream and the temperature response of the cryostat. The measured outlet stream temperature has a slight peak shortly after the loss of vacuum incident and decreases as the cryostat warms up. The heat loads measured before and after the vacuum loss event are reported. Measurements of the temperatures in the multi-layer superinsulation are also discussed.

  16. Luminescence studies of trace gases through metastable transfer in cold helium jets

    Science.gov (United States)

    Wilde, Scott Colton

    Among the elements, Helium has the largest steps among its internal energy structure that can keep for long periods of time, hence the metastable helium moniker. It is referred to as a "nano-grenade" in some circles because of how much energy it can deliver to a space roughly the size of an atom. This work demonstrates a method to create metastable helium abundantly and it is used to excite trace amounts of oxygen to the point where the signal received from the oxygen was larger than the signal received from the helium in a cold atomized jet. Further cooling of the jet and turbulence added by a liquid helium surface worked to increase the oxygen signal and decrease the helium signal. This work investigates the possibility of forming a strong metastable helium source from a flowing helium gas jet excited by passing through ring electrodes introduced into a cryogenic environment using evaporated helium as a buffer gas. Prior study of luminescence from trace gases at cold helium temperatures is virtually absent and so it is the motivation for this work to blaze the trail in this subject. The absence of ionic oxygen spectral lines from the transfer of energy that was well over the first ionization potential of oxygen made for a deeper understanding of collision dynamics with multiple collision partners. This opened the possibility of using the high energy states of oxygen after metastable transfer as a lasing transition previously unavailable and a preliminary analysis suggested that the threshold for lasing action should be easily overcome if feedback were introduced by an optical cavity. To better understand the thermodynamics of the jet it was proposed to use diatomic nitrogen as an in situ thermometer, investigating whether the rotational degrees of freedom of the nitrogen molecule were in thermal equilibrium with the surrounding environment. If the gas was truly in thermodynamic equilibrium then the temperature given by the method of using collisions of a buffer

  17. Helium in atmospheres of binary stars

    Energy Technology Data Exchange (ETDEWEB)

    Leushin, V.V. (Rostovskij-na-Donu Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Fiziki)

    The helium abundances were obtained for 25 bright components of binary stars by model atmosphere analysis. The helium abundance for binary stars that lie on the main sequence are larger in the average than in single normal stars. The stars on the Hertzsppung - russel diagram lie at a larger distance from the zero age line than those with normal helium abundance.

  18. Fluidization of granular media wetted by liquid 4He.

    Science.gov (United States)

    Huang, K; Sohaili, M; Schröter, M; Herminghaus, S

    2009-01-01

    We explore experimentally the fluidization of vertically agitated polymethylmethacrylate spheres wetted by liquid 4He . By controlling the temperature around the lambda point, we change the properties of the wetting liquid from a normal fluid (helium I) to a superfluid (helium II). For wetting by helium I, the critical acceleration for fluidization (Gamma_{c}) shows a steep increase close to the saturation of the vapor pressure in the sample cell. For helium II wetting, Gamma_{c} starts to increase at about 75% saturation, indicating that capillary bridges are enhanced by the superflow of the unsaturated helium film. Above saturation, Gamma_{c} enters a plateau regime where the capillary force between particles is independent of the bridge volume. The plateau value is found to vary with temperature and shows a peak at 2.1K , which we attribute to the influence of the specific heat of liquid helium.

  19. The LHC Continuous Cryostat Interconnections The Organization of a Logistically Complex Worksite Requiring Strict Quality Standards and High Output

    CERN Document Server

    Fessia, P; Bozzini, D; Cruikshank, P; Jacquemod, A; Maan, W; Musso, A; Oberli, L; Poncet, A; Russenschuck, Stephan; Savary, F; Struik, M; Tock, J Ph; Tommasini, D; Völlinger, C; Kotarba, A; Olek, S; Sulek, Z; Grimaud, A; Vaudaux, L

    2008-01-01

    The interconnections of the Large Hadron Collider (LHC) continuous cryostat have been completed in fall 2007: 1695 interconnections magnet to magnet and 224 interconnections between the continuous cryostat and the cryogenic distribution line have been executed along the 27 km of the LHC. The very tight schedule, the complexity of the interconnection sequence, the strict quality standards applied have required the creation of an ad hoc organization in order to steer and coordinate the activities on the worksite dispersed along the whole accelerator ring. The concatenation of construction and test phases carried out by CERN staff, CERN collaborating institutes and contractors have led to the necessity of a common approach and of a very effective information flow. In this paper, after having recalled the main technical challenges, we review the organizational choices that have been taken and we briefly analyze the development of the worksite in term of allocated resources and production.

  20. CAT 2 - An improved version of Cryogenic Analysis Tools for online and offline monitoring and analysis of large size cryostats

    Science.gov (United States)

    Pagliarone, C. E.; Uttaro, S.; Cappelli, L.; Fallone, M.; Kartal, S.

    2017-02-01

    CAT, Cryogenic Analysis Tools is a software package developed using LabVIEW and ROOT environments to analyze the performances of large size cryostats, where many parameters, input, and control variables need to be acquired and studied at the same time. The present paper describes how CAT works and which are the main improvements achieved in the new version: CAT 2. New Graphical User Interfaces have been developed in order to make the use of the full package more user-friendly as well as a process of resource optimization has been carried out. The offline analysis of the full cryostat performances is available both trough ROOT line command interface band also by using the new graphical interfaces.

  1. Mesh sensitivity study and optimization of fixed support for ITER torus and cryostat cryoline

    Science.gov (United States)

    Badgujar, S.; Vaghela, H.; Shah, N.; Bhattacharya, R.; Sarkar, B.

    2010-02-01

    The torus & cryostat cryoline of ITER cryodistribution system has been designed as per the process specifications. The cryoline is an ensemble of six process pipes, thermal shield, fixed, sliding support and outer jacket. The fixed support (FS), which also acts as the anchor for the bellows, is one of the most important part of the cryoline. The FS has to withstand the static weight of pipes as well as the spring and thrust forces arising from the bellows. The FS design has been optimized for the thermal, structural and for combined loads with thermal optimization criteria; less than 8 Watt at 100 K and less than 1.5 Watt at 4.5 K. ANSYS 10.0 has been used for the analysis and CATIA V5 R16 has been used for the modelling as well as geometry optimization. In order to bring the Von-Mises stress within the acceptable limit of 115 MPa, a detailed mesh sensitivity study has been carried out along with design optimization. The iterative process of mesh refinement continued till stress convergence is achieved. The stress analysis has been carried out for optimized mesh size. The paper will present the design methodology, construction details and the results of the analysis.

  2. Thermal analysis of the cryostat feed through for the ITER Tokamak TF feeder

    Science.gov (United States)

    Shanwen, ZHANG; Yuntao, SONG; Kun, LU; Zhongwei, WANG; Jianfeng, ZHANG; Yongfa, QIN

    2017-04-01

    In Tokamaks, the toroidal field (TF) coil feeder is an important component that is used to supply the cryogens and electrical power for the TF coils. As a part of the TF feeder, the cryostat-feed through (CFT) is subject to low temperatures of 9 and 80 K inside and room temperature of 300 K outside. Based on the features of the International Thermonuclear Experimental Reactor TF feeder, the thermal performance of the CFT under the nominal conditions is studied. Taking into account the conductive, convective and radiation heat transfer, the finite element model of the CFT is built. Transient thermal analysis is performed to determine the temperatures of the CFT on the 9th day of cooldown. The model is assessed by comparing the cooling curves of the CFT after 9 days. If the simulation and experimental results are the same, the finite element model can be considered as calibrated. The model predicts that the cooling time will be approximately 26 days and the temperature distribution and heat load of the main components are obtained when the CFT reaches thermal equilibrium. This study provides a valid quantitative characterization of the CFT design.

  3. Mesh sensitivity study and optimization of fixed support for ITER torus and cryostat cryoline

    Energy Technology Data Exchange (ETDEWEB)

    Badgujar, S; Vaghela, H; Shah, N; Bhattacharya, R; Sarkar, B, E-mail: satishrb@ipr.res.i [ITER-INDIA, Institute for Plasma Research, Bhat, Gandhinagar - 382428 (India)

    2010-02-01

    The torus and cryostat cryoline of ITER cryodistribution system has been designed as per the process specifications. The cryoline is an ensemble of six process pipes, thermal shield, fixed, sliding support and outer jacket. The fixed support (FS), which also acts as the anchor for the bellows, is one of the most important part of the cryoline. The FS has to withstand the static weight of pipes as well as the spring and thrust forces arising from the bellows. The FS design has been optimized for the thermal, structural and for combined loads with thermal optimization criteria; less than 8 Watt at 100 K and less than 1.5 Watt at 4.5 K. ANSYS 10.0 has been used for the analysis and CATIA V5 R16 has been used for the modelling as well as geometry optimization. In order to bring the Von-Mises stress within the acceptable limit of 115 MPa, a detailed mesh sensitivity study has been carried out along with design optimization. The iterative process of mesh refinement continued till stress convergence is achieved. The stress analysis has been carried out for optimized mesh size. The paper will present the design methodology, construction details and the results of the analysis.

  4. New Vertical Cryostat with the new HiLumi Model MQXF5

    CERN Multimedia

    Caraban Gonzalez, Noemi

    2017-01-01

    The upgrade of the LHC has given rise to the High Luminosity (HL) LHC project. HL-LHC relies on a number of key innovative technologies, representing exceptional technological challenges, such as cutting-edge 13 Tesla superconducting magnets, very compact and ultra-precise superconducting cavities for beam rotation, and 300-metre-long high-power superconducting links with zero energy dissipation. The most technically challenging aspects of the LHC upgrade cannot be done by CERN alone and requires a strong collaboration involving external expertise and modernization of existing CERN Test Facility infrastructure as in the SM18 . The SM18 hall was originally optimized for the NbTi LHC magnet testing, but with the High Luminosity LHC upgrade coming up (http://hilumilhc.web.cern.ch/), a major upgrade of the test facility was done. The images shows the new cryostat called “Cluster D” and its associated electrical circuit while testing the first quadrupole model magnet for the Q2 series.

  5. Helium resources of Mare Tranquillitatis

    Science.gov (United States)

    Cameron, Eugene N.

    Wisconsin Center for Space Automation and Robotics, Univ. of Wisc., Madison, Wisc. Mare Tranquillitatis, about 300000 sq km in area, is currently the most promising lunar source of He-3 for fueling fusion power plants on Earth. About 60 pct. of the mare regolith consists of particles 100 microns or less in diameter. Helium and other gases derived from the solar wind are concentrated in the fine size fractions. Studies of very small craters indicate that the average regolith exceeds 3 m in areas away from larger craters and other mare features not amenable to mining. There is no evidence of decrease of helium content of regolith and depth. Helium is known to be enriched in regoliths that are high in TiO2 content. Remote sensing indicates that about 90 pct. of Mare Tranquillitatis is covered by regolith ranging from about 6 to +7.5 pct. TiO2; inferred He contents range from 20 to at least 45 wppm total helium (7 to 18 wppb He-3). Detailed studies of craters and inferred ejecta halos displayed on high resolution photographs of the Apollo 11 and Ranger 8 areas suggest that as much as 50 pct. of the mare regolith may be physically minable, on average, with appropriate mining equipment. Assuming that the average thickness of regolith is 3 m, and that 50 pct. of the mare area is minable, the He-3 content of minable regolith containing 20 to 45 wppm total He is estimated at about 94,000 tonnes.

  6. Creation evidence of the second non-dispersive Zakharenko wave by helium atomic beams in superfluid helium-II at low temperatures

    Indian Academy of Sciences (India)

    A A Zakharenko

    2007-10-01

    In this work, the experimental results of the creation of the second non-dispersive Zakharenko wave (ph = g ≠ 0) in the negative roton branch (the so-called second sound) of the bulk elementary excitations (BEEs) energy spectra are introduced. Several BEE signals detected by a bolometer situated in the isotopically pure liquid helium-II at low temperatures ∼ 100 mK are shown, which give evidence of negative roton creation in the liquid by helium atomic beams striking the liquid surface. The negative roton signals were clearly distinguished by the following ways: the negative roton signal created by helium atomic beams appeared earlier than the positive roton signal created by the beams, and presence of both positive and negative roton signals together. It is natural that the negative roton creation by the beams requires the 4He-atom energies ∼ 12 K, while the positive roton creation by the atomic beams requires energies ∼ 35 K. Therefore, successive increase in the heater power resulting in an increase in the 4He-atom energies gives solid evidence that the negative rotons are first created in the liquid by the helium atomic beams.

  7. Visit Itinerary

    CERN Multimedia

    2002-01-01

    The visit itinerary includes five area of halls 191 and 180:. End-Cap Toroid Integration Area . Barrel Toroid Integration Area . Cryogenic Test Facility for Toroid Magnets and Helium Pumps . Liquid Argon Cryostats Assembly Area . Central Solenoid Magnet Test Station

  8. A method for eliminating Faraday rotation in cryostat windows in longitudinal magneto-optical Kerr effect measurements

    Energy Technology Data Exchange (ETDEWEB)

    Polewko-Klim, A., E-mail: anetapol@uwb.edu.pl; Uba, S.; Uba, L. [Institute of Informatics, University of Bialystok, Sosnowa 64, PL-15-887 Bialystok (Poland)

    2014-07-15

    A solution to the problem of disturbing effect of the background Faraday rotation in the cryostat windows on longitudinal magneto-optical Kerr effect (LMOKE) measured under vacuum conditions and/or at low temperatures is proposed. The method for eliminating the influence of Faraday rotation in cryostat windows is based on special arrangement of additional mirrors placed on sample holder. In this arrangement, the orientation of the cryostat window is perpendicular to the light beam direction and parallel to an external magnetic field generated by the H-frame electromagnet. The operation of the LMOKE magnetometer with the special sample holder based on polarization modulation technique with a photo-elastic modulator is theoretically analyzed with the use of Jones matrices, and formulas for evaluating of the actual Kerr rotation and ellipticity of the sample are derived. The feasibility of the method and good performance of the magnetometer is experimentally demonstrated for the LMOKE effect measured in Fe/Au multilayer structures. The influence of imperfect alignment of the magnetometer setup on the Kerr angles, as derived theoretically through the analytic model and verified experimentally, is examined and discussed.

  9. Final Technical Report on STTR Project DE-FG02-04ER86191 Hydrogen Cryostat for Muon Beam Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland P.

    2008-05-07

    The project was to develop cryostat designs that could be used for muon beam cooling channels where hydrogen would circulate through refrigerators and the beam-cooling channel to simultaneously refrigerate 1) high-temperature-superconductor (HTS) magnet coils, 2) cold copper RF cavities, and 3) the hydrogen that is heated by the muon beam. In an application where a large amount of hydrogen is naturally present because it is the optimum ionization cooling material, it was reasonable to explore its use with HTS magnets and cold, but not superconducting, RF cavities. In this project we developed computer programs for simulations and analysis and conducted experimental programs to examine the parameters and technological limitations of the materials and designs of Helical Cooling Channel (HCC) components (magnet conductor, RF cavities, absorber windows, heat transport, energy absorber, and refrigerant).The project showed that although a hydrogen cryostat is not the optimum solution for muon ionization cooling channels, the studies of the cooling channel components that define the cryostat requirements led to fundamental advances. In particular, two new lines of promising development were opened up, regarding very high field HTS magnets and the HS concept, that have led to new proposals and funded projects.

  10. A method for eliminating Faraday rotation in cryostat windows in longitudinal magneto-optical Kerr effect measurements.

    Science.gov (United States)

    Polewko-Klim, A; Uba, S; Uba, L

    2014-07-01

    A solution to the problem of disturbing effect of the background Faraday rotation in the cryostat windows on longitudinal magneto-optical Kerr effect (LMOKE) measured under vacuum conditions and/or at low temperatures is proposed. The method for eliminating the influence of Faraday rotation in cryostat windows is based on special arrangement of additional mirrors placed on sample holder. In this arrangement, the orientation of the cryostat window is perpendicular to the light beam direction and parallel to an external magnetic field generated by the H-frame electromagnet. The operation of the LMOKE magnetometer with the special sample holder based on polarization modulation technique with a photo-elastic modulator is theoretically analyzed with the use of Jones matrices, and formulas for evaluating of the actual Kerr rotation and ellipticity of the sample are derived. The feasibility of the method and good performance of the magnetometer is experimentally demonstrated for the LMOKE effect measured in Fe/Au multilayer structures. The influence of imperfect alignment of the magnetometer setup on the Kerr angles, as derived theoretically through the analytic model and verified experimentally, is examined and discussed.

  11. Helium II calorimetry for the detection of abnormal resistive zones in LHC sectors

    CERN Document Server

    Tavian, L

    2010-01-01

    Following the incident on a LHC sector due to an electrical arc on the main dipole bus-bar circuit, postmortem analysis of previous current plateaus has shown abnormal temperature drift in the helium II baths of some magnets in the concerned area. In order to identify other possible risky areas, a detection system based on calorimety using available precision cryogenic thermometers has been first validated by applying calibrated heating in the magnet cold-mass and then implemented in the different sectors. On the 3-km long continuous helium II cryostat of each LHC sector, this method allows detecting abnormal dissipation in the W-range, i.e. additional resistive heating due to abnormal resistance of about 40 nΩ at 7 kA and less than 15 nΩ at the nominal current of 12 kA. The paper describes the principle and the methodology of this calorimetric method and gives the results obtained on the LHC sectors.

  12. The evaporation signal from [alpha] particles stopped in superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, S.R.; Enss, C.; Goldhaber, G.; Lanou, R.E.; Maris, H.J.; More, T.; Porter, F.S.; Seidel, G.M. (Brown Univ., Providence, RI (United States))

    1993-11-01

    Alpha particles stopped in a 3 liter volume of liquid helium at 30 mK are observed by the calorimetric detection of helium atoms evaporated from the free surface of the liquid. Quantum evaporation of the helium is produced by the rotons that are created by the [alpha] particle. While the energy spectrum of the 5.5 MeV [alpha]'s from the [sup 241]Am source has a width of less than 0.5%, the energy distribution of the observed evaporation signals extends from the low energy threshold of several keV up to a maximum of several 100 keV, depending on geometrical factors and the collection area of the calorimeter. The origin of the observed distribution may result in part from the presence of the substrate and a dependence on the direction of the track of the [alpha] particle. A simple model of the generation of rotons by the [alpha] particle will be discussed.

  13. Precision spectroscopy of the helium atom

    Institute of Scientific and Technical Information of China (English)

    Shui-ming HU; Zheng-Tian LU; Zong-Chao YAN

    2009-01-01

    Persistent efforts in both theory and experiment have yielded increasingly precise understanding of the helium atom. Because of its simplicity, the helium atom has long been a testing ground for relativistic and quantum electrodynamic effects in few-body atomic systems theoretically and experimentally.Comparison between theory and experiment of the helium spectroscopy in ls2p3pJ can potentially extract a very precise value of the fine structure constant a. The helium atom can also be used to explore exotic nuclear structures. In this paper, we provide a brief review of the recent advances in precision calculations and measurements of the helium atom.

  14. Propulsion apparatus and method using boil-off gas from a cryogenic liquid

    Science.gov (United States)

    Blount, D. H. (Inventor)

    1986-01-01

    A propulsion system and method are disclosed for controlling the attitude and drag of a space vehicle. A helium dewar contains liquid helium which cools an experiment package. The helium is heated or vented to keep the temperature between 1.5 and 1.7 degrees K to maintain adequate helium boil-off gas as a propellant without adversely affecting the experiment package which is contained in the helium dewar for protection from solar heating. The apparatus includes auxiliary heater and temperature sensor for controlling the temperature of the helium. The boil-off gas propellant is delivered to thruster modules to control vehicle attutude and compensate for drag.

  15. HeREF-2003: Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 Cost per participant: 500.- CHF Language: Bilingual English...

  16. HeREF-2003 : Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. • Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 • Cost per participant: 500.- CHF ...

  17. Interaction of Helium Rydberg State Molecules with Dense Helium.

    Science.gov (United States)

    Bonifaci, Nelly; Li, Zhiling; Eloranta, Jussi; Fiedler, Steven L

    2016-11-17

    The interaction potentials of the He2(*) excimer, in the a(3)Σu, b(3)Πg, c(3)Σg, and d(3)Σu electronic states with a ground state helium atom are presented. The symmetry of the interaction potentials closely follows the excimer Rydberg electron density with pronounced short-range minima appearing along the nodal planes of the Rydberg orbital. In such cases, a combination of the electrostatic short-range attraction combined with Pauli repulsion leads to the appearance of unusual long-range maxima in the potentials. Bosonic density functional calculations show that the (3)d state excimer resides in a localized solvation bubble in dense helium at 4.5 K, with radii varying from 12.7 Å at 0.1 MPa to 10.8 Å at 2.4 MPa. The calculated (3)d → (3)b pressure-induced fluorescence band shifts are in good agreement with experimental results determined by application of corona discharge. The magnitude of the spectral shifts indicate that the observed He2(*) molecules emit from dense helium whereas the corresponding fluorescence signal from the discharge zone appears quenched. This implies that fluorescence spectroscopy involving this electronic transition can only be used to probe the state of the surrounding medium rather than the discharge zone itself.

  18. Second status report on development activities for a 21-T superconducting magnet and cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.R.; Kerns, J.A.; Slack, D.S.; Strum, M.J.; Summers, L.T.; Viveros, G.

    1988-11-10

    We have continued our efforts to characterize the materials and cryogenics systems to be used in the 19-T model coil and eventually the 21-T spectrometer magnet. Characterization of titanium-alloyed internal-tin superconducting materials has shown that high critical-current densities at high magnetic fields are readily available. The current densities to date are sufficient to make possible magnets of 21 T. Ta-alloyed wires, due to their higher H/sub c2/, should show increased current densities over the Ti-containing wires and offer improved operating margins. Mechanical tests of Ti-alloyed superconductors have shown J/sub c/ vs strain sensitivities that agree with accepted models for Nb/sub 3/Sn wires. Irreversible damage limits are quite high (epsilon/sub irrev./>0.8% intrinsic). These results indicate that, with proper strain management, internal-tin superconductors will be acceptable for use in the 21-T coil. The sensitivity of wires with high areal reduction to mechanical damage prior to reaction has been successfully addressed by the use of low-temperature-annealing heat treatments. The low-temperature anneals do not measurably affect wire performance otherwise. A number of epoxy resins have been evaluated, and at least one viable candidate for the 21-T coil has been found. Tests to determine the wettability and wicking characteristics have shown the candidate resin to have ideal handling characteristics and the ability to fill tightly wound coils when Vacuum Pressure Impregnation (VPI) techniques are used. Design of the 1.8 K cryogenic system for model coil testing has been completed and construction is proceeding. All major components have been fabricated. A preliminary design of the cryostat for the spectrometer magnet has also been completed. Expected cryogenic loads and cryogen usage have been estimated.

  19. Confined helium on Lagrange meshes

    CERN Document Server

    Baye, Daniel

    2015-01-01

    The Lagrange-mesh method has the simplicity of a calculation on a mesh and can have the accuracy of a variational method. It is applied to the study of a confined helium atom. Two types of confinement are considered. Soft confinements by potentials are studied in perimetric coordinates. Hard confinement in impenetrable spherical cavities is studied in a system of rescaled perimetric coordinates varying in [0,1] intervals. Energies and mean values of the distances between electrons and between an electron and the helium nucleus are calculated. A high accuracy of 11 to 15 significant figures is obtained with small computing times. Pressures acting on the confined atom are also computed. For sphere radii smaller than 1, their relative accuracies are better than $10^{-10}$. For larger radii up to 10, they progressively decrease to $10^{-3}$, still improving the best literature results.

  20. Helium atom scattering from surfaces

    CERN Document Server

    1992-01-01

    High resolution helium atom scattering can be applied to study a number of interesting properties of solid surfaces with great sensitivity and accuracy. This book treats in detail experimental and theoretical aspects ofthis method as well as all current applications in surface science. The individual chapters - all written by experts in the field - are devoted to the investigation of surface structure, defect shapes and concentrations, the interaction potential, collective and localized surface vibrations at low energies, phase transitions and surface diffusion. Over the past decade helium atom scattering has gained widespread recognitionwithin the surface science community. Points in its favour are comprehensiveunderstanding of the scattering theory and the availability of well-tested approximation to the rigorous theory. This book will be invaluable to surface scientists wishing to make an informed judgement on the actual and potential capabilities of this technique and its results.

  1. Experimental studies of antiprotonic helium

    CERN Document Server

    Widmann, E

    1998-01-01

    This talk describes the experimental studies of metastable antiprotonic helium "atomcules" pHe/sup +/ (a neutral exotic atom consisting of a helium nucleus, an antiproton and an electron) performed at CERN-LEAR, and future plans for experiments at the forthcoming Antiproton Decelerator (AD) at CERN. Laser spectroscopy experiments are reviewed which led to the observation of a total of 13 resonant transitions of the antiproton in both p/sup 4/He/sup +/ and p/sup 3/He/sup +/, and revealed a hyperfine splitting in one transition. A level of precision has been reached where the most accurate 3-body calculations need to include QED effects like the Lamb-shift to come close to the experimental results. (52 refs).

  2. Elusive structure of helium trimers

    CERN Document Server

    Stipanović, Petar; Boronat, Jordi

    2016-01-01

    Over the years many He-He interaction potentials have been developed, some very sophisticated, including various corrections beyond Born-Oppenheimer approximation. Most of them were used to predict properties of helium dimers and trimers, examples of exotic quantum states, whose experimental study proved to be very challenging. Recently, detailed structural properties of helium trimers were measured for the first time, allowing a comparison with theoretical predictions and possibly enabling the evaluation of different interaction potentials. The comparisons already made included adjusting the maxima of both theoretical and experimental correlation functions to one, so the overall agreement between theory and experiment appeared satisfactory. However, no attempt was made to evaluate the quality of the interaction potentials used in the calculations. In this work, we calculate the experimentally measured correlation functions using both new and old potentials, compare them with experimental data and rank the po...

  3. Assembling the LHC short straight sections

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The building where the short straight sections are being assembled, was often called ‘Lego Land’ by the workers because of the wide variety of sets of magnets and cryostats. Short straight sections contain magnets for manipulating the beam inside cryostats with liquid helium to keep the magnets at a cool 1.9 K (-271.3°C).

  4. Receptivity of a Cryogenic Coaxial Liquid Jet to Acoustic Disturbances

    Science.gov (United States)

    2014-01-01

    experimentally. Liquid nitrogen in the inner jet and cooled helium in the outer annular jet were used to simulate an oxygen/hydrogen liquid rocket...been explored ex- perimentally. Liquid nitrogen in the inner jet and cooled helium in the outer annular jet were used to simulate an oxygen/hydrogen...at off-node locations using an as- sumed mode shape, and the maximum acoustic velocity magnitude is estimated from the linear acoustics equa- tion

  5. Research and development of a helium-4 based solar neutrino detector. Progress report, November 1, 1991--April 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Lanou, R.E.; Maris, H.J.; Seidel, G.M.

    1993-05-01

    Superfluid helium possesses unique properties that enable it to be used as the major component of a very sensitive calorimetric detector: it is extremely pure, and the energy deposited in it is carried out by elementary excitations of the liquid which can produce quantum evaporation of He atoms at a free surface. It has a major advantage of being able to achieve very low background levels. Experimental results presented on the development of helium-4 detector include sensitivity, heat capacity of wafer-calorimeters, coincidence measurements, spectrum of alpha particles in helium, and quantum evaporation: angular dependence and efficiency. 29 refs., 16 figs., 1 tab.

  6. Charging dynamics of dopants in helium nanoplasmas

    DEFF Research Database (Denmark)

    Heidenreich, Andreas; Grüner, Barbara; Schomas, Dominik

    2017-01-01

    We present a combined experimental and theoretical study of the charging dynamics of helium nanodroplets doped with atoms of different species and irradiated by intense near-infrared laser pulses (≤1015 W cm−2). In particular, we elucidate the interplay of dopant ionization inducing the ignition...... of a helium nanoplasma, and the charging of the dopant atoms driven by the ionized helium host. Most efficient nanoplasma ignition and charging is found when doping helium droplets with xenon atoms, in which case high charge states of both helium (He2+) and of xenon (Xe21+) are detected. In contrast, only low...... charge states of helium and dopants are measured when doping with potassium and calcium atoms. Classical molecular dynamics simulations which include focal averaging generally reproduce the experimental results and provide detailed insights into the correlated charging dynamics of guest and host clusters....

  7. Electron attachment and electron ionization of acetic acid clusters embedded in helium nanodroplets

    NARCIS (Netherlands)

    da Silva, F. Ferreira; Jaksch, S.; Martins, G.; Dang, H. M.; Dampc, M.; Denifl, S.; Maerk, T. D.; Limao-Vieira, P.; Liu, J.; Yang, S.; Ellis, A. M.; Scheier, P.

    2009-01-01

    The effect of incident electrons on acetic acid clusters is explored for the first time. The acetic acid clusters are formed inside liquid helium nanodroplets and both cationic and anionic products ejected into the gas phase are detected by mass spectrometry. The cation chemistry (induced by electro

  8. Equation of state of fluid helium at high temperatures and densities

    Institute of Scientific and Technical Information of China (English)

    CAI; Lingcang; CHEN; Qifeng; GU; Yunjun; ZHANG; Ying; ZHOU

    2005-01-01

    Hugoniot curves and shock temperatures of gas helium with initial temperature 293 K and three initial pressures 0.6, 1.2, and 5.0 Mpa were measured up to 15000 K using a two-stage light-gas gun and transient radiation pyrometer. It was found that the calculated Hugoniot EOS of gas helium at the same initial pressure using Saha equation with Debye-Hückel correction was in good agreement with the experimental data. The curve of the calculated shock wave velocity with the particle velocity of gas helium which is shocked from the initial pressure 5 Mpa and temperature 293 K, I.e., the D~u relation, D = C0+λu (u < 10 km/s, λ = 1.32) in a low pressure region, is approximately parallel with the fitted D~u (λ = 1.36) of liquid helium from the experimental data of Nellis et al. Our calculations show that the Hugoniot parameterλis independent of the initial density ρ0. The D~u curves of gas helium will transfer to another one and approach a limiting value of compression when their temperature elevates to about 18000 K and the ionization degree of the shocked gas helium reaches 10-3.

  9. Behaviour of helium after implantation in molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Viaud, C. [Commissariat a l' Energie Atomique (CEA), Cadarache (France)], E-mail: viaud@dircad.cea.fr; Maillard, S.; Carlot, G.; Valot, C. [Commissariat a l' Energie Atomique (CEA), Cadarache (France); Gilabert, E. [Chimie Nucleaire Analytique and Bio-environnementale (CNAB), Gradignan (France); Sauvage, T. [CEMHTI-CNRS, Orleans (France); Peaucelle, C.; Moncoffre, N. [Institut de Physique Nucleaire de Lyon (IPNL), Lyon (France)

    2009-03-31

    This study deals with the behaviour of helium in a molybdenum liner dedicated to the retention of fission products. More precisely this work contributes to evaluate the release of implanted helium when the gas has precipitated into nanometric bubbles close to the free surface. A simple model dedicated to calculate the helium release in such a condition is presented. The specificity of this model lays on the assumption that the gas is in equilibrium with a simple distribution of growing bubbles. This effort is encouraging since the calculated helium release fits an experimental dataset with a set of parameters in good agreement with the literature.

  10. Helium POT System for Maintaining Sample Temperature after Cryocooler Deactivation

    Science.gov (United States)

    Haid, B. J.

    2006-04-01

    A system for maintaining a sample at a constant temperature below 10 K after deactivating the cooling source is demonstrated. In this system, the cooling source is a 4 K GM cryocooler that is joined with the sample through an extension that consists of a helium pot and a thermal resistance. Upon stopping the cryocooler, the power applied to a heater located on the sample side of the thermal resistance is decreased gradually to maintain an appropriate temperature rise across the thermal resistance as the helium pot warms. The sample temperature is held constant in this manner without the use of solid or liquid cryogens and without mechanically disconnecting the sample from the cooler. Shutting off the cryocooler significantly reduces sample motion that results from vibration and expansion/contraction of the cold-head housing. The reduction in motion permits certain procedures that are very sensitive to sample position stability, but are performed with limited duration. A proof-of-concept system was built and operated with the helium pot pressurized to the cryocooler's charge pressure. A sample with 200 mW of continuous heat dissipation was maintained at 7 K while the cryocooler operated intermittently with a duty cycle of 9.5 minutes off and 20 minutes on.

  11. Leakage predictions for Rayleigh-step, helium-purge seals

    Science.gov (United States)

    Proctor, Margaret P.

    1988-01-01

    Rayleigh-step, helium purge, annular shaft seals, studied for use in liquid oxygen turbopumps, generate a hydrodynamic force that enables the seal to follow shaft perturbations. Hence, smaller clearances can be used to reduce seal leakage. FLOWCAL, a computer code developed by Mechanical Technology Incorporated, predicts gas flow rate through an annular seal with an axial pressure gradient. Analysis of a 50-mm Rayleigh-step, helium-purge, annular seal showed the flow rate increased axial pressure gradient, downstream pressure, and eccentricity ratio. Increased inlet temperature reduced leakage. Predictions made at maximum and minimum clearances (due to centrifugal and thermal growths, machining tolerances and + or - 2 percent uncertainty in the clearance measurement) placed wide boundaries on expected flow rates. The widest boundaries were set by thermal growth conditions. Predicted flow rates for a 50-mm Rayleigh-step, helium-purge, annular seal underestimated measured flow rates by three to seven times. However, the analysis did accurately predict flow rates for choked gas flow through annular seals when compared to flow rates measured in two other independent studies.

  12. Experimental investigation of the heat transfer characteristics of a helium cryogenic thermosyphon

    Science.gov (United States)

    Long, Z. Q.; Zhang, P.

    2013-10-01

    The heat transfer performance of a cryogenic thermosyphon filled with helium as the working fluid is investigated experimentally with a G-M cryocooler as the heat sink in this study. The cryogenic thermosyphon acts as a thermal link between the cryocooler and the cooled target (the copper evaporator with a large mass). Helium is charged in different filling ratios, and the cooling down process and the heat transfer characteristics of the cryogenic thermosyphon are investigated. The cooling down process of the cooled target can be significantly accelerated by the presence of helium in the cryogenic thermosyphon and the cooling down period can be further shortened by the increase of filling ratio. The heat transfer mode changes from the liquid-vapor phase change to natural convection as the increase of the heating power applied on the evaporator. The heat transfer limit and thermal resistance are discussed for the liquid-vapor phase change heat transfer, and they can be estimated by empirical correlations. For the natural convection heat transfer, it can be enhanced by increasing the filling ratio, and the natural convection of supercritical helium is much stronger than that of gaseous helium.

  13. Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows

    Energy Technology Data Exchange (ETDEWEB)

    He, Qingyun; Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-02-15

    Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.

  14. Helium stratification in HD 145792: a new Helium strong star

    CERN Document Server

    Catanzaro, G

    2007-01-01

    In this paper we report on the real nature of the star HD 145792, classified as He weak in {\\it ``The General Catalogue of Ap and Am stars''}. By means of FEROS@ESO1.52m high resolution spectroscopic data, we refined the atmospheric parameters of the star, obtaining: T$_{\\rm eff}$ = 14400 $\\pm$ 400 K, $\\log g$ = 4.06 $\\pm$ 0.08 and $\\xi$ = 0 $^{+0.6}$ km s$^{-1}$. These values resulted always lower than those derived by different authors with pure photometric approaches. Using our values we undertook an abundance analysis with the aim to derive, for the first time, the chemical pattern of the star's atmosphere. For metals a pure LTE synthesis (ATLAS9 and SYNTHE) has been used, while for helium a hybrid approach has been preferred (ATLAS9 and SYNSPEC). The principal result of our study is that HD 145792 belongs to He strong class contrary to the previous classification. Moreover, helium seems to be vertically stratified in the atmosphere, decreasing toward deepest layers. For what that concerns metals abundanc...

  15. Helium transfer line installation details.

    CERN Multimedia

    G. Perinic

    2007-01-01

    A particularity of the 32 m long four in one helium transfer line in between the cold box in USC55 and the cavern UX5 is the fact that the transfer line passes through a hole in the crane rail support beam. In order to ensure the alignment of the suspension rail in the interconnecting tunnel with the hole in the rail support as well as the connection points at both ends required precise measurements of the given geometries as well as the installation of a temporary target for the verification of the theoretical predictions.

  16. Design and fabrication of a cryostat for low temperature mechanical testing for the Mechanical and Materials Engineering group at CERN

    CERN Document Server

    Aviles Santillana, I; Gerardin, A; Guinchard, M; Langeslag, S A E; Sgobba, S

    2015-01-01

    Mechanical testing of materials at low temperatures is one of the cornerstones of the Mechanical and Materials Engineering (MME) group at CERN. A long tradition of more than 20 years and a unique know - how of such tests has been developed with an 18 kN double-walled cryostat. Large campaigns of material qualification have been carried out and the mechanical behaviour of materials at 4 K has been vastly studied in sub - size samples for projects like LEP, LHC and its experiments. With the aim of assessing the mechanical properties of materials of higher strength and/or issued from heavy gauge products for which testing standardized specimens of larger cross section might be more adapted, a new 100 kN cryostat capable of hosting different shapes of normalized samples has been carefully designed and fabricated inhouse together with the associated tooling and measurement instrumentation. It has been conceived to be able to adapt to different test frames both dynamic and static, which will be of paramount importa...

  17. Equation of state and interaction potential of helium under high temperatures and high densities

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the thermodynamics statistic method, the improved variational perturbation theory and the modified quantum mechanics correction model have been used to calculate the equation of state of liquid helium at pressure from 0.7 to 108 GPa. The calculation results are in good agreement with the experimental data. The EXP-6 potential (α = 13.1) can more accurately describe the interaction of helium atoms than other potentials in the scheme. Finally, a comparison is shown between our interatomic potentials and other potentials.

  18. Equation of state and interaction potential of helium under high temperatures and high densities

    Institute of Scientific and Technical Information of China (English)

    YANG JinWen; YAN YuanHong

    2009-01-01

    Based on the thermodynamics statistic method, the improved variational perturbation theory and the modified quantum mechanics correction model have been used to calculate the equation of state of liquid helium at pressure from 0.7 to 108 GPa. The calculation results are in good agreement with the experimental data. The EXP-6 potential (α=13.1) can more accurately describe the interaction of helium atoms than other potentials in the scheme. Finally, s comparison is shown between our interatomic potentials and other potentials.

  19. Nanofabrication with a helium ion microscope

    NARCIS (Netherlands)

    Maas, D.; Van Veldhoven, E.; Chen, P.; Sidorkin, V; Salemink, H.; Van der Drift, E.; Alkemade, P.

    2009-01-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valu

  20. Radioactive ions and atoms in superfluid helium

    NARCIS (Netherlands)

    Dendooven, P.G.; Purushothaman, S.; Gloos, K.; Aysto, J.; Takahashi, N.; Huang, W.; Harissopulos, S; Demetriou, P; Julin, R

    2006-01-01

    We are investigating the use of superfluid helium as a medium to handle and manipulate radioactive ions and atoms. Preliminary results on the extraction of positive ions from superfluid helium at temperatures close to 1 K are described. Increasing the electric field up to 1.2 kV/cm did not improve t

  1. Organ protection by the noble gas helium

    NARCIS (Netherlands)

    Smit, K.F.

    2017-01-01

    The aims of this thesis were to investigate whether helium induces preconditioning in humans, and to elucidate the mechanisms behind this possible protection. First, we collected data regarding organ protective effects of noble gases in general, and of helium in particular (chapters 1-3). In chapter

  2. Nanofabrication with a helium ion microscope

    NARCIS (Netherlands)

    Maas, D.; Van veldhoven, E.; Chen, P.; Sidorkin, V.; Salemink, H.; Van der Drift, E.; Alkemade, P.

    2010-01-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valu

  3. Nanofabrication with a helium ion microscope

    NARCIS (Netherlands)

    Maas, D.; Van veldhoven, E.; Chen, P.; Sidorkin, V.; Salemink, H.; Van der Drift, E.; Alkemade, P.

    2010-01-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valu

  4. Nanofabrication with a helium ion microscope

    NARCIS (Netherlands)

    Maas, D.; Van Veldhoven, E.; Chen, P.; Sidorkin, V; Salemink, H.; Van der Drift, E.; Alkemade, P.

    2009-01-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valu

  5. Helium abundances and the helium isotope anomaly of sdB stars

    CERN Document Server

    Geier, S; Edelmann, H; Morales-Rueda, L; Kilkenny, D; O'Donoghue, D; Marsh, T R; Copperwheat, C

    2011-01-01

    Helium abundances and atmospheric parameters have been determined from high resolution spectra for a new sample of 46 bright hot subdwarf B (sdB) stars. The helium abundances have been measured with high accuracy. We confirm the correlation of helium abundance with temperature and the existence of two distinct sequences in helium abundance found previously. We focused on isotopic shifts of helium lines and found helium-3 to be strongly enriched in 8 of our programme stars. Most of these stars cluster in a small temperature range between 27000 K and 31000 K very similar to the known helium-3-rich main sequence B stars, which cluster at somewhat lower temperatures. This phenomenon is most probably related to diffusion processes in the atmosphere, but poses a challenge to diffusion models.

  6. Planning and production of a low cost cryostat for electrical characterization of materials; Planejamento e producao de um criostato de baixo custo para caracterizacao eletrica de materiais

    Energy Technology Data Exchange (ETDEWEB)

    Torsoni, G.B.; Carvalho, C.L.; Brito, G.A. [UNESP, Ilha Solteira, SP (Brazil). Dept. de Fisica e Quimica. Grupo de Vidros e Ceramicas

    2010-07-01

    The system BSCCO can show three main Bi{sub 2}Sr{sub 2}CuO, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O with critical temperatures around 20 K, 80 K and 110 K, respectively. Therefore, it is fundamental to study these materials in details at lowest temperatures, with simple systems and low cost equipment. In this work was projected a cryogenic system with capacity to reach temperatures below the liquid nitrogen temperature (77 K). Based on thermodynamic principles, which is used with liquid nitrogen system, with the vacuum application and control, it has been achieved temperatures about 63 K (freezing nitrogen temperature) in the sample holder. With the availability of a large range temperature becomes possible to identify at least two superconducting phases as in system BSCCO, which also involves a cost/benefit ratio more favorable, avoiding the use of more expensive refrigerates as liquid helium. (author)

  7. Elusive structure of helium trimers

    Science.gov (United States)

    Stipanović, Petar; Vranješ Markić, Leandra; Boronat, Jordi

    2016-09-01

    Over the years many He-He interaction potentials have been developed, some very sophisticated, including various corrections beyond the Born-Oppenheimer approximation. Most of them were used to predict properties of helium dimers and trimers, examples of exotic quantum states, whose experimental study proved to be very challenging. Recently, detailed structural properties of helium trimers were measured for the first time, allowing a comparison with theoretical predictions and possibly enabling the evaluation of different interaction potentials. The comparisons already made included adjusting the maxima of both theoretical and experimental correlation functions to one, so the overall agreement between theory and experiment appeared satisfactory. However, no attempt was made to evaluate the quality of the interaction potentials used in the calculations. In this work, we calculate the experimentally measured correlation functions using both new and old potentials, compare them with experimental data and rank the potentials. We use diffusion Monte Carlo simulations at T = 0, which give within statistical noise exact results of the ground state properties. All models predict both trimers 4He3 and 4He{}2{}3He to be in a quantum halo state.

  8. Thermodynamic analysis of helium boil-off experiments with pressure variations

    Science.gov (United States)

    Cha, Y. S.; Niemann, R. C.; Hull, J. R.

    A thermodynamic analysis by calorimetric experiments in a system with changing pressure is presented. A general equation is derived for use in calculating the rate of heat loss from measured mass flow rate. The results show that the largest contribution from pressure variation is the sensible heat of liquid helium in a Dewar. A dimensionless parameter that was identified provides an indication of the importance of pressure variation relative to the latent heat of vaporization during an experiment. This dimensionless parameter is a function of system pressure land the thermodynamic properties of helium), rate of change of system pressure, liquid helium inventory in the Dewar and measured mass flow rate. In the special case when the effect of pressure variation is small compared to the latent heat of vaporization, the heat loss rate is the product of the measured mass flow rate and the latent heat of vaporization, multiplied by a correction factor that is a function of the ratio of vapour density to liquid density. This correction factor is significant for helium at pressures near or above 1 atm and should always be included in the calculation.

  9. A small helium liquifier which provides continuous cooling based on cycled isentropic expansion

    Science.gov (United States)

    Winter, C.; Gygax, S.; Myrtle, K.; Barton, R.

    1985-05-01

    This simple cryocooler provides a small reservoir of liquid helium at a stable temperature of 4.2K. It uses a novel adaptation of the Simon expansion cryocooler to provide continuous cooling. Operation is in a four stage cycle: (1) A closed vessel of helium under high pressure is cooled to 12K using a conventional Gifford-McMahon closed-cycle cryocooler. (2) The pressure is released adiabatically providing cooling to 4.2K. (3) Liquid helium is collected in a second, well insulated, vessel. (4) The first vessel is repressurized. The cycle time is 15-30 minutes. In this manner, a pool of liquid helium is continuously maintained in the second vessel, with a temperature stability of 0.03 degrees. The continuous cooling power available is 3mW. This design provides simplicity and reliability through the absence of any orifices or moving parts at cryogenic temperatures except for the conventional Gifford-McMahon cryocooler.

  10. Photochemistry inside superfluid helium nano droplets

    Energy Technology Data Exchange (ETDEWEB)

    Slenczka, Alkwin; Vdovin, Alexander; Dick, Bernhard [Inst. fuer Physikalische und Theoretische Chemie, Univ. Regensburg (Germany)

    2007-07-01

    Superfluid helium nano droplets serve as the most gentle cyrogenic matrix for creating isolated and cold molecules. High resolution electronic spectroscopy is sensitive for the investigation of the very weak perturbation of the helium droplet on the embedded molecule. Fluorescence excitation spectra, dispersed emission spectra and pump--probe-spectra show details of the salvation of molecules in helium droplets which were attributed to relaxation processes of the first solvation layer around the dopant. Photochemistry such as ESIPT, tautomerization by proton transfer and charge transfer are highly sensitive on intermolecular perturbations. We have studies such processes in superfluid helium droplets. The comparison with the respective gas phase experiments and quantum chemical calculations reveals further details on the photochemistry as well as on the perturbation by the superfluid helium droplet.

  11. Permeability of Hollow Microspherical Membranes to Helium

    Science.gov (United States)

    Zinoviev, V. N.; Kazanin, I. V.; Pak, A. Yu.; Vereshchagin, A. S.; Lebiga, V. A.; Fomin, V. M.

    2016-01-01

    This work is devoted to the study of the sorption characteristics of various hollow microspherical membranes to reveal particles most suitable for application in the membrane-sorption technologies of helium extraction from a natural gas. The permeability of the investigated sorbents to helium and their impermeability to air and methane are shown experimentally. The sorption-desorption dependences of the studied sorbents have been obtained, from which the parameters of their specific permeability to helium are calculated. It has been established that the physicochemical modification of the original particles exerts a great influence on the coefficient of the permeability of a sorbent to helium. Specially treated cenospheres have displayed high efficiency as membranes for selective extraction of helium.

  12. Gemini helium closed cycle cooling system

    Science.gov (United States)

    Lazo, Manuel; Galvez, Ramon; Rogers, Rolando; Solis, Hernan; Tapia, Eduardo; Maltes, Diego; Collins, Paul; White, John; Cavedoni, Chas; Yamasaki, Chris; Sheehan, Michael P.; Walls, Brian

    2008-07-01

    The Gemini Observatory presents the Helium Closed Cycle Cooling System that provides cooling capacity at cryogenic temperatures for instruments and detectors. It is implemented by running three independent helium closed cycle cooling circuits with several banks of compressors in parallel to continuously supply high purity helium gas to cryocoolers located about 100-120 meters apart. This poster describes how the system has been implemented, the required helium pressures and gas flow to reach cryogenic temperature, the performance it has achieved, the helium compressors and cryocoolers in use and the level of vibration the cryocoolers produce in the telescope environment. The poster also describes the new technology for cryocoolers that Gemini is considering in the development of new instruments.

  13. Formation of the helium EUV resonance lines

    CERN Document Server

    Golding, Thomas Peter; Carlsson, Mats

    2016-01-01

    Context: While classical models successfully reproduce intensities of many transition region lines, they predict helium EUV line intensities roughly an order of magnitude lower than the observed value. Aims: To determine the relevant formation mechanism(s) of the helium EUV resonance lines, capable of explaining the high intensities under quiet sun conditions. Methods: We synthesise and study the emergent spectra from a 3D radiation-magnetohydrodynamics simulation model. The effects of coronal illumination and non-equilibrium ionisation of hydrogen and helium are included self-consistently in the numerical simulation. Results: Radiative transfer calculations result in helium EUV line intensities that are an order of magnitude larger than the intensities calculated under the classical assumptions. The enhanced intensity of He I 584 is primarily caused by He II recombination cascades. The enhanced intensity of He II 304 and He II 256 is caused primarily by non-equilibrium helium ionisation. Conclusion: The anal...

  14. Global helium particle balance in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Motojima, G., E-mail: motojima.gen@lhd.nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Masuzaki, S.; Tokitani, M.; Kasahara, H.; Yoshimura, Y.; Kobayashi, M.; Sakamoto, R.; Morisaki, T.; Miyazawa, J.; Akiyama, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Ohno, N. [Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan); Mutoh, T.; Yamada, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2015-08-15

    Global helium particle balance in long-pulse discharges is analyzed for the first time in the Large Helical Device (LHD) with the plasma-facing components of the first wall and the divertor tiles composed of stainless steel and carbon, respectively. During the 2-min discharge sustained by ion cyclotron resonance heating (ICRH) and electron cyclotron heating (ECH), helium is observed to be highly retained in the wall (regarded as both the first wall and the divertor tiles). Almost all (about 96%) puffed helium particles (1.3 × 10{sup 22} He) are absorbed in the wall near the end of the discharge. Even though a dynamic retention is eliminated, 56% is still absorbed. The analysis is also applied to longer pulse discharges over 40 min by ICRH and ECH, indicating that the helium wall retention is dynamically changed in time. At the initial phase of the discharge, a mechanism for adsorbing helium other than dynamical retention is invoked.

  15. Exotic helium molecules; Molecules exotiques d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Portier, M

    2007-12-15

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}P{sub 0}) molecule, or a {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 {+-} 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime {tau} = (1.4 {+-} 0.3) {mu}s is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  16. Comments on liquid hydrogen absorbers for MICE

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.

    2003-02-01

    This report describes the heat transfer problems associatedwith a liquid hydrogen absorber for the MICE experiment. This reportdescribes a technique for modeling heat transfer from the outside world,to the abosrber case and in its vacuum vessel, to the hydrogen and theninto helium gas at 14 K. Also presented are the equation for freeconvection cooling of the liquid hydrogen in the absorber.

  17. Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium

    CERN Document Server

    Sun, Xiankai; Schuck, Carsten; Tang, Hong X

    2013-01-01

    Photonic nanocavities are a key component in many applications because of their capability of trapping and storing photons and enhancing interactions of light with various functional materials and structures. The maximal number of photons that can be stored in silicon photonic cavities is limited by the free-carrier and thermo-optic effects at room temperature. To reduce such effects, we performed the first experimental study of optical nonlinearities in ultrahigh-Q silicon disk nanocavities at cryogenic temperatures in a superfluid helium environment. At elevated input power, the cavity transmission spectra exhibit distinct blue-shifted bistability behavior when temperature crosses the liquid helium lambda point. At even lower temperatures, the spectra restore to symmetric Lorentzian shapes. Under this condition, we obtain a large stored intracavity photon number of about 40,000, which is limited ultimately by the local helium phase transition. These new discoveries are explained by theoretical calculations ...

  18. Large scale helium liquefaction and considerations for site services for a plant located in Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, P.; Clausen, J.J. [Linde Kryotechnik AG, Pfungen (Switzerland)

    2007-07-01

    The large-scale liquefaction of helium extracted from natural gas is depicted. Based on a block diagram the process chain, starting with the pipeline downstream of the natural-gas plant to the final storage of liquid helium, is explained. Information will be provided about the recent experiences during installation and start-up of a bulk helium liquefaction plant located in Skikda, Algeria, including part-load operation based on a reduced feed gas supply. The local working and ambient conditions are described, including challenging logistic problems like shipping and receiving of parts, qualified and semi-qualified subcontractors, basic provisions and tools on site, and precautions to sea water and ambient conditions. Finally, the differences in commissioning (technically and evaluation of time and work packages) to European locations and standards will be discussed. (orig.)

  19. Heat transfer enhancement on thin wires in superfluid helium forced flows

    CERN Document Server

    Duri, Davide; Moro, Jean-Paul; Roche, Philippe-Emmanuel; Diribarne, Pantxo

    2014-01-01

    In this paper, we report the first evidence of an enhancement of the heat transfer from a heated wire by an external turbulent flow of superfluid helium. We used a standard Pt-Rh hot-wire anemometer and overheat it up to 21 K in a pressurized liquid helium turbulent round jet at temperatures between 1.9 K and 2.12 K. The null-velocity response of the sensor can be satisfactorily modeled by the counter flow mechanism while the extra cooling produced by the forced convection is found to scale similarly as the corresponding extra cooling in classical fluids. We propose a preliminary analysis of the response of the sensor and show that -contrary to a common assumption- such sensor can be used to probe local velocity in turbulent superfluid helium.

  20. Preparation and analysis of helium purge gas mixture to be used in Tritium Extraction System of LLCB TBM

    Science.gov (United States)

    Gayathri Devi, V.; Yadav, Deepak; Sircar, Amit

    2017-04-01

    Hydrogen isotopes are extracted from the Ceramic Breeder (CB) and liquid Lead Lithium (Pb-Li) breeder of Lead Lithium Ceramic Breeder (LLCB) Test Blanket Module (TBM) with Helium purge gas. 1000 ppm of hydrogen gas is mixed with the purge helium gas to facilitate improved extraction of hydrogen isotopes from the breeder zones by hydrogen swamping reactions [1]. An experimental set up is developed for making up the purge gas mixture with a composition similar to the purge gas composition to be used for extraction of hydrogen isotopes from CB and Pb-Li of LLCB TBM. This is achieved by introducing different ppm levels (1000 - 5000 ppm) of hydrogen in helium gas by flow control mechanism. The analysis of the purge gas mixture is performed using a highly sensitive Gas Chromatography (GC) system. This paper describes the detailed design of the experimental set-up and results for the analysis of different concentrations of hydrogen in helium purge gas.

  1. Electric response in superfluid helium

    Science.gov (United States)

    Chagovets, Tymofiy V.

    2016-05-01

    We report an experimental investigation of the electric response of superfluid helium that arises in the presence of a second sound standing wave. It was found that the signal of the electric response is observed in a narrow range of second sound excitation power. The linear dependence of the signal amplitude has been derived at low excitation power, however, above some critical power, the amplitude of the signal is considerably decreased. It was established that the rapid change of the electric response is not associated with a turbulent regime generated by the second sound wave. A model of the appearance of the electric response as a result of the oscillation of electron bubbles in the normal fluid velocity field in the second sound wave is presented. Possible explanation for the decrease of the electric response are presented.

  2. In Beam Tests of Implanted Helium Targets

    CERN Document Server

    McDonald, J E; Ahmed, M W; Blackston, M A; Delbar, T; Gai, M; Kading, T J; Parpottas, Y; Perdue, B A; Prior, R M; Rubin, D A; Spraker, M C; Yeomans, J D; Weissman, L; Weller, H R; Delbar, Th.; Conn, LNS/U; Duke, TUNL/

    2006-01-01

    Targets consisting of 3,4He implanted into thin aluminum foils (approximately 100, 200 or 600 ug/cm^2) were prepared using intense (a few uA) helium beams at low energy (approximately 20, 40 or 100 keV). Uniformity of the implantation was achieved by a beam raster across a 12 mm diameter tantalum collimator at the rates of 0.1 Hz in the vertical direction and 1 Hz in the horizontal direction. Helium implantation into the very thin (approximately 80-100 ug/cm^2) aluminum foils failed to produce useful targets (with only approximately 10% of the helium retained) due to an under estimation of the range by the code SRIM. The range of low energy helium in aluminum predicted by Northcliffe and Shilling and the NIST online tabulation are observed on the other hand to over estimate the range of low energy helium ions in aluminum. An attempt to increase the amount of helium by implanting a second deeper layer was also carried out, but it did not significantly increase the helium content beyond the blistering limit (ap...

  3. 冷冻靶制备用低温氦气循环系统%Cycling helium system for cryogenic target handling system

    Institute of Scientific and Technical Information of China (English)

    丁先庚; 丁怀况; 施锦

    2012-01-01

    The cryogenic target which is treated by high - pressure permeation charge at room temperature and after cryogenic cooling, needs cryogenic cycling helium with temperature below 20K to cool the high - pressure permeation cell and cryostat. Adopting GM crybcooler as the cold source and dedicated helium compressor as the cycling pump, with the design of high - efficiency regenerative heat interchanger, the system can obtain cryogenic helium with temperature below 20K through which the end fittings are cooled down, and thereby to achieve cryogenic and homothermal environment and cooling of permeation cell%常温高压渗透充气、低温冷却的冷冻靶球,需要20K以下的低温循环氦气,用于冷却高压渗透室和低温恒温腔.本套系统采用GM制冷机为冷源,采用专用氦压缩机为循环泵,设计高效率的回热式换热器,实现末端的20K以下低温氦气,通过低温氦气冷却终端部件,实现了20K的低温恒温环境和渗透室的冷却.

  4. Equation of state and transport properties of warm dense helium via quantum molecular dynamics simulations

    Science.gov (United States)

    Li, Zhi-Guo; Cheng, Yan; Chen, Qi-Feng; Chen, Xiang-Rong

    2016-05-01

    The equation of state, self-diffusion, and viscosity coefficients of helium have been investigated by quantum molecular dynamics (QMD) simulations in the warm dense matter regime. Our simulations are validated through the comparison with the reliable experimental data. The calculated principal and reshock Hugoniots of liquid helium are in good agreement with the gas-gun data. On this basis, we revisit the issue for helium, i.e., the possibility of the instabilities predicted by chemical models at around 2000 GPa and 10 g/cm3 along the pressure isotherms of 6309, 15 849, and 31 623 K. Our calculations show no indications of instability in this pressure-temperature region, which reconfirm the predictions of previous QMD simulations. The self-diffusion and viscosity coefficients of warm dense helium have been systematically investigated by the QMD simulations. We carefully test the finite-size effects and convergences of statistics, and obtain numerically converged self-diffusion and viscosity coefficients by using the Kubo-Green formulas. The present results have been used to evaluate the existing one component plasma models. Finally, the validation of the Stokes-Einstein relationship for helium in the warm dense regime is discussed.

  5. Experimental and numerical investigation of the emergency helium release into the LHC tunnel

    Science.gov (United States)

    Malecha, Ziemowit M.; Jedrusyna, Artur; Grabowski, Maciej; Chorowski, Maciej; van Weelderen, Rob

    2016-12-01

    An unexpected ejection of cryogen into large confined spaces can result in hazardous consequences. This paper presents the experimental results of the controlled release of liquid helium into the LHC tunnel at CERN. The experiment was designed to measure the oxygen concentration, temperature, and propagation of the helium-air mixture cloud in the LHC tunnel. This required the usage of novel, in-house manufactured, ultrasonic helium detectors. The experimental results showed an advantage of the ultrasonic sensors over traditional electrochemical sensors. Next, a minimal mathematical model was presented and implemented numerically. The experimental results contributed to the validation of the numerical model. A number of numerical calculations were performed in order to examine the consequences of a helium spill with different mass flows. This assisted in the evaluation of the critical helium mass flow, above which the oxygen concentration could drop below the safety limit. A satisfactory comparison of the experimental results and numerical calculations showed the accuracy of the assumptions of the proposed mathematical model.

  6. Forced Two-Phase Helium Cooling Scheme for the Mu2e Transport Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Tatkowski, G. [Fermilab; Cheban, S. [Fermilab; Dhanaraj, N. [Fermilab; Evbota, D. [Fermilab; Lopes, M. [Fermilab; Nicol, T. [Fermilab; Sanders, R. [Fermilab; Schmitt, R. [Fermilab; Voirin, E. [Fermilab

    2015-01-01

    The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantages which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids

  7. Evolution of dopant-induced helium nanoplasmas

    CERN Document Server

    Krishnan, S R; Fechner, L; Sharma, V; Kremer, M; Fischer, B; Camus, N; Pfeifer, T; Jha, J; Krishnamurthy, M; Schroeter, C -D; Ullrich, J; Stienkemeier, F; Moshammer, R; Fennel, Th; Mudrich, M

    2012-01-01

    Two-component nanoplasmas generated by strong-field ionization of doped helium nanodroplets are studied in a pump-probe experiment using few-cycle laser pulses in combination with molecular dynamics simulations. High yields of helium ions and a pronounced, droplet size-dependent resonance structure in the pump-probe transients reveal the evolution of the dopant-induced helium nanoplasma. The pump-probe dynamics is interpreted in terms of strong inner ionization by the pump pulse and resonant heating by the probe pulse which controls the final charge states detected via the frustration of electron-ion recombination.

  8. Nitrogen-gas-stream cryostat for general X-ray diffraction studies

    Energy Technology Data Exchange (ETDEWEB)

    Cosier, J.; Glazer, A.M.

    1986-04-01

    A continuous nitrogen-flow cooling device, generally applicable to X-ray diffraction studies, is described. The device works in the range 77.4 to 323.0 K with a precision of +-0.1 K and a liquid-nitrogen constant consumption rate of 0.5 l h/sup -1/ over the whole temperature range. The supply vessel is unpressurised, so that refilling can be done without any observable influence on the cooling of the sample.

  9. 49 CFR 173.320 - Cryogenic liquids; exceptions.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cryogenic liquids; exceptions. 173.320 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.320 Cryogenic liquids; exceptions. (a) Atmospheric gases and helium, cryogenic liquids, in Dewar flasks, insulated cylinders...

  10. Calculated Regenerator Performance at 4 K with HELIUM-4 and HELIUM-3

    Science.gov (United States)

    Radebaugh, Ray; Huang, Yonghua; O'Gallagher, Agnes; Gary, John

    2008-03-01

    The helium-4 working fluid in regenerative cryocoolers operating with the cold end near 4 K deviates considerably from an ideal gas. As a result, losses in the regenerator, given by the time-averaged enthalpy flux, are increased and are strong functions of the operating pressure and temperature. Helium-3, with its lower boiling point, behaves somewhat closer to an ideal gas in this low temperature range and can reduce the losses in 4 K regenerators. An analytical model is used to find the fluid properties that strongly influence the regenerator losses as well as the gross refrigeration power. The thermodynamic and transport properties of helium-3 were incorporated into the latest NIST regenerator numerical model, known as REGEN3.3, which was used to model regenerator performance with either helium-4 or helium-3. With this model we show how the use of helium-3 in place of helium-4 can improve the performance of 4 K regenerative cryocoolers. The effects of operating pressure, warm-end temperature, and frequency on regenerators with helium-4 and helium-3 are investigated and compared. The results are used to find optimum operating conditions. The frequency range investigated varies from 1 Hz to 30 Hz, with particular emphasis on higher frequencies.

  11. Theoretical research of helium pulsating heat pipe under steady state conditions

    Science.gov (United States)

    Xu, D.; Liu, H. M.; Li, L. F.; Huang, R. J.; Wang, W.

    2015-12-01

    As a new-type heat pipe, pulsating heat pipe (PHP) has several outstanding features, such as great heat transport ability, strong adjustability, small size and simple construction. PHP is a complex two-phase flow system associated with many physical subjects and parameters, which utilizes the pressure and temperature changes in volume expansion and contraction during phase changes to excite the pulsation motion of liquid plugs and vapor bubbles in the capillary tube between the evaporator and the condenser. At present time, some experimental investigation of helium PHP have been done. However, theoretical research of helium PHP is rare. In this paper, the physical and mathematical models of operating mechanism for helium PHP under steady state are established based on the conservation of mass, momentum, and energy. Several important parameters are correlated and solved, including the liquid filling ratio, flow velocity, heat power, temperature, etc. Based on the results, the operational driving force and flow resistances of helium PHP are analysed, and the flow and heat transfer is further studied.

  12. ASACUSA Anti-protonic Helium_Final

    CERN Multimedia

    CERN Audiovisual Production Service; CERN AD; Paola Catapano; Julien Ordan, Arzur Catel; Paola Catapano; ASACUSA COLLABORATION

    2016-01-01

    Latest precision measurement of the mass of the proton and the anti proton though the production of antiprotonic helium by the ASACUSA experiment at CERN's antimatter factory, with a beam from the Antiproton Decelerator

  13. Charging dynamics of dopants in helium nanoplasmas

    OpenAIRE

    Heidenreich, Andreas; Grüner, Barbara; Schomas, Dominik; Stienkemeier, Frank; Krishnan, Siva Rama; Mudrich, Marcel

    2016-01-01

    We present a combined experimental and theoretical study of the charging dynamics of helium nanodroplets doped with atoms of different species and irradiated by intense near-infrared (NIR) laser pulses (

  14. Helium-Hydrogen Recovery System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Immense quantities of expensive liquefied helium are required at Stennis and Kennedy Space Centers for pre-cooling rocket engine propellant systems prior to filling...

  15. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  16. Multiple Population Theory: Extreme helium population problem

    OpenAIRE

    Yi, Sukyoung K.

    2009-01-01

    The spreads in chemical abundances inferred by recent precision observations suggest that some or possibly all globular clusters can no longer be considered as simple stellar populations. The most striking case is omega Cen in the sense that its bluest main-sequence despite its high metallicity demands an extreme helium abundance of Y > 0.4. I focus on this issue of "the extreme helium population problem" in this review.

  17. Cosmogenic helium in a terrestrial igneous rock

    Science.gov (United States)

    Kurz, M. D.

    1986-01-01

    New helium isotopic measurements on samples from the Kula formation of Haleakala volcano of Hawaii are presented that are best explained by an in situ cosmogenic origin for a significant fraction of the He-3. Results from crushing and stepwise heating experiments, and consideration of the exposure age of the sample at the surface and the cosmic ray fluxes strongly support this hypothesis. Although crustal cosmogenic helium has been proposed previously, this represents its first unambiguous identification in a terrestrial sample.

  18. Effects of helium impurities on superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Selle, J.E.

    1977-07-01

    A review of the literature on the effects of helium impurities on superalloys at elevated temperatures was undertaken. The actual effects of these impurities vary depending on the alloy, composition of the gas atmosphere, and temperature. In general, exposure in helium produces significant but not catastrophic changes in the structure and properties of the alloys. The effects of these treatments on the structure, creep, fatigue, and mechanical properties of the various alloys are reviewed and discussed. Suggestions for future work are presented.

  19. Helium Reionization in From New Sightlines

    Science.gov (United States)

    Syphers, David

    2017-01-01

    A very small number of sightlines to z~3 quasars have been studied in detail to show the progress of helium reionization. Although studying the same sightlines with each new UV spectrograph lead to a better understanding of them, the sightline variance is very strong during this patchy and extended process. We discuss detailed R>10,000 COS data from new sightlines, and what they reveal about the progress and end of helium reionization.

  20. The Helium Field Effect Transistor (I): Storing Surface State Electrons on Helium Films

    Science.gov (United States)

    Ashari, M.; Rees, D. G.; Kono, K.; Scheer, E.; Leiderer, P.

    2012-04-01

    We present investigations of surface state electrons on liquid helium films in confined geometry, using a suitable substrate structure microfabricated on a silicon wafer, similar to a Field Effect Transistor (FET). The sample has a source and drain region, separated by a gate structure, which consists of two gold electrodes with a narrow gap (channel) through which the transport of the surface state electrons takes place. The sample is illuminated to provide a sufficient number of free carriers in the silicon substrate, such that a well-defined potential distribution is achieved. The eventual goal of these experiments is to study the electron transport through a narrow channel in the various states of the phase diagram of the 2D electron system. In the present work we focus on storing the electrons in the source area of the FET, and investigate the spatial distribution of these electrons. It is shown that under the influence of a potential gradient in the silicon substrate the electrons accumulate in front of the potential barrier of the gate. The electron distribution, governed by Coulomb repulsion and by the substrate potential, is determined experimentally. The result is found to be in good agreement with a parallel-plate capacitor model of the system, developed with the aid of a finite element calculation of the surface potential profile of the device.

  1. Pyridine Aggregation in Helium Nanodroplets

    Science.gov (United States)

    Nieto, Pablo; Poerschke, Torsten; Habig, Daniel; Schwaab, Gerhard; Havenith, Martina

    2012-06-01

    Pyridine crystals show the unusual property of isotopic polymorphism. Experimentally it has been observed that deuterated pyridine crystals exist in two phases while non-deuterated pyridine does not show a phase transition. Therefore, although isotopic substitution is the smallest possible modification of a molecule it greatly affects the stability of pyridine crystals. A possible experimental approach in order to understand this striking effect might be the study of pyridine aggregation for small clusters. By embedding the clusters in helium nanodroplets the aggregates can be stabilized and studied by means of Infrared Depletion Spectroscopy. Pyridine oligomers were investigated in the C-H asymmetric vibration region (2980-3100 cm-1) using this experimental technique. The number of molecules for the clusters responsibles for each band were determined by means of pick-up curves as well as mass sensitive depletion spectra. Furthermore, the intensity dependence of the different bands on applying a dc electric field was studied. The assignment of the different structures for pyridine clusters on the basis of these measurements were also carried out. S. Crawford et al., Angew. Chem. Int. Ed., 48, 755 (2009).

  2. Photoionization rates for helium: update

    CERN Document Server

    Sokół, Justyna M

    2014-01-01

    The NIS He gas has been observed at a few AU to the Sun almost from the beginning of the space age. To model its flow an estimate of the loss rates due to ionization by solar extreme-ultraviolet (EUV) flux is needed. The EUV irradiance has been measured directly from mid 1990-ties, but with high temporal and spectral resolution only from 2002. Beforehand only EUV proxies are available. A new method of reconstruction of the Carrington rotation averaged photoionization rates for neutral interstellar helium (NIS He) in the ecliptic at 1 AU to the Sun before 2002 is presented. We investigate the relation between the solar rotation averaged time series of the ionization rates for NIS He at 1 AU derived from TIMED measurements of EUV irradiance and the solar 10.7 cm flux (F10.7) only. We perform a weighted iterative fit of a nonlinear model to data split into sectors. The obtained formula allows to reconstruct the solar rotation averages of photoionization rates for He between ~1947 and 2002 with an uncertainty ran...

  3. Helium and Neon in Comets

    Science.gov (United States)

    Jewitt, David

    1996-01-01

    Two comets were observed with EUVE in late 1994. Both comet Mueller and comet Borrelly are short-period comets having well established orbital elements and accurate ephemerides. Spectra of 40 ksec were taken of each. No evidence for emission lines from either Helium or Neon was detected. We calculated limits on the production rates of these atoms (relative to solar) assuming a standard isotropic outflow model, with a gas streaming speed of 1 km/s. The 3-sigma (99.7% confidence) limits (1/100,000 for He, 0.8 for Ne) are based on a conservative estimate of the noise in the EUVE spectra. They are also weakly dependent on the precise pointing and tracking of the EUVE field of view relative to the comet during the integrations. These limits are consistent with ice formation temperatures T greater than or equal to 30 K, as judged from the gas trapping experiments of Bar-Nun. For comparison, the solar abundances of these elements are He/O = 110, Ne/O = 1/16. Neither limit was as constraining as we had initially hoped, mainly because comets Mueller and Borrelly were intrinsically less active than anticipated.

  4. Process Control Migration of 50 LPH Helium Liquefier

    Science.gov (United States)

    Panda, U.; Mandal, A.; Das, A.; Behera, M.; Pal, Sandip

    2017-02-01

    Two helium liquefier/refrigerators are operational at VECC while one is dedicated for the Superconducting Cyclotron. The first helium liquefier of 50 LPH capacity from Air Liquide has already completed fifteen years of operation without any major trouble. This liquefier is being controlled by Eurotherm PC3000 make PLC. This PLC has become obsolete since last seven years or so. Though we can still manage to run the PLC system with existing spares, risk of discontinuation of the operation is always there due to unavailability of spare. In order to eliminate the risk, an equivalent PLC control system based on Siemens S7-300 was thought of. For smooth migration, total programming was done keeping the same field input and output interface, nomenclature and graphset. New program is a mix of S7-300 Graph, STL and LAD languages. One to one program verification of the entire process graph was done manually. The total program was run in simulation mode. Matlab mathematical model was also used for plant control simulations. EPICS based SCADA was used for process monitoring. As of now the entire hardware and software is ready for direct replacement with minimum required set up time.

  5. Effect of dislocations on helium retention in deformed pure iron

    Science.gov (United States)

    Gong, Y. H.; Cao, X. Z.; Jin, S. X.; Lu, E. Y.; Hu, Y. C.; Zhu, T.; Kuang, P.; Xu, Q.; Wang, B. Y.

    2016-12-01

    The effects of dislocations created by deformation on helium retention in pure iron, including the helium atoms diffusion along the dislocation line and desorption from dislocation trapping sites, were investigated. The dislocation defect was introduced in specimens by cold-rolling, and then 5 keV helium ions were implanted into the deformed specimens. Slow positron beam technology and thermal desorption spectroscopy were used to investigate the evolution of dislocation defects and the desorption behavior of helium atoms under influence of dislocation. The behaviors of S-E, W-E and S-W plots indicate clearly that lots of helium atoms remain in the deformed specimen and helium atoms combining with dislocation change the distribution of electron density. The helium desorption plot indicates that dislocation accelerates helium desorption at 293 K-600 K and facilitates helium dissociation from HenVm (n/m = 1.8) cluster.

  6. Modeling Electronegative Impurity Concentrations in Liquid Argon Detectors

    Science.gov (United States)

    Tang, Wei; Li, Yichen; Thorn, Craig; Qian, Xin

    2017-01-01

    Achieving long electron lifetime is crucial to reach the high performance of large Liquid Argon Time Projection Chamber (LArTPC) envisioned for next generation neutrino experiments. We have built up a quantitative model to describe the impurity distribution and transportation in a cryostat. Henrys constants of Oxygen and water, which describe the partition of impurities between gas argon and liquid argon, have been deduced through this model with the measurements in BNL 20-L LAr test stand. These results indicate the importance of the gas purification system and prospects on large LArTPC detectors will be discussed.

  7. Optical nanoscopy with excited state saturation at liquid helium temperatures

    Science.gov (United States)

    Yang, B.; Trebbia, J.-B.; Baby, R.; Tamarat, Ph.; Lounis, B.

    2015-10-01

    Optical resolution of solid-state single quantum emitters at the nanometre scale is a challenging step towards the control of delocalized states formed by strongly and coherently interacting emitters. We have developed a simple super-resolution optical microscopy method operating at cryogenic temperatures, which is based on optical saturation of the excited state of single fluorescent molecules with a doughnut-shaped beam. Sub-10 nm resolution is achieved with extremely low excitation intensities, a million times lower than those used in room-temperature stimulated emission depletion microscopy. Compared with super-localization approaches, our technique offers a unique opportunity to super-resolve single molecules with overlapping optical resonance frequencies and paves the way to the study of coherent interactions between single emitters and to the manipulation of their degree of entanglement.

  8. Experimental investigation of the thermal hydraulics in lead bismuth eutectic-helium experimental loop of an accelerator-driven system

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Wenxuan; Wang, Yong Wei; Li, Xun Feng; Huai, Xiulan; Cal, Jun [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing (China)

    2016-10-15

    The heat transfer characteristics between liquid lead bismuth eutectic (LBE) and helium are of great significance for the two-loop cooling system based on an accelerator-driven system (ADS). This paper presents an experimental study on the resistance characteristics and heat transfer performance in a LBE-helium experimental loop of ADS. Pressure drops in the LBE loop, the main heat transfer, and the coupled heat transfer characteristics between LBE and helium are investigated experimentally. The temperature of LBE has a significant effect on the LBE thermo-physical properties, and is therefore considered in the prediction of pressure drops. The results show that the overall heat transfer coefficient increases with the increasing helium flow rate and the decreasing inlet temperature of helium. Increasing the LBE Reynolds number and LBE inlet temperature promotes the heat transfer performance of main heat transfer and thus the overall heat transfer coefficient. The experimental results give an insight into the flow and heat transfer properties in a LBE-helium heat exchanger and are helpful for the optimization of an ADS system design.

  9. Full Scale Thermo-hydraulic Simulation of a Helium-Helium Printed Circuit Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Injun; Hong, Sungyull; Bai, Cheolho; Shim, Jaesool [Yeungnam Univ., Gyeongsan (Korea, Republic of); Kim, Chansoo; Hong, Sungdeok; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, the thermo-hydraulic full scale simulation is performed to study the temperature distributions, thermal stress, pressure drop and outlet temperature in a Helium-Helium printed circuit heat exchanger (PCHE) in a VHTR simulate helium loop. The entire PCHE is composed of 40 stacks of rectangular shaped micro-channels for helium gas [type A] (inlet temperature, 400 .deg. C) and 40 stacks of semi-ellipse shaped micro-channels for helium [type B] (inlet temperature, 300 .deg. C). The experimental result is compared to that of computer simulation, COMSOL multi-physics software. The Helium-Helium PCHE is considered a prototype of the newly developed PCHE by Korea Atomic Energy Research Institute (KAERI). The full scale thermo-hydraulic simulation was successfully performed to obtain temperature distribution, pressure drop and thermal stress in 40 sets of flow channel stacks in a helium-helium printed circuit heat exchanger in a VHTR simulate helium loop. We obtained a quite similar temperature distribution with the 3D measured infrared temperature distribution. To our knowledge, this is the first full scale numerical study on the PCHE, which considers all microchannels, that the convection effect on the outside surfaces of the PCHE is applied. The very high-temperature reactor (VHTR) or high-temperature gas-cooled reactor(HTGR) is a fourth-generation nuclear power reactor that uses the ceramic coated fuel, TRISO, in which the fission gas does not leak even at temperatures higher than 1600 .deg. C. The VHTR necessarily requires an intermediate loop composed of a hot gas duct (HGD), an intermediate heat exchanger (IHX) and a process heat exchanger (PHE). The IHX is one of the important components of VHTR system because the IHX transfers the 950 .deg. C of high temperature massive heat to a hydrogen production plant or power conversion unit at high system pressure.

  10. Flight model performance test results of a helium dewar for the soft X-ray spectrometer onboard ASTRO-H

    Science.gov (United States)

    Yoshida, Seiji; Miyaoka, Mikio; Kanao, Ken'ichi; Tsunematsu, Shoji; Otsuka, Kiyomi; Hoshika, Shunji; Mitsuda, Kazuhisa; Yamasaki, Noriko; Takei, Yoh; Fujimoto, Ryuichi; Sato, Yoichi; DiPirro, Mike; Shirron, Peter

    2016-03-01

    ASTRO-H is a Japanese X-ray astronomy satellite, scheduled to be launched in fiscal year 2015. The mission includes a soft X-ray spectrometer instrument (SXS), which contains an X-ray micro calorimeter operating at 50 mK by using an adiabatic demagnetization refrigerator (ADR). The heat sink of the ADR is superfluid liquid helium below 1.3 K. The required lifetime of the superfluid helium is 3 years or more. In order to realize this lifetime, we have improved the thermal performance from the engineering model (EM) while maintaining the mechanical performance. Then, we have performed a thermal test of the flight model (FM). The results were that the heat load to the helium tank was reduced to below 0.8 mW in the FM from 1.2 mW in the EM. Therefore, the lifetime of the superfluid helium is more than 3 years with 30 L of liquid helium. In this paper, the thermal design and thermal test results are described.

  11. Enhancement of the Liquefaction Rate in Small-Scale Helium Liquefiers Working Near and Above the Critical Point

    Science.gov (United States)

    Rillo, C.; Gabal, M.; Lozano, M. P.; Sesé, J.; Spagna, S.; Diederichs, J.; Sager, R.; Chialvo, C.; Terry, J.; Rayner, G.; Warburton, R.; Reineman, R.

    2015-05-01

    Low-temperature research laboratories with typical liquid-helium consumption of the order of tens of liters per day have greatly benefited from the recent development of small-scale liquefiers. In general, these liquefiers are based on Gifford-McMahon or pulse-tube closed-cycle refrigerators with a nominal cooling power ranging from 1 to 1.5 W at 4.2 K. The liquefaction rate for these cryocooler-based liquefiers depends on the pressure at which the helium is liquefied, although the final user conditions of the produced liquid helium are always atmospheric pressure and boiling temperature (e.g., 4.2 K at 100 kPa). Here, we show a systematic study on this effect, in which an enhancement in excess of 70% in liquefaction rate is found experimentally for pressures near and above the critical point of helium (220 kPa). We propose that the underlying mechanism for the liquefaction enhancement is based on the increase in cryocooler cooling power with temperature and the decrease of the helium enthalpy with pressure.

  12. Laser cooling and control of excitations in superfluid helium

    CERN Document Server

    Harris, G I; Sheridan, E; Sachkou, Y; Baker, C; Bowen, W P

    2015-01-01

    Superfluidity is an emergent quantum phenomenon which arises due to strong interactions between elementary excitations in liquid helium. These excitations have been probed with great success using techniques such as neutron and light scattering. However measurements to-date have been limited, quite generally, to average properties of bulk superfluid or the driven response far out of thermal equilibrium. Here, we use cavity optomechanics to probe the thermodynamics of superfluid excitations in real-time. Furthermore, strong light-matter interactions allow both laser cooling and amplification of the thermal motion. This provides a new tool to understand and control the microscopic behaviour of superfluids, including phonon-phonon interactions, quantised vortices and two-dimensional quantum phenomena such as the Berezinskii-Kosterlitz-Thouless transition. The third sound modes studied here also offer a pathway towards quantum optomechanics with thin superfluid films, including femtogram effective masses, high me...

  13. Experimental study on neon refrigeration system using commercial helium compressor

    Science.gov (United States)

    Ko, Junseok; Kim, Hyobong; Hong, Yong-Ju; Yeom, Hankil; Koh, Deuk-Yong; Park, Seong-Je

    2012-06-01

    In this study, we developed neon refrigeration system using commercial helium compressor which was originally designed for GM cryocooler. We performed this research as precedent study before developing neon refrigeration system for small-scale hydrogen liquefaction system. The developed system is based on precooled Linde-Hampson system with liquid nitrogen as precoolant. Design parameters of heat exchangers are determined from thermodynamic cycle analysis with operating pressure of 2 MPa and 0.4 MPa. Heat exchangers have concentric-tube heat exchanger configuration and orifice is used as Joule- Thomson expansion device. In experiments, pressure, temperature, mass flow rate and compressor input power are measured as charging pressure. With experimental results, the characteristics of heat exchanger, Joule-Thomson expansion and refrigeration effect are discussed. The developed neon refrigeration system shows the lowest temperature of 43.9 K.

  14. The helium cryogenic plant for the CMS superconducting magnet

    CERN Document Server

    Perinic, G; Dagut, F; Dauguet, P; Hirel, P

    2002-01-01

    A new helium refrigeration plant with a cooling capacity of 800 W at 4.45 K, 4500 W between 60 K and 80 K, and 4 g/s liquefaction simultaneously has been designed and is presently being constructed by Air Liquide for CERN. The refrigeration plant will provide the cooling power for the cool down and the operation of the CMS (Compact Muon Solenoid) superconducting coil whose cold mass weighs 225 t. The refrigeration plant will at first be installed in a surface building for the tests of the superconducting magnet. On completion of the tests the cold box will be moved to its final underground position next to the CMS experimental cavern. This paper presents the process design, describes the main components and explains their selection. (4 refs).

  15. Compact, ultra-low vibration, closed-cycle helium recycler for uninterrupted operation of MEG with SQUID magnetometers

    Science.gov (United States)

    Wang, Chao; Sun, Limin; Lichtenwalter, Ben; Zerkle, Brent; Okada, Yoshio

    2016-06-01

    A closed-cycle helium recycler was developed for continuous uninterrupted operation for magnetometer-based whole-head magnetoencephalography (MEG) systems. The recycler consists of a two stage 4 K pulse-tube cryocooler and is mounted on the roof of a magnetically shielded room (MSR). A flexible liquid helium (LHe) return line on the recycler is inserted into the fill port of the MEG system in the MSR through a slotted opening in the ceiling. The helium vapor is captured through a line that returns the gas to the top of the recycler assembly. A high-purity helium gas cylinder connected to the recycler assembly supplies the gas, which, after it is liquefied, increases the level of LHe in the MEG system during the start-up phase. No storage tank for evaporated helium gas nor a helium gas purifier is used. The recycler is capable of liquefying helium with a rate of ∼17 L/d after precooling the MEG system. It has provided a fully maintenance-free operation under computer control for 7 months without refill of helium. Although the recycler is used for single-orientation operation at this initial testing site, it is designed to operate at ±20° orientations, allowing the MEG system to be tilted for supine and reclining positions. Vibration of the recycler is dampened to an ultra-low level by using several vibration isolation methods, which enables uninterrupted operation during MEG measurements. Recyclers similar to this system may be quite useful even for MEG systems with 100% magnetometers.

  16. Helium release from radioisotope heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.E.; Early, J.W.; Starzynski, J.S.; Land, C.C.

    1984-05-01

    Diffusion of helium in /sup 238/PuO/sub 2/ fuel was characterized as a function of the heating rate and the fuel microstructure. The samples were thermally ramped in an induction furnace and the helium release rates measured with an automated mass spectrometer. The diffusion constants and activation energies were obtained from the data using a simple diffusion model. The release rates of helium were correlated with the fuel microstructure by metallographic examination of fuel samples. The release mechanism consists of four regimes, which are dependent upon the temperature. Initially, the release is controlled by movement of point defects combined with trapping along grain boundaries. This regime is followed by a process dominated by formation and growth of helium bubbles along grain boundaries. The third regime involves volume diffusion controlled by movement of oxygen vacancies. Finally, the release at the highest temperatures follows the diffusion rate of intragranular bubbles. The tendency for helium to be trapped within the grain boundaries diminishes with small grain sizes, slow thermal pulses, and older fuel.

  17. Hydrodynamic simulations of the core helium flash

    CERN Document Server

    Mocak, M; Weiss, A; Kifonidis, K; 10.1017/S1743921308022813

    2009-01-01

    We describe and discuss hydrodynamic simulations of the core helium flash using an initial model of a 1.25 M_sol star with a metallicity of 0.02 near at its peak. Past research concerned with the dynamics of the core helium flash is inconclusive. Its results range from a confirmation of the standard picture, where the star remains in hydrostatic equilibrium during the flash (Deupree 1996), to a disruption or a significant mass loss of the star (Edwards 1969; Cole & Deupree 1980). However, the most recent multidimensional hydrodynamic study (Dearborn 2006) suggests a quiescent behavior of the core helium flash and seems to rule out an explosive scenario. Here we present partial results of a new comprehensive study of the core helium flash, which seem to confirm this qualitative behavior and give a better insight into operation of the convection zone powered by helium burning during the flash. The hydrodynamic evolution is followed on a computational grid in spherical coordinates using our new version of th...

  18. Studying creation of bulk elementary excitation by heaters in superfluid helium-Ⅱ at low temperatures

    Institute of Scientific and Technical Information of China (English)

    ZAKHARENKO A.A.

    2007-01-01

    In this paper, the obtained experimental results concerning creation of bulk elementary excitations (BEEs) in isotopically pure liquid 4He at low temperatures ~60 mK are discussed. Positive rotons' (R+-rotons) creation by a pulsed heater was studied. Signals were recorded for the following quantum processes: quantum evaporation of 4He-atoms from the free liquid-helium surface by the BEEs of the liquid helium-Ⅱ, and BEEs reflection from the free surface back into the bulk liquid. Typical signals are shown, and ratios of signal amplitudes are evaluated. For long heater pulses from 5 to 10 μs, appearance of the second atomic cloud consisting of evaporated 4He-atoms was observed in addition to the first atomic cloud. It is thought that the first atomic cloud of the evaporated helium atoms consists of very fast 4He-atoms with energies ~35 K evaporated by positive rotons with the special energies ~17 K (~2ER~2×8.6 K with ER representing the roton minimum energy) corresponding to the third non-dispersive Zakharenko wave. The second cloud of slower 4He-atoms was created by surface elementary excitations (SEEs or ripplons) possessing the special energies ~7.15 K representing the binding energy. It was assumed that such SEEs can be created by phonons incoming to the liquid surface with special energies ~6.2 K corresponding to the first non-dispersive Zakharenko wave,which can interact at the liquid surface with the same phonons already reflected from the surface for long heater pulses. Also, some pulsed-heater characteristics were studied in order to better understand the features of such heaters in low temperature experiments.

  19. Feasibility of lunar Helium-3 mining

    Science.gov (United States)

    Kleinschneider, Andreas; Van Overstraeten, Dmitry; Van der Reijnst, Roy; Van Hoorn, Niels; Lamers, Marvin; Hubert, Laurent; Dijk, Bert; Blangé, Joey; Hogeveen, Joel; De Boer, Lennaert; Noomen, Ron

    With fossil fuels running out and global energy demand increasing, the need for alternative energy sources is apparent. Nuclear fusion using Helium-3 may be a solution. Helium-3 is a rare isotope on Earth, but it is abundant on the Moon. Throughout the space community lunar Helium-3 is often cited as a major reason to return to the Moon. Despite the potential of lunar Helium-3 mining, little research has been conducted on a full end-to-end mission. This abstract presents the results of a feasibility study conducted by students from Delft University of Technology. The goal of the study was to assess whether a continuous end-to-end mission to mine Helium-3 on the Moon and return it to Earth is a viable option for the future energy market. The set requirements for the representative end-to-end mission were to provide 10% of the global energy demand in the year 2040. The mission elements have been selected with multiple trade-offs among both conservative and novel concepts. A mission architecture with multiple decoupled elements for each transportation segment (LEO, transfer, lunar surface) was found to be the best option. It was found that the most critical element is the lunar mining operation itself. To supply 10% of the global energy demand in 2040, 200 tons of Helium-3 would be required per year. The resulting regolith mining rate would be 630 tons per second, based on an optimistic concentration of 20 ppb Helium-3 in lunar regolith. Between 1,700 to 2,000 Helium-3 mining vehicles would be required, if using University of Wisconsin’s Mark III miner. The required heating power, if mining both day and night, would add up to 39 GW. The resulting power system mass for the lunar operations would be in the order of 60,000 to 200,000 tons. A fleet of three lunar ascent/descent vehicles and 22 continuous-thrust vehicles for orbit transfer would be required. The costs of the mission elements have been spread out over expected lifetimes. The resulting profits from Helium

  20. Primary neutral helium in the heliosphere

    CERN Document Server

    Mueller, Hans-Reinhard

    2012-01-01

    Two years of neutral measurements by IBEX-Lo have yielded several direct observations of interstellar neutral helium and oxygen during preferred viewing seasons. Besides the interstellar signal, there are indications of the presence of secondary neutral helium and oxygen created in the heliosphere. Detailed modeling of these particle species is necessary to connect the measured fluxes to the pristine local interstellar medium while accounting for loss and production of neutral particles during their path through the heliosphere. In this contribution, global heliosphere models are coupled to analytic calculations of neutral trajectories to obtain detailed estimates of the neutral distribution function of primary interstellar helium atoms in the heliosphere, in particular in the inner heliosphere.

  1. The muonic helium lamb shift experiment

    Energy Technology Data Exchange (ETDEWEB)

    Goetzfried, Johannes; Krauth, Julian [Max-Planck-Institute of Quantum Optics, Garching (Germany); Collaboration: CREMA collaboration

    2014-07-01

    Because of its high sensitivity on finite size effects of the nucleus, the measurement of the Lamb shift in exotic atoms has been on the wish-list of atomic and nuclear physics for a long time. Our previous experiment allowed to determine the proton radius with an order of magnitude higher precision compared to spectroscopic measurements of ordinary hydrogen. The successor experiment in muonic helium is currently performed at the Paul-Scherrer-Institute in Switzerland. Using a low energy muon beam line muons are stopped within low pressure helium gas, where exotic atoms are created. Here we measure the 2S-2P transition frequency of muonic helium illuminated by a pulsed TiSa-laser system pumped with a newly developed Yb-YAG thin disk laser. This measurement will ultimately improve the values of the charge radii of {sup 3}He{sup +} and {sup 4}He{sup +} by an order of magnitude.

  2. Helium corona-assisted air discharge

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Nan; Gao Lei; Ji Ailing; Cao Zexian [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-10-15

    Operation of atmospheric discharge of electronegative gases including air at low voltages yet without consuming any inert gas will enormously promote the application of non-thermal plasmas. By taking advantage of the low onset voltage for helium corona, air discharge was successfully launched at much reduced voltages with a needle-plate system partly contained in a helium-filled glass bulb--for a needle-plate distance of 12 mm, 1.0 kV suffices. Ultraviolet emission from helium corona facilitates the discharging of air, and the discharge current manifests distinct features such as relatively broad Trichel pulses in both half periods. This design allows safe and economic implementation of atmospheric discharge of electronegative gases, which will find a broad palette of applications in surface modification, plasma medicine and gas treatment, etc.

  3. A modified cryostat for photo-electrical characterization of porous materials in controlled atmosphere at very low gas dosage

    Directory of Open Access Journals (Sweden)

    Alessandro Cultrera

    2014-08-01

    Full Text Available We developed an integrated system for photo-electrical characterization of materials for sensing applications in strictly controlled environment conditions. The peculiar aspect of this setup is the capability of a fine-tuned gas dosage and a fast dynamic chamber pressure control, coupled with current and voltage sensing within a modified cryostat. To illustrate the capabilities of our system we have characterised both p+-type mesoporous silicon (meso-PS membranes and nano-crystalline mesoporous titanium dioxide (nc-TiO2 films. In particular, as a main topic is presented a well-resolved characterization of mesoporous silicon electrical conductivity changes induced by presence of ethanol. At low pore filling level adsorbate-shunted conduction is avoided, while dielectric screening effects on frozen doping centres are observable. Beside we presented observation of mesoporous titanium dioxide photo-conductivity as a function of different gas pressure reporting opposite effects of relatively low- and high-pressure regimes. High reproducibility provided by the system is discussed as a final remark.

  4. The LHC SSS cold mass inside the cryostat. The complexity of the bus-bars for the power supply of the magnets and cryogenic links can be seen. The two apertures in the centre will house the beam lines

    CERN Multimedia

    2003-01-01

    The LHC SSS cold mass inside the cryostat. The complexity of the bus-bars for the power supply of the magnets and cryogenic links can be seen. The two apertures in the centre will house the beam lines

  5. Role of dissolved gas in optical breakdown of water: differences between effects due to helium and other gases.

    Science.gov (United States)

    Bunkin, N F; Ninham, B W; Babenko, V A; Suyazov, N V; Sychev, A A

    2010-06-17

    It is shown that water contains defects in the form of heterogeneous optical breakdown centers. Long-living complexes composed of gas and liquid molecules may serve as nuclei for such centers. A new technique for removing dissolved gas from water is developed. It is based on a "helium washing" routine. The structure of helium-washed water is very different from that of water containing dissolved atmospheric gas. It is able to withstand higher optical intensities and temperatures of superheating compared with the nonprocessed ones. The characteristics of plasma spark and values of the breakdown thresholds for processed and nonprocessed samples are given.

  6. Adsorption of Helium Atoms on Two-Dimensional Substrates

    Science.gov (United States)

    Burganova, Regina; Lysogorskiy, Yury; Nedopekin, Oleg; Tayurskii, Dmitrii

    2016-01-01

    The study of the adsorption phenomenon of helium began many decades ago with the discovery of graphite as a homogeneous substrate for the investigation of physically adsorbed monolayer films. In particular, helium monoatomic layers on graphite were found to exhibit a very rich phase diagram. In the present work we have investigated the adsorption phenomenon of helium atoms on graphene and silicene substrates by means of density functional theory with Born-Oppenheimer approximation. Helium-substrate and helium-helium interactions were considered from first principles. Vibrational properties of adsorbed monolayers have been used to explore the stability of the system. This approach reproduces results describing the stability of a helium monolayer on graphene calculated by quantum Monte Carlo (QMC) simulations for low and high coverage cases. However, for the moderate coverage value there is a discrepancy with QMC results due to the lack of helium zero point motion.

  7. Molecular Dynamics Simulations of Helium Behaviour in Titanium Crystals

    Institute of Scientific and Technical Information of China (English)

    SUN Tie-Ying; LONG Xing-Gui; WANG Jun; HOU Qing; WU Zhong-Cheng; PENG Shu-Ming; LUO Shun-Zhong

    2008-01-01

    Molecular dynamics simulations are performed to investigate the behaviour of helium atoms in titanium at a temperature of 300 K.The nucleation and growth of helium bubble has been simulated up to 50 helium atoms.The approach to simulate the bubble growth is to add helium atoms one by one to the bubble and let the system evolve.The titanium cohesion is based on the tight binding scheme derived from the embedded atom method,and the helium-titanium interaction is characterized by fitted potential in the form of a Lennard-Jones function.The pressure in small helium bubbles is approximately calculated.The simulation results show that the pressure will decrease with the increasing bubble size,while increase with the increasing helium atoms.An analytic function about the quantitative relationship of the pressure with the bubble size and number of helium atoms is also fitted.

  8. Adsorption of Helium Atoms on Two-Dimensional Substrates

    Science.gov (United States)

    Burganova, Regina; Lysogorskiy, Yury; Nedopekin, Oleg; Tayurskii, Dmitrii

    2016-12-01

    The study of the adsorption phenomenon of helium began many decades ago with the discovery of graphite as a homogeneous substrate for the investigation of physically adsorbed monolayer films. In particular, helium monoatomic layers on graphite were found to exhibit a very rich phase diagram. In the present work we have investigated the adsorption phenomenon of helium atoms on graphene and silicene substrates by means of density functional theory with Born-Oppenheimer approximation. Helium-substrate and helium-helium interactions were considered from first principles. Vibrational properties of adsorbed monolayers have been used to explore the stability of the system. This approach reproduces results describing the stability of a helium monolayer on graphene calculated by quantum Monte Carlo (QMC) simulations for low and high coverage cases. However, for the moderate coverage value there is a discrepancy with QMC results due to the lack of helium zero point motion.

  9. Compression behavior and structure of dense helium at high temperatures by molecular dynamics simulation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this work,the isotherm and energy distribution at T=304 K of dense helium are studied by molecular dynamic (MD) simulations with exp-6 potential r*=2.9673 ? (the position of the well minimum) and ε/kB=10.8 K (ε is the well-depth and kB is the Boltzmann constant) given by Peter et al.,and different values of stiffness parameter α.The optimized value of α=12.7 is deduced that can describe the atomic interactions for dense helium satisfactorily.This optimized α in exp-6 potential is used to conduct MD simulations of two isotherms of dense helium at T=300 K and T=298K.The calculations are in good agreement with the experimental.We further employed this method to investigate the equation-of-state and structure of dense helium at higher temperatures and found that when the density remained 1.6 g/cm3,the second peak of the radial distribution function would disappear in the temperature range from 2000 to 3040 K,demonstrating that a solid-liquid transition or decrystallization had occurred.

  10. Influence of Helium Atoms Absorption on the Emission Properties of Carbon Nanotubes

    Science.gov (United States)

    Umaev, S. M.; Levchenko, A. A.; Kolesnikov, N. N.; Filatov, S. V.

    2017-04-01

    We investigated the emission properties of charge sources based on carbon nanotubes prepared by arc discharge deposition of nanotubes onto a flat copper substrate (Borisenko et al. in Instrum Exp Tech 57(6):755, 2014; Low Temp Phys 41(7):567, 2015). The charge sources were submerged into superfluid helium at temperature T=1.3 K. The collector fixed above the charge source at a distance of 0.3 mm was connected to an electrometer. The current of charges was measured by the electrometer when a high voltage was applied to the charge source. In the originally prepared source, the emission of charges (electrons) on the level of 10^{-10}A is observed at a negative voltage above U=80 V and increases with increasing voltage. If the source of charge was kept in liquid helium for 15 h, the current-voltage characteristic changed significantly. The current of charges on the same level of 10^{-10} A was registered at a voltage of U=150 V. Extraction of gases from the source placed in a vacuum chamber at room temperature for 48 h leads to the complete recovery of the emission properties. One can assume that the degradation of the emission properties of the sources is associated with the adsorption of helium atoms by carbon nanotubes at low temperatures. We did not observe any degradation of the emission properties of the charge sources in the case of positive charges injection into superfluid helium.

  11. Compression behavior and structure of dense helium at high temperatures by molecular dynamics simulation

    Institute of Scientific and Technical Information of China (English)

    蔡灵仓; 陈其峰; 经福谦; 陈栋泉

    2000-01-01

    In this work, the isotherm and energy distribution at 7= 304 K of dense helium are studied by molecular dynamic (MD) simulations with exp-6 potential r* = 2.967 3 ε(the position of the well minimum) and ε/kb = 10.8 K (e is the well-depth and kB is the Boltzmann constant) given by Peter et al., and different values of stiffness parameter a. The optimized value of a = 12.7 is deduced that can de-scribe the atomic interactions for dense helium satisfactorily. This optimized a in exp-6 potential is used to conduct MD simulations of two isotherms of dense helium at T= 300 K and T= 298 K. The calcula-tions are in good agreement with the experimental. We further employed this method to investigate the equation-of-state and structure of dense helium at higher temperatures and found that when the density remained l .6 g/cm3, the second peak of the radial distribution function would disappear in the tempera-ture range from 2 000 to 3 040 K, demonstrating that a solid-liquid transition or decrystallization had o

  12. Light Dark Matter in Superfluid Helium: Detection with Multi-excitation Production

    CERN Document Server

    Knapen, Simon; Zurek, Kathryn M

    2016-01-01

    We examine in depth a recent proposal to utilize superfluid helium for direct detection of sub-MeV mass dark matter. For sub-keV recoil energies, nuclear scattering events in liquid helium primarily deposit energy into long-lived phonon and roton quasiparticle excitations. If the energy thresholds of the detector can be reduced to the meV scale, then dark matter as light as ~MeV can be reached with ordinary nuclear recoils. If, on the other hand, two or more quasiparticle excitations are directly produced in the dark matter interaction, the kinematics of the scattering allows sensitivity to dark matter as light as ~keV at the same energy resolution. We present in detail the theoretical framework for describing excitations in superfluid helium, using it to calculate the rate for the leading dark matter scattering interaction, where an off-shell phonon splits into two or more higher-momentum excitations. We validate our analytic results against the measured and simulated dynamic response of superfluid helium. F...

  13. Intramolecular quantum chaos in doped helium nanodroplets

    Science.gov (United States)

    Polyakova, E.; Stolyarov, D.; Zhang, X.; Kresin, V. V.; Wittig, C.

    2003-07-01

    A mass spectrometric depletion spectrum (17 700-18 300 cm -1) is reported for NO 2 in superfluid (0.37 K) helium nanodroplets. Gas phase NO 2 is believed to be vibronically chaotic at these energies. Transitions are broadened and blue-shifted relative to their gas phase counterparts. The spectrum is fitted reasonably well by setting all of the widths and shifts equal to 7 cm -1. Modest dispersions (i.e., 90% lie within 2 cm -1 of the central values) are consistent with quantum chaos in NO 2. Relaxation is dominated by interactions of NO 2 with its non-superfluid helium nearest neighbors.

  14. O(^3 p) Doped Helium Droplets

    Science.gov (United States)

    Brice, Joseph T.; Douberly, Gary E.

    2017-06-01

    Atomic oxygen (^3 P) is generated via thermolysis in a commerical thermal gas cracker (Mantis Ltd. MGC-75). Complexes with HCN were investigated to qualitatively assess the doping efficiency of O(^3 P) into a helium droplet. Theoretical calculations of a linear O \\cdot\\cdot\\cdot HCN (^3 Σ) complex at the CCSD(T)/aug-cc-pVTZ level are consistent with the rotational constants extracted from the rotational substructure in the experimental spectra, and with dipole moments approximated from Stark spectra. The thermal source will be used to study reactions between O(^3 P) and hydrocarbons in helium droplets, and preliminary data on this topic will be presented.

  15. Conceptual design and thermal analysis of a modular cryostat for one single coil of a 10 MW offshore superconducting wind turbine

    Science.gov (United States)

    Sun, Jiuce; Sanz, Santiago; Neumann, Holger

    2015-12-01

    Superconducting generators show the potential to reduce the head mass of large offshore wind turbines. A 10 MW offshore superconducting wind turbine has been investigated in the SUPRAPOWER project. The superconducting coils based on MgB2 tapes are supposed to work at cryogenic temperature of 20 K. In this paper, a novel modular rotating cryostat was presented for one single coil of the superconducting wind turbine. The modular concept and cryogen-free cooling method were proposed to fulfil the requirements of handling, maintenance, reliability of long term and offshore operations. Two stage Gifford-McMahon cryocoolers were used to provide cooling source. Supporting rods made of titanium alloy were selected as support structures of the cryostat in aim of reducing the heat load. The thermal performance in the modular cryostat was carefully investigated. The heat load applied to the cryocooler second stage was 2.17 W@20 K per coil. The corresponding temperature difference along the superconducting coil was only around 1 K.

  16. Variational calculations of coupling of an incident helium atom to a slab of superfluid helium four

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, C.E.; Halley, J.W.; Hoon, S. [and others

    1995-04-01

    In previous work on the interaction of single helium atoms with a slab of superfluid helium the authors found a large amplitude, dependent on the condensate fraction, for transmission with re-emission of a helium atom at the other side of the slab. Here they report a variational formulation of the problem which permits a time dependent calculation and which does not require any perturbation expansion. The variational principle involves a minimization of the expectation value of the square of the difference H-E. They will present preliminary results of a variational Monte Carlo calculation using a simple variational form for the wave function.

  17. Evolution of Helium with Temperature in Neutron-Irradiated 10B-Doped Aluminum by Small-Angle X-Ray Scattering

    Directory of Open Access Journals (Sweden)

    Chaoqiang Huang

    2014-01-01

    Full Text Available Helium status is the primary effect of material properties under radiation. 10B-doped aluminum samples were prepared via arc melting technique and rapidly cooled with liquid nitrogen to increase the boron concentration during the formation of compounds. An accumulated helium concentration of ~6.2 × 1025 m−3 was obtained via reactor neutron irradiation with the reaction of 10B(n, α7Li. Temperature-stimulated helium evolution was observed via small-angle X-ray scattering (SAXS and was confirmed via transmission electron microscopy (TEM. The SAXS results show that the volume fraction of helium bubbles significantly increased with temperature. The amount of helium bubbles reached its maximum at 600°C, and the most probable diameter of the helium bubbles increased with temperature until 14.6 nm at 700°C. A similar size distribution of helium bubbles was obtained via TEM after in situ SAXS measurement at 700°C, except that the most probable diameter was 3.9 nm smaller.

  18. Interatomic Coulombic decay in helium nanodroplets

    DEFF Research Database (Denmark)

    Shcherbinin, Mykola; Laforge, Aaron; Sharma, Vandana

    2017-01-01

    Interatomic Coulombic decay (ICD) is induced in helium nanodroplets by photoexciting the n=2 excited state of He+ using XUV synchrotron radiation. By recording multiple-coincidence electron and ion images we find that ICD occurs in various locations at the droplet surface, inside the surface region...

  19. Photoassociation of cold metastable helium atoms

    NARCIS (Netherlands)

    Woestenenk, G.R.

    2001-01-01

    During the last decades the study of cold atoms has grown in a great measure. Research in this field has been made possible due to the development of laser cooling and trapping techniques. We use laser cooling to cool helium atoms down to a temperature of 1 mK and we are able to tr

  20. Messer to provide helium for LHC

    CERN Document Server

    2008-01-01

    Over the course of the next few years, industrial gas specialist The Messer Group, through its Swiss subsidiary Messer Schweiz AG, is to provide a 160,000kg supply of helium to the European Organisation for Nuclear Research (CERN) for the operation of the world's largest particle accelerator.

  1. Messer to provide helium for LHC project

    CERN Multimedia

    2008-01-01

    Over the course of the next few years, industrial gas specialist The Messer Group, through its Swiss subsidiary Messer Schweiz AG, is to provide a 160,000kg supply of helium to the European Organisation for Nuclear Research (CERN) for the operation of the world's largest particle accelerator.

  2. Thermalization of magnetically trapped metastable helium

    CERN Document Server

    Browaeys, A; Sirjean, O; Poupard, J; Nowak, S; Boiron, D; Westbrook, C I; Aspect, Alain

    2001-01-01

    We have observed thermalization by elastic collisions of magnetically trapped metastable helium atoms. Our method directly samples the reconstruction of a thermal energy distribution after the application of an RF knife. The relaxation time of our sample towards equilibrium gives an elastic collision rate constant close to the unitarity limit.

  3. Helium and Sulfur Hexafluoride in Musical Instruments

    Science.gov (United States)

    Forinash, Kyle; Dixon, Cory L.

    2014-01-01

    The effects of inhaled helium on the human voice were investigated in a recent article in "The Physics Teacher." As mentioned in that article, demonstrations of the effect are a popular classroom activity. If the number of YouTube videos is any indication, the effects of sulfur hexafluoride on the human voice are equally popular.…

  4. Photoassociation of cold metastable helium atoms

    NARCIS (Netherlands)

    Woestenenk, G.R.

    2001-01-01

    During the last decades the study of cold atoms has grown in a great measure. Research in this field has been made possible due to the development of laser cooling and trapping techniques. We use laser cooling to cool helium atoms down to a temperature of 1 mK and we are able to

  5. Photoassociation of cold metastable helium atoms

    NARCIS (Netherlands)

    Woestenenk, G.R.

    2001-01-01

    During the last decades the study of cold atoms has grown in a great measure. Research in this field has been made possible due to the development of laser cooling and trapping techniques. We use laser cooling to cool helium atoms down to a temperature of 1 mK and we are able to tr

  6. Femtosecond spectroscopy on alkali-doped helium nanodroplets; Femtosekundenspektroskopie an alkalidotierten Helium-Nanotroepfchen

    Energy Technology Data Exchange (ETDEWEB)

    Claas, P.

    2006-01-15

    In the present thesis first studies on the short-time dynamics in alkali dimers and microclusters, which were bound on the surface of superfluid helium droplets, were presented. The experiments comprehended pump-probe measurements on the fs scale on the vibration dynamics on the dimers and on the fragmentation dynamics on the clusters. Generally by the studies it was shown that such extremely short slopes can also be observed on helium droplets by means of the femtosecond spectroscopy.

  7. The gas-liquid mass transfer coefficient (k(L)a) in the gas-liquid Multi-stage Agitated Contactor (MAC)

    NARCIS (Netherlands)

    Breman, B.B; Beenackers, A.A C M; Bouma, M.J; VanderWerf, M.H.

    1996-01-01

    Data on the volumetric liquid-side gas-liquid mass transfer coefficient, k(L)a, in a Multi-stage Agitated Contractor (MAC) are reported for three gas-liquid systems (air-water, helium-n-octane, and air-Monoethylene Glycol (MEG)). k(L)a (s(-1)) was determined using a dynamic method with moderately so

  8. Performance measurements of superconducting current leads having low helium boiloff rates

    Science.gov (United States)

    Niemann, R. C.; Cha, Y. S.; Hull, J. R.

    1992-08-01

    We have created a performance-measurement facility for current leads as a part of our Laboratory's program to develop applications for high-temperature superconductors. The facility measures the rate of helium vapor boil-off due to current-lead heat input to liquid helium and the pressure drop across a current lead for a pair of leads operating at currents to 100 A. The facility's major components are a liquid-helium dewar having low background heat input; a dewar insert which incorporates the current leads and associated instrumentation or connections for flow, pressure, level, temperature and voltage measurements; and a computer-driven data-acquisition system. The background beat input is small enough so that boiloff rates one-tenth that of an optimized conventional lead can be characterized. The facility has been operated with both conventional; i.e., vapor-cooled copper leads and with leads incorporating high-temperature superconductors at their cold ends. Details of the facility design, construction and operating experiences are presented.

  9. Theoretical analysis of start-up power in helium pulsating heat pipe

    Science.gov (United States)

    Li, Monan; Huang, Rongjin; Xu, Dong; Li, Laifeng

    2017-02-01

    An analytical model for one-turn helium pulsating heat pipes (PHPs) with single liquid slug and vapor plug is established in present study. When an additional heat power takes place in the evaporating section, temperature and pressure will increase. The pressure wave travels through vapor and liquid phases at different speed, producing a pressure difference in the system, which acts as an exciting force to start up the oscillating motion. Results show that the start-up power of helium PHP is related to the filling ratio. The start-up power increases with the filling ration. However, there exist an upper limit. Furthermore, the start-up power also depends on the inclination angle of PHP. When the inclination angle increases, the heat input needed to start up the oscillating motion decreases. But for one-turn helium PHP, it can not be started up when the inclination angle is up to 90°, equalling to horizontal position,. While the inclination angle ranges between 0° (vertical position) and 75°, it can operate successfully.

  10. Helium accreting CO white dwarfs with rotation: helium novae instead of double detonation

    CERN Document Server

    Yoon, S C

    2004-01-01

    We present evolutionary models of helium accreting carbon-oxygen white dwarfs in which we include the effects of the spin-up of the accreting star induced by angular momentum accretion, rotationally induced chemical mixing and rotational energy dissipation. Initial masses of 0.6 Msun and 0.8 Msun and constant accretion rates of a few times 10^{-8} Msun/yr of helium rich matter have been considered, which is typical for the sub-Chandrasekhar mass progenitor scenario for Type Ia supernovae. It is found that the helium envelope in an accreting white dwarf is heated efficiently by friction in the differentially rotating spun-up layers. As a result, helium ignites much earlier and under much less degenerate conditions compared to the corresponding non-rotating case. Consequently, a helium detonation may be avoided, which questions the sub-Chandrasekhar mass progenitor scenario for Type Ia supernovae. We discuss implications of our results for the evolution of helium star plus white dwarf binary systems as possible...

  11. Helium induced fine structure in the electronic spectra of anthracene derivatives doped into superfluid helium nanodroplets

    Energy Technology Data Exchange (ETDEWEB)

    Pentlehner, D.; Slenczka, A., E-mail: alkwin.slenczka@chemie.uni-regensburg.de [Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg (Germany)

    2015-01-07

    Electronic spectra of organic molecules doped into superfluid helium nanodroplets show characteristic features induced by the helium environment. Besides a solvent induced shift of the electronic transition frequency, in many cases, a spectral fine structure can be resolved for electronic and vibronic transitions which goes beyond the expected feature of a zero phonon line accompanied by a phonon wing as known from matrix isolation spectroscopy. The spectral shape of the zero phonon line and the helium induced phonon wing depends strongly on the dopant species. Phonon wings, for example, are reported ranging from single or multiple sharp transitions to broad (Δν > 100 cm{sup −1}) diffuse signals. Despite the large number of example spectra in the literature, a quantitative understanding of the helium induced fine structure of the zero phonon line and the phonon wing is missing. Our approach is a systematic investigation of related molecular compounds, which may help to shed light on this key feature of microsolvation in superfluid helium droplets. This paper is part of a comparative study of the helium induced fine structure observed in electronic spectra of anthracene derivatives with particular emphasis on a spectrally sharp multiplet splitting at the electronic origin. In addition to previously discussed species, 9-cyanoanthracene and 9-chloroanthracene will be presented in this study for the first time.

  12. Molecular dynamics study of helium bubble pressure in titanium

    Institute of Scientific and Technical Information of China (English)

    Zhang Bao-Ling; Wang Jun; Hou Qing

    2011-01-01

    In this paper, the pressure state of the helium bubble in titanium is simulated by a molecular dynamics (MD) method. First, the possible helium/vacancy ratio is determined according to therelation between the bubble pressure and helium/vacancy ratio; then the dependences of the helium bubble pressure on the bubble radius at different temperatures are studied. It is shown that the product of the bubble pressure and the radius is approximately a constant, a result justifying the pressure-radius relation predicted by thermodynamics-based theory for gas bubble. Furthermore, a state equation of the helium bubble is established based on the MD calculations. Comparison between the results obtained by the state equation and corresponding experimental data shows that the state equation can describe reasonably the state of helium bubble and thus could be used for Monte Carlo simulations of the evolution of helium bubble in metals.

  13. Helium I heat transfer in a small natural circulation loop with self-sustaining recondensation

    Science.gov (United States)

    Song, Yu; Four, Aurélien; Baudouy, Bertrand

    2014-01-01

    Heat transfer of helium I in a natural circulation loop is experimentally studied around atmospheric pressure. The test section of the loop has an inner diameter of 4 mm and a height of 23 cm and can be uniformly heated by wire heater. On top of the loop, a condenser is mounted and thermally connected to the second-stage of a 1.5 W at 4.2 K GM cryocooler. Helium can be recondensed in the condenser, where the pressure is regulated around the atmospheric pressure. While the dissipated heat flux is increased from 0 to 1 W, one encounters the different heat transfer regimes as single phase liquid convection, two phase nucleate boiling and single phase vapor convection. The wall superheat varies up to 11 K in the single phase vapor convection regime. The wall temperature measurement allows obtaining the boiling curve and determining the heat transfer coefficient.

  14. Using polycrystalline bismuth filter in an ultracold neutron source with superfluid helium

    Science.gov (United States)

    Serebrov, A. P.; Lyamkin, V. A.; Runov, V. V.; Ivanov, S. A.; Onegin, M. S.; Fomin, A. K.

    2015-10-01

    Placing polycrystalline bismuth filter in front of an ultracold neutron (UCN) source with superfluid helium at 1 K is shown to be effective. The use of this filter ensures a 30-fold decrease (down to 0.5 W) in the level of heat load in the UCN source, while reducing by 30% the flux of neutrons with 9-Å wavelength (which are converted into UCNs). The phenomenon of small-angle scattering on polycrystalline bismuth has been studied and shown to be insignificant. Cooling of the filter to liquid nitrogen temperature increases the transmission of 9-Å neutrons by only 8%; hence, creation of this cooling system is inexpedient. A project of a technological complex designed for the UCN source at the PIK reactor is presented, which ensures the removal of 1-W heat load from the UCN source with superfluid helium at a 1-K temperature level.

  15. Super-Maxwellian helium evaporation from pure and salty water.

    Science.gov (United States)

    Hahn, Christine; Kann, Zachary R; Faust, Jennifer A; Skinner, J L; Nathanson, Gilbert M

    2016-01-28

    Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4-8.5 molal LiCl and LiBr at 232-252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the density profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He-water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He-water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient.

  16. Super-Maxwellian helium evaporation from pure and salty water

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Christine; Kann, Zachary R.; Faust, Jennifer A.; Skinner, J. L., E-mail: skinner@chem.wisc.edu, E-mail: nathanson@chem.wisc.edu; Nathanson, Gilbert M., E-mail: skinner@chem.wisc.edu, E-mail: nathanson@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706 (United States)

    2016-01-28

    Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4–8.5 molal LiCl and LiBr at 232–252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the density profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He–water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He–water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient.

  17. Cryogenic design and test results of 30-m flexible hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable

    Science.gov (United States)

    Kostyuk, V. V.; Blagov, E. V.; Antyukhov, I. V.; Firsov, V. P.; Vysotsky, V. S.; Nosov, A. A.; Fetisov, S. S.; Zanegin, S. Yu.; Svalov, G. G.; Rachuk, V. S.; Katorgin, B. I.

    2015-03-01

    In this paper we present the development of a new hybrid energy transfer line with 30 m length. The line is essentially a flexible 30 m hydrogen cryostat that has three sections with different types of thermal insulation in each section: simple vacuum superinsulation, vacuum superinsulation with liquid nitrogen precooling and active evaporating cryostatting (AEC) system. We performed thermo-hydraulic tests of the cryostat to compare three thermo-insulating methods. The tests were made at temperatures from 20 to 26 K, hydrogen flow from 70 to 450 g/s and pressure from 0.25 to 0.5 MPa. It was found that AEC thermal insulation was the most effective in reducing heat transfer from room temperature to liquid hydrogen in ∼10 m section of the cryostat, indicating that it can be used for long superconducting power cables. High voltage current leads were developed as well. The current leads and superconducting MgB2 cable passed high voltage DC test up to 50 kV DC. Critical current of the cable at ∼21 K was 3500 A. It means that the 30 m hybrid energy system developed is able to deliver ∼50-60 MW of chemical power and ∼50-75 MW of electrical power, i.e. up to ∼135 MW in total.

  18. Liquids and liquid mixtures

    CERN Document Server

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S

    2013-01-01

    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  19. Development and Dissemination of a Nationwide Helium Database for a National Assessment of Helium Resources.

    Science.gov (United States)

    Brennan, S. T.; East, J. A., II; Garrity, C. P.

    2015-12-01

    In 2013, Congress passed the Helium Stewardship Act requiring the U.S. Geological Survey (USGS) to undertake a national helium gas resource assessment to determine the nation's helium resources. An important initial component necessary to complete this assessment was the development of a comprehensive database of Helium (He) concentrations from petroleum exploration wells. Because Helium is often used as the carrier gas for compositional analyses for commercial and exploratory oil and gas wells, this limits the available helium concentration data. A literature search in peer-reviewed publications, state geologic survey databases, USGS energy geochemical databases, and the Bureau of Land Management databases provided approximately 16,000 data points from wells that had measurable He concentrations in the gas composition analyses. The data from these wells includes, date of sample collection, American Petroleum Institute well number, formation name, field name, depth of sample collection, and location. The gas compositional analyses, some performed as far back as 1934, do not all have the same level of precision and accuracy, therefore the date of the analysis is critical to the assessment as it indicates the relative amount of uncertainty in the analytical results. Non-proprietary data was used to create a GIS based interactive web interface that allows users to visualize, inspect, interact, and download our most current He data. The user can click on individual locations to see the available data at that location, as well as zoom in and out on a data density map. Concentrations on the map range from .04 mol% (lowest concentration of economic value) to 12% (highest naturally occurring values). This visual interface will allow users to develop a rapid appreciation of the areas with the highest potential for high helium concentrations within oil and gas fields.

  20. A Density Functional for Liquid 3He Based on the Aziz Potential

    Science.gov (United States)

    Barranco, M.; Hernández, E. S.; Mayol, R.; Navarro, J.; Pi, M.; Szybisz, L.

    2006-09-01

    We propose a new class of density functionals for liquid 3He based on the Aziz helium-helium interaction screened at short distances by the microscopically calculated two-body distribution function g(r). Our aim is to reduce to a minumum the unavoidable phenomenological ingredients inherent to any density functional approach. Results for the homogeneous liquid and droplets are presented and discussed.