WorldWideScience

Sample records for liquid foam insulation

  1. Foam insulated transfer line test report

    International Nuclear Information System (INIS)

    Squier, D.M.

    1994-06-01

    Miles of underground insulated piping will be installed at the Hanford site to transfer liquid waste. Significant cost savings may be realized by using pre-fabricated polyurethane foam insulated piping. Measurements were made on sections of insulated pipe to determine the insulation's resistance to axial expansion of the pipe, the force required to compress the foam in the leg of an expansion loop and the time required for heat up and cool down of a buried piping loop. These measurements demonstrated that the peak axial force increases with the amount of adhesion between the encasement pipe and the insulation. The compressive strength of the foam is too great to accommodate the thermal growth of long straight pipe sections into the expansion loops. Mathematical models of the piping system's thermal behavior can be refined by data from the heated piping loop

  2. Polyimide Foams Offer Superior Insulation

    Science.gov (United States)

    2012-01-01

    At Langley Research Center, Erik Weiser and his colleagues in the Advanced Materials and Processing Branch were working with a new substance for fabricating composites for use in supersonic aircraft. The team, however, was experiencing some frustration. Every time they tried to create a solid composite from the polyimide (an advanced polymer) material, it bubbled and foamed. It seemed like the team had reached a dead end in their research - until they had another idea. "We said, This isn t going to work for composites, but maybe we could make a foam out of it," Weiser says. "That was kind of our eureka moment, to see if we could go in a whole other direction. And it worked." Weiser and his colleagues invented a new kind of polyimide foam insulation they named TEEK. The innovation displayed a host of advantages over existing insulation options. Compared to other commercial foams, Weiser explains, polyimide foams perform well across a broad range of temperatures, noting that the NASA TEEK foams provide effective structural insulation up to 600 F and down to cryogenic temperatures. The foam does not burn or off-gas toxic fumes, and even at -423 F - the temperature of liquid hydrogen - the material stays flexible. The inventors could produce the TEEK foam at a range of densities, from 0.5 pounds per cubic foot up to 20 pounds per cubic foot, making the foam ideal for a range of applications, including as insulation for reusable launch vehicles and for cryogenic tanks and lines. They also developed a unique, friable balloon format for manufacturing the foam, producing it as hollow microspheres that allowed the foam to be molded and then cured into any desired shape - perfect for insulating pipes of different sizes and configurations. The team s originally unplanned invention won an "R&D 100" award, and a later form of the foam, called LaRC FPF-44 (Spinoff 2009), was named "NASA Invention of the Year" in 2007.

  3. Energy consumption and commercial applications of liquid foam insulation technology for greenhouses

    Energy Technology Data Exchange (ETDEWEB)

    Villeneuve, J. [Environnement-MJ, Quebec City, PQ (Canada); De Halleux, D. [Laval Univ., Quebec City, PQ (Canada). Dept. des Sols et de Genie Agroalimentaire; Aberkani, K. [Laval Univ., Quebec City, PQ (Canada). Centre de Recherche en Horticulture; Vineberg, S. [Sunarc of Canada, Montreal, PQ (Canada)

    2010-07-01

    Sunarc of Canada has developed an energy saving system for commercial greenhouse growers. Large amounts of energy are needed to operate commercial greenhouses in northern latitudes, and as energy prices fluctuate, it is important to enable growers to control their microclimate. Sunarc's liquid foam insulating system was installed in 2007 at 2 sites in Ontario. The first site had an area of 14,700 ft{sup 2} while the other site had an area of 43,000 ft{sup 2}. Both facilities were monitored for energy use during the winter period. Night-time energy savings ranged from above 60 per cent to below 10 per cent depending on outdoor temperatures. The greater savings occurred during colder outdoor temperatures. Monthly average night-time energy savings from February, March and April were 46.6, 42, and 32.3 per cent respectively. After initial commercial testing, the liquid foam system was re-engineered to optimize operations, reduce fill time, and improve liquid foam formulas. The new system was installed at a third site in Quebec as a demonstration unit. The company is currently negotiating international distribution rights with several partners.

  4. Large-Scale Liquid Hydrogen Testing of Variable Density Multilayer Insulation with a Foam Substrate

    Science.gov (United States)

    Martin, J. J.; Hastings, L.

    2001-01-01

    The multipurpose hydrogen test bed (MHTB), with an 18-cu m liquid hydrogen tank, was used to evaluate a combination foam/multilayer combination insulation (MLI) concept. The foam element (Isofoam SS-1171) insulates during ground hold/ascent flight, and allowed a dry nitrogen purge as opposed to the more complex/heavy helium purge subsystem normally required. The 45-layer MLI was designed for an on-orbit storage period of 45 days. Unique WI features include a variable layer density, larger but fewer double-aluminized Mylar perforations for ascent to orbit venting, and a commercially established roll-wrap installation process that reduced assembly man-hours and resulted in a roust, virtually seamless MLI. Insulation performance was measured during three test series. The spray-on foam insulation (SOFI) successfully prevented purge gas liquefaction within the MLI and resulted in the expected ground hold heat leak of 63 W/sq m. The orbit hold tests resulted in heat leaks of 0.085 and 0.22 W/sq m with warm boundary temperatures of 164 and 305 K, respectively. Compared to the best previously measured performance with a traditional MLI system, a 41-percent heat leak reduction with 25 fewer MLI layers was achieved. The MHTB MLI heat leak is half that calculated for a constant layer density MLI.

  5. Development and validation of cryogenic foam insulation for LH2 subsonic transports

    Science.gov (United States)

    Anthony, F. M.; Colt, J. Z.; Helenbrook, R. G.

    1981-01-01

    Fourteen foam insulation specimens were tested. Some were plain foam while others contained flame retardants, chopped fiberglass reinforcement and/or vapor barriers. The thermal performance of the insulation was determined by measuring the rate at which LH2 boiled from an aluminum tank insulated with the test material. The test specimens were approximately 50 mm (2 in.) thick. They were structurally scaled so that the test cycle would duplicate the maximum thermal stresses predicted for the thicker insulation of an aircraft liquid hydrogen fuel tank during a typical subsonic flight. The simulated flight cycle of approximately 10 minutes duration heated the other insulation surface to 316 K (110 F) and cooled it to 226 K (20 F) while the inner insulation surface remained at liquid hydrogen temperature of 20 K (-423 F). Two urethane foam insulations exceeded the initial life goal of 2400 simulated flight cycles and sustained 4400 cycles with only minor damage. The addition of fiberglass reinforcement of flame retardant materials to an insulation degraded thermal performance and/or the life of the foam material. Installation of vapor barriers enhanced the structural integrity of the material but did not improve thermal performance. All of the foams tested were available materials; none were developed specifically for LH2 service.

  6. Cryogenic foam insulation: Abstracted publications

    Science.gov (United States)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  7. Foam/Aerogel Composite Materials for Thermal and Acoustic Insulation and Cryogen Storage

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Weiser, Erik S. (Inventor); Sass, Jared P. (Inventor)

    2011-01-01

    The invention involves composite materials containing a polymer foam and an aerogel. The composite materials have improved thermal insulation ability, good acoustic insulation, and excellent physical mechanical properties. The composite materials can be used, for instance, for heat and acoustic insulation on aircraft, spacecraft, and maritime ships in place of currently used foam panels and other foam products. The materials of the invention can also be used in building construction with their combination of light weight, strength, elasticity, ability to be formed into desired shapes, and superior thermal and acoustic insulation power. The materials have also been found to have utility for storage of cryogens. A cryogenic liquid or gas, such as N.sub.2 or H.sub.2, adsorbs to the surfaces in aerogel particles. Thus, another embodiment of the invention provides a storage vessel for a cryogen.

  8. Grandstand view of phenolic foam insulation

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    Stadium Insulation Ltd, manufacture pipe sections, tank and vessel insulation products in Lowphen, polyisocyanurate, polyurethane foams and expanded polystyrene, though for certain specialist applications, cork is still employed in small quantities. Currently the emphasis is very much on Lowphen, the company's range of pipe sections based on phenolic foam. The company's manufacturing and marketing effort reflects the increasing market trend towards the use of insulating material capable of withstanding higher temperatures, and phenolic foam neatly satisfies the demand since it is capable of use at temperatures up to 140/sup 0/C. Moreover, phenolic foam has the lowest K value at 0.02W/m/sup 0/C of any of the currently available range of insulating materials, and while the product is slightly more expensive than alternatives such as polyisocyanurate and polyurethane, its high performance offsets that premium.

  9. Spray-on foam insulations for launch vehicle cryogenic tanks

    Science.gov (United States)

    Fesmire, J. E.; Coffman, B. E.; Meneghelli, B. J.; Heckle, K. W.

    2012-04-01

    Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex array of many variables starting with the large temperature difference of 200-260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the different

  10. Spray-On Foam Insulations for Launch Vehicle Cryogenic Tanks

    Science.gov (United States)

    Fesmire, J. E.; Cofman, B. E.; Menghelli, B. J.; Heckle, K. W.

    2011-01-01

    Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability with throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex of many variables starting with the large temperature difference of from 200 to 260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the

  11. Insulating Foams Save Money, Increase Safety

    Science.gov (United States)

    2009-01-01

    Scientists at Langley Research Center created polyimide foam insulation for reusable cryogenic propellant tanks on the space shuttle. Meanwhile, a small Hialeah, Florida-based business, PolyuMAC Inc., was looking for advanced foams to use in the customized manufacturing of acoustical and thermal insulation. The company contacted NASA, licensed the material, and then the original inventors worked with the company's engineers to make a new material that was better for both parties. The new version, a high performance, flame retardant, flexible polyimide foam, is used for insulating NASA cryogenic propellant tanks and shows promise for use on watercraft, aircraft, spacecraft, electronics and electrical products, automobiles and automotive products, recreation equipment, and building and construction materials.

  12. THIRD-GENERATION FOAM BLOWING AGENTS FOR FOAM INSULATION

    Science.gov (United States)

    The report gives results of a study of third-generation blowing agents for foam insulation. (NOTE: the search for third-generation foam blowing agents has led to the realization that, as the number of potential substitutes increases, new concerns, such as their potential to act a...

  13. Infrared Thermography As Quality Control For Foamed In-Place Insulation

    Science.gov (United States)

    Schwartz, Joel A.

    1989-03-01

    Since November of 1985, FOAM-TECH, INC. has been utilizing an I.S.I. Model 91 Videotherm Camera to quality control the installation of foamed in-place polyurethane and polyisocyanurate insulation. Monitoring the injection of foam into the walls and roofs of new construction and during the the retrofitting of older buildings has become an integral and routine step in daily operations. The Videotherm is also used to monitor the injection of foam into hot water tanks, trailer bodies for refrigeration trucks, and pontoons and buoys for flotation. The camera is also used for the detection of heat loss and air infiltration for conventionally insulated buildings. Appendix A are thermograms of foamed in-place insulation.

  14. Structural Continuum Modeling of Space Shuttle External Tank Foam Insulation

    Science.gov (United States)

    Steeve, Brian; Ayala, Sam; Purlee, T. Eric; Shaw, Phillip

    2006-01-01

    This document is a viewgraph presentation reporting on work in modeling the foam insulation of the Space Shuttle External Tank. An analytical understanding of foam mechanics is required to design against structural failure. The Space Shuttle External Tank is covered primarily with closed cell foam to: Prevent ice, Protect structure from ascent aerodynamic and engine plume heating, and Delay break-up during re-entry. It is important that the foam does not shed unacceptable debris during ascent environment. Therefore a modeling of the foam insulation was undertaken.

  15. Pourable Foam Insulation

    Science.gov (United States)

    Harvey, James A.; Butler, John M.; Chartoff, Richard P.

    1989-01-01

    Report describes search for polyisocyanurate/polyurethane foam insulation with superior characteristics. Discusses chemistry of current formulations. Tests of formulations, of individual ingredients and or alternative new formulations described. Search revealed commercially available formulations exhibiting increased thermal stability at temperatures up to 600 degree C, pours readily before curing, presents good appearance after curing, and remains securely bonded to aluminum at cryogenic temperatures. Total of 42 different formulations investigated, 10 found to meet requirements.

  16. 7 CFR 2902.17 - Plastic insulating foam for residential and commercial construction.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Plastic insulating foam for residential and... BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 2902.17 Plastic insulating foam for residential and commercial construction. (a) Definition. Spray-in-place plastic foam products designed to...

  17. Thermal Transport in High-Strength Polymethacrylimide (PMI) Foam Insulations

    Science.gov (United States)

    Qiu, L.; Zheng, X. H.; Zhu, J.; Tang, D. W.; Yang, S. Y.; Hu, A. J.; Wang, L. L.; Li, S. S.

    2015-11-01

    Thermal transport in high-strength polymethacrylimide (PMI) foam insulations is described, with special emphasis on the density and temperature effects on the thermal transport performance. Measurements of the effective thermal conductivity are performed by a freestanding sensor-based 3ω method. A linear relationship between the density and the effective thermal conductivity is observed. Based on the analysis of the foam insulation morphological structures and the corresponding geometrical cell model, the quantitative contribution of the solid conductivity and the gas conductivity as well as the radiative conductivity to the total effective thermal conductivity as a function of the density and temperature is calculated. The agreement between the curves of the results from the developed model and experimental data indicate the model can be used for PMI foam insulating performance optimization.

  18. Liquid foam templating - A route to tailor-made polymer foams.

    Science.gov (United States)

    Andrieux, Sébastien; Quell, Aggeliki; Stubenrauch, Cosima; Drenckhan, Wiebke

    2018-06-01

    Solid foams with pore sizes between a few micrometres and a few millimetres are heavily exploited in a wide range of established and emerging applications. While the optimisation of foam applications requires a fine control over their structural properties (pore size distribution, pore opening, foam density, …), the great complexity of most foaming processes still defies a sound scientific understanding and therefore explicit control and prediction of these parameters. We therefore need to improve our understanding of existing processes and also develop new fabrication routes which we understand and which we can exploit to tailor-make new porous materials. One of these new routes is liquid templating in general and liquid foam templating in particular, to which this review article is dedicated. While all solid foams are generated from an initially liquid(-like) state, the particular notion of liquid foam templating implies the specific condition that the liquid foam has time to find its "equilibrium structure" before it is solidified. In other words, the characteristic time scales of the liquid foam's stability and its solidification are well separated, allowing to build on the vast know-how on liquid foams established over the last 20 years. The dispersed phase of the liquid foam determines the final pore size and pore size distribution, while the continuous phase contains the precursors of the desired porous scaffold. We review here the three key challenges which need to be addressed by this approach: (1) the control of the structure of the liquid template, (2) the matching of the time scales between the stability of the liquid template and solidification, and (3) the preservation of the structure of the template throughout the process. Focusing on the field of polymer foams, this review gives an overview of recent research on the properties of liquid foam templates and summarises a key set of studies in the emerging field of liquid foam templating. It

  19. Multiple-Nozzle Spray Head Applies Foam Insulation

    Science.gov (United States)

    Walls, Joe T.

    1993-01-01

    Spray head equipped with four-nozzle turret mixes two reactive components of polyurethane and polyisocyanurate foam insulating material and sprays reacting mixture onto surface to be insulated. If nozzle in use becomes clogged, fresh one automatically rotated into position, with minimal interruption of spraying process. Incorporates features recirculating and controlling pressures of reactive components to maintain quality of foam by ensuring proper blend at outset. Also used to spray protective coats on or in ships, aircraft, and pipelines. Sprays such reactive adhesives as epoxy/polyurethane mixtures. Components of spray contain solid-particle fillers for strength, fire retardance, toughness, resistance to abrasion, or radar absorption.

  20. Fracture Toughness Evaluation of Space Shuttle External Tank Thermal Protection System Polyurethane Foam Insulation Materials

    Science.gov (United States)

    McGill, Preston; Wells, Doug; Morgan, Kristin

    2006-01-01

    Experimental evaluation of the basic fracture properties of Thermal Protection System (TPS) polyurethane foam insulation materials was conducted to validate the methodology used in estimating critical defect sizes in TPS applications on the Space Shuttle External Fuel Tank. The polyurethane foam found on the External Tank (ET) is manufactured by mixing liquid constituents and allowing them to react and expand upwards - a process which creates component cells that are generally elongated in the foam rise direction and gives rise to mechanical anisotropy. Similarly, the application of successive foam layers to the ET produces cohesive foam interfaces (knitlines) which may lead to local variations in mechanical properties. This study reports the fracture toughness of BX-265, NCFI 24-124, and PDL-1034 closed-cell polyurethane foam as a function of ambient and cryogenic temperatures and knitline/cellular orientation at ambient pressure.

  1. Rigid Polyurethane Foam Thermal Insulation Protected with Mineral Intumescent Mat

    Directory of Open Access Journals (Sweden)

    Kirpluks Mikelis

    2014-12-01

    Full Text Available One of the biggest disadvantages of rigid polyurethane (PU foams is its low thermal resistance, high flammability and high smoke production. Greatest advantage of this thermal insulation material is its low thermal conductivity (λ, which at 18-28 mW/(m•K is superior to other materials. To lower the flammability of PU foams, different flame retardants (FR are used. Usually, industrially viable are halogenated liquid FRs but recent trends in EU regulations show that they are not desirable any more. Main concern is toxicity of smoke and health hazard form volatiles in PU foam materials. Development of intumescent passive fire protection for foam materials would answer problems with flammability without using halogenated FRs. It is possible to add expandable graphite (EG into PU foam structure but this increases the thermal conductivity greatly. Thus, the main advantage of PU foam is lost. To decrease the flammability of PU foams, three different contents 3%; 9% and 15% of EG were added to PU foam formulation. Sample with 15% of EG increased λ of PU foam from 24.0 to 30.0 mW/(m•K. This paper describes the study where PU foam developed from renewable resources is protected with thermally expandable intumescent mat from Technical Fibre Products Ltd. (TFP as an alternative to EG added into PU material. TFP produces range of mineral fibre mats with EG that produce passive fire barrier. Two type mats were used to develop sandwich-type PU foams. Also, synergy effect of non-halogenated FR, dimethyl propyl phosphate and EG was studied. Flammability of developed materials was assessed using Cone Calorimeter equipment. Density, thermal conductivity, compression strength and modulus of elasticity were tested for developed PU foams. PU foam morphology was assessed from scanning electron microscopy images.

  2. Cryogenic Moisture Uptake in Foam Insulation for Space Launch Vehicles

    Science.gov (United States)

    Fesmire, James E.; ScholtensCoffman, Brekke E.; Sass, Jared P.; Williams, Martha K.; Smith, Trent M.; Meneghelli, Barrry J.

    2008-01-01

    Rigid polyurethane foams and rigid polyisocyanurate foams (spray-on foam insulation), like those flown on Shuttle, Delta IV, and will be flown on Ares-I and Ares-V, can gain an extraordinary amount of water when under cryogenic conditions for several hours. These foams, when exposed for eight hours to launch pad environments on one side and cryogenic temperature on the other, increase their weight from 35 to 80 percent depending on the duration of weathering or aging. This effect translates into several thousand pounds of additional weight for space vehicles at lift-off. A new cryogenic moisture uptake apparatus was designed to determine the amount of water/ice taken into the specimen under actual-use propellant loading conditions. This experimental study included the measurement of the amount of moisture uptake within different foam materials. Results of testing using both aged specimens and weathered specimens are presented. To better understand cryogenic foam insulation performance, cryogenic moisture testing is shown to be essential. The implications for future launch vehicle thermal protection system design and flight performance are discussed.

  3. Spray Foam Exterior Insulation with Stand-Off Furring

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anastasia [IBACOS, Inc., Pittsburgh, PA (United States); Baker, Richard [IBACOS, Inc., Pittsburgh, PA (United States); Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-03-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using 'L' clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and 'picture framing' the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  4. Spray Foam Exterior Insulation with Stand-Off Furring

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anatasia [IBACOS, Inc., Pittsburgh, PA (United States); Baker, Richard [IBACOS, Inc., Pittsburgh, PA (United States); Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-03-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using "L" clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and "picture framing" the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  5. Damping of liquid sloshing by foams

    Science.gov (United States)

    Sauret, A.; Boulogne, F.; Cappello, J.; Dressaire, E.; Stone, H. A.

    2015-02-01

    When a container is set in motion, the free surface of the liquid starts to oscillate or slosh. Such effects can be observed when a glass of water is handled carelessly and the fluid sloshes or even spills over the rims of the container. However, beer does not slosh as readily as water, which suggests that foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of a liquid foam placed on top of a liquid bath. We generate a monodisperse two-dimensional liquid foam in a rectangular container and track the motion of the foam. The influence of the foam on the sloshing dynamics is experimentally characterized: only a few layers of bubbles are sufficient to significantly damp the oscillations. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient through viscous dissipation on the walls of the container. Then we extend our study to confined three-dimensional liquid foam and observe that the behavior of 2D and confined 3D systems are very similar. Thus, we conclude that only the bubbles close to the walls have a significant impact on the dissipation of energy. The possibility to damp liquid sloshing using foam is promising in numerous industrial applications such as the transport of liquefied gas in tankers or for propellants in rocket engines.

  6. Polymer-Reinforced, Non-Brittle, Lightweight Cryogenic Insulation

    Science.gov (United States)

    Hess, David M.

    2013-01-01

    The primary application for cryogenic insulating foams will be fuel tank applications for fueling systems. It is crucial for this insulation to be incorporated into systems that survive vacuum and terrestrial environments. It is hypothesized that by forming an open-cell silica-reinforced polymer structure, the foam structures will exhibit the necessary strength to maintain shape. This will, in turn, maintain the insulating capabilities of the foam insulation. Besides mechanical stability in the form of crush resistance, it is important for these insulating materials to exhibit water penetration resistance. Hydrocarbon-terminated foam surfaces were implemented to impart hydrophobic functionality that apparently limits moisture penetration through the foam. During the freezing process, water accumulates on the surfaces of the foams. However, when hydrocarbon-terminated surfaces are present, water apparently beads and forms crystals, leading to less apparent accumulation. The object of this work is to develop inexpensive structural cryogenic insulation foam that has increased impact resistance for launch and ground-based cryogenic systems. Two parallel approaches will be pursued: a silica-polymer co-foaming technique and a post foam coating technique. Insulation characteristics, flexibility, and water uptake can be fine-tuned through the manipulation of the polyurethane foam scaffold. Silicate coatings for polyurethane foams and aerogel-impregnated polyurethane foams have been developed and tested. A highly porous aerogel-like material may be fabricated using a co-foam and coated foam techniques, and can insulate at liquid temperatures using the composite foam

  7. CFC alternatives for thermal insulation foams

    Energy Technology Data Exchange (ETDEWEB)

    Shankland, I.R. (Allied-Signal Inc., Buffalo, NY (US))

    1990-03-01

    Low density polymeric foam materials expanded with chlorofluorocarbon (CFC) blowing agents have found widespread use as highly efficient thermal insulation materials in the construction, refrigeration appliance and transportation industries. The advent of regulations which are reducing the production and consumption of the fully halogenated CFCs for environmental reasons has prompted the development of environmentally acceptable substitutes for the CFC blowing agents. This paper summarizes the physical properties and performance of the leading alternatives for CFC-11, which is used to expand rigid polyurethane and polyisocyanurate foams, and the leading alternatives for CFC-12 which is used to expand extruded polystyrene board foam. Although the alternatives, HCFC-123 and HCFC-14lb for CFC-11 and HCFC142b and HCFC-124 for CFC-12, are not perfect matches from the performance viewpoint, they represent the optimum choice given the constraints on environmental acceptability, toxicity, flammability and performance. (author).

  8. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide

    Science.gov (United States)

    Wicklein, Bernd; Kocjan, Andraž; Salazar-Alvarez, German; Carosio, Federico; Camino, Giovanni; Antonietti, Markus; Bergström, Lennart

    2015-03-01

    High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m-1 K-1, which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.

  9. IDENTIFICATION OF CFC AND HCFC SUBSTITUTES FOR BLOWING POLYURETHANE FOAM INSULATION PRODUCTS

    Science.gov (United States)

    The report gives results of a cooperative effort to identiry chlorofluorocarbons and hydrochlorofluorocarbon substitutes for blowing polyurethane foam insulation products. The substantial ongoing effort is identifying third-generation blowing agets for polyurethane foams to repla...

  10. Excavationless Exterior Foundation Insulation Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-10-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  11. Excavationless Exterior Foundation Insulation Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, T. [NorthernSTAR, Minneaplolis, MN (United States); Mosiman, G. [NorthernSTAR, Minneaplolis, MN (United States); Ojczyk, C. [NorthernSTAR, Minneaplolis, MN (United States)

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with liquid insulating foam. The team was able to excavate a continuous 4 inches wide by 4 feet to 5 feet deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  12. Detection and Characterization of Flaws in Sprayed on Foam Insulation with Pulsed Terahertz Frequency Electromagnetic Waves

    Science.gov (United States)

    Winfree, William P.; Madaras, Eric I.

    2005-01-01

    The detection and repair of flaws such as voids and delaminations in the sprayed on foam insulation of the external tank reduces the probability of foam debris during shuttle ascent. The low density of sprayed on foam insulation along with it other physical properties makes detection of flaws difficult with conventional techniques. An emerging technology that has application for quantitative evaluation of flaws in the foam is pulsed electromagnetic waves at terahertz frequencies. The short wavelengths of these terahertz pulses make them ideal for imaging flaws in the foam. This paper examines the application of terahertz pulses for flaw detection in foam characteristic of the foam insulation of the external tank. Of particular interest is the detection of voids and delaminations, encapsulated in the foam or at the interface between the foam and a metal backing. The technique is shown to be capable of imaging small voids and delaminations through as much as 20 cm of foam. Methods for reducing the temporal responses of the terahertz pulses to improve flaw detection and yield quantitative characterizations of the size and location of the flaws are discussed.

  13. APPLICATION OF POLYURETHANE FOAM FOR IMPACT ABSORPTION AND THERMAL INSULATION FOR RADIOACTIVE MATERIALS PACKAGINGS

    International Nuclear Information System (INIS)

    Smith, A; Glenn Abramczyk, G; Paul Blanton, P; Steve Bellamy, S; William Daugherty, W; Sharon Williamson, S

    2007-01-01

    Polyurethane foam has been widely used as an impact absorbing and thermal insulating material for large radioactive materials packages, since the 1980's. With the adoption of the regulatory crush test requirement, for smaller packages, polyurethane foam has been adopted as a replacement for cane fiberboard, because of its ability to withstand the crush test. Polyurethane foam is an engineered material whose composition is much more closely controlled than that of cane fiberboard. In addition, the properties of the foam can be controlled by controlling the density of the foam. The conditions under which the foam is formed, whether confined or unconfined have an affect on foam properties. The study reported here reviewed the application of polyurethane foam in RAM packagings and compared property values reported in the literature with published property values and test results for foam specimens taken from a prototype 9977 packaging. The study confirmed that, polyurethane foam behaves in a predictable and consistent manner and fully satisfies the functional requirements for impact absorption and thermal insulation

  14. Bi-liquid foams

    International Nuclear Information System (INIS)

    Sonneville, Odile

    1997-01-01

    Concentrated emulsions have structures similar to foams; for this reason they are also called 'bi-liquid foams'. For oil in water emulsions, they are made of polyhedral oil cells separated by aqueous surfactant films. The limited stability of these Systems is a major nuisance in their applications. In this work, we tried to understand and to control the mechanisms through which bi-liquid foams can loose their stability. In a first stage, we characterized the states of surfactant films in bi-liquid foams submitted to different pressures. We determined their hydration, the surfactant density at interfaces as well as their thicknesses. The bi-liquid foams were made by concentrating hexadecane-in-water emulsions through centrifugation. The initial emulsions contained submicron oil droplets that were completely covered with surfactant. We measured the resistance of the films to dehydration, and we represented it by pressure-film thickness curves or pressure-film hydration curves. We also obtained evidence that the interfacial surfactant density increases when the film thickness is decreased (SDS case). The Newton Black Film state is the most dehydrated metastable state that can be reached. In this state, the films can be described as surfactant bilayers that only contain the hydration water of the surfactant polar heads. Two different processes are involved the destabilization of bi-liquid foams: Ostwald ripening (oil transfer from small cells to large cells) and coalescence (films rupture). The first mechanism can be controlled by choosing oils that are very insoluble in water, avoiding ethoxylated nonionic surfactants of low molecular weight, and making emulsions that are not too fine. The second mechanism is responsible for the catastrophic destabilization of bi-liquid foams made of droplets above one micron or with a low coverage in surfactant. In these cases, destabilization occurs in the early stages of concentration, when the films are still thick. It is caused

  15. Emission of volatiles from spray polyurethane foam (SPF) insulated crawl spaces

    NARCIS (Netherlands)

    Havermans, J.B.G.A.

    2014-01-01

    The emission of (di)isocyantes, polyols and blowing agents from curing Spray Polyurethane Foam (SPF) was studied in a house having its crawl space recently insulated. Before insulation a blank measurement was made and he emission was followed up to 144 hours after the insolation application. The

  16. Lightweight Hybrid Ablator Incorporating Aerogel-Filled Open-Cell Foam Structural Insulator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In previous work for NASA and DoD, Ultramet developed lightweight open-cell foam insulators composed of a carbon or ceramic structural foam skeleton filled with a...

  17. Electrical insulating liquid: A review

    Directory of Open Access Journals (Sweden)

    Deba Kumar Mahanta

    2017-08-01

    Full Text Available Insulating liquid plays an important role for the life span of the transformer. Petroleum-based mineral oil has become dominant insulating liquid of transformer for more than a century for its excellent dielectric and cooling properties. However, the usage of petroleum-based mineral oil, derived from a nonrenewable energy source, has affected the environment for its nonbiodegradability property. Therefore, researchers direct their attention to renewable and biodegradable alternatives. Palm fatty acid ester, coconut oil, sunflower oil, etc. are considered as alternatives to replace mineral oil as transformer insulation liquid. This paper gives an extensive review of different liquid insulating materials used in a transformer. Characterization of different liquids as an insulating material has been discussed. An attempt has been made to classify different insulating liquids-based on different properties.

  18. Attenuation of fluorocarbons released from foam insulation in landfills

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Dote, Yukata; Fredenslund, Anders Michael

    2007-01-01

    Chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs) have been used as blowing agents (BAs) for foam insulation in home appliances and building materials, which after the end of their useful life are disposed of in landfills. The objective of this project...... was to evaluate the potential for degradation of BAs in landfills, and to develop a landfill model, which could simulate the fate of BAs in landfills. The investigation was performed by use of anaerobic microcosm studies using different types of organic waste and anaerobic digested sludge as inoculum. The BAs...... in any of the experiments within a run time of up to 200 days. The obtained degradation rate coefficients were used as input for an extended version of an existing landfill fate model incorporating a time dependent BA release from co-disposed foam insulation waste. Predictions with the model indicate...

  19. Design and fabrication of foam-insulated cryogenic target for wet-wall laser fusion reactor

    International Nuclear Information System (INIS)

    Norimatsu, T.; Takeda, T.; Nagai, K.; Mima, K.; Yamanaka, T.

    2003-01-01

    A foam insulated cryogenic target was proposed for use in a future laser fusion reactor with a wet wall. This scheme can protect the solid DT layer from melting due to surface heating by adsorption of metal vapor without significant reduction in the target gain. Design spaces for the injection velocity and the acceptable vapor pressure in the reactor are discussed. Basic technology to fabricate such structure was demonstrated by emulsion process. Concept of a cryogenic fast-ignition target with a gold guiding cone was proposed together with direct injection filling of liquid DT. (author)

  20. Damping of liquid sloshing by foams: from everyday observations to liquid transport

    Science.gov (United States)

    Sauret, Alban; Boulogne, Francois; Cappello, Jean; Stone, Howard

    2014-11-01

    When a liquid-filled container is set in motion, the free surface of the liquid starts to slosh, i.e. oscillate. Such effects can be observed when a glass of water is handled carelessly and the fluid sloshes or even spills over the rim of the container. However, beer does not slosh as readily, which suggests that the presence of foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of liquid foam placed on top of a liquid bath in a Hele-Shaw cell. We generate a monodisperse 2D liquid foam and track its motion. The influence of the foam on the sloshing dynamics is characterized: 2 to 3 layers of bubbles are sufficient to significantly damp the oscillations. For more than 5 layers of bubbles, the original vertical motion of the foam becomes mainly horizontal. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient. This study motivated by everyday observations has promising applications in numerous industrial applications such as the transport of liquid in cargoes.

  1. Thermal conductivity of spray-on foam insulations for aerospace applications

    Science.gov (United States)

    Barrios, Matt; Vanderlaan, Mark; Van Sciver, Steven

    2012-06-01

    A guarded-hot-plate apparatus [1] has been developed to measure the thermal conductivity of spray-on foam insulations (SOFI) at temperatures ranging from 30 K to 300 K. The foam tested in the present study is NCFI 24-124, a polyisocyanurate foam used on the External Tanks of the Space Shuttle. The foam was tested first in ambient pressure air, then evacuated and tested once more. These thermal conductivities were compared to the thermal conductivity taken from a sample immediately after being subjected to conditions similar to those experienced by the foam while on the launch pad at Kennedy Space Center. To mimic the conditions experienced on the launch pad, an apparatus was built to enclose one side of the foam sample in a warm, humid environment while the other side of the sample contacts a stainless steel surface held at 77 K. The thermal conductivity data obtained is also compared to data found in the literature.

  2. High insulation foam glass material from waste cathode ray tube panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    . In general CRT consists of two types of glasses: barium/strontium containing glass (panel glass) and lead containing glass (funnel and panel glass). In this work we present the possibility to produce high performance insulation material from the recycled lead-free glass. We studied the influence of foaming...... between 750 and 850°C. We investigated the influence of milling time, particle size, foaming and oxidizing agent concentrations, temperature and time on the foaming process, foam density, foam porosity and homogeneity. Only moderate foaming was observed in carbon containing samples, while the addition...... of the oxidizing agent greatly improved the foaming quality. The results showed that the amount of oxygen available from the glass is not sufficient to combust all of the added carbon, therefore, additional oxygen was supplied via manganese reduction. In general, a minimum in the foam glass density was observed...

  3. Naturally cured foamed concrete with improved thermal insulation properties

    Directory of Open Access Journals (Sweden)

    Mashkin Nikolay

    2018-01-01

    Full Text Available The paper is dedicated to investigation on improvement of thermal insulation properties of non-autoclaved concrete by increasing aggregate stability of foamed concrete mixture. The study demonstrates influence of mineral admixtures on the foam stability index in the mortar mixture and on decrease of foamed concrete density and thermal conductivity. The effect of mineral admixtures on thermal conductivity properties of non-autoclaved concrete was assessed through different ways of their addition: to the foam and to the mortar mixture. The admixtures were milled up to the specific surface area of 300 and 600 m2/kg using an AГO-9 centrifugal attrition mill with continuous operation mode (Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk. Laboratory turbulent foam concrete mixer was used to prepare foamed concrete. Thermal conductivity coefficient was defined by a quick method using “ИTП-MГ 4 “Zond” thermal conductivity meter in accordance with the regulatory documents. The impact of modifiers on the foam structure stability was defined using the foam stability index for the mortar mixture. The research demonstrated the increase in stability of porous structure of non-autoclaved concrete when adding wollastonite and diopside. Improvement of thermal and physical properties was demonstrated, the decrease of thermal conductivity coefficient reaches 0.069 W/(m×°C

  4. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids

    Directory of Open Access Journals (Sweden)

    Renu Gupta

    2010-10-01

    Full Text Available Hydrodynamic studies of trickle bed reactors (TBRs are essential for the design and prediction of their performance. The hydrodynamic characteristics involving pressure drop and dynamic liquid saturation are greatly affected by the physical properties of the liquids. In the present study experiments have been carried out in a concurrent downflow air - liquid trickle bed reactor to investigate the dynamic liquid saturation and pressure drop for the water (non-foaming and 3% polyethylene glycol and 4% polyethylene glycol foaming liquids in the gas continuous regime (GCF and foaming pulsing regime (FP. In the GCF regime the dynamic liquid saturation was found to increase with increase in liquid flow rate for non-foaming and foaming liquids. While for 3% and 4% polyethylene glycol solutions the severe foaming was observed in the high interaction regime and the regime is referred to as foaming pulsing (FP regime. The decrease in dynamic liquid saturation followed by a sharp rise in the pressure drop was observed during transition from gas GCF to FP regime. However in the FP regime, a dip in the dynamic liquid saturation was observed. The pressure drop for foaming liquids is observed to be manifolds higher compared to non-foaming liquid in the GCF regime. ©2010 BCREC UNDIP. All rights reserved(Received: 16th January 2010, Revised: 10th February 2010, Accepted: 21st Feberuary 2010[How to Cite: R. Gupta, A. Bansal. (2010. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids. Bulletin of Chemical Reaction Engineering & Catalysis, 5 (1: 31-37. doi:10.9767/bcrec.5.1.7127.31-37][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.5.1.7127.31-37 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/7127][Cited by: Scopus 1 | ] 

  5. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids

    Directory of Open Access Journals (Sweden)

    Ajay Bansal

    2010-10-01

    Full Text Available Hydrodynamic studies of trickle bed reactors (TBRs are essential for the design and prediction of their performance. The hydrodynamic characteristics involving pressure drop and dynamic liquid saturation are greatly affected by the physical properties of the liquids. In the present study experiments have been carried out in a concurrent downflow air - liquid trickle bed reactor to investigate the dynamic liquid saturation and pressure drop for the water (non-foaming and 3% polyethylene glycol and 4% polyethylene glycol foaming liquids in the gas continuous regime (GCF and foaming pulsing regime (FP. In the GCF regime the dynamic liquid saturation was found to increase with increase in liquid flow rate for non-foaming and foaming liquids. While for 3% and 4% polyethylene glycol solutions the severe foaming was observed in the high interaction regime and the regime is referred to as foaming pulsing (FP regime. The decrease in dynamic liquid saturation followed by a sharp rise in the pressure drop was observed during transition from gas GCF to FP regime. However in the FP regime, a dip in the dynamic liquid saturation was observed. The pressure drop for foaming liquids is observed to be manifolds higher compared to non-foaming liquid in the GCF regime. ©2010 BCREC UNDIP. All rights reserved(Received: 16th January 2010, Revised: 10th February 2010, Accepted: 21st Feberuary 2010[How to Cite: R. Gupta, A. Bansal. (2010. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids. Bulletin of Chemical Reaction Engineering & Catalysis, 5 (1: 31-37. doi:10.9767/bcrec.5.1.775.31-37][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.5.1.775.31-37 ][Cited by: Scopus 1 |

  6. Surfactant selection for a liquid foam-bed photobioreactor.

    Science.gov (United States)

    Janoska, Agnes; Vázquez, María; Janssen, Marcel; Wijffels, René H; Cuaresma, María; Vílchez, Carlos

    2018-02-01

    A novel liquid foam-bed photobioreactor has been shown to hold potential as an innovative technology for microalgae production. In this study, a foam stabilizing agent has been selected which fits the requirements of use in a liquid foam-bed photobioreactor. Four criteria were used for an optimal surfactant: the surfactant should have good foaming properties, should not be rapidly biodegradable, should drag up microalgae in the foam formed, and it should not be toxic for microalgae. Ten different surfactants (nonionic, cationic, and anionic) and two microalgae genera (Chlorella and Scenedesmus) were compared on the above-mentioned criteria. The comparison showed the following facts. Firstly, poloxameric surfactants (Pluronic F68 and Pluronic P84) have acceptable foaming properties described by intermediate foam stability and liquid holdup and small bubble size. Secondly, the natural surfactants (BSA and Saponin) and Tween 20 were easily biodegraded by bacteria within 3 days. Thirdly, for all surfactants tested the microalgae concentration is reduced in the foam phase compared to the liquid phase with exception of the cationic surfactant CTAB. Lastly, only BSA, Saponin, Tween 20, and the two Pluronics were not toxic at concentrations of 10 CMC or higher. The findings of this study indicate that the Pluronics (F68 and P84) are the best surfactants regarding the above-mentioned criteria. Since Pluronic F68 performed slightly better, this surfactant is recommended for application in a liquid foam-bed photobioreactor. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  7. Application of Spray Foam Insulation Under Plywood and Oriented Strand Board Roof Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Grin, A. [Building Science Corporation, Somerville, MA (United States); Smegal, J. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-10-01

    Unvented roof strategies with open cell and closed cell spray polyurethane foam insulation sprayed to the underside of roof sheathing have been used since the mid-1990's to provide durable and efficient building enclosures. However, there have been isolated moisture related incidents reported anecdotally that raise potential concerns about the overall hygrothermal performance of these systems. This project involved hygrothermal modeling of a range of rainwater leakage and field evaluations of in-service residential roofs using spray foam insulation. All of the roof assemblies modeled exhibited drying capacity to handle minor rainwater leakage. All field evaluation locations of in-service residential roofs had moisture contents well within the safe range for wood-based sheathing. Explorations of eleven in-service roof systems were completed. The exploration involved taking a sample of spray foam from the underside of the roof sheathing, exposing the sheathing, then taking a moisture content reading. All locations had moisture contents well within the safe range for wood-based sheathing. One full-roof failure was reviewed, as an industry partner was involved with replacing structurally failed roof sheathing. In this case the manufacturer's investigation report concluded that the spray foam was installed on wet OSB based on the observation that the spray foam did not adhere well to the substrate and the pore structure of the closed cell spray foam at the ccSPF/OSB interface was indicative of a wet substrate.

  8. Polyimide-Foam/Aerogel Composites for Thermal Insulation

    Science.gov (United States)

    Williams, Martha; Fesmire, James; Sass, Jared; Smith, Trent; Weoser. Erol

    2009-01-01

    Composites of specific types of polymer foams and aerogel particles or blankets have been proposed to obtain thermal insulation performance superior to those of the neat polyimide foams. These composites have potential to also provide enhanced properties for vibration dampening or acoustic attenuation. The specific type of polymer foam is denoted "TEEK-H", signifying a series, denoted H, within a family of polyimide foams that were developed at NASA s Langley Research Center and are collectively denoted TEEK (an acronym of the inventors names). The specific types of aerogels include Nanogel aerogel particles from Cabot Corporation in Billerica, MA. and of Spaceloft aerogel blanket from Aspen Aerogels in Northborough, MA. The composites are inherently flame-retardant and exceptionally thermally stable. There are numerous potential uses for these composites, at temperatures from cryogenic to high temperatures, in diverse applications that include aerospace vehicles, aircraft, ocean vessels, buildings, and industrial process equipment. Some low-temperature applications, for example, include cryogenic storage and transfer or the transport of foods, medicines, and chemicals. Because of thermal cycling, aging, and weathering most polymer foams do not perform well at cryogenic temperatures and will undergo further cracking over time. The TEEK polyimides are among the few exceptions to this pattern, and the proposed composites are intended to have all the desirable properties of TEEK-H foams, plus improved thermal performance along with enhanced vibration or acoustic-attenuation performance. A composite panel as proposed would be fabricated by adding an appropriate amount of TEEK friable balloons into a mold to form a bottom layer. A piece of flexible aerogel blanket material, cut to the desired size and shape, would then be placed on the bottom TEEK layer and sandwiched between another top layer of polyimide friable balloons so that the aerogel blanket would become

  9. Design of foam-buffered high gain target with Fokker-Planck implosion simulation for thermal insulation and imprint mitigation

    International Nuclear Information System (INIS)

    Takeda, T.; Mima, K.; Norimatsu, T.; Nagatomo, H.; Nishiguchi, A.

    2003-01-01

    It is proposed that a thick foam layer on a plastic capsule of fusion pellet is effective not only for reducing the initial imprint, but also for solving the melting problem of cryogenic deuterium-tritium layer, in a reactor chamber. Investigated are the dependences of gain, thermal insulation for preventing the melting, and imprint mitigation of a foam-buffered target on the foam layer thickness. The imprint mitigation, the Rayleigh-Taylor growth factor and the fusion gain of a foam-buffered target are evaluated by the hydrodynamic implosion code HIMICO [A. Nishiguchi et al., Phys. Fluids B 4, 417 (1992)], which includes a Fokker-Planck transport code. As the result, it is found that high gain can be achieved by the foam-buffered target together with thermal insulation and imprint mitigation

  10. Bio-based polyurethane foams toward applications beyond thermal insulation

    International Nuclear Information System (INIS)

    Gama, Nuno V.; Soares, Belinda; Freire, Carmen S.R.; Silva, Rui; Neto, Carlos P.; Barros-Timmons, Ana; Ferreira, Artur

    2015-01-01

    Highlights: • Coffee grounds wastes were successfully liquefied yielding a bio-based polyol. • Coffee grounds derived foams formulations were optimized by tuning reagents’ contents. • The viscoelastic properties of these foams are promising to expand their applications. - Abstract: In this work the preparation of viscoelastic bio-based polyurethane foams (PUFs) using polyols obtained via acid liquefaction of coffee grounds wastes has been optimized. In a first stage, the effect of different ratios of isocyanate content to hydroxyl number (0.6, 0.7 and 0.8) and of three distinct percentages of catalyst (3%, 5% and 7%) on the extent of the polymerization reaction was studied by infrared spectroscopy. Next, different percentages of surfactant (14%, 16% and 18%) and blowing agent (12%, 14% and 16%) were used to assess their effect on the density, thermal conductivity and mechanical properties of the foams, including their recovery time. The mechanical properties of the ensuing foams proved to be very interesting due to their viscoelastic behavior. PUFs were also characterized by scanning electron microscopy (SEM) revealing a typical cellular structure and by thermogravimetric analysis (TGA) which proved that these materials are thermally stable up to 190 °C. These results suggest other potential applications for these materials beyond heat insulation in areas where damping properties can be an added value

  11. Numerical Simulation of Liquids Draining From a Tank Using OpenFOAM

    Science.gov (United States)

    Sakri, Fadhilah Mohd; Sukri Mat Ali, Mohamed; Zaki Shaikh Salim, Sheikh Ahmad; Muhamad, Sallehuddin

    2017-08-01

    Accurate simulation of liquids draining is a challenging task. It involves two phases flow, i.e. liquid and air. In this study draining a liquid from a cylindrical tank is numerically simulated using OpenFOAM. OpenFOAM is an open source CFD package and it becomes increasingly popular among the academician and also industries. Comparisons with theoretical and results from previous published data confirmed that OpenFOAM is able to simulate the liquids draining very well. This is done using the gas-liquid interface solver available in the standard library of OpenFOAM. Additionally, this study was also able to explain the physics flow of the draining tank.

  12. Design and development of polyphenylene oxide foam as a reusable internal insulation for LH2 tanks

    Science.gov (United States)

    1975-01-01

    Material specification and fabrication process procedures for foam production are presented. The properties of mechanical strength, modulus of elasticity, density and thermal conductivity were measured and related to foam quality. Properties unique to the foam such as a gas layer insulation, density gradient parallel to the fiber direction, and gas flow conductance in both directions were correlated with foam quality. Inspection and quality control tests procedures are outlined and photographs of test equipment and test specimens are shown.

  13. RESEARCHES OF WORKING LIFE OF FOAM POLYSTYRENE OF BUILDING APPOINTMENT

    Directory of Open Access Journals (Sweden)

    Guyumdzhjan Perch Pogosovich

    2012-09-01

    Full Text Available Results of experimental researches of physicomechanical properties of foam polystyrene thermal insulation materials are presented in article. The operational resource was defined on materials subject to ageing, action of liquid excited environments and atmospheric impacts. The destructive processes leading to destruction of foam polystyrene are revealed.

  14. Enhancement in insulation and mechanical properties of PMMA nanocomposite foams infused with multi-walled carbon nanotubes.

    Science.gov (United States)

    Yeh, Jui-Ming; Chang, Kung-Chin; Peng, Chih-Wei; Lai, Mei-Chun; Hwang, Shyh-Shin; Lin, Hong-Ru; Liou, Shir-Joe

    2011-08-01

    In this study, PMMA/CNTs composite materials with carboxyl-multi walled carbon nanotubes (c-MWNTs) or untreated MWNTs were prepared via in-situ bulk polymerization. The as-prepared PMMA/CNTs composite materials were then characterized by Fourier-Transformation infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The molecular weights of PMMA extracted from PMMA/CNTs composite materials and bulk PMMA were determined by gel permeation chromatography (GPC) with THF used as the eluant. The PMMA/CNTs composite materials were used to produce foams by a batch process in an autoclave using nitrogen as foaming agent. The cellular microstructure, insulation and compressive mechanical properties of PMMA/CNTs composite foams were also investigated in detail. Compared to neat PMMA foam, the presence of CNTs increases in cell density and reduces cell size. The insulation and compressive mechanical properties of PMMA/CNTs composite foams were found to improve substantially those of neat PMMA foam. In particular, 22.6% decrease in thermal conductivity, 19.7% decrease in dielectric constant and 160% increase in compressive modulus were observed with the addition of 0.3 wt% carboxyl-multi walled carbon nanotubes (c-MWNTs).

  15. Foam nests provide context-dependent thermal insulation to embryos of three leptodactylid frogs.

    Science.gov (United States)

    Méndez-Narváez, J; Flechas, S V; Amézquita, A

    2015-01-01

    The choice of adequate breeding habitat and its associated thermoregulatory conditions are thought to be important in the evolution of amphibian reproductive strategies. Among leptodactylid frogs, there is a terrestrial cline in the oviposition sites chosen to build foam nests for eggs. Although several functions have been attributed to foam nests, their role in temperature regulation for embryos is unclear. Here we tested the hypothesis that foam nests buffer embryos from variation in air temperature. We examined the degree of terrestrial nest sites in three species, finding a terrestrial cline of sites in terms of distance from water. We tested whether this nest-insulation effect varied among these species that differ in the degree of terrestrial nest sites and whether translocating nests impacted embryonic mortality. Our results demonstrate a negative effect of translocating aquatic nests to land, inferred from the highest hatching success in natural nests sites. All nests attenuated environmental thermal variation, but more terrestrial nests buffered embryos from a greater range of temperatures than did aquatic ones. Altogether, our data indicate that foam nests insulate embryos from daily temperature fluctuations among leptodactylid frogs with different degrees of terrestrial nests, which may well have contributed to the evolution of this reproductive strategy.

  16. 49 CFR 178.358 - Specification 21PF fire and shock resistant, phenolic-foam insulated, metal overpack.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification 21PF fire and shock resistant, phenolic-foam insulated, metal overpack. 178.358 Section 178.358 Transportation Other Regulations Relating... Class 7 (Radioactive) Materials § 178.358 Specification 21PF fire and shock resistant, phenolic-foam...

  17. Potential of Hollow Glass Microsphere as Cement Replacement for Lightweight Foam Concrete on Thermal Insulation Performance

    Directory of Open Access Journals (Sweden)

    Shahidan Shahiron

    2017-01-01

    Full Text Available Global warming can be defined as a gradual increase in the overall temperature of the earth’s atmosphere. A lot of research work has been carried out to reduce that heat inside the residence such as the used of low density products which can reduce the self-weight, foundation size and construction costs. Foamed concrete it possesses high flow ability, low self-weight, minimal consumption of aggregate, controlled low strength and excellent thermal insulation properties. This study investigate the characteristics of lightweight foamed concrete where Portland cement (OPC was replaced by hollow glass microsphere (HGMs at 0%, 3%, 6%, 9% by weight. The density of wet concrete is 1000 kg/m3 were tested with a ratio of 0.55 for all water binder mixture. Lightweight foamed concrete hollow glass microsphere (HGMs produced were cured by air curing and water curing in tank for 7, 14 and 28 days. A total of 52 concrete cubes of size 100mm × 100mm × 100mm and 215mm × 102.5mm × 65mm were produced. Furthermore, Scanning Electron Microscope (SEM and X-ray fluorescence (XRF were carried out to study the chemical composition and physical properties of crystalline materials in hollow glass microspheres. The experiments involved in this study are compression strength, water absorption test, density and thermal insulation test. The results show that the compressive strength of foamed concrete has reached the highest in 3% of hollow glass microsphere with less water absorption and less of thermal insulation. As a conclusion, the quantity of hollow glass microsphere plays an important role in determining the strength and water absorption and also thermal insulation in foamed concrete and 3% hollow glass microspheres as a replacement for Portland cement (OPC showed an optimum value in this study as it presents a significant effect than other percentage.

  18. Recovery Act. Advanced Building Insulation by the CO2 Foaming Process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Arthur [Industrial Science and Technology Network, Inc., Lancaster, PA (United States)

    2013-12-30

    In this project, ISTN proposed to develop a new "3rd" generation of insulation technology. The focus was a cost-effective foaming process that could be used to manufacture XPS and other extruded polymer foams using environmentally clean blowing agents, and ultimately achieve higher R-values than existing products while maintaining the same level of cost-efficiency. In the U.S., state-of-the-art products are primarily manufactured by two companies: Dow and Owens Corning. These products (i.e., STYROFOAM and FOAMULAR) have a starting thermal resistance of R-5.0/inch, which declines over the life of the product as the HFC blowing agents essential to high R-value exchange with air in the environment. In the existing technologies, the substitution of CO2 for HFCs as the primary foaming agent results in a much lower starting R-value, as evidenced in CO2-foamed varieties of XPS in Europe with R-4.2/inch insulation value. The major overarching achievement from this project was ISTN's development of a new process that uses CO2 as a clean blowing agent to achieve up to R-5.2/inch at the manufacturing scale, with a production cost on a per unit basis that is less than the cost of Dow and Owens Corning XPS products.

  19. Testing of Disposable Protective Garments Against Isocyanate Permeation From Spray Polyurethane Foam Insulation.

    Science.gov (United States)

    Mellette, Michael P; Bello, Dhimiter; Xue, Yalong; Yost, Michael; Bello, Anila; Woskie, Susan

    2018-05-12

    Diisocyanates (isocyanates), including methylene diphenyl diisocyanate (MDI), are the primary reactive components of spray polyurethane foam (SPF) insulation. They are potent immune sensitizers and a leading cause of occupational asthma. Skin exposure to isocyanates may lead to both irritant and allergic contact dermatitis and possibly contribute to systemic sensitization. More than sufficient evidence exists to justify the use of protective garments to minimize skin contact with aerosolized and raw isocyanate containing materials during SPF applications. Studies evaluating the permeation of protective garments following exposure to SPF insulation do not currently exist. To conduct permeation testing under controlled conditions to assess the effectiveness of common protective gloves and coveralls during SPF applications using realistic SPF product formulations. Five common disposable garment materials [disposable latex gloves (0.07 mm thickness), nitrile gloves (0.07 mm), vinyl gloves (0.07 mm), polypropylene coveralls (0.13 mm) and Tyvek coveralls (0.13 mm)] were selected for testing. These materials were cut into small pieces and assembled into a permeation test cell system and coated with a two-part slow-rise spray polyurethane foam insulation. Glass fiber filters (GFF) pretreated with 1-(9-anthracenylmethyl)piperazine) (MAP) were used underneath the garment to collect permeating isocyanates. GFF filters were collected at predetermined test intervals between 0.75 and 20.00 min and subsequently analyzed using liquid chromatography-tandem mass spectrometry. For each garment material, we assessed (i) the cumulative concentration of total isocyanate, including phenyl isocyanate and three MDI isomers, that effectively permeated the material over the test time; (ii) estimated breakthrough detection time, average permeation rate, and standardized breakthrough time; from which (iii) recommendations were developed for the use of similar protective garments following

  20. Development of test systems for characterizing emissions from spray polyurethane foam insulation (SPFI)

    Science.gov (United States)

    The relationship between onsite manufacture of spray polyurethane foam insulation (SPFI) and potential exposures to diisocyanates, amines, flame retardants (FRs), blowing agents, aldehydes and other organic compounds that may be emitted from SPFI is not well understood. EPA is de...

  1. Swivel Joint For Liquid Nitrogen

    Science.gov (United States)

    Milner, James F.

    1988-01-01

    Swivel joint allows liquid-nitrogen pipe to rotate through angle of 100 degree with respect to mating pipe. Functions without cracking hard foam insulation on lines. Pipe joint rotates on disks so mechanical stress not transmitted to thick insulation on pipes. Inner disks ride on fixed outer disks. Disks help to seal pressurized liquid nitrogen flowing through joint.

  2. The sedimentation of fine particles in liquid foams

    OpenAIRE

    Rouyer , Florence; Fritz , Christelle; Pitois , Olivier

    2010-01-01

    International audience; We investigate the sedimentation of fine particles in liquid channels of foams. The study combines numerical simulations with experiments performed in foams and in isolated vertical foam channels. Results show that particulate motion is controlled by the confinement parameter (l) and the mobility of the channel surfaces modelled by interfacial shear viscosity. Interestingly, whereas the position of the particle within the channel cross-section is expected to be a relev...

  3. Transport of particles in liquid foams: a multi-scale approach

    International Nuclear Information System (INIS)

    Louvet, N.

    2009-11-01

    Foam is used for the decontamination of radioactive tanks since foam is a system that has a large surface for a low amount of liquid and as a consequence requires less water to be decontaminated. We study experimentally different particle transport configurations in fluid micro-channels network (Plateau borders) of aqueous foam. At first, foam permeability is measured at the scale of a single channel and of the whole foam network for 2 soap solutions known for their significant different interface mobility. Experimental data are well described by a model that takes into account the real geometry of the foam and by considering a constant value of the Boussinesq number of each soap solutions. Secondly, the velocity of one particle convected in a single foam channel is measured for different particle/channel aspect ratio. For small aspect ratio, a counterflow that is taking place at the channel's corners slows down the particle. A recirculation model in the channel foam films is developed to describe this effect. To do this, the Gibbs elasticity is introduced. Then, the threshold between trapped and released of one particle in liquid foam are carried out. This threshold is deduced from hydrodynamic and capillary forces equilibrium. Finally, the case of a clog foam node is addressed. (author)

  4. Effect of Foam on Liquid Phase Mobility in Porous Media

    DEFF Research Database (Denmark)

    Eftekhari, Ali Akbar; Farajzadeh, R.

    2017-01-01

    We investigate the validity of the assumption that foam in porous media reduces the mobility of gas phase only and does not impact the liquid-phase mobility. The foam is generated by simultaneous injection of nitrogen gas and a surfactant solution into sandstone cores and its strength is varied...... by changing surfactant type and concentration. We find, indeed, that the effect of foam on liquid-phase mobility is not pronounced and can be ignored. Our new experimental results and analyses resolve apparent discrepancies in the literature. Previously, some researchers erroneously applied relative...

  5. Methodology for characterization of corrosive agents of thermal insulating foams; Desenvolvimento de metodologia para caracterizacao de agentes corrosivos de espumas de isolamento termico

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Flavio V. Vasques de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Fundacao Coordenacao de Projetos, Pesquisas e Estudos Tecnologicos - COPPETEC; Mattos, Oscar R.; Mota, Rafael O. da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Metalurgica e de Materiais; Margarit-Mattos, Isabel C.P. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica. Dept. de Processos Organicos; Quintela, Joaquim P. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Vieira, Magda M. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2005-07-01

    Warming up oil and derivatives is a required procedure to make their transportation more efficient due to the increase in fluidity. Therefore, the use of thermally insulated pipeline becomes essential. The commonly practice has been the use of pipelines covered with an optional anticorrosive coating, followed by a polyurethane foam layer, as thermal insulator, and a polyethylene top coating for mechanical protection. During the life time of the pipeline, local ruptures of the polyethylene coating frequently occur, allowing the water permeation throughout the thermal insulator. This water may cause foam leaching that would release corrosive agents on the external wall pipe. The objective of the present work was to investigate the effects of the blowing agents, the addition of flame retardant to the foam as well as operating temperatures on the generation of corrosive solutions on the external wall of thermally insulated pipes. In this sense, polyurethane foams expanded with HCFC-141b, CFC-11 and CO{sub 2}, with and without flame retardant, were evaluated at the temperatures of 80 and 120 deg C. (author)

  6. Plastic Materials for Insulating Applications.

    Science.gov (United States)

    Wang, S. F.; Grossman, S. J.

    1987-01-01

    Discusses the production and use of polymer materials as thermal insulators. Lists several materials that provide varying degrees of insulation. Describes the production of polymer foam and focuses on the major applications of polystyrene foam, polyurethane foam, and polyisocyanurate foam. (TW)

  7. Polyurethane Foams for Thermal Insulation Uses Produced from Castor Oil and Crude Glycerol Biopolyols.

    Science.gov (United States)

    Carriço, Camila S; Fraga, Thaís; Carvalho, Vagner E; Pasa, Vânya M D

    2017-07-02

    Rigid polyurethane foams were synthesized using a renewable polyol from the simple physical mixture of castor oil and crude glycerol. The effect of the catalyst (DBTDL) content and blowing agents in the foams' properties were evaluated. The use of physical blowing agents (cyclopentane and n-pentane) allowed foams with smaller cells to be obtained in comparison with the foams produced with a chemical blowing agent (water). The increase of the water content caused a decrease in density, thermal conductivity, compressive strength, and Young's modulus, which indicates that the increment of CO₂ production contributes to the formation of larger cells. Higher amounts of catalyst in the foam formulations caused a slight density decrease and a small increase of thermal conductivity, compressive strength, and Young's modulus values. These green foams presented properties that indicate a great potential to be used as thermal insulation: density (23-41 kg·m -3 ), thermal conductivity (0.0128-0.0207 W·m -1 ·K -1 ), compressive strength (45-188 kPa), and Young's modulus (3-28 kPa). These biofoams are also environmentally friendly polymers and can aggregate revenue to the biodiesel industry, contributing to a reduction in fuel prices.

  8. Foam soap is not as effective as liquid soap in eliminating hand microbial flora.

    Science.gov (United States)

    Dixon, Nicolette; Morgan, Margie; Equils, Ozlem

    2017-07-01

    Foam soaps are aerosolized liquid soaps dispensed through a special pump mechanism. Currently there are no studies comparing liquid soap with foam soap in regard to efficacy of reducing hand microbial burden. In 3 separate experiments and with 2 different brands of foam soap, it was observed that nonantimicrobial foam soap was not as effective in reducing hand bacterial load as the liquid soap. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  9. Experimental and theoretical study of flowing foam and of the liquid film formed on the wall for the improvement of decontamination processes using foams

    International Nuclear Information System (INIS)

    Pouvreau, J.

    2002-01-01

    Amongst chemical decontamination techniques, the foam cleaning process has the advantage of reducing the amount of liquid used, thus limiting the quantity of the chemical reagents and the secondary waste volume. In order to improve this process, it is essential to understand the behaviour of the foam in the vicinity of the contaminated surface. Two methods of study have been initiated. Firstly, the characterization of the liquid film formed on the wall, and secondly, the characterization of the foam bed. Furthermore, our goal is to set up a drainage model which enables a choice of process parameters. Flush-mounted conductance probes have been developed in order to determine the thickness of the liquid film at the surface and the foam liquid fraction. The influence of the foam on the film structure and the interpretation of the thickness measured is discussed. The process studied consists of filling the facility with foam and letting the foam drain once the facility is full. It was demonstrated that the liquid film thickness varies between a few microns and 50 μm and that the value depends on position and time. Furthermore, a strong correlation links the film thickness and the foam liquid fraction. A drift-flux model has been built to describe the drainage of the upstream flow or static foam. The model is solved by using the method of characteristics. Analytical solutions are obtained and the liquid fraction evolution can easily be represented on a single diagram. The parameters of the void-drift closure law have been deducted from the experiments. The comparison to experimental data has shown that the model is well adapted. The laboratory therefore has experimental and theoretical equipment to study any foam. Finally, the model is applied to realistic decontamination configurations in order to present how determine the parameters of the process. (author) [fr

  10. Thermal insulating materials consisting of polyurethane rigid foam. Production - application - properties. 2. ed.; Waermedaemmstoffe aus Polyurethan-Hartschaum. Herstellung - Anwendung - Eigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Edmund; Kleser, Joachim

    2008-02-15

    Using rigid polyurethane (PU) / polyisocyanurate (PIR) foam as a thermal insulation material enables a conservation of resources and energy conservation. Environmentally harmful emissions significantly are reduced. Under this aspect, the authors of the contribution report on the production, application, technical and physical properties of rigid polyurethane foams. Sustainable construction with rigid polyurethane foam, quality assurance and product certification are further topics of this paper.

  11. Trickle/pulse flow regime transition in downflow packed tower involving foaming liquids

    Directory of Open Access Journals (Sweden)

    Sodhi Vijay

    2012-01-01

    Full Text Available The most of past studies in foaming trickle bed reactors aimed at the improvement of efficiency and operational parameters leads to high economic advantages. Conventionally most of the industries rely on frequently used gas continuous flow (GCF where operational output is satisfactory but not yields efficiently as in pulsing flow (PF and foaming pulsing flow (FPF. Hydrodynamic characteristics like regime transitions are significantly influenced by foaming nature of liquid as well as gas and liquid flow rates. This study’s aim was to demonstrate experimentally the effects of liquid flow rate, gas flow rates and liquid surface tension on regime transition. These parameters were analyzed for the air-aqueous Sodium Lauryl Sulphate and air-water systems. More than 240 experiments were done to obtain the transition boundary for trickle flow (GCF to foaming pulsing flow (PF/FPF by use excessive foaming 15-60 ppm surfactant compositions. The trickle to pulse flow transition appeared at lower gas and liquid flow rates with decrease in liquid surface tension. All experimental data had been collected and drawn in the form of four different transitional plots which are compared and drawn by using flow coordinates proposed by different researchers. A prominent decrease in dynamic liquid saturation was observed especially during regime transitional change. The reactor two phase pressure evident a sharp rise to verify the regime transition shift from GCF to PF/FPF. Present study reveals, the regime transition boundary significantly influenced by any change in hydrodynamic as well as physiochemical properties including surface tension.

  12. Ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction for the separation and determination of estrogens in water samples by high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Zhang, Rui; Wang, Chuanliu; Yue, Qiaohong; Zhou, Tiecheng; Li, Na; Zhang, Hanqi; Hao, Xiaoke

    2014-11-01

    An ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction method was proposed for the extraction and concentration of 17-α-estradiol, 17-β-estradiol-benzoate, and quinestrol in environmental water samples by high-performance liquid chromatography with fluorescence detection. 1-Hexyl-3-methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion-pairing and salting-out agent NH4 PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1-hexyl-3-methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid-liquid microextraction was widened. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Estimation of thermal insulation performance in multi-layer insulator for liquid helium pipe

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Kuriyama, Masaaki; Shibata, Takemasa

    1991-01-01

    For a multi-layer insulator around the liquid helium pipes for cryopumps of JT-60 NBI, a multi-layer insulator composed of 10 layers, which can be wound around the pipe at the same time and in which the respective layers are in concentric circles by shifting them in arrangement, has been developed and tested. As the result, it was shown that the newly developed multi-layer insulator has better thermal insulation performance than the existing one, i.e. the heat load of the newly developed insulator composed of 10 layers was reduced to 1/3 the heat load of the existing insulator, and the heat leak at the joint of the insulator in longitudinal direction of the pipe was negligible. In order to clarify thermal characteristics of the multi-layer insulator, the heat transfer through the insulator has been analyzed considering the radiation heat transfer by the netting spacer between the reflectors, and the temperature dependence on the emissivities and the heat transmission coefficients of these two components of the insulator. The analytical results were in good agreements with the experimental ones, so that the analytical method was shown to be valid. Concerning the influence of the number of layers and the layer density on the insulation performance of the insulator, analytical results showed that the multi-layer insulator with the number of layer about N = 20 and the layer density below 2.0 layer/mm was the most effective for the liquid helium pipe of a JT-60 cryopump. (author)

  14. Effect of Foam on Liquid Phase Mobility in Porous Media

    NARCIS (Netherlands)

    Eftekhari, A.A.; Farajzadeh, R.

    2017-01-01

    We investigate the validity of the assumption that foam in porous media reduces the mobility of gas phase only and does not impact the liquid-phase mobility. The foam is generated by simultaneous injection of nitrogen gas and a surfactant solution into sandstone cores and its strength is varied by

  15. Development of insulating coatings for liquid metal blankets

    International Nuclear Information System (INIS)

    Malang, S.; Borgstedt, H.U.; Farnum, E.H.; Natesan, K.; Vitkovski, I.V.

    1994-07-01

    It is shown that self-cooled liquid metal blankets are feasible only with electrically insulating coatings at the duct walls. The requirements on the insulation properties are estimated by simple analytical models. Candidate insulator materials are selected based on insulating properties and thermodynamic consideration. Different fabrication technologies for insulating coatings are described. The status of the knowledge on the most crucial feasibility issue, the degradation of the resisivity under irradiation, is reviewed

  16. Solid foam packings for multiphase reactors: Modelling of liquid holdup and mass transfer

    NARCIS (Netherlands)

    Stemmet, C.P.; Schaaf, van der J.; Kuster, B.F.M.; Schouten, J.C.

    2006-01-01

    In this paper, experimental and modeling results are presented of the liquid holdup and gas–liquid mass transfer characteristics of solid foam packings. Experiments were done in a semi-2D transparent bubble column with solid foam packings of aluminum in the range of 5–40 pores per inch (ppi). The

  17. Biomass derived novel functional foamy materials - BIO-FOAM

    Energy Technology Data Exchange (ETDEWEB)

    Suurnaekki, A.; Boer, H.; Forssell, P. (and others) (VTT Technical Research Centre of Finland, Espoo (Finland)), Email: anna.suurnakki@vtt.fi

    2010-10-15

    BIO-FOAM has aimed at exploiting the potential of biomaterials in replacing synthetic polymers in solid foamy materials. The target applications have been various, including food, packaging, construction and insulation. The project activities during the second project year have focused on characterisation of the solid model foams and on modeling the behaviour of polymers at liquid- liquid interfaces. In the modelling study the intrinsic consistence of the applied thermodynamic approach was confirmed. The experimentally obtained solubility parameters of polymers were in good agreement with the calculated solubility parameters. The polymers were, however, found to posses too little surface activity to alone provide stable foams, but they were able to act as co-surfactants. In the model polymer foam work both expanded polymer foams and wood fibre based foams were prepared. Supercritical CO{sub 2}-gas chamber was found to be a useful tool to prepare expanded polymer foams in small scale. Only partial replacement of synthetic polymers could, however, be obtained with native biomaterials indicating the need of tailoring of biopolymer properties and suitable formulations including surfactants or stabilizing particles. In wood fibre-based foams both nanocellulose and lignin showed potential as additives or reinforcing components.The outcome of the extruded food snacks study was that the processing parameters were related with the equipmentvariables. Furthermore, glycerol was shown to facilitate greatly extrusion processing. In foam concrete work concrete pore structure was shown to correlate with its strength and stability. At optimum concentration wood fibres affected positively the concrete processing performance. (orig.)

  18. Foam-film-stabilized liquid bridge networks in evaporative lithography and wet granular matter

    KAUST Repository

    Vakarelski, Ivan Uriev

    2013-04-23

    Evaporative lithography using latex particle templates is a novel approach for the self-assembly of suspension-dispersed nanoparticles into ordered microwire networks. The phenomenon that drives the self-assembly process is the propagation of a network of interconnected liquid bridges between the template particles and the underlying substrate. With the aid of video microscopy, we demonstrate that these liquid bridges are in fact the border zone between the underlying substrate and foam films vertical to the substrate, which are formed during the evaporation of the liquid from the suspension. The stability of the foam films and thus the liquid bridge network stability are due to the presence of a small amount of surfactant in the evaporating solution. We show that the same type of foam-film-stabilized liquid bridge network can also propagate in 3D clusters of spherical particles, which has important implications for the understanding of wet granular matter. © 2013 American Chemical Society.

  19. Foam films as thin liquid gas separation membranes.

    Science.gov (United States)

    Ramanathan, Muruganathan; Müller, Hans Joachim; Möhwald, Helmuth; Krastev, Rumen

    2011-03-01

    In this letter, we testify the feasibility of using freestanding foam films as a thin liquid gas separation membrane. Diminishing bubble method was used as a tool to measure the permeability of pure gases like argon, nitrogen, and oxygen in addition to atmospheric air. All components of the foam film including the nature of the tail (fluorocarbon vs hydrocarbon), charge on the headgroup (anionic, cationic, and nonionic) and the thickness of the water core (Newton black film vs Common black film) were systematically varied to understand the permeation phenomena of pure gases. Overall results indicate that the permeability values for different gases are in accordance with magnitude of their molecular diameter. A smaller gaseous molecule permeates faster than the larger ones, indicating a new realm of application for foam films as size selective separation membranes.

  20. Measure Guideline. Hybrid Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a “partial drainage” detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  1. Insulation Progress since the Mid-1950s

    Science.gov (United States)

    Timmerhaus, K. D.

    Storage vessel and cryostat design for modern cryogenic systems has become rather routine as the result of the wide use of and application of cryogenic fluids. Such vessels for these fluids range in size from 1 L flasks used in the laboratory for liquid nitrogen to the more than 200,000 m3 double-walled tanks used for temporary storage of liquefied natural gas before being transported overseas to their final destination. These storage vessels for cryogenic fluids range in type from low-performance containers insulated with rigid foam or fibrous insulation to high-performance containers insulated with evacuated multilayer insulations. The overriding factors in the type of container selected normally are of economics and safety. This paper will consider various insulation concepts used in such cryogenic storage systems and will review the progress that has been made over the past 50 years in these insulation systems.

  2. Comparative analysis of the microbial diversity in liquid and foaming layer in biogas reactors

    DEFF Research Database (Denmark)

    Campanaro, Stefano; Treu, Laura; Kougias, Panagiotis

    2014-01-01

    Foaming incidents have been recorded in many biogas plants causing severe operational, economical and environmental problems (Kougias et al., 2014). However, the foaming phenomenon in biogas reactors fed with agro-industrial wastes has not been extensively investigated, especially with respect...... to the microbial composition of the digesters (Moeller et al., 2012). In the cited literature, it has been reported that specific microorganisms, which are mainly filamentous (e.g. Gordonia species, Microthrix parvicella), are attached to biogas bubbles and transferred to the air/liquid interface of sludge...... was to investigate the microbial diversity in the liquid versus the foaming layer in manure-based biogas reactors suffering by foaming incidents in order to elucidate potential role and contribution of the microorganisms in foam promotion. The experimental work was carried out in three thermophilic continuous...

  3. Technological parameters influence on the non-autoclaved foam concrete characteristics

    Science.gov (United States)

    Bartenjeva, Ekaterina; Mashkin, Nikolay

    2017-01-01

    Foam concretes are used as effective heat-insulating materials. The porous structure of foam concrete provides good insulating and strength properties that make them possible to be used as heat-insulating structural materials. Optimal structure of non-autoclaved foam concrete depends on both technological factors and properties of technical foam. In this connection, the possibility to manufacture heat-insulation structural foam concrete on a high-speed cavity plant with the usage of protein and synthetic foamers was estimated. This experiment was carried out using mathematical planning method, and in this case mathematical models were developed that demonstrated the dependence of operating performance of foam concrete on foaming and rotation speed of laboratory plant. The following material properties were selected for the investigation: average density, compressive strength, bending strength and thermal conductivity. The influence of laboratory equipment technological parameters on technical foam strength and foam stability coefficient in the cement paste was investigated, physical and mechanical properties of non-autoclaved foam concrete were defined based on investigated foam. As a result of investigation, foam concrete samples were developed with performance parameters ensuring their use in production. The mathematical data gathered demonstrated the dependence of foam concrete performance on the technological regime.

  4. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    Science.gov (United States)

    Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2009-01-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.

  5. Measure Guideline: Hybrid Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Lstiburek, J.

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a 'partial drainage' detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  6. A novel highly porous ceramic foam with efficient thermal insulation and high temperature resistance properties fabricated by gel-casting process

    Science.gov (United States)

    Yu, Jiahong; Wang, Guixiang; Tang, Di; Qiu, Ya; Sun, Nali; Liu, Wenqiao

    2018-01-01

    The design of super thermal insulation and high-temperature resistant materials for high temperature furnaces is crucial due to the energy crisis and the huge wasting. Although it is told that numerous studies have been reported about various of thermal insulation materials prepared by different methods, the applications of yttria-stabilized zirconia (YSZ) ceramic foams fabricated through tert-butyl alcohol (TBA)-based gel-casting process in bulk thermal isolators were barely to seen. In this paper, highly porous yttria-stabilized zirconia (YSZ) ceramic foams were fabricated by a novel gel-casting method using tert-butyl alcohol (TBA) as solvent and pore-forming agent. Different raw material ratio, sintering temperature and soaking time were all investigated to achieve optimal thermal insulation and mechanical properties. We can conclude that porosity drops gradually while compressive strength increases significantly with the rising temperature from 1000-1500°C. With prolonged soaking time, there is no obvious change in porosity but compressive strength increases gradually. All specimens have uniformly distributed pores with average size of 0.5-2μm and show good structural stability at high temperature. The final obtained ceramic foams displayed an outstanding ultra-low thermal conductivity property with only 200.6 °C in cold surface while the hot side was 1000 °C (hold 60 min to keep thermal balance before testing) at the thickness of 10 mm.

  7. Mechanical Characterization of Lightweight Foamed Concrete

    OpenAIRE

    Marcin Kozłowski; Marta Kadela

    2018-01-01

    Foamed concrete shows excellent physical characteristics such as low self weight, relatively high strength and superb thermal and acoustic insulation properties. It allows for minimal consumption of aggregate, and by replacement of a part of cement by fly ash, it contributes to the waste utilization principles. For many years, the application of foamed concrete has been limited to backfill of retaining walls, insulation of foundations and roof tiles sound insulation. However, during the last ...

  8. Transport of particles in liquid foams: a multi-scale approach; Etude multi-echelles du transport de particules dans les mousses liquides

    Energy Technology Data Exchange (ETDEWEB)

    Louvet, N.

    2009-11-15

    Foam is used for the decontamination of radioactive tanks since foam is a system that has a large surface for a low amount of liquid and as a consequence requires less water to be decontaminated. We study experimentally different particle transport configurations in fluid micro-channels network (Plateau borders) of aqueous foam. At first, foam permeability is measured at the scale of a single channel and of the whole foam network for 2 soap solutions known for their significant different interface mobility. Experimental data are well described by a model that takes into account the real geometry of the foam and by considering a constant value of the Boussinesq number of each soap solutions. Secondly, the velocity of one particle convected in a single foam channel is measured for different particle/channel aspect ratio. For small aspect ratio, a counterflow that is taking place at the channel's corners slows down the particle. A recirculation model in the channel foam films is developed to describe this effect. To do this, the Gibbs elasticity is introduced. Then, the threshold between trapped and released of one particle in liquid foam are carried out. This threshold is deduced from hydrodynamic and capillary forces equilibrium. Finally, the case of a clog foam node is addressed. (author)

  9. Analysis of Influence of Foaming Mixture Components on Structure and Properties of Foam Glass

    Science.gov (United States)

    Karandashova, N. S.; Goltsman, B. M.; Yatsenko, E. A.

    2017-11-01

    It is recommended to use high-quality thermal insulation materials to increase the energy efficiency of buildings. One of the best thermal insulation materials is foam glass - durable, porous material that is resistant to almost any effect of substance. Glass foaming is a complex process depending on the foaming mode and the initial mixture composition. This paper discusses the influence of all components of the mixture - glass powder, foaming agent, enveloping material and water - on the foam glass structure. It was determined that glass powder is the basis of the future material. A foaming agent forms a gas phase in the process of thermal decomposition. This aforementioned gas foams the viscous glass mass. The unreacted residue thus changes a colour of the material. The enveloping agent slows the foaming agent decomposition preventing its premature burning out and, in addition, helps to accelerate the sintering of glass particles. The introduction of water reduces the viscosity of the foaming mixture making it evenly distributed and also promotes the formation of water gas that additionally foams the glass mass. The optimal composition for producing the foam glass with the density of 150 kg/m3 is defined according to the results of the research.

  10. Thermosetting Fluoropolymer Foams

    Science.gov (United States)

    Lee, Sheng Yen

    1987-01-01

    New process makes fluoropolymer foams with controllable amounts of inert-gas fillings in foam cells. Thermosetting fluoropolymers do not require foaming additives leaving undesirable residues and do not have to be molded and sintered at temperatures of about 240 to 400 degree C. Consequently, better for use with electronic or other parts sensitive to high temperatures or residues. Uses include coatings, electrical insulation, and structural parts.

  11. (H)-FCKW foamed insulating materials in the building industry in Germany. Estimation of the potential emissions up to the year 2010; (H)-FCKW-geschaeumte Daemmstoffe im Bauwesen in Deutschland. Schaetzung der potentiellen Emissionen bis zum Jahr 2010

    Energy Technology Data Exchange (ETDEWEB)

    Obernosterer, Richard [Ressourcen Management Agentur GmbH, Villach (Austria)

    2012-09-15

    CFCs and HCFCs are controlled substances under European Regulation (EC) No. 1005/2009. Article 22 of that Regulation provides that controlled substances contained in certain products (e.g. insulating materials) must be recovered, if technically and economically feasible, or be destroyed without prior recovery. Annex VII lists specific technologies for destruction, recycling or reclamation. In Germany, the use of (H)CFCs in insulating materials has been prohibited since 1995 (R 11 and R 12) and 2000 (R 22). At European level, use of HCFCs (141b and 142b) has been banned since 2002 mainly in the production of extruded polystyrene rigid foam and since 2003 in the production of polyurethane foams. Few data have become available to date on the amounts of (H)CFCs produced and banked up to the time the prohibitions went into effect. The present report therefore provides details on the amounts of (H)CFC-containing insulating materials installed in Germany and estimates the quantities of (H)CFCs still present in them. The study focuses on rigid XPS foam and rigid PU foam used in the construction sector, due to the original objective of the study and the quantitative significance of these foams. XPS insulating foams: XPS panels were assumed to have an average density of 33 kg/m3. Based on annual foam use (volume), density, the market shares of the blowing agents, and blowing agent content in the foam, the annual increase in banked amounts of blowing agents was estimated. Annual fugitive losses were deducted from those banks, specific to the relevant products and blowing agents. As result a bank of approximately 43.7 kt or 15 000 t-ODP was estimated for Germany in 2009. PU insulating foams: Based on annual foam use (volume), density (assumed to be 41 kg/m3 for PU sandwich panels and 33 kg/m3 for other PU products), the market shares of the blowing agents, and blowing agent content in the foam, the annual increase in banked amounts of blowing agents was estimated. Annual

  12. Mechanical Characterization of Lightweight Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Marcin Kozłowski

    2018-01-01

    Full Text Available Foamed concrete shows excellent physical characteristics such as low self weight, relatively high strength and superb thermal and acoustic insulation properties. It allows for minimal consumption of aggregate, and by replacement of a part of cement by fly ash, it contributes to the waste utilization principles. For many years, the application of foamed concrete has been limited to backfill of retaining walls, insulation of foundations and roof tiles sound insulation. However, during the last few years, foamed concrete has become a promising material for structural purposes. A series of tests was carried out to examine mechanical properties of foamed concrete mixes without fly ash and with fly ash content. In addition, the influence of 25 cycles of freezing and thawing on the compressive strength was investigated. The apparent density of hardened foamed concrete is strongly correlated with the foam content in the mix. An increase of the density of foamed concrete results in a decrease of flexural strength. For the same densities, the compressive strength obtained for mixes containing fly ash is approximately 20% lower in comparison to the specimens without fly ash. Specimens subjected to 25 freeze-thaw cycles show approximately 15% lower compressive strengths compared to the untreated specimens.

  13. Tank Insulation

    Science.gov (United States)

    1979-01-01

    For NASA's Apollo program, McDonnell Douglas Astronautics Company, Huntington Beach, California, developed and built the S-IVB, uppermost stage of the three-stage Saturn V moonbooster. An important part of the development task was fabrication of a tank to contain liquid hydrogen fuel for the stage's rocket engine. The liquid hydrogen had to be contained at the supercold temperature of 423 degrees below zero Fahrenheit. The tank had to be perfectly insulated to keep engine or solar heat from reaching the fuel; if the hydrogen were permitted to warm up, it would have boiled off, or converted to gaseous form, reducing the amount of fuel available to the engine. McDonnell Douglas' answer was a supereffective insulation called 3D, which consisted of a one-inch thickness of polyurethane foam reinforced in three dimensions with fiberglass threads. Over a 13-year development and construction period, the company built 30 tanks and never experienced a failure. Now, after years of additional development, an advanced version of 3D is finding application as part of a containment system for transporting Liquefied Natural Gas (LNG) by ship.

  14. Crosslinked polyethylene foams, via eb radiation

    International Nuclear Information System (INIS)

    Cardoso, E.C.L.; Lugao, A. B.; Andrade e Silva, L. G.

    1998-01-01

    Polyethylene foams, produced by radio-induced crosslinking, show a smooth and homogeneous surface, when compared to chemical crosslinking method using peroxide as crosslinking agent. This process fosters excellent adhesive and printability properties. Besides that, closed cells, intrinsic to these foams, imparts optimum mechanical, shocks and insulation resistance, indicating these foams to some markets segments as: automotive and transport; buoyancy, flotation and marine; building and insulation; packaging; domestic sports and leisure goods. We were in search of an ideal foam, by adding 5 to 15% of blowing agent in LDPE. A series of preliminary trials defined 203 degree sign C as the right blowing agent decomposition temperature. At a 22.7 kGys/dose ratio, the lowest dose for providing an efficient foam was 30 kGy, for a formulation comprising 10% of azodicarbonamide in LDPE, within a 10 minutes foaming time

  15. Physics of foam formation on a solid surface in carbonated liquids

    NARCIS (Netherlands)

    Zuidberg, A.F.

    1997-01-01

    The amount and size of bubbles in a foam layer that have originated from a solid surface in a gas supersaturated solution is largely determined by the physical properties of that solid and liquid surface and the supersaturation level of the gas in the liquid. The presence of pre-existent

  16. Role of foam drainage in producing protein aggregates in foam fractionation.

    Science.gov (United States)

    Li, Rui; Zhang, Yuran; Chang, Yunkang; Wu, Zhaoliang; Wang, Yanji; Chen, Xiang'e; Wang, Tao

    2017-10-01

    It is essential to obtain a clear understanding of the foam-induced protein aggregation to reduce the loss of protein functionality in foam fractionation. The major effort of this work is to explore the roles of foam drainage in protein aggregation in the entire process of foam fractionation with bovine serum albumin (BSA) as a model protein. The results show that enhancing foam drainage increased the desorption of BSA molecules from the gas-liquid interface and the local concentration of desorbed molecules in foam. Therefore, it intensified the aggregation of BSA in foam fractionation. Simultaneously, it also accelerated the flow of BSA aggregates from rising foam into the residual solution along with the drained liquid. Because enhancing foam drainage increased the relative content of BSA molecules adsorbed at the gas-liquid interface, it also intensified the aggregation of BSA during both the defoaming process and the storage of the foamate. Furthermore, enhancing foam drainage more readily resulted in the formation of insoluble BSA aggregates. The results are highly important for a better understanding of foam-induced protein aggregation in foam fractionation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Evaluation of Experimental Parameters in the Accelerated Aging of Closed-Cell Foam Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL; Vanderlan, Michael [ORNL; Atchley, Jerald Allen [ORNL

    2012-12-01

    The thermal conductivity of many closed-cell foam insulation products changes over time as production gases diffuse out of the cell matrix and atmospheric gases diffuse into the cells. Thin slicing has been shown to be an effective means of accelerating this process in such a way as to produce meaningful results. Efforts to produce a more prescriptive version of the ASTM C1303 standard test method led to the ruggedness test described here. This test program included the aging of full size insulation specimens for time periods of five years for direct comparison to the predicted results. Experimental parameters under investigation include: slice thickness, slice origin (at the surface or from the core of the slab), thin slice stack composition, product facings, original product thickness, product density, and product type. The test protocol has been completed and this report provides a detailed evaluation of the impact of the test parameters on the accuracy of the 5-year thermal conductivity prediction.

  18. Ceramic Foams from Pre-Ceramic Polymer Routes for Reusable Acreage Thermal Protection System Applications

    Science.gov (United States)

    Stackpoole, Mairead; Chien, Jennifer; Schaeffler, Michelle

    2004-01-01

    Contents include the following: Motivation. Current light weight insulation. Advantages of preceramic-polymer-derived ceramic foams. Rigid insulation materials. Tailor foam microstructures. Experimental approach. Results: sacrificial materials, sacrificial fillers. Comparison of foam microstructures. Density of ceramic foams. Phase evolution and properties: oxidation behavior. mechanical properties, aerothermal performance. Impact damage of microcellular foams. Conclusions.

  19. Thermal highly porous insulation materials made of mineral raw materials

    Science.gov (United States)

    Mestnikov, A.

    2015-01-01

    The main objective of the study is to create insulating foam based on modified mineral binders with rapid hardening. The results of experimental studies of the composition and properties of insulating foam on the basis of rapidly hardening Portland cement (PC) and gypsum binder composite are presented in the article. The article proposes technological methods of production of insulating foamed concrete and its placement to the permanent shuttering wall enclosures in monolithic-frame construction and individual energy-efficient residential buildings, thus reducing foam shrinkage and improving crack-resistance.

  20. Mass transfer measurements in foams

    International Nuclear Information System (INIS)

    Leblond, J.G.; Fournel, B.

    2004-01-01

    Full text of publication follows:This study participates to the elaboration of a method for decontamination of the inside surfaces of steel structures (pipes, tanks,...). The solution which has been chosen is to attack the surface of the structure by a dipping solution. In order to reduce the quantity of product to be recovered and treated at the end of the cleaning process, the active solution will be introduced as a foam. During its free or forced drainage the foam supplies an active liquid film along the structure surfaces. It was important to know if the transfers of the dipping liquid inside the foam and between foam and wall film are sufficient to allow a correct supplying of the active liquid at the wall and a correct dragging of the dipped products. The objective of this work is to develop a numerical model which simulates the various transfers. However such a modeling cannot be performed without a thorough knowledge of the different transfer parameters in the foam and in the film. The following study has been performed on a model foam (foaming water + air) held in a smooth vertical glass pipe and submitted to a forced drainage by the foaming water (water + surfactants). The liquid transfer involves the dispersion of the drainage liquid inside the foam and the transfer between the foam and the liquid film flowing down at the wall. The different transfers has been analyzed by NMR using a PFGSE-NMR sequence, which allows to determine the propagator, i.e., the probability density of the liquid particle displacements during a given time interval Δt, along a selected direction. This study allowed to measure, firstly, the mean liquid and the liquid dispersion in the foam along the vertical and horizontal direction, and secondly, the vertical mean velocity in the parietal liquid film. (authors)

  1. A water blown urethane insulation for use in cryogenic environments

    Science.gov (United States)

    Blevins, Elana; Sharpe, Jon

    1995-01-01

    Thermal Protection Systems (TPS) of NASA's Space Shuttle External Tank include polyurethane and polyisocyanurate modified polyurethane foam insulations. These insulations, currently foamed with CFC 11 blowing agent, serve to maintain cryogenic propellant quality, maintain the external tank structural temperature limits, and minimize the formation of ice and frost that could potentially damage the ceramic insulation on the space shuttle orbiter. During flight the external tank insulations are exposed to mechanical, thermal and acoustical stresses. TPS must pass cryogenic flexure and substrate adhesion tests at -253 C, aerothermal and radiant heating tests at fluxes up to approximately 14 kilowatts per square meter, and thermal conductivity tests at cryogenic and elevated temperatures. Due to environmental concerns, the polyurethane insulation industry and the External Tank Project are tasked with replacing CFC 11. The flight qualification of foam insulations employing HCFC 141b as a foaming agent is currently in progress; HCFC 141b blown insulations are scheduled for production implementation in 1995. Realizing that the second generation HCFC blowing agents are an interim solution, the evaluation of third generation blowing agents with zero ozone depletion potential is underway. NASA's TPS Materials Research Laboratory is evaluating third generation blowing agents in cryogenic insulations for the External Tank; one option being investigated is the use of water as a foaming agent. A dimensionally stable insulation with low friability, good adhesion to cryogenic substrates, and acceptable thermal conductivity has been developed with low viscosity materials that are easily processed in molding applications. The development criteria, statistical experimental approach, and resulting foam properties will be presented.

  2. Integrating a vented airspace into a spray-foam insulated solid masonry historic building in a cold climate: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Tzekova, Ekaterina; Pressnail, K.D.; Binkley, Clarissa [Department of Civil Engineering, University of Toronto (Canada); Pearson, Nastassja [Halsall Associates Limited (Canada); Pasqualini, Paul [Engineering Link Inc (Canada); Aikin, Craig [Halcrow Yolles (Canada)

    2011-07-01

    Thermal insulation was not included during the construction of historic brick buildings in Canada. Although thermal retrofits can improve building energy performance and occupant comfort, heritage requirements restrict the use of internal insulation. This paper presents an innovative Vented Masonry Retrofit (VMR), which consists of creating a vented airspace by incorporating Mortairvent between the insulation and the masonry. A numerical model and a field trial involving a three-storey heritage building were performed to compare the hygrothermal performance of the VMR with that of standard interior insulation. Temperature and relative humidity were collected during the winter months in foam-insulated, side-by-side wall assemblies along the east and south facing walls using both approaches. Modeling results predicted that using VMR assemblies would reduce the moisture content in both east and south elevations to below that obtained with standard insulation. However, the field trial showed improvement only along the south facade. Long term performance evaluation is required far a better evaluation of the VMR approach.

  3. Ventilation Guidance To Promote the Safe Use of Spray Polyurethane Foam (SPF) Insulation, Incluyendo la Versión de Español

    Science.gov (United States)

    This guidance describes basic ventilation principles and strategies to help protect workers and building occupants and promote the safe use of spray polyurethane foam (SPF) insulation. Guia para la ventilacion sobre la application del aerosol de espuma.

  4. Foam-film-stabilized liquid bridge networks in evaporative lithography and wet granular matter

    KAUST Repository

    Vakarelski, Ivan Uriev; Marston, Jeremy; Thoroddsen, Sigurdur T

    2013-01-01

    network of interconnected liquid bridges between the template particles and the underlying substrate. With the aid of video microscopy, we demonstrate that these liquid bridges are in fact the border zone between the underlying substrate and foam films

  5. Estimation of surface elasticity by the thickness change of liquid film and its correlation with foam stability

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jung Ryoul; Park, Jai Koo [Hanyang University, Seoul (Korea, Republic of)

    1996-04-30

    The relationship between foam stability and surface elasticity by the thickness change of liquid film was investigated. Foam stability was measured by draining liquid volume and decreasing gas volume as a function of time. Foam was formed by the fixed gas-injection the surfactant aqueous solution of different concentration. The used surfactants were sodium lauryl sulfate, hexadecane sulfonic acid sodium salt, and octane sulfonic acid sodium salt. Thickness of liquid film was estimated by using the volume ratio of liquid to gas in foam and surface elasticity of lamella was calculated by the surface tension and adsorbed amount. The thinning of liquid film is due to the combined effects of gravity and capillary suction, it would be ruptured at the minimum of lamella thickness which is called critical thickness. The lamella thickness of bubble which was formed at CMC(critical micelle concentration) was very thin. In the case of sodium lauryl sulfate, the thinning of lamella was continued in the range of measurement. The critical thicknesses of octane sulfonic acid sodium salt solution, hexadecane sulfonic acid sodium salt solution were determined to 0.479{approx}0.316, 0.209{approx}0.200 {mu}m, respectively. It was found that the tendency for foam stability was similar to that of lamella thickness. It was considered that foam which was formed at CMC has very high stability, and the order of foam stability for surfactant aqueous solution was sodium lauryl sulfate > hexadecane sulfonic acid sodium salt > octane sulfonic acid sodium salt. These results was considered that the lamella-rupturing was retarded by the relatively high surface elasticity of lamella. The saturated adsorption of surfactant was determined to 3.25{approx}3.04 * 10{sup -6} mol/m{sup 2} and the surface elasticity of lamella was also determined to 3{approx}56 mN/m. (author). 19 refs., 1 tab., 11 figs.

  6. Recovery of waste and side products of apatite-nepheline and eudialyte ores processing in manufacture of heat-insulating foam glassy-crystalline materials

    Directory of Open Access Journals (Sweden)

    Suvorova O. V.

    2017-03-01

    Full Text Available Overburden and dressing tailings accumulated in the Murmansk region in impressive volumes represent serious challenges of both economic and ecological character. Maintenance of overburden dumps and dressing tailings involves considerable capital and material expenses. Therefore reprocessing of mining waste and manufacture of building materials, including heat-insulating foam-glass materials, is a promising trend. The work discusses the feasibility of recovering silica-containing waste and ore processing byproducts on the Kola Peninsula. Compositions and techniques for producing blocks and pellets from foam-glass crystalline materials have been developed. The effect of modifying agents on the foam-silicate materials' mechanical properties has been investigated. The production conditions for high-quality foam-silicate blocks have been identified. The foam silicates obtained under optimal conditions have featured a relatively low viscosity (0.3–0.5 g/cm³, high strength (up to 5 MPa and heat conductivity (0.09–0.107 Wt/m·K. Methods of improving the operating characteristics of foam silicates based on structure perfecting have been proposed. It has been found that as a result of shorttime baking of grainy samples the product has a grain strength of 5–6 MPa, density of 0.25–0.35 g/cm3 and a resistance to crushing in cylinder of 2.2–3 MPa, which is 2–3 times higher than that of a material subjected to one-stage thermal treatment. The water absorption of the material is 5–6 %, which is by a half lower compared to a one-stage treated material. The thermal conduction coefficient is 0.091–0.096 Wt/m·K. The obtained materials are recommended for use as heat-insulating surfacing and filling material for garrets, floors and roofs in construction and renovation of industrial and civic buildings

  7. Intermetallic and electrical insulator coatings on high-temperature alloys in liquid-lithium environments

    International Nuclear Information System (INIS)

    Park, J.H.

    1994-06-01

    In the design of liquid-metal cooling systems for fusion-reactor blanket, applications, the corrosion resistance of structural materials and the magnetohydrodynamic (MHD) force and its subsequent influence on thermal hydraulics and corrosion are major concerns. When the system is cooled by liquid metals, insulator coatings are required on piping surfaces in contact with the coolant. The objective of this study is to develop stable corrosion-resistant electrical insulator coatings at the liquid-metal/structural-material interface, with emphasis on electrically insulating coatings that prevent adverse MHD-generated currents from passing through the structural wall, and Be-V intermetallic coatings for first-wall components that face the plasma. Vanadium and V-base alloys are leading candidate materials for structural applications in a fusion reactor. Various intermetallic films were produced on V-alloys and on Types 304 and 316 stainless steel. The intermetallic layers were developed by exposure of the materials to liquid Li containing 2 at temperatures of 500--1030 degree C. CaO electrical insulator coatings were produced by reaction of the oxygen-rich layer with <5 at. % Ca dissolved in liquid Li at 400--700 degree C. The reaction converted the oxygen-rich layer to an electrically insulating film. This coating method is applicable to reactor components because the liquid metal can be used over and over; only the solute within the liquid metal is consumed. This paper will discuss initial results on the nature of the coatings and their in-situ electrical resistivity characteristics in liquid Li at high temperatures

  8. F-15B in on ramp with close-up of test panels covered with advanced spray-on foam insulation materia

    Science.gov (United States)

    1999-01-01

    Test panels covered with an advanced foam insulation material for the Space Shuttle's giant external fuel tank were test flown aboard an F-15B research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Six panels were mounted on the left side of a heavily instrumented Flight Text Fixture mounted underneath the F-15B's fuselage. Insulation on this panel was finely machined over a horizontal rib structure to simulate in-line airflow past the tank; other panels had the ribs mounted vertically or had the insulation left in a rough as-sprayed surface. The tests were part of an effort by NASA's Marshall Space Flight Center to determine why small particles of the new insulation flaked off the tank on recent Shuttle missions. The tests with Dryden's F-15B were designed to replicate the pressure environment the Shuttle encounters during the first minute after launch. No noticeable erosion of the insulation material was noted after the flight experiment at Dryden.

  9. Optimized Synthesis of Foam Glass from Recycled CRT Panel Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Most of the panel glass from cathode ray tubes (CRTs) is landfilled today. Instead of landfilling, the panel glass can be turned into new environment-friendly foam glass. Low density foam glass is an effective heat insulating material and can be produced just by using recycle glass and foaming...... additives. In this work we recycle the CRT panel glass to synthesize the foam glass as a crucial component of building and insulating materials. The synthesis conditions such as foaming temperature, duration, glass particle size, type and concentrations of foaming agents, and so on are optimized...... by performing systematic experiments. In particular, the concentration of foaming agents is an important parameter that influences the size of bubbles and the distribution of bubbles throughout the sample. The foam glasses are characterised regarding density and open/closed porosity. Differential scanning...

  10. Synchrotron-based radioscopy employing spatio-temporal micro-resolution for studying fast phenomena in liquid metal foams

    International Nuclear Information System (INIS)

    Rack, A.; García-Moreno, F.; Baumbach, T.; Banhart, J.

    2009-01-01

    High-speed synchrotron-based radioscopy is applied to study a coalescence event (which lasts ∼2 ms) in situ in a liquid metal foam. Investigations of pore coalescence and individual cell wall collapse in an expanding liquid metal foam by means of X-ray radioscopy with spatio-temporal micro-resolution are reported. By using white synchrotron radiation for imaging, the rupture of a film and the subsequent merger of two neighbouring bubbles could be recorded with a time sampling rate of 40000 frames s −1 (25 µs exposure time) and a spatial sampling rate of 20 µm. The rupture time of a cell wall was found to be in the range of 300 µs. This value is in agreement with theoretical considerations which assume an inertia-dominated rupture time of cell walls in liquid metal foams

  11. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  12. Numerical study on heat transfer characteristics of liquid-fueled molten salt using OpenFOAM

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2017-01-01

    To pursue sustainability and safety enhancement of nuclear energy, molten salt reactor is regarded as a promising candidate among various types of gen-IV reactors. Besides, pyroprocessing, which treats molten salt containing fission products, should consider safety related to decay heat from fuel material. For design of molten salt-related nuclear system, it is required to consider both thermal-hydraulic characteristics and neutronic behaviors for demonstration. However, fundamental heat transfer study of molten salt in operation condition is not easy to be experimentally studied due to its large scale, high temperature condition as well as difficulties of treating fuel material. >From that reason, numerical study can have benefit to investigate behaviors of liquid-fueled molten salt in real condition. In this study, open source CFD package OpenFOAM was used to analyze liquid-fueled molten salt loop having internal heat source as a first step of research. Among various molten salts considered as a candidate of liquid fueled molten salt reactors, in this study, FLiBe was chosen as liquid salt. For simulating heat generation from fuel material within fluid flow, volumetric heat source was set for fluid domain and OpenFOAM solver was modified as fvOptions as customized. To investigate thermal-hydraulic behavior of molten salt, CFD model was developed and validated by comparing experimental results in terms of heat transfer and pressure drop. As preliminary stage, 2D cavity simulations were performed to validate the modeling capacity of modified solver of OpenFOAM by comparison with those of ANSYS-CFX. In addition, cases of external heat flux and internal heat source were compared to configure the effect of heat source setting in various operation condition. As a result, modified solver of OpenFOAM considering internal heat source have sufficient modeling capacity to simulate liquid-fueled molten salt systems including heat generation cases. (author)

  13. Anti-foam System design description

    International Nuclear Information System (INIS)

    White, M.A.

    1994-01-01

    The Anti-foam System is a sub-system of the 242-A Evaporator facility. The Anti-foam is used within the C-A-1 Vapor-Liquid Separator, to reduce the effect of foaming and reduce fluid bumping while the vapor and liquid are separated within the C-A-1 Vapor-Liquid Separator. Excessive foaming within the vessel may possibly cause the liquid slurry mixture in the evaporator vessel to foul the de-entrainment pads and cause plant shutdown. The Anti-foam System consists of the following primary elements: the Anti-foam Tank and the Metering Pump. The upgrades to Anti-foam System include the following: installation of a new pump, instruments, and valves; and connection of the instruments, pump and agitator associated with the Anti-foam System to the Monitoring and Control System (MCS). The 242-A Evaporator is a waste treatment facility designed to reduce liquid waste volumes currently stored in the Hanford Area double shell Waste Storage Tanks. The evaporator uses evaporative concentration to achieve this volume reduction, returning the concentrated slurry to the double-shell tanks for storage and, at the same time, releasing the process effluent to a retention facilities for eventual treatment and release to the environment

  14. State-of-the-Art Review on the Characteristics of Surfactants and Foam from Foam Concrete Perspective

    Science.gov (United States)

    Sahu, Sritam Swapnadarshi; Gandhi, Indu Siva Ranjani; Khwairakpam, Selija

    2018-06-01

    Foam concrete finds application in many areas, generally as a function of its relatively lightweight and its beneficial properties in terms of reduction in dead load on structure, excellent thermal insulation and contribution to energy conservation. For production of foam concrete with desired properties, stable and good quality foam is the key requirement. It is to be noted that the selection of surfactant and foam production parameters play a vital role in the properties of foam which in turn affects the properties of foam concrete. However, the literature available on the influence of characteristics of foaming agent and foam on the properties of foam concrete are rather limited. Hence, a more systematic research is needed in this direction. The focus of this work is to provide a review on characteristics of surfactant (foaming agent) and foam for use in foam concrete production.

  15. Foam Microrheology

    International Nuclear Information System (INIS)

    KRAYNIK, ANDREW M.; LOEWENBERG, MICHAEL; REINELT, DOUGLAS A.

    1999-01-01

    The microrheology of liquid foams is discussed for two different regimes: static equilibrium where the capillary number Ca is zero, and the viscous regime where viscosity and surface tension are important and Ca is finite. The Surface Evolver is used to calculate the equilibrium structure of wet Kelvin foams and dry soap froths with random structure, i.e., topological disorder. The distributions of polyhedra and faces are compared with the experimental data of Matzke. Simple shearing flow of a random foam under quasistatic conditions is also described. Viscous phenomena are explored in the context of uniform expansion of 2D and 3D foams at low Reynolds number. Boundary integral methods are used to calculate the influence of Ca on the evolution of foam microstructure, which includes bubble shape and the distribution of liquid between films, Plateau borders, and (in 3D) the nodes where Plateau borders meet. The micromechanical point of view guides the development of structure-property-processing relationships for foams

  16. Foam Glass for Construction Materials

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund

    2016-01-01

    Foaming is commonly achieved by adding foaming agents such as metal oxides or metal carbonates to glass powder. At elevated temperature, the glass melt becomes viscous and the foaming agents decompose or react to form gas, causing a foamy glass melt. Subsequent cooling to room temperature, result...... in a solid foam glass. The foam glass industry employs a range of different melt precursors and foaming agents. Recycle glass is key melt precursors. Many parameters influence the foaming process and optimising the foaming conditions is very time consuming. The most challenging and attractive goal is to make...... low density foam glass for thermal insulation applications. In this thesis, it is argued that the use of metal carbonates as foaming agents is not suitable for low density foam glass. A reaction mechanism is proposed to justify this result. Furthermore, an in situ method is developed to optimise...

  17. Thermal Expansion of Three Closed Cell Polymeric Foams at Cryogenic Temperatures

    Science.gov (United States)

    Stokes, Eric

    2006-01-01

    The Space Shuttle External Tank (ET) contains the liquid H2 fuel and liquid oxygen oxidizer and supplies them under pressure to the three space shuttle main engines (SSME) in the orbiter during lift-off and ascent. The ET thermal protection system consists of sprayed-on foam insulation and pre-molded ablator materials. The closed-cell foams are the external coating on the ET and are responsible for minimizing the amount of moisture that condenses out and freezes on the tank from the humid air in Florida while it is on the pad with cryogenic propellant awaiting launch. This effort was part of the overall drive to understand the behavior of these materials under use-conditions. There are four specially-engineered closed-cell foams used on the tank. The thermal expansion (contraction) of three of the polyurethane and polyisocyanurate foams were measured from -423 F (the temperature of liquid hydrogen) to 125 F under atmospheric conditions and under vacuum. One of them, NCFI 24-124, is a mechanically-applied material and covers the main acreage of the tank, accounting for 77 percent of the total foam used. Another, BX-265, is also a mechanically-applied and hand-sprayed material used on the tank's "closeout" areas. PDL 1034 is a hand-poured foam used for filling odd-shaped cavities in the tank, Measurements were made in triplicate in the three primary material directions in the case of the first two materials and the two primary material directions in the case of the last. Task 1 was developing the techniques for getting a uniform heating rate and minimizing axial and radial thermal gradients in the specimens. Temperature measurements were made at four locations in the specimens during this initial development phase of testing. Major challenges that were overcome include developing techniques for transferring the coolant, liquid helium (-452 F), from its storage container to the test facility with a minimal transfer of heat to the coolant and control of the heating

  18. Trial fabrication and preliminary characterization of electrical insulator for liquid metal system

    International Nuclear Information System (INIS)

    Nakamichi, Masaru; Kawamura, Hiroshi; Oyamada, Rokuro

    1995-03-01

    In the design of the liquid metal blanket, MHD pressure drop is one of critical issues. Ceramic coating on the surface of structural material is considered as an electrical insulator to reduce the MHD pressure drop. Ceramic coating such as Y 2 O 3 is a promising electrical insulator due to its high electrical resistivity and good compatibility with liquid lithium. This report describes the trial fabrication and preliminary characterization of electrical insulator for a design study of the liquid metal system. From the results of trial fabrication and preliminary characterization, it is concluded that densified atmospheric plasma spray Y 2 O 3 coating with 410SS undercoating between 316SS substrate and Y 2 O 3 coating is suitable for Y 2 O 3 coating fabrication. (author)

  19. FoamVis, A Visualization System for Foam Research: Design and Implementation

    OpenAIRE

    Lipsa, Dan; Roberts, Richard; Laramee, Robert

    2015-01-01

    Liquid foams are used in areas such as mineral separation, oil recovery, food and beverage production, sanitation and fire fighting. To improve the quality of products and the efficiency of processes in these areas, foam scientists wish to understand and control foam behaviour. To this end, foam scientists have used foam simulations to model foam behaviour; however, analysing these simulations presents difficult challenges. We describe the main foam research challenges and present the design ...

  20. Synthesis and characterization of innovative insulation materials

    Directory of Open Access Journals (Sweden)

    Skaropoulou Aggeliki

    2018-01-01

    Full Text Available Insulation elements are distinguished in inorganic fibrous and organic foamed materials. Foamed insulation materials are of great acceptance and use, but their major disadvantage is their flammability. In case of fire, they tend to transmit the flame producing toxic gases. In this paper, the synthesis and characterization of innovative inorganic insulation materials with properties competitive to commercial is presented. Their synthesis involves the mixing of inorganic raw material and water with reinforcing agent or/and foaming agent leading to the formation of a gel. Depending on raw materials nature, the insulation material is produced by freeze drying or ambient drying techniques of the gel. The raw material used are chemically benign and abundantly available materials, or industrial by-products and the final products are non-toxic and, in some cases, non-flammable. Their density and thermal conductivity was measured and found 0.02-0.06 g/cm3 and 0.03-0.04 W/mK, respectively.

  1. Thermal Conductivity of Foam Glasses Prepared using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    The increasing focus on better building insulation is important to lower energy consumption. Development of new and improved insulation materials can contribute to solving this problem. Foam glass has a good insulating effect due to its large gas volume (porosity >90 %). It can be produced with o...... the thermal conductivity varies with gas composition. This allows us to determine the contribution of the gas and solid phase to the total thermal conductivity of a foam glass....

  2. Electrical conductivity of quasi-two-dimensional foams.

    Science.gov (United States)

    Yazhgur, Pavel; Honorez, Clément; Drenckhan, Wiebke; Langevin, Dominique; Salonen, Anniina

    2015-04-01

    Quasi-two-dimensional (quasi-2D) foams consist of monolayers of bubbles squeezed between two narrowly spaced plates. These simplified foams have served successfully in the past to shed light on numerous issues in foam physics. Here we consider the electrical conductivity of such model foams. We compare experiments to a model which we propose, and which successfully relates the structural and the conductive properties of the foam over the full range of the investigated liquid content. We show in particular that in the case of quasi-2D foams the liquid in the nodes needs to be taken into account even at low liquid content. We think that these results may provide different approaches for the characterization of foam properties and for the in situ characterization of the liquid content of foams in confining geometries, such as microfluidics.

  3. Pipe Decontamination Involving String-Foam Circulation

    International Nuclear Information System (INIS)

    Turchet, J.P.; Estienne, G.; Fournel, B.

    2002-01-01

    Foam applications number for nuclear decontamination purposes has recently increased. The major advantage of foam decontamination is the reduction of secondary liquid wastes volumes. Among foam applications, we focus on foam circulation in contaminated equipment. Dynamic properties of the system ensures an homogeneous and rapid effect of the foam bed-drifted chemical reagents present in the liquid phase. This paper describes a new approach of foam decontamination for pipes. It is based on an alternated air and foam injections. We called it 'string-foam circulation'. A further reduction of liquid wastes is achieved compared to continuous foam. Secondly, total pressure loss along the pipe is controlled by the total foam length in the pipe. It is thus possible to clean longer pipes keeping the pressure under atmospheric pressure value. This ensures the non dispersion of contamination. This study describes experimental results obtained with a neutral foam as well with an acid foam on a 130 m long loop. Finally, the decontamination of a 44 meters pipe is presented. (authors)

  4. Insulation systems for liquid methane fuel tanks for supersonic cruise aircraft

    Science.gov (United States)

    Brady, H. F.; Delduca, D.

    1972-01-01

    Two insulation systems for tanks containing liquid methane in supersonic cruise-type aircraft were designed and tested after an extensive materials investigation. One system is an external insulation and the other is an internal wet-type insulation system. Tank volume was maximized by making the tank shape approach a rectangular parallelopiped. One tank was designed to use the external insulation and the other tank to use the internal insulation. Performance of the external insulation system was evaluated on a full-scale tank under the temperature environment of -320 F to 700 F and ambient pressures of ground-level atmospheric to 1 psia. Problems with installing the internal insulation on the test tank prevented full-scale evaluation of performance; however, small-scale testing verified thermal conductivity, temperature capability, and installed density.

  5. Load responsive multilayer insulation performance testing

    Energy Technology Data Exchange (ETDEWEB)

    Dye, S.; Kopelove, A. [Quest Thermal Group, 6452 Fig Street Suite A, Arvada, CO 80004 (United States); Mills, G. L. [Ball Aerospace and Technologies Corp, 1600 Commerce Street, Boulder, CO 80301 (United States)

    2014-01-29

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.

  6. Load responsive multilayer insulation performance testing

    International Nuclear Information System (INIS)

    Dye, S.; Kopelove, A.; Mills, G. L.

    2014-01-01

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI

  7. Light and Strong Hierarchical Porous SiC Foam for Efficient Electromagnetic Interference Shielding and Thermal Insulation at Elevated Temperatures.

    Science.gov (United States)

    Liang, Caiyun; Wang, Zhenfeng; Wu, Lina; Zhang, Xiaochen; Wang, Huan; Wang, Zhijiang

    2017-09-06

    A novel light but strong SiC foam with hierarchical porous architecture was fabricated by using dough as raw material via carbonization followed by carbothermal reduction with silicon source. A significant synergistic effect is achieved by embedding meso- and nanopores in a microsized porous skeleton, which endows the SiC foam with high-performance electromagnetic interference (EMI) shielding, thermal insulation, and mechanical properties. The microsized skeleton withstands high stress. The meso- and nanosized pores enhance multiple reflection of the incident electromagnetic waves and elongate the path of heat transfer. For the hierarchical porous SiC foam with 72.8% porosity, EMI shielding can be higher than 20 dB, and specific EMI effectiveness exceeds 24.8 dB·cm 3 ·g -1 at a frequency of 11 GHz at 25-600 °C, which is 3 times higher than that of dense SiC ceramic. The thermal conductivity reaches as low as 0.02 W·m -1 ·K -1 , which is comparable to that of aerogel. The compressive strength is as high as 9.8 MPa. Given the chemical and high-temperature stability of SiC, the fabricated SiC foam is a promising candidate for modern aircraft and automobile applications.

  8. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...

  9. Fabrication of highly insulating foam glass made from CRT panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2015-01-01

    We prepared low-density foam glasses from cathode-ray-tube panel glass using carbon and MnO2 as the foaming agents. We investigated the influence of the carbon and MnO2 concentrations, the glass-powder preparation and the foaming conditions on the density and homogeneity of the pore structure...... and the dependence of the thermal conductivity on the foam density. The results show that the moderate foaming effect of the carbon is greatly improved by the addition of MnO2. A density as low as 131 kg m-3 can be achieved with fine glass powder. The foam density has a slight dependence on the carbon and MnO2...... concentrations, but it is mainly affected by the foaming temperature and the time. The thermal conductivity of the foam-glass samples is lower than that of commercial foam glasses with the same density. The lowest value was determined to be 42 mW m-1 K-1 for a foam glass with a density of 131 kg m-3. A further...

  10. Modelling of Churn-Annular foam flows

    NARCIS (Netherlands)

    Westende, J.M.C. van 't; Shoeibi Omrani, P.; Vercauteren, F.F.; Nennie, E.D.

    2016-01-01

    Foam assisted lift is a deliquification method in the oil and gas industry, which aims to prevent or postpone countercurrent gas-liquid flow in maturing gas wells or to assist in removing downhole accumulated liquids. According to Nimwegen, who performed experiments with foam flows, foam

  11. Production of lightweight foam glass (invited talk)

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass production allows low cost recycling of postconsumer glass and industrial waste materials as foaming agent or as melt resource. Foam glass is commonly produced by utilising milled glass mixed with a foaming agent. The powder mixture is heat-treated to around 10^3.7 – 10^6 Pa s, which...... result in viscous sintering and subsequent foaming of the glass melt. The porous glass melt is cooled down to room temperature to freeze-in the foam structure. The resulting foam glass is applied in constructions as a light weight material to reduce load bearing capacity and as heat insulating material...... in buildings and industry. We foam panel glass from old televisions with different foaming agents. We discuss the foaming ability and the foaming mechanism of different foaming systems. We compare several studies to define a viscous window for preparing low density foam glass. However, preparing foam glass...

  12. Foam-mat drying technology: A review.

    Science.gov (United States)

    Hardy, Z; Jideani, V A

    2017-08-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods, and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method that allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40-90°C) at atmospheric pressure. Methyl cellulose (0.25-2%), egg white (3-20%), maltodextrin (0.5-05%), and gum Arabic (2-9%) are the commonly utilized additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous, and sticky products that cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying, and improved product quality it provides.

  13. Electromagnetic Shielding Characteristics of Eco-Friendly Foamed Concrete Wall

    Directory of Open Access Journals (Sweden)

    Sung-Sil Cho

    2017-01-01

    Full Text Available The electromagnetic shielding characteristics according to the material composition of foamed concrete, which was manufactured to reduce environmental pollution and to economically apply it in actual building walls, were researched herein. Industrial by-products such as ladle furnace slag (LFS, gypsum, and blast furnace slag (BFS were added to manufacture foamed concrete with enhanced functionalities such as lightweight, heat insulation, and sound insulation. The electrical characteristics such as permittivity and loss tangent according to the foam and BFS content were calculated and measured. Free space measurement was used to measure the electromagnetic shielding characteristics of the actually manufactured foamed concrete. It was confirmed that electromagnetic signals were better blocked when the foam content was low and the BFS content was high in the measured frequency bands (1–8 GHz and that approximately 90% of the electromagnetic signals were blocked over 4 GHz.

  14. Melde's Experiment on a Vibrating Liquid Foam Microchannel

    Science.gov (United States)

    Cohen, Alexandre; Fraysse, Nathalie; Raufaste, Christophe

    2017-12-01

    We subject a single Plateau border channel to a transverse harmonic excitation, in an experiment reminiscent of the historical one by Melde on vibrating strings, to study foam stability and wave properties. At low driving amplitudes, the liquid string exhibits regular oscillations. At large ones, a nonlinear regime appears and the acoustic radiation splits the channel into two zones of different cross section area, vibration amplitude, and phase difference with the neighboring soap films. The channel experiences an inertial dilatancy that is accounted for by a new Bernoulli-like relation.

  15. Porous materials based on foaming solutions obtained from industrial waste

    Science.gov (United States)

    Starostina, I. V.; Antipova, A. N.; Ovcharova, I. V.; Starostina, Yu L.

    2018-03-01

    This study analyzes foam concrete production efficiency. Research has shown the possibility of using a newly-designed protein-based foaming agent to produce porous materials using gypsum and cement binders. The protein foaming agent is obtained by alkaline hydrolysis of a raw mixture consisting of industrial waste in an electromagnetic field. The mixture consists of spent biomass of the Aspergillus niger fungus and dust from burning furnaces used in cement production. Varying the content of the foaming agent allows obtaining gypsum binder-based foam concretes with the density of 200-500 kg/m3 and compressive strength of 0.1-1.0 MPa, which can be used for thermal and sound insulation of building interiors. Cement binders were used to obtain structural and thermal insulation materials with the density of 300-950 kg/m3 and compressive strength of 0.9-9.0 MPa. The maximum operating temperature of cement-based foam concretes is 500°C because it provides the shrinkage of less than 2%.

  16. Faraday instability at foam-water interface.

    Science.gov (United States)

    Bronfort, A; Caps, H

    2012-12-01

    A nearly two-dimensional foam is generated inside a Hele-shaw cell and left at rest on its liquid bath. The system is then vertically shaken and, above a well-defined acceleration threshold, surface waves appear at the foam-liquid interface. Those waves are shown to be subharmonic. The acceleration threshold is studied and compared to the common liquid-gas case, emphasizing the energy dissipation inside the foam. An empirical model is proposed for this energy loss, accounting for the foam characteristics such as the bubble size but also the excitation parameter, namely the linear velocity.

  17. Influence of liquid viscosity and surface tension on the gas-liquid mass transfer coefficient for solid foam packings in co-current two-phase flow

    NARCIS (Netherlands)

    Stemmet, C.P.; Bartelds, F.; Schaaf, van der J.; Kuster, B.F.M.; Schouten, J.C.

    2008-01-01

    The gas–liquid mass transfer coefficient and other hydrodynamic parameters such as liquid holdup and frictional pressure drop are presented for gas and liquid moving in co-current upflow and downflow through solid foam packings of 10 and of 40 pores per linear inch (ppi). The effect of increasing

  18. Attic Retrofits Using Nail-Base Insulated Panels

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, David [Home Innovation Research Labs; Kochkin, Vladimir [Home Innovation Research Labs

    2018-03-26

    This project developed and demonstrated a roof/attic energy retrofit solution using nail-base insulated panels for existing homes where traditional attic insulation approaches are not effective or feasible. Nail-base insulated panels (retrofit panels) consist of rigid foam insulation laminated to one face of a wood structural panel. The prefabricated panels are installed above the existing roof deck during a reroofing effort.

  19. Electrically and Thermally Insulated Joint for Liquid Nitrogen Transfer

    DEFF Research Database (Denmark)

    Rasmussen, Carsten; Jensen, Kim Høj; Holbøll, Joachim T.

    1999-01-01

    A prototype of a superconducting cable is currently under construction. The cable conductor is cooled by liquid nitrogen in order to obtain superconductivity. The peripheral cooling circuit is kept at ground potential. This requires a joint which insulates both electrically and thermally...

  20. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag

    Directory of Open Access Journals (Sweden)

    Xiao Zhao

    2015-01-01

    Full Text Available Foamed mortar with a density of 1300 kg/m3 was prepared. In the initial laboratory trials, water-to-cement (w/c ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM and slag-foamed mortar (SFM, 50% cement was replaced by slag weight. Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.

  1. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag.

    Science.gov (United States)

    Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan

    2015-01-30

    Foamed mortar with a density of 1300 kg/m³ was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.

  2. Foam flow and liquid films motion: role of the surfactants properties

    Science.gov (United States)

    Cantat, Isabelle

    2011-11-01

    Liquid foams absorb energy in a much more efficient way than each of its constituents, taken separately. However, the local process at the origin of the energy dissipation is not entirely elucidated yet, and several models may apply, thus making worth local studies on simpler systems. We investigate the motion through a wet tube of transverse soap films, or lamellae, combining local thickness and velocity measurements in the wetting film. For foaming solution with a high dilatational surface modulus, we reveal a zone of several centimeters in length, the dynamic wetting film, which is significantly influenced by a moving lamella. The dependence of this influence length on lamella velocity and wetting film thickness provides an accurate discrimination among several possible surfactants models. In collaboration with B. Dollet.

  3. Treatment of low level radioactive liquid wastes using composite ion-exchange resins based on polyurethane foam

    International Nuclear Information System (INIS)

    Rao, S.V.S.; Lekshmi, R.; Mani, A.G.S.; Sinha, P.K.

    2010-01-01

    Composite ion-exchange resins were prepared by coating copper-ferrocyanide (CFC) and hydrous manganese oxide (HMO) powders on polyurethane (PU) foam. Polyvinyl acetate/Acetone was used as a binder. The foam was loaded with about five times its weight with CFC and HMO powders. The distribution coefficients of CFC-PU foam and HMO-PU foam for cesium and strontium respectively were estimated. Under similar conditions the HMO-PU foam showed higher capacity as well as better kinetics for removal of strontium than CFC-PU foam for Cs. The pilot plant scale studies were conducted using a mixed composite ion-exchange resin bed. About 1000 bed volumes could be passed before attaining a DF of 10 from an initial value of 60-80. The spent resin was digested in alkaline KMnO 4 and the digested liquid was fixed in cement matrix. The matrices were characterized with respect to compressive strength and leach resistance. (author)

  4. Preparation of Activated Carbons from Waste External Thermal-Insulating Phenolic Foam Boards

    Directory of Open Access Journals (Sweden)

    Gao Lijuan

    2018-01-01

    Full Text Available Activated carbons (ACs were prepared by steam physical activation or KOH chemical activation with the waste external thermal-insulating phenolic foam board as the raw material. The Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, Brunauer-Emmett-Teller (BET specific area, pore-size distribution and iodine value were used to characterize the properties of ACs. AC-1(with the method of KOH chemical activation has the iodine value of 2300mg/g, BET specific area of 1293 m2g-1, average pore-size of 2.4 nm, and mainly composed of micropore and relatively small mesopore. AC-2(with the method of steam physical activation has the iodine value of 1665mg/g. Compared with AC-2, AC-1 had a pore-size distribution with more evenly and relative concentrated, it’s belonging to the high microporosity materials. Actually, chemical activation had more significant influence on destruction of the pore wall than physical activation.

  5. Development of polyisocyanurate pour foam formulation for space shuttle external tank thermal protection system

    Science.gov (United States)

    Harvey, James A.; Butler, John M.; Chartoff, Richard P.

    1988-01-01

    Four commercially available polyisocyanurate polyurethane spray-foam insulation formulations are used to coat the external tank of the space shuttle. There are several problems associated with these formulations. For example, some do not perform well as pourable closeout/repair systems. Some do not perform well at cryogenic temperatures (poor adhesion to aluminum at liquid nitrogen temperatures). Their thermal stability at elevated temperatures is not adequate. A major defect in all the systems is the lack of detailed chemical information. The formulations are simply supplied to NASA and Martin Marietta, the primary contractor, as components; Part A (isocyanate) and Part B (poly(s) and additives). Because of the lack of chemical information the performance behavior data for the current system, NASA sought the development of a non-proprietary room temperature curable foam insulation. Requirements for the developed system were that it should exhibit equal or better thermal stability both at elevated and cryogenic temperatures with better adhesion to aluminum as compared to the current system. Several formulations were developed that met these requirements, i.e., thermal stability, good pourability, and good bonding to aluminum.

  6. Thermal performance enhancement of erythritol/carbon foam composites via surface modification of carbon foam

    Science.gov (United States)

    Li, Junfeng; Lu, Wu; Luo, Zhengping; Zeng, Yibing

    2017-03-01

    The thermal performance of the erythritol/carbon foam composites, including thermal diffusivity, thermal capacity, thermal conductivity and latent heat, were investigated via surface modification of carbon foam using hydrogen peroxide as oxider. It was found that the surface modification enhanced the wetting ability of carbon foam surface to the liquid erythritol of the carbon foam surface and promoted the increase of erythritol content in the erythritol/carbon foam composites. The dense interfaces were formed between erythritol and carbon foam, which is due to that the formation of oxygen functional groups C=O and C-OH on the carbon surface increased the surface polarity and reduced the interface resistance of carbon foam surface to the liquid erythritol. The latent heat of the erythritol/carbon foam composites increased from 202.0 to 217.2 J/g through surface modification of carbon foam. The thermal conductivity of the erythritol/carbon foam composite before and after surface modification further increased from 40.35 to 51.05 W/(m·K). The supercooling degree of erythritol also had a large decrease from 97 to 54 °C. Additionally, the simple and effective surface modification method of carbon foam provided an extendable way to enhance the thermal performances of the composites composed of carbon foams and PCMs.

  7. Polyisocyanurate systems for insulating and sandwich elements; Polyisocyanurat-Systeme fuer Daemm- und Sandwichelemente

    Energy Technology Data Exchange (ETDEWEB)

    Malotki, P. von [Elastogran GmbH, Lemfoerde (Germany)

    2000-07-01

    PUR rigid foam plates are laminated with flexible Al films, paper or glass non-wovens, or may be processed into sandwich elements with metallic top-layers via coil-coating. Dependence of heat insulation efficiency, dimensional stability and fire behavior of the foam on chemical composition and the blowing agents is considered and compared with polyisocyanurate foams. Recipes for the production of PIR heat insulation elements and sandwich elements are given.

  8. Chaotic bubbling and nonstagnant foams.

    Science.gov (United States)

    Tufaile, Alberto; Sartorelli, José Carlos; Jeandet, Philippe; Liger-Belair, Gerard

    2007-06-01

    We present an experimental investigation of the agglomeration of bubbles obtained from a nozzle working in different bubbling regimes. This experiment consists of a continuous production of bubbles from a nozzle at the bottom of a liquid column, and these bubbles create a two-dimensional (2D) foam (or a bubble raft) at the top of this column. The bubbles can assemble in various dynamically stable arrangement, forming different kinds of foams in a liquid mixture of water and glycerol, with the effect that the bubble formation regimes influence the foam obtained from this agglomeration of bubbles. The average number of bubbles in the foam is related to the bubble formation frequency and the bubble mean lifetime. The periodic bubbling can generate regular or irregular foam, while a chaotic bubbling only generates irregular foam.

  9. Foam generator and viscometer apparatus and process

    Science.gov (United States)

    Reed, Troy D.; Pickell, Mark B.; Volk, Leonard J.

    2004-10-26

    An apparatus and process to generate a liquid-gas-surfactant foam and to measure its viscosity and enable optical and or electronic measurements of physical properties. The process includes the steps of pumping selected and measured liquids and measured gases into a mixing cell. The mixing cell is pressurized to a desired pressure and maintained at a desired pressure. Liquids and gas are mixed in the mixing cell to produce a foam of desired consistency. The temperature of the foam in the mixing cell is controlled. Foam is delivered from the mixing cell through a viscometer under controlled pressure and temperature conditions where the viscous and physical properties of the foam are measured and observed.

  10. The Use of Biodiesel Residues for Heat Insulating Biobased Polyurethane Foams

    Directory of Open Access Journals (Sweden)

    Nihan Özveren

    2017-01-01

    Full Text Available The commercial and biobased polyurethane foams (PUF were produced and characterized in this study. Commercial polyether polyol, crude glycerol, methanol-free crude glycerol, and pure glycerol were used as polyols. Crude glycerol is byproduct of the biodiesel production, and it is a kind of biofuel residue. Polyol blends were prepared by mixing the glycerol types and the commercial polyol with different amounts, 10 wt%, 30 wt%, 50 wt%, and 80 wt%. All types of polyol blends were reacted with polymeric diphenyl methane diisocyanates (PMDI for the production of rigid foams. Thermal properties of polyurethane foams are examined by thermogravimetric analysis (TGA and thermal conductivity tests. The structures of polyurethane foams were examined by Fourier Transformed Infrared Spectroscopy (FTIR. Changes in morphology of foams were investigated by Scanning Electron Microscopy (SEM. Mechanical properties of polyurethane foams were determined by compression tests. This study identifies the critical aspects of polyurethane foam formation by the use of various polyols and furthermore offers new uses of crude glycerol and methanol-free crude glycerol which are byproducts of biodiesel industry.

  11. A system extinguishing a fire by insulating a liquid fuel

    International Nuclear Information System (INIS)

    Colome, Jacques; Duchene, Alain; Regnier, Jean.

    1975-01-01

    The invention refers to a system for quickly extinguishing a liquid fuel body on fire by insulating it completely from the ambient air. It applies particularly to the case of a high temperature liquid sodium sheet flowing accidentally from a circuit belonging to a fast neutron reactor. The system in question includes a lower receptacle for collecting the liquid fuel and a top cover shutting off the receptacle. This cover has inclined channels to take the liquid fuel flow and openings to allow this liquid through at the bottom end of the channels. These openings are closed by retractable shutters moving away under the pressure of the liquid in the channels and closing automatically after the liquid has flowed into the receptacle [fr

  12. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  13. Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Costeux, Stephane [Dow Chemical Company, Midland, MI (United States); Bunker, Shanon [Dow Chemical Company, Midland, MI (United States)

    2013-12-20

    The objective of this project was to explore and potentially develop high performing insulation with increased R/inch and low impact on climate change that would help design highly insulating building envelope systems with more durable performance and lower overall system cost than envelopes with equivalent performance made with materials available today. The proposed technical approach relied on insulation foams with nanoscale pores (about 100 nm in size) in which heat transfer will be decreased. Through the development of new foaming methods, of new polymer formulations and new analytical techniques, and by advancing the understanding of how cells nucleate, expand and stabilize at the nanoscale, Dow successfully invented and developed methods to produce foams with 100 nm cells and 80% porosity by batch foaming at the laboratory scale. Measurements of the gas conductivity on small nanofoam specimen confirmed quantitatively the benefit of nanoscale cells (Knudsen effect) to increase insulation value, which was the key technical hypotheses of the program. In order to bring this technology closer to a viable semi-continuous/continuous process, the project team modified an existing continuous extrusion foaming process as well as designed and built a custom system to produce 6" x 6" foam panels. Dow demonstrated for the first time that nanofoams can be produced in a both processes. However, due to technical delays, foam characteristics achieved so far fall short of the 100 nm target set for optimal insulation foams. In parallel with the technology development, effort was directed to the determination of most promising applications for nanocellular insulation foam. Voice of Customer (VOC) exercise confirmed that demand for high-R value product will rise due to building code increased requirements in the near future, but that acceptance for novel products by building industry may be slow. Partnerships with green builders, initial launches in smaller markets (e.g. EIFS

  14. Energy and global warming impacts of CFC alternative technologies for foam building insulations

    International Nuclear Information System (INIS)

    Fischer, S.K.; Fairchild, P.D.; Hughes, P.J.

    1992-01-01

    Chlorofluorocarbons (CFCS) have been used as blowing agents in foam insulation, as the working fluids in cooling and refrigeration equipment, and as solvents in general and precision cleaning applications since their introduction in the 1930s. The number of applications and volumes of CFCs used grew at a tremendous pace during the 1960s and 1970s, but in the mid-1980s it was confirmed that these extremely useful chemicals contribute to the destruction of stratospheric zone and that they are the primary cause of the CFCs have also been found to be second only to carbon dioxide as a factor causing increased greenhouse warming. These chemicals are being phased out of use rapidly to protect the ozone layer and it is very important that the replacements for CFCs do not result in a net increase in global warming by introducing less efficient processes that lead to higher energy use and increased carbon dioxide emissions. A study was conducted to identify those alternative chemicals and technologies that could replace CFCs in energy related applications before the year 2000, and to assess the total potential impact of those alternatives on global warming. The analysis for this project included an estimate of the direct effects from the release of blowing agents, refrigerants, and solvents into the atmosphere and the indirect effects of carbon dioxide emissions resulting from energy use for commercial and residential building insulation, household and commercial refrigeration, building and automobile air conditioning, and general metal and electronics solvent cleaning. This paper focuses on those aspects of the study relevant to building insulation. In general the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon alternatives for CFCs lead to large and sometimes dramatic reductions in total equivalent warming impact, lifetime equivalent C0 2 emissions (TEWI). Most of the reductions result from decreased direct effects without significant changes in energy use

  15. New decontamination process using foams containing particles

    International Nuclear Information System (INIS)

    Guignot, S.; Faure, S.

    2008-01-01

    One key point in the dismantling of nuclear facilities is the thorough cleaning of radiation- exposed surfaces on which radioactive deposits have formed. This cleaning step is often achieved by successive liquid rinses with specific solutions containing alkaline, acidic, or even oxidizing species depending on whether the aim is to dissolve greasy deposits (like ter-butylphosphate) or to corrode surfaces on micrometric thicknesses. An alternative process to reduce the amount of chemicals and the volume of the resulting nuclear wastes consists in using the same but foamed solutions (1). Carrying less liquid, the resulting foams still display similar kinetics of dissolution rates and their efficiency is determined by their ability to hold sufficient wetnesses during the time required for the decontamination. Classical foam decontamination process illustrated by foam pulverization or circulation in the 90 turned five years ago into a specific static process using high-lifetime viscosified foam at a steady state. One way to slow down the liquid drainage is to raise liquid viscosity by adding organic viscosifiers like xanthan gum (2). In 2005, new studies started on an innovative process proposed by S. Faure and based on triphasic foams containing particles [3]. The aim is to generate new decontamination foams containing less quantities of organics materials (surfactants and viscosifiers). Silica particles are obviously known to stabilize or destabilize foams (4). In the frame of S. Guignot Ph.D., new fundamental studies are initiated in order to clarify the role of silica solid microparticles in these foams. Our final goal is to determine whether this kind of new foam can be stable for several hours for a decontamination process. The results we will report focus on wet foams used for nuclear decontamination and incorporating fumed silica. The study is conducted on a vertical foam column in a pseudo-free drainage configuration, and aims at investigating the influence of

  16. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  17. Foam engineering fundamentals and applications

    CERN Document Server

    2012-01-01

    Containing contributions from leading academic and industrial researchers, this book provides a much needed update of foam science research. The first section of the book presents an accessible summary of the theory and fundamentals of foams. This includes chapters on morphology, drainage, Ostwald ripening, coalescence, rheology, and pneumatic foams. The second section demonstrates how this theory is used in a wide range of industrial applications, including foam fractionation, froth flotation and foam mitigation. It includes chapters on suprafroths, flotation of oil sands, foams in enhancing petroleum recovery, Gas-liquid Mass Transfer in foam, foams in glass manufacturing, fire-fighting foam technology and consumer product foams.

  18. Technical characteristics of rigid sprayed PUR and PIR foams used in construction industry

    Science.gov (United States)

    Gravit, Marina; Kuleshin, Aleksey; Khametgalieva, Elina; Karakozova, Irina

    2017-10-01

    The article describes the distinctive properties of rigid polyurethane foam and polyisocyanurate (PUR and PIR). A brief review of the research was carried out on their modification with an objective to improve the thermal insulation properties and reducing the combustibility. A comparative analysis of the technical characteristics of rigid PUR and PIR foams of various manufacturers is presented. The problems of the state of the market for the production of polyurethane foam and polyisocyanurate in Russia have been marked. It is established that the further development of the fabrication technology of heat-insulating sprayed rigid PUR and PIR foams requires uniformity of technical characteristics of original components and finished products. Moreover, it requires the creation of unified information base for raw materials and auxiliary materials used in the production of PUR and PIR foam.

  19. Studies on Foam Decay Trend and Influence of Temperature Jump on Foam Stability in Sclerotherapy.

    Science.gov (United States)

    Bai, Taoping; Chen, Yu; Jiang, Wentao; Yan, Fei; Fan, Yubo

    2018-02-01

    This study investigated the influence of temperature jump and liquid-gas ratio on foam stability to derive the foam-decay law. The experimental group conditions were as follows: mutation temperatures (10°C, 16°C, 20°C, 23°C, 25°C, and 27°C to >37°C) and liquid-gas ratios (1:1, 1:2, 1:3, and 1:4). The control group conditions were as follows: temperatures (10°C, 16°C, 20°C, 23°C, 25°C and 27°C) and liquid-gas ratios (1:1, 1:2, 1:3, and 1:4). A homemade device manufactured using the Tessari DSS method was used to prepare the foam. The decay process was videotape recorded. In the drainage rate curve, the temperature rose, and the liquid-gas ratio varied from 1:1 to 1:4, causing faster decay. In the entire process, the foam volume decreased with increasing drainage rate. The relationships were almost linear. Comparison of the experimental and control groups shows that the temperature jump results in a drainage time range of 1 to 15 seconds. The half-life ranges from 10 to 30 seconds. The maximum rate is 18.85%. Changes in the preparation temperature yields a drainage time range of 3 to 30 seconds. The half-life varies from 20 to 60 seconds. Decreasing the temperature jump range and liquid-gas ratio gradually enhances the foam stability. The foam decay time and drainage rate exhibit an exponential function distribution.

  20. Generation of sclerosant foams by mechanical methods increases the foam temperature.

    Science.gov (United States)

    Tan, Lulu; Wong, Kaichung; Connor, David; Fakhim, Babak; Behnia, Masud; Parsi, Kurosh

    2017-08-01

    Objective To investigate the effect of agitation on foam temperature. Methods Sodium tetradecyl sulphate and polidocanol were used. Prior to foam generation, the sclerosant and all constituent equipment were cooled to 4-25℃ and compared with cooling the sclerosant only. Foam was generated using a modified Tessari method. During foam agitation, the temperature change was measured using a thermocouple for 120 s. Results Pre-cooling all the constituent equipment resulted in a cooler foam in comparison with only cooling the sclerosant. A starting temperature of 4℃ produced average foam temperatures of 12.5 and 13.2℃ for sodium tetradecyl sulphate and polidocanol, respectively. It was also found that only cooling the liquid sclerosant provided minimal cooling to the final foam temperature, with the temperature 20 and 20.5℃ for sodium tetradecyl sulphate and polidocanol, respectively. Conclusion The foam generation process has a noticeable impact on final foam temperature and needs to be taken into consideration when creating foam.

  1. FoamVis, A Visualization System for Foam Research: Design and Implementation

    Directory of Open Access Journals (Sweden)

    Dan R. Lipsa

    2015-03-01

    Full Text Available Liquid foams are used in areas such as mineral separation, oil recovery, food and beverage production, sanitation and fire fighting. To improve the quality of products and the efficiency of processes in these areas, foam scientists wish to understand and control foam behaviour. To this end, foam scientists have used foam simulations to model foam behaviour; however, analysing these simulations presents difficult challenges. We describe the main foam research challenges and present the design of FoamVis, the only existing visualization, exploration and analysis application created to address them. We describe FoamVis’ main features, together with relevant design and implementation notes. Our goal is to provide a global overview and individual feature implementation details that would allow a visualization scientist to extend the FoamVis system with new algorithms and adapt it to new requirements. The result is a detailed presentation of the software that is not provided in previous visualization research papers.

  2. Wetted foam liquid fuel ICF target experiments

    International Nuclear Information System (INIS)

    Olson, R E; Leeper, R J; Yi, S A; Kline, J L; Zylstra, A B; Peterson, R R; Shah, R; Braun, T; Biener, J; Kozioziemski, B J; Sater, J D; Biener, M M; Hamza, A V; Nikroo, A; Hopkins, L Berzak; Ho, D; LePape, S; Meezan, N B

    2016-01-01

    We are developing a new NIF experimental platform that employs wetted foam liquid fuel layer ICF capsules. We will use the liquid fuel layer capsules in a NIF sub-scale experimental campaign to explore the relationship between hot spot convergence ratio (CR) and the predictability of hot spot formation. DT liquid layer ICF capsules allow for flexibility in hot spot CR via the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density. Our hypothesis is that the predictive capability of hot spot formation is robust and 1D-like for a relatively low CR hot spot (CR∼15), but will become less reliable as hot spot CR is increased to CR>20. Simulations indicate that backing off on hot spot CR is an excellent way to reduce capsule instability growth and to improve robustness to low-mode x-ray flux asymmetries. In the initial experiments, we will test our hypothesis by measuring hot spot size, neutron yield, ion temperature, and burn width to infer hot spot pressure and compare to predictions for implosions with hot spot CR's in the range of 12 to 25. Larger scale experiments are also being designed, and we will advance from sub-scale to full-scale NIF experiments to determine if 1D-like behavior at low CR is retained as the scale-size is increased. The long-term objective is to develop a liquid fuel layer ICF capsule platform with robust thermonuclear burn, modest CR, and significant α-heating with burn propagation. (paper)

  3. Churn-annular foam flow: experiments and modelling

    NARCIS (Netherlands)

    Westende, J.M.C. van 't; Shoeibi Omrani, P.; Vercauteren, F.F.; Nennie, E.D.

    2016-01-01

    Foam assisted lift is a deliquification method in the oil and gas industry, which aims to prevent or postpone countercurrent gas-liquid flow in maturing gas wells or to assist in removing downhole accumulated liquids. The creation of foam reduces the density of the liquid that needs to be

  4. Viscous Control of the Foam Glass Process

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Smedskjær, Morten Mattrup

    The production of foam glass as heat insulating material is an important industrial process because it enables low-cost recycling of glass waste from a variety of chemical compositions. Optimization of the foaming process of new glass waste compositions is time consuming, since many factors affect...... the foaming process such as temperature, particle size, type and concentration of foaming agent. The foaming temperature is one of the key factors, because even small temperature changes can affect the melt viscosity by several orders of magnitude. Therefore, it is important to establish the viscosity range...... in which the foaming process should take place, particularly when the type of recycled cullet is changed or several types of cullet are mixed in one batch. According to recent glass literature, the foaming process should occur at viscosity 103 to 105 Pa s. However, no systematic studies have hitherto been...

  5. Compact assembly generates plastic foam, inflates flotation bag

    Science.gov (United States)

    1965-01-01

    Device for generating plastic foam consists of an elastomeric bag and two containers with liquid resin and a liquid catalyst. When the walls of the containers are ruptured the liquids come into contact producing foam which inflates the elastomeric bag.

  6. Two-dimensional thermal analysis of liquid hydrogen tank insulation

    Energy Technology Data Exchange (ETDEWEB)

    Babac, Gulru; Sisman, Altug [Istanbul Technical University, Energy Institute, Ayazaga campus, 34469 Maslak, Istanbul (Turkey); Cimen, Tolga [Jaguar and Landrover, Banbury Road, Gaydon, Warwick CV35 0RR (United Kingdom)

    2009-08-15

    Liquid hydrogen (LH{sub 2}) storage has the advantage of high volumetric energy density, while boil-off losses constitute a major disadvantage. To minimize the losses, complicated insulation techniques are necessary. In general, Multi Layer Insulation (MLI) and a Vapor-Cooled Shield (VCS) are used together in LH{sub 2} tanks. In the design of an LH{sub 2} tank with VCS, the main goal is to find the optimum location for the VCS in order to minimize heat leakage. In this study, a 2D thermal model is developed by considering the temperature dependencies of the thermal conductivity and heat capacity of hydrogen gas. The developed model is used to analyze the effects of model considerations on heat leakage predictions. Furthermore, heat leakage in insulation of LH{sub 2} tanks with single and double VCS is analyzed for an automobile application, and the optimum locations of the VCS for minimization of heat leakage are determined for both cases. (author)

  7. Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces.

    Science.gov (United States)

    Love, Adam H; Bailey, Christopher G; Hanna, M Leslie; Hok, Saphon; Vu, Alex K; Reutter, Dennis J; Raber, Ellen

    2011-11-30

    Bench-scale testing was used to evaluate the efficacy of four decontamination formulations on typical indoor surfaces following exposure to the liquid chemical warfare agents sarin (GB), soman (GD), sulfur mustard (HD), and VX. Residual surface contamination on coupons was periodically measured for up to 24h after applying one of four selected decontamination technologies [0.5% bleach solution with trisodium phosphate, Allen Vanguard Surface Decontamination Foam (SDF™), U.S. military Decon Green™, and Modec Inc. and EnviroFoam Technologies Sandia Decontamination Foam (DF-200)]. All decontamination technologies tested, except for the bleach solution, performed well on nonporous and nonpermeable glass and stainless-steel surfaces. However, chemical agent residual contamination typically remained on porous and permeable surfaces, especially for the more persistent agents, HD and VX. Solvent-based Decon Green™ performed better than aqueous-based bleach or foams on polymeric surfaces, possibly because the solvent is able to penetrate the polymer matrix. Bleach and foams out-performed Decon Green for penetrating the highly polar concrete surface. Results suggest that the different characteristics needed for an ideal and universal decontamination technology may be incompatible in a single formulation and a strategy for decontaminating a complex facility will require a range of technologies. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Optimisation of multi-layer rotationally moulded foamed structures

    Science.gov (United States)

    Pritchard, A. J.; McCourt, M. P.; Kearns, M. P.; Martin, P. J.; Cunningham, E.

    2018-05-01

    Multi-layer skin-foam and skin-foam-skin sandwich constructions are of increasing interest in the rotational moulding process for two reasons. Firstly, multi-layer constructions can improve the thermal insulation properties of a part. Secondly, foamed polyethylene sandwiched between solid polyethylene skins can increase the mechanical properties of rotationally moulded structural components, in particular increasing flexural properties and impact strength (IS). The processing of multiple layers of polyethylene and polyethylene foam presents unique challenges such as the control of chemical blowing agent decomposition temperature, and the optimisation of cooling rates to prevent destruction of the foam core; therefore, precise temperature control is paramount to success. Long cooling cycle times are associated with the creation of multi-layer foam parts due to their insulative nature; consequently, often making the costs of production prohibitive. Devices such as Rotocooler®, a rapid internal mould water spray cooling system, have been shown to have the potential to significantly decrease cooling times in rotational moulding. It is essential to monitor and control such devices to minimise the warpage associated with the rapid cooling of a moulding from only one side. The work presented here demonstrates the use of threaded thermocouples to monitor the polymer melt in multi-layer sandwich constructions, in order to analyse the cooling cycle of multi-layer foamed structures. A series of polyethylene skin-foam test mouldings were produced, and the effect of cooling medium on foam characteristics, mechanical properties, and process cycle time were investigated. Cooling cycle time reductions of 45%, 26%, and 29% were found for increasing (1%, 2%, and 3%) chemical blowing agent (CBA) amount when using internal water cooling technology from ˜123°C compared with forced air cooling (FAC). Subsequently, a reduction of IS for the same skin-foam parts was found to be 1%, 4

  9. Simulation and Experimental Determination of Technological Liquid Molding Parameters of Tubing Basalt Insulation

    Directory of Open Access Journals (Sweden)

    Yu. V. Badanina

    2015-01-01

    Full Text Available The article is dedicated to one of the most important and urgent tasks in mechanical engineering development - the creation of low-density and environmentally-friendly thermoinsulation from available cheap basalt fibers for products to operate at temperatures up to 700°C.One of the most effective applications of such thermo-insulation is to develop and provide highly porous coatings from short basalt fibers by liquid filtration for tubing (T to supply superheated up to 420° C steam under pressure of 35 MPa in the deep layers with severe highviscosity oil. Tubing with the short low-density basalt insulation can be used for a greater depth than the vacuum-insulated tubing, which are also called "thermo-cases", and do not fully meet business needs for long-term reliability of oil vacuum tubes, too large mass per unit length of their design and, as a consequence, the impossibility to use such pipes for deep wells.The aim of the work is to simulate a liquid filtration process of short fibers and determine technological parameters of producing thermal insulation coatings of tubing pipes from basalt fibers and mineral binder shaped as cylinders and cylindrical shells. The paper proposes a mathematical model of free filtration deposition of short fibers from liquid slurry, which describes dynamics of creating thermal insulation products and allows us to determine the rational parameters of their manufacturing process. It shows methods to improve the products quality while forming the thermal insulation by filtration through additional vacuum deposition of a filtrate chamber and the final prepressing of sediment layer, giving dimensions and shape to the final product.The paper defines a prescription hydro mass composition. It shows that to increase the compressive strength of highly fibrous rings and cylindrical shells it is necessary to use based on oxide А12O3 5-7% by weight mineral binder, which fixes basalt fibers in places of their contacts. It

  10. Lightweight, Thermally Insulating Structural Panels

    Science.gov (United States)

    Eisen, Howard J.; Hickey, Gregory; Wen, Liang-Chi; Layman, William E.; Rainen, Richard A.; Birur, Gajanana C.

    1996-01-01

    Lightweight, thermally insulating panels that also serve as structural members developed. Honeycomb-core panel filled with low-thermal-conductivity, opacified silica aerogel preventing convection and minimizes internal radiation. Copper coating on face sheets reduces radiation. Overall thermal conductivities of panels smaller than state-of-art commercial non-structurally-supporting foam and fibrous insulations. On Earth, panels suitable for use in low-air-pressure environments in which lightweight, compact, structurally supporting insulation needed; for example, aboard high-altitude aircraft or in partially evacuated panels in refrigerators.

  11. External Tank (ET) Foam Thermal/Structural Analysis Project

    Science.gov (United States)

    Moore, David F.; Ungar, Eugene K.; Chang, Li C.; Malroy, Eric T.; Stephan, Ryan A.

    2008-01-01

    An independent study was performed to assess the pre-launch thermally induced stresses in the Space Shuttle External Tank Bipod closeout and Ice/Frost ramps (IFRs). Finite element models with various levels of detail were built that included the three types of foam (BX-265, NCFI 24-124, and PDL 1034) and the underlying structure and bracketry. Temperature profiles generated by the thermal analyses were input to the structural models to calculate the stress levels. An area of high stress in the Bipod closeout was found along the aluminum tank wall near the phenolic insulator and along the phenolic insulator itself. This area of high stress might be prone to cracking and possible delamination. There is a small region of slightly increased stress in the NCFI 24-124 foam near its joint with the Bipod closeout BX-265 foam. The calculated stresses in the NCFI 24-124 acreage foam are highest at the NCFI 24-124/PDL 1034/tank wall interface under the LO2 and LH2 IFRs. The highest calculated stresses in the LH2 NCFI 24-124 foam are higher than in similar locations in the LO2 IFR. This finding is consistent with the dissection results of IFRs on ET-120.

  12. A Moving Optical Fibre Technique for Structure Analysis of Heterogenous Products: Application to the Determination of the Bubble-Size Distribution in Liquid Foams

    OpenAIRE

    Bisperink, C. G. J.; Akkerman, J. C.; Prins, A.; Ronteltap, A. D.

    1992-01-01

    The bubble-size distribution in liquid foams measured as a function of time can be used to distinguish between the physical processes that determine the breakdown of foams. A new method based on an optical fibre technique was developed to measure various foam characteristics e.g. the rate of drainage, the rate of foam collapse, the change in gas fraction, interbubble gas diffusion (disproportionation) and the evolution of the bubble - size distribution during the ageing of the foam. The metho...

  13. In-situ long-term thermal performance of impermeably face polyiso foam boards

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyaya, Phalguni; Normandin, Nicole; Van Reenen, David; Lackey, John [National Research Council Canada, Institute for Reserch in Construction, Ottawa, (Canada); Drouin, Michel [Consultant, Dorion, (Canada)

    2010-07-01

    Closed-cell polyisocyanurate (polyiso) foam insulation products are widely used in building envelope constructions as they have one of the highest R-values per unit thickness among the insulations used in the construction industry. The introduction of impermeable facers on the surface of polyiso rigid board is aimed at enhancing the long-term thermal resistance (LTTR) properties of the foam. This paper evaluated the thermal performance of impermeably faced polyiso boards after more than six years of field exposure. Boards were installed and instrumented at NRC-IRC's field test facility. Field monitoring was performed on a regular basis for six years of exposure until 2008. Then, nine specimens were cut from the boards which were removed from the test hut to evaluate their thermal characteristic using a heat flow meter apparatus. It was found that the impermeably faced polyiso foam insulation boards aged significantly.

  14. Liquid versus foam sclerotherapy.

    Science.gov (United States)

    Hamel-Desnos, C; Allaert, F-A

    2009-12-01

    A systematic review to compare efficacy and safety of foam (F) sclerotherapy versus liquid (L) sclerotherapy for primary varicose veins of the lower limbs. Systematic searches of electronic databases were conducted in April 2009 to identify relevant published studies. Database searches were augmented with abstracts from conference proceedings and electronic and hand searching of journals not consistently indexed in the major databases. For treatment of saphenous veins, six trials (four randomized controlled trials) were considered. Despite containing much less sclerosing agent, F was markedly more effective compared with L, the difference being put at between 20% and 50%. Four studies were included in a meta-analysis showing efficacy of F at 76.8% (95% confidence interval [CI] 71-82) versus L at 39.5% (95% CI 33-46), chi(2) = 60.9740; P reticular veins and telangiectases, only two comparative trials were found and do not at present provide any conclusive evidence to support the superiority of efficacy of one form over the other. Statistically, the side-effects reported in all the available comparative trials do not differ between F and L forms, even if visual disturbances seem to be more common with F. In the treatment of varices of the lower limbs, F shows much greater efficacy compared to L. Concerning the side effects, no statistical significant differences were found between L and F.

  15. Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; He, Qingyun; Ye, Minyou

    2015-11-15

    Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.

  16. Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM

    International Nuclear Information System (INIS)

    Feng, Jingchao; Chen, Hongli; He, Qingyun; Ye, Minyou

    2015-01-01

    Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.

  17. Behaviour of aluminum foam under fire conditions

    Directory of Open Access Journals (Sweden)

    J. Grabian

    2008-07-01

    Full Text Available Taking into account fire-protection requirements it is advantageous for aluminum foam, after melting at a temperature considerably exceeding the melting point, to have a structure of discontinuous suspension of solid inclusions to liquid metal instead of liquid consistency. Continuity of the suspension depends on the solid phase content. The boundary value of the phase determined by J. Śleziona, above which the suspension becomes discontinuous, is provided by the formula (1. Figure 1 presents the relationship graphically. Boundary values of the vs content resulting from the above relationship is too low, taking into account the data obtained from the technology of suspension composites [4]. Therefore, based on the structure assumed for the suspension shown in Figure 2 these authors proposed another way of determining the contents, the value of which is determined by the relationship (3 [5].For purposes of the experimental study presented in the paper two foams have been molten: a commercially available one, made by aluminum foaming with titanium hydride, and a foam manufactured in the Marine Materials Plant of the Maritime University of Szczecin by blowing the AlSi7 +20% SiC composite with argon. Macrophotographs of foam cross-sections are shown in Figure 3. The foams have been molten in the atmosphere of air at a temperature of 750ºC. The products of melting are presented in Figure 4. It appears that molten aluminum foam may have no liquid consistency, being unable to flow, which is a desired property from the point of view of fire-protection. The above feature of the molten foam results from the fact that it may be a discontinuous suspension of solid particles in a liquid metal. The suspended particles may be solid particles of the composite that served for making the foam or oxide membranes formed on extended metal surface of the bubbles included in the foam. The desired foam ability to form a discontinuous suspension after melting may be

  18. Fire hazards in the use of polyurethane foam with special consideration given to its use in the mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Florschuetz, P.; Hoffmann, R.; Pfeiffer, J.

    1980-08-01

    Discusses results from combustion tests conducted with polyurethane (PUR) foam and polyisocyanurate (PIC) foam, which are employed in mine construction, thermal insulation, and coating of coal preparation equipment. Fire point, inflammation point, flame propagation, carbon monoxide content in the fumes and other parameters were investigated. Coating the foam with a fire resistant chemical agent delayed the combustion process. Mixing foam with various quantities of foam components influenced the combustion process as well. The combustion results are presented in tables. It is concluded that the user's instructions for producing foam should be strictly adhered to and that larger sections of insulation by these foams in underground mines can only be permitted when additional protection measures are undertaken. (5 refs.) (In German)

  19. Foam shell project: Progress report

    International Nuclear Information System (INIS)

    Overturf, G.; Reibold, B.; Cook, B.; Schroen-Carey, D.

    1994-01-01

    The authors report on their work to produce a foam shell target for two possible applications: (1) as liquid-layered cryogenic target on Omega Upgrade, and (2) as a back-up design for the NIF. This target consists of a roughly 1 mm diameter and 100 μm thick spherical low-density foam shell surrounding a central void. The foam will be slightly overfilled with liquid D 2 or DT, the overfilled excess being symmetrically distributed on the inside of the shell and supported by thermal gradient techniques. The outside of the foam is overcoated with full density polymer which must be topologically smooth. The technology for manufacturing this style of foam shell involves microencapsulation techniques and has been developed by the Japanese at ILE. Their goal is to determine whether this technology can be successfully adapted to meet US ICF objectives. To this end a program of foam shell development has been initiated at LLNL in collaboration with both the General Atomics DOE Target Fabrication Contract Corporation and the Target Fabrication Group at LLE

  20. Superplastically foaming method to make closed pores inclusive porous ceramics

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Hayashi, Hidetaka

    2011-01-01

    Porous ceramics incorporates pores to improve several properties including thermal insulation maintaining inherenet ceramic properties such as corrosion resistance and large mechanical strength. Conventional porous ceramics is usually fabricated through an insufficient sintering. Since the sintering accompanies the exclusion of pores, it must be terminated at the early stage to maintain the high porosity, leading to degraded strength and durability. Contrary to this, we have innovated superplastically foaming method to make ceramic foams only in the solid state. In this method, the previously inserted foam agent evaporates after the full densification of matrix at around the sintering temperature. Closed pores expand utilizing the superplastic deformation driven by the evolved gas pressure. The typical features of this superplastically foaming method are listed as follows, 1. The pores are introduced after sintering the solid polycrystal. 2. Only closed pores are introduced, improving the insulation of gas and sound in addition to heat. 3. The pore walls are fully densified expecting a large mechanical strength. 4. Compared with the melt foaming method, this method is practical because the fabrication temperature is far below the melting point and it does not need molds. 5. The size and the location pores can be controlled by the amount and position of the foam agent.

  1. Foamed emulsion drainage: flow and trapping of drops

    OpenAIRE

    Schneider, Maxime; Zou, Ziqiang; Langevin, Dominique; Salonen, Anniina

    2017-01-01

    Foamed emulsions are ubiquitous in our daily life but the ageing of such systems is still poorly understood. In this study we investigate foam drainage and measure the evolution of the gas, liquid and oil volume fractions inside the foam. We evidence three regimes of ageing. During an initial period of fast drainage, both bubbles and drops are very mobile. As the foam stabilises drainage proceeds leading to a gradual decrease of the liquid fraction and slowing down of drainage. Clusters of oi...

  2. Tough graphene-polymer microcellular foams for electromagnetic interference shielding.

    Science.gov (United States)

    Zhang, Hao-Bin; Yan, Qing; Zheng, Wen-Ge; He, Zhixian; Yu, Zhong-Zhen

    2011-03-01

    Functional polymethylmethacrylate (PMMA)/graphene nanocomposite microcellular foams were prepared by blending of PMMA with graphene sheets followed by foaming with subcritical CO(2) as an environmentally benign foaming agent. The addition of graphene sheets endows the insulating PMMA foams with high electrical conductivity and improved electromagnetic interference (EMI) shielding efficiency with microwave absorption as the dominant EMI shielding mechanism. Interestingly, because of the presence of the numerous microcellular cells, the graphene-PMMA foam exhibits greatly improved ductility and tensile toughness compared to its bulk counterpart. This work provides a promising methodology to fabricate tough and lightweight graphene-PMMA nanocomposite microcellular foams with superior electrical and EMI shielding properties by simultaneously combining the functionality and reinforcement of the graphene sheets and the toughening effect of the microcellular cells.

  3. Isocyanurate: safe substitute for urethane in polymer foams for mine roadways

    Energy Technology Data Exchange (ETDEWEB)

    Eisner, H.S.; Leger, J.P.

    1989-02-01

    Rigid polyurethane foam (PU) used for lining roadways or insulating cooling pipes has been involved in several large fires in South African mines. Polyisocyanurate foam when applied to continuous surfaces in a ventilated mine roadway and subjected to a sizeable flame, will ignite and rapidly propagate flame over its surface, with considerable evolution of carbon monoxide, in a manner substantially similar to polyurethane foam. 12 refs.

  4. Foam stabilization by solid particle aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Guignot, S.; Faure, S. [CEA Marcoule, Lab. des Procedes Avances de Decontamination, 30 (France); Pitois, O. [UniversiteParis-Est Marne-La-Valle, Lab. Physique des Materiaux Divises et des Interfaces (LPMDI), 77 - Marne la Vallee (France)

    2008-07-01

    During the dismantling of nuclear facilities, radioactive deposits on exposed areas are removed and solubilized by successive rinses of reactive liquid. Using this liquid in a foam state reduces the amount of resulting wastes. During the required decontamination time (1 to 5 hours) the foam has to be sufficiently wet (1). In the Laboratory of Advanced Processes for Decontamination, new formulations are currently studied to slow down the drainage kinetics of these foams, by adding colloidal particles of hydrophilic fumed silica into the classical mixtures of well-defined non ionic foaming surfactants previously used (2). The objective of our study is to shed light on the foam surprising stability induced by these particles. The study focuses on drainage of foams generated by air sparging through a suspension lying on a porous glass. The foaming suspensions contain between 0 and 70 g.L-1 of a fumed silica (Aerosil 380) which is well-known to form gels for concentrations above 200 g.L{sup -1}. In the studied solutions this silica builds up into aggregates of dozens of microns, whose volume-averaged mean diameter after sonication is centred around 300 nm. Under gentle stirring, they display no sign of re-aggregation during 24 h. On a free drainage configuration, a foam that contains particles keeps a significant amount of its initial liquid: up to 60 % during up to 5 hours, in contrast to classical foams that drain out all of their liquid in about 20 minutes. From a rheological point of view, the most concentrated suspensions display a yield stress behaviour. This evidences the structuring of the aggregates into a coherent network that might explain the incomplete drainage of the solutions. For the lowest concentrated solutions, such rheological properties have not been observed although the corresponding foams can retain large amount of solution. This suggests that local concentrations of aggregates can rise owing to their retention by foam channels, until they form

  5. Thermal properties of a sandwich construction insulated with Polyurethane (DC-System)

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Dreau, Jerome Le

    Rigid polyurethane foam (PUR) is a good thermal insulation product for buildings, mainly due to its low thermal conductivity (λ ≈ 20 mW/m.K), low permeability to water and stability over time. The other types of insulation products available on the market have a significantly higher thermal...... conductivity: + 50% for expanded polystyrene (λ ≈ 30 mW/m.K), + 75% for mineral wools (λ ≈ 35 mW/m.K), etc. Despite its low thermal conductivity, polyurethane foam (PUR) is not much used as insulation material for walls because of its low resistance to fire. The most common PUR boards are classified C-s2-d0...

  6. Foam-on-Tile Damage Model

    Science.gov (United States)

    Koharchik, Michael; Murphy, Lindsay; Parker, Paul

    2012-01-01

    An impact model was developed to predict how three specific foam types would damage the Space Shuttle Orbiter insulating tiles. The inputs needed for the model are the foam type, the foam mass, the foam impact velocity, the foam impact incident angle, the type being impacted, and whether the tile is new or aged (has flown at least one mission). The model will determine if the foam impact will cause damage to the tile. If it can cause damage, the model will output the damage cavity dimensions (length, depth, entry angle, exit angle, and sidewall angles). It makes the calculations as soon as the inputs are entered (less than 1 second). The model allows for the rapid calculation of numerous scenarios in a short time. The model was developed from engineering principles coupled with significant impact testing (over 800 foam impact tests). This model is applicable to masses ranging from 0.0002 up to 0.4 pound (0.09 up to 181 g). A prior tool performed a similar function, but was limited to the assessment of a small range of masses and did not have the large test database for verification. In addition, the prior model did not provide outputs of the cavity damage length, entry angle, exit angle, or sidewall angles.

  7. Foam, composition and method of production

    Energy Technology Data Exchange (ETDEWEB)

    Ghali, R.

    1991-09-03

    A ternary foam is disclosed which overcomes the disadvantages of conventional heat-insulating foams which are either dense and heavy, expensive to produce, friable, unstable, or have poor fire resistance. The foam of the invention has, by weight of the reaction product, 10-35% polyurethane, 30-55% polyisocyanurate, and 20-45% polyurea. The foam is a reaction product of 100 parts by weight of an organic polyisocyanate with: 15-25 parts by weight of a polyether polyol having a hydroxyl number of ca 28-35 and a molecular weight of not more than 6,000; 5-25 parts by weight of water; 0-25 parts by weight of a blowing agent; 0-50 parts by weight of a filler-plasticizer fire retardant; an effective amount of a low activation catalyst to initiate water-isocyanate reaction to produce polyurea and polyol-isocyanate reaction to produce polyurethane; and an effective amount of a high activation catalyst to retard the low activation catalyst and promote the formation of polyisocyanurate. The low activity catalyst is present in an amount ranging ca 1.5-9 parts per 100 parts by weight of the polyisocyanate, and the high activation catalyst is present in an amount ranging 0.0008-0.002 parts per 100 parts by weight of the polyisocyanate. Water as a reactant and blowing agent can be substituted by an effective amount of a disubstituted amine such as diethanol amine and an inert blowing agent such as fluorocarbon. The resultant foam has excellent heat insulating propeties, is semi-flexible, has a density of 0.5-0.9 lb/ft{sup 3}, and can be inexpensively produced by existing 2-component foam dispensing equipment. 1 fig., 1 tab.

  8. Heat resistance insulation for NPP pipelines and components

    International Nuclear Information System (INIS)

    Yurchenko, V.G.; Nazarova, G.A.; Popov, A.M.; Matveeva, N.F.

    1986-01-01

    To insulate hot surfaces of NPP process equipment and pipes it is suggested to use heat resistant insulation of foam aminoimides (FAI). Relative toxicity of aceton and acetaldehyd evolved from FAI in the process of thermal and thermal-oxidative break-down was determined. FAI can be used at 200 deg C

  9. Electricity in foams: from one soapy interface to the macroscopic material

    Science.gov (United States)

    Biance, Anne-Laure

    2017-11-01

    Liquid foams (a dispersion of gas bubbles in a soapy solution) destabilize with time due to coarsening, coalescence and gravity driven drainage. We propose here to inhibit (or trigger) the foam destabilization by applying an electric field to the material. This effect is investigated at the different scales of the system: one soapy interface, one liquid film, the macroscopic foam. The generation of an electroosmotic flow near a soapy liquid/gas interface raises many issues. How does the flow affect surfactant repartition? Is there a Marangoni stress at the interface? At the scale of one soap film, how the electric field affects the film stability and deformation? In a macroscopic foam, one can wonder whether the electric field can indeed reverse gravity driven drainage and increase foam lifetime? These different issues are considered by developing new experimental techniques allowing us to probe surfactant repartition at liquid interfaces, soap film thicknesses and liquid foam properties when an electric field is applied. The results will be presented together with a comprehensive picture of the mechanisms arising at each scale of the material, to conclude with the potential use of electricity in liquid foams to control destabilization. Collaborators: Baptiste Blanc, Oriane Bonhomme, Laurent Joly, Christophe Ybert.

  10. Liquid metal flows in insulating elements of self-cooled blankets

    International Nuclear Information System (INIS)

    Molokov, S.

    1995-01-01

    Liquid metal flows in insulating rectangular ducts in strong magnetic fields are considered with reference to poloidal concepts of self-cooled blankets. Although the major part of the flow in poloidal blanket concepts is close to being fully developed, manifolds, expansions, contractions, elbows, etc., which are necessary elements in blanket designs, cause three-dimensional effects. The present investigation demonstrates the flow pattern in basic insulating geometries for actual and more advanced liquid metal blanket concepts and discusses the ways to avoid pressure losses caused by flow redistribution. Flows in several geometries, such as symmetric and non-symmetric 180 turns with and without manifolds, sharp and linear expansions with and without manifolds, etc., have been considered. They demonstrate the attractiveness of poloidal concepts of liquid metal blankets, since they guarantee uniform conditions for heat transfer. If changes in the duct cross-section occur in the plane perpendicular to the magnetic field (ideally a coolant should always flow in the radial-poloidal plane), the disturbances are local and the slug velocity profile is reached roughly at a distance equivalent to one duct width from the manifolds, expansions, etc. The effects of inertia in these flows are unimportant for the determination of the pressure drop and velocity profiles in the core of the flow but may favour heat transfer characteristics via instabilities and strongly anisotropic turbulence. (orig.)

  11. Bio-based thermosetting epoxy foam: Tannic acid valorization toward dye-decontaminating and thermo-protecting applications.

    Science.gov (United States)

    Esmaeili, N; Salimi, A; Zohuriaan-Mehr, M J; Vafayan, M; Meyer, W

    2018-05-23

    Bio-resourced thermosetting epoxy foam was synthesized from tannic acid toward two different applications e.g., dye-decontaminating and thermo-insulating. Epoxidized tannic acid (ETA) foam was produced without using of organic volatile compounds or flammable foaming gases. The foam density, thermal conductivity and closed-cell content were studied. Besides, TGA showed high char yield (49% in N 2 and 48.3% in air) at 600 °C accompanied by high LOI (37.1 in N 2 and 36.8 in air). The high thermo-stability and intumescent char yield along with low thermal conductivity recommends the foam suitability for being used as an insulating material. Additionally, sorption of methylene blue onto ETA foam was kinetically investigated. The study of contact time, ionic strength, solution pH, initial sorbate concentration and desorption revealed the dependency of the sorption process to pH and initial sorbate concentration. The experimental data fitted well with the Langmuir isotherm (R 2  = 0.997), yielding maximum sorption capacity of 36.25 mg/g (ETA foam = 0.05 g, pH = 7, MB concentration = 50 ppm, Volume = 25 mL). The kinetic data verified that MB sorption could be represented by the pseudo second-order model. Overall, the ETA foam can be introduced as a candidate for removing cationic pollutants, thermal insulator, and self-extinguishing/intumescent materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Solution processing of polymer semiconductor: Insulator blends-Tailored optical properties through liquid-liquid phase separation control

    KAUST Repository

    Hellmann, Christoph; Treat, Neil D.; Scaccabarozzi, Alberto D.; Razzell Hollis, Joseph; Fleischli, Franziska D.; Bannock, James H.; de Mello, John; Michels, Jasper J.; Kim, Ji-Seon; Stingelin, Natalie

    2014-01-01

    © 2014 Wiley Periodicals, Inc. It has been demonstrated that the 0-0 absorption transition of poly(3-hexylthiophene) (P3HT) in blends with poly(ethylene oxide) (PEO) could be rationally tuned through the control of the liquid-liquid phase separation process during solution deposition. Pronounced J-like aggregation behavior, characteristic for systems of a low exciton band width, was found for blends where the most pronounced liquid-liquid phase separation occurred in solution, leading to domains of P3HT and PEO of high phase purity. Since liquid-liquid phase separation could be readily manipulated either by the solution temperature, solute concentration, or deposition temperature, to name a few parameters, our findings promise the design from the out-set of semiconductor:insulator architectures of pre-defined properties by manipulation of the interaction parameter between the solutes as well as the respective solute:solvent system using classical polymer science principles.

  13. Solution processing of polymer semiconductor: Insulator blends-Tailored optical properties through liquid-liquid phase separation control

    KAUST Repository

    Hellmann, Christoph

    2014-12-17

    © 2014 Wiley Periodicals, Inc. It has been demonstrated that the 0-0 absorption transition of poly(3-hexylthiophene) (P3HT) in blends with poly(ethylene oxide) (PEO) could be rationally tuned through the control of the liquid-liquid phase separation process during solution deposition. Pronounced J-like aggregation behavior, characteristic for systems of a low exciton band width, was found for blends where the most pronounced liquid-liquid phase separation occurred in solution, leading to domains of P3HT and PEO of high phase purity. Since liquid-liquid phase separation could be readily manipulated either by the solution temperature, solute concentration, or deposition temperature, to name a few parameters, our findings promise the design from the out-set of semiconductor:insulator architectures of pre-defined properties by manipulation of the interaction parameter between the solutes as well as the respective solute:solvent system using classical polymer science principles.

  14. Foam Transport in Porous Media - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Freedman, Vicky L.; Zhong, Lirong

    2009-11-11

    Amendment solutions with or without surfactants have been used to remove contaminants from soil. However, it has drawbacks such that the amendment solution often mobilizes the plume, and its movement is controlled by gravity and preferential flow paths. Foam is an emulsion-like, two-phase system in which gas cells are dispersed in a liquid and separated by thin liquid films called lamellae. Potential advantages of using foams in sub-surface remediation include providing better control on the volume of fluids injected, uniformity of contact, and the ability to contain the migration of contaminant laden liquids. It is expected that foam can serve as a carrier of amendments for vadose zone remediation, e.g., at the Hanford Site. As part of the U.S. Department of Energy’s EM-20 program, a numerical simulation capability will be added to the Subsurface Transport Over Multiple Phases (STOMP) flow simulator. The primary purpose of this document is to review the modeling approaches of foam transport in porous media. However, as an aid to understanding the simulation approaches, some experiments under unsaturated conditions and the processes of foam transport are also reviewed. Foam may be formed when the surfactant concentration is above the critical micelle concentration. There are two main types of foams – the ball foam (microfoam) and the polyhedral foam. The characteristics of bulk foam are described by the properties such as foam quality, texture, stability, density, surface tension, disjoining pressure, etc. Foam has been used to flush contaminants such as metals, organics, and nonaqueous phase liquids from unsaturated soil. Ball foam, or colloidal gas aphrons, reportedly have been used for soil flushing in contaminated site remediation and was found to be more efficient than surfactant solutions on the basis of weight of contaminant removed per gram of surfactant. Experiments also indicate that the polyhedral foam can be used to enhance soil remediation. The

  15. Determination of the fraction of blowing agent released from refrigerator/freezer foam after decommissioning the product

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2002-01-01

    Several halocarbons having very high global warming potential have been used as blowing agent for insulation foam in refrigerators and freezers. Many appliances are shredded after the end of their useful life. Release experiments carried out in the laboratory on insulation foam revealed that most...... of the blowing agent is not released to the atmosphere during a six-week period following the shredding process. The fraction which is released in the six-week period, is highly dependent on how fine the foam is shredded. The residual blowing agent remaining after the six-week period may be very slowly released...

  16. Determination of aromatic amines in aqueous extracts of polyurethane foam using hydrophilic interaction liquid chromatography and mass spectrometry

    International Nuclear Information System (INIS)

    Riddar Johnson, Jakob; Karlsson, Daniel; Dalene, Marianne; Skarping, Gunnar

    2010-01-01

    A method is presented for the determination of aromatic amines in aqueous extracts of polyurethane (PUR) foam. The method is based on the extraction of PUR foam using aqueous acetic acid (0.1%, w/v) followed by determination of extracted aromatic amines using hydrophilic interaction liquid chromatography (HILIC) and tandem mass spectrometry (MS/MS) with positive electrospray ionisation. The injections of volumes up to 5 μL of aqueous solutions were made possible by on-column focusing with partially filled loop injections. The fragmentation patterns for 2,4- and 2,6-toluene diamine (TDA) and 4,4'-methylene dianiline (MDA) were clarified by performing a hydrogen-deuterium exchange study. TDA and MDA were determined using trideuterated 2,4- and 2,6-TDA and dideuterated 4,4'-MDA as internal standards. Linear calibration graphs were obtained over the range 0.025-0.5 μg mL -1 with correlation coefficients >0.996 and the instrumental detection limit for each compound was <50 fmol. The stability of the amines was influenced by the matrix, so their concentrations decreased over time. Agreement was observed between the results of analyses of PUR foam extracts by HILIC-MS/MS and results obtained by ethyl chloroformate derivatisation and reversed phase (RP) liquid chromatography-mass spectrometry (LC-MS/MS). TDA was observed to be unstable in extracts of foam but not in pure solutions.

  17. Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H{sub 2}O{sub 2} as foaming agents

    Energy Technology Data Exchange (ETDEWEB)

    Ducman, V., E-mail: vilma.ducman@zag.si; Korat, L.

    2016-03-15

    Recent innovations in geopolymer technology have led to the development of various different types of geopolymeric products, including highly porous geopolymer-based foams, which are formed by the addition of foaming agents to a geopolymer fly-ash based matrix. These agents decompose, or react with the liquid matrix or oxygen in the matrix, resulting in the release of gases which form pores prior to the hardening of the gel. The hardened structure has good mechanical and thermal properties, and can therefore be used for applications in acoustic panels and in lightweight pre-fabricated components for thermal insulation purposes. This study presents the results of the pore-forming process in the case when two different foaming agents, i.e. aluminium powder amounting to 0.07, 0.13 and 0.20 mass. % and H{sub 2}O{sub 2} amounting to 0.5, 1.0, 1.5 and 2.0 mass. %, were added to a fly-ash geopolymer matrix. The physical, mechanical, and microstructural properties of the thus obtained foams, and the effects of the type and amount of the added foaming agent, are presented and discussed. Highly porous structures were obtained in the case of both of the investigated foaming agents, with overall porosities up to 59% when aluminium powder was added, and of up 48% when H{sub 2}O{sub 2} was added. In the latter case, when 2% of the H{sub 2}O{sub 2} foaming agent was added, finer pores (with diameters up to 500 μm) occurred in the structure, whereas somewhat larger pores (some had diameters greater than 1 mm) occurred when the same amount of aluminium powder was added. The mechanical properties of the investigated foams depended on their porosity. In the case of highly porous structures a compressive strength of 3.3 MPa was nevertheless achieved for the samples containing 0.2% of aluminium powder, and 3.7 MPa for those containing 2.0% of H{sub 2}O{sub 2}. - Highlights: • Preparation of geopolymer foams based on fly ash with the addition of Al powder or H{sub 2}O{sub 2} as

  18. Analysis of Tube Bank Heat Transfer In Downward Directed Foam Flow

    Directory of Open Access Journals (Sweden)

    Jonas Gylys

    2004-06-01

    Full Text Available Apparatus with the foam flow are suitable to use in different technologies like heat exchangers, food industry, chemical and oil processing industry. Statically stable liquid foam until now is used in technologic systems rather seldom. Although a usage of this type of foam as heat transfer agent in foam equipment has a number of advantages in comparison with one phase liquid equipment: small quantity of liquid is required, heat transfer rate is rather high, mass of equipment is much smaller, energy consumption for foam delivery into heat transfer zone is lower. The paper analyzes the peculiarities of heat transfer from distributed in staggered order and perpendicular to foam flow in channel of rectangular cross section tube bundle to the foam flow. It was estimated the dependence of mean gas velocity and volumetric void fraction of foam flow to heat transfer in downward foam flow. Significant difference of heat transfer intensity from front and back tubes of tube row in laminar foam flow was noticed. Dependence of heat transfer on flow velocity and volumetric void fraction of foam was confirmed and estimated by criterion equations.

  19. Foam application from a closed system – a study of machine and foam parameters

    NARCIS (Netherlands)

    Lemmen, Jacques T.E.; Groot Wassink, Jan

    1990-01-01

    An attempt has been made to gain a greater insight into the interaction between foam and a moving textile substrate. The effects of changing wet pick–up, fabric velocity, liquid viscosity, foam density and mode of application on penetration have been studied. Application from a closed system makes

  20. Foam patterns

    Science.gov (United States)

    Chaudhry, Anil R; Dzugan, Robert; Harrington, Richard M; Neece, Faurice D; Singh, Nipendra P; Westendorf, Travis

    2013-11-26

    A method of creating a foam pattern comprises mixing a polyol component and an isocyanate component to form a liquid mixture. The method further comprises placing a temporary core having a shape corresponding to a desired internal feature in a cavity of a mold and inserting the mixture into the cavity of the mold so that the mixture surrounds a portion of the temporary core. The method optionally further comprises using supporting pins made of foam to support the core in the mold cavity, with such pins becoming integral part of the pattern material simplifying subsequent processing. The method further comprises waiting for a predetermined time sufficient for a reaction from the mixture to form a foam pattern structure corresponding to the cavity of the mold, wherein the foam pattern structure encloses a portion of the temporary core and removing the temporary core from the pattern independent of chemical leaching.

  1. Foamed emulsion drainage: flow and trapping of drops.

    Science.gov (United States)

    Schneider, Maxime; Zou, Ziqiang; Langevin, Dominique; Salonen, Anniina

    2017-06-07

    Foamed emulsions are ubiquitous in our daily life but the ageing of such systems is still poorly understood. In this study we investigate foam drainage and measure the evolution of the gas, liquid and oil volume fractions inside the foam. We evidence three regimes of ageing. During an initial period of fast drainage, both bubbles and drops are very mobile. As the foam stabilises drainage proceeds leading to a gradual decrease of the liquid fraction and slowing down of drainage. Clusters of oil drops are less sheared, their dynamic viscosity increases and drainage slows down even further, until the drops become blocked. At this point the oil fraction starts to increase in the continuous phase. The foam ageing leads to an increase of the capillary pressure until the oil acts as an antifoaming agent and the foam collapses.

  2. Applications of Polymer Matrix Syntactic Foams

    Science.gov (United States)

    Gupta, Nikhil; Zeltmann, Steven E.; Shunmugasamy, Vasanth Chakravarthy; Pinisetty, Dinesh

    2013-11-01

    A collection of applications of polymer matrix syntactic foams is presented in this article. Syntactic foams are lightweight porous composites that found their early applications in marine structures due to their naturally buoyant behavior and low moisture absorption. Their light weight has been beneficial in weight sensitive aerospace structures. Syntactic foams have pushed the performance boundaries for composites and have enabled the development of vehicles for traveling to the deepest parts of the ocean and to other planets. The high volume fraction of porosity in syntactic foams also enabled their applications in thermal insulation of pipelines in oil and gas industry. The possibility of tailoring the mechanical and thermal properties of syntactic foams through a combination of material selection, hollow particle volume fraction, and hollow particle wall thickness has helped in rapidly growing these applications. The low coefficient of thermal expansion and dimensional stability at high temperatures are now leading their use in electronic packaging, composite tooling, and thermoforming plug assists. Methods have been developed to tailor the mechanical and thermal properties of syntactic foams independent of each other over a wide range, which is a significant advantage over other traditional particulate and fibrous composites.

  3. Close relationship between a dry-wet transition and a bubble rearrangement in two-dimensional foam

    Science.gov (United States)

    Furuta, Yujiro; Oikawa, Noriko; Kurita, Rei

    2016-01-01

    Liquid foams are classified into a dry foam and a wet foam, empirically judging from the liquid fraction or the shape of the gas bubbles. It is known that physical properties such as elasticity and diffusion are different between the dry foam and the wet foam. Nevertheless, definitions of those states have been vague and the dry-wet transition of foams has not been clarified yet. Here we show that the dry-wet transition is closely related to rearrangement of the gas bubbles, by simultaneously analysing the shape change of the bubbles and that of the entire foam in two dimensional foam. In addition, we also find a new state in quite low liquid fraction, which is named “superdry foam”. Whereas the shape change of the bubbles strongly depends on the change of the liquid fraction in the superdry foam, the shape of the bubbles does not change with changing the liquid fraction in the dry foam. Our results elucidate the relationship between the transitions and the macroscopic mechanical properties. PMID:27874060

  4. USE OF LOCAL NATURAL SILICEOUS RAW MATERIAL AND WASTES FOR PRODUCTION OF HEAT-INSULATING FOAMCONCRETE

    Directory of Open Access Journals (Sweden)

    V. U. Matsapulin

    2015-01-01

    Full Text Available The article analyzes the resource base, reserves and the use of siliceous rocks, their economic feasibility of the use for production of building materials of new generation with low-energy and other costs. Presented are the results of laboratory research and testing technology of production of insulating foam from a composition based on an aqueous solution of sodium silicate obtained from the local siliceous rocks (diatomite and the liquid alkali component - soapstock, hardener from ferrochrome slag and waste carbonate rock able to harden at a low temperature processing ( 100-110 ° C.

  5. Experimental study of a foam concrete based on local Tunisian materials

    Directory of Open Access Journals (Sweden)

    Ellouze Dorra

    2018-01-01

    Full Text Available The building sector in Tunisia is very energy-intensive, the largest share of energy consumption comes from factories of building materials namely brick and cement plants. This work is part of the reduction of the energy bill in the building envelope. Indeed, the foam concrete can be walls in single or double wall with better insulating power. This paper presents an experimental study on the technical problems related to the formulation and manufacture of a new cellular concrete in Tunisia, called "foam" concrete, from Tunisian local materials. Indeed, six varieties of sand of different provenance and grain size will be analyzed, the "good" sand is the one that is best suited for the manufacture of foam concrete. Two clean, fine-grained (0/2mm rolled grain sands were retained. Then four foam concretes were formulated using each time a single type of sand and varying the density namely 0.8 and 1. These four formulations were tested mechanically and thermally. The results found showed that compressive strengths do not exceed 1.5 MPa at 28 days. Thus, the foam concrete can be used only as a filling concrete in non-load bearing elements such as partition walls. The guarded hot plate method was used to determine the thermal conductivities of the four foamed concretes studied. A low thermal conductivity was found of the order of 0.22 W/m°K which prove the insulating power of foam concrete.

  6. Making continuous bubble type polyethylene foam incombustible

    International Nuclear Information System (INIS)

    Kaji, Kanako; Hatada, Motoyoshi; Yoshizawa, Iwao; Komai, Kuniaki; Kohara, Choji.

    1989-01-01

    Since continuous bubble type plastic foam has excellent compression characteristics and sound absorption characteristics, it has been widely used as cushion material, sealing material, sound insulating material and so on. However, the most part of plastic foam is taken by air, therefore at the time of fires, it becomes a very dangerous material. At present, the material used mostly as the seat cushions for airliners, railroad coaches, automobiles and others is polyurethane foam, but since it contains C-N couples in its molecules, it is feared to generate cyanic gas according to the condition of combustion. As the plastic foam that does not generate harmful gas at the time of fires, there is continuous bubble type polyethylene which is excellent in its weathering property and chemical resistance. A reactive, phosphorus-containing oligomer has large molecular weight and two or more double couplings in a molecule, therefore, it does not enter the inside of polyethylene, and polymerizes and crosslinks on the surfaces of bubble walls in the foam, accordingly it is expected that the apparent graft polymerization is carried out, and it is very effective for making polyethylene foam incombustible. The method of making graft foam, the properties of graft foam and so on are reported. When the graft polymerization of this oligomer to continuous bubble type polyethylene foam was tried, highly incombustible polyethylene foam was obtained. (K.I.)

  7. Impact Foam Testing for Multi-Mission Earth Entry Vehicle Applications

    Science.gov (United States)

    Glaab, Louis J.; Agrawal, Paul; Hawbaker, James

    2013-01-01

    Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes and retro-rockets, instead using built-in impact attenuators to absorb energy remaining at impact to meet landing loads requirements. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs and develop the trade space. Testing was conducted to characterize the material properties of several candidate impact foam attenuators to enhance M-SAPE analysis. In the current effort, two different Rohacell foams were tested to determine their thermal conductivity in support of MMEEV design applications. These applications include thermal insulation during atmospheric entry, impact attenuation, and post-impact thermal insulation in support of thermal soak analysis. Results indicate that for these closed-cell foams, the effect of impact is limited on thermal conductivity due to the venting of the virgin material gas and subsequent ambient air replacement. Results also indicate that the effect of foam temperature is significant compared to data suggested by manufacturer's specifications.

  8. Stress wave propagation and mitigation in two polymeric foams

    Science.gov (United States)

    Pradel, Pierre; Malaise, Frederic; Cadilhon, Baptiste; Quessada, Jean-Hugues; de Resseguier, Thibaut; Delhomme, Catherine; Le Blanc, Gael

    2017-06-01

    Polymeric foams are widely used in industry for thermal insulation or shock mitigation. This paper investigates the ability of a syntactic epoxy foam and an expanded polyurethane foam to mitigate intense (several GPa) and short duration (<10-6 s) stress pulses. Plate impact and electron beam irradiation experiments have been conducted to study the dynamic mechanical responses of both foams. Interferometer Doppler Laser method is used to record the target rear surface velocity. A two-wave structure associated with the propagation of an elastic precursor followed by the compaction of the pores has been observed. The compaction stress level deduced from the velocity measurement is a good indicator of mitigation capability of the foams. Quasi-static tests and dynamic soft recovery experiments have also been performed to determine the compaction mechanisms. In the polyurethane foam, the pores are closed by elastic buckling of the matrix and damage of the structure. In the epoxy foam, the compaction is due to the crushing of glass microspheres. Two porous material models successfully represent the macroscopic response of these polymeric foams.

  9. Electrical insulation characteristics of liquid helium under high speed rotating field

    International Nuclear Information System (INIS)

    Ishii, I.; Fuchino, S.; Okano, M.; Tamada, N.

    1996-01-01

    Electrical breakdown behavior of liquid helium was investigated under high speed rotating field. In the development of superconducting turbine generator it is essential to get the knowledge of electrical insulation characteristics of liquid helium under high speed rotating field. When the current of the field magnet of a superconducting generator is changed, changing magnetic field generates heat in the conductor and it causes bubbles in the liquid helium around the conductor. The behavior of the bubbles is affected largely by the buoyancy which is generated by the centrifugal force. Electrical breakdown behavior of the liquid helium is strongly dependent on the gas bubbles in the liquid. Electrical breakdown voltage between electrodes was measured in a rotating cryostat with and without heater input for bubble formation. Decrease of the breakdown voltage by the heater power was smaller in the rotating field than that in the non rotating field

  10. CARBONIZED STARCH MICROCELLULAR FOAM-CELLULOSE FIBER COMPOSITE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Andrew R. Rutledge

    2008-11-01

    Full Text Available The production of microporous carbon foams from renewable starch microcellular foam-fiber (SMCF-Fiber composites is described. Carbon foams are used in applications such as thermal insulation, battery electrodes, filters, fuel cells, and medical devices. SMCF-Fiber compos-ites were created from an aquagel. The water in the aquagel was exchanged with ethanol and then dried and carbonized. Higher amylose content starches and fiber contents of up to 4% improved the processability of the foam. The SMCF structure revealed agglomerates of swollen starch granules connected by a web of starch with pores in the 50-200 nanometer range. Heating the SMCF-fiber in a nitrogen atmosphere to temperatures between 350-700˚C produced carbon foams with a three-dimensional closed cell foam structure with cell diameters around 50 microns and pore walls around 1-3 microns. The stress versus strain compression data for carbonized samples displayed a linear elastic region and a plateau indicative of brittle crushing, typical of an elastic-brittle foam. The carbon foam products from these renew-able precursors are promising carbon structures with moderate strength and low density.

  11. Effect of foam on temperature prediction and heat recovery potential from biological wastewater treatment.

    Science.gov (United States)

    Corbala-Robles, L; Volcke, E I P; Samijn, A; Ronsse, F; Pieters, J G

    2016-05-15

    Heat is an important resource in wastewater treatment plants (WWTPs) which can be recovered. A prerequisite to determine the theoretical heat recovery potential is an accurate heat balance model for temperature prediction. The insulating effect of foam present on the basin surface and its influence on temperature prediction were assessed in this study. Experiments were carried out to characterize the foam layer and its insulating properties. A refined dynamic temperature prediction model, taking into account the effect of foam, was set up. Simulation studies for a WWTP treating highly concentrated (manure) wastewater revealed that the foam layer had a significant effect on temperature prediction (3.8 ± 0.7 K over the year) and thus on the theoretical heat recovery potential (30% reduction when foam is not considered). Seasonal effects on the individual heat losses and heat gains were assessed. Additionally, the effects of the critical basin temperature above which heat is recovered, foam thickness, surface evaporation rate reduction and the non-absorbed solar radiation on the theoretical heat recovery potential were evaluated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Fluoroscopy-guided endovenous sclerotherapy using a microcatheter prior to endovenous laser ablation: Comparison between liquid and foam sclerotherapy for varicose tributaries

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Woo; Yun, Ik Jin; Hwang, Jae Joon; Lee, Song Am; Kim, Jun Seok; Chee, Hyun Keun; Chang, Il Soo [Konkuk University Hospital, Konkuk University School of Medicine, Seoul (Korea, Republic of)

    2014-08-15

    To compare the efficacy and adverse effects of endovenous foam sclerotherapy (EFS) and liquid sclerotherapy (ELS) using a microcatheter for the treatment of varicose tributaries. From December 2007 to January 2009, patients with venous reflux in the saphenous vein were enrolled. The foam or liquid sclerosant was injected through a microcatheter just before endovenous laser ablation (EVLA). Patients were evaluated for the technical success, clinical success, and procedure-related complications during the procedure and follow-up visits. A total of 94 limbs were included: 48 limbs (great saphenous vein [GSV], 35; small saphenous vein [SSV], 13) were managed using EFS and EVLA (foam group; FG), and 46 limbs (GSV, 37; SSV, 9) were treated by ELS and EVLA (liquid group; LG). Varicose tributaries demonstrated complete sclerosis in 92.7% with FG and in 71.8% with LG (p = 0.014). Bruising (78.7% in FG vs. 73.2% in LG, p > 0.05), pain or tenderness (75.6% in FG vs. 51.2% in LG, p = 0.0237) were noted. Hyperpigmentation (51.2% in FG vs. 46.2% in LG, p > 0.05) was found. Endovenous foam sclerotherapy using a microcatheter is more effective than ELS for eliminating remnant varicose tributaries prior to EVLA. However, EFS is more commonly associated with local complications such as pain or tenderness than ELS. Furthermore, both techniques seem to prolong the duration of hyperpigmentation along with higher costs.

  13. Field-dependent molecular ionization and excitation energies: Implications for electrically insulating liquids

    Directory of Open Access Journals (Sweden)

    N. Davari

    2014-03-01

    Full Text Available The molecular ionization potential has a relatively strong electric-field dependence as compared to the excitation energies which has implications for electrical insulation since the excited states work as an energy sink emitting light in the UV/VIS region. At some threshold field, all the excited states of the molecule have vanished and the molecule is a two-state system with the ground state and the ionized state, which has been hypothesized as a possible origin of different streamer propagation modes. Constrained density-functional theory is used to calculate the field-dependent ionization potential of different types of molecules relevant for electrically insulating liquids. The low singlet-singlet excitation energies of each molecule have also been calculated using time-dependent density functional theory. It is shown that low-energy singlet-singlet excitation of the type n → π* (lone pair to unoccupied π* orbital has the ability to survive at higher fields. This type of excitation can for example be found in esters, diketones and many color dyes. For alkanes (as for example n-tridecane and cyclohexane on the other hand, all the excited states, in particular the σ → σ* excitations vanish in electric fields higher than 10 MV/cm. Further implications for the design of electrically insulating dielectric liquids based on the molecular ionization potential and excitation energies are discussed.

  14. Achievement report for fiscal 2000 on the phase II research and development for hydrogen utilizing international clean energy system technology (WE-NET). Task 9. Development of liquid hydrogen transportation and storage technologies - 1; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 9. Ekitai suiso yuso chozo gijutsu no kaihatsu - 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the development of liquid hydrogen transportation and storage technologies. Discussions were given on the following three types of specimens as the heat insulation performance test structures: the vacuum panel type (polyurethane foam coated with SUS sheet, while the inside is kept in the vacuum state); the solid vacuum type (combination of polyurethane foam with vacuum heat insulation); and the powder under normal pressure type (a structure in which the ambient of powder pearlite heat insulating material becomes the atmospheric pressure, whereas a SUS case is set up to separate vacuum layer of the test apparatus from atmosphere layer of the specimen, with the SUS case filled with pearlite). Adding the two types of specimens used in the previous fiscal year, five test specimens in total were discussed on the result of the performance tests to advance the database management. As a low temperature strength test for the insulating materials, the compression test was performed on a microsphere being a kind of solid vacuum (normal pressure) heat insulating materials at room temperature, the liquid nitrogen temperature and in liquid hydrogen atmosphere. The compression strength under liquid hydrogen is 1,044 MPa, which is two times greater than the normal temperature strength of 496 MPa, representing the compression strength rising in proportion with temperature drop. Problems were extracted in developing a small capacity liquid hydrogen transportation and storage system. (NEDO)

  15. Morphological comparison of PVA scaffolds obtained by gas foaming and microfluidic foaming techniques.

    Science.gov (United States)

    Colosi, Cristina; Costantini, Marco; Barbetta, Andrea; Pecci, Raffaella; Bedini, Rossella; Dentini, Mariella

    2013-01-08

    In this article, we have exploited a microfluidic foaming technique for the generation of highly monodisperse gas-in-liquid bubbles as a templating system for scaffolds characterized by an ordered and homogeneous porous texture. An aqueous poly(vinyl alcohol) (PVA) solution (containing a surfactant) and a gas (argon) are injected simultaneously at constant flow rates in a flow-focusing device (FFD), in which the gas thread breaks up to form monodisperse bubbles. Immediately after its formation, the foam is collected and frozen in liquid nitrogen, freeze-dried, and cross-linked with glutaraldehyde. In order to highlight the superior morphological quality of the obtained porous material, a comparison between this scaffold and another one, also constituted of PVA but obtained with a traditional gas foaming technique, was carried out. Such a comparison has been conducted by analyzing electron microscopy and X-ray microtomographic images of the two samples. It turned out that the microfluidic produced scaffold was characterized by much more uniform porous texture than the gas-foaming one as witnessed by narrower pore size, interconnection, and wall thickness distributions. On the other side, scarce pore interconnectivity, relatively low pore volume, and limited production rate represent, by now, the principal disadvantages of microfluidic foaming as scaffold fabrication method, emphasizing the kind of improvement that this technique needs to undergo.

  16. Model fire tests on polyphosphazene rubber and polyvinyl chloride (PVC)/nitrile rubber foams

    Science.gov (United States)

    Widenor, W. M.

    1978-01-01

    A video tape record of model room fire tests was shown, comparing polyphosphazene (P-N) rubber and polyvinyl chloride (PVC)/nitrile rubber closed-cell foams as interior finish thermal insulation under conditions directly translatable to an actual fire situation. Flashover did not occur with the P-N foam and only moderate amounts of low density smoke were formed, whereas with the PVC/nitrile foam, flashover occurred quickly and large volumes of high density smoke were emitted. The P-N foam was produced in a pilot plant under carefully controlled conditions. The PVC/nitrile foam was a commercial product. A major phase of the overall program involved fire tests on P-N open-cell foam cushioning.

  17. Thermal insulation

    International Nuclear Information System (INIS)

    Durston, J.G.; Birch, W.; Facer, R.I.; Stuart, R.A.

    1977-01-01

    Reference is made to liquid metal cooled nuclear reactors. In the arrangement described the reactor vessel is clad with thermal insulation comprising a layer of insulating blocks spaced from the wall and from each other; each block is rigidly secured to the wall, and the interspaces are substantially closed against convectional flow of liquid by resilient closure members. A membrane covering is provided for the layer of blocks, with venting means to allow liquid from the reactor vessel to penetrate between the covering and the layer of blocks. The membrane covering may comprise a stainless steel sheet ribbed in orthogonal pattern to give flexibility for the accommodation of thermal strain. The insulating blocks may be comprised of stainless steel or cellular or porous material and may be hollow shells containing ceramic material or gas fillings. (U.K.)

  18. Selenide isotope generator for the Galileo Mission: SIG thermal insulation evaluaion tests

    International Nuclear Information System (INIS)

    1979-06-01

    Since the SIG program required the use of very high performance thermal insulation materials in rather severe thermal and environmental conditions, a thorough screening and testing program was performed. Several types of materials were included in the preliminary survey. Most promising were oxide and carbonaceous fibrous insulations, oxide and carbonaceous foamed materials, and multilayer materials with both powder and cloth spacers. The latter were only viable for the vacuum option. In all, over one hundred materials from more than sixty manufacturers were evaluated from literature and manufacturers' data. The list was pared to eighteen candidates in seven basic types, i.e., fibrous microporous SiO 2 , fibrous SiO 2 /Al 2 O 3 , fibrous ZrO 2 , fibrous carbon, foamed SiO 2 , foamed carbon, and multilayer. Test results are presented

  19. Release of CFC-11 from disposal of polyurethane foam waste

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Jensen, M.H.

    2001-01-01

    The halocarbon CFC-11 has extensively been used as a blowing agent for polyurethane (PUR) insulation foams in home appliances and for residential and industrial construction. Release of CFCs is an important factor in the depletion of the ozone layer. For CFC-11 the future atmospheric concentrations...... will mainly depend on the continued release from PUR foams. Little is known about rates and time frames of the CFC release from foams especially after treatment and disposal of foam containing waste products. The CFC release is mainly controlled by slow diffusion out through the PUR. From the literature...... and by reevaluation of an old reported experiment, diffusion coefficients in the range of 0.05-1.7.10(-14) m(2) s(-1) were found reflecting differences in foam properties and experimental designs. Laboratory experiments studying the distribution of CFC in the foam and the short-term releases after shredding showed...

  20. Numerical modeling of foam flows

    International Nuclear Information System (INIS)

    Cheddadi, Ibrahim

    2010-01-01

    Liquid foam flows are involved in numerous applications, e.g. food and cosmetics industries, oil extraction, nuclear decontamination. Moreover, their study leads to fundamental knowledge: as it is easier to manipulate and analyse, foam is used as a model material to understand the flow of emulsions, polymers, pastes, or cell aggregates, all of which display both solid and liquid behaviour. Systematic experiments performed by Francois Graner et al. provide precise data that emphasize the non Newtonian properties of the foam. Meanwhile, Pierre Saramito proposed a visco-elasto-plastic continuous tensorial model, akin to predict the behaviour of the foam. The goal of this thesis is to understand this complex behaviour, using these two elements. We have built and validated a resolution algorithm based on a bidimensional finite elements methods. The numerical solutions are in excellent agreement with the spatial distribution of all measured quantities, and confirm the predictive capabilities of the model. The dominant parameters have been identified and we evidenced the fact that the viscous, elastic, and plastic contributions to the flow have to be treated simultaneously in a tensorial formalism. We provide a substantial contribution to the understanding of foams and open the path to realistic simulations of complex VEP flows for industrial applications. (author)

  1. Monitoring foam coarsening using a computer optical mouse as a ...

    Indian Academy of Sciences (India)

    Keywords. Aqueous foam; optical flow sensor; dynamic laser speckle; computer optical mouse. ... Aqueous foams are colloidal systems with high concentration of gas bubbles in a liquid matrix. ... and complex behaviour of the foams. However ...

  2. Center for the Polyurethanes Industry summary of unpublished industrial hygiene studies related to the evaluation of emissions of spray polyurethane foam insulation.

    Science.gov (United States)

    Wood, Richard D

    2017-09-01

    Spray polyurethane foam (SPF) insulation is used as thermal insulation for residential and commercial buildings. It has many advantages over other forms insulation; however, concerns have been raised related to chemical emissions during and after application. The American Chemistry Council's (ACC's) Center for the Polyurethanes Industry (CPI) has gathered previously unpublished industrial hygiene air sampling studies submitted by member companies that were completed during an eight-year period from 2007-2014. These studies address emissions from medium density closed cell and low density open cell formulations. This article summarizes the results of personal and area air samples collected during application and post application of SPF to interior building surfaces in both laboratory and field environments. Chemicals of interest included: Volatile Organic Compounds (VOCs), methylene diphenyl diisocyanate (MDI), flame retardants, amine catalysts, blowing agents, and aldehydes. Overall, the results indicate that SPF applicators and workers in close proximity to the application are potentially exposed to MDI in excess of recommended and governmental occupational exposure limits and should use personal protective equipment (PPE) consisting of air supplied respirators and full-body protective clothing to reduce exposure. Catalyst emissions can be reduced by using reactive catalysts in SPF formulations, and mechanical ventilation is important in controlling emissions during and after application.

  3. Measure Guideline: Three High Performance Mineral Fiber Insulation Board Retrofit Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, K. [Building Science Corporation, Westford, MA (United States)

    2015-01-01

    This Measure Guideline describes a high performance enclosure retrofit package that uses mineral fiber insulation board, and is intended to serve contractors and designers seeking guidance for non-foam exterior insulation retrofit processes. The guideline describes retrofit assembly and details for wood frame roof and walls and for cast concrete foundations.

  4. USING BIOPOLYMERS TO STABILIZE THE PROTEIN OXYGEN FOAM

    Directory of Open Access Journals (Sweden)

    N. V. Nepovinnyh

    2013-01-01

    Full Text Available The cottage cheese whey as an oxygen cocktail foaming base and natural juices as a flavoring ingredient are analyzed. The lifetime of foam generated by the serum proteins is not long: foam falls off rapidly; because from the foam liquid is released (syneresis. The effects of plant polysaccharides on the stabilization of the protein foam oxygen cocktail is studied. It was shown that the use of plant polysaccharides (guar gum, high methoxyl citrus pectin, locust been gum prolong the life of the foam up to 20 times, compared with conventional blowing agents. It was found that oxygen foam properties depend on the molecular weight of guar gum.

  5. Measure Guideline: Three High Performance Mineral Fiber Insulation Board Retrofit Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, Ken [Building Science Corporation, Westford, MA (United States)

    2015-01-01

    This Measure Guideline describes a high performance enclosure retrofit package that uses mineral fiber insulation board. The Measure Guideline describes retrofit assembly and details for wood frame roof and walls and for cast concrete foundations. This Measure Guideline is intended to serve contractors and designers seeking guidance for non-foam exterior insulation retrofit.

  6. Thermal insulation

    International Nuclear Information System (INIS)

    Aspden, G.J.; Howard, R.S.

    1988-01-01

    The patent concerns high temperature thermal insulation of large vessels, such as the primary vessel of a liquid metal cooled nuclear reactor. The thermal insulation consists of multilayered thermal insulation modules, and each module comprises a number of metal sheet layers sandwiched between a back and front plate. The layers are linked together by straps and clips to control the thickness of the module. (U.K.)

  7. Preparation and properties of polymer foams for ICF targets

    International Nuclear Information System (INIS)

    Letts, S.A.; Lucht, L.M.

    1986-09-01

    Low density small cell sized foams were developed to localize the liquid DT layer in a direct drive wetted foam laser fusion target. We have developed foams made from ultrahigh molecular weight polyethylene gels and polystyrene inverse emulsions. Materials in the density range of from 0.020 to 0.300 g/cc were prepared and characterized for cell size, mechanical properties, machinability, specific surface area, and wetting. Foams with a density of 0.05 g/cc were made with a cell size of less than 5 μm. A cell structure model was developed which relates the density and specific surface area to cell size and cell wall thickness. Wetting tests in organic solvents and in liquid hydrogen were used to characterize the capillary pressure, pore structure and uniformity of the foams. 13 refs., 9 figs., 2 tabs

  8. INFLUENCE OF THE CEMENT TYPE ON THE CHARACTERISTICS OF THE MINERAL FOAM APPLICABLE IN FOAMED CERAMIC TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Korolev Evgeniy Valer'evich

    2012-10-01

    Full Text Available The subject of the research is the influence of the type of Portland cement, as well as the nature and concentration of additives that represent electrolytes and polymers, onto the foam stability. The project is implemented within the framework of the research of foamed ceramic. Detailed explanation of the influence pattern is provided. The research performed by the authors has generated the following findings. Besides the rheological properties of the solution, chemical interaction between the mix components must be taken into account in the course of development of the best foamed ceramic mix composition, as chemical processes produce a substantial influence onto the foam stability. Polymer additives based on liquid carbamyde-formaldehyde and polyacrylamide substantially improve the quality of the foam mineralized by the particles of the cement binder. They also assure the foam stability rate sufficient for the formation of a high-quality foamed material.

  9. Formation of electrically insulating coatings on aluminided vanadium-base alloys in liquid lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Dragel, G.

    1993-01-01

    Aluminide coatings were produced on vanadium and vanadium-base alloys by exposure of the materials to liquid lithium that contained 3-5 at.% dissolved aluminum in sealed capsules at temperatures between 775 and 880 degrees C. Reaction of the aluminide layer with dissolved nitrogen in liquid lithium provides a means of developing an in-situ electrical insulator coating on the surface of the alloys. The electrical resistivity of A1N coatings on aluminided V and V-20 wt.% Ti was determined in-situ

  10. Exposure to organophosphate flame retardants in spray polyurethane foam applicators: Role of dermal exposure.

    Science.gov (United States)

    Bello, Anila; Carignan, Courtney C; Xue, Yalong; Stapleton, Heather M; Bello, Dhimiter

    2018-04-01

    Spray polyurethane foam (SPF) is a highly effective thermal insulation material that has seen considerable market growth in the past decade. Organophosphate flame retardants (PFRs) are added to SPF formulations to meet fire code requirements. A common flame retardant used in SPF formulations is tris 1-chloro 2-propyl phosphate (TCIPP), a suspected endocrine disruptor. Exposure monitoring efforts during SPF applications have focused primarily on the isocyanate component, a potent respiratory and dermal sensitizer. However, to our knowledge, there is no monitoring data for TCIPP. To characterize occupational exposures to TCIPP and other flame retardants during SPF insulation. Workers at four SPF insulation sites and one foam removal site (total n = 14) were recruited as part of this pilot study. Personal inhalation exposure to TCIPP was monitored with a CIP-10MI inhalable sampler and potential dermal exposure was assessed through the use of a glove dosimeter. Biomarkers of TCIPP and three other PFRs were measured in urine collected from workers pre-and post-shift. Linear mixed effect models were used to analyze associations of urinary biomarkers with inhalation and dermal exposures and paired t-tests were used to examine the difference on the means of urinary biomarkers pre-and post-shift. Chemical analysis of all species was performed with liquid chromatography-electrospray ionization tandem mass spectrometry. Geometric mean (GM) concentrations of TCIPP in personal air monitors and glove dosimeters collected from SPF applicators, 294.7 μg/m 3 and 18.8 mg/pair respectively. Overall, GM concentrations of the two TCIPP urinary biomarkers BCIPP and BCIPHIPP and (6.2 and 88.8 μg/mL) were 26-35 times higher than reported in the general population. Post-shift levels of TCIPP biomarkers were higher than pre-shift even though workers at insulation sites wore supplied air respirators, gloves and coveralls. The urinary biomarkers for the other PFRs were not

  11. Decontamination by foams: a promising treatment for the removal of radioactive dust from gas streams

    International Nuclear Information System (INIS)

    Mitchell, J.P.

    1989-06-01

    Foams provide a promising method for the treatment of gas streams containing radioactive aerosol particles. They contain a very large surface area of liquid-gas interface in small cells; thus it is possible to achieve rapid capture of airborne particles in the liquid phase, particularly if the aerosol can be incorporated in the foam structure. The foam can be collapsed into a small volume of liquid, immobilising any trapped aerosol in a form that may be treated as liquid waste. A review of the literature has been undertaken to define and assess the mechanics of aerosol behaviour in contact with foams. Applications are also examined in which foams have been used to treat aerosols. Key issues are identified which require further study. In particular, the efficiency of sub-micron particle removal can be determined using recently developed analysers and the use of the process gas to generate the foam could have a major impact on the design of commercial units. (author)

  12. Achievement report for fiscal 1998 on World Energy Network (WE-NET). Subtask 5. Development of hydrogen transportation and storage technologies (development of liquid hydrogen storage facilities); 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 5. Suiso yuso chozo gijutsu no kaiahtsu (ekitai suiso chozo setsubi no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    An insulation structure suitable for large tanks was tested for insulation capability and strength at the liquid hydrogen temperature for the development of liquid hydrogen storage facilities. For the insulation test, a specimen was built of a porous solid material, and the specimen was given an additional duty of serving a test of a high temperature plate that was to impose loads on the specimen. The test conditions were not met, however, with too much variation in presence in temperature distribution. For the structural material compressive strength test, a method was worked out involving a hard urethane foam material specimen in liquid hydrogen, and was implemented. It was found that the specimen fracture that occurred was in the form of the collapse of the loaded surface. Tests were conducted at three temperatures, which were the normal temperature, the liquid nitrogen temperature, and the liquid hydrogen temperature, and compressive strength was determined for each of the three cases. No great difference in strength resulted from the difference between the two low temperatures. As for compressive strength at low temperatures, it was found that the strength was approximately two times greater than at the normal temperature. The above findings indicate that hard polyurethane foam is on the safe side when it is designed for the normal temperature. (NEDO)

  13. Hydrogen storage in insulated pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.; Garcia-Villazana, O. [Lawrence Livermore National Lab., CA (United States)

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

  14. Development of Abaca Fiber-reinforced Foamed Fly Ash Geopolymer

    Directory of Open Access Journals (Sweden)

    Janne Pauline S. Ngo

    2018-01-01

    Full Text Available The growing environmental and economic concerns have led to the need for more sustainable construction materials. The development of foamed geopolymer combines the benefit of reduced environmental footprint and attractive properties of geopolymer technology with foam concrete’s advantages of being lightweight, insulating and energy-saving. In this study, alkali-treated abaca fiber-reinforced geopolymer composites foamed with H2O2 were developed using fly ash as the geopolymer precursor. The effects of abaca fiber loading, foaming agent dosage, and curing temperature on mechanical strength were evaluated using Box-Behken design of experiment with three points replicated. Volumetric weight of samples ranged from 1966 kg/m3 to 2249 kg/m3. Measured compressive strength and flexural ranged from 19.56 MPa to 36.84 MPa, and 2.41 MPa to 6.25 MPa, respectively. Results suggest enhancement of compressive strength by abaca reinforcement and elevated temperature curing. Results, however, indicate a strong interaction between curing temperature and foaming agent dosage, which observably caused the composite’s compressive strength to decline when simultaneously set at high levels. Foaming agent dosage was the only factor detected to significantly affect flexural strength.

  15. Sprayable Aerogel Bead Compositions With High Shear Flow Resistance and High Thermal Insulation Value

    Science.gov (United States)

    Ou, Danny; Trifu, Roxana; Caggiano, Gregory

    2013-01-01

    A sprayable aerogel insulation has been developed that has good mechanical integrity and lower thermal conductivity than incumbent polyurethane spray-on foam insulation, at similar or lower areal densities, to prevent insulation cracking and debonding in an effort to eliminate the generation of inflight debris. This new, lightweight aerogel under bead form can be used as insulation in various thermal management systems that require low mass and volume, such as cryogenic storage tanks, pipelines, space platforms, and launch vehicles.

  16. Transient Thermal Response of Lightweight Cementitious Composites Made with Polyurethane Foam Waste

    Science.gov (United States)

    Kismi, M.; Poullain, P.; Mounanga, P.

    2012-07-01

    The development of low-cost lightweight aggregate (LWA) mortars and concretes presents many advantages, especially in terms of lightness and thermal insulation performances of structures. Low-cost LWA mainly comes from the recovery of vegetal or plastic wastes. This article focuses on the characterization of the thermal conductivity of innovative lightweight cementitious composites made with fine particles of rigid polyurethane (PU) foam waste. Five mortars were prepared with various mass substitution rates of cement with PU-foam particles. Their thermal conductivity was measured with two transient methods: the heating-film method and the hot-disk method. The incorporation of PU-foam particles causes a reduction of up to 18 % of the mortar density, accompanied by a significant improvement of the thermal insulating performance. The effect of segregation on the thermal properties of LWA mortars due to the differences of density among the cementitious matrix, sand, and LWA has also been quantified. The application of the hot-disk method reveals a gradient of thermal conductivity along the thickness of the specimens, which could be explained by a non-uniform repartition of fine PU-foam particles and mineral aggregates within the mortars. The results show a spatial variation of the thermal conductivity of the LWA mortars, ranging from 9 % to 19 %. However, this variation remains close to or even lower than that observed on a normal weight aggregate mortar. Finally, a self-consistent approach is proposed to estimate the thermal conductivity of PU-foam cement-based composites.

  17. Blast wave protection of aqueous foams

    Energy Technology Data Exchange (ETDEWEB)

    Britan, Alexander; Ben-Dor, M. Liverts G. [Shock tube Laboratory of Protective Technologies R and D Center, Department of Mechanical Engineering, Faculty of Engineering Sciences, Ben Gurion University, Beer-Sheva (Israel)

    2011-07-01

    The primary intention of the present study is to present new contribution of shock tube tests to the problem of particle related stabilization and enhanced mitigation action of the wet particulate foams. The experiments reported were designed to examine (i) the reflection of a shock wave from an air/foam face, (ii) the transmission of the shock wave through the air/foam face and (iii) propagation and dispersion of the transmitted shock wave inside the foam column. Because wet aqueous foam of desired specification is difficult to reproduce, handle and quantitatively characterize the fact that experiments on all the above aspects were conducted in a single facility is a potentially important consideration. Moreover vertical position of shock tube simplified the issues since the gradient of the liquid fraction in draining foam coincides with the shock wave propagation. Under these, much simplified test conditions resulted flows could be treated as one-dimensional and the shock wave mitigation depends on three parameters: the intensity of the incident shock wave, s M , the duration of the foam decay, ∆t and on the particle concentration, n.

  18. Technology Solutions Case Study: Interior Foundation Insulation Upgrade-Minneapolis Residence

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-10-01

    This interior foundation project employed several techniques to improve performance and mitigate moisture issues: dimple mat; spray polyurethane foam insulation; moisture and thermal management systems for the floor; and paperless gypsum board and steel framing.

  19. Characterization of synthesized polyurethane/montmorillonite nanocomposites foams

    International Nuclear Information System (INIS)

    Ansari, Farahnaz; Njuguna, James; Sachse, Sophia; Kavosh, Masoud; Michalowski, S; Pielichowski, Krzysztof

    2014-01-01

    Nanophased hybrid composites based on polyurethane/montmorillonite (PU/MMT) have been fabricated. The nanocomposite which was formed by the addition of a polyol premix with 4,4'-diphenylmethane diisocyanate to obtain nanophased polyurethane foams which were then used for fabrication of nanocomposite panels has been shown to have raised strength, stiffness and thermal insulation properties. The nanophased polyurethane foam was characterized by means of scanning electron microscope (SEM), transmission electron microscope (TEM) measurements and X-ray diffraction (XRD). TEM and SEM analysis indicated that nanophased particles are dispersed homogeneously in the polyurethane matrix on the nanometer scale indicating that PU/MMT is an intercalated nanocomposite with a 2-3 nm nanolayer thickness

  20. Composite bulk Heat Insulation Made of loose Mineral and Organic Aggregate

    Directory of Open Access Journals (Sweden)

    Namsone Eva

    2015-12-01

    Full Text Available The task of building energy-efficiency is getting more important. Every house owner wishes to save up exploitation costs of heating, cooling, hot water production, ventilation, etc. and find cost-effective investments. One of the ways to reduce greenhouse gas emissions (GHGE is to minimize the heat transfer through the building by insulating it. Loose heat insulation is a good alternative to traditional board insulation, it is simple in use and cost-effective. Main drawback of this insulation is tendency to compact during exploitation. In the frame of this research composite loose heat insulation is elaborated, consisting on porous mineral foamed glass aggregate and local organic fiber materials (hemp and flaxen shives. Composite bulk insulation is an alternative solution which combines heat insulating properties and mechanical stability.

  1. Foaming of CRT panel glass powder using Na2CO3

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Smedskjær, Morten Mattrup

    2014-01-01

    The recycling of glass from obsolete cathode ray tubes (CRT) has hitherto only occurred to a very limited extent, but the production of foam glass used as an insulation material component has recently been proposed as a promising recycling method. CRT panel glass has high recycling potential due...... to its non-hazardous composition. Here we report on the foaming of CRT panel glass using Na2CO3 as the foaming agent. We explore how heat treatment temperature and concentration of Na2CO3 affect the density and porosity of the foam glasses, and whether Na2O is incorporated in the glass network....... The optimum foaming temperature for minimising density and maximising closed porosity is found to be between 1023 and 1123 K. The pore structure depends on the amount of added Na2CO3, viz, the pores generally become more open with increasing Na2CO3 content. A minimum density of 0·28 g/cm3 is found when 14 wt...

  2. Modyfication of the Rigid Polyurethane-Polyisocyanurate Foams

    Directory of Open Access Journals (Sweden)

    Bogusław Czupryński

    2014-01-01

    Full Text Available The effect of polyethylene glycol 1500 on physicomechanical properties of rigid polyurethane-polyisocyanurate (PUR-PIR foams has been studied. It was found that application of polyethylene glycol 1500 for synthesis of foams in amount from 0% to 20% w/w had an effect on reduction of brittleness and softening point, while the greater the increase in compressive strength the higher its content in foam composition was. Wastes from production of these foams were ground and subjected to glycolysis in diethylene glycol with the addition of ethanolamine and zinc stearate. Liquid brown products were obtained. Properties of the resulting products were defined in order to determine their suitability for synthesis of new foams. It was found that glycolysate 6 was the most suitable for reuse and its application in different amounts allowed us to prepare 4 new foams (nos. 25, 26, 27, and 28. Properties of foams prepared in this manner were determined and, on their basis, the suitability of glycolysates for production of rigid PUR-PIR foams was evaluated.

  3. Brushite foams--the effect of Tween® 80 and Pluronic® F-127 on foam porosity and mechanical properties.

    Science.gov (United States)

    Unosson, Johanna; Montufar, Edgar B; Engqvist, Håkan; Ginebra, Maria-Pau; Persson, Cecilia

    2016-01-01

    Resorbable calcium phosphate based bone void fillers should work as temporary templates for new bone formation. The incorporation of macropores with sizes of 100 -300 µm has been shown to increase the resorption rate of the implant and speed up bone ingrowth. In this work, macroporous brushite cements were fabricated through foaming of the cement paste, using two different synthetic surfactants, Tween® 80 and Pluronic® F-127. The macropores formed in the Pluronic samples were both smaller and less homogeneously distributed compared with the pores formed in the Tween samples. The porosity and compressive strength (CS) were comparable to previously developed hydroxyapatite foams. The cement foam containing Tween, 0.5M citric acid in the liquid, 1 mass% of disodium dihydrogen pyrophosphate mixed in the powder and a liquid to powder ratio of 0.43 mL/g, showed the highest porosity values (76% total and 56% macroporosity), while the CS was >1 MPa, that is, the hardened cement could be handled without rupture of the foamed structure. The investigated brushite foams show potential for future clinical use, both as bone void fillers and as scaffolds for in vitro bone regeneration. © 2015 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  4. Insulator-insulator and insulator-conductor transitions in the phase diagram of aluminium trichloride

    Directory of Open Access Journals (Sweden)

    Romina Ruberto

    2009-01-01

    Full Text Available We report a classical computer-simulation study of the phase diagram of AlCl3 in the pressure-temperature (p, T plane, showing (i that melting from a layered crystal structure occurs into a molecular liquid at low (p, T and into a dissociated ionic liquid at high (p, T, and (ii that a broad transition from a molecular insulator to an ionic conductor takes place in the liquid state.

  5. X-ray micro computed tomography characterization of cellular SiC foams for their applications in chemical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Xiaoxia [School of Chemical Engineering and Analytical Science, The University of Manchester, M13 9PL (United Kingdom); Zhang, Xun; Lowe, Tristan [Henry Moseley X-ray Imaging Facility, Materials Science Centre, School of Materials, The University of Manchester, M13 9PL (United Kingdom); Blanc, Remi [FEI, 3 Impasse Rudolf Diesel, BP 50227, 33708 Mérignac (France); Rad, Mansoureh Norouzi [School of Chemical Engineering and Analytical Science, The University of Manchester, M13 9PL (United Kingdom); Wang, Ying [Henry Moseley X-ray Imaging Facility, Materials Science Centre, School of Materials, The University of Manchester, M13 9PL (United Kingdom); Batail, Nelly; Pham, Charlotte [SICAT SARL, 20 Place des Halles, 67000 Strasbourg (France); Shokri, Nima; Garforth, Arthur A. [School of Chemical Engineering and Analytical Science, The University of Manchester, M13 9PL (United Kingdom); Withers, Philip J. [Henry Moseley X-ray Imaging Facility, Materials Science Centre, School of Materials, The University of Manchester, M13 9PL (United Kingdom); Fan, Xiaolei, E-mail: xiaolei.fan@manchester.ac.uk [School of Chemical Engineering and Analytical Science, The University of Manchester, M13 9PL (United Kingdom)

    2017-01-15

    Open-cell SiC foams clearly are promising materials for continuous-flow chemical applications such as heterogeneous catalysis and distillation. X-ray micro computed tomography characterization of cellular β-SiC foams at a spatial voxel size of 13.6{sup 3} μm{sup 3} and the interpretation of morphological properties of SiC open-cell foams with implications to their transport properties are presented. Static liquid hold-up in SiC foams was investigated through in-situ draining experiments for the first time using the μ-CT technique providing thorough 3D information about the amount and distribution of liquid hold-up inside the foam. This will enable better modeling and design of structured reactors based on SiC foams in the future. In order to see more practical uses, μ-CT data of cellular foams must be exploited to optimize the design of the morphology of foams for a specific application. - Highlights: •Characterization of SiC foams using novel X-ray micro computed tomography. •Interpretation of structural properties of SiC foams regarding to their transport properties. •Static liquid hold-up analysis of SiC foams through in-situ draining experiments.

  6. Physiochemical properties and reproducibility of air-based sodium tetradecyl sulphate foam using the Tessari method.

    Science.gov (United States)

    Watkins, Mike R; Oliver, Richard J

    2017-07-01

    Objectives The objectives were to examine the density, bubble size distribution and durability of sodium tetradecyl sulphate foam and the consistency of production of foam by a number of different operators using the Tessari method. Methods 1% and 3% sodium tetradecyl sulphate sclerosant foam was produced by an experienced operator and a group of inexperienced operators using either a 1:3 or 1:4 liquid:air ratio and the Tessari method. The foam density, bubble size distribution and foam durability were measured on freshly prepared foam from each operator. Results The foam density measurements were similar for each of the 1:3 preparations and for each of the 1:4 preparations but not affected by the sclerosant concentration. The bubble size for all preparations were very small immediately after preparation but progressively coalesced to become a micro-foam (foams developed liquid more rapidly when made in a 1:3 ratio (37 s) than in a 1:4 ratio (45 s) but all combinations took similar times to reach 0.4 ml liquid formation. For all the experiments, there was no statistical significant difference between operators. Conclusions The Tessari method of foam production for sodium tetradecyl sulphate sclerosant is consistent and reproducible even when made by inexperienced operators. The best quality foam with micro bubbles should be used within the first minute after production.

  7. Numerical Modeling of Foam Drilling Hydraulics

    Directory of Open Access Journals (Sweden)

    Ozcan Baris

    2007-12-01

    Full Text Available The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow.

  8. SPRAY FOAM IN ACCESSIBLE SPACES:BEST PRACTICES AND CASE STUDIES FOR RETROFIT IN MIXED-HUMID CLIMATE

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Jeffrey E [ORNL; Gant, Kathy [Oak Ridge National Laboratory (ORNL)

    2013-12-01

    Heating and cooling the house is one of the homeowners major expenses. Reducing these costs, saving energy, and creating a healthier, more comfortable indoor environment are good reasons to consider improving the building thermal envelope. Improvements usually consider increasing the amount of insulation, reducing the infiltration of outside air, and controlling moisture in existing buildings. This report describes the use of spray foam materials to insulate, seal, and control moisture. This discussion is limited to treating areas that are accessible. What is accessible, however, can vary depending on the type of renovation. If the building has been gutted or exterior surfaces removed, there are more options. This report will look at areas to consider for spray foam application and discuss the types of spray foams available and their uses. A number of case studies are presented to show the effectiveness of this retrofit in existing houses based on performance data.

  9. Quantification of isocyanates and amines in polyurethane foams and coated products by liquid chromatography–tandem mass spectrometry

    Science.gov (United States)

    Mutsuga, Motoh; Yamaguchi, Miku; Kawamura, Yoko

    2014-01-01

    An analytical method for the identification and quantification of 10 different isocyanates and 11 different amines in polyurethane (PUR) foam and PUR-coated products was developed and optimized. Isocyanates were extracted and derivatized with di-n-butylamine, while amines were extracted with methanol. Quantification was subsequently performed by liquid chromatography–tandem mass spectrometry. Using this methodology, residual levels of isocyanates and amines in commercial PUR products were quantified. Although the recoveries of certain isocyanates and amines were low, the main compounds used as monomers in the production of PUR products, and their decomposition species, were clearly identified at quantifiable levels. 2,4-and 2,6-toluenediisocyanate were detected in most PUR foam samples and a pastry bag in the range of 0.02–0.92 mg/kg, with their decomposition compounds, 2,4-and 2,6-toluenediamine, detected in all PUR foam samples in the range of 9.5–59 mg/kg. PUR-coated gloves are manufactured using 4,4′-methylenebisphenyl diisocyanate as the main raw material, and a large amount of this compound, in addition to 4,4′-methylenedianiline and dicyclohexylmethane-4,4′-diamine were found in these samples. PMID:24804074

  10. Investigation of field temperature in moulds of foamed plaster

    Directory of Open Access Journals (Sweden)

    M. Pawlak

    2007-12-01

    Full Text Available Plaster moulds used in precision foundry are characterized by a very low permeability which, in the case of classic plaster moulds, equals to about 0,01÷0,02 m2/(MPa·s. One of the most effective methods for increasing the permeability is a foaming treatment. Another characteristic feature of plaster is its very good insulating power which has influence on the process of solidification and cooling of a cast and also on a knock-out property. This insulating power is a function of thermophysical properties of plaster which, in turn, depend mainly on the mineralogical composition of the mould material, its bulk density as well as on the temperature of the pouring alloy. In the case of a foamed plaster mould an increase of the degree of foaming increases its porosity which causes a change in its thermophysical properties, thereby increasing susceptibility of the mass to overheating. The susceptibility of the plaster layer surrounding the cast to overheating is favorable because it makes it easier to knock-out of the cast by immersing the hot mould in cold water. Thermal and phase tensions that are created during this process cause fast destruction of plaster. This paper describes our investigations aimed at the determination of the dependence of the mould temperature field on the time of the cast stay in the mould, as recorded in a process of an unsteady heat flow. The determined data were planned to be used for estimation of the technological properties of the plaster mould. The tests were carried out using the plaster α-Supraduro and Alkanol XC (foaming agent. The test mould had a diameter of Ø 120 mm with centrally situated mould cavity of Ø 30 mm. Plaster moulds with a degree of foaming 20; 32,5 and 45% and comparatively from non-foaming plaster were tested and their temperatures were measured at the distance x=2; 9; 21; 25;27; 30 mm from the mould cavity within 25 min. Analysis of the results leads to the conclusion, that the highest

  11. Use of urethane foam in preparing for decontamination and decommissioning of radioactive facilities

    International Nuclear Information System (INIS)

    1981-01-01

    Portable urethane foam generating equipment has been in use for 15 to 20 years for a large number of applications, such as roof systems, tank insulation, and building insulation. Still another industrial application is its use in the decontamination and decommissioning of radioactive facilities at Mound Facility. The major problems encountered with urethane foams were with the packaging and stabilization procedures. The operation for spraying the foam on interior surfaces and equipment involved getting the gun inside without opening up the interior to the outside environment. A Gusmer FF proportioner and Model D spray gun was used for this operation. The gun was modified so that the trigger could be remotely located to facilitate its entry through a glovebox gloveport opening. The Model D gun has an air cap to blow foam off the tip of the gun. This cap was used to hold a plastic bag in place around the gun. The plastic bag is then put on a glove port and fastened securely. Urethane spray is applied on all exposed surfaces. This assures that all residual material is fixed for shipment. This simplifies cleaning operations as there is no need to remove the last trace of plutonium and results in a considerable shortening of the time required to prepare the gloveboxes. With the interior foamed, the gloveboxes are moved to the loading and packaging areas. Urethane foams are used to fill in the voids in our final shipping container. Radioactive waste materials are segregated according to the level of radioactive material present. One category is low level or low specific activity (LSA) and the other high level or Transuranic (TRU). Foam is used in TRU packages as packaging material to stabilize the loads and to help cushion against shock in transit on truck or railcar

  12. Inflatable Tubular Structures Rigidized with Foams

    Science.gov (United States)

    Tinker, Michael L.; Schnell, Andrew R.

    2010-01-01

    Inflatable tubular structures that have annular cross sections rigidized with foams, and the means of erecting such structures in the field, are undergoing development. Although the development effort has focused on lightweight structural booms to be transported in compact form and deployed in outer space, the principles of design and fabrication are also potentially applicable to terrestrial structures, including components of ultralightweight aircraft, lightweight storage buildings and shelters, lightweight insulation, and sales displays. The use of foams to deploy and harden inflatable structures was first proposed as early as the 1960s, and has been investigated in recent years by NASA, the U.S. Air Force Research Laboratory, industry, and academia. In cases of deployable booms, most of the investigation in recent years has focused on solid cross sections, because they can be constructed relatively easily. However, solid-section foam-filled booms can be much too heavy for some applications. In contrast, booms with annular cross sections according to the present innovation can be tailored to obtain desired combinations of stiffness and weight through choice of diameters, wall thicknesses, and foam densities. By far the most compelling advantage afforded by this innovation is the possibility of drastically reducing weights while retaining or increasing the stiffnesses, relative to comparable booms that have solid foamfilled cross sections. A typical boom according to this innovation includes inner and outer polyimide film sleeves to contain foam that is injected between them during deployment.

  13. Covering sources of toxic vapors with foam

    International Nuclear Information System (INIS)

    Aue, W. P.; Guidetti, F.

    2009-01-01

    In a case of chemical terrorism, first responders might well be confronted with a liquid source of toxic vapor which keeps spreading out its hazardous contents. With foam as an efficient and simple means, such a source could be covered up in seconds and the spread of vapors mitigated drastically. Once covered, the source could then wait for a longer time to be removed carefully and professionally by a decontamination team. In order to find foams useful for covering up toxic vapor sources, a large set of measurements has been performed in order to answer the following questions: - Which foams could be used for this purpose? - How thick should the foam cover be? - For how long would such a foam cover be effective? - Could the practical application of foam cause a spread of the toxic chemical? The toxic vapors sources included GB, GD and HD. Among the foams were 10 fire fighter foams (e.g. AFFF, protein) and the aqueous decontamination foam CASCAD. Small scale experiments showed that CASCAD is best suited for covering a toxic source; a 10 cm layer of it covers and decontaminates GB. The large scale experiments confirmed that any fire fighter foam is a suitable cover for a longer or shorter period.(author)

  14. Coupling between drainage and coarsening in wet foam

    Indian Academy of Sciences (India)

    Abstract. Drainage and coarsening are two coupled phenomena during the evolution of wet foam. We show the variation in the growth rate of bubble size, along the height in a column of Gillette shaving foam, by microscope imaging. Simultaneously, the drainage of liquid at the same heights has been investigated by ...

  15. Insulation performance data and assessment procedures for steam kiln energy conservation investments

    Energy Technology Data Exchange (ETDEWEB)

    Zaccor, J.V.

    1980-09-01

    For a demonstration project, the costs and benefits of insulating concrete block curing kilns to isolate the kiln thermal mass from the curing cycle are determined. Data were developed on service life of FOAMGLAS insulation, the effect of Johnson burners on the insulation and mounting, performance of an alternative insulation (a rapidly installed, spray-on polyurethane foam), and a simple incentive to promote implementation of industrial energy conservation concepts. Data are tabulated and compared for the FOAMGLAS and CPR 480 polyurethane insulations. Specific studies of insulation that was installed on inside surfaces of kilns to lock the kiln-mass out of the curing cycle are given for Blocklite plant in California, the Ameron pipe plant in California, and the Superlite plant in Phoenix, Arizona. (MCW)

  16. Polypropylenes foam consisting of thermally expandable microcapsule as blowing agent

    Science.gov (United States)

    Jeoung, Sun Kyung; Hwang, Ye Jin; Lee, Hyun Wook; Kwak, Sung Bok; Han, In-Soo; Ha, Jin Uk

    2016-03-01

    The structure of thermally expandable microcapsule (TEMs) is consisted of a thermoplastic shell which is filled with liquid hydrocarbon at core. The shell of TEMs becomes soft when the temperature is higher than boiling temperature of liquid hydrocarbon. The shell of TEMs is expanded under the high temperature because the inner pressure of TEMs is increased by vaporization of hydrocarbon core. Therefore, the TEMs are applicable for blowing agents and light weight fillers. In this research, we fabricated the polypropylene (PP) foam by using the TEMs and chemical blowing agents and compared to their physical properties. The density of the specimen was decreased when the contents of chemical blowing agents and TEMs were increased. In addition, the mechanical properties (i.e. tensile strength and impact strength) of specimens were deteriorated with increasing amount of chemical blowing agents and TEMs. However, PP foam produced with TEMs showed higher impact strength than the one with the chemical blowing agent. In order to clarify the dependence of impact strength of PP foam as the blowing agent, the morphology difference of the PP foams was investigated. Expanding properties of PP foams produced with TEMs was changed with TEMs content of PP foams. Processing conditions also influenced the mechanical properties of PP foam containing TEMs.

  17. Synthesis of Various Silica Nanoparticles for Foam Stability

    International Nuclear Information System (INIS)

    Yoon, Suk Bon; Yoon, Inho; Jung, Chonghun; Kim, Chorong; Choi, Wangkyu; Moon, Jeikwon

    2013-01-01

    The synthesis of the non-porous silica nanoparticles with uniform sizes has been reported through the Sto ber method, the synthesis of meso porous silica nanoparticles with a specific morphology such as core-shell, rod-like, and hexagonal shapes is not so common. As a synthetic strategy for controlling the particle size, shape, and porosity, the synthesis of core-shell silicas with meso porous shells formed on silica particle cores through the self-assembly of silica precursor and organic templates or spherical meso porous silicas using modified Sto ber method was also reported. Recently, in an effort to reduce the amount of radioactive waste and enhance the decontamination efficiency during the decontamination process of nuclear facilities contaminated with radionuclides, a few research for the preparation of the decontamination foam containing solid nanoparticles has been reported. In this work, the silica nanoparticles with various sizes, shapes, and structures were synthesized based on the previous literatures. The resulting silica nanoparticles were used to investigate the effect of the nanoparticles on the foam stability. In a study on the foam stability using various silica nanoparticles, the results showed that the foam volume and liquid volume in foam was enhanced when using a smaller size and lower density of the silica nanoparticles. Silica nanoparticles with various sizes, shapes, and structures such as a non-porous, meso porous core-shell, and meso porous silica were synthesized to investigate the effect of the foam stability. The sizes and structural properties of the silica nanoparticles were easily controlled by varying the amount of silica precursor, surfactant, and ammonia solution as a basic catalyst. The foam prepared using various silica nanoparticles showed that foam the volume and liquid volume in the foam were enhanced when using a smaller size and lower density of the silica nanoparticles

  18. Thermal assault and polyurethane foam-evaluating protective mechanisms

    International Nuclear Information System (INIS)

    Williamson, C.L.; Iams, Z.L.

    2004-01-01

    Rigid polyurethane foam utilizes a variety of mechanisms to mitigate the thermal assault of a ''regulatory burn''. Polymer specific heat and foam k-factor are of limited usefulness in predicting payload protection. Properly formulated rigid polyurethane foam provides additional safeguards by employing ablative mechanisms which are effective even when the foam has been crushed or fractured as a result of trauma. The dissociative transitions from polymer to gas and char, and the gas transport of heat from inside the package out into the environment are also thermal mitigators. Additionally, the in-situ production of an intumescent, insulative, carbonaceous char, confers thermal protection even when a package's outer steel skin has been breached. In this test program, 19 liter, ''Five gallon'' steel pails are exposed on one end to the flame of an ''Oil Burner'' as described in the US Federal Aviation Administration (FAA) ''Aircraft Materials Fire Test Handbook''. When burning 2 diesel at a nominal rate of 8.39 kg (18.5 pounds)/hr, the burner generates a high emissivity flame that impinges on the pail face with the thermal intensity of a full scale pool-fire environment. Results of these tests, TGA and MDSC analysis on the subject foams are reported, and their relevance to full size packages and pool fires are discussed

  19. Microbial analysis in biogas reactors suffering by foaming incidents

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; De Francisci, Davide; Treu, Laura

    2014-01-01

    , lipids and carbohydrates before and after foaming incidents was characterized using 16S rRNA gene sequencing. Moreover, the microbial diversity between the liquid and foaming layer was assessed. A number of genera that are known to produce biosurfactants, contain mycolic acid in their cell wall...

  20. Polymer-Reinforced, Nonbrittle, Lightweight Cryogenic Insulation for Reduced Life-Cycle Costs, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II SBIR project focuses to continue developing cryogenic insulation foams that are flexible, deforming under compression. InnoSense LLC (ISL) demonstrated...

  1. Thermal design of spacecraft solar arrays using a polyimide foam

    International Nuclear Information System (INIS)

    Bianco, N; Iasiello, M; Naso, V

    2015-01-01

    The design of the Thermal Control System (TCS) of spacecraft solar arrays plays a fundamental role. Indeed, the spacecraft components must operate within a certain range of temperature. If this doesn't occur, their performance is reduced and they may even break. Solar arrays, which are employed to recharge batteries, are directly exposed to the solar heat flux, and they need to be insulated from the earth's surface irradiation. Insulation is currently provided either with a white paint coating or with a Multi Layer Insulation (MLI) system [1]. A configuration based on an open-cell polyimide foam has also been recently proposed [2]. Using polyimide foams in TCSs looks very attractive in terms of costs, weight and assembling. An innovative thermal analysis of the above cited TCS configurations is carried out in this paper, by solving the porous media energy equation, under the assumption of Local Thermal Equilibrium (LTE) between the two phases. Radiation effects through the solar array are also considered by using the Rosseland approximation. Under a stationary daylight condition, temperature profiles are obtained by means of the finite-element based code COMSOL Multiphysics ® . Finally, since the weight plays an important role in aerospace applications, weights of the three TCS configurations are compared. (paper)

  2. Thermal design of spacecraft solar arrays using a polyimide foam

    Science.gov (United States)

    Bianco, N.; Iasiello, M.; Naso, V.

    2015-11-01

    The design of the Thermal Control System (TCS) of spacecraft solar arrays plays a fundamental role. Indeed, the spacecraft components must operate within a certain range of temperature. If this doesn't occur, their performance is reduced and they may even break. Solar arrays, which are employed to recharge batteries, are directly exposed to the solar heat flux, and they need to be insulated from the earth's surface irradiation. Insulation is currently provided either with a white paint coating or with a Multi Layer Insulation (MLI) system [1]. A configuration based on an open-cell polyimide foam has also been recently proposed [2]. Using polyimide foams in TCSs looks very attractive in terms of costs, weight and assembling. An innovative thermal analysis of the above cited TCS configurations is carried out in this paper, by solving the porous media energy equation, under the assumption of Local Thermal Equilibrium (LTE) between the two phases. Radiation effects through the solar array are also considered by using the Rosseland approximation. Under a stationary daylight condition, temperature profiles are obtained by means of the finite-element based code COMSOL Multiphysics®. Finally, since the weight plays an important role in aerospace applications, weights of the three TCS configurations are compared.

  3. Development of foams from linear polypropylene (PP) and high melt strength polypropylene (HMSPP) polymeric blends

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth Carvalho Leite

    2009-01-01

    Foamed polymers are future materials, with a comprehensive application field. They can be used in order to improve appearance of insulation structures, for example, or to reduce costs involving materials. This work address to Isotactic Polypropylene / High Melt Strength Polypropylene blends, for foams production. Rheological behavior of polymer melt, especially referring to viscosity in processing temperature, plays a decisive role in applications where dominates extensional flow, as in case of foaming. If the viscosity is very low, it will correspond to a low melt strength, as in case of linear homopolymer (Isotact PP), and the foam will be prejudiced, due to the impossibility of expansion. Otherwise, if the viscosity is very high, with a high melt strength, the foam will collapse immediately after its formation. In order to get foams with an homogeneous and defined cellular structure, there were accomplished blends, 50% in weight, between linear homopolymer (isotactic PP) and HMSPP, from PP modified as per gamma radiation, in acetylene environment and at a 12.5 kGy doses. Extrusion process used a soluble foaming methodology, according to a processing/dissolution principle, which involves the dissolution of a Physical Blowing Agent (PBA), under 30 bar pressure, homogeneously mixed with polymeric melt. Extrusion conditions, that generally involve temperature, pressure and viscoelastic material flow control were experimentally investigated to define prevalent characteristics for producing foams. Nitrogen was the used PBA and process extrusion parameters were adapted to PP, HMSPP and their 50% in weight mixtures thereof. Major PP and HMSPP characteristics were obtained via melt Index and melt strength and thermal analyses (DSC/TGA), in order to make viable and to reproduce foaming as per extrusion process. Foams cellular morphology of PP, HMSPP and their 50% in weight mixtures thereof was investigated, with and without talc addition, as nucleating agent, by using

  4. Influence of polypropylene fibres on the tensile strength and thermal properties of various densities of foamed concrete

    Science.gov (United States)

    Jhatial, Ashfaque Ahmed; Inn, Goh Wan; Mohamad, Noridah; Johnson Alengaram, U.; Mo, Kim Hung; Abdullah, Redzuan

    2017-11-01

    As almost half of the world’s population now lives in the urban areas, the raise in temperature in these areas has necessitated the development of thermal insulating material. Conventional concrete absorbs solar radiation during the daytime while releasing it at night causing raise in temperature in urban areas. The thermal conductivity of 2200 kg/m3 density conventional concrete is 1.6 W/mK. Higher the thermal conductivity value, greater the heat flow through the material. To reduce this heat transfer, the construction industry has turned to lightweight foamed concrete. Foamed concrete, due to its air voids, gives excellent thermal properties and sound absorption apart from fire-resistance and self-leveling properties. But due to limited studies on different densities of foamed concrete, the thermal properties are not understood properly thus limiting its use as thermal insulating material. In this study, thermal conductivity is determined for 1400, 1600 and 1800 kg/m3 densities of foamed concrete. 0.8% of Polypropylene fibres (PP) is used to reinforce the foamed concrete and improve the mechanical properties. Based upon the results, it was found that addition of PP fibres enhances the tensile strength and slightly reduced the thermal conductivity for lower densities, while the reverse affect was noticed in 1800 kg/m3 density.

  5. Development of refrigerator insulation with reduced CFC-11. Reizokoyo flon sakugen uretan dannetsuzai no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kai, H.; Fukuda, K.; Yoshioka, M. (Sharp Corp., Osaka (Japan))

    1992-11-10

    Polyurethane thermal insulator in which the usage of CFC-11 is 50% reduced by increasing the percentage of water has been developed for the purpose of reducing polyurethane-foaming CFC-11 used as thermal insulator of refrigerators. In this new water-intensive feedstock system, the overall OH-value in polyol was lowered; the usage of aromatic amines was curtailed; and the amount of sorbits was increased so as to secure adhesiveness at the foaming jig temperature of 35[degree]C. As for the improvement of fluidity, a combination of four kinds of polyols offered viscosity in the same level as in the conventional ones. Thermal conductivity was worsened, but the rate of its drop could be controlled below 3% by some measures such as homogenization of stock materials, choice of a suface-active agent which makes foam bubbles minute, etc. Concerning curing property which has a large effect on productivity, a reaction type amine-based catalyst delaying thickening behaviour at the time of foaming was selected and a gelling promotive tertiary amine-based catalyst which can develop foam curing promptly was combinedly used to reduce curing property from five minutes in the past to four minutes. 2 refs., 6 figs., 14 tabs.

  6. Utilization of fly ash and ultrafine GGBS for higher strength foam concrete

    Science.gov (United States)

    Gowri, R.; Anand, K. B.

    2018-02-01

    Foam concrete is a widely accepted construction material, which is popular for diverse construction applications such as, thermal insulation in buildings, lightweight concrete blocks, ground stabilization, void filling etc. Currently, foam concrete is being used for structural applications with a density above 1800kg/m3. This study focuses on evolving mix proportions for foam concrete with a material density in the range of 1200 kg/m3 to 1600 kg/m3, so as to obtain strength ranges that will be sufficient to adopt it as a structural material. Foam concrete is made lighter by adding pre-formed foam of a particular density to the mortar mix. The foaming agent used in this study is Sodium Lauryl Sulphate and in order to densify the foam generated, Sodium hydroxide solution at a normality of one is also added. In this study efforts are made to make it a sustainable construction material by incorporating industrial waste products such as ultrafine GGBS as partial replacement of cement and fly ash for replacement of fine aggregate. The fresh state and hardened state properties of foam concrete at varying proportions of cement, sand, water and additives are evaluated. The proportion of ultrafine GGBS and fly ash in the foam concrete mix are varied aiming at higher compressive strength. Studies on air void-strength relationship of foam concrete are also included in this paper.

  7. Vibration behaviour of foamed concrete floor with polypropylene and rise husk ash fibre

    Science.gov (United States)

    Azaman, N. A. Mohd; Ghafar, N. H. Abd; Ayub, N.; Ibrahim, M. Z.

    2017-11-01

    In the history of the construction industry, lightweight concrete or foamed concrete is a special concrete which can very useful in the construction sector because it is very lightweight and it can compact by itself at each angle of foamwork. Foamed concrete is one of lightweight concrete which widely used for floor construction due to its light weight and economic. The significant challenges in the floor design process are considering the vibration that needs improvements for the poor dynamic behaviour insulation. An alternative material to replace sand with certain amount of rice husk ash (RHA) and polypropylene was introduced. Research was determine the dynamic behavior of foam-polypropylene and foam-RHA concrete by using impact hammer test. The natural frequency for normal foamed concrete, 0.5 % of Polypropylene and 15% of RHA is 29.8 Hz, 29.3 Hz and 29.5 Hz respectively.

  8. Low-density carbonized composite foams for direct-drive laser ICF targets

    International Nuclear Information System (INIS)

    Kong, Fung-Ming.

    1989-03-01

    The design for a direct-drive, high-gain laser inertial confinement fusion target calls for the use of a low-density, low-atomic-number foam to confine and stabilize liquid deuterium-tritium (DT) in a spherical-shell configuration. Over the past two years, we have successfully developed polystyrene foams (PS) and carbonized resorcinol-formaldehyde foams (CRF) for that purpose. Both candidates are promising materials with unique characteristics. PS has superior mechanical strength and machinability, but its relatively large thermal contraction is a significant disadvantage. CRF has outstanding wettability and dimensional stability in liquid DT; yet it is much more fragile than PS. To combine the strengths of both materials, we have recently developed a polymer composite foam which exceeds PS in mechanical strength, but retains the wettability and dimension stability of CRF. This paper will discuss the preparation, structure, and properties of the polymer composite foams. 5 refs., 1 fig., 1 tab

  9. Investigation the foam dynamics capacity of SDS in foam generator by affecting the presence of organic and inorganic contaminant

    Science.gov (United States)

    Haryanto, Bode; Siswarni, M. Z.; Sianipar, Yosef C. H.; Sinaga, Tongam M. A.; Bestari, Imam

    2017-05-01

    The effect of negative charge SDS monomer on its foam capacity with the presence of contaminants was investigated in foam generator. Generally, surfactant with higher concentration has higher foam capacity. The higher concentration will increase the number of monomer then increase the micelles in liquid phase. Increasing the number of monomer with the negative charge is a potential to increase interaction with metal ion with positive charge in solution. The presence of inorganic compound as metal ion with positive charge and organic compound (colloid) as particle of coffee impacting to generate the foam lamella with monomer is evaluated. Foam dynamic capacity of only SDS with variation of CMC, 1 x; 2 x; 3 x have the height 7.5, 8.0 and 8.3 cm respectively with the different range time were investigated. The Height of foam dynamic capacity with the presence of 20 ppm Cd2+ ion contaminant was 8.0, 8.3 and 8.4 cm at the same CMC variation of SDS. The presence of metal ion contaminant within the foam was confirmed by AAS. The black coffee particles and oil as contaminant decreased the foam capacity significantly in comparing to metal ions.

  10. Heat transfer coefficient as parameter describing ability of insulating liquid to heat transfer

    Science.gov (United States)

    Nadolny, Zbigniew; Gościński, Przemysław; Bródka, Bolesław

    2017-10-01

    The paper presents the results of the measurements of heat transfer coefficient of insulating liquids used in transformers. The coefficient describes an ability of the liquid to heat transport. On the basis of the coefficient, effectiveness of cooling system of electric power devices can be estimated. Following liquids were used for the measurements: mineral oil, synthetic ester and natural ester. It was assumed that surface heat load is about 2500 W·m-2, which is equal the load of transformer windings. A height of heat element was 1.6 m, because it makes possible steady distribution of temperature on its surface. The measurements of heat transfer coefficient was made as a function of various position of heat element (vertical, horizontal). In frame of horizontal position of heat element, three suppositions were analysed: top, bottom, and side.

  11. Heat transfer coefficient as parameter describing ability of insulating liquid to heat transfer

    Directory of Open Access Journals (Sweden)

    Nadolny Zbigniew

    2017-01-01

    Full Text Available The paper presents the results of the measurements of heat transfer coefficient of insulating liquids used in transformers. The coefficient describes an ability of the liquid to heat transport. On the basis of the coefficient, effectiveness of cooling system of electric power devices can be estimated. Following liquids were used for the measurements: mineral oil, synthetic ester and natural ester. It was assumed that surface heat load is about 2500 W·m-2, which is equal the load of transformer windings. A height of heat element was 1.6 m, because it makes possible steady distribution of temperature on its surface. The measurements of heat transfer coefficient was made as a function of various position of heat element (vertical, horizontal. In frame of horizontal position of heat element, three suppositions were analysed: top, bottom, and side.

  12. Preparation and Stability of Inorganic Solidified Foam for Preventing Coal Fires

    Directory of Open Access Journals (Sweden)

    Botao Qin

    2014-01-01

    Full Text Available Inorganic solidified foam (ISF is a novel material for preventing coal fires. This paper presents the preparation process and working principle of main installations. Besides, aqueous foam with expansion ratio of 28 and 30 min drainage rate of 13% was prepared. Stability of foam fluid was studied in terms of stability coefficient, by varying water-slurry ratio, fly ash replacement ratio of cement, and aqueous foam volume alternatively. Light microscope was utilized to analyze the dynamic change of bubble wall of foam fluid and stability principle was proposed. In order to further enhance the stability of ISF, different dosage of calcium fluoroaluminate was added to ISF specimens whose stability coefficient was tested and change of hydration products was detected by scanning electron microscope (SEM. The outcomes indicated that calcium fluoroaluminate could enhance the stability coefficient of ISF and compact hydration products formed in cell wall of ISF; naturally, the stability principle of ISF was proved right. Based on above-mentioned experimental contents, ISF with stability coefficient of 95% and foam expansion ratio of 5 was prepared, which could sufficiently satisfy field process requirements on plugging air leakage and thermal insulation.

  13. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types.

    Science.gov (United States)

    Kim, JunHee; You, Young-Chan

    2015-03-03

    A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs) reinforced with grid-type glass-fiber-reinforced polymer (GFRP) shear connectors. Two kinds of insulation-expanded polystyrene (EPS) and extruded polystyrene (XPS) with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation.

  14. Influence of foaming agents on both the structure and the thermal conductivity of silicate glasses

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is one of the most promising insulation materials for constructions since it has low thermal conductivity, high compressive strength, non-water permeability, and high fire resistance. They can be produced using cullet sources, e.g., cathode ray tubes (CRT) panel glass, and foaming agents...... such as metal carbonates, or oxidizing transition metal oxides combined with carbonaceous sources. In this work, we mix CRT panel glass powder with different foaming agents: CaCO3 (0-4 wt%), Fe2O3 (0-6 wt%), and MnxOy (0-10 wt%). The powder mixtures are sintered in the range between the glass transition...

  15. Temperature and press load stimulation on thermal transport in fibrous and porous composite insulators

    International Nuclear Information System (INIS)

    Rehman, M.A.; Maqsood, A.

    2006-01-01

    Thermal transport properties of synthetic pliable insulators are measured as a function of applied pressure at constant temperatures. Advantageous Transient Plane Source (ATPS) method is used for the simultaneous measurement of thermal conductivity and thermal diffusivity of these materials and heat capacity per unit volume is then calculated. Three samples namely foam, closed cell foam and fiber glass are subjected to press load, taking into account the flexibility and sustainability of the samples and the requirements of the technique used. The thermal data of the samples were determined within the temperature range (300-414K) and pressure range (Normal -15kPa). These materials are used for thermal insulation and temperature control of air-conditioned space, acoustic and sound insulation, agriculture and fishery, sports and leisure goods, building and civil engineering, industrial packaging cold storage ware house, boiler work and other electric appliances, so they are helpful in reducing energy losses. (author)

  16. Experimental and Numerical Study of Ceramic Foam Filtration

    Science.gov (United States)

    Laé, E.; Duval, H.; Rivière, C.; Le Brun, P.; Guillot, J.-B.

    Ceramic foam filtration is widely used to enable removal of non metallic inclusions from liquid aluminium. Its performances have been largely studied in the literature and some discrepancies remain amongst the published results. Consequently, a research program was deployed to evaluate the performances of a range of ceramic foam filters used under various conditions and to understand the inclusions capture mechanisms.

  17. Effect of Cerium(IV)-Surfactant Reaction in Foam Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Han Beom; Jung, Chong-Hun; Yoon, In-Ho; Kim, Chorong; Choi, Wang-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Using foams allows the decommissioning of complex shaped facilities. The decontamination foam comprises at least one surfactant to generate the foam and one or more chemical reactants to achieve the dissolution of the contaminants at the solid surface. In order to improve the efficiency of decontamination foam, the present study attempts to find the optimum condition of chemical reagents to the foaming solution. The corrosion rate of radioactive nuclides contaminated stainless steel metal is very important factor for the foam decontamination process. The goal of this study is to develop the decontamination process for contaminated stainless steel in medium of nitric acid. Stainless steel needs a strong oxidizing agent such as Ce(IV) ion and the effects of cerium(IV). Surfactant interaction involved in foam decontamination and finally the improvement brought by formulation science. The formulation of foams loaded with strong oxidizing reagents such as Ce(IV) is an important factor. The enhanced decontamination properties of nitric acid with Ce(IV) additive on stainless steel is well known in liquid mediums. stainless steel metal is an important aspect in the foam decontamination process.

  18. Effect of Cerium(IV)-Surfactant Reaction in Foam Decontamination

    International Nuclear Information System (INIS)

    Yang, Han Beom; Jung, Chong-Hun; Yoon, In-Ho; Kim, Chorong; Choi, Wang-Kyu

    2015-01-01

    Using foams allows the decommissioning of complex shaped facilities. The decontamination foam comprises at least one surfactant to generate the foam and one or more chemical reactants to achieve the dissolution of the contaminants at the solid surface. In order to improve the efficiency of decontamination foam, the present study attempts to find the optimum condition of chemical reagents to the foaming solution. The corrosion rate of radioactive nuclides contaminated stainless steel metal is very important factor for the foam decontamination process. The goal of this study is to develop the decontamination process for contaminated stainless steel in medium of nitric acid. Stainless steel needs a strong oxidizing agent such as Ce(IV) ion and the effects of cerium(IV). Surfactant interaction involved in foam decontamination and finally the improvement brought by formulation science. The formulation of foams loaded with strong oxidizing reagents such as Ce(IV) is an important factor. The enhanced decontamination properties of nitric acid with Ce(IV) additive on stainless steel is well known in liquid mediums. stainless steel metal is an important aspect in the foam decontamination process

  19. The mixture of liquid foam soap, ethanol and citric acid as a new fixative-preservative solution in veterinary anatomy.

    Science.gov (United States)

    Turan, Erkut; Gules, Ozay; Kilimci, Figen Sevil; Kara, Mehmet Erkut; Dilek, Omer Gurkan; Sabanci, Seyyid Said; Tatar, Musa

    2017-01-01

    The present study investigates the efficiency of liquid foam soap, ethanol, citric acid and benzalkonium chloride as a fixative-preservative solution (a soap-and ethanol-based fixing solution, or SEFS). In this study, ethanol serves as the fixative and preservative, liquid foam soap as the modifying agent, citric acid as the antioxidant and benzalkonium chloride as the disinfectant. The goat cadavers perfused with SEFS (n=8) were evaluated over a period of one year with respect to hardness, colour and odour using objective methods. Colour and hardness were compared between one fresh cadaver and the SEFS-embalmed cadavers. Histological and microbiological examinations were also performed in tissue samples. Additionally, the cadavers were subjectively evaluated after dissection and palpation. The SEFS provided the effectiveness expected over a 1-year embalming period for the animal cadavers. No bacteria or fungi were isolated except for some non-pathogenic Bacillus species. Visible mould was not present on either cadavers or in the surrounding environment. The cadavers maintained an appearance close to their original anatomical appearance, with muscles having good hardness and elasticity for dissection. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Investigation on the effect of formulation and process variables of Polyethylene Foams Production

    International Nuclear Information System (INIS)

    Barikani, H.; Sarai, M.

    2001-01-01

    Polyolefin foams such as polyethylene, polypropylene and their copolymers have been extensively used in packaging, automotive, military, marine, cable industries and sports, due to their unique properties namely: light weight, chemical resistance, thermal insulation, inertness, abrasion resistance, buoyancy and low cost. With regards to domestic mass production of polyethylene, replacement of polyurethane with polyethylene foam is very important in some applications from economical point of view. In this research preparation of high density and low density polyethylene foams were studied and the effect of formulation factors such as blowing agent, cross-linker, calcium carbonate, zinc oxide and processing factors such as heat, pressure and reaction time on density and cell size were investigated

  1. Influence of cellulose fibers on structure and properties of fiber reinforced foam concrete

    Directory of Open Access Journals (Sweden)

    Fedorov Valeriy

    2018-01-01

    Full Text Available One of the promising means of foamed concrete quality improvement is micro-reinforcement by adding synthetic and mineral fibers to the base mix. This research is the first to investigate peculiarities of using recycled cellulose fiber extracted from waste paper for obtaining fiber reinforced foam concrete. The paper presents results of experimental research on the influence of cellulose fibers on structure and properties of fiber reinforced foam concrete by using methods of chemical analysis and scanning electron microscopy. The research determines peculiarities of new formations appearance and densification of binder hydration products in the contact zone between fiber and cement matrix, which boost mechanical strength of fiber reinforced foam concrete. Physico-mechanical properties of fiber reinforced foam concrete were defined depending on the amount of recycled cellulose fiber added to the base mix. It was found that the use of recycled cellulose fibers allows obtaining structural thermal insulating fiber reinforced foam concretes of non-autoclaved hardening of brand D600 with regard to mean density with the following improved properties: compressive strength increased by 35% compared to basic samples, higher stability of foamed concrete mix and decreased shrinkage deformation.

  2. The effect of heat and mass transfer on the cellular plastic insulation and the long-term aging

    Energy Technology Data Exchange (ETDEWEB)

    Fan Youchen [VTT Building Technology, Espoo (Finland). Building Physics, Building Services and Fire Technology

    1997-12-31

    To produce environmental-friendly products, foamed plastic industries are facing the challenge to replace the traditional blowing agents chlorofluorocarbons (CFCs) with zero ozone depletion potential (ODP) alternatives. After a series of studies were completed, more understandings and new findings have been achieved with respect to the rigid closed-cell cellular plastic insulations or foamed plastic insulations (FPIs). The mechanism of heat transfer within the FPIs was examined. A new formula for calculating the solid polymer matrix thermal conductivity has been deduced based on the law of energy conservation and Fourier equation of heat conduction. All the parameters involved in this formula can be easily measured. By comparing the simulation results with measurements, the Brokaw equation is recommended for the prediction of the thermal conductivity of a cell-gas mixture. The foamed plastic deformation was also discussed. A new model has been established for predicting the elastic modulus of the foamed plastics. In comparison to the published measurements, it was found that the new model gives fairly good results. A diffusion chamber has been designed and constructed for measuring the gaseous transport properties within the FPIs. To overcome the difficulties of the traditional method, a new measurement procedure and post test data treatment have been suggested. The measurement accuracy is equivalent to the traditional method with an exception of much short time being required. The diffusion coefficients of CO{sub 2}, O{sub 2}, and N{sub 2} within five n-pentane/CO{sub 2} based polyurethane (PUR) foams have been obtained from the diffusion chamber tests. Measurements showed that the relationship between the gaseous diffusion coefficients within FPIs and temperature follows the Arrhenius type. No identical relationship between diffusion coefficients and foam density was reached. To predict the long-term aging property of CFC-free foamed plastic insulations, a two

  3. Building America Top Innovations 2013 Profile – Exterior Rigid Insulation Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-09-01

    In this Top Innovation profile, field and lab studies by BSC, PHI, and NorthernSTAR characterize the thermal, air, and vapor resistance properties of rigid foam insulation and describe best practices for their use on walls, roofs, and foundations.

  4. Experimental Study of Hysteresis behavior of Foam Generation in Porous Media.

    Science.gov (United States)

    Kahrobaei, S; Vincent-Bonnieu, S; Farajzadeh, R

    2017-08-21

    Foam can be used for gas mobility control in different subsurface applications. The success of foam-injection process depends on foam-generation and propagation rate inside the porous medium. In some cases, foam properties depend on the history of the flow or concentration of the surfactant, i.e., the hysteresis effect. Foam may show hysteresis behavior by exhibiting multiple states at the same injection conditions, where coarse-textured foam is converted into strong foam with fine texture at a critical injection velocity or pressure gradient. This study aims to investigate the effects of injection velocity and surfactant concentration on foam generation and hysteresis behavior as a function of foam quality. We find that the transition from coarse-foam to strong-foam (i.e., the minimum pressure gradient for foam generation) is almost independent of flowrate, surfactant concentration, and foam quality. Moreover, the hysteresis behavior in foam generation occurs only at high-quality regimes and when the pressure gradient is below a certain value regardless of the total flow rate and surfactant concentration. We also observe that the rheological behavior of foam is strongly dependent on liquid velocity.

  5. Foam film permeability: theory and experiment.

    Science.gov (United States)

    Farajzadeh, R; Krastev, R; Zitha, Pacelli L J

    2008-02-28

    The mass transfer of gas through foam films is a prototype of various industrial and biological processes. The aim of this paper is to give a perspective and critical overview of studies carried out to date on the mass transfer of gas through foam films. Contemporary experimental data are summarized, and a comprehensive overview of the theoretical models used to explain the observed effects is given. A detailed description of the processes that occur when a gas molecule passes through each layer that forms a foam film is shown. The permeability of the film-building surfactant monolayers plays an important role for the whole permeability process. It can be successfully described by the models used to explain the permeability of surfactant monolayers on aqueous sub-phase. For this reason, the present paper briefly discusses the surfactant-induced resistance to mass transfer of gases through gas-liquid interface. One part of the paper discusses the experimental and theoretical aspects of the foam film permeability in a train of foam films in a matrix or a cylinder. This special case is important to explain the gas transfer in porous media or in foams. Finally, this paper will highlight the gaps and challenges and sketch possible directions for future research.

  6. Generation of ozone foam and its application for disinfection

    Science.gov (United States)

    Hiragaki, Keisuke; Ishimaru, Tomiya; Nakanishi, Masaru; Muraki, Ryouji; Nieda, Masanori; Yamabe, Chobei

    2015-07-01

    Generated ozone foam was applied to the disinfection of Pseudomonas fluorescens. The effect of disinfection has been confirmed experimentally and new equipment for the disinfection of hands using this ozone foam has been put on the market for the practical use. The ozone foam was produced in the foam generator after mixing the water including surfactant (30 mL/min) and air including ozone (1000 ppm = 2.14 g/m3 ~ 1600 ppm = 3.4 g/m3, 300 mL/min). The liquid-to-gas ratio is 100 L/m3. The concentration of dissolved ozone in the thin liquid films of the bubbles was about 3 mg/L which was measured by the chemical method of the KI absorption and titration of sodium thiosulfate solution. The disinfection test samples were prepared using the PET disk on which Pseudomonas fluorescens of its number of more than 108 were attached. Test sample was inserted into ozone foam set on the glass plate for one to 6 min. The survival rate log (N/N0 decreased with time and its value of about-2.6 (i.e., ~1/400) was obtained at 6 min (2 min × 3 times repeated). It was also confirmed that the ozone foam was useful for the disinfection of hands. For more effective disinfection (in case of taking a long time for foam melting), the ozone foam was broken by force and changed into ozone water by which the survival rate decreased ×4 (i.e., N/N0 = 1/10 000) at 4 ~ 6 min. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  7. The compressive behaviour and constitutive equation of polyimide foam in wide strain rate and temperature

    Directory of Open Access Journals (Sweden)

    Yoshimoto Akifumi

    2015-01-01

    Full Text Available These days, polymer foams, such as polyurethane foam and polystyrene foam, are used in various situations as a thermal insulator or shock absorber. In general, however, their strength is insufficient in high temperature environments because of their low glass transition temperature. Polyimide is a polymer which has a higher glass transition temperature and high strength. Its mechanical properties do not vary greatly, even in low temperature environments. Therefore, polyimide foam is expected to be used in the aerospace industry. Thus, the constitutive equation of polyimide foam that can be applied across a wide range of strain rates and ambient temperature is very useful. In this study, a series of compression tests at various strain rates, from 10−3 to 103 s−1 were carried out in order to examine the effect of strain rate on the compressive properties of polyimide foam. The flow stress of polyimide foam increased rapidly at dynamic strain rates. The effect of ambient temperature on the properties of polyimide foam was also investigated at temperature from − 190 °C to 270°∘C. The flow stress decreased with increasing temperature.

  8. Development of advanced materials composites for use as insulations for LH2 tanks

    Science.gov (United States)

    Lemons, C. R.; Salmassy, O. K.

    1973-01-01

    A study of thread-reinforced polyurethane foam and glass fabric liner, serving as internally bonded insulation for space shuttle LH2 tanks, is reported. Emphasis was placed on an insulation system capable of reentry and multiple reuse in the shuttle environment. The optimized manufacturing parameters associated with each element of the composite are established and the results, showing successful completion of subscale system evaluation tests using the shuttle flight environmental requirements, are given.

  9. Modeling the pressure increase in liquid helium cryostats after failure of the insulating vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Heidt, C.; Grohmann, S. [Karlsruhe Institute of Technology, Institute for Technical Physics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany and Karlsruhe Institute of Technology, Institute for Technical Thermodynamics and Refrigeration, Engler-Bunte (Germany); Süßer, M. [Karlsruhe Institute of Technology, Institute for Technical Physics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2014-01-29

    The pressure relief system of liquid helium cryostats requires a careful design, due to helium's low enthalpy of vaporization and due to the low operating temperature. Hazard analyses often involve the failure of the insulating vacuum in the worst-case scenario. The venting of the insulating vacuum and the implications for the pressure increase in the helium vessel, however, have not yet been fully analyzed. Therefore, the dimensioning of safety devices often requires experience and reference to very few experimental data. In order to provide a better foundation for the design of cryogenic pressure relief systems, this paper presents an analytic approach for the strongly dynamic process induced by the loss of insulating vacuum. The model is based on theoretical considerations and on differential equation modeling. It contains only few simplifying assumptions, which will be further investigated in future experiments. The numerical solutions of example calculations are presented with regard to the heat flux into the helium vessel, the helium pressure increase and the helium flow rate through the pressure relief device. Implications concerning two-phase flow and the influence of kinetic energy are discussed.

  10. Evaluation of Canisterized Foams and Evaluation of Radiation Hardened Foams for D&D Activities

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-26

    The introduction of polyurethane foams has previously been examined elsewhere within the DOE complex with regards to decontamination and decommissioning (D&D) activities, though its use has been prohibited as a result of excessive heat generation and flammability concerns per the safety basis. Should these foams be found compatible with respect to the facility safety basis requirements, D&D work involving large void containing structures such as gloveboxes could be eased through the fixation of residual contamination after decontamination efforts have concluded. To this end, SRNL embarked on a characterization of commercial epoxy foams to identify the characteristics that would be most important to safety basis requirements. Through SRNL’s efforts, the performance of commercial two-part epoxy foams was evaluated for their foaming characteristics, temperature profiles, loading capability with high-Z (high density) additives, and applicability for shielding gamma emission from isotopes including; Am-241, Cs-137, and Co-60. It was found that these foams are capable of encapsulation of a desired volume, though the ideal and experimental expansion coefficients were found to differ. While heat is generated during the reaction, no samples generated heat above 70 °C. Of the down–selected materials, heating was on the order of 40 °C for the flexible foam and 60 °C for the rigid foam. Both were found to return to room temperature after 20 minutes regardless of the volume of foam cast. It was also found that the direct introduction of high-Z additives were capable of attenuating 98% of Am-241 gamma signal, 16% of Cs-137 signal, and 9.5% of Co-60 signal at 1:1 loading capacities of total liquid constituent weight to additive weight. These efforts are currently being reviewed for the ASTM January 2017 subcommittee discussions to address the lack of test methods and standards regarding these materials with respect to D&D environments.

  11. Novel developments in foam sclerotherapy: Focus on Varithena® (polidocanol endovenous microfoam) in the management of varicose veins.

    Science.gov (United States)

    Star, Phoebe; Connor, David E; Parsi, Kurosh

    2018-04-01

    Scope Varithena® is a recently approved commercially available drug/delivery unit that produces foam using 1% polidocanol for the management of varicose veins. The purpose of this review is to examine the benefits of foam sclerotherapy, features of the ideal foam sclerosant and the strengths and limitations of Varithena® in the context of current foam sclerotherapy practices. Method Electronic databases including PubMed, Medline (Ovid) SP as well as trial registries and product information sheets were searched using the keywords, 'Varithena', 'Varisolve', 'polidocanol endovenous microfoam', 'polidocanol' and/or 'foam sclerotherapy/sclerosant'. Articles published prior to 20 September 2016 were identified. Results Foam sclerosants have effectively replaced liquid agents due to their physiochemical properties resulting in better clinical outcomes. Medical practitioners commonly prepare sclerosant foam at the bedside by agitating liquid sclerosant with a gas such as room air, using techniques as described by Tessari or the double syringe method. Such physician-compounded foams are highly operator dependent producing inconsistent foams of different gas/liquid compositions, bubble size, foam behaviour and varied safety profiles. Varithena® overcomes the variability and inconsistencies of physician-compounded foam. However, Varithena® has limited applications due to its fixed sclerosant type and concentration, cost and lack of worldwide availability. Clinical trials of Varithena® have demonstrated efficacy and safety outcomes equivalent or better than physician-compounded foam but only in comparison to placebo alone. Conclusion Varithena® is a promising step towards the creation of an ideal sclerosant foam. Further assessment in independent randomised controlled clinical trials is required to establish the advantages of Varithena® over and above the current best practice physician-compounded foam.

  12. Polymer Reinforced, Non-Brittle, Light-Weight Cryogenic Insulation for Reduced Life Cycle Costs, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — InnoSense LLC (ISL) proposes to fabricate a composite aerogel foam. This material is designed to be impact resistant, non-brittle, non-water-retaining and insulating...

  13. Pressure Drop Hysteresis of Hydrodynamic States in Packed Tower for Foaming Systems

    Directory of Open Access Journals (Sweden)

    Vijay Sodhi

    2011-11-01

    Full Text Available An experimental investigation was carried out to determine the effects of gas and liquid flow velocities and surface tension on the two-phase phase pressure drop a in a downflow trickle bed reactor. Water and non- Newtonian foaming solutions were employed as liquid phase. More than 240 experimental points for the trickle flow (GCF and foaming pulsing flow (PF/FPF regime were obtained for present study. Hydrodynamic characteristics involving two-phase pressure drop significantly influenced by gas and liquid flow rates. For 15 and 30 ppm air-aqueous surfactant solutions, two-phase pressure drop increases with higher liquid and gas flow velocities in trickle flow and foaming/pulsing flow regimes. With decrease in surface tension i.e. for 45 and 60 ppm air-aqueous surfactant systems, two-phase pressure drop increases very sharply during change in regime transition at significantly low liquid and gas velocities. Copyright © 2011 BCREC UNDIP. All rights reserved.(Received: 14th March 2011, Revised: 29th June 2011; Accepted: 4th July 2011[How to Cite: V. Sodhi, and R. Gupta. (2011. Pressure Drop Hysteresis of Hydrodynamic States in Packed Tower for Foaming Systems. Bulletin of Chemical Reaction Engineering & Catalysis, 6(2: 115-122. doi:10.9767/bcrec.6.2.828.115-122][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.828.115-122 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/828 ] | View in 

  14. Short- and long-term releases of fluorocarbons from disposal of polyurethane foam waste

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2003-01-01

    Several halocarbons having very high global warming or ozone depletion potentials have been used as a blowing agent (BA) for insulation foam in home appliances, such as refrigerators and freezers. Many appliances are shredded after the end of their useful life. Release experiments carried out in ...

  15. Investigation of foaming during nuclear defense-waste solidification by electric melting

    International Nuclear Information System (INIS)

    Blair, H.T.; Lukacs, J.M.

    1980-12-01

    To determine the cause of foaming, the physical and chemical composition of the glass formers that are added to the waste to produce a borosilicate melt were investigated. It was determined that the glass-forming frit was not the source of the foam-causing gases. Incomplete calcination of the waste, which results in residual hydrates, carbonates and nitrates, and the relatively high carbon and sulfate contents of the waste glass composition were also eliminated as possible sources of the foam. It was finally shown that the oxides of the multivalent ions of manganese and iron that are in the defense waste in high concentrations are the source of the foaming. Nickel oxide is also present in the waste and is suspected of contributing to the foaming. In investigating methods to reduce the foam, the focus was on the chemistry of the materials being processed rather than on the mechanical aspects of the processing equipment to avoid increasing the mechanical complexity of the melter operation. Reducing the waste loading in the host glass from 28 to 14 wt. % produced the most significant reduction in the foam. Of course this did not increase the rate at which waste can be processed. Adding carbonaceous additives or barium metaphosphate to the waste/frit mixture (batch) reduced the foaming somewhat. However, if too much reducing agent was added to the batch, iron-nickel alloys separated from the melt. Likewise, melting the batch in an inert or a reducing atmosphere reduced the foaming but produced a heterogeneous product. Finally, initial attempts to control foaming by adding reducing agents to the liquid waste and then spray-calcining it using an inert atomizing gas were not successful. The possibilities for liquid-waste treatment need to be investigated further

  16. Physical processes in high field insulating liquid conduction

    Science.gov (United States)

    Mazarakis, Michael; Kiefer, Mark; Leckbee, Joshua; Anderson, Delmar; Wilkins, Frank; Obregon, Robert

    2017-10-01

    In the power grid transmission where a large amount of energy is transmitted to long distances, High Voltage DC (HVDC) transmission of up to 1MV becomes more attractive since is more efficient than the counterpart AC. However, two of the most difficult problems to solve are the cable connections to the high voltage power sources and their insulation from the ground. The insulating systems are usually composed of transformer oil and solid insulators. The oil behavior under HVDC is similar to that of a weak electrolyte. Its behavior under HVDC is dominated more by conductivity than dielectric constant. Space charge effects in the oil bulk near high voltage electrodes and impeded plastic insulators affect the voltage oil hold-off. We have constructed an experimental facility where we study the oil and plastic insulator behavior in an actual HVDC System. Experimental results will be presented and compared with the present understanding of the physics governing the oil behavior under very high electrical stresses. Sandia National Laboratories managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. D.O.E., NNSA under contract DE-NA-0003525.

  17. Foam decontamination of large nuclear components before dismantling

    International Nuclear Information System (INIS)

    Costes, J.R.; Sahut, C.

    1998-01-01

    Following some simple theoretical considerations, the authors show that foam compositions can be advantageously circulated them for a few hours in components requiring decontamination before dismantling. The technique is illustrated on six large ferritic steel valves, then on austenitic steel heat exchangers for which the Ce(III)/Ce(IV) redox pair was used to dissolve the chromium; Ce(III) was reoxidized by ozone injection into the foam vector gas. Biodegradable surfactants are sued in the process; tests have shown that the foaming power disappears after a few days, provided the final radioactive liquid waste is adjusted to neutral pH, allowing subsequent coprecipitation of concentration treatment. (author)

  18. Mixing foams and grains in Hele-Shaw cells

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, A P B; Tufaile, A; Haddad, T A S, E-mail: tufaile@usp.b [Escola de Artes, Ciencias e Humanidades da Universidade de Sao Paulo, R. Arlindo Bettio, 1000, 03828-000, Sao Paulo (Brazil)

    2010-09-01

    We have observed some features of the coexistence of foams and granular materials in Hele-Shaw cells. The most part of the liquid and granular material stays at the bottom of the cell, with only a small quantity of the mixture resting on the froth. The fractal dimensions of the final states of the foams are close to the values obtained from the Random Apollonian Packing model. The disperse structure of the granular material affects the probability distribution of number of sides of the foam bubbles. The nearest neighbor distances between the peaks of the sand piles at the bottom of the cell are close to a lognormal distribution.

  19. A 2d model for the effect of gas diffusion on mobility of foam for EOR

    NARCIS (Netherlands)

    Nonnekes, L.E.; Cox, S.J.; Rossen, W.R.

    2012-01-01

    Transport of gas across liquid films between bubbles is cited as one reason why CO2 foams for enhanced oil recovery (EOR) are usually weaker than N2 foams and why steam foams are weaker than foams of steam mixed with N2. We examine here the effect of inter-bubble gas diffusion on flowing bubbles in

  20. Thermal-performance study of liquid metal fast breeder reactor insulation

    International Nuclear Information System (INIS)

    Shiu, K.K.

    1980-09-01

    Three types of metallic thermal insulation were investigated analytically and experimentally: multilayer reflective plates, multilayer honeycomb composite, and multilayer screens. Each type was subjected to evacuated and nonevacuated conditions, where thermal measurements were made to determine thermal-physical characteristics. A variation of the separation distance between adjacent reflective plates of multilayer reflective plates and multilayer screen insulation was also experimentally studied to reveal its significance. One configuration of the multilayer screen insulation was further selected to be examined in sodium and sodium oxide environments. The emissivity of Type 304 stainless steel used in comprising the insulation was measured by employing infrared technology. A comprehensive model was developed to describe the different proposed types of thermal insulation. Various modes of heat transfer inherent in each type of insulation were addressed and their relative importance compared. Provision was also made in the model to allow accurate simulation of possible sodium and sodium oxide contamination of the insulation. The thermal-radiation contribution to heat transfer in the temperature range of interest for LMFBR's was found to be moderate, and the suppression of natural convection within the insulation was vital in preserving its insulating properties. Experimental data were compared with the model and other published results. Moreover, the three proposed test samples were assessed and compared under various conditions as viable LMFBR thermal insulations

  1. Moisture Durability with Vapor-Permeable Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However, uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and the procedures utilized to analyse the problems.

  2. Moisture Durability with Vapor-Permeable Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However,uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and theprocedures utilized to analyse the problems.

  3. Simple test for physical stability of cryogenic tank insulation

    Science.gov (United States)

    Rossello, D.

    1968-01-01

    Qualitative test determines the ability of insulation liners used on liquid hydrogen tanks to withstand stresses produced by the thermal shocks imparted to the insulation during tank filling and drainage. Test specimens are bonded to metal plates with a low thermal expansion coefficient and are immersed in liquid hydrogen.

  4. Foam flows through a local constriction

    Science.gov (United States)

    Chevalier, T.; Koivisto, J.; Shmakova, N.; Alava, M. J.; Puisto, A.; Raufaste, C.; Santucci, S.

    2017-11-01

    We present an experimental study of the flow of a liquid foam, composed of a monolayer of millimetric bubbles, forced to invade an inhomogeneous medium at a constant flow rate. To model the simplest heterogeneous fracture medium, we use a Hele-Shaw cell consisting of two glass plates separated by a millimetric gap, with a local constriction. This single defect localized in the middle of the cell reduces locally its gap thickness, and thus its local permeability. We investigate here the influence of the geometrical property of the defect, specifically its height, on the average steady-state flow of the foam. In the frame of the flowing foam, we can observe a clear recirculation around the obstacle, characterized by a quadrupolar velocity field with a negative wake downstream the obstacle, which intensity evolves systematically with the obstacle height.

  5. Experimental study of 3-D structure and evolution of foam

    Science.gov (United States)

    Thoroddsen, S. T.; Tan, E.; Bauer, J. M.

    1998-11-01

    Liquid foam coarsens due to diffusion of gas between adjacent foam cells. This evolution process is slow, but leads to rapid topological changes taking place during localized rearrangements of Plateau borders or disappearance of small cells. We are developing a new imaging technique to construct the three-dimensional topology of real soap foam contained in a small glass container. The technique uses 3 video cameras equipped with lenses having narrow depth-of-field. These cameras are moved with respect to the container, in effect obtaining numerous slices through the foam. Preliminary experimental results showing typical rearrangement events will also be presented. These events involve for example disappearance of either triangular or rectangular cell faces.

  6. Standard Practice for Evaluating Thermal Insulation Materials for Use in Solar Collectors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 This practice sets forth a testing methodology for evaluating the properties of thermal insulation materials to be used in solar collectors with concentration ratios of less than 10. Tests are given herein to evaluate the pH, surface burning characteristics, moisture adsorption, water absorption, thermal resistance, linear shrinkage (or expansion), hot surface performance, and accelerated aging. This practice provides a test for surface burning characteristics but does not provide a methodology for determining combustibility performance of thermal insulation materials. 1.2 The tests shall apply to blanket, rigid board, loose-fill, and foam thermal insulation materials used in solar collectors. Other thermal insulation materials shall be tested in accordance with the provisions set forth herein and should not be excluded from consideration. 1.3 The assumption is made that elevated temperature, moisture, and applied stresses are the primary factors contributing to the degradation of thermal insulation mat...

  7. A nonlinear vertex-based model for animation of two-dimensional dry foam

    DEFF Research Database (Denmark)

    Kelager, Micky; Erleben, Kenny

    2010-01-01

    Foam is the natural phenomenon of bubbles that arise due to nucleation of gas in liquids. The current state of art in Computer Graphics rarely includes foam effects on large scales. In this paper we introduce a vertexbased, quasi-static equilibrium model from the field of Computational Physics...

  8. Simple surface foam application enhances bioremediation of oil-contaminated soil in cold conditions.

    Science.gov (United States)

    Jeong, Seung-Woo; Jeong, Jongshin; Kim, Jaisoo

    2015-04-09

    Landfarming of oil-contaminated soil is ineffective at low temperatures, because the number and activity of micro-organisms declines. This study presents a simple and versatile technique for bioremediation of diesel-contaminated soil, which involves spraying foam on the soil surface without additional works such as tilling, or supply of water and air. Surfactant foam containing psychrophilic oil-degrading microbes and nutrients was sprayed twice daily over diesel-contaminated soil at 6 °C. Removal efficiencies in total petroleum hydrocarbon (TPH) at 30 days were 46.3% for landfarming and 73.7% for foam-spraying. The first-order kinetic biodegradation rates for landfarming and foam-spraying were calculated as 0.019 d(-1) and 0.044 d(-1), respectively. Foam acted as an insulating medium, keeping the soil 2 °C warmer than ambient air. Sprayed foam was slowly converted to aqueous solution within 10-12h and infiltrated the soil, providing microbes, nutrients, water, and air for bioaugmentation. Furthermore, surfactant present in the aqueous solution accelerated the dissolution of oil from the soil, resulting in readily biodegradable aqueous form. Significant reductions in hydrocarbon concentration were simultaneously observed in both semi-volatile and non-volatile fractions. As the initial soil TPH concentration increased, the TPH removal rate of the foam-spraying method also increased. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Forming foam structures with carbon foam substrates

    Science.gov (United States)

    Landingham, Richard L.; Satcher, Jr., Joe H.; Coronado, Paul R.; Baumann, Theodore F.

    2012-11-06

    The invention provides foams of desired cell sizes formed from metal or ceramic materials that coat the surfaces of carbon foams which are subsequently removed. For example, metal is located over a sol-gel foam monolith. The metal is melted to produce a metal/sol-gel composition. The sol-gel foam monolith is removed, leaving a metal foam.

  10. Hyperbolic prisms and foams in Hele-Shaw cells

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, A., E-mail: tufaile@usp.br [Soft Matter Laboratory, Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, 03828-000, Sao Paulo (Brazil); Tufaile, A.P.B. [Soft Matter Laboratory, Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, 03828-000, Sao Paulo (Brazil)

    2011-10-03

    The propagation of light in foams creates patterns which are generated due to the reflection and refraction of light. One of these patterns is observed by the formation of multiple mirror images inside liquid bridges in a layer of bubbles in a Hele-Shaw cell. We are presenting the existence of these patterns in foams and their relation with hyperbolic geometry and Sierpinski gaskets using the Poincare disk model. The images obtained from the experiment in foams are compared to the case of hyperbolic optical elements. -- Highlights: → The chaotic scattering of light in foams generating deltoid patterns is based on hyperbolic geometry. → The deltoid patterns are obtained through the Plateau borders in a Hele-Shaw cell. → The Plateau borders act like hyperbolic prism. → Some effects of the refraction and reflection of the light rays were studied using a hyperbolic prism.

  11. Foam, Foam-resin composite and method of making a foam-resin composite

    Science.gov (United States)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  12. High-Q silicon-on-insulator slot photonic crystal cavity infiltrated by a liquid

    International Nuclear Information System (INIS)

    Caër, Charles; Le Roux, Xavier; Cassan, Eric

    2013-01-01

    We report the experimental realization of a high-Q slot photonic crystal cavity in Silicon-On-Insulator (SOI) configuration infiltrated by a liquid. Loaded Q-factor of 23 000 is measured at telecom wavelength. The intrinsic quality factor inferred from the transmission spectrum is higher than 200 000, which represents a record value for slot photonic crystal cavities on SOI, whereas the maximum of intensity of the cavity is roughly equal to 20% of the light transmitted in the waveguide. This result makes filled slot photonic crystal cavities very promising for silicon-based light emission and ultrafast nonlinear optics

  13. Insulation systems for superconducting transmission cables

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1996-01-01

    the electrical insulation is placed outside both the superconducting tube and the cryostat. The superconducting tube is cooled by liquid nitrogen which is pumped through the hollow part of the tube.2) The cryogenic dielectric design, where the electrical insulation is placed inside the cryostat and thus is kept...

  14. Measure Guideline: Installing Rigid Foam Insulation on the Interior of Existing Brick Walls

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, H.; Klocke, S.; Puttagunta, S.

    2012-06-01

    This measure guideline provides information on an effective method to insulate the interior of existing brick masonry walls with extruded polystyrene (XPS) insulation board. The guide outlines step-by-step design and installation procedures while explaining the benefits and tradeoffs where applicable. The authors intend that this document be useful to a varied audience that includes builders, remodelers, contractors and homeowners.

  15. Measure Guideline. Installing Rigid Foam Insulation on the Interior of Existing Brick Walls

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, Hariharan [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Klocke, Steve [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2012-06-01

    This measure guideline provides information on an effective method to insulate the interior of existing brick masonry walls with extruded polystyrene (XPS) insulation board. The guide outlines step-by-step design and installation procedures while explaining the benefits and tradeoffs where applicable. The authors intend that this document be useful to a varied audience that includes builders,remodelers, contractors and homeowners.

  16. mdFoam+: Advanced molecular dynamics in OpenFOAM

    Science.gov (United States)

    Longshaw, S. M.; Borg, M. K.; Ramisetti, S. B.; Zhang, J.; Lockerby, D. A.; Emerson, D. R.; Reese, J. M.

    2018-03-01

    This paper introduces mdFoam+, which is an MPI parallelised molecular dynamics (MD) solver implemented entirely within the OpenFOAM software framework. It is open-source and released under the same GNU General Public License (GPL) as OpenFOAM. The source code is released as a publicly open software repository that includes detailed documentation and tutorial cases. Since mdFoam+ is designed entirely within the OpenFOAM C++ object-oriented framework, it inherits a number of key features. The code is designed for extensibility and flexibility, so it is aimed first and foremost as an MD research tool, in which new models and test cases can be developed and tested rapidly. Implementing mdFoam+ in OpenFOAM also enables easier development of hybrid methods that couple MD with continuum-based solvers. Setting up MD cases follows the standard OpenFOAM format, as mdFoam+ also relies upon the OpenFOAM dictionary-based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of an MD simulation is not typical of most OpenFOAM applications. Results show that mdFoam+ compares well to another well-known MD code (e.g. LAMMPS) in terms of benchmark problems, although it also has additional functionality that does not exist in other open-source MD codes.

  17. Development of a Leave-in-Place Slab Edge Insulating Form System

    Energy Technology Data Exchange (ETDEWEB)

    Marc Hoeschele; Eric Lee

    2009-08-31

    homes with radiant floor heating), the most practical insulation strategy is to secure rigid foam insulation, such as Dow Styrofoam{trademark}, to the inside of the wooden slab edge forms. An alternative is to clad insulation to the perimeter of the slab after the slab has been poured and cured. In either case, the foam must have a 'termite strip' that prevents termites from creating hidden tunnels through or behind the foam on their way to the wall framing above. Frequently this termite strip is a piece of sheet metal that must be fabricated for each project. The above-grade portion of the insulation also needs to be coated for appearance and to prevent damage from construction and UV degradation. All these steps add time, complexity, and expense to the insulating process.

  18. Morphologies, Processing and Properties of Ceramic Foams and Their Potential as TPS Materials

    Science.gov (United States)

    Stackpoole, Mairead; Simoes, Conan R.; Johnson, Sylvia M.

    2002-01-01

    The current research is focused on processing ceramic foams with compositions that have potential as a thermal protection material. The use of pre-ceramic polymers with the addition of sacrificial blowing agents or sacrificial fillers offers a viable approach to form either open or closed cell insulation. Our work demonstrates that this is a feasible method to form refractory ceramic foams at relatively low processing temperatures. It is possible to foam complex shapes then pyrolize the system to form a ceramic while retaining the shape of the unfired foam. Initial work focused on identifying suitable pre-ceramic polymers with desired properties such as ceramic yield and chemical make up of the pyrolysis product after firing. We focused on making foams in the Si system (Sic, Si02, Si-0-C), which is in use in current acreage TPS systems. Ceramic foams with different architectures were formed from the pyrolysis of pre-ceramic polymers at 1200 C in different atmospheres. In some systems a sacrificial polyurethane was used as the blowing agent. We have also processed foams using sacrificial fillers to introduce controlled cell sizes. Each sacrificial filler or blowing agent leads to a unique morphology. The effect of different fillers on foam morphologies and the characterization of these foams in terms of mechanical and thermal properties are presented. We have conducted preliminary arc jet testing on selected foams with the materials being exposed to typical re-entry conditions for acreage TPS and these results will be discussed. Foams processed using these approaches have bulk densities ranging from 0.15 to 0.9 g/cm3 and cell sizes ranging from 5 to 500 pm. Compression strengths ranged from 2 to 7 MPa for these systems. Finally, preliminary oxidation studies have been conducted on selected systems and will be discussed.

  19. Studies on a Foam System of Ultralow Interfacial Tension Applied in Daqing Oilfield after Polymer Flooding

    Directory of Open Access Journals (Sweden)

    Hong-sheng Liu

    2013-01-01

    Full Text Available In order to study the effects of oil displacement by a foam system of ultralow interfacial tension, the interfacial activities and foam properties of a nonionic gemini surfactant (DWS were investigated under Daqing Oilfield reservoir conditions. Injection methods and alternate cycle of the foam system were discussed here on the basis of results from core flow experiments. It was obtained that the surface tension of DWS was approximately 25 mN/m, and ultralow interfacial tension was reached between oil and DWS with a surfactant concentration between 0.05wt% and 0.4wt%. The binary system showed splendid foam performances, and the preferential surfactant concentration was 0.3wt% with a polymer concentration of 0.2wt%. When gas and liquid were injected simultaneously, flow control capability of the foam reached its peak at the gas-liquid ratio of 3 : 1. Enhanced oil recovery factor of the binary foam system exceeded 10% in a parallel natural cores displacement after polymer flooding.

  20. Headspace analysis of foams and fixatives

    Energy Technology Data Exchange (ETDEWEB)

    Harper, Kyle [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Truong, Thanh-Tam [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Magwood, Leroy [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peters, Brent [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nicholson, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-27

    In the process of decontaminating and decommissioning (D&D) older nuclear facilities, special precautions must be taken with removable or airborne contamination. One possible strategy utilizes foams and fixatives to affix these loose contaminants. Many foams and fixatives are already commercially available, either generically or sold specifically for D&D. However, due to a lack of revelant testing in a radioactive environment, additional verification is needed to confirm that these products not only affix contamination to their surfaces, but also will function in a D&D environment. Several significant safety factors, including flammability and worker safety, can be analyzed through the process of headspace analysis, a technique that analyzes the off gas formed before or during the curing process of the foam/fixative, usually using gas chromatography-mass spectrometry (GC-MS). This process focuses on the volatile components of a chemical, which move freely between the solid/liquid form within the sample and the gaseous form in the area above the sample (the headspace). Between possibly hot conditions in a D&D situation and heat created in a foaming reaction, the volatility of many chemicals can change, and thus different gasses can be released at different times throughout the reaction. This project focused on analysis of volatile chemicals involved in the process of using foams and fixatives to identify any potential hazardous or flammable compounds.

  1. Milestone 5 test report. Task 5, subtask 5.2: Tile to foam strength tests

    Science.gov (United States)

    Greenberg, H. S.

    1994-01-01

    This report summarizes work that has been performed to date on the strength of a cryotank insulation system using Rohacell foam and TUFI-coated AETB-12 ceramic tiles directly bonded to a simulated graphite-epoxy tank wall. Testing utilized a custom specimen design which consists of a long tensile specimen with eccentric loading to induce curvature similar to the curvature expected due to 'pillowing' of the tank when pressurized. A finite element model was constructed to predict the specific element strains in the test article, and to assist with design of the test specimen to meet the specific goals of curvature and laminate strain. The results indicate that the heat treated 3.25-pcf density Rohacell foam does not provide sufficient strength for the induced stresses due to curvature and stress concentration at the RTV bondline to the TUFI tile. The test was repeated using higher density non-heat treated Rohacell foam (6.9 pcf) without foam failure. The finite element model was shown to predict specimen behavior, and validation of the model was successful. It is pertinent to mention that the analyses described herein accurately predicted the failure of the heat treated foams and based on this analysis method it is expected that the untreated 3.25 pcf Rohacell foam will be successful.

  2. Compact gas-insulated transformer. Fourteenth quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    1983-08-01

    Objective is to develop a compact, more efficient, quieter transformer which does not rely on mineral oil insulation. Compressed SF/sub 6/ is used as the external insulation and polymer film as the insulation between turns. A separate liquid cooling system is also provided. This document reports progress made in design, mechanical, dielectric, short circuit, thermal, materials, prototype, accessories, commercialization, and system studies. (DLC)

  3. Development of electrical insulator coatings for fusion power applications

    International Nuclear Information System (INIS)

    Park, J.H.; Domenico, T.; Dragel, G.; Clark, R.

    1995-01-01

    In the design of liquid-metal cooling systems for fusion blanket applications, the corrosion resistance of structural materials and the magnetohydrodynamic (MHD) force and its subsequent influence on thermal hydraulics and corrosion are major concerns. The objective of this study was to develop stable corrosion-resistant electrical insulator coatings at the liquid-metal-structural-material interface, with emphasis on electrically insulating coatings that prevent adverse MHD-generated currents from passing through the structural walls. Vanadium and V-base alloys (V-Ti or V-Ti-Cr) are leading candidate materials for structural applications in fusion reactors. When the system is cooled by liquid metals, insulator coatings are required on piping surfaces in contact with the coolant. Various intermetallic films were produced on V, V-5Ti, and V-20Ti, V-5Cr-5Ti, and V-15Cr-5Ti, and Ti, and on types 304 and 316 stainless steel. The intermetallic layers were developed by exposure of the materials to liquid Li containing 3-5at.% dissolved metallic solute (e.g. Al, Be, Mg, Si, Ca, Pt, and Cr) at temperatures of 416-880 C. Subsequently, electrical insulator coatings were produced by reaction of the reactive layers with dissolved N in liquid Li or by air oxidation under controlled conditions at 600-1000 C. These reactions converted the intermetallic layers to electrically insulating oxide-nitride or oxynitride layers. This coating method is applicable to reactor components. The liquid metal can be used over and over because only the solutes are consumed within the liquid metal. The technique can be applied to various shapes (e.g. inside or outside of tubes, complex geometrical shapes) because the coating is formed by liquid-phase reaction. This paper discusses initial results on the nature of the coatings (composition, thickness, adhesion, surface coverage) and their in situ electrical resistivity characteristics in liquid Li at high temperatures. (orig.)

  4. A New Generation of Building Insulation by Foaming Polymer Blend Materials with CO2

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Arthur [Industrial Science & Technology Network, Inc., Lancaster, PA (United States); Domszy, Roman [Industrial Science & Technology Network, Inc., Lancaster, PA (United States); Yang, Jeff [Industrial Science & Technology Network, Inc., Lancaster, PA (United States)

    2016-03-30

    Advanced thermal insulation is among the most effective technologies in transforming our nation’s energy system and contributing to DOE’s stated goal of 50% less building energy consumption by 2030. The installation of an advanced thermal insulation would prevent energy waste without the need for any maintenance, and ISTN conservatively estimates that the commercialization of such a new technology would contribute to annual U.S. energy savings of 0.361 Quads and $8 billion in annual economic savings. The key challenge to improving building insulation is to maintain and surpass the industry standard of R-5 per inch insulation value in a cost-competitive manner. Improvements in R-value without cost-efficiency are not likely to impact the market given the cost-sensitive nature of the construction industry (insulation is already the lowest-cost component of the building envelope). However, significantly higher insulating value at competitive costs is extremely appealing to the market given the greater potential to save on energy consumption and costs over the long-term. Thus, our goal is to develop a super-thermal insulation with 50% greater insulation value (R-9 to R-10 per inch) and manufacturing costs that are equal on a per-R-value basis (< $0.70/ft2).

  5. Partial Discharge Phase Distribution Of Palm Oil As Insulating Liquid

    Directory of Open Access Journals (Sweden)

    Abdul Rajab

    2011-04-01

    Full Text Available Due to the low biodegradability level of mineral oil and its susceptibility to the fire, palm oil was proposed as alternative insulating liquid. This paper discusses partial discharge (PD in palm oil under sinusoidal voltages and the comparison with mineral oil. PD was generated using a needle-plane electrode configuration which is enable enhancing electric field at the needle tip. PD pulses were detected using RC detector and they were measured using a Computer-based partial discharge measurement system. The results showed that PD activities in both oils are similar. The PD was initiated at the negative polarity of applied voltage. The discharges took place in both polarity’s of applied voltage with PD number was higher at negative one. Several discharges phenomena showed the presence of space charge which changed electric field and governed PD activities besides the main field introduced by voltage application.

  6. Foaming of aqueous piperazine and monoethanolamine for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Freeman, S.A.; Rochelle, G.T. [University of Texas Austin, Austin, TX (United States). Dept. of Chemical Engineering

    2011-03-15

    The cause of foaming in aqueous amines used for CO{sub 2} absorption was investigated in this study. The effect on foaming of amine concentration and various additives, including electrolytes, liquid hydrocarbon, and degradation products, was measured by a standard method. Both aqueous piperazine (PZ) with 0.3 mole CO{sub 2}/mole alkalinity {alpha} and 7 m monoethanolamine (MEA, {alpha} = 0.4)) were studied. Formaldehyde at 270 mM substantially increases foaming in PZ. PZ foamed after 163 h of oxidative degradation, but this effect was greatly mitigated with an oxidation inhibitor. Silicone antifoam of 1 ppm reduced the foaminess by 20 times. The tendency of 8 m PZ to foam was increased by 40% with the addition of iron (II) up to a concentration of 1.5 mM, but dissolved iron had no significant effect on 7 in MEA. The tendency to foam and foam stability of 8 m PZ solutions was only slightly affected by 1 mM iron (III), 0.1% heptane in water, 5 mM of copper sulfate, or 100 mM of an oxidation inhibitor.

  7. Study of the relationships between nuclear decontamination foams stability and their physicochemical properties

    International Nuclear Information System (INIS)

    Dame, C.

    2006-03-01

    The LPAD (French Atomic Energy Commission) develops innovative processes in the frame of the future dismantling of nuclear facilities. Formulations were developed using high viscosified foams stabilized by biodegradable nonionic surfactants: alkyl poly-glucosides and viscosifiers (xanthan gum), which allow us to increase the foam lifetime and thus contact time of chemical reactants with the facility walls. We have considered the relationships between physicochemical properties and foam stability through the exploration of the foam at three different scales: from the molecular range (micelles, surface tension and visco-elasticity), to the film and Plateau border range (XR reflectivity, surface shear viscosity) and to macroscopic range, meaning the whole foam (foaminess, liquid fraction and wall film thickness evolution). Finally, exploratory study is presented concerning simultaneous foam three scales characterisation by small angle neutron scattering. (author)

  8. Wetted Foam Liquid DT Layer ICF Experiments at the NIF

    Science.gov (United States)

    Olson, R. E.; Leeper, R. J.; Peterson, R. R.; Yi, S. A.; Zylstra, A. B.; Kline, J. L.; Bradley, P. A.; Yin, L.; Wilson, D. C.; Haines, B. M.; Batha, S. H.

    2016-10-01

    A key physics issue in indirect-drive ICF relates to the understanding of the limitations on hot spot convergence ratio (CR), principally set by the hohlraum drive symmetry, the capsule mounting hardware (the ``tent''), and the capsule fill tube. An additional key physics issue relates to the complex process by which a hot spot must be dynamically formed from the inner ice surface in a DT ice-layer implosion. These physics issues have helped to motivate the development of a new liquid DT layer wetted foam platform at the NIF that provides an ability to form the hot spot from DT vapor and experimentally study and understand hot spot formation at a variety of CR's in the range of 12hot spot and the low adiabat cold fuel during the stagnation process and can allow for a fundamentally different (and potentially more robust) process of hot spot formation. This new experimental platform is currently being used in a series of experiments to discover a range of CR's at which DT layered implosions will have understandable performance - providing a sound basis from which to determine the requirements for ICF ignition. This work was performed under the auspices of the U. S. DOE by LANL under contract DE-AC52-06NA25396.

  9. Polyester Polyols from Waste PET Bottles for Polyurethane Rigid Foams

    OpenAIRE

    Evtimova, Rozeta; Lozeva, Yordanka; Schmidt, Karl-Heinz; Wotzka, Michael; Wagner, Peter; Behrendt, Gerhard

    2003-01-01

    This paper describes a modified process to produce polyester polyols from PET wastes derived from the “bottle fraction residue” of the German Dual System (DSD) [11] employing a waste oligoester condensate of the polyesterification process with the addition of some glycols of longer chain and occasional modification with further dicarboxylic acids to produce polyester polyols of a broad range of properties which are further reacted to form polyurethane or polyisocyanurate rigid foams for insul...

  10. Development of method to characterize emissions from spray polyurethane foam insulation

    Science.gov (United States)

    This presentation updates symposium participants re EPA progress towards development of SPF insulation emissions characterization methods. The presentation highlights evaluation of experiments investigating emissions after application of SPF to substrates in micro chambers and i...

  11. Electrical and dielectric properties of foam injection-molded polypropylene/multiwalled carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Ameli, A.; Nofar, M.; Saniei, M.; Hossieny, N.; Park, C. B. [Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario, Canada M5S 3G8 (Canada); Pötschke, P. [Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Strasse 6, D-01069 Dresden (Germany)

    2015-05-22

    A combination of high dielectric permittivity (ε′) and low dielectric loss (tan δ) is required for charge storage applications. In percolative systems such as conductive polymer composites, however, obtaining high ε′ and low tan δ is very challenging due to the sharp insulation-conduction transition near the threshold region. Due to the particular arrangement of conductive fillers induced by both foaming and injection molding processes, they may address this issue. Therefore, this work evaluates the application of foam injection molding process in fabricating polymer nanocomposites for energy storage. Polypropylene-multiwalled carbon nanotubes (PP-MWCNT) composites were prepared by melt mixing and foamed in an injection molding process. Electrical conductivity (σ), ε′ and tan δ were then characterized. Also, scanning and transmission electron microscopy (SEM and TEM) was used to investigate the carbon nanotube’s arrangement as well as cellular morphology. The results showed that foam injection-molded composites exhibited highly superior dielectric properties to those of solid counterparts. For instance, foamed samples had ε′=68.3 and tan δ =0.05 (at 1.25 vol.% MWCNT), as opposed to ε′=17.8 and tan δ=0.04 in solid samples (at 2.56 vol.% MWCNT). The results of this work reveal that high performance dielectric nanocomposites can be developed using foam injection molding technologies for charge storage applications.

  12. Optical probing of quantum Hall effect of composite fermions and of the liquid-insulator transition

    International Nuclear Information System (INIS)

    Rossella, F; Bellani, V; Dionigi, F; Amado, M; Diez, E; Kowalik, K; Biasiol, G; Sorba, L

    2011-01-01

    In the photoluminescence spectra of a two-dimensional electron gas in the fractional quantum Hall regime we observe the states at filling factors ν = 4/5, 5/7, 4/11 and 3/8 as clear minima in the intensity or area emission peak. The first three states are described as interacting composite fermions in fractional quantum Hall regime. The minimum in the intensity at ν 3/8, which is not explained within this picture, can be an evidence of a suppression of the screening of the Coulomb interaction among the effective quasi-particles involved in this intriguing state. The magnetic field energy dispersion at very low temperatures is also discussed. At low field the emission follows a Landau dispersion with a screened magneto-Coulomb contribution. At intermediate fields the hidden symmetry manifests. At high field above ν = 1/3 the electrons correlate into an insulating phase, and the optical emission behaviour at the liquid-insulator transition is coherent with a charge ordering driven by Coulomb correlations.

  13. Degradation diagnosis of transformer insulating oils with terahertz time-domain spectroscopy

    Science.gov (United States)

    Kang, Seung Beom; Kim, Won-Seok; Chung, Dong Chul; Joung, Jong Man; Kwak, Min Hwan

    2017-12-01

    We report the frequency-dependent complex optical constants, refractive index and absorption, and complex dielectric properties over the frequency range from 0.2 to 3.0 THz for aged power transformer mineral insulating oils. These results have been obtained using terahertz time-domain spectroscopy (THz-TDS) and demonstrate the double-Debye relaxation behavior of the mineral insulating oil. The measured complex optical and dielectric characteristics can be important benchmarks for liquid molecular dynamics and theoretical studies of insulating oils. Due to clear differences in THz responses of aged mineral insulating oils, THz-TDS can be used as a novel on-site diagnostic technique to monitor the insulation condition in aged power transformers and may be valuable alternative to characterize other developing eco-friendly insulating oils and industrial liquids.

  14. Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions

    Energy Technology Data Exchange (ETDEWEB)

    Balch, Dorian K. [Northwestern University, Evanston, IL (United States); O' Dwyer, John G. [Waterford Institute of Technology (Ireland); Davis, Graham R. [Queen Mary, University of London (United Kingdom); Cady, Carl M. [Los Alamos National Laboratory, Los Alamos, NM (United States); Gray, George T. [Los Alamos National Laboratory, Los Alamos, NM (United States); Dunand, David C. [Northwestern University, Evanston, IL (United States)]. E-mail: dunand@northwestern.edu

    2005-01-25

    Syntactic foams were fabricated by liquid metal infiltration of commercially pure and 7075 aluminum into preforms of hollow ceramic microspheres. The foams exhibited peak strengths during quasi-static compression ranging from -100 to -230 MPa, while dynamic compression loading showed a 10-30% increase in peak strength magnitude, with strain rate sensitivities similar to those of aluminum-matrix composite materials. X-ray tomographic investigation of the post-compression loaded foam microstructures revealed sharp differences in deformation modes, with the unalloyed-Al foam failing initially by matrix deformation, while the alloy-matrix foams failed more abruptly through the formation of sharp crush bands oriented at about 45 deg. to the compression axis. These foams displayed pronounced energy-absorbing capabilities, suggesting their potential use in packaging applications or for impact protection; proper tailoring of matrix and microsphere strengths would result in optimized syntactic foam properties.

  15. Technology Solutions for Existing Homes Case Study: Trade-Friendly Retrofit Insulated Panels for Existing Buildings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    For this project with the U.S. Department of Energy Building America team Home Innovation Research Labs, the retrofit insulated panels relied on an enhanced expanded polystyrene (EPS) for thermal resistance of R-4.5/inch, which is an improvement of 10% over conventional (white-colored) EPS. EPS, measured by its life cycle, is an alternative to commonly used extruded polystyrene and spray polyurethane foam. It is a closed-cell product made up of 90% air, and it requires about 85% fewer petroleum products for processing than other rigid foams.

  16. Green waste cooking oil-based rigid polyurethane foam

    Science.gov (United States)

    Enderus, N. F.; Tahir, S. M.

    2017-11-01

    Polyurethane is a versatile polymer traditionally prepared using petroleum-based raw material. Petroleum, however, is a non-renewable material and polyurethane produced was found to be non-biodegradable. In quest for a more environmentally friendly alternative, wastecooking oil, a highly abundant domestic waste with easily derivatized structure, is a viable candidate to replace petroleum. In this study,an investigation to determine physical and chemical properties of rigid polyurethane (PU) foam from waste cooking oil (WCO) was carried out. WCO was first adsorbed by using coconut husk activated carbon adsorbent prior to be used for polyol synthesis. The purified WCO was then used to synthesize polyol via transesterification reaction to yield alcohol groups in the WCO chains structure. Finally, the WCO-based polyol was used to prepare rigid PU foam. The optimum formulation for PU formation was found to be 90 polyol: 60 glycerol: 54 water: 40 diethanolamine: 23 diisocyanate. The rigid PU foam has density of 208.4 kg/m3 with maximum compressive strength and capability to receive load at 0.03 MPa and 0.09 kN, respectively. WCO-based PU can potentially be used to replace petroleum-based PU as house construction materials such as insulation panels.

  17. MODAL ANALYSIS OF REAL TIMBER FRAME HOUSES WITH DIFFERENT INSULATION MATERIALS

    Directory of Open Access Journals (Sweden)

    Marcin Szczepański

    2016-09-01

    Full Text Available The aim of this article is to present the results of a numerical modal analysis of two actual structures of timber frame buildings and the different behaviour due to the used insulation material. One model of the timber structure was filled with mineral wool, while the other with polyurethane foam. During the modal analysis, eigenvalues for both models have been determined. The results of the analysis clearly show the increase of stiffness and damping properties of skeletal constructions achieved by the use of polyurethane foam as the skeleton filling. The numerical model was based on prior experimental test on real scale single frame elements, therefore the result can be assumed to be adequate.

  18. Improvement of stability of polidocanol foam for nonsurgical permanent contraception.

    Science.gov (United States)

    Guo, Jian Xin; Lucchesi, Lisa; Gregory, Kenton W

    2015-08-01

    Polidocanol foam (PF), used clinically as a venous sclerosant, has recently been studied as a safe and inexpensive means for permanent contraception. Delivering the sclerosant to the fallopian tubes as a foam rather than a liquid increases the surface areas and thus enhances the desired epithelial disrupting activity of the agent. However, the foam is inherently unstable and degrades with time. Therefore, increasing foam stability and thus duration of the agent exposure time could increase epithelial effect while allowing reduction in agent concentration and potential toxicity. We studied methods to improve foam properties that might improve safety and efficacy of PF for intrauterine application. Several types of microporous filters adapted to a syringe-based foaming device were used to study the effect of pore structures on the formation of PF. The foam drainage time and bubble size were characterized. The addition of benzalkonium chloride (BZK) to polidocanol was also investigated for its effects on foam characteristics. A syringe-based foaming device adapted with an inline filter produced smaller bubble PF with a longer foam drainage time. PF generated with a circular pore filter lasts longer than with a noncircular pore filter. The addition of 0.01% of BZK also improved the stability of PF. The stability of PF is affected by the pore characteristics of the filter used for foam generation and enhanced by the presence of a small amount of BZK. The improved foam, if shown to be efficacious in animal models of contraception, could lead to a safe, simple and inexpensive method alternative to surgical contraception. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. In-situ strain monitoring in liquid containers of LNG transporting carriers

    Science.gov (United States)

    Oh, Min-Cheol; Seo, Jun-Kyu; Kim, Kyung-Jo; Lee, Sang-Min; Kim, Myung-Hyun

    2008-08-01

    Liquefied natural gas (LNG) transport carriers are exposed to a risk by the repeated bump in the LNG container during the vessel traveling over the wave in ocean. The liquid inside the container, especially when it was not fully contained, make a strong bump onto the insulation panel of the tank wall. The insulation panel consists of several layers of thick polyurethane foam (PUF) to maintain the LNG below the cryogenic temperature, -162°C. Due to the repeated shock on the PUF, a crack could be developed on the tank wall causing a tremendous disaster for LNG carriers. To prevent the accidental crack on the tank, a continuous monitoring of the strain imposed on the PUF is recommended. In this work, a fiber-optic Bragg grating was imbedded inside the PUF for monitoring the strain parallel to the impact direction. The optical fiber sensor with a small diameter of 125 μm was suitable to be inserted in the PUF through a small hole drilled after the PUF was cured. In-situ monitoring of the strain producing the change of Bragg reflection wavelength, a high speed wavelength interrogation method was employed by using an arrayed waveguide grating. By dropping a heavy mass on the PUF, we measured the strain imposed on the insulation panel.

  20. Growing and testing mycelium bricks as building insulation materials

    Science.gov (United States)

    Xing, Yangang; Brewer, Matthew; El-Gharabawy, Hoda; Griffith, Gareth; Jones, Phil

    2018-02-01

    In order to improve energy performance of buildings, insulation materials (such as mineral glass and rock wools, or fossil fuel-based plastic foams) are being used in increasing quantities, which may lead to potential problem with materials depletions and landfill disposal. One sustainable solution suggested is the use of bio-based, biodegradable materials. A number of attempts have been made to develop biomaterials, such as sheep wood, hemcrete or recycled papers. In this paper, a novel type of bio insulation materials - mycelium is examined. The aim is to produce mycelium materials that could be used as insulations. The bio-based material was required to have properties that matched existing alternatives, such as expanded polystyrene, in terms of physical and mechanical characteristics but with an enhanced level of biodegradability. The testing data showed mycelium bricks exhibited good thermal performance. Future work is planned to improve growing process and thermal performance of the mycelium bricks.

  1. Les silicates alcalins, matière de base des mousses minérales isolantes. Etude bibliographique Alkaline Silicates, As a Basic Material for Insulating Mineral Foams. Bibliographie Study

    Directory of Open Access Journals (Sweden)

    Lesage J.

    2006-11-01

    using additives, a highly varied range of polysilicate foams can be produced having a wide variety of insulation, solubility and mechanical-resistance properties, and even permeability prperties. This opens up the way to many possible industrial outlets.

  2. Influence of Syringe Volume on Foam Stability in Sclerotherapy for Varicose Vein Treatment.

    Science.gov (United States)

    Bai, Taoping; Jiang, Wentao; Fan, Yubo

    2018-05-01

    Despite the popularity of sclerotherapy for treating varicose veins, it still exhibits various problems, such as pulmonary embolism, deep-vein thrombosis, phlebitis, and visual disorders. To investigate syringe volume influence on foam stability, obtain the foam decay rule, and provide a reference for clinics. Five types of syringes are used to prepare foam at room temperature with various liquid-gas ratios. Foam decay process experiments were performed 5 times and recorded by video. The stability indices used include drainage time, half-life, bubble diameter, bubble surface density, and drainage rate. The 30 and 2-mL syringes, respectively, recorded the highest and lowest drainage speeds. Foam drainage time and half-life, differences varied between 15 and 70 seconds, and 20 and 100 seconds, respectively. Foam bubble diameters were distributed over 0.1 to 2.0 mm with roughly 200 to 700 bubbles per square centimeter. Increased syringe volume causes the bubble diameter to increase. Thus, foam dispersion increases and foam half-life decreases; hence, foam becomes unstable. It is, thus, better to use a small syringe several times to prepare foam in clinics using segmented injections.

  3. Vacuum Insulation Panels (VIPs) for building construction industry - A review of the contemporary developments and future directions

    International Nuclear Information System (INIS)

    Alam, M.; Singh, H.; Limbachiya, M.C.

    2011-01-01

    Highlights: → Vacuum Insulation Panels (VIP), a high thermal resistance building insulation. → Review of research into VIPs for building applications. → High cost and uncertainty of service life are two barriers for VIP use in buildings. → SiO 2 /SiN x coated PET laminate- candidate for high barrier VIP envelope. → The optimum combination of VIP core and envelope yet to be determined. -- Abstract: Demand for energy efficient buildings has increased drastically in recent years and this trend will continue in the future. Insulating building elements will play a key role in meeting this demand by reducing heat losses through the building fabric. Due to their higher thermal resistance, Vacuum Insulation Panels (VIPs) would be a more energy efficient alternative to conventional building insulation materials. Thus, efforts to develop VIPs with characteristics suitable for applications to new and existing buildings are underway. This paper provides a review of important contemporary developments towards producing VIPs using various materials such as glass fibre, foams, perlite and fibre/powder composites. The limitations of the materials currently used to fabricate VIPs have not been emphasised in detail in previous review papers published. Selection criteria, methods to measure important properties of VIPs and analytical and numerical models presented in the past have been detailed. Limitations of currently employed design tools along with potential future materials such as Nano/microcellular foams and SiO x /SiN x coatings for use in VIPs are also described.

  4. HEAT INSULATING LIME DRY MORTARS FOR FINISHING OF WALLS MADE OF FOAM CONCRETE

    Directory of Open Access Journals (Sweden)

    Loganina Valentina Ivanovna

    2016-05-01

    Full Text Available Different aerated mortars are used for pargeting of walls made of aerated concrete. Though the regulatory documents don’t specify the dependence of plaster density from the density grade of gas-concrete blocks. In case of facing of gas-concrete blocks with the grade D500 using plaster mortars with the density 1400…1600 km/m3 there occurs a dismatch in the values of thermal insulation and vapor permeability of the plaster and base. The authors suggest using dry mortars for finishing of gas-concrete block of the grades D500 и D600, which allow obtaining facing thermal insulating coatings. The efficiency of using four different high-porous additives in the lime dry mortar was compared. They were: hollow glass microspheres, aluminosilicate ash microspheres, expanded vermiculite sand, expanded pearlitic sand. The high efficiency of hollow glass microspheres in heat insulating finishing mortars compared to other fillers is proved.

  5. Magnetohydrodynamic flow in ducts with discontinuous electrical insulation

    International Nuclear Information System (INIS)

    Mistrangelo, C.; Bühler, L.

    2015-01-01

    Highlights: • Liquid metal MHD flows in ducts with flow channel inserts. • Study of the influence of local interruption of electrical insulation. • 3D numerical simulations. - Abstract: In liquid metal blankets the interaction of the moving breeder with the intense magnetic field that confines the fusion plasma results in significant modifications of the velocity distribution and increased pressure drop compared to hydrodynamic flows. Those changes are due to the occurrence of electromagnetic forces that slow down the core flow and which are balanced by large driving pressure heads. The resulting magnetohydrodynamic (MHD) pressure losses are proportional to the electric current density induced in the fluid and they can be reduced by electrically decoupling the wall from the liquid metal. For applications to dual coolant blankets it is foreseen to loosely insert electrically insulating liners into the ducts. In long channels the insulation could consist of a number of shorter inserts, which implies a possible local interruption of the insulation. Three dimensional numerical simulations have been performed to investigate MHD flows in electrically well-conducting channels with internal discontinuous insulating inserts. The local jump in the electric conductivity of the duct wall results in induced 3D electric currents and related electromagnetic forces yielding additional pressure losses and increased velocity in boundary layers parallel to the magnetic field.

  6. Thin Aerogel as a Spacer in Multilayer Insulation

    Science.gov (United States)

    Moroz, Nancy

    2015-01-01

    Cryogenic fluid management is a critical technical area that is needed for future space exploration. A key challenge is the storability of liquid hydrogen (LH2), liquid methane (LCH4), and liquid oxygen (LOX) propellants for long-duration missions. The storage tanks must be well-insulated to prevent over-pressurization and venting, which can lead to unacceptable propellant losses for long-duration missions to Mars and beyond. Aspen Aerogels had validated the key process step to enable the fabrication of thin, low-density aerogel materials. The multilayer aerogel insulation (MLAI) system prototypes were prepared using sheets of aerogel materials with superior thermal performance exceeding current state-of-the-art insulation for space applications. The exceptional properties of this system include a new breakthrough in high-vacuum cryogenic thermal insulation, providing a durable material with excellent thermal performance at a reduced cost when compared to longstanding state-of-the-art multilayer insulation systems. During the Phase II project, further refinement and qualification/system-level testing of the MLAI system will be performed for use in cryogenic storage applications. Aspen has been in discussions with United Launch Alliance, LLC; NASA's Kennedy Space Center; and Yetispace, Inc., to test the MLAI system on rea-lworld tanks such as Vibro-Acoustic Test Article (VATA) or the Cryogenic Orbital Testbed (CRYOTE).

  7. Multifunctional Stiff Carbon Foam Derived from Bread.

    Science.gov (United States)

    Yuan, Ye; Ding, Yujie; Wang, Chunhui; Xu, Fan; Lin, Zaishan; Qin, Yuyang; Li, Ying; Yang, Minglong; He, Xiaodong; Peng, Qingyu; Li, Yibin

    2016-07-06

    The creation of stiff yet multifunctional three-dimensional porous carbon architecture at very low cost is still challenging. In this work, lightweight and stiff carbon foam (CF) with adjustable pore structure was prepared by using flour as the basic element via a simple fermentation and carbonization process. The compressive strength of CF exhibits a high value of 3.6 MPa whereas its density is 0.29 g/cm(3) (compressive modulus can be 121 MPa). The electromagnetic interference (EMI) shielding effectiveness measurements (specific EMI shielding effectiveness can be 78.18 dB·cm(3)·g(-1)) indicate that CF can be used as lightweight, effective shielding material. Unlike ordinary foam structure materials, the low thermal conductivity (lowest is 0.06 W/m·K) with high resistance to fire makes CF a good candidate for commercial thermal insulation material. These results demonstrate a promising method to fabricate an economical, robust carbon material for applications in industry as well as topics regarding environmental protection and improvement of energy efficiency.

  8. Stability of minoxidil in Espumil foam base.

    Science.gov (United States)

    Geiger, Christine M; Sorenson, Bridget; Whaley, Paul A

    2013-01-01

    Minoxidil is a drug used to stimulate hair growth and to slow balding. It is marketed under a number of trade names, including Rogaine, and is available in varying strength dose forms from a number of generic manufacturers. Minoxidil is available in oral and topical forms. In topical form, it can be applied by a metered-spray or rub-on applicator. A hydroalcoholic compounding vehicle can minimize greasiness, itching, burning, and contact dermatitis where low concentrations of ethanol and propylene glycol are present. Espumil Foam Base contains low concentrations of these ingredients and also can form a foam on topical application. Espumil's unique delivery by foam-activating packaging assures simple application to difficult-to-treat areas, and it vanishes quickly after application, keeping it in place and avoiding health skin areas. The objective of this study was to determine the stability of minoxidil in Espumil Foam Base. The studied sample was compounded into a 50-mg/mL solution and stored in a plastic foam-activating bottle at room temperature conditions. Three samples were assayed at each time point out to 90 days by a stability-indicating high-performance liquid chromatography method. The method was validated for its specificity through forced-degradation studies. The beyond-use-date is at least 90 days, based on data collected when this formulation was stored at room temperature, protected from light.

  9. Handbook of Thermal Insulation Applications.

    Science.gov (United States)

    1983-01-01

    Wiuppuoror *tIe beamsWiefag ln~ td ~oair ilmstool beams Plate 18. Metal Building Ceilings - A 18b: Fir* hataird rathge may limit the use of foam Insulation...RFCTANGUI.AR SOL TD A = 2(WxL+LxH+HxW) B V = WxLxH H L TRAPEZOID A 2 (A + B) x H A CONE A -n xRxS+ i xR 2 B V =( /3)x R2 x H TRIANGLE A BxH A- 2 CYLI NDER H 2...FABRICATIIG RECTANGULAR HEATING AND COOLING DUCTWORK. FIBERGLAS DUCT BOARD OWENS-CORNING FIBERGLAS CORP GLASS FIBER RIGID BOARD WITH ALUMINUM 4bD FOIL VAPOR

  10. Novel approach for extinguishing large-scale coal fires using gas-liquid foams in open pit mines.

    Science.gov (United States)

    Lu, Xinxiao; Wang, Deming; Qin, Botao; Tian, Fuchao; Shi, Guangyi; Dong, Shuaijun

    2015-12-01

    Coal fires are a serious threat to the workers' security and safe production in open pit mines. The coal fire source is hidden and innumerable, and the large-area cavity is prevalent in the coal seam after the coal burned, causing the conventional extinguishment technology difficult to work. Foams are considered as an efficient means of fire extinguishment in these large-scale workplaces. A noble foam preparation method is introduced, and an original design of cavitation jet device is proposed to add foaming agent stably. The jet cavitation occurs when the water flow rate and pressure ratio reach specified values. Through self-building foaming system, the high performance foams are produced and then infused into the blast drilling holes at a large flow. Without complicated operation, this system is found to be very suitable for extinguishing large-scale coal fires. Field application shows that foam generation adopting the proposed key technology makes a good fire extinguishment effect. The temperature reduction using foams is 6-7 times higher than water, and CO concentration is reduced from 9.43 to 0.092‰ in the drilling hole. The coal fires are controlled successfully in open pit mines, ensuring the normal production as well as the security of personnel and equipment.

  11. Long-term performance of high-voltage insulations. Proceedings. Dauerverhalten von Hochspannungsisolierungen. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    The Conference of the ETG (Energy Eng. Society) covers the following topics: long term performance of epoxide insulations and machine insulations, insulating liquids and mixed dielectrics, fatigue of polyolefine insulation as electrochemical fatigue and possibilities of stabilization. On report was abstracted and classified among 42 articles. (GL).

  12. MHD pressure drop of imperfect insulation of liquid metal flow

    International Nuclear Information System (INIS)

    Horiike, H.; Nishiura, R.; Inoue, S.; Miyazaki, K.

    2000-01-01

    An experiment was performed to study magnetohydrodynamic (MHD) pressure gradient in the case of an imperfect electric insulation coating when using NaK loop. Test channels with uniform defects in their coating were made by painting inner surface with acrylic lacquer insulation. It was found that the exponent to B -- which is 1 for insulated walls, and 2 for conducting ones, was very sensitive to crack fractions lower than 25%. The pressure gradient was found to increase almost linearly with the fraction

  13. Research Plan: Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation

    International Nuclear Information System (INIS)

    Zhong, Lirong; Hart, Andrea T.; Szecsody, James E.; Zhang, Z.F.; Freedman, Vicky L.; Ankeny, Mark; Hull, Laurence; Oostrom, Martinus; Freshley, Mark D.; Wellman, Dawn M.

    2009-01-01

    Research proposals were submitted to the Scientific and Technical Basis for In Situ Treatment of Metals and Radionuclides Technical Working Group under the US Department of Energy (DOE) Environmental Management Office (specifically, EM-22). After a peer review and selection process, the proposal, 'Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation,' submitted by Pacific Northwest National Laboratory (PNNL) was selected for support by the program. A research plan was requested for this EM funded project. The overall objective of this project is to develop foam delivery technology for the distribution of remedial amendments to deep vadose zone sediments for in situ immobilization of metal and radionuclide contaminants. The focus of this research in FY 2009 is on the physical aspects of the foam delivery approach. Specific objectives are to (1) study the foam quality (i.e. the gas volume fraction in foam) influence on injection pressure, (2) study the sediment air permeability influence on injection pressure, (3) investigate liquid uptake in sediment and determine whether a water front will be formed during foam delivery, (4) test amendment distance (and mass) delivery by foam from the injection point, (5) study the enhanced sweeping over heterogeneous systems (i.e., low K zones) by foam delivery relative to water-based delivery under vadose zone conditions, and (6) numerically simulate foam delivery processes in the vadose zone. Laboratory scale experiments will be conducted at PNNL to study a range of basic physical aspects of the foam propagation in sediments, including foam quality and sediment permeability influence on injection pressure, liquid uptake, and foam sweeping across heterogeneous systems. This study will be augmented with separate studies to be conducted at MSE Technology Applications, Inc. (MSE) to evaluate foam transport and amendment delivery at the intermediate-scale. The results of intermediate

  14. Preparation and performance of Pt/PTFE/Foam SiC as a hydrophobic catalyst for LPCE

    International Nuclear Information System (INIS)

    He, Jianchao; Wang, Heyi; Xiao, Chengjian; Li, Jiamao; Chen, Ping; Hou, Jingwei

    2016-01-01

    Highlights: • A new type of foam material, Foam SiC with three-dimensional network structure, was chosen as the carrier of catalyst. • Foam SiC was hydrophobic treated by PTFE, and achieved a good hydrophobic property. • Pt/PTFE/Foam SiC was prepared by impregnation method with Pt-organic solution and gaseous phase reduction method. • The hydrophobic catalysts were packed with Dixon phosphor bronze gauze rings (about 3 mm × 3 mm) in LPCE system to test the catalytic performance. • The effect of different size of the catalyst on LPCE was been tested. - Abstract: Platinum catalysts supported on a composite of polytetrafluoroethylene (PTFE) and Foam SiC (Pt/PTFE/Foam SiC) have been proposed and prepared by an impregnation method. The as-prepared Pt/PTFE/Foam SiC was characterized by compression load testing, dynamic contact angle measurement, SEM, XRD, and TEM. The results show that the catalyst prepared by triple hydrophobic treatment had an initial contact angle of 134.2°, a good compression performance of 3.2 MPa, and platinum nanoparticles of 12.1 nm (average size). The catalytic activity of the catalyst was tested with different packing methods, reaction temperatures, and gas-liquid ratios. An excellent hydrogen isotope exchange performance was observed using a hydrophilic packing material-to-catalyst ratio of 25% and reaction temperature of 80 °C. Pt/PTFE/Foam SiC may be used as a hydrophobic catalyst for a water detritiation system (WDS) via a liquid-phase catalytic exchange process (LPCE).

  15. Preparation and performance of Pt/PTFE/Foam SiC as a hydrophobic catalyst for LPCE

    Energy Technology Data Exchange (ETDEWEB)

    He, Jianchao; Wang, Heyi, E-mail: hywang@caep.cn; Xiao, Chengjian; Li, Jiamao; Chen, Ping; Hou, Jingwei

    2016-12-15

    Highlights: • A new type of foam material, Foam SiC with three-dimensional network structure, was chosen as the carrier of catalyst. • Foam SiC was hydrophobic treated by PTFE, and achieved a good hydrophobic property. • Pt/PTFE/Foam SiC was prepared by impregnation method with Pt-organic solution and gaseous phase reduction method. • The hydrophobic catalysts were packed with Dixon phosphor bronze gauze rings (about 3 mm × 3 mm) in LPCE system to test the catalytic performance. • The effect of different size of the catalyst on LPCE was been tested. - Abstract: Platinum catalysts supported on a composite of polytetrafluoroethylene (PTFE) and Foam SiC (Pt/PTFE/Foam SiC) have been proposed and prepared by an impregnation method. The as-prepared Pt/PTFE/Foam SiC was characterized by compression load testing, dynamic contact angle measurement, SEM, XRD, and TEM. The results show that the catalyst prepared by triple hydrophobic treatment had an initial contact angle of 134.2°, a good compression performance of 3.2 MPa, and platinum nanoparticles of 12.1 nm (average size). The catalytic activity of the catalyst was tested with different packing methods, reaction temperatures, and gas-liquid ratios. An excellent hydrogen isotope exchange performance was observed using a hydrophilic packing material-to-catalyst ratio of 25% and reaction temperature of 80 °C. Pt/PTFE/Foam SiC may be used as a hydrophobic catalyst for a water detritiation system (WDS) via a liquid-phase catalytic exchange process (LPCE).

  16. Impact of foamed matrix components on foamed concrete properties

    Science.gov (United States)

    Tarasenko, V. N.

    2018-03-01

    The improvement of the matrix foam structure by means of foam stabilizing additives is aimed at solving the technology-oriented problems as well as at the further improvement of physical and mechanical properties of cellular-concrete composites. The dry foam mineralization is the mainstream of this research. Adding the concrete densifiers, foam stabilizers and mineral powders reduces the drying shrinkage, which makes the foam concrete products technologically effective.

  17. Sheath insulator final test report, TFE Verification Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications.

  18. Sheath insulator final test report, TFE Verification Program

    International Nuclear Information System (INIS)

    1994-07-01

    The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications

  19. Objectification of Modulus Elasticity of Foam Concrete Poroflow 17-5 on the Subbase Layer

    Directory of Open Access Journals (Sweden)

    Hájek Matej

    2016-05-01

    Full Text Available Principles of sustainable development create the need to develop new building materials. Foam concrete is a type of lightweight concrete that has many advantages compared to conventional building materials, for example low density and thermal insulation characteristics. With current development level, any negatively influencing material features are constantly eliminated as well. This paper is dealing with substitution of hydraulically bound mixtures by cement foam concrete Poroflow 17-5. The executed assessment is according to the methodology of assessing the existing asphalt pavements in Slovak Republic. The ex post calculation was used to estimate modulus range for Poroflow 17-5 based on the results of static load tests conducted using the Testing Experiment Equipment.

  20. An investigation on rapeseed oil as potential insulating liquid

    Science.gov (United States)

    Katim, N. I. A.; Nasir, M. S. M.; Ishak, M. T.; Hamid, M. H. A.

    2018-02-01

    Insulation oils are a vital part in power transformers. Insulation oil is not only work as electrical insulation but also as a coolant inside the transformer. Due to the increasing tight regulations on the environment and safety in recent years, vegetable oils are being considered for insulation oils in power transformer. This paper presents two conditions of Rapeseed Oil (RO), which are as received (new) and dried (dry) under difference uniform field electrodes configuration (mushroom-to-mushroom and sphere-to-sphere) with gap distance at 2.5 mm as recommended by the international standards. A comparative study of AC breakdown voltage, dissipation factor (tan δ), and resistivity under variation of temperature were investigated. The experimental works were done according to the IEC 60156 and IEC 60247 standards. The results indicated that the breakdown voltages of both condition are comparable to mineral oil. The dielectric constant and resistivity of two conditions are decreased along with the increasing temperature. However, the dissipation factor properties rose up along with the temperature. The Weibull distribution was used to determine the withstand voltages at 1% and 50% for RO in two probabilities conditions.

  1. Investigations of foam formation and its stabilization in the extraction systems: TBP in kerosene-nitric acid solutions

    International Nuclear Information System (INIS)

    Zielinski, A.

    1980-01-01

    The paper is devoted to studies of foam formation and its stabilization in TBP - kerosene - nitric acid solutions extracting systems. It was experimentally found, that TBP acts as a stabilizator of thin, liquid foam films as well as an emulgator in forming dispersions. The stabilizing effect of fine emulsions w/o on formed foams column was observed. Relevant references on the subject are also reviewed. (author)

  2. Effect of Grinding Fineness of Fly Ash on the Properties of Geopolymer Foam

    Directory of Open Access Journals (Sweden)

    Szabó R.

    2017-06-01

    Full Text Available Present paper deals with the development of geopolymer foam prepared from ground F class power station fly ash. The effect of the fly ash fineness on the rheology of the geopolymer paste and the foam properties have been investigated. The raw fly ash was ground in a ball mill for various duration, 5, 10, 20, 30, 60 and 120 min. Geopolymer paste was prepared from the raw and ground fly ash with NaOH – sodium silicate mixture as alkaline activator. Geopolymer foam production was made using H2O2 as foaming agent. Additionally, the geopolymer material structure was investigated by Fourier transform infrared spectrometer, the foam cell structure was monitored using optical microscopy. The rheological behaviour of the geopolymer paste changed due to the grinding of fly ash (from Bingham plastic to Newtonian liquid. Grinding of fly ash has a significant effect on the physical properties as well as on the cell structure of the geopolymer foam.

  3. Bitumen modified with recycled polyurethane foam for employment in hot mix asphalt

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Salas

    2018-01-01

    Full Text Available A wide variety of modifiers have been applied to bitumen in order to enhance their properties and performance. Among them, polymers have been mainly used. The aim of this paper is to assess the use of polyurethane foam waste as a bitumen modifier for hot mix asphalts. The polyurethane foam is a by-product of the manufacturing of polyurethane for thermal insulation. From a bitumen with a penetration grade of 50/70, various samples with percentages of waste material in weight ranging from 1% to 5% were produced and tested. Samples with 5% of waste material or more became rough and were refused due to their poor workability. A bituminous mixture with modified bitumen with a 4% of polyurethane was manufactured and compared with a sample with the same aggregates and original bitumen. Results in Marshall test showed that a mix with polymer modified bitumen yielded improvements in stability and a lower deformability. This result suggests that the employment of polyurethane foam waste is a promising bitumen modifier, contributing also to recycle waste materials.

  4. Study on a Novel Gelled Foam for Conformance Control in High Temperature and High Salinity Reservoirs

    Directory of Open Access Journals (Sweden)

    Tong Li

    2018-05-01

    Full Text Available A novel gelled foam for conformance control was investigated for its ability to enhance oil recovery (EOR in high temperature and high salinity reservoirs. The formulation optimization, foaming performance, and core flooding performance of the gelled foam were systematically evaluated under harsh reservoir conditions. The gelled foam formulation was optimized with 0.4% polymer (hydrolyzed polyacrylamide; HPAM, 0.06% cross-linker (phenolic and 0.2% foaming agent (sulphobetaine; SB. The addition of the gel improved the stability of the foam system by 3.8 times that of traditional foam. A stabilization mechanism in the gelled foam was proposed to describe the stabilization process of the foam film. The uniformly distributed three-dimensional network structure of the gel provided a thick protective layer for the foam system that maintained the stability of the foam and improved the strength and thickness of the liquid film. The gelled foam exhibited good formation adaptability, profile control, and EOR performance. The foam flowed into the high permeability layer, plugged the dominant channel, and increased the swept volume. Oil recovery was enhanced by 29.4% under harsh high -temperature and high salinity conditions.

  5. Metal-insulator transitions

    Science.gov (United States)

    Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori

    1998-10-01

    Metal-insulator transitions are accompanied by huge resistivity changes, even over tens of orders of magnitude, and are widely observed in condensed-matter systems. This article presents the observations and current understanding of the metal-insulator transition with a pedagogical introduction to the subject. Especially important are the transitions driven by correlation effects associated with the electron-electron interaction. The insulating phase caused by the correlation effects is categorized as the Mott Insulator. Near the transition point the metallic state shows fluctuations and orderings in the spin, charge, and orbital degrees of freedom. The properties of these metals are frequently quite different from those of ordinary metals, as measured by transport, optical, and magnetic probes. The review first describes theoretical approaches to the unusual metallic states and to the metal-insulator transition. The Fermi-liquid theory treats the correlations that can be adiabatically connected with the noninteracting picture. Strong-coupling models that do not require Fermi-liquid behavior have also been developed. Much work has also been done on the scaling theory of the transition. A central issue for this review is the evaluation of these approaches in simple theoretical systems such as the Hubbard model and t-J models. Another key issue is strong competition among various orderings as in the interplay of spin and orbital fluctuations. Experimentally, the unusual properties of the metallic state near the insulating transition have been most extensively studied in d-electron systems. In particular, there is revived interest in transition-metal oxides, motivated by the epoch-making findings of high-temperature superconductivity in cuprates and colossal magnetoresistance in manganites. The article reviews the rich phenomena of anomalous metallicity, taking as examples Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Ru compounds. The diverse phenomena include strong spin and

  6. Functional Performances of CuZnAl Shape Memory Alloy Open-Cell Foams

    Science.gov (United States)

    Biffi, C. A.; Casati, R.; Bassani, P.; Tuissi, A.

    2018-01-01

    Shape memory alloys (SMAs) with cellular structure offer a unique mixture of thermo-physical-mechanical properties. These characteristics can be tuned by changing the pore size and make the shape memory metallic foams very attractive for developing new devices for structural and functional applications. In this work, CuZnAl SMA foams were produced through the liquid infiltration of space holder method. In comparison, a conventional CuZn brass alloy was foamed trough the same method. Functional performances were studied on both bulk and foamed SMA specimens. Calorimetric response shows similar martensitic transformation (MT) below 0 °C. Compressive response of CuZnAl revealed that mechanical behavior is strongly affected by sample morphology and that damping capacity of metallic foam is increased above the MT temperatures. The shape memory effect was detected in the CuZnAl foams. The conventional brass shows a compressive response similar to that of the martensitic CuZnAl, in which plastic deformation accumulation occurs up to the cellular structure densification after few thermal cycles.

  7. Vibration Considerations for Cryogenic Tanks Using Glass Bubbles Insulation

    Science.gov (United States)

    Werlink, Rudolph J.; Fesmire, James E.; Sass, Jared P.

    2011-01-01

    The use of glass bubbles as an efficient and practical thermal insulation system has been previously demonstrated in cryogenic storage tanks. One such example is a spherical, vacuum-jacketed liquid hydrogen vessel of 218,000 liter capacity where the boiloff rate has been reduced by approximately 50 percent. Further applications may include non-stationary tanks such as mobile tankers and tanks with extreme duty cycles or exposed to significant vibration environments. Space rocket launch events and mobile tanker life cycles represent two harsh cases of mechanical vibration exposure. A number of bulk fill insulation materials including glass bubbles, perlite powders, and aerogel granules were tested for vibration effects and mechanical behavior using a custom design holding fixture subjected to random vibration on an Electrodynamic Shaker. The settling effects for mixtures of insulation materials were also investigated. The vibration test results and granular particle analysis are presented with considerations and implications for future cryogenic tank applications. A thermal performance update on field demonstration testing of a 218,000 L liquid hydrogen storage tank, retrofitted with glass bubbles, is presented. KEYWORDS: Glass bubble, perlite, aerogel, insulation, liquid hydrogen, storage tank, mobile tanker, vibration.

  8. Evaporation-based method for preparing gelatin foams with aligned tubular pore structures

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, Shane D.; Srubar, Wil V., E-mail: wsrubar@colorado.edu

    2016-05-01

    Gelatin-based foams with aligned tubular pore structures were prepared via liquid-to-gas vaporization of tightly bound water in dehydrated gelatin hydrogels. This study elucidates the mechanism of the foaming process by investigating the secondary (i.e., helical) structure, molecular interactions, and water content of gelatin films before and after foaming using X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry and thermogravimetric analysis (TGA), respectively. Experimental data from gelatin samples prepared at various gelatin-to-water concentrations (5–30 wt.%) substantiate that resulting foam structures are similar in pore diameter (approximately 350 μm), shape, and density (0.05–0.22 g/cm{sup 3}) to those fabricated using conventional methods (e.g., freeze-drying). Helical structures were identified in the films but were not evident in the foamed samples after vaporization (~ 150 °C), suggesting that the primary foaming mechanism is governed by the vaporization of water that is tightly bound in secondary structures (i.e., helices, β-turns, β-sheets) that are present in dehydrated gelatin films. FTIR and TGA data show that the foaming process leads to more disorder and reduced hydrogen bonding to hydroxyl groups in gelatin and that no thermal degradation of gelatin occurs before or after foaming. - Highlights: • A new method is presented for fabricating gelatin foams with aligned, tubular pores. • Gelatin hydrogels were dehydrated then heated to 150 °C to induce foaming. • Vaporization of tightly (vs. loosely) bound water is the primary foaming mechanism • Foaming induced no thermal degradation but caused disorder in secondary structures • Foam microstructures are similar to those prepared using conventional methods.

  9. Evaporation-based method for preparing gelatin foams with aligned tubular pore structures

    International Nuclear Information System (INIS)

    Frazier, Shane D.; Srubar, Wil V.

    2016-01-01

    Gelatin-based foams with aligned tubular pore structures were prepared via liquid-to-gas vaporization of tightly bound water in dehydrated gelatin hydrogels. This study elucidates the mechanism of the foaming process by investigating the secondary (i.e., helical) structure, molecular interactions, and water content of gelatin films before and after foaming using X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry and thermogravimetric analysis (TGA), respectively. Experimental data from gelatin samples prepared at various gelatin-to-water concentrations (5–30 wt.%) substantiate that resulting foam structures are similar in pore diameter (approximately 350 μm), shape, and density (0.05–0.22 g/cm"3) to those fabricated using conventional methods (e.g., freeze-drying). Helical structures were identified in the films but were not evident in the foamed samples after vaporization (~ 150 °C), suggesting that the primary foaming mechanism is governed by the vaporization of water that is tightly bound in secondary structures (i.e., helices, β-turns, β-sheets) that are present in dehydrated gelatin films. FTIR and TGA data show that the foaming process leads to more disorder and reduced hydrogen bonding to hydroxyl groups in gelatin and that no thermal degradation of gelatin occurs before or after foaming. - Highlights: • A new method is presented for fabricating gelatin foams with aligned, tubular pores. • Gelatin hydrogels were dehydrated then heated to 150 °C to induce foaming. • Vaporization of tightly (vs. loosely) bound water is the primary foaming mechanism • Foaming induced no thermal degradation but caused disorder in secondary structures • Foam microstructures are similar to those prepared using conventional methods.

  10. Hydrodynamics of foam flows for in situ bioremediation of DNAPL-contaminated subsurface

    International Nuclear Information System (INIS)

    Bouillard, J.X.; Enzien, M.; Peters, R.W.; Frank, J.; Botto, R.E.; Cody, G.

    1995-01-01

    In situ remediation technologies such as (1) pump-and-treat, (2) soil vacuum extraction, (3) soil flushing/washing, and (4) bioremediation are being promoted for cleanup of contaminated sites. However, these technologies are limited by flow channeling of chemical treatment agents. Argonne National Laboratory (ANL), the Gas Research Institute, and the Institute of Gas Technology are collaboratively investigating a new bioremediation technology using foams. The ability of a foam to block pores and limit flow bypassing makes it ideal for DNAPL remediation. The hydrodynamics of gas/liquid foam flows differ significantly from the hydrodynamics of single and multiphase nonfoaming flows. This is illustrated using a multiphase flow hydrodynamic computer model and a two-dimensional flow visualization cell. A state-of-the-art, nonintrusive, three-dimensional magnetic resonance imaging technique was developed to visualize DNAPL mobilization in three dimensions. Mechanisms to be investigated are in situ DNAPL interactions with the foam, DNAPL emulsification, DNAPL scouring by the foam, and subsequent DNAPL mobilization/redeposition in the porous media

  11. Drop coalescence and liquid flow in a single Plateau border

    Science.gov (United States)

    Cohen, Alexandre; Fraysse, Nathalie; Raufaste, Christophe

    2015-05-01

    We report a comprehensive study of the flow of liquid triggered by injecting a droplet into a liquid foam microchannel, also called a Plateau border. This drop-injected experiment reveals an intricate dynamics for the liquid redistribution, with two contrasting regimes observed, ruled either by inertia or viscosity. We devoted a previous study [A. Cohen et al., Phys. Rev. Lett. 112, 218303 (2014), 10.1103/PhysRevLett.112.218303] to the inertial imbibition regime, unexpected at such small length scales. Here we report other features of interest of the drop-injected experiment, related to the coalescence of the droplet with the liquid microchannel, to both the inertial and viscous regimes, and to the occurrence of liquid flow through the soap films as well as effects of the interfacial rheology. The transition between the two regimes is investigated and qualitatively accounted for. The relevance of our results to liquid foam drainage is tackled by considering the flow of liquid at the nodes of the network of interconnected microchannels. Extensions of our study to liquid foams are discussed.

  12. Effect of gas type on foam film permeability and its implications for foam flow in porous media.

    Science.gov (United States)

    Farajzadeh, R; Muruganathan, R M; Rossen, W R; Krastev, R

    2011-10-14

    The aim of this paper is to provide a perspective on the effect of gas type on the permeability of foam films stabilized by different types of surfactant and to present a critical overview of the tracer gas experiments, which is the common approach to determine the trapped fraction of foam in porous media. In these experiments some part of the gas is replaced by a "tracer gas" during the steady-state stage of the experiments and trapped fraction of foam is determined by fitting the effluent data to a capacitance mass-transfer model. We present the experimental results on the measurement of the gas permeability of foam films stabilized with five surfactants (non-ionic, anionic and cationic) and different salt concentrations. The salt concentrations assure formation of either common black (CBF) or Newton black films (NBF). The experiments are performed with different single gasses. The permeability of the CBF is in general higher than that of the NBF. This behavior is explained by the higher density of the surfactant molecules in the NBF compared to that of CBF. It is also observed that the permeability coefficient, K(cm/s), of CBF and NBF for non-ionic and cationic surfactants are similar and K is insensitive to film thickness. Compared to anionic surfactants, the films made by the non-ionic surfactant have much lower permeability while the films made by the cationic surfactant have larger permeability. This conclusion is valid for all gasses. For all types of surfactant the gas permeability of foam film is largely dependent on the dissolution of gas in the surfactant solution and increases with increasing gas solubility in the bulk liquid. The measured values of K are consistent with rapid diffusion of tracer gasses through trapped gas adjacent to flowing gas in porous media, and difficulties in interpreting the results of tracer-foam experiments with conventional capacitance models. The implications of the results for foam flow in porous media and factors leading

  13. Layered Thermal Insulation Systems for Industrial and Commercial Applications

    Science.gov (United States)

    Fesmire, James E.

    2015-01-01

    From the high performance arena of cryogenic equipment, several different layered thermal insulation systems have been developed for industrial and commercial applications. In addition to the proven areas in cold-work applications for piping and tanks, the new Layered Composite Insulation for Extreme Environments (LCX) has potential for broader industrial use as well as for commercial applications. The LCX technology provides a unique combination of thermal, mechanical, and weathering performance capability that is both cost-effective and enabling. Industry applications may include, for example, liquid nitrogen (LN2) systems for food processing, liquefied natural gas (LNG) systems for transportation or power, and chilled water cooling facilities. Example commercial applications may include commercial residential building construction, hot water piping, HVAC systems, refrigerated trucks, cold chain shipping containers, and a various consumer products. The LCX system is highly tailorable to the end-use application and can be pre-fabricated or field assembled as needed. Product forms of LCX include rigid sheets, semi-flexible sheets, cylindrical clam-shells, removable covers, or flexible strips for wrapping. With increasing system control and reliability requirements as well as demands for higher energy efficiencies, thermal insulation in harsh environments is a growing challenge. The LCX technology grew out of solving problems in the insulation of mechanically complex cryogenic systems that must operate in outdoor, humid conditions. Insulation for cold work includes equipment for everything from liquid helium to chilled water. And in the middle are systems for LNG, LN2, liquid oxygen (LO2), liquid hydrogen (LH2) that must operate in the ambient environment. Different LCX systems have been demonstrated for sub-ambient conditions but are capable of moderately high temperature applications as well.

  14. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    International Nuclear Information System (INIS)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-01-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO 2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength)

  15. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    Science.gov (United States)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-05-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength).

  16. Bubbling and foaming assisted clearing of mucin plugs in microfluidic Y-junctions.

    Science.gov (United States)

    Abdula, Daner; Lerud, Ryan; Rananavare, Shankar

    2017-11-07

    Microfluidic Y-junctions were used to study mechanical mechanisms involved in pig gastric mucin (PGM) plug removal from within one of two bifurcation branches with 2-phase air and liquid flow. Water control experiments showed moderate plug removal due to shear from vortex formation in the blockage branch and suggest a PGM yield stress of 35Pa, as determined by computational fluid dynamics. Addition of hexadecyltrimethylammonium bromide (CTAB) surfactant improved clearing effectiveness due to bubbling in 1mm diameter channels and foaming in 500μm diameter channels. Plug removal mechanisms have been identified as vortex shear, bubble scouring, and then foam scouring as air flow rate is increased with constant liquid flow. The onset of bubbling and foaming is attributed to a flow regime transition from slug to slug-annular. Flow rates explored for 1mm channels are typically experienced by bronchioles in generations 8 and 9 of lungs. Results have implications on treatment of cystic fibrosis and other lung diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Thermal aging of traditional and additively manufactured foams: analysis by time-temperature-superposition, constitutive, and finite-element models

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weisgraber, T. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Small, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lewicki, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Duoss, E. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spadaccini, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pearson, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chinn, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, T. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Maxwell, R. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-08

    Cellular solids or foams are a very important class of materials with diverse applications ranging from thermal insulation and shock absorbing support cushions, to light-weight structural and floatation components, and constitute crucial components in a large number of industries including automotive, aerospace, electronics, marine, biomedical, packaging, and defense. In many of these applications the foam material is subjected to long periods of continuous stress, which can, over time, lead to a permanent change in structure and a degradation in performance. In this report we summarize our modeling efforts to date on polysiloxane foam materials that form an important component in our systems. Aging of the materials was characterized by two measured quantities, i.e., compression set and load retention. Results of accelerated aging experiments were analyzed by an automated time-temperaturesuperposition (TTS) approach, which creates a master curve that can be used for long-term predictions (over decades) under ambient conditions. When comparing such master curves for traditional (stochastic) foams with those for recently 3D-printed (i.e., additively manufactured, or AM) foams, it became clear that AM foams have superior aging behavior. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material.

  18. Three-Dimensional Graphene Foam Induces Multifunctionality in Epoxy Nanocomposites by Simultaneous Improvement in Mechanical, Thermal, and Electrical Properties.

    Science.gov (United States)

    Embrey, Leslie; Nautiyal, Pranjal; Loganathan, Archana; Idowu, Adeyinka; Boesl, Benjamin; Agarwal, Arvind

    2017-11-15

    Three-dimensional (3D) macroporous graphene foam based multifunctional epoxy composites are developed in this study. Facile dip-coating and mold-casting techniques are employed to engineer microstructures with tailorable thermal, mechanical, and electrical properties. These processing techniques allow capillarity-induced equilibrium filling of graphene foam branches, creating epoxy/graphene interfaces with minimal separation. Addition of 2 wt % graphene foam enhances the glass transition temperature of epoxy from 106 to 162 °C, improving the thermal stability of the polymer composite. Graphene foam aids in load-bearing, increasing the ultimate tensile strength by 12% by merely 0.13 wt % graphene foam in an epoxy matrix. Digital image correlation (DIC) analysis revealed that the graphene foam cells restrict and confine the deformation of the polymer matrix, thereby enhancing the load-bearing capability of the composite. Addition of 0.6 wt % graphene foam also enhances the flexural strength of the pure epoxy by 10%. A 3D network of graphene branches is found to suppress and deflect the cracks, arresting mechanical failure. Dynamic mechanical analysis (DMA) of the composites demonstrated their vibration damping capability, as the loss tangent (tan δ) jumps from 0.1 for the pure epoxy to 0.24 for ∼2 wt % graphene foam-epoxy composite. Graphene foam branches also provide seamless pathways for electron transfer, which induces electrical conductivity exceeding 450 S/m in an otherwise insulator epoxy matrix. The epoxy-graphene foam composite exhibits a gauge factor as high as 4.1, which is twice the typical gauge factor for the most common metals. Simultaneous improvement in thermal, mechanical, and electrical properties of epoxy due to 3D graphene foam makes epoxy-graphene foam composite a promising lightweight and multifunctional material for aiding load-bearing, electrical transport, and motion sensing in aerospace, automotive, robotics, and smart device structures.

  19. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator.

    Science.gov (United States)

    Farajollahpour, T; Jafari, S A

    2018-01-10

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the 'ARPES-dark' state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  20. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator

    Science.gov (United States)

    Farajollahpour, T.; Jafari, S. A.

    2018-01-01

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the ‘ARPES-dark’ state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  1. Effect of film size on drainage of foam and emulsion films

    International Nuclear Information System (INIS)

    Malhotra, A.K.; Wasan, D.T.

    1987-01-01

    All available theoretical analyses for the drainage of thin plane-parallel liquid films, such as those existing between two approaching liquid droplets or bubbles in the coalescence process, predict essentially the same dependence of rate of thinning of the intervening film on its size as is described by the Reynolds equation - that is, drainage time increases with the square of the film radius. Recently, the authors reported experimental data for both foam and emulsion films which showed that the measured drainage times increase with about a 0.8 power of the film radius, a value much smaller than the theoretically predicted value of 2.0. Here they present a hydrodynamic analysis to predict the experimentally observed effect of film size on the kinetics of thinning of emulsion and foam films. They extend the applicability of the Reynolds model by accounting for the flow in the Plateau borders as well as the London-van der Waals forces in the thin film phase. Their theoretical predictions are in good agreement with the experimental data on the dependence of drainage time of both foam and emulsion films on their radii

  2. Foam adsorption as an ex situ capture step for surfactants produced by fermentation.

    Science.gov (United States)

    Anic, Iva; Nath, Arijit; Franco, Pedro; Wichmann, Rolf

    2017-09-20

    In this report, a method for a simultaneous production and separation of a microbially synthesized rhamnolipid biosurfactant is presented. During the aerobic cultivation of flagella-free Pseudomonas putida EM383 in a 3.1L stirred tank reactor on glucose as a sole carbon source, rhamnolipids are produced and excreted into the fermentation liquid. Here, a strategy for biosurfactant capture from rhamnolipid enriched fermentation foam using hydrophobic-hydrophobic interaction was investigated. Five adsorbents were tested independently for the application of this capture technique and the best performing adsorbent was tested in a fermentation process. Cell-containing foam was allowed to flow out of the fermentor through the off-gas line and an adsorption packed bed. Foam was observed to collapse instantly, while the resultant liquid flow-through, which was largely devoid of the target biosurfactant, eluted towards the outlet channel of the packed bed column and was subsequently pumped back into the fermentor. After 48h of simultaneous fermentation and ex situ adsorption of rhamnolipids from the foam, 90% out of 5.5g of total rhamnolipids produced were found in ethanol eluate of the adsorbent material, indicating the suitability of this material for ex situ rhamnolipid capture from fermentation processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Interactions of liquid lithium with various atmospheres, concretes, and insulating materials; and filtration of lithium aerosols

    International Nuclear Information System (INIS)

    Jeppson, D.W.

    1979-06-01

    This report describes the facilities and experiments and presents test results of a program being conducted at the hanford Engineering Development Laboratory (HEDL) in support of the fusion reactor development effort. This experimental program is designed to characterize the interaction of liquid lithium with various atmospheres, concretes, and insulating materials. Lithium-atmosphere reaction tests were conducted in normal humidity air, pure nitrogen, and carbon dioxide. These tests are described and their results, such as maximum temperatures, aerosol generated, and reaction rates measured, are reported. Initial lithium temperatures for these tests ranged between 224 0 C and 843 0 C. A lithium-concrete reaction test, using 10 kg of lithium at 327 0 C, and lithium-insulating materials reaction tests, using a few grams of lithium at 350 0 C and 600 0 C, are also described and results are presented. In addition, a lithium-aerosol filter loading test was conducted to determine the mass loading capacity of a commercial high efficiency particulate air (HEPA) filter. The aerosol was characterized, and the loading-capacity-versus-pressure-buildup across the filter is reported

  4. EFFECTIVENESS OF USING POLYURETHANE FOAM TO REDUCE HEAT LOSS IN THE PREMISES FOR BREEDING

    Directory of Open Access Journals (Sweden)

    Medvedev A.Y.

    2013-10-01

    Full Text Available It is proved that the use of polyurethane foam insulation for the purpose of walling premises for breeding allows them to halve the deficit of heat in winter. Because of this more efficient use of feed, increases the intensity and the level of growth of young comprehensive energp $rocess in the energy of live weight gain of cattle while increasing the profitability of its cultivation for meat.

  5. Design and development of polyphenylene oxide foam as a reusable internal insulation for LH2 tanks, phase 2

    Science.gov (United States)

    1972-01-01

    PPO form was tested for mechanical strength, for the effects of 100 thermal cycles from 450 K (359 F) to 21 K (-423 F) and for gas flow resistance characteristics. PPO foam panels were investigated for density variations, methods for joining panels were studied and panel joint thermal test specimens were fabricated. The range of foam panel thickness under investigation was extended to include 7 mm (0.3 in) and 70 mm (2.8 in) panels which also were tested for thermal performance.

  6. Supercritical CO2 Foaming of Thermoplastic Materials Derived from Maize: Proof-of-Concept Use in Mammalian Cell Culture Applications

    Science.gov (United States)

    Trujillo-de Santiago, Grissel; Portales-Cabrera, Cynthia Guadalupe; Portillo-Lara, Roberto; Araiz-Hernández, Diana; Del Barone, Maria Cristina; García-López, Erika; Rojas-de Gante, Cecilia; de los Angeles De Santiago-Miramontes, María; Segoviano-Ramírez, Juan Carlos; García-Lara, Silverio; Rodríguez-González, Ciro Ángel; Alvarez, Mario Moisés; Di Maio, Ernesto; Iannace, Salvatore

    2015-01-01

    Background Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds. Methodology/Principal Findings We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively) and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively). Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3) and two different prostate cancer cell lines (22RV1, DU145) attached to and proliferated on zein foams. Conclusions/Significance We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves). Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity) for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein

  7. Supercritical CO2 foaming of thermoplastic materials derived from maize: proof-of-concept use in mammalian cell culture applications.

    Science.gov (United States)

    Trujillo-de Santiago, Grissel; Portales-Cabrera, Cynthia Guadalupe; Portillo-Lara, Roberto; Araiz-Hernández, Diana; Del Barone, Maria Cristina; García-López, Erika; Rojas-de Gante, Cecilia; de Los Angeles De Santiago-Miramontes, María; Segoviano-Ramírez, Juan Carlos; García-Lara, Silverio; Rodríguez-González, Ciro Ángel; Alvarez, Mario Moisés; Di Maio, Ernesto; Iannace, Salvatore

    2015-01-01

    Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds. We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively) and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively). Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3) and two different prostate cancer cell lines (22RV1, DU145) attached to and proliferated on zein foams. We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves). Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity) for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein foams for extended time periods.

  8. Supercritical CO2 foaming of thermoplastic materials derived from maize: proof-of-concept use in mammalian cell culture applications.

    Directory of Open Access Journals (Sweden)

    Grissel Trujillo-de Santiago

    Full Text Available Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds.We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively. Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3 and two different prostate cancer cell lines (22RV1, DU145 attached to and proliferated on zein foams.We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves. Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein foams for extended time periods.

  9. Determining stress during finger propagation in 2D foams

    NARCIS (Netherlands)

    Staicu, A.D.; van Gelder, Bas; Hilgenfeldt, Sascha; Gutkowski, Witold; Kowalewski, Tomasz A.

    2004-01-01

    We investigate the formation of fingering patterns in a radial Hele-Shaw cell filled with quasi-two-dimensional polydisperse foam of very small liquid content. Air is used as the low-viscosity driving fluid. Using high speed imaging (up to 2000fps), we directly observe the topological rearrangements

  10. dsmcFoam+: An OpenFOAM based direct simulation Monte Carlo solver

    Science.gov (United States)

    White, C.; Borg, M. K.; Scanlon, T. J.; Longshaw, S. M.; John, B.; Emerson, D. R.; Reese, J. M.

    2018-03-01

    dsmcFoam+ is a direct simulation Monte Carlo (DSMC) solver for rarefied gas dynamics, implemented within the OpenFOAM software framework, and parallelised with MPI. It is open-source and released under the GNU General Public License in a publicly available software repository that includes detailed documentation and tutorial DSMC gas flow cases. This release of the code includes many features not found in standard dsmcFoam, such as molecular vibrational and electronic energy modes, chemical reactions, and subsonic pressure boundary conditions. Since dsmcFoam+ is designed entirely within OpenFOAM's C++ object-oriented framework, it benefits from a number of key features: the code emphasises extensibility and flexibility so it is aimed first and foremost as a research tool for DSMC, allowing new models and test cases to be developed and tested rapidly. All DSMC cases are as straightforward as setting up any standard OpenFOAM case, as dsmcFoam+ relies upon the standard OpenFOAM dictionary based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of a DSMC simulation is not typical of most OpenFOAM applications. We show that dsmcFoam+ compares well to other well-known DSMC codes and to analytical solutions in terms of benchmark results.

  11. Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials

    Science.gov (United States)

    Rus, Anika Zafiah M.; Azahari, M. Shafiq M.; Kormin, Shaharuddin; Soon, Leong Bong; Zaliran, M. Taufiq; Ahraz Sadrina M. F., L.

    2017-09-01

    Sound absorption materials are one of the major requirements in many industries with regards to the sound insulation developed should be efficient to reduce sound. This is also important to contribute in economically ways of producing sound absorbing materials which is cheaper and user friendly. Thus, in this research, the sound absorbent properties of bio-polymer foam filled with hybrid fillers of wood dust and waste tire rubber has been investigated. Waste cooking oil from crisp industries was converted into bio-monomer, filled with different proportion ratio of fillers and fabricated into bio-polymer foam composite. Two fabrication methods is applied which is the Close Mold Method (CMM) and Open Mold Method (OMM). A total of four bio-polymer foam composite samples were produce for each method used. The percentage of hybrid fillers; mixture of wood dust and waste tire rubber of 2.5 %, 5.0%, 7.5% and 10% weight to weight ration with bio-monomer. The sound absorption of the bio-polymer foam composites samples were tested by using the impedance tube test according to the ASTM E-1050 and Scanning Electron Microscope to determine the morphology and porosity of the samples. The sound absorption coefficient (α) at different frequency range revealed that the polymer foam of 10.0 % hybrid fillers shows highest α of 0.963. The highest hybrid filler loading contributing to smallest pore sizes but highest interconnected pores. This also revealed that when highly porous material is exposed to incident sound waves, the air molecules at the surface of the material and within the pores of the material are forced to vibrate and loses some of their original energy. This is concluded that the suitability of bio-polymer foam filled with hybrid fillers to be used in acoustic application of automotive components such as dashboards, door panels, cushion and etc.

  12. Improvements in liquid metal cooled nuclear reactors

    International Nuclear Information System (INIS)

    Barnes, S.

    1980-01-01

    Improvements in the design of the thermally insulating material used to shield the concrete containment walls in liquid metal cooled nuclear reactors are described in detail. The insulating material is composed of two layers and is placed between the primary vessel (usually steel) and the steel lined concrete containment vault. The outer layer, which clads the inner wall surface of the vault, is generally impervious to liquid metal coolant whilst the inner layer is pervious to the coolant. In normal operation, both layers protect the concrete from heat radiated from the reactor. In the event of a breach of the containment vessel, the resulting leakage of liquid metal coolant permeates the inner layer of insulating material, provides a means of heat transfer by conduction and hence reduces the overall insulating properties of the two layers. The outer layer continues to protect the wall surface of the vault from substantial direct contact with the liquid metal. Thus the two apparently conflicting requirements of good thermal insulation during normal operation and of heat transfer during loss of coolant accidents are satisfied by this novel design. Suggestions are given for possible materials for use as the insulating layers. (U.K.)

  13. Flexible Foam Model.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K.; Lu, Wei-Yang; Werner, Brian T.; Scherzinger, William M.; Lo, Chi S.

    2018-03-01

    Experiments were performed to characterize the mechanical response of a 15 pcf flexible polyurethane foam to large deformation at different strain rates and temperatures. Results from these experiments indicated that at room temperature, flexible polyurethane foams exhibit significant nonlinear elastic deformation and nearly return to their original undeformed shape when unloaded. However, when these foams are cooled to temperatures below their glass transition temperature of approximately -35 o C, they behave like rigid polyurethane foams and exhibit significant permanent deformation when compressed. Thus, a new model which captures this dramatic change in behavior with temperature was developed and implemented into SIERRA with the name Flex_Foam to describe the mechanical response of both flexible and rigid foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments. Next, development of the Flex Foam model for flexible polyurethane and other flexible foams is described. Selection of material parameters are discussed and finite element simulations with the new Flex Foam model are compared with experimental results to show behavior that can be captured with this new model.

  14. Evaluation and Optimization Study on a Hybrid EOR Technique Named as Chemical-Alternating-Foam Floods

    Directory of Open Access Journals (Sweden)

    Xu Xingguang

    2017-01-01

    Full Text Available This work presents a novel Enhanced Oil Recovery (EOR method called Chemical-Alternating-Foam (CAF floods in order to overcome the drawbacks of the conventional foam flooding such as insufficient amount of in-situ foams, severe foam collapse and surfactant retention. The first part of this research focused on the comparison of conventional foam floods and CAF floods both of which had the same amount of gas and chemicals. It showed that: (1 CAF floods possessed the much greater Residual Resistance Factor (RRF at elevated temperature; (2 the accumulative oil recovery of the CAF floods was 10%-15% higher than that of the conventional foam flooding. After 1.8 Pore Volume (PV injection, the oil recovery reached the plateau for both methods; (3 CAF floods yielded the most amount of incremental oil at the 98% water cut (water content in the effluent, while the continuous foam floods achieved the best performance at 60% water cut. The second part of this work determined the optimal foam quality (gas/liquid ratio or the volume percent gas within foam, chemical/foam slug size ratio, cycle number and injection sequence for the CAF floods. It was found that the CAF was endowed with the peak performance if the foam quality, chemical/foam slug size ratio, cycle number was fixed at 80%, 1:1 and 3 respectively with the chemical slug being introduced ahead of the foam slug. Through systematic and thorough research, the proposed hybrid process has been approved to be a viable and effective method significantly strengthening the conventional foam flooding.

  15. PUR-PIR foam produced based on poly(hydroxybutyl citrate foamed founded with different factories

    Directory of Open Access Journals (Sweden)

    Liszkowska Joanna

    2018-03-01

    Full Text Available A poly(hydroxybutyl citrate p(HBC was obtained. The product compound produced in the solution during esterification, was added to rigid polyurethane-polyisocyanurate foams (PUR-PIR. The amount of petrochemical polyol in the foams was decreased in favor of the p(HBC from 0.1 to 0.5 equivalent. The foams were foamed in two ways: with distilled water (W foams and with Solkane 365/227 (S foams. The examination results of both foam series were compared. They showed that the foams foamed with water have higher softening temperature than the foams foamed with solkane. The retention values for both foam series are around 91–95%, and water absorption in the range of 0.7–3.2%. The anisotropy coefficient did not exceed 1.08 (the lowest value being 1.01.

  16. Study of a flowing aqueous decontamination foam drainage mechanisms and hydrodynamic behaviour

    International Nuclear Information System (INIS)

    Boissonnet, G.

    1998-01-01

    For the decontamination of nuclear facilities, the use of foams has a great potentiality. This work deals with the study of a flowing aqueous foam regarding two aspects: the structure and the drainage on one hand, the hydrodynamic behaviour on the other hand. The foam has been studied from a photograph of a plexiglass column wall, in which the foam flows vertically. Image processing and analysis have been used to measure the foam structure parameters and demonstrate that the smaller the average diameter of the bubbles is, the more stable the foam is. The competition between the gravity and the interfacial forces has been showed by two types of fluid flow in the inter-bubble channels: one where the gravity is preponderant, the other where the two forces exist. Two drainage models based on the Darcy law and the Weaire model have been elaborated. From an hydrodynamic behaviour point of view, the sliding of a shear core in the liquid film on wall, has been demonstrated. A Ostwald De Weale type behaviour appears concerning the whole flow; a Herschel Bulkley type behaviour of the foam core appears when the shearing and the sliding are dissociated. The sliding speed is 5 to 95% of the global speed according to the experiment conditions. A method to forecast the pressure losses, based on the Moody diagram has been established. (A.L.B.)

  17. Review of Current State of the Art and Key Design Issues With Potential Solutions for Liquid Hydrogen Cryogenic Storage Tank Structures for Aircraft Applications

    Science.gov (United States)

    Mital, Subodh K.; Gyekenyesi, John Z.; Arnold, Steven M.; Sullivan, Roy M.; Manderscheid, Jane M.; Murthy, Pappu L. N.

    2006-01-01

    Due to its high specific energy content, liquid hydrogen (LH2) is emerging as an alternative fuel for future aircraft. As a result, there is a need for hydrogen tank storage systems, for these aircraft applications, that are expected to provide sufficient capacity for flight durations ranging from a few minutes to several days. It is understood that the development of a large, lightweight, reusable cryogenic liquid storage tank is crucial to meet the goals of and supply power to hydrogen-fueled aircraft, especially for long flight durations. This report provides an annotated review (including the results of an extensive literature review) of the current state of the art of cryogenic tank materials, structural designs, and insulation systems along with the identification of key challenges with the intent of developing a lightweight and long-term storage system for LH2. The broad classes of insulation systems reviewed include foams (including advanced aerogels) and multilayer insulation (MLI) systems with vacuum. The MLI systems show promise for long-term applications. Structural configurations evaluated include single- and double-wall constructions, including sandwich construction. Potential wall material candidates are monolithic metals as well as polymer matrix composites and discontinuously reinforced metal matrix composites. For short-duration flight applications, simple tank designs may suffice. Alternatively, for longer duration flight applications, a double-wall construction with a vacuum-based insulation system appears to be the most optimum design. The current trends in liner material development are reviewed in the case that a liner is required to minimize or eliminate the loss of hydrogen fuel through permeation.

  18. Infiltrated carbon foam composites

    Science.gov (United States)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  19. Simple gases to replace non-environmentally friendly polymer foaming agents. A thermodynamic investigation

    International Nuclear Information System (INIS)

    Grolier, Jean-Pierre E.; Randzio, Stanislaw L.

    2012-01-01

    Highlights: ► The PVT-vibrating wire technique and PVT-scanning transitiometry. ► Polymer swelling with measured gas sorption and gas–polymer interaction energies. ► Experimental measurements up to 373 K and 100 MPa. ► Hydrostatic and plasticization effects under high pressure gas and induced T g -shifts. ► Thermodynamic study of the (gas + polymer) systems polystyrene with CO 2 , N 2 , and freons. - Abstract: Foaming constitutes one of the most important industrial activities in polymer engineering to produce efficient thermal insulating materials. In particular, rigid insulating boards are produced worldwide on a large scale using blowing agents which eventually are released in the environment where they adversely impact the natural friendly stratospheric ozone layer. Concomitantly, the chemicals used as blowing agents contribute to the creation of the unfriendly tropospheric ozone layer generating the disastrous green house effect around our planet. The traditional foaming intermediates currently named freons, like chlorofluorocarbons (CFCs) currently used as blowing agents as well as the hydrochlorofluorocarbons (HCFCs) often considered as alternative blowing agents, must be banned from industrial processes and new (friendly) foaming agents have to be suggested and evaluated in terms of both easy engineering and environmental neutrality. Undoubtedly thermodynamics plays a major role in assessing the effective capability of those chemicals. Some CFCs still accepted and other possible simple gases like carbon dioxide and nitrogen have been considered. The in-depth thermodynamic investigation has been made possible thanks to new experimental developments to determine gas solubility in polymers and associated swelling as well as the thermodynamic properties of (gas + polymer) systems, including the thermophysical properties of polymers under gas sorption. Pertinent data have been generated for such properties over extended T and p ranges.

  20. In situ observation of syntactic foams under hydrostatic pressure using X-ray tomography

    International Nuclear Information System (INIS)

    Lachambre, J.; Maire, E.; Adrien, J.; Choqueuse, D.

    2013-01-01

    Syntactic foams (hollow glass microspheres embedded in a polymeric matrix) are being used increasingly for the purpose of thermal insulation in ultradeep water. A better understanding of the damage mechanisms of these materials at the microsphere scale under such a hydrostatic loading condition is of prior importance in determining actual material limits, improving phenomenological modelling and developing novel formulations in the future. To achieve this goal, a study based on X-ray microtomography was performed on two syntactic foam materials (polypropylene and polyurethane matrix) and a standard foamed PP. A special set up has been designed in order to allow the X-ray microtomographic observation of the material during hydrostatic pressure loading using ethanol as the pressure fluid. Spatial resolution of (3.5 μm) 3 and in situ non-destructive scanning allowed a unique qualitative and quantitative analysis of the composite microstructure during stepwise isotropic compression by hydrostatic pressure up to 50 MPa. The collapse of weaker microspheres were observed during pressure increase and the damage parameters could be estimated. It is shown that the microspheres which are broken or the porosities which are close to the surface in the foamed PP are filled by a fluid (either the ethanol or the polymeric matrix itself). The hydrostatic pressure decreases the volume of the foam only slightly. In the PU matrix, ethanol diffusion is seen to induce swelling of the matrix, which is an unexpected phenomenon but reveals the high potential of X-ray microtomographic observation to improve diffusion analysis in complex media

  1. Geometrical characterization of perlite-metal syntactic foam

    Energy Technology Data Exchange (ETDEWEB)

    Borovinšek, Matej, E-mail: matej.borovinsek@um.si [University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor (Slovenia); Taherishargh, Mehdi, E-mail: mehdi.taherishargh@newcastle.edu.au [The University of Newcastle, School of Engineering, University Drive, Callaghan, NSW 2308 (Australia); Vesenjak, Matej, E-mail: matej.vesenjak@um.si [University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor (Slovenia); Ren, Zoran, E-mail: zoran.ren@um.si [University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor (Slovenia); Fiedler, Thomas, E-mail: thomas.fiedler@newcastle.edu.au [The University of Newcastle, School of Engineering, University Drive, Callaghan, NSW 2308 (Australia)

    2016-09-15

    This paper introduces an improved method for the detailed geometrical characterization of perlite-metal syntactic foam. This novel metallic foam is created by infiltrating a packed bed of expanded perlite particles with liquid aluminium alloy. The geometry of the solidified metal is thus defined by the perlite particle shape, size and morphology. The method is based on a segmented micro-computed tomography data and allows for automated determination of the distributions of pore size, sphericity, orientation and location. The pore (i.e. particle) size distribution and pore orientation is determined by a multi-criteria k-nearest neighbour algorithm for pore identification. The results indicate a weak density gradient parallel to the casting direction and a slight preference of particle orientation perpendicular to the casting direction. - Highlights: •A new method for identification of pores in porous materials was developed. •It was applied on perlite-metal syntactic foam samples. •A porosity decrease in the axial direction of the samples was determined. •Pore shape analysis showed a high percentage of spherical pores. •Orientation analysis showed that more pores are oriented in the radial direction.

  2. Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route.

    Science.gov (United States)

    Hangai, Yoshihiko; Kamada, Hiroto; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2014-03-21

    Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%-78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT) observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE) analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis.

  3. Modeling Manufacturing Impacts on Aging and Reliability of Polyurethane Foams

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R.; Roberts, Christine Cardinal; Mondy, Lisa Ann; Soehnel, Melissa Marie; Johnson, Kyle; Lorenzo, Henry T.

    2016-10-01

    Polyurethane is a complex multiphase material that evolves from a viscous liquid to a system of percolating bubbles, which are created via a CO2 generating reaction. The continuous phase polymerizes to a solid during the foaming process generating heat. Foams introduced into a mold increase their volume up to tenfold, and the dynamics of the expansion process may lead to voids and will produce gradients in density and degree of polymerization. These inhomogeneities can lead to structural stability issues upon aging. For instance, structural components in weapon systems have been shown to change shape as they age depending on their molding history, which can threaten critical tolerances. The purpose of this project is to develop a Cradle-to-Grave multiphysics model, which allows us to predict the material properties of foam from its birth through aging in the stockpile, where its dimensional stability is important.

  4. Depressurized pipes decontamination by using circulation foam

    International Nuclear Information System (INIS)

    Damerval, Frederique; Belz, Jacques; Renouf, Marjorie; Janneau, Patrice

    2012-09-01

    Decontamination of pipes remains a necessity in order to reduce the radiation level during maintenance or dismantling operations but it is not so easy to do it, especially in case of a long pipe network. To achieve this operation, the use of chemistry is one of the more relevant methods; moreover, the liquid waste production still remains an issue that it can be avoided by the use of decontamination foams. (authors)

  5. Bioactive Wollastonite-Diopside Foams from Preceramic Polymers and Reactive Oxide Fillers

    Directory of Open Access Journals (Sweden)

    Laura Fiocco

    2015-05-01

    Full Text Available Wollastonite (CaSiO3 and diopside (CaMgSi2O6 silicate ceramics have been widely investigated as highly bioactive materials, suitable for bone tissue engineering applications. In the present paper, highly porous glass-ceramic foams, with both wollastonite and diopside as crystal phases, were developed from the thermal treatment of silicone polymers filled with CaO and MgO precursors, in the form of micro-sized particles. The foaming was due to water release, at low temperature, in the polymeric matrix before ceramic conversion, mainly operated by hydrated sodium phosphate, used as a secondary filler. This additive proved to be “multifunctional”, since it additionally favored the phase development, by the formation of a liquid phase upon firing, in turn promoting the ionic interdiffusion. The liquid phase was promoted also by the incorporation of powders of a glass crystallizing itself in wollastonite and diopside, with significant improvements in both structural integrity and crushing strength. The biological characterization of polymer-derived wollastonite-diopside foams, to assess the bioactivity of the samples, was performed by means of a cell culture test. The MTT assay and LDH activity tests gave positive results in terms of cell viability.

  6. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    OpenAIRE

    Peter W. Gaiser; Magdalena D. Anguelova

    2012-01-01

    Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam ...

  7. Operator spin foam models

    International Nuclear Information System (INIS)

    Bahr, Benjamin; Hellmann, Frank; Kaminski, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2011-01-01

    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as our main tool. A set of moves we define in the set of the operator spin foams (among other operations) allows us to split the faces and the edges of the foams. We assign to each operator spin foam a contracted operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of the face amplitudes is the consequence of assuming the invariance of the contracted operator with respect to the moves. Next, we define spin foam models and consider the class of models assumed to be symmetric with respect to the moves we have introduced, and assuming their partition functions (state sums) are defined by the contracted operators. Briefly speaking, those operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with assumed invariance with respect to the edge splitting move, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on a spin(4) BF spin foam model is exactly the way we tend to view 4D quantum gravity, starting with the BC model and continuing with the Engle-Pereira-Rovelli-Livine (EPRL) or Freidel-Krasnov (FK) models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. Among our natural spin foam models there are the BF spin foam model, the BC model, and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can also be used for more general spin

  8. Bubble and foam chemistry

    CERN Document Server

    Pugh, Robert J

    2016-01-01

    This indispensable guide will equip the reader with a thorough understanding of the field of foaming chemistry. Assuming only basic theoretical background knowledge, the book provides a straightforward introduction to the principles and properties of foams and foaming surfactants. It discusses the key ideas that underpin why foaming occurs, how it can be avoided and how different degrees of antifoaming can be achieved, and covers the latest test methods, including laboratory and industrial developed techniques. Detailing a variety of different kinds of foams, from wet detergents and food foams, to polymeric, material and metal foams, it connects theory to real-world applications and recent developments in foam research. Combining academic and industrial viewpoints, this book is the definitive stand-alone resource for researchers, students and industrialists working on foam technology, colloidal systems in the field of chemical engineering, fluid mechanics, physical chemistry, and applied physics.

  9. Formation of layer-by-layer assembled titanate nanotubes filled coating on flexible polyurethane foam with improved flame retardant and smoke suppression properties.

    Science.gov (United States)

    Pan, Haifeng; Wang, Wei; Pan, Ying; Song, Lei; Hu, Yuan; Liew, Kim Meow

    2015-01-14

    A fire blocking coating made from chitosan, titanate nanotubes and alginate was deposited on a flexible polyurethane (FPU) foam surface by a layer-by-layer assembly technique in an effort to reduce its flammability. First, titanate nanotubes were prepared by a hydrothermal method. And then the coating growth was carried out by alternately submerging FPU foams into chitosan solution, titanate nanotubes suspension and alginate solution. The mass gain of coating on the surface of FPU foams showed dependency on the concentration of titanate nanotubes suspension and the trilayers's number. Scanning electron microscopy indicated that titanate nanotubes were distributed well on the entire surface of FPU foam and showed a randomly oriented and entangled network structure. The cone calorimeter result indicated that the coated FPU foams showed reduction in the peak heat release rate (peak HRR), peak smoke production rate (peak SPR), total smoke release (TSR) and peak carbon monoxide (CO) production compared with those of the control FPU foam. Especially for the FPU foam with only 5.65 wt % mass gain, great reduction in peak HRR (70.2%), peak SPR (62.8%), TSR (40.9%) and peak CO production (63.5%) could be observed. Such a significant improvement in flame retardancy and the smoke suppression property for FPU foam could be attributed to the protective effect of titanate nanotubes network structure formed, including insulating barrier effect and adsorption effect.

  10. Integration of Computer Tomography and Simulation Analysis in Evaluation of Quality of Ceramic-Carbon Bonded Foam Filter

    Directory of Open Access Journals (Sweden)

    Karwiński A.

    2013-12-01

    Full Text Available Filtration of liquid casting alloys is used in casting technologies for long time. The large quantity of available casting filters allows using them depending on casting technology, dimensions of casting and used alloys. Technological progress of material science allows of using new materials in production of ceramic filters. In this article the Computed Tomography (CT technique was use in order to evaluate the thickness of branch in cross section of 20ppi ceramic-carbon bonded foam filter. Than the 3D image of foam filter was used in computer simulation of flow of liquid metal thru the running system.

  11. Porous Geopolymer Insulating Core from a Metakaolin/Biomass Ash Composite

    Directory of Open Access Journals (Sweden)

    Annalisa Natali Murri

    2017-12-01

    Full Text Available Ashes derived from the combustion of vegetal and animal biomass still represent a mostly unexplored secondary raw material for the production of alkali-activated materials, given their peculiar chemical nature. In this work, calcium phosphate biomass ashes were successfully used as partially reactive fillers in a metakaolin-based geopolymer composite to produce, by direct foaming, sustainable and lightweight boards with thermal insulating properties. The investigated materials were obtained by activating a blend of metakaolin and biomass ash in a weight ratio of 1: 1 and foamed with the addition of H2O2 in measure of 5 wt. %, to maximize the volume of disposed ash and ensure adequate properties to the material at the same time. The obtained geopolymer composite was characterized by microstructural, chemical-physical, mechanical and thermal analysis: the obtained results showed that biomass ash and metakaolin well integrated in the microstructure of the final porous material, which was characterized by a density of about 310 kg/m3 and a thermal conductivity of 0.073 W/mK at a mean test temperature of 30 °C, coupled with an acceptable compressive strength of about 0.6 MPa. Dilatometric and thermogravimetric analysis, performed up to 1000 °C, highlighted the thermal stability of the composite, which could be regarded as a promising material for low-cost, self-bearing thermal insulating partitions or lightweight cores for thermostructural sandwich panels.

  12. REMOVE AND RELEASE OF NUTRIENTS AFTER HYBRID PRE-TREATMENT OF ACTIVATED SLUDGE FOAM

    Directory of Open Access Journals (Sweden)

    Alicja Machnicka

    2017-02-01

    Full Text Available One of the problems in wastewater treatment technologies is the formation of foam/scum on the surface of bioreactors. The foam elimination/destruction can be carried out by various methods among which disintegration is included. Hybrid disintegration (chemical decomposition and hydrodynamic cavitation of the foam microorganisms results in phosphates, ammonium nitrogen, magnesium and potassium transferred from the foam solids into the liquid phase. Application of both methods as a hybrid pre-treatment process caused in an increased concentration of phosphates of about 677 mg PO43- L-1, ammonium nitrogen about 41 mg N-NH4+ L-1. The concentration of Mg2+ and K+ in the solution increased from 6.2 to 31.1 mg Mg2+ L-1 and from 22.4 to 102.0 mg K+ L-1, respectively. The confirmation of physicochemical changes and release of cellular matter as a result of cellular lysis (hybrid disintegration was IR analysis. It was demonstrated that the disintegration of foam permits removal of a part of nutrients in the form of struvite.

  13. NON-LINEAR TRANSIENT HEAT CONDUCTION ANALYSIS OF INSULATION WALL OF TANK FOR TRANSPORTATION OF LIQUID ALUMINUM

    Directory of Open Access Journals (Sweden)

    Miroslav M Živković

    2010-01-01

    Full Text Available This paper deals with transient nonlinear heat conduction through the insulation wall of the tank for transportation of liquid aluminum. Tanks designed for this purpose must satisfy certain requirements regarding temperature of loading and unloading, during transport. Basic theoretical equations are presented, which describe the problem of heat conduction finite element (FE analysis, starting from the differential equation of energy balance, taking into account the initial and boundary conditions of the problem. General 3D problem for heat conduction is considered, from which solutions for two- and one-dimensional heat conduction can be obtained, as special cases. Forming of the finite element matrices using Galerkin method is briefly described. The procedure for solving equations of energy balance is discussed, by methods of resolving iterative processes of nonlinear transient heat conduction. Solution of this problem illustrates possibilities of PAK-T software package, such as materials properties, given as tabular data, or analytical functions. Software also offers the possibility to solve nonlinear and transient problems with incremental methods. Obtained results for different thicknesses of the tank wall insulation materials enable its comparison in regards to given conditions

  14. Foams theory, measurements, and applications

    CERN Document Server

    Khan, Saad A

    1996-01-01

    This volume discusses the physics and physical processes of foam and foaming. It delineates various measurement techniques for characterizing foams and foam properties as well as the chemistry and application of foams. The use of foams in the textile industry, personal care products, enhanced oil recovery, firefighting and mineral floatation are highlighted, and the connection between the microstructure and physical properties of foam are detailed. Coverage includes nonaqueous foams and silicone antifoams, and more.

  15. Variable convergence liquid layer implosions on the National Ignition Facility

    Science.gov (United States)

    Zylstra, A. B.; Yi, S. A.; Haines, B. M.; Olson, R. E.; Leeper, R. J.; Braun, T.; Biener, J.; Kline, J. L.; Batha, S. H.; Berzak Hopkins, L.; Bhandarkar, S.; Bradley, P. A.; Crippen, J.; Farrell, M.; Fittinghoff, D.; Herrmann, H. W.; Huang, H.; Khan, S.; Kong, C.; Kozioziemski, B. J.; Kyrala, G. A.; Ma, T.; Meezan, N. B.; Merrill, F.; Nikroo, A.; Peterson, R. R.; Rice, N.; Sater, J. D.; Shah, R. C.; Stadermann, M.; Volegov, P.; Walters, C.; Wilson, D. C.

    2018-05-01

    Liquid layer implosions using the "wetted foam" technique, where the liquid fuel is wicked into a supporting foam, have been recently conducted on the National Ignition Facility for the first time [Olson et al., Phys. Rev. Lett. 117, 245001 (2016)]. We report on a series of wetted foam implosions where the convergence ratio was varied between 12 and 20. Reduced nuclear performance is observed as convergence ratio increases. 2-D radiation-hydrodynamics simulations accurately capture the performance at convergence ratios (CR) ˜ 12, but we observe a significant discrepancy at CR ˜ 20. This may be due to suppressed hot-spot formation or an anomalous energy loss mechanism.

  16. Application of the Finite Elemental Analysis to Modeling Temperature Change of the Vaccine in an Insulated Packaging Container during Transport.

    Science.gov (United States)

    Ge, Changfeng; Cheng, Yujie; Shen, Yan

    2013-01-01

    This study demonstrated an attempt to predict temperatures of a perishable product such as vaccine inside an insulated packaging container during transport through finite element analysis (FEA) modeling. In order to use the standard FEA software for simulation, an equivalent heat conduction coefficient is proposed and calculated to describe the heat transfer of the air trapped inside the insulated packaging container. The three-dimensional, insulated packaging container is regarded as a combination of six panels, and the heat flow at each side panel is a one-dimension diffusion process. The transit-thermal analysis was applied to simulate the heat transition process from ambient environment to inside the container. Field measurements were carried out to collect the temperature during transport, and the collected data were compared to the FEA simulation results. Insulated packaging containers are used to transport temperature-sensitive products such as vaccine and other pharmaceutical products. The container is usually made of an extruded polystyrene foam filled with gel packs. World Health Organization guidelines recommend that all vaccines except oral polio vaccine be distributed in an environment where the temperature ranges between +2 to +8 °C. The primary areas of concern in designing the packaging for vaccine are how much of the foam thickness and gel packs should be used in order to keep the temperature in a desired range, and how to prevent the vaccine from exposure to freezing temperatures. This study uses numerical simulation to predict temperature change within an insulated packaging container in vaccine cold chain. It is our hope that this simulation will provide the vaccine industries with an alternative engineering tool to validate vaccine packaging and project thermal equilibrium within the insulated packaging container.

  17. Starch/fiber/poly(lactic acid) foam and compressed foam composites

    Science.gov (United States)

    Composites of starch, fiber, and poly(lactic acid) (PLA) were made using a foam substrate formed by dehydrating starch or starch/fiber gels. PLA was infiltrated into the dry foam to provide better moisture resistance. Foam composites were compressed into plastics using force ranging from 4-76MPa. Te...

  18. Liquid hydrogen and deuterium targets

    International Nuclear Information System (INIS)

    Bougon, M.; Marquet, M.; Prugne, P.

    1961-01-01

    A description is given of 1) Atmospheric pressure target: liquid hydrogen, 400 mm thickness; thermal insulation: styrofoam; the hydrogen vapors are used to improve the target cooling; Mylar windows. 2) Vacuum target: 12 liter content: hydrogen or deuterium; liquid thickness 400 mm; thermal insulation is afforded by a vacuum vessel and a liquid nitrogen shield. Recovery and liquefaction of deuterium vapors are managed in the vacuum vessel which holds the target. The target emptying system is designed for operating in a few minutes. (author) [fr

  19. Literature Review: An Overview of Epoxy Resin Syntactic Foams with Glass Microballoons

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jennie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-12

    same properties [3,4,9,10]. The glass transition temperature has a proportional relationship to the volume fraction of microballoons used, however, there is limited research that supports correlations between other thermal variables and microballoons specifications. In fact, very little experimental data exists to relate thermal conductivity and volume fraction or wall thickness of microballoons [5]. This review proposes that thermal conductivity should be a topic of interest for future researchers because of how frequently syntactic foams are used in insulating applications. This paper will explore three aspects pertaining to epoxy resin syntactic foams with glass microballoons: the immense range of applications that syntactic foams are used for, the materials and fabrication techniques most commonly used, and lastly the results from characterization of syntactic foams with varying microballoon volume fractions and wall thicknesses. In addition to varying microballoon parameters, it is also possible to change the base, accelerator and curing agent used in the epoxy formulation. For simplicity, this paper will focus on a very common combination of materials produced by the Dow Chemical Company®.

  20. CaO insulator coatings on a vanadium-base alloy in liquid 2 at.% calcium-lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Kassner, T.F.

    1996-01-01

    The electrical resistance of CaO coatings produced on V-4%Cr-4%Ti and V-15%Cr-5%Ti by exposure of the alloy (round bottom samples 6-in. long by 0.25-in. dia.) to liquid lithium that contained 2 at.% dissolved calcium was measured as a function of time at temperatures between 300-464 degrees C. The solute element, calcium in liquid lithium, reacted with the alloy substrate at these temperatures for 17 h to produce a calcium coating ∼7-8 μm thick. The calcium-coated vanadium alloy was oxidized to form a CaO coating. Resistance of the coating layer on V-15Cr-5Ti, measured in-situ in liquid lithium that contained 2 at.% calcium, was 1.0 x 10 10 Ω-cm 2 at 300 degrees C and 400 h, and 0.9 x 10 10 Ω-cm 2 at 464 degrees C and 300 h. Thermal cycling between 300 and 464 degrees C changed the resistance of the coating layer, which followed insulator behavior. Examination of the specimen after cooling to room temperature revealed no cracks in the CaO coating. The coatings were evaluated by optical microscopy, scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), and X-ray analysis. Adhesion between CaO and vanadium alloys was enhanced as exposure time increased

  1. Thermal conductivity: recent developments on insulating and new materials; La conductivite thermique: developpements recents sur les isolants et les materiaux nouveaux

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop organized by the thermo-kinetics section of the French society of thermal engineers deals with recent developments concerning insulating, dielectric and composite materials. The seven papers presented during this workshop concern the methods and results of thermal conductivity measurements performed in these materials and the possible applications of these materials in aerospace industry (carbon foams, ceramic-based composite materials), civil engineering (glazing materials, aerogels), power electronics (dielectric thin films, ceramics), and in other industries (heat resistant and thermal insulating materials). (J.S.)

  2. Multifunctional foaming agent to prepare aluminum foam with enhanced mechanical properties

    Science.gov (United States)

    Li, Xun; Liu, Ying; Ye, Jinwen; An, Xuguang; Ran, Huaying

    2018-03-01

    In this paper, CuSO4 was used as foaming agent to prepare close cell Aluminum foam(Al foam) at the temperature range of 680 °C ∼ 758 °C for the first time. The results show that CuSO4 has multifunctional such as, foaming, viscosity increasing, reinforcement in Al matrix, it has a wide decomposition temperature range of 641 °C ∼ 816 °C, its sustain-release time is 5.5 min at 758 °C. The compression stress and energy absorption of CuSO4-Al foam is 6.89 Mpa and 4.82 × 106 J m‑3(compression strain 50%), which are 77.12% and 99.17% higher than that of TiH2-Al foam at the same porosity(76% in porosity) due to the reinforcement in Al matrix and uniform pore dispersion.

  3. α-TCP cements prepared by syringe-foaming: Influence of Na2HPO4 and surfactant concentration.

    Science.gov (United States)

    Vásquez, A F; Domínguez, S; Loureiro Dos Santos, L A

    2017-12-01

    The lack of intrinsic open porosity in calcium phosphate cements slows down the resorption rate and bone ingrowth when implanted In Vivo. In this study, macroporous structures were obtained by mixing α-TCP cement with a foamed liquid phase containing different concentrations of sodium hydrogen phosphate and a nonionic surfactant. The cement paste was prepared by hand mixing in a novel system of two syringes connected by a tube. Two different liquid to powder (L/P) ratios were used to prepare the cement paste. The cement samples showed open macropores with diameters>100μm. The specimens prepared with lower L/P ratio showed smaller porosity, macroporosity and pore size distribution. The cohesion of the cement paste in liquid solutions was assessed by adding 2wt% sodium alginate to the liquid phase. This study suggests that the final macrostructure of the foamed cements can be controlled by varying the phosphate and surfactant concentrations in the liquid phase and the L/P ratio. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Maximum Expected Wall Heat Flux and Maximum Pressure After Sudden Loss of Vacuum Insulation on the Stratospheric Observatory for Infrared Astronomy (SOFIA) Liquid Helium (LHe) Dewars

    Science.gov (United States)

    Ungar, Eugene K.

    2014-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared observation experiments. The experiments carry sensors cooled to liquid helium (LHe) temperatures. A question arose regarding the heat input and peak pressure that would result from a sudden loss of the dewar vacuum insulation. Owing to concerns about the adequacy of dewar pressure relief in the event of a sudden loss of the dewar vacuum insulation, the SOFIA Program engaged the NASA Engineering and Safety Center (NESC). This report summarizes and assesses the experiments that have been performed to measure the heat flux into LHe dewars following a sudden vacuum insulation failure, describes the physical limits of heat input to the dewar, and provides an NESC recommendation for the wall heat flux that should be used to assess the sudden loss of vacuum insulation case. This report also assesses the methodology used by the SOFIA Program to predict the maximum pressure that would occur following a loss of vacuum event.

  5. Code development for analysis of MHD pressure drop reduction in a liquid metal blanket using insulation technique based on a fully developed flow model

    International Nuclear Information System (INIS)

    Smolentsev, Sergey; Morley, Neil; Abdou, Mohamed

    2005-01-01

    The paper presents details of a new numerical code for analysis of a fully developed MHD flow in a channel of a liquid metal blanket using various insulation techniques. The code has specially been designed for channels with a 'sandwich' structure of several materials with different physical properties. The code includes a finite-volume formulation, automatically generated Hartmann number sensitive meshes, and effective convergence acceleration technique. Tests performed at Ha ∼ 10 4 have showed very good accuracy. As an illustration, two blanket flows have been considered: Pb-17Li flow in a channel with a silicon carbide flow channel insert, and Li flow in a channel with insulating coating

  6. Preparation of three-dimensional shaped aluminum alloy foam by two-step foaming

    International Nuclear Information System (INIS)

    Shang, J.T.; Xuming, Chu; Deping, He

    2008-01-01

    A novel method, named two-step foaming, was investigated to prepare three-dimensional shaped aluminum alloy foam used in car industry, spaceflight, packaging and related areas. Calculations of thermal decomposition kinetics of titanium hydride showed that there is a considerable amount of hydrogen releasing when the titanium hydride is heated at a relatively high temperature after heated at a lower temperature. The hydrogen mass to sustain aluminum alloy foam, having a high porosity, was also estimated by calculations. Calculations indicated that as-received titanium hydride without any pre-treatment can be used as foaming agents in two-step foaming. The processes of two-step foaming, including preparing precursors and baking, were also studied by experiments. Results showed that, low titanium hydride dispersion temperature, long titanium hydride dispersion time and low precursors porosity are beneficial to prepare three-dimensional shaped aluminum alloy foams with uniform pores

  7. The Wick-Concept for Thermal Insulation of Cold Piping

    DEFF Research Database (Denmark)

    Koverdynsky, Vit; Korsgaard, Vagn; Rode, Carsten

    2006-01-01

    the wick-concept in either of two variations: the self-drying or the self-sealing system. Experiments have been carried out using different variations of the two systems to investigate the conditions for exploiting the drying capabilities of the systems, and the results are presented. The results show......The wick-concept for thermal insulation of cold piping is based on capillary suction of a fiber fabric to remove excess water from the pipe surface by transporting it to the outer surface of the insulation. From the surface of the insulation jacket, the water will evaporate to the ambient air....... This will prevent long-term accumulation of moisture in the insulation material. The wick keeps the hydrophobic insulation dry, allowing it to maintain its thermal performance. The liquid moisture is kept only in the wick fabric. This article presents the principle of operation of cold pipe insulation using...

  8. Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2014-03-01

    Full Text Available Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%–78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis.

  9. Foam-oil interaction in porous media: implications for foam assisted enhanced oil recovery.

    Science.gov (United States)

    Farajzadeh, R; Andrianov, A; Krastev, R; Hirasaki, G J; Rossen, W R

    2012-11-15

    The efficiency of a foam displacement process in enhanced oil recovery (EOR) depends largely on the stability of foam films in the presence of oil. Experimental studies have demonstrated the detrimental impact of oil on foam stability. This paper reviews the mechanisms and theories (disjoining pressure, coalescence and drainage, entering and spreading of oil, oil emulsification, pinch-off, etc.) suggested in the literature to explain the impact of oil on foam stability in the bulk and porous media. Moreover, we describe the existing approaches to foam modeling in porous media and the ways these models describe the oil effect on foam propagation in porous media. Further, we present various ideas on an improvement of foam stability and longevity in the presence of oil. The outstanding questions regarding foam-oil interactions and modeling of these interactions are pointed out. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Radiation and gas conduction heat transport across a helium dewer multilayer insulation system

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulated a 4K liquid helium cryostat. The method described permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included.

  11. Violent flows in aqueous foams III: physical multi-phase model comparison with aqueous foam shock tube experiments

    Science.gov (United States)

    Redford, J. A.; Ghidaglia, J.-M.; Faure, S.

    2018-06-01

    Mitigation of blast waves in aqueous foams is a problem that has a strong dependence on multi-phase effects. Here, a simplified model is developed from the previous articles treating violent flows (D'Alesio et al. in Eur J Mech B Fluids 54:105-124, 2015; Faure and Ghidaglia in Eur J Mech B Fluids 30:341-359, 2011) to capture the essential phenomena. The key is to have two fluids with separate velocities to represent the liquid and gas phases. This allows for the interaction between the two phases, which may include terms for drag, heat transfer, mass transfer due to phase change, added mass effects, to be included explicitly in the model. A good test for the proposed model is provided by two experimental data sets that use a specially designed shock tube. The first experiment has a test section filled with spray droplets, and the second has a range of aqueous foams in the test section. A substantial attenuation of the shock wave is seen in both cases, but a large difference is observed in the sound speeds. The droplets cause no observable change from the air sound speed, while the foams have a reduced sound speed of approximately 50-75 m/s . In the model given here, an added mass term is introduced in the governing equations to capture the low sound speed. The match between simulation and experiment is found to be satisfactory for both droplets and the foam. This is especially good when considering the complexity of the physics and the effects that are unaccounted for, such as three-dimensionality and droplet atomisation. The resulting statistics illuminate the processes occurring in such flows.

  12. Destabilization, Propagation, and Generation of Surfactant-Stabilized Foam during Crude Oil Displacement in Heterogeneous Model Porous Media.

    Science.gov (United States)

    Xiao, Siyang; Zeng, Yongchao; Vavra, Eric D; He, Peng; Puerto, Maura; Hirasaki, George J; Biswal, Sibani L

    2018-01-23

    Foam flooding in porous media is of increasing interest due to its numerous applications such as enhanced oil recovery, aquifer remediation, and hydraulic fracturing. However, the mechanisms of oil-foam interactions have yet to be fully understood at the pore level. Here, we present three characteristic zones identified in experiments involving the displacement of crude oil from model porous media via surfactant-stabilized foam, and we describe a series of pore-level dynamics in these zones which were not observed in experiments involving paraffin oil. In the displacement front zone, foam coalesces upon initial contact with crude oil, which is known to destabilize the liquid lamellae of the foam. Directly upstream, a transition zone occurs where surface wettability is altered from oil-wet to water-wet. After this transition takes place, a strong foam bank zone exists where foam is generated within the porous media. We visualized each zone using a microfluidic platform, and we discuss the unique physicochemical phenomena that define each zone. In our analysis, we also provide an updated mechanistic understanding of the "smart rheology" of foam which builds upon simple "phase separation" observations in the literature.

  13. The pore characteristics of geopolymer foam concrete and their impact on the compressive strength and modulus

    Science.gov (United States)

    Zhang, Zuhua; Wang, Hao

    2016-08-01

    The pore characteristics of GFCs manufactured in the laboratory with 0-16% foam additions were examined using image analysis (IA) and vacuum water saturation techniques. The pore size distribution, pore shape and porosity were obtained. The IA method provides a suitable approach to obtain the information of large pores, which are more important in affecting the compressive strength of GFC. By examining the applicability of the existing models of predicting compressive strength of foam concrete, a modified Ryshkevitch’s model is proposed for GFC, in which only the porosity that is contributed by the pores over a critical diameter (>100 μm) is considered. This “critical void model” is shown to have very satisfying prediction capability in the studied range of porosity. A compression-modulus model for Portland cement concrete is recommended for predicting the compression modulus elasticity of GFC. This study confirms that GFC have similar pore structures and mechanical behavior as those Portland cement foam concrete and can be used alternatively in the industry for the construction and insulation purposes.

  14. Carbon particle induced foaming of molten sucrose for the preparation of carbon foams

    International Nuclear Information System (INIS)

    Narasimman, R.; Vijayan, Sujith; Prabhakaran, K.

    2014-01-01

    Graphical abstract: - Highlights: • An easy method for the preparation of carbon foam from sucrose is presented. • Wood derived activated carbon particles are used to stabilize the molten sucrose foam. • The carbon foams show relatively good mechanical strength. • The carbon foams show excellent CO 2 adsorption and oil absorption properties. • The process could be scaled up for the preparation of large foam bodies. - Abstract: Activated carbon powder was used as a foaming and foam setting agent for the preparation of carbon foams with a hierarchical pore structure from molten sucrose. The rheological measurements revealed the interruption of intermolecular hydrogen bonding in molten sucrose by the carbon particles. The carbon particles stabilized the bubbles in molten sucrose by adsorbing on the molten sucrose–gas interface. The carbon foams obtained at the activated carbon powder to sucrose weight ratios in the range of 0–0.25 had a compressive strength in the range of 1.35–0.31 MPa. The produced carbon foams adsorb 2.59–3.04 mmol/g of CO 2 at 760 mmHg at 273 K and absorb oil from oil–water mixtures and surfactant stabilized oil-in-water emulsions with very good selectivity and recyclability

  15. Determination of copper in liquid and solid insulation for large electrical equipment by ICP-OES. Application to copper contamination assessment in power transformers.

    Science.gov (United States)

    Bruzzoniti, Maria Concetta; De Carlo, Rosa Maria; Sarzanini, Corrado; Maina, Riccardo; Tumiatti, Vander

    2012-09-15

    Copper is one of the main constituents of the components in power transformers and its presence both in liquid (mineral oil) and in solid (Kraft paper) insulators can lead to enhanced dielectric losses and to the subsequent deterioration of their insulating properties. Recently the latter have been correlated to plant failures which in turn may have severe impact on the environment. This paper describes the direct analysis of copper in insulating mineral oil by ICP-OES and how it was first optimized compared to the official American Society for Testing and Materials (ASTM) D7151 method. Detection and quantification limits of 8.8 μg kg(-1) and 29.3 μg kg(-1) were obtained. Secondly, copper determination was improved by coupling a microwave assisted dissolution procedure of the mineral oil which avoided the problems, in the real samples, due to the presence of solid species of copper which cannot be nebulized following traditional methods described in literature. Sixteen mineral insulating oils sampled from transformers in service were analyzed before and after dissolution. In order to evaluate copper speciation, size fractionation was performed by filtration on PTFE filters (0.45, 1 and 5 μm). This test was performed on all the oil samples. Finally, because of the key role of the solid insulator in failed transformers, the Authors applied the developed method to study the copper deposition tendency onto the insulating Kraft paper tapes exerted by two unused oils (a corrosive and a non-corrosive one) under defined ageing conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model

    Science.gov (United States)

    Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.

    2016-03-01

    Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.

  17. Insulation effect on thermal stability of Coated Conductors wires in liquid nitrogen

    Science.gov (United States)

    Rubeli, Thomas; Dutoit, Bertrand; Martynova, Irina; Makarevich, Artem; Molodyk, Alexander; Samoilenkov, Sergey

    2017-02-01

    Superconducting wires are not perfectly homogeneous in term of critical current as well as stabilization. In resistive fault current limiter applications this could lead to hot spots if the fault current is only slightly above the nominal current of the device. Increasing stabilization by using thicker silver coating for example may prevent this problem but this method implies longer wire length to maintain the same impedance during a fault. Very efficient cooling in another way to prevent hot spots, this can be achieved in nucleate boiling regime. Optimal insulation can be used to prevent film boiling regime, staying in nucleate boiling regime in a much broader temperature range. In this work a novel technique is used to monitor in real time the temperature of the wire during the quench. Using this method several increasing insulation thicknesses are tested, measuring for each the heat exchange rate to the nitrogen bath. Exchange rate measurements are made in quasistatic regime and during the re-cooling of the wire. SuperOx wires provided with different insulation thicknesses exhibit an excellent stability, far above a bare wire. On the other side, for very thick insulations the stability gain is lost. Re-cooling speeds dependency on insulation thicknesses is measured too.

  18. Quantifying the retention of foam formulation components to sedimentary phases to enable predictions of mobility and treatment efficacy - 59369

    International Nuclear Information System (INIS)

    Ramirez, Rosa; Jansik, Danielle; Wellman, Dawn

    2012-01-01

    Document available in abstract form only. Full text of publication follows: Deep vadose zone remediation remains the most challenging remediation problem in the DOE Complex. Foam delivery technology is being developed as a method for delivering remedial amendments within vadose zone environments for in situ contaminant stabilization. Thus far, the physical propagation of foam within subsurface media has been evaluated and quantified. However, foam propagation is a product of surfactant sorption which directly impacts foam stability. In order to predict the stability of foam during subsurface transport it is necessary to quantify the sorption of foam components as a function of concentration, competitive sorption, sediment mineralogy, and temperature. This investigation provides the results of standard static batch test quantifying these relationships. High Performance Liquid Chromatography (HPLC) was used to measure surfactant concentrations. The results of this investigation provide necessary understanding to predict foam stability during subsurface transport and determination of the remedial radius of influence. This study is part of a multiple step process for demonstrating the feasibility of foam transport to distribute amendments within in the vadose zone. (authors)

  19. The foam drainage equation for drainage dynamics in unsaturated porous media

    Science.gov (United States)

    Lehmann, P.; Hoogland, F.; Assouline, S.; Or, D.

    2017-07-01

    Similarity in liquid-phase configuration and drainage dynamics of wet foam and gravity drainage from unsaturated porous media expands modeling capabilities for capillary flows and supplements the standard Richards equation representation. The governing equation for draining foam (or a soil variant termed the soil foam drainage equation—SFDE) obviates the need for macroscopic unsaturated hydraulic conductivity function by an explicit account of diminishing flow pathway sizes as the medium gradually drains. The study provides new and simple analytical expressions for drainage rates and volumes from unsaturated porous media subjected to different boundary conditions. Two novel analytical solutions for saturation profile evolution were derived and tested in good agreement with a numerical solution of the SFDE. The study and the proposed solutions rectify the original formulation of foam drainage dynamics of Or and Assouline (2013). The new framework broadens the scope of methods available for quantifying unsaturated flow in porous media, where the intrinsic conductivity and geometrical representation of capillary drainage could improve understanding of colloid and pathogen transport. The explicit geometrical interpretation of flow pathways underlying the hydraulic functions used by the Richards equation offers new insights that benefit both approaches.

  20. Electrical insulator assembly with oxygen permeation barrier

    Science.gov (United States)

    Van Der Beck, Roland R.; Bond, James A.

    1994-01-01

    A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.

  1. Correlation of microstructure and compressive properties of amorphous matrix composites reinforced with tungsten continuous fibers or porous foams

    International Nuclear Information System (INIS)

    Son, Chang-Young; Lee, Sang-Bok; Lee, Sang-Kwan; Kim, Choongnyun Paul; Lee, Sunghak

    2010-01-01

    Zr-based amorphous alloy matrix composites reinforced with tungsten continuous fibers or porous foams were fabricated without pores or defects by liquid pressing process, and their microstructures and compressive properties were investigated. About 65-70 vol.% of tungsten reinforcements were homogeneously distributed inside the amorphous matrix. The compressive test results indicated that the tungsten-reinforced composites showed considerable plastic strain as the compressive load was sustained by fibers or foams. Particularly in the tungsten porous foam-reinforced composite, the compressive stress continued to increase according to the work hardening after the yielding, thereby leading to the maximum strength of 2764 MPa and the plastic strain of 39.4%. This dramatic increase in strength and ductility was attributed to the simultaneous and homogeneous deformation at tungsten foams and amorphous matrix since tungsten foams did not show anisotropy and tungsten/matrix interfaces were excellent.

  2. An environmentally friendly method for the fabrication of reduced graphene oxide foam with a super oil absorption capacity.

    Science.gov (United States)

    He, Yongqiang; Liu, Yue; Wu, Tao; Ma, Junkui; Wang, Xingrui; Gong, Qiaojuan; Kong, Weina; Xing, Fubao; Liu, Yu; Gao, Jianping

    2013-09-15

    Three kinds of graphene oxide (GO) foams were fabricated using different freezing methods (unidirectional freezing drying (UDF), non-directional freezing drying, and air freezing drying), and the corresponding reduced graphene oxide (RGO) foams were prepared by their thermal reduction of those GO foams. These RGO foams were characterized by Fourier transform infrared spectroscopy, thermal gravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The absorption process and the factors that influence the absorption capacity were investigated. The RGO foams are hydrophobic and showed extremely high absorbing abilities for organic liquids. The absorption capacity of the RGO foams made by UDF was higher than 100 g g(-1) for all the oils tested (gasoline, diesel oil, pump oil, lubricating oil and olive oil) and had the highest value of about 122 g g(-1) for olive oil. The oil absorption capacity of the GO foams was lower than that of the RGO foams, but for olive oil, the absorption capacity was still high than 70 g g(-1), which is higher than that of most oil absorbents. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Raman Scattering as a Probe of the Magnetic State of BEDT-TTF Based Mott Insulators

    Directory of Open Access Journals (Sweden)

    Nora Hassan

    2018-05-01

    Full Text Available Quasi-two-dimensional Mott insulators based on BEDT-TTF molecules have recently demonstrated a variety of exotic states, which originate from electron–electron correlations and geometrical frustration of the lattice. Among those states are a triangular S = 1/2 spin liquid and quantum dipole liquid. In this article, we show the power of Raman scattering technique to characterize magnetic and electronic excitations of these states. Our results demonstrate a distinction between a spectrum of magnetic excitations in a simple Mott insulator with antiferromagnetic interactions, and a spectrum of an insulator with an additional on-site charge degree of freedom.

  4. Low-density carbonized resorcinol-formaldehyde foams

    International Nuclear Information System (INIS)

    Kong, F.M.; Buckley, S.R.; Giles, C.L. Jr.; Haendler, B.L.; Hair, L.M.; Letts, S.A.; Overturf, G.E. III; Price, C.W.; Cook, R.C.

    1991-01-01

    This report documents research and development on resorcinol- formaldehyde-based foam materials conducted between 1986 and June 1990, when the effort was discontinued. The foams discussed are resorcinol-formaldehyde (RF) foam, carbonized RF (CRF) foam, and two composite foams, a polystyrene/RF (PS/RF) foam and its carbonized derivative (CPR). The RF foams are synthesized by the polycondensation of resorcinol with formaldehyde in a slightly basic solution. Their structure and density depend strongly on the concentration of the sodium carbonate catalyst. The have an interconnected bead structure similar to that of silica aerogels; bead sizes range from 30 to 130 Angstrom, and cell sizes are less than 0.1 μm. We have achieved densities of 16 to 200 mg/cm 3 . The RF foams can be pyrolyzed in an inert atmosphere to form a vitreous carbon foam (CRF), which has a similar microstructure but much higher mechanical strength. The PS/RF foams are obtained by filling the 2- to 3-μm cells of PS foam (a low-density hydrocarbon foam we have developed) with RF. The resultant foams have the outstanding handling and machinability of the PS foam matrix and the small cell size of RF. Pyrolyzing PS/RF foams causes depolymerization and loss of the PS; the resulting CPR foams have a structure similar to the PS foams in which CRF both replicates and fills the PS cells

  5. The Effect of Surfactants on Gas-Liquid Pipe Flows

    NARCIS (Netherlands)

    Van Nimwegen, A.T.

    2015-01-01

    Liquid loading is a major problem in the natural gas industry, in which gas production is limited by the accumulation of liquids in the well tubing. Liquid loading can be prevented by the injection of surfactants at the bottom of the well. The surfactants cause the liquid in the well to foam,

  6. Preparation and magnetic properties of the Sr-hexaferrite with foam structure

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, A.L., E-mail: azdlobo@gmail.com [Instituto de Física-UASLP, Álvaro Obregón 64, Centro. San Luis Potosí, S.L.P. (Mexico); Facultad de Ingeniería-UASLP, Álvaro Obregón 64, Centro. San Luis Potosí, S.L.P. (Mexico); Espericueta, D.L. [Facultad de Ingeniería-UASLP, Álvaro Obregón 64, Centro. San Luis Potosí, S.L.P. (Mexico); Facultad de Ciencias-UASLP, Álvaro Obregón 64, Centro. San Luis Potosí, S.L.P. (Mexico); Palomares-Sánchez, S.A. [Facultad de Ciencias-UASLP, Álvaro Obregón 64, Centro. San Luis Potosí, S.L.P. (Mexico); Elizalde-Galindo, J.T. [Instituto de Ingeniería y Tecnología-UACJ, Av. Plutarco Elías Calles 1210, Fovissste Chamizal, Ciudad Juárez, Chihuahua (Mexico); Watts, B.E [IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma (Italy); Mirabal-García, M. [Instituto de Física-UASLP, Álvaro Obregón 64, Centro. San Luis Potosí, S.L.P. (Mexico)

    2016-12-01

    This work reports an optimal way to fabricate strontium hexaferrite with porous-reticulated structure using a variation of the replication technique and taking two different precursors, one obtained from the coprecipitation and the other from the ceramic method. Changes made to the original replication technique include the addition of Arabic gum as binder, and the addition of ethylene glycol to form the ceramic sludge. In addition, some parameters such as the relation between solid material and liquid phase, the quantity of binder and the heat treatment were varied to obtain high quality magnetic foams. Two polymeric sponges were used as patterns, one with average pore size of 300 μm diameter and the other with 1100 μm. The characterization of the samples included the analysis of the structure and phase purity, the magnetic properties, the remanence properties, magnetic interactions and the microstructural characteristics. Results indicate that both, the powder precursors and the polymeric pattern play an important role in the configuration of the foam structure and this configuration has an important influence on the dipolar interactions which tend to demagnetize the samples. In addition, it was analyzed the behavior between the minimum value of the δM curves and the hysteresis properties. - Highlights: • New way to obtain Sr-hexaferrite with foam structure and high magnetic performance. • Relation between pore structure and the magnetic properties in ceramic foams. • Analysis of magnetostatic interactions with the magnetism of Sr-hexaferrite foams. • Relation between microstructural characteristics and the magnetization of the foams.

  7. Preparation and magnetic properties of the Sr-hexaferrite with foam structure

    International Nuclear Information System (INIS)

    Guerrero, A.L.; Espericueta, D.L.; Palomares-Sánchez, S.A.; Elizalde-Galindo, J.T.; Watts, B.E; Mirabal-García, M.

    2016-01-01

    This work reports an optimal way to fabricate strontium hexaferrite with porous-reticulated structure using a variation of the replication technique and taking two different precursors, one obtained from the coprecipitation and the other from the ceramic method. Changes made to the original replication technique include the addition of Arabic gum as binder, and the addition of ethylene glycol to form the ceramic sludge. In addition, some parameters such as the relation between solid material and liquid phase, the quantity of binder and the heat treatment were varied to obtain high quality magnetic foams. Two polymeric sponges were used as patterns, one with average pore size of 300 μm diameter and the other with 1100 μm. The characterization of the samples included the analysis of the structure and phase purity, the magnetic properties, the remanence properties, magnetic interactions and the microstructural characteristics. Results indicate that both, the powder precursors and the polymeric pattern play an important role in the configuration of the foam structure and this configuration has an important influence on the dipolar interactions which tend to demagnetize the samples. In addition, it was analyzed the behavior between the minimum value of the δM curves and the hysteresis properties. - Highlights: • New way to obtain Sr-hexaferrite with foam structure and high magnetic performance. • Relation between pore structure and the magnetic properties in ceramic foams. • Analysis of magnetostatic interactions with the magnetism of Sr-hexaferrite foams. • Relation between microstructural characteristics and the magnetization of the foams.

  8. Clinical effectiveness of DSA-guided foam sclerotherapy for varicose veins of lower limbs

    International Nuclear Information System (INIS)

    Fu Jianhua; He Xu; Chen Guoping; Gu Jianping; Wang Yafei

    2011-01-01

    Objective: To investigate the clinical effect of DSA-guided foam sclerotherapy for varicose veins of lower limbs. Methods: A total of 25 diseased limbs in 20 patients with varicose veins were treated with foam sclerotherapy. The patients were followed up for six months. Sodium morrhuate, used as the sclerosant, was foamed with air by using Tessari's method, with liquid-gas ratio of 1 : 4. The clinical effectiveness was estimated by CEAP, clinical signs and symptoms. Results: A total of 25 limbs in 20 patients with varicose veins were successfully treated with foam sclerotherapy. The technical success rate was 100%. No serious complications such as pulmonary embolism occurred. Phlebitis was observed in two cases at 2 days 4 days after foam sclerotherapy respectively which was relieved after anti-inflammatory medication for 3 days. At the time of discharge, excellent result was seen in 12 (48%) limbs, good effect in 13 (52%) limbs. The total effective rate was 100%. Six months after the treatment, excellent effect was obtained in 15 (60%) limbs and good effect was seen in 10 (40%) limbs. The total effective rate was 100%. Conclusion: DSA-guided foam sclerotherapy is a safe, effective and micro-invasive treatment for varicose veins of lower limbs with high technical success rate, although the long-term clinical effect needs to be further evaluated. (authors)

  9. Liquid hydrogen and deuterium targets; Cibles a hydrogene et deuterium liquides

    Energy Technology Data Exchange (ETDEWEB)

    Bougon, M; Marquet, M; Prugne, P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    A description is given of 1) Atmospheric pressure target: liquid hydrogen, 400 mm thickness; thermal insulation: styrofoam; the hydrogen vapors are used to improve the target cooling; Mylar windows. 2) Vacuum target: 12 liter content: hydrogen or deuterium; liquid thickness 400 mm; thermal insulation is afforded by a vacuum vessel and a liquid nitrogen shield. Recovery and liquefaction of deuterium vapors are managed in the vacuum vessel which holds the target. The target emptying system is designed for operating in a few minutes. (author) [French] Description de: 1) Cible a pression atmospherique; hydrogene liquide, 400 mm d'epaisseur; l'isolement thermique: styrofoam; on utilise les vapeurs d'hydrogene pour ameliorer le refroidissement de la cible; hublots en Mylar. 2) Cible sous vide; contenance 12 litres; hydrogene ou deuterium; epaisseur du liquide 400 mm; l'isolement thermique est assure par une cuve a vide et un ecran d'azote liquide. Recuperation et liquefaction des vapeurs de deuterium sont effectuees dans la cuve a vide contenant la cible. Le systeme de vidange pour la cible est concu pour fonctionner en quelques minutes. (auteur)

  10. INFLUENCE OF WATER-TO-CEMENT RATIO ON AIR ENTRAILMENT IN PRODUCTION OF NON-AUTOCLAVED FOAM CONCRETE USING TURBULENCE CAVITATION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Gorshkov Pavel Vladimirovich

    2012-10-01

    Full Text Available Non-autoclaved foam concrete is an advanced thermal insulation material. Until recently, foam concrete production has been based on separate preparation of foam and solution, followed by their blending in a mixer. The situation changed when high-quality synthetic foaming agents and turbulence cavitation technology appeared on the market. Every model provides a dependence between the foam concrete strength and the water-to-cement ratio. According to the water-cement ratio we can distinguish strong concrete mixtures (with the water-to-cement ratio equal to 0.3…0.4 and ductile ones (with the water-to-cement ratio equal to 0.5…0.7. Strong concrete mixtures are more durable. The lower the water-to-cement ratio, the higher the foam concrete strength. However super-plastic substances cannot be mixed by ordinary turbulent mixers. Foam concrete produced using the turbulence cavitation technology needs air-entraining, its intensity being dependent on several factors. One of the main factors is the amount of free water, if it is insufficient, the mixture will not be porous enough. A researcher needs to identify the optimal water-to-cement ratio based on the water consumption rate. Practical production of prefabricated concrete products and structures has proven that the reduction of the water-to-cement ratio improves the strength of the product. The task is to find the water-to-cement ratio for the foam concrete mixture to be plastic enough for air entraining. An increase in the ratio causes loss in the strength. The ratio shall vary within one hundredth points. Super-plasticizers are an alternative solution.

  11. Aerosol-foam interaction experiments

    International Nuclear Information System (INIS)

    Ball, M.H.E.; Luscombe, C.DeM.; Mitchell, J.P.

    1990-03-01

    Foam treatment offers the potential to clean gas streams containing radioactive particles. A large decontamination factor has been claimed for the removal of airborne plutonium dust when spraying a commercially available foam on the walls and horizontal surfaces of an alpha-active room. Experiments have been designed and undertaken to reproduce these conditions with a non-radioactive simulant aerosol. Careful measurements of aerosol concentrations with and without foam treatment failed to provide convincing evidence to support the earlier observation. The foam may not have been as well mixed with the aerosol in the present studies. Further work is required to explore more efficient mixing methods, including systems in which the aerosol steam is passed through the foam, rather than merely spraying foam into the path of the aerosol. (author)

  12. Removal of Corrosive Sulfur from Insulating Oils by Natural Sorbent and Liquid-Liquid.

    Czech Academy of Sciences Publication Activity Database

    Matějková, Martina; Kaštánek, František; Maléterová, Ywetta; Kužílek, V.; Košanová, L.; Šolcová, Olga

    2017-01-01

    Roč. 24, č. 4 (2017), s. 2383-2389 ISSN 1070-9878 R&D Projects: GA TA ČR(CZ) TA04020151 Institutional support: RVO:67985858 Keywords : oil insulation * sorption * bentonite Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.115, year: 2016

  13. An environmentally friendly method for the fabrication of reduced graphene oxide foam with a super oil absorption capacity

    Energy Technology Data Exchange (ETDEWEB)

    He, Yongqiang, E-mail: heyongqiang@126.com [Department of Applied Chemistry, Yuncheng University, Shanxi 044000 (China); School of Science, Tianjin University, Tianjin 300072 (China); Liu, Yue, E-mail: lyliuyue1990@gmail.com [School of Science, Tianjin University, Tianjin 300072 (China); Wu, Tao; Ma, Junkui; Wang, Xingrui [School of Science, Tianjin University, Tianjin 300072 (China); Gong, Qiaojuan [Department of Applied Chemistry, Yuncheng University, Shanxi 044000 (China); Kong, Weina; Xing, Fubao; Liu, Yu [School of Science, Tianjin University, Tianjin 300072 (China); Gao, Jianping, E-mail: jinpinggaols@126.com [School of Science, Tianjin University, Tianjin 300072 (China)

    2013-09-15

    Highlights: • RGO foams were fabricated from GO foams prepared by freeze-drying methods. • The RGO foams made from 2% GO suspension had a maximum value of 122 g g{sup −1} for oil. • The RGO foams had a maximum value of 99 g g{sup −1} for organic solvents. • The RGO foams can be used as a filter to separate oil from water. -- Abstract: Three kinds of graphene oxide (GO) foams were fabricated using different freezing methods (unidirectional freezing drying (UDF), non-directional freezing drying, and air freezing drying), and the corresponding reduced graphene oxide (RGO) foams were prepared by their thermal reduction of those GO foams. These RGO foams were characterized by Fourier transform infrared spectroscopy, thermal gravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The absorption process and the factors that influence the absorption capacity were investigated. The RGO foams are hydrophobic and showed extremely high absorbing abilities for organic liquids. The absorption capacity of the RGO foams made by UDF was higher than 100 g g{sup −1} for all the oils tested (gasoline, diesel oil, pump oil, lubricating oil and olive oil) and had the highest value of about 122 g g{sup −1} for olive oil. The oil absorption capacity of the GO foams was lower than that of the RGO foams, but for olive oil, the absorption capacity was still high than 70 g g{sup −1}, which is higher than that of most oil absorbents.

  14. An environmentally friendly method for the fabrication of reduced graphene oxide foam with a super oil absorption capacity

    International Nuclear Information System (INIS)

    He, Yongqiang; Liu, Yue; Wu, Tao; Ma, Junkui; Wang, Xingrui; Gong, Qiaojuan; Kong, Weina; Xing, Fubao; Liu, Yu; Gao, Jianping

    2013-01-01

    Highlights: • RGO foams were fabricated from GO foams prepared by freeze-drying methods. • The RGO foams made from 2% GO suspension had a maximum value of 122 g g −1 for oil. • The RGO foams had a maximum value of 99 g g −1 for organic solvents. • The RGO foams can be used as a filter to separate oil from water. -- Abstract: Three kinds of graphene oxide (GO) foams were fabricated using different freezing methods (unidirectional freezing drying (UDF), non-directional freezing drying, and air freezing drying), and the corresponding reduced graphene oxide (RGO) foams were prepared by their thermal reduction of those GO foams. These RGO foams were characterized by Fourier transform infrared spectroscopy, thermal gravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The absorption process and the factors that influence the absorption capacity were investigated. The RGO foams are hydrophobic and showed extremely high absorbing abilities for organic liquids. The absorption capacity of the RGO foams made by UDF was higher than 100 g g −1 for all the oils tested (gasoline, diesel oil, pump oil, lubricating oil and olive oil) and had the highest value of about 122 g g −1 for olive oil. The oil absorption capacity of the GO foams was lower than that of the RGO foams, but for olive oil, the absorption capacity was still high than 70 g g −1 , which is higher than that of most oil absorbents

  15. Synthesis of α-Fe₂O₃ and Fe-Mn Oxide Foams with Highly Tunable Magnetic Properties by the Replication Method from Polyurethane Templates.

    Science.gov (United States)

    Feng, Yuping; Fornell, Jordina; Zhang, Huiyan; Solsona, Pau; Barό, Maria Dolors; Suriñach, Santiago; Pellicer, Eva; Sort, Jordi

    2018-02-11

    Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU) templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at 260 °C and the debinded powders are sintered at 1000 °C under N₂ atmosphere. The morphology, structure, and magnetic properties are studied by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry, respectively. The obtained Fe and Fe-Mn oxide foams possess both high surface area and homogeneous open-cell structure. Hematite (α-Fe₂O₃) foams are obtained from the metallic iron slurry independently of the N₂ flow. In contrast, the microstructure of the FeMn-based oxide foams can be tailored by adjusting the N₂ flow. While the main phases for a N₂ flow rate of 180 L/h are α-Fe₂O₃ and FeMnO₃, the predominant phase for high N₂ flow rates (e.g., 650 L/h) is Fe₂MnO₄. Accordingly, a linear magnetization versus field behavior is observed for the hematite foams, while clear hysteresis loops are obtained for the Fe₂MnO₄ foams. Actually, the saturation magnetization of the foams containing Mn increases from 5 emu/g to 52 emu/g when the N₂ flow rate (i.e., the amount of Fe₂MnO₄) is increased. The obtained foams are appealing for a wide range of applications, such as electromagnetic absorbers, catalysts supports, thermal and acoustic insulation systems or wirelessly magnetically-guided porous objects in fluids.

  16. Centrifugation-Assisted Fog-Collecting Abilities of Metal-Foam Structures with Different Surface Wettabilities.

    Science.gov (United States)

    Ji, Keju; Zhang, Jun; Chen, Jia; Meng, Guiyun; Ding, Yafei; Dai, Zhendong

    2016-04-20

    The collection of water from fog is a simple and sustainable means of obtaining freshwater for human and animal consumption. Herein, we address the use of metal foam in fog collection and present a novel fog-collecting device fabricated from copper foam. This device, which can also be used in other liquid-gas separation applications, is a 3D extension of biologically inspired 1D and 2D materials. The network structure of the 3D material effectively increased the contact area and interaction time of the skeleton structure and fog compared to those of traditional 2D fog-collecting materials. The main aspects investigated in this study were the influences of the inertial centrifugal force generated by rotating the metal-foam samples and the use of samples with different surface wettabilities on the fog-collecting performance. Superhydrophilic and superhydrophobic samples were found to have higher collection efficiencies at low and high rotational speeds, respectively, and a maximum efficiency of 86% was achieved for superhydrophobic copper foam (20 pores per inch) rotated at 1500 rpm.

  17. Brushite foams—the effect of Tween® 80 and Pluronic® F‐127 on foam porosity and mechanical properties

    Science.gov (United States)

    Montufar, Edgar B.; Engqvist, Håkan; Ginebra, Maria‐Pau; Persson, Cecilia

    2016-01-01

    Abstract Resorbable calcium phosphate based bone void fillers should work as temporary templates for new bone formation. The incorporation of macropores with sizes of 100 −300 µm has been shown to increase the resorption rate of the implant and speed up bone ingrowth. In this work, macroporous brushite cements were fabricated through foaming of the cement paste, using two different synthetic surfactants, Tween® 80 and Pluronic® F‐127. The macropores formed in the Pluronic samples were both smaller and less homogeneously distributed compared with the pores formed in the Tween samples. The porosity and compressive strength (CS) were comparable to previously developed hydroxyapatite foams. The cement foam containing Tween, 0.5M citric acid in the liquid, 1 mass% of disodium dihydrogen pyrophosphate mixed in the powder and a liquid to powder ratio of 0.43 mL/g, showed the highest porosity values (76% total and 56% macroporosity), while the CS was >1 MPa, that is, the hardened cement could be handled without rupture of the foamed structure. The investigated brushite foams show potential for future clinical use, both as bone void fillers and as scaffolds for in vitro bone regeneration. © 2015 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 67–77, 2016. PMID:25615405

  18. Influence of foaming agents on solid thermal conductivity of foam glasses prepared from CRT panel glass

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    2017-01-01

    The understanding of the thermal transport mechanism of foam glass is still lacking. The contribution of solid- and gas conduction to the total thermal conductivity remains to be reported. In many foam glasses, the solid phase consist of a mix of an amorphous and a crystalline part where foaming...... containing glass and crystalline foaming agents and amorphous samples where the foaming agents are completely dissolved in the glass structure, respectively. Results show that the samples prepared by sintering have a higher thermal conductivity than the samples prepared by melt-quenching. The thermal...... conductivities of the sintered and the melt-quenched samples represent an upper and lower limit of the solid phase thermal conductivity of foam glasses prepared with these foaming agents. The content of foaming agents dissolved in the glass structure has a major impact on the solid thermal conductivity of foam...

  19. Construction Guidelines for High R-Value Walls without Exterior Rigid Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Lois B. [Steven Winter Associates, Inc., Norwalk, CT (United States). Consortium for Advanced Residential Buildings (CARB)

    2016-07-13

    High R-value wall assemblies (R-40 and above) are gaining popularity in the market due to programs such as the U.S. Department of Energy Zero Energy Ready Home program, Passive House, Net Zero Energy Home challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used double-wall systems to achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double-wall systems is that there are very few new exterior details. Exterior sheathings, structural bracings, house wraps or building paper, window and door flashings, and siding attachments are usually identical to good details in conventional framed-wall systems. However, although the details in double-wall systems are very similar to those in conventional stick framing, there is sometimes less room for error. Several studies have confirmed colder temperatures of exterior sheathing in high R-value wall assemblies that do not have exterior rigid foam insulation. These colder temperatures can lead to increased chances for condensation from air exfiltration, and they have the potential to result in moisture-related problems (Straube and Smegal 2009, Arena 2014, Ueno 2015). The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and reduce material brought to landfills due to failures and resulting decay. Although this document focuses on double-wall framing techniques, the majority of the information about how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture-related damage and are intended for builders, framing contractors, architects, and

  20. Safety distance for preventing hot particle ignition of building insulation materials

    Directory of Open Access Journals (Sweden)

    Jiayun Song

    2014-01-01

    Full Text Available Trajectories of flying hot particles were predicted in this work, and the temperatures during the movement were also calculated. Once the particle temperature decreased to the critical temperature for a hot particle to ignite building insulation materials, which was predicted by hot-spot ignition theory, the distance particle traveled was determined as the minimum safety distance for preventing the ignition of building insulation materials by hot particles. The results showed that for sphere aluminum particles with the same initial velocities and diameters, the horizontal and vertical distances traveled by particles with higher initial temperatures were higher. Smaller particles traveled farther when other conditions were the same. The critical temperature for an aluminum particle to ignite rigid polyurethane foam increased rapidly with the decrease of particle diameter. The horizontal and vertical safety distances were closely related to the initial temperature, diameter and initial velocity of particles. These results could help update the safety provision of firework display.

  1. Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model

    International Nuclear Information System (INIS)

    Shuard, Adrian M; Mahmud, Hisham B; King, Andrew J

    2016-01-01

    Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ω turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model. (paper)

  2. Caractérisation de quelques stabilisants naturels de l'émulsion d'eau dans le pétrole brut, grace à l'extension de la technique de "moussage" au système liquide-liquide eau-huile Characterising Several Natural Stabilizants of Water Emulsion in Crude Oil by Extending the "Foaming" Technique to Oil/Water Liquid-Liquid Systems

    Directory of Open Access Journals (Sweden)

    Coste J. -F.

    2006-11-01

    Full Text Available L'extension de la technique, de " moussage "au système liquide-liquide eau-pétrole brut a permis d'augmenter la concentration d'une fraction du pétrole en acides naphténiques, amines, asphaltènes et porphyrines, grâce à l'accroissement de l'aire de l'interface entre les deux phases non miscibles. Ces espèces chimiques présentes à l'interface favorisent la formation des films entre les gouttelettes de phase aqueuse dispersée. Elles sont à l'origine de la stabilité de I'émulsion d'eau dans le pétrole. The " foaming " technique was extended to a water/crude-oil liquid-liquid system so as to increase the concentration of naphthenic acids, amines, asphaltenes and porphyrins in an oil fraction by enlarging the interface orea between the two immiscible phases. The presence of these chemical species at the interface promotes the formation of films between the dispersed aqueuss-phase droplets. They are at the origin of the stability of a water in oil emulsion.

  3. Combining mechanical foaming and thermally induced phase separation to generate chitosan scaffolds for soft tissue engineering.

    Science.gov (United States)

    Biswas, D P; Tran, P A; Tallon, C; O'Connor, A J

    2017-02-01

    In this paper, a novel foaming methodology consisting of turbulent mixing and thermally induced phase separation (TIPS) was used to generate scaffolds for tissue engineering. Air bubbles were mechanically introduced into a chitosan solution which forms the continuous polymer/liquid phase in the foam created. The air bubbles entrained in the foam act as a template for the macroporous architecture of the final scaffolds. Wet foams were crosslinked via glutaraldehyde and frozen at -20 °C to induce TIPS in order to limit film drainage, bubble coalescence and Ostwald ripening. The effects of production parameters, including mixing speed, surfactant concentration and chitosan concentration, on foaming are explored. Using this method, hydrogel scaffolds were successfully produced with up to 80% porosity, average pore sizes of 120 μm and readily tuneable compressive modulus in the range of 2.6 to 25 kPa relevant to soft tissue engineering applications. These scaffolds supported 3T3 fibroblast cell proliferation and penetration and therefore show significant potential for application in soft tissue engineering.

  4. Spin-Orbital Quantum Liquid on the Honeycomb Lattice

    Directory of Open Access Journals (Sweden)

    Philippe Corboz

    2012-11-01

    Full Text Available The main characteristic of Mott insulators, as compared to band insulators, is to host low-energy spin fluctuations. In addition, Mott insulators often possess orbital degrees of freedom when crystal-field levels are partially filled. While in the majority of Mott insulators, spins and orbitals develop long-range order, the possibility for the ground state to be a quantum liquid opens new perspectives. In this paper, we provide clear evidence that the spin-orbital SU(4 symmetric Kugel-Khomskii model of Mott insulators on the honeycomb lattice is a quantum spin-orbital liquid. The absence of any form of symmetry breaking—lattice or SU(N—is supported by a combination of semiclassical and numerical approaches: flavor-wave theory, tensor network algorithm, and exact diagonalizations. In addition, all properties revealed by these methods are very accurately accounted for by a projected variational wave function based on the π-flux state of fermions on the honeycomb lattice at 1/4 filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the symmetric Kugel-Khomskii model on the honeycomb lattice is an algebraic quantum spin-orbital liquid. This model provides an interesting starting point to understanding the recently discovered spin-orbital-liquid behavior of Ba_{3}CuSb_{2}O_{9}. The present results also suggest the choice of optical lattices with honeycomb geometry in the search for quantum liquids in ultracold four-color fermionic atoms.

  5. Polyurethane-Foam Maskant

    Science.gov (United States)

    Bodemeijer, R.

    1985-01-01

    Brown wax previously used to mask hardware replaced with polyurethane foam in electroplating and electroforming operations. Foam easier to apply and remove than wax and does not contaminate electrolytes.

  6. Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bin; Liu, Yi [Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A and M University System, College Station, TX 77843-3122 (United States); Olewski, Tomasz; Vechot, Luc [Mary Kay O’Connor Process Safety Center - Qatar, Texas A and M University at Qatar, PO Box 23874, Doha (Qatar); Mannan, M. Sam, E-mail: mannan@tamu.edu [Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A and M University System, College Station, TX 77843-3122 (United States)

    2014-09-15

    Highlights: • Reveal the existence of blocking effect of high expansion foam on an LNG pool. • Study the blanketing effect of high expansion foam quantitatively. • Correlate heat flux for vaporization with foam breaking rate. • Propose the physical mechanism of blanketing effect. - Abstract: With increasing consumption of natural gas, the safety of liquefied natural gas (LNG) utilization has become an issue that requires a comprehensive study on the risk of LNG spillage in facilities with mitigation measures. The immediate hazard associated with an LNG spill is the vapor hazard, i.e., a flammable vapor cloud at the ground level, due to rapid vaporization and dense gas behavior. It was believed that high expansion foam mitigated LNG vapor hazard through warming effect (raising vapor buoyancy), but the boil-off effect increased vaporization rate due to the heat from water drainage of foam. This work reveals the existence of blocking effect (blocking convection and radiation to the pool) to reduce vaporization rate. The blanketing effect on source term (vaporization rate) is a combination of boil-off and blocking effect, which was quantitatively studied through seven tests conducted in a wind tunnel with liquid nitrogen. Since the blocking effect reduces more heat to the pool than the boil-off effect adds, the blanketing effect contributes to the net reduction of heat convection and radiation to the pool by 70%. Water drainage rate of high expansion foam is essential to determine the effectiveness of blanketing effect, since water provides the boil-off effect.

  7. Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool

    International Nuclear Information System (INIS)

    Zhang, Bin; Liu, Yi; Olewski, Tomasz; Vechot, Luc; Mannan, M. Sam

    2014-01-01

    Highlights: • Reveal the existence of blocking effect of high expansion foam on an LNG pool. • Study the blanketing effect of high expansion foam quantitatively. • Correlate heat flux for vaporization with foam breaking rate. • Propose the physical mechanism of blanketing effect. - Abstract: With increasing consumption of natural gas, the safety of liquefied natural gas (LNG) utilization has become an issue that requires a comprehensive study on the risk of LNG spillage in facilities with mitigation measures. The immediate hazard associated with an LNG spill is the vapor hazard, i.e., a flammable vapor cloud at the ground level, due to rapid vaporization and dense gas behavior. It was believed that high expansion foam mitigated LNG vapor hazard through warming effect (raising vapor buoyancy), but the boil-off effect increased vaporization rate due to the heat from water drainage of foam. This work reveals the existence of blocking effect (blocking convection and radiation to the pool) to reduce vaporization rate. The blanketing effect on source term (vaporization rate) is a combination of boil-off and blocking effect, which was quantitatively studied through seven tests conducted in a wind tunnel with liquid nitrogen. Since the blocking effect reduces more heat to the pool than the boil-off effect adds, the blanketing effect contributes to the net reduction of heat convection and radiation to the pool by 70%. Water drainage rate of high expansion foam is essential to determine the effectiveness of blanketing effect, since water provides the boil-off effect

  8. Fiscal 1997 survey report. Subtask 5 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (development of hydrogen transportation/storage technology. 2. development of the liquid hydrogen transportation tanker); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 5 suiso yuso chozo gijutsu no kaihatsu dai 2 hen ekitai suiso yuso tanker no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Technology development is being conducted for construction of the long distance transportation tanker of large quantity liquid hydrogen. In fiscal 1997, test pieces of thermal insulating materials to be planned for fiscal 1998 were designed and studied. The purpose of the test is to confirm thermal insulating performance and behaviors of each material under the temperature of liquid hydrogen. The inside of the outer tank of the experimental equipment was held at vacuum of 10{sup -6} to 10{sup -7} Torr to exclude thermal convection effects and evaluate only heat coming from heater through the test piece. The heat from the heater at the lower part of the test piece is through the test piece and makes the liquid hydrogen of the upper tank evaporate. Thermal conductivity of the test piece is calculated from the evaporation quantity. As to PUF (polyurethane foam) panels, studied were reformation preventive measures, influential evaluation of the side transfer heat quantity, and the time required for vacuuming. In the vacuum panel, study subjects were extracted on the selection of core materials, reformation preventive measures, deterioration with age, the practical manufacturing method of experimental panels, etc. As to the super insulation, subjects were studied on the performance measuring method/accuracy, measures against heat transfer from the inside of the experimental equipment, control of the vacuum degree, etc. 10 refs., 45 figs., 6 tabs.

  9. Green engineering: Green composite material, biodiesel from waste coffee grounds, and polyurethane bio-foam

    Science.gov (United States)

    Cheng, Hsiang-Fu

    In this thesis we developed several ways of producing green materials and energy resources. First, we developed a method to fabricate natural fibers composites, with the purpose to develop green textile/woven composites that could potentially serve as an alternative to materials derived from non-renewable sources. Flax and hemp fabrics were chosen because of their lightweight and exceptional mechanical properties. To make these textile/woven composites withstand moist environments, a commercially available marine resin was utilized as a matrix. The tensile, three-point bending, and edgewise compression strengths of these green textile/woven composites were measured using ASTM protocols. Secondly, we developed a chemical procedure to obtain oil from waste coffee grounds; we did leaching and liquid extractions to get liquid oil from the solid coffee. This coffee oil was used to produce bio-diesel that could be used as a substitute for petroleum-based diesel. Finally, polyurethane Bio-foam formation utilized glycerol that is the by-product from the biodiesel synthesis. A chemical synthesis procedure from the literature was used as the reference system: a triol and isocynate are mixed to produce polyurethane foam. Moreover, we use a similar triol, a by-product from bio-diesel synthesis, to reproduce polyurethane foam.

  10. The numerical model of multi-layer insulation with a defined wrapping pattern immersed in superfluid helium

    Science.gov (United States)

    Malecha, Ziemowit; Lubryka, Eliza

    2017-11-01

    The numerical model of thin layers, characterized by a defined wrapping pattern can be a crucial element of many computational problems related to engineering and science. A motivating example is found in multilayer electrical insulation, which is an important component of superconducting magnets and other cryogenic installations. The wrapping pattern of the insulation can significantly affect heat transport and the performance of the considered instruments. The major objective of this study is to develop the numerical boundary conditions (BC) needed to model the wrapping pattern of thin insulation. An example of the practical application of the proposed BC includes the heat transfer of Rutherford NbTi cables immersed in super-fluid helium (He II) across thin layers of electrical insulation. The proposed BC and a mathematical model of heat transfer in He II are implemented in the open source CFD toolbox OpenFOAM. The implemented mathematical model and the BC are compared in the experiments. The study confirms that the thermal resistance of electrical insulation can be lowered by implementing the proper wrapping pattern. The proposed BC can be useful in the study of new patterns for wrapping schemes. The work has been supported by statutory funds from Polish Ministry for Science and Higher Education for the year of 2017.

  11. Formulation of chemically reactive foams for the dissolution of oxides polluting the secondary circuits of steam generators

    International Nuclear Information System (INIS)

    Provens, Helene

    1999-01-01

    The fouling of the Steam Generators (SG) secondary circuits, due to oxides deposits like magnetite (Fe 3 O 4 ), induces the degradation of the internal SG equipment, the reduction of the plant power, implying to clean these circuits. This operation made in liquid phase generates an important volume of effluents with an expensive cost of treatment. The use of a reactive foam allows the reduction of this volume by ten. Among the reactive tested, oxalic acid is the most efficient to dissolve a magnetite quantity of 10 g.l -1 , at ambient temperature for 24 hours, as imposed by the industrial wishes. The dissolution is not complete in our experimental conditions and is a complex reaction of autocatalytic type, composed of an acid attack, a reductive step, both followed by a slow diffusion. The surfactants generating the foam, which transport the reactive, are adsorbed on the magnetite but this affects weakly the dissolution. Its effectiveness is evaluated varying the experimental conditions. The wetting properties and the stability of the foam induce erosion and undissolved particles transport capacities, during its circulation into the SG. These particles trapped in the inter-bubble liquid films or carried by the piston effect of the foam bed, can be recovered on filters placed out of the SG. To quantify the transport, the influence of different parameters is studied: the more stable the foam is, the more important the transport is. Innocuousness tests showed that oxalic acid was not harmful for constitutive SG materials, either they were isolated or coupled. The cleaning by oxalic acid causes ferrous oxalates precipitation, representing 10 to 15 pc of the total iron quantity depending on the sample. A rinsing out with a foam containing 1 pc oxalic acid and 5 pc hydrogen peroxide allows the dissolution of these precipitates without corrosion problems. (author) [fr

  12. Replaceable liquid nitrogen piping

    International Nuclear Information System (INIS)

    Yasujima, Yasuo; Sato, Kiyoshi; Sato, Masataka; Hongo, Toshio

    1982-01-01

    This liquid nitrogen piping with total length of about 50 m was made and installed to supply the liquid nitrogen for heat insulating shield to three superconducting magnets for deflection and large super-conducting magnet for detection in the π-meson beam line used for high energy physics experiment in the National Laboratory for High Energy Physics. The points considered in the design and manufacture stages are reported. In order to minimize the consumption of liquid nitrogen during transport, vacuum heat insulation method was adopted. The construction period and cost were reduced by the standardization of the components, the improvement of welding works and the elimination of ineffective works. For simplifying the maintenance, spare parts are always prepared. The construction and the procedure of assembling of the liquid nitrogen piping are described. The piping is of double-walled construction, and its low temperature part was made of SUS 316L. The super-insulation by aluminum vacuum evaporation and active carbon were attached on the external surface of the internal pipe. The final leak test and the heating degassing were performed. The tests on evacuation, transport capacity and heat entry are reported. By making the internal pipe into smaller size, the piping may be more efficient. (Kako, I.)

  13. Fire-retardant foams

    Science.gov (United States)

    Gagliani, J.

    1978-01-01

    Family of polyimide resins are being developed as foams with exceptional fire-retardant properties. Foams are potentially useful for seat cushions in aircraft and ground vehicles and for applications such as home furnishings and building-construction materials. Basic formulations can be modified with reinforcing fibers or fillers to produce celular materials for variety of applications. By selecting reactants, polymer structure can be modified to give foams with properties ranging from high resiliency and flexibility to brittleness and rigidity.

  14. Influence of the glass particle size on the foaming process and physical characteristics of foam glasses

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2016-01-01

    We have prepared low-density foam glasses from cathode-ray-tube panel glass using carbon and MnO2 as the foaming agents. The effect of the glass particle size on the foaming process, the apparent density and the pore morphology is revealed. The results show that the foaming is mainly caused...... by the reduction of manganese. Foam glasses with a density of

  15. Physical Characteristics and Technology of Glass Foam from Waste Cathode Ray Tube Glass

    Directory of Open Access Journals (Sweden)

    G. Mucsi

    2013-01-01

    Full Text Available This paper deals with the laboratory investigation of cathode-ray-tube- (CRT- glass-based glass foam, the so-called “Geofil-Bubbles” which can be applied in many fields, mainly in the construction industry (lightweight concrete aggregate, thermal and sound insulation, etc.. In this study, the main process engineering material properties of raw materials, such as particle size distribution, moisture content, density, and specific surface area, are shown. Then, the preparation of raw cathode ray tube glass waste is presented including the following steps: crushing, grinding, mixing, heat curing, coating, and sintering. Experiments were carried out to optimize process circumstances. Effects of sintering conditions—such as temperature, residence time, and particle size fraction of green pellet—on the mechanical stability and particle density of glass foam particles were investigated. The mechanical stability (abrasion resistance was tested by abrasion test in a Deval drum. Furthermore, the cell structure was examined with optical microscopy and SEM. We found that it was possible to produce foam glass (with proper mechanical stability and particle density from CRT glass. The material characteristics of the final product strongly depend on the sintering conditions. Optimum conditions were determined: particle size fraction was found to be 4–6 mm, temperature 800°C, and residence time 7.5 min.

  16. Activated, coal-based carbon foam

    Science.gov (United States)

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  17. Quasi-continuous transition from a Fermi liquid to a spin liquid in κ-(ET)2Cu2(CN)3.

    Science.gov (United States)

    Furukawa, Tetsuya; Kobashi, Kazuhiko; Kurosaki, Yosuke; Miyagawa, Kazuya; Kanoda, Kazushi

    2018-01-22

    The Mott metal-insulator transition-a manifestation of Coulomb interactions among electrons-is known as a discontinuous transition. Recent theoretical studies, however, suggest that the transition is continuous if the Mott insulator carries a spin liquid with a spinon Fermi surface. Here, we demonstrate the case of a quasi-continuous Mott transition from a Fermi liquid to a spin liquid in an organic triangular-lattice system κ-(ET) 2 Cu 2 (CN) 3 . Transport experiments performed under fine pressure tuning have found that as the Mott transition is approached, the Fermi liquid coherence temperature continuously falls to the scale of kelvins, with a divergent quasi-particle decay rate on the metal side, and the charge gap continuously closes on the insulator side. A Clausius-Clapeyron analysis provides thermodynamic evidence for the extremely weak first-order nature of the transition. These results provide additional support for the existence of a spinon Fermi surface, which becomes an electron Fermi surface when charges are delocalized.

  18. Polymer-Derived Silicoboron Carbonitride Foams for CO2 Capture: From Design to Application as Scaffolds for the in Situ Growth of Metal-Organic Frameworks.

    Science.gov (United States)

    Sandra, Fabien; Depardieu, Martin; Mouline, Zineb; Vignoles, Gérard L; Iwamoto, Yuji; Miele, Philippe; Backov, Rénal; Bernard, Samuel

    2016-06-06

    A template-assisted polymer-derived ceramic route is investigated for preparing a series of silicoboron carbonitride (Si/B/C/N) foams with a hierarchical pore size distribution and tailorable interconnected porosity. A boron-modified polycarbosilazane was selected to impregnate monolithic silica and carbonaceous templates and form after pyrolysis and template removal Si/B/C/N foams. By changing the hard template nature and controlling the quantity of polymer to be impregnated, controlled micropore/macropore distributions with mesoscopic cell windows are generated. Specific surface areas from 29 to 239 m(2)  g(-1) and porosities from 51 to 77 % are achieved. These foams combine a low density with a thermal insulation and a relatively good thermostructural stability. Their particular structure allowed the in situ growth of metal-organic frameworks (MOFs) directly within the open-cell structure. MOFs offered a microporosity feature to the resulting Si/B/C/N@MOF composite foams that allowed increasing the specific surface area to provide CO2 uptake of 2.2 %. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Foam pad of appropriate thickness can improve diagnostic value of foam posturography in detecting postural instability.

    Science.gov (United States)

    Liu, Bo; Leng, Yangming; Zhou, Renhong; Liu, Jingjing; Liu, Dongdong; Liu, Jia; Zhang, Su-Lin; Kong, Wei-Jia

    2018-04-01

    The present study investigated the effect of foam thickness on postural stability in patients with unilateral vestibular hypofunction (UVH) during foam posturography. Static and foam posturography were performed in 33 patients (UVH group) and 30 healthy subjects (control group) with eyes open (EO) and closed (EC) on firm surface and on 1-5 foam pad(s). Sway velocity (SV) of center of pressure, standing time before falling (STBF) and falls reaction were recorded and analyzed. (1) SVs had an increasing tendency in both groups as the foam pads were added under EO and EC conditions. (2) STBFs, only in UVH group with EC, decreased with foam thickness increasing. (3) Significant differences in SV were found between the control and UVH group with EO (except for standing on firm surface, on 1 and 2 foam pad(s)) and with EC (all surface conditions). (4) Receiver operating characteristic curve analysis showed that the SV could better reflect the difference in postural stability between the two groups while standing on the 4 foam pads with EC. Our study showed that diagnostic value of foam posturography in detecting postural instability might be enhanced by using foam pad of right thickness.

  20. Cellular concrete: a potential load-bearing insulation for cryogenic applications

    International Nuclear Information System (INIS)

    Richard, T.G.; Dobogai, J.A.; Gerhardt, T.D.; Young, W.C.

    1975-01-01

    The need for low cost, low thermal conductivity, high strength insulation suitable for cryogenic applications is becoming more evident. An investigation of the potential of cellular concretes to fulfill this function was initiated. A review of the thermal and mechanical characteristics of foamed plastics and cellular concrete is presented along with relative cost comparisons. Test data from preliminary investigations is presented to define the influence of material constituents, density, and temperature on the mechanical and thermal response of cellular concrete. Specimen densities range from 0.64 to 1.44 gr/cc. The influence of temperature variations from 22 0 C to -196 0 C is reported for selected densities

  1. Comparison of sound absorbing performances of copper foam and iron foam with the same parameters

    Science.gov (United States)

    Yang, X. C.; Shen, X. M.; Xu, P. J.; Zhang, X. N.; Bai, P. F.; Peng, K.; Yin, Q.; Wang, D.

    2018-01-01

    Sound absorbing performances of the copper foam and the iron foam with the same parameters were investigated by the AWA6128A detector according to standing wave method. Two modes were investigated, which included the pure metal foam mode and the combination mode with the settled thickness of metal foam. In order to legibly compare the sound absorbing coefficients of the two metal foams, the detected sound frequency points were divided into the low frequency range (100 Hz ~ 1000 Hz), the middle frequency range (1000 Hz ~ 3200 Hz), and the high frequency range (3500 Hz ~ 6000 Hz). Sound absorbing performances of the two metal foams in the two modes were discussed within the three frequency ranges in detail. It would be calculated that the average sound absorbing coefficients of copper foam in the pure metal foam mode were 12.6%, 22.7%, 34.6%, 43.6%, 51.1%, and 56.2% when the thickness was 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, and 30 mm. meanwhile, in the combination mode, the average sound absorbing coefficients of copper foam with the thickness of 10 mm were 30.6%, 34.8%, 36.3%, and 35.8% when the cavity was 5 mm, 10 mm, 15 mm, and 20 mm. In addition, those of iron foam in the pure metal foam mode were 13.4%, 20.1%, 34.4%, 43.1%, 49.6%, and 56.1%, and in the combination mode were 25.6%, 30.5%, 34.3%, and 33.4%.

  2. Bio-based Polymer Foam from Soyoil

    Science.gov (United States)

    Bonnaillie, Laetitia M.; Wool, Richard P.

    2006-03-01

    The growing bio-based polymeric foam industry is presently lead by plant oil-based polyols for polyurethanes and starch foams. We developed a new resilient, thermosetting foam system with a bio-based content higher than 80%. The acrylated epoxidized soybean oil and its fatty acid monomers is foamed with pressurized carbon dioxide and cured with free-radical initiators. The foam structure and pore dynamics are highly dependent on the temperature, viscosity and extent of reaction. Low-temperature cure hinds the destructive pore coalescence and the application of a controlled vacuum results in foams with lower densities ˜ 0.1 g/cc, but larger cells. We analyze the physics of foam formation and stability, as well as the structure and mechanical properties of the cured foam using rigidity percolation theory. The parameters studied include temperature, vacuum applied, and cross-link density. Additives bring additional improvements: nucleating agents and surfactants help produce foams with a high concentration of small cells and low bulk density. Hard and soft thermosetting foams with a bio content superior to 80% are successfully produced and tested. Potential applications include foam-core composites for hurricane-resistant housing, structural reinforcement for windmill blades, and tissue scaffolds.

  3. Mechanical Characterization of Rigid Polyurethane Foams

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Mechanics of Materials

    2014-12-01

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  4. Experimental Study of Ultralight (<300 kg/m3 Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Xianjun Tan

    2014-01-01

    Full Text Available A type of ultralight (<300 kg/m3 foamed concrete (FC, which can be used as a new energy-conservation and environmental-protection building material and is particularly suitable for the thermal-insulation engineering of building external walls, was produced. The influences of different mixing amounts of fly ash, fly ash activator, WC (WC ratio, and foaming agent (FA on the compressive strength of FC were reported. The experimental study indicated that (1 the addition of fly ash reduced the strength of the FC and that the appropriate mixing amount of fly ash in this ultralight FC system should not exceed 45%; (2 with the increasing of fly ash activator, the strength of the FC sample is notably enhanced and the appropriate mixing amount of fly ash activator is 2.5%; (3 the optimized proportion of WC ratio is 0.45, and the FC that was produced according to this proportion has relatively high compressive strength; (4 by increasing the mixing amount of FA, the compressive strength of the FC notably decreases, and the optimal mixing amount of FA in this experiment is 3.5%.

  5. Application Waste Sawdust as Mixed Polyurethane Insulation in Traditional Cold Storage of Fishing Vessel

    Directory of Open Access Journals (Sweden)

    Sutopo Purwono Fitri

    2017-03-01

    Full Text Available In the process of fishing it takes some supplies such as fishing equipment, instrumentation and storage of fish. The traditional fishermen of their fishing days fishing usually only bring ice cubes. Solid plastic polyurethane foam is a mixture solution of polyols and isocyanates, commonly used as an insulating material storage. From the observation waste generated being sawmill sawdust per spindle with diameter of 30 cm and a length of 1 m with 5 times sawmill, Saws 0.8 cm thick produced 0.0088 m³ / burnable logs only discarded. Therefore takes thermal conductivity test to review mixture of sawdust and polyurethane comparison with variations different dosing. Maximum disposals sawdust can be done is 40% of the total volume of material mixture, polyurethane and sawdust because composite material (sawdust-polyurethane can not be bond with good so easy slab separately from origin form. Thermal Conductivity insulating good and economical on disposals 40% wood flour (0.05252 W / m°C and is able to maintain a 2 kg of ice crystals melt up perfect on 34 hours. Operating profits economical from 4,8 m³insulation composite application with obtained Rp 4.486.000 compared with 100% Polyurethane Insulation Manufacture.

  6. Study of two-phase foam flow

    Energy Technology Data Exchange (ETDEWEB)

    Gurbanov, R S; Guliev, B B; Mekhtiev, K G; Kerimov, R G

    1970-01-01

    The objectives of this study were to determine characteristics of aqueous foam flow through porous media and to estimate the depth of foam penetration into a formation. Foam was generated by mixing air and 1% solution of surfactant PO-1. Foam density was maintained at 0.14 g/cc in all experiments. The foam was passed through sand columns (800 mm long x 30 mm diam) of permeabilities 26, 39, 80, 111, and 133 darcys. Flow rates were measured at various pressure drops and the relationship between system parameters was expressed analytically and graphically. From the data, distance of foam penetration into a formation as a function of pressure drop and permeability was calculated. The data indicate that under most conditions, foam will penetrate the formation to a negligible distance. This study indicates that when foam is used to remove sand from a well, a negligible loss of foam to the formation occurs.

  7. Foaming in manure based digesters: Effect of overloading and foam suppression using antifoam agents

    OpenAIRE

    Kougias, Panagiotis; Tsapekos, Panagiotis; Boe, Kanokwan; Angelidaki, Irini

    2013-01-01

    Anaerobic digestion foaming is one of the major problems that occasionally occur in full-scale biogas plants, affecting negatively the overall digestion process. The foam is typically created either in the main biogas reactor or/and in the pre-storage tank and the entrapped solids in the foam cause severe operational problems, such as blockage of mixing devices and collapse of pumps. Furthermore, the foaming problem is linked with economic consequences for biogas plants, due to income losses ...

  8. Influence of Rubber Powders on Foaming Behavior and Mechanical Properties of Foamed Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    HE Yue

    2017-02-01

    Full Text Available Polypropylene/rubber powders composites with different kinds of rubber powders were foamed by injection molding machine equipped with volume-adjustable cavity. The effect of dispersity of rubber powders and crystallization behavior of composites on the foaming behavior and mechanical properties was investigated. The results show that the addition of rubber powders can improve the cell structure of foamed PP with fine and uniform cell distribution. And cell density and size of PP/PP-MAH/NBR foams are 7.64×106cell/cm3 and 29.78μm respectively, which are the best among these foams. Combining cell structures with mechanical properties, notch impact strength of PP/PP-MAH/CNBR composites increases approximately by 2.2 times while tensile strength is reduced just by 26% compared with those of the pure PP. This indicates that PP/PP-MAH/CNBR composites are ideal foamed materials.

  9. Elasticity Modulus and Flexural Strength Assessment of Foam Concrete Layer of Poroflow

    Science.gov (United States)

    Hajek, Matej; Decky, Martin; Drusa, Marian; Orininová, Lucia; Scherfel, Walter

    2016-10-01

    Nowadays, it is necessary to develop new building materials, which are in accordance to the principles of the following provisions of the Roads Act: The design of road is a subject that follows national technical standards, technical regulations and objectively established results of research and development for road infrastructure. Foam concrete, as a type of lightweight concrete, offers advantages such as low bulk density, thermal insulation and disadvantages that will be reduced by future development. The contribution focuses on identifying the major material characteristics of foam concrete named Poroflow 17-5, in order to replace cement-bound granular mixtures. The experimental measurements performed on test specimens were the subject of diploma thesis in 2015 and continuously of the dissertation thesis and grant research project. At the beginning of the contribution, an overview of the current use of foam concrete abroad is elaborated. Moreover, it aims to determine the flexural strength of test specimens Poroflow 17-5 in combination with various basis weights of the underlying geotextile. Another part of the article is devoted to back-calculation of indicative design modulus of Poroflow based layers based on the results of static plate load tests provided at in situ experimental stand of Faculty of Civil Engineering, University of Žilina (FCE Uniza). Testing stand has been created in order to solve problems related to research of road and railway structures. Concern to building construction presents a physical homomorphic model that is identical with the corresponding theory in all structural features. Based on the achieved material characteristics, the tensile strength in bending of previously used road construction materials was compared with innovative alternative of foam concrete and the suitability for the base layers of pavement roads was determined.

  10. Modified Capillary Cell for Foam Film Studies Allowing Exchange of the Film-Forming Liquidwie

    NARCIS (Netherlands)

    Wierenga, P.A.; Basheva, E.S.; Denkov, N.D.

    2009-01-01

    Many of the macroscopic properties of foams and emulsions are controlled by the mesoscopic properties of the thin films separating the bubbles or droplets. The properties of these films depend on contributions (1) from the adsorbed surface layers and (2) from the liquid that separates these adsorbed

  11. Testing of ITER central solenoid coil insulation in an array

    International Nuclear Information System (INIS)

    Jayakumar, R.; Martovetsky, N.N.; Perfect, S.A.

    1995-01-01

    A glass-polyimide insulation system has been proposed by the US team for use in the Central Solenoid (CS) coil of the international Thermonuclear Experimental Reactor (ITER) machine and it is planned to use this system in the CS model coil inner module. The turn insulation will consist of 2 layers of combined prepreg and Kapton. Each layer is 50% overlapped with a butt wrap of prepreg and an overwrap of S glass. The coil layers will be separated by a glass-resin composite and impregnated in a VPI process. Small scale tests on the various components of the insulation are complete. It is planned to fabricate and test the insulation in a 4 x 4 insulated CS conductor array which will include the layer insulation and be vacuum impregnated. The conductor array will be subjected to 20 thermal cycles and 100000 mechanical load cycles in a Liquid Nitrogen environment. These loads are similar to those seen in the CS coil design. The insulation will be electrically tested at several stages during mechanical testing. This paper will describe the array configuration, fabrication: process, instrumentation, testing configuration, and supporting analyses used in selecting the array and test configurations

  12. Determination of Acreage Thermal Protection Foam Loss From Ice and Foam Impacts

    Science.gov (United States)

    Carney, Kelly S.; Lawrence, Charles

    2015-01-01

    A parametric study was conducted to establish Thermal Protection System (TPS) loss from foam and ice impact conditions similar to what might occur on the Space Launch System. This study was based upon the large amount of testing and analysis that was conducted with both ice and foam debris impacts on TPS acreage foam for the Space Shuttle Project External Tank. Test verified material models and modeling techniques that resulted from Space Shuttle related testing were utilized for this parametric study. Parameters varied include projectile mass, impact velocity and impact angle (5 degree and 10 degree impacts). The amount of TPS acreage foam loss as a result of the various impact conditions is presented.

  13. Dimensional crossover and cold-atom realization of gapless and semi-metallic Mott insulating phases

    Science.gov (United States)

    Orth, Peter P.; Scheurer, Mathias; Rachel, Stephan

    2014-03-01

    We propose a realistic cold-atom setup which allows for a dimensional crossover from a two-dimensional quantum spin Hall insulating phase to a three-dimensional strong topological insulator phase by simply tuning the hopping between the layers. We further employ cluster slave-rotor mean-field theory to study the effect of additional Hubbard onsite interactions that give rise to various spin liquid-like phases such as gapless and semi-metallic Mott insulating states.

  14. Determination of SiC ceramic foams microstructure properties by X-rays microtomography

    International Nuclear Information System (INIS)

    Nagata, Rodrigo; Appoloni, Carlos Roberto; Fernandes, Jaquiel Salvi

    2009-01-01

    Silicon carbide ceramic foams (SiC) can operate at high temperatures, which allow them to be used as heat exchangers, liquid metal filters, composite of rocket nozzles, etc. For many of these applications it is very important to know the foams' porosity. In this work the porosity of SiC ceramic foams was determined by X-rays microtomography, a powerful non-destructive technique that allows the analysis of the sample's internal structure. The samples have pore densities of 30, 45, 60, 80 and 100 pores per inch (ppi). The spatial resolution obtained was 24.8 μm. The cross sections' reconstruction was performed with a cone beam filtered backprojection algorithm. In the analyses, micropores were observed in the foam's lattice wire of the 30 ppi and 45 ppi samples. Micropores were present in few cross sections of 60 ppi sample too, but it was not found in the 80 ppi and 100 ppi samples. The total porosities obtained were Φ = (88.8 ± 4.3) %, Φ = (85.2 ± 1.4) %, Φ = (82.3 ± 1.8) %, Φ (79.9 ± 1.3) % and Φ = (80.4 ± 1.5) %, for the 30, 45, 60, 80 and 100 ppi samples, respectively. (author)

  15. A review of aqueous foam in microscale.

    Science.gov (United States)

    Anazadehsayed, Abdolhamid; Rezaee, Nastaran; Naser, Jamal; Nguyen, Anh V

    2018-06-01

    In recent years, significant progress has been achieved in the study of aqueous foams. Having said this, a better understanding of foam physics requires a deeper and profound study of foam elements. This paper reviews the studies in the microscale of aqueous foams. The elements of aqueous foams are interior Plateau borders, exterior Plateau borders, nodes, and films. Furthermore, these elements' contribution to the drainage of foam and hydraulic resistance are studied. The Marangoni phenomena that can happen in aqueous foams are listed as Marangoni recirculation in the transition region, Marangoni-driven flow from Plateau border towards the film in the foam fractionation process, and Marangoni flow caused by exposure of foam containing photosurfactants under UV. Then, the flow analysis of combined elements of foam such as PB-film along with Marangoni flow and PB-node are studied. Next, we contrast the behavior of foams in different conditions. These various conditions can be perturbation in the foam structure caused by injected water droplets or waves or using a non-Newtonian fluid to make the foam. Further review is about the effect of oil droplets and particles on the characteristics of foam such as drainage, stability and interfacial mobility. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Experimental study of polyurethane foam reinforced soil used as a rock-like material

    Directory of Open Access Journals (Sweden)

    Eren Komurlu

    2015-10-01

    Full Text Available In this study, polyurethane foam type thermoset polymerizing, due to chemical reaction between its liquid ingredients, was tested as binder after solidifying and then a rock-like material mixing with a sandy silt type soil was prepared. The uniaxial compressive strengths (UCSs of polyurethane foam reinforced soil specimens were determined for different polyurethane ratios in the mixture. Additionally, a series of tests on slake durability, impact value, freezing–thawing resistance, and abrasion resistance of polyurethane reinforced soil (PRS mixture was conducted. The UCS values over 3 MPa were measured from the PRS specimens. The testing results showed that treated soil can economically become a desirable rock-like material in terms of slake durability and resistances against freezing–thawing, impact effect and abrasion. As another characteristic of the rock-like material made with polyurethane foam, unit volume weight was found to be quite lower than those of natural rock materials.

  17. Beer foam physics

    NARCIS (Netherlands)

    Ronteltap, A.D.

    1989-01-01

    The physical aspects of beer foam behavior were studied in terms of the four physical processes, mainly involved in the formation and breakdown of foam. These processes are, bubble formation, drainage, disproportionation and coalescence. In detail, the processes disproportionation and

  18. Neopterin negatively regulates expression of ABCA1 and ABCG1 by the LXRα signaling pathway in THP-1 macrophage-derived foam cells.

    Science.gov (United States)

    Yan, Jin-quan; Tan, Chun-zhi; Wu, Jin-hua; Zhang, Dong-cui; Chen, Ji-ling; Zeng, Bin-yuan; Jiang, Yu-ping; Nie, Jin; Liu, Wei; Liu, Qin; Dai, Hao

    2013-07-01

    To investigate the effects of neopterin on ABCA1 expression and cholesterol efflux in human THP-1 macrophage-derived foam cells, and to explore the role of the liver X receptor alpha (LXRα) involved. In the present study, THP-1 cells were pre-incubated with ox-LDL to become foam cells. The protein and mRNA expression were examined by Western blot assays and real-time quantitative PCR, respectively. Liquid scintillation counting and high performance liquid chromatography assays were used to test cellular cholesterol efflux and cholesterol content. Neopterin decreased ABCA1 expression and cholesterol efflux in a time- and concentration-dependent manner in THP-1 macrophage-derived foam cells, and the LXRα siRNA can reverse the inhibitory effects induced by neopterin. Neoterin has a negative regulation on ABCA1 expression via the LXRα signaling pathway, which suggests the aggravated effects of neopterin on atherosclerosis.

  19. Foam - novel delivery technology for remediation of vadose zone environments - 59019

    International Nuclear Information System (INIS)

    Jansik, Danielle; Wellman, Dawn M.; Mattigod, Shas V.; Zhong, Lirong; Zhang, Fred; Foote, Martin; Wu, Yuxin; Hubbard, Susan

    2012-01-01

    Deep vadose zone environments can be a primary source and pathway for contaminant migration to groundwater. These environments present unique characterization and remediation challenges that necessitate scrutiny and research. The thickness, depth, and intricacies of the deep vadose zone, combined with a lack of understanding of the key subsurface processes (e.g., biogeochemical and hydrologic) affecting contaminant migration, make it difficult to create validated conceptual and predictive models of subsurface flow dynamics and contaminant behavior across multiple scales. These factors also make it difficult to design and deploy sustainable remedial approaches and monitor long-term contaminant behavior after remedial actions. Functionally, methods for addressing contamination must remove and/or reduce transport of contaminants. This problem is particularly challenging in the arid western United States where the vadose zone is hundreds of feet thick, rendering transitional excavation methods exceedingly costly and ineffective. Delivery of remedial amendments is one of the most challenging and critical aspects for all remedy-based approaches. The conventional approach for delivery is through injection of aqueous remedial solutions. However, heterogeneous deep vadose zone environments present hydrologic and geochemical challenges that limit the effectiveness. Because the flow of solution infiltration is dominantly controlled by gravity and suction, injected liquid preferentially percolates through highly permeable pathways, by-passing low-permeability zones that frequently contain the majority of contamination. Moreover, the wetting front can readily mobilize and enhance contaminant transport to the underlying aquifer prior to stabilization. Development of innovative in-situ technologies may be the only means to meet remedial action objectives and long-term stewardship goals. Surfactants can be used to lower the liquid surface tension and create stabile foams, which

  20. FOAM3D: A numerical simulator for mechanistic prediciton of foam displacement in multidimensions

    Energy Technology Data Exchange (ETDEWEB)

    Kovscek, A.R.; Patzek, T.W. [Lawrence Berkeley Laboratory, Berkeley, CA (United States); Radke, C.J. [Univ. of California, Berkeley, CA (United States)

    1995-03-01

    Field application of foam is a technically viable enhanced oil recovery process (EOR) as demonstrated by recent steam-foam field studies. Traditional gas-displacement processes, such as steam drive, are improved substantially by controlling gas mobility and thereby improving volumetric displacement efficiency. For instance, Patzek and Koinis showed major oil-recovery response after about two years of foam injection in two different pilot studies at the Kern River field. They report increased production of 5.5 to 14% of the original oil in place over a five year period. Because reservoir-scale simulation is a vital component of the engineering and economic evaluation of any EOR project, efficient application of foam as a displacement fluid requires a predictive numerical model of foam displacement. A mechanistic model would also expedite scale-up of the process from the laboratory to the field scale. No general, mechanistic, field-scale model for foam displacement is currently in use.