WorldWideScience

Sample records for liquid flow perturbation

  1. Fibrous Support Stabilizes Nitrification Performance of a Membrane-Aerated Biofilm: The Effect of Liquid Flow Perturbation

    DEFF Research Database (Denmark)

    Terada, Akihiko; Ito, J; Matsumoto, S

    2009-01-01

    Nitrification stability and biofilm robustness were examined by comparing a fibrous support membrane-aerated biofilm reactor (FS-MABR), where a woven fibrous support was surrounded on a silicone tube, with an MABR. The overall mass transfer coefficient of oxygen for the FS-MABR, assuming no bound......Nitrification stability and biofilm robustness were examined by comparing a fibrous support membrane-aerated biofilm reactor (FS-MABR), where a woven fibrous support was surrounded on a silicone tube, with an MABR. The overall mass transfer coefficient of oxygen for the FS-MABR, assuming...... liquid flow rate condition was 49% and 75% in the FS-MABR and MABR, exhibiting robust biofilms grown on the fibrous support. The FS-MABR provided more stable nitrification performance than the MABR irrespective of a high liquid flow rate. Both reactors have deteriorated ammonium (NH4+-N) removal without...... a high liquid flow rate condition to eliminate excessive biomass, indicating that regular maintenance is essential to eliminate excessive biofilm from a MABR for nitrification, which potentially acts as a NH4+ diffusion barrier....

  2. Capillary and viscous perturbations to Helmholtz flows

    KAUST Repository

    Moore, M. R.

    2014-02-21

    Inspired by recent calculations by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, p. 264506) relating to droplet impact, this paper presents an analysis of the perturbations to the free surface caused by small surface tension and viscosity in steady Helmholtz flows. In particular, we identify the regimes in which appreciable vorticity can be shed from the boundary layer to the bulk flow. © 2014 Cambridge University Press.

  3. A perturbative approach to Lagrangian flow networks

    CERN Document Server

    Fujiwara, Naoya; Donges, Jonathan F; Donner, Reik V

    2016-01-01

    Complex network approaches have been successfully applied for studying transport processes in complex systems ranging from road, railway or airline infrastructure over industrial manufacturing to fluid dynamics. Here, we utilize a generic framework for describing the dynamics of geophysical flows such as ocean currents or atmospheric wind fields in terms of Lagrangian flow networks. In this approach, information on the passive advection of particles is transformed into a Markov chain based on transition probabilities of particles between the volume elements of a given partition of space for a fixed time step. We employ perturbation-theoretic methods to investigate the effects of modifications of transport processes in the underlying flow for three different problem classes: efficient absorption (corresponding to particle trapping or leaking), constant input of particles (with additional source terms modeling, e.g., localized contamination), and shifts of the steady state under probability mass conservation (a...

  4. Resonant interactions of perturbations in MHD flows

    Energy Technology Data Exchange (ETDEWEB)

    Sagalakov, A.M.; Shtern, V.N.

    1977-01-17

    The nonlinear theory of hydrodynamic stability differentiates three types of interactions: deformation of the initial velocity profile by Reynolds stress pulsations, multiplication of harmonics, and the resonant interaction of harmonics with dissimilar wave numbers and frequencies. This article analyzes an approach considering the first and third of these non-linear mechanisms, producing an acceptable approximation of the averaged characteristics of a developing pulsation movement, particularly the averaged turbulent velocity profile. The approach consists in analysis of triharmonic oscillations, the parameters of which satisfy the resonant relationships. A model of a triharmonic pulsation mode is studied which is applicable to MHD flows. It is shown in particular how a magnetic field transverse to the flow plane suppresses the resonant interaction of three-dimensional perturbations. This agrees with experimental studies on two-dimensional turbulence conducted earlier. 11 references, 3 figures.

  5. Numerical Stochastic Perturbation Theory and the Gradient Flow

    CERN Document Server

    Brida, Mattia Dalla

    2013-01-01

    We study the Yang-Mills gradient flow using numerical stochastic perturbation theory. As an application of the method we consider the recently proposed gradient flow coupling in the Schr\\"odinger functional for the pure SU(3) gauge theory.

  6. Controlling Disorder in Traffic Flow by Perturbation

    Institute of Scientific and Technical Information of China (English)

    LIKe-Ping; GAOZi-You; CHENTian-Lun

    2004-01-01

    We propose a new technique for controlling disorder in traffic system. A kind of control signal which can be considered as a perturbation has been designated at a given site (perturbation point) of the single-lane highway. When a vehicle passes the perturbation point at a time, the velocity of the vehicle will be changed at the next time by the perturbation. This technique is tested for the deterministic NaSch traffic model. The simulation results indicate that the traffic system can be transited from the disorder states to the order states, such as fixed-point, periodic motion, etc.

  7. NONLINEAR PERTURBATION METHOD FOR CALCULATING AXISYMMETRIC CAVITATIONAL FLOWS

    Directory of Open Access Journals (Sweden)

    Vasyl Buivol

    2013-12-01

    Full Text Available A mathematical model of a cavity under the influence of perturbations of various origins is evaluated. The model is based on hydrodynamics of flows with free boundaries and the theory of small perturbations. Specific analysis is provided for cavitational flows behind cones

  8. Acoustic perturbations in special-relativistic parallel flows

    CERN Document Server

    Rogava, A D; Mahajan, S M

    1996-01-01

    Acoustic perturbations in a parallel relativistic flow of an inviscid fluid are considered. The general expression for the frequency of the sound waves in a uniformly (with zero shear) moving medium is derived. It is shown that relativity evokes a difference in the frequencies of the sound-type perturbations propagating along and against the current. Besides, it is shown that the perturbations are not purely irrotational as they are in nonrelativistic case. For a non-uniformly (with nonzero shear) moving fluid a general set of equations, describing the evolution of the acoustic perturbations in relativistic sheared flows, is obtained and analysed when the temperature is nonrelativistic. It is shown that, like the nonrelativistic case, in the new system: (a) the excitation of vortical, transiently growing perturbations, and (b) the excitation of sound-type perturbations, extracting the kinetic energy of the background flow, are possible. It is demonstrated that the relativistic character of the motion signific...

  9. Global finite amplitude perturbations in medium aspect ratio pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Mellibovsky, F; Meseguer, A [Applied Physics Department, Universitat Politecnica de Catalunya, 08034, Jordi Girona 1-3, Barcelona (Spain)

    2005-01-01

    Results of a numerical study on the finite amplitude global perturbations inducing transition to turbulence in pipe flow are reported. The aim of this analysis is to characterise the basin of attraction of the basic Hagen-Poiseuille flow (which is believed to be lineary stable for all Reynolds numbers Re) by means of the minimal amplitude of an initial global perturbation triggering transition. Subcritical transition in pipe flow is extremely sensitive to the shape of the initial perturbation. The analysis is focused on the streak breakdown transition scenario, by which the basic flow, perturbed with streamwise-independent disturbances of azimuthal wave number n = 1, develops transient streaks that are susceptible of being destabilised by much smaller streamwise-dependent perturbations. The numerical simulations cover a wide range of Reynolds numbers Re element of [2500, 10{sup 4}] and the transition dynamics are spectrally resolved by the numerical method. The threshold amplitude of perturbations seems to decrease with Re{sup -3/2} within the studied range.

  10. Laser imaging in liquid-liquid flows

    Science.gov (United States)

    Abidin, M. I. I. Zainal; Park, Kyeong H.; Voulgaropoulos, Victor; Chinaud, Maxime; Angeli, Panagiota

    2016-11-01

    In this work, the flow patterns formed during the horizontal flow of two immiscible liquids are studied. The pipe is made from acrylic, has an ID of 26 mm and a length of 4 m. A silicone oil (5cSt) and a water/glycerol mixture are used as test fluids. This set of liquids is chosen to match the refractive indices of the phases and enable laser based flow pattern identification. A double pulsed Nd:Yag laser was employed (532mm) with the appropriate optics to generate a laser sheet at the middle of the pipe. The aqueous phase was dyed with Rhodamine 6G, to distinguish between the two phases. Experiments were carried out for mixture velocities ranging from 0.15 to 2 m/s. Different inlet designs were used to actuate flow patterns in a controlled way and observe their development downstream the test section. A static mixer produced dispersed flow at the inlet which separated downstream due to enhanced coalescence. On the other hand, the use of a cylindrical bluff body at the inlet created non-linear interfacial waves in initially stratified flows from which drops detached leading to the transition to dispersed patterns. From the detailed images important flow parameters were measured such as wave characteristics and drop size. Project funded under the UK Engineering and Physical Sciences Research Council (EPSRC) Programme Grant MEMPHIS.

  11. Theoretical model of gravitational perturbation of current collector axisymmetric flow field

    Science.gov (United States)

    Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1990-05-01

    Some designs of liquid-metal current collectors in homopolar motors and generators are essentially rotating liquid-metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. An investigation at David Taylor Research Center is being performed to understand the role of gravity in modifying this ejection instability. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical-current-collector ejection values neglecting gravity effects. The purpose of this paper is to document the derivation of the mathematical model which determines the perturbation of the liquid-metal base flow due to gravitational effects. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid-flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector.

  12. Flow Lines Under Perturbation within Section Cones

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    that a point is greater than or equal to a point if there exists a flow line from to corresponding to some vector field in . The partial order that - under a certain condition - arises from the transitive closure of that relation -- gives rise to (the concept of) a di-path (directed path). That is a continuous......We want to examine a closed smooth manifold together with a certain partial order: In the set of vector fields on , , we define a section cone - a convex subset of characterized by the property that if is a singular point for some vector field in then this is the case for all members of . We say...

  13. A perturbation-theoretic approach to Lagrangian flow networks

    Science.gov (United States)

    Fujiwara, Naoya; Kirchen, Kathrin; Donges, Jonathan F.; Donner, Reik V.

    2017-03-01

    Complex network approaches have been successfully applied for studying transport processes in complex systems ranging from road, railway, or airline infrastructures over industrial manufacturing to fluid dynamics. Here, we utilize a generic framework for describing the dynamics of geophysical flows such as ocean currents or atmospheric wind fields in terms of Lagrangian flow networks. In this approach, information on the passive advection of particles is transformed into a Markov chain based on transition probabilities of particles between the volume elements of a given partition of space for a fixed time step. We employ perturbation-theoretic methods to investigate the effects of modifications of transport processes in the underlying flow for three different problem classes: efficient absorption (corresponding to particle trapping or leaking), constant input of particles (with additional source terms modeling, e.g., localized contamination), and shifts of the steady state under probability mass conservation (as arising if the background flow is perturbed itself). Our results demonstrate that in all three cases, changes to the steady state solution can be analytically expressed in terms of the eigensystem of the unperturbed flow and the perturbation itself. These results are potentially relevant for developing more efficient strategies for coping with contaminations of fluid or gaseous media such as ocean and atmosphere by oil spills, radioactive substances, non-reactive chemicals, or volcanic aerosols.

  14. Estimating Liquid Fluxes in Thermally Perturbed Fractured Rock Using Measured Temperature Profiles

    Energy Technology Data Exchange (ETDEWEB)

    J.T. Birkholzer

    2005-02-14

    A new temperature-profile method was recently developed for analyzing perturbed flow conditions in superheated porous media. The method uses high-resolution temperature data to estimate the magnitude of the heat-driven liquid and gas fluxes that form as a result of boiling, condensation, and recirculation of pore water. In this paper, we evaluate the applicability of this new method to the more complex flow behavior in fractured formations with porous rock matrix. In such formations, with their intrinsic heterogeneity, the porous but low-permeable matrix provides most of the mass and heat storage capacity, and dominates conductive heat transfer, Fractures, on the other hand, offer highly effective conduits for gas and liquid flow, thereby generating significant convective heat transfer. After establishing the accuracy of the temperature-profile method for fractured porous formations, we apply the method in analyzing the perturbed flow conditions in a large-scale underground heater test conducted in unsaturated fractured porous tuff. The flux estimates for this test indicate a significant reflux of water near the heat source, on the order of a few hundred millimeter per year-much larger than the ambient percolation flux of only a few millimeter per year.

  15. Influence of thermocapillary flow in a liquid film jet

    Science.gov (United States)

    Hu, W. R.; Hu, Q.

    2004-01-01

    The higher temperature liquid (or melt) film ejected from a vessel and painted on the moving solid boundary is analyzed. The thermocapillary flow, driven by the gradient of surface tension on the free surface of a liquid film, changes the height profile of the liquid film. Based on the approximations of lubrication theory and perturbation theory, the equation of liquid height and the process of thermal hydrodynamics in the liquid film are solved for a given temperature distribution on the solid boundary and a given heat flux from the vessel. The solution shows clearly the obvious influence of the thermocapillary flow on the thermal hydrodynamic process and the cross-section profile of the liquid film even for a Newtonian fluid. The results may be used to explain the Barus effect or the Die Swell effect.

  16. Response of axisymmetric separated flow to its spatially localized perturbation

    Science.gov (United States)

    Dovgal, A. V.; Zanin, B. Yu.; Sorokin, A. M.

    2016-11-01

    The flow past an axisymmetric body with laminar boundary-layer separation in a low-velocity air stream has been studied. The hot-wire technique was employed to identify the variation of velocity field induced by a local stationary perturbation of separation region at the stern of the experimental model. A large-scale influence upon the near-wall flow due to a cylinder roughness element provided on the model surface was observed. The obtained data substantiate the possibility of controlling the laminar boundary-layer separation on an axisymmetric body using a local external forcing.

  17. Liquid Bismuth Propellant Flow Sensor

    Science.gov (United States)

    Polzin, Kurt A.; Stanojev, B. J.; Korman, V.

    2007-01-01

    Quantifying the propellant mass flow rate in liquid bismuth-fed electric propulsion systems has two challenging facets. First, the flow sensors must be capable of providing a resolvable measurement at propellant mass flow rates on the order of 10 mg/see with and uncertainty of less that 5%. The second challenge has to do with the fact that the materials from which the flow sensors are fabricated must be capable of resisting any of the corrosive effects associated with the high-temperature propellant. The measurement itself is necessary in order to properly assess the performance (thrust efficiency, Isp) of thruster systems in the laboratory environment. The hotspot sensor[I] has been designed to provide the bismuth propellant mass flow rate measurement. In the hotspot sensor, a pulse of thermal energy (derived from a current pulse and associated joule heating) is applied near the inlet of the sensor. The flow is "tagged" with a thermal feature that is convected downstream by the flowing liquid metal. Downstream, a temperature measurement is performed to detect a "ripple" in the local temperature associated with the passing "hotspot" in the propellant. By measuring the time between the upstream generation and downstream detection of the thermal feature, the flow speed can be calculated using a "time of flight" analysis. In addition, the system can be calibrated by measuring the accumulated mass exiting the system as a-function of time and correlating this with the time it takes the hotspot to convect through the sensor. The primary advantage of this technique is that it doesn't depend on an absolute measurement of temperature but, instead, relies on the observation of thermal features. This makes the technique insensitive to other externally generated thermal fluctuations. In this paper, we describe experiments performed using the hotspot flow sensor aimed at quantifying the resolution of the sensor technology. Propellant is expelled onto an electronic scale to

  18. Liquid metal Flow Meter - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  19. Flow in a Circular Expansion Pipe Flow: Effect of a Vortex Perturbation on Localized Turbulence

    CERN Document Server

    Selvam, Kamal; Willis, Ashley P

    2016-01-01

    We report the results of three-dimensional direct numerical simulations for incompressible viscous fluid in a circular pipe flow with a sudden expansion. At the inlet, a parabolic velocity profile is applied together with a finite amplitude perturbation in the form of a vortex with its axis parallel to the axis of the pipe. At sufficiently high Reynolds numbers the recirculation region breaks into a turbulent patch that changes position axially depending on the strength of the perturbation. This vortex perturbation is believed to produce a less abrupt transition than in previous studies with a tilt perturbation, as the localized turbulence is observed via the formation of a wavy structure at a low order azimuthal mode, which resembles an optimally amplified perturbation. For higher amplitude, the localized turbulence remains at a constant axial position. It is further investigated using proper orthogonal decomposition, which indicates that the centre region close to the expansion is highly energetic.

  20. Flow in a circular expansion pipe flow: effect of a vortex perturbation on localised turbulence

    Science.gov (United States)

    Selvam, Kamal; Peixinho, Jorge; Willis, Ashley P.

    2016-12-01

    We report the results of three-dimensional direct numerical simulations for incompressible viscous fluid in a circular pipe flow with a sudden expansion. At the inlet, a parabolic velocity profile is applied together with a finite amplitude perturbation in the form of a vortex with its axis parallel to the axis of the pipe. At sufficiently high Reynolds numbers the recirculation region breaks into a turbulent patch that changes position axially, depending on the strength of the perturbation. This vortex perturbation is believed to produce a less abrupt transition than in previous studies, which applied a tilt perturbation, as the localised turbulence is observed via the formation of a wavy structure at a low order azimuthal mode, which resembles an optimally amplified perturbation. For large vortex amplitude, the localised turbulence remains at a constant axial position. It is further investigated using proper orthogonal decomposition, which indicates that the centre region close to the expansion is highly energetic.

  1. Perturbation theory of solid-liquid interfacial free energies of bcc metals.

    Science.gov (United States)

    Warshavsky, Vadim B; Song, Xueyu

    2012-09-01

    A perturbation theory is used to calculate bcc solid-liquid interfacial free energies of metallic systems with embedded-atom model potentials. As a reference system for bcc crystals we used a single-occupancy cell, hard-sphere bcc system. Good agreements between the perturbation theory results and the corresponding results from simulations are found. The strategy to extract hard-sphere bcc solid-liquid interfacial free energies may have broader applications for other crystal lattices.

  2. Liquid Flow in Shaped Fiber Bundle

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; WANG Hua-ping; CHEN Yue-hua

    2006-01-01

    By computation and comparison of the critical spreading coefficient parameter, it was found that shaped fiber bundle is better for wetting. Liquid-air interface tension of liquid arising the shaped fiber bundle body is considered as one critical factor besides liquid viscosity, inertia force and liquid-fiber interface tension. Experimental result simulation demonstrated that the liquid-air interface tension is correlated with the geometric size of the liquid arising in body, φ0 (x) and which is affected by the cross sectional shape of fiber and the radius of single fiber. The shaped fiber bundle model is introduced to investigate liquid flow in fiber assembly. The model is generated based on a random function for stochastic forming of fibers in bundle and it is necessary to combine this fundamental model with physical explanation for investigation of liquid flow in fiber assembly.

  3. Perturbation theorems for Hele-Shaw flows and their applications

    CERN Document Server

    Lin, Yu-Lin

    2010-01-01

    In this work, we give a perturbation theorem for strong polynomial solutions to the zero surface tension Hele-Shaw equation driven by injection or suction, so called the Polubarinova-Galin equation. This theorem enables us to explore properties of solutions with initial functions close to but are not polynomial. Applications of this theorem are given in the suction or injection case. In the former case, we show that if the initial domain is close to a disk, most of fluid will be sucked before the strong solution blows up. In the later case, we obtain precise large-time rescaling behaviors for large data to Hele-Shaw flows in terms of invariant Richardson complex moments. This rescaling behavior result generalizes a recent result regarding large-time rescaling behavior for small data in terms of moments. As a byproduct of a theorem in this paper, a short proof of existence and uniqueness of strong solutions to the Polubarinova-Galin equation is given.

  4. Flowing liquid crystal simulating the Schwarzschild metric

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Erms R.; Moraes, Fernando [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil)

    2009-07-01

    Full text. We show how to simulate the equatorial section of the Schwarzschild metric through a flowing liquid crystal in its nematic phase. Inside a liquid crystal in the nematic phase, a traveling light ray feels an effective metric, whose properties are linked to perpendicular and parallel refractive indexes, no e ne respectively, of the rod-like molecule of the liquid crystal. As these indexes depend on the scalar order parameter of the liquid crystal, the Beris-Edwards hydrodynamic theory is used to connect the order parameter with the velocity of a liquid crystal flow at each point. This way we calculate a radial velocity profile that simulates the equatorial section of the Schwarzschild metric in the nematic phase of the liquid crystal. This work will be presented in the following way. First, we show the effective metric that describes the light propagation around a (k = 1; c = 0) disclination defect of the nematic phase of a liquid crystalline sample and how this light propagation can be described by the order parameter q of the liquid crystalline material. Afterwards, we consider the liquid crystal flowing radially and we use the Beris-Edwards theory to analyze the dependence of the order parameter of the material with the flowing velocity module. In these two cases we consider the more general situation of three space dimensions. Finally, we employ the result from the second part in the first and we compare with the Schwarzschild metric written in isotropic coordinates. (author)

  5. Effects of small boundary perturbation on the MHD duct flow

    Directory of Open Access Journals (Sweden)

    Mahabaleshwar Ulavathi Shettar

    2017-01-01

    Full Text Available In this paper, we investigate the effects of small boundary perturbation on the laminar motion of a conducting fluid in a rectangular duct under applied transverse magnetic field. A small boundary perturbation of magnitude Є is applied on cross-section of the duct. Using the asymptotic analysis with respect to Є, we derive the effective model given by the explicit formulae for the velocity and induced magnetic field. Numerical results are provided confirming that the considered perturbation has nonlocal impact on the asymptotic solution.

  6. Coaxial liquid-liquid flows in tubes with limited length

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Coaxial liquid-liquid flows were numerically studied in a nesting two-tube system. Calculations were carried out when various exit-lengths (meaning length differences between the two tubes) were used. Numerical results indicated that there exists a certain range of exit-length for the liquid-liquid flows to form stable and smooth interfaces, which requires that the exit-length should roughly be less than 5.6 times the outer tube diameter. In this range, interface instability is effectively restrained and the core fluid shows a phenomenon of die swell. When the exit-length is about 1.6 times the outer tube diameter, the core fluid has the greatest diameter size in the shell fluid. Velocity distributions at the outer tube exit favor formation of a continuous and stable core-shell structure.

  7. Mechanical picture of the linear transient growth of vortical perturbations in incompressible smooth shear flows

    Science.gov (United States)

    Chagelishvili, George; Hau, Jan-Niklas; Khujadze, George; Oberlack, Martin

    2016-08-01

    The linear dynamics of perturbations in smooth shear flows covers the transient exchange of energies between (1) the perturbations and the basic flow and (2) different perturbations modes. Canonically, the linear exchange of energies between the perturbations and the basic flow can be described in terms of the Orr and the lift-up mechanisms, correspondingly for two-dimensional (2D) and three-dimensional (3D) perturbations. In this paper the mechanical basis of the linear transient dynamics is introduced and analyzed for incompressible plane constant shear flows, where we consider the dynamics of virtual fluid particles in the framework of plane perturbations (i.e., perturbations with plane surfaces of constant phase) for the 2D and 3D case. It is shown that (1) the formation of a pressure perturbation field is the result of countermoving neighboring sets of incompressible fluid particles in the flow, (2) the keystone of the energy exchange mechanism between the basic flow and perturbations is the collision of fluid particles with the planes of constant pressure in accordance with the classical theory of elastic collision of particles with a rigid wall, making the pressure field the key player in this process, (3) the interplay of the collision process and the shear flow kinematics describes the transient growth of plane perturbations and captures the physics of the growth, and (4) the proposed mechanical picture allows us to reconstruct the linearized Euler equations in spectral space with a time-dependent shearwise wave number, the linearized Euler equations for Kelvin modes. This confirms the rigor of the presented analysis, which, moreover, yields a natural generalization of the proposed mechanical picture of the transient growth to the well-established linear phenomenon of vortex-wave-mode coupling.

  8. Gas-Liquid Slug Flow in Microchannels

    Science.gov (United States)

    Guenther, Axel; de Mas, Nuria; Jhunjhunwala, Manish; Schmidt, Martin A.; Jensen, Klavs F.

    2003-11-01

    Slug flow is not only an attractive regime for conducting gas-liquid reactions in microchemical systems. It also provides a normal velocity that enhances liquid mixing for high Peclet number flows, e.g. for particle synthesis. We previously extended the flow regime diagrams initially obtained for micro heat-exchangers to the liquid deficient conditions relevant to microreactors. We use silicon-based single microchannels with rectangular and triangular cross-section and hydraulic diameters of 40-400 microns that are capped with Pyrex to provide for optical access. Ethanol, water, toluene, and nitrogen are the working fluids. Superficial velocities are varied between 0.01 and 10 m/s for the gas and 0.001 and 1 m/s for the liquid with corresponding Capillary and Bond numbers between 0.001 and 0.01. We complement pulsed-laser fluorescence microscopy and confocal scanning microscopy with a non-intrusive optical sensor to monitor the transient flow at sampling rates of 10 kHz. Interfacial area, void fraction, slug velocity U_s, and the transversal velocity component introduced by internal circulation in the liquid are determined. For comparable Peclet numbers, the transverse velocity between channel wall and center is lO0.1 U_s and allows for shorter mixing lengths than reported for micromixers with patterned walls. Gas and liquid are completely separated on-chip subsequent to the mixing step.

  9. Characteristics of liquid flow induced by atmospheric-pressure DC glow discharge in contact with liquid

    Science.gov (United States)

    Tochikubo, Fumiyoshi; Aoki, Takuya; Shirai, Naoki; Uchida, Satoshi

    2017-04-01

    In this work, we investigated the characteristics of liquid flow induced by atmospheric-pressure dc glow discharge in contact with a liquid. The spatiotemporal development of liquid flow was visualized by the schlieren method, and the temperature distribution was measured using microencapsulated thermotropic liquid crystal particles dispersed in a liquid. We confirmed the appearance of specific downward liquid flow immediately below the dc glow discharge. The characteristics of downward liquid flow were reproduced by fluid simulation considering a downward driving force at the plasma–liquid interface. Our results suggest that the probable driving force for the downward liquid flow was the momentum transfer of charged species at the liquid surface.

  10. Liquid infused surfaces in turbulent channel flow

    Science.gov (United States)

    Fu, Matthew; Stone, Howard; Smits, Alexander; Jacobi, Ian; Samaha, Mohamed; Wexler, Jason; Shang, Jessica; Rosenberg, Brian; Hellström, Leo; Fan, Yuyang; Wang, Karen; Lee, Kevin; Hultmark, Marcus

    2014-11-01

    A turbulent channel flow facility is used to measure the drag reduction capabilities and dynamic behavior of liquid-infused micro-patterned surfaces. Liquid infused surfaces have been proposed as a robust alternative to traditional air-cushion-based superhydrophobic surfaces. The mobile liquid lubricant creates a surface slip with the outer turbulent shear flow as well as an energetic sink to dampen turbulent fluctuations. Micro-manufactured surfaces can be mounted flush in the channel and exposed to turbulent flows. Two configurations are possible, both capable of producing laminar and turbulent flows. The first configuration allows detailed investigation of the infused liquid layer and the other allows well resolved pressure gradient measurements. Both of the configurations have high aspect ratios 15-45:1. Drag reduction for a variety of liquid-infused surface architectures is quantified by measuring pressure drop in the channel. Flow in the oil film is simultaneously visualized using fluorescent dye. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).

  11. Microfluidic Flow of Cholesteric Liquid Crystals

    CERN Document Server

    Wiese, Oliver; Henrich, Oliver

    2016-01-01

    We explore the rheology and flow-induced morphological changes of cholesteric liquid crystal patterns subject to Poiseuille flow within a slab geometry, and under different anchoring conditions at the wall. Our focus is particularly on the behaviour of Cholesteric Fingers of the first kind and of Blue Phase II. Depending on the applied pressure gradient, we observe a number of dynamic regimes with different rheological properties. Our results provide the first insight into the flow response of cholesteric phases with fully two- or three-dimensional director field patterns and normal and planar degenerate anchoring conditions as commonly realised in experiments. They are also of high relevance for a fundamental understanding of complex liquid crystals in confinement and an important step towards future microfluidic applications that are based on cholesteric liquid crystals.

  12. Microfluidic flow of cholesteric liquid crystals.

    Science.gov (United States)

    Wiese, Oliver; Marenduzzo, Davide; Henrich, Oliver

    2016-11-16

    We explore the rheology and flow-induced morphological changes of cholesteric liquid crystal patterns subject to Poiseuille flow within a slab geometry, and under different anchoring conditions at the wall. Our focus is particularly on the behaviour of "Cholesteric Fingers of the first kind" and of Blue Phase II. Depending on the applied pressure gradient, we observe a number of dynamic regimes with different rheological properties. Our results provide the first insight into the flow response of cholesteric phases with fully two- or three-dimensional director field patterns and normal and planar degenerate anchoring conditions as commonly realised in experiments. They are also of high relevance for a fundamental understanding of complex liquid crystals in confinement and an important step towards future microfluidic applications that are based on cholesteric liquid crystals.

  13. Numerical Stochastic Perturbation Theory and Gradient Flow in {\\phi}^4 Theory

    CERN Document Server

    Brida, Mattia Dalla; Kennedy, Anthony D

    2015-01-01

    In this contribution we present an exploratory study of several novel methods for numerical stochastic perturbation theory. For the investigation we consider observables defined through the gradient flow in the simple {\\phi}^4 theory.

  14. Homotopy perturbation method for heat transfer flow of a third grade fluid between parallel plates

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, A.M. [Pennsylvania State University, York Campus, York, PA 17403 (United States); Zeb, A. [COMSATS Institute of Information Technology, 30 H-8/1, Islamabad (Pakistan)], E-mail: amtaz56@yahoo.co.uk; Ghori, Q.K. [COMSATS Institute of Information Technology, 30 H-8/1, Islamabad (Pakistan); Benharbit, A.M. [Pennsylvania State University, York Campus, York, PA 17403 (United States)

    2008-04-15

    The present paper studies the heat transfer flow of a third grade fluid between two heated parallel plates for the constant viscosity model. Three flow problems, namely plane Couette flow, plane Poiseuille flow and plane Couette-Poiseuille flow have been considered. In each case the non-linear momentum equation and the energy equation have been solved using the homotopy perturbation method. Explicit analytical expressions for the velocity field and the temperature distribution have been derived.

  15. Flowing with Time: a New Approach to Nonlinear Cosmological Perturbations

    CERN Document Server

    Pietroni, Massimo

    2008-01-01

    Nonlinear effects are crucial in order to compute the cosmological matter power spectrum to the accuracy required by future generation surveys. Here, a new approach is presented, in which the power spectrum and the bispectrum are obtained -at any redshift and for any momentum scale- by integrating a coupled system of differential equations. The solution of the equations corresponds, in perturbation theory, to the summation of an infinite class of corrections. Compared to other resummation frameworks, the scheme discussed here is particularly suited to cosmologies other than LambdaCDM, such as those based on modifications of gravity and those containing massive neutrinos. As a first application, we compute the Baryonic Acoustic Oscillation feature of the power spectrum, and compare the results with perturbation theory, the halo model, and N-body simulations. The density-velocity and velocity-velocity power spectra are also computed, showing that they are much less contaminated by nonlinearities than the densit...

  16. Compartmentalized Droplets for Continuous Flow Liquid-Liquid Interface Catalysis.

    Science.gov (United States)

    Zhang, Ming; Wei, Lijuan; Chen, Huan; Du, Zhiping; Binks, Bernard P; Yang, Hengquan

    2016-08-17

    To address the limitations of batch organic-aqueous biphasic catalysis, we develop a conceptually novel method termed Flow Pickering Emulsion, or FPE, to process biphasic reactions in a continuous flow fashion. This method involves the compartmentalization of bulk water into micron-sized droplets based on a water-in-oil Pickering emulsion, which are packed into a column reactor. The compartmentalized water droplets can confine water-soluble catalysts, thus "immobilizing" the catalyst in the column reactor, while the interstices between the droplets allow the organic (oil) phase to flow. Key fundamental principles underpinning this method such as the oil phase flow behavior, the stability of compartmentalized droplets and the confinement capability of these droplets toward water-soluble catalysts are experimentally and theoretically investigated. As a proof of this concept, case studies including a sulfuric acid-catalyzed addition reaction, a heteropolyacid-catalyzed ring opening reaction and an enzyme-catalyzed chiral reaction demonstrate the generality and versatility of the FPE method. Impressively, in addition to the excellent durability, the developed FPE reactions exhibit up to 10-fold reaction efficiency enhancement in comparison to the existing batch reactions, indicating a unique flow interface catalysis effect. This study opens up a new avenue to allow conventional biphasic catalysis reactions to access more sustainable and efficient flow chemistry using an innovative liquid-liquid interface protocol.

  17. Influence of nose-perturbation location on behavior of vortical flow around slender body at high incidence

    Institute of Scientific and Technical Information of China (English)

    GUAN XiaoRong; XU Cheng; WANG YongJuan; WANG YaPing

    2009-01-01

    Response of the vortical flow around a slender body of revolution at high incidence to the shift of a single nose perturbation was investigated systematically using numerical methods. A minute geometric bump was employed to act as the nose perturbation, and all computations were performed for subsonic flows at incidence of 50°. The computational results show that the vortical flow is more sensitive to the perturbation located axially closer to the nose apex of a slender body. With perturbation shifting axially downstream away from nose apex, there is a critical axial location appearing. The vortical flow is less sensitive to the perturbation located axially closer to the critical axial location; when perturbation traverses axially around the critical axial location, the vortical flow switches between opposite asymmetric patterns. The eventual influence of perturbation axial location on the vortical flow lies on both its relative locations to nose apex and the critical axial location. The vortical flow is more sensitive to the perturbation located circumferentially farther away from the fore-and-aft symmetric plane of a slender body, and just the asymmetrically-located perturbation can provoke the vortical flow to asymmetry. With perturbation shifting circumferentially in sequence, the vortical flow varies by degrees in manner of a single periodicity. A convective-type of instability existing in the flow field is responsible for the influence of nose perturbation on the vortical flow.

  18. A mathematical model and numerical simulation of pressure wave in horizontal gas-liquid bubbly flow

    Institute of Scientific and Technical Information of China (English)

    HUANG Fei; BAI Bofeng; GUO Liejin

    2004-01-01

    By using an ensemble-averaged two-fluid model,with valid closure conditions of interfacial momentum exchange due to virtual mass force,viscous shear stress and drag force,a model for pressure wave propagation in a horizontal gas-liquid bubbly flow is proposed.According to the small perturbation theory and solvable condition of one-order linear uniform equations,a dispersion equation of pressure wave is induced.The pressure wave speed calculated from the model is compared and in good agreement with existing data.According to the dispersion equation,the propagation and attenuation of pressure wave are investigated systemically.The factors affecting pressure wave,such as void fraction,pressure,wall shear stress,perturbation frequency,virtual mass force and drag force,are analyzed.The result shows that the decrease in system pressure,the increase in void fraction and the existence of wall shear stress,will cause a decrease in pressure wave speed and an increase in the attenuation coefficient in the horizontal gas-liquid bubbly flow.The effects of perturbation frequency,virtual mass and drag force on pressure wave in the horizontal gas-liquid bubbly flow at low perturbation frequency are different from that at high perturbation frequency.

  19. THE PERTURBATION SOLUTIONS OF THE FLOW IN A ROTATING CURVED ANNULAR PIPE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the flow in a rotating curved annular pipe isexamined by a perturbation method. A second order perturbation solution is presented. The characteristics of the secondary flow and the axial flow are studied in detail.The study indicates that the loops of the secondary flow are more complex than those in a curved annular pipe without rotation and its numbers depend on the ratio of the Coriolis force to centrifugal force F. As F ≈- 1 , the secondary flow has eight loops and its intensity reaches the minimum value, and the distribution of the axial flow is like that of the Poiseuille flow. The position of the maximum axial velocity is pushed to either outer bend or inner bend, which is also determined by F.

  20. Perturbative running of the twisted Yang-Mills coupling in the gradient flow scheme

    CERN Document Server

    Bribian, Eduardo I

    2016-01-01

    We report on our ongoing computation of the perturbative running of the Yang-Mills coupling using gradient flow techniques. In particular, we use the gradient flow method with twisted boundary conditions to perform a perturbative expansion of the expectation value of the Yang-Mills energy density up to fourth order in the coupling at finite flow time. We regularise the resulting integrals using dimensional regularisation, and reproduce the universal coefficient of the 1/{\\epsilon} term in the relation between bare and renormalised couplings. The computation of the finite part leading to a determination of the {\\Lambda} parameter in this scheme is underway.

  1. Propagation of acoustic perturbations in a gas flow with dissipation

    Science.gov (United States)

    Zavershinskii, I. P.; Molevich, N. E.

    1992-10-01

    In an earlier study (Ingard and Singhal, 1973), it has been found that, in a nondissipating moving medium, an acoustic wave propagating from a source in the flow direction has a smaller amplitude than a wave moving against the flow. Here, it is demonstrated that consideration of dissipation phenomena, which are related to the shear and bulk viscosities and heat conductivity of a medium, leads to an additional anisotropy of the sound amplitude, whose sign is opposite to that obtained in the above mentioned study.

  2. Solubilities of Solutes in Ionic Liquids from a SimplePerturbed-Hard-Sphere Theory

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yuan; Prausnitz, John M.

    2005-09-20

    In recent years, several publications have provided solubilities of ordinary gases and liquids in ionic liquids. This work reports an initial attempt to correlate the experimental data using a perturbed-hard-sphere theory; the perturbation is based on well-known molecular physics when the solution is considered as a dielectric continuum. For this correlation, the most important input parameters are hard-sphere diameters of the solute and of the cation and anion that constitute the ionic liquid. In addition, the correlation uses the solvent density and the solute's polarizability and dipole and quadrupole moments, if any. Dispersion-energy parameters are obtained from global correlation of solubility data. Results are given for twenty solutes in several ionic liquids at normal temperatures; in addition, some results are given for gases in two molten salts at very high temperatures. Because the theory used here is much simplified, and because experimental uncertainties (especially for gaseous solutes) are often large, the accuracy of the correlation presented here is not high; in general, predicted solubilities (Henry's constants) agree with experiment to within roughly {+-} 70%. As more reliable experimental data become available, modifications in the characterizing parameters are likely to improve accuracy. Nevertheless, even in its present form, the correlation may be useful for solvent screening in engineering design.

  3. Liquid Infused Surfaces in Turbulent Channel Flow

    Science.gov (United States)

    Fu, Matthew; Liu, Ying; Stone, Howard; Hultmark, Marcus

    2016-11-01

    Liquid infused surfaces have been proposed as a robust method for turbulent drag reduction. These surfaces consist of functionalized roughness elements wetted with a liquid lubricant that is immiscible with external fluids. The presence of the lubricant creates mobile, fluid-fluid interfaces, each of which can support a localized slip. Collectively, these interfaces yield a finite slip velocity at the effective surface, which has been demonstrated to reduce skin friction drag in turbulent flows. Retention of the lubricant layer is critical to maintaining the drag reduction effect. A turbulent channel-flow facility is used to characterize the drag reduction and robustness of various liquid infused surfaces. Micro-manufactured surfaces are mounted flush in the channel and exposed to turbulent flows. The retention of fluorescent lubricants and pressure drop are monitored to characterize the effects of surface geometry and lubricant properties. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim) and by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  4. Forced—Flow Convection for Liquid Methanol Flowing through Microchannels

    Institute of Scientific and Technical Information of China (English)

    X.F.Peng; B.X.Wang

    1993-01-01

    Experiments were conducted to investigate the single phase forced-flow convection of methanol flowing through microchannels with rectangular cross-section.The fully-developed turbulent convection regime was found to be initiated at about Re=1000-1500,The fully developed turbulent heat transfer can be predicted by the well-known Dittus-Boelter correlation with mere modification of the original empirical constant coefficient 0.023 to 0.00805.The transition and laminar heat transfer behaviors in microchannels are highly peculiar and complicated,and heavily affected by liquid temperature,velocity and microchannel size.

  5. Magnetorotational Instability in Liquid Metal Couette Flow

    CERN Document Server

    Noguchi, K; Colgate, S A; Nordhaus, J; Beckley, H F

    2002-01-01

    Despite the importance of the magnetorotational instability (MRI) as a fundamental mechanism for angular momentum transport in magnetized accretion disks, it has yet to be demonstrated in the laboratory. A liquid sodium alpha-omega dynamo experiment at the New Mexico Institute of Mining and Technology provides an ideal environment to study the MRI in a rotating metal annulus (Couette flow). A local stability analysis is performed as a function of shear, magnetic field strength, magnetic Reynolds number, and turbulent Prandtl number. The later takes into account the minimum turbulence induced by the formation of an Ekman layer against the rigidly rotating end walls of a cylindrical vessel. Stability conditions are presented and unstable conditions for the sodium experiment are compared with another proposed MRI experiment with liquid gallium. Due to the relatively large magnetic Reynolds number achievable in the sodium experiment, it should be possible to observe the excitation of the MRI for a wide range of w...

  6. Lavrent'ev problem for separated flows with an external perturbation

    Directory of Open Access Journals (Sweden)

    Dmitriy K. Potapov

    2013-11-01

    Full Text Available We study the Lavrent'ev mathematical model for separated flows with an external perturbation. This model consists of a differential equation with discontinuous nonlinearity and a boundary condition. Using a variational method, we show the existence of a semiregular solution. As a particular case, we study the one-dimensional model.

  7. An Exponential Decay Estimate for the Stationary Perturbation of Poiseuille Flow.

    Science.gov (United States)

    1987-10-01

    The pressure p’ is such that its gradient is given by Vp cc = (0, 0. -) , with P a positive constant. We define a perturbation of the Poiseuille flow...by Consejo de Desarrollo Cientifico y Humanistico. UCV. Caracas. 󈧚 Ap APPENDIX A In this appendix we will derive bounds for 11, 12 which are define

  8. Characterizing human skin blood flow regulation in response to different local skin temperature perturbations

    NARCIS (Netherlands)

    Wu, Y.; M.D. Nieuwenhoff (Mariska D.); F.J.P.M. Huygen (Frank); F.C.T. van der Helm (Frans C.); S.P. Niehof (Sjoerd); A.C. Schouten (A.)

    2017-01-01

    textabstractSmall nerve fibers regulate local skin blood flow in response to local thermal perturbations. Small nerve fiber function is difficult to assess with classical neurophysiological tests. In this study, a vasomotor response model in combination with a heating protocol was developed to

  9. Hard-sphere perturbation theory for a model of liquid Ga.

    Science.gov (United States)

    Tsai, K H; Wu, Ten-Ming

    2008-07-14

    Investigating thermodynamic properties of a model for liquid Ga, we have extended the application of the hard-sphere (HS) perturbation theory to an interatomic pair potential that possesses a soft repulsive core and a long-range oscillatory part. The model is interesting for displaying a discontinuous jump on the main-peak position of the radial distribution function at some critical density. At densities less than this critical value, the effective HS diameter of the model, estimated by the variational HS perturbation theory, has a substantial reduction with increasing density. Thus, the density dependence of the packing fraction of the HS reference fluid has an anomalous behavior, with a negative slope, within a density region below the critical density. By adding a correction term originally proposed by Mon to remedy the inherent deficiency of the HS perturbation theory, the extended Mansoori-Canfield/Rasaiah-Stell theory [J. Chem. Phys. 120, 4844 (2004)] very accurately predicts the Helmholtz free energy and entropy of the model, including an excess entropy anomaly. Almost occurring in the same density region, the excess entropy anomaly is found to be associated with the anomalous packing faction of the HS fluid.

  10. Gas flow headspace liquid phase microextraction.

    Science.gov (United States)

    Yang, Cui; Qiu, Jinxue; Ren, Chunyan; Piao, Xiangfan; Li, Xifeng; Wu, Xue; Li, Donghao

    2009-11-06

    There is a trend towards the use of enrichment techniques such as microextraction in the analysis of trace chemicals. Based on the theory of ideal gases, theory of gas chromatography and the original headspace liquid phase microextraction (HS-LPME) technique, a simple gas flow headspace liquid phase microextraction (GF-HS-LPME) technique has been developed, where the extracting gas phase volume is increased using a gas flow. The system is an open system, where an inert gas containing the target compounds flows continuously through a special gas outlet channel (D=1.8mm), and the target compounds are trapped on a solvent microdrop (2.4 microL) hanging on the microsyringe tip, as a result, a high enrichment factor is obtained. The parameters affecting the enrichment factor, such as the gas flow rate, the position of the microdrop, the diameter of the gas outlet channel, the temperatures of the extracting solvent and of the sample, and the extraction time, were systematically optimized for four types of polycyclic aromatic hydrocarbons. The results were compared with results obtained from HS-LPME. Under the optimized conditions (where the extraction time and the volume of the extracting sample vial were fixed at 20min and 10mL, respectively), detection limits (S/N=3) were approximately a factor of 4 lower than those for the original HS-LPME technique. The method was validated by comparison of the GF-HS-LPME and HS-LPME techniques using data for PAHs from environmental sediment samples.

  11. Subcritical transition scenarios via linear and nonlinear localized optimal perturbations in plane Poiseuille flow

    Science.gov (United States)

    Farano, Mirko; Cherubini, Stefania; Robinet, Jean-Christophe; De Palma, Pietro

    2016-12-01

    Subcritical transition in plane Poiseuille flow is investigated by means of a Lagrange-multiplier direct-adjoint optimization procedure with the aim of finding localized three-dimensional perturbations optimally growing in a given time interval (target time). Space localization of these optimal perturbations (OPs) is achieved by choosing as objective function either a p-norm (with p\\gg 1) of the perturbation energy density in a linear framework; or the classical (1-norm) perturbation energy, including nonlinear effects. This work aims at analyzing the structure of linear and nonlinear localized OPs for Poiseuille flow, and comparing their transition thresholds and scenarios. The nonlinear optimization approach provides three types of solutions: a weakly nonlinear, a hairpin-like and a highly nonlinear optimal perturbation, depending on the value of the initial energy and the target time. The former shows localization only in the wall-normal direction, whereas the latter appears much more localized and breaks the spanwise symmetry found at lower target times. Both solutions show spanwise inclined vortices and large values of the streamwise component of velocity already at the initial time. On the other hand, p-norm optimal perturbations, although being strongly localized in space, keep a shape similar to linear 1-norm optimal perturbations, showing streamwise-aligned vortices characterized by low values of the streamwise velocity component. When used for initializing direct numerical simulations, in most of the cases nonlinear OPs provide the most efficient route to transition in terms of time to transition and initial energy, even when they are less localized in space than the p-norm OP. The p-norm OP follows a transition path similar to the oblique transition scenario, with slightly oscillating streaks which saturate and eventually experience secondary instability. On the other hand, the nonlinear OP rapidly forms large-amplitude bent streaks and skips the phases

  12. Thermodynamic Perturbation Theory for Solid-Liquid Phase Transition of Lennard-Jones Model

    Institute of Scientific and Technical Information of China (English)

    ZHOUShi-Qi; ZHANGXiao-Qi

    2004-01-01

    Both a free volume approach for Helmholtz free energy and a theoretically-based fitted formula for radial distribution function (rdf) of hard sphere solid are employed to describe the Helmholtz free energy of Lennard-Jones solid in the framework of the first order thermodynamic perturbation theory, which also is employed for the uniform Lennard Jones fluid. The dividing of the Lennard-Jones potential follows from the INCA prescription, but the specification of the equivalent hard sphere diameter is determined by a simple iteration procedure devised originally for liquid state, but extended to solid state in the present study. Two hundred shells are used in the rdf to get an accurate perturbation term.The present approach is very accurate for the description of excess Helmholtz free energy of LJ solid, but shows some deviation from the simulation for excess Helmholtz free energy of uniform LJ fluid when the reduced temperature kT/ε is higher then 5. The present approach is satisfactory for description of solid-liquid phase transition of the Lennard-Jones model.

  13. Thermodynamic Perturbation Theory for Solid-Liquid Phase Transition of Lennard-Jones Model

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shi-Qi; ZHANG Xiao-Qi

    2004-01-01

    Both a free volume approach for Helmholtz free energy and a theoretically-based fitted formula for radial distribution function (rdf) of hard sphere solid are employed to describe the Helmholtz free energy of Lennard-Jones solid in the framework of the first order thermodynamic perturbation theory, which also is employed for the uniform LennardJones fluid. The dividing of the Lennard-Jones potential follows from the WCA prescription, but the specification of the equivalent hard sphere diameter is determined by a simple iteration procedure devised originally for liquid state, but extended to solid state in the present study. Two hundred sheiks are used in the rdf to get an accurate perturbation term.The present approach is very accurate for the description of excess Helmholtz free energy of LJ solid, but shows some deviation from the simulation for excess Helmholtz free energy of uniform LJ fluid when the reduced temperature kT/ε is higher then 5. The present approach is satisfactory for description of solid-liquid phase transition of the Lennard-Jones model.

  14. Analytic Flow Equations for the Fermi Liquid Parameters of the Anderson Impurity Model.

    Science.gov (United States)

    Pandis, Vassilis; Hewson, Alex C

    2015-08-14

    The low temperature behavior of a Fermi liquid can be described in terms of quasiparticle excitations that are in 1-1 correspondence with those of the noninteracting system. Because of adiabatic continuity, the Landau parameters, which describe the interactions between the quasiparticles, must evolve continuously as the interactions are turned on and be described by a set of flow equations. For strongly correlated electron systems it is not possible to follow this flow in perturbation theory when the interactions become strong. We explore the idea here of overcoming this problem by renormalizing the quasiparticles in this flow using a renormalized perturbation theory. This approach is tested in the case of a single impurity Anderson model. Analytic flow equations are derived which give excellent results for the Landau parameters in the strong correlation regime.

  15. Flow Induced Electrification of Liquid Insulated Systems.

    Science.gov (United States)

    Washabaugh, Andrew Patrick

    1995-01-01

    The transport or motion of semi-insulating liquids has led to flow induced static electrification and catastrophic failures in several industries. While techniques for reducing the hazard have been developed, the roles of seemingly important parameters are poorly understood. The objective of this thesis was to measure and understand the fundamental parameters of the flow electrification process that, together with the laws of electroquasistatics and physicochemical hydrodynamics, can be used to predict the performance of complex flow systems, with particular attention to transformer applications. A rotating cylindrical electrode apparatus, which provided cylindrical Couette flow, was used to simulate flow electrification in an electric power transformer. The apparatus had Shell Diala A transformer oil filling the annulus between coaxial cylindrical stainless steel electrodes that were either bare metal, or covered by a thin copper sheet and/or EHV-Weidmann HiVal pressboard insulation. Extensive experiments characterized the time transient and steady state behavior of the electrification through measurements of the volume charge density, the terminal voltage, and the terminal current as the system was driven out of equilibrium by changes in the flow rate (inner cylinder rotation rates of 100-1400 rpm, Reynolds numbers of 5 times 10^3-5 times 10^5), temperature (15-70 ^circ), insulation moisture content (0.5-20 ppm in the oil), applied voltage (0-2 kV DC), and concentration of the non-ionizable anti-static additive 1,2,3 benzotriazole (BTA, 0-60 ppm). Generally, the electrification increased with flow rate and temperature but the BTA appeared to cause competing effects: it decreased the volume charge density on the liquid side of the interface (by a factor of 4), which reduces the electrification, but also decreased the oil conductivity (by a factor of 10), which enhances the electrification. A critical oil BTA concentration of 5 -8 ppm minimized the electrification

  16. Investigation on Liquid Holdup in Vertical Zero Net-Liquid Flow

    Institute of Scientific and Technical Information of China (English)

    刘磊; StuartL.Scott

    2001-01-01

    Zero net-liquid flow (ZNLF) is a special case of upward gas-liquid two-phase flow. It is a phenomenon observed as a gas-liquid mixture flows in a conduit but the net liquid flow rate is zero. Investigation on the liquid holdup of ZNLF is conducted in a vertical ten-meter tube with diameter of 76 mm, both for Newtonian and nonNewtonian fluids. The gas phase is air. The Newtonian fluid is water and the non-Newtonian fluids are water-based guar gel solutions. The correlations developed for predicting liquid holdup on the basis of Lockhart-Martinelli parameter are not suitable to ZNLF. A constitutive correlation for the liquid holdup of vertical ZNLF was put forward by using the mass balance. It is found that the liquid holdup in ZNLF is dependent on both the gas flow rate and the flow distribution coefficient.

  17. Investigation on Liquid Holdup in Vertical Zero Net-Liquid Flow

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Zero net-liquid flow (ZNLF) is a special case of upward gas-liquid two-phase flow. It is a phenomenon observed as a gas-liquid mixture flows in a conduit but the net liquid flow rate is zero. Investigation on the liquid holdup of ZNLF is conducted in a vertical ten-meter tube with diameter of 76 mm, both for Newtonian and non Newtonian fluids. The gas phase is air. The Newtonian fluid is water and the non-Newtonian fluids are water-based guar gel solutions. The correlations developed for predicting liquid holdup on the basis of Lockhart-Martinelli parameter are not suitable to ZNLF. A constitutive correlation for the liquid holdup of vertical ZNLF was put forward by using the mass balance. It is found that the liquid holdup in ZNLF is dependent on both the gas flow rate and the flow distribution coefficient.

  18. Perturbations of the flow induced by a microcapsule in a capillary tube

    Science.gov (United States)

    Gubspun, J.; de Loubens, C.; Trozzo, R.; Deschamps, J.; Georgelin, M.; Edwards-Levy, F.; Leonetti, M.

    2017-06-01

    Soft microcapsules moving in a cylindrical capillary deform from quasi-spherical shapes to elongated shapes with an inversion of curvature at the rear. We investigated the perturbation of the flow by particle tracking velocimetry around deformed microcapsules in confined flow. These experiments are completed by numerical simulations. Microcapsules are made of a thin membrane of polymerized human albumin and their shear elastic moduli are previously characterized in a cross flow chamber. Firstly, the velocity of the microcapsule can be calculated by theoretical predictions for rigid spheres, even for large deformations as ‘parachute-like’ shapes, if a relevant definition of the ratio of confinement is chosen. Secondly, at the rear and the front of the microcapsule, the existence of multiple recirculation regions is governed by the local curvature of the membrane. The amplitudes of these perturbations increase with the microcapsule deformation, whereas their axial extents are comparable to the radius of the capillary whatever the confinement and the capillary number. We conclude that whereas the motion of microcapsules in confined flow has quantitative similitudes with rigid spheres in terms of velocity and axial extent of the perturbation, their presence induces variations in the flow field that are related to the local deformation of the membrane as in droplets.

  19. Rheological effect on thermocapillary flow of a liquid film jet painted on a moving boundary

    Institute of Scientific and Technical Information of China (English)

    HU; Wenrui(胡文瑞); HUI; W.H.(许为厚)

    2002-01-01

    In the present paper, a liquid (or melt) film of relatively high temperature ejected from a vessel and painted on the moving solid film is analyzed by using the second-order fluid model of the non-Newtonian fluid. The thermocapillary flow driven by the temperature gradient on the free surface of a Newtonian liquid film was discussed before. The effect of rheological fluid on thermocapillary flow is considered in the present paper. The analysis is based on the approximations of lubrication theory and perturbation theory. The equation of liquid height and the process of thermal hydrodynamics of the non-Newtonian liquid film are obtained, and the case of weak effect of the rheological fluid is solved in detail.

  20. ASYMPTOTIC ANALYSIS OF DOWNSTREAM EIGENVALUES FOR STATIONARY PERTURBATION OF COUETTE-POISEUILLE FLOW

    Institute of Scientific and Technical Information of China (English)

    Song Jin-bao; Wei En-bo; Tian Ji-wei

    2003-01-01

    Two-dimensional viscous flow in a straight channel was studied. The steady Navier-Stokes equations were linearized on the assumption of small disurbance from the Couette-Poiseuille flow, leading to an eigenvalue equation resembling the Orr-Sommerfeld equation. The eigenvalues determine the rate of decay for the stationary perturbation. Asymptotic forms of the downstream eigenvalues were derived in the limiting cases of small and large Reynolds number, for the flow with a general mass flux per unit width, and thus the work of Wilson (1969) and Stocker and Duck (1995) was generalized. The asymptotic results are in agreement with numerical ones presented by Song and Chen (1995).

  1. Instability of an inviscid flow between rotating porous cylinders with radial flow to three-dimensional perturbations

    CERN Document Server

    Ilin, Konstantin

    2015-01-01

    We study the stability of two-dimensional flows in an annulus between two permeable cylinders with respect to three-dimensional perturbations. The basic flow is irrotational, and both radial and azimuthal components of the velocity are non-zero. The direction of the radial flow can be from the inner cylinder to the outer one (the diverging flow) or from the outer cylinder to the inner one (the converging flow). It is shown that, independent of the direction of the radial flow, the basic flow is unstable to small two-dimensional perturbations provided that the ratio of the azimuthal component of the velocity to the radial one is sufficiently large. The instability is oscillatory, and the unstable modes represent travelling azimuthal waves. Neutral curves in the space of parameters of the problem are computed. It turns out that for any geometry of the problem, the most unstable modes (corresponding to the smallest ratio of the azimuthal velocity to the radial one) are two-dimensional ones studied earlier in \\ci...

  2. Effect of initial perturbation amplitude on Richtmyer-Meshkov flows induced by strong shocks

    Energy Technology Data Exchange (ETDEWEB)

    Dell, Z.; Abarzhi, S. I., E-mail: snezhana.abarzhi@gmail.com, E-mail: sabarji@andrew.cmu.edu [Mellon College of Science and Carnegie Mellon University – Qatar, Carnegie Mellon University, Pittsburgh, Pennsylvania 15231 (United States); Stellingwerf, R. F. [Stellingwerf Consulting, Huntsville, Alabama 35803 (United States)

    2015-09-15

    We systematically study the effect of the initial perturbation on Richtmyer-Meshkov (RM) flows induced by strong shocks in fluids with contrasting densities. Smooth Particle Hydrodynamics simulations are employed. A broad range of shock strengths and density ratios is considered. The amplitude of the initial single mode sinusoidal perturbation of the interface varies from 0% to 100% of its wavelength. The simulations results are compared, wherever possible, with four rigorous theories, and with other experiments and simulations, achieving good quantitative and qualitative agreement. Our study is focused on early time dynamics of the Richtmyer-Meshkov instability (RMI). We analyze the initial growth-rate of RMI immediately after the shock passage, when the perturbation amplitude increases linearly with time. For the first time, to the authors' knowledge, we find that the initial growth-rate of RMI is a non-monotone function of the initial perturbation amplitude, thus restraining the amount of energy that can be deposited by the shock at the interface. The maximum value of the initial growth-rate depends on the shock strength and the density ratio, whereas the corresponding value of the initial perturbation amplitude depends only slightly on the shock strength and density ratio.

  3. Characterizing human skin blood flow regulation in response to different local skin temperature perturbations.

    Science.gov (United States)

    Wu, Y; Nieuwenhoff, M D; Huygen, F J P M; van der Helm, F C T; Niehof, S; Schouten, A C

    2017-05-01

    Small nerve fibers regulate local skin blood flow in response to local thermal perturbations. Small nerve fiber function is difficult to assess with classical neurophysiological tests. In this study, a vasomotor response model in combination with a heating protocol was developed to quantitatively characterize the control mechanism of small nerve fibers in regulating skin blood flow in response to local thermal perturbation. The skin of healthy subjects' hand dorsum (n=8) was heated to 42°C with an infrared lamp, and then naturally cooled down. The distance between the lamp and the hand was set to three different levels in order to change the irradiation intensity on the skin and implement three different skin temperature rise rates (0.03°C/s, 0.02°C/s and 0.01°C/s). A laser Doppler imager (LDI) and a thermographic video camera recorded the temporal profile of the skin blood flow and the skin temperature, respectively. The relationship between the skin blood flow and the skin temperature was characterized by a vasomotor response model. The model fitted the skin blood flow response well with a variance accounted for (VAF) between 78% and 99%. The model parameters suggested a similar mechanism for the skin blood flow regulation with the thermal perturbations at 0.03°C/s and 0.02°C/s. But there was an accelerated skin vasoconstriction after a slow heating (0.01°C/s) (p-value<0.05). An attenuation of the skin vasodilation was also observed in four out of the seven subjects during the slow heating (0.01°C/s). Our method provides a promising way to quantitatively assess the function of small nerve fibers non-invasively and non-contact.

  4. Continuous gas/liquid–liquid/liquid flow synthesis of 4-fluoropyrazole derivatives by selective direct fluorination

    Directory of Open Access Journals (Sweden)

    Jessica R. Breen

    2011-08-01

    Full Text Available 4-Fluoropyrazole systems may be prepared by a single, sequential telescoped two-step continuous gas/liquid–liquid/liquid flow process from diketone, fluorine gas and hydrazine starting materials.

  5. Simultaneous pulsatile flow and oscillating wall of a non-Newtonian liquid

    Science.gov (United States)

    Herrera-Valencia, E. E.; Sánchez-Villavicencio, M. L.; Calderas, F.; Pérez-Camacho, M.; Medina-Torres, L.

    2016-11-01

    In this work, analytical predictions of the rectilinear flow of a non-Newtonian liquid are given. The fluid is subjected to a combined flow: A pulsatile time-dependent pressure gradient and a random longitudinal vibration at the wall acting simultaneously. The fluctuating component of the combined pressure gradient and oscillating flow is assumed to be of small amplitude and can be adequately represented by a weakly stochastic process, for which a quasi-static perturbation solution scheme is suggested, in terms of a small parameter. This flow is analyzed with the Tanner constitutive equation model with the viscosity function represented by the Ellis model. According to the coupled Tanner-Ellis model, the flow enhancement can be separated in two contributions (pulsatile and oscillating mechanisms) and the power requirement is always positive and can be interpreted as the sum of a pulsatile, oscillating, and the coupled systems respectively. Both expressions depend on the amplitude of the oscillations, the perturbation parameter, the exponent of the Ellis model (associated to the shear thinning or thickening mechanisms), and the Reynolds and Deborah numbers. At small wall stress values, the flow enhancement is dominated by the axial wall oscillations whereas at high wall stress values, the system is governed by the pulsating noise perturbation. The flow transition is obtained for a critical shear stress which is a function of the Reynolds number, dimensionless frequency and the ratio of the two amplitudes associated with the pulsating and oscillating perturbations. In addition, the flow enhancement is compared with analytical and numerical predictions of the Reiner-Phillipoff and Carreau models. Finally, the flow enhancement and power requirement are predicted using biological rheometric data of blood with low cholesterol content.

  6. Synthesis of electroactive ionic liquids for flow battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Travis Mark; Ingersoll, David; Staiger, Chad; Pratt, Harry

    2015-09-01

    The present disclosure is directed to synthesizing metal ionic liquids with transition metal coordination cations, where such metal ionic liquids can be used in a flow battery. A cation of a metal ionic liquid includes a transition metal and a ligand coordinated to the transition metal.

  7. Capillary-Driven Flow in Liquid Filaments Connecting Orthogonal Channels

    Science.gov (United States)

    Allen, Jeffrey S.

    2005-01-01

    Capillary phenomena plays an important role in the management of product water in PEM fuel cells because of the length scales associated with the porous layers and the gas flow channels. The distribution of liquid water within the network of gas flow channels can be dramatically altered by capillary flow. We experimentally demonstrate the rapid movement of significant volumes of liquid via capillarity through thin liquid films which connect orthogonal channels. The microfluidic experiments discussed provide a good benchmark against which the proper modeling of capillarity by computational models may be tested. The effect of surface wettability, as expressed through the contact angle, on capillary flow will also be discussed.

  8. Squire's transformation and 3D Optimal Perturbations in Bounded Parallel Shear Flows

    Science.gov (United States)

    Chomaz, Jean-Marc; Soundar Jerome, J. John

    2011-11-01

    The aim of this short communication is to present the implication of Squire's transformation on the optimal transient growth of arbitrary 3D disturbances in parallel shear flow bounded in the cross-stream direction. To our best knowledge this simple property has never been discussed before. In particular it allows to express the long-time optimal growth for perturbations of arbitrary wavenumbers as the product of the gains from the 2D optimal at a lower Reynolds number itself due to the Orr-mechanism by a term that may be identified as due to the lift-up mechanism. This property predict scalings for the 3D optimal perturbation well verified by direct computation. It may be extended to take into account buoyancy effect.

  9. Sensitivity of helioseismic measurements of normal-mode coupling to flows and sound-speed perturbations

    Science.gov (United States)

    Hanasoge, Shravan M.; Woodard, Martin; Antia, H. M.; Gizon, Laurent; Sreenivasan, Katepalli R.

    2017-09-01

    In this article, we derive and compute the sensitivity of measurements of coupling between normal modes of oscillation in the Sun to underlying flows. The theory is based on first-born perturbation theory, and the analysis is carried out using the formalism described by Lavely & Ritzwoller (1992). Albeit tedious, we detail the derivation and compute the sensitivity of specific pairs of coupled normal modes to anomalies in the interior. Indeed, these kernels are critical for the accurate inference of convective flow amplitudes and large-scale circulations in the solar interior. We resolve some inconsistencies in the derivation of Lavely & Ritzwoller (1992) and reformulate the fluid-continuity condition. We also derive and compute sound-speed kernels, paving the way for inverting for thermal anomalies alongside flows.

  10. Linear perturbations of mono dimensional flows in planar, cylindrical and spherical geometries; Perturbations lineaires d'ecoulements monodimensionnels a geometries plane, cylindrique et spherique

    Energy Technology Data Exchange (ETDEWEB)

    Morice, J. [Bordeaux-1 Univ., Ecole Matmeca, 33 - Talence (France); Jaouen, St. [CEA Bruyeres-le-Chatel, Dept. Sciences de la Simulation et de l' Information, 91 (France)

    2003-07-01

    We derive the systems of equations satisfied by the linear Lagrangian perturbations of gas dynamics in planar, cylindrical and spherical geometries, using the canonical forms pointed out by B. Despres et al. (B. Despres, 2001 B. Despres and C. Mazeran, 2003). One of the interests of this approach is that it should be applied to more complex models (those which enter the B. Despres' formalism as 2T-hydrodynamics, MHD, reactive gas dynamics, etc.). Another one is that it is rather easy to derive entropic numerical schemes for the basic flow and their linearized versions for the perturbations. (authors)

  11. Advection of nematic liquid crystals by chaotic flow

    CERN Document Server

    O'Naraigh, Lennon

    2016-01-01

    Consideration is given to the effects of inhomogeneous shear flow (both regular and chaotic) on nematic liquid crystals in a planar two-dimensional geometry. The Landau-de Gennes equation coupled to an externally-prescribed flow field is the basis for the study: this is solved numerically in a periodic spatial domain. The focus is on a limiting case where the advection is passive, such that variations in the liquid-crystal properties do not feed back into the equation of motion for the uid velocity. The numerical simulations demonstrate that the coarsening of the liquid-crystal domains is arrested by the ow. The nature of the arrest is different depending on whether the flow is regular or chaotic. For the specific case where tumbling is important, the flow has a strong effect on the the liquid-crystal morphology: this provides a mechanism for controlling the shape of the liquid-crystal domains.

  12. Automated methanol dosage using liquid flow controllers; Automatisierte Methanolregelung mit Liquid Flow Controllern

    Energy Technology Data Exchange (ETDEWEB)

    Sattler, Thomas [Buerkert Fluid Control Systems, Ingelfingen (Germany)

    2010-12-15

    Transmission gearwheels are frequently exposed to extreme loads. Generally, in order to counteract premature wear, gearwheels made from steel are surface-hardened. This is carried out primarily by gas carburizing and subsequent quenching (case hardening). These processes of gas carburizing increase the carbon content in the boundary area of the workpiece and change the boundary structure of the steel. In the foundation Institut fuer Werkstofftechnik (IWT) (Institute for Materials Engineering) in Bremen, they are engaged intensively with the various processes of heat treatment for the hardening of steel. As an alternative to gas carburizing using endogas, the Nitrogen-Methanol Process, in which liquid methanol is directly introduced into the furnace, plays an important role and is gaining in importance. At the IWT, Liquid Flow Controllers (LFC) provide regulated and completely documented processes. (orig.)

  13. Liquid-intake flow around the tip of butterfly proboscis.

    Science.gov (United States)

    Lee, Sang Joon; Lee, Seung Chul; Kim, Bo Heum

    2014-05-01

    Butterflies drink liquid through a slender proboscis using a large pressure gradient induced by the systaltic operation of a muscular pump inside their head. Although the proboscis is a naturally well-designed coiled micro conduit for liquid uptake and deployment, it has been regarded as a simple straw connected to the muscular pump. There are few studies on the transport of liquid food in the proboscis of a liquid-feeding butterfly. To understand the liquid-feeding mechanism in the proboscis of butterflies, the intake flow around the tip of the proboscis was investigated in detail. In this study, the intake flow was quantitatively visualized using a micro-PIV (particle image velocimetry) velocity field measurement technique. As a result, the liquid-feeding process consists of an intake phase, an ejection phase and a rest phase. When butterflies drink pooled liquid, the liquid is not sucked into the apical tip of the proboscis, but into the dorsal linkage aligned longitudinally along the proboscis. To analyze main characteristics of the intake flow around a butterfly proboscis, a theoretical model was established by assuming that liquid is sucked into a line sink whose suction rate linearly decreases proximally. In addition, the intake flow around the tip of a female mosquito׳s proboscis which has a distinct terminal opening was also visualized and modeled for comparison. The present results would be helpful to understand the liquid-feeding mechanism of a butterfly.

  14. A liquid-independent volume flow measurement principle

    NARCIS (Netherlands)

    Geers, L.F.G.; Volker, A.W.F.; Hunter, T.P.M.

    2010-01-01

    A novel flow measurement principle is presented enabling non-intrusive volume flow measurements of liquids in the ml/min range. It is based on an opto-acoustical time-of-flight principle, where the time interval is recorded in which a thermal label travels a known distance through a flow channel. Bi

  15. Computational Analyses of Cavitating Flows in Cryogenic Liquid Hydrogen

    Institute of Scientific and Technical Information of China (English)

    Tiezhi Sun; Yingjie Wei; Cong Wang∗

    2016-01-01

    The objective of this study is to analyze the fundamental characteristics and the thermodynamic effects of cavitating flows in liquid hydrogen. For this purpose, numerical simulation of cavitating flows are conducted over a three dimensional hydrofoil in liquid hydrogen. Firstly, the efficiency of this computational methodology is validated through comparing the simulation results with the experimental measurements of pressure and temperature. Secondly, after analysing the cavitating flows in liquid hydrogen and water, the characteristics under cryogenic conditions are highlighted. The results show that the thermodynamic effects play a significant role in the cavity structure and the mass transfer, the dimensionless mass transfer rate of liquid hydrogen is much larger, and the peak value is about ninety times as high as water at room temperature. Furthermore, a parametric study of cavitating flows on hydrofoil is conducted by considering different cavitation number and dimensionless thermodynamic coefficient. The obtained results provide an insight into the thermodynamic effect on the cavitating flows.

  16. Theoretical background and the flow fields in downhole liquid-liquid hydrocyclone (LLHC

    Directory of Open Access Journals (Sweden)

    Osei Harrison

    2014-07-01

    Full Text Available Hydrocyclone system for downhole oil-water separation provides an effective technique of enhancing the economic viability of higher water-cut wells while at the same time reducing the risk of environmental pollution. This paper describes the hydrodynamics of the liquid-liquid hydrocyclones and the flow fields within it are paramount for achieving successful separation process. Some of the important hydrodynamic flow phenomenon within the liquid-liquid hydrocyclone and how they influence the separation efficiency of water/oil was analyzed through analytical solution. The properties of the liquids were based on Bayan offshore field measured properties. The results indicated that there are two swirling zones separated by stagnant flow field. The inner is the light liquid zone, while the outer is the heavy liquid zone.

  17. Molecular thermodynamic modeling of ionic liquids using the perturbation-based linear Yukawa isotherm regularity

    Science.gov (United States)

    Sohrabi Mahboub, Mahdi; Farrokhpour, Hossein

    2016-06-01

    In this paper, we present the results of an extensive study on a novel approach to the molecular modeling of pure ionic liquids (ILs) that incorporates the perturbed thermodynamic linear Yukawa isotherm regularity (LYIR), which is derived based on an effective nearest neighboring pair attractive interaction of the Yukawa potential. The LYIR was used to model the densities of ILs up to high pressures (35 MPa) and in the temperature range 293.15 to 393.15 K. To use the LYIR for ILs, a simple molecular model was proposed to describe their molecular structure, in which they were considered as a liquid consisting of the ion pairs moving together in the fluid, and each ion pair was assumed to be a one-center spherical united atom. The ILs under consideration contained one of the IL cations [C2mim]+, [C4mim]+, [C7mim]+, [C8mim]+, [C3mpy]+, [C3mpip]+, [C3mpyr]+ or [C4mpyr]+, and one of the IL anions [BF4]-, [C(CN)3]-, [CF3SO4]- or [NTf2]-. The reliability and physical significance of the parameters as well as the proposed molecular model were tested by calculating the densities of pure imidazolium-, pyridinium-, piperidinium- and pyrrolidimium-based ILs. The results showed that the LYIR can be used to predict and reproduce the density of ILs in good agreement with the experimental data. In addition, the LYIR enabled us to determine the physical quantities, such as an effective Yukawa screening length, λ eff, the product of the effective energy well depth and the effective coordination number, (ɛ eff/k)z eff, the contribution of the non-reference thermal pressure and also the influence of the anionic and cationic structure on the λ eff parameter. The standard deviation of the IL densities predicted in this work is lower than those calculated by the one other important equation of state reported in the literature.

  18. Liquid theory with high accuracy and broad applicability: Coupling parameter series expansion and non hard sphere perturbation strategy

    Science.gov (United States)

    Zhou, Shiqi

    2011-12-01

    Thermodynamic and structural properties of liquids are of fundamental interest in physics, chemistry, and biology, and perturbation approach has been fundamental to liquid theoretical approaches since the dawn of modern statistical mechanics and remains so to this day. Although thermodynamic perturbation theory (TPT) is widely used in the chemical physics community, one of the most popular versions of the TPT, i.e. Zwanzig (Zwanzig, R. W. J. Chem. Phys. 1954, 22, 1420-1426) 1st-order high temperature series expansion (HTSE) TPT and its 2nd-order counterpart under a macroscopic compressibility approximation of Barker-Henderson (Barker, J. A.; Henderson, D. J. Chem. Phys. 1967, 47, 2856-2861), have some serious shortcomings: (i) the nth-order term of the HTSE is involved with reference fluid distribution functions of order up to 2n, and the higher-order terms hence progressively become more complicated and numerically inaccessible; (ii) the performance of the HTSE rapidly deteriorates and the calculated results become even qualitatively incorrect as the temperature of interest decreases. This account deals with the developments that we have made over the last five years or so to advance a coupling parameter series expansion (CPSE) and a non hard sphere (HS) perturbation strategy that has scored some of its greatest successes in overcoming the above-mentioned difficulties. In this account (i) we expatiate on implementation details of our schemes: how input information indispensable to high-order truncation of the CPSE in both the HS and non HS perturbation schemes is calculated by an Ornstein-Zernike integral equation theory; how high-order thermodynamic quantities, such as critical parameters and excess constant volume heat capacity, are extracted from the resulting excess Helmholtz free energy with irregular and inevitable numerical errors; how to select reference potential in the non HS perturbation scheme. (ii) We give a quantitative analysis on why convergence

  19. Liquid theory with high accuracy and broad applicability: Coupling parameter series expansion and non hard sphere perturbation strategy

    Directory of Open Access Journals (Sweden)

    Shiqi Zhou

    2011-12-01

    Full Text Available Thermodynamic and structural properties of liquids are of fundamental interest in physics, chemistry, and biology, and perturbation approach has been fundamental to liquid theoretical approaches since the dawn of modern statistical mechanics and remains so to this day. Although thermodynamic perturbation theory (TPT is widely used in the chemical physics community, one of the most popular versions of the TPT, i.e. Zwanzig (Zwanzig, R. W. J. Chem. Phys. 1954, 22, 1420-1426 1st-order high temperature series expansion (HTSE TPT and its 2nd-order counterpart under a macroscopic compressibility approximation of Barker-Henderson (Barker, J. A.; Henderson, D. J. Chem. Phys. 1967, 47, 2856-2861, have some serious shortcomings: (i the nth-order term of the HTSE is involved with reference fluid distribution functions of order up to 2n, and the higher-order terms hence progressively become more complicated and numerically inaccessible; (ii the performance of the HTSE rapidly deteriorates and the calculated results become even qualitatively incorrect as the temperature of interest decreases. This account deals with the developments that we have made over the last five years or so to advance a coupling parameter series expansion (CPSE and a non hard sphere (HS perturbation strategy that has scored some of its greatest successes in overcoming the above-mentioned difficulties. In this account (i we expatiate on implementation details of our schemes: how input information indispensable to high-order truncation of the CPSE in both the HS and non HS perturbation schemes is calculated by an Ornstein-Zernike integral equation theory; how high-order thermodynamic quantities, such as critical parameters and excess constant volume heat capacity, are extracted from the resulting excess Helmholtz free energy with irregular and inevitable numerical errors; how to select reference potential in the non HS perturbation scheme. (ii We give a quantitative analysis on why

  20. Jet-mixing of initially-stratified liquid-liquid pipe flows: experiments and numerical simulations

    Science.gov (United States)

    Wright, Stuart; Ibarra-Hernandes, Roberto; Xie, Zhihua; Markides, Christos; Matar, Omar

    2016-11-01

    Low pipeline velocities lead to stratification and so-called 'phase slip' in horizontal liquid-liquid flows due to differences in liquid densities and viscosities. Stratified flows have no suitable single point for sampling, from which average phase properties (e.g. fractions) can be established. Inline mixing, achieved by static mixers or jets in cross-flow (JICF), is often used to overcome liquid-liquid stratification by establishing unstable two-phase dispersions for sampling. Achieving dispersions in liquid-liquid pipeline flows using JICF is the subject of this experimental and modelling work. The experimental facility involves a matched refractive index liquid-liquid-solid system, featuring an ETFE test section, and experimental liquids which are silicone oil and a 51-wt% glycerol solution. The matching then allows the dispersed fluid phase fractions and velocity fields to be established through advanced optical techniques, namely PLIF (for phase) and PTV or PIV (for velocity fields). CFD codes using the volume of a fluid (VOF) method are then used to demonstrate JICF breakup and dispersion in stratified pipeline flows. A number of simple jet configurations are described and their dispersion effectiveness is compared with the experimental results. Funding from Cameron for Ph.D. studentship (SW) gratefully acknowledged.

  1. A minimum action method for small random perturbations of two-dimensional parallel shear flows

    Science.gov (United States)

    Wan, Xiaoliang

    2013-02-01

    In this work, we develop a parallel minimum action method for small random perturbations of Navier-Stokes equations to solve the optimization problem given by the large deviation theory. The Freidlin-Wentzell action functional is discretized by hp finite elements in time direction and spectral methods in physical space. A simple diagonal preconditioner is constructed for the nonlinear conjugate gradient solver of the optimization problem. A hybrid parallel strategy based on MPI and OpenMP is developed to improve numerical efficiency. Both h- and p-convergence are obtained when the discretization error from physical space can be neglected. We also present preliminary results for the transition in two-dimensional Poiseuille flow from the base flow to a non-attenuated traveling wave.

  2. Unidimensional transient flow of liquid with a variable gradient of initial flow

    Energy Technology Data Exchange (ETDEWEB)

    Molokovich, Yu.M.; Skvortsov, E.V.

    1970-09-01

    Both field and laboratory experience have shown that certain crude oils, containing polar components and solid hydrocarbons, possess structural-mechanical properties and therefore are visco-plastic liquids. A characteristic property of such liquids is that they do not flow until a threshold pressure gradient is reached. It is known that structural-mechanical properties of a visco-plastic liquid vary from one area of the field to another. Also, when water is injected into a reservoir, the temperature distribution is changed and this changes the resistance of liquid to flow. There is a theoretical and practical interest to study the problem of variable threshold flow pressure in a reservoir. This is done for linear- parallel flow and for planar radial flow. Analytically, the threshold flow pressure is expressed as a function of spatial coordinates. Equations are derived which express pressure as a function of time and coordinates in reservoir containing a visco-plastic liquid. (13 refs.)

  3. The dynamic response of hyporheic zone redox zonation after surface flow perturbation

    Science.gov (United States)

    Kaufman, M.; Zheng, L.; Cardenas, M. B.

    2015-12-01

    As water in a stream or river flows over ripples and other bedforms, differential surface pressures create bedform-induced hyporheic exchange. The oxygen, carbon, and nutrients carried into the bed by the surface water as well as those already existing in the bed material form the basis for microbial communities in the sediment.The resulting dissolved oxygen conditions are a critical control on the ecological function of the hyporheic zone (HZ), from both micro- and macro-biological habitat perspectives. Because hyporheic exchange rates are controlled by surface flow velocity, variations in surface flow have significant impact on the subsurface oxygen conditions. Most rivers are subject to flow velocity variations due to natural forcing including precipitation and variations in evapotranspiration as well as anthropogenic forces like dam releases. We use a large (10m x 0.7m x 0.3m) programmable flume instrumented with a bedform-scale high-resolution planar optode dissolved oxygen imaging system to observe the distribution of oxygenated sediment within the HZ over time. Using this system we characterize the rate at which hyporheic oxygen conditions reconfigure in response to changes in the surface flow velocity, particularly the time it takes for conditions to recover after a pulse of increased flow velocity. In addition, we make use of numerical models to further identify critical response time drivers. With these tools, we develop equations to describe the post-disturbance recovery time as a function of relative pulse magnitude and duration. Using these equations we can predict the time scale over which the hyporheic zone will recover following both natural and anthropogenic flow regime disturbances. Being able to predict the magnitude and duration of dissolved oxygen changes in the wake of flow perturbing events allows us to better understand the impact these disturbances have on the ecology of the hyporheic zone.

  4. Perturbation Enstrophy Decay in Poiseuille and Couette Flows according to Synge's Method

    Science.gov (United States)

    Domenicale, Loris; Fraternale, Federico; Staffilani, Gigliola; Tordella, Daniela

    2015-11-01

    In this work we derive the conditions for no enstrophy growth for bidimensional perturbations in the plane Couette and Poiseuille flows. We follow the method of vorticity proposed by Synge in 1938 (see the Semi-Centennial Puplication of the Amer. Math. Soc., equation 12.13, and the more detailed version in the Proc. of the Fifth Inter. Congress of Applied Mechanics, pages 326-332), which is actually based on the analysis of the spatially averaged enstrophy. We find that the limit curve in the perturbation wavenumber-Reynolds number map differs from the limit for no energy growth (see e.g. Reddy 1993). In particular, the absolute stability region for the enstrophy is wider than that of the kinetic energy, and the maximum Reynolds number giving the monotonic enstrophy decay, at all wavenumbers, is 155 and 80 for the Poiseuille and Couette flows, respectively. It should be noted that in past literature the energy-based analysis was preferred to Synge's enstrophy analysis. This, possibly, for two reasons: the low diffusivity of the 1938 Vth ICAM proceedings and the objectively very complicated analytical treatment required. Nevertheless, the potentiality of this method seems high and therefore it is interesting nowadays to exploit it by means of the symbolic calculus. MITOR-MISTI SEEDS GRANT http://web.mit.edu/mitor/recipients/faculty.html

  5. Liquid-liquid flow past a bluff body

    Science.gov (United States)

    Park, Kyeong H.; Abidin, M. I. I. Zainal; Angeli, Panagiota; Kahouadji, Lyes; Xie, Zhihua; Matar, Omar K.; Pain, Christopher C.

    2016-11-01

    The generation of instabilities behind a bluff body bounded by a pipe wall and its effects on flow pattern transitions from separated to dispersed oil-water flows are studied. A cylindrical bluff body is located in the water phase and the transverse direction of the flow. Investigations are conducted for flow rates that result in stratified flow in the absence of the bluff body. A high-speed camera is used to track the interfacial waves while the velocity profile in the water phase is determined by PIV. Numerical studies on single-phase flow assist in designing new bluff bodies. The results showed that the choice of the bluff body and its location generated vortices with frequencies similar to unbounded flows that corresponded to Strouhal number of 0.2. In two-phase flows, the bluff body generates waves with frequencies similar to the von Kármán vortices in the water phase behind the cylinder. The formation of the waves depended on the distance of the bluff body from the oil-water interface. Project funded under the UK Engineering and Physical Sciences Research Council (EPSRC) Programme Grant MEMPHIS.

  6. Unsteady Axisymmetric Rotational Flow of Dusty Elastico Viscous Liquid

    Directory of Open Access Journals (Sweden)

    G. C. Mandal

    1990-04-01

    Full Text Available This paper reports the flow of elastico-viscous liquid embedded with particles in an oscillating cylinder. Explicit expressions are obtained for the velocities of liquid and dust particles by the technique of Laplace transforms. Numerical computations of the velocity fields are carried out for different values of mass concentration and relaxation time of the dust particles and varying elastic elements in the liquid.

  7. Experimental Evaluation of the Applicability of Capacitive and Optical Measurement Methods for the Determination of Liquid Hydrogen Volume Flow

    Directory of Open Access Journals (Sweden)

    Gert HOLLER

    2009-08-01

    Full Text Available This paper presents a capacitive and a vision-based method for measuring the velocity of cryogenic hydrogen flows. The capacitive sensing principle exploits the spatial frequency signature of perturbations moving through a multi-electrode structure. This setup increases the sensitivity to dielectric permittivity variations compared to a simple two-electrode structure while preserving the ability to detect small perturbations. The vision-based method relies on a high-speed camera system that monitors the liquid hydrogen flow through an optical window yielding the flow velocity by cross-correlating subsequent images of the flow. Although a comprehensive analysis of the obtainable measurement uncertainty was not performed yet, current measurement results show the applicability of both principles for the non-invasive measurement of the volume flow of cryogenic fuels inside conveyor pipes.

  8. Hybrid Multiphase CFD Solver for Coupled Dispersed/Segregated Flows in Liquid-Liquid Extraction

    Directory of Open Access Journals (Sweden)

    Kent E. Wardle

    2013-01-01

    Full Text Available The flows in stage-wise liquid-liquid extraction devices include both phase segregated and dispersed flow regimes. As a additional layer of complexity, for extraction equipment such as the annular centrifugal contactor, free-surface flows also play a critical role in both the mixing and separation regions of the device and cannot be neglected. Traditionally, computional fluid dynamics (CFD of multiphase systems is regime dependent—different methods are used for segregated and dispersed flows. A hybrid multiphase method based on the combination of an Eulerian multifluid solution framework (per-phase momentum equations and sharp interface capturing using Volume of Fluid (VOF on selected phase pairs has been developed using the open-source CFD toolkit OpenFOAM. Demonstration of the solver capability is presented through various examples relevant to liquid-liquid extraction device flows including three-phase, liquid-liquid-air simulations in which a sharp interface is maintained between each liquid and air, but dispersed phase modeling is used for the liquid-liquid interactions.

  9. Conventional flow curves of liquid cast iron put on spheroidization

    Directory of Open Access Journals (Sweden)

    B. Borowiecki

    2008-04-01

    Full Text Available The purpose of the investigation was to confirm the hypothesis that the conventional flow curves of liquid cast iron put on sferoidization determined from the rod fluidity test are comparable to flow curves of liquids in environmental temperature. Moreover has been identified, that conventional flow curves for this liquid cast iron are similar to generalized non- Newtonian liquids curves.For rods with the diameters 3-8 mm there are three various curves:1 – the flow curve of liquid cast iron put on spheroidization overheated about 80 K resemble a shape adequately to a curve of densified liquid with shearing. This phenomenon can be caused by high overcooled and creation of crystallization nuclei;2 – metal alloys overheated about 180 K resemble a shape adequately to Newtonian liquid;3 – metal alloys overheated about 210 K resemble a shape of curve adequately to dispersed liquid with shearing. This phenomenon probably depends on influence of gas which creates on boundary of metal-sand mould.

  10. Thermomagnetic convective flows in a vertical layer of ferrocolloid: perturbation energy analysis and experimental study.

    Science.gov (United States)

    Suslov, Sergey A; Bozhko, Alexandra A; Sidorov, Alexander S; Putin, Gennady F

    2012-07-01

    Flow patterns arising in a vertical differentially heated layer of nonconducting ferromagnetic fluid placed in an external uniform transverse magnetic field are studied experimentally and discussed from the point of view of the perturbation energy balance. A quantitative criterion for detecting the parametric point where the dominant role in generating a flow instability is transferred between the thermogravitational and thermomagnetic mechanisms is suggested, based on the disturbance energy balance analysis. A comprehensive experimental study of various flow patterns is undertaken, and the existence is demonstrated of oblique thermomagnetic waves theoretically predicted by Suslov [Phys. Fluids 20, 084101 (2008)] and superposed onto the stationary magnetoconvective pattern known previously. It is found that the wave number of the detected convection patterns depends sensitively on the temperature difference across the layer and on the applied magnetic field. In unsteady regimes its value varies periodically by a factor of almost 2, indicating the appearance of two different competing wave modes. The wave numbers and spatial orientation of the observed dominant flow patterns are found to be in good agreement with theoretical predictions.

  11. Ways of intensifying liquid dispersion in gas flow

    Science.gov (United States)

    Bazarov, V. G.

    Ways of intensifying liquid dispersion in gas flow are examined with a view to increasing the efficiency of the existing atomizing nozzles. It is noted that the most economical method of dispersion intensification, without using any additional power, is the excitation of auto-oscillations in liquid and gas flows. Several methods of generating auto-oscillations in commonly used centrifugal nozzles are discussed. Other developments include the spraying of viscous and contaminated fluids in a field of forced pressure, velocity, and vorticity fluctuations, and also gas saturation of liquids prior to spraying in nozzles with porous elements.

  12. Liquid Quinones for Solvent-Free Redox Flow Batteries.

    Science.gov (United States)

    Shimizu, Akihiro; Takenaka, Keisuke; Handa, Naoyuki; Nokami, Toshiki; Itoh, Toshiyuki; Yoshida, Jun-Ichi

    2017-09-08

    Liquid benzoquinone and naphthoquinone having diethylene glycol monomethyl ether groups are designed and synthesized as redox active materials that dissolve supporting electrolytes. The Li-ion batteries based on the liquid quinones using LiBF4 /PC show good performance in terms of voltage, capacity, energy efficiency, and cyclability in both static and flow modes. A battery is constructed without using intentionally added organic solvent, and its high energy density (264 W h L(-1) ) demonstrates the potential of solvent-free organic redox flow batteries using liquid active materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Suppression of heterogeneous bubble nucleation by upstream subcooled liquid flow

    Science.gov (United States)

    Li, J.; Peterson, G. P.

    2006-05-01

    The threshold levels for quasi-steady-state bubble nucleation on a smooth platinum surface located in a microchannel, both with and without liquid flow, are explored. The measured threshold for motionless liquid compares well with the theoretical value as calculated from the classical kinetics of nucleation. The measured threshold for the case of flow in the microchannel exceeds the measured value for motionless liquid and even exceeds the theoretical value. The observed phenomena suggest that in the absence of impurities, classical theory can accurately predict the heterogeneous nucleation. In addition, subcooled fluids were found to suppress bubble nucleation.

  14. A source term model of perturbation in a numerical study on flows around a slender body of revolution at a high angle of attack

    Institute of Scientific and Technical Information of China (English)

    Yang Liu; Dongjun Ma; Dejun Sun; Xieyuan Yin

    2009-01-01

    A numerical study on flows around a slender body of revolution at a high angle of attack is conducted to investigate the influence of strength and circumferential angle of perturbation on flow asymmetry.A source term model is applied to simulate a real geometrical perturbation near the tip of the slender body.It can greatly facilitate the adjustment of perturbation strength.The results show that the bistable phenomenon does not appear any more at a small perturbation strength.For different perturbation strengths,the energy of the asymmetric perturbation flow experiences a similar spatial exponential growth regime with the same growth rate.The appearance of the bistable phenomenon is closely related to nonlinear saturation of the perturbation flow as perturbation strength increases.

  15. Liquid Flow Meter based on a Thermal Anemometer Microsensor

    OpenAIRE

    Oleg Sazhin

    2016-01-01

    An analytical model of a thermal anemometer sensor is developed. A thermal anemometer microsensor utilizing doped polycrystalline silicon is created. A liquid flow meter prototype based on a thermal anemometer microsensor is designed. Results of the flow meter testing are presented.

  16. Flow induced charging of liquids in reduced gravity

    Energy Technology Data Exchange (ETDEWEB)

    Pettit, D.R.

    1996-02-01

    Microgravity experiments on free fluid surfaces of large length scale could be subject to experimental artifact from flow induced charging. Under conditions favorable for flow induced charging, flowing liquids develop a static electrical charge which manifests itself as a force whose magnitude approaches that of surface tension force. Favorable conditions are: a non-conducting liquid, a small diameter non-conducting flow passage, a large flow volume, and a small separation distance between the fluid and another object. We present a method for calculating the magnitude of flow induced charging and scaling arguments so that potential problems can be determined and dealt with at the experimental design phase. A dimensionless ratio of charge force to surface tension force we call the Hula Number should be less than 0.5 to prevent artifact or unwanted fluid motion.

  17. Predictions of Phase Distribution in Liquid-Liquid Two-Component Flow

    Science.gov (United States)

    Wang, Xia; Sun, Xiaodong; Duval, Walter M.

    2011-06-01

    Ground-based liquid-liquid two-component flow can be used to study reduced-gravity gas-liquid two-phase flows provided that the two liquids are immiscible with similar densities. In this paper, we present a numerical study of phase distribution in liquid-liquid two-component flows using the Eulerian two-fluid model in FLUENT, together with a one-group interfacial area transport equation (IATE) that takes into account fluid particle interactions, such as coalescence and disintegration. This modeling approach is expected to dynamically capture changes in the interfacial structure. We apply the FLUENT-IATE model to a water-Therminol 59® two-component vertical flow in a 25-mm inner diameter pipe, where the two liquids are immiscible with similar densities (3% difference at 20°C). This study covers bubbly (drop) flow and bubbly-to-slug flow transition regimes with area-averaged void (drop) fractions from 3 to 30%. Comparisons of the numerical results with the experimental data indicate that for bubbly flows, the predictions of the lateral phase distributions using the FLUENT-IATE model are generally more accurate than those using the model without the IATE. In addition, we demonstrate that the coalescence of fluid particles is dominated by wake entrainment and enhanced by increasing either the continuous or dispersed phase velocity. However, the predictions show disagreement with experimental data in some flow conditions for larger void fraction conditions, which fall into the bubbly-to-slug flow transition regime. We conjecture that additional fluid particle interaction mechanisms due to the change of flow regimes are possibly involved.

  18. Interpreting Variations in Groundwater Flows from Repeated Distributed Thermal Perturbation Tests.

    Science.gov (United States)

    Hausner, Mark B; Kryder, Levi; Klenke, John; Reinke, Richard; Tyler, Scott W

    2016-07-01

    To better understand the groundwater resources of southern Nye County, Nevada, a multipart distributed thermal perturbation sensing (DTPS) test was performed on a complex of three wells. These wells penetrate an alluvial aquifer that drains the Nevada National Security Site, and characterizing the hydraulic properties and flow paths of the regional groundwater flow system has proven very difficult. The well complex comprised one pumping well and two observation wells, both located 18 m from the pumping well. Using fiber-optic cables and line heaters, DTPS tests were performed under both stressed and unstressed conditions. Each test injects heat into the water column over a period of one to two days, and observes the rising temperature during heat injection and falling temperatures after heating ceases. Aquifer thermal properties are inferred from temperature patterns in the cased section of the wells, and fluxes through the 30-m screened section are estimated based on a model that incorporates conductive and advective heat fluxes. Vertical variations in flux are examined on a scale of tens of cm. The actively flowing zones of the aquifer change between the stressed and unstressed test, and anisotropy in the aquifer permeability is apparent from the changing fluxes between tests. The fluxes inferred from the DTPS tests are compared to solute tracer tests previously performed on the same site. The DTPS-based fluxes are consistent with the fastest solute transport observed in the tracer test, but appear to overestimate the mean flux through the system.

  19. Degenerate two-phase incompressible flow problems III: Perturbation analysis and numerical experiments

    Directory of Open Access Journals (Sweden)

    Zhangxin Chen

    1999-12-01

    Full Text Available This is the third paper of a three-part series where we develop and analyze a finite element approximation for a degenerate elliptic-parabolic partial differential system which describes the flow of two incompressible, immiscible fluids in porous media. The approximation uses a mixed finite element method for the pressure equation and a Galerkin finite element method for the saturation equation. It is based on a regularization of the saturation equation. In the first paper cite{RckA} we analyzed the regularized differential system and presented numerical results. In the second paper cite{RckB} we obtained error estimates. In the present paper we describe a perturbation analysis for the saturation equation and numerical experiments for complementing this analysis.

  20. Helical electric potential modulation via zonal-flow coupling to resonant magnetic perturbations

    Science.gov (United States)

    Leconte, M.; Kim, J.-H.

    2017-08-01

    Helical modulations of the electric potential were observed in several devices during application of resonant magnetic perturbations (RMPs). To address the implication of the helical modulation on RMP-induced transport, we derive a system of 1D equations for zonal flows (ZFs) and helical potential in the presence of RMPs. As ZFs are turbulence-driven, turbulence plays a major role in this plasma self-organization towards a quasi-equilibrium with 3D helical potential. The model reveals how RMPs modify an initially given a saturated-state of coexisting turbulence and ZFs. It is shown that RMPs trigger a transport bifurcation by allowing energy-transfer out of turbulence-driven ZFs into ZF-driven helical potential.

  1. Liquid-liquid Slug Flow in a Microchannel Reactor and its Mass Transfer Properties - A Review

    Directory of Open Access Journals (Sweden)

    Rahul Antony

    2014-10-01

    Full Text Available Mass transfer is a basic phenomenon behind many processes like reaction, absorption, extraction etc. Mass transfer plays a significant role in microfluidic systems where the chemical / biological process systems are shrinkened down to a micro scale. Micro reactor system, with its high compatibility and performance, gains a wide interest among the researchers in the recent years. Micro structured reac-tors holds advantages over the conventional types in chemical processes. The significance of micro re-actor not limited to its scalability but to energy efficiency, on-site / on-demand production, reliability, safety, highly controlled outputs, etc. Liquid-liquid two phase reaction in a microreactor system is highly demandable when both reactants are liquids or when air medium cannot be suitable. This arti-cle overviews various liquid-liquid flow regimes in a microchannel. Discussions on the hydrodynamics of flow in micro scale are made. Considering the importance of mass transfer in liquid-liquid systems and the advantage of slug regime over other regimes, the article focuses especially on the mass trans-fer between two liquid phases in slug flow and the details of experimental studies carried out in this area. The advantages of slug flow over other flow regimes in micro structured reactor applications are showcased. © 2014 BCREC UNDIP. All rights reservedReceived: 31st May 2014; Revised: 6th August 2014; Accepted: 14th August 2014How to Cite: Antony, R., Giri Nandagopal, M.S., Sreekumar, N., Rangabhashiyam, S., Selvaraju, N. (2014. Liquid-liquid Slug Flow in a Microchannel Reactor and its Mass Transfer Properties - A Review. Bulletin of Chemical Reaction Engineering & Catalysis,9(3: 207-223. (doi:10.9767/bcrec.9.3.6977.207-223Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.3.6977.207-223

  2. The air-liquid flow in a microfluidic airway tree.

    Science.gov (United States)

    Song, Yu; Baudoin, Michael; Manneville, Paul; Baroud, Charles N

    2011-09-01

    Microfluidic techniques are employed to investigate air-liquid flows in the lung. A network of microchannels with five generations is made and used as a simplified model of a section of the pulmonary airway tree. Liquid plugs are injected into the network and pushed by a flow of air; they divide at every bifurcation until they reach the exits of the network. A resistance, associated with the presence of one plug in a given generation, is defined to establish a linear relation between the driving pressure and the total flow rate in the network. Based on this resistance, good predictions are obtained for the flow of two successive plugs in different generations. The total flow rate of a two-plug flow is found to depend not only on the driving pressure and lengths of the plugs, but also the initial distance between them. Furthermore, long range interactions between daughters of a dividing plug are observed and discussed, particularly when the plugs are flowing through the bifurcations. These interactions lead to different flow patterns for different forcing conditions: the flow develops symmetrically when subjected to constant pressure or high flow rate forcing, while a low flow rate driving yields an asymmetric flow.

  3. Instability due to interfacial tension in parallel liquid-liquid flow

    Science.gov (United States)

    Rodriguez, Oscar M. H.

    2016-06-01

    The frequent occurrence of multiphase flows in pipes has motivated a great research interest over the last decades. The particular case of liquid-liquid flow is commonly encountered in the petroleum industry, where a number of applications involve oil-water flow such as crude oil production in directional wells. However, it has not received the same attention when compared to gas-liquid flow. In addition, most of the available information has to do with flow in pipes. When it comes to flows in annular ducts the data are scanty. A general transition criterion has been recently proposed in order to obtain the stratified and core-annular flow-pattern transition boundaries in viscous oil-water flow. The proposed criterion was based on an one-dimensional two-fluid model of liquid-liquid two-phase flow. A stability analysis was carried out and interfacial tension is considered. A new destabilizing term arises, which is a function of the cross-section curvature of the interface. It is well accepted that interfacial tension favors the stable condition. However, the analysis of the new interfacial-tension term shows that it can actually destabilize the basic flow pattern, playing an important role in regions of extreme volumetric fractions. Such an interesting effect seems to be more pronounced in flows of viscous fluids and in annular-duct flow. The effect of interfacial tension is explored and the advantages of using a more complete model are discussed and illustrated through comparisons with experimental data from the literature. The evaluation of the effects of fluid viscosity and interfacial tension allows the correction and enhancement of transition models based essentially on data of pipe flow of low viscosity fluids.

  4. A transit-time flow meter for measuring milliliter per minute liquid flow

    DEFF Research Database (Denmark)

    Yang, Canqian; Kymmel, Mogens; Søeberg, Henrik

    1988-01-01

    A transit-time flow meter, using periodic temperature fluctuations as tracers, has been developed for measuring liquid flow as small as 0.1 ml/min in microchannels. By injecting square waves of heat into the liquid flow upstream with a tiny resistance wire heater, periodic temperature fluctuations...... are generated downstream. The fundamental frequency phase shift of the temperature signal with respect to the square wave is found to be a linear function of the reciprocal mean velocity of the fluid. The transit-time principle enables the flow meter to have high accuracy, better than 0.2%, and good linearity....... This flow meter will be used to measure and control the small liquid flow in microchannels in flow injection analysis. Review of Scientific Instruments is copyrighted by The American Institute of Physics....

  5. On intermittent flow characteristics of gas–liquid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Thaker, Jignesh; Banerjee, Jyotirmay, E-mail: jbaner@gmail.com

    2016-12-15

    Highlights: • Unified correlations for intermittent flow characteristics are developed. • Influence of inflow conditions on intermittent flow characteristics is analysed. • Developed correlations can be used for effective design of piping components. - Abstract: Flow visualisation experiments are reported for intermittent regime of gas–liquid two-phase flow. Intermittent flow characteristics, which include plug/slug frequency, liquid plug/slug velocity, liquid plug/slug length, and plug/slug bubble length are determined by image processing of flow patterns captured at a rate of 1600 frames per second (FPS). Flow characteristics are established as a function of inlet superficial velocity of both the phases (in terms of Re{sub SL} and Re{sub SG}). The experimental results are first validated with the existing correlations for slug flow available in literature. It is observed that the correlations proposed in literature for slug flow do not accurately predict the flow characteristics in the plug flow regime. The differences are clearly highlighted in this paper. Based on the measured database for both plug and slug flow regime, modified correlations for the intermittent flow regime are proposed. The correlations reported in the present paper, which also include plug flow characteristics will aid immensely to the effective design and optimization of operating conditions for safer operation of two-phase flow piping systems.

  6. LIQUID PHASE FLOW ESTIMATION IN GAS-LIQUID TWO-PHASE FLOW USING INVERSE ANALYSIS AND PARTICLE TRACKING VELOCIMETRY

    Institute of Scientific and Technical Information of China (English)

    CHENG Wen; MURAI Yuichi; SASAKI Toshio; YAMAMOTO Fujio

    2004-01-01

    An inverse analysis algorithm is proposed for estimating liquid phase flow field from measurement data of bubble motion. This kind of technology will be applied in future for various estimation of fluid flow in rivers, lakes, sea surface flow, and also microscopic channel flow as the problem-handling in civil, mechanical, electronic, and chemical engineering. The relationship between the dispersion motion and the carrier phase flow is governed and expressed by the translational motion equation of spherical dispersion. The equation consists of all the force components including inertia, added inertia, drag, lift, pressure gradient force and gravity force. Using this equation enables us to estimate the carrier phase flow structure using only the data of the dispersion motion. Whole field liquid flow structure is also estimated using spatial or temporal interpolation method. In order to verify this principle, the Taylor-Green vortex flow, and the Karman vortex shedding from a square cylinder have been chosen. The results show that the combination of the inverse analysis and Particle Tracking Velocimetry (PTV) with the spatio-temporal post-processing algorithm could reconstruct well the carrier phase flow of the gas-liquid two-phase flow.

  7. Response analysis of a laminar premixed M-flame to flow perturbations using a linearized compressible Navier-Stokes solver

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, M., E-mail: mathieu.blanchard@ladhyx.polytechnique.fr [LadHyX, CNRS and Ecole Polytechnique, 91128 Palaiseau (France); Schuller, T. [CNRS, UPR 288, Laboratoire d’Energétique Moléculaire et Macroscopique Combustion (EM2C), Grande Voie des Vignes, 92290 Châtenay-Malabry (France); Centrale-Supélec, Grande Voie des Vignes, 92290 Châtenay-Malabry (France); Sipp, D. [ONERA-DAFE, 8 rue des Vertugadins, 92190 Meudon (France); Schmid, P. J. [Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom)

    2015-04-15

    The response of a laminar premixed methane-air flame subjected to flow perturbations around a steady state is examined experimentally and using a linearized compressible Navier-Stokes solver with a one-step chemistry mechanism to describe combustion. The unperturbed flame takes an M-shape stabilized both by a central bluff body and by the external rim of a cylindrical nozzle. This base flow is computed by a nonlinear direct simulation of the steady reacting flow, and the flame topology is shown to qualitatively correspond to experiments conducted under comparable conditions. The flame is then subjected to acoustic disturbances produced at different locations in the numerical domain, and its response is examined using the linearized solver. This linear numerical model then allows the componentwise investigation of the effects of flow disturbances on unsteady combustion and the feedback from the flame on the unsteady flow field. It is shown that a wrinkled reaction layer produces hydrodynamic disturbances in the fresh reactant flow field that superimpose on the acoustic field. This phenomenon, observed in several experiments, is fully interpreted here. The additional perturbations convected by the mean flow stem from the feedback of the perturbed flame sheet dynamics onto the flow field by a mechanism similar to that of a perturbed vortex sheet. The different regimes where this mechanism prevails are investigated by examining the phase and group velocities of flow disturbances along an axis oriented along the main direction of the flow in the fresh reactant flow field. It is shown that this mechanism dominates the low-frequency response of the wrinkled shape taken by the flame and, in particular, that it fully determines the dynamics of the flame tip from where the bulk of noise is radiated.

  8. Secondary Flow Patterns of Liquid Ejector with Computational Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kwisung; Yun, Jinwon; Yu, Sangseok [Chungnam National University, Daejeon (Korea, Republic of); Sohn, Inseok [COAVIS, Sejong (Korea, Republic of); Seo, Yongkyo [Korea Automotive Technology Institute, Cheonan (Korea, Republic of)

    2015-02-15

    An ejector is a type of non-powered pump that is used to supply a secondary flow via the ejection of a primary flow. It is utilized in many industrial fields, and is used for fueling the vehicle because of less failures and simple structure. Since most of ejectors in industry are gas-to-gas and liquid to gas ejector, many research activities have been reported in optimization of gas ejector. On the other hand, the liquid ejector is also applied in many industry but few research has been reported. The liquid ejector occurs cavitation, and it causes damage of parts. Cavitation has bees observed at the nozzle throat at the specified pressure. In this study, a two-dimensional axisymmetric simulation of a liquid-liquid ejector was carried out using five different parameters. The angle of the nozzle plays an important role in the cavitation of a liquid ejector, and the performance characteristics of the flow ratio showed that an angle of 35° was the most advantageous. The simulation results showed that the performance of the liquid ejector and the cavitation effect have to be considered simultaneously.

  9. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    X. Wang; X. Sun; H. Zhao

    2011-09-01

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in

  10. A study of stratified gas-liquid pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, George W.

    2005-07-01

    This work includes both theoretical modelling and experimental observations which are relevant to the design of gas condensate transport lines. Multicomponent hydrocarbon gas mixtures are transported in pipes over long distances and at various inclinations. Under certain circumstances, the heavier hydrocarbon components and/or water vapour condense to form one or more liquid phases. Near the desired capacity, the liquid condensate and water is efficiently transported in the form of a stratified flow with a droplet field. During operating conditions however, the flow rate may be reduced allowing liquid accumulation which can create serious operational problems due to large amounts of excess liquid being expelled into the receiving facilities during production ramp-up or even in steady production in severe cases. In particular, liquid tends to accumulate in upward inclined sections due to insufficient drag on the liquid from the gas. To optimize the transport of gas condensates, a pipe diameters should be carefully chosen to account for varying flow rates and pressure levels which are determined through the knowledge of the multiphase flow present. It is desirable to have a reliable numerical simulation tool to predict liquid accumulation for various flow rates, pipe diameters and pressure levels which is not presently accounted for by industrial flow codes. A critical feature of the simulation code would include the ability to predict the transition from small liquid accumulation at high flow rates to large liquid accumulation at low flow rates. A semi-intermittent flow regime of roll waves alternating with a partly backward flowing liquid film has been observed experimentally to occur for a range of gas flow rates. Most of the liquid is transported in the roll waves. The roll wave regime is not well understood and requires fundamental modelling and experimental research. The lack of reliable models for this regime leads to inaccurate prediction of the onset of

  11. Thin liquid films dewetting and polymer flow

    CERN Document Server

    Blossey, Ralf

    2012-01-01

    This book is a treatise on the thermodynamic and dynamic properties of thin liquid films at solid surfaces and, in particular, their rupture instabilities. For the quantitative study of these phenomena, polymer thin films haven proven to be an invaluable experimental model system.   What is it that makes thin film instabilities special and interesting, warranting a whole book? There are several answers to this. Firstly, thin polymeric films have an important range of applications, and with the increase in the number of technologies available to produce and to study them, this range is likely to expand. An understanding of their instabilities is therefore of practical relevance for the design of such films.   Secondly, thin liquid films are an interdisciplinary research topic. Interdisciplinary research is surely not an end to itself, but in this case it leads to a fairly heterogeneous community of theoretical and experimental physicists, engineers, physical chemists, mathematicians and others working on the...

  12. Gas-Liquid Flows and Phase Separation

    Science.gov (United States)

    McQuillen, John

    2004-01-01

    Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .

  13. Transition in a granular chute flow due to periodic and aperiodic perturbations

    Science.gov (United States)

    S, Bharathraj; v, Kumaran

    2015-11-01

    Granular flow down an inclined plane exhibits a transition from a disordered,random state to an ordered state with layers of particles with in-layer hexagonal order, when there is a small change in the roughness of the base. In earlier studies,a rough base was created using a random arrangement of frozen particles at the base,and the roughness was varied by varying the ratio of the frozen and moving particle diameters.Here,the effect of a different form of base roughness,which is sinusoidal perturbations of varying amplitude and wavelength,is also examined. The transition from an ordered to disordered state is also observed when a sinusoidal base is used, when the amplitude of the sine wave increases beyond a critical value.The critical amplitude initially increases as the wavelength is increased, reaches a maximum and then decreases as the wavelength is further increased. The critical amplitude also increases as the height of the flow increases.The states induced by the sinusoidal base have peculiar transient features, where there is a tendency to order at intermediate times in disordered states, unlike the rough base where no such tendency is observed.We also formulate a boundary layer theory for the ordered state, which develops in two distinct stages of shear propagation

  14. Processes of Turbulent Liquid Flows in Pipelines and Channels

    Directory of Open Access Journals (Sweden)

    R. I. Yesman

    2011-01-01

    Full Text Available The paper proposes a methodology for an analysis and calculation of processes pertaining to turbulent liquid flows in pipes and channels. Various modes of liquid motion in pipelines of thermal power devices and equipment have been considered in the paper.The presented dependences can be used while making practical calculations of losses due to friction in case of transportation of various energy carriers.

  15. About the statistical description of gas-liquid flows

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, D.; Guido-Lavalle, G.; Carrica, P. [Centro Atomico Bariloche and Instituto Balseiro (Argentina)] [and others

    1995-09-01

    Elements of the probabilistic geometry are used to derive the bubble coalescence term of the statistical description of gas liquid flows. It is shown that the Boltzmann`s hypothesis, that leads to the kinetic theory of dilute gases, is not appropriate for this kind of flows. The resulting integro-differential transport equation is numerically integrated to study the flow development in slender bubble columns. The solution remarkably predicts the transition from bubbly to slug flow pattern. Moreover, a bubbly bimodal size distribution is predicted, which has already been observed experimentally.

  16. Steering liquid metal flow in microchannels using low voltages.

    Science.gov (United States)

    Tang, Shi-Yang; Lin, Yiliang; Joshipura, Ishan D; Khoshmanesh, Khashayar; Dickey, Michael D

    2015-10-07

    Liquid metals based on gallium, such as eutectic gallium indium (EGaIn) and Galinstan, have been integrated as static components in microfluidic systems for a wide range of applications including soft electrodes, pumps, and stretchable electronics. However, there is also a possibility to continuously pump liquid metal into microchannels to create shape reconfigurable metallic structures. Enabling this concept necessitates a simple method to control dynamically the path the metal takes through branched microchannels with multiple outlets. This paper demonstrates a novel method for controlling the directional flow of EGaIn liquid metal in complex microfluidic networks by simply applying a low voltage to the metal. According to the polarity of the voltage applied between the inlet and an outlet, two distinct mechanisms can occur. The voltage can lower the interfacial tension of the metal via electrocapillarity to facilitate the flow of the metal towards outlets containing counter electrodes. Alternatively, the voltage can drive surface oxidation of the metal to form a mechanical impediment that redirects the movement of the metal towards alternative pathways. Thus, the method can be employed like a 'valve' to direct the pathway chosen by the metal without mechanical moving parts. The paper elucidates the operating mechanisms of this valving system and demonstrates proof-of-concept control over the flow of liquid metal towards single or multiple directions simultaneously. This method provides a simple route to direct the flow of liquid metal for applications in microfluidics, optics, electronics, and microelectromechanical systems.

  17. Perturbations of the solar wind flow by radial and latitudinal pick-up ion pressure gradients

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    2004-06-01

    Full Text Available It has been found that pick-up ions at their dynamical incorporation into the solar wind modify the original conditions of the asymptotic solar wind plasma flow. In this respect, it has meanwhile been revealed in many papers that these type of solar wind modifications, i.e. deceleration and decrease of effective Mach number, are not only due to the pick-up ion loading effects, but also to the action of pick-up ion pressure gradients. Up to now only the effects of radial pick-up ion pressure gradients were considered, however, analogously but latitudinal pressure gradients also appear to be important. Here we study the effects of radial and latitudinal pick-up ion pressure gradients, occurring especially during solar minimum conditions at mid-latitude regions where slow solar wind streams change to fast solar wind streams. First, we give estimates of the latitudinal wind components connected with these gradients, and then after revealing its importance, present a more quantitative calculation of solar wind velocity and density perturbations resulting from these pressure forces. It is shown that the relative density perturbations near and in the ecliptic increase with radial distance and thus may well explain the measured non-spherically symmetric density decrease with distance. We also show that the solar wind decelerations actually seen with Voyager-1/2 are in conciliation with interstellar hydrogen densities of nH∞≥0.1cm-3, in contrast to earlier claims for nH∞=0.05cm-3.

  18. A porous flow model of flank eruptions on Mt. Etna: second-order perturbation theory

    Directory of Open Access Journals (Sweden)

    N. Cenni

    1997-06-01

    Full Text Available A porous flow model for magma migration from a deep source within a volcanic edifice is developed. The model is based on the assumption that an isotropic and homogeneous system of fractures allows magma migration from one localized feeding dyke up to the surface of the volcano. The maximum level that magma can reach within the volcano (i.e., the «free surface» of magma, where fluid pressure equals the atmospheric pressure is reproduced through a second-order perturbation approach to the non-linear equations governing the migration of incompressible fluids through a porous medium. The perturbation parameter is found to depend on the ratio of the volumic discharge rate at the source (m3/s divided by the product of the hydraulic conductivity of the medium (m1/s times the square of the source depth. The second-order corrections for the free surface of Mt. Etna are found to be small but not negligible; from the comparison between first-order and second-order free surfaces it appears that the former is higher near the summit, slightly lower at intermediate altitudes and slightly higher far away from the axis of the volcano. Flank eruptions in the southern sector are found to be located in regions where the topography is actually lower than the theoretical free surface of magma. In this sector, modulations in the eruption site density correlate well with even minor differences between free surface and topography. In the northern and western sectors similar good fits are found, while the NE rift and the eastern sector seem to require mechanisms or structures respectively favouring and inhibiting magma migration.

  19. Impact of Droplets on Inclined Flowing Liquid Films

    CERN Document Server

    Che, Zhizhao; Matar, Omar K

    2015-01-01

    The impact of droplets on an inclined falling liquid film is studied experimentally using high-speed imaging. The falling film is created on a flat substrate with controllable thicknesses and flow rates. Droplets with different sizes and speeds are used to study the impact process under various Ohnesorge and Weber numbers, and film Reynolds numbers. A number of phenomena associated with droplet impact are identified and analysed, such as bouncing, partial coalescence, total coalescence, and splashing. The effects of droplet size, speed, as well the film flow rate are studied culminating in the generation of an impact regime map. The analysis of the lubrication force acted on the droplet via the gas layer shows that a higher flow rate in the liquid film produces a larger lubrication force, slows down the drainage process, and increases the probability of droplet bouncing. Our results demonstrate that the flowing film has a profound effect on the droplet impact process and associated phenomena, which are marked...

  20. Gas liquid flow at microgravity conditions - Flow patterns and their transitions

    Science.gov (United States)

    Dukler, A. E.; Fabre, J. A.; Mcquillen, J. B.; Vernon, R.

    1987-01-01

    The prediction of flow patterns during gas-liquid flow in conduits is central to the modern approach for modeling two phase flow and heat transfer. The mechanisms of transition are reasonably well understood for flow in pipes on earth where it has been shown that body forces largely control the behavior observed. This work explores the patterns which exist under conditions of microgravity when these body forces are suppressed. Data are presented which were obtained for air-water flow in tubes during drop tower experiments and Learjet trajectories. Preliminary models to explain the observed flow pattern map are evolved.

  1. Exact solutions of the Boeder differential equation for macromolecular orientations in a flowing liquid

    CERN Document Server

    Khater, A; Hijazi, A

    2000-01-01

    The Boeder differential equation is solved in this work over a wide range of $\\alpha$, yielding the probability density functions (PDF), that describe the average orientations of rod-like macromolecules in a flowing liquid. The quantity $\\alpha$ is the ratio of the hydrodynamic shear rate to the rotational diffusion coefficient. It characterises the coupling of the motion of the macromolecules in the hydrodynamic flow to their thermal diffusion. Previous analytical work is limited to approximate solutions for small values of $\\alpha$. Special analytical as well as numerical methods are developed in the present work in order to calculate accurately the PDF for a range of $\\alpha$ covering several orders of magnitude, $10^{-6} \\le \\alpha \\le 10^{8}$. The mathematical nature of the differential equation is revealed as a singular perturbation problem when $\\alpha$ becomes large. Scaling results are obtained over the differential equation for $\\alpha \\ge 10^{3}$. Monte Carlo Brownian simulations are also construct...

  2. Asymmetric energy flow in liquid alkylbenzenes: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, David M., E-mail: dml@unr.edu [Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, Nevada 89557 (United States); Freiburg Institute for Advanced Studies (FRIAS), Freiburg (Germany); Pandey, Hari Datt [Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, Nevada 89557 (United States)

    2015-10-14

    Ultrafast IR-Raman experiments on substituted benzenes [B. C. Pein et al., J. Phys. Chem. B 117, 10898–10904 (2013)] reveal that energy can flow more efficiently in one direction along a molecule than in others. We carry out a computational study of energy flow in the three alkyl benzenes, toluene, isopropylbenzene, and t-butylbenzene, studied in these experiments, and find an asymmetry in the flow of vibrational energy between the two chemical groups of the molecule due to quantum mechanical vibrational relaxation bottlenecks, which give rise to a preferred direction of energy flow. We compare energy flow computed for all modes of the three alkylbenzenes over the relaxation time into the liquid with energy flow through the subset of modes monitored in the time-resolved Raman experiments and find qualitatively similar results when using the subset compared to all the modes.

  3. Flow behaviour and transitions in surfactant-laden gas-liquid vertical flows

    Science.gov (United States)

    Zadrazil, Ivan; Chakraborty, Sourojeet; Matar, Omar; Markides, Christos

    2016-11-01

    The aim of this work is to elucidate the effect of surfactant additives on vertical gas-liquid counter-current pipe flows. Two experimental campaigns were undertaken, one with water and one with a light oil (Exxsol D80) as the liquid phase; in both cases air was used as the gaseous phase. Suitable surfactants were added to the liquid phase up to the critical micelle concentration (CMC); measurements in the absence of additives were also taken, for benchmarking. The experiments were performed in a 32-mm bore and 5-m long vertical pipe, over a range of superficial velocities (liquid: 1 to 7 m/s, gas: 1 to 44 m/s). High-speed axial- and side-view imaging was performed at different lengths along the pipe, together with pressure drop measurements. Flow regime maps were then obtained describing the observed flow behaviour and related phenomena, i.e., downwards/upwards annular flow, flooding, bridging, gas/liquid entrainment, oscillatory film flow, standing waves, climbing films, churn flow and dryout. Comparisons of the air-water and oil-water results will be presented and discussed, along with the role of the surfactants in affecting overall and detailed flow behaviour and transitions; in particular, a possible mechanism underlying the phenomenon of flooding will be presented. EPSRC UK Programme Grant EP/K003976/1.

  4. Pulsating flows of solid/liquid suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Round, G.F.; El-Sayed, E.

    1987-02-01

    Results are presented on the pulsed flow of coal/water suspensions of weight concentration, Cw=0-53.7%. The laboratory pipeline used was 35 m long with an I.D. of 5 cm. The coal used was a bituminous coal from Butler County, Pennsylvania. Its size ranged from 45 to 880 micrometer with a mean of 260 micrometers. The ranges of pulsing parameters studied were: velocity: 0-27 m/s; pulse amplitude: 0-80 mm; pulse frequency: 0-1.25 Hz. It was found that over most of the concentration range investigated there was a substantial energy saving measured in terms of an energy ratio Jp/Js, the ratio of total energy input in the pulsed state to that at steady state at the same volumetric flow rate. Minima over the entire velocity range occurred at a frequency of 0.3 Hz, with very little variation at different amplitudes. The weight concentration at which these occurred was Cw=20% with a corresponding energy saving which could be as much as 20%. 12 figs., 15 refs., 3 tabs.

  5. Modeling liquid hydrogen cavitating flow with the full cavitation model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.B.; Qiu, L.M.; Qi, H.; Zhang, X.J.; Gan, Z.H. [Institute of Refrigeration and Cryogenic Engineering, Zhejiang University, Hangzhou 310027 (China)

    2008-12-15

    Cavitation is the formation of vapor bubbles within a liquid where flow dynamics cause the local static pressure to drop below the vapor pressure. This paper strives towards developing an effective computational strategy to simulate liquid hydrogen cavitation relevant to liquid rocket propulsion applications. The aims are realized by performing a steady state computational fluid dynamic (CFD) study of liquid hydrogen flow over a 2D hydrofoil and an axisymmetric ogive in Hord's reports with a so-called full cavitation model. The thermodynamic effect was demonstrated with the assumption of thermal equilibrium between the gas phase and liquid phase. Temperature-dependent fluid thermodynamic properties were specified along the saturation line from the ''Gaspak 3.2'' databank. Justifiable agreement between the computed surface pressure, temperature and experimental data of Hord was obtained. Specifically, a global sensitivity analysis is performed to examine the sensitivity of the turbulent computations to the wall grid resolution, wall treatments and changes in model parameters. A proper near-wall model and grid resolution were suggested. The full cavitation model with default model parameters provided solutions with comparable accuracy to sheet cavitation in liquid hydrogen for the two geometries. (author)

  6. Global Liquidity and Drivers of Cross-Border Bank Flows

    NARCIS (Netherlands)

    Cerutti, E.; Claessens, S.; Ratnovski, L.

    2014-01-01

    This paper provides a definition of global liquidity consistent with its meaning as the "ease of financing" in international financial markets. Using a longer time series and broader sample of countries than in previous studies, it identifies global factors driving cross-border bank flows, alongside

  7. Pressure Drop of Non-Newtonian Liquid Flow Through Elbows

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Experimental data on the pressure drop across different types of elbow for non-Newtonian pseudoplastic liquid flow in laminar condition have been presented. A generalized correlation has been developed for predicting the frictional pressure drop across the elbows in the horizontal plane.

  8. A Kinetic Model for Vapor-liquid Flows

    Science.gov (United States)

    2005-07-13

    A Kinetic Model for Vapor-liquid Flows Aldo Frezzotti, Livio Gibelli and Silvia Lorenzani Dipartimento di Matematica del Politecnico di Milano Piazza...ES) Dipartimento di Matematica del Politecnico di Milano Piazza Leonardo da Vinci 32 - 20133 Milano - Italy 8. PERFORMING ORGANIZATION REPORT NUMBER

  9. Theory of rotating electrohydrodynamic flows in a liquid film.

    Science.gov (United States)

    Shiryaeva, E V; Vladimirov, V A; Zhukov, M Yu

    2009-10-01

    The mathematical model of rotating electrohydrodynamic flows in a thin suspended liquid film is proposed and studied. The flows are driven by the given difference of potentials in one direction and constant external electric field E(out) in another direction in the plane of a film. To derive the model, we employ the spatial averaging over the normal coordinate to a film that leads to the average Reynolds stress that is proportional to |E(out)|3. This stress generates tangential velocity in the vicinity of the edges of a film that, in turn, causes the rotational motion of a liquid. The proposed model is used to explain the experimental observations of the liquid film motor.

  10. Basic study on hot-wire flow meter in forced flow of liquid hydrogen

    Science.gov (United States)

    Oura, Y.; Shirai, Y.; Shiotsu, M.; Murakami, K.; Tatsumoto, H.; Naruo, Y.; Nonaka, S.; Kobayashi, H.; Inatani, Y.; Narita, N.

    2014-01-01

    Liquid hydrogen (LH2) is a key issue in a carbon-free energy infrastructure at the energy storage and transportation stage. The typical features of LH2 are low viscosity, large latent heat and small density, compared with other general liquids. It is necessary to measure a mass flow of liquid hydrogen with a simple and compact method, especially in a two phase separate flow condition. We have proposed applying a hot-wire type flow meter, which is usually used a for gas flow meter, to LH2 flow due to the quite low viscosity and density. A test model of a compact LH2 hot-wire flow meter to measure local flow velocities near and around an inside perimeter of a horizontal tube by resistance thermometry was designed and made. The model flow meter consists of two thin heater wires made of manganin fixed in a 10 mm-diameter and 40 mm-length tube flow path made of GFRP. Each rigid heater wire was set twisted by 90 degrees from the inlet to the outlet along the inner wall. In other words, the wires were aslant with regard to the LH2 stream line. The heated wire was cooled by flowing LH2, and the flow velocity was obtained by means of the difference of the cooling characteristic in response to the flow velocity. In this report, we show results on the basic experiments with the model LH2 hot-wire flow meter. First, the heat transfer characteristics of the two heater wires for several LH2 flow velocities were measured. Second, the heating current was controlled to keep the wire temperature constant for various flow velocities. The relations between the flow velocity and the heating current were measured. The feasibility of the proposed model was confirmed.

  11. Flow Rate of He Ⅱ Liquid-Vapor Phase Separator

    Institute of Scientific and Technical Information of China (English)

    Xingen YU; Qing LI; Qiang LI; Zhengyu LI

    2005-01-01

    Experimental results are presented for superfluld (He Ⅱ) flow through porous plug liquid-vapor phase separators.Tests have been performed on seven porous plugs with different thicknesses or different permeabilities. The temperature was measured from 1.5K to 1.9K. Two flow regions were observed in small and large pressure and temperature differences regions respectively. The experimental data are compared with theoretical predictions.The performance and applicability of the basic theory are discussed. Hysteresis of the flow rate is also observed and discussed.

  12. An efficient analytical approach for MHD viscous flow over a stretching sheet via homotopy perturbation sumudu transform method

    Directory of Open Access Journals (Sweden)

    Sushila

    2013-09-01

    Full Text Available In this paper, we present an efficient analytical approach based on new homotopy perturbation sumudu transform method (HPSTM to investigate the magnetohydrodynamics (MHD viscous flow due to a stretching sheet. The viscous fluid is electrically conducting in the presence of magnetic field and the induced magnetic field is neglected for small magnetic Reynolds number. Finally, some numerical comparisons among the new HPSTM, the homotopy perturbation method and the exact solution have been made. The numerical solutions obtained by the proposed method show that the approach is easy to implement and computationally very attractive.

  13. Flow Visualization of Liquid Hydrogen Line Chilldown Tests

    Science.gov (United States)

    Rame, Enrique; Hartwig, Jason W.; McQuillen John B.

    2014-01-01

    We present experimental measurements of wall and fluid temperature during chill-down tests of a warm cryogenic line with liquid hydrogen. Synchronized video and fluid temperature measurements are used to interpret stream temperature profiles versus time. When cold liquid hydrogen starts to flow into the warm line, a sequence of flow regimes, spanning from all-vapor at the outset to bubbly with continuum liquid at the end can be observed at a location far downstream of the cold inlet. In this paper we propose interpretations to the observed flow regimes and fluid temperature histories for two chilldown methods, viz. trickle (i.e. continuous) flow and pulse flow. Calculations of heat flux from the wall to the fluid versus wall temperature indicate the presence of the transition/nucleate boiling regimes only. The present tests, run at typical Reynolds numbers of approx O(10 (exp 5)), are in sharp contrast to similar tests conducted at lower Reynolds numbers where a well-defined film boiling region is observed.

  14. Gas and liquid fuel injection into an enclosed swirling flow

    Science.gov (United States)

    Ahmad, N. T.; Andrews, G. E.

    1984-06-01

    The use of swirler air for atomization has been tested with direct central propane injection and with direct central kerosene and gas oil injection, and its results have been compared with those for nonswirling flow systems under the same conditions. Direct propane injection results in a major extension of stability limits, by comparison to results for premixing, while with liquid fuel injection the stability limits are generally worse than for premixed fuel and air. This may be due to the action of the centrifugal forces on the liquid droplets in the swirl flow, which results in outer swirl flow vaporization and weaker mixtures in the core recirculation region than would be the case for propane injection. A comparison with nonswirling system performance indicated that all emission levels were higher with swirl for propane.

  15. Heat transfer in vapour-liquid flow of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Yagov, V.V. [Moscow Power Engineering Institute (Technical University), Moscow (Russian Federation)], e-mail: YagovVV@mpei.ru

    2009-07-01

    During the last decade a number of studies of boiling heat transfer in carbon dioxide notably increase. As a field of CO{sub 2} practical using corresponds to high reduced pressures, and a majority of available experimental data on CO{sub 2} flow boiling even in submillimetric channels relate to turbulent liquid flow regimes, a possibility arises to develop sufficiently general method for HTC predicting. Under the above conditions nucleate boiling occurs up to rather high flow quality, even in annular flow regime due to extremely small size of an equilibrium vapour bubble. This conclusion is in agreement with the available experimental data. The predicting equation for nucleate boiling heat transfer developed by the present author in 1988 is valid for any nonmetallic liquid. A contribution of forced convection in heat transfer is calculated according to the Petukhov et al. equation with correction factor, which accounted for an effect of velocity increase due to evaporation. This effect can be essential at relatively small heat fluxes and rather high mass flow rates. The Reynolds analogy and homogeneous model are used in order to account for the convective heat transfer augmentation in two-phase flow. Due to low ratio of liquid and vapour densities at high reduced pressures the homogeneous approximation of two-phase flow seems to be warranted. A total heat transfer coefficient is calculated as an interpolated value of boiling and convective HTCs. The experimental data on CO{sub 2} flow boiling related to regimes before heated wall dryout incipience are in rather good agreement with the calculations. (author)

  16. Heat transfer in vapour-liquid flow of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Yagov, V.V. [Moscow Power Engineering Institute (Technical University), Moscow (Russian Federation)], e-mail: YagovVV@mpei.ru

    2009-07-01

    During the last decade a number of studies of boiling heat transfer in carbon dioxide notably increase. As a field of CO{sub 2} practical using corresponds to high reduced pressures, and a majority of available experimental data on CO{sub 2} flow boiling even in submillimetric channels relate to turbulent liquid flow regimes, a possibility arises to develop sufficiently general method for HTC predicting. Under the above conditions nucleate boiling occurs up to rather high flow quality, even in annular flow regime due to extremely small size of an equilibrium vapour bubble. This conclusion is in agreement with the available experimental data. The predicting equation for nucleate boiling heat transfer developed by the present author in 1988 is valid for any nonmetallic liquid. A contribution of forced convection in heat transfer is calculated according to the Petukhov et al. equation with correction factor, which accounted for an effect of velocity increase due to evaporation. This effect can be essential at relatively small heat fluxes and rather high mass flow rates. The Reynolds analogy and homogeneous model are used in order to account for the convective heat transfer augmentation in two-phase flow. Due to low ratio of liquid and vapour densities at high reduced pressures the homogeneous approximation of two-phase flow seems to be warranted. A total heat transfer coefficient is calculated as an interpolated value of boiling and convective HTCs. The experimental data on CO{sub 2} flow boiling related to regimes before heated wall dryout incipience are in rather good agreement with the calculations. (author)

  17. Series Solution for Steady Three-Dimensional Flow due to Spraying on Inclined Spinning Disk by Homotopy Perturbation Method

    Directory of Open Access Journals (Sweden)

    Saeed Dinarvand

    2012-01-01

    Full Text Available The steady three-dimensional flow of condensation or spraying on inclined spinning disk is studied analytically. The governing nonlinear equations and their associated boundary conditions are transformed into the system of nonlinear ordinary differential equations. The series solution of the problem is obtained by utilizing the homotopy perturbation method (HPM. The velocity and temperature profiles are shown and the influence of Prandtl number on the heat transfer and Nusselt number is discussed in detail. The validity of our solutions is verified by the numerical results. Unlike free surface flows on an incline, this through flow is highly affected by the spray rate and the rotation of the disk.

  18. Isothermal gas-liquid flow at reduced gravity

    Science.gov (United States)

    Dukler, A. E.

    1990-01-01

    Research on adiabatic gas-liquid flows under reduced gravity condition is presented together with experimental data obtained using a NASA-Lewis RC 100-ft drop tower and in a LeRC Learjet. It is found that flow patterns and characteristics remain unchanged after the first 1.5 s into microgravity conditions and that the calculated time for a continuity wave to traverse the test section is less than 1.2 s. It is also found that the dispersed bubbles move at the same velocity as that of the front of the slug and that the transition between bubbly and slug flow is insensitive to diameter. Both the bubbly and the slug flows are suggested to represent a continuum of the same physical process. The characteristics of annular, slug, and bubbly flows are compared.

  19. Droplet entrainment rate in gas-liquid annular flow

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, P. [Energy Research Inc., Rockville, Maryland (United States); Liu, Y.; Ishii, M. [Purdue Univ., West Lafayette, Indiana (United States); Mori, M. [Tokyo Electric Power Co., Inc., Yokohama (Japan); Chen, S. [Purdue Univ., West Lafayette, Indiana (United States)

    2011-07-01

    Droplet entrainment and deposition are the two most important physical phenomena in the gas-liquid annular two-phase flow. Modeling of these phenomena is essential for the estimation of dryout margins in the Light Water Reactors (LWRs) and the boilers. In this study, gas-liquid annular two-phase flow experiments are performed in a vertical round tube test section under adiabatic conditions. Air-water and organic fluid Freon-113 are used as the test fluids. The experiments covered a wide range of pressure and flow conditions. Liquid film extraction technique was used for the measurement of droplet entrainment and deposition rates. Additionally, the thickness of liquid film was measured in the air-water experiments using the ring type conductance probes. In this paper, the experimental data on entrainment rate is used to analyze the currently available correlations in the literature. The analysis showed that the existing correlations failed to predict the data at high gas velocity conditions. At high gas velocity, the experimental entrainment rate approaches a maximum limiting value; however, the correlations predicted continuously increasing entrainment rate as the gas velocity increases. (author)

  20. Analysis of Developing Gas/liquid Two-Phase Flows

    Energy Technology Data Exchange (ETDEWEB)

    Elena A. Tselishcheva; Michael Z. Podowski; Steven P. Antal; Donna Post Guillen; Matthias Beyer; Dirk Lucas

    2010-06-01

    The goal of this work is to develop a mechanistically based CFD model that can be used to simulate process equipment operating in the churn-turbulent regime. The simulations were performed using a state-of-the-art computational multiphase fluid dynamics code, NPHASE–CMFD [Antal et al,2000]. A complete four-field model, including the continuous liquid field and three dispersed gas fields representing bubbles of different sizes, was first carefully tested for numerical convergence and accuracy, and then used to reproduce the experimental results from the TOPFLOW test facility at Forschungszentrum Dresden-Rossendorf e.V. Institute of Safety Research [Prasser et al,2007]. Good progress has been made in simulating the churn-turbulent flows and comparison the NPHASE-CMFD simulations with TOPFLOW experimental data. The main objective of the paper is to demonstrate capability to predict the evolution of adiabatic churn-turbulent gas/liquid flows. The proposed modelling concept uses transport equations for the continuous liquid field and for dispersed bubble fields [Tselishcheva et al, 2009]. Along with closure laws based on interaction between bubbles and continuous liquid, the effect of height on air density has been included in the model. The figure below presents the developing flow results of the study, namely total void fraction at different axial locations along the TOPFLOW facility test section. The complete model description, as well as results of simulations and validation will be presented in the full paper.

  1. The Effect Liquid Loading on the Rheology of Granular Flows

    Science.gov (United States)

    Sundaresan, Sankaran; Ozel, Ali; Gu, Yile; Radl, Stefan; Sundar's Group Team; Cfdem Collaboration

    2015-03-01

    Discrete element simulations of simple shear flows of dense and homogeneous assemblies of uniform, spherical, soft and dry particles reveal three regimes: (i) a quasi-static regime, where the stress is independent of shear rate, (ii) an inertial regime where the stress varies quadratically with shear rate and (iii) an intermediate regime where the stress manifests power-law dependence with n 1/2. Inclusion of inter-particle cohesion due to van der Waals force has been shown to lead to bifurcation of the inertial regime into two regimes: (a) a cohesive rate-independent regime and (b) an inertial regime. In the present study, we perform analogous simulations for wet particles. We account for capillary and viscous interaction forces between particles, which result from the liquid bridges, and allow for liquid transfer between the particles and the liquid bridge. It is found that the bifurcation of the inertial regime observed with van der Waals interaction persists for capillary cohesion and that the span of the cohesive rate-independent regime increases with liquid loading in the pendular regime. A simple model for steady shear rheology is obtained by blending the results in various regimes. The presentation will also discuss the effect liquid viscosity on the flow behavior.

  2. Flow of a falling liquid curtain onto a moving substrate

    Science.gov (United States)

    Liu, Yekun; Itoh, Masahiro; Kyotoh, Harumichi

    2017-10-01

    In this study, we investigate a low-Weber-number flow of a liquid curtain bridged between two vertical edge guides and the upper surface of a moving substrate. Surface waves are observed on the liquid curtain, which are generated due to a large pressure difference between the inner and outer region of the meniscus on the substrate, and propagate upstream. They are categorized as varicose waves that propagate upstream on the curtain and become stationary because of the downstream flow. The Kistler’s equation, which governs the flow in thin liquid curtains, is solved under the downstream boundary conditions, and the numerical solutions are studied carefully. The solutions are categorized into three cases depending on the boundary conditions. The stability of the varicose waves is also discussed as wavelets were observed on these waves. The two types of modes staggered and peak-valley patterns are considered in the present study, and they depend on the Reynolds number, the Weber number, and the amplitude of the surface waves. The former is observed in our experiment, while the latter is predicted by our calculation. Both the types of modes can be derived using the equations with periodic coefficients that originated from the periodic base flow due to the varicose waves. The stability analysis of the waves shows that the appearance of the peak-valley pattern requires a significantly greater amplitude of the waves, and a significantly higher Weber number and Reynolds number compared to the condition in which the staggered pattern is observed.

  3. Thin liquid films with time-dependent chemical reactions sheared by an ambient gas flow

    Science.gov (United States)

    Bender, Achim; Stephan, Peter; Gambaryan-Roisman, Tatiana

    2017-08-01

    Chemical reactions in thin liquid films are found in many industrial applications, e.g., in combustion chambers of internal combustion engines where a fuel film can develop on pistons or cylinder walls. The reactions within the film and the turbulent outer gas flow influence film stability and lead to film breakup, which in turn can lead to deposit formation. In this work we examine the evolution and stability of a thin liquid film in the presence of a first-order chemical reaction and under the influence of a turbulent gas flow. Long-wave theory with a double perturbation analysis is used to reduce the complexity of the problem and obtain an evolution equation for the film thickness. The chemical reaction is assumed to be slow compared to film evolution and the amount of reactant in the film is limited, which means that the reaction rate decreases with time as the reactant is consumed. A linear stability analysis is performed to identify the influence of reaction parameters, material properties, and environmental conditions on the film stability limits. Results indicate that exothermic reactions have a stabilizing effect whereas endothermic reactions destabilize the film and can lead to rupture. It is shown that an initially unstable film can become stable with time as the reaction rate decreases. The shearing of the film by the external gas flow leads to the appearance of traveling waves. The shear stress magnitude has a nonmonotonic influence on film stability.

  4. Experimental investigation on coupling flows between liquid and liquid metal layers

    Science.gov (United States)

    Yano, Kanako; Tasaka, Yuji; Murai, Yuichi; Takeda, Yasushi; Yanagisawa, Takatoshi

    2008-11-01

    This study aims to clarify coupling of flows between liquid metal and other usual liquids, e.g. water or oil, in fluid dynamical systems. In past studies for two-layer Rayleigh-Bénard system where the immiscible two liquids are layered, two types of coupling were observed; these are called as ``mechanical coupling'' and ``thermal coupling.'' As a typical character of low Pr fluid, large-scale structure in the liquid metal layer has oscillating motion. In this study we investigate ``thermal coupling'' especially how the oscillation of cells in the liquid metal layer propagates to the upper liquid layer and vice versa by changing a ratio of the height of the layers and viscosity of the upper layer fluid. Visualization of the liquid metal motion was conducted by means of ultrasonic velocity profiling, and then the oscillating motion is expressed on the space-time velocity map. PIV measurement of the upper, transparent fluid layer shows the modulation of the convective motion due to the oscillation in the liquid metal layer. Point-wise measurement of temperature at several positions in the fluid layer represents the modulation quantitatively.

  5. Optical Feedback Interferometry for Velocity Measurement of Parallel Liquid-Liquid Flows in a Microchannel

    Directory of Open Access Journals (Sweden)

    Evelio E. Ramírez-Miquet

    2016-08-01

    Full Text Available Optical feedback interferometry (OFI is a compact sensing technique with recent implementation for flow measurements in microchannels. We propose implementing OFI for the analysis at the microscale of multiphase flows starting with the case of parallel flows of two immiscible fluids. The velocity profiles in each phase were measured and the interface location estimated for several operating conditions. To the authors knowledge, this sensing technique is applied here for the first time to multiphase flows. Theoretical profiles issued from a model based on the Couette viscous flow approximation reproduce fairly well the experimental results. The sensing system and the analysis presented here provide a new tool for studying more complex interactions between immiscible fluids (such as liquid droplets flowing in a microchannel.

  6. Film boiling heat transfer from a wire to upward flow of liquid hydrogen and liquid nitrogen

    Science.gov (United States)

    Shiotsu, M.; Shirai, Y.; Horie, Y.; Shigeta, H.; Higa, D.; Tatsumoto, H.; Hata, K.; Kobayashi, H.; Nonaka, S.; Naruo, Y.; Inatani, Y.

    2015-11-01

    Film boiling heat transfer coefficients in liquid hydrogen were measured for the heater surface superheats to 300 K under pressures from 0.4 to 1.1 MPa, liquid subcoolings to 11 K and flow velocities to 8 m/s. Two test wires were both 1.2 mm in diameter, 120 mm and 200 mm in lengths and were made of PtCo alloy. The test wires were located on the center of 8 mm and 5 mm diameter conduits of FRP (Fiber Reinforced Plastics). Furthermore film boiling heat transfer coefficients in liquid nitrogen were measured only for the 200 mm long wire. The film boiling heat transfer coefficients are higher for higher pressure, higher subcooling, and higher flow velocity. The experimental data were compared with a conventional equation for forced flow film boiling in a wide channel. The data for the 8 mm diameter conduit were about 1.7 times and those for the 5 mm conduit were about 1.9 times higher than the predicted values by the equation. A new equation was presented modifying the conventional equation based on the liquid hydrogen and liquid nitrogen data. The experimental data were expressed well by the equation.

  7. Propagation of small disturbances in two phases, one component flow (1963); Propagation de petites perturbations dans un ecoulement double phase a un seul constituant (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Boure, J. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1963-07-01

    A small disturbance is, shown to give rise to two waves: a pressure (sonic) wave and a continuity wave. Their propagation velocities are calculated. These velocities are independent of the disturbance amplitude. The sonic velocity is primarily a function of that one corresponding to the same medium with no flow and of the liquid phase velocity. It is also a function of the physical properties of the phases on the saturation line, of the slip laws and of the void fraction. The continuity wave velocity is only a function of the slip laws, of the void fraction and of the velocity of either phase. It appears two kinds of critical flow rates which are calculated. The void fraction and the liquid and gas velocities variations are calculated. These results are extended to the case of a real loop and an approximative method is given for the treatment of this case. (author) [French] On montre qu'une petite perturbation donne naissance a deux ondes: une onde de pression (onde sonique) et une onde de continuite. On calcule leurs vitesses de propagation qui sont independantes de l'amplitude de la perturbation. La vitesse du son depend des proprietes physiques des phases le long de la courbe de saturation, des lois du glissement, de la fraction volumique de vapeur. Elle depend surtout de la vitesse qu'il aurait dans le milieu immobile de meme fraction volumique de vapeur, et de la vitesse de la phase liquide. La vitesse de l'onde de continuite depend des lois du glissement, de la fraction volumique de vapeur et de la vitesse d'une des phases. Il apparait deux types de debits critiques que l'on calcule. On calcule egalement les variations de la fraction volumique de vapeur et des vitesses des phases dans la perturbation. On generalise des resultats precedents dans le cas d'un circuit reel et on propose une methode approchee pour traiter le probleme dans ce cas. (auteur)

  8. Impact of time-dependent nonaxisymmetric velocity perturbations on dynamo action of von Kármán-like flows.

    Science.gov (United States)

    Giesecke, André; Stefani, Frank; Burguete, Javier

    2012-12-01

    We present numerical simulations of the kinematic induction equation in order to examine the dynamo efficiency of an axisymmetric von Kármán-like flow subject to time-dependent nonaxisymmetric velocity perturbations. The numerical model is based on the setup of the French von Kármán-sodium dynamo (VKS) and on the flow measurements from a water experiment conducted at the University of Navarra in Pamplona, Spain. The principal experimental observations that are modeled in our simulations are nonaxisymmetric vortexlike structures which perform an azimuthal drift motion in the equatorial plane. Our simulations show that the interactions of these periodic flow perturbations with the fundamental drift of the magnetic eigenmode (including the special case of nondrifting fields) essentially determine the temporal behavior of the dynamo state. We find two distinct regimes of dynamo action that depend on the (prescribed) drift frequency of an (m=2) vortexlike flow perturbation. For comparatively slowly drifting vortices we observe a narrow window with enhanced growth rates and a drift of the magnetic eigenmode that is synchronized with the perturbation drift. The resonance-like enhancement of the growth rates takes place when the vortex drift frequency roughly equals the drift frequency of the magnetic eigenmode in the unperturbed system. Outside of this small window, the field generation is hampered compared to the unperturbed case, and the field amplitude of the magnetic eigenmode is modulated with approximately twice the vortex drift frequency. The abrupt transition between the resonant regime and the modulated regime is identified as a spectral exceptional point where eigenvalues (growth rates and frequencies) and eigenfunctions of two previously independent modes collapse. In the actual configuration the drift frequencies of the velocity perturbations that are observed in the water experiment are much larger than the fundamental drift frequency of the magnetic

  9. Impact of time-dependent nonaxisymmetric velocity perturbations on dynamo action of von Kármán-like flows

    Science.gov (United States)

    Giesecke, André; Stefani, Frank; Burguete, Javier

    2012-12-01

    We present numerical simulations of the kinematic induction equation in order to examine the dynamo efficiency of an axisymmetric von Kármán-like flow subject to time-dependent nonaxisymmetric velocity perturbations. The numerical model is based on the setup of the French von Kármán-sodium dynamo (VKS) and on the flow measurements from a water experiment conducted at the University of Navarra in Pamplona, Spain. The principal experimental observations that are modeled in our simulations are nonaxisymmetric vortexlike structures which perform an azimuthal drift motion in the equatorial plane. Our simulations show that the interactions of these periodic flow perturbations with the fundamental drift of the magnetic eigenmode (including the special case of nondrifting fields) essentially determine the temporal behavior of the dynamo state. We find two distinct regimes of dynamo action that depend on the (prescribed) drift frequency of an (m=2) vortexlike flow perturbation. For comparatively slowly drifting vortices we observe a narrow window with enhanced growth rates and a drift of the magnetic eigenmode that is synchronized with the perturbation drift. The resonance-like enhancement of the growth rates takes place when the vortex drift frequency roughly equals the drift frequency of the magnetic eigenmode in the unperturbed system. Outside of this small window, the field generation is hampered compared to the unperturbed case, and the field amplitude of the magnetic eigenmode is modulated with approximately twice the vortex drift frequency. The abrupt transition between the resonant regime and the modulated regime is identified as a spectral exceptional point where eigenvalues (growth rates and frequencies) and eigenfunctions of two previously independent modes collapse. In the actual configuration the drift frequencies of the velocity perturbations that are observed in the water experiment are much larger than the fundamental drift frequency of the magnetic

  10. Flow film boiling heat transfer for subcooled liquids flowing upward perpendicular to single horizontal cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q.S. [Kobe Univ. of Mercantile Marine, Dept. of Nuclear Engineering (Japan); Shiotsu, M. [Kyoto Univ., Dept. of Energy Sci. and Tech. (Japan); Sakurai, A. [Kyoto Univ. (Japan)

    2001-07-01

    The knowledge of flow film boiling heat transfer on a horizontal cylinder in various liquids flowing upward perpendicular to the cylinder is important as the database for the safety evaluation of the accidents such as rapid power burst and pressure reduction in the nuclear power plants. Flow film boiling heat transfer from single horizontal cylinders in water and Freon-113 flowing upward perpendicular to the cylinder under subcooled conditions was measured under wide experimental conditions. The flow velocities ranged from 0 to 1 m/s, the system pressures ranged from 100 to 500 kPa, and the surface superheats were raised up to 800 K for water and 400 K for Freon-113, respectively. Platinum horizontal cylinders with diameters ranging from 0.7 to 5 mm were used as the test heaters. The test heater was heated by direct electric current. The experimental data of film boiling heat transfer coefficients show that they increase with the increase of flow velocity, liquid subcooling, system pressure and with the decrease of cylinder diameter. Based on the experimental data, a correlation for subcooled flow film boiling heat transfer including the effects of liquid subcooling and radiation was presented, which can describe the experimental data obtained within 20% for the flow velocities below 0.7 m/s, and within -30% to +20% for the higher flow velocities. The correlation also predicted well the data by Shigechi (1983), Motte and Bromley (1957), and Sankaran and Witte (1990) obtained for the larger diameter cylinders and higher flow velocities in various liquids at the pressures of near atmospheric. The Shigechi's data were in the range from about -20% to +15%, the data of Motte and Bromley were about 30%,and the data of Sankaran and Witte were within +20 % of the curves given by the corresponding predicted values. (authors)

  11. Transition from laminar to turbulent flow in liquid filled microtubes

    Science.gov (United States)

    Sharp, K. V.; Adrian, R. J.

    2004-05-01

    The transition to turbulent flow is studied for liquids of different polarities in glass microtubes having diameters between 50 and 247 µm. The onset of transition occurs at Reynolds numbers of ~1,800 2,000, as indicated by greater-than-laminar pressure drop and micro-PIV measurements of mean velocity and rms velocity fluctuations at the centerline. Transition at anomalously low values of Reynolds number was never observed. Additionally, the results of more than 1,500 measurements of pressure drop versus flow rate confirm the macroscopic Poiseuille flow result for laminar flow resistance to within -1% systematic and ±2.5% rms random error for Reynolds numbers less than 1,800.

  12. Standard flow liquid chromatography for shotgun proteomics in bioenergy research.

    Science.gov (United States)

    González Fernández-Niño, Susana M; Smith-Moritz, A Michelle; Chan, Leanne Jade G; Adams, Paul D; Heazlewood, Joshua L; Petzold, Christopher J

    2015-01-01

    Over the past 10 years, the bioenergy field has realized significant achievements that have encouraged many follow on efforts centered on biosynthetic production of fuel-like compounds. Key to the success of these efforts has been transformational developments in feedstock characterization and metabolic engineering of biofuel-producing microbes. Lagging far behind these advancements are analytical methods to characterize and quantify systems of interest to the bioenergy field. In particular, the utilization of proteomics, while valuable for identifying novel enzymes and diagnosing problems associated with biofuel-producing microbes, is limited by a lack of robustness and limited throughput. Nano-flow liquid chromatography coupled to high-mass accuracy, high-resolution mass spectrometers has become the dominant approach for the analysis of complex proteomic samples, yet such assays still require dedicated experts for data acquisition, analysis, and instrument upkeep. The recent adoption of standard flow chromatography (ca. 0.5 mL/min) for targeted proteomics has highlighted the robust nature and increased throughput of this approach for sample analysis. Consequently, we assessed the applicability of standard flow liquid chromatography for shotgun proteomics using samples from Escherichia coli and Arabidopsis thaliana, organisms commonly used as model systems for lignocellulosic biofuels research. Employing 120 min gradients with standard flow chromatography, we were able to routinely identify nearly 800 proteins from E. coli samples; while for samples from Arabidopsis, over 1,000 proteins could be reliably identified. An examination of identified peptides indicated that the method was suitable for reproducible applications in shotgun proteomics. Standard flow liquid chromatography for shotgun proteomics provides a robust approach for the analysis of complex samples. To the best of our knowledge, this study represents the first attempt to validate the standard

  13. Vibrational circular dichroism from ab initio molecular dynamics and nuclear velocity perturbation theory in the liquid phase.

    Science.gov (United States)

    Scherrer, Arne; Vuilleumier, Rodolphe; Sebastiani, Daniel

    2016-08-28

    We report the first fully ab initio calculation of dynamical vibrational circular dichroism spectra in the liquid phase using nuclear velocity perturbation theory (NVPT) derived electronic currents. Our approach is rigorous and general and thus capable of treating weak interactions of chiral molecules as, e.g., chirality transfer from a chiral molecule to an achiral solvent. We use an implementation of the NVPT that is projected along the dynamics to obtain the current and magnetic dipole moments required for accurate intensities. The gauge problem in the liquid phase is resolved in a twofold approach. The electronic expectation values are evaluated in a distributed origin gauge, employing maximally localized Wannier orbitals. In a second step, the gauge invariant spectrum is obtained in terms of a scaled molecular moments, which allows to systematically include solvent effects while keeping a significant signal-to-noise ratio. We give a thorough analysis and discussion of this choice of gauge for the liquid phase. At low temperatures, we recover the established double harmonic approximation. The methodology is applied to chiral molecules ((S)-d2-oxirane and (R)-propylene-oxide) in the gas phase and in solution. We find an excellent agreement with the theoretical and experimental references, including the emergence of signals due to chirality transfer from the solute to the (achiral) solvent.

  14. Vibrational circular dichroism from ab initio molecular dynamics and nuclear velocity perturbation theory in the liquid phase

    Science.gov (United States)

    Scherrer, Arne; Vuilleumier, Rodolphe; Sebastiani, Daniel

    2016-08-01

    We report the first fully ab initio calculation of dynamical vibrational circular dichroism spectra in the liquid phase using nuclear velocity perturbation theory (NVPT) derived electronic currents. Our approach is rigorous and general and thus capable of treating weak interactions of chiral molecules as, e.g., chirality transfer from a chiral molecule to an achiral solvent. We use an implementation of the NVPT that is projected along the dynamics to obtain the current and magnetic dipole moments required for accurate intensities. The gauge problem in the liquid phase is resolved in a twofold approach. The electronic expectation values are evaluated in a distributed origin gauge, employing maximally localized Wannier orbitals. In a second step, the gauge invariant spectrum is obtained in terms of a scaled molecular moments, which allows to systematically include solvent effects while keeping a significant signal-to-noise ratio. We give a thorough analysis and discussion of this choice of gauge for the liquid phase. At low temperatures, we recover the established double harmonic approximation. The methodology is applied to chiral molecules ((S)-d2-oxirane and (R)-propylene-oxide) in the gas phase and in solution. We find an excellent agreement with the theoretical and experimental references, including the emergence of signals due to chirality transfer from the solute to the (achiral) solvent.

  15. Flow of Dense Granular Media; A Peculiar Liquid

    Science.gov (United States)

    Pouliquen, Olivier

    2007-11-01

    Rice flowing out of a silo, rocks tumbling down a slope, sand avalanching on a dune, are examples of simple granular flows. Their description still represents a challenge due to the lack of constitutive laws able to describe the rich phenomenology observed with granular materials. However, the numerous experiments and simulations carried out during the last ten years have given keys for a better understanding. This talk will review the general properties of granular flows, before focusing on the dense flow regime where granular media flow like a liquid. In this regime, simple constitutive laws can be proposed, in which the granular fluid is described as a peculiar visco-plastic liquid. This talk will show that this approach gives quantitative predictions in several configurations, providing a relevant framework for adressing granular hydrodynamic problems. The second part of this presentation will discuss the limits of this approach, the important open problems, and the consequences of this development for the more complex case of mixture of grains and fluid. This work has been done with Pierre Jop, Yoel Forterre and Mickael Paihla.

  16. Monitoring drilling mud composition using flowing liquid junction electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, R.; Fletcher, P.; Vercaemer, C.

    1990-06-27

    The concentration of a chosen ionic component of a drilling mud is determined from the potential difference between an ion selective electrode, selective to the component and a reference electrode, the reference electrode being connected to the mud by a liquid junction through which reference electrolyte flows from the electrode to the mud. The system avoids errors due to undesirable interactions between the mud and the reference electrode materials. (author).

  17. Standard flow liquid chromatography for shotgun proteomics in bioenergy research

    Directory of Open Access Journals (Sweden)

    Susana M. González Fernández-Niño

    2015-04-01

    Full Text Available Over the past ten years the bioenergy and biofuels field has realized significant achievements that have encouraged many follow on efforts centered on biosynthetic production of fuel-like compounds. Key to the success of these efforts has been transformational developments in feedstock characterization and metabolic engineering of biofuel-producing microbes. Lagging far behind these advancements are analytical methods to characterize and quantify systems of interest to the bioenergy field. In particular the utilization of proteomics, while valuable for identifying novel enzymes and diagnosing problems associated with biofuel-producing microbes, is limited by a lack of robustness and limited throughput. Nano-flow liquid chromatography coupled to high-mass accuracy, high-resolution mass spectrometers has become the dominant approach for the analysis of complex proteomic samples, yet such assays still require dedicated experts for data acquisition, analysis, and instrument upkeep. The recent adoption of standard flow chromatography (ca. 0.5 mL/min for targeted proteomics has highlighted the robust nature and increased throughput of this approach for sample analysis. Consequently, we assessed the applicability of standard flow liquid chromatography for shotgun proteomics using samples from Escherichia coli and Arabidopsis thaliana, organisms commonly used as model systems for lignocellulosic biofuels research. Employing 120 minute gradients with standard flow chromatography we were able to routinely identify nearly 800 proteins from E. coli samples, while for samples from Arabidopsis over 1,000 proteins could be reliably identified. An examination of identified peptides indicated that the method was suitable for reproducible applications in shotgun proteomics. Standard flow liquid chromatography for shotgun proteomics provides a robust approach for the analysis of complex samples. To the best of our knowledge this study represents the first attempt

  18. Teflon-coated silicon microreactors: impact on segmented liquid-liquid multiphase flows.

    Science.gov (United States)

    Kuhn, Simon; Hartman, Ryan L; Sultana, Mahmooda; Nagy, Kevin D; Marre, Samuel; Jensen, Klavs F

    2011-05-17

    We describe fluoropolymer modification of silicon microreactors for control of wetting properties in chemical synthesis applications and characterize the impact of the coating on liquid-liquid multiphase flows of solvents and water. Annular flow of nitrogen gas and a Teflon AF (DuPont) dispersion enable controlled evaporation of fluoropolymer solvent, which in turn brings about three-dimensional polymer deposition on microchannel walls. Consequently, the wetting behavior is switched from hydrophilic to hydrophobic. Analysis of microreactors reveals that the polymer layer thickness increases down the length of the reactor from ∼1 to ∼13 μm with an average thickness of ∼7 μm. Similarly, we show that microreactor surfaces can be modified with poly(tetrafluoroethylene) (PTFE). These PTFE-coated microreactors are further characterized by measuring residence time distributions in segmented liquid-liquid multiphase flows, which display reduced axial dispersion for the coated microreactors. Applying particle image velocimetry, changes in segment shape and velocity fluctuations are observed resulting in reduced axial dispersion. Furthermore, the segment size distribution is narrowed for the hydrophobic microreactors, enabling further control of residence distributions for synthesis and screening applications.

  19. The Three-D Flow Structures of Gas and Liquid Generated by a Spreading Flame Over Liquid Fuel

    Science.gov (United States)

    Tashtoush, G.; Ito, A.; Konishi, T.; Narumi, A.; Saito, K.; Cremers, C. J.

    1999-01-01

    We developed a new experimental technique called: Combined laser sheet particle tracking (LSPT) and laser holographic interferometry (HI), which is capable of measuring the transient behavior of three dimensional structures of temperature and flow both in liquid and gas phases. We applied this technique to a pulsating flame spread over n-butanol. We found a twin vortex flow both on the liquid surface and deep in the liquid a few mm below the surface and a twin vortex flow in the gas phase. The first twin vortex flow at the liquid surface was observed previously by NASA Lewis researchers, while the last two observations are new. These observations revealed that the convective flow structure ahead of the flame leading edge is three dimensional in nature and the pulsating spread is controlled by the convective flow of both liquid and gas.

  20. Liquid Droplet Detachment and Entrainment in Microscale Flows

    Science.gov (United States)

    Hidrovo, Carlos

    2005-11-01

    In this talk we will present a first order study of liquid water detachment and entrainment into air flows in hydrophobic microchannels. Silicon based microstructures consisting of 23 mm long U-shaped channels of different geometry were used for this purpose. The structures are treated with a Molecular Vapor Deposition (MVD) process that renders them hydrophobic. Liquid water is injected through a side slot located 2/3 of the way downstream from the air channel inlet. The water entering the air channel beads up into slugs or droplets that grow in size at this injection location until they fill and flood the channel or are carried away by the air flow. The slugs/droplets dimensions at detachment are correlated against superficial gas velocity and proper dimensionless parameters are postulated and examined to compare hydrodynamic forces against surface tension. It is found that slug/droplet detachment is dominated by two main forces: pressure gradient drag, arising from confinement of a viscous flow in the channel, and inertial drag, arising from the stagnation of the air due to obstruction by the slugs/droplets. A detachment regime map is postulated based on the relative importance of these forces under different flow conditions.

  1. Experimental study of the stability and flow characteristics of floating liquid columns confined between rotating disks

    Science.gov (United States)

    Fowle, A. A.; Soto, L.; Strong, P. F.; Wang, C. A.

    1980-01-01

    A low Bond number simulation technique was used to establish the stability limits of cylindrical and conical floating liquid columns under conditions of isorotation, equal counter rotation, rotation of one end only, and parallel axis offset. The conditions for resonance in cylindrical liquid columns perturbed by axial, sinusoidal vibration of one end face are also reported. All tests were carried out under isothermal conditions with water and silicone fluids of various viscosities. A technique for the quantitative measurement of stream velocity within a floating, isothermal, liquid column confined between rotatable disks was developed. In the measurement, small, light scattering particles were used as streamline markers in common arrangement, but the capability of the measurement was extended by use of stereopair photography system to provide quantitative data. Results of velocity measurements made under a few selected conditions, which established the precision and accuracy of the technique, are given. The general qualitative features of the isothermal flow patterns under various conditions of end face rotation resulting from both still photography and motion pictures are presented.

  2. Blade Shape Optimization of Liquid Turbine Flow Sensor

    Institute of Scientific and Technical Information of China (English)

    郭素娜; 张涛; 孙立军; 杨振; 杨文量

    2016-01-01

    Based on the characteristic curve analysis, the method using 2D(K ) square difference of meter factor at different flow rates was developed to evaluate the performance of turbine flow sensor in this study. Then according to the distribution of entrance velocity, it was supposed that reducing the blade area near the tip could decrease the linearity error of a sensor. Therefore, the influence of different blade shape parameters on the performance of the sensor was investigated by combining computational fluid dynamics(CFD)simulation with experimental test. The experimental results showed that, for the liquid turbine flow sensor with a diameter of 10 mm, the linearity error was smallest, and the performance of sensor was optimal when blade shape parameter equaled 0.25.

  3. Liquid Crystal Analogue of Abrikosov Vortex Flow in Superconductors

    CERN Document Server

    Tanaka, A; Hayakawa, R

    1996-01-01

    We extend the correspondence between the Renn-Lubensky Twist-Grain-Boundary-A phase in chiral liquid crystals and the Abrikosov mixed state in superconductors to dynamical aspects. We find that for a TGB sample with free boundaries, an external electric field applied along the helical axis induces a uniform translational motion of the grain boundary system - an analogue of the well-known mixed state flux flow. Likewise, an analogue of the mixed state Nernst effect is found. In much the same way in which the flux flow carries intercore electric fields generating Joule heat in an otherwise dissipation-free system, the grain boundary flow carries along polarized charges, resulting in a finite electric conductivity in a ferroelectric.

  4. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control.

    Science.gov (United States)

    Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph

    2017-04-03

    With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout-differential pressure based flow sensors and thermal calorimetric flow sensors-are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  5. Molecular dynamics study of solid-liquid heat transfer and passive liquid flow

    Science.gov (United States)

    Yesudasan Daisy, Sumith

    High heat flux removal is a challenging problem in boilers, electronics cooling, concentrated photovoltaic and other power conversion devices. Heat transfer by phase change is one of the most efficient mechanisms for removing heat from a solid surface. Futuristic electronic devices are expected to generate more than 1000 W/cm2 of heat. Despite the advancements in microscale and nanoscale manufacturing, the maximum passive heat flux removal has been 300 W/cm2 in pool boiling. Such limitations can be overcome by developing nanoscale thin-film evaporation based devices, which however require a better understanding of surface interactions and liquid vapor phase change process. Evaporation based passive flow is an inspiration from the transpiration process that happens in trees. If we can mimic this process and develop heat removal devices, then we can develop efficient cooling devices. The existing passive flow based cooling devices still needs improvement to meet the future demands. To improve the efficiency and capacity of these devices, we need to explore and quantify the passive flow happening at nanoscales. Experimental techniques have not advanced enough to study these fundamental phenomena at the nanoscale, an alternative method is to perform theoretical study at nanoscales. Molecular dynamics (MD) simulation is a widely accepted powerful tool for studying a range of fundamental and engineering problems. MD simulations can be utilized to study the passive flow mechanism and heat transfer due to it. To study passive flow using MD, apart from the conventional methods available in MD, we need to have methods to simulate the heat transfer between solid and liquid, local pressure, surface tension, density, temperature calculation methods, realistic boundary conditions, etc. Heat transfer between solid and fluids has been a challenging area in MD simulations, and has only been minimally explored (especially for a practical fluid like water). Conventionally, an

  6. Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity

    Science.gov (United States)

    Pais, S. C.; Kamotani, Y.; Bhunia, A.; Ostrach, S.

    1999-01-01

    The present investigation reports a study of bubble generation under reduced gravity conditions, using both a co-flow and a cross-flow configuration. This study may be used in the conceptual design of a space-based thermal management system. Ensuing two-phase flow void fraction can be accurately monitored using a single nozzle gas injection system within a continuous liquid flow conduit, as utilized in the present investigation. Accurate monitoring of void fraction leads to precise control of heat and mass transfer coefficients related to a thermal management system; hence providing an efficient and highly effective means of removing heat aboard spacecraft or space stations. Our experiments are performed in parabolic flight aboard the modified DC-9 Reduced Gravity Research Aircraft at NASA Lewis Research Center, using an air-water system. For the purpose of bubble dispersion in a flowing liquid, we use both a co-flow and a cross-flow configuration. In the co-flow geometry, air is introduced through a nozzle in the same direction with the liquid flow. On the other hand, in the cross-flow configuration, air is injected perpendicular to the direction of water flow, via a nozzle protruding inside the two-phase flow conduit. Three different flow conduit (pipe) diameters are used, namely, 1.27 cm, 1.9 cm and 2.54 cm. Two different ratios of nozzle to pipe diameter (D(sub N))sup * are considered, namely (D(sub N))sup * = 0.1 and 0.2, while superficial liquid velocities are varied from 8 to 70 cm/s depending on flow conduit diameter. It is experimentally observed that by holding all other flow conditions and geometry constant, generated bubbles decrease in size with increase in superficial liquid velocity. Detached bubble diameter is shown to increase with air injection nozzle diameter. Likewise, generated bubbles grow in size with increasing pipe diameter. Along the same lines, it is shown that bubble frequency of formation increases and hence the time to detachment of a

  7. Compressible air flow through a collapsing liquid cavity

    CERN Document Server

    Gordillo, Stephan Gekle \\and José Manuel

    2010-01-01

    We present a multiscale approach to simulate the impact of a solid object on a liquid surface: upon impact a thin liquid sheet is thrown upwards all around the rim of the impactor while in its wake a large surface cavity forms. Under the influence of hydrostatic pressure the cavity immediately starts to collapse and eventually closes in a single point from which a thin, needle-like jet is ejected. Existing numerical treatments of liquid impact either consider the surrounding air as an incompressible fluid or neglect air effects altogether. In contrast, our approach couples a boundary-integral method for the liquid with a Roe scheme for the gas domain and is thus able to handle the fully \\emph{compressible} gas stream that is pushed out of the collapsing impact cavity. Taking into account air compressibility is crucial, since, as we show in this work, the impact crater collapses so violently that the air flow through the cavity neck attains supersonic velocities already at cavity diameters larger than 1 mm. Ou...

  8. Mathematical modelling of Liquid -Liquid extraction in the slug flow regime in a microchannel

    Science.gov (United States)

    Ramji, Sundari; Bhagavatula, Dinesh; Rakesh, Arjun; Pushpavanam, S.

    2016-11-01

    Mixing in the slug flow regime in microchannels is enhanced by the presence of internal circulations induced by shear due to wall. This helps improve mass transfer in this flow regime. We exploit the low Re characteristic of the flow and seek a numerical solution to understand the structure of the vortex patterns formed in the two phases in the slug flow regime. We study liquid-liquid extraction in the system to determine the improvement in mass transfer. The system was analyzed for two cases when there is (i) no film surrounding the slug (ii) a thin film surrounding the slug. The 2D governing equations for fluid flow are solved using two approaches: a) a stream function formulation based on finite differences b) primitive variable formulation with the Chebyshev collocation method. The effect of viscosity ratio, slug length and film thickness on the vortex structure were studied. While secondary vortices were induced in the less viscous phase in the case where the thin film is absent, they are always generated in the slug irrespective of the viscosity ratio in the case where the film is present. The species balance equation was then solved numerically using two approaches: a) an Alternating Direction Explicit method and b) the Locally One Dimensional splitting technique. The effect of varying Peclet number from 0 to 104 on the solute transfer from the slug to the continuous phase was studied. The extraction performance is analyzed in terms of extraction efficiency and mass transfer coefficient.

  9. Stabilising falling liquid film flows using feedback control

    CERN Document Server

    Thompson, Alice B; Pavliotis, Grigorios A; Papageorgiou, Demetrios T

    2015-01-01

    The flow of a fluid layer with one interface exposed to the air and the other an inclined planar wall becomes unstable due to inertial effects when the fluid layer is sufficiently thick or the slope sufficiently steep. This free surface flow of a single fluid layer has industrial applications including coating and heat transfer, which benefit from smooth and wavy interfaces, respectively. Here we discuss how the dynamics of the system are altered by introducing deliberately spatially-varying or time-dependent perturbations via the injection and suction of fluid through the wall. We find that injection and suction is a remarkably effective control mechanism: the controls can be used to drive the system towards arbitrary steady states and travelling waves, and the qualitative effects are independent of the details of the flow modelling. Furthermore, the system can still be successfully controlled even if the feedback must be applied via a set of localised actuators, and only a small number of system observation...

  10. Influence of interference of perturbation waves on the dynamics of Richtmyer-Meshkov flows

    Science.gov (United States)

    Pandian, Arun; Abarzhi, Snezhana

    2015-11-01

    We study the dynamics of structures that are formed due to Richtmyer-Meshkov instability (RMI) at the interface between two fluids with different densities when a strong shock wave refracts it [1]. While previous research in this area was focused on the effects of the wavelength and amplitude of the interface perturbation, the information was largely ignored on the influences of the relative phase of a multi-wave perturbation and the interference of the perturbation waves on RMI evolution. Applying group theory analysis and Smooth Particle Hydrodynamics simulations, we study the effects of the relative phase of the interfacial sinusoidal waves on the structure of bubbles and spikes that is formed at the interface after the shock passage. A number of new qualitative and quantitative effects are found, and the effect of the wave interference on RMI evolution is observed. In particular, evidences so far indicate that the symmetry of the interface strongly influences the spike morphology as compared to asymmetric cases. We discuss how one may control the growth of RMI by controlling the phases of waves of the initial perturbation. Support of the National Science Foundation is warmly appreciated.

  11. Velocity Measurements of Thermoelectric Driven Flowing Liquid Lithium

    Science.gov (United States)

    Szott, Matthew; Xu, Wenyu; Fiflis, Peter; Haehnlein, Ian; Kapat, Aveek; Kalathiparambil, Kishor; Ruzic, David N.

    2014-10-01

    Liquid lithium has garnered additional attention as a PFC due to its several advantages over solid PFCs, including reduced erosion and thermal fatigue, increased heat transfer, higher device lifetime, and enhanced plasma performance due to the establishment of low recycling regimes at the wall. The Lithium Metal Infused Trenches concept (LiMIT) has demonstrated thermoelectric magnetohydrodynamic flow of liquid lithium through horizontal open-faced metal trenches with measured velocities varying from 3.7+/-0.5 cm/s in the 1.76 T field of HT-7 to 22+/-3 cm/s in the SLiDE facility at UIUC at 0.059 T. To demonstrate the versatility of the concept, a new LiMIT design using narrower trenches shows steady state, thermoelectric-driven flow at an arbitrary angle from horizontal. Velocity characteristics are measured and discussed. Based on this LiMIT concept, a new limiter design has been developed to be tested on the mid-plane of the EAST plasma. Preliminary modelling suggests lithium flow of 6 cm/s in this device. Additionally, recent testing at the Magnum-PSI facility has given encouraging results, and velocity measurements in relation to magnetic field strength and plasma flux are also presented.

  12. Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces

    Science.gov (United States)

    Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David

    2014-10-01

    An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.

  13. Investigation of the Extinguishing Features for Liquid Fuels and Organic Flammable Liquids Atomized by a Water Flow

    OpenAIRE

    2016-01-01

    The processes of heat and mass transfer were investigated experimentally while moving and evaporating the atomized water flow in high-temperature combustion products of typical liquid fuels and organic flammable liquids: gasoline, kerosene, acetone, crude oil, industrial alcohol. We determined typical periods of liquid extinguishing by an atomized water flow of various dispersability. Data of the discharge of extinguishing medium corresponding to various parameters of atomization and duration...

  14. Electrochemical flow cell, particularly use with liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Matson, W.R.

    1983-11-08

    An amperometric cell modified for high pressure operation is described. The cell is a flow-through type cell defining a flow path and has at least one active testing electrode, at least one reference electrode and at least one counter electrode operatively disposed and electrically insulated from one another within the cell flow path. In a preferred embodiment the flow cell is encapsulated within a high impact, chemically resistant, chemically insulating material, and has a pair of high pressure resistance fittings communicating with the flow path and extending in part beyond the encapsulation. The cell has particular utility for use with a liquid chromatography separation and when placed in line upstream of sample injection, will remove selected electroactive components in the carrier fluid and thereby reduce background level of contaminents reaching the column and eluting from the column. The cell may also be placed in line following sample injection whereby it may be employed to electrochemically modify selected materials in the mobile phase whereby to change their chromatographic characteristics.

  15. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  16. VERTICAL FLOW OF GAS-LIQUID-SOLID PARTICLES SYSTEM

    OpenAIRE

    幡手, 泰雄; 野村, 博; 碇, 醇; ハタテ, ヤスオ; ノムラ, ヒロシ; イカリ, アツシ; HATATE, Yasuo; Nomura, Hiroshi; IKARI, Atsushi

    1983-01-01

    It is significant to know the hydrodynamic characteristics of the system in the design and scale-up of reactors containing gas-liquid-solid particles system. As a fundamental study of such a three-phase flow, the gas holdup and the pressure drop were measured in the vertical tubes, through which various mixtures of air, water, and fine glass-sphere, particles were passed. Three kinds of glass particles were used the average sizes of which were 30, 60 and 90 μm. Two kinds of tubes, 15 an...

  17. High Reynolds number liquid layer flow with flexible walls

    Indian Academy of Sciences (India)

    J S B Gajjar

    2015-05-01

    The stability of liquid layer flow over an inclined flexible wall is studied using asymptotic methods based on the assumption that the Reynolds number is large. The flexible wall behaviour is described by a spring-plate model, and parameters chosen so that the wall flexibility affects the governing boundary layer problem. For the case of a rigid wall, the problem reverts to one studied by Gajjar. Asymptotic analysis of the governing equations leads to the triple-deck equations governing the interaction between the wall layer and the free-surface. The linearised and other solution properties of these set of equations are discussed.

  18. Stability of stratified flow and slugging in horizontal gas-liquid flow

    Institute of Scientific and Technical Information of China (English)

    GU Hanyang; GUO Liejin

    2005-01-01

    A transient one-dimensional two-fluid model is proposed to investigate numerically the interfacial instability and the onset of slugging for liquid-gas flow in a horizontal duct. In the present model, the effects of surface tension and transverse variations in dynamic pressure are taken into account. The evolution of interfacial disturbances is displayed and compared with the linear viscous KelvinHelmholtz stability analyses. It shows that interfacial wave is more instable due to the non-linear effect. The model predicts well the stability limit of stratified flow in comparison with the experimental data, and also automatically tracks the onset of slugging. The results show that the initiation of hydrodynamic slugging is related to local interfacial instability. Based on the cycle of slugging, a model for slug frequency is presented, which predicts the trends of slug frequencies with gas/liquid flow rate well in comparison with the available data. The effects of physical properties on slugging have been examined. It is found that with the increase in the gas viscosity and liquid density the slugging would be inhibited, whereas, with the increase in liquid viscosity and gas density, the slugging can be promoted.

  19. Characterization of annular two-phase gas-liquid flows in microgravity

    Science.gov (United States)

    Bousman, W. Scott; Mcquillen, John B.

    1994-01-01

    A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.

  20. Frequency Transient of Three-Dimensional Perturbations in Shear Flows. Similarity Properties and Wave Packets Linear Formation

    CERN Document Server

    Fraternale, Federico

    2013-01-01

    The present thesis deals with the non-modal linear analysis of 3D perturbations in wall flows. In the first part,a solution to the Orr-Sommerfeld and Squire IVP, in the form of orthogonal functions expansion, is researched. The Galerkin method is successfully implemented to numerically compute approximate solutions for bounded flows. The Chandrasekhar functions revealed to ensure a fifth order of accuracy. The focus of the subsequent analysis is on the transient behavior of the perturbation frequency and phase velocity. The results confirm recent observations about a jump in the temporal evolution of the frequency of the wall-normal velocity signal, considered as the end of an Early Transient. After this jump, the wave frequency for Plane Couette flow experiences a periodic modulation about the asymptotic value, which is motivated and investigated in detail. A new result is the presence of a second frequency jump for the wall-normal vorticity. This fact, together with the possibility for different values of t...

  1. Thermographic investigation of surface temperature of the evaporating liquid layer under the action of gas flow

    Directory of Open Access Journals (Sweden)

    Kreta Aleksei

    2017-01-01

    Full Text Available An experimental study of the temperature field on the surface of horizontal liquid layer (Ethanol evaporating into gas flow (Air has been performed. Temperature gradient of the gas-liquid interface has been measured with the help of Titanium 570M IR camera. Shear stresses on gas-liquid interface induced by thermocapillary effect and inert gas flow have been defined.

  2. Pinch off and reconnection in liquid/liquid flows: joint experimental and numerical studies

    Energy Technology Data Exchange (ETDEWEB)

    Ellen K. Longmire; John S. Lowengrub

    2005-09-26

    Liquid/liquid systems appear in applications involving transport, mixing, and separation of petroleum, chemical, and waste products. Breakup and coalescence transitions often determine flow regimes as well as reaction and separation rates. Because they occur over very small time and length scales compared with the larger scales that dominate the flow, they are difficult to quantify experimentally and simulate numerically. Thus far, no accurate models exist for engineers to predict these flows. Experiments and computations were performed so that accurate engineering models can be developed. Jet pinch off and drop coalescence were examined in mixtures of water/glycerin and silicone oil. Index matching, laser sheet illumination, and the PIV method were applied to obtain visualization and velocity field sequences through transitions. The computations used a novel, physically-based method that captures interface breakup and coalescence automatically without resorting to ad-hoc cut-and-connect methods. To achieve enhanced accuracy near transitions, new adaptive time and space meshes were developed. The computations were validated through direct comparison with the experiments. The detailed results should lead to improved understanding of transition behavior. This understanding is needed to develop engineering models of multiphase flows. Such predictive models will lead to extensive cost savings in device and process design.

  3. Nonlinear evolution of density and flow perturbations on a Bjorken background

    CERN Document Server

    Brouzakis, Nikolaos; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2015-01-01

    Density perturbations and their dynamic evolution from early to late times can be used for an improved understanding of interesting physical phenomena both in cosmology and in the context of heavy-ion collisions. We discuss the spectrum and bispectrum of these perturbations around a longitudinally expanding fireball after a heavy-ion collision. The time-evolution equations couple the spectrum and bispectrum to each other, as well as to higher-order correlation functions through nonlinear terms. A non-trivial bispectrum is thus always generated, even if absent initially. For initial conditions corresponding to a model of independent sources, we discuss the linear and nonlinear evolution is detail. We show that, if the initial conditions are sufficiently smooth for fluid dynamics to be applicable, the nonlinear effects are relatively small.

  4. Nonlinear evolution of density and flow perturbations on a Bjorken background

    Science.gov (United States)

    Brouzakis, Nikolaos; Floerchinger, Stefan; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2015-03-01

    Density perturbations and their dynamic evolution from early to late times can be used for an improved understanding of interesting physical phenomena both in cosmology and in the context of heavy-ion collisions. We discuss the spectrum and bispectrum of these perturbations around a longitudinally expanding fireball after a heavy-ion collision. The time-evolution equations couple the spectrum and bispectrum to each other, as well as to higher-order correlation functions through nonlinear terms. A nontrivial bispectrum is thus always generated, even if absent initially. For initial conditions corresponding to a model of independent sources, we discuss the linear and nonlinear evolution in detail. We show that, if the initial conditions are sufficiently smooth for fluid dynamics to be applicable, the nonlinear effects are relatively small.

  5. Adapted MR velocimetry of slow liquid flow in porous media

    Science.gov (United States)

    Huang, Li; Mikolajczyk, Gerd; Küstermann, Ekkehard; Wilhelm, Michaela; Odenbach, Stefan; Dreher, Wolfgang

    2017-03-01

    MR velocimetry of liquid flow in opaque porous filters may play an important role in better understanding the mechanisms of deep bed filtration. With this knowledge, the efficiency of separating the suspended solid particles from the vertically flowing liquid can be improved, and thus a wide range of industrial applications such as wastewater treatment and desalination can be optimized. However, MR velocimetry is challenging for such studies due to the low velocities, the severe B0 inhomogeneity in porous structures, and the demand for high spatial resolution and an appropriate total measurement time during which the particle deposition will change velocities only marginally. In this work, a modified RARE-based MR velocimetry method is proposed to address these issues for velocity mapping on a deep bed filtration cell. A dedicated RF coil with a high filling factor is constructed considering the limited space available for the vertical cell in a horizontal MR magnet. Several means are applied to optimize the phase contrast RARE MRI pulse sequence for accurately measuring the phase contrast in a long echo train, even in the case of a low B1 homogeneity. Two means are of particular importance. One uses data acquired with zero flow to correct the phase contrast offsets from gradient imperfections, and the other combines the phase contrast from signals of both odd and even echoes. Results obtained on a 7T preclinical MR scanner indicate that the low velocities in the heterogeneous system can be correctly quantified with high spatial resolution and an adequate total measurement time, enabling future studies on flow during the filtration process.

  6. Thin power law film flow down an inclined plane: consistent shallow water models and stability under large scale perturbations

    CERN Document Server

    Noble, Pascal

    2012-01-01

    In this paper we derive consistent shallow water equations for thin films of power law fluids down an incline. These models account for the streamwise diffusion of momentum which is important to describe accurately the full dynamic of the thin film flows when instabilities like roll-waves arise. These models are validated through a comparison with Orr Sommerfeld equations for large scale perturbations. We only consider laminar flow for which the boundary layer issued from the interaction of the flow with the bottom surface has an influence all over the transverse direction to the flow. In this case the concept itself of thin film and its relation with long wave asymptotic leads naturally to flow conditions around a uniform free surface Poiseuille flow. The apparent viscosity diverges at the free surface which, in turn, introduces a singularity in the formulation of the Orr-Sommerfeld equations and in the derivation of shallow water models. We remove this singularity by introducing a weaker formulation of Cauc...

  7. Flowing Foam: T1 events and solid-liquid transitions.

    Science.gov (United States)

    Dennin, Michael

    2005-11-01

    Flowing aqueous foam is found in many applications ranging from oil recovery, to fire fighting, to spreading shaving cream. Aqueous foam consists of gas bubbles with liquid walls. One of the striking features of foam is that despite being composed entirely of fluids, its mechanical properties are either those of a solid (elastic response) or fluid (viscous flow), depending on the nature of the applied stress and strains. We study the transition between these two regimes using a model foam system: bubble rafts. Bubble rafts are a single layer of bubbles floating on the air-water surface. This allows us to track the motion of all the bubbles during flow. In this talk, we will present two main results. First, we will discuss the observation of the coexistence between a solid-like and fluid-like state during flow. Second, we will discuss the role played by nonlinear, topological rearrangements, known as T1 events, in determining the mechanical response of the system.

  8. Perturbations of flows of incompressible nonlinearly viscous and viscoplastic fluids caused by variations in material functions

    Science.gov (United States)

    Georgievskii, D. V.

    2007-06-01

    Material functions are necessary element of the constitutive relations determining any model of continuum. These functions can be defined as a collection of objects from which the operator of constitutive relations can be reconstructed completely. The material functions are found in test experiments and show the differences between a given medium and other media in the framework of the same model [1]. The "test experiment theory" is an important part of modern experimental mechanics. Just as in any experiment, from determining the viscosity coefficient by using the rotational viscosimeters to constructing the yield surface by using machines combined loading, the material functions are determined with an unavoidable error. For example, experimenters know that, in experiments with arbitrary accuracy, the moduli of elasticity can only be measured with an unimprovable tolerance of about 7%. Starting already from [2], the investigators' attention has been repeatedly drawn to the fact that it is necessary to take into account this tolerance in determining the material constants, functions, and functionals in problems of mechanics and especially in analyzing the stability of deformation processes. Mathematically, this means that problems of stability under perturbations of the initial data, external constantly acting forces, domain boundaries, etc. should be supplemented with the assumption that the material functions have unknown perturbations of a certain class [3]. The variations of material functions in the framework of the linearized stability theory were considered in [2, 4, 5]. In what follows, we study isotropic tensor functions in the most general case of scalar and tensor nonlinearity. These functions are assigned the meaning of constitutive relations between the stress and strain rate tensors in continuum. These constitutive relations contain scalar material functions of invariants on which, as follows from the above, some variations proportional to a small

  9. Numerical study of liquid-gas flow on complex boundaries

    Science.gov (United States)

    Wang, Sheng; Desjardins, Olivier

    2015-11-01

    Simulation techniques for liquid-gas flows near solid boundaries tend to fall two categories, either focusing on accurate treatment of the phase interface away from wall, or focusing on detailed modeling of contact line dynamics. In order to fill the gap between these two categories and to simulate liquid-gas flows in large scale engineering devices with complex boundaries, we develop a conservative, robust, and efficient framework for handling moving contact lines. This approach combines a conservative level set method to capture the interface, an immersed boundary method to represent the curved boundary, and a macroscopic moving contact line model. The performance of the proposed approach is assessed through several simulations. A drop spreading on a flat plate and a circular cylinder validate the equilibrium contact angle. The migration of a drop on an inclined plane is employed to validate the contact line dynamics. The framework is then applied to perform a 3D simulation of the migration of a drop through porous media, which consists of irregular placed cylinders. The conservation error is shown to remain small for all the simulations.

  10. Effects of Orifice Orientation and Gas-Liquid Flow Pattern on Initial Bubble Size

    Institute of Scientific and Technical Information of China (English)

    刘长军; 梁斌; 唐盛伟; 闵恩泽

    2013-01-01

    In many gas-liquid processes, the initial bubble size is determined by a series of operation parameters along with the sparger design and gas-liquid flow pattern. Bubble formation models for variant gas-liquid flow pat-terns have been developed based on force balance. The effects of the orientation of gas-liquid flow, gas velocity, liquid velocity and orifice diameter on the initial bubble size have been clarified. In ambient air-water system, the suitable gas-liquid flow pattern is important to obtain smaller bubbles under the low velocity liquid cross-flow con-ditions with stainless steel spargers. Among the four types of gas-liquid flow patterns discussed, the horizontal orifice in a vertically upward liquid flow produces the smallest initial bubbles. However the orientation effects of gas and liquid flow are found to be insignificant when liquid velocity is higher than 3.2 m·s-1 or the orifice diameter is small enough.

  11. Homogeneous and Stratified Liquid-Liquid Flow Effect of a Viscosity Reducer: I. Comparison in parallel plates for heavy crude

    Directory of Open Access Journals (Sweden)

    E. J. Suarez-Dominguez

    2016-12-01

    Full Text Available Production of heavy crude oil in Mexico, and worldwide, is increasing which has led to the application of different methods to reduce viscosity or to enhance transport through stratified flow to continue using the existing infrastructures. In this context, injecting a viscosity improver that does not mix completely with the crude, establishes a liquid-liquid stratified flow. On the basis of a parallel plates model, comparing the increase of flow that occurs in the one-phase case which assumes a complete mixture between the crude and the viscosity improver against another stratified liquid-liquid (no mixing between the oil and compared improver; it was found that in both cases there is a flow increase for the same pressure drop with a maximum for the case in which the flow improver is between the plates and the crude.

  12. Anomalous effect of flow rate on the electrochemical behavior at a liquid|liquid interface under microfluidic conditions.

    Science.gov (United States)

    Kaluza, Dawid; Adamiak, Wojciech; Kalwarczyk, Tomasz; Sozanski, Krzysztof; Opallo, Marcin; Jönsson-Niedziolka, Martin

    2013-12-23

    We have investigated the oxidation of ferrocene at a flowing organic solvent|aqueous electrolyte|solid electrode junction in a microfluidic setup using cyclic voltammetry and fluorescent laser scanning confocal microscopy. At low flow rates the oxidation current decreases with increasing flow, contrary to the Levich equation, but at higher flow rates the current increases linearly with the cube root of the flow rate. This behavior is explained using a simple model postulating a smallest effective width of the three-phase junction, which after fitting to the data comes to be ca. 20 μm. The fluorescence microscopy reveals mixing of the two phases close to the PDMS cover, but the liquid|liquid junction is stable close to the glass support. This study shows the importance of the solid|liquid|liquid junctions for the behavior of multiphase systems under microfluidic conditions.

  13. Solitons and production of defects in flow-aligning nematic liquid crystals under simple shear flow

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The production of defects in flow-aligning nematic liquid crystals under simple shear flow is analyzed by linear stability analysis based on Leslie-Ericksen theory. It is pointed out that the equation of motion of the nematic director under simple shear flow conforms to the driven over-damped sine-Gordon equation and has a soliton solution of amplitude π. It has also been shown that the stationary state with the director uniformly oriented at a Leslie angle is only a metastable state and that the potential, which governs the motion of the director, has infinite numbers of stable stationary states. Therefore, the defects, appearing as a stable solitary solution, can be nucleated from a uniformly aligned flow-aligning type of nematic liquid crystal by shear flow. On the other hand, the bands with long axis parallel to the vorticity axis, appearing as an unstable solution, can be observed as transient patterns at low shear rate and low shear strain value. The theoretical predictions are compared with previous experimental observations.

  14. Numerical simulations of high Knudsen number gas flows and microchannel electrokinetic liquid flows

    Science.gov (United States)

    Yan, Fang

    Low pressure and microchannel gas flows are characterized by high Knudsen numbers. Liquid flows in microchannels are characterized by non-conventional driving potentials like electrokinetic forces. The main thrust of the dissertation is to investigate these two different kinds of flows in gases and liquids respectively. High Knudsen number (Kn) gas flows were characterized by 'rarified' or 'microscale' behavior. Because of significant non-continuum effect, traditional CFD techniques are often inaccurate for analyzing high Kn number gas flows. The direct simulation Monte Carlo (DSMC) method offers an alternative to traditional CFD which retains its validity in slip and transition flow regimes. To validate the DSMC code, comparisons of simulation results with theoretical analysis and experimental data are made. The DSMC method was first applied to compute low pressure, high Kn flow fields in partially heated two dimensional channels. The effects of varying pressure, inlet flow and gas transport properties (Kn, Reynolds number, Re and the Prandtl number, Pr respectively) on the wall heat transfer (Nusselt number, Nu) were examined. The DSMC method was employed to explore mixing gas flows in two dimensional microchannels. Mixing of two gas streams (H2 and O2) was considered within a microchannel. The effect of the inlet-outlet pressure difference, the pressure ratio of the incoming streams and the accommodation coefficient of the solid wall on mixing length were all examined. Parallelization of a three-dimensional DSMC code was implemented using OpenMP procedure on a shared memory multi-processor computer. The parallel code was used to simulate 3D high Kn number Couette flow and the flow characteristics are found to be very different from their continuum counterparts. A mathematical model describing electrokinetically driven mass transport phenomena in microfabricated chip devices will also be presented. The model accounts for the principal physical phenomena affecting

  15. Incorporating a trend analysis of large flow perturbations into stochastic modeling of particle transport in open channel flow

    Science.gov (United States)

    Tsai, Christina W.; Lin, Emily Y.; Hung, Serena Y.

    2016-10-01

    In extreme flow conditions, both the flow carrying capacity and movement of particles may abruptly change from those associated with regular flows. This study investigates movement of sediment particles in response to extreme flow events using a Lagrangian stochastic jump diffusion particle tracking model (SJD-PTM). The study attempts to investigate the frequency change of extreme flow event occurrences and its impact on suspended sediment particle movement. Using the concept of logistic regression, the trend magnitude of extreme flow events can be used as an input of the proposed stochastic jump diffusion particle tracking model with Logistic regression (SJ-PTM_LR) to account for the potential effects of environmental change. The predicted frequency change of extreme flows from available data in the Chijiawan region in central Taiwan is illustrated in this study. Both ensemble mean and variance of particle trajectory can be quantified under such predicted frequency trend change of extreme flow occurrences via simulations of SJ-PTM_LR. Results show that particle movement uncertainty may undergo a significant increase by taking the effect of the predicted flow frequency trend into consideration. Such probabilistic outcome provides a valuable means for assessing the probability of failure (i.e., risk) resulting from sedimentation processes.

  16. The Jeffery-Hamel Flow and Heat Transfer of Nanofluids by Homotopy Perturbation Method and Comparison with Numerical Results

    CERN Document Server

    Pourabdian, Majid; Morad, Mohammad Reza; Javareshkian, Alireza

    2016-01-01

    This paper considers the influence of nanoparticles on the nonlinear Jeffery-Hamel flow problem. Investigation is performed for three types of nanoparticles namely copper Cu, alumina Al2O3 and titania TiO2 by considering water as a base fluid. The resulting nonlinear governing equations and their associated boundary conditions are solved for both semi-analytical and numerical solutions. The semi-analytical solution is developed by using Homotopy Perturbation Method (HPM) whereas the numerical solution is presented by Runge-Kutta scheme. Dimensionless velocity, temperature, skin friction coefficient and Nusselt number are addressed for the involved pertinent parameters. It is observed that the influence of solid volume fraction of nanoparticles on the heat transfer and fluid flow parameters is more noticeable when compared with the type of nanoparticles. The achieved results reveal that HPM is very effective, convenient and accurate for this problem.

  17. Thermal radiation effects on MHD convecture flow over a vertical porous plate embedded in a porous medium by perturbation technique

    Directory of Open Access Journals (Sweden)

    S. Sivasankaran

    2013-03-01

    Full Text Available This paper analyzes the influence of thermal radiation on the problem of unsteady magneto-convection flow of an electrically conducting fluid past a semi-infinite vertical porous plate embedded in a porous medium with time dependent suction. Perturbation technique is applied to transform the non-linear coupled governing partial differential equations in dimensionless form into a system of ordinary differential equations. The resulting equations are solved analytically and the solutions for the velocity and temperature fields are obtained. For different values of the flow parameters, the values for Nusselt number and skin-friction co-efficient are calculated. It is observed that the increase in the radiation parameter implies the decrease in the boundary layer thickness and enhances the rate of heat transfer. The velocity decreases as the existence of magnetic field becomes stronger.

  18. Light-Driven Transport of a Liquid Marble with and against Surface Flows.

    Science.gov (United States)

    Kavokine, Nikita; Anyfantakis, Manos; Morel, Mathieu; Rudiuk, Sergii; Bickel, Thomas; Baigl, Damien

    2016-09-01

    Liquid marbles, that is, liquid drops coated by a hydrophobic powder, do not wet any solid or liquid substrate, making their transport and manipulation both highly desirable and challenging. Herein, we describe the light-driven transport of floating liquid marbles and emphasize a surprising motion behavior. Liquid marbles are deposited on a water solution containing photosensitive surfactants. Irradiation of the solution generates photoreversible Marangoni flows that transport the liquid marbles toward UV light and away from blue light when the thickness of the liquid substrate is large enough (Marangoni regime). Below a critical thickness, the liquid marbles move in the opposite direction to that of the surface flow at a speed increasing with decreasing liquid thickness (anti-Marangoni). We demonstrate that the anti-Marangoni motion is driven by the free surface deformation, which propels the non-wetting marble against the surface flow. We call this behavior "slide effect".

  19. Effect of shear-thinning behaviour on liquid-liquid plug flow in microchannels

    Science.gov (United States)

    Roumpea, Evangelia; Chinaud, Maxime; Weheliye, Weheliye Hashi; Angeli, Panagiota; Kahouadji, Lyes; Matar, Omar K.

    2016-11-01

    The present work investigates the dynamics of plug formation of shear-thinning solutions in a 200 μm microchannel using a two-colour micro-PIV system. Measurements, including phase-averaged velocity fields, have been conducted both at the T-junction inlet and the main channel to enhance understanding of non-Newtonian liquid-liquid flows. Two aqueous glycerol solutions containing xanthan gum are used as the non-Newtonian fluids while 5 cSt silicone oil is the Newtonian phase. The current experimental results revealed a pronounced impact of the xanthan gum (shear-thinning behaviour) on the flow pattern transition boundaries, and enhance the fluid flowrates where plug flow occurred. The addition of polymer resulted also in different hydrodynamic characteristics such as a bullet-shaped plug and an increased film thickness between the plug and the wall. In the present work, the technique allows to capture the velocity field of both phases simultaneously. Experimental results are compared with the numerical simulations provided by the code BLUE. Project funded under the UK Engineering and Physical Sciences Research Council (EPSRC) Programme Grant MEMPHIS.

  20. Generalized breakup and coalescence models for population balance modelling of liquid-liquid flows

    CERN Document Server

    Traczyk, Marcin; Thompson, Chris

    2015-01-01

    Population balance framework is a useful tool that can be used to describe size distribution of droplets in a liquid-liquid dispersion. Breakup and coalescence models provide closures for mathematical formulation of the population balance equation (PBE) and are crucial for accu- rate predictions of the mean droplet size in the flow. Number of closures for both breakup and coalescence can be identified in the literature and most of them need an estimation of model parameters that can differ even by several orders of magnitude on a case to case basis. In this paper we review the fundamental assumptions and derivation of breakup and coalescence ker- nels. Subsequently, we rigorously apply two-stage optimization over several independent sets of experiments in order to identify model parameters. Two-stage identification allows us to estab- lish new parametric dependencies valid for experiments that vary over large ranges of important non-dimensional groups. This be adopted for optimization of parameters in breakup...

  1. Nonlinear dynamical behavior of the limited Explodator in a CSTR under square wave perturbation of the flow rate

    Science.gov (United States)

    Wu, Xiaomao; Schelly, Z. A.; Vastano, John A.

    1994-07-01

    Results of studies of the limited Explodator model in a continuous-flow stirred tank reactor (CSTR) under square wave perturbation of the flow rate are reported. The perturbation is applied in such a way that the system is alternately attracted to two different periodic attractors in the parameter region close the Hopf bifurcation point. The system is shown to display a variety of entrainment bands, birhythmicity, quasiperiodicity, resonance-like phenomenon, period doubling and intermittency routes to chaos, and a complicated window structure of the chaotic region. In addition, a novel phenomenon, “intermittent alternative laminar oscillations”, was observed in a chaotic regime sandwiched between two entrainment bands. Transient chaos occurs in one of the entrainment bands, which intimates chaos in the adjacent regime. Positive Lyapunov exponents were found to be associated with the chaotic behavior. The folding and stretching property of the chaotic attractors was analyzed through stroboscopic representations. The deterministic nature of the chaotic behavior was confirmed by the quadratic-like curve formed in the one-dimensional map.

  2. Convection Study by PIV Method Within Horizontal Liquid Layer Evaporating Into Inert Gas Flow

    Directory of Open Access Journals (Sweden)

    Kreta Aleksei

    2016-01-01

    Full Text Available The paper is devoted to the experimental study of convection in a horizontal evaporating liquid layer (ethanol of limited size under the action of gas flow (air. The two-dimensional velocity field in the liquid layer is obtained using the PIV method. The existence of a vortex convective flow within a liquid layer directed towards the gas flow has been revealed.

  3. Flow Visualization and Pattern Formation in Vertically Falling Liquid Films

    Science.gov (United States)

    Balakotaiah, Vemuri; Malamataris, Nikolaos

    2008-11-01

    Analytical results of a low-dimensional two equation h-q model and results of a direct numerical simulation of the transient two-dimensional Navier Stokes equations are presented for vertically falling liquid films along a solid wall. The numerical study aims at the elucidation of the hydrodynamics of the falling film. The analytical study aims at the calculation of the parameter space where pattern formation occurs for this flow. It has been found that when the wave amplitude exceeds a certain magnitude, flow reversal occurs in the film underneath the minimum of the waves [1]. The instantaneous vortical structures possess two hyperbolic points on the vertical wall and an elliptic point in the film. As the wave amplitude increases further, the elliptic point reaches the free surface of the film and two more hyperbolic points are formed in the free surface that replace the elliptic point. Between the two hyperbolic points on the free surface, the streamwise component of velocity is negative and the film is divided into asymmetric patterns of up and down flows. Depending on the value of the Kapitza number, these patterns are either stationary or oscillatory. Physical reasons for the influence of the Kapitza number on pattern formation are given. Movies are shown where the pattern formation is demonstrated. [1] N.A.Malamataris and V.Balakotaiah (2008), AIChE J., 54(7), p. 1725-1740

  4. Liquid flow cells having graphene on nitride for microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Adiga, Vivekananda P.; Dunn, Gabriel; Zettl, Alexander K.; Alivisatos, A. Paul

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to liquid flow cells for microscopy. In one aspect, a device includes a substrate having a first and a second oxide layer disposed on surfaces of the substrate. A first and a second nitride layer are disposed on the first and second oxide layers, respectively. A cavity is defined in the first oxide layer, the first nitride layer, and the substrate, with the cavity including a third nitride layer disposed on walls of the substrate and the second oxide layer that define the cavity. A channel is defined in the second oxide layer. An inlet port and an outlet port are defined in the second nitride layer and in fluid communication with the channel. A plurality of viewports is defined in the second nitride layer. A first graphene sheet is disposed on the second nitride layer covering the plurality of viewports.

  5. Three-phase slug flow in microchips can provide beneficial reaction conditions for enzyme liquid-liquid reactions.

    Science.gov (United States)

    Cech, Jiří; Přibyl, Michal; Snita, Dalimil

    2013-01-01

    Here, we introduce a solution to low stability of a two-phase slug flow with a chemical reaction occurring at the phase interface in a microfluidic reactor where substantial merging of individual reacting slugs results in the loss of uniformity of the flow. We create a three-phase slug flow by introducing a third fluid phase into the originally two-phase liquid-liquid slug flow, which generates small two-phase liquid slugs separated by gas phase. Introduction of the third phase into our system efficiently prevents merging of slugs and provides beneficial reaction conditions, such as uniform flow pattern along the whole reaction capillary, interfacial area with good reproducibility, and intensive water-oil interface renewal. We tested the three-phase flow on an enzyme hydrolysis of soybean oil and compared the reaction conversion with those from unstable two-phase slug flows. We experimentally confirmed that the three-phase slug flow arrangement provides conversions and pressure drops comparable or even better with two-phase liquid-liquid arrangements.

  6. Formation of sand ripples under a turbulent liquid flow

    CERN Document Server

    Franklin, Erick de Moraes

    2016-01-01

    Sand ripples are commonly observed in both nature and industry. For example, they are found on riverbeds and in oil pipelines that transport sand. In both natural and industrial cases, ripples increase friction between the bed and fluid and are related to flooding, high pressure drops, and transients. Ripples appear when sediments are entrained as bed load (a mobile granular layer) and are usually considered to be the result of initial bedforms that eventually saturate. Given the small aspect ratio of the initial bedforms, linear analyses can be used to understand the formation of ripples. This paper presents a linear stability analysis of a granular bed under a turbulent flow of a liquid. This analysis takes into consideration all the main mechanisms and parameters involved in the turbulent liquid case, including some important parameters that have not yet been considered together such as the bed compactness and the bed-load threshold shear stress. The results of this analysis are compared with published exp...

  7. Feedback control of flow alignment in sheared liquid crystals.

    Science.gov (United States)

    Strehober, David A; Schöll, Eckehard; Klapp, Sabine H L

    2013-12-01

    Based on a continuum theory, we investigate the manipulation of the nonequilibrium behavior of a sheared liquid crystal via closed-loop feedback control. Our goal is to stabilize a specific dynamical state, that is, the stationary "flow alignment," under conditions where the uncontrolled system displays oscillatory director dynamics with in-plane symmetry. To this end we employ time-delayed feedback control (TDFC), where the equation of motion for the ith component q(i)(t) of the order parameter tensor is supplemented by a control term involving the difference q(i)(t)-q(i)(t-τ). In this diagonal scheme, τ is the delay time. We demonstrate that the TDFC method successfully stabilizes flow alignment for suitable values of the control strength K and τ; these values are determined by solving an exact eigenvalue equation. Moreover, our results show that only small values of K are needed when the system is sheared from an isotropic equilibrium state, contrary to the case where the equilibrium state is nematic.

  8. Simulations of a Liquid Hydrogen Inducer at Low-Flow Off-Design Flow Conditions

    Science.gov (United States)

    Hosangadi, A.; Ahuja, V.; Ungewitter, R. J.

    2005-01-01

    The ability to accurately model details of inlet back flow for inducers operating a t low-flow, off-design conditions is evaluated. A sub-scale version of a three-bladed liquid hydrogen inducer tested in water with detailed velocity and pressure measurements is used as a numerical test bed. Under low-flow, off-design conditions the length of the separation zone as well as the swirl velocity magnitude was under predicted with a standard k-E model. When the turbulent viscosity coefficient was reduced good comparison was obtained a t all the flow conditions examined with both the magnitude and shape of the profile matching well with the experimental data taken half a diameter upstream of the leading edge. The velocity profiles and incidence angles a t the leading edge itself were less sensitive to the back flow length predictions indicating that single-phase performance predictions may be well predicted even if the details of flow separation modeled are incorrect. However, for cavitating flow situations the prediction of the correct swirl in the back flow and the pressure depression in the core becomes critical since it leads to vapor formation. The simulations have been performed using the CRUNCH CFD(Registered Trademark) code that has a generalized multi-element unstructured framework and a n advanced multi-phase formulation for cryogenic fluids. The framework has been validated rigorously for predictions of temperature and pressure depression in cryogenic fluid cavities and has also been shown to predict the cavitation breakdown point for inducers a t design conditions.

  9. The formation of sporadic E layers by a vortical perturbation excited in a horizontal wind shear flow

    Directory of Open Access Journals (Sweden)

    G. G. Didebulidze

    2008-06-01

    Full Text Available The formation of the mid-latitude sporadic E layers (Es layers by an atmospheric vortical perturbation excited in a horizontal shear flow (horizontal wind with a horizontal linear shear is investigated. A three-dimensional atmospheric vortical perturbation (atmospheric shear waves, whose velocity vector is in the horizontal plane and has a vertical wavenumber kz≠0, can provide a vertical shear of the horizontal wind. The shear waves influence the vertical transport of heavy metallic ions and their convergence into thin and dense horizontal layers. The proposed mechanism takes into account the dynamical influence of the shear wave velocity in the horizontal wind on the vertical drift velocity of the ions. It also can explain the multi-layer structure of Es layers. The pattern of the multi-layer structure depends on the value of the shear-wave vertical wavelength, the ion-neutral collision frequency and the direction of the background horizontal wind. The modelling of formation of sporadic E layers with a single and a double peak is presented. Also, the importance of shear wave coupling with short-period atmospheric gravity waves (AGWs on the variations of sporadic E layer ion density is examined and discussed.

  10. An Integrated microfluidic platform for liquid droplet in gas flow generation with in liquid flow collection and manipulation

    Science.gov (United States)

    Tirandazi, Pooyan; Hidrovo, Carlos H.

    2016-11-01

    Discretization of biological samples and chemical reactions within digital droplets is a powerful technique which has rapidly emerged in many biochemical syntheses. The ability to generate, manipulate, and monitor millions of microdroplets in a short time provides great potential for high throughput screening and detection in microbiology. Here we report a microfluidic device for the formation of uniform microdroplets (50 μm-100 μm) using a high speed gas as the continuous phase. Gas-borne droplets are generated in a chip-based flow-focusing device fabricated in PDMS, and travel along the gaseous microchannel and are subsequently captured within a second liquid phase. The droplets are then transferred and collected in a minichamber and move into the manipulation section for further processing operations on the drops. All these steps are performed automatically in a single multilayer chip. This integrated microfluidic platform for generation, collection, and manipulation of the droplets provides great opportunities for monitoring and detection of gas-analytes. Utilizing the generated picoliter airborne droplets feature lower reaction times and higher transfer rates as compared to conventional air sampling techniques. Thus, it can greatly facilitate the investigation of airborne analytes by interrogation of the digital droplets using different analytical techniques. Furthermore, the presented liquid-in-gas generation method can be utilized for production of oil-free microparticles and microcapsules used in the food industry and for drug delivery.

  11. On the role of vortex stretching in energy optimal growth of three dimensional perturbations on plane parallel shear flows

    CERN Document Server

    Heifetz, H Vitoshkin E; Harnik, N

    2012-01-01

    The three dimensional optimal energy growth mechanism, in plane parallel shear flows, is reexamined in terms of the role of vortex stretching and the interplay between the span-wise vorticity and the planar divergent components. For high Reynolds numbers the structure of the optimal perturbations in Couette, Poiseuille, and mixing layer shear profiles is robust and resembles localized plane-waves in regions where the background shear is large. The waves are tilted with the shear when the span-wise vorticity and the planar divergence fields are in (out of) phase when the background shear is positive (negative). A minimal model is derived to explain how this configuration enables simultaneous growth of the two fields, and how this mutual amplification reflects on the optimal energy growth. This perspective provides an understanding of the three dimensional growth solely from the two dimensional dynamics on the shear plane.

  12. Influence of Erosion Phenomenon on Flow Behavior of Liquid Al-Si Filler Between Brazed Components

    Science.gov (United States)

    Izumi, Takahiro; Ueda, Toshiki

    Automotive heat exchangers are predominantly composed of plates, tubes and fins. Each component is brazed by using Al-Si filler. In the plate/tube/fin brazed-structures, the flow of the liquid filler between the components affects the fillet size at each joint. In this study, the influence of the erosion phenomenon, i.e., silicon diffusion from the braze cladding into the core alloy, in the tube on the flow behavior of the liquid filler flowing on the tube from the plate to the fin has been investigated. As a result, the area of the liquid filler not flowing but existing around α phases on the tube during brazing, which is defined as filler flow channel, can change depending on the erosion degree. The flow ability of the liquid filler flowing from the plate to the fin increases as the area increases.

  13. Influence of wettability on the equilibrium wall flow of liquid in a packed column

    Energy Technology Data Exchange (ETDEWEB)

    Patwardhan, V.S.; Pataskar, S.G.

    1982-03-01

    It is well known that when a packed column is irrigated by a liquid and is operated in the trickle flow regime, part of the liquid flows preferentially along the column wall. The liquid distribution reaches equilibrium if the column is tall enough. In the present study the equilibrium wall flow in a column packed with rasching rings was studied experimentally. The effects of the wettability of the wall and the packing, and the total liquid flow rate on the equilibrium wall flow were investigated. It was found that the equilibrium wall flow depends strongly on the wettability of the wall, but is almost independent of the wettability of the packing. These results were used to gain some insight into the mechanism of the development of wall flow in packed columns.

  14. Numerical Study of Void Fraction Distribution Propagation in Gas-Liquid Two-Phase Flow

    Institute of Scientific and Technical Information of China (English)

    YANG Jianhui; LI Qing; LU Wenqiang

    2005-01-01

    A dynamic propagation model was developed for waves in two-phase flows by assuming that continuity waves and dynamic waves interact nonlinearly for certain flow conditions. The drift-flux model is solved with the one-dimensional continuity equation for gas-liquid two-phase flows as an initial-boundary value problem solved using the characteristic-curve method. The numerical results give the void fraction distribution propagation in a gas-liquid two-phase flow which shows how the flow pattern transition occurs. The numerical simulations of different flow patterns show that the void fraction distribution propagation is determined by the characteristics of the drift-flux between the liquid and gas flows and the void fraction range. Flow pattern transitions begin around a void fraction of 0.27 and end around 0.58. Flow pattern transitions do not occur for very high void concentrations.

  15. RESEARCH ON METHOD TO CALCULATE VELOCITIES OF SOLID PHASE AND LIQUID PHASE IN DEBRIS FLOW

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction,then general equations of velocities of solid phase and liquid phase were founded in twophase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation.

  16. Perturbation-induced secondary flow structures due to fractured stents in arterial curvatures

    Science.gov (United States)

    Bulusu, Kartik V.; Popma, Christopher; Penna, Leanne; Plesniak, Michael W.

    2012-11-01

    An in vitro experimental investigation of secondary flow structures was performed downstream of a model stent that embodied a ``Type-IV'' stent fracture, i.e. complete transverse fracture of elements and element displacement (of 3 diameters). One part of the fractured stent was located in the curved region of a test section comprised of a 180-degree bent tube, and the velocity field measured with PIV. Secondary flow morphologies downstream of the stent were identified with a continuous wavelet transform (CWT) algorithm (PIVlet 1.2) using a 2D Ricker wavelet. A comparison of wavelet transformed vorticity fields of fractured and unfractured model stents is presented under physiological inflow conditions. During systolic deceleration, a breakdown in symmetry of vortical structures occurred with the unfractured stent, but not with the fractured model stent. Potential mechanisms to explain the differences in secondary flow morphologies include redirection of vorticity from the meridional plane of the bend to the normal plane and diffusion of vorticity. Supported by the National Science Foundation, Grant No. CBET-0828903 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  17. Computing equations of water hammer in pseudo-homogeneous solid-liquid flow and their verification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In engineering practice, single-phase water hammer models are still employed to analyze the water hammer of solid-liquid flow. According to the characteristics of solid-liquid flow, continuity equations and momentum equations of pseudo-homogeneous flows are deduced, and a pseudo-homogeneous water hammer model is thus built and verified with experiment results. The characteristics of solid-liquid flow's viscosity, resistance and wave velocity are considered in the model. Therefore, it has higher precision than a single-phase model.

  18. Ground Based Studies of Gas-Liquid Flows in Microgravity Using Learjet Trajectories

    Science.gov (United States)

    Bousman, W. S.; Dukler, A. E.

    1994-01-01

    A 1.27 cm diameter two phase gas-liquid flow experiment has been developed with the NASA Lewis Research Center to study two-phase flows in microgravity. The experiment allows for the measurement of void fraction, pressure drop, film thickness and bubble and wave velocities as well as for high speed photography. Three liquids were used to study the effects of liquid viscosity and surface tension, and flow pattern maps are presented for each. The experimental results are used to develop mechanistically based models to predict void fraction, bubble velocity, pressure drop and flow pattern transitions in microgravity.

  19. Modification of flow perturbations in a laminar separation bubble by heat transfer

    Science.gov (United States)

    Boiko, A. V.; Dovgal, A. V.; Sorokin, A. M.

    2017-02-01

    Laminar boundary layer separation in conditions of localized heat transfer is investigated at low subsonic velocity through wind-tunnel measurements and linear stability analysis. A backward-facing step flow is subjected to a stationary temperature variation generated by Peltier elements installed on the test model directly downstream of the separation line. The experimental and theoretical data clarify the response of velocity disturbances in the separation region to the temperature variation, the latter appearing primarily as a modifier of the initial wave spectrum of the amplifying separated layer oscillations.

  20. Propagation of the initial value perturbation in a cylindrical lined duct carrying a gas flow

    Directory of Open Access Journals (Sweden)

    Agneta M. BALINT

    2013-03-01

    Full Text Available For the homogeneous Euler equation linearized around a non-slipping mean flow andboundary conditions corresponding to the mass-spring-damper impedance, smooth initial dataperturbations with compact support are considered. The propagation of this type of initial dataperturbations in a straight cylindrical lined duct is investigated. Such kind of investigations is missingin the existing literature. The mathematical tools are the Fourier transform with respect to the axialspatial variable and the Laplace transform with respect to the time variable. The functionalframework and sufficient conditions are researched that the so problem be well-posed in the sense ofHadamard and the Briggs-Bers stability criteria can be applied.

  1. Assessment of Electromagnetic Stirrer Agitated Liquid Metal Flows by Dynamic Neutron Radiography

    Science.gov (United States)

    Ščepanskis, Mihails; Sarma, Mārtiņš; Vontobel, Peter; Trtik, Pavel; Thomsen, Knud; Jakovičs, Andris; Beinerts, Toms

    2017-04-01

    This paper presents qualitative and quantitative characterization of two-phase liquid metal flows agitated by the stirrer on rotating permanent magnets. The stirrer was designed to fulfill various eddy flows, which may have different rates of solid particle entrapment from the liquid surface and their homogenization. The flow was characterized by visualization of the tailored tracer particles by means of dynamic neutron radiography, an experimental method well suited for liquid metal flows due to low opacity of some metals for neutrons. The rather high temporal resolution of the image acquisition (32 Hz image acquisition rate) allows for the quantitative investigation of the flows up to 30 cm/s using neutron particle image velocimetry. In situ visualization of the two-phase liquid metal flow is also demonstrated.

  2. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    CERN Document Server

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant

    2015-01-01

    We consider the genesis and dynamics of interfacial instability in gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of three main flow parameters (density contrast between liquid and gas, film thickness, pressure drop applied to drive the gas stream) on the interfacial dynamics. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable internal mode for low density contrast. The same linear stability approach provides a quantitative prediction for the onset of (partial) liquid flow reversal in terms of the gas and liquid flow rates. ...

  3. Analogy Between Hydraulic Jump in Films Formed by Impinging Liquid Jet and Critical Flow in Internal Flows

    Institute of Scientific and Technical Information of China (English)

    Jaroslaw Mikielewicz

    2003-01-01

    Formulated are simple models for the flow in liquid film, formed by impinging jet, and a two-phase downward flow in pipe. The models are based on simplified equations of mass, momentum and energy. The solutions of such conservation equations may have regular points belonging to one integral curve only as well as turning points can be found amongst them, which refer to extreme values in the appropriate co-ordinate system. The solutions can also have singular points belonging to none or more than one integral curve. Both the turning and singular points have a clear physical meaning. They could be linked to critical flow conditions in the pipe flow or to the so-called hydraulic jump. Analogy existing between critical conditions in the pipe and the flow of liquid films formed by the liquid jet have been shown in the paper.

  4. Approximate Analysis of MHD Squeeze Flow between Two Parallel Disks with Suction or Injection by Homotopy Perturbation Method

    Directory of Open Access Journals (Sweden)

    G. Domairry

    2009-01-01

    Full Text Available An analysis has been performed to study magneto-hydrodynamic (MHD squeeze flow between two parallel infinite disks where one disk is impermeable and the other is porous with either suction or injection of the fluid. We investigate the combined effect of inertia, electromagnetic forces, and suction or injection. With the introduction of a similarity transformation, the continuity and momentum equations governing the squeeze flow are reduced to a single, nonlinear, ordinary differential equation. An approximate solution of the equation subject to the appropriate boundary conditions is derived using the homotopy perturbation method (HPM and compared with the direct numerical solution (NS. Results showing the effect of squeeze Reynolds number, Hartmann number and the suction/injection parameter on the axial and radial velocity distributions are presented and discussed. The approximate solution is found to be highly accurate for the ranges of parameters investigated. Because of its simplicity, versatility and high accuracy, the method can be applied to study linear and nonlinear boundary value problems arising in other engineering applications.

  5. c-function and central charge of the sine-Gordon model from the non-perturbative renormalization group flow

    Directory of Open Access Journals (Sweden)

    V. Bacsó

    2015-12-01

    Full Text Available In this paper we study the c-function of the sine-Gordon model taking explicitly into account the periodicity of the interaction potential. The integration of the c-function along trajectories of the non-perturbative renormalization group flow gives access to the central charges of the model in the fixed points. The results at vanishing frequency β2, where the periodicity does not play a role, are retrieved and the independence on the cutoff regulator for small frequencies is discussed. Our findings show that the central charge obtained integrating the trajectories starting from the repulsive low-frequencies fixed points (β2<8π to the infra-red limit is in good quantitative agreement with the expected Δc=1 result. The behavior of the c-function in the other parts of the flow diagram is also discussed. Finally, we point out that including also higher harmonics in the renormalization group treatment at the level of local potential approximation is not sufficient to give reasonable results, even if the periodicity is taken into account. Rather, incorporating the wave-function renormalization (i.e. going beyond local potential approximation is crucial to get sensible results even when a single frequency is used.

  6. A perturbative thermal analysis for an electro-osmotic flow in a slit microchannel based on a Lubrication theory

    Science.gov (United States)

    Ramos, Ali; Mendez, Federico; Bautista, Oscar; Lizardi, José

    2016-11-01

    In this work, we develop a new thermal analysis for an electro-osmotic flow in a rectangular microchannel. The central idea is very simple: the Debye length that defines the length of the electrical double-layer depends on temperature T. Therefore, if exists any reason to include variable temperature effects, the above length should be utilized with caution because it appears in any electro-osmotic mathematical model. For instance, the presence of the Joule effect is a source that can generate important longitudinal temperature gradients along the microchannel and the isothermal hypothesis is no longer valid. In this manner, the Debye length is altered and as a consequence, new longitudinal temperature gradient terms appear into the resulting governing equations. These terms are enough to change the electric potential and the flow field. Taking into account the above comments, in the present study the momentum equations together with the energy, Poisson and Ohmic current conservation equations are solved by using a regular perturbation technique. For this purpose, we introduce a dimensionless parameter α that measures the temperature deviations of a reference temperature.

  7. Numerical study on modeling of liquid film flow under countercurrent flow limitation in volume of fluid method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Taro, E-mail: watanabe_t@qe.see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-shi, Osaka 565-7895 (Japan); Takata, Takashi, E-mail: takata.takashi@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-chou, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki 331-1393 (Japan); Yamaguchi, Akira, E-mail: yamaguchi@n.t.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2017-03-15

    Highlights: • Thin liquid film flow under CCFL was modeled and coupled with the VOF method. • The difference of the liquid flow rate in experiments of CCFL was evaluated. • The proposed VOF method can quantitatively predict CCFL with low computational cost. - Abstract: Countercurrent flow limitation (CCFL) in a heat transfer tube at a steam generator (SG) of pressurized water reactor (PWR) is one of the important issues on the core cooling under a loss of coolant accident (LOCA). In order to improve the prediction accuracy of the CCFL characteristics in numerical simulations using the volume of fluid (VOF) method with less computational cost, a thin liquid film flow in a countercurrent flow is modeled independently and is coupled with the VOF method. The CCFL characteristics is evaluated analytically in condition of a maximizing down-flow rate as a function of a void fraction or a liquid film thickness considering a critical thickness. Then, we have carried out numerical simulations of a countercurrent flow in a vertical tube so as to investigate the CCFL characteristics and compare them with the previous experimental results. As a result, it has been concluded that the effect of liquid film entrainment by upward gas flux will cause the difference in the experiments.

  8. Scaling analysis of gas-liquid two-phase flow pattern in microgravity

    Science.gov (United States)

    Lee, Jinho

    1993-01-01

    A scaling analysis of gas-liquid two-phase flow pattern in microgravity, based on the dominant physical mechanism, was carried out with the goal of predicting the gas-liquid two-phase flow regime in a pipe under conditions of microgravity. The results demonstrated the effect of inlet geometry on the flow regime transition. A comparison of the predictions with existing experimental data showed good agreement.

  9. Local pressure components and interfacial tension at a liquid-solid interface obtained by the perturbative method in the Lennard-Jones system.

    Science.gov (United States)

    Fujiwara, K; Shibahara, M

    2014-07-21

    A classical molecular dynamics simulation was conducted for a system composed of fluid molecules between two planar solid surfaces, and whose interactions are described by the 12-6 Lennard-Jones form. This paper presents a general description of the pressure components and interfacial tension at a fluid-solid interface obtained by the perturbative method on the basis of statistical thermodynamics, proposes a method to consider the pressure components tangential to an interface which are affected by interactions with solid atoms, and applies this method to the calculation system. The description of the perturbative method is extended to subsystems, and the local pressure components and interfacial tension at a liquid-solid interface are obtained and examined in one- and two-dimensions. The results are compared with those obtained by two alternative methods: (a) an evaluation of the intermolecular force acting on a plane, and (b) the conventional method based on the virial expression. The accuracy of the numerical results is examined through the comparison of the results obtained by each method. The calculated local pressure components and interfacial tension of the fluid at a liquid-solid interface agreed well with the results of the two alternative methods at each local position in one dimension. In two dimensions, the results showed a characteristic profile of the tangential pressure component which depended on the direction tangential to the liquid-solid interface, which agreed with that obtained by the evaluation of the intermolecular force acting on a plane in the present study. Such good agreement suggests that the perturbative method on the basis of statistical thermodynamics used in this study is valid to obtain the local pressure components and interfacial tension at a liquid-solid interface.

  10. Local pressure components and interfacial tension at a liquid-solid interface obtained by the perturbative method in the Lennard-Jones system

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K., E-mail: ku.fujiwara@screen.co.jp [R and D Group, R and D Center, Dainippon Screen Mfg. Co., Ltd., 322 Furukawa-cho, Hazukashi, Fushimi-ku, Kyoto, Kyoto 612-8486 (Japan); Department of Mechanical Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Shibahara, M., E-mail: siba@mech.eng.osaka-u.ac.jp [Department of Mechanical Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-07-21

    A classical molecular dynamics simulation was conducted for a system composed of fluid molecules between two planar solid surfaces, and whose interactions are described by the 12-6 Lennard-Jones form. This paper presents a general description of the pressure components and interfacial tension at a fluid-solid interface obtained by the perturbative method on the basis of statistical thermodynamics, proposes a method to consider the pressure components tangential to an interface which are affected by interactions with solid atoms, and applies this method to the calculation system. The description of the perturbative method is extended to subsystems, and the local pressure components and interfacial tension at a liquid-solid interface are obtained and examined in one- and two-dimensions. The results are compared with those obtained by two alternative methods: (a) an evaluation of the intermolecular force acting on a plane, and (b) the conventional method based on the virial expression. The accuracy of the numerical results is examined through the comparison of the results obtained by each method. The calculated local pressure components and interfacial tension of the fluid at a liquid-solid interface agreed well with the results of the two alternative methods at each local position in one dimension. In two dimensions, the results showed a characteristic profile of the tangential pressure component which depended on the direction tangential to the liquid-solid interface, which agreed with that obtained by the evaluation of the intermolecular force acting on a plane in the present study. Such good agreement suggests that the perturbative method on the basis of statistical thermodynamics used in this study is valid to obtain the local pressure components and interfacial tension at a liquid-solid interface.

  11. Centrifugal contactor with liquid mixing and flow control vanes and method of mixing liquids of different phases

    Science.gov (United States)

    Jubin, Robert T.; Randolph, John D.

    1991-01-01

    The invention is directed to a centrifugal contactor for solvent extraction systems. The centrifugal contactor is provided with an annular vertically oriented mixing chamber between the rotor housing and the rotor for mixing process liquids such as the aqueous and organic phases of the solvent extraction process used for nuclear fuel reprocessing. A set of stationary helically disposed vanes carried by the housing is in the lower region of the mixing chamber at a location below the process-liquid inlets for the purpose of urging the liquids in an upward direction toward the inlets and enhancing the mixing of the liquids and mass transfer between the liquids. The upper region of the mixing vessel above the inlets for the process liquids is also provided with a set helically disposed vanes carried by the housing for urging the process liquids in a downward direction when the liquid flow rates through the inlets are relatively high and the liquids contact the vane set in the upper region. The use of these opposing vane sets in the mixing zone maintains the liquid in the mixing zone at suitable levels.

  12. Measurements of Non-reacting and Reacting Flow Fields of a Liquid Swirl Flame Burner

    Institute of Scientific and Technical Information of China (English)

    CHONG Cheng Tung; HOCHGREB Simone

    2015-01-01

    The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.

  13. Experimental investigation of non-Newtonian/Newtonian liquid-liquid flow in microchannel

    Science.gov (United States)

    Roumpea, Eynagelia-Panagiota; Weheliye, Weheliye; Chinaud, Maxime; Angeli, Panagiota; Lyes Kahouadji Collaboration; Omar. K. Matar Collaboration

    2015-11-01

    Plug flow of an organic phase and an aqueous non-Newtonian solution was investigated experimentally in a quartz microchannel with I.D. 200 μm. The aqueous phase was a glycerol solution where 1000 and 2000 ppm of xanthan gum was added while the organic phase was silicon oil with 155 and 5 cSt viscosity. The two phases were brought together in a T-junction and their flowrates varied from 0.3 to 6 ml/hr. High speed imaging was used to study the characteristics of the plugs and the effect of the liquid properties on the flow patterns while a two-colour micro-PIV technique was used to investigate velocity profiles and circulation patterns within the plugs. The experimental results revealed that plug length was affected by both flowrate and viscosity. In all cases investigated, a film of the continuous phase always surrounded the plugs and its thickness was compared with existing literature models. Circulation patterns inside plugs were obtained by subtracting the plug velocity and found to be depended on the plug length and the amount of xanthan gum in the aqueous phase. Finally, the dimensionless circulation time was calculated and plotted as a function of the plug length. Department of Chemical Engineering South Kensington Campus Imperial College London SW7 2AZ.

  14. MHD Effect of Liquid Metal Film Flows as Plasma-Facing Components

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiujie; XU Zengyu; PAN Chuanjie

    2008-01-01

    Stability of liquid metal film flow under gradient magnetic field is investigated. Three dimensional numerical simulations on magnetohydrodynamics (MHD) effect of free surface film flow were carried out, with emphasis on the film thickness variation and its surface stability. Three different MHD phenomena of film flow were observed in the experiment, namely, retardant, rivulet and flat film flow. From our experiment and numerical simulation it can be concluded that flat film flow is a good choice for plasma-facing components (PFCs)

  15. Large-Flow-Area Flow-Selective Liquid/Gas Separator

    Science.gov (United States)

    Vasquez, Arturo; Bradley, Karla F.

    2010-01-01

    This liquid/gas separator provides the basis for a first stage of a fuel cell product water/oxygen gas phase separator. It can separate liquid and gas in bulk in multiple gravity environments. The system separates fuel cell product water entrained with circulating oxygen gas from the outlet of a fuel cell stack before allowing the gas to return to the fuel cell stack inlet. Additional makeup oxygen gas is added either before or after the separator to account for the gas consumed in the fuel cell power plant. A large volume is provided upstream of porous material in the separator to allow for the collection of water that does not exit the separator with the outgoing oxygen gas. The water then can be removed as it continues to collect, so that the accumulation of water does not impede the separating action of the device. The system is designed with a series of tubes of the porous material configured into a shell-and-tube heat exchanger configuration. The two-phase fluid stream to be separated enters the shell-side portion of the device. Gas flows to the center passages of the tubes through the porous material and is then routed to a common volume at the end of the tubes by simple pressure difference from a pumping device. Gas flows through the porous material of the tubes with greater ease as a function of the ratio of the dynamic viscosity of the water and gas. By careful selection of the dimensions of the tubes (wall thickness, porosity, diameter, length of the tubes, number of the tubes, and tube-to-tube spacing in the shell volume) a suitable design can be made to match the magnitude of water and gas flow, developed pressures from the oxygen reactant pumping device, and required residual water inventory for the shellside volume.

  16. Numerical simulation of strongly swirling turbulent flows in a liquid-liquid hydrocyclone using the Reynolds stress transport equation model

    Institute of Scientific and Technical Information of China (English)

    陆耀军; 周力行; 沈熊

    2000-01-01

    The Reynolds stress transport equation model (DSM) is used to predict the strongly swirling turbulent flows in a liquid-liquid hydrocyclone, and the predictions are compared with LDV measurements . Predictions properly give the flow behavior observed in experiments, such as the Rankine-vortex structure and double peaks near the inlet region in tangential velocity profile, the downward flow near the wall and upward flow near the core in axial velocity profiles. In the inlet or upstream region of the hydrocyclone, the reverse flow near the axis is well predicted, but in the region with smaller cone angle and cylindrical section, there are some discrepancies between the model predictions and the LDV measurements. Predictions show that the pressure is small in the near-axis region and increases to the maximum near the wall. Both predictions and measurements indicate that the turbulence in hydrocy-clones is inhomogeneous and anisotropic.

  17. Numerical simulation of strongly swirling turbulent flows in a liquid-liquid hydrocyclone using the Reynolds stress transport equation model

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Reynolds stress transport equation model (DSM) is used to predict the strongly swirling turbulent flows in a liquid-liquid hydrocyclone, and the predictions are compared with LDV measurements. Predictions properly give the flow behavior observed in experiments, such as the Rankine-vortex structure and double peaks near the inlet region in tangential velocity profile, the downward flow near the wall and upward flow near the core in axial velocity profiles. In the inlet or upstream region of the hydrocyclone, the reverse flow near the axis is well predicted, but in the region with smaller cone angle and cylindrical section, there are some discrepancies between the model predictions and the LDV measurements. Predictions show that the pressure is small in the near-axis region and increases to the maximum near the wall. Both predictions and measurements indicate that the turbulence in hydrocyclones is inhomogeneous and anisotropic.

  18. Observations of Gas-Liquid Flows Through Contractions in Microgravity

    Science.gov (United States)

    McQuillen, John

    1996-01-01

    Tests were conducted for an air-water flow through two sudden contractions aboard the NASA DC-9 low gravity aircraft. Flow rate, residual accelerations, void fraction, film thickness, and pressure drop data were recorded and flow visualization at 250 images per second were recorded. Some preliminary results based on the flow visualization data are presented for bubbly, slug and annular flow.

  19. Fabrication of Nanopillar Micropatterns by Hybrid Mask Lithography for Surface-Directed Liquid Flow

    Directory of Open Access Journals (Sweden)

    Fumihito Arai

    2013-06-01

    Full Text Available This paper presents a novel method for fabricating nanopillar micropatterns for surface-directed liquid flows. It employs hybrid mask lithography, which uses a mask consisting of a combination of a photoresist and nanoparticles in the photolithography process. The nanopillar density is controlled by varying the weight ratio of nanoparticles in the composite mask. Hybrid mask lithography was used to fabricate a surface-directed liquid flow. The effect of the surface-directed liquid flow, which was formed by the air-liquid interface due to nanopillar micropatterns, was evaluated, and the results show that the oscillation of microparticles, when the micro-tool was actuated, was dramatically reduced by using a surface-directed liquid flow. Moreover, the target particle was manipulated individually without non-oscillating ambient particles.

  20. Perturbation of blood flow as a mechanism of anti-tumour action of direct current electrotherapy.

    Science.gov (United States)

    Jarm, Tomaz; Cemazar, Maja; Steinberg, Fritz; Streffer, Christian; Sersa, Gregor; Miklavcic, Damijan

    2003-02-01

    Anti-tumour effects of direct current electrotherapy are attributed to different mechanisms depending on the electrode configuration and on the parameters of electric current. The effects mostly arise from the electrochemical products of electrolysis. Direct toxicity of these products to tumour tissue is, however, not a plausible explanation for the observed tumour growth retardation in the case when the electrodes are placed into healthy tissue surrounding the tumour and not into the tumour itself. The hypothesis that the anti-tumour effectiveness of electrotherapy could result from disturbed blood flow in tumours was tested by the measurement of changes in blood perfusion and oxygenation in tumours with three different methods (in vivo tissue staining with Patent Blue Violet dye, polarographic oximetry, near-infrared spectroscopy). The effects induced by electrotherapy were evaluated in two experimental tumour models: Sa-1 fibrosarcoma in A/J mice and LPB fibrosarcoma in C57B1/6 mice. We found that perfusion and oxygenation were significantly decreased after electrotherapy. Good agreement between the results of different methods was observed. The effect of electrotherapy on local perfusion of tumours is probably the prevalent mechanism of anti-tumour action for the particular type of electrotherapy used in the study. The importance of this effect should be considered for the optimization of electrotherapy protocols in experimental and clinical trials. The non-invasive technique of near-infrared spectroscopy proved to be a reliable method for detecting perfusion and oxygenation changes in small solid tumours.

  1. Energy integral of the Stokes flow in a singularly perturbed exterior domain

    Directory of Open Access Journals (Sweden)

    Matteo Dalla Riva

    2012-01-01

    Full Text Available We consider a pair of domains \\(\\Omega ^b\\ and \\(\\Omega ^s\\ in \\(\\mathbb{R}^n\\ and we assume that the closure of \\(\\Omega ^b\\ does not intersect the closure of \\(\\epsilon \\Omega ^s\\ for \\(\\epsilon \\in (0,\\epsilon _0\\. Then for a fixed \\(\\epsilon \\in (0,\\epsilon_0\\ we consider a boundary value problem in \\(\\mathbb{R}^n \\setminus (\\Omega ^b \\cup \\epsilon \\Omega ^s\\ which describes the steady state Stokes flow of an incompressible viscous fluid past a body occupying the domain \\(\\Omega ^b\\ and past a small impurity occupying the domain \\(\\epsilon \\Omega ^s\\. The unknown of the problem are the velocity field \\(u\\ and the pressure field \\(p\\, and we impose the value of the velocity field \\(u\\ on the boundary both of the body and of the impurity. We assume that the boundary velocity on the impurity displays an arbitrarily strong singularity when \\(\\epsilon\\ tends to 0. The goal is to understand the behaviour of the strain energy of \\( (u, p\\ for \\(\\epsilon\\ small and positive. The methods developed aim at representing the limiting behaviour in terms of analytic maps and possibly singular but completely known functions of \\(\\epsilon\\, such as \\(\\epsilon ^{-1}\\, \\(\\log \\epsilon\\.

  2. Water hammer in coarse-grained solid-liquid flows in hydraulic hoisting for ocean mining

    Institute of Scientific and Technical Information of China (English)

    韩文亮; 王光谦; 吴保生; 刘少军; 邹伟生

    2002-01-01

    The particles of polymetallic nodules in hydraulic hoisting flows that are used for mining in deep sea are rather coarse, therefore their flow velocity is smaller than that of the surrounding water. The characteristics of solid-liquid flows such as their density, concentration, elastic modulus and resistance were discussed. The wave propagation speed and the continuity and momentum equations of water hammer in coarse-grained solid-liquid flows were theoretically derived, and a water hammer model for such flows was developed.

  3. Investigation of the Extinguishing Features for Liquid Fuels and Organic Flammable Liquids Atomized by a Water Flow

    Directory of Open Access Journals (Sweden)

    Voytkov Ivan V.

    2016-01-01

    Full Text Available The processes of heat and mass transfer were investigated experimentally while moving and evaporating the atomized water flow in high-temperature combustion products of typical liquid fuels and organic flammable liquids: gasoline, kerosene, acetone, crude oil, industrial alcohol. We determined typical periods of liquid extinguishing by an atomized water flow of various dispersability. Data of the discharge of extinguishing medium corresponding to various parameters of atomization and duration of using the atomization devices was presented. It is shown that Um≈3.5 m/s is a minimal outflow velocity of droplets during moving while passing the distance of 1m in the high-temperature gas medium to stop the combustion of organic liquids.

  4. Optimal forcing perturbations for regional flow patterns conditioning polar low development

    Science.gov (United States)

    Kristiansen, Jørn; Iversen, Trond; Jung, Thomas; Barkmeijer, Jan

    2013-04-01

    olar lows are short lived maritime mesoscale cyclones that develop because of processes unique to the Polar Regions. In the ice-free Nordic and Barents Seas they are associated with violent weather during wintertime and form in cold air outbreaks underneath a cold through. The longer predictability of the large-scales may provide early warnings of the potential for polar lows. We investigate the rare events when the atmosphere is highly sensitive to small external forcings that excite changes in the variability of the North Atlantic Oscillation (NAO). Employing a numerical weather prediction model, the period 1957-2002 is sampled for 4-day optimal forcing sensitivity patterns (FSPs). The highly sensitive events are relatively well-defined. A flow pattern resembling the negative-phase NAO is identified as a potential precursor of the most unpredictable transitions in the NAO. The least sensitive events are dominated by a coinciding cyclonic circulation. In the former there is high polar low potential (40-45%) in the northern North Atlantic but it is low south of Iceland. The least sensitive events display high potential along the storm track reaching 80% south of Iceland. The FSPs tend to either strengthen or hamper the transition toward the negative-phase NAO. The strengthened circulation makes the atmosphere favourable in 70% of the events for the formation of polar lows in the Nordic and Barents Seas with high potentials also in the North Sea. From the hampered transition we learn that in the Nordic Seas high- and low-pressure systems can produce similar levels of polar low potential. Temperature and momentum are equally important forcing variables and there are positive feedbacks between them. The forcing is dominantly in-situ and strongest in mid-troposphere. The variability is more localized and larger than the average. Close to the surface the FSPs appear influenced by the Norwegian current.

  5. Liquid-Vapor Flow Regime Transitions for Spacecraft Heat Transfer Loops

    Science.gov (United States)

    1988-12-01

    heavenly bodies, in spite of their astonishing distances, than in the investigations of the movement of flowing water before our very eyes" Galileo ... Galilei 1564-1642 Motivation to Study MicroQravity Flow Reuimes The study of microgravity vapor-liquid flow regimes is motivated by the benefits of heat

  6. Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns

    Science.gov (United States)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro

    2001-01-01

    This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.

  7. Numerical simulation of steady flow past a liquid sphere immersed in simple shear flow at low and moderate Re

    Institute of Scientific and Technical Information of China (English)

    Run Li; Jingsheng Zhang; Yumei Yong; Yang Wang; Chao Yang

    2015-01-01

    This work presents a numerical investigation on steady internal, external and surface flows of a liquid sphere im-mersed in a simple shear flow at low and intermediate Reynolds numbers. The control volume formulation is adopted to solve the governing equations of two-phase flow in a 3-D spherical coordinate system. Numerical re-sults show that the streamlines for Re=0 are closed Jeffery orbits on the surface of the liquid sphere, and also closed curves outside and inside the liquid sphere. However, the streamlines have intricate and non-closed struc-tures for Re≠0. The flow structure is dependent on the values of Reynolds number and interior-to-exterior vis-cosity ratio.

  8. Computing equations of water hammer in pseudo-homogeneous solid-liquid flow and their verification

    Institute of Scientific and Technical Information of China (English)

    韩文亮; 董曾南; 柴宏恩; 韩军

    2000-01-01

    In engineering practice, single-phase water hammer models are still employed to analyze the water hammer of solid-liquid flow. According to the characteristics of solid-liquid flow, continuity equations and momentum equations of pseudo-homogeneous flows are deduced, and a pseudo-homogeneous water hammer model is thus built and verified with experiment results. The characteristics of solid-liquid flow’s viscosity, resistance and wave velocity are considered in the model. Therefore, it has higher precision than a single-phase model.

  9. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    2016-01-01

    understanding of the gas-liquid flow in both the porous media and the channel is necessary for insuring proper oxygen, water and heat management of the electrolysis cell. In this work, the patterns of vertical upward gas-liquid flow in a 5×1×94 mm micro-channel are experimentally analysed. A sheet of titanium...... felt is used as a permeable wall for permeation of air through a column of water similar to the phenomenon encountered at the anode. The transparent setup is operated ex-situ and the gas-liquid flow regimes are identified using a camera....

  10. A Study of Bubble and Slug Gas-Liquid Flow in a Microgravity Environment

    Science.gov (United States)

    McQuillen, J.

    2000-01-01

    The influence of gravity on the two-phase flow dynamics is obvious.As the gravity level is reduced,there is a new balance between inertial and interfacial forces, altering the behavior of the flow. In bubbly flow,the absence of drift velocity leads to spherical-shaped bubbles with a rectilinear trajectory.Slug flow is a succession of long bubbles and liquid slug carrying a few bubbles. There is no flow reversal in the thin liquid film as the long bubble and liquid slug pass over the film. Although the flow structure seems to be simpler than in normal gravity conditions,the models developed for the prediction of flow behavior in normal gravity and extended to reduced gravity flow are unable to predict the flow behavior correctly.An additional benefit of conducting studies in microgravity flows is that these studies aide the development of understanding for normal gravity flow behavior by removing the effects of buoyancy on the shape of the interface and density driven shear flows between the gas and the liquid phases. The proposal calls to study specifically the following: 1) The dynamics of isolated bubbles in microgravity liquid flows will be analyzed: Both the dynamics of spherical isolated bubbles and their dispersion by turbulence, their interaction with the pipe wall,the behavior of the bubbles in accelerated or decelerated flows,and the dynamics of isolated cylindrical bubbles, their deformation in accelerated/decelerated flows (in converging or diverging channels), and bubble/bubble interaction. Experiments will consist of the use of Particle Image Velocimetry (PIV) and Laser Doppler Velocimeters (LDV) to study single spherical bubble and single and two cylindrical bubble behavior with respect to their influence on the turbulence of the surrounding liquid and on the wall 2) The dynamics of bubbly and slug flow in microgravity will be analyzed especially for the role of the coalescence in the transition from bubbly to slug flow (effect of fluid properties and

  11. Trickle/pulse flow regime transition in downflow packed tower involving foaming liquids

    Directory of Open Access Journals (Sweden)

    Sodhi Vijay

    2012-01-01

    Full Text Available The most of past studies in foaming trickle bed reactors aimed at the improvement of efficiency and operational parameters leads to high economic advantages. Conventionally most of the industries rely on frequently used gas continuous flow (GCF where operational output is satisfactory but not yields efficiently as in pulsing flow (PF and foaming pulsing flow (FPF. Hydrodynamic characteristics like regime transitions are significantly influenced by foaming nature of liquid as well as gas and liquid flow rates. This study’s aim was to demonstrate experimentally the effects of liquid flow rate, gas flow rates and liquid surface tension on regime transition. These parameters were analyzed for the air-aqueous Sodium Lauryl Sulphate and air-water systems. More than 240 experiments were done to obtain the transition boundary for trickle flow (GCF to foaming pulsing flow (PF/FPF by use excessive foaming 15-60 ppm surfactant compositions. The trickle to pulse flow transition appeared at lower gas and liquid flow rates with decrease in liquid surface tension. All experimental data had been collected and drawn in the form of four different transitional plots which are compared and drawn by using flow coordinates proposed by different researchers. A prominent decrease in dynamic liquid saturation was observed especially during regime transitional change. The reactor two phase pressure evident a sharp rise to verify the regime transition shift from GCF to PF/FPF. Present study reveals, the regime transition boundary significantly influenced by any change in hydrodynamic as well as physiochemical properties including surface tension.

  12. Visualization and research of gas-liquid two phase flow structures in cylindrical channel

    Directory of Open Access Journals (Sweden)

    Stefański Sebastian

    2017-01-01

    Full Text Available Two-phase flows are commonly found in many industries, especially in systems, where efficient and correct functioning depend on specific values of flow parameters. In thermal engineering and chemical technology the most popular types of two-phase mixture are gas-liquid or liquid-vapour mixtures. Bubbles can create in flow different structures and determine diverse properties of flow (velocity of phase, void fraction, fluctuations of pressure, pipe vibrations, etc.. That type of flow is difficult to observe, especially in liquid-vapour mixture, where vapour is being made by heating the medium. Production of vapour and nucleation process are very complicated issues, which are important part of two-phase flow phenomenon. Gas-liquid flow structures were observed and described with figures, but type of structure depends on many parameters. Authors of this paper made an attempt to simulate gas-liquid flow with air and water. In the paper there was presented specific test stand built to observe two-phase flow structures, methodology of experiment and conditions which were maintained during observation. The paper presents also the structures which were observed and the analysis of results with reference to theoretical models and diagrams available in literature.

  13. 多值半流的吸引子在随机扰动下的上半连续性%Upper semi-continuity of attractors for multivalued semi-flow under random perturbation

    Institute of Scientific and Technical Information of China (English)

    李挺; 刘曾荣

    2006-01-01

    In this paper the upper semi-continuity of global attractors for multivalued semi-flows under random perturbation was studied. First, the existence of random attractors for multivalued random semi-flows was considered, then it was proved that the global attractors for multivalue semi-flows are the upper semi-continuity under random perturbation. This result can be used in the ntmerical approximation of multivalued semi-flows and non-autonomous perturbation of multivalued semi-flows.Key words random attractor, upper semi-continuity, absorbing set.

  14. Modelling thermal development of liquid metal flow on rotating disc in centrifugal atomisation

    Energy Technology Data Exchange (ETDEWEB)

    Ho, K.H.; Zhao, Y.Y

    2004-01-25

    In centrifugal atomisation the formation of a solid skull on the atomising disc is a major problem, which has adverse effects on the quality and quantity of the as-produced powder and also on the balance of the disc during atomisation. It is costly and difficult to study the flow behaviour because of the complex interaction between the liquid metal and the atomising disc. A computational fluid dynamics model has been developed using Flow-3D to simulate the thermal development of the liquid metal on the atomising disc. Under a fixed process condition, the liquid metal has a nearly constant solidification rate before the steady state is achieved and a solid skull is formed gradually. The volume of the skull decreases with increasing liquid metal flow rate, initial disc temperature and initial liquid temperature.

  15. Transient multiphase flow modeling of gas well liquid loading

    NARCIS (Netherlands)

    Veeken, K.; Hu, B.; Schiferli, W.

    2009-01-01

    Gas well liquid loading occurs when gas production becomes insufficient to lift the associated liquids to surface. When that happens gas production first turns intermittent and eventually stops. Hence in depleting gas reservoirs the technical abandonment pressure and ultimate recovery are typically

  16. Impact of time-dependent non-axisymmetric velocity perturbations on dynamo action of von-K\\'arm\\'an-like flows

    CERN Document Server

    Giesecke, Andre; Burguete, Javier

    2012-01-01

    We have performed numerical simulations of the kinematic induction equation in order to examine the dynamo efficiency of an axisymmetric von-K\\'arm\\'an-like flow subject to time-dependent non-axisymmetric velocity perturbations. The numerical model is based on the setup of the French Von-K\\'arm\\'an-Sodium dynamo (VKS) and on the flow measurements from a model water experiment conducted at the University of Navarra in Pamplona, Spain. Our simulations show that the interactions of azimuthally drifting flow perturbations with the fundamental drift of the magnetic eigenmode (caused by the inevitable equatorial symmetry breaking of the basic flow) essentially determine the temporal behavior of the dynamo state. We find two distinct regimes of dynamo action that depend on the (prescribed) drift frequency of an ($m=2$) vortex-like flow perturbation. For comparatively slowly drifting vortices we observe a narrow window with enhanced growth-rates and a drift of the magnetic eigenmode that is synchronized with the pert...

  17. 气液两相逆流状态下金属板波纹填料塔内液体流动分布%LIQUID FLOW DISTRIBUTION IN GAS-LIQUID COUNTER-CONTACTING PACKED COLUMN

    Institute of Scientific and Technical Information of China (English)

    高瑞昶; 宋宝东; 袁孝竞

    1999-01-01

    According to the structure of Mellapak type packing, liquid flow and mixing mechanisms were analyzed in gas-liquid counter-contacting packed column. A new liquid flow distribution mathematical model , specific for Mellapak type packing columns, was presented. Experimental data of the liquid flow distribution measurements agreed quite well with the theoretical prediction. Furthermore, the effects of gas initial maldistribution and gas load on liquid flow distribution were discussed, and the wall zone liquid flow was preliminarily studied.

  18. Flow of the Viscous-Elastic Liquid in the Non- Homogeneous Tube

    CERN Document Server

    Babanly, V Yu

    2009-01-01

    A problem on propagation of waves in deformable shells with flowing liquid is very urgent in connection with wide use of liquid transportation systems in living organisms and technology. It is necessary to consider shell motion equations for influence of moving liquid in cavity on the dynamics of a shell by solving such kind problems. Nowadays a totality of such problems is a widely developed field of hydrodynamics. However, a number of peculiarities connected with taking into account viscous-elastic properties of the liquid and inhomogeneity of the shell material generates considerable mathematical difficulties connected with integration of boundary value problems with variable coefficients. In the paper we consider wave flow of the liquid enclosed in deformable tube. The used mathematical model is described by the equation of motion of incompressible viscous elastic liquid combined with equation of continuity and dynamics equation for a tube inhomogeneous in length. It is accepted that the tube is cylindric...

  19. Highly pressurized partially miscible liquid-liquid flow in a micro-T-junction. I. Experimental observations

    Science.gov (United States)

    Qin, Ning; Wen, John Z.; Ren, Carolyn L.

    2017-04-01

    This is the first part of a two-part study on a partially miscible liquid-liquid flow (liquid carbon dioxide and deionized water) which is highly pressurized and confined in a microfluidic T-junction. Our main focuses are to understand the flow regimes as a result of varying flow conditions and investigate the characteristics of drop flow distinct from coflow, with a capillary number, C ac , that is calculated based on the continuous liquid, ranging from 10-3 to 10-2 (10-4 for coflow). Here in part I, we present our experimental observation of drop formation cycle by tracking drop length, spacing, frequency, and after-generation speed using high-speed video and image analysis. The drop flow is chronologically composed of a stagnating and filling stage, an elongating and squeezing stage, and a truncating stage. The common "necking" time during the elongating and squeezing stage (with C ac˜10-3 ) for the truncation of the dispersed liquid stream is extended, and the truncation point is subsequently shifted downstream from the T-junction corner. This temporal postponement effect modifies the scaling function reported in the literature for droplet formation with two immiscible fluids. Our experimental measurements also demonstrate the drop speed immediately following their generations can be approximated by the mean velocity from averaging the total flow rate over the channel cross section. Further justifications of the quantitative analysis by considering the mass transfer at the interface of the two partially miscible fluids are provided in part II.

  20. On the Uniqueness of Heat Flow of Harmonic Maps and Hydrodynamic Flow of Nematic Liquid Crystals

    Institute of Scientific and Technical Information of China (English)

    Fanghua LIN; Changyou WANG

    2010-01-01

    For any n-dimensional compact Riemannian manifold(M,g)without boundary and another compact Riemannian manifold(N,h),the authors establish the uniqueness of the heat flow of harmonic maps from M to N in the class C([0,T),W1,n).For the hydrodynamic flow(u,d)of nematic liquid crystals in dimensions n = 2 or 3,it is shown that the uniqueness holds for the class of weak solutions provided either(i)for n = 2,u ∈L∞tL2x∩L2tH1x,▽P∈L3/4tL4/3t,and ▽d∈L∞tL2x∩L2tH2x; or(ⅱ)for n=3,u ∈L∞tL2x∩L2tH1x∩C([0,T),Ln),P∈Ln/2tLn/2x,and▽d∈L2tL2x∩C([0,T),Ln).This answers affirmatively the uniqueness question posed by Lin-Lin-Wang.The proofs are very elementary.

  1. RESISTANCE EFFECT OF ELECTRIC DOUBLE LAYER ON LIQUID FLOW IN MICROCHANNEL

    Institute of Scientific and Technical Information of China (English)

    GONG Lei; WU Jian-kang

    2006-01-01

    Poisson-Boltzmann equation for EDL (electric double layer) and NavierStokes equation for liquid flows were numerically solved to investigate resistance effect of electric double layer on liquid flow in microchannel. The dimension analysis indicates that the resistance effect of electric double layer can be estimated by an electric resistance number, which is proportional to the square of the liquid dielectric constant and the solid surface zeta potential, and inverse-proportional to the liquid dynamic viscosity, electric conductivity and the square of the channel width. An "electric current density balancing" (ECDB) condition was proposed to evaluate the flow-induced streaming potential,instead of conventional "electric current balancing" (ECB) condition which may induce spurious local backflow in neighborhood of the solid wall of the microchannel. The numerical results of the flow rate loss ratio and velocity profile are also given to demonstrate the resistance effect of electric double layer in microchannel.

  2. Fiber Optic Mass Flow Gauge for Liquid Cryogenic Fuel Facilities Monitoring and Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a fiber optic mass flow gauge that will aid in managing liquid hydrogen and oxygen fuel storage and transport. The increasing...

  3. On the Motion of an Annular Film in Microgravity Gas-Liquid Flow

    Science.gov (United States)

    McQuillen, John B.

    2002-01-01

    Three flow regimes have been identified for gas-liquid flow in a microgravity environment: Bubble, Slug, and Annular. For the slug and annular flow regimes, the behavior observed in vertical upflow in normal gravity is similar to microgravity flow with a thin, symmetrical annular film wetting the tube wall. However, the motion and behavior of this film is significantly different between the normal and low gravity cases. Specifically, the liquid film will slow and come to a stop during low frequency wave motion or slugging. In normal gravity vertical upflow, the film has been observed to slow, stop, and actually reverse direction until it meets the next slug or wave.

  4. Flow system for liquid sample introduction in arc/spark excitation sources

    OpenAIRE

    Bellato, CR; Pasquini, C

    1996-01-01

    A flow system based on the monosegmented flow analysis (MSFA) approach is described for delivery of liquid samples to arc/spark excitation sources commonly used in spectrographs. A Carl Zeiss PGS-2 spectrograph, previously-automated in the laboratory by replacing its photographic plate detection system with a photodiode array, was employed, The sample is introduced via an injection port into the path to the excitation source, where the liquid sample plug (typically 50 mu l) is passed through ...

  5. INTERACTION OF LIQUID FLAT SCREENS WITH GAS FLOW RESTRICTED BY CHANNEL WALLS

    Directory of Open Access Journals (Sweden)

    S. T. Aksentiev

    2005-01-01

    Full Text Available The paper gives description of physical pattern of liquid screen interaction that are injected from the internal walls of a rectangular channel with gas flow. Criterion dependences for determination of intersection coordinates of external boundaries with longitudinal channel axis and factor of liquid screen head resistance.

  6. A Comparison of Three Models to Predict Liquidity Flows between Banks Based on Daily Payments Transactions

    NARCIS (Netherlands)

    Triepels, Ron; Daniels, Hennie

    2016-01-01

    The analysis of payment data has become an important task for operators and overseers of financial market infrastructures. Payment data provide an accurate description of how banks manage their liquidity over time. In this paper we compare three models to predict future liquidity flows from payment

  7. NUMERICAL SIMULATION OF CHARGED GAS-LIQUID TWO PHASE JET FLOW IN ELECTROSTATIC SPRAYING

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Multi-fluid k-ε-kp two phase turbulence model is used to simulate charged gas-liquid two phase coaxial jet, which is the transorting flow field in electrostatic spraying. Compared with the results of experiment, charged gas-liquid twophase turbulence can be well predicted by this model.

  8. Gas-to-liquids process using multi-phase flow, non-thermal plasma microreactor

    NARCIS (Netherlands)

    Agiral, Anil; Nozaki, Tomohiro; Nakase, Masahiko; Yuzawa, Shuhei; Okazaki, Ken; Gardeniers, J.G.E. (Han)

    2011-01-01

    A multi-phase flow non-thermal plasma microreactor based on dielectric barrier discharge has been developed for partial oxidation of methane to liquid oxygenates at atmospheric pressure. A pulsed water injection method has been used to remove condensable liquid components from the active discharge r

  9. Integrated CO2 capture-fixation chemistry via interfacial ionic liquid catalyst in laminar gas/liquid flow

    Science.gov (United States)

    Vishwakarma, Niraj K.; Singh, Ajay K.; Hwang, Yoon-Ho; Ko, Dong-Hyeon; Kim, Jin-Oh; Babu, A. Giridhar; Kim, Dong-Pyo

    2017-01-01

    Simultaneous capture of carbon dioxide (CO2) and its utilization with subsequent work-up would significantly enhance the competitiveness of CO2-based sustainable chemistry over petroleum-based chemistry. Here we report an interfacial catalytic reaction platform for an integrated autonomous process of simultaneously capturing/fixing CO2 in gas–liquid laminar flow with subsequently providing a work-up step. The continuous-flow microreactor has built-in silicon nanowires (SiNWs) with immobilized ionic liquid catalysts on tips of cone-shaped nanowire bundles. Because of the superamphiphobic SiNWs, a stable gas–liquid interface maintains between liquid flow of organoamines in upper part and gas flow of CO2 in bottom part of channel. The intimate and direct contact of the binary reagents leads to enhanced mass transfer and facilitating reactions. The autonomous integrated platform produces and isolates 2-oxazolidinones and quinazolines-2,4(1H,3H)-diones with 81–97% yields under mild conditions. The platform would enable direct CO2 utilization to produce high-valued specialty chemicals from flue gases without pre-separation and work-up steps. PMID:28262667

  10. Integrated CO2 capture-fixation chemistry via interfacial ionic liquid catalyst in laminar gas/liquid flow

    Science.gov (United States)

    Vishwakarma, Niraj K.; Singh, Ajay K.; Hwang, Yoon-Ho; Ko, Dong-Hyeon; Kim, Jin-Oh; Babu, A. Giridhar; Kim, Dong-Pyo

    2017-03-01

    Simultaneous capture of carbon dioxide (CO2) and its utilization with subsequent work-up would significantly enhance the competitiveness of CO2-based sustainable chemistry over petroleum-based chemistry. Here we report an interfacial catalytic reaction platform for an integrated autonomous process of simultaneously capturing/fixing CO2 in gas-liquid laminar flow with subsequently providing a work-up step. The continuous-flow microreactor has built-in silicon nanowires (SiNWs) with immobilized ionic liquid catalysts on tips of cone-shaped nanowire bundles. Because of the superamphiphobic SiNWs, a stable gas-liquid interface maintains between liquid flow of organoamines in upper part and gas flow of CO2 in bottom part of channel. The intimate and direct contact of the binary reagents leads to enhanced mass transfer and facilitating reactions. The autonomous integrated platform produces and isolates 2-oxazolidinones and quinazolines-2,4(1H,3H)-diones with 81-97% yields under mild conditions. The platform would enable direct CO2 utilization to produce high-valued specialty chemicals from flue gases without pre-separation and work-up steps.

  11. Direct numerical simulation of interfacial wave generation in turbulent gas-liquid flows in horizontal channels

    Science.gov (United States)

    Campbell, Bryce; Hendrickson, Kelli; Liu, Yuming; Subramani, Hariprasad

    2014-11-01

    For gas-liquid flows through pipes and channels, a flow regime (referred to as slug flow) may occur when waves form at the interface of a stratified flow and grow until they bridge the pipe diameter trapping large elongated gas bubbles within the liquid. Slug formation is often accompanied by strong nonlinear wave-wave interactions, wave breaking, and gas entrainment. This work numerically investigates the fully nonlinear interfacial evolution of a two-phase density/viscosity stratified flow through a horizontal channel. A Navier-Stokes flow solver coupled with a conservative volume-of-fluid algorithm is use to carry out high resolution three-dimensional simulations of a turbulent gas flowing over laminar (or turbulent) liquid layers. The analysis of such flows over a range of gas and liquid Reynolds numbers permits the characterization of the interfacial stresses and turbulent flow statistics allowing for the development of physics-based models that approximate the coupled interfacial-turbulent interactions and supplement the heuristic models built into existing industrial slug simulators.

  12. Dispersiveness of Liquid Droplets Sprayed with Cocurrent Gas Flow

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2016-01-01

    Full Text Available Pneumohydraulic stand, equipped with a set of aerosol systems laser diagnostics devices, are presented. The results of experimental measurements of the aerosol liquid-drop size distribution in the ejection nozzle spray pattern are provided.

  13. On the Forms of Nonlinear Propagation of High-Frequency Perturbation in a Thermal Relaxing Gas-Liquid mixture

    Directory of Open Access Journals (Sweden)

    Ohanyan G.G.

    2010-09-01

    Full Text Available The quasi-adiabatic and quasi-isotherm regimes of propagation of high-frequency perturbation are considered in a thermal relaxing gas–fluid mixture. The simplified non-linear equations are obtained. It is shown that in the absence of heat transfer and under the quasi-adiabatic regime the form of propagation is soliton, or the shock wave in quasi-isotherm regime.

  14. On the Forms of Nonlinear Propagation of High-Frequency Perturbation in a Thermal Relaxing Gas-Liquid mixture

    OpenAIRE

    Ohanyan G.G.

    2010-01-01

    The quasi-adiabatic and quasi-isotherm regimes of propagation of high-frequency perturbation are considered in a thermal relaxing gas–fluid mixture. The simplified non-linear equations are obtained. It is shown that in the absence of heat transfer and under the quasi-adiabatic regime the form of propagation is soliton, or the shock wave in quasi-isotherm regime.

  15. Algebraic model for bubble tracking in horizontal gas-liquid flow

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Felipe G.C. de; Tisserant, Hendy R. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Morales, Rigoberto E.M. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica e de Materiais; Mazza, Ricardo A.; Rosa, Eugenio S. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2008-07-01

    The current work extends the concept of unit-cell applied in gas-liquid slug flow models to predict the evolution of the gas and liquid flow properties along a horizontal pipe. The motivation of this model is its simplicity, easiness of application and low computational cost. It is a useful tool of reference data generation in order to check the consistency of numerical slug tracking models. The potential of the model is accessed by comparing the gas bubbles and liquid slug sizes, the translational bubble velocity and the pressure drop against experimental data. (author)

  16. International workshop on measuring techniques for liquid metal flows (MTLM). Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeth, G.; Eckert, S. [eds.

    1999-11-01

    The international workshop on 'Measuring techniques in liquid metal flows' (MTLM workshop) was organised in frame of the Dresden 'Innovationskolleg Magnetofluiddynamik'. The subject of the MTLM workshop was limited to methods to determine physical flow quantities such as velocity, pressure, void fraction, inclusion properties, crystallisation fronts etc. The present proceedings contain abstracts and viewgraphs of the oral presentations. During the last decades numerical simulations have become an important tool in industry and research to study the structure of flows and the properties of heat and mass transfer. However, in case of liquid metal flows there exists a significant problem to validate the codes with experimental data due to the lack of available measuring techniques. Due to the material properties (opaque, hot, chemical aggressive) the measurement of flow quantities is much more delicate in liquid metals compared to ordinary water flows. The generalisation of results obtained by means of water models to real liquid metal flows has often to be considered as difficult due to the problems to meet the actual values of n0n-dimensional flow parameters (Re, Pr, Gr, Ha, etc.). Moreover, a strong need has to be noted to make measuring techniques available tomonitor and to control flow processes in real industrial facilities. The objectives of the MTLM workshop were to: Review of existing information on a available techniques and experiences about the use in liquid metal flows, initiate a discussion between developers and potential users with respect to the actual need of information about the flow structure as well as the capabilities of existing and developing measuring techniques. Explore opportunities for co-operative R and D projects to expedite new developments and results, to share expertise and resources. (orig.)

  17. A New Mathematical Model for Description of the Liquid Discrete Flow Within a Packed Bed

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng-shan; MU Xiao-jing; ZHENG Shao-bo; JIANG Guo-chang; XIAO Xing-guo; WANG Wen-zhong

    2008-01-01

    The molten liquid discrete flow inside a packed bed is a typical transport phenomenon in the blast furnace.As for the reportcd mathematieal models presenting the liquid discrete flow within the packed bed,there are some barriers for their application to an engineering scale-up,or some imperfections in model descriptions. To overcome these deficieneies,the effects of the packed bed on the liquid discrete flow have been divided into reststance action and dispcrsal action,and appropriate descriptions have been given for thc two actions,respectively.Consequently,a new mathematical model has been built to present the liquid discrete flow inside a coke bed in the blast furnace. The mathcmatical model can predict the distribution of liquid flux and the liquid flowing range inside the packed bed at any time.The prediction of this model accords well with the experimental data.The model will be much better for the simulation of the ironmaking process,compared with the existent model.

  18. Eulerian modeling of reactive gas-liquid flow in a bubble column

    NARCIS (Netherlands)

    Zhang, D.

    2007-01-01

    Despite the widespread application of bubble columns and intensive research efforts devoted to understand their complex behavior, detailed knowledge on the fluid flow, mass transfer and chemical reactions as well as their interactions is currently very limited. Gas-liquid flow in bubble column

  19. Eulerian modeling of reactive gas-liquid flow in a bubble column

    NARCIS (Netherlands)

    Zhang, Dongsheng

    2007-01-01

    Despite the widespread application of bubble columns and intensive research efforts devoted to understand their complex behavior, detailed knowledge on the fluid flow, mass transfer and chemical reactions as well as their interactions is currently very limited. Gas-liquid flow in bubble column react

  20. MEMBRANOUS FLOWS IN GAS-LIQUID COLLECTORS-REGENERATORS OF SOLAR ABSORPTIVE SYSTEMS FEATURES

    Directory of Open Access Journals (Sweden)

    Doroshenko А.V.

    2009-12-01

    Full Text Available Article is devoted to the creation of new generation of solar collectors of the gas-liquid type, intended for use in alternative refrigerating and conditioning systems of drying-evaporating type with direct solar regeneration of absorbent. Special attention is given to the study of membranous flows features on inclined surfaces, including questions of such flows stability.

  1. Droplets in annular-dispersed gas-liquid pipe-flows

    NARCIS (Netherlands)

    Van 't Westende, J.M.C.

    2008-01-01

    Annular-dispersed gas-liquid pipe-flows are commonly encountered in many industrial applications, and have already been studied for many decades. However, due to the great complexity of this type of flow, there are still many phenomena that are poorly understood. The aim of this thesis is to shed mo

  2. DEVELOPMENT AND VALIDATION OF A MULTIFIELD MODEL OF CHURN-TURBULENT GAS/LIQUID FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Elena A. Tselishcheva; Steven P. Antal; Michael Z. Podowski; Donna Post Guillen

    2009-07-01

    The accuracy of numerical predictions for gas/liquid two-phase flows using Computational Multiphase Fluid Dynamics (CMFD) methods strongly depends on the formulation of models governing the interaction between the continuous liquid field and bubbles of different sizes. The purpose of this paper is to develop, test and validate a multifield model of adiabatic gas/liquid flows at intermediate gas concentrations (e.g., churn-turbulent flow regime), in which multiple-size bubbles are divided into a specified number of groups, each representing a prescribed range of sizes. The proposed modeling concept uses transport equations for the continuous liquid field and for each bubble field. The overall model has been implemented in the NPHASE-CMFD computer code. The results of NPHASE-CMFD simulations have been validated against the experimental data from the TOPFLOW test facility. Also, a parametric analysis on the effect of various modeling assumptions has been performed.

  3. Modeling the transient flow of undercooled glass-forming liquids

    OpenAIRE

    Demetriou, Marios D.; Johnson, Wiliam L.

    2004-01-01

    n a recent experimental study on flow behavior of Vitreloy-1 (Zr41.25Ti13.75Cu12.5Ni10Be22.5), three distinct modes of flow are suggested: Newtonian, non-Newtonian, and localized flow. In a subsequent study, the experimental flow data is utilized in a self-consistent manner to develop a rate equation to govern local free volume production. In the present study the production-rate equation is transformed into a transport equation that can be coupled with momentum and energy transport via visco...

  4. Schlieren High Speed Imaging on Fluid Flow in Liquid Induced by Plasma-driven Interfacial Forces

    Science.gov (United States)

    Lai, Janis; Foster, John

    2016-10-01

    Effective plasma-based water purification depends heavily on the transport of plasma-derived reactive species from the plasma into the liquid. Plasma interactions at the liquid-gas boundary are known to drive circulation in the bulk liquid. This forced circulation is not well understood. A 2-D plasma- in-liquid water apparatus is currently being investigated as a means to study the plasma-liquid interface to understand not only reactive species flows but to also understand plasma- driven fluid dynamic effects in the bulk fluid. Using Schlieren high speed imaging, plasma-induced density gradients near the interfacial region and into the bulk solution are measured to investigate the nature of these interfacial forces. Plasma-induced flow was also measured using particle imaging velocimetry. NSF CBET 1336375 and DOE DE-SC0001939.

  5. Experimental Study on the Characteristics of Liquid Layer and Disturbance Waves in Horizontal Annular Flow

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The mechanism for transporting liquid from the bottom of the pipe to the top still to be established in the prediction of the film thickness distribution in horizontal annular two-phase flow.To resolve this issue,using five parallel-wire conductance probes,time records of local liquid film thickness at five circumferential positions were collected.The characteristics of circumferential liquid film thickness profiles and its variation with gas and liquid velocities were obtained.The basic features of probability distribution function,probability density function,auto-correlation,cross-correlation and power spectrum density function of the disturbance waves in annular flow were studied respectively.The characterstics of circumferential profiles of disturbance waves and its variation with gas and liquid velocities were presented.

  6. Numerical Study on the Magnetohydrodynamics of a Liquid Metal Oscillatory Flow under Inductionless Approximation

    Directory of Open Access Journals (Sweden)

    Jose Amilcar Rizzo Sierra

    2017-01-01

    Full Text Available A harmonically-driven, incompressible, electrically conducting, and viscous liquid metal magnetohydrodynamic flow through a thin walled duct of rectangular cross section interacting with a uniform magnetic field traverse to its motion direction is numerically investigated. Chebyshev spectral collocation method is used to solve the Navier-Stokes equation under the inductionless approximation for the magnetic field in the gradient formulation for the electric field. Flow is considered fully developed in the direction perpendicular to the applied magnetic field and laminar in regime. Validation of numerical calculations respect to analytical calculations is established. Flow structure and key magnetohydrodynamic features regarding eventual alternating power generation application in a rectangular channel liquid metal magnetohydrodynamic generator setup are numerically inquired. Influence of pertinent parameters such as Hartmann number, oscillatory interaction parameter and wall conductance ratio on magnetohydrodynamic flow characteristics is illustrated. Particularly, it is found that in the side layer and its vicinity the emerging flow structures/patterns depend mainly on the Hartmann number and oscillatory interaction parameter ratio, while the situation for the Hartmann layer and its vicinity is less eventful. A similar feature has been discussed in the literature for the steady liquid metal flow case and served as rationale for developing the composite core-side-layer approximation to study the magnetohydrodynamics of liquid metal flows usable in direct power generation. In this study that approximation is not considered and the analysis is performed on liquid metal oscillatory (i., e., unsteady flows usable in alternating power generation. Conversely, in terms of prospective practical applicability the formulation developed and tested with these calculations admits the implementation of a load resistance and walls conductivity optimization

  7. Gas-Liquid flow characterization in bubble columns with various gas-liquid using electrical resistance tomography

    Science.gov (United States)

    Jin, Haibo; Yuhuan, Han; Suohe, Yang

    2009-02-01

    Electrical resistance tomography (ERT) is an advanced and new detecting technique that can measure and monitor the parameters of two-phase flow on line, such as gas-liquid bubble column. It is fit for the industrial process where the conductible medium serves as the disperse phase to present the key bubble flow characteristics in multi-phase medium. Radial variation of the gas holdup and mean holdups are investigated in a 0.160 m i. d. bubble column using ERT with two axial locations (Plane 1 and Plane 2). In all the experiments, air was used as the gas phase, tap water as liquid phase, and a series of experiments were done by adding KCl, ethanol, oil sodium, and glycerol to change liquid conductivity, liquid surface tension and viscosity. The superficial gas velocity was varied from 0.02 to 0.2 m/s. The effect of conductivity, surface tension, viscosity on the mean holdups and radial gas holdup distribution is discussed. The results showed that the gas holdup decrease with the increase of surface tension and increase with the increase of viscosity. Meanwhile, the settings of initial liquid conductivity slightly influence the gas holdup values, and the experimental data increases with the increase of the initial setting values in the same conditions.

  8. Experimental Study of gas-liquid two-phase flow affected by wall surface wettability

    Energy Technology Data Exchange (ETDEWEB)

    Takamasa, T. [Faculty of Marine Technology, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima, Koto, Tokyo 135-8533 (Japan); Hazuku, T. [Faculty of Marine Technology, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima, Koto, Tokyo 135-8533 (Japan)], E-mail: hazuku@kaiyodai.ac.jp; Hibiki, T. [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017 (United States)

    2008-12-15

    To evaluate the effect of wall surface wettability on the characteristics of upward gas-liquid two-phase flow in a vertical pipe, an experimental study was performed using three test pipes: an acrylic pipe, a hydrophilic pipe and a hydrophobic pipe. Basic flow characteristics such as flow patterns, pressure drop and void fraction were measured in these three pipes. In the hydrophilic pipe, a slug to churn flow transition boundary was shifted to a higher gas velocity at a given liquid velocity, whereas a churn to annular flow transition boundary was shifted to a lower gas velocity at a given liquid velocity. In the hydrophobic pipe, an inverted-churn flow regime was observed in the region where the churn flow regime was observed in the acrylic pipe, while a droplet flow regime was observed in the region where an annular flow regime was observed in the acrylic pipe. At a high gas flow rate, the mean void fraction in the hydrophobic pipe was higher than in the acrylic pipe. The effect of surface wettability on frictional pressure loss was confirmed to be insignificant under the present experimental conditions.

  9. MHD Boundary Layer Flow near Stagnation Point of Linear Stretching Sheet with Variable Thermal Conductivity via He’s Homotopy Perturbation Method

    Directory of Open Access Journals (Sweden)

    JHANKAL ANUJ

    2015-01-01

    Full Text Available MHD boundary layer flow near stagnation point of linear stretching sheet with variable thermal conductivity are solved using He’s Homotopy Perturbation Method (HPM, which is one of the semi-exact method. Similarity transformation has been used to reduce the governing differential equations into an ordinary non-linear differential equation. The main advantage of HPM is that it does not require the small parameter in the equations and hence the limitations of traditional perturbations can be eliminated. In this paper firstly, the basic idea of the HPM for solving nonlinear differential equations is briefly introduced and then it is employed to derive solution of nonlinear governing equations of MHD boundary layer flow with nonlinear term. The influence of various relevant physical characteristics are presented and discussed.

  10. Local Measurement of Gas-Liquid Bubbly Flow with a Double-Sensor Probe

    Institute of Scientific and Technical Information of China (English)

    孙科霞; 张鸣远; 陈学俊

    2000-01-01

    A double-sensor probe was used to measure local interfacial parameters of a gas-liquid bubbly flow in a horizontal tube. The parameters included void fraction, interfacial concentration, bubble size distribution, bubble frequency and bubble interface velocity. The authors paid special attention to the probe design and construction for minimizing measurement errors. Measures were also taken in the design of sensor ends for preventing corrosions in the flow. This is an effort to improve the current double-sensor probe technique to meet the ever-increasing needs to local varameter measurements in gas-liquid two-phase flows.

  11. Bubble Formation Characteristics from a Sieve Tray with Liquid Cross—flow

    Institute of Scientific and Technical Information of China (English)

    XUSonglin; XUShimin

    2002-01-01

    An apparatus,desinged to simulate bubbling of a sieve tray operated in froth regime,was employed. Bubble contact angles in and above the incipient weeping regimer for an air-water-plexiglas system were investigated. The influence of both liquid cross-flow and gas up-flow upon bubble contact angles was examined. A model considering the influence of liquid cross-flow was developed to predict bubble size from a sieve hole in froth operation regime.The comparison shows that the bubble sizes predicted by the present model are consistent with our experimental values and the available published experimental data.

  12. Performance analysis on solid-liquid mixed flow in a centrifugal pump

    Science.gov (United States)

    Ning, C.; Wang, Y.

    2016-05-01

    In order to study the solid-liquid mixed flow hydraulic characteristics of centrifugal pump, the Pro/E software was used for three-dimensional modeling of centrifugal pump chamber. By using the computational fluid dynamics software CFX, the numerical simulation calculation of solid-liquid two-phase flow within whole flow passage of centrifugal pump was conducted. Aim at different particle diameters, the Reynolds-averaged N-S equations with the RNG k-Ɛ turbulence model and SIMPLEC algorithm were used to simulate the two-phase flow respectively on the condition of different volume fraction. The influence of internal flow characteristic on pump performance was analyzed. On the conditions of different particle diameter and different volume fraction, the turbulence kinetic energy and particle concentration are analyzed. It can be found that the erosion velocity ratio on the flow channel wall increases along with the increasing of the volume fraction

  13. Experimental studies of the streaming flow due to the adsorption of particles at a liquid surface

    Science.gov (United States)

    Singh, Pushpendra; Musunuri, Naga; Fischer, Ian

    2016-11-01

    The particle image velocimetry (PIV) technique is used to study the streaming flow that is induced when particles are adsorbed at a liquid surface. The flow develops within a fraction of second after the adsorption of the particle and persists for several seconds. The fluid directly below the particle rises upward, and near the surface, it moves away from the particle. The flow causes powders sprinkled on a liquid surface to disperse on the surface. The flow strength, and the volume over which it extends, decreases with decreasing particle size. The streaming flow induced by the adsorption of two or more particles is a combination of the flows which they induce individually. The work was supported by National Science Foundation.

  14. Long liquid slugs in stratified gas/liquid flow in horizontal and slightly inclined pipes

    NARCIS (Netherlands)

    Kadri, U.

    2009-01-01

    Long liquid slugs reaching several hundreds pipe diameter may appear when transporting gas and liquid in horizontal and near horizontal pipes. The long slugs cause system vibration and separation difficulties that may lead to operational failures. Identifying and predicting the time and length scale

  15. Long liquid slugs in stratified gas/liquid flow in horizontal and slightly inclined pipes

    NARCIS (Netherlands)

    Kadri, U.

    2009-01-01

    Long liquid slugs reaching several hundreds pipe diameter may appear when transporting gas and liquid in horizontal and near horizontal pipes. The long slugs cause system vibration and separation difficulties that may lead to operational failures. Identifying and predicting the time and length scale

  16. Linear perturbation of spherically symmetric flows: a first-order upwind scheme for the gas dynamics equations in Lagrangian coordinates; Perturbation lineaire d'ecoulements a symetrie spherique: schema decentre d'ordre 1 pour les equations de la dynamique des gaz en variables de Lagrange

    Energy Technology Data Exchange (ETDEWEB)

    Clarisse, J.M

    2007-07-01

    A numerical scheme for computing linear Lagrangian perturbations of spherically symmetric flows of gas dynamics is proposed. This explicit first-order scheme uses the Roe method in Lagrangian coordinates, for computing the radial spherically symmetric mean flow, and its linearized version, for treating the three-dimensional linear perturbations. Fulfillment of the geometric conservation law discrete formulations for both the mean flow and its perturbation is ensured. This scheme capabilities are illustrated by the computation of free-surface mode evolutions at the boundaries of a spherical hollow shell undergoing an homogeneous cumulative compression, showing excellent agreement with reference results. (author)

  17. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels (Poster)

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    to hot spots. Management of heat and fluid flow through the micro-channels play a great role in the capability of PEM water electrolysis when working at high current densities. Despite, many studies have been done on gas-liquid flows; still there is a lack of research on gas-liquid flows in micro......One means of increasing the hydrogen yield to cost ratio of a PEM water electrolyser, is to increase the operating current density. However, at high current densities (higher than 1 A/cm2), management of heat and mass transfer in the anode current collector and channel becomes crucial and can lead......-sized channels (hydraulic diameter of 1 mm) of PEM water electrolysis. Precisely controlling all the parameters that affect the gas-liquid flow in a PEM water electrolysis cell is quite challenging, hence a simplified setup is constructed consisting of only a transparent channel with a sheet of titanium felt...

  18. Numerical study on onset of oscillatory thermocapillary flow in rectangular liquid pool

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Thermocapillary flow in a rectangular liquid pool of large Prandtl fluid(Pr=105.6) is numerically studied in microgravity.Oscillatory thermocapillary flow arises when the imposed temperature difference between the sidewalls exceeds a critical value.The fluctuations of the oscillatory flow,accompanied by the propagation of the hydrothermal wave from the cold sidewall to the hot one,are much smaller than the time-averaged velocity and temperature fields.The corresponding disturbance cells arise in the centre of the liquid pool initially,and extend to the whole region with the increasing imposed temperature difference.The present study reveals the different characteristics of the oscillatory themocapillary flow in the rectangular liquid pool as compared to the cases in other configurations.

  19. Multiphase flow of gas-liquid and gas coal slurry mixtures in vertical tubes

    Energy Technology Data Exchange (ETDEWEB)

    Javdani, K; Schwalbe, S; Fishcher, J

    1977-01-01

    This research was done as a support study for the SYNTHOIL process and other coal liquefaction processes being developed to produce clean liquid fuels from coal. The objective of this work is to obtain experimental data on flow characteristics for upward flow of gas-liquid-solid mixtures in vertical tubes simulating conditions in the SYNTHOIL process. Study of the transport phenomena of multiphase mixtures is of importance to many chemical engineering operations in general and to some other coal conversion processes in particular. A brief review of the application of this work to existing processes is presented. The first part of the program was devoted to the study of the flow characteristics of two-phase gas--liquid systems, and the second was devoted to the flow characteristics of gas--slurry mixtures.

  20. Progress of experimental studies on gas-liquid (liquid-liquid) two-phase flow in microchannels%微通道内气液(液液)二相流的实验研究进展

    Institute of Scientific and Technical Information of China (English)

    付涛涛; 马友光; 朱春英

    2011-01-01

    The characteristics of gas-liquid (liquid-liquid) two-phase flow in microchannels were reviewed. The flow patterns of gas-liquid two-phase flow in microchannels include bubbly flow, slug flow, annular flow and churn flow; the flow patterns of liquid-liquid two-phase flow are categorized into droplet flow, plug flow, parallel flow and annular flow. The parameters influencing the behaviors of gasdiquid (liquid-liquid) two-phase flow in microchannels were analyzed. The flow pattern maps for gas-liquid (liquid-liquid) two-phase flow in microchannels were introduced, and the flow patterns widely used in literature such as slug, droplet and plug flow were particularly introduced. The difficulties encountered in the investigation of gas-liquid (liquid-liquid) two-phase flow in microchannels were pointed out, and the developing prospects of gas-liquid (liquid-liquid) two-phase flow in microchannels were expected.%综述了微通道内气液(液液)二相流的流型特征.微通道内气液二相流常见的流型为泡状流、弹状流、环状流和翻腾流;液液二相流常见的流型为液滴流、塞状流、平行流及环状流.分析了不同操作条件对气液(液液)二相流行为的影响.介绍了微通道内气液(液液)二相流流型判别谱图,对常用的弹状流、液滴流和塞状流进行了重点介绍.指出了微通道内气液(液液)二相流的研究难点,并对该领域今后的主要研究方向进行了展望.

  1. Time and flow-direction responses of shear-styress-sensitive liquid crystal coatings

    Science.gov (United States)

    Reda, Daniel C.; Muraqtore, J. J.; Heinick, James T.

    1994-01-01

    Time and flow-direction responses of shear-stress liquid crystal coatings were exploresd experimentally. For the time-response experiments, coatings were exposed to transient, compressible flows created during the startup and off-design operation of an injector-driven supersonic wind tunnel. Flow transients were visualized with a focusing schlieren system and recorded with a 100 frame/s color video camera.

  2. Numerical Simulation of Gas-Liquid-Solid Three-Phase Flow in Deep Wells

    OpenAIRE

    Xie, Jianyu; Yu, Bo; Zhang, Xinyu; Shao, Qianqian; Song, Xianzhi

    2013-01-01

    A gas-liquid-solid flow model which considers the effect of the cuttings on the pressure drop is established for the annulus flow in the deep wells in this paper, based on which a numerical code is developed to calculate the thermal and flow quantities such as temperature and pressure distributions. The model is validated by field data, and its performance is compared with several commercial software. The effects of some important parameters, such as well depth, gas kick, cuttings, and drilli...

  3. Reduced Gravity Gas and Liquid Flows: Simple Data for Complex Problems

    Science.gov (United States)

    McQuillen, John; Motil, Brian

    2001-01-01

    While there have been many studies for two-phase flow through straight cylindrical tubes, more recently, a new group of studies have emerged that examine two-phase flow through non-straight, non-cylindrical geometries, including expansions, contractions, tees, packed beds and cyclonic separation devices. Although these studies are still, relatively speaking, in their infancy, they have provided valuable information regarding the importance of the flow momentum, and the existence of liquid dryout due to sharp comers in microgravity.

  4. Time and flow-direction responses of shear-styress-sensitive liquid crystal coatings

    Science.gov (United States)

    Reda, Daniel C.; Muraqtore, J. J.; Heinick, James T.

    1994-01-01

    Time and flow-direction responses of shear-stress liquid crystal coatings were exploresd experimentally. For the time-response experiments, coatings were exposed to transient, compressible flows created during the startup and off-design operation of an injector-driven supersonic wind tunnel. Flow transients were visualized with a focusing schlieren system and recorded with a 100 frame/s color video camera.

  5. Flow transition criteria of a liquid jet into a liquid pool

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shimpei, E-mail: s1630195@u.tsukuba.ac.jp [Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Abe, Yutaka [Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Koyama, Kazuya [Reactor Core and Safety Design Department, Mitsubishi FBR Systems, Inc., 2-34-17 Jingumae, Shibuya, Tokyo 150-0001 (Japan)

    2017-04-15

    Highlights: • Jet breakup and droplet formation in immiscible liquid-liquid systems was studied experimentally. • The observed jet breakup behavior was classified into characteristic regimes. • The droplet size distribution was analyzed using image processing. • The variation of droplet size was compared with available melt-jet experiments. • Extrapolation to the expected SFR conditions implied that most of the hydrodynamic conditions would be the atomization regime. - Abstract: To better understand the fundamental interactions between melt jet and coolant during a core-disruptive accident at a sodium-cooled fast reactor, the jet breakup and droplet formation in immiscible liquid-liquid systems were studied experimentally. Experiments using two different pairs of test fluids were carried out at isothermal conditions. The observed jet breakup behavior was classified into characteristic regimes based on the classical Ohnesorge classification in liquid-gas systems. The variation in breakup length obtained in the present liquid-liquid system was similar to that in a liquid-gas system. The droplet size distribution in each breakup regime was analyzed using image processing and droplet formation via pinch-off, satellite formation, and entrainment was observed. The measured droplet size was compared with those available from melt jet experiments. Based on the observation and analysis results, the breakup regimes were organized on a dimensionless operating diagram, with the derived correlations representing the criteria for regime boundaries of a liquid-liquid system. Finally, the experimental data were extrapolated to the expected conditions of a sodium-cooled fast reactor. From this, it was implied that most of the hydrodynamic conditions during an accident would be close to the atomization regime, in which entrainment is the dominant process for droplet formation.

  6. NUMERICAL CALCULATION OF SOLID-LIQUID TWO PHASE FLOW BETWEEN STAY VANES IN HYDRAULIC TURBINE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, an energy equation of silt-laden water flow is educed based on the energy equation of continuum fluid flow. The dissipation functions of liquid phase and solid phase are presented respectively. Then the extremity law of energy dissipation rate is introduced for the research of the silt-laden water flow and a new mathematical model is developed. The corresponding procedure based on the finite difference method (FDM) is developed to calculate the two phase flow in hydraulic turbine. The method is applied to analyze the silt-laden water flow between stay vanes, and the numerical results are in good agreement with the experimental ones.

  7. Transition from steady to periodic liquid-metal magnetohydrodynamic flow in a sliding electrical contact

    Science.gov (United States)

    Talmage, Gita; Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1993-09-01

    In homopolar motors and generators, large dc electric currents pass through the sliding electrical contacts between rotating copper disks (rotors) and static copper surfaces shrouding the rotor tips (stators). A liquid metal in the small radial gap between the rotor tip and concentric stator surface can provide a low-resistance, low-drag electrical contact. Since there is a strong magnetic field in the region of the electrical contacts, there are large electromagnetic body forces on the liquid metal. The primary, azimuthal motion consists of simple Couette flow, plus an electromagnetically driven flow with large extremes of the azimuthal velocity near the rotor corners. The secondary flow involves the radial and axial velocity components, is driven by the centrifugal force associated with the primary flow, and is opposed by the electromagnetic body force, so that the circulation varies inversely as the square of the magnetic-field strength. Three flow regimes are identified as the angular velocity Ω of the rotor is increased. For small Ω, the primary flow is decoupled from the secondary flow. As Ω increases, the secondary flow begins to convect the azimuthal-velocity peaks radially outward, which in turn changes the centrifugal force driving the secondary flow. At some critical value of Ω, the flow becomes periodic through the coupling of the primary and secondary flows. The azimuthal-velocity peaks begin to move radially in and out with an accompanying oscillation in the secondary-flow strength.

  8. Dynamic behavior of pipes conveying gas–liquid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    An, Chen, E-mail: anchen@cup.edu.cn [Offshore Oil/Gas Research Center, China University of Petroleum-Beijing, Beijing 102249 (China); Su, Jian, E-mail: sujian@lasme.coppe.ufrj.br [Nuclear Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, CP 68509, Rio de Janeiro 21941-972 (Brazil)

    2015-10-15

    Highlights: • Dynamic behavior of pipes conveying gas–liquid two-phase flow was analyzed. • The generalized integral transform technique (GITT) was applied. • Excellent convergence behavior and long-time stability were shown. • Effects of volumetric quality and volumetric flow rate on dynamic behavior were studied. • Normalized volumetric-flow-rate stability envelope of dynamic system was determined. - Abstract: In this paper, the dynamic behavior of pipes conveying gas–liquid two-phase flow was analytically and numerically investigated on the basis of the generalized integral transform technique (GITT). The use of the GITT approach in the analysis of the transverse vibration equation lead to a coupled system of second order differential equations in the dimensionless temporal variable. The Mathematica's built-in function, NDSolve, was employed to numerically solve the resulting transformed ODE system. The characteristics of gas–liquid two-phase flow were represented by a slip-ratio factor model that was devised and used for similar problems. Good convergence behavior of the proposed eigenfunction expansions is demonstrated for calculating the transverse displacement at various points of pipes conveying air–water two-phase flow. Parametric studies were performed to analyze the effects of the volumetric gas fraction and the volumetric flow rate on the dynamic behavior of pipes conveying air–water two-phase flow. Besides, the normalized volumetric-flow-rate stability envelope for the dynamic system was obtained.

  9. Direct numerical simulations of gas-liquid multiphase flows

    CERN Document Server

    Tryggvason, Grétar; Zaleski, Stéphane

    2011-01-01

    Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and

  10. Fiber optic liquid mass flow sensor and method

    Science.gov (United States)

    Korman, Valentin (Inventor); Gregory, Don Allen (Inventor); Wiley, John T. (Inventor); Pedersen, Kevin W. (Inventor)

    2010-01-01

    A method and apparatus are provided for sensing the mass flow rate of a fluid flowing through a pipe. A light beam containing plural individual wavelengths is projected from one side of the pipe across the width of the pipe so as to pass through the fluid under test. Fiber optic couplers located at least two positions on the opposite side of the pipe are used to detect the light beam. A determination is then made of the relative strengths of the light beam for each wavelength at the at least two positions and based at least in part on these relative strengths, the mass flow rate of the fluid is determined.

  11. Homotopy Perturbation Method for Thin Film Flow and Heat Transfer over an Unsteady Stretching Sheet with Internal Heating and Variable Heat Flux

    Directory of Open Access Journals (Sweden)

    I-Chung Liu

    2012-01-01

    Full Text Available We have analyzed the effects of variable heat flux and internal heat generation on the flow and heat transfer in a thin film on a horizontal sheet in the presence of thermal radiation. Similarity transformations are used to transform the governing equations to a set of coupled nonlinear ordinary differential equations. The obtained differential equations are solved approximately by the homotopy perturbation method (HPM. The effects of various parameters governing the flow and heat transfer in this study are discussed and presented graphically. Comparison of numerical results is made with the earlier published results under limiting cases.

  12. Gas-liquid mass transfer in a cross-flow hollow fiber module : Analytical model and experimental validation

    NARCIS (Netherlands)

    Dindore, V. Y.; Versteeg, G. F.

    2005-01-01

    The cross-flow operation of hollow fiber membrane contactors offers many advantages and is preferred over the parallel-flow contactors for gas-liquid mass transfer operations. However, the analysis of such a cross-flow membrane gas-liquid contactor is complicated due to the change in concentrations

  13. Heat Transfer Characteristics of Liquid-Gas Taylor Flows incorporating Microencapsulated Phase Change Materials

    Science.gov (United States)

    Howard, J. A.; Walsh, P. A.

    2014-07-01

    This paper presents an investigation on the heat transfer characteristics associated with liquid-gas Taylor flows in mini channels incorporating microencapsulated phase change materials (MPCM). Taylor flows have been shown to result in heat transfer enhancements due to the fluid recirculation experienced within liquid slugs which is attributable to the alternating liquid slug and gas bubble flow structure. Microencapsulated phase change materials (MPCM) also offer significant potential with increased thermal capacity due to the latent heat required to cause phase change. The primary aim of this work was to examine the overall heat transfer potential associated with combining these two novel liquid cooling technologies. By investigating the local heat transfer characteristics, the augmentation/degradation over single phase liquid cooling was quantified while examining the effects of dimensionless variables, including Reynolds number, liquid slug length and gas void fraction. An experimental test facility was developed which had a heated test section and allowed MPCM-air Taylor flows to be subjected to a constant heat flux boundary condition. Infrared thermography was used to record high resolution experimental wall temperature measurements and determine local heat transfer coefficients from the thermal entrance point. 30.2% mass particle concentration of the MPCM suspension fluid was examined as it provided the maximum latent heat for absorption. Results demonstrate a significant reduction in experimental wall temperatures associated with MPCM-air Taylor flows when compared with the Graetz solution for conventional single phase coolants. Total enhancement in the thermally developed region is observed to be a combination of the individual contributions due to recirculation within the liquid slugs and also absorption of latent heat. Overall, the study highlights the potential heat transfer enhancements that are attainable within heat exchange devices employing MPCM

  14. Investigation of liquid phase axial dispersion in Taylor bubble flow by radiotracer residence time distribution analysis

    Directory of Open Access Journals (Sweden)

    Jin J.H.

    2013-05-01

    Full Text Available A gas-liquid Taylor bubble flow occurs in small diameter channels in which gas bubbles are separated by slugs of pure liquid. This type of flow regime is well suited for solid catalyzed gas-liquid reactors in which the reaction efficiency is a strong function of axial dispersion in the regions of pure liquid. This paper presents an experimental study of liquid phase axial dispersion in a Taylor bubble flow developed in a horizontal tube using high speed photography and radiotracer residence time distribution (RTD analysis. A parametric dependence of axial dispersion on average volume fraction of gas phase was also investigated by varying the relative volumetric flow rates of the two phases. 137mBa produced from a 137Cs/137mBa radionuclide generator was used as radiotracer and measurements were made using the NaI(Tl scintillation detectors. Validation of 137mBa in the form of barium chloride as aqueous phase radiotracer was also carried out. Axial Dispersion Model (ADM was used to simulate the hydrodynamics of the system and the results of the experiment are presented. It was observed that the system is characterized by very high values of Peclet Number (Pe∼102 which reveals an approaching plug type flow. The experimental and model estimated values of mean residence times were observed in agreement with each other.

  15. A phenomenological continuum model for force-driven nano-channel liquid flows

    Science.gov (United States)

    Ghorbanian, Jafar; Celebi, Alper T.; Beskok, Ali

    2016-11-01

    A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.

  16. Experimental observations of flow instabilities and rapid mixing of two dissimilar viscoelastic liquids

    Directory of Open Access Journals (Sweden)

    Hiong Yap Gan

    2012-12-01

    Full Text Available Viscoelastically induced flow instabilities, via a simple planar microchannel, were previously used to produce rapid mixing of two dissimilar polymeric liquids (i.e. at least a hundredfold different in shear viscosity even at a small Reynolds number. The unique advantage of this mixing technology is that viscoelastic liquids are readily found in chemical and biological samples like organic and polymeric liquids, blood and crowded proteins samples; their viscoelastic properties could be exploited. As such, an understanding of the underlying interactions will be important especially in rapid microfluidic mixing involving multiple-stream flow of complex (viscoelastic fluids in biological assays. Here, we use the same planar device to experimentally show that the elasticity ratio (i.e. the ratio of stored elastic energy to be relaxed between two liquids indeed plays a crucial role in the entire flow kinematics and the enhanced mixing. We demonstrate here that the polymer stretching dynamics generated in the upstream converging flow and the polymer relaxation events occurring in the downstream channel are not exclusively responsible for the transverse flow mixing, but the elasticity ratio is also equally important. The role of elasticity ratio for transverse flow instability and the associated enhanced mixing were illustrated based on experimental observations. A new parameter Deratio = Deside / Demain (i.e. the ratio of the Deborah number (De of the sidestream to the mainstream liquids is introduced to correlate the magnitude of energy discontinuity between the two liquids. A new Deratio-Demain operating space diagram was constructed to present the observation of the effects of both elasticity and energy discontinuity in a compact manner, and for a general classification of the states of flow development.

  17. An automatic, vigorous-injection assisted dispersive liquid-liquid microextraction technique for stopped-flow spectrophotometric detection of boron.

    Science.gov (United States)

    Alexovič, Michal; Wieczorek, Marcin; Kozak, Joanna; Kościelniak, Paweł; Balogh, Ioseph S; Andruch, Vasil

    2015-02-01

    A novel automatic vigorous-injection assisted dispersive liquid-liquid microextraction procedure based on the use of a modified single-valve sequential injection manifold (SV-SIA) was developed and applied for determination of boron in water samples. The major novelties in the procedure are the achieving of efficient dispersive liquid-liquid microextraction by means of single vigorous-injection (250 µL, 900 µL s(-1)) of the extraction solvent (n-amylacetate) into aqueous phase resulting in the effective dispersive mixing without using dispersive solvent and after self-separation of the phases, as well as forwarding of the extraction phase directly to a Z-flow cell (10 mm) without the use of a holding coil for stopped-flow spectrophotometric detection. The calibration working range was linear up to 2.43 mg L(-1) of boron at 426nm wavelength. The limit of detection, calculated as 3s of a blank test (n=10), was found to be 0.003 mg L(-1), and the relative standard deviation, measured as ten replicable concentrations at 0.41 mg L(-1) of boron was determined to be 5.6%. The validation of the method was tested using certified reference material.

  18. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels (Abstract)

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    2016-01-01

    and are fairly expensive. One means of increasing the hydrogen yield to cost ratio of such systems, is to increase the operating current density. However, at high current densities, management of heat transfer and fluid flow in the anode GDL and channel becomes crucial. This entails that further understanding...... of the gas-liquid flow in both the porous media and the channel is necessary for insuring proper oxygen, water and heat management of the electrolysis cell. In this work, the vertical upward gas-liquid flow pattern in a 0.5×1×94 mm micro-channel is both numerically and experimentally analysed. A sheet...... the transparent cell is made which consists of a channel for the inlet air and a channel for the water-bubble flow. The transparent material is Plexiglas that is sealed with a sheet of silicon. The conventional co-current gas-liquid two-phase flow patterns, such as bubbly flow, slug flow and annular flow...

  19. Bubble Generation in a Continuous Liquid Flow Under Reduced Gravity Conditions

    Science.gov (United States)

    Pais, Salvatore Cezar

    1999-01-01

    The present work reports a study of bubble generation under reduced gravity conditions for both co-flow and cross-flow configurations. Experiments were performed aboard the DC-9 Reduced Gravity Aircraft at NASA Glenn Research Center, using an air-water system. Three different flow tube diameters were used: 1.27, 1.9, and 2.54 cm. Two different ratios of air injection nozzle to tube diameters were considered: 0.1 and 0.2. Gas and liquid volumetric flow rates were varied from 10 to 200 ml/s. It was experimentally observed that with increasing superficial liquid velocity, the bubbles generated decreased in size. The bubble diameter was shown to increase with increasing air injection nozzle diameters. As the tube diameter was increased, the size of the detached bubbles increased. Likewise, as the superficial liquid velocity was increased, the frequency of bubble formation increased and thus the time to detach forming bubbles decreased. Independent of the flow configuration (for either single nozzle or multiple nozzle gas injection), void fraction and hence flow regime transition can be controlled in a somewhat precise manner by solely varying the gas and liquid volumetric flow rates. On the other hand, it is observed that uniformity of bubble size can be controlled more accurately by using single nozzle gas injection than by using multiple port injection, since this latter system gives rise to unpredictable coalescence of adjacent bubbles. A theoretical model, based on an overall force balance, is employed to study single bubble generation in the dynamic and bubbly flow regime. Under conditions of reduced gravity, the gas momentum flux enhances bubble detachment; however, the surface tension forces at the nozzle tip inhibits bubble detachment. Liquid drag and inertia can act either as attaching or detaching force, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with performed

  20. Multi-scale symbolic time reverse analysis of gas-liquid two-phase flow structures

    Science.gov (United States)

    Wang, Hongmei; Zhai, Lusheng; Jin, Ningde; Wang, Youchen

    Gas-liquid two-phase flows are widely encountered in production processes of petroleum and chemical industry. Understanding the dynamic characteristics of multi-scale gas-liquid two-phase flow structures is of great significance for the optimization of production process and the measurement of flow parameters. In this paper, we propose a method of multi-scale symbolic time reverse (MSTR) analysis for gas-liquid two-phase flows. First, through extracting four time reverse asymmetry measures (TRAMs), i.e. Euclidean distance, difference entropy, percentage of constant words and percentage of reversible words, the time reverse asymmetry (TRA) behaviors of typical nonlinear systems are investigated from the perspective of multi-scale analysis, and the results show that the TRAMs are sensitive to the changing of dynamic characteristics underlying the complex nonlinear systems. Then, the MSTR analysis is used to study the conductance signals from gas-liquid two-phase flows. It is found that the multi-scale TRA analysis can effectively reveal the multi-scale structure characteristics and nonlinear evolution properties of the flow structures.

  1. Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors.

    Science.gov (United States)

    Straathof, Natan J W; Su, Yuanhai; Hessel, Volker; Noël, Timothy

    2016-01-01

    In this protocol, we describe the construction and use of an operationally simple photochemical microreactor for gas-liquid photoredox catalysis using visible light. The general procedure includes details on how to set up the microreactor appropriately with inlets for gaseous reagents and organic starting materials, and it includes examples of how to use it to achieve continuous-flow preparation of disulfides or trifluoromethylated heterocycles and thiols. The reported photomicroreactors are modular, inexpensive and can be prepared rapidly from commercially available parts within 1 h even by nonspecialists. Interestingly, typical reaction times of gas-liquid visible light photocatalytic reactions performed in microflow are lower (in the minute range) than comparable reactions performed as a batch process (in the hour range). This can be attributed to the improved irradiation efficiency of the reaction mixture and the enhanced gas-liquid mass transfer in the segmented gas-liquid flow regime.

  2. Dynamics of viscous liquid bridges inside microchannels subject to external oscillatory flow

    Science.gov (United States)

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2015-02-01

    We report on two-dimensional simulations of liquid bridges' dynamics inside microchannels of uniform wettability and subject to an external oscillatory flow rate. The oscillatory flow results in a zero net flow rate and its effects are compared to those of a stationary system. To handle the three phase contact lines motion, Cahn-Hilliard diffuse-interface formulation was used and the flow equations were solved using the finite element method with adaptively refined unstructured grids. The results indicate that the liquid bridge responds in three different ways depending on the substrate wettability properties and the frequency of the oscillatory flow. In particular below a critical frequency, the liquid bridge will rupture when the channel walls are philic or detach from the surface when they are phobic. However, at high frequencies, the liquid bridge shows a perpetual periodic oscillatory motion for both philic and phobic surfaces. Furthermore, an increase in the frequency of the flow velocity results in stabilization effects and a behavior approaching that of the stationary system where no rupture or detachment can be observed. This stable behavior is the direct result of less deformation of the liquid bridge due to the fast flow direction change and motion of contact lines on the solid substrate. Moreover, it was found that the flow velocity is out of phase with the footprint and throat lengths and that the latter two also show a phase difference. These differences were explained in terms of the motion of the two contact lines on the solid substrates and the deformation of the two fluid-fluid interfaces.

  3. Lid-driven cavity flow of viscoelastic liquids

    CERN Document Server

    Sousa, R G; Afonso, A M; Pinho, F T; Oliveira, P J; Morozov, A; Alves, M A

    2016-01-01

    The lid-driven cavity flow is a well-known benchmark problem for the validation of new numerical methods and techniques. In experimental and numerical studies with viscoelastic fluids in such lid-driven flows, purely-elastic instabilities have been shown to appear even at very low Reynolds numbers. A finite-volume viscoelastic code, using the log-conformation formulation, is used in this work to probe the effect of viscoelasticity on the appearance of such instabilities in two-dimensional lid-driven cavities for a wide range of aspect ratios (0.125 < height/length < 4.0), at different Deborah numbers under creeping-flow conditions and to understand the effects of regularization of the lid velocity. The effect of the viscoelasticity on the steady-state results and on the critical conditions for the onset of the elastic instabilities are described and compared to experimental results.

  4. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    2016-01-01

    understanding of the gas-liquid flow in both the porous media and the channel is necessary for insuring proper oxygen, water and heat management of the electrolysis cell. In this work, the patterns of vertical upward gas-liquid flow in a 5×1×94 mm micro-channel are experimentally analysed. A sheet of titanium...... and are fairly expensive. One means of increasing the hydrogen yield to cost ratio of such systems, is to increase the operating current density. However, at high current densities, management of heat and mass transfer in the anode current collector and channel becomes crucial. This entails that further...... felt is used as a permeable wall for permeation of air through a column of water similar to the phenomenon encountered at the anode. The transparent setup is operated ex-situ and the gas-liquid flow regimes are identified using a camera....

  5. Numerical Simulation and Analysis of Gas-Liquid Flow in a T-Junction Microchannel

    Directory of Open Access Journals (Sweden)

    Hongtruong Pham

    2012-01-01

    Full Text Available Gas-liquid flow in microchannels is widely used in biomedicine, nanotech, sewage treatment, and so forth. Particularly, owing to the high qualities of the microbubbles and spheres produced in microchannels, it has a great potential to be used in ultrasound imaging and controlled drug release areas; therefore, gas-liquid flow in microchannels has been the focus in recent years. In this paper, numerical simulation of gas-liquid flows in a T-junction microchannel was carried out with computational fluid dynamics (CFD software FLUENT and the Volume-of-Fluid (VOF model. The distribution of velocity, pressure, and phase of fluid in the microchannel was obtained, the pressure distribution along the channel walls was analyzed in order to give a better understanding on the formation of microbubbles in the T-junction microchannel.

  6. Numerical Simulation of Erosion-Corrosion in the Liquid Solid Two-Phase Flow

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main components: the liquid-solid two-phase flow model, erosion model and corrosion model. The Euierian-Lagranglan approach is used to simulate liquid-solid two-phase flow, while the stochastic trajectory model was adopted to obtain properties of particle phase. Two-way coupling effect between the fluid and the particle phase is considered in the model. The accuracy of the models is tested by the data in the reference. The comparison shows that the model is basically correct and feasible.

  7. Self-Powered Triboelectric Micro Liquid/Gas Flow Sensor for Microfluidics.

    Science.gov (United States)

    Chen, Jie; Guo, Hengyu; Zheng, Jiangeng; Huang, Yingzhou; Liu, Guanlin; Hu, Chenguo; Wang, Zhong Lin

    2016-08-23

    Liquid and gas flow sensors are important components of the micro total analysis systems (μTAS) for modern analytical sciences. In this paper, we proposed a self-powered triboelectric microfluidic sensor (TMS) by utilizing the signals produced from the droplet/bubble via the capillary and the triboelectrification effects on the liquid/solid interface for real-time liquid and gas flow detection. By alternating capillary with different diameters, the sensor's detecting range and sensitivity can be adjusted. Both the relationship between the droplet/bubble and capillary size, and the output signal of the sensor are systematically studied. By demonstrating the monitoring of the transfusion process for a patient and the gas flow produced from an injector, it shows that TMS has a great potential in building a self-powered micro total analysis system.

  8. Vertical flow in the Thermoelectric Liquid Metal Plasma Facing Structures (TELS) facility at Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Fiflis, P., E-mail: fiflis1@illinois.edu [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Szott, M.; Kalathiparambil, K.; Jung, S.; Christenson, M.; Haehnlein, I.; Kapat, A. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Andruczyk, D. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); PPPL (United States); Curreli, D.; Ruzic, D.N. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States)

    2015-08-15

    Flowing liquid metal PFCs may offer a solution to the issues faced by solid divertor materials in tokamak plasmas. The Liquid–Metal Infused Trenches (LiMIT) concept of Illinois Ruzic et al. (2011) is a liquid metal plasma facing structure which employs thermoelectric magnetohydrodynamic (TEMHD) effects to self-propel lithium through a series of trenches. The combination of an incident heat flux and a magnetic field provide the driving mechanism. Tests have yielded experimental lithium velocities under different magnetic fields, which agree well with theoretical predictions Xu et al. (2013). The thermoelectric force is expected to overcome gravity and be able to drive lithium flow along an arbitrary direction and the strong surface tension of liquid lithium is believed to maintain the surface when Li flows in open trenches. This paper discusses the behavior of the LiMIT structure when inclined to an arbitrary angle with respect to the horizontal.

  9. A Model for Predicting Holdup and Pressure Drop in Gas-Liquid Stratified Flow

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The time-dependent liquid film thickness and pressure drop were measured by using parallel-wire conductance probes and capacitance differential-preesure transducers. Applying the eddy viscosity theory and an appropriate correlation of interfacial sear stress,a new two-dimensional separated model of holdup and pressure drop of turbulent/turbulent gas-liquid stratified flow was presented. Prediction results agreed well with experimental data.

  10. Liquid mean velocity and turbulence in a horizontal air-water bubbly flow

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The liquid phase turbulent structure of an air-water bubbly horizontal flow in a circular pipe has been investigated experimentally. Three-dimensional measurements were implemented with two "X" type probes oriented in different planes, and local liquid-phase velocities and turbulent stresses were simultaneously obtained. Systematic measurements were conducted covering a range of local void fraction from 0 to 11.7%. The important experiment results and parametric trends are summarized and discussed.

  11. Anisotropic Thermal Conduction in a Polymer Liquid Subjected to Shear Flow

    Science.gov (United States)

    Venerus, David C.; Schieber, Jay D.; Balasubramanian, Venkat; Bush, Kendall; Smoukov, Stoyan

    2004-08-01

    Flow-induced anisotropic thermal conduction in a polymer liquid is studied using force Rayleigh scattering. Time-dependent measurements of the complete thermal diffusivity tensor, which includes one off-diagonal and three diagonal components, are reported on an entangled polymer melt subjected to a uniform shear deformation. These data, in conjunction with mechanical measurements of the stress, provide the first direct evidence that the thermal conductivity tensor and the stress tensor are linearly related in a deformed polymer liquid.

  12. A Model of Turbulent-Laminar Gas-Liquid Stratified Flow

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The time-dependent liquid film thickness and pressure drop are measured by using parallel-wire conduc tance probes and capacitance differential-pressure transducer. A mathematical model with iterative procedure to calculate holdup and pressure drop in horizontal and inclined gas-liquid stratified flow is developed. The predictions agree well with over a hundred experimental data in 0.024 and 0.04 m diameter pipelines.

  13. MHD Stability Analysis and Flow Controls of Liquid Metal Free Surface Film Flows as Fusion Reactor PFCs

    Science.gov (United States)

    Zhang, Xiujie; Pan, Chuanjie; Xu, Zengyu

    2016-12-01

    Numerical and experimental investigation results on the magnetohydrodynamics (MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the liquid metal MHD film state, which has been validated by the existing experimental results. Numerical results on how the inlet velocity (V), the chute width (W) and the inlet film thickness (d0) affect the MHD film flow state are obtained. MHD stability analysis results are also provided in this study. The results show that strong magnetic fields make the stable V decrease several times compared to the case with no magnetic field, especially small radial magnetic fields (Bn) will have a significant impact on the MHD film flow state. Based on the above numerical and MHD stability analysis results flow control methods are proposed for flat and curved MHD film flows. For curved film flow we firstly proposed a new multi-layers MHD film flow system with a solid metal mesh to get the stable MHD film flows along the curved bottom surface. Experiments on flat and curved MHD film flows are also carried out and some firstly observed results are achieved. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB125003 and 2013GB114002), National Natural Science Foundation of China (No. 11105044)

  14. The discrete multi-hybrid system for the simulation of solid-liquid flows.

    Directory of Open Access Journals (Sweden)

    Alessio Alexiadis

    Full Text Available This study proposes a model based on the combination of Smoothed Particle Hydrodynamics, Coarse Grained Molecular Dynamics and the Discrete Element Method for the simulation of dispersed solid-liquid flows. The model can deal with a large variety of particle types (non-spherical, elastic, breakable, melting, solidifying, swelling, flow conditions (confined, free-surface, microscopic, and scales (from microns to meters. Various examples, ranging from biological fluids to lava flows, are simulated and discussed. In all cases, the model captures the most important features of the flow.

  15. Three-dimensional simulation of liquid flow on a sieve tray under different inclinations

    Directory of Open Access Journals (Sweden)

    Zhang Ping

    2014-12-01

    Full Text Available The fluid state on a sieve tray will change when the towers tilt under wind loads. A computational fluid dynamics (CFD model was used to predict the flow patters and hydraulics on the tray under different inclinations. The gas and liquid phases are modelled with the volume-of-fluid (VOF framework as two inmiscible phases. Several three-dimensional transient simulations were carried out for a 0.38m diameter tray with varying liquid weir loads and inclined angles. The clear liquid height determined from these simulations is in reasonable agreement with experimental measurements carried out for air-water in a round tray of the same dimensions. The simulation results show that, compared with the horizontal tray, the circulation area is bigger when the liquid flow and inclination direction of the tray are the same, but when they are opposite the circulation area is smaller. The percentage of circulation area to the tray area can obviously be decreased, along with increasing liquid weir loads. It is concluded that CFD can be used for the prediction of liquid flow on sieve trays under different inclinations

  16. Exponential Shear Flow of Linear, Entangled Polymeric Liquids

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Park, Kyungho; Venerus, David C.

    2000-01-01

    A previously proposed reptation model is used to interpret exponential shear flow data taken on an entangled polystyrenesolution. Both shear and normal stress measurements are made during exponential shear using mechanical means. The model iscapable of explaining all trends seen in the data, and ...

  17. Flow Induced Coalescence of Drops in a Viscous Liquid

    Science.gov (United States)

    Leal, L. Gary

    2002-11-01

    The problem of flow-induced coalescence has been the subject of many experimental and theoretical studies. In recent years, this work has been motivated by the role that this process plays in the formation of polymer blends, which is currently the major route to new polymeric materials with desired macroscopic properties. In order to control this process, we need to understand the conditions for coalescence and their dependence on fluid and flow properties, including the effects of surfactants (known as "compatibilizers" in the polymer blend literature). With a few exceptions, experimental studies have been based upon measurements of the mean drop size (or size distribution) in an emulsion or blend following flow in either blending devices or simple rheometry flows. The four-roll mill, on the other hand, provides an opportunity to study the coalescence process at the scale of individual drops. When such experiments are carried out, we find some surprises vis a vis expectations from simple models of the drop collision/film drainage and rupture process that leads to coalescence. In this talk, we review recent experimental work in this field, and discuss the relationship to present theory

  18. Flow of Liquid in Flat Gaps of the Satellite Motor Working Mechanism

    Directory of Open Access Journals (Sweden)

    Sliwiński Paweł

    2014-04-01

    Full Text Available The article describes the methodology and results of investigations of the flow of oil and HFA-E emulsion in flat gaps of the working mechanism of a satellite motor. The flow of liquid in those gaps is turbulent and not fully developed. The article presents two methods of modelling this flow. Method I makes use of the Darcy-Weisbach formula, while Method II bases on the assumption that in the variable-length gaps the flow is turbulent in the area where the length is the smallest and laminar where the length is the largest. Consequently, the flow in such gaps can be modelled as the sum of laminar and turbulent flows. The results obtained in the experiment have made the basis for calculating relevant coefficients and assessing the proportion of turbulence in the flow modelled using both methods

  19. Experiments on Heat Transfer in a Thin Liquid Film Flowing Over a Rotating Disk

    Science.gov (United States)

    Sankaran, Subramanian (Technical Monitor); Ozar, B.; Cetegen, B. M.; Faghri, A.

    2004-01-01

    An experimental study of heat transfer into a thin liquid film on a rotating heated disk is described. Deionized water was introduced at the center of a heated. horizontal disk with a constant film thickness and uniform radial velocity. Radial distribution of the disk surface temperatures was measured using a thermocouple/slip ring arrangement. Experiments were performed for a range of liquid flow rates between 3.01pm and 15.01pm. The angular speed of the disk was varied from 0 rpm to 500 rpm. The local heat transfer coefficient was determined based on the heat flux supplied to the disk and the temperature difference between the measured disk surface temperature and the liquid entrance temperature onto the disk. The local heat transfer coefficient was seen to increase with increasing flow rate as well as increasing angular velocity of the disk. Effect of rotation on heat transfer was largest for the lower liquid flow rates with the effect gradually decreasing with increasing liquid flow rates. Semi-empirical correlations are presented in this study for the local and average Nusselt numbers.

  20. Mixing characteristics of pulsed air-assist liquid jet into an internal subsonic cross-flow

    Science.gov (United States)

    Lee, Inchul; Kang, Youngsu; Koo, Jaye

    2010-04-01

    Penetration depth, spray dispersion angle, droplet sizes in breakup processes and atomization processes are very important parameters in combustor of air-breathing engine. These processes will enhance air/fuel mixing inside the combustor. Experimental results from the pulsed air-assist liquid jet injected into a cross-flow are investigated. And experiments were conducted to a range of cross-flow velocities from 42˜136 m/s. Air is injected with 0˜300kPa, with air-assist pulsation frequency of 0˜20Hz. Pulsation frequency was modulated by solenoid valve. Phase Doppler Particle Analyzer(PDPA) was utilized to quantitatively measuring droplet characteristics. High-speed CCD camera was used to obtain injected spray structure. Pulsed air-assist liquid jet will offer rapid mixing and good liquid jet penetration. Air-assist makes a very fine droplet which generated mist-like spray. Pulsed air-assist liquid jet will introduce additional supplementary turbulent mixing and control of penetration depth into a cross-flow field. The results show that pulsation frequency has an effect on penetration, transverse velocities and droplet sizes. The experimental data generated in these studies are used for a development of active control strategies to optimize the liquid jet penetration in subsonic cross-flow conditions and predict combustion low frequency instability.

  1. FLOW DYNAMICS OF GAS-SOLID FLUIDIZED BEDS WITH EVAPORATIVE LIQUID INJECTION

    Institute of Scientific and Technical Information of China (English)

    Bing Du; W. Warsito; Liang-Shih Fan

    2006-01-01

    The electrical capacitance tomography (ECT) with neural network multi-criteria image reconstruction technique (NN-MOIRT) is developed for real time imaging of a gas-solid fluidized bed using FCC particles with evaporative liquid injection. Some aspects of the fundamental characteristics of the gas-solid flow with evaporative liquid injection,including real time and time averaged cross-sectional solids concentration distributions, the cross-sectional solids concentration fluctuations and the quasi-3D flow structures are studied. A two-region model and a direct image calculation are proposed to describe the dynamic behavior in both the bubble/void phase and the emulsion phase based on the tomographic images. Comparisons are made between the fundamental behaviors of the gas-solid flows with and without evaporative liquid injection for various gas velocities ranging from bubbling to turbulent fiuidization regimes. Significant differences are observed in the behavior of the gas-solid flow with the evaporative liquid injection compared to the fluidized bed without liquid injection.

  2. Viscous Potential Flow Analysis of Electroaerodynamic Instability of a Liquid Sheet Sprayed with an Air Stream

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Awasthi

    2013-01-01

    Full Text Available The instability of a thin sheet of viscous and dielectric liquid moving in the same direction as an air stream in the presence of a uniform horizontal electric field has been carried out using viscous potential flow theory. It is observed that aerodynamic-enhanced instability occurs if the Weber number is much less than a critical value related to the ratio of the air and liquid stream velocities, viscosity ratio of two fluids, the electric field, and the dielectric constant values. Liquid viscosity has stabilizing effect in the stability analysis, while air viscosity has destabilizing effect.

  3. STABILITY OF VORTEX STREET IN GAS-LIQUID TWO-PHASE FLOW

    Institute of Scientific and Technical Information of China (English)

    Li Yong-guang; Lin Zong-hu

    2003-01-01

    The stability of the Karmen vortex street in gas-liquid two-phase flow was studied experimentally and theoretically. The values of the parameter h/l characterizing the vortex street structure (I.e., the ratio of the vortex street width to the distance between two vortexes) for a stable vortex street in gas-liquid two-phase flow were obtained for the first time. The parameter h/l was proved to be a variable, not a constant as in single-phase flow. H/l is related to the upstream fluid void fraction. In gas-liquid two-phase fluid flow to form a steady vortex street is more difficult than in a single-phase fluid flow. Because in the unsteady vortex shedding the vortex shedding band frequency is broader than the one in the single phase fluid flow, so it is easier to induce the cross-cylinder resonance than in the single phase fluid flow, and this case should give rise to the attention of engineers.

  4. Mixed Model for Silt-Laden Solid-Liquid Two-Phase Flows

    Institute of Scientific and Technical Information of China (English)

    唐学林; 徐宇; 吴玉林

    2003-01-01

    The kinetic theory of molecular gases was used to derive the governing equations for dense solid-liquid two-phase flows from a microscopic flow characteristics viewpoint by multiplying the Boltzmann equation for each phase by property parameters and integrating over the velocity space. The particle collision term was derived from microscopic terms by comparison with dilute two-phase flow but with consideration of the collisions between particles for dense two-phase flow conditions and by assuming that the particle-phase velocity distribution obeys the Maxwell equations. Appropriate terms from the dilute two-phase governing equations were combined with the dense particle collision term to develop the governing equations for dense solid-liquid turbulent flows. The SIMPLEC algorithm and a staggered grid system were used to solve the discretized two-phase governing equations with a Reynolds averaged turbulence model. Dense solid-liquid turbulent two-phase flows were simulated for flow in a duct. The simulation results agree well with experimental data.

  5. Direct Measurement of Effective Magnetic Diffusivity in Turbulent Flow of Liquid Sodium

    CERN Document Server

    Frick, Peter; Denisov, Sergey; Stepanov, Rodion

    2010-01-01

    The first direct measurements of effective magnetic diffusivity in turbulent flow of electro-conductive fluids (the so-called beta-effect) under magnetic Reynolds number Rm >> 1 are reported. The measurements are performed in a nonstationary turbulent flow of liquid sodium, generated in a closed toroidal channel. The peak level of the Reynolds number reached Re \\approx 3 10^6, which corresponds to the magnetic Reynolds number Rm \\approx 30. The magnetic diffusivity of the liquid metal was determined by measuring the phase shift between the induced and the applied magnetic fields. The maximal deviation of magnetic diffusivity from its basic (laminar) value reaches about 50% .

  6. Direct measurement of effective magnetic diffusivity in turbulent flow of liquid sodium.

    Science.gov (United States)

    Frick, Peter; Noskov, Vitaliy; Denisov, Sergey; Stepanov, Rodion

    2010-10-29

    The first direct measurements of effective magnetic diffusivity in turbulent flow of electroconductive fluids (the so-called β effect) under the magnetic Reynolds number Rm≫1 are reported. The measurements are performed in a nonstationary turbulent flow of liquid sodium, generated in a closed toroidal channel. The peak level of the Reynolds number reached Re≈3×10(6), which corresponds to the magnetic Reynolds number Rm≈30. The magnetic diffusivity of the liquid metal was determined by measuring the phase shift between the induced and the applied magnetic fields. The maximal deviation of magnetic diffusivity from its laminar value reaches about 50%.

  7. On the flow of a non-Newtonian liquid induced by intestine-like contractions.

    Science.gov (United States)

    Phan-Thien, N; Low, H T

    1989-02-01

    This paper considers the flow of an inelastic liquid which is generated by contractions like those of the intestine. Unlike regular peristaltic motion, these contractions occur locally over a finite length and have a finite amplitude. We adopt a contraction model due to Macagno and Christensen and repeat their analysis for an inelastic liquid. Our analysis, which is based on a Boundary Element Method, indicates that the net flow rate depends very weakly on the power-law index. The pumping action is therefore similar to that of a positive displacement pump.

  8. Global well-posedness of the 2D nonhomogeneous incompressible nematic liquid crystal flows

    Science.gov (United States)

    Liu, Qiao; Liu, Shengquan; Tan, Wenke; Zhong, Xin

    2016-12-01

    This paper concerns the Cauchy problem of the two-dimensional (2D) nonhomogeneous incompressible nematic liquid crystal flows on the whole space R2 with vacuum as far field density. It is proved that the 2D nonhomogeneous incompressible nematic liquid crystal flows admit a unique global strong solution provided that the initial data density and the gradient of orientation decay not too slow at infinity, and the initial orientation satisfies a geometric condition (see (1.3)). In particular, the initial data can be arbitrarily large and the initial density may contain vacuum states and even have compact support. Furthermore, the large time behavior of the solution is also obtained.

  9. Direct numerical simulation of turbulent liquid metal flow entering a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Albets-Chico, X., E-mail: xalbets@ucy.ac.cy; Grigoriadis, D.G.E.; Votyakov, E.V.; Kassinos, S.

    2013-12-15

    Highlights: • Analysis of turbulence persistence of fully developed MHD pipe flow at Re{sub b} = 4000. • Turbulence decay of fully developed turbulence flow entering low, moderate and strong magnetic fields. • Analysis of the wall conductivity on the aforementioned phenomena. • Discovering and further analysis of flow instabilities of the flow entering a strong magnetic field. -- Abstract: This paper presents direct numerical simulations (DNS) of fully developed turbulent liquid-metal flow in a circular duct entering a magnetic field. The case of a magnetohydrodynamic flow leaving a strong magnetic field has been extensively studied experimentally and numerically owing to its similarity to typical flow configurations appearing in liquid metal blankets of nuclear fusion reactors. Although also relevant to the design of fusion reactor blankets, the flow entering the fringing field of a magnet remains unexplored because its high intricacy precludes any simplification of the governing equations. Indeed, the complexity of the magnetohydrodynamic–turbulence interaction can only be analysed by direct numerical simulations or experiments. With that purpose, this paper addresses the case of a fully developed turbulent flow (Re{sub τ} ≈ 520) entering low, intermediate and strong magnetic fields under electrically insulating and poorly conducting walls by means of three-dimensional direct numerical simulations. Purely hydrodynamic computations (without the effect of the magnetic field) reveal an excellent agreement against previous experimental and numerical results. Current MHD results provide a very detailed information of the turbulence decay and reveal new three-dimensional features related to liquid-metal flow entering strong increasing magnetic fields, such as flow instabilities due to the effect of the Lorentz forces within the fringing region at high Ha numbers.

  10. SIMULATION OF THE TWO PHASE FLOW OF DROPLET IMPINGEMENT ON LIQUID FILM BY THE LATTICE BOLTZMANN METHOD

    Institute of Scientific and Technical Information of China (English)

    GUO Jia-hong; WANG Xiao-yong

    2012-01-01

    A Lattice Boltzmann Method (LBM) with two-distribution functions is employed for simulating the two-phase flow induced by a liquid droplet impinging onto the film of the same liquid on solid surface.The model is suitable for solution of twophase flow problem at high density and viscosity ratios of liquid to vapor and phase transition between liquid and its vapor.The roles of the vapor flow,the density ratio of liquid to vapor and the surface tension of the droplet in the splashing formation are discussed.It is concluded that the vapour flow induced by the droplet fall and splash in the whole impinging process may affect remarkably the splash behaviour.For the case of large density ratio of liquid to vapor a crown may engender after the droplet collides with the film.However,for the case of small density ratio of liquid to vapor a “bell” like splash may be observed.

  11. Research on Gas-liquid Flow Rate Optimization in Foam Drilling

    Science.gov (United States)

    Gao, B. K.; Sun, D. G.; Jia, Z. G.; Huang, Z. Q.

    2010-03-01

    With the advantages of less gas consumption, higher carrying rocks ability, lower leakage and higher penetration rate, foam drilling is widely used today in petroleum industry. In the process of foam underbalanced drilling, the mixture of gas, liquid and cuttings flows upwards through the annular, so it is a typical gas-liquid-solid multi-phase flow. In order to protect the reservoir and avoid borehole wall collapsing during foam drilling, it is crucial to ensure that the bottom hole pressure is lower than the formation pressure and higher than the formation collapse pressure, and in the mean time, foam drilling fluid in the whole wellbore should be in the best foam quality stage in order to have sufficient capacity to carry cuttings. In this paper, main relations between bottom hole pressure and gas-liquid injecting rate are analyzed with the underbalanced multiphase flow models. And in order to obtain precise flow pattern and flow pressure, the whole well bore is spatial meshed and iterative method is used. So, a convenient safety window expressed by gas-liquid injecting rate is obtained instead of that by bottom hole pressure. Finally, a foam drilling example from a block in Yemen is presented; the drilling results show that this method is reliable and practical.

  12. Numerical Simulation of the Flow Field in Circumferential Grooved Liquid Seals

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    2013-01-01

    Full Text Available Circumferential grooved liquid seals are utilized inside turbomachinery to provide noncontacting control of internal incompressible fluid leakage. Accurate prediction of the flow field is fundamental in producing robust and efficient designs. To validate the capabilities of the computational fluid dynamics FLUENT for incompressible fluid seal flow, comparisons of velocity parameters are made to the published experimental results and other CFD code for a circumferential grooved liquid seal. This work employs a pressure-based CFD code FLUENT to calculate the flow field in the seal, using four different turbulence models respectively. The velocity contours are compared with experimental values. It shows good overall agreement of the axial, radial, and azimuthal velocities in the through-flow jet, shear layer, and recirculation zone. Quantitative comparisons of velocity profiles at the center of the groove are made to experiment. This study verifies the prediction accuracy of three turbulence models. Various structures were considered to obtain a better understanding of the circumferential grooved liquid flow characteristics. The best groove structure to control leakage was also found within the limited designed seal. This study will provide a useful reference for designing the circumferential grooved liquid seal.

  13. Liquid-gas phase behavior of polydisperse dipolar hard-sphere fluid: Extended thermodynamic perturbation theory for central force associating potential

    Directory of Open Access Journals (Sweden)

    Yu.V. Kalyuzhnyi

    2012-06-01

    Full Text Available The liquid-gas phase diagram for polydisperse dipolar hard-sphere fluid with polydispersity in the hard-sphere size and dipolar moment is calculated using extension of the recently proposed thermodynamic perturbation theory for central force (TPT-CF associating potential. To establish the connection with the phase behavior of ferrocolloidal dispersions it is assumed that the dipole moment is proportional to the cube of the hard-sphere diameter. We present and discuss the full phase diagram, which includes cloud and shadow curves, binodals and distribution functions of the coexisting daughter phases at different degrees of the system polydispersity. In all cases studied polydispersity increases the region of the phase instability and shifts the critical point to the higher values of the temperature and density. The larger size particles always fractionate to the liquid phase and the smaller size particles tend to move to the gas phase. At relatively high values of the system polydispersity three-phase coexistence is observed.

  14. ENERGY COMPONENTS OF GAS-LIQUID FLOW IN AEROTANK

    Directory of Open Access Journals (Sweden)

    Frolova Anna Olegovna

    2013-09-01

    Full Text Available In the article the main processes of hydrodynamic regime of aeration tank are observed: the formation and ascent of air bubbles during aeration and motion of the water-sludge mixture. The formulas for determining the potential speed of an air bubble during aeration and energy of the water-sludge stream motion are presented. The investigation of interaction mechanism of purified waste water and air bubbles in the process of aeration in relation to the flow dynamics is poorly explored and challenging. Interaction of energetic components of the bubbles flow during aeration and uniform stream motion in the aerotank is the part of mass transfer and diffusion. The increase in total energy of the system by means of summing and raising potentials of the stream and bubbles speed can lead to increasing the purification effect, that means speeding up the diffusion processes.

  15. Coupling compositional liquid gas Darcy and free gas flows at porous and free-flow domains interface

    Science.gov (United States)

    Masson, R.; Trenty, L.; Zhang, Y.

    2016-09-01

    This paper proposes an efficient splitting algorithm to solve coupled liquid gas Darcy and free gas flows at the interface between a porous medium and a free-flow domain. This model is compared to the reduced model introduced in [6] using a 1D approximation of the gas free flow. For that purpose, the gas molar fraction diffusive flux at the interface in the free-flow domain is approximated by a two point flux approximation based on a low-frequency diagonal approximation of a Steklov-Poincaré type operator. The splitting algorithm and the reduced model are applied in particular to the modelling of the mass exchanges at the interface between the storage and the ventilation galleries in radioactive waste deposits.

  16. Coupling compositional liquid gas Darcy and free gas flows at porous and free-flow domains interface

    Energy Technology Data Exchange (ETDEWEB)

    Masson, R., E-mail: roland.masson@unice.fr [LJAD, University Nice Sophia Antipolis, CNRS UMR 7351 (France); Team COFFEE INRIA Sophia Antipolis Méditerranée (France); Trenty, L., E-mail: laurent.trenty@andra.fr [Andra, Chatenay Malabry (France); Zhang, Y., E-mail: yumeng.zhang@unice.fr [LJAD, University Nice Sophia Antipolis, CNRS UMR 7351 (France); Team COFFEE INRIA Sophia Antipolis Méditerranée (France)

    2016-09-15

    This paper proposes an efficient splitting algorithm to solve coupled liquid gas Darcy and free gas flows at the interface between a porous medium and a free-flow domain. This model is compared to the reduced model introduced in [6] using a 1D approximation of the gas free flow. For that purpose, the gas molar fraction diffusive flux at the interface in the free-flow domain is approximated by a two point flux approximation based on a low-frequency diagonal approximation of a Steklov–Poincaré type operator. The splitting algorithm and the reduced model are applied in particular to the modelling of the mass exchanges at the interface between the storage and the ventilation galleries in radioactive waste deposits.

  17. Perturbation theory of structure in classical liquid mixtures: Application to metallic systems near phase separation. Ph.D. Thesis

    Science.gov (United States)

    Henderson, R. L.

    1974-01-01

    The partial structure factors of classical simple liquid mixtures near phase separation are dicussed. The theory is developed for particles interacting through pair potentials, and is thus appropriate both to insulating fluids, and also to metallic systems if these may be described by an effective ion-ion pair interaction. The motivation arose from consideration of metallic liquid mixtures, in which resistive anomalies have been observed near phase separation. A mean field theory correction appropriate to 3 pair potential for the effects of correlated motions in the reference fluid is studied. The work is cast in terms of functions which are closely related to the direct correlation functions of Ornstein and Zernike. The results are qualitatively in accord with physical expectations. Quantitative agreement with experiment seems to turn on the selection of the hard core reference potential in terms of the metallic effective pair potential. It is suggested that the present effective pair potentials are perhaps not properly used to calculate the metallic structure factors at long wavelength.

  18. Magnetic resonance imaging of flow and mass transfer in electrohydrodynamic liquid bridges

    CERN Document Server

    Wexler, Adam D; Fuchs, Elmar C; Woisetschläger, Jakob; Reiter, Gert; Fuchsjäger, Michael; Reiter, Ursula

    2016-01-01

    Here we report on the feasibility and use of magnetic resonance imaging based methods to the study of electrohydrodynamic (EHD) liquid bridges. High speed tomographic recordings through the longitudinal axis of water bridges were used to characterize the mass transfer dynamics, mixing, and flow structure. By filling one beaker with heavy water and the other with light water it was possible to track the spread of the proton signal throughout the total liquid volume. The mixing kinetics are different depending on where the light nuclei are located and proceeds faster when the anolyte is light water. Distinct flow and mixing regions are identified in the fluid volumes and it is shown that the EHD flow at the electrodes can be counteracted by the density difference between water isotopes. MR phase contrast imaging reveals that within the bridge section two separate counter propagating flows pass one above the other in the bridge.

  19. CFD Simulation of Liquid-solid Multiphase Flow in Mud Mixer

    Directory of Open Access Journals (Sweden)

    T.Y. Kim

    2016-08-01

    Full Text Available In the present study, a computational fluid dynamics (CFD simulation was performed to analyze the mixing phenomena associated with multi-phase flow in a mud mixing system. For the validation of CFD simulation, firstly a liquid-solid multiphase flow inside horizontal pipe was simulated and compared with the experiments and other numerical simulations. And then, the multiphase flow simulation was carried out for the mud mixer in the drilling handling system in order to understand mixing phenomena and predict the mixing efficiency. For the modeling and simulation, a commercial software, STAR-CCM+, based on a finite-volume method (FVM was adopted. The simulation results for liquid-solid flow inside the pipe shows a good agreement with the experimental data. With the same multiphase model, the simulation for mud mixer is performed under the generalized boundary condition and then pressure drop through the mud mixer will be discussed.

  20. Rheological measurements of liquid-solid flows with inertia

    Science.gov (United States)

    Linares, Esperanza; Hunt, Melany; Zenit, Roberto

    2015-11-01

    This talk presents experimental measurements of effective viscosity for neutrally-buoyant suspensions in which the Reynolds numbers based on particle diameter varies from 1 to 1000 and for solid fractions from 10% to 50%. The measurements are conducted in a rough-walled, coaxial-cylinder rheometer. For Reynolds numbers from 1 to 100 and solid fractions less than 30%, the effective viscosities increase with Reynolds number and are comparable with recent numerical simulations found in the literature. For higher solid fractions, the effective viscosity shows shear thinning at the lowest shear rates, followed by thickening at higher shear rates. Over this range of Reynolds numbers for a pure fluid, the flow is laminar. At higher Reynolds numbers for a pure fluid, the flow transitions to turbulence. When particles are added under these flow conditions (particle Reynolds number greater than 100), the effective viscosity continues to increase with Reynolds number but with a greater magnitude. At the highest solid fractions, the effective viscosity is independent of shear rate.

  1. Effect of Static Deformation on Basic Flow Patterns in Thermocapillary-Driven Free Liquid Film

    Science.gov (United States)

    Fei, Linhao; Ikebukuro, Koichi; Katsuta, Takeshi; Kaneko, Toshihiro; Ueno, Ichiro; Pettit, Donald R.

    2016-11-01

    A series of terrestrial, parabolic-flight and on-orbit experiments on thermocapillary-driven flows in free liquid films are carried out. We focus on the basic flow patterns induced in the film formed in a rectangular hole by varying the film volume in order to make a comparison with the results of the fluid physics experiments under microgravity conditions conducted by one of the authors, Pettit, on the International Space Station. The free liquid film is formed in a rectangular hole of O(0.1 mm) in thickness under a designated temperature difference between the end walls. The temperature dependence of the surface tension results in a non-uniform surface tension distribution over the free surfaces. A liquid generally has a negative temperature coefficient of surface tension; i.e., the fluid over a free surface is driven from a higher-temperature region to a lower-temperature region. In the case of a thin free liquid film with two free surfaces, however, an unusual flow pattern is realized. That is, the fluid seems to be driven toward the heated region from a colder region. In order to understand the physical mechanism of this behavior in the free liquid film, a series of on-orbit and ground experiments were conducted. We indicate several flow patterns in the film and corresponding film profiles as well as the surface temperature distribution. We also try to illustrate the cross-sectional flow structures in the thin free liquid film with two free surfaces.

  2. Effect of Static Deformation on Basic Flow Patterns in Thermocapillary-Driven Free Liquid Film

    Science.gov (United States)

    Fei, Linhao; Ikebukuro, Koichi; Katsuta, Takeshi; Kaneko, Toshihiro; Ueno, Ichiro; Pettit, Donald R.

    2017-02-01

    A series of terrestrial, parabolic-flight and on-orbit experiments on thermocapillary-driven flows in free liquid films are carried out. We focus on the basic flow patterns induced in the film formed in a rectangular hole by varying the film volume in order to make a comparison with the results of the fluid physics experiments under microgravity conditions conducted by one of the authors, Pettit, on the International Space Station. The free liquid film is formed in a rectangular hole of O(0.1 mm) in thickness under a designated temperature difference between the end walls. The temperature dependence of the surface tension results in a non-uniform surface tension distribution over the free surfaces. A liquid generally has a negative temperature coefficient of surface tension; i.e., the fluid over a free surface is driven from a higher-temperature region to a lower-temperature region. In the case of a thin free liquid film with two free surfaces, however, an unusual flow pattern is realized. That is, the fluid seems to be driven toward the heated region from a colder region. In order to understand the physical mechanism of this behavior in the free liquid film, a series of on-orbit and ground experiments were conducted. We indicate several flow patterns in the film and corresponding film profiles as well as the surface temperature distribution. We also try to illustrate the cross-sectional flow structures in the thin free liquid film with two free surfaces.

  3. Analysis of liquid steel flow in a multi-strand tundish using numerical methods

    Directory of Open Access Journals (Sweden)

    P. Warzecha

    2015-07-01

    Full Text Available The article presents the results of liquid steel flow and mixing in tundish when applying turbulence inhibitor to modernize the tundish working zone. The flow of six-strand continuous casting tundish of a trough-type was investigated with numerical modeling. For turbulence modeling, the Reynolds-Averaged Navier-Stokes (RANS equation and the Large Eddy Simulation (LES methods have been used. Numerical simulations are carried out with the finitevolume commercial code AnsysFluent.

  4. Flow Rates in Liquid Chromatography, Gas Chromatography and Supercritical Fluid Chromatography: A Tool for Optimization

    OpenAIRE

    Joris Meurs

    2016-01-01

    This paper aimed to develop a standalone application for optimizing flow rates in liquid chromatography (LC), gas chromatography (GC) and supercritical fluid chromatography (SFC). To do so, Van Deemter’s equation, Knox’ equation and Golay’s equation were implemented in a MATLAB script and subsequently a graphical user interface (GUI) was created. The application will show the optimal flow rate or linear velocity and the corresponding plate height for the set input parameters. Furthermore, a p...

  5. Free-surface flow of liquid oxygen under non-uniform magnetic field

    Science.gov (United States)

    Bao, Shi-Ran; Zhang, Rui-Ping; Wang, Kai; Zhi, Xiao-Qin; Qiu, Li-Min

    2017-01-01

    The paramagnetic property of oxygen makes it possible to control the two-phase flow at cryogenic temperatures by non-uniform magnetic fields. The free-surface flow of vapor-liquid oxygen in a rectangular channel was numerically studied using the two-dimensional phase field method. The effects of magnetic flux density and inlet velocity on the interface deformation, flow pattern and pressure drop were systematically revealed. The liquid level near the high-magnetic channel center was lifted upward by the inhomogeneous magnetic field. The interface height difference increased almost linearly with the magnetic force. For all inlet velocities, pressure drop under 0.25 T was reduced by 7-9% due to the expanded local cross-sectional area, compared to that without magnetic field. This work demonstrates the effectiveness of employing non-uniform magnetic field to control the free-surface flow of liquid oxygen. This non-contact method may be used for promoting the interface renewal, reducing the flow resistance, and improving the flow uniformity in the cryogenic distillation column, which may provide a potential for enhancing the operating efficiency of cryogenic air separation.

  6. Computational study of liquid-gas cross-flow within structured packing cells

    Science.gov (United States)

    Lavalle, Gianluca; Lucquiaud, Mathieu; Valluri, Prashant

    2016-11-01

    Absorption columns used in the carbon capture processes and filled with structured packings are crucial to foster the exchanges and the transfers between the absorber liquid and the flue gas. However, flow reversal can occur under special flow conditions, resulting in a dramatic drop of the technological performances. We investigate numerically the liquid-gas pattern within a cross-flow packing cell. The cell is a complex geometry with two connected channels, where the two phases flow co- or counter-currently. We show that an increase of both the gas speed and the liquid load leads to an increase of the pressure drop. Particular focus is also given to the analysis of flow repartition and flooding delay. We reveal that tilting the unit cell helps to delay the flooding and extends the operational capability. The pressure drop of the cross-flow unit cell is also compared to the Mellapak packing which is widely used in carbon capture applications. Finally, we support this study by performing numerical simulations on simpler geometries by means of a low-dimensional film-gas model, in order to investigate the two-phase dynamics and predict the flooding onset with a low computational cost. The authors gratefully acknowledge EPSRC Grant No. EP/M001482/1.

  7. A Calibration of the Preston Tube in Liquid Flow Systems.

    Science.gov (United States)

    1979-12-01

    connected to a 40 in. mercury manometer bank. Two total pressure probe installations are available, with one located at the extreme outflow end of the pipe...versatile and assured both good probe alignment to the flow and negligible probe interference effects. The probe was connected to a single 30 in. mercury ... manometer which gave readings accurate to .05 in. Hg as did the 40 in. manometer bank. 17 *r4 $4 P., 0 ~r54 so 18 Additional features of the oil pipe

  8. The flow of a thin liquid film on a stationary and rotating disk. II - Theoretical prediction

    Science.gov (United States)

    Rahman, M. M.; Faghri, A.; Hankey, W. L.

    1990-01-01

    The existing theoretical models are improved and a systematic procedure to compute the free surface flow of a thin liquid film is suggested. The solutions for axisymmetric radial flow on a stationary horizontal disk and for the disk rotating around its axis are presented. The theoretical predictions are compared with the experimental data presented in Part I of this report. The analysis shows results for both supercritical and subcritical flows and the flow structure in the vicinity of a hydraulic jump which isolates these two flow types. The detailed flow structure in a hydraulic jump was computed and shown to contain regions of separation including a 'surface roller'. The effects of surface tension are found to be important near the outer edge of the disk where the fluid experiences a free fall. At other locations, the surface tension is negligible. For a rotating disk, the frictional resistance in the angular direction is found to be as important as that in the radial direction.

  9. Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring

    Science.gov (United States)

    Zhang, Rui; Roberts, Tyler; Aranson, Igor S.; de Pablo, Juan J.

    2016-02-01

    Liquid crystals (LCs) display many of the flow characteristics of liquids but exhibit long range orientational order. In the nematic phase, the coupling of structure and flow leads to complex hydrodynamic effects that remain to be fully elucidated. Here, we consider the hydrodynamics of a nematic LC in a hybrid cell, where opposite walls have conflicting anchoring boundary conditions, and we employ a 3D lattice Boltzmann method to simulate the time-dependent flow patterns that can arise. Due to the symmetry breaking of the director field within the hybrid cell, we observe that at low to moderate shear rates, the volumetric flow rate under Couette and Poiseuille flows is different for opposite flow directions. At high shear rates, the director field may undergo a topological transition which leads to symmetric flows. By applying an oscillatory pressure gradient to the channel, a net volumetric flow rate is found to depend on the magnitude and frequency of the oscillation, as well as the anchoring strength. Taken together, our findings suggest several intriguing new applications for LCs in microfluidic devices.

  10. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-12-14

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were {approx} 4 x 10{sup -7} cm{sup 2}/s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10{sup -5} to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form.

  11. Perturbing PLA

    CERN Document Server

    Kozma, Gady

    2012-01-01

    We proved earlier that every measurable function on the circle, after a uniformly small perturbation, can be written as a power series (i.e. a series of exponentials with positive frequencies), which converges almost everywhere. Here we show that this result is basically sharp: the perturbation cannot be made smooth or even H\\"older. We discuss also a similar problem for perturbations with lacunary spectrum.

  12. Impact of Organic-Liquid Distribution and Flow-Field Heterogeneity on Reductions in Mass Flux

    Energy Technology Data Exchange (ETDEWEB)

    Difilippo, Erica L.; Carroll, Kenneth C.; Brusseau, Mark L.

    2010-06-07

    A series of flow-cell experiments was conducted to investigate the impact of organic-liquid distribution and flow-field heterogeneity on the relationship between source-zone mass removal and reductions in contaminant mass flux from the source zone. Changes in source-zone architecture were quantified using image analysis, allowing explicit examination of their impact on the mass-flux-reduction/mass-removal behavior. The results showed that there was minimal reduction in mass flux until a large fraction of mass was removed for systems wherein organic liquid was present solely as residual saturation in regions that were hydraulically accessible. Conversely, significant reductions in mass flux occurred with relatively minimal mass removal for systems wherein organic liquid was present at both residual and higher saturations. The latter systems exhibited multi-step mass-flux-reduction/mass-removal behavior, and characterization of the organic-liquid saturation distribution throughout flushing allowed identification of the cause of the nonideal behavior. The age of the source zone (time from initial emplacement to time of initial characterization) significantly influenced the observed mass-flux-reduction/mass-removal behavior. The results of this study illustrate the impact of both organic-liquid distribution and flow-field heterogeneity on mass-removal and mass-flux processes.

  13. Dynamics of liquid bridges inside microchannels subject to pure oscillatory flows

    Science.gov (United States)

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2014-11-01

    We report on 2D simulations of liquid bridges' dynamics in microchannels of uniform wettability and subject to external oscillatory flows. The flow equations were solved using the Cahn-Hilliard diffuse-interface formulation and the finite element method with unstructured grid. It was found that regardless of the wettability properties of the microchannel walls, there is a critical frequency above which the bridge shows perpetual periodic oscillatory motion. Below that critical frequency, the liquid bridge ruptures when the channel walls are philic and detaches from the surface when they are phobic. This critical frequency depends on the viscosity ratio, oscillation amplitude and geometric aspect ratio of the bridge. It was also found that the flow velocity is out of phase with the footprint/throat lengths and that the latter two show a phase difference. These differences were explained in terms of the motion of the two contact lines on the substrates and the deformation of the fluid-fluid interfaces. To characterize the behavior of the liquid bridge, two quantitative parameters; the liquid bridge-solid interfacial length and the length of the throat of the liquid bridge were used. Variations of the interfacial morphology development of the bridge were analyzed to understand the bridge response.

  14. An investigation of the influence of acoustic waves on the liquid flow through a porous material.

    Science.gov (United States)

    Poesio, Pietro; Ooms, Gijs; Barake, Sander; van der Bas, Fred

    2002-05-01

    An experimental and theoretical investigation has been made of the influence of high-frequency acoustic waves on the flow of a liquid through a porous material. The experiments have been performed on Berea sandstone cores. Two acoustic horns were used with frequencies of 20 and 40 kHz, and with maximum power output of 2 and 0.7 kW, respectively. Also, a temperature measurement of the flowing liquid inside the core was made. A high external pressure was applied in order to avoid cavitation. The acoustic waves were found to produce a significant effect on the pressure gradient at constant liquid flow rate through the core samples. During the application of acoustic waves the pressure gradient inside the core decreases. This effect turned out to be due to the decrease of the liquid viscosity caused by an increase in liquid temperature as a result of the acoustic energy dissipation inside the porous material. Also, a theoretical model has been developed to calculate the dissipation effect on the viscosity and on the pressure gradient. The model predictions are in reasonable agreement with the experimental data.

  15. Liquid-liquid extraction procedure exploiting multicommutation in flow system for the determination of molybdenum in plants

    Energy Technology Data Exchange (ETDEWEB)

    Comitre, Ana Lucia D.; Reis, Boaventura F

    2003-03-10

    A liquid-liquid extraction flow analysis procedure for the spectrophotometric determination of molybdenum in plants at {mu}g l{sup -1} level is described. The flow network comprised a set of solenoid valves assembled to implement the multicommutation approach under microcomputer control. Radiation source (LED, 475 nm), detector (photodiode) and separation chamber were nested together with the flow cell comprising a compact unit. The consumption of reagents (potassium thiocyanate and stannous chloride) and also extracting solvent (isoamyl alcohol) were optimized to 32 mg and 200 {mu}l per determination, respectively. Accuracy was assessed by comparing results with those obtained with ICP-OES and no significant difference at 95% confidence level was observed. Other favorable characteristics such as a linear response ranging from 25 to 150 {mu}g l{sup -1} molybdenum (r=0.999); detection limit of 4.6 {mu}g l{sup -1} sample throughput of 25 determinations per hour and relative standard deviation of 2.5% (n=10) were also achieved.

  16. Compatibility tests of steels in flowing liquid lead-bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, F.; Benamati, G. E-mail: benamati@brasimone.enea.it; Fazio, C.; Rusanov, A

    2001-06-01

    The behaviour of steels exposed to flowing Pb-55Bi was evaluated. The materials tested are the two austenitic steels AISI 316L and 1.4970, and the six martensitic steels Optifer IVc, T91, Batman 27, Batman 28, EP823 and EM10 which were exposed to flowing Pb-55Bi for 1000, 2000 and 3000 h and at two temperatures (573 and 743 K). The corrosion tests were conducted in the non-isothermal loop of IPPE-Obninsk under a controlled oxygen level (10{sup -6} wt%). The compatibility study showed that at a lower temperature, a very thin oxide layer (<1 {mu}m) was formed on the steels. At higher temperature, austenitic steels also exhibited a thin oxide layer sufficient to prevent their dissolution in the melt. A thicker oxide, which grew according to a parabolic law, was observed on the surface of the martensitic steels. The oxidation resistance behaviour of the martensitic steels was correlated with their alloying elements.

  17. An Investigation on the Void Fraction for upward Gas-Liquid Slug Flow in Vertical Pipe

    Institute of Scientific and Technical Information of China (English)

    夏国栋; 周芳德; 胡明胜

    2001-01-01

    In order to investigate the influence of the entrance effect on the spatial distribution of phases, the experiments on gas-liquid two-phase slug flow in a vertical pipe of 0.03m ID were carried out by using optical probes and an EKTAPRO 1000 high speed motion analyzer. It demonstrates that the radial profile of slug flow void fraction is parabolic. Influenced by the falling liquid film, the radial profile curve of liquid slug void fraction in the wake region is also parabolic. Since fully turbulent velocity distribution is built up in the developed region,the void fraction profile in this region is the saddle type. At given superficial liquid velocity, the liquid slug void fraction increases with gas velocity. The radial profiles of liquid slug void fraction at different axial locations are all saddle curves, but void fraction is obviously high around the centerline in the entrance region. The nearer the measuring station is from the entrance, the farther the peak location is away from the wall.

  18. Burnout and distribution of liquid between the flow core and wall films in narrow slot channels

    Science.gov (United States)

    Boltenko, E. A.; Shpakovskii, A. A.

    2010-03-01

    Previous works on studying distribution of liquid between the flow core and wall films in narrow slot channels are briefly reviewed. Interrelation between mass transfer processes and burnout is shown. A procedure for calculating burnout on convex and concave heat-transfer surfaces in narrow slot channels is presented.

  19. SELF-MIXING LASER-DOPPLER VELOCIMETRY OF LIQUID FLOW AND OF BLOOD PERFUSION IN TISSUE

    NARCIS (Netherlands)

    DEMUL, FFM; KOELINK, MH; WEIJERS, AL; GREVE, J; AARNOUDSE, JG; GRAAFF, R; DASSEL, ACM

    1992-01-01

    The velocimetry method of self-mixing, i.e., the feedback of Doppler-scattered light into the laser cavity, is used for the measurement of liquid flow and of blood perfusion in human tissue. The method is eIucidated by the registration of the blood perfusion of a finger under repeated occlusion of t

  20. Periodic orientational motions of rigid liquid-crystalline polymers in shear flow

    NARCIS (Netherlands)

    Tao, Y.G.; den Otter, Wouter K.; Briels, Willem J.

    2006-01-01

    The collective periodic motions of liquid-crystalline polymers in a nematic phase in shear flow have, for the first time, been simulated at the particle level by Brownian dynamics simulations. A wide range of parameter space has been scanned by varying the aspect ratio L/D between 10 and 60 at three

  1. Miniaturized cavity ring-down detection in a liquid flow cell

    NARCIS (Netherlands)

    Bahnev, B.; Sneppen, van der L.; Wiskerke, A.E.; Ariese, F.; Gooijer, C.; Ubachs, W.M.G.

    2005-01-01

    A novel method for applying cavity ring-down spectroscopy in the liquid phase, compatible with LC analyses, is presented. The core of the setup is a home-built cavity ring-down flow cell (cell volume 12 muL) that is constructed using a silicon rubber spacer, which is clamped leak-tight between two

  2. Liquid-gas-solid flows with lattice Boltzmann: Simulation of floating bodies

    CERN Document Server

    Bogner, Simon

    2012-01-01

    This paper presents a model for the simulation of liquid-gas-solid flows by means of the lattice Boltzmann method. The approach is built upon previous works for the simulation of liquid-solid particle suspensions on the one hand, and on a liquid-gas free surface model on the other. We show how the two approaches can be unified by a novel set of dynamic cell conversion rules. For evaluation, we concentrate on the rotational stability of non-spherical rigid bodies floating on a plane water surface - a classical hydrostatic problem known from naval architecture. We show the consistency of our method in this kind of flows and obtain convergence towards the ideal solution for the measured heeling stability of a floating box.

  3. Self-Propulsion of Liquid Marbles: Leidenfrost-Like Levitation Driven by the Marangoni Flow

    CERN Document Server

    Bormashenko, Edward; Grynyov, Roman; Aharoni, Hadas; Whyman, Gene; Binks, Bernard P

    2015-01-01

    Self-propulsion of liquid marbles filled with aqueous alcohol solutions and placed on a water surface is reported. The characteristic of velocity of the marbles is about 0.1 m/s. The phenomenon of self-propulsion is related to the Marangoni solutocapillary flow caused by the condensation of alcohol, evaporated from the liquid marble, on a water surface. The Marangoni flow in turn enhances the evaporation of alcohol from marbles. Addition of alcohol to the water supporting the marbles suppresses the self-propulsion. The propulsion of liquid marbles is mainly stopped by water drag. The velocity of the center of mass of marbles grows with the increase of the concentration of alcohol in a marble. The velocity of marbles self-propulsion is independent on their volume.

  4. Interfacial-tension-force model for the wavy stratified liquid-liquid flow pattern transition: The usage of two different approaches

    Science.gov (United States)

    de Castro, Marcelo Souza; Rodriguez, Oscar Mauricio Hernandez

    2016-06-01

    The study of the hydrodynamic stability of flow patterns is important in the design of equipment and pipelines for multiphase flows. The maintenance of a particular flow pattern becomes important in many applications, e.g., stratified flow pattern in heavy oil production avoiding the formation of emulsions because of the separation of phases and annular flow pattern in heat exchangers which increases the heat transfer coefficient. Flow maps are drawn to orientate engineers which flow pattern is present in a pipeline, for example. The ways how these flow maps are drawn have changed from totally experimental work, to phenomenological models, and then to stability analysis theories. In this work an experimental liquid-liquid flow map, with water and viscous oil as work fluids, drawn via subjective approach with high speed camera was used to compare to approaches of the same theory: the interfacial-tension-force model. This theory was used to drawn the wavy stratified flow pattern transition boundary. This paper presents a comparison between the two approaches of the interfacial-tension-force model for transition boundaries of liquid-liquid flow patterns: (i) solving the wave equation for the wave speed and using average values for wave number and wave speed; and (ii) solving the same equation for the wave number and then using a correlation for the wave speed. The results show that the second approach presents better results.

  5. Exploitation of pulsed flows for on-line dispersive liquid-liquid microextraction: Spectrophotometric determination of formaldehyde in milk.

    Science.gov (United States)

    Nascimento, Carina F; Brasil, Marcos A S; Costa, Susana P F; Pinto, Paula C A G; Saraiva, Maria Lúcia M F S; Rocha, Fábio R P

    2015-11-01

    Formaldehyde is often added to foods as a preservative, but it is highly toxic to humans, having been identified as a carcinogenic substance. It has also been used for the adulteration of milk in order to diminish the bacteria count and increase the shelf life of the product. Herein, we present a green dispersive liquid-liquid microextraction procedure in a flow-batch system for the determination of formaldehyde in milk. Pulsed flows were exploited for the first time to improve the dispersion of the extractant in the aqueous phase. The Hantzsch reaction was used for the derivatization of formaldehyde and the product was extracted with the ionic liquid (IL) trihexyltetradecylphosphonium chloride with methanol as the disperser. The flow-batch chamber was made of stainless steel with the facility for resistive heating to speed up the derivatization reaction. Spectrophotometric measurements were directly carried out in the organic phase using an optical fiber spectrophotometer. The limit of detection and coefficient of variation were 100 μg L(-1) and 3.1% (n=10), respectively, with a linear response from 0.5 to 5.0 mg L(-1), described by the equation A=0.088+0.116CF (mg L(-1)) in which A is absorbance and CF is formaldehyde concentration in mg L(-1). The estimated recoveries of formaldehyde from spiked milk samples ranged from 91% to 106% and the slopes of the analytical curves obtained with reference solutions in water or milk were in agreement, thus indicating the absence of matrix effects. Accuracy was demonstrated by the agreement of the results with those achieved by the reference fluorimetric procedure at the 95% confidence level. The proposed procedure allows for 10 extractions per hour, with minimized reagent consumption (120 μL of IL and 3.5 μL acetylacetone) and generation of only 6.7 mL waste per determination, which contribute to the eco-friendliness of the procedure.

  6. Hypergeometric steady solution of hydromagnetic nano liquid film flow over an unsteady stretching sheet

    Science.gov (United States)

    Metri, Prashant G.; Narayana, Mahesha; Silvestrov, Sergei

    2017-01-01

    In this paper, we examine the hydromagnetic boundary layer flow and heat transfer characteristics of a laminar nanoliquid film over an unsteady stretching sheet is presented. The highly nonlinear partial differential equations governing flow and heat transport are simplified using similarity transformation. The analytical solutions of the resulting ODEs are obtained for some special case of nano liquid film using hypergeometric power series functions, and from which the analytical solutions of the original problem are presented. The influence of pertinent parameters such as the magnetic parameter, the solid volume fraction of nanoparticles and the type of nanofluid on the flow, heat transfer, Nusselt number and skin friction coefficient is discussed analytically.

  7. Transport of magnetic field by a turbulent flow of liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Volk, R.; Odier, Ph.; Pinton, J.P. [Ecole Normale Sup rieure de Lyon, Lab. de Physique, CNRS UMR 5672, 69 (France); Ravelet, F.; Monchaux, R.; Chiffaudel, A.; Daviaud, F. [CEA Saclay, Service de Physique de l' Etat Condens, Dir. des Sciences de la Mati re, CNRS URA 2464, 91 - Gif-sur-Yvette (France); Berhanu, M.; Chi, A.; Fauve, S.; Mordant, I.N.; Petrelis, F. [Ecole Normale Sup rieure, Lab. de Physique Statistique, CNRS UMR 8550, 75 - Paris (France)

    2006-07-01

    We study the effect of a turbulent flow of liquid sodium generated in the von Karman geometry, on the localized field of a magnet placed close to the frontier of the flow. We observe that the field can be transported by the flow on distances larger than its integral length scale. In the most turbulent configurations, the mean value of the induced field at large distance vanishes. However, the root-mean-square (rms) value of the fluctuations increases linearly with the magnetic Reynolds number. The induced field is strongly intermittent. (authors)

  8. Numerical Simulation of Gas-Liquid-Solid Three-Phase Flow in Deep Wells

    Directory of Open Access Journals (Sweden)

    Jianyu Xie

    2013-01-01

    Full Text Available A gas-liquid-solid flow model which considers the effect of the cuttings on the pressure drop is established for the annulus flow in the deep wells in this paper, based on which a numerical code is developed to calculate the thermal and flow quantities such as temperature and pressure distributions. The model is validated by field data, and its performance is compared with several commercial software. The effects of some important parameters, such as well depth, gas kick, cuttings, and drilling fluid properties, on the temperature and pressure distributions are studied.

  9. Numerical Simulation of 3D Solid-Liquid Turbulent Flow in a Low Specific Speed Centrifugal Pump: Flow Field Analysis

    Directory of Open Access Journals (Sweden)

    Baocheng Shi

    2014-06-01

    Full Text Available For numerically simulating 3D solid-liquid turbulent flow in low specific speed centrifugal pumps, the iteration convergence problem caused by complex internal structure and high rotational speed of pump is always a problem for numeral simulation researchers. To solve this problem, the combination of three measures of dynamic underrelaxation factor adjustment, step method, and rotational velocity control means according to residual curves trends of operating parameters was used to improve the numerical convergence. Numeral simulation of 3D turbulent flow in a low specific speed solid-liquid centrifugal pump was performed, and the results showed that the improved solution strategy is greatly helpful to the numerical convergence. Moreover, the 3D turbulent flow fields in pumps have been simulated for the bottom ash-particles with the volume fraction of 10%, 20%, and 30% at the same particle diameter of 0.1 mm. The two-phase calculation results are compared with those of single-phase clean water flow. The calculated results gave the main region of the abrasion of the impeller and volute casing and improve the hydraulic design of the impeller in order to decrease the abrasion and increase the service life of the pump.

  10. Development of a liquid-junction/low-flow interface for phosphate buffer capillary electrophoresis mass spectrometry.

    Science.gov (United States)

    Li, Fu-An; Huang, Ju-Li; Shen, Shang-Yu; Wang, Che-Wei; Her, Guor-Rong

    2009-04-01

    To alleviate ion suppression from phosphate buffer and to preserve separation integrity, a new capillary electrophoresis mass spectrometry (CE-MS) interface was developed. The interface consisted of a low-flow interface and a liquid junction. In this design, both the inlet reservoir and the liquid-junction reservoir were filled with phosphate running buffer. Because the phosphate anions in the column migrated toward the inlet reservoir (away from the electrospray ionization (ESI) source) the problem of ion suppression in ESI was avoided. The liquid junction was incorporated to eliminate issues of degraded separation observed when sheath liquid interfaces use different buffers for separation and MS analysis attributed to differences in anion velocity. The utility of the interface was demonstrated by the analysis of antihistamines at pH 3.5 and the analysis of perfluorocarboxylic acid at pH 9.5.

  11. Liquid flow on a rotating disk prior to centrifugal atomization and spray deposition

    Science.gov (United States)

    Zhao, Y. Y.; Jacobs, M. H.; Dowson, A. L.

    1998-12-01

    Video observations of the flow patterns that develop on a rotating disk during centrifugal atomization and spray deposition, and subsequent metallographic studies conducted on solid skulls removed from the disk after processing, have indicated a circular discontinuity or hydraulic jump, which is manifested by a rapid increase in the thickness of the liquid metal and by a corresponding decrease in the radial velocity. A mathematical model has been developed that is capable of predicting both the occurrence and location of the jump, and the associated changes in the thickness profile and in the radial and tangential velocities of the liquid metal. Good correlations have been observed between model predictions and the flow patterns observed on the skull after atomization, and the effects of changes in material and operational parameters such as kinematic viscosity, volume flow rate, metallostatic head, and disk rotation speed have been quantified. Liquid metal flow is controlled primarily by the volume flow rate and by the metallostatic head prior to the hydraulic jump and by the centrifugal forces after the jump. The implications of these observations in terms of the atomization process are discussed.

  12. Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Siyuan; Jain, Chhavi; Wondraczek, Katrin; Kobelke, Jens [Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena (Germany); Wondraczek, Lothar [Otto Schott Institute of Material Research (OSIM), Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena (Germany); Troles, Johann; Caillaud, Celine [Université de Rennes I, Equipe Verres et Céramiques, UMR 6226 Sciences Chimiques de Rennes, Campus de Beaulieu, 35042 Rennes (France); Schmidt, Markus A., E-mail: markus.schmidt@ipht-jena.de [Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena (Germany); Otto Schott Institute of Material Research (OSIM), Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena (Germany)

    2015-05-18

    The flow of high-viscosity liquids inside micrometer-size holes can be substantially different from the flow in the bulk, non-confined state of the same liquid. Such non-Newtonian behavior can be employed to generate structural anisotropy in the frozen-in liquid, i.e., in the glassy state. Here, we report on the observation of non-Newtonian flow of an ultralow melting chalcogenide glass inside a silica microcapillary, leading to a strong deviation of the shear viscosity from its value in the bulk material. In particular, we experimentally show that the viscosity is radius-dependent, which is a clear indication that the microscopic rearrangement of the glass network needs to be considered if the lateral confinement falls below a certain limit. The experiments have been conducted using pressure-assisted melt filling, which provides access to the rheological properties of high-viscosity melt flow under previously inaccessible experimental conditions. The resulting flow-induced structural anisotropy can pave the way towards integration of anisotropic glasses inside hybrid photonic waveguides.

  13. Influence of the Vapor Cavity Depth on Liquid Flow through a Microchannel Exhibiting Superhydrophobic Walls

    Science.gov (United States)

    Maynes, Daniel; Jeffs, Kevin; Woolford, Brady; Webb, Brent

    2007-11-01

    We report results of an analytical and experimental investigation of laminar flow in a parallel-plate microchannel with superhydrophobic walls. The walls are fabricated with hydrophobically coated micro-ribs and cavities that are oriented parallel to the flow direction and are modeled in an idealized fashion, with the shape of the liquid-vapor meniscus approximated as flat. An analytical model of the flow in the vapor cavity is employed and coupled with a numerical model of the liquid flow. The numerical predictions show that the effective slip length and the reduction in the classical friction factor-Reynolds number product increase with increasing relative cavity width and depth, and decreasing relative micro-rib/cavity module length. Comparisons are also made between the zero shear interface model and the liquid-vapor cavity coupled model. The results illustrate that the zero shear interface model under-predicts the overall flow resistance. Further, the deviation between the two models was found to be significantly larger for increasing values of both the relative rib/cavity module width and the cavity fraction. The trends in the frictional pressure drop predictions are in good agreement with experimental measurements made at similar conditions and a generalized expression for predicting the friction factor is proposed.

  14. A transient method for measuring the gas volume fraction in a mixed gas-liquid flow using acoustic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, the feasibility of measuring the gas volume fraction in a mixed gas-liquid flow by using an acoustic resonant spectroscopy (ARS) method in a transient way is studied theoretically and experimentally. Firstly, the effects of sizes and locations of a single air bubble in a cylindrical cavity with two open ends on resonant frequencies are investigated numerically. Then, a transient measurement system for ARS is established, and the trends of the resonant frequencies (RFs) and resonant amplitudes (RAs) in the cylindrical cavity with gas flux inside are investigated experimentally. The measurement results by the proposed transient method are compared with those by steady-state ones and numerical ones. The numerical results show that the RFs of the cavity are highly sensitive to the volume of the single air bubble. A tiny bubble volume perturbation may cause a prominent RF shift even though the volume of the air bubble is smaller than 0.1% of that of the cavity. When the small air bubble moves, the RF shift will change and reach its maximum value as it is located at the middle of the cavity. As the gas volume fraction of the two-phase flow is low, both the RFs and RAs from the measurement results decrease dramatically with the increasing gas volume, and this decreasing trend gradually becomes even as the gas volume fraction increases further. These experimental results agree with the theoretical ones qualitatively. In addition, the transient method for ARS is more suitable for measuring the gas volume fraction with randomness and instantaneity than the steady-state one, because the latter could not reflect the random and instant characteristics of the mixed fluid due to the time consumption for frequency sweeping. This study will play a very important role in the quantitative measurement of the gas volume fraction of multiphase flows.

  15. The flow of a thin liquid film on a stationary and rotating disk. I - Experimental analysis and flow visualization

    Science.gov (United States)

    Thomas, S.; Faghri, A.; Hankey, W.

    1990-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed was 0-300 RPM and the flow rate was 7.0-15.0 LPM. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Surface waves were found in the supercritical and subcritical regions at all flow rates studied. When the rotational speed of the disk is low, a standing wave at the edge of the disk was present. As the rotational speed increased, the surface waves changed from the wavy-laminar region to a region in which the waves ran nearly radially across the disk on top of a thin substrate of fluid.

  16. Thermal Lattice Boltzmann Simulations for Vapor-Liquid Two-Phase Flows in Two Dimensions

    Science.gov (United States)

    Wei, Yikun; Qian, Yuehong

    2011-11-01

    A lattice Boltzmann model with double distribution functions is developed to simulate thermal vapor-liquid two-phase flows. In this model, the so-called mesoscopic inter-particle pseudo-potential for the single component multi-phase lattice Boltzmann model is used to simulate the fluid dynamics and the internal energy field is simulated by using a energy distribution function. Theoretical results for large-scale dynamics including the internal energy equation can be derived and numerical results for the coexistence curve of vapor-liquid systems are in good agreement with the theoretical predictions. It is shown from numerical simulations that the model has the ability to mimic phase transitions, bubbly flows and slugging flows. This research is support in part by the grant of Education Ministry of China IRT0844 and the grant of Shanghai CST 11XD1402300.

  17. Study on heat transfer for falling liquid film flow with consideration of interfacial evaporation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The interfacial evaporative heat transfer was included in the semi-empirical study of the heat transfer for the falling liquid film flow. The investigations showed that, the inclusion of the interfacial evaporative heat transfer in the turbulent model would lower the predicted convective heat transfer coefficient. Predictions of the new model resulted in a prominent deviation from that predictions of the normal model in the case of large mass flow rate and low wall heat flux. This deviation will be decreased with increasing wall heat flux, such that it will be asymptotic zero at very high wall heat flux. Predictions of the new model agreed well with the current experimental measurements. This study has verified that the Reynolds number is not the sole crucial parameter for heat transfer of falling liquid film flow, and wall heat flux will be another important independent parameter. This result is consistent with our previous studies.

  18. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.

    Science.gov (United States)

    Brzozowski, Martin; O'Brien, Matthew; Ley, Steven V; Polyzos, Anastasios

    2015-02-17

    CONSPECTUS: The previous decade has witnessed the expeditious uptake of flow chemistry techniques in modern synthesis laboratories, and flow-based chemistry is poised to significantly impact our approach to chemical preparation. The advantages of moving from classical batch synthesis to flow mode, in order to address the limitations of traditional approaches, particularly within the context of organic synthesis are now well established. Flow chemistry methodology has led to measurable improvements in safety and reduced energy consumption and has enabled the expansion of available reaction conditions. Contributions from our own laboratories have focused on the establishment of flow chemistry methods to address challenges associated with the assembly of complex targets through the development of multistep methods employing supported reagents and in-line monitoring of reaction intermediates to ensure the delivery of high quality target compounds. Recently, flow chemistry approaches have addressed the challenges associated with reactions utilizing reactive gases in classical batch synthesis. The small volumes of microreactors ameliorate the hazards of high-pressure gas reactions and enable improved mixing with the liquid phase. Established strategies for gas-liquid reactions in flow have relied on plug-flow (or segmented flow) regimes in which the gas plugs are introduced to a liquid stream and dissolution of gas relies on interfacial contact of the gas bubble with the liquid phase. This approach confers limited control over gas concentration within the liquid phase and is unsuitable for multistep methods requiring heterogeneous catalysis or solid supported reagents. We have identified the use of a gas-permeable fluoropolymer, Teflon AF-2400, as a simple method of achieving efficient gas-liquid contact to afford homogeneous solutions of reactive gases in flow. The membrane permits the transport of a wide range of gases with significant control of the stoichiometry of

  19. Facilities, testing program and modeling needs for studying liquid metal magnetohydrodynamic flows in fusion blankets

    Energy Technology Data Exchange (ETDEWEB)

    Bühler, L., E-mail: leo.buehler@kit.edu [Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe (Germany); Mistrangelo, C.; Konys, J. [Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe (Germany); Bhattacharyay, R. [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Huang, Q. [Institute of Nuclear Energy Safety Technology (INEST), Chinese Academy of Sciences (CAS) (China); Obukhov, D. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA) (Russian Federation); Smolentsev, S. [University of California Los Angeles (UCLA) (United States); Utili, M. [ENEA C.R. Brasimone, Camugnano 40032 (Italy)

    2015-11-15

    Since many years, liquid metal flows for applications in fusion blankets have been investigated worldwide. A review is given about modeling requirements and existing experimental facilities for investigations of liquid metal related issues in blankets with the focus on magnetohydrodynamics (MHD). Most of the performed theoretical and experimental works were dedicated to fundamental aspects of MHD flows under very strong magnetic fields as they may occur in generic elements of fusion blankets like pipes, ducts, bends, expansions and contractions. Those experiments are required to progressively validate numerical tools with the purpose of obtaining codes capable to predict MHD flows at fusion relevant parameters in complex blanket geometries, taking into account electrical and thermal coupling between fluid and structural materials. Scaled mock-up experiments support the theoretical activities and help deriving engineering correlations for cases which cannot be calculated with required accuracy up to now.

  20. The axial symmetric vibrations of cylindrical shell, filled by the flowing Gas-Liquid mixture

    Directory of Open Access Journals (Sweden)

    Grigoryan Sh.H.

    2011-09-01

    Full Text Available The problem of axial symmetric self–vibrations of the infinite long shell, filled by flowing gas bubbles of large and small sizes in fluid mixture is considered. The subsonic and supersonic regimes of the mixture flow are discussed. For vibration frequencies of the system under consideration are shown that shell frequencies with big bubbles–liquids mixture exceed the frequencies of system of with small gas bubbles–liquid mixture. In subsonic regime increasing of shell thickness brings to increasing of shell frequencies, as in case of shell with pure fluid. In subsonic regime the frequencies are increasing with decreasing of the flowing velocity, on the contrary, brings to decreasing of frequencies, similar to the case of shell with the pure fluid.

  1. Theory for particle settling and shear-induced migration in thin-film liquid flow.

    Science.gov (United States)

    Cook, Benjamin P

    2008-10-01

    Particles suspended in a film flow can either settle out of the flow, remain well mixed, or even advance faster than the fluid, accumulating at the moving contact line. Recent experiments by Zhou et al. [Phys. Rev. Lett. 94, 117803 (2005)] have demonstrated that these three settling behaviors can be achieved by control of the average particle concentration phi and inclination angle theta . This work presents a theory for determining the settling behavior in the Stokes regime by calculating the depth profile of phi and the depth-averaged velocities of the liquid and particle phases. It is found that shear-induced particle fluxes can lead to an inversely stratified flow, in which the particles move on average faster than the liquid. The theory is directly compared to Zhou et al.'s experimental data, and the implications of stratification for lubrication-type models are also discussed.

  2. IDENTIFICATION OF GAS-LIQUID FLOW REGIMES IN A HORIZONTAL FLOW USING NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    JIA Zhi-hai; NIU Gang; WANG Jing

    2005-01-01

    The knowledge of flow regimes is very important in the study of a two-phase flow system. A new flow regime identification method based on a Probability Density Function (PDF) and a neural network is proposed in this paper. The instantaneous differential pressure signals of a horizontal flow were acquired with a differential pressure sensor. The characters of differential pressure signals for different flow regimes are analyzed with the PDF. Then, four characteristic parameters of the PDF curves are defined, the peak number (K1), the maximum peak value (K2), the peak position (K3) and the PDF variance (K4). The characteristic vectors which consist of the four characteristic parameters as the input vectors train the neural network to classify the flow regimes. Experimental results show that this novel method for identifying air-water two-phase flow regimes has the advantages with a high accuracy and a fast response. The results clearly demonstrate that this new method could provide an accurate identification of flow regimes.

  3. Flow regimes of adiabatic gas-liquid two-phase under rolling conditions

    Science.gov (United States)

    Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui

    2013-07-01

    Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.

  4. Visual Measurements of Droplet Size in Gas Liquid Annular Flow

    Energy Technology Data Exchange (ETDEWEB)

    Fore, L.B.; Ibrahim, B.B.; Beus, S.G.

    2000-07-01

    Drop size distributions have been measured for nitrogen-water annular flow in a 9.67 mm hydraulic diameter duct, at system pressures of 3.4 and 17 atm and a temperature of 38 C. These new data extend the range of conditions represented by existing data in the open literature, primarily through an increase in system pressure. Since most existing correlations were developed from data obtained at lower pressures, it should be expected that the higher-pressure data presented in this paper would not necessarily follow those correlations. The correlation of Tatterson, et al. (1977) does not predict the new data very well, while the correlation of Kataoka, et al. (1983) only predicts those data taken at the lower pressure of 3.4 atm. However, the maximum drop size correlation of Kocamustafaogullari, et al. (1994) does predict the current data to a reasonable approximation. Similarly, their correlation for the Sauter mean diameter can predict the new data, provided the coefficient in the equation is adjusted.

  5. Numerical Simulations of Liquid-Gas-Solid Three-Phase Flows in Microgravity

    Directory of Open Access Journals (Sweden)

    Xinyu Zhang

    2012-03-01

    Full Text Available Three-phase liquid-gas-solid flows under microgravity condition are studied. An Eulerian-Lagrangian computational model was developed and used in the simulations. In this approach, the liquid flow was modeled by a volume-averaged system of governing equations, whereas motions of particles and bubbles were evaluated using the Lagrangian trajectory analysis procedure. It was assumed that the bubbles remained spherical, and their shape variations were neglected. The bubble-liquid, particle-liquid and bubbl-particle two-way interactions were accounted for in the analysis. The discrete phase equations used included drag, lift, buoyancy, and virtual mass forces. Particle-particle interactions and bubble-bubble interactions were accounted for by the hard sphere model. Bubble coalescence was also included in the model. The transient flow characteristics of the three-phase flow were studied; and the effects of gravity, inlet bubble size and g-jitter acceleration on variation of flow characteristics were discussed. The low gravity simulations showed that most bubbles are aggregated in the inlet region. Also, under microgravity condition, bubble transient time is much longer than that in normal gravity. As a result, the Sauter mean bubble diameter, which is proportional to the transient time of the bubble, becomes rather large, reaching to more than 9 mm. The bubble plume in microgravity exhibits a plug type flow behavior. After the bubble plume reaches the free surface, particle volume fraction increases along the height of the column. The particles are mainly located outside the bubble plume, with very few particles being retained in the plume. In contrast to the normal gravity condition, the three phases in the column are poorly mixed under microgravity conditions. The velocities of the three phases were also found to be of the same order. Bubble size significantly affects the characteristics of the three-phase flows under microgravity conditions. For

  6. Weak Anchoring and Surface Elasticity Effects in Electroosmotic Flow of Nematic Liquid Crystals Through Narrow Confinements

    CERN Document Server

    Poddar, Antarip; Chakraborty, Suman

    2016-01-01

    Advent of nematic liquid crystals flows have attracted renewed attention in view of microfluidic transport phenomena. Among various transport processes, electroosmosis stands as one of the efficient flow actuation method through narrow confinement. In the present study, we explore the electrically actuated flow of a nematic fluid with ionic inclusions taking into account the influences from surface induced elastic and electrical double layer phenomena. Influence of surface effects on the flow characteristics is known to get augmented in micro-confined environment and must be properly addressed. Towards this, we devise the coupled flow governing equations from fundamental free energy analysis considering the contributions from first and second-order elastic, dielectric, flexoelectric, ionic and entropic energies. We have further considered weak anchoring surface conditions with second order elasticity which helps us to more accurately capture the director deformations along the boundaries. The present study fo...

  7. Chemosensitivity of human small cell carcinoma of the lung detected by flow cytometric DNA analysis of drug-induced cell cycle perturbations in vitro

    DEFF Research Database (Denmark)

    Engelholm, S A; Spang-Thomsen, M; Vindeløv, L L

    1986-01-01

    A method based on detection of drug-induced cell cycle perturbation by flow cytometric DNA analysis has previously been described in Ehrlich ascites tumors as a way to estimate chemosensitivity. The method is extended to test human small-cell carcinoma of the lung. Three tumors with different...... sensitivities to melphalan in nude mice were used. Tumors were disaggregated by a combined mechanical and enzymatic method and thereafter have incubated with different doses of melphalan. After incubation the cells were plated in vitro on agar, and drug induced cell cycle changes were monitored by flow...... cytometric DNA analysis. Melphalan produced a dose-related S phase accumulation in the two sensitive tumors, whereas no changes in the cell cycle distribution were found in the resistant tumor. The size of S phase accumulation correlated to the chemosensitivity in vivo. For low concentrations of melphalan...

  8. Liquid Steel at Low Pressure: Experimental Investigation of a Downward Water Air Flow

    Science.gov (United States)

    Thumfart, Maria

    2016-07-01

    In the continuous casting of steel controlling the steel flow rate to the mould is critical because a well-defined flow field at the mould level is essential for a good quality of the cast product. The stopper rod is a commonly used device to control this flow rate. Agglomeration of solid material near the stopper rod can lead to a reduced cross section and thus to a decreased casting speed or even total blockage (“clogging”). The mechanisms causing clogging are still not fully understood. Single phase considerations of the flow in the region of the stopper rod result in a low or even negative pressure at the smallest cross section. This can cause degassing of dissolved gases from the melt, evaporation of alloys and entrainment of air through the porous refractory material. It can be shown that the degassing process in liquid steel is taking place mainly at the stopper rod tip and its surrounding. The steel flow around the stopper rod tip is highly turbulent. In addition refractory material has a low wettability to liquid steel. So the first step to understand the flow situation and transport phenomena which occur near the stopper is to understand the behaviour of this two phase (steel, gas) flow. To simulate the flow situation near the stopper rod tip, water experiments are conducted using a convergent divergent nozzle with three different wall materials and three different contact angles respectively. These experiments show the high impact of the wettability of the wall material on the actual flow structure at a constant gas flow rate.

  9. Three-dimensional direct numerical simulations of co/counter-current vertical gas-Liquid annular flows

    Science.gov (United States)

    Farhaoui, Asma; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard; Matar, Omar

    2016-11-01

    We carry out three-dimensional numerical simulations of co/counter current Gas-Liquid annular flows using the parallel code, BLUE, based on a projection method for the resolution of the Navier-Stokes equations and a hybrid Front-Tracking/Level-Set method for the interface advection. Gas-Liquid annular flows and falling films in a pipe are present in a broad range of industrial processes. This configuration consists of an important multiphase flow regime where the liquid occupies the area adjacent to the internal circumference of the pipe and the gas flows in the pipe core. Experimentally, four distinctive flow regimes were identified ('dual-wave', 'thick ripple', 'disturbance wave' and 'regular wave' regimes), that we attempt to simulate. In order to visualize these different regimes, various liquid (water) and gas (air) flow-rates are investigated. EPSRC UK Programme Grant EP/K003976/1.

  10. Modelling of semi-liquid aluminium flow in extrusion with temperature effect

    Directory of Open Access Journals (Sweden)

    G. Skorulski

    2007-04-01

    Full Text Available material remains stiff and holds its shape so it can be readily handled, but rapidly thins and flows like a liquid when sheared. It is this behaviour that is the key to the thixoforming process where material flows as a semi-liquid slurry into a die, as in conventional die-casting. Modelling the influence of the temperature distribution heterogeneity on deformation mechanisms during extrusion of the aluminium alloys in semi - liquid phase, the way of preparing samples and experimental technique has been analysed in the following work. There were made an analysis on the influence of the possible temperature distribution in recipient obtained during heating it on the extrusion process proceedings. The conclusions concerning stability of the process and appearing during it deformation mechanisms had been drawn on the ground of the received results. The plasticine and rape oil have been choosen as a substitute materials. Some kind of different variants have been investigated used a special experimental stand. The results of the tests presented below prove that the proposed technique can provide valuable insight into the material flow during deformation of aluminium alloys in the semi-liquid state and thus can give some guidance concerning the desirable temperature distribution within the workpiece.

  11. Distribution of void fraction for gas-liquid slug flow in an inclined pipe

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to investigate the effect of inclination angle on the spatial distribution of phases, experiments on gas-liquid two-phase slug flow in an inclined pipe were carried out by using the optical probe and an EKTAPRO 1000 high speed motion analyzer. It has been demonstrated that the inclination angle and the mixture velocity are important parameters to influence the distribution of void fraction for upward slug flow in the inclined pipe. At high mixture velocity, the gas phase profile is axial symmetry in the cross-section of the pipe. This is similar to that for vertical slug flow. In contrast, most of the gas phase is located near the upper pipe wall at low mixture velocity. By measuring the axial variation of void fraction along the liquid slug, it can be concluded that there is a high void fraction wake region with length of 3~4D in the front of liquid slug. In the fully developed zone of liquid slug, the peak value of the void fraction is near the upper wall.

  12. Real-Time, Non-Intrusive Detection of Liquid Nitrogen in Liquid Oxygen at High Pressure and High Flow

    Science.gov (United States)

    Singh, Jagdish P.; Yueh, Fang-Yu; Kalluru, Rajamohan R.; Harrison, Louie

    2012-01-01

    An integrated fiber-optic Raman sensor has been designed for real-time, nonintrusive detection of liquid nitrogen in liquid oxygen (LOX) at high pressures and high flow rates in order to monitor the quality of LOX used during rocket engine ground testing. The integrated sensor employs a high-power (3-W) Melles Griot diode-pumped, solid-state (DPSS), frequency-doubled Nd:YAG 532- nm laser; a modified Raman probe that has built-in Raman signal filter optics; two high-resolution spectrometers; and photomultiplier tubes (PMTs) with selected bandpass filters to collect both N2 and O2 Raman signals. The PMT detection units are interfaced with National Instruments Lab- VIEW for fast data acquisition. Studies of sensor performance with different detection systems (i.e., spectrometer and PMT) were carried out. The concentration ratio of N2 and O2 can be inferred by comparing the intensities of the N2 and O2 Raman signals. The final system was fabricated to measure N2 and O2 gas mixtures as well as mixtures of liquid N2 and LOX

  13. Stability of stratified two-phase flows in inclined channels

    CERN Document Server

    Barmak, Ilya; Ullmann, Amos; Brauner, Neima

    2016-01-01

    Linear stability of stratified gas-liquid and liquid-liquid plane-parallel flows in inclined channels is studied with respect to all wavenumber perturbations. The main objective is to predict parameter regions in which stable stratified configuration in inclined channels exists. Up to three distinct base states with different holdups exist in inclined flows, so that the stability analysis has to be carried out for each branch separately. Special attention is paid to the multiple solution regions to reveal the feasibility of non-unique stable stratified configurations in inclined channels. The stability boundaries of each branch of steady state solutions are presented on the flow pattern map and are accompanied by critical wavenumbers and spatial profiles of the most unstable perturbations. Instabilities of different nature are visualized by streamlines of the neutrally stable perturbed flows, consisting of the critical perturbation superimposed on the base flow. The present analysis confirms the existence of ...

  14. Unstable shear flows in two dimensional strongly correlated liquids - a hydrodynamic and molecular dynamics study

    Science.gov (United States)

    Gupta, Akanksha; Ganesh, Rajaraman; Joy, Ashwin

    2016-11-01

    In Navier-Stokes fluids, shear flows are known to become unstable leading to instability and eventually to turbulence. A class of flow namely, Kolmogorov Flows (K-Flows) exhibit such transition at low Reynolds number. Using fluid and molecular dynamics, we address the physics of transition from laminar to turbulent regime in strongly correlated-liquids such as in multi-species plasmas and also in naturally occurring plasmas with K-Flows as initial condition. A 2D phenomenological generalized hydrodynamic model is invoked wherein the effect of strong correlations is incorporated via a viscoelastic memory. To study the stability of K-Flows or in general any shear flow, a generalized eigenvalue solver has been developed along with a spectral solver for the full nonlinear set of fluid equations. A study of the linear and nonlinear features of K-Flow in incompressible and compressible limit exhibits cyclicity and nonlinear pattern formation in vorticity. A first principles based molecular dynamics simulation of particles interacting via Yukawa potential is performed with features such as configurational and kinetic thermostats for K-Flows. This work reveals several interesting similarities and differences between hydrodynamics and molecular dynamics studies.

  15. STUDY ON INTERMITTENT SHEAR FLOW AND RELAXATION BEHAVIOR OF THERMOTROPIC LIQUID CRYSTALLINE POLYMER

    Institute of Scientific and Technical Information of China (English)

    Ruo-Bing Yu; Chi-Xing Zhou; Wei Yu

    2005-01-01

    Intermittent shear flow including start-up flow and small oscillatory amplitude time sweep or stress relaxation after cessation of shear flow was used to study the rheological behavior and internal structure of thermotropic liquid crystalline polymer (TLCP). There are two kinds of intermittent shear flow: all start-up flows are in the same direction (intermittent flow forward: IFF) and start-up flows change their directions alternately (intermittent flow reversal: IFR). The results show that the stress of start-up flow of IFF and IFR in the test process is not superposed, indicating different changes of internal structure of thermotropic LCP (TLCP). Two main factors affect structure changes in the experimental time scale. One relates to long-term texture relaxation process, the other is an interchain reaction that becomes important after 30 min. The two factors raise the stress of IFF, but express complex effects for the stress of IFR. The latter factor becomes very important at long time annealing process. The relaxation behavior was also studied by the application of wide range relaxation spectrum calculated from the combined dynamic modulus, which gave three characteristic relaxation times (0.3, 10 and 600 s)ascribable to the relaxations of less-phase orientation, domain orientation, and domain deformation, respectively. The result also shows that the domain coalescence (texture relaxation), a long relaxation time, is a much slow process and lasts beyond 2400 s of the test time.

  16. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangchao@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Liao, Qiang, E-mail: lqzx@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Chen, Rong, E-mail: rchen@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Zhu, Xun, E-mail: zhuxun@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China)

    2015-06-12

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated.

  17. Liquid Flow Field on Evaporator of Wiped Short Path Distillation--Experimental Results and Computer Simulation

    Institute of Scientific and Technical Information of China (English)

    XU Songlin; WANG Junwu; XIANG Aishuang; XU Shimin

    2005-01-01

    Short path distillation (SPD) is a kind of high vacuum distillation method, which is suitable for the separation of high boiling, heat sensitivity and viscidity products.In this paper,through measuring the phase-averaged velocity distributions with a conditional sampling method of the particle imaging velocimetry (PIV), the liquid flow field that affects the heat and mass transfer of evaporating thin-film in an SPD evaporator is investigated.Measured results show that the flow velocities decrease rapidly apart from the wiper at different wiper velocities, the maximum velocity appears before wipers, and the quicker the wiping, the larger the flow velocity. Meanwhile, the evaluation of numerical calculations is carried out.The measured velocity distributions indicate clearly the effect of the wiper both on the flow field along its moving direction and on the vortices behind the wiper.Simulation data show that the performance of liquid flow field on the heating surface not only agrees with the experimental results well,but also can give further more information, such as the distribution of turbulent kinetic energy.In this study,turbulent kinetic energy mainly distributes before wipers and laminar flow appears far away from the wipers.

  18. Marangoni effect of cracked liquid film of an aqueous electrolyte flowing over a vertical heated plate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An experimental investigation was performed on Marangoni effect of cracked liquid film of aqueous Na2SO4 flowing over a vertical heated plate by using a sensitive infrared imaging technique. The results show that the thermal and solutal Marangoni effects, which result from the non-uniform distributions of surface temperature and concentration of the film, respectively, occur in the streamwise and transverse directions of the film, generating different influences on the film heat transfer. Taking account of the Marangoni number (Ma) and the solution concentration (c0), a correlation of the Nusselt number (Nu) for the cracked liquid film is proposed.

  19. A Lagrangian finite element method for the simulation of flow of non-newtonian liquids

    DEFF Research Database (Denmark)

    Hassager, Ole; Bisgaard, C

    1983-01-01

    A Lagrangian method for the simulation of flow of non-Newtonian liquids is implemented. The fluid mechanical equations are formulated in the form of a variational principle, and a discretization is performed by finite elements. The method is applied to the slow of a contravariant convected Maxwell...... liquid around a sphere moving axially in a cylinder. The simulations show that the friction factor for a sphere in a narrow cylinder is a rapidly decreasing function of the Deborah number, while the friction factor for a sphere in a very wide cylinder is not significantly affected by fluid elasticity...

  20. Steady thermocapillary flows in a two-layer liquid system with flat interfaces

    Science.gov (United States)

    del Arco, E. Crespo; Extremet, G. P.; Sani, R. L.

    1993-01-01

    Steady thermocapillary convection is studied in a system of two flat, superposed layers of immiscible liquids with two fluid-fluid interfaces in a configuration similar to that of an encapsulated crystal growth. The layers are bounded on the sides by isothermal vertical walls maintained at different constant temperatures. A simplified analytical solution is used initially to explore different potential flow regimes in a parameter space of large dimensionality. Then the coupled Navier-Stokes and heat transfer equations are solved numerically with a finite element method via FIDAP, in a rectangular cavity filled with two immiscible liquids in the absence of a gravitational field.

  1. Numerical Simulation of Gas—Liquid Flow in a Stirred Tank with a Rushton Impeller

    Institute of Scientific and Technical Information of China (English)

    WANGWeijing; MAOZaisha

    2002-01-01

    The gas-liquid flow field in a stirred tank with a Rushton disk turbine,including the impeller region,was numerically simulated using the improved inner-outer iterative procedure.The characteristic features of the strirred tank,such as gas cavity and accumulation of gas at the two sides of wall baffles,can be captured by the simulation.The simulated results agree well with available experimental data.Since the improved inner-outer iterative algorithm demands no empirical formula and experimental data for the impeller region,and the approach seems generally applicable for simulating gas-liquid stirred tanks.

  2. Phase distribution in horizontal gas-liquid two-phase bubbly flow

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    An investigation on phase distribution in air-water two-phaseflow in horizontal circular channel was conducted by using the double-sensor resistivity probe. The variations of phase distribution with variations ofgas and liquid volumetric fluxes were analyzed and the present data werecompared with some of other researcher's data and existing models. It wasfound there exists more complicated phase distribution pattern in horizontalflow system than in vertical flow. The radial local void fraction profilesare similar at the same measurement angle with various gas and liquid flowrates. However, an asymmetric profile can be observed at a given slice ofthe pipe cross-section.

  3. Temporal and spatial evolution characteristics of gas-liquid two-phase flow pattern based on image texture spectrum descriptor

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xi-guo; JIN Ning-de; WANG Zhen-ya; ZHANG Wen-yin

    2009-01-01

    The dynamic image information of typical gas-liquid two-phase flow patterns in vertical upward pipe is captured by a high-speed dynamic camera. The texture spectrum descriptor is used to describe the texture characteristics of the processed images whose content is represented in the form of texture spectrum histogram, and four time-varying characteristic param-eter indexes which represent image texture structure of different flow patterns are extracted. The study results show that the amplitude fluctuation of texture characteristic parameter indexes of bubble flow is lowest and shows very random complex dynamic behavior; the amplitude fluctuation of slug flow is higher and shows intermittent motion behavior between gas slug and liquid slug, and the amplitude fluctuation of churn flow is the highest and shows better periodicity; the amplitude fluctuation of bubble-slug flow is from low to high and oscillating frequence is higher than that of slug flow, and includes the features of both slug flow and bubble flow; the slug-churn flow loses the periodicity of slug flow and churn flow, and the amplitude fluctuation is high. The results indicate that the image texture characteristic parameter indexes of different flow pattern can reflect the flow characteristics of gas-liquid two-phase flow, which provides a new approach to tmderstand the temporal and spatial evolution of flow pattern dynamics.

  4. Membraneless laminar flow cell for electrocatalytic CO2 reduction with liquid product separation

    Science.gov (United States)

    Monroe, Morgan M.; Lobaccaro, Peter; Lum, Yanwei; Ager, Joel W.

    2017-04-01

    The production of liquid fuel products via electrochemical reduction of CO2 is a potential path to produce sustainable fuels. However, to be practical, a separation strategy is required to isolate the fuel-containing electrolyte produced at the cathode from the anode and also prevent the oxidation products (i.e. O2) from reaching the cathode. Ion-conducting membranes have been applied in CO2 reduction reactors to achieve this separation, but they represent an efficiency loss and can be permeable to some product species. An alternative membraneless approach is developed here to maintain product separation through the use of a laminar flow cell. Computational modelling shows that near-unity separation efficiencies are possible at current densities achievable now with metal cathodes via optimization of the spacing between the electrodes and the electrolyte flow rate. Laminar flow reactor prototypes were fabricated with a range of channel widths by 3D printing. CO2 reduction to formic acid on Sn electrodes was used as the liquid product forming reaction, and the separation efficiency for the dissolved product was evaluated with high performance liquid chromatography. Trends in product separation efficiency with channel width and flow rate were in qualitative agreement with the model, but the separation efficiency was lower, with a maximum value of 90% achieved.

  5. Implementation of unscented transform to estimate the uncertainty of a liquid flow standard system

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Sejong; Choi, Hae-Man; Yoon, Byung-Ro; Kang, Woong [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2017-03-15

    First-order partial derivatives of a mathematical model are an essential part of evaluating the measurement uncertainty of a liquid flow standard system according to the Guide to the expression of uncertainty in measurement (GUM). Although the GUM provides a straightforward method to evaluate the measurement uncertainty of volume flow rate, the first-order partial derivatives can be complicated. The mathematical model of volume flow rate in a liquid flow standard system has a cross-correlation between liquid density and buoyancy correction factor. This cross-correlation can make derivation of the first-order partial derivatives difficult. Monte Carlo simulation can be used as an alternative method to circumvent the difficulty in partial derivation. However, the Monte Carlo simulation requires large computational resources for a correct simulation because it considers the completeness issue whether an ideal or a real operator conducts an experiment to evaluate the measurement uncertainty. Thus, the Monte Carlo simulation needs a large number of samples to ensure that the uncertainty evaluation is as close to the GUM as possible. Unscented transform can alleviate this problem because unscented transform can be regarded as a Monte Carlo simulation with an infinite number of samples. This idea means that unscented transform considers the uncertainty evaluation with respect to the ideal operator. Thus, unscented transform can evaluate the measurement uncertainty the same as the uncertainty that the GUM provides.

  6. Study of air-liquid flow patterns in hydrocyclone enhanced by air bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Z.; Wang, H.; Tu, S.T. [School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai (China)

    2009-01-15

    In order to improve the oil-water separation efficiency of a hydrocyclone, a new process utilizing air bubbles has been developed to enhance separation performance. Using the two-component phase Doppler particle analyzer (PDPA) technique, the velocities of two phases, air and liquid, and air bubble diameter were measured in a hydrocyclone. The air-liquid mixing pump can produce 15 to 60 {mu}m-diameter air bubbles in water. There is an optimum air-liquid ratio for oil-water separation of a hydrocyclone enhanced by air bubbles. An air core occurs in the hydrocyclone when the air-liquid ratio is more than 1 %. The velocities of air bubbles have a similar flow pattern to the water phase. The axial and tangential velocity differences of the air bubbles at different air-liquid ratio are greater near the wall and near the core of the hydrocyclone. The measured results show that the size distribution of the air bubbles produced by the air-liquid mixing pump is beneficial to the process where air bubbles capture oil droplets in the hydrocyclone. These studies are helpful to understand the separation mechanism of a hydrocyclone enhanced by air bubbles. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  7. Numerical simulation of free surface incompressible liquid flows surrounded by compressible gas

    Science.gov (United States)

    Caboussat, A.; Picasso, M.; Rappaz, J.

    2005-03-01

    A numerical model for the three-dimensional simulation of liquid-gas flows with free surfaces is presented. The incompressible Navier-Stokes equations are assumed to hold in the liquid domain. In the gas domain, the velocity is disregarded, the pressure is supposed to be constant in each connected component of the gas domain and follows the ideal gas law. The gas pressure is imposed as a normal force on the liquid-gas interface. An implicit splitting scheme is used to decouple the physical phenomena. Given the gas pressure on the interface, the method described in [J. Comput Phys. 155 (1999) 439; Int. J. Numer. Meth. Fluids 42(7) (2003) 697] is used to track the liquid domain and to compute the velocity and pressure fields in the liquid. Then the connected components of the gas domain are found using an original numbering algorithm. Finally, the gas pressure is updated from the ideal gas law in each connected component of gas. The implementation is validated in the frame of mould filling. Numerical results in two and three space dimensions show that the effect of pressure in the bubbles of gas trapped by the liquid cannot be neglected.

  8. Effect of salts on the solubility of ionic liquids in water: experimental and electrolyte Perturbed-Chain Statistical Associating Fluid Theory.

    Science.gov (United States)

    Neves, Catarina M S S; Held, Christoph; Mohammad, Sultan; Schleinitz, Miko; Coutinho, João A P; Freire, Mara G

    2015-12-21

    Due to scarce available experimental data, as well as due to the absence of predictive models, the influence of salts on the solubility of ionic liquids (ILs) in water is still poorly understood. To this end, this work addresses the solubility of the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4C1im][NTf2]), at 298.15 K and 0.1 MPa, in aqueous salt solutions (from 0.1 to 1.5 mol kg(-1)). At salt molalities higher than 0.2 mol kg(-1), all salts caused salting-out of [C4C1im][NTf2] from aqueous solution with their strength decreasing in the following order: Al2(SO4)3 > ZnSO4 > K3C6H5O7 > KNaC4H4O6 > K3PO4 > Mg(CH3CO2)2 > K2HPO4 > MgSO4 > KH2PO4 > KCH3CO2. Some of these salts lead however to the salting-in of [C4C1im][NTf2] in aqueous medium at salt molalities lower than 0.2 mol kg(-1). To attempt the development of a model able to describe the salt effects, comprising both the salting-in and salting-out phenomena observed, the electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT) was applied using ion-specific parameters. The gathered experimental data was modelled using ePC-SAFT parameters complemented by fitting a single binary parameter between K(+) and the IL-ions to the IL solubility in K3PO4 aqueous solutions. Based on this approach, the description of anion-specific salting-out effects of the remaining potassium salts was found to be in good agreement with experimental data. Remarkably, ePC-SAFT is even able to predict the salting-in effect induced by K2HPO4, based on the single K(+)/IL-ions binary parameter which was fitted to an exclusively salting-out effect promoted by K3PO4. Finally, ePC-SAFT was applied to predict the influence of other sodium salts on the [C4C1im][NTf2] solubility in water, with experimental data taken from literature, leading to an excellent description of the liquid-liquid phase behaviour.

  9. Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump

    Science.gov (United States)

    Skelley, Stephen; Zoladz, Thomas

    2001-01-01

    As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6- blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Initial results showed acceptable correlation between the predicted and experimentally measured pump head rise at low suction specific speeds

  10. Branch Quality Control of Gas-Liquid Two-Phase Flow Using a Novel T-Junction Type Distributor

    Institute of Scientific and Technical Information of China (English)

    FaChun Liang; Jing Chen; JinLong Wang; Hao Yu

    2014-01-01

    In order to eliminate mal-distribution and ensure the side arm to produce desirable gas quality a special distributor is proposed. The experimental distributor mainly consists of a straight through section, a gas extraction line, a liquid extraction line and a side arm branch. A gas orifice and a liquid orifice are mounted at the gas and liquid extraction line respectively to control the outlet gas quality. The diameter of the liquid orifice was set to 2�50 mm and three gas orifices with different size ( dG = 2�65, 5�00, 10�00 mm) were tested. The experiments were carried out at an air-water two-phase flow loop. The gas superficial velocity ranged from 6�0 to 20�0 m/s and the liquid superficial velocity was in the range of 0�02-0�18 m/s. Flow patterns such as wave flow, slug flow and annular flow were observed. The gas quality of the side arm branch was found mainly determined by the flow area ratio of the gas orifice to the liquid orifice and independent of gas and liquid superficial velocity, flow patterns and extraction flux.

  11. Numerical simulation of the two-phase flow produced by spraying a liquid by a nozzle

    Science.gov (United States)

    Simakov, N. N.

    2017-07-01

    A numerical experiment on the simulation of the two-phase flow formed during spraying of a liquid by a nozzle has been described. The radial and axial velocity profiles of the droplets and gas in the free spray and in the two-phase flow through a cylindrical apparatus have been calculated and represented taking into account the early drag crisis of droplets and peculiarities of turbulent friction in the gas, which was detected in previous experiments. The distinguishing feature of the numerical model of the two-phase flow is that it employs the differential equations describing the nonstationary flow of a compressible gas as the initial equations. In transition to their difference analog, the familiar Lax-Wendorff algorithm has been used. A comparison of the results of calculations based on this model with experimental data has demonstrated their concordance.

  12. Prediction of the bed-load transport by gas-liquid stratified flows in horizontal ducts

    CERN Document Server

    Franklin, Erick de Moraes

    2016-01-01

    Solid particles can be transported as a mobile granular bed, known as bed-load, by pressure-driven flows. A common case in industry is the presence of bed-load in stratified gas-liquid flows in horizontal ducts. In this case, an initially flat granular bed may be unstable, generating ripples and dunes. This three-phase flow, although complex, can be modeled under some simplifying assumptions. This paper presents a model for the estimation of some bed-load characteristics. Based on parameters easily measurable in industry, the model can predict the local bed-load flow rates and the celerity and the wavelength of instabilities appearing on the granular bed.

  13. Hydrodynamic directional control of liquid metal droplets within a microfluidic flow focusing system

    Science.gov (United States)

    Gol, Berrak; Kurdzinski, Michael E.; Tovar-Lopez, Francisco J.; Petersen, Phred; Mitchell, Arnan; Khoshmanesh, Khashayar

    2016-04-01

    Here, we investigate the directional control of Galinstan liquid metal droplets when transferring from the high-viscosity glycerol core into the parallel low-viscosity NaOH sheath streams within a flow focusing microfluidic system. In the presence of sufficient flow mismatch between the sheath streams, the droplets are driven toward the higher velocity interface and cross the interface under the influence of surface tension gradient. A minimum flow mismatch of 125 μl/min is required to enable the continuous transfer of droplets toward the desired sheath stream. The response time of droplets, the time required to change the direction of droplet transfer, is governed by the response time of the syringe pump driven microfluidic system and is found to be 3.3 and 8.8 s when increasing and decreasing the flow rate of sheath stream, respectively.

  14. The model of back-flow mixed tanks-in-series used for representing the liquid flow in a reciprocating plate column

    Directory of Open Access Journals (Sweden)

    Nikolić Ljubiša B.

    2003-01-01

    Full Text Available The influence of different working parameters (vibration intensity superficial gas and liquid rate and content of the solid phase on liquid flow in a multiphase (gas-liquid: RPC-II and gas-liquid-solid: RPC-III reciprocating plate column was analyzed using step-response methods and sorbic acid as a tracer. The liquid flow was determined using a model of N-tanks in series followed by back mixing of the liquid phase between the tanks. The parameters of this model N, a and x were calculated by applying several methods: calculation of the moments of the residence time distribution function for a constant number of tanks in series (N=const analysis of a set of linear equations for N *const and determination of the minimum of defined goal function using the optimization technique leastsq.m of MATLAB software.

  15. Gas-liquid two-phase flow across a bank of micropillars

    Science.gov (United States)

    Krishnamurthy, Santosh; Peles, Yoav

    2007-04-01

    Adiabatic nitrogen-water two-phase flow across a bank of staggered circular micropillars, 100μm long with a diameter of 100μm and a pitch-to-diameter ratio of 1.5, was investigated experimentally for Reynolds number ranging from 5 to 50. Flow patterns, void fraction, and pressure drop were obtained, discussed, and compared to large scale as well as microchannel results. Two-phase flow patterns were determined by flow visualization, and a flow map was constructed as a function of gas and liquid superficial velocities. Significant deviations from conventional scale systems, with respect to flow patterns and trend lines, were observed. A unique flow pattern, driven by surface tension, was observed and termed bridge flow. The applicability of conventional scale models to predict the void fraction and two-phase frictional pressure drop was also assessed. Comparison with a conventional scale void fraction model revealed good agreement, but was found to be in a physically wrong form. Thus, a modified physically based model for void fraction was developed. A two-phase frictional multiplier was found to be a strong function of mass flux, unlike in previous microchannel studies. It was observed that models from conventional scale systems did not adequately predict the two-phase frictional multiplier at the microscale, thus, a modified model accounting for mass flux was developed.

  16. Hydrodynamic Forces on Macromolecules Protruding from Lipid Bilayers Due to External Liquid Flows.

    Science.gov (United States)

    Jönsson, Peter; Jönsson, Bengt

    2015-11-24

    It has previously been observed that an externally applied hydrodynamic shear flow above a fluid lipid bilayer can change the local concentration of macromolecules that are associated with the lipid bilayer. The external liquid flow results in a hydrodynamic force on molecules protruding from the lipid bilayer, causing them to move in the direction of the flow. However, there has been no quantitative study about the magnitude of these forces. We here use finite element simulations to investigate how the magnitude of the external hydrodynamic forces varies with the size and shape of the studied macromolecule. The simulations show that the hydrodynamic force is proportional to the effective hydrodynamic area of the studied molecule, Ahydro, multiplied by the mean hydrodynamic shear stress acting on the membrane surface, σhydro. The parameter Ahydro depends on the size and shape of the studied macromolecule above the lipid bilayer and scales with the cross-sectional area of the molecule. We also investigate how hydrodynamic shielding from other surrounding macromolecules decreases Ahydro when the surface coverage of the shielding macromolecules increases. Experiments where the protein streptavidin is anchored to a supported lipid bilayer on the floor of a microfluidic channel were finally performed at three different surface concentrations, Φ = 1%, 6%, and 10%, where the protein is being moved relative to the lipid bilayer by a liquid flow through the channel. From photobleaching measurements of fluorescently labeled streptavidin we found the experimental drift data to be within good accuracy of the simulated results, less than 12% difference, indicating the validity of the results obtained from the simulations. In addition to giving a deeper insight into how a liquid flow can affect membrane-associated molecules in a lipid bilayer, we also see an interesting potential of using hydrodynamic flow experiments together with the obtained results to study the size and

  17. Contact-free measurement of the flow field of a liquid metal inside a closed container

    Directory of Open Access Journals (Sweden)

    Heinicke Christiane

    2014-03-01

    Full Text Available The measurement of flow velocities inside metal melts is particularly challenging. Due to the high temperatures of the melts it is impossible to employ measurement techniques that require either mechanical contact with the melt or are only adaptable to translucent fluids. In the past years a number of electromagnetic techniques have been developed that allows a contact-free measurement of volume flows. One of these techniques is the so-called Lorentz Force Velocimetry (LFV in which the metal flow is exposed to an external, permanent magnetic field. The interaction between the metal and the magnet not only leads to a force on the fluid, but also on the magnet. The force can be measured and is proportional to the velocity of the melt. Moreover, by using a small permanent magnet it is possible to resolve spatial structures inside the flow.We will demonstrate this using a model experiment that has been investigated with different reference techniques previously. The experimental setup is a cylindrical vessel filled with a eutectic alloy which is liquid at room temperature. The liquid metal can be set into motion by means of a propeller at the top of the liquid. Depending on the direction of rotation of the propeller, the flow inside the vessel takes on different states. Beside the vessel, we place a Lorentz Force Flowmeter (LFF equipped with a small permanent magnet. By measuring the force on the magnet at different positions and different rotation speeds, we demonstrate that we can qualitatively and quantitatively reconstruct the flow field inside the vessel.

  18. Experimental investigation of liquid-liquid system drop size distribution in Taylor-Couette flow and its application in the CFD simulation

    Science.gov (United States)

    Farzad, Reza; Puttinger, Stefan; Pirker, Stefan; Schneiderbauer, Simon

    2016-11-01

    Liquid-liquid systems are widely used in the several industries such as food, pharmaceutical, cosmetic, chemical and petroleum. Drop size distribution (DSD) plays a key role as it strongly affects the overall mass and heat transfer in the liquid-liquid systems. To understand the underlying mechanisms single drop breakup experiments have been done by several researchers in the Taylor-Couette flow; however, most of those studies concentrate on the laminar flow regime and therefore, there is no sufficient amount of data in the case of in turbulent flows. The well-defined pattern of the Taylor-Couette flow enables the possibility to investigate DSD as a function of the local fluid dynamic properties, such as shear rate, which is in contrast to more complex devices such as stirred tank reactors. This paper deals with the experimental investigation of liquid-liquid DSD in Taylor-Couette flow. From high speed camera images we found a simple correlation for the Sauter mean diameter as a function of the local shear employing image processing. It is shown that this correlation holds for different oil-in-water emulsions. Finally, this empirical correlation for the DSD is used as an input data for a CFD simulation to compute the local breakup of individual droplets in a stirred tank reactor.

  19. Heat transfer in the flow of a cold, two-dimensional vertical liquid jet against a hot, horizontal plate

    CERN Document Server

    Shu, Jian-Jun

    2014-01-01

    A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings.

  20. Stability of Wavy Films in Gas-Liquid Two-Phase Flows at Normal and Microgravity Conditions

    Science.gov (United States)

    Balakotaiah, V.; Jayawardena, S. S.

    1996-01-01

    For flow rates of technological interest, most gas-liquid flows in pipes are in the annular flow regime, in which, the liquid moves along the pipe wall in a thin, wavy film and the gas flows in the core region. The waves appearing on the liquid film have a profound influence on the transfer rates, and hence on the design of these systems. We have recently proposed and analyzed two boundary layer models that describe the characteristics of laminar wavy films at high Reynolds numbers (300-1200). Comparison of model predictions to 1-g experimental data showed good agreement. The goal of our present work is to understand through a combined program of experimental and modeling studies the characteristics of wavy films in annular two-phase gas-liquid flows under normal as well as microgravity conditions in the developed and entry regions.

  1. Modelling of liquid flow after a hydraulic jump on a rotating disk prior to centrifugal atomization

    Science.gov (United States)

    Zhao, Y. Y.; Dowson, A. L.; Jacobs, M. H.

    2000-01-01

    This paper describes a simplified numerical model which is used to calculate the height distribution, and the radial and tangential velocities of a liquid on a rotating disk after a hydraulic jump and prior to centrifugal atomization. The results obtained from this numerical model are compared with predictions made using previously derived `hydraulic jump' and `analytical' models. Calculations, in conjunction with experimental measurements relating to the trajectory of liquid flow on the atomizing disk, have shown that the numerical model can not only give a reasonable prediction of the hydraulic jump location, but also yields more accurate information regarding the variations in liquid height, and radial and tangential velocities. The model is ideally suited for engineering applications.

  2. Well-posed Euler model of shock-induced two-phase flow in bubbly liquid

    Science.gov (United States)

    Tukhvatullina, R. R.; Frolov, S. M.

    2017-07-01

    A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.

  3. Flow patterns of GaInSn liquid on inclined stainless steel plate under a range of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Juan-Cheng, E-mail: yangjc@xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, Shanxi 710049 (China); Qi, Tian-Yu [School of Engineering Sciences, University of Chinese Academy and Sciences, Beijing 100049 (China); Ni, Ming-Jiu, E-mail: mjni@ucas.ac.cn [School of Engineering Sciences, University of Chinese Academy and Sciences, Beijing 100049 (China); Wang, Zeng-Hui [School of Engineering Sciences, University of Chinese Academy and Sciences, Beijing 100049 (China)

    2016-11-01

    Highlights: • The liquid GaInSn metal flow loop was built to study some fusion related liquid metal MHD phenomenon. • The flow patterns of GaInSn free surface flow with the change of Re number and Ha number were got by lot of experiments. • Some detailed descriptions of these flow patterns were also made, and a solid conclusion which agreed with some previous studies was got. - Abstract: In the present paper, some preliminary experimental studies have been conducted to show the flow pattern of liquid metal flow using visualization method. For the convenience of experiments in lab, Ga{sup 67}In{sup 20.5}Sn{sup 12.5} in liquid state at room temperature is used. A test section made by stainless steel is inserted in a traverse magnetic field with strength (B{sub 0}) varies from 0 to 1.28 T. The inclined angle of stainless steel plate in test section is about 9°. Visualization results obtained by high-speed camera (Phantom M/LC 310) shown that GaInSn liquid flow on inclined stainless steel plate behaved unstable liquid column flow pattern in the low flow rate, while behaved large area spreading flow pattern with small waves on the free surface in the large flow rate. However, in the magnetic field, under the action of electromagnetic force, the flow patterns of GaInSn liquid have some significant changes on the spreading width and surface structure of free surface. Some detailed analyses on these changes have been also showed in the present paper. Plans for future work are also presented.

  4. Study on flow characteristics of solid/liquid system in lysozyme crystal growth

    Institute of Scientific and Technical Information of China (English)

    CUI HaiLiang; YU Yong; CHEN WanChun; KANG Qi

    2007-01-01

    During the process of lysozyme protein crystallization with batch method, the macroscopic flow field of solid/liquid system was observed by particle image velocimetry (PIV). Furthermore, a normal growth rate of (110) face and local flow field around a single protein crystal were obtained by a long work distance microscope. The experimental results showed that the average velocity, the maximal velocity of macroscopic solid/liquid system and the velooity of local flow field around single protein crystal were fluctuant. The effective boundary layer thickness δeff, the concentration at the interface Gi and the characteristic velocity V were calculated using a convection-diffusion model. The results showed that the growth of lysozyme crystal in this experiment was dominated by interfacial kinetics rather than bulk transport, and the function of buoyancy-driven flow in bulk transport was small, however, the effect of bulk transport in crystal growth had a tendency to increase with the increase of lysozyme concentration. The calculated results also showed that the order of magnitude of shear force was about 10-21 N,which was much less than the bond force between the lysozyme molecules. Therefore the shear force induced by buoyancy-driven flows cannot remove the protein molecules from the interface of crystal.

  5. A study of laminar flow of polar liquids through circular microtubes

    Science.gov (United States)

    Phares, Denis J.; Smedley, Gregory T.

    2004-05-01

    Recently, the validity of using classical flow theory to describe the laminar flow of polar liquids and electrolytic solutions through microtubes has been questioned for tube diameters as large as 500 μm [Brutin and Tadrist, Phys. Fluids 15, 653 (2003)]. This potential increase in flow resistance, which has been attributed to electrokinetic effects and enhanced surface roughness effects, is critical to the understanding of certain biofluid systems. We seek to characterize this phenomenon for a variety of capillary/liquid systems. Using a numerical solution to the Poisson-Boltzmann equation, we have calculated the electroviscous effect for the systems under consideration. We have also measured the pressure drop as a function of flow rate across well-characterized stainless steel and polyimide microtubes ranging in diameter from 120 μm to 440 μm. Deionized water, tap water, a saline solution, and a variety of glycerol/water mixtures were used. The calculations and measurements suggest that any deviation from Poiseuille flow for tubes larger than 50 microns in diameter is more likely caused by the enhanced importance of surface roughness in microtubes than by electrokinetic effects.

  6. Numerical modelling of liquid material flow in the fusion zone of hybrid welded joint

    Directory of Open Access Journals (Sweden)

    M. Kubiak

    2011-04-01

    Full Text Available This paper concerns modelling of liquid metal motion in the fusion zone of laser-arc hybrid butt-welded plate. Velocity field in the fusion zone and temperature field in welded plate were obtained on the basis of the solution of mass, momentum and energy conservationsequations. Differential equations were solved using Chorin’s projection method and finite volume method. Melting and solidificationprocesses were taken into account in calculations assuming fuzzy solidification front where fluid flow is treated as a flow through porous medium. Double-ellipsoidal heat source model was used to describe electric arc and laser beam heat sources. On the basis of developed solution algorithms simulation of hybrid welding process was performed and the influence of liquid metal motion in the fusion zone on the results of calculations was analyzed.

  7. Theoretical analysis and numerical computation of dilute solid/liquid two_phase pipe flow

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Starting with the kinetic theory for dilute solid/liquid two_phase flow, a mathematical model is established to predict the flow in a horizontal square pipe and the predictions are compared with LDV measurements. The present model predicts correctly two types of patterns of the vertical distribution of particle concentration observed in experiments, and also gives different patterns of the distribution of particle fluctuating energy. In the core region of the pipe, the predicted mean velocity of particles is smaller than that of liquid, but near the pipe bottom the reverse case occurs. In addition, full attention is paid to the mechanism for the vertical distribution of the average properties of particles such as concentration and mean velocity. From the kinetic_theory point of view, the cause of formation for different patterns of the vertical concentration distribution is not only related to the lift force exerted on a particle, but also related to the distribution of particle fluctuating energy.

  8. Flow field distribution of liquid film of water lubricated bearing-rotor coupling systems

    Science.gov (United States)

    Hu, Q. L.; Hu, J. N.; Ye, X. Y.; Zhang, D. S.; Zheng, J. B.

    2016-05-01

    According to the desalination high-pressure pump water lubricated bearing-rotor coupling systems flow field distribution of liquid film in the starting transient process and its power transmission mechanism can lay the foundation of further exploring and judging lubrication state at the boot process. By using the computational fluid dynamics Fluent secondary development platform and calling the relevant DEFINE macro function to achieve the translation and rotation movement of the journal, we will use the dynamic grid technique to realize the automatic calculation and grid update of water lubricated bearings 3d unsteady liquid film flow field, and finally we will dispose the results of numerical simulation and get the pressure. When the eccentricity is large, film thickness was negatively correlated with the pressure, and positive with the velocity. Differential pressure was negatively correlated with velocity. When the eccentricity is small, film thickness is no significant relationship with differential pressure and velocity. Differential pressure has little difference with velocity.

  9. Global existence and incompressible limit in critical spaces for compressible flow of liquid crystals

    Science.gov (United States)

    Bie, Qunyi; Cui, Haibo; Wang, Qiru; Yao, Zheng-An

    2017-10-01

    The Cauchy problem for the compressible flow of nematic liquid crystals in the framework of critical spaces is considered. We first establish the existence and uniqueness of global solutions provided that the initial data are close to some equilibrium states. This result improves the work by Hu and Wu (SIAM J Math Anal 45(5):2678-2699, 2013) through relaxing the regularity requirement of the initial data in terms of the director field. Based on the global existence, we then consider the incompressible limit problem for ill prepared initial data. We prove that as the Mach number tends to zero, the global solution to the compressible flow of liquid crystals converges to the solution to the corresponding incompressible model in some function spaces. Moreover, the accurate converge rates are obtained.

  10. Gas-liquid two-phase flows in double inlet cyclones for natural gas separation

    DEFF Research Database (Denmark)

    Yang, Yan; Wang, Shuli; Wen, Chuang

    2017-01-01

    The gas-liquid two-phase flow within a double inlet cyclone for natural gasseparation was numerically simulated using the discrete phase model. The numericalapproach was validated with the experimental data, and the comparison resultsagreed well with each other. The simulation results showed......-outlet. The swirling flow was concentric dueto the design of the double inlet for the cyclonic separator, which greatly improvedthe separating efficiency. The separating efficiency was greater than 90% with theparticle diameter of more than 100 μm....

  11. The feedback effect caused by bed load on a turbulent liquid flow

    CERN Document Server

    Franklin, Erick de Moraes; Rosa, Eugênio Spanó

    2016-01-01

    Experiments on the effects due solely to a mobile granular layer on a liquid flow are presented (feedback effect). Nonintrusive measurements were performed in a closed conduit channel of rectangular cross section where grains were transported as bed load by a turbulent water flow. The water velocity profiles were measured over fixed and mobile granular beds of same granulometry by Particle Image Velocimetry. The spatial resolution of the measurements allowed the experimental quantification of the feedback effect. The present findings are of importance for predicting the bed-load transport rate and the pressure drop in activities related to the conveyance of grains.

  12. Fully developed laminar flow of two immiscible liquids through horizontal pipes: a variational approach

    Energy Technology Data Exchange (ETDEWEB)

    Kurban, Adib Paulo Abdalla [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas; Bannwart, Antonio Carlos [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica

    1990-12-31

    The fully developed laminar flow of two immiscible liquids with both different viscosities and densities through a horizontal round pipe is studied. The interface between the fluids as well as their flow fields are determined by the use of a variational principle: the so called viscous dissipation principle: The results foreseen by this paper are in agreement with the physical observation (e.g. Southern and Ballman) that the more viscous fluid is total or partially encapsulated by the less viscous one. (author) 8 refs., 4 figs.

  13. Multistep liquid-phase lithography for fast prototyping of microfluidic free-flow-electrophoresis chips.

    Science.gov (United States)

    Jezierski, Stefan; Gitlin, Leonid; Nagl, Stefan; Belder, Detlev

    2011-11-01

    We present a fast and versatile method to produce functional micro free-flow electrophoresis chips. Microfluidic structures were generated between two glass slides applying multistep liquid-phase lithography, omitting troublesome bonding steps or cost-intensive master structures. Utilizing a novel spacer-less approach with the photodefinable polymer polyethyleneglycol dimethacrylate (PEG-DA), microfluidic devices with hydrophilic channels of only 25 μm in height were generated. The microfluidic chips feature ion-permeable segregation walls between the electrode channels and the separation bed and hydrophilic surfaces. The performance of the chip is demonstrated by free-flow electrophoretic separation of fluorescent xanthene dyes and fluorescently labeled amino acids.

  14. Prediction of gas-liquid two-phase flow regime in microgravity

    Science.gov (United States)

    Lee, Jinho; Platt, Jonathan A.

    1993-01-01

    An attempt is made to predict gas-liquid two-phase flow regime in a pipe in a microgravity environment through scaling analysis based on dominant physical mechanisms. Simple inlet geometry is adopted in the analysis to see the effect of inlet configuration on flow regime transitions. Comparison of the prediction with the existing experimental data shows good agreement, though more work is required to better define some physical parameters. The analysis clarifies much of the physics involved in this problem and can be applied to other configurations.

  15. Measurement of Flow Velocity and Inference of Liquid Viscosity in a Microfluidic Channel by Fluorescence Photobleaching

    DEFF Research Database (Denmark)

    Carroll, Nick J.; Jensen, Kaare Hartvig; Parsa, Shima

    2014-01-01

    We present a simple, noninvasive method for simultaneous measurement of flow velocity and inference of liquid viscosity in a microfluidic channel. We track the dynamics of a sharp front of photobleached fluorescent dye using a confocal microscope and measure the intensity at a single point...... downstream of the initial front position. We fit an exact solution of the advection diffusion equation to the fluorescence intensity recovery curve to determine the average flow velocity and the diffusion coefficient of the tracer dye. The dye diffusivity is correlated to solute concentration to infer...

  16. Lubrication theory applied to the convergent flows of two stacked liquid layers

    Energy Technology Data Exchange (ETDEWEB)

    Gratton, Julio [INFIP-CONICET, Dpto. de Fisica, FCEyN, UBA, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina); Perazzo, Carlos Alberto, E-mail: jgratton@tinfip.lfp.uba.ar, E-mail: perazzo@favaloro.edu.ar [Universidad Favaloro and CONICET, Solis 453, 1078 Buenos Aires (Argentina)

    2011-05-01

    With the aim of describing the mountain building process, we have previously applied the lubrication approximation to obtain the evolution equations of the problem of two stacked layers of viscous fluids with different densities and different viscosities. The lubrication approximation is a perturbation method where the small parameter is the aspect ratio (thickness/lenght) of the current. This approximation is widely used to study the slow flow of one layer of a viscous fluid, but it is not well known under which conditions it can be applied in more general settings. Here we analyze in detail the assumptions needed to apply the lubrication theory to study the flow of two stacked viscous fluid layers. We employ the same perturbation method and we found that, besides the usual conditions (low Reynolds number and gentle slope), we must require that the viscosity and density ratios are of the order of unity. These requirements determine the range of validity of the equations of our model of the mountain building.

  17. Local overall volumetric gas-liquid mass transfer coefficients in gas-liquid-solid reversed flow jet loop bioreactor with a non-Newtonian fluid.

    Science.gov (United States)

    Jianping; Ping; Lin; Yunlin

    2000-07-01

    The local overall volumetric gas-liquid mass transfer coefficients at the specified point in a gas-liquid-solid three-phase reversed flow jet loop bioreactor (JLB) with a non-Newtonian fluid was experimentally investigated by a transient gassing-in method. The effects of liquid jet flow rate, gas jet flow rate, particle density, particle diameter, solids loading, nozzle diameter and CMC concentration on the local overall volumetric gas-liquid mass transfer coefficient (K(L)a) profiles were discussed. It was observed that local overall K(L)a profiles in the three-phase reversed flow JLB with non-Newtonian fluid increased with the increase of gas jet flow rate, liquid jet flow rate, particle density and particle diameter, but decreased with the increase of the nozzle diameter and CMC concentration. The presence of solids at a low concentration increased the local overall K(L)a profiles, and the optimum of solids loading for a maximum profile of the local overall K(L)a was found to be 0.18x10(-3)m(3) corresponding to a solids volume fraction, varepsilon(S)=2.8%.

  18. Co-rotational Oldroyd Fluid B Model for Spinning Flow of Liquid Crystalline Polymer

    Institute of Scientific and Technical Information of China (English)

    付强

    2003-01-01

    The relationship between the extensional viscosity and material parameters was studied through the analytical formulas of stress and extensional viscosity. The differential equations were solved to obtain the relationship between extensional viscosity and strain rates. The results obtained qualitatively agree with the experimental results. The study makes it practicable to simulate the rheologic behaviors of spinning flow of liquid crystalline polymer using co-rotational Oldroyd fluid B model.

  19. Analytic models of heterogenous magnetic fields for liquid metal flow simulations

    OpenAIRE

    Votyakov, E. V.; Kassinos, S. C.; Albets-Chico, X.

    2009-01-01

    A physically consistent approach is considered for defining an external magnetic field as needed in computational fluid dynamics problems involving magnetohydrodynamics (MHD). The approach results in simple analytical formulae that can be used in numerical studies where an inhomogeneous magnetic field influences a liquid metal flow. The resulting magnetic field is divergence and curl-free, and contains two components and parameters to vary. As an illustration, the following examples are consi...

  20. Flow and mixing of liquid steel in multi-strand tundish delta type – physical modelling

    Directory of Open Access Journals (Sweden)

    T. Merder

    2015-01-01

    Full Text Available The article presents the results of liquid steel flow and mixing in tundish when applying different equipment to modernize the tundish working zone. The six-strand continuous casting tundish of a trough-type was studied. Such tundish is an object with geometry adjusted to the conditions of particular CC machine, which is installed in one of a polish steel plant. The problems suggested in research were solved basing on physical model experiment.

  1. Direct observation of coupling between orientation and flow fluctuations in a nematic liquid crystal at equilibrium.

    Science.gov (United States)

    Orihara, Hiroshi; Sakurai, Nobutaka; Sasaki, Yuji; Nagaya, Tomoyuki

    2017-04-01

    To demonstrate coupling between orientation and flow fluctuations in a nematic liquid crystal at equilibrium, we simultaneously observe the intensity change due to director fluctuations under a polarizing microscope and the Brownian motion of a fluorescent particle trapped weakly by optical tweezers. The calculated cross-correlation function of the particle position and the spatial gradient of the intensity is nonzero, clearly indicating the existence of coupling.

  2. Development of Efficient Real-Fluid Model in Simulating Liquid Rocket Injector Flows

    Science.gov (United States)

    Cheng, Gary; Farmer, Richard

    2003-01-01

    The characteristics of propellant mixing near the injector have a profound effect on the liquid rocket engine performance. However, the flow features near the injector of liquid rocket engines are extremely complicated, for example supercritical-pressure spray, turbulent mixing, and chemical reactions are present. Previously, a homogeneous spray approach with a real-fluid property model was developed to account for the compressibility and evaporation effects such that thermodynamics properties of a mixture at a wide range of pressures and temperatures can be properly calculated, including liquid-phase, gas- phase, two-phase, and dense fluid regions. The developed homogeneous spray model demonstrated a good success in simulating uni- element shear coaxial injector spray combustion flows. However, the real-fluid model suffered a computational deficiency when applied to a pressure-based computational fluid dynamics (CFD) code. The deficiency is caused by the pressure and enthalpy being the independent variables in the solution procedure of a pressure-based code, whereas the real-fluid model utilizes density and temperature as independent variables. The objective of the present research work is to improve the computational efficiency of the real-fluid property model in computing thermal properties. The proposed approach is called an efficient real-fluid model, and the improvement of computational efficiency is achieved by using a combination of a liquid species and a gaseous species to represent a real-fluid species.

  3. Perturbative Yukawa theory at finite density: the role of masses and renormalization group flow at two loops

    CERN Document Server

    Palhares, Letícia F

    2008-01-01

    Yukawa theory at vanishing temperature provides (one of the ingredients for) an effective description of the thermodynamics of a variety of cold and dense fermionic systems. We study the role of masses and the renormalization group flow in the calculation of the equation of state up to two loops within the MSbar scheme. Two-loop integrals are computed analytically for arbitrary fermion and scalar masses, and expressed in terms of well-known special functions. The dependence of the renormalization group flow on the number of fermion flavors is also discussed.

  4. THE STUDY OF INTERACTION OF SOLID—LIQUID ADSORPTION SYSTEM BY USING THE FLOW INJECTION—SPECTROPHOTOMETRY SYSTEM

    Institute of Scientific and Technical Information of China (English)

    HEGuangping; CHENBingren; 等

    2001-01-01

    The flow injection analysis was firatly used for studying a solid-liquid adsorption system,and the dynamics process in the adsorption of adyestuff with regenerable chitin was traced by an online method of flow injection-spectrophotometry,Experimental results indicate that there is a linearization between the tested signals and the height of peaks with reciprocity coefficient 0.9999 by using the flow injection-spectrophotometry system to study the dynamics adsorption process in solid-liquid system.The method shows a good stability and reproducibility.It provides a new method for the studies on adsorption dynamics in solid-liquid system.

  5. THE STUDY OF INTERACTION OF SOLID-LIQUID ADSORPTION SYSTEM BY USING THE FLOW INJECTION-SPECTROPHOTOMETRY SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The flow injection analysis was firstly used for studying a solid-liquid adsorption system,and the dynamics process in the adsorption of dyestuff with regenerable chitin was traced by an online method of flow injection-spectrophotometry. Experimental results indicate that there is a linearization between the tested signals and the height of peaks with reciprocity coefficient 0.9999by using the flow injection-spectrophotometry system to study the dynamics adsorption process in solid-liquid system. The method shows a good stability and reproducibility. It provides a new method for the studies on adsorption dynamics in solid- liquid system.

  6. Noncircular orifice holes and advanced fabrication techniques for liquid rocket injectors. Phase 3: Analytical and cold-flow experimental evaluation of rectangular concentric tube injector elements for gas/liquid application. Phase 4: Analytical and experimental evaluation of noncircular injector elements for gas/liquid and liquid/liquid application

    Science.gov (United States)

    Mchale, R. M.

    1974-01-01

    Results are presented of a cold-flow and hot-fire experimental study of the mixing and atomization characteristics of injector elements incorporating noncircular orifices. Both liquid/liquid and gas/liquid element types are discussed. Unlike doublet and triplet elements (circular orifices only) were investigated for the liquid/liquid case while concentric tube elements were investigated for the gas/liquid case. It is concluded that noncircular shape can be employed to significant advantage in injector design for liquid rocket engines.

  7. Global strong solution to the three-dimensional liquid crystal flows of Q-tensor model

    Science.gov (United States)

    Xiao, Yao

    2017-02-01

    A complex hydrodynamic system that models the fluid of nematic liquid crystals in a bounded domain in R3 is studied. The system is a forced incompressible Navier-Stokes equation coupled with a parabolic type equation of Q-tensors. We invoke the maximal regularity of the Stokes operators and parabolic operators in Besov spaces to obtain the local strong solution if the initial Q-tensor is not too "wild". In addition, it is showed that such solution can be extended to a global one if the initial data is a sufficiently small perturbation around the trivial equilibrium state. Finally, it is proved that the global strong solution obtained here is identical to those weak solutions obtained in Paicu and Zarnescu [26].

  8. Euler-Euler granular flow model of liquid fuels combustion in a fluidized reactor

    Directory of Open Access Journals (Sweden)

    Nemoda Stevan

    2015-01-01

    Full Text Available The paper deals with the numerical simulation of liquid fuel combustion in a fluidized reactor using a two-fluid Eulerian-Eulerian fluidized bed modeling incorporating the kinetic theory of granular flow (KTGF to gas and solid phase flow prediction. The comprehensive model of the complex processes in fluidized combustion chamber incorporates, besides gas and particular phase velocity fields’ prediction, also the energy equations for gas and solid phase and the transport equations of chemical species conservation with the source terms due to the conversion of chemical components. Numerical experiments show that the coefficients in the model of inter-phase interaction drag force have a significant effect, and they have to be adjusted for each regime of fluidization. A series of numerical experiments was performed with combustion of the liquid fuels in fluidized bed (FB, with and without significant water content. The given estimations are related to the unsteady state, and the modeled time period corresponds to flow passing time throw reactor column. The numerical experiments were conducted to examine the impact of the water content in a liquid fuel on global FB combustion kinetics.

  9. Fluid Flow Behavior of Liquid in Cylindrical Vessels Stirred by One or Two Air Jets

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the two-phase model (Eulerian-Eulerian model), the three dimensional fluid flow in water and that liquid steel systems stirred by one or two multiple gas jets are simulated. In the Eulerian-Eulerian two-phase model, the gas and the liquid phase are considered to be two different continuous fluids interacting with each other through the finite inter-phase areas. The exchange between the phases is represented by source terms in conversation equations. Turbulence is assumed to be a property of the liquid phase. A new turbulence modification - model is introduced to consider the bubbles movement contribution to and . The dispersion of phases due to turbulence is represented by introducing a diffusion term in mass conservation equation. The mathematical simulation agrees well with the experiment results. The study results indicate that the distance of two nozzles has big effect on fluid flow behavior in the vessel. Using two gas injection nozzles at the half radii of one diameter of the bottom generates a much better mixing than with one nozzle under the condition of the same total gas flow rate.

  10. Direct numerical simulation of gas-solid-liquid flows with capillary effects: An application to liquid bridge forces between spherical particles

    Science.gov (United States)

    Sun, Xiaosong; Sakai, Mikio

    2016-12-01

    In this study, a numerical method is developed to perform the direct numerical simulation (DNS) of gas-solid-liquid flows involving capillary effects. The volume-of-fluid method employed to track the free surface and the immersed boundary method is adopted for the fluid-particle coupling in three-phase flows. This numerical method is able to fully resolve the hydrodynamic force and capillary force as well as the particle motions arising from complicated gas-solid-liquid interactions. We present its application to liquid bridges among spherical particles in this paper. By using the DNS method, we obtain the static bridge force as a function of the liquid volume, contact angle, and separation distance. The results from the DNS are compared with theoretical equations and other solutions to examine its validity and suitability for modeling capillary bridges. Particularly, the nontrivial liquid bridges formed in triangular and tetrahedral particle clusters are calculated and some preliminary results are reported. We also perform dynamic simulations of liquid bridge ruptures subject to axial stretching and particle motions driven by liquid bridge action, for which accurate predictions are obtained with respect to the critical rupture distance and the equilibrium particle position, respectively. As shown through the simulations, the strength of the present method is the ability to predict the liquid bridge problem under general conditions, from which models of liquid bridge actions may be constructed without limitations. Therefore, it is believed that this DNS method can be a useful tool to improve the understanding and modeling of liquid bridges formed in complex gas-solid-liquid flows.

  11. Direct numerical simulation of gas-solid-liquid flows with capillary effects: An application to liquid bridge forces between spherical particles.

    Science.gov (United States)

    Sun, Xiaosong; Sakai, Mikio

    2016-12-01

    In this study, a numerical method is developed to perform the direct numerical simulation (DNS) of gas-solid-liquid flows involving capillary effects. The volume-of-fluid method employed to track the free surface and the immersed boundary method is adopted for the fluid-particle coupling in three-phase flows. This numerical method is able to fully resolve the hydrodynamic force and capillary force as well as the particle motions arising from complicated gas-solid-liquid interactions. We present its application to liquid bridges among spherical particles in this paper. By using the DNS method, we obtain the static bridge force as a function of the liquid volume, contact angle, and separation distance. The results from the DNS are compared with theoretical equations and other solutions to examine its validity and suitability for modeling capillary bridges. Particularly, the nontrivial liquid bridges formed in triangular and tetrahedral particle clusters are calculated and some preliminary results are reported. We also perform dynamic simulations of liquid bridge ruptures subject to axial stretching and particle motions driven by liquid bridge action, for which accurate predictions are obtained with respect to the critical rupture distance and the equilibrium particle position, respectively. As shown through the simulations, the strength of the present method is the ability to predict the liquid bridge problem under general conditions, from which models of liquid bridge actions may be constructed without limitations. Therefore, it is believed that this DNS method can be a useful tool to improve the understanding and modeling of liquid bridges formed in complex gas-solid-liquid flows.

  12. Long-period fiber grating sensors for the measurement of liquid level and fluid-flow velocity.

    Science.gov (United States)

    Wang, Jian-Neng; Luo, Ching-Ying

    2012-01-01

    This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG)-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO(2)-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen's test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1-5 were in the range of 1.35-9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG's length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7-12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds.

  13. Ultrasound-assisted dispersive liquid-liquid microextraction of tetracycline drugs from egg supplements before flow injection analysis coupled to a liquid waveguide capillary cell.

    Science.gov (United States)

    Rodríguez, Michael Pérez; Pezza, Helena Redigolo; Pezza, Leonardo

    2016-09-01

    A simple, rapid, and efficient ultrasound-assisted dispersive liquid-liquid microextraction (US-DLLME) method was developed for extraction of tetracycline residues from egg supplement samples, with subsequent determination by flow injection analysis (FIA) coupled to a liquid waveguide capillary cell (LWCC) and a controlled temperature heating bath. Tetracyclines react with diazotized p-sulfanilic acid, in a slightly alkaline medium, to form azo compounds that can be measured at 435 nm. The reaction sensitivity improved substantially (5.12-fold) using an in-line heating temperature of 45 °C. Multivariate methodology was used to optimize the factors affecting the extraction efficiency, considering the volumes of extraction and disperser solvents, sonication time, extraction time, and centrifugation time. Good linearity in the range 30-600 μg L(-1) was obtained for all the tetracyclines, with regression coefficients (r) higher than 0.9974. The limits of detection ranged from 6.4 to 11.1 μg L(-1), and the recoveries were in the range 85.7-96.4 %, with relative standard deviation lower than 9.8 %. Analyte recovery was improved by approximately 6 % when the microextraction was assisted by ultrasound. The results obtained with the proposed US-DLLME-FIA method were confirmed by a reference HPLC method and showed that the egg supplement samples analyzed were suitable for human consumption.

  14. Compact counter-flow cooling system with subcooled gravity-fed circulating liquid nitrogen

    Science.gov (United States)

    Ivanov, Yu.; Radovinsky, A.; Zhukovsky, A.; Sasaki, A.; Watanabe, H.; Kawahara, T.; Hamabe, M.; Yamaguchi, S.

    2010-11-01

    A liquid nitrogen (LN2) is usually used to keep the high-temperature superconducting (HTS) cable low temperature. A pump is utilized to circulate LN2 inside the cryopipes. In order to minimize heat leakage, a thermal siphon circulation scheme can be realized instead. Here, we discuss the effectiveness of thermal siphon with counter-flow circulation loop composed of cryogen flow channel and inner cable channel. The main feature of the system is the existence of essential parasitic heat exchange between upwards and downwards flows. Feasibility of the proposed scheme for cable up to 500 m in length has been investigated numerically. Calculated profiles of temperature and pressure show small differences of T and p in the inner and the outer flows at the same elevation, which allows not worrying about mechanical stability of the cable. In the case under consideration the thermal insulating properties of a conventional electrical insulating material (polypropylene laminated paper, PPLP) appear to be sufficient. Two interesting effects were disclosed due to analysis of subcooling of LN2. In case of highly inclined siphon subcooling causes significant increase of temperature maximum that can breakup of superconductivity. In case of slightly inclined siphon high heat flux from outer flow to inner flow causes condensation of nitrogen gas in outer channel. It leads to circulation loss. Results of numerical analyses indicate that counter-flow thermosiphon cooling system is a promising way to increase performance of short-length power transmission (PT) lines, but conventional subcooling technique should be applied carefully.

  15. Wire-mesh and ultrasound techniques applied for the characterization of gas-liquid slug flow

    Energy Technology Data Exchange (ETDEWEB)

    Ofuchi, Cesar Y.; Sieczkowski, Wytila Chagas; Neves Junior, Flavio; Arruda, Lucia V.R.; Morales, Rigoberto E.M.; Amaral, Carlos E.F.; Silva, Marco J. da [Federal University of Technology of Parana, Curitiba, PR (Brazil)], e-mails: ofuchi@utfpr.edu.br, wytila@utfpr.edu.br, neves@utfpr.edu.br, lvrarruda@utfpr.edu.br, rmorales@utfpr.edu.br, camaral@utfpr.edu.br, mdasilva@utfpr.edu.br

    2010-07-01

    Gas-liquid two-phase flows are found in a broad range of industrial applications, such as chemical, petrochemical and nuclear industries and quite often determine the efficiency and safety of process and plants. Several experimental techniques have been proposed and applied to measure and quantify two-phase flows so far. In this experimental study the wire-mesh sensor and an ultrasound technique are used and comparatively evaluated to study two-phase slug flows in horizontal pipes. The wire-mesh is an imaging technique and thus appropriated for scientific studies while ultrasound-based technique is robust and non-intrusive and hence well suited for industrial applications. Based on the measured raw data it is possible to extract some specific slug flow parameters of interest such as mean void fraction and characteristic frequency. The experiments were performed in the Thermal Sciences Laboratory (LACIT) at UTFPR, Brazil, in which an experimental two-phase flow loop is available. The experimental flow loop comprises a horizontal acrylic pipe of 26 mm diameter and 9 m length. Water and air were used to produce the two phase flow under controlled conditions. The results show good agreement between the techniques. (author)

  16. Wire-mesh and ultrasound techniques applied for the characterization of gas-liquid slug flow

    Energy Technology Data Exchange (ETDEWEB)

    Ofuchi, Cesar Y.; Sieczkowski, Wytila Chagas; Neves Junior, Flavio; Arruda, Lucia V.R.; Morales, Rigoberto E.M.; Amaral, Carlos E.F.; Silva, Marco J. da [Federal University of Technology of Parana, Curitiba, PR (Brazil)], e-mails: ofuchi@utfpr.edu.br, wytila@utfpr.edu.br, neves@utfpr.edu.br, lvrarruda@utfpr.edu.br, rmorales@utfpr.edu.br, camaral@utfpr.edu.br, mdasilva@utfpr.edu.br

    2010-07-01

    Gas-liquid two-phase flows are found in a broad range of industrial applications, such as chemical, petrochemical and nuclear industries and quite often determine the efficiency and safety of process and plants. Several experimental techniques have been proposed and applied to measure and quantify two-phase flows so far. In this experimental study the wire-mesh sensor and an ultrasound technique are used and comparatively evaluated to study two-phase slug flows in horizontal pipes. The wire-mesh is an imaging technique and thus appropriated for scientific studies while ultrasound-based technique is robust and non-intrusive and hence well suited for industrial applications. Based on the measured raw data it is possible to extract some specific slug flow parameters of interest such as mean void fraction and characteristic frequency. The experiments were performed in the Thermal Sciences Laboratory (LACIT) at UTFPR, Brazil, in which an experimental two-phase flow loop is available. The experimental flow loop comprises a horizontal acrylic pipe of 26 mm diameter and 9 m length. Water and air were used to produce the two phase flow under controlled conditions. The results show good agreement between the techniques. (author)

  17. Experimental investigation of the effect of liquid viscosity on slug flow in small diameter bubble column

    Directory of Open Access Journals (Sweden)

    Azzopardi Barry John

    2012-04-01

    Full Text Available The effect of liquid viscosity on slug flow in a 50 mm diameter bubble column was investigated experimentally using air-silicone oil as operating fluid with silicone oil of viscosities 5, 100, 1000 and 5000 mPa.s. Data was collected using Electrical Capacitance Tomography (ECT, a non-intrusive advanced instrumentation measuring technique and the high Speed Video Camera, through which the slug parameters such as length of Taylor bubbles and liquid slug, void fraction in Taylor bubbles and liquid slug, slug frequency, film thickness and pressure gradient in the slug, were measured and analyzed. The analysis was done using the void fraction time series, probability density function and power spectral density plots. Superficial gas velocities of 0.02≤Ugs≤0.361 m/s were used in the experiment. It was also observed that as viscosity increases, slug frequency, structure velocity, length of liquid slug, void fraction in liquid slug and void fraction in Taylor bubbles decreases; while the length of Taylor bubble, film thickness and pressure gradient in the slug increases.

  18. Axial Dispersion in Segmented Gas-Liquid Flow: Effects of the Channel Curvature

    Science.gov (United States)

    Muradoglu, Metin

    2009-11-01

    The effects of channel curvature on the axial dispersion in segmented gas-liquid flows have been studied computationally in a two-dimensional setting using a front-tracking/finite-volume method. Passive tracer particles are used to visualize and quantify the axial dispersion. The molecular diffusion is modeled by random walk of tracer particles. It is found that there is significant axial dispersion in serpentine channels even in the absence of molecular diffusion and dispersion increases with channel curvature. It is known that there is no dispersion in straight channels since a lubricating thin liquid layer persists on the wall. However this lubricating liquid layer is periodically broken in the curved channel case leading to enhanced axial dispersion. It is found that the dispersion increases as the Peclet number (Pe) decreases both in straight and curved channels. Difference between the straight and curved channel decreases continuously as the Peclet number decreases and virtually disappears at low Peclet numbers, i.e., Pestudy. A model is proposed based on the difference between the liquid film thicknesses on the inner and outer side of the bend in the limit as Pe->∞. Good agreement is found between the computational results and the model when the liquid slug is well mixed by the chaotic advection.

  19. Perturbation theory and renormalisation group equations

    CERN Document Server

    Litim, Daniel F; Litim, Daniel F.; Pawlowski, Jan M.

    2002-01-01

    We discuss the perturbative expansion of several one-loop improved renormalisation group equations. It is shown that in general the integrated renormalisation group flows fail to reproduce perturbation theory beyond one loop.

  20. Numerical model of liquid metal flow in steel making tundish with flow modifiers

    Science.gov (United States)

    Vasantrao More, Manas; Saha, Sandip Kumar; Marje, Vishal; Balachandran, G.

    2017-04-01

    The optimum condition for clean steel production in the tundish of a continuous casting process reactor can be obtained using numerical modelling. Five different arrangements of flow modifier in the form of impact pad systems deployed in an eight ton, delta shaped, and two strand bloom caster tundish are analysed and optimum design of the impact pad to improve the inclusion removal efficiency is evolved. Reynolds Averaged Navier-Strokes (RANS) equations with standard k-ε model of turbulence and energy equation are used to study fluid flow and inclusion flotation in the tundish. The inclusion separation efficiency is evaluated by solving the inclusion transport equation. Height variations along with additional notch amongst different impact pads yield best micro inclusion separation efficiency.

  1. Unsteady three dimensional flow of Casson liquid film over a porous stretching sheet in the presence of uniform transverse magnetic field and suction/injection

    Energy Technology Data Exchange (ETDEWEB)

    Maity, S., E-mail: susantamaiti@gmail.com [Department of Mathematics, National Institute of Technology, Arunachal Pradesh, Yupia, Papumpare 791112 (India); Singh, S.K. [Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Kumar, A.V. [Department of Mathematics, National Institute of Technology, Arunachal Pradesh, Yupia, Papumpare 791112 (India)

    2016-12-01

    Three dimensional flow of thin Casson liquid film over a porous unsteady stretching sheet is investigated under assumption of initial uniform film thickness. The effects of the uniform transverse magnetic field, suction and injection are also considered for investigation. The nonlinear governing set of equations and film evolution equation are solved analytically by using singular perturbation technique. It is found that the film thickness decreases with the increasing values of the Casson parameter. The Hartmann number and porosity parameter resist the film thinning process. It is also observed that the film thickness increases with the increasing values of the suction velocity whereas it decreases for increasing values of the injection velocity at the stretching surface.

  2. Unsteady three dimensional flow of Casson liquid film over a porous stretching sheet in the presence of uniform transverse magnetic field and suction/injection

    Science.gov (United States)

    Maity, S.; Singh, S. K.; Kumar, A. V.

    2016-12-01

    Three dimensional flow of thin Casson liquid film over a porous unsteady stretching sheet is investigated under assumption of initial uniform film thickness. The effects of the uniform transverse magnetic field, suction and injection are also considered for investigation. The nonlinear governing set of equations and film evolution equation are solved analytically by using singular perturbation technique. It is found that the film thickness decreases with the increasing values of the Casson parameter. The Hartmann number and porosity parameter resist the film thinning process. It is also observed that the film thickness increases with the increasing values of the suction velocity whereas it decreases for increasing values of the injection velocity at the stretching surface.

  3. Review:Liquid film dryout model for predicting critical heat flux in annular two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Bo JIAO; Li-min QIU; Jun-liang LU; Zhi-hua GAN

    2009-01-01

    Gas-liquid two-phase flow and heat transfer can be encountered in numerous fields, such as chemical engineering, refrigeration, nuclear power reactor, metallurgical industry, spaceflight. Its critical heat flux (CHF) is one of the most important factors for the system security of engineering applications. Since annular flow is the most common flow pattern in gas-liquid two-phase flow, predicting CHF of annular two-phase flow is more significant. Many studies have shown that the liquid film dryout model is successful for that prediction, and determining the following parameters will exert predominant effects on the accuracy of this model: onset of annular flow, inception criterion for droplets entrainment, entrainment fraction, droplets deposi-tion and entrainment rates. The main theoretical results achieved on the above five parameters are reviewed; also, limitations in the existing studies and problems for further research are discussed.

  4. Effect of salts on the solubility of ionic liquids in water: experimental and electrolyte Perturbed-Chain Statistical Associating Fluid Theory†

    Science.gov (United States)

    Mohammad, Sultan; Schleinitz, Miko; Coutinhoa, João A. P.; Freire, Mara G.

    2016-01-01

    Due to scarce available experimental data, as well as due to the absence of predictive models, the influence of salts on the solubility of ionic liquids (ILs) in water is still poorly understood. To this end, this work addresses the solubility of the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4C1im][NTf2]), at 298.15 K and 0.1 MPa, in aqueous salt solutions (from 0.1 to 1.5 mol kg−1). At salt molalities higher than 0.2 mol kg−1, all salts caused salting-out of [C4C1im][NTf2] from aqueous solution with their strength decreasing in the following order: Al2(SO4)3 > ZnSO4 > K3C6H5O7 > KNaC4H4O6 > K3PO4 > Mg(CH3CO2)2 > K2HPO4 > MgSO4 > KH2PO4 > KCH3CO2. Some of these salts lead however to the salting-in of [C4C1im][NTf2] in aqueous medium at salt molalities lower than 0.20 mol kg−1. To attempt the development of a model able to describe the salt effects, comprising both the salting-in and salting-out phenomena observed, the electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT) was applied using ion-specific parameters. The gathered experimental data was modelled using ePC-SAFT parameters complemented by fitting a single binary parameter between K+ and the IL-ions to the IL solubility in K3PO4 aqueous solutions. Based on this approach, the description of anion-specific salting-out effects of the remaining potassium salts was found to be in good agreement with experimental data. Remarkably, ePC-SAFT is even able to predict the salting-in effect induced by K2HPO4, based on the single K+/IL-ions binary parameter which was fitted to an exclusively salting-out effect promoted by K3PO4. Finally, ePC-SAFT was applied to predict the influence of other sodium salts on the [C4C1im][NTf2] solubility in water, with experimental data taken from literature, leading to an excellent description of the liquid–liquid phase behaviour. PMID:26575280

  5. Studies of Two-Phase Gas-Liquid Flow in Microgravity. Ph.D. Thesis, Dec. 1994

    Science.gov (United States)

    Bousman, William Scott

    1995-01-01

    Two-phase gas-liquid flows are expected to occur in many future space operations. Due to a lack of buoyancy in the microgravity environment, two-phase flows are known to behave differently than those in earth gravity. Despite these concerns, little research has been conducted on microgravity two-phase flow and the current understanding is poor. This dissertation describes an experimental and modeling study of the characteristics of two-phase flows in microgravity. An experiment was operated onboard NASA aircraft capable of producing short periods of microgravity. In addition to high speed photographs of the flows, electronic measurements of void fraction, liquid film thickness, bubble and wave velocity, pressure drop and wall shear stress were made for a wide range of liquid and gas flow rates. The effects of liquid viscosity, surface tension and tube diameter on the behavior of these flows were also assessed. From the data collected, maps showing the occurrence of various flow patterns as a function of gas and liquid flow rates were constructed. Earth gravity two-phase flow models were compared to the results of the microgravity experiments and in some cases modified. Models were developed to predict the transitions on the flow pattern maps. Three flow patterns, bubble, slug and annular flow, were observed in microgravity. These patterns were found to occur in distinct regions of the gas-liquid flow rate parameter space. The effect of liquid viscosity, surface tension and tube diameter on the location of the boundaries of these regions was small. Void fraction and Weber number transition criteria both produced reasonable transition models. Void fraction and bubble velocity for bubble and slug flows were found to be well described by the Drift-Flux model used to describe such flows in earth gravity. Pressure drop modeling by the homogeneous flow model was inconclusive for bubble and slug flows. Annular flows were found to be complex systems of ring-like waves and a

  6. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification.

    Science.gov (United States)

    Choi, Dongwhi; Lee, Donghyeon; Kim, Dong Sung

    2015-10-14

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.

  7. Spatiotemporal Pattern Formation in BioFluids I: Cell Shape Perturbants As Evidence of Spatially-Organised Membrane Flows

    CERN Document Server

    Lofthouse, J T

    2003-01-01

    I show the assumed Bilayer structure of cell membranes is Topologically falsified by known aminophospholipid dynamics in metabolically-active, Far from Equilibrium cells. The sensitivity of lipid and cytoplasmic flows to temperature, surfactants, viscosity and the gravity vector are used to suggest that rather than being random viscous fluids as currently assumed, both are actually spatially-organised by convective and shear driven mechanisms in vivo. I show how protein-lipid feedback provokes a Gestalt Shift in Cell Mechanics by demonstrating that the primary forces involved in shape changes are generated by bifurcations in fluid flow Topology, which induce affine deformations of the cytoskeletal lattice. The feedback model allows the transduction of Gravitational information into biological form, is universally applicable, and provides a rationale for Homeoviscous Adaptation, and the extensive lipid polymorphism observed in Nature.

  8. Effects of magnetic fields on heat transfer in flowing liquid metals

    Science.gov (United States)

    Rhoads, J.; Edlund, E.; Sloboda, P.; Ji, H.

    2013-11-01

    The presence of a magnetic field can significantly change the dynamics of large and small scale features within conducting fluids. In particular, turbulent eddies with vorticity misaligned with the magnetic field are strongly damped via ohmic dissipation. Studying the anisotropic damping of the turbulence is critically important for understanding heat transport in flowing liquid metals. Experiments have been conducted in the Liquid Metal Experiment (LMX) using a GaInSn eutectic alloy as a working fluid to investigate these effects. These experiments considered free-surface, wide aspect-ratio flows with fluid velocities up to 20 cm/s and a uniform applied magnetic field strength up to 2 kG, corresponding to Reynolds numbers up to Re ~104 and interaction parameters up to N ~ 10 . Heat was injected into the flow via a resistive heater placed on the free surface and the fluid temperature downstream was monitored by an array of thermocouples and an infrared camera, while an array of velocity probes provided measurements of vortical structures within the flow. The changes observed in both vortical structures and global heat transfer within the fluid will be presented. Work supported under contract DE-AC02-09CH11466.

  9. Numerical simulation of three-dimensional gas/liquid two-phase flow in a proton exchange membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    ZHUGE Weilin; ZHANG Yangjun; MING Pingwen; LAO Xingsheng; CHEN Xiao

    2007-01-01

    Investigation into the formation and transport of liquid water in proton exchange membrane fuel cells (PEMFCs) is the key to fuel cell water management.A threedimensional gas/liquid two-phase flow and heat transfer model is developed based on the multiphase mixture theory.The reactant gas flow,diffusion,and chemical reaction as well as the liquid water transport and phase change process are modeled.Numerical simulations on liquid water distribution and its effects on the performance of a PEMFC are conducted.Results show that liquid water distributes mostly in the cathode,and predicted cell performance decreases quickly at high current density due to the obstruction of liquid water to oxygen diffusion.The simulation results agree well with experimental data.

  10. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    OpenAIRE

    Huajun Li; Haifeng Ji; Zhiyao Huang; Baoliang Wang; Haiqing Li; Guohua Wu

    2016-01-01

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Mach...

  11. Effect of shim configuration on internal die flows for non-Newtonian coating liquids in slot coating process

    Science.gov (United States)

    Jin, Guang Lin; Ahn, Won-Gi; Kim, See Jo; Nam, Jaewook; Jung, Hyun Wook; Hyun, Jae Chun

    2016-05-01

    In this study, a strategy for designing optimal shim configuration inside a slot die is suggested to assure the uniform coating flow distribution of various non-Newtonian shear-thinning liquids at the die exit in a slot coating system. Flow patterns of non-Newtonian liquids inside the slot die, via three-dimensional computations, have been compared using various shim geometries which can adjust the flow region in a slot manifold. The rather non-uniform (parabolic) velocity distributions of shear-thinning liquids at the die exit under the basic shim condition could be effectively flattened by the modification of shim geometry without the change of die manifold structure. Dimensions of hybrid shims for controlling flow features at edge and center regions within slit channel are positively tuned, according to the shear-thinning level of coating liquids.

  12. A Study on Solute Dispersion in a Three Layer Blood-like Liquid Flowing through a Rigid Artery

    National Research Council Canada - National Science Library

    Sudip Debnath; Apu Kumar Saha; Ashis Kumar Roy

    2017-01-01

    The unsteady dispersion of a solute has been discussed by the method of generalized dispersion technique in a blood-like liquid flowing through a pipe under the combined effects of finite yield stress...

  13. On effect of precession-induced flows in the liquid core for early Earth's history

    Directory of Open Access Journals (Sweden)

    S. L. Shalimov

    2006-01-01

    Full Text Available Secondary and tertiary flow patterns seen in experiments simulating flow in the Earth's liquid core induced by luni-solar precession of the solid mantle (Vanyo et al., 1995 hint at the development of non-axisymmetric columnar periodic structures. A simple interpretation of the structure formation is presented in a hydrodynamic approach. It is suggested that if similar flow patterns can occur in the Earth's liquid core enclosed into precessing and rotating mantle then kinematic of the flows may be regarded as a possible geodynamo mechanism for early Earth's history (before the solid core formation.

  14. Piv Method and Numerical Computation for Prediction of Liquid Steel Flow Structure in Tundish

    Directory of Open Access Journals (Sweden)

    Cwudziński A.

    2015-04-01

    Full Text Available This paper presents the results of computer simulations and laboratory experiments carried out to describe the motion of steel flow in the tundish. The facility under investigation is a single-nozzle tundish designed for casting concast slabs. For the validation of the numerical model and verification of the hydrodynamic conditions occurring in the examined tundish furniture variants, obtained from the computer simulations, a physical model of the tundish was employed. State-of-the-art vector flow field analysis measuring systems developed by Lavision were used in the laboratory tests. Computer simulations of liquid steel flow were performed using the commercial program Ansys-Fluent¯. In order to obtain a complete hydrodynamic picture in the tundish furniture variants tested, the computer simulations were performed for both isothermal and non-isothermal conditions.

  15. Investigation on the liquid water droplet instability in a simulated flow channel of PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Tae Hun; Kim, Bok Yung; Kim, Han Sang; Min, Kyoung Doug [Seoul National University, Seoul (Korea, Republic of)

    2008-05-15

    To investigate the characteristics of water droplets on the gas diffusion layer from both top-view and side-view of the flow channel, a rig test apparatus was designed and fabricated with prism attached plate. This experimental device was used to simulate the growth of a single liquid water droplet and its transport process with various air flow velocity and channel height. Not only dry condition but also fully humidified condition was also simulated by using a water absorbing sponge. The detachment height of the water droplet with dry and wet conditions was measured and analyzed. It was found that the droplet tends towards becoming unstable by decreased channel height, increased flow velocity or making a gas diffusion layer (GDL) dryer. Also, peculiar behavior of the water droplet in the channel was presented like attachment to hydrophilic wall or sudden breaking of droplet in case of fully hydrated condition. The simplified force balance model matches with experimental data as well

  16. Experimental study on the type change of liquid flow in broken coal samples

    Institute of Scientific and Technical Information of China (English)

    Lu-zhen WANG; Zhan-qing CHEN; Hai-de SHEN

    2013-01-01

    A test system of the permeability of broken coal samples mainly consists of a CMT5305 electronic universal test machine,crushed rock compaction containing cylinder and a self-designed seepage circuit,which is composed of a gear pump,a reversing valve,a relief valve and other components.By using the steady penetration method,the permeability and non-Darcy flow β factor of broken coal samples under five different porosity levels were measured,the grain diameters of the coal samples were selected as 2.5-5 mm,5-10 mm,10-15 mm,15-20 mm,20-25 mm and 2.5-25 mm,respectively.After measuring the permeability under each porosity,the overfall pressure of the relief valve continuously increased until the coal sample was broken down.In this way,the flow type of liquid inside the broken coal samples changed from seepage to pipe flow.The correlation between breakdown pressure gradient (BPG) and porosity was analyzed,and the BPG was compared with the pressure gradient when seepage instability occurred.The results show that,① the non-Darcy flow β factor was negative before broken coal samples with six kinds of diameters were broken down; ② the BPG of coal samples with a grain size of 2.5-25 mm was lower than that of the others; ③ the BPG of coal samples with a single diameter under the same porosity increased as the grain size increased; ④ the BPG could be fitted by an exponential function with porosity,and the exponent decreased as the grain size increased for coal samples with a single diameter; ⑤ the BPG was slightly less than the seepage instability pressure gradient.The change in liquid flow type from seepage to pipe flow could be regarded as the performance of the seepage instability.

  17. Materials Characterisation and Analysis for Flow Simulation of Liquid Resin Infusion

    Science.gov (United States)

    Sirtautas, J.; Pickett, A. K.; George, A.

    2015-06-01

    Liquid Resin Infusion (LRI) processes including VARI and VARTM have received increasing attention in recent years, particularly for infusion of large parts, or for low volume production. This method avoids the need for costly matched metal tooling as used in Resin Transfer Moulding (RTM) and can provide fast infusion if used in combination with flow media. Full material characterisation for LRI analysis requires models for three dimensional fabric permeability as a function of fibre volume content, fabric through-thickness compliance as a function of resin pressure, flow media permeability and resin viscosity. The characterisation of fabric relaxation during infusion is usually determined from cyclic compaction tests on saturated fabrics. This work presents an alternative method to determine the compressibility by using LRI flow simulation and fitting a model to experimental thickness measurements during LRI. The flow media is usually assumed to have isotropic permeability, but this work shows greater simulation accuracy from combining the flow media with separation plies as a combined orthotropic material. The permeability of this combined media can also be determined by fitting the model with simulation to LRI flow measurements. The constitutive models and the finite element solution were validated by simulation of the infusion of a complex aerospace demonstrator part.

  18. THE FRICTIONAL RESISTANCE CHARACTERISTICS OF GAS-LIQUID TWO-PHASE FLOW IN HELICAL-COILED TUBES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper deal with the frictional resistance characteristics of gas-liquid two-phase flow in vertical-upward helical-coiled tubes under the system pressure 0.1-0.6MPa.By means of dimension analysis and π theorem, the correlation formulas were obtained for calculating the frictional resistance coefficients of gas-liquid two-phase flow in helical-coiled tubes.The calculated results agree well with the experimental results.

  19. Numerical simulation of gas-liquid-solid flows using a combined front tracking and discrete particle method

    NARCIS (Netherlands)

    Sint Annaland, van M.; Deen, N.G.; Kuipers, J.A.M.

    2005-01-01

    In this paper a hybrid model is presented for the numerical simulation of gas¿liquid¿solid flows using a combined front tracking (FT) and discrete particle (DP) approach applied for, respectively, dispersed gas bubbles and solid particles present in the continuous liquid phase. The hard sphere DP mo

  20. Superamphiphobic Silicon-Nanowire-Embedded Microsystem and In-Contact Flow Performance of Gas and Liquid Streams.

    Science.gov (United States)

    Ko, Dong-Hyeon; Ren, Wurong; Kim, Jin-Oh; Wang, Jun; Wang, Hao; Sharma, Siddharth; Faustini, Marco; Kim, Dong-Pyo

    2016-01-26

    Gas and liquid streams are invariably separated either by a solid wall or by a membrane for heat or mass transfer between the gas and liquid streams. Without the separating wall, the gas phase is present as bubbles in liquid or, in a microsystem, as gas plugs between slugs of liquid. Continuous and direct contact between the two moving streams of gas and liquid is quite an efficient way of achieving heat or mass transfer between the two phases. Here, we report a silicon nanowire built-in microsystem in which a liquid stream flows in contact with an underlying gas stream. The upper liquid stream does not penetrate into the lower gas stream due to the superamphiphobic nature of the silicon nanowires built into the bottom wall, thereby preserving the integrity of continuous gas and liquid streams, although they are flowing in contact. Due to the superamphiphobic nature of silicon nanowires, the microsystem provides the best possible interfacial mass transfer known to date between flowing gas and liquid phases, which can achieve excellent chemical performance in two-phase organic syntheses.