WorldWideScience

Sample records for liquid biofuels vegetable

  1. Liquid Biofuels: Vegetable Oils and Bioethanol; Biocombustibles Liquidos: aceites Vegetales y Bioetanol

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, M.; Ballesteros, I.; Oliva, J.M.; Navarro, A.A.

    1998-12-01

    The European energy policy has defined clear objectives to reduce the high dependency on fossil petroleum imports, and to increase the security of sustainable energy supply for the transport sector. Moreover, the European environmental policy is requesting clean fuels that reduce environmental risks. Liquid Biofuels (vegetable oils and bioethanol) appear to be in a good position to contribute to achieve these goals expressed by the established objective of European Union to reach for biofuels a market share of 5% of motor vehicle consumption. This work presents the current state and perspectives of the production and utilisation of liquid fuels from agricultural sources by reviewing agricultural feedstocks for energy sector, conversion technologies and different ways to use biofuels. Environmental and economical aspects are also briefly analysed. (Author) 10 refs.

  2. SOLID BIOFUEL UTILIZATION IN VEGETABLE OIL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Slusarenko V.

    2016-08-01

    Full Text Available The paper deals with questions of creating at JSC “Alimentarmash "in the last 20 years the technological equipment for the production of vegetable oils from oilseeds: from the press for the final spin to mini oilfactory, using as an energy source for heating the liquid coolant (Thermal oil "Arian" of solid biofuels - husk of sunflower seeds.

  3. Biofuels

    International Nuclear Information System (INIS)

    Poitrat, E.

    2009-01-01

    Biofuels are fuels made from non-fossil vegetal or animal materials (biomass). They belong to the renewable energy sources as they do not contribute to worsen some global environmental impacts, like the greenhouse effect, providing that their production is performed in efficient energy conditions with low fossil fuel consumption. This article presents: 1 - the usable raw materials: biomass-derived resources, qualitative and quantitative aspects, biomass uses; 2 - biofuels production from biomass: alcohols and ethers, vegetable oils and their esters, synthetic liquid or gaseous biofuels, biogas; 3 - characteristics of liquid biofuels and comparison with gasoline and diesel fuel; 4 - biofuel uses: alcohols and their esters, biofuels with oxygenated compounds; vegetable oils and their derivatives in diesel engines, biogas, example of global environmental impact: the greenhouse effect. (J.S.)

  4. Conventional and advanced liquid biofuels

    Directory of Open Access Journals (Sweden)

    Đurišić-Mladenović Nataša L.

    2016-01-01

    Full Text Available Energy security and independence, increase and fluctuation of the oil price, fossil fuel resources depletion and global climate change are some of the greatest challanges facing societies today and in incoming decades. Sustainable economic and industrial growth of every country and the world in general requires safe and renewable resources of energy. It has been expected that re-arrangement of economies towards biofuels would mitigate at least partially problems arised from fossil fuel consumption and create more sustainable development. Of the renewable energy sources, bioenergy draws major and particular development endeavors, primarily due to the extensive availability of biomass, already-existence of biomass production technologies and infrastructure, and biomass being the sole feedstock for liquid fuels. The evolution of biofuels is classified into four generations (from 1st to 4th in accordance to the feedstock origin; if the technologies of feedstock processing are taken into account, than there are two classes of biofuels - conventional and advanced. The conventional biofuels, also known as the 1st generation biofuels, are those produced currently in large quantities using well known, commercially-practiced technologies. The major feedstocks for these biofuels are cereals or oleaginous plants, used also in the food or feed production. Thus, viability of the 1st generation biofuels is questionable due to the conflict with food supply and high feedstocks’ cost. This limitation favoured the search for non-edible biomass for the production of the advanced biofuels. In a general and comparative way, this paper discusses about various definitions of biomass, classification of biofuels, and brief overview of the biomass conversion routes to liquid biofuels depending on the main constituents of the biomass. Liquid biofuels covered by this paper are those compatible with existing infrastructure for gasoline and diesel and ready to be used in

  5. Competitive liquid biofuels from biomass

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    The cost of biodiesels varies depending on the feedstock, geographic area, methanol prices, and seasonal variability in crop production. Most of the biodiesel is currently made from soybean, rapeseed, and palm oils. However, there are large amounts of low-cost oils and fats (e.g., restaurant waste, beef tallow, pork lard, and yellow grease) that could be converted to biodiesel. The crop types, agricultural practices, land and labor costs, plant sizes, processing technologies and government policies in different regions considerably vary ethanol production costs and prices by region. The cost of producing bioethanol in a dry mill plant currently totals US$1.65/galon. The largest ethanol cost component is the plant feedstock. It has been showed that plant size has a major effect on cost. The plant size can reduce operating costs by 15-20%, saving another $0.02-$0.03 per liter. Thus, a large plant with production costs of $0.29 per liter may be saving $0.05-$0.06 per liter over a smaller plant. Viscosity of biofuel and biocrude varies greatly with the liquefaction conditions. The high and increasing viscosity indicates a poor flow characteristic and stability. The increase in the viscosity can be attributed to the continuing polymerization and oxidative coupling reactions in the biocrude upon storage. Although stability of biocrude is typically better than that of bio-oil, the viscosity of biocrude is much higher. The bio-oil produced by flash pyrolysis is a highly oxygenated mixture of carbonyls, carboxyls, phenolics and water. It is acidic and potentially corrosive. Bio-oil can also be potentially upgraded by hydrodeoxygenation. The liquid, termed biocrude, contains 60% carbon, 10-20 wt.% oxygen and 30-36 MJ/kg heating value as opposed to <1 wt.% and 42-46 MJ/kg for petroleum. (author)

  6. Competitive liquid biofuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, Ayhan [Sirnak University, Dean of Engineering Faculty, Department of Mechanical Engineering, Sirnak (Turkey)

    2011-01-15

    The cost of biodiesels varies depending on the feedstock, geographic area, methanol prices, and seasonal variability in crop production. Most of the biodiesel is currently made from soybean, rapeseed, and palm oils. However, there are large amounts of low-cost oils and fats (e.g., restaurant waste, beef tallow, pork lard, and yellow grease) that could be converted to biodiesel. The crop types, agricultural practices, land and labor costs, plant sizes, processing technologies and government policies in different regions considerably vary ethanol production costs and prices by region. The cost of producing bioethanol in a dry mill plant currently totals US$1.65/galon. The largest ethanol cost component is the plant feedstock. It has been showed that plant size has a major effect on cost. The plant size can reduce operating costs by 15-20%, saving another $0.02-$0.03 per liter. Thus, a large plant with production costs of $0.29 per liter may be saving $0.05-$0.06 per liter over a smaller plant. Viscosity of biofuel and biocrude varies greatly with the liquefaction conditions. The high and increasing viscosity indicates a poor flow characteristic and stability. The increase in the viscosity can be attributed to the continuing polymerization and oxidative coupling reactions in the biocrude upon storage. Although stability of biocrude is typically better than that of bio-oil, the viscosity of biocrude is much higher. The bio-oil produced by flash pyrolysis is a highly oxygenated mixture of carbonyls, carboxyls, phenolics and water. It is acidic and potentially corrosive. Bio-oil can also be potentially upgraded by hydrodeoxygenation. The liquid, termed biocrude, contains 60% carbon, 10-20 wt.% oxygen and 30-36 MJ/kg heating value as opposed to <1 wt.% and 42-46 MJ/kg for petroleum. (author)

  7. The potential of liquid biofuels in France

    International Nuclear Information System (INIS)

    Poitrat, Etienne

    1999-01-01

    The objective fixed by the European Commission in 1995 was that 5% of the fuel used for transport in Fance should be produced from renewable energy by 2005. As opposed to some other European countries, there is no environmental tax on fossil fuels in France, but the Government has agreed to a tax incentive system on biofuels. Experimental work on liquid biofuels as a transport fuel started in France in the early 80's, but the use of biofuels on a commercial basis really started to develop when the setaside rules and tax incentives came into force in 1991. Out of the two routes originally considered for development; bioethanol and its ETBE derivative, and vegetable oils and their methyl ester derivatives, priority has now been given to: ETBE produced from sugar beet and wheat and now from sub-products of starch industry, which are widely grown in France; ETBE is blended with gasoline for use in spark ignition engines. Production of wheat and beet for energy purposes is very similar to food production. In France, ethanol produce from sugar beet is a traditional industry; this was the first route to be developed. The results of a life cycle analysis made for ETBE produce from sugar beet will be given, showing advantages and limitations. Alcohol produced from wheat is a more recent activity; two industrial plants have been built since beginning of the 90's and other projects are planned like for example a production from starch industry. RME (rapeseed methyl ester) for use in diesel engines at various blend rates. Vegetable oils or their derivatives such as esters can be used directly in diesel engines. Pure, filtered and degummed oils can be used in pre-chamber engines. Relatively advanced knowledge has now been gained about esters; because their characteristics are very similar to those of conventional diesel fuel, they are considered suitable for use in direct injection diesel engines without engine modification. In France, methyl ester is at present produced mainly

  8. Liquid biofuels in the aeroderivative gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    DiCampli, James; Schornick, Joe; Farr, Rachel

    2010-09-15

    While there are regional economic and political incentives for using liquid biofuels for renewable power generation, several challenges must be addressed. Given the fuel volumes required, base-load operation with renewable fuels such as biodiesel and ethanol are not likely sustainable with today's infrastructure. However, blending of biofuels with fossil fuels is a more economic option to provide renewable power. In turn, this lays the foundation to increase to more power generation in the future as new generation biofuels come on line. And, much like the automotive industry, the power industry will need to institute design changes to accommodate these fuels.

  9. Future of Liquid Biofuels for APEC Economies

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A.; Overend, R. P.

    2008-05-01

    This project was initiated by APEC Energy Working Group (EWG) to maximize the energy sector's contribution to the region's economic and social well-being through activities in five areas of strategic importance including liquid biofuels production and development.

  10. Liquid biofuels - can they meet our expectations?

    Science.gov (United States)

    Glatzel, G.

    2012-04-01

    Liquid biofuels are one of the options for reducing the emission of greenhouse gases and the dependence on fossil fuels. This is reflected in the DIRECTIVE 2003/30/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the promotion of the use of biofuels or other renewable fuels for transport. The promotion of E10, an automotive fuel containing 10 percent bioethanol, is based on this directive. At present almost all bioethanol is produced from agricultural crops such as maize, corn or sugar beet and sugar cane in suitable climates. In view of shortages and rising prices of food, in particular in developing countries, the use of food and feed crops for biofuel production is increasingly criticized. Alternative sources of biomass are perennial grasses and wood, whose cellulose fraction can be converted to alcohol by the so called "second generation" processes, which seem to be close to commercial deployment. The use of the total plant biomass increases the biofuel yield per hectare as compared to conventional crops. Of special interest for biofuel production is woody biomass from forests as this avoids competition with food production on arable land. Historically woody biomass was for millennia the predominant source of thermal energy. Before fossil fuels came into use, up to 80 percent of a forest was used for fuel wood, charcoal and raw materials such as potash for trade and industry. Now forests are managed to yield up to 80 percent of high grade timber for the wood industry. Replacing sophisticatedly managed forests by fast growing biofuel plantations could make economic sense for land owners when a protected market is guaranteed by politics, because biofuel plantations would be highly mechanized and cheap to operate, even if costs for certified planting material and fertilizer are added. For forest owners the decision to clear existing long rotation forests for biofuel plantations would still be weighty because of the extended time of decades required to rebuild a

  11. Positive and negative impacts of agricultural production of liquid biofuels

    NARCIS (Netherlands)

    Reijnders, L.; Hester, R.E.; Harrison, R.M.

    2012-01-01

    Agricultural production of liquid biofuels can have positive effects. It can decrease dependence on fossil fuels and increase farmers’ incomes. Agricultural production of mixed perennial biofuel crops may increase pollinator and avian richness. Most types of agricultural crop-based liquid biofuel

  12. Pathways to Carbon-Negative Liquid Biofuels

    Science.gov (United States)

    Woolf, D.; Lehmann, J.

    2017-12-01

    Many climate change mitigation scenarios assume that atmospheric carbon dioxide removal will be delivered at scale using bioenergy power generation with carbon capture and storage (BECCS). However, other pathways to negative emission technologies (NETs) in the energy sector are possible, but have received relatively little attention. Given that the costs, benefits and life-cycle emissions of technologies vary widely, more comprehensive analyses of the policy options for NETs are critical. This study provides a comparative assessment of the potential pathways to carbon-negative liquid biofuels. It is often assumed that that decarbonisation of the transport sector will include use of liquid biofuels, particularly for applications that are difficult to electrify such as aviation and maritime transport. However, given that biomass and land on which to grow it sustainably are limiting factors in the scaling up of both biofuels and NETs, these two strategies compete for shared factors of production. One way to circumvent this competition is carbon-negative biofuels. Because capture of exhaust CO2 in the transport sector is impractical, this will likely require carbon capture during biofuel production. Potential pathways include, for example, capture of CO2 from fermentation, or sequestration of biochar from biomass pyrolysis in soils, in combination with thermochemical or bio-catalytic conversion of syngas to alcohols or alkanes. Here we show that optimal pathway selection depends on specific resource constraints. As land availability becomes increasingly limiting if bioenergy is scaled up—particularly in consideration that abandoned degraded land is widely considered to be an important resource that does not compete with food fiber or habitat—then systems which enhance land productivity by increasing soil fertility using soil carbon sequestration become increasingly preferable compared to bioenergy systems that deplete or degrade the land resource on which they

  13. DETERMINANTS FOR LIQUID BIOFUELS PRODUCTION IN POLAND AFTER 2006 – MODEL APPROACH

    Directory of Open Access Journals (Sweden)

    Michał Borychowski

    2017-06-01

    Full Text Available Liquid biofuels from agricultural raw materials (mainly cereals and oilseeds are produced in Poland on an industrial scale since 2005. Poland, implementing guidelines for the energy policy of the European Union, is committed to ensure the share of liquid biofuels in the total fuel consumption in transport in at least 10% by 2020. The development of liquid biofuels market is therefore dependent on the one hand on institutional factors (legal and administrative regulations, and on the other hand, primarily on the situation of agricultural raw materials markets (supply-demand relationships and prices and macroeconomic factors, mainly crude oil prices. The aim of the paper is empirical identification of determinants for the production of liquid biofuels (bioethanol and biodiesel in Poland. For this purpose there were built two econometric models based on multiple regression, indicating exactly which factors contribute to the increase or decrease in the production of liquid biofuels. For the bioethanol production importance are mainly sales of bioethanol, the variables concerning the cereals market (prices, purchase and export and macroeconomic factors – interest rate, GDP growth rate (change and USD / PLN exchange rate. Important determinants for the biodiesel production include total sale of biodiesel, production of rapeseed oil, import of rapeseed and vegetable oils (rapeseed oil and palm oil and their prices, as well as crude oil prices, which represent the macroeconomic environment. 

  14. Next generation of liquid biofuel production

    NARCIS (Netherlands)

    Batidzirai, B.

    2012-01-01

    More than 99% of all currently produced biofuels are classified as “first generation” (i.e. fuels produced primarily from cereals, grains, sugar crops and oil seeds) (IEA, 2008b). “Second generation” or “next generation” biofuels, on the other hand, are produced from lignocellulosic feedstocks such

  15. Environmental and energy aspects of liquid biofuels

    International Nuclear Information System (INIS)

    De Boo, W.

    1993-02-01

    When spending public money to reduce CO 2 emissions, it is necessary to establish which alternative energy source results in the largest reduction of CO 2 emission per unit cost. Comparison of different biofuels with other energy resources is therefore important. Bioethanol is compared with leadfree gasoline, and rapeseed oil methylester (RME) is compared with diesel. Subsequently, biofuel production as a method to reduce CO 2 emission will be compared with other sustainable energy resources. This comparison is based on the energy balance in chapter two and the final costs of biofuels in chapter six. The comparison of biofuels and current fossil fuels is based on emissions to the atmosphere of greenhouse gases and acidifying pollutants in chapter three. Pollution to soil and water by arable cropping is a specific characteristic of biofuel production and is difficult to compare with fossil fuels. On this subject biofuels are compared with other land uses in chapter four. This also applies to other adverse environmental aspects of agricultural production such as competition for land use with natural areas and recreation purposes. To explore future technological developments, a comparison is made in energy balances with estimated results after the year 2000. The overall conclusion is that there are far better options to achieve CO 2 reduction. 2 figs., 9 tabs., 14 appendices, 28 refs

  16. Liquid Biofuels: We Lose More than We Win

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Hedegaard, Karsten; Thyø, Kathrine

    2013-01-01

    biofuels, including first-generation bio-diesels (plant bio-diesels) as well as first- and second-generation bioethanols produced in Europe and the USA. When we prioritise biomass for these biofuels, we deprive ourselves the better alternative of using the same limited biomass for heat and power...... fuel substitution, and biomass is increasingly used for both the transport and the heat and power sectors, with increasing interest in using it for chemicals production as well. For the transport sector, the conversion of biomass to the liquid biofuels of bio-diesel and bioethanol is at present...

  17. Liquid biofuel production from volatile fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Steinbusch, K.J.J.

    2010-03-19

    The production of renewable fuels and chemicals reduces the dependency on fossil fuels and limits the increase of CO2 concentration in the atmosphere only if a sustainable feedstock and an energy efficient process are used. The thesis assesses the possibility to use municipal and industrial waste as biomass feedstock to have little of no competition with food production, and to save greenhouse gasses emissions. Waste is a complex substrate with a diverse composition and high water content. It can be homogenized without losing its initial energy value by anaerobic conversion to volatile fatty acids (VFA). Using VFA gives the opportunity to process cheap and abundantly present biomass residues to a fuel and chemical instead of sugar containing crops or vegetable oil. This thesis describes the feasibility to convert VFA to compounds with a higher energy content using mixed culture fermentations by eliminating of oxygen and/or increasing the carbon and hydrogen content. At high hydrogen pressure, protons and electrons release via the reduction of organic products such as VFA becomes thermodynamically more attractive. Three VFA reduction reactions were studied: hydrogenation to an alcohol with (1) hydrogen and (2) an electrode as electron donor, and (3) by chain elongation with hydrogen and ethanol. Based on concentration, production rate and efficiency, elongation of acetate with hydrogen and/or ethanol was the best technique to convert VFA into a fuel. In a CSTR (Continuous-flow stirred-tank reactor), 10.5 g L{sup -1} caproic acid and 0.48 g L{sup -1} caprylic acid were produced with ethanol and/or hydrogen at a specific MCFA (medium-chain fatty acids) production activity of 2.9 g caproate and 0.09 g caprylate per gram VSS d{sup -1} (volatile suspended solids). The products were selectively removed by calcium precipitation and solvent extraction with ethyl hexanoate and petroleum ether. Microbial characterization revealed that the microbial populations were stable and

  18. Review of Heterogeneous Catalysts for Catalytically Upgrading Vegetable Oils into Hydrocarbon Biofuels

    Directory of Open Access Journals (Sweden)

    Xianhui Zhao

    2017-03-01

    Full Text Available To address the issues of greenhouse gas emissions associated with fossil fuels, vegetable oilseeds, especially non-food oilseeds, are used as an alternative fuel resource. Vegetable oil derived from these oilseeds can be upgraded into hydrocarbon biofuel. Catalytic cracking and hydroprocessing are two of the most promising pathways for converting vegetable oil to hydrocarbon biofuel. Heterogeneous catalysts play a critical role in those processes. The present review summarizes current progresses and remaining challenges of vegetable oil upgrading to biofuel. The catalyst properties, applications, deactivation, and regeneration are reviewed. A comparison of catalysts used in vegetable oil and bio-oil upgrading is also carried out. Some suggestions for heterogeneous catalysts applied in vegetable oil upgrading to improve the yield and quality of hydrocarbon biofuel are provided for further research in the future.

  19. Review of Heterogeneous Catalysts for Catalytically Upgrading Vegetable Oils into Hydrocarbon Biofuels

    OpenAIRE

    Xianhui Zhao; Lin Wei; Shouyun Cheng; James Julson

    2017-01-01

    To address the issues of greenhouse gas emissions associated with fossil fuels, vegetable oilseeds, especially non-food oilseeds, are used as an alternative fuel resource. Vegetable oil derived from these oilseeds can be upgraded into hydrocarbon biofuel. Catalytic cracking and hydroprocessing are two of the most promising pathways for converting vegetable oil to hydrocarbon biofuel. Heterogeneous catalysts play a critical role in those processes. The present review summarizes current progres...

  20. State-of-art in liquid biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Poitrat, E. [Agency for Environment and Energy Management, Dept. of Agriculture and Bioenergies, Paris (France)

    2001-09-01

    European production of fuel alcohol/ETBE and VOME has now become significant and the research work undertaken i) to reduce the energy requirements and financial costs and ii) to improve environmental benefits, are of major importance. While optimisation still seems necessary, the gain to be achieved should come from the valorisation of co-products and increasing the size of production plants. Larger production plants will make it possible to implement techniques with higher investment costs but having greater energy efficiency. For VOME, the importance of the cost of producing the agricultural feedstock remains very critical, more so than the size of the industrial plant where the size of new plants (100 000 tons up to 250 000 tons) seems a good compromise. Wider use of biofuels will also depend on agricultural policy (setaside status), tax system and harmonisation of the European legislation on oxyfuels. It will improve the greenhouse effect in harmony with the KYOTO agreement. Environmental impacts, and more particularly their quantification in terms of externalities, remain a very crucial topic. In this situation, the quantity of produced biofuels is or will be more 2 millions tons now, including forecasted quantities, which represent 11% of the objective by 2010. Otherwise, the repartition of this current production is very unequal between the different countries of EC. The first production is planned by Germany with 1 millions tons, the second by France with 570 000 tons and the third by Spain with 306 000 tons. Smaller quantities are linked at Italy, Austria, Sweden and Belgium. Other countries have not biofuels production currently. (au)

  1. Microwave-assisted pyrolysis of biomass for liquid biofuels production

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Production of 2nd-generation biofuels from biomass residues and waste feedstock is gaining great concerns worldwide. Pyrolysis, a thermochemical conversion process involving rapid heating of feedstock under oxygen-absent condition to moderate temperature and rapid quenching of intermediate products......, is an attractive way for bio-oil production. Various efforts have been made to improve pyrolysis process towards higher yield and quality of liquid biofuels and better energy efficiency. Microwave-assisted pyrolysis is one of the promising attempts, mainly due to efficient heating of feedstock by ‘‘microwave...

  2. Stagnating liquid biofuel developments in Russia: Present status andfuture perspectives

    International Nuclear Information System (INIS)

    Pristupa, Alexey O.; Mol, Arthur P.J.; Oosterveer, Peter

    2010-01-01

    It is widely acknowledged that Russia possesses enormous biomass resources (). Its vast areas devoted to agricultural production and plentiful timber resources suggest good prospects for the development of liquid biofuel production. However, no significant advances in this direction have been reported till now. None of the numerous investment projects announced at the heydays of biofuel excitement in Russia (2006-2008) are at the moment commercially operating. There are no specialised plants for the production of bioethanol and biodiesel in Russia. Little is known of the reasons for this discrepancy between biofuel potential and actual development. In investigating this discrepancy, this article analyses national developments and investigates local dynamics through a case-study in the Omsk region. It is found that the reasons for this discrepancy are not related to technological incapabilities, but are to be found in the low policy and institutional priority given to non-fossil fuel exploitation and lack of market opportunities. Sprouts of second generation liquid biofuel technologies can be identified within the state system, but it remains to be seen how strong and how long these will be supported by the Russian state.

  3. Catalytic cracking of vegetable oil with metal oxides for biofuel production

    International Nuclear Information System (INIS)

    Yigezu, Zerihun Demrew; Muthukumar, Karuppan

    2014-01-01

    Highlights: • Biofuel was synthesized from vegetable oil by catalytic cracking. • Performance of six different metal catalysts was studied. • Influence of temperature and reaction time on the process was evaluated. • Methyl and ethyl esters are the major components of the biofuel synthesized. - Abstract: This study presents the utilization of metal oxides for the biofuel production from vegetable oil. The physical and chemical properties of the diesel-like products obtained, and the influence of reaction variables on the product distribution were investigated. Six different metal oxides (Co 3 O 4 , KOH, MoO 3 , NiO, V 2 O 5 , and ZnO) were employed as catalysts and the results indicated that the metal oxides are suitable for catalyzing the conversion of oil into organic liquid products (OLPs). The maximum conversion (87.6%) was obtained with V 2 O 5 at 320 °C in 40 min whereas a minimum conversion (55.1%) was obtained with MoO 3 at 390 °C in 30 min. The physical characteristics of the product obtained (density, specific gravity, higher heat value, flash point and kinematic viscosity), were in line with ASTM D6751 (B100) standards. The hydrocarbons majorly present in the product were found to be methyl and ethyl esters. Furthermore, OLPs obtained were distilled and separated into four components. The amount of light hydrocarbons, gasoline, kerosene and heavy oil like components obtained were 18.73%, 33.62%, 24.91% and 90.93%, respectively

  4. POTENTIAL FOR LIQUID BIOFUEL PRODUCTION IN THE ...

    African Journals Online (AJOL)

    user

    2013-02-27

    Feb 27, 2013 ... production from agro-industrial waste in South Africa. Gikuru Mwithiga ... are produced in. South Africa, as well as the immediately economic effect is also discussed. ... Also, the average cost ... production industry that produces some if not all liquid ... capable of producing alcohol in the fermentation process.

  5. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    The term biofuel is referred to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. Biofuels include bioethanol, biomethanol, vegetable oils, biodiesel, biogas, bio-synthetic gas (bio-syngas), bio-oil, bio-char, Fischer-Tropsch liquids, and biohydrogen. Most traditional biofuels, such as ethanol from corn, wheat, or sugar beets, and biodiesel from oil seeds, are produced from classic agricultural food crops that require high-quality agricultural land for growth. Bioethanol is a petrol additive/substitute. Biomethanol can be produced from biomass using bio-syngas obtained from steam reforming process of biomass. Biomethanol is considerably easier to recover than the bioethanol from biomass. Ethanol forms an azeotrope with water so it is expensive to purify the ethanol during recovery. Methanol recycles easier because it does not form an azeotrope. Biodiesel is an environmentally friendly alternative liquid fuel that can be used in any diesel engine without modification. There has been renewed interest in the use of vegetable oils for making biodiesel due to its less polluting and renewable nature as against the conventional petroleum diesel fuel. Due to its environmental merits, the share of biofuel in the automotive fuel market will grow fast in the next decade. There are several reasons for biofuels to be considered as relevant technologies by both developing and industrialized countries. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. The biofuel economy will grow rapidly during the 21st century. Its economy development is based on agricultural production and most people live in the rural areas. In the most biomass-intensive scenario, modernized biomass energy contributes by 2050 about one half of total energy

  6. The biofuels in France

    International Nuclear Information System (INIS)

    2006-04-01

    The biofuels are liquid renewable energies sources resulting from vegetal matters. Today are two channels of biofuels: the ethanol channel for gasoline and the vegetal oils channel for the diesel. In the first part, the document presents the different channels and the energy efficiency of the products. It shows in the second part the advantages for the environment (CO 2 accounting) and for the energy independence. It discusses then the future developments and the projects. The fourth part is devoted to the legislation, regulations, taxes and financial incentives. The last part presents the french petroleum industry actions and attitudes in the framework of the biofuels development. (A.L.B.)

  7. Lipid-based liquid biofuels from autotrophic microalgae: energetic and environmental performance

    NARCIS (Netherlands)

    Reijnders, L.

    2013-01-01

    Commercial cultivation of autotrophic microalgae for food production dates back to the 1950s. Autotrophic microalgae have also been proposed as a source for lipid-based liquid biofuels. As yet, there is no commercial production of such biofuels and estimated near-term prices are far in excess of

  8. Heuristic Methodology for Estimating the Liquid Biofuel Potential of a Region

    Directory of Open Access Journals (Sweden)

    Dorel Dusmanescu

    2016-08-01

    Full Text Available This paper presents a heuristic methodology for estimating the possible variation of the liquid biofuel potential of a region, an appraisal made for a future period of time. The determination of the liquid biofuel potential has been made up either on the account of an average (constant yield of the energetic crops that were used, or on the account of a yield that varies depending on a known trend, which can be estimated through a certain method. The proposed methodology uses the variation of the yield of energetic crops over time in order to simulate a variation of the biofuel potential for a future ten year time period. This new approach to the problem of determining the liquid biofuel potential of a certain land area can be useful for investors, as it allows making a more realistic analysis of the investment risk and of the possibilities of recovering the investment. On the other hand, the presented methodology can be useful to the governmental administration in order to elaborate strategies and policies to ensure the necessity of fuels and liquid biofuels for transportation, in a certain area. Unlike current methods, which approach the problem of determining the liquid biofuel potential in a deterministic way, by using econometric methods, the proposed methodology uses heuristic reasoning schemes in order to reduce the great number of factors that actually influence the biofuel potential and which usually have unknown values.

  9. The macro-environment for liquid Biofuels in Brazilian science and public policies

    OpenAIRE

    E. Talamini; H. Dewes

    2012-01-01

    The purpose of this study is to identify the macro-environmental dimensions through which Brazilian scientists and government officials have framed issues surrounding liquid biofuels over a period of time. This study analyzes scientific papers published by researchers affiliated with Brazilian institutions and official documents of the Brazilian government related to liquid biofuels. Documents published during a ten-year period (1997--2006) were collected from electronic sources. Text-mining ...

  10. The macro-environment for liquid biofuels in the German science, mass, media and government

    OpenAIRE

    Talamini, E.; Wubben, E.F.M.; Dewes, H.

    2010-01-01

    The purpose of this study is to investigate under which dimensions the macro-environment for liquid biofuels has been structured during time, respectively by science, mass media, and government in Germany, and how these three social expressions related to each other. Research was carried out on German official government documents, mass media news, and scientific papers on the topic 'liquid biofuels'. Text Mining was used to extract knowledge from their content. The results indicate that in c...

  11. Engineering ionic liquid-tolerant cellulases for biofuels production.

    Science.gov (United States)

    Wolski, Paul W; Dana, Craig M; Clark, Douglas S; Blanch, Harvey W

    2016-04-01

    Dissolution of lignocellulosic biomass in certain ionic liquids (ILs) can provide an effective pretreatment prior to enzymatic saccharification of cellulose for biofuels production. Toward the goal of combining pretreatment and enzymatic hydrolysis, we evolved enzyme variants of Talaromyces emersonii Cel7A to be more active and stable than wild-type T. emersonii Cel7A or Trichoderma reesei Cel7A in aqueous-IL solutions (up to 43% (w/w) 1,3-dimethylimdazolium dimethylphosphate and 20% (w/w) 1-ethyl-3-methylimidazolium acetate). In general, greater enzyme stability in buffer at elevated temperature corresponded to greater stability in aqueous-ILs. Post-translational modification of the N-terminal glutamine residue to pyroglutamate via glutaminyl cyclase enhanced the stability of T. emersonii Cel7A and variants. Differential scanning calorimetry revealed an increase in melting temperature of 1.9-3.9°C for the variant 1M10 over the wild-type T. emersonii Cel7A in aqueous buffer and in an IL-aqueous mixture. We observed this increase both with and without glutaminyl cyclase treatment of the enzymes. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Algae as a Biofuel: Renewable Source for Liquid Fuel

    Directory of Open Access Journals (Sweden)

    Vijay Kant Pandey

    2016-09-01

    Full Text Available Biofuels produced by algae may provide a feasible alternative to fossil fuels like petroleum sourced fuels. However, looking to limited fossil fuel associated with problems, intensive efforts have been given to search for alternative biofuels like biodiesel. Algae are ubiquitous on earth, have potential to produce biofuel. However, technology of biofuel from algae facing a number of hurdles before it can compete in the fuel market and be broadly organized. Different challenges include strain identification and improvement of algal biomass, both in terms of biofuel productivity and the production of other products to improve the economics of the entire system. Algal biofuels could be made more cost effective by extracting other valuable products from algae and algal strains. Algal oil can be prepared by culture of algae on municipal and industrial wastewaters. Photobioreactors methods provide a controlled environment that can be tailored to the specific demands of high production of algae to attain a consistently good yield of biofuel. The algal biomass has been reported to yield high oil contents and have good amount of the biodiesel production capacity. In this article, it has been attempted to review to elucidate the approaches for making algal biodiesel economically competitive with respect to petrodiesel. Consequently, R & D work has been carried out for the growth, harvesting, oil extraction and conversion to biodiesel from algal sources.

  13. Enzymatic biofuel cell based on electrodes modified with lipid liquid-crystalline cubic phases

    Science.gov (United States)

    Nazaruk, Ewa; Smoliński, Sławomir; Swatko-Ossor, Marta; Ginalska, Grażyna; Fiedurek, Jan; Rogalski, Jerzy; Bilewicz, Renata

    Two glassy carbon electrodes modified with enzymes embedded in lyotropic liquid-crystalline cubic phase were used for the biofuel cell construction. The monoolein liquid-crystalline film allowed to avoid separators in the biofuel cell. Glucose and oxygen as fuels, and glucose oxidase and laccase as anode and cathode biocatalysts, respectively were used. The biofuel cell parameters were examined in McIlvaine buffer, pH 7 solution containing 15 mM of glucose and saturated with dioxygen. A series of mediators were tested taking into account their formal potentials, stability in the cubic phase and efficiency of mediation. Most stable was the biofuel cell based on tetrathiafulvalene (TTF) and 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as anode and cathode mediators, respectively. The open-circuit voltage was equal to 450 ± 40 mV. The power densities and current densities were measured for all the systems studied.

  14. Practical implementation of liquid biofuels: The transferability of the Brazilian experiences

    International Nuclear Information System (INIS)

    Alonso-Pippo, Walfrido; Luengo, Carlos A.; Alonsoamador Morales Alberteris, Lidice; García del Pino, Gilberto; Duvoisin, Sergio

    2013-01-01

    The main purpose of this paper was to carry out a systematic analysis of the particularities and trends pertaining to the development of biofuels in Brazil—a country which has demonstrated its leadership in this field during the last 40 years. The Brazilian experiences with biofuels are often used as references for decision making by other developed and developing countries. The transferability of Brazil's biofuels practices would be appreciated by many researchers and energy policy markers across the world. This work uses an adapted 5W2H (what, when, where, why, who, how, and how much) analysis technique to answer a variety of questions about the subject. The data, facts, and figures herein are offered as resources for other researchers and policy makers seeking benchmarking. Also, this work discusses the main certainties and uncertainties of the sugarcane agro-industry, and also goes into detail about the ethanol supply chain structure, its management, and particularities. Finally, this research analyzes the central aspects of biofuels implementation in Brazil, lists the most important aspects to consider during a selection of possible standard biofuels, and presents the main aspects of the National Program of Biodiesel Production and its sustainability. - Highlights: • A systemic cause–effect analysis was carried out on biofuel program success. • Main questions concerning implementation of liquid biofuels in Brazil were studied. • Main weakness aspects of biofuel logistic were treated. • During selection of benchmarking strategy. What needs to take into account?

  15. Layered double hydroxide catalyst for the conversion of crude vegetable oils to a sustainable biofuel

    Science.gov (United States)

    Mollaeian, Keyvan

    Over the last two decades, the U.S. has developed the production of biodiesel, a mixture of fatty acid methyl esters, using chiefly vegetable oils as feedstocks. However, there is much concern about the availability of high-quality vegetable oils for longterm biodiesel production. Problems have also risen due to the production of glycerol, an unwanted byproduct, as well as the need for process wash water. Therefore, this study was initiated to produce not only fatty acid methyl esters (FAMEs) but also fatty acid glycerol carbonates (FAGCs) by replacing methanol with dimethyl carbonate (DMC). The process would have no unnecessary byproducts and would be a simplified process compared to traditional biodiesel. In addition, this altering of the methylating agent could convert triglycerides, free fatty acids, and phospholipids to a sustainable biofuel. In this project, Mg-Al Layered Double Hydroxide (LDH) was optimized by calcination in different temperature varied from 250°C to 450°C. The gallery between layers was increased by intercalating sodium dodecylsulfate (SDS). During catalyst preparation, the pH was controlled ~10. In our experiment, triazabicyclodecene (TBD) was attached with trimethoxysilane (3GPS) as a coupling agent, and N-cetyl-N,N,N-trimethylammonium bromide (CTAB) was added to remove SDS from the catalyst. The catalyst was characterized by XRD, FTIR, and Raman spectroscopy. The effect of the heterogeneous catalyst on the conversion of canola oil, corn oil, and free fatty acids was investigated. To analyze the conversion of lipid oils to biofuel an in situ Raman spectroscopic method was developed. Catalyst synthesis methods and a proposed mechanism for converting triglycerides and free fatty acids to biofuel will be presented.

  16. Economics of small-scale on-farm use of canola and soybean for biodiesel and straight vegetable oil biofuels

    International Nuclear Information System (INIS)

    Fore, Seth R.; Porter, Paul; Jordan, Nicholas; Lazarus, William

    2011-01-01

    While the cost competitiveness of vegetable oil-based biofuels (VOBB) has impeded extensive commercialization on a large-scale, the economic viability of small-scale on-farm production of VOBB is unclear. This study assessed the cost competitiveness of small-scale on-farm production of canola- [Brassica napus (L.)] and soybean-based [Glycine max (L.)] biodiesel and straight vegetable oil (SVO) biofuels in the upper Midwest at 2007 price levels. The effects of feedstock type, feedstock valuation (cost of production or market price), biofuel type, and capitalization level on the cost L -1 of biofuel were examined. Valuing feedstock at the cost of production, the cost of canola-based biodiesel ranged from 0.94 to 1.13 L -1 and SVO from 0.64 to 0.83 L -1 depending on capitalization level. Comparatively, the cost of soybean-based biodiesel and SVO ranged from 0.40 to 0.60 L -1 and from 0.14 to 0.33 L -1 , respectively, depending on capitalization level. Valuing feedstock at the cost of production, soybean biofuels were cost competitive whereas canola biofuels were not. Valuing feedstock at its market price, canola biofuels were more cost competitive than soybean-based biofuels, though neither were cost competitive with petroleum diesel. Feedstock type proved important in terms of the meal co-product credit, which decreased the cost of biodiesel by 1.39 L -1 for soybean and 0.44 L -1 for canola. SVO was less costly to produce than biodiesel due to reduced input costs. At a small scale, capital expenditures have a substantial impact on the cost of biofuel, ranging from 0.03 to 0.25 L -1 . (author)

  17. Economics of small-scale on-farm use of canola and soybean for biodiesel and straight vegetable oil biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Fore, Seth R.; Porter, Paul; Jordan, Nicholas [Department of Agronomy and Plant Genetics, 1991 Upper Buford Circle, Borlaug 411, The University of Minnesota, Saint Paul, Minnesota 55108 (United States); Lazarus, William [Department of Applied Economics, 231 Classroom Office Building, 1994 Buford Avenue, The University of Minnesota, Saint Paul, Minnesota 55108 (United States)

    2011-01-15

    While the cost competitiveness of vegetable oil-based biofuels (VOBB) has impeded extensive commercialization on a large-scale, the economic viability of small-scale on-farm production of VOBB is unclear. This study assessed the cost competitiveness of small-scale on-farm production of canola- [Brassica napus (L.)] and soybean-based [Glycine max (L.)] biodiesel and straight vegetable oil (SVO) biofuels in the upper Midwest at 2007 price levels. The effects of feedstock type, feedstock valuation (cost of production or market price), biofuel type, and capitalization level on the cost L{sup -1} of biofuel were examined. Valuing feedstock at the cost of production, the cost of canola-based biodiesel ranged from 0.94 to 1.13 L{sup -1} and SVO from 0.64 to 0.83 L{sup -1} depending on capitalization level. Comparatively, the cost of soybean-based biodiesel and SVO ranged from 0.40 to 0.60 L{sup -1} and from 0.14 to 0.33 L{sup -1}, respectively, depending on capitalization level. Valuing feedstock at the cost of production, soybean biofuels were cost competitive whereas canola biofuels were not. Valuing feedstock at its market price, canola biofuels were more cost competitive than soybean-based biofuels, though neither were cost competitive with petroleum diesel. Feedstock type proved important in terms of the meal co-product credit, which decreased the cost of biodiesel by 1.39 L{sup -1} for soybean and 0.44 L{sup -1} for canola. SVO was less costly to produce than biodiesel due to reduced input costs. At a small scale, capital expenditures have a substantial impact on the cost of biofuel, ranging from 0.03 to 0.25 L{sup -1}. (author)

  18. The Macro-Environment for Liquid Biofuels in German Science, Mass Media and Government

    NARCIS (Netherlands)

    Talamini, E.; Wubben, E.F.M.; Dewes, H.

    2013-01-01

    This paper aims to investigate the dimensions under which the macro-environment for liquid biofuels has been structured during the time, respectively by German scientists, journalists, and policy-makers, and how these three stakeholders related to each other. Research was carried out on German

  19. The macro-environment for liquid biofuels in the German science, mass, media and government

    NARCIS (Netherlands)

    Talamini, E.; Wubben, E.F.M.; Dewes, H.

    2010-01-01

    The purpose of this study is to investigate under which dimensions the macro-environment for liquid biofuels has been structured during time, respectively by science, mass media, and government in Germany, and how these three social expressions related to each other. Research was carried out on

  20. The macro-environment for liquid biofuels in the US mass media, science and government

    NARCIS (Netherlands)

    Wubben, E.F.M.; Talamini, E.; Dewes, H.

    2010-01-01

    The purpose of this study is to investigate under which dimensions the macro-environment for liquid biofuels has been structured during time, respectively by science, mass media, and government in Germany, and how these three social expressions related to each other. Research was carried out on

  1. The macro-environment for liquid biofuels in the US mass media, science and government

    OpenAIRE

    Wubben, E.F.M.; Talamini, E.; Dewes, H.

    2010-01-01

    The purpose of this study is to investigate under which dimensions the macro-environment for liquid biofuels has been structured during time, respectively by science, mass media, and government in Germany, and how these three social expressions related to each other. Research was carried out on German official government documents, mass media news, and scientific papers on the topic ‘liquid biofuels’. Text Mining was used to extract knowledge from their content. The results indicate that in c...

  2. Vegetable oil based liquid nanocomposite dielectric

    Directory of Open Access Journals (Sweden)

    Leon Chetty

    2013-01-01

    Full Text Available Physically smaller dielectric materials would improve the optimisation of space for power systems. Development of nanotechnology provides an effective way to improve the performances of insulating oils used in power system applications. In this research study, we focused on the development of nanomodified vegetable oils to be used in power transformers. Higher conduction currents were observed in virgin linseed oil than in virgin castor oil. However, for both virgin linseed and virgin castor oil, the DC conduction current increased approximately linearly with the applied DC voltage. In nanomodified linseed oil, the characteristic curve showed two distinct regions: a linear region (at lower applied voltage and a saturation region (at slightly higher voltage. Conversely, in nanomodified castor oil, the characteristic curve showed three distinct regions: a linear region (at lower applied voltage, a saturation region (at intermediate applied voltage and an exponential growth region (at higher applied voltage. The nanomodified linseed oil exhibited a better dielectric performance than the nanomodified castor oil. Overall, the addition of nanodielectrics to vegetable oils decreased the dielectric performance of the vegetable oils. The results of this study contribute to the understanding of the pre-breakdown phenomenon in liquid nanocomposite dielectrics.

  3. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli

    Science.gov (United States)

    Bokinsky, Gregory; Peralta-Yahya, Pamela P.; George, Anthe; Holmes, Bradley M.; Steen, Eric J.; Dietrich, Jeffrey; Soon Lee, Taek; Tullman-Ercek, Danielle; Voigt, Christopher A.; Simmons, Blake A.; Keasling, Jay D.

    2011-01-01

    One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical fuels. Such an organism would require pathways for hydrocarbon production and the capacity to secrete sufficient enzymes to efficiently hydrolyze cellulose and hemicellulose. To demonstrate how one might engineer and coordinate all of the necessary components for a biomass-degrading, hydrocarbon-producing microorganism, we engineered a microorganism naïve to both processes, Escherichia coli, to grow using both the cellulose and hemicellulose fractions of several types of plant biomass pretreated with ionic liquids. Our engineered strains express cellulase, xylanase, beta-glucosidase, and xylobiosidase enzymes under control of native E. coli promoters selected to optimize growth on model cellulosic and hemicellulosic substrates. Furthermore, our strains grow using either the cellulose or hemicellulose components of ionic liquid-pretreated biomass or on both components when combined as a coculture. Both cellulolytic and hemicellulolytic strains were further engineered with three biofuel synthesis pathways to demonstrate the production of fuel substitutes or precursors suitable for gasoline, diesel, and jet engines directly from ionic liquid-treated switchgrass without externally supplied hydrolase enzymes. This demonstration represents a major advance toward realizing a consolidated bioprocess. With improvements in both biofuel synthesis pathways and biomass digestion capabilities, our approach could provide an economical route to production of advanced biofuels. PMID:22123987

  4. Is it environmentally advantageous to use vegetable oil directly as biofuel instead of converting it to biodiesel?

    International Nuclear Information System (INIS)

    Esteban, Bernat; Baquero, Grau; Puig, Rita; Riba, Jordi-Roger; Rius, Antoni

    2011-01-01

    The oil price instability and the measures taken to reduce the increase in greenhouse gas emissions are the main factors promoting the development and use of environmentally friendly energies. From an energy efficiency point of view, biofuels constitute a renewable energy source and its use helps to reduce energy dependency on fossil fuels. The most used biofuels for transport worldwide are biodiesel (BD) and bioethanol. However, there are other options such as straight vegetable oil (SVO). SVO can be small-scale produced in local cooperatives through pressing, filtering and conditioning processes which are much simpler than the ones required for BD production. In this study a comparative life cycle assessment (LCA) of two biofuels obtained from Spanish rapeseed, namely small-scale SVO and large-scale BD, is performed. The LCA methodology allows the two biofuels' production and their rate of consumption in a vehicle (a truck) to be compared. In this manner, it is possible to assess which is environmentally advantageous: to use SVO directly as biofuel or to convert it to BD. Moreover, LCA is used in the study to calculate the energy return on investment index (EROI) and an energy conversion ratio to evaluate which biofuel is more energy efficient. The obtained results show the environmental benefits of using SVO instead of BD by analyzing representative impact categories defined by the CML and EDIP methods. A sensitivity analysis has also been conducted. EROI indexes for SVO and BD production show a clear preference for SVO as compared to BD.

  5. Examining the potential for liquid biofuels production and usage in Ghana

    International Nuclear Information System (INIS)

    Afrane, George

    2012-01-01

    The perennial political and social upheavals in major oil-producing regions, the increasing energy demand from emerging economies, the global economic crisis and even environmental disasters, like the recent major oil spill in the Gulf of Mexico, all contribute to price fluctuations and escalations. Usually price instability affects the least-developed countries with the most fragile economies, like Ghana, the most. This paper gives a brief overview of the Ghanaian energy situation, describes the liquid biofuel production processes and examines the possibility of replacing some of the fossil fuels consumed annually, with locally produced renewable biofuels. Various scenarios for substituting different portions of petrol and diesel with biofuels derived from cassava and palm oil are examined. Based on 2009 crop production and fuel consumption data, replacement of 5% of both petrol and diesel with biofuels would require 1.96% and 17.3% of the cassava and palm oil produced in that year, respectively; while replacement of 10% of both fossil fuels would need 3.91% and 34.6% of the corresponding biofuels. Thus while petrol replacement could be initiated with little difficulty, regarding raw material availability, biodiesel would require enhanced palm oil production and/or oil supplement from other sources, including, potentially, jatropha. An implementation strategy is proposed.

  6. On the atomization and combustion of liquid biofuels in gas turbines: towards the application of biomass-derived pyrolysis oil

    NARCIS (Netherlands)

    Sallevelt, J.L.H.P.

    2015-01-01

    The combustion of liquid biofuels in gas turbines is an efficient way of generating heat and power from biomass. Gas turbines play a major role in the global energy supply and are suitable for a wide range of applications. However, biofuels generally have different properties compared to

  7. potential for liquid biofuel production in the southern african region

    African Journals Online (AJOL)

    user

    2013-02-27

    Feb 27, 2013 ... There has been a sustained and growing interest in the production of liquid fuel from biomass in recent years. ... This work looks at the energy situation in South Africa and especially the liquid fuel sector and explores the ...... alcohol production.http://www.lowcvp.org.uk/assets/reports/HGCA%20RR61.

  8. Solid and liquid biofuels markets in Finland. A study on international biofuels trade. IEA bioenergy task 40 and EUROBIONET II. Country report of Finland

    International Nuclear Information System (INIS)

    Heinimoe, J.; Alakangas, E.

    2006-01-01

    This study considered the current situation of solid and liquid biofuels markets and international biofuels trade in Finland and identified the challenges of the emerging international biofuels markets for Finland. The fact that industry consumes more than half of the total primary energy, widely applied combined heat and power production (CHP) and a high share of biofuels in the total energy consumption are specific to the Finnish energy system. One third of the electricity is generated in CHP plants. As much as 27% of the total energy consumption is met by using wood and peat, which makes Finland the leading country in the use of biofuels. Finland has made a commitment to maintain greenhouse gas emissions at the 1990 level at the highest during the period 2008-2012. The Finnish energy policy aims to achieve the target, and a variety of measures are taken to promote the use of renewable energy sources and especially wood fuels. In this study, the wooden raw material streams of the forest industry were included the international biofuels trade in addition to biomass streams that are traded for energy production. In 2004, as much as 45% of the raw wood imported into Finland ended up in energy production. The total international trading of biofuels was evaluated at 72 PJ, of which the majority, 58 PJ, was raw wood. About 22% of wood based energy in Finland originated from imported raw wood. Tall oil and wood pellets composed the largest export streams of biofuels. The annual turnover of international biofuels trade was estimated at about euro 90 million for direct trade and at about euro 190 million for indirect trade. The forest industry as the biggest user of wood, and the producer and user of wood fuels has a central position in biomass and biofuels markets in Finland. Lately, the international aspects of Finnish biofuels markets have been emphasised as the import of raw wood and the export of wood pellets have increased. Expanding the use of biofuels in the road

  9. The Renewable Energy Directive: biofuels, biomass and sustainable development criteria. How to check in France the compliance of marketed biofuels with sustainability criteria defined by the Directive on renewable energies? (Phase 1: biofuels and bio-liquids)

    International Nuclear Information System (INIS)

    2009-06-01

    After having recalled and commented the main principles of the European directive which sets objectives in terms of renewable energy promotion and consumption, this report analyses the quantitative and qualitative sustainability criteria which must be applied particularly to biofuels and bio-liquids produced from agricultural activities, and their application perspectives. It gives recommendations to assess these criteria. It also comments the modalities used to control the compliance of biofuels with these criteria

  10. A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels.

    Directory of Open Access Journals (Sweden)

    Joshua I Park

    Full Text Available Generation of biofuels from sugars in lignocellulosic biomass is a promising alternative to liquid fossil fuels, but efficient and inexpensive bioprocessing configurations must be developed to make this technology commercially viable. One of the major barriers to commercialization is the recalcitrance of plant cell wall polysaccharides to enzymatic hydrolysis. Biomass pretreatment with ionic liquids (ILs enables efficient saccharification of biomass, but residual ILs inhibit both saccharification and microbial fuel production, requiring extensive washing after IL pretreatment. Pretreatment itself can also produce biomass-derived inhibitory compounds that reduce microbial fuel production. Therefore, there are multiple points in the process from biomass to biofuel production that must be interrogated and optimized to maximize fuel production. Here, we report the development of an IL-tolerant cellulase cocktail by combining thermophilic bacterial glycoside hydrolases produced by a mixed consortia with recombinant glycoside hydrolases. This enzymatic cocktail saccharifies IL-pretreated biomass at higher temperatures and in the presence of much higher IL concentrations than commercial fungal cocktails. Sugars obtained from saccharification of IL-pretreated switchgrass using this cocktail can be converted into biodiesel (fatty acid ethyl-esters or FAEEs by a metabolically engineered strain of E. coli. During these studies, we found that this biodiesel-producing E. coli strain was sensitive to ILs and inhibitors released by saccharification. This cocktail will enable the development of novel biomass to biofuel bioprocessing configurations that may overcome some of the barriers to production of inexpensive cellulosic biofuels.

  11. A Thermophilic Ionic Liquid-Tolerant Cellulase Cocktail for the Production of Cellulosic Biofuels

    Science.gov (United States)

    Park, Joshua I.; Steen, Eric J.; Burd, Helcio; Evans, Sophia S.; Redding-Johnson, Alyssa M.; Batth, Tanveer; Benke, Peter I.; D'haeseleer, Patrik; Sun, Ning; Sale, Kenneth L.; Keasling, Jay D.; Lee, Taek Soon; Petzold, Christopher J.; Mukhopadhyay, Aindrila; Singer, Steven W.; Simmons, Blake A.; Gladden, John M.

    2012-01-01

    Generation of biofuels from sugars in lignocellulosic biomass is a promising alternative to liquid fossil fuels, but efficient and inexpensive bioprocessing configurations must be developed to make this technology commercially viable. One of the major barriers to commercialization is the recalcitrance of plant cell wall polysaccharides to enzymatic hydrolysis. Biomass pretreatment with ionic liquids (ILs) enables efficient saccharification of biomass, but residual ILs inhibit both saccharification and microbial fuel production, requiring extensive washing after IL pretreatment. Pretreatment itself can also produce biomass-derived inhibitory compounds that reduce microbial fuel production. Therefore, there are multiple points in the process from biomass to biofuel production that must be interrogated and optimized to maximize fuel production. Here, we report the development of an IL-tolerant cellulase cocktail by combining thermophilic bacterial glycoside hydrolases produced by a mixed consortia with recombinant glycoside hydrolases. This enzymatic cocktail saccharifies IL-pretreated biomass at higher temperatures and in the presence of much higher IL concentrations than commercial fungal cocktails. Sugars obtained from saccharification of IL-pretreated switchgrass using this cocktail can be converted into biodiesel (fatty acid ethyl-esters or FAEEs) by a metabolically engineered strain of E. coli. During these studies, we found that this biodiesel-producing E. coli strain was sensitive to ILs and inhibitors released by saccharification. This cocktail will enable the development of novel biomass to biofuel bioprocessing configurations that may overcome some of the barriers to production of inexpensive cellulosic biofuels. PMID:22649505

  12. Fuel production from biomass: generation of liquid biofuels

    Directory of Open Access Journals (Sweden)

    Carmen Ghergheleş

    2008-05-01

    Full Text Available Anaerobic fermentation processes mayalso be used to produce liquid fuels frombiological raw materials. An example is theethanol production from glucose, known asstandard yeast fermentation in the beer, wine andliquor industries. It has to take place in steps, suchthat the ethanol is removed (by distillation ordehydrator application whenever itsconcentration approaches a value (around 12%which would impede reproduction of the yeastculture.

  13. Technical solutions to make biofuels more competitive

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    With the present day environmental and economical stakes, the French government has announced in 2005 a plan for the accelerated development of biofuels. In France, two traditional ways of biofuel generation exist: the bio-ethanol way and the bio-diesel way (methyl esters of vegetable oils). Two problems limit today the development of biofuels: the available cultivation surfaces and the production costs. The challenge of the next generation of biofuels concerns the better use of the available biomass, with no competition with the food productions, and in particular the development of ethyl esters of vegetable oils or the hydrogen processing of vegetable oils. Other processes are making their way, like the biomass to liquid (BTL) process, based on the Fischer-Tropsch synthesis, which allows to convert any type of biomass source into liquid fuels with a high production rate (about 5000 l/Ha). Short paper. (J.S.)

  14. Methodological aspects on international biofuels trade: International streams and trade of solid and liquid biofuels in Finland

    International Nuclear Information System (INIS)

    Heinimoe, J.

    2008-01-01

    The use of biomass for fuel is increasing in industrialised countries. Rapidly developing biomass markets for energy purposes along with weak information on biofuels trade that statistics offer have been incentives for several recently published studies investigating the status of biofuels trade. The comparison of the studies is often challenging due particularly to the various approaches to the indirect trade of biofuels and the diverse data sources utilised. The purpose of this study was to provide an overview of the Finnish situation with respect to the status of the streams of international biofuels trade. Parallel to this, the study aimed to identify methodological and statistical challenges in observing international biofuels trade. The study analysed available statistical information and introduced a procedure to obtain a clear overview on import and export streams of biofuels. In Finland, the total direct import and export of biofuels, being mainly composed of wood pellets and tall oil, is tiny in comparison with the total consumption of biofuels. Instead, the indirect trade has remarkable importance. Large import volumes of industrial raw wood make Finland a net importer of biofuels. In 2004, approximately 22% (64 PJ) of wood-based energy in Finland originated from imported wood. The study showed that the indirect trade of biofuels may be a significant sector of global biofuels trade. In the case of Finland, a comprehensive compilation of statistics on energy and forestry enabled the determination of the trade status satisfactory. However, national and international statistics should be further developed to take better into consideration international trade and to support continuously developing biofuels markets. (author)

  15. A Methodology Proposal to Calculate the Externalities of Liquid Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Galan, A.; Gonzalez, R.; Varela, M. [Ciemat. Madrid (Spain)

    1999-05-01

    The aim of the survey is to propose a methodology to calculate the externalities associated with the liquid bio fuels cycle. The report defines the externalities from a theoretical point of view and classifies them. The reasons to value the externalities are explained as well as the existing methods. Furthermore, an evaluation of specific environmental and non-environmental externalities is also presented. The report reviews the current situation of the transport sector, considering its environmental effects and impacts. The progress made by the ExternE and ExternE-transport projects related the externalities of transport sector is assessed. Finally, the report analyses the existence of different economic instruments to internalize the external effects of the transport sector as well as other aspects of this internalization. (Author) 58 refs.

  16. Production of liquid biofuels in the world after 2000. Its level and dynamics

    Directory of Open Access Journals (Sweden)

    Michał Borychowski

    2014-08-01

    Full Text Available As crude oil resources decrease, the demand for this raw material is growing and its extraction is becoming less certain. In this situation the world turns to renewable energy sources, which include inter alia liquid biocomponents I generation (conventional biocomponents, which are produced from agricultural raw materials. The global biofuels has been sector is for several years developing fast. The main indications of this is the increasing production and consumption of liquid biocomponents in an increasing number of countries on all continents – both in developed countries, as well as developing countries. The main basis for the development of this industry tends to be the economic benefits, but we must not ignore the risks that arise in relation to this segment of the economy. The significance of this subject is fact that today the importance of liquid biocomponents (and other renewable energy sources is increasing. In addition, the production of biofuels from edible agricultural raw materials is controversial, and hence we need a world wide discourse to look at the sector from the perspective of both the benefits and risks (economic, social, environmental. The purpose of this article is to present the production and consumption of liquid biocomponents worldwide and in selected countries the release dynamics in recent years. In addition, this article is an attempt to identify the factors determining the development of the industry on a global scale.

  17. Sustainable Liquid Biofuels from Biomass Biorefining (SUNLIBB). Policy Brief No. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-03-01

    The SUNLIBB project is funded under the European Seventh Framework Programme (FP7) within the Energy theme: Second Generation Biofuels -- EU Brazil Coordinated Call. SUNLIBB started on 1 October 2010 for 4 years and collaborates with a parallel project in Brazil, CeProBIO. First generation biofuels -- which are mainly produced from food crops such as grains, sugarcane and vegetable oils -- have triggered one of the most highly contentious debates on the current international sustainability agenda, given their links to energy security, transport, trade, food security, land-use impacts and climate change concerns. Developing second generation biofuels has emerged as a more attractive option, as these are manufactured from inedible sources, such as woody crops, energy grasses, or even agricultural and forestry residues. Residues from sugarcane and biomass from maize, as well as 'whole-crop' miscanthus are all potential raw material (called 'feedstock') for second generation bioethanol production. Because these three plants are all closely related, processing the biomass from these crops raises common technical challenges, which offers the opportunity for breakthroughs in one species to be rapidly exploited in the others. Despite the potential sustainability benefits of second generation bioethanol, the current inefficiency of production makes it economically uncompetitive. Taking up this challenge, the SUNLIBB consortium's multidisciplinary team of scientists -- in cooperation with CeProBIO, the sister project in Brazil -- combines European and Brazilian research strengths so as to open the way for environmentally, socially and economically sustainable second generation bioethanol production.

  18. Triacylglycerol profiling of microalgae strains for biofuel feedstock by liquid chromatography-high-resolution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    MacDougall, Karen M.; McNichol, Jesse; McGinn, Patrick J.; O' Leary, Stephen J.B.; Melanson, Jeremy E. [Institute for Marine Biosciences, National Research Council of Canada, Halifax, NS (Canada)

    2011-11-15

    Biofuels from photosynthetic microalgae are quickly gaining interest as a viable carbon-neutral energy source. Typically, characterization of algal feedstock involves breaking down triacylglycerols (TAG) and other intact lipids, followed by derivatization of the fatty acids to fatty acid methyl esters prior to analysis by gas chromatography (GC). However, knowledge of the intact lipid profile could offer significant advantages for discovery stage biofuel research such as the selection of an algal strain or the optimization of growth and extraction conditions. Herein, lipid extracts from microalgae were directly analyzed by ultra-high pressure liquid chromatography-mass spectrometry (UHPLC-MS) using a benchtop Orbitrap mass spectrometer. Phospholipids, glycolipids, and TAGs were analyzed in the same chromatographic run, using a combination of accurate mass and diagnostic fragment ions for identification. Using this approach, greater than 100 unique TAGs were identified over the six algal strains studied and TAG profiles were obtained to assess their potential for biofuel applications. Under the growth conditions employed, Botryococcus braunii and Scenedesmus obliquus yielded the most comprehensive TAG profile with a high abundance of TAGs containing oleic acid. (orig.)

  19. Production of liquid biofuels (biodiesel and bioethanol) from brown marine macroalgae Padina tetrastromatica

    International Nuclear Information System (INIS)

    Ashokkumar, Veeramuthu; Salim, Mohd Razman; Salam, Zainal; Sivakumar, Pandian; Chong, Cheng Tung; Elumalai, Sanniyasi; Suresh, Veeraperumal; Ani, Farid Nasir

    2017-01-01

    Highlights: • Integrated concept of biofuels production from brown macroalgae P. tetrastromatica. • The activation energy was determined as Ea = 34.314 kJ mol"−"1. • Brown marine alga produced 7.8% of biodiesel by acid and alkali transesterification. • The fuel properties of Padina biodiesel meet the ASTM specifications. • Spent biomass of Padina yields 16.1% of bioethanol after fermentation process. - Abstract: In this study, an integrated biomass conversion concept of producing liquid biofuels from brown marine macroalga Padina tetrastromatica was investigated. The algal biomass was collected from the Mandapam coastal region and processed under laboratory. Various parameters were studied to extract crude lipids from the biomass. A kinetic study was conducted for extracting the lipids from the biomass, which follows the first order kinetics and the lipid yield was 8.15 wt.%. The activation energy; Ea = 34.314 kJ mol"−"1 and their thermodynamic parameters were determined. Since the crude algal lipids contain high amount of free fatty acids, a sequential transesterification technique was examined and 7.8% of biodiesel (78 mg/g algal biomass) yield was obtained. The biodiesel was analyzed by "1H and "1"3C–NMR spectroscopy and the conversion yield was estimated. Further, the biodiesel fuel properties were investigated and found that all the features fit the required ASTM D6751 specification limits. The residual biomass after lipid extraction was further explored for bioethanol production through the anaerobic fermentation process. The ethanol yield obtained after saccharification and fermentation were estimated and 161 mg/g residue biomass was reported. The theoretical yield of conversion of hydrolysate to bioethanol was estimated and found to be 83.4%. Therefore, this study demonstrates that macroalga P. tetrastromatica biomass has great potential to produce liquid biofuels such as biodiesel and bioethanol.

  20. Guidance to the regulations on sustainability criteria for biofuels and liquid biofuels. Version 2.0; Vaegledning till regelverket om haallbarhetskriterier foer biodrivmedel och flytande biobraenslen. Version 2.0

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, Lina; Jozsa, Emmi; Hagberg, Linus; Wollin, Per; Petren Axner, Margareta

    2012-11-01

    For biofuels and liquid biofuels: Swedish Energy Agency's guidance on the regulatory framework on sustainability criteria have been updated and expanded with new sections on control systems, independent auditing, sustainability statements and verification of land criteria in Sweden.

  1. One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jian; Konda, Murthy; Parthasarathi, Ramakrishnan; Dutta, Tanmoy; Valiev, Marat; Xu, Feng; Simmons, Blake A.; Singh, Seema

    2017-01-01

    The transformation of biomass into liquid fuels is of great importance. Previous work has demonstrated the capability of specific ionic liquids (ILs), such as 1-ethyl-3-methylimidazolium acetate ([C(2)C(1)Im][OAc]) and cholinium lysinate ([Ch][Lys]), to be effective biomass pretreatment solvents. Using these ILs for an integrated biomass-to-biofuel configuration is still challenging due to a significant water-wash related to the high toxicity of [C(2)C(1)Im][OAc] and pH adjustment prior to saccharification for the highly basic [Ch][Lys]. In this work, we demonstrate, for the first time, that a one-pot integrated biofuel production is enabled by a low cost (similar to$1 per kg) and biocompatible protic IL (PIL), ethanolamine acetate, without pH adjustments, water-wash and solid-liquid separations. After pretreatment, the whole slurry is directly used for simultaneous saccharification and fermentation (SSF) with commercial enzyme cocktails and wild type yeast strains, generating 70% of the theoretical ethanol yield (based on switchgrass). The structure-performance relationships of PILs in terms of lignin removal, net basicity, and pH value are systematically studied. A technoeconomic analysis (TEA) revealed that an integrated biorefinery concept based on this PIL process could potentially reduce the minimum ethanol selling price by more than 40% compared to scenarios that require pH adjustment prior to SSF. Improvement of the economic performance will be made by reducing the dilution and enzyme loading during SSF as identified by TEA. This study demonstrates the impact of a biocompatible IL in terms of process optimization and conversion efficiency, and opens up avenues for realizing an IL based efficiently integrated biomass conversion technology.

  2. Combustion of animal or vegetable based liquid waste products

    International Nuclear Information System (INIS)

    Wikman, Karin; Berg, Magnus

    2002-04-01

    In this project experiences from combustion of animal and vegetable based liquid waste products have been compiled. Legal aspects have also been taken into consideration and the potential for this type of fuel on the Swedish energy market has been evaluated. Today the supply of animal and vegetable based liquid waste products for energy production in Sweden is limited. The total production of animal based liquid fat is about 10,000 tonnes annually. The animal based liquid waste products origin mainly from the manufacturing of meat and bone meal. Since meat and bone meal has been banned from use in animal feeds it is possible that the amount of animal based liquid fat will decrease. The vegetable based liquid waste products that are produced in the processing of vegetable fats are today used mainly for internal energy production. This result in limited availability on the commercial market. The potential for import of animal and vegetable based liquid waste products is estimated to be relatively large since the production of this type of waste products is larger in many other countries compared to Sweden. Vegetable oils that are used as food or raw material in industries could also be imported for combustion, but this is not reasonable today since the energy prices are relatively low. Restrictions allow import of SRM exclusively from Denmark. This is today the only limit for increased imports of animal based liquid fat. The restrictions for handle and combustion of animal and vegetable based liquid waste products are partly unclear since this is covered in several regulations that are not easy to interpret. The new directive for combustion of waste (2000/76/EG) is valid for animal based waste products but not for cadaver or vegetable based waste products from provisions industries. This study has shown that more than 27,400 tonnes of animal based liquid waste products and about 6,000 tonnes of vegetable based liquid waste products were used for combustion in Sweden

  3. Scanning the macro-environment for liquid biofuels: A comparative analysis from public pocies in Brazil, United States and Germany

    NARCIS (Netherlands)

    Talamini, E.; Wubben, E.F.M.; Padula, A.D.; Dewes, H.

    2013-01-01

    Purpose – Macro-environmental scanning is a first step in strategic planning, which is essential in an emerging industry such as liquid biofuels. The purpose of this paper is to identify the dimensions within which the governments of Brazil, the USA and Germany have constructed the macro-environment

  4. Biofuels securing the planet's future energy needs

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2009-01-01

    The biofuels include bioethanol, biobutanol, biodiesel, vegetable oils, biomethanol, pyrolysis oils, biogas, and biohydrogen. There are two global biomass based liquid transportation fuels that might replace gasoline and diesel fuel. These are bioethanol and biodiesel. World production of biofuel was about 68 billion L in 2007. The primary feedstocks of bioethanol are sugarcane and corn. Bioethanol is a gasoline additive/substitute. Bioethanol is by far the most widely used biofuel for transportation worldwide. About 60% of global bioethanol production comes from sugarcane and 40% from other crops. Biodiesel refers to a diesel-equivalent mono alkyl ester based oxygenated fuel. Biodiesel production using inedible vegetable oil, waste oil and grease has become more attractive recently. The economic performance of a biodiesel plant can be determined once certain factors are identified, such as plant capacity, process technology, raw material cost and chemical costs. The central policy of biofuel concerns job creation, greater efficiency in the general business environment, and protection of the environment.

  5. High liquid fuel yielding biofuel processes and a roadmap for the future transportation

    Science.gov (United States)

    Singh, Navneet R.

    In a fossil-fuel deprived world when crude oil will be scarce and transportation need cannot be met with electricity and transportation liquid fuel must be produced, biomass derived liquid fuels can be a natural replacement. However, the carbon efficiency of the currently known biomass to liquid fuel conversion processes ranges from 35-40%, yielding 90 ethanol gallon equivalents (ege) per ton of biomass. This coupled with the fact that the efficiency at which solar energy is captured by biomass (hydrodeoxygenation is proposed which can achieve liquid fuel yield of 215 ege/ton consuming 0.11 kg hydrogen per liter of oil. Due to the lower hydrogen consumption of the H2Bioil process, synergistically integrated transition pathways are feasible where hot syngas derived from coal gasification (H2Bioil-C) or a natural gas reformer (H 2Bioil-NG) is used to supply the hydrogen and process heat for the biomass fast-hydropyrolysis/hydrodeoxygenation. Another off-shoot of the H2Bioil process is the H2Bioil-B process, where hydrogen required for the hydropyrolysis is obtained from gasification of a fraction of the biomass. H2Bioil-B achieves the highest liquid fuel yield (126-146 ege/ton of biomass) reported in the literature for any self-contained conversion of biomass to biofuel. Finally, an integration of the H2Bioil process with the H2CAR process is suggested which can achieve 100% carbon efficiency (330 ege/ton of biomass) at the expense of 0.24 kg hydrogen/liter of oil. A sun-to-fuel efficiency analysis shows that extracting CO2 from air and converting it to liquid fuel is at least two times more efficient than growing dedicated fuel crops and converting them to liquid fuel even for the highest biomass growth rates feasible by algae. This implies that liquid fuel should preferably be produced from sustainably available waste (SAW) biomass first and if the SAW biomass is unable to meet the demand for liquid fuel, then, CO2 should be extracted from air and converted to

  6. The biofuels in France; Les biocarburants en France

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-04-15

    The biofuels are liquid renewable energies sources resulting from vegetal matters. Today are two channels of biofuels: the ethanol channel for gasoline and the vegetal oils channel for the diesel. In the first part, the document presents the different channels and the energy efficiency of the products. It shows in the second part the advantages for the environment (CO{sub 2} accounting) and for the energy independence. It discusses then the future developments and the projects. The fourth part is devoted to the legislation, regulations, taxes and financial incentives. The last part presents the french petroleum industry actions and attitudes in the framework of the biofuels development. (A.L.B.)

  7. Land use competition for production of food and liquid biofuels. An analysis of the arguments in the current debate

    Energy Technology Data Exchange (ETDEWEB)

    Rathmann, Regis; Szklo, Alexandre; Schaeffer, Roberto [Energy Planning Program, Graduate School of Engineering, Federal University of Rio de Janeiro, Centro de Tecnologia, Bloco C, Sala 211, Cidade Universitaria, Ilha do Fundao, Rio de Janeiro, RJ 21941-972 (Brazil)

    2010-01-15

    This article analyses the current state of the debate over competition for land use, by means of an index of the main arguments in favor and against the production of liquid biofuels and the impacts on food production. Based on this index, an analytic framework is constructed to establish the causal relations indicated by the existing studies on this competition. We find that the emergence of agro-energy has altered the land use dynamic, albeit not yet significantly, with a shift of areas traditionally used to grow foods over to crops to produce biofuels. This has been contributing to raise food prices in the short run. However, it is probable that this is not the only factor determining this trend, nor will it last over the long run. The challenge is to conciliate the production of biofuels with the production of foods in sustainable form. (author)

  8. Models for the prediction of the cetane index of biofuels obtained from different vegetable oils using their fatty acid composition

    International Nuclear Information System (INIS)

    Sanchez Borroto, Yisel; Piloto Rodriguez, Ramon; Goyos Perez, Leonardo

    2011-01-01

    The objective of the present work is to obtain a physical-mathematical model that establishes a relationship between the cetane index of biofuels obtained from different vegetable oils and its composition of essential fatty acid. This model is based on experimental data obtained by the authors of the present work and an experimental data reported by different extracted authors of indexed databases. The adjustment of the coefficients of the model is based on the obtaining of residual minima in the capacity of prediction of the model. Starting from these results it is established a very useful tool for the determination of such an important parameter for the fuel diesel as it is the cetane index obtained from an analysis of chemical composition and not obtained from tests in engines banks, to save time and economic resources. (author)

  9. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    The European Union governments no longer view the rapid increase in biofuel consumption as a priority. Between 2010 and 2011 biofuel consumption increased by only 3%, which translates into 13.6 million tonnes of oil equivalent (toe) used in 2011 compared to 13.2 million toe in 2010. In 2011 6 European countries had a biofuel consumption in transport that went further 1 million toe: Germany (2,956,746 toe), France (2,050,873 toe), Spain (1,672,710 toe), Italy (1,432,455 toe), United Kingdom (1,056,105 toe) and Poland (1,017,793 toe). The breakdown of the biofuel consumption for transport in the European Union in 2011 into types of biofuels is: bio-diesel (78%), bio-ethanol (21%), biogas (0.5%) and vegetable oil (0.5%). In 2011, 4 bio-diesel producers had a production capacity in Europe that passed beyond 900,000 tonnes: Diester Industrie International (France) with 3,000,000 tonnes, Neste Oil (Finland) with 1,180,000 tonnes, ADM bio-diesel (Germany) with 975,000 tonnes, and Infinita (Spain) with 900,000 tonnes. It seems that the European Union's attention has shifted to setting up sustainability systems to verify that the biofuel used in the various countries complies with the Renewable Energy Directive's sustainability criteria

  10. Sustainability assessment of straight vegetable oil used as self-supply biofuel in agriculture

    OpenAIRE

    Baquero Armans, Grau; Esteban Dalmau, Bernat; Puig Vidal, Rita; Riba Ruiz, Jordi-Roger; Rius Carrasco, Antoni

    2011-01-01

    This work proposes and analyses a model for an agricultural fuel self-supply exploitation. The model is based on the current extended crop rotation of wheat and barley in Anoia region (Catalonia, Spain). The introduction of rapeseed to the current crop rotation and its conversion into oil to be used as agricultural fuel is presented. Life cycle assessment methodology is used to carry out an environmental and an economic assessment. Environmental results show a preference for the vegetable oil...

  11. Liquid Bio fuels: Vegetable Oils and Bi oethanol

    International Nuclear Information System (INIS)

    Ballesteros, M.; Ballesteros, I.; Oliva, J. M.; Navarro, A. A.

    1998-01-01

    The European energy policy has defined clear objectives to reduce the high dependency on fossil petroleum imports, and to increase the security of sustainable energy supply for the transport sector. Moreover, the European environmental policy is requesting clean fuels that reduce environmental risks. Liquid Bio fuels (vegetable oils and bio ethanol) appear to be in a good position to contribute to achieve these goals expressed by the established objective of European Union to reach for bio fuels a market share of 5% of motor vehicle consumption. This work presents the current state and perspectives of the production and utilisation of liquid fuels from agricultural sources by reviewing agricultural feedstocks for energy sector, conversion technologies and different ways to use bio fuels. Environmental and economical aspects are also briefly analysed. (Author) 10 refs

  12. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region.

    Science.gov (United States)

    Shonnard, David R; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P

    2015-12-01

    Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.

  13. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region

    Science.gov (United States)

    Shonnard, David R.; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P.

    2015-12-01

    Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.

  14. HVO, hydrotreated vegetable oil. A premium renewable biofuel for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, Seppo [Neste Oil, Porvoo (Finland); Honkanen, Markku; Kuronen, Markku [Neste Oil, Espoo (Finland)

    2013-06-01

    HVO is renewable paraffinic diesel fuel produced from vegetable oils or animal fats by hydrotreating and isomerization. Composition is similar to GTL. HVO is not ''biodiesel'' which is a definition reserved for FAME. HVO can be used in diesel fuel without any ''blending wall'' as well as in addition to the FAME in EN 590. As a blending component HVO enhances fuel properties thanks to its high cetane, zero aromatics and reasonable distillation range. HVO can be used for upgrading gas oils to meet diesel fuel standard and for producing premium diesel fuels. HVO is comparable to fossil diesel regarding fuel logistics, stability, water separation and microbiological growth. The use of HVO as such or in blends reduces NO{sub x} and particulate emissions. Risks for fuel system deposits and engine oil deterioration are low. Combustion is practically ash-free meaning low risk for exhaust aftertreatment life-time. Winter grade fuels down to -40 C cloud point can be produced by HVO process from many kinds of feedstocks. HVO is fully accepted by directives and fuel standards. (orig.)

  15. Chapter 11: New Conversion Technologies for Liquid Biofuels Production in Africa

    NARCIS (Netherlands)

    Batidzirai, B.; Smeets, E.M.W.; Faaij, A.P.C.

    2012-01-01

    On the longer term, the production of second generation biofuels from lignocellulosic biomass is expected to become economically competitive with gasoline and diesel. A pre-requisite is that several technological hurdles will be overcome and that a large, stable supply of lignocellulosic biomass

  16. International bioenergy trade - a review of past developments in the liquid biofuels market

    NARCIS (Netherlands)

    Lamers, P.; Hamelinck, C.N.; Junginger, H.M.|info:eu-repo/dai/nl/202130703; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2011-01-01

    Policies aimed to promote biofuels locally had tremendous effects on global market developments across the past decade. This article develops insights into the interaction of these policies and market forces via a comprehensive collection and analysis of international production and trade data. It

  17. Microwave-assisted ionic liquid-mediated rapid catalytic conversion of non-edible lignocellulosic Sunn hemp fibres to biofuels.

    Science.gov (United States)

    Paul, Souvik Kumar; Chakraborty, Saikat

    2018-04-01

    Sunn hemp fibre - a cellulose-rich crystalline non-food energy crop, containing 75.6% cellulose, 10.05% hemicellulose, 10.32% lignin, with high crystallinity (80.17%) and degree of polymerization (650) - is identified as a new non-food substrate for lignocellulosic biofuel production. Microwave irradiation is employed to rapidly rupture the cellulose's glycosidic bonds and enhance glucose yield to 78.7% at 160 °C in only 46 min. The reactants - long-chain cellulose, ionic liquid, transition metal catalyst, and water - form a polar supramolecular complex that rotates under the microwave's alternating polarity and rapidly dissipates the electromagnetic energy through molecular collisions, thus accelerating glycosidic bond breakage. In 46 min, 1 kg of Sunn hemp fibres containing 756 g of cellulose produces 595 g of glucose at 160 °C, and 203 g of hydroxymethyl furfural (furanic biofuel precursor) at 180 °C. Yeast mediated glucose fermentation produces 75.6% bioethanol yield at 30 °C, and the ionic liquid is recycled for cost-effectiveness. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Sustainable Liquid Biofuels from Biomass Biorefining (SUNLIBB). Policy Brief No. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-15

    The SUNLIBB project is funded under the European Seventh Framework Programme (FP7) within the Energy theme: Second Generation Biofuels -- EU Brazil Coordinated Call. SUNLIBB started on 1 October 2010 for 4 years and collaborates with a parallel project in Brazil, CeProBIO. This is the second in a series of policy briefs providing an update on the project. The first brief was issued in March 2012. The project focus is on looking at developing second generation biofuels that hope to improve on issues seen with the first generation options. Second generation biofuels are manufactured from inedible sources, such as woody crops, energy grasses, or even agricultural and forestry residues. Residues from sugarcane and biomass from maize, as well as 'whole-crop' miscanthus are all potential raw material (called 'feedstock') for second generation bioethanol production. Because these three plants are all closely related, processing the biomass from these crops raises common technical challenges, which offers the opportunity for breakthroughs in one species to be rapidly exploited in the others. Despite the potential sustainability benefits of second generation bioethanol, the current inefficiency of production makes it economically uncompetitive. Taking up this challenge, the SUNLIBB consortium's multidisciplinary team of scientists -- in cooperation with CeProBIO, the sister project in Brazil -- combines European and Brazilian research strengths so as to open the way for environmentally, socially and economically sustainable second generation bioethanol production.

  19. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    Science.gov (United States)

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  20. Energy intensity, life-cycle greenhouse gas emissions, and economic assessment of liquid biofuel pipelines.

    Science.gov (United States)

    Strogen, Bret; Horvath, Arpad; Zilberman, David

    2013-12-01

    Petroleum fuels are predominantly transported domestically by pipelines, whereas biofuels are almost exclusively transported by rail, barge, and truck. As biofuel production increases, new pipelines may become economically attractive. Location-specific variables impacting pipeline viability include construction costs, availability and costs of alternative transportation modes, electricity prices and emissions (if priced), throughput, and subsurface temperature. When transporting alcohol or diesel-like fuels, pipelines have a lower direct energy intensity than rail, barge, and trucks if fluid velocity is under 1 m/s for 4-inch diameter pipelines and 2 m/s for 8-inch or larger pipelines. Across multiple hypothetical state-specific scenarios, profit-maximizing design velocities range from 1.2 to 1.9 m/s. In costs and GHG emissions, optimized pipelines outperform trucks in each state and rail and barge in most states, if projected throughput exceeds four billion liters/year. If emissions are priced, optimum design diameters typically increase to reduce pumping energy demands, increasing the cost-effectiveness of pipeline projects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels

    NARCIS (Netherlands)

    Babych, Igor V.; van der Hulst, M.; Lefferts, Leonardus; Moulijn, J.A.; Seshan, Kulathuiyer; O'Connor, P.

    2011-01-01

    The pyrolytic conversion of chlorella algae to liquid fuel precursor in presence of a catalyst (Na2CO3) has been studied. Thermal decomposition studies of the algae samples were performed using TGA coupled with MS. Liquid oil samples were collected from pyrolysis experiments in a fixed-bed reactor

  2. Land availability for biofuel production.

    Science.gov (United States)

    Cai, Ximing; Zhang, Xiao; Wang, Dingbao

    2011-01-01

    Marginal agricultural land is estimated for biofuel production in Africa, China, Europe, India, South America, and the continental United States, which have major agricultural production capacities. These countries/regions can have 320-702 million hectares of land available if only abandoned and degraded cropland and mixed crop and vegetation land, which are usually of low quality, are accounted. If grassland, savanna, and shrubland with marginal productivity are considered for planting low-input high-diversity (LIHD) mixtures of native perennials as energy crops, the total land availability can increase from 1107-1411 million hectares, depending on if the pasture land is discounted. Planting the second generation of biofuel feedstocks on abandoned and degraded cropland and LIHD perennials on grassland with marginal productivity may fulfill 26-55% of the current world liquid fuel consumption, without affecting the use of land with regular productivity for conventional crops and without affecting the current pasture land. Under the various land use scenarios, Africa may have more than one-third, and Africa and Brazil, together, may have more than half of the total land available for biofuel production. These estimations are based on physical conditions such as soil productivity, land slope, and climate.

  3. Conversion of lignocellulosic agave residues into liquid biofuels using an AFEX™-based biorefinery.

    Science.gov (United States)

    Flores-Gómez, Carlos A; Escamilla Silva, Eleazar M; Zhong, Cheng; Dale, Bruce E; da Costa Sousa, Leonardo; Balan, Venkatesh

    2018-01-01

    Agave-based alcoholic beverage companies generate thousands of tons of solid residues per year in Mexico. These agave residues might be used for biofuel production due to their abundance and favorable sustainability characteristics. In this work, agave leaf and bagasse residues from species Agave tequilana and Agave salmiana were subjected to pretreatment using the ammonia fiber expansion (AFEX) process. The pretreatment conditions were optimized using a response surface design methodology. We also identified commercial enzyme mixtures that maximize sugar yields for AFEX-pretreated agave bagasse and leaf matter, at ~ 6% glucan (w/w) loading enzymatic hydrolysis. Finally, the pretreated agave hydrolysates (at a total solids loading of ~ 20%) were used for ethanol fermentation using the glucose- and xylose-consuming strain Saccharomyces cerevisiae 424A (LNH-ST), to determine ethanol yields at industrially relevant conditions. Low-severity AFEX pretreatment conditions are required (100-120 °C) to enable efficient enzymatic deconstruction of the agave cell wall. These studies showed that AFEX-pretreated A. tequilana bagasse, A. tequilana leaf fiber, and A. salmiana bagasse gave ~ 85% sugar conversion during enzyme hydrolysis and over 90% metabolic yields of ethanol during fermentation without any washing step or nutrient supplementation. On the other hand, although lignocellulosic A. salmiana leaf gave high sugar conversions, the hydrolysate could not be fermented at high solids loadings, apparently due to the presence of natural inhibitory compounds. These results show that AFEX-pretreated agave residues can be effectively hydrolyzed at high solids loading using an optimized commercial enzyme cocktail (at 25 mg protein/g glucan) producing > 85% sugar conversions and over 40 g/L bioethanol titers. These results show that AFEX technology has considerable potential to convert lignocellulosic agave residues to bio-based fuels and chemicals in a biorefinery.

  4. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels

    International Nuclear Information System (INIS)

    Babich, I.V.; Hulst, M. van der; Lefferts, L.; Moulijn, J.A.; O'Connor, P.; Seshan, K.

    2011-01-01

    The pyrolytic conversion of chlorella algae to liquid fuel precursor in presence of a catalyst (Na 2 CO 3 ) has been studied. Thermal decomposition studies of the algae samples were performed using TGA coupled with MS. Liquid oil samples were collected from pyrolysis experiments in a fixed-bed reactor and characterized for water content and heating value. The oil composition was analyzed by GC-MS. Pretreatment of chlorella with Na 2 CO 3 influences the primary conversion of chlorella by shifting the decomposition temperature to a lower value. In the presence of Na 2 CO 3 , gas yield increased and liquid yield decreased when compared with non-catalytic pyrolysis at the same temperatures. However, pyrolysis oil from catalytic runs carries higher heating value and lower acidity. Lower content of acids in the bio-oil, higher aromatics, combined with higher heating value show promise for production of high-quality bio-oil from algae via catalytic pyrolysis, resulting in energy recovery in bio-oil of 40%. -- Highlights: → The pyrolytic catalytic conversion of chlorella algae to liquid fuel precursor. → Na 2 CO 3 as a catalyst for the primary conversion of chlorella. → Pyrolysis oil from catalytic runs carries higher heating value and lower acidity. → High-quality bio-oil from algae via catalytic pyrolysis with energy recovery in bio-oil of 40%.

  5. Combustion of Liquid Bio-Fuels in an Internal Circulating Fluidized Bed

    Czech Academy of Sciences Publication Activity Database

    Miccio, F.; Kalisz, S.; Baxter, D.; Svoboda, Karel

    2008-01-01

    Roč. 143, 1-3 (2008), s. 172-179 ISSN 1385-8947 Institutional research plan: CEZ:AV0Z40720504 Keywords : internal circulating fluidized bed * liquid fuel * combustion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.813, year: 2008

  6. The Renewable Energy Directive: biofuels, biomass and sustainable development criteria. How to check in France the compliance of marketed biofuels with sustainability criteria defined by the Directive on renewable energies? (Phase 1: biofuels and bio-liquids); Directive Energies Renouvelables: Biocarburants, biomasse et criteres de developpement durable. Comment verifier, en France, la conformite des biocarburants mis sur le marche aux criteres de durabilite prevus par la Directive sur les energies renouvelables? (Phase 1: biocarburants et bioliquides)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    After having recalled and commented the main principles of the European directive which sets objectives in terms of renewable energy promotion and consumption, this report analyses the quantitative and qualitative sustainability criteria which must be applied particularly to biofuels and bio-liquids produced from agricultural activities, and their application perspectives. It gives recommendations to assess these criteria. It also comments the modalities used to control the compliance of biofuels with these criteria

  7. Extension of the heat flux method to liquid (bio-)fuels

    Energy Technology Data Exchange (ETDEWEB)

    Meuwissen, R.

    2009-01-15

    The adiabatic burning velocity S{sub L} of a fuel/oxidizer mixture is a key parameter governing many properties of combustion, such as the shape and stabilization of the flame. It can be applied as an input parameter for many combustion models. Furthermore, kinetic schemes can be validated by the use of this parameter. A great extend of research has been performed on determining the adiabatic burning velocities of gaseous fuels. Liquid fuels however, have been examined far less extensive. Literature available shows eminent scatter amongst the data of independent groups and distinctive techniques. The methods used for measuring burning velocities need certain corrections for flame properties which cause additional uncertainties and make the scattering of data not completely unexpected. The heat flux burner used in this work, previously developed at the TU/e, creates a flat flame coherently no corrections for stretch are necessary. Instead, the heat exchange with the burner is considered; by measuring the temperature distribution over the burner plate, the net heat flux of the flame to the burner can be determined. By tuning the unburnt gas velocity until there is no net heat flux, the adiabatic burning velocity is found by interpolation. An extension to the original design, using a vaporized fluid in a carrier gas flow, enables to measure burning velocities of liquid fuels. In the present research, burning velocity measurements have been performed on vaporized ethanol/air flames in order to validate the setup. Similarities with the latest experimental research have been evaluated and good agreement has been found. Furthermore, temperature dependencies have been elucidated and compared to power law correlations stated by this external research. Again, good resemblance can be claimed, although the expanding of certain input parameters on mixture composition could give more solid confirmation. Subsequently, comparison with numerically performed calculations has been

  8. Biofuel Database

    Science.gov (United States)

    Biofuel Database (Web, free access)   This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.

  9. Biofuels and sustainability.

    Science.gov (United States)

    Solomon, Barry D

    2010-01-01

    Interest in liquid biofuels production and use has increased worldwide as part of government policies to address the growing scarcity and riskiness of petroleum use, and, at least in theory, to help mitigate adverse global climate change. The existing biofuels markets are dominated by U.S. ethanol production based on cornstarch, Brazilian ethanol production based on sugarcane, and European biodiesel production based on rapeseed oil. Other promising efforts have included programs to shift toward the production and use of biofuels based on residues and waste materials from the agricultural and forestry sectors, and perennial grasses, such as switchgrass and miscanthus--so-called cellulosic ethanol. This article reviews these efforts and the recent literature in the context of ecological economics and sustainability science. Several common dimensions for sustainable biofuels are discussed: scale (resource assessment, land availability, and land use practices); efficiency (economic and energy); equity (geographic distribution of resources and the "food versus fuel" debate); socio-economic issues; and environmental effects and emissions. Recent proposals have been made for the development of sustainable biofuels criteria, culminating in standards released in Sweden in 2008 and a draft report from the international Roundtable on Sustainable Biofuels. These criteria hold promise for accelerating a shift away from unsustainable biofuels based on grain, such as corn, and toward possible sustainable feedstock and production practices that may be able to meet a variety of social, economic, and environmental sustainability criteria.

  10. Biofuels for transport

    International Nuclear Information System (INIS)

    2004-01-01

    In the absence of strong government policies, the IEA projects that the worldwide use of oil in transport will nearly double between 2000 and 2030, leading to a similar increase in greenhouse gas emissions. Biofuels, such as ethanol, bio-diesel, and other liquid and gaseous fuels, could offer an important alternative to petroleum over this time frame and help reduce atmospheric pollution. This book looks at recent trends in biofuel production and considers what the future might hold if such alternatives were to displace petroleum in transport. The report takes a global perspective on the nascent biofuels industry, assessing regional similarities and differences as well as the cost and benefits of the various initiatives being undertaken around the world. In the short term, conventional biofuel production processes in IEA countries could help reduce oil use and thence greenhouse gas emissions, although the costs may be high. In the longer term, possibly within the next decade, advances in biofuel production and the use of new feedstocks could lead to greater, more cost-effective reductions. Countries such as Brazil are already producing relatively low-cost biofuels with substantial reductions in fossil energy use and greenhouse gas emissions. This book explores the range of options on offer and asks whether a global trade in biofuels should be more rigorously pursued

  11. Understanding cost drivers and economic potential of two variants of ionic liquid pretreatment for cellulosic biofuel production

    Science.gov (United States)

    2014-01-01

    Background Ionic liquid (IL) pretreatment could enable an economically viable route to produce biofuels by providing efficient means to extract sugars and lignin from lignocellulosic biomass. However, to realize this, novel IL-based processes need to be developed in order to minimize the overall production costs and accelerate commercial viability. In this study, two variants of IL-based processes are considered: one based on complete removal of the IL prior to hydrolysis using a water-wash (WW) step and the other based on a “one-pot” (OP) process that does not require IL removal prior to saccharification. Detailed techno-economic analysis (TEA) of these two routes was carried out to understand the cost drivers, economic potential (minimum ethanol selling price, MESP), and relative merits and challenges of each route. Results At high biomass loading (50%), both routes exhibited comparable economic performance with an MESP of $6.3/gal. With the possible advances identified (reduced water or acid/base consumption, improved conversion in pretreatment, and lignin valorization), the MESP could be reduced to around $3/gal ($3.2 in the WW route and $2.8 in the OP route). Conclusions It was found that, to be competitive at industrial scale, lowered cost of ILs used and higher biomass loadings (50%) are essential for both routes, and in particular for the OP route. Overall, while the economic potential of both routes appears to be comparable at higher biomass loadings, the OP route showed the benefit of lower water consumption at the plant level, an important cost and sustainability consideration for biorefineries. PMID:24932217

  12. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  13. Decontamination of radioactive liquid wastes by hydrophytic vegetal organisms

    International Nuclear Information System (INIS)

    Cecal, Al; Popa, K.; Potoroaca, V.; Melniciuc-Puica, N.

    2001-01-01

    Bioaccumulation of some radioactive ions from contaminated waste solutions, on hydrophytic vegetal organisms is discussed. In order to follow the distribution of radioactive ions 137 Cs + , 60 Co 2+ and 51 Cr 3+ in various cell components extracted from Spirulina platensis, Porphiridium cruentum, Scenedesmus quadricauda, Lemna minor, Elodea canadensis, Pistia stratiotes and Riccia fluitans, the plants were cultivated in radioactive solutions. The resulting complexes were extracted with acetone or acetic acid and separated chromatographically. The results show an intense activity of the polysaccharide and lipoid fractions in the bioaccumulation process. The bioaccumulation varies in the series: Spirulina > Scenedesmus > Porphiridium > Riccia > Pistia > Lemna ≥ Elodea for 137 Cs + and 60 Co 2+ ; Spirulina > Porphiridium > Scenedesmus > Riccia > Pistia > Lemna > Elodea for 51 Cr 3+ . (author)

  14. Controllable production of liquid and solid biofuels by doping-free, microwave-assisted, pressurised pyrolysis of hemicellulose

    International Nuclear Information System (INIS)

    Li, T.; Remón, J.; Shuttleworth, P.S.; Jiang, Z.; Fan, J.; Clark, J.H.; Budarin, V.L.

    2017-01-01

    Highlights: • Microwave pyrolysis of xylan in the absence of any external microwave absorber. • High energy-efficient and controllable production of biochar and bio-oil from xylan. • Water in liquid phase is needed for fast microwave pyrolysis. • Production of bio-oil and bio-char with HHVs 52% and 19% greater than that of xylan. - Abstract: Batch, pressurised microwave-assisted pyrolysis of hemicellulose in the absence of any external microwave absorber was found to be a promising route for the production of bio-based chemicals and biofuels. The experiments were conducted in a 10 mL batch reactor using a fixed power of 200 W employing different initial masses of xylan (0.1–0.7 g) for a maximum time, temperature and pressure of 10 min, 250 °C and 200 psi, respectively. The gas, bio-oil and solid (char) yields varied by 16–40%, 2–21% and 40–82%, respectively. Char production is preferential using a low amount of xylan (<0.25 g), while bio-oil production is favoured using a high amount of xylan (0.25–0.7 g). The effect of the sample mass is accounted for by the different physical state of the volatiles released during pyrolysis depending on the pressure attained during the experiment. This permits the process to be easily customised for the selective production of liquid (bio-oil) or solid (bio-char). Regarding the bio-oil, it is composed of a mixture of platform chemicals such as aldehydes, alkenes, phenols, polyaromatic hydrocarbons (PAHC), cyclic ketones and furans, with the composition varying depending on the initial mass of xylan. The char had a higher proportion of C together with a lower proportion of O than the original feedstock. Energy efficiencies of 100 and 26% were achieved for char and bio-oil production, respectively; thus leading to an increase in the HHV of the products (with respect to the original feedstock) of 52% for char and 19% for bio-oil.

  15. A geographical assessment of vegetation carbon stocks and greenhouse gas emissions on potential microalgae-based biofuel facilities in the United States.

    Science.gov (United States)

    Quiroz Arita, Carlos; Yilmaz, Özge; Barlak, Semin; Catton, Kimberly B; Quinn, Jason C; Bradley, Thomas H

    2016-12-01

    The microalgae biofuels life cycle assessments (LCA) present in the literature have excluded the effects of direct land use change (DLUC) from facility construction under the assumption that DLUC effects are negligible. This study seeks to model the greenhouse gas (GHG) emissions of microalgae biofuels including DLUC by quantifying the CO 2 equivalence of carbon released to the atmosphere through the construction of microalgae facilities. The locations and types of biomass and Soil Organic Carbon that are disturbed through microalgae cultivation facility construction are quantified using geographical models of microalgae productivity potential including consideration of land availability. The results of this study demonstrate that previous LCA of microalgae to biofuel processes have overestimated GHG benefits of microalgae-based biofuels production by failing to include the effect of DLUC. Previous estimations of microalgae biofuel production potential have correspondingly overestimated the volume of biofuels that can be produced in compliance with U.S. environmental goals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Biofuels. An overview. Final Report

    International Nuclear Information System (INIS)

    De Castro, J.F.M.

    2007-05-01

    The overall objective of this desk study is to get an overview of the most relevant liquid biofuels especially in the African context, and more specifically in the Netherlands' relevant partner countries. The study will focus on biofuels for transport, but will also consider biofuels for cooking and power generation. Biogas as the result of anaerobic fermentation which can be used for cooking, lighting and electricity generation will not be considered in this study. Liquid biofuels are usually divided into alcohols that are used to substitute for gasoline and oils that are used to substitute for diesel and are often called Biodiesel, and this division will be followed in this study. In chapter 2 we will analyse several aspects of the use of alcohols particularly ethanol, in chapter 3 the same analysis will be done for oils, using as example the very promising Jatropha oil. In chapter we will analyse socio-economic issues of the use of these biofuels

  17. Sustainable production of a new generation biofuel by lipase-catalyzed esterification of fatty acids from liquid industrial waste biomass.

    Science.gov (United States)

    Foukis, Athanasios; Gkini, Olga A; Stergiou, Panagiota-Yiolanda; Sakkas, Vasilios A; Dima, Agapi; Boura, Konstantina; Koutinas, Athanasios; Papamichael, Emmanuel M

    2017-08-01

    In this work we suggest a methodology comprising the design and use of cost-effective, sustainable, and environmentally friendly process for biofuel production compatible with the market demands. A new generation biofuel is produced using fatty acids, which were generated from acidogenesis of industrial wastes of bioethanol distilleries, and esterified with selected alcohols by immobilized Candida antarctica Lipase-B. Suitable reactors with significant parameters and conditions were studied through experimental design, and novel esterification processes were suggested; among others, the continuous removal of the produced water was provided. Finally, economically sustainable biofuel production was achieved providing high ester yield (<97%) along with augmented concentration (3.35M) in the reaction mixtures at relatively short esterification times, whereas the immobilized lipase maintained over 90% of its initial esterifying ability after reused for ten cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Biofuels worldwide

    International Nuclear Information System (INIS)

    His, St.

    2004-01-01

    After over 20 years of industrial development, the outlook for biofuels now looks bright. Recent developments indicate that the use of biofuels, previously confined to a handful of countries including Brazil and the United States, is 'going global' and a world market may emerge. However, these prospects could eventually be limited by constraints relative to resources and costs. The future of biofuels probably depends on the development of new technologies to valorize lignocellulosic substances such as wood and straw. (author)

  19. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Biofuels represent 2,6% of the energy content of all the fuels used in road transport in Europe today. Nearly half of the target of 5,75% for 2010 set by the directive on biofuels has thus been reached in four years time. To achieve 5,75%, the european union is going to have to increase its production and doubtless call even more on imports, at a moment when biofuels are found at the core of complex ecological and economic issues. This analysis provided data and reflexions on the biofuels situation in the european union: consumption, bio-diesel, bio-ethanol, producers, environmental problems, directives. (A.L.B.)

  20. Highly effective ionic liquids for biodiesel production from waste vegetable oils

    Directory of Open Access Journals (Sweden)

    Fathy A. Yassin

    2015-03-01

    Full Text Available As conventional energy sources deplete, the need for developing alternative energy resources which are environment friendly becomes more imperative. Vegetable oils are attracting increased interest in this purpose. The methanolysis of vegetable oil to produce a fatty acid methyl ester (FAME, i.e., biodiesel fuel was catalyzed by commercial ionic liquid and its chloride modification. The imidazolium chloride ionic liquid was frequently chosen for the synthesis of biodiesel. The dual-functionalized’ ionic liquid is prepared by a direct combination reaction between imidazolium cation and various metal chlorides such as CoCl2, CuCl2, NiCl2, FeCl3 and AlCl3. Imidazolium tetrachloroferrate was proved to be a selective catalyst for the methanolysis reaction at a yield of 97% when used at 1:10, catalyst: oil ratio for 8 h at 55 °C. Operational simplicity, reusability of the used catalyst for 8 times at least, high yields and no saponification are the key features of this methodology. The dynamic viscosity and density of the upgraded vegetable oil decreased from 32.1 cP and 0.9227 g/cm3 to 10.2 cP and 0.9044 g/cm3 respectively, compared to those of the base vegetable oil. The objective of this study was the synthesis and characterization of biodiesel using commercial ionic liquid and its chloride modification. The ionic liquid catalysts were characterized using FTIR, Raman spectroscopy, DSC, TG and UV.

  1. Microbial consortium role in processing liquid waste of vegetables in Keputran Market Surabaya as organic liquid fertilizer ferti-plus

    Science.gov (United States)

    Rizqi, Fauziah; Supriyanto, Agus; Lestari, Intan; Lita Indri D., L.; Elmi Irmayanti, A.; Rahmaniyah, Fadilatur

    2016-03-01

    Many activities in this market is directly proportional to increase production of vegetables waste, especially surabaya. Therefore, in this study aims to utilize liquid waste of vegetables into liquid organic fertilizer by mixing microbial consorsium. The microbial consorsium consist of Azotobacter chrococcum, Azospirillum brasilense, Rhizobium leguminosarum, Bacillus subtilis, Bacillus megaterium, Pseudomonas putida, and Pseudomonas fluorescens. Ttreatment of microbial concentrations (5%, 10%, 15%) and the length of the incubation period (7 days, 14 days, 21 days) used in this research. The parameters used are: C/N ratio, levels of CNP, and BOD value. This study uses a standard organic fertilizer value according SNI19-7030-2004, The results show the value of C/N ratio comply with the ISO standards. C levels showed an increase during the incubation period but not compare with standards. N levels that compare with standards are microbial treatment in all group concentration except control group with an incubation period of 21 days is > 7. P levels compare with the existing standards in the group of microbe concentration of 10% and 15% during the incubation period. The value of the initial BOD liquid waste of vegetable is 790.25 mg / L, this value indicates that the waste should not go into the water body. Accordingly, the results of this study can not be used as a liquid organic fertilizer, but potentially if it is used as a natural career or build natural soil. The Building natural soil is defined as the natural ingredients that can be used to improve soil properties.

  2. Bio-fuels

    International Nuclear Information System (INIS)

    2008-01-01

    This report presents an overview of the technologies which are currently used or presently developed for the production of bio-fuels in Europe and more particularly in France. After a brief history of this production since the beginning of the 20. century, the authors describe the support to agriculture and the influence of the Common Agricultural Policy, outline the influence of the present context of struggle against the greenhouse effect, and present the European legislative context. Data on the bio-fuels consumption in the European Union in 2006 are discussed. An overview of the evolution of the activity related to bio-fuels in France, indicating the locations of ethanol and bio-diesel production facilities, and the evolution of bio-fuel consumption, is given. The German situation is briefly presented. Production of ethanol by fermentation, the manufacturing of ETBE, the bio-diesel production from vegetable oils are discussed. Second generation bio-fuels are then presented (cellulose enzymatic processing), together with studies on thermochemical processes and available biomass resources

  3. Biofuels securing the planet's future energy needs

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, Ayhan [Sila Science, Univ. Mah, Mekan Sok No: 24, Trabzon (Turkey)

    2009-09-15

    The biofuels include bioethanol, biobutanol, biodiesel, vegetable oils, biomethanol, pyrolysis oils, biogas, and biohydrogen. There are two global biomass based liquid transportation fuels that might replace gasoline and diesel fuel. These are bioethanol and biodiesel. World production of biofuel was about 68 billion L in 2007. The primary feedstocks of bioethanol are sugarcane and corn. Bioethanol is a gasoline additive/substitute. Bioethanol is by far the most widely used biofuel for transportation worldwide. About 60% of global bioethanol production comes from sugarcane and 40% from other crops. Biodiesel refers to a diesel-equivalent mono alkyl ester based oxygenated fuel. Biodiesel production using inedible vegetable oil, waste oil and grease has become more attractive recently. The economic performance of a biodiesel plant can be determined once certain factors are identified, such as plant capacity, process technology, raw material cost and chemical costs. The central policy of biofuel concerns job creation, greater efficiency in the general business environment, and protection of the environment. (author)

  4. Biofuels - the UFIP position

    International Nuclear Information System (INIS)

    2004-01-01

    Since 2003 a directive promote the biofuels use. The industry is then using them in ETBE (Ethyl Tertio Butyl Ether) fuels and in diesel oil of vegetal oils esters EMHV. Meanwhile some of them present technical difficulties and must free themselves from fiscal incentives which make them competitive. For these reasons, the UFIP (french union of petroleum industries) do not agree their obligatory incorporation. (A.L.B.)

  5. National Algal Biofuels Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Dept. of Energy (DOE), Washington DC (United States); Sarisky-Reed, Valerie [Dept. of Energy (DOE), Washington DC (United States)

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  6. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production

    International Nuclear Information System (INIS)

    Chiaramonti, David; Prussi, Matteo; Buffi, Marco; Rizzo, Andrea Maria; Pari, Luigi

    2017-01-01

    Highlights: • A review of microalgae thermochemical conversion to bioliquids was carried out. • We focused on pyrolysis and hydrothermal liquefaction for biocrude/biofuels. • Original experimental research on microalgae pyrolysis was also carried out. • Starvation does not impact significant on the energy content of the biocrude. • This result is relevant for designing full scale microalgae production plants. - Abstract: Advanced Biofuels steadily developed during recent year, with several highly innovative processes and technologies explored at various scales: among these, lignocellulosic ethanol and CTO (Crude Tall Oil)-biofuel technologies already achieved early-commercial status, while hydrotreating of vegetable oils is today fully commercial, with almost 3.5 Mt/y installed capacity worldwide. In this context, microalgae grown in salt-water and arid areas represent a promising sustainable chain for advanced biofuel production but, at the same time, they also represent a considerable challenge. Processing microalgae in an economic way into a viable and sustainable liquid biofuel (a low-cost mass-product) is not trivial. So far, the most studied microalgae-based biofuel chain is composed by microorganism cultivation, lipid accumulation, oil extraction, co-product valorization, and algae oil conversion through conventional esterification into Fatty Acids Methyl Esters (FAME), i.e. Biodiesel, or Hydrotreated Esters and Fatty Acids (HEFA), the latter representing a very high quality drop-in biofuel (suitable either for road transport or for aviation). However, extracting the algae oil at low cost and industrial scale is not yet a mature process, and there is not yet industrial production of algae-biofuel from these two lipid-based chains. Another option can however be considered: processing the algae through dedicated thermochemical reactors into advanced biofuels, thus approaching the downstream processing of algae in a completely different way than

  7. Modified Dispersive Liquid-Liquid Micro Extraction Using Green Solvent for Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Vegetable Samples

    International Nuclear Information System (INIS)

    Kin, C.M.; Shing, W.L.

    2016-01-01

    According to International Agency for Research on Cancer (IARC), most of Polycyclic Aromatic Hydrocarbons (PAHs) known as genotoxic human carcinogen and mutagenic. PAHs represent as poorly degradable pollutants that exist in soils, sediments, surface water and atmosphere. A simple, rapid and sensitive extraction method termed modified Dispersive Liquid-Liquid Micro extraction (DLLME) using green solvent was developed to determine PAHs in vegetable samples namely radish, cabbage and cucumber prior to Gas Chromatography Flame Ionization Detection (GC-FID). The extraction method is based on replacing chlorinated organic extraction solvent in the conventional DLLME with low toxic solvent, 1-bromo-3-methylbutane without using dispersive solvent. Several experimental factors such as type and volume of extraction solvents, extraction time, confirmation of 12 PAHs by GC-MS, recovery percentages on vegetable samples and the comparative analysis with conventional DLLME were carried out. Both DLLME were successfully extracted 12 types of PAHs. In modified DLLME, the recoveries of the analytes obtained were in a range of 72.72 - 88.07 % with RSD value below 7.5 % which is comparable to the conventional DLLME. The use of microliter of low toxic extraction solvent without addition of dispersive solvent caused the method is economic and environmental friendly which is fulfill the current requirement, green chemistry based analytical method. (author)

  8. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    In 2010 bio-fuel continued to gnaw away at petrol and diesel consumption in the European Union (EU). However its pace backs the assertion that bio-fuel consumption growth in EU slackened off in 2010. In the transport sector, it increased by only 1.7 Mtoe compared to 2.7 Mtoe in 2009. The final total bio-fuel consumption figure for 2010 should hover at around 13.9 Mtoe that can be broken down into 10.7 Mtoe for bio-diesel, 2.9 Mtoe for bio-ethanol and 0.3 Mtoe for others. Germany leads the pack for the consumption of bio-fuels and for the production of bio-diesel followed by France and Spain

  9. Biofuels and Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, Jonathan R [ORNL

    2009-01-01

    The world obtains 86% of its energy from fossil fuels, 40% from petroleum, a majority of which goes to the transportation sector (www.IEA.gov). Well-recognized alternatives are fuels derived from renewable sources known as biofuels. There are a number of biofuels useful for transportation fuels, which include ethanol, biobutanol, mixed alcohols, biodiesel, and hydrogen. These biofuels are produced from biologically derived feedstock, almost exclusively being plant materials, either food or feed sources or inedible plant material called biomass. This chapter will discuss technologies for production of liquid transportation biofuels from renewable feedstocks, but hydrogen will not be included, as the production technology and infrastructure are not near term. In addition, a specific emphasis will be placed upon the research opportunities and potential for application of system biology tools to dissect and understand the biological processes central to production of these biofuels from biomass and biological materials. There are a number of technologies for production of each of these biofuels that range from fully mature processes such as grain-derived ethanol, emerging technology of ethanol form cellulose derived ethanol and immature processes such thermochemical conversion technologies and production of hydrogen all produced from renewable biological feedstocks. Conversion of biomass by various thermochemical and combustion technologies to produce thermochemical biodiesel or steam and electricity provide growing sources of bioenergy. However, these technologies are outside of the scope of this chapter, as is the use of biological processing for upgrading and conversion of fossil fuels. Therefore, this chapter will focus on the current status of production of biofuels produced from biological-derived feedstocks using biological processes. Regardless of the status of development of the biological process for production of the biofuels, each process can benefit from

  10. Algal biofuels.

    Science.gov (United States)

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  11. Pretreatment techniques for biofuels and biorefineries

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhen (ed.) [Chinese Academy of Sciences, Kunming, YN (China). Xishuangbanna Tropical Botonical Garden

    2013-02-01

    The first book focused on pretreatment techniques for biofuels contributed by the world's leading experts. Extensively covers the different types of biomass, various pretreatment approaches and methods that show the subsequent production of biofuels and chemicals. In addition to traditional pretreatment methods, novel techniques are also introduced and discussed. An accessible reference work for students, researchers, academicians and industrialists in biorefineries. This book includes 19 chapters contributed by the world's leading experts on pretreatment methods for biomass. It extensively covers the different types of biomass (e.g. molasses, sugar beet pulp, cheese whey, sugarcane residues, palm waste, vegetable oil, straws, stalks and wood), various pretreatment approaches (e.g. physical, thermal, chemical, physicochemical and biological) and methods that show the subsequent production of biofuels and chemicals such as sugars, ethanol, extracellular polysaccharides, biodiesel, gas and oil. In addition to traditional methods such as steam, hot-water, hydrothermal, diluted-acid, organosolv, ozonolysis, sulfite, milling, fungal and bacterial, microwave, ultrasonic, plasma, torrefaction, pelletization, gasification (including biogas) and liquefaction pretreatments, it also introduces and discusses novel techniques such as nano and solid catalysts, organic electrolyte solutions and ionic liquids. This book offers a review of state-of-the-art research and provides guidance for the future paths of developing pretreatment techniques of biomass for biofuels, especially in the fields of biotechnology, microbiology, chemistry, materials science and engineering. It intends to provide a systematic introduction of pretreatment techniques. It is an accessible reference work for students, researchers, academicians and industrialists in biorefineries.

  12. [Determination of gossypol in edible vegetable oil with high performance liquid chromatography-tandem mass spectrometry].

    Science.gov (United States)

    Zhang, Wenhua; Huang, Chaoqun; Xie, Wen; Shen, Li

    2014-06-01

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the determination of gossypol in edible vegetable oil. The sample was extracted with ethyl alcohol by vortex-excited oscillation. The extract was cleaned up by 0.22 microm filter membrane and centrifuged for 5 min at 4 000 r/min after standing in a fridge at 4 degrees C for 30 min. The compound was separated on a C18 column (100 mm x 2.1 mm, 3.5 microm) with acetonitrile and 1% (v/v) formic acid aqueous solution as mobile phase. The detection of gossypol was carried out by LC-MS/MS with positive electrospray ionization under multiple reaction monitoring (MRM) mode using external standard method. The limits of quantification (S/N > 10) of gossypol in edible vegetable oil was 1 mg/kg. The recoveries were from 87.4% to 100% at the spiked levels of 1, 2, 200 mg/kg of gossypol in edible vegetable oil with the relative standard deviations (RSDs) between 3.9% and 12.2%. The method, with high sensitivity, good precision and high recovery, was suitable for the confirmation and quantification of gossypol residue in edible vegetable oil.

  13. High-performance liquid chromatography for determination of α-tocopherol in vegetables

    Directory of Open Access Journals (Sweden)

    Marcin Horbowicz

    2013-12-01

    Full Text Available A simple method for the determination of α-tocopherol in vegetables is described. The procedure consists of the following steps: saponification, extraction, silica-column clean-up, and high-performance liquid chromatography. Elution time for D, L-α-tocopherol was 9.0 min using a Zorbax Sil (250 x 4.6 mm column and an isocratic mobile phase of hexane-methanol (99.3 + 0.7, with a flow rate of 1 ml/min, and detection at 292 nm using a variable UV detector. The average recovery of α-tocopherol was 91.2%, and the minimum detectable amount was 0.1 mg/100 g of fresh vegetable tissue. This method is comparable to gas-chromatographic determination of α-tocopherol, but has fewer analytical steps and gives more reproducible results.

  14. Analysis and identification of gaps in the research for the production of second-generation liquid transportation biofuels

    International Nuclear Information System (INIS)

    Schwietzke, S.; Ladisch, M.; Russo, L.; Kwant, K.; Maekinen, T.; Kavalov, B.; Maniatis, K.; Zwart, R.; Shahanan, G.; Sipila, K.; Grabowski, P.; Telenius, B.; White, M.

    2008-08-01

    Research gaps were found in cellulosic ethanol, Fischer-Tropsch liquids and green diesel, dimethyl ether and P-Series fuels. Lignocellulosic ethanol is derived from pre-treatment, hydrolysis, and fermentation of the resulting sugars from cellulosic sources such as wood chips, agricultural residues, and grasses. Green diesel is a high boiling component, not derived from vegetable oil, obtained either from Fischer-Tropsch synthesis or through pyrolysis of biomass. Dimethyl ether has potential as a high quality fuel for diesel engines and is produced by converting syngas into methanol followed by dehydration of methanol to dimethyl ether. P-Series fuel is a mixture of ethanol, methyltetrahydrofuran, pentanes and higher alkanes, and butane. Methyltetrahydrofuran may be produced from dehydration of pentose and glucose sugars to form furfural and levulinic acid respectively, which when hydrogenated result in methyltetrahydrofuran. Common denominators in gaps for these different fuels and the biochemical or thermochemical processes used to produce them are given by three main areas. These are: catalysts and biocatalysts; feedstock preparation and bioprocessing; and systems integration. In the biocatalyst (or catalyst) area research is needed to achieve more robust, versatile, and cost-effective catalysts. The catalytic systems must be less subject to inhibition and more stable in the presence of chemically complex feedstocks derived from biomass materials. With bioprocessing, the gaps lie in economic enzyme production, reduction of enzyme inhibition, development of pentose utilising and cellulase producing micro-organisms, feedstock preparation (pre-treatment), and inhibitor removal. For thermochemical systems, the list is analogous except the term 'catalyst' replaces 'enzyme' or 'microorganism'. Gaps were identified in feedstock preparation, with this term being broadly defined. Feedstocks are defined as biomass materials entering the process, as well as gases derived

  15. Production of gaseous and liquid bio-fuels from the upgrading of lignocellulosic bio-oil in sub- and supercritical water: Effect of operating conditions on the process

    International Nuclear Information System (INIS)

    Remón, J.; Arcelus-Arrillaga, P.; García, L.; Arauzo, J.

    2016-01-01

    Highlights: • Bio-oil valorisation in sub-/supercritical water: a promising route for bio-fuels. • Effect of P, T, t, catalyst and water regime on bio-oil upgrading studied in depth. • Tailor-made route for H_2, CH_4 and liquid bio-fuel production in a single process. • Upgraded liquid with high proportions of C and H, higher HHV and less O content. - Abstract: This work analyses the influence of the temperature (310–450 °C), pressure (200–260 bar), catalyst/bio-oil mass ratio (0–0.25 g catalyst/g bio-oil), and reaction time (0–60 min) on the reforming in sub- and supercritical water of bio-oil obtained from the fast pyrolysis of pinewood. The upgrading experiments were carried out in a batch micro-bomb reactor employing a co-precipitated Ni–Co/Al–Mg catalyst. This reforming process turned out to be highly customisable for the valorisation of bio-oil for the production of either gaseous or liquid bio-fuels. Depending on the operating conditions and water regime (sub/supercritical), the yields to upgraded bio-oil (liquid), gas and solid varied as follows: 5–90%, 7–91% and 3–31%, respectively. The gas phase, having a LHV ranging from 2 to 17 MJ/m"3 STP, was made up of a mixture of H_2 (9–31 vol.%), CO_2 (41–84 vol.%), CO (1–22 vol.%) and CH_4 (1–45 vol.%). The greatest H_2 production from bio-oil (76% gas yield with a relative amount of H_2 of 30 vol.%) was achieved under supercritical conditions at a temperature of 339 °C, 200 bar of pressure and using a catalyst/bio-oil ratio of 0.2 g/g for 60 min. The amount of C, H and O (wt.%) in the upgraded bio-oil varied from 48 to 74, 4 to 9 and 13 to 48, respectively. This represents an increase of up to 37% and 171% in the proportions of C and H, respectively, as well as a decrease of up to 69% in the proportion of O. The HHV of the treated bio-oil shifted from 20 to 35 MJ/kg, which corresponds to an increase of up to 89% with respect to the HHV of the original bio-oil. With a

  16. Biofuel characteristics of beniseed (Sesanum indicum) oil

    African Journals Online (AJOL)

    SERVER

    2007-11-05

    Nov 5, 2007 ... Local method was used to extract oil from beniseed (Sesanum indicum). ... fuel properties similar to common biofuels, hence beniseed could be utilized as an .... industries for the manufacture of soap and vegetable oil –.

  17. Determination of spirocyclic tetronic/tetramic acid derivatives and neonicotinoid insecticides in fruits and vegetables by liquid chromatography and mass spectrometry after dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Pastor-Belda, Marta; Garrido, Isabel; Campillo, Natalia; Viñas, Pilar; Hellín, Pilar; Flores, Pilar; Fenoll, José

    2016-07-01

    Dispersive liquid-liquid microextraction was used to preconcentrate three spirocyclic tetronic/tetramic acid derivatives (spirotetramat, spiromesifen and spirodiclofen) and five neonicotinoid (thiamethoxam, chlotianidin, imidacloprid, acetamiprid and thiacloprid) insecticides previously extracted from fruit and vegetable matrices with acetonitrile. The organic enriched phase was evaporated, reconstituted in 25μL acetonitrile and analyzed by reversed-phase liquid chromatography with tandem mass spectrometry using a triple quadrupole in selected reaction monitoring mode. Enrichment factors in the 15-100 range were obtained. A matrix effect was observed, the detection limits varying between 0.025 and 0.5ngg(-1), depending on the compound and the sample matrix. The developed method was applied to the analysis of 25 samples corresponding to five different fruit and vegetable matrices. Only thiamethoxam was detected in a lemon sample at a concentration close to the quantification limit, and spiromesifen and spirotetramat at concentrations between 11.6 and 54.5ngg(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Determination of Fusarium toxins in functional vegetable milks applying salting-out-assisted liquid-liquid extraction combined with ultra-high-performance liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Hamed, Ahmed M; Arroyo-Manzanares, Natalia; García-Campaña, Ana M; Gámiz-Gracia, Laura

    2017-11-01

    Vegetable milks are considered as functional foods due to their physiological benefits. Although the consumption of these products has significantly increased, they have received little attention in legislation with regard to contaminants. However, they may contain mycotoxins resulting from the use of contaminated raw materials. In this work, ultra-high-performance liquid chromatography tandem mass spectrometry has been proposed for the determination of the most relevant Fusarium toxins (fumonisin B 1 and B 2 , HT-2 and T-2 toxins, zearalenone, deoxynivalenol and fusarenon-X) in different functional beverages based on cereals, legumes and seeds. Sample treatment consisted of a simple salting-out-assisted liquid-liquid extraction with no further clean-up. The method provided limits of quantification between 3.2 and 57.7 µg L -1 , recoveries above 80% and precision with RSD lower than 12%. The method was also applied for studying the occurrence of these mycotoxins in market samples of vegetable functional beverages and deoxynivalenol was found in three oat-based commercial drinks.

  19. Experimental investigation concerning the influence of fuel type and properties on the injection and atomization of liquid biofuels in an optical combustion chamber

    International Nuclear Information System (INIS)

    Galle, J.; Defruyt, S.; Van de Maele, C.; Rodriguez, R. Piloto; Denon, Q.; Verliefde, A.; Verhelst, S.

    2013-01-01

    Due to the scarcity of fossil fuels and the future stringent emission limits, there is an increasing interest for the use of renewable biofuels in compression ignition engines. However, these fuels have different physical, chemical and thermodynamic properties affecting atomization, spray development and combustion processes. The results reported in this paper have been obtained by experimentation with a constant volume combustion chamber. The influences of physical fuel properties on injections under non-evaporating conditions are studied, using a pump-line-nozzle system from a medium speed diesel engine with injection pressures up to 1200 bar, by changing the fuel type and temperature. Experiments were conducted for diesel, biodiesel, straight vegetable oils and animal fats. Injection pressure and needle lift measurements were analyzed. A high speed camera was used to visualize the spray, which enabled us to study the spray penetration and spray angle. Our results show that the fuel temperature is an important parameter to control because it significantly affects the fuel properties. Both the injection timing and injection duration are affected by the fuel properties. The influences of these properties on the spray development were less pronounced. At low temperatures, a strongly deteriorated atomization of oils and fats was observed. -- Highlights: • Spray measurements in an optical combustion chamber. • Influence on the injections system is compared for different bio-fuels. •Temperature effects the fuel properties, with strong influence on the injection system. • Viscosity has significant influence on atomization, especially for viscous fuels. • No difference for spray penetration and angle unlike the mass distribution

  20. In-vial liquid-liquid microextraction-capillary electrophoresis method for the determination of phenolic acids in vegetable oils.

    Science.gov (United States)

    Abu Bakar, Nur Bahiyah; Makahleh, Ahmad; Saad, Bahruddin

    2012-09-12

    An in-vial liquid-liquid microextraction method was developed for the selective extraction of the phenolic acids (caffeic, gallic, cinnamic, ferulic, chlorogenic, syringic, vanillic, benzoic, p-hydroxybenzoic, 2,4-dihydroxybenzoic, o-coumaric, m-coumaric and p-coumaric) in vegetable oil samples. The optimised extraction conditions for 20 g sample were: volume of diluent (n-hexane), 2 mL; extractant, methanol: 5 mM sodium hydroxide (60:40; v/v); volume of extractant, 300 μL (twice); vortex, 1 min; centrifugation, 5 min. Recoveries for the studied phenolic acids were 80.1-119.5%. The simultaneous determination of the phenolic acid extracts was investigated by capillary electrophoresis (CE). Separations were carried out on a bare fused-silica capillary (50 μm i.d.× 40 cm length) involving 25 mM sodium tetraborate (pH 9.15) and 5% methanol as CE background electrolyte in the normal polarity mode, voltage of 30 kV, temperature of 25°C, injection time of 4s (50 mbar) and electropherograms were recorded at 200 nm. The phenolic acids were successfully separated in less than 10 min. The validated in-vial LLME-CE method was applied to the determination of phenolic acids in vegetable oil samples (extra virgin olive oil, virgin olive oil, pure olive oil, walnut oil and grapeseed oil). The developed method shows significant advantages over the current methods as lengthy evaporation step is not required. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Viewls - WP2. Environmental and economic performance of biofuels. Vol. 2 - Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-04-15

    According to the European Directive 2003/30 'Promotion of the use of biofuels or other renewable fuels for transport' the use of biofuels in the transportation sector should be strongly increased in the next decades in Europe. The purpose of this study was to obtain and present clear data and information to outline environmental and economic performance of different biofuels. Based on a standardised review of the most relevant international studies on transportation systems using biomass, the study presented estimation of ranges for the environmental and economic performance of different biofuels given by the two 'threshold values' and the 'reference value' between these threshold values. These results might be used by different stakeholders as an information source for future activities regarding the use of biofuels in the transportation sector in Europe. This report presents data about the following biofuels: bioethanol, bio-ETBE, biomethanol, bio-MTBE, pure vegetable oil, biodiesel, Fischer-Tropsch diesel, bio-DME, biogas, gaseous biohydrogen, liquid biohydrogen and bio-SNG. (BA)

  2. Biofuels: What potential for development?

    International Nuclear Information System (INIS)

    Alazard-Toux, Nathalie

    2010-01-01

    The current production chain of the first generation of biofuels has quite real limits. To overcome them, efforts are being made to develop processes for converting vegetable resources of little worth into fuel. This research focuses both on these resources and on the technology and processes for turning them into fuel

  3. The hard choice for alternative biofuels to diesel in Brazil.

    Science.gov (United States)

    Carioca, J O B; Hiluy Filho, J J; Leal, M R L V; Macambira, F S

    2009-01-01

    This paper selects biofuel scenarios to substitute diesel in Brazil based on oil reserves increase, diesel imports, CO(2) emissions, crops agronomic yields, byproducts marketing and social impacts. This hard task still considers that agricultural practices in developing countries have large social impacts. Brazil presents high consumption of diesel oil in transport; low agronomic yield of traditional vegetable oil crops, which demand large cultivation areas contrasting with microalgae and palm oils which present high productivity. Concerning technologies, thermal cracking and transesterification of vegetable oils present a difficult economic situation related to vegetable oils price, food competition and glycerin market; BTL technology, meaning thermal gasification of biomass to liquids, faces problems related to low density of biomaterials and low viscosity of synthetic biodiesel produced. Biorefinery algal integrated systems and co-solvent technology to introduce up to 8% of ethanol into diesel seem to be feasible routes to reduce diesel consumption.

  4. Vegetation

    DEFF Research Database (Denmark)

    Epstein, H.E.; Walker, D.A.; Bhatt, U.S.

    2012-01-01

    increased 20-26%. • Increasing shrub growth and range extension throughout the Low Arctic are related to winter and early growing season temperature increases. Growth of other tundra plant types, including graminoids and forbs, is increasing, while growth of mosses and lichens is decreasing. • Increases...... in vegetation (including shrub tundra expansion) and thunderstorm activity, each a result of Arctic warming, have created conditions that favor a more active Arctic fire regime....

  5. Biofuels made easy

    International Nuclear Information System (INIS)

    Hamilton, C.

    2004-01-01

    Much has been said and written in Australia since the Federal Government introduced its Clean Fuels Policy in September 2001. Various biofuel projects are now being considered in different states of Australia for the manufacture of bioethanol and biodiesel from renewable resources. However, the economic viability required to establish an Australian liquid biofuels industry is predicated on supportive government legislation and an encouraging fuel excise regime. On the other hand, the benefits of such an industry are also in debate. In an attempt to clarify some of the concerns being raised, this paper endeavours to provide an overview of the current use of bioethanol and biodiesel around the world, to summarise the process technologies involved, to review the benefits and non-benefits of renewable fuels to the transport industry and to address the issues for such an industry here in Australia

  6. Byproducts for biofuels

    International Nuclear Information System (INIS)

    Bondt, N.; Meeusen, M.J.G.

    2008-02-01

    This report examines the market for residues from the Dutch food and beverage industry, and the appeal of these residues for the production of bio-ethanol and biodiesel. The firstgeneration technology is readily suited to the conversion of no more than 29% of the 7.5 million tonnes of residues into biofuels. Moreover, when non-technological criteria are also taken into account virtually none of the residues are of interest for conversion into bioethanol, although vegetable and animal fats can be used to produce biodiesel. The economic consequences for sectors such as the animal-feed sector are limited [nl

  7. Towards Sustainable Production of Biofuels from Microalgae

    Directory of Open Access Journals (Sweden)

    Hans Ragnar Giselrød

    2008-07-01

    Full Text Available Renewable and carbon neutral biofuels are necessary for environmental and economic sustainability. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Microalgal biofuels are a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. This paper aims to analyze and promote integration approaches for sustainable microalgal biofuel production to meet the energy and environmental needs of the society. The emphasis is on hydrothermal liquefaction technology for direct conversion of algal biomass to liquid fuel.

  8. Potentials of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Munack, A.; Schroder, O. [Johann Heinrich von Thunen Inst., Braunschweig (Germany); Krahl, J. [Coburg Univ. of Applied Sciences, Coburg (Germany); Bunger, J. [Inst. for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr-Univ. Inst., Bochum (Germany)

    2010-07-01

    This paper discussed the potential of biofuels with particular reference to the situation in Germany and Europe. Emphasis was on technical potential, such as biofuel production, utilization and environmental aspects. The Institute of Agricultural Technology and Biosystems Engineering ran vTI emission tests on diesel engines to evaluate the environmental impacts of biofuels. This testing facility is able to drive heavy-duty diesel engines in both stationary and dynamic test cycles, such as the European ESC and ETC. Additional analyses were conducted to determine the fine and ultra-fine particles, polycyclic aromatic hydrocarbons (PAH), aldehydes, ketones, and the usual regulated exhaust gas compounds. Ames tests were conducted to assess the mutagenic potential of tailpipe emissions. Previous study results showed that neat vegetable oils can render the exhaust high in mutagenic potency. Some of the non-regulated exhaust gas compounds were found to vary nonlinearly with the blend composition. B20 was found to have high mutagenic potential and was subject to sedimentation.

  9. Biofuels Refining Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lobban, Lance [Univ. of Oklahoma, Norman, OK (United States)

    2017-03-28

    The goal of this project is the development of novel catalysts and knowledge of reaction pathways and mechanisms for conversion of biomass-based compounds to fuels that are compatible with oil-based fuels and with acceptable or superior fuel properties. The research scope included both catalysts to convert lignocellulosic biomass-based molecules (from pyrolysis) and vegetable oil-based molecules (i.e., triglycerides and fatty acid methyl esters). This project comprised five technical tasks. Each task is briefly introduced below, and major technical accomplishments summarized. Technical accomplishments were described in greater detail in the quarterly progress reports, and in even more detail in the >50 publications acknowledging this DoE project funding (list of publications and presentations included at the end of this report). The results of this research added greatly to the knowledge base necessary for upgrading of pyrolysis oil to hydrocarbon fuels and chemicals, and for conversion of vegetable oils to fungible diesel fuel. Numerous new catalysts and catalytic reaction systems were developed for upgrading particular compounds or compound families found in the biomass-based pyrolysis oils and vegetable oils. Methods to mitigate catalyst deactivation were investigated, including novel reaction/separation systems. Performance and emission characteristics of biofuels in flames and engines were measured. Importantly, the knowledge developed from this project became the basis for a subsequent collaborative proposal led by our research group, involving researchers from the University of Wisconsin, the University of Pittsburg, and the Idaho National Lab, for the DoE Carbon, Hydrogen and Separations Efficiency (CHASE) program, which was subsequently funded (one of only four projects awarded in the CHASE program). The CHASE project examined novel catalytic processes for lignocellulosic biomass conversion as well as technoeconomic analyses for process options for maximum

  10. [Biofuels, food security and transgenic crops].

    Science.gov (United States)

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology.

  11. Comparison of second-generation processes for the conversion of sugarcane bagasse to liquid biofuels in terms of energy efficiency, pinch point analysis and Life Cycle Analysis

    International Nuclear Information System (INIS)

    Petersen, A.M.; Melamu, Rethabi; Knoetze, J.H.; Görgens, J.F.

    2015-01-01

    Highlights: • Process evaluation of thermochemical and biological routes for bagasse to fuels. • Pinch point analysis increases overall efficiencies by reducing utility consumption. • Advanced biological route increased efficiency and local environmental impacts. • Thermochemical routes have the highest efficiencies and low life cycle impacts. - Abstract: Three alternative processes for the production of liquid transportation biofuels from sugar cane bagasse were compared, on the perspective of energy efficiencies using process modelling, Process Environmental Assessments and Life Cycle Assessment. Bio-ethanol via two biological processes was considered, i.e. Separate Hydrolysis and Fermentation (Process 1) and Simultaneous Saccharification and Fermentation (Process 2), in comparison to Gasification and Fischer Tropsch synthesis for the production of synthetic fuels (Process 3). The energy efficiency of each process scenario was maximised by pinch point analysis for heat integration. The more advanced bio-ethanol process was Process 2 and it had a higher energy efficiency at 42.3%. Heat integration was critical for the Process 3, whereby the energy efficiency was increased from 51.6% to 55.7%. For both the Process Environmental and Life Cycle Assessment, Process 3 had the least potential for detrimental environmental impacts, due to its relatively high energy efficiency. Process 2 had the greatest Process Environmental Impact due to the intensive use of processing chemicals. Regarding the Life Cycle Assessments, Process 1 was the most severe due to its low energy efficiency

  12. Biofuels. Environment, technology and food security

    International Nuclear Information System (INIS)

    Escobar, Jose C.; Lora, Electo S.; Venturini, Osvaldo J.; Yanez, Edgar E.; Castillo, Edgar F.; Almazan, Oscar

    2009-01-01

    The imminent decline of the world's oil production, its high market prices and environmental impacts have made the production of biofuels to reach unprecedent volumes over the last 10 years. This is why there have been intense debates among international organizations and political leaders in order to discuss the impacts of the biofuel use intensification. Besides assessing the causes of the rise in the demand and production of biofuels, this paper also shows the state of the art of their world's current production. It is also discussed different vegetable raw materials sources and technological paths to produce biofuels, as well as issues regarding production cost and the relation of their economic feasibility with oil international prices. The environmental impacts of programs that encourage biofuel production, farmland land requirements and the impacts on food production are also discussed, considering the life cycle analysis (LCA) as a tool. It is concluded that the rise in the use of biofuels is inevitable and that international cooperation, regulations and certification mechanisms must be established regarding the use of land, the mitigation of environmental and social impacts caused by biofuel production. It is also mandatory to establish appropriate working conditions and decent remuneration for workers of the biofuels production chain. (author)

  13. Micellar Liquid Chromatographic Determination of Carbaryl and 1-Naphthol in Water, Soil, and Vegetables

    Directory of Open Access Journals (Sweden)

    Mei-Liang Chin-Chen

    2012-01-01

    Full Text Available A liquid chromatographic procedure has been developed for the determination of carbaryl, a phenyl-N-methylcarbamate, and its main metabolite 1-naphthol, using a C18 column (250’mm’ × ’4.6’mm with a micellar mobile phase and fluorescence detection at maximum excitation/emission wavelengths of 225/333’nm, respectively. In the optimization step, surfactants sodium dodecyl sulphate (SDS, Brij-35 and N-cetylpyridinium chloride monohydrate, and organic solvents propanol, butanol, and pentanol were considered. The selected mobile phase was 0.15’M SDS-6% (v/v-pentanol-0.01’M NaH2PO4 buffered at pH 3. Validation studies, according to the ICH Tripartite Guideline, included linearity (r>0.999, limit of detection (5 and 18’ng mL-1, for carbaryl and 1-naphthol, resp., and limit of quantification (15 and 50’ng mL-1, for carbaryl and 1-naphthol, resp., with intra- and interday precisions below 1%, and robustness parameters below 3%. The results show that the procedure was adequate for the routine analysis of these two compounds in water, soil, and vegetables samples.

  14. [Determination of emamectin benzoate residue in vegetables by high performance liquid chromatography with fluorescence detection].

    Science.gov (United States)

    Zhang, Yan; Wu, Yinliang; Hu, Jiye; Wang, Hongwei; Pan, Canping; Liu, Fengmao

    2008-01-01

    A method was developed for the determination of emamectin benzoate residue in cabbage and mushroom using solid-phase extraction (SPE) and high performance liquid chromatography (HPLC) with fluorescence detection. The sample was extracted with ethyl acetate. Further cleanup was performed on a propylsulfonic acid solid phase extraction cartridge, followed by the derivatization with trifluoroacetic anhydride in the presence of N-methylimidazole. The amount of derivatized emamectin benzoate was determined by fluorescence detector after separation by HPLC. The detection limit was 0.10 microg/kg for cabbage and mushroom samples. The recoveries of emamectin benzoate in cabbage and mushroom samples were 78.6%-84.9%. The inter-day relative standard deviation (RSD) and intra-day RSD were 2.7%-6.0% and 3.1%-8.9%, respectively, at the fortified levels of 1.0-20.0 microg/kg. The calibration curve of emamectin benzoate in vegetables at the concentration range of 0.002 mg/L to 0.10 mg/L was linear (r = 0.9999).

  15. Hard cap espresso extraction and liquid chromatography determination of bioactive compounds in vegetables and spices.

    Science.gov (United States)

    Martinez-Sena, María Teresa; de la Guardia, Miguel; Esteve-Turrillas, Francesc A; Armenta, Sergio

    2017-12-15

    A new analytical procedure, based on liquid chromatography with diode array and fluorescence detection, has been proposed for the determination of bioactive compounds in vegetables and spices after hard cap espresso extraction. This novel extraction system has been tested for the determination of capsaicin and dihydrocapsaicin from fresh chilli and sweet pepper, piperine from ground pepper, curcumin from turmeric and curry, and myristicin from nutmeg. Extraction efficiency was evaluated by using acetonitrile:water and ethanol:water mixtures. The proposed method allows the extraction of samples with 100mL of 60% (v/v) ethanol in water. The obtained limits of quantification for the proposed procedure ranged from 0.07 to 0.30mgg -1 and results were statistically comparable with those obtained by ultrasound assisted extraction. Hard cap espresso machines offer a fast, effective and quantitative tool for the extraction of bioactive compounds from food samples with an extraction time lower than 30s, using a global available and low cost equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Scope of algae as third generation biofuels

    Directory of Open Access Journals (Sweden)

    Shuvashish eBehera

    2015-02-01

    Full Text Available An initiative has been taken to develop different solid, liquid and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass have been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security.

  17. Fuelling biofuel

    International Nuclear Information System (INIS)

    Collison, M.

    2006-01-01

    The Canadian government has recently committed to legislation ensuring that all transportation fuels will be supplemented with biofuels by 2010. This article provided details of a position paper written by the Canadian Renewable Fuels Association in response to the legislation. Details of new research to optimize the future biodiesel industry were also presented. Guiding principles of the paper included the creation of open markets across provincial boundaries; the manipulation of tax structures to make products competitive in the United States; and establishing quality standards via the Canadian General Standards Board. It is expected that the principles will reassure petroleum producers and retailers, as ethanol behaves differently than gasoline in storage tanks. As ethanol is water-absorbing, retailers must flush and vacuum their tanks to remove water, then install 10 micron filters to protect fuel lines and dispenser filters from accumulated gasoline residue loosened by the ethanol. Refineries are concerned that the average content of ethanol remains consistent across the country, as refiners will be reluctant to make different blends for different provinces. Critics of biodiesel claim that it is not energy-intensive enough to meet demand, and biodiesel crops are not an efficient use of soils that could otherwise be used to grow food crops. However, researchers in Saskatchewan are committed to using a variety of methods such as reduced tillage systems to make biodiesel production more efficient. Laboratory research has resulted in improved refining processes and genetic manipulation of potential biodiesel crops. Membrane technology is now being used to select water from ethanol. A process developed by the Ottawa company Iogen Corporation uses enzymatic hydrolysis to break down the tough fibres found in corn stalks, leaves, wood and other biomass into sugars. Scientists are also continuing to improve oil content yields in canola and soybean crops. It was

  18. Recommendations for a sustainable development of biofuels in France

    International Nuclear Information System (INIS)

    Douaud, A.; Gruson, J.F.

    2006-01-01

    The biofuels are presented as a solution to the greenhouse gases and the petroleum consumption decrease. The development of the biofuels needs an active research of the production, transformation and use costs improvement. It will be necessary to prepare the market of the biofuels to the globalization. Some recommendations are also provided in the domains of the vegetal oil ester, the ethanol for the diesel and for the development of simulation tools to evaluate the costs. (A.L.B.)

  19. L-ascorbic acid losses in Kenyan vegetables during cooking as determined by high performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    N.M.N. Wekesa

    2001-06-01

    Full Text Available The loss of L-ascorbic acid (L-AA in 14 different cooked local vegetables found in Nairobi markets was determined by high performance liquid chromatography. The effect of quantity of water on the loss of L-AA during cooking was studied with cowpea leaves. It was found that more L-AA was lost when larger amount of water was used than when smaller amount was used. The effect of the sharpness of the knife on the loss of L-AA was studied with spinach. It was found that more loss of L-AA occurred when a blunt (edge thickness 0.08 cm knife was used for cutting the vegetables than when a sharp knife (edge thickness 0.04 cm was used during cooking. L-AA was also determined when vegetables were cooked in different size pieces (surface are >1 cm2

  20. Biofuels and biodiversity in South Africa

    Directory of Open Access Journals (Sweden)

    Patrick J. O’Farrell

    2011-05-01

    Full Text Available The South African government, as part of its efforts to mitigate the effects of the ongoing energy crisis, has proposed that biofuels should form an important part of the country’s energy supply. The contribution of liquid biofuels to the national fuel supply is expected to be at least 2% by 2013. The Biofuels Industrial Strategy of the Republic of South Africa of 2007 outlines key incentives for reaching this target and promoting the development of a sustainable biofuels industry. This paper discusses issues relating to this strategy as well as key drivers in biofuel processing with reference to potential impacts on South Africa’s rich biological heritage.

    Our understanding of many of the broader aspects of biofuels needs to be enhanced. We identify key areas where challenges exist, such as the link between technology, conversion processes and feedstock selection. The available and proposed processing technologies have important implications for land use and the use of different non-native plant species as desired feedstocks. South Africa has a long history of planting non-native plant species for commercial purposes, notably for commercial forestry. Valuable lessons can be drawn from this experience on mitigation against potential impacts by considering plausible scenarios and the appropriate management framework and policies. We conceptualise key issues embodied in the biofuels strategy, adapting a framework developed for assessing and quantifying impacts of invasive alien species. In so doing, we provide guidelines for minimising the potential impacts of biofuel projects on biodiversity.

  1. Evaluation of apricot (Prunus armeniaca L.) seed kernel as a potential feedstock for the production of liquid bio-fuels and activated carbons

    International Nuclear Information System (INIS)

    Fadhil, Abdelrahman B.

    2017-01-01

    Highlights: • Apricot (Prunus armeniaca L.) is presented as a source for biodiesel, bio-oil and activated carbon. • Methylic and ethylic esters of apricot seed kernel oil conformed to ASTM (D6751) standards. • High yield (43.66% w/w) of bio-oil was produced by pyrolysis of de-oiled seed kernel. • High quality of activated carbon was obtained from the biochar. - Abstract: Production of liquid bio-fuels (biodiesel and bio-oil) as well as activated carbon from one non-edible feedstock, apricot (Prunus armeniaca L.) seed kernel was the main objective of the present research work. The oil was extracted from apricot seed kernel with a yield of 49.44% w/w of kernels. Potassium hydroxide-catalyzed transesterification of apricot (Prunus armeniaca L.) seed kernel oil with methanol and ethanol was then applied to produce methylic and ethylic, respectively. Properties of the obtained biodiesels were evaluated and found conformed to ASTM D 6751 limits. The apricot de-oiled seed kernel was pyrolyzed in a semi-batch reactor for bio-oil production. The effect of the pyrolysis temperatures (350, 400, 450, 500, 550 and 600 °C), pyrolysis time (30, 60, 90, 120 and 150 min) and feed particles size (0.25, 0.40, 0.59 and 0.84 mm) on the bio-oil yield was investigated. The maximum production of bio-oil (43.66% w/w) was achieved at a pyrolysis temperature of 450 °C, 60 min pyrolysis time and a feed particles size of 0.25 mm. The bio-oil obtained under the optimal conditions was characterized by the elemental analysis, FTIR spectroscopy and column chromatography. The FTIR analysis of the produced bio-fuel indicated that it composes mainly of alkanes, alkenes, ketones, carboxylic acids and amines. Properties of the resulting bio-oil were analyzed in terms of calorific value, density, flash point, pH, acid value, pour point and refractive index. The properties were close to those of petroleum fractions and comparable to those of other bio-oils published in literature. Referring to

  2. Transport biofuels - a life-cycle assessment approach

    NARCIS (Netherlands)

    Reijnders, L.

    2008-01-01

    Life-cycle studies of the currently dominant transport biofuels (bioethanol made from starch or sugar and biodiesel made from vegetable oil) show that solar energy conversion efficiency is relatively poor if compared with solar cells and that such biofuels tend to do worse than conventional fossil

  3. Biofuels: 1995 project summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

  4. Biofuels: stakes, perspectives and researches; Biocarburants: enjeux, perspectives et recherches

    Energy Technology Data Exchange (ETDEWEB)

    Appert, O.; Ballerin, D.; Montagne, X.

    2004-07-01

    The French institute of petroleum (IFP) is a major intervener of the biofuels sector, from the production to the end-use in engines. In this press conference, the IFP takes stock of the technological, environmental and economical stakes of today and future biofuel production processes and of their impact on transports. This document gathers 2 presentations dealing with: IFP's research strategy on biofuels (transparencies: context; today's processes: ethanol, ETBE, bio-diesel; tomorrows processes: biomass to liquid; perspectives), bio-diesel fuel: the Axens process selected by Diester Industrie company for its Sete site project of bio-diesel production unit. The researches carried out at the IFP on biofuels and biomass are summarized in an appendix: advantage and drawbacks of biofuels, the ethanol fuel industry, the bio-diesel industry, biomass to liquid fuels, French coordinated research program, statistical data of biofuel consumption in France, Spain and Germany. (J.S.)

  5. Liquid biofuels from blue biomass

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Jensen, Annette Eva; Bangsø Nielsen, Henrik

    2011-01-01

    Marine (blue) biomasses, such as macroalgaes, represent a huge unexploited amount of biomass. With their various chemical compositions, macroalgaes can be a potential substrate for food, feed, biomaterials, pharmaceuticals, health care products and also for bioenergy. Algae use seawater as a growth...... medium, light as energy source and they capture CO2 for the synthesis of new organic material, thus can grow on non-agricultural land, without increasing food prices, or using fresh water. Due to all these advantages in addition to very high biomass yield with high carbohydrate content, macroalgaes can...

  6. Biofuel technologies. Recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vijai Kumar [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry; MITS Univ., Rajasthan (India). Dept. of Science; Tuohy, Maria G. (eds.) [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry

    2013-02-01

    Written by experts. Richly illustrated. Of interest to both experienced researchers and beginners in the field. Biofuels are considered to be the main potential replacement for fossil fuels in the near future. In this book international experts present recent advances in biofuel research and related technologies. Topics include biomethane and biobutanol production, microbial fuel cells, feedstock production, biomass pre-treatment, enzyme hydrolysis, genetic manipulation of microbial cells and their application in the biofuels industry, bioreactor systems, and economical processing technologies for biofuel residues. The chapters provide concise information to help understand the technology-related implications of biofuels development. Moreover, recent updates on biofuel feedstocks, biofuel types, associated co- and byproducts and their applications are highlighted. The book addresses the needs of postgraduate researchers and scientists across diverse disciplines and industrial sectors in which biofuel technologies and related research and experimentation are pursued.

  7. Synthetic Biology Guides Biofuel Production

    Directory of Open Access Journals (Sweden)

    Michael R. Connor

    2010-01-01

    Full Text Available The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges.

  8. Panorama 2007: Biofuels Worldwide

    International Nuclear Information System (INIS)

    Prieur-Vernat, A.; His, St.

    2007-01-01

    The biofuels market is booming: after more than 20 years of industrial development, global bio-fuel production is growing fast. Willingness to reduce their oil dependence and necessity to promote low-carbon energies are the two main drivers for states to support biofuels development. (author)

  9. Biofuel from "humified" biomass

    Science.gov (United States)

    Kpogbemabou, D.; Lemée, L.; Amblès, A.

    2009-04-01

    In France, 26% of the emissions of greenhouse effect gas originate from transportation which depends for 87% on fossil fuels. Nevertheless biofuels can contribute to the fight against climate change while reducing energetic dependence. Indeed biomass potentially represents in France 30 Mtoe a year that is to say 15% national consumption. But 80% of these resources are made of lignocellulosic materials which are hardly exploitable. First-generation biofuels are made from sugar, starch, vegetable oil, or animal fats. Due to their competition with human food chain, first-generation biofuels could lead to food shortages and price rises. At the contrary second-generation biofuel production can use a variety of non food crops while using the lignocellulosic part of biomass [1]. Gasification, fermentation and direct pyrolysis are the most used processes. However weak yields and high hydrogen need are limiting factors. In France, the National Program for Research on Biofuels (PNRB) aims to increase mobilizable biomass resource and to develop lignocellulosic biomass conversion. In this context, the LIGNOCARB project studies the liquefaction of biodegraded biomass in order to lower hydrogen consumption. Our aim was to develop and optimize the biodegradation of the biomass. Once the reactor was achieved, the influence of different parameters (starting material, aeration, moisture content) on the biotransformation process was studied. The monitored parameters were temperature, pH and carbon /nitrogen ratio. Chemical (IHSS protocol) and biochemical (van Soest) fractionations were used to follow the maturity ("humic acid"/"fulvic acid" ratio) and the biological stability (soluble, hemicelluloses, celluloses, lignin) of the organic matter (OM). In example, the increase in lignin can be related to the stabilization since the OM becomes refractory to biodegradation whereas the increase in the AH/AF ratio traduces "humification". However, contrarily to the composting process, we do

  10. The Third Pacific Basin Biofuels Workshop: Proceedings

    Science.gov (United States)

    Among the many compelling reasons for the development of biofuels on remote Pacific islands, several of the most important include: (1) a lack of indigenous fossil fuels necessitates their import at great economic loss to local island economics, (2) ideal conditions for plant growth exist on many Pacific islands to produce yields of biomass feedstocks, (3) gaseous and liquid fuels such as methane, methanol and ethanol manufactured locally from biomass feedstocks are the most viable alternatives to gasoline and diesel fuels for transportation, and (4) the combustion of biofuels is cleaner than burning petroleum products and contributes no net atmospheric CO2 to aggravate the greenhouse effect and the subsequent threat of sea level rise to low islands. Dr. Vic Phillips, HNEI Program Manager of the Hawaii Integrated Biofuels Research Program welcomed 60 participants to the Third Pacific Basin Biofuels Workshop at the Sheraton Makaha Hotel, Waianae, Oahu, on March 27 and 28, 1989. The objectives of the workshop were to update progress since the Second Pacific Basin Biofuels Workshop in April 1987 and to develop a plan for action for biofuels R and D, technology transfer, and commercialization now (immediate attention), in the near-term (less than two years), in the mid-term (three to five years), and in the long-term (more than six years). An emerging theme of the workshop was how the production, conversion, and utilization of biofuels can help increase environmental and economic security locally and globally. Individual papers are processed separately for the data base.

  11. The second generation of biofuels aims at 2015; La seconde generation de biocarburants vise 2015

    Energy Technology Data Exchange (ETDEWEB)

    Orliac, A

    2008-12-15

    Research work is intensifying on the second generation of biofuels in order to optimize the processes and to reduce the production costs. Poorly valorized vegetable resources are targeted in order to avoid conflicts with other agricultural processes. Two ways are explored since several years: the biological way (bio-ethanol) and the thermochemical way (bio-diesel). So far, no method allows to recover oils with a satisfactory energy efficiency but several pilot-plants are under study or already in operation (Futurol, BTL (biomass-to-liquid)..). Short paper. (J.S.)

  12. Panorama 2007: Biofuels and their Environmental Performance

    International Nuclear Information System (INIS)

    Prieur-Vernat, A.; His, St.; Bouvart, F.

    2007-01-01

    Today, the development of bio-fuel pathways is closely associated with targets for the reduction of greenhouse gas (GHG) emissions in the transport sector. Well-to-wheel assessments indicate that the use of these automotive fuels of vegetable origin yield definite benefits in terms of GHG emissions and fossil energy consumption compared to petroleum-based automotive fuels. (author)

  13. The development of the biofuels in the german farms

    International Nuclear Information System (INIS)

    Palz, W.

    2005-03-01

    Germany is today at the first place of the world for the production and the utilization of vegetable oils and by products, the Diester. The main reasons of this enjoyment is the two european directives on biofuels and the tax exemption at 100% decided by the government in 2004. All the biofuels available in Germany, as the ethanol, the vegetable oils and the bio-alcohol, are presented in this paper. The research axis and the government policy in favor of the biofuels are also discussed. (A.L.B.)

  14. L-ascorbic acid losses in Kenyan vegetables during cooking as determined by high performance liquid chromatography

    OpenAIRE

    N.M.N. Wekesa; S.C. Chhabra; H.M. Thairu

    2001-01-01

    The loss of L-ascorbic acid (L-AA) in 14 different cooked local vegetables found in Nairobi markets was determined by high performance liquid chromatography. The effect of quantity of water on the loss of L-AA during cooking was studied with cowpea leaves. It was found that more L-AA was lost when larger amount of water was used than when smaller amount was used. The effect of the sharpness of the knife on the loss of L-AA was studied with spinach. It was found that more loss of L-AA occurred...

  15. Detection of argan oil adulteration with vegetable oils by high-performance liquid chromatography-evaporative light scattering detection.

    Science.gov (United States)

    Salghi, Rachid; Armbruster, Wolfgang; Schwack, Wolfgang

    2014-06-15

    Triacylglycerol profiles were selected as indicator of adulteration of argan oils to carry out a rapid screening of samples for the evaluation of authenticity. Triacylglycerols were separated by high-performance liquid chromatography-evaporative light scattering detection. Different peak area ratios were defined to sensitively detect adulteration of argan oil with vegetable oils such as sunflower, soy bean, and olive oil up to the level of 5%. Based on four reference argan oils, mean limits of detection and quantitation were calculated to approximately 0.4% and 1.3%, respectively. Additionally, 19 more argan oil reference samples were analysed by high-performance liquid chromatography-refractive index detection, resulting in highly comparative results. The overall strategy demonstrated a good applicability in practise, and hence a high potential to be transferred to routine laboratories. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Integrated micro-economic modelling and multi-criteria methodology to support public decision-making: the case of liquid bio-fuels in France

    International Nuclear Information System (INIS)

    Rozakis, S.; Sourie, J.-C.; Vanderpooten, D.

    2001-01-01

    Decision making to determine government support policy for agro-energy industry can be assisted by mathematical programming and Multiple Criteria procedures. In this case study, tax credit policy in the French bio-fuel industry producing ethanol and esters is determined. Micro-economic models simulate the agricultural sector and the bio-fuel industry through multi-level mixed integer linear programming. Aggregate supply of energy crops at the national level is estimated using a staircase model of 450 individual farm sub-models specialising in arable cropping. The government acts as a leader, since bio-fuel chains depend on subsidies. The model provides rational responses of the industry, taking into account of the energy crops' supply, to any public policy scheme (unitary tax exemptions for bio-fuels subject to budgetary constraints) as well as the performance of each response regarding total greenhouse gases emissions (GHG), budgetary expenditure and agents' surpluses. Budgetary, environmental and social concerns will affect policy decisions, and a multi-criteria optimisation module projects the decision maker aims at the closest feasible compromise solutions. When public expenditure is the first priority, the best compromise solution corresponds to tax exemptions of about 2 FF l -1 [FF: French Franc (1Euro equivalent to 6.559FF)] for ester and 3FF l -1 for ethanol (current tax exemptions amount at 2.30FF l -1 for ester and 3.30FF l -1 for ethanol). On the other hand, a priority on the reduction of GHG emissions requires an increase of ester volume produced at the expense of ethanol production (2.30 FF l -1 for both ester and ethanol chains proposed by the model). (Author)

  17. Integrated micro-economic modelling and multi-criteria methodology to support public decision-making: the case of liquid bio-fuels in France

    Energy Technology Data Exchange (ETDEWEB)

    Rozakis, S.; Sourie, J.-C. [Institut National de la Recherche Agronomique, Economie et Sociologie Rurales, Thiveral-Grignon, 78 (France); Vanderpooten, D. [Universite Paris-Dauphine, LAMSADE, Paris, 75 (France)

    2001-07-01

    Decision making to determine government support policy for agro-energy industry can be assisted by mathematical programming and Multiple Criteria procedures. In this case study, tax credit policy in the French bio-fuel industry producing ethanol and esters is determined. Micro-economic models simulate the agricultural sector and the bio-fuel industry through multi-level mixed integer linear programming. Aggregate supply of energy crops at the national level is estimated using a staircase model of 450 individual farm sub-models specialising in arable cropping. The government acts as a leader, since bio-fuel chains depend on subsidies. The model provides rational responses of the industry, taking into account of the energy crops' supply, to any public policy scheme (unitary tax exemptions for bio-fuels subject to budgetary constraints) as well as the performance of each response regarding total greenhouse gases emissions (GHG), budgetary expenditure and agents' surpluses. Budgetary, environmental and social concerns will affect policy decisions, and a multi-criteria optimisation module projects the decision maker aims at the closest feasible compromise solutions. When public expenditure is the first priority, the best compromise solution corresponds to tax exemptions of about 2 FF l{sup -1} [FF: French Franc (1Euro equivalent to 6.559FF)] for ester and 3FF l{sup -1} for ethanol (current tax exemptions amount at 2.30FF l{sup -1} for ester and 3.30FF l{sup -1} for ethanol). On the other hand, a priority on the reduction of GHG emissions requires an increase of ester volume produced at the expense of ethanol production (2.30 FF l{sup -1} for both ester and ethanol chains proposed by the model). (Author)

  18. Toward nitrogen neutral biofuel production.

    Science.gov (United States)

    Huo, Yi-Xin; Wernick, David G; Liao, James C

    2012-06-01

    Environmental concerns and an increasing global energy demand have spurred scientific research and political action to deliver large-scale production of liquid biofuels. Current biofuel processes and developing approaches have focused on closing the carbon cycle by biological fixation of atmospheric carbon dioxide and conversion of biomass to fuels. To date, these processes have relied on fertilizer produced by the energy-intensive Haber-Bosch process, and have not addressed the global nitrogen cycle and its environmental implications. Recent developments to convert protein to fuel and ammonia may begin to address these problems. In this scheme, recycling ammonia to either plant or algal feedstocks reduces the demand for synthetic fertilizer supplementation. Further development of this technology will realize its advantages of high carbon fixation rates, inexpensive and simple feedstock processing, in addition to reduced fertilizer requirements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Two-step microextraction combined with high performance liquid chromatographic analysis of pyrethroids in water and vegetable samples.

    Science.gov (United States)

    Mukdasai, Siriboon; Thomas, Chunpen; Srijaranai, Supalax

    2014-03-01

    Dispersive liquid microextraction (DLME) combined with dispersive µ-solid phase extraction (D-µ-SPE) has been developed as a new approach for the extraction of four pyrethroids (tetramethrin, fenpropathrin, deltamethrin and permethrin) prior to the analysis by high performance liquid chromatography (HPLC) with UV detection. 1-Octanol was used as the extraction solvent in DLME. Magnetic nanoparticles (Fe3O4) functionalized with 3-aminopropyl triethoxysilane (APTS) were used as the dispersive in DLME and as the adsorbent in D-µ-SPE. The extracted pyrethroids were separated within 30 min using isocratic elution with acetonitrile:water (72:28). The factors affecting the extraction efficiency were investigated. Under the optimum conditions, the enrichment factors were in the range of 51-108. Linearity was obtained in the range 0.5-400 ng mL(-1) (tetramethrin) and 5-400 ng mL(-1) (fenpropathrin, deltamethrin and permethrin) with the correlation coefficients (R(2)) greater than 0.995. Detection limits were 0.05-2 ng mL(-1) (water samples) and 0.02-2.0 ng g(-1) (vegetable samples). The relative standard deviations of peak area varied from 1.8 to 2.5% (n=10). The extraction recoveries of the four pyrethroids in field water and vegetable samples were 91.7-104.5%. The proposed method has high potential for use as a sensitive method for determination of pyrethroid residues in water and vegetable samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Limits to biofuels

    Directory of Open Access Journals (Sweden)

    Johansson S.

    2013-06-01

    Full Text Available Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays’ use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years’ agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2–6000TWh (biogas from residues and waste and ethanol from woody biomass in the more optimistic cases.

  1. Limits to biofuels

    Science.gov (United States)

    Johansson, S.

    2013-06-01

    Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays' use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years' agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2-6000TWh (biogas from residues and waste and ethanol from woody biomass) in the more optimistic cases.

  2. Biofuels Baseline 2008

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; Koper, M.; Berndes, G.; Englund, O.; Diaz-Chavez, R.; Kunen, E.; Walden, D.

    2011-10-15

    The European Union is promoting the use of biofuels and other renewable energy in transport. In April 2009, the Renewable Energy Directive (2009/28/EC) was adopted that set a 10% target for renewable energy in transport in 2020. The directive sets several requirements to the sustainability of biofuels marketed in the frame of the Directive. The Commission is required to report to the European Parliament on a regular basis on a range of sustainability impacts resulting from the use of biofuels in the EU. This report serves as a baseline of information for regular monitoring on the impacts of the Directive. Chapter 2 discusses the EU biofuels market, the production and consumption of biofuels and international trade. It is derived where the feedstock for EU consumed biofuels originally come from. Chapter 3 discusses the biofuel policy framework in the EU and major third countries of supply. It looks at various policy aspects that are relevant to comply with the EU sustainability requirements. Chapter 4 discusses the environmental and social sustainability aspects associated with EU biofuels and their feedstock. Chapter 5 discusses the macro-economic effects that indirectly result from increased EU biofuels consumption, on commodity prices and land use. Chapter 6 presents country factsheets for main third countries that supplied biofuels to the EU market in 2008.

  3. Estimation of Stereospecific Fatty Acid Distribution in Vegetable Oils from Liquid Chromatography Data.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena; Lísa, M.; Holčapek, M.

    2008-01-01

    Roč. 110, č. 3 (2008), s. 266-276 ISSN 1438-7697 R&D Projects: GA AV ČR(CZ) GA203/04/0120 Institutional research plan: CEZ:AV0Z40720504 Keywords : vegetable oils * triacylglycerol * stereospecificity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.354, year: 2008

  4. Life Cycle Assessment for Biofuels

    Science.gov (United States)

    A presentation based on life cycle assessment (LCA) for biofuels is given. The presentation focuses on energy and biofuels, interesting environmental aspects of biofuels, and how to do a life cycle assessment with some examples related to biofuel systems. The stages of a (biofuel...

  5. [Determination of 250 pesticide residues in vegetables using QuEChERS-ultra performance liquid chromatography-tandem mass spectrometry].

    Science.gov (United States)

    Zhang, Aizhi; Wang, Quanlin; Cao, Lili; Li, Yu; Shen, Hao; Shen, Jian; Zhang, Shufen; Man, Zhengyin

    2016-02-01

    A multiresidue analytical method for the determination of 250 pesticide residues in vegetables was developed by using QuEChERS-ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The target compounds were extracted with acetonitrile containing 1% (v/v) acetic acid, purified by a mixed sorbent of MgSO4, primary secondary amine (PSA), graphitized carbon black (GCB) and C18, separated on a Waters ACQUITY™ UPLC BEH C18 column (100 mm x 2. 1 mm, 1.7 µm) and detected by UPLC-MS/MS. Anhydrous magnesium sulfate was used as a dewatering agent. The effects of the amounts of MgSO4, PSA, GCB and C18 added on the recoveries of 250 pesticides were investigated. The results showed that the purification effect was best when 300 mg MgSO4, 200 mg PSA, 10 mg GCB and 100 mg C18 in 2 mL of the extract were added. For the 250 pesticide residues, the limits of detection (LODs) of the method were from 0. 01 to 50. 00 g/kg. The recoveries obtained ranged from 60. 1% to 120% at three spiked levels in Chinese chives with the relative standard deviations between 3. 5% and 19. 5% using matrix matched external standard method. The results showed that the method is able to meet requirements of the multiresidue detection of the 250 pesticides in vegetable. The method has the advantages of rapidity, simplicity, high sensitivity and better purification effect. It is suitable for the rapid determination of the common pesticides in vegetables, and it provides a strong guarantee for the risk assessments of the quality and safety of vegetables.

  6. Biomass, biogas and biofuels

    International Nuclear Information System (INIS)

    Colonna, P.

    2011-01-01

    This article reviews the different ways to produce biofuels. It appears that there are 3 generations of biofuels. The first generation was based on the use of the energetic reserves of the plants for instance sugar from beetroot or starch from cereals or oil from oleaginous plants. The second generation is based on a more complete use of the plant, the main constituents of the plant: cellulose and lignin are turned into energy. The third generation of biofuels relies on the use of energy plants and algae. The second generation of biofuels reduces drastically the competition between an alimentary use and a non-alimentary use of plants. In 2008 the production of biofuels reached 43 Mtep which represents only 2% of all the energy used in the transport sector. The international agency for energy expects that the production of biofuels would be multiplied by a factor 6 (even 10 if inciting measures are taken) by 2030. (A.C.)

  7. The Danish Biofuel Debate

    DEFF Research Database (Denmark)

    Hansen, Janus

    2014-01-01

    of biofuels enrol scientific authority to support their positions? The sociological theory of functional differentiation combined with the concept of advocacy coalition can help in exploring this relationship between scientific claims-making and the policy stance of different actors in public debates about...... biofuels. In Denmark two distinct scientific perspectives about biofuels map onto the policy debates through articulation by two competing advocacy coalitions. One is a reductionist biorefinery perspective originating in biochemistry and neighbouring disciplines. This perspective works upwards from...

  8. Biofuels in China.

    Science.gov (United States)

    Tan, Tianwei; Yu, Jianliang; Lu, Jike; Zhang, Tao

    2010-01-01

    The Chinese government is stimulating the biofuels development to replace partially fossil fuels in the transport sector, which can enhance energy security, reduce greenhouse gas emissions, and stimulate rural development. Bioethanol, biodiesel, biobutanol, biogas, and biohydrogen are the main biofuels developed in China. In this chapter, we mainly present the current status of biofuel development in China, and illustrate the issues of feedstocks, food security and conversion processes.

  9. Production of biofuels via hydrothermal conversion

    DEFF Research Database (Denmark)

    Biller, Patrick; Ross, Andrew

    2016-01-01

    as the quality of targeted biofuel is a function of feedstock and operating conditions. The quality of hydrochar influences its uses as a solid fuel while biocrude quality affects its use as a liquid fuel and feedstock for upgrading to drop-in replacement fuels, while HTG produces a syngas rich in either H2...

  10. NREL biofuels program overview

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, J.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    The NREL Biofuels Program has been developing technology for conversion of biomass to transportation fuels with support from DOE Office of Transportation Technologies Biofuels System Program. This support has gone to both the National Renewable Energy Laboratory, and over 100 subcontractors in universities and industry. This overview will outline the value of the Biofuels development program to the Nation, the current status of the technology development, and what research areas still need further support and progress for the development of a biofuels industry in the US.

  11. A simple and selective method for determination of phthalate biomarkers in vegetable samples by high pressure liquid chromatography-electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Zhou, Xi; Cui, Kunyan; Zeng, Feng; Li, Shoucong; Zeng, Zunxiang

    2016-06-01

    In the present study, solid-phase extraction cartridges including silica reversed-phase Isolute C18, polymeric reversed-phase Oasis HLB and mixed-mode anion-exchange Oasis MAX, and liquid-liquid extractions with ethyl acetate, n-hexane, dichloromethane and its mixtures were compared for clean-up of phthalate monoesters from vegetable samples. Best recoveries and minimised matrix effects were achieved using ethyl acetate/n-hexane liquid-liquid extraction for these target compounds. A simple and selective method, based on sample preparation by ultrasonic extraction and liquid-liquid extraction clean-up, for the determination of phthalate monoesters in vegetable samples by liquid chromatography/electrospray ionisation-tandem mass spectrometry was developed. The method detection limits for phthalate monoesters ranged from 0.013 to 0.120 ng g(-1). Good linearity (r(2)>0.991) between MQLs and 1000× MQLs was achieved. The intra- and inter-day relative standard deviation values were less than 11.8%. The method was successfully used to determine phthalate monoester metabolites in the vegetable samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Allies in Biofuels. Opportunities in the Dutch - Argentinean biofuels trade relation

    International Nuclear Information System (INIS)

    Verhagen, M.

    2007-01-01

    First generation biofuels as an environmental solution are showing their own negative environmental, social and economic side effects. These need to be dealt with, because it is apparent that those same biofuels can be produced in a sustainable manner, thereby contributing to a healthier planet. Since both Argentina and the Netherlands would benefit from sustainable biofuels trade, policy measures need to be taken to guide the proper way. In what manner could bilateral cooperation concerning biofuels, optimize trade and policy output in both countries? By answering this question, one can hand solutions to upcoming problems - barriers to a sustainable energy structure - while at the same time facilitating trade between Argentina and the Netherlands. Besides providing information about the European, Dutch and Argentine market, this report presents an overview of biofuel policies. Special attention is given to the issue of sustainable biofuel production, in order to spread the necessary awareness, create wide support for corresponding politics, and offer opportunities for cooperation to prevent future entrapment. An entrapment, which could easily occur when actors in politics and business ignore international requirements for sustainable biofuel production. The research aims to produce the following output: Policy recommendations regarding the promotion of environmentally sound biofuels in both countries; A set arena to support a policy dialogue between both countries; An overview of current Dutch and Argentinean biofuel policies; Up to date information on current volumes of production, consumption and trade; Data with contact information of partners in both countries. Argentina shows an extremely professional agricultural sector, producing large quantities of vegetable oils, specifically of soybean. This sector has started to turn its attention towards biofuels - particularly to biodiesel. Projected production (for 2007-2008) is astonishingly high. The sector mainly

  13. Liquid chromatography-high resolution mass spectrometry for the analysis of phytochemicals in vegetal-derived food and beverages.

    Science.gov (United States)

    La Barbera, Giorgia; Capriotti, Anna Laura; Cavaliere, Chiara; Montone, Carmela Maria; Piovesana, Susy; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2017-10-01

    The recent years witnessed a change in the perception of nutrition. Diet does not only provide nutrients to meet the metabolic requirements of the body, but it also constitutes an active way for the consumption of compounds beneficial for human health. Fruit and vegetables are an excellent source of such compounds, thus the growing interest in characterizing phytochemical sources, structures and activities. Given the interest for phytochemicals in food, the development of advanced and suitable analytical techniques for their identification is fundamental for the advancement of food research. In this review, the state of the art of phytochemical research in food plants is described, starting from sample preparation, throughout extract clean-up and compound separation techniques, to the final analysis, considering both qualitative and quantitative investigations. In this regard, from an analytical point of view, fruit and vegetable extracts are complex matrices, which greatly benefit from the use of modern hyphenated techniques, in particular from the combination of high performance liquid chromatography separation and high resolution mass spectrometry, powerful tools which are being increasingly used in the recent years. Therefore, selected applications to real samples are presented and discussed, in particular for the analysis of phenols, polyphenols and phenolic acids. Finally, some hot points are discussed, such as waste characterization for high value-compounds recovery and the untargeted metabolomics approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effects of goat manure liquid fertilizer combined with AB-MIX on foliage vegetables growth in hydroponic

    Science.gov (United States)

    Sunaryo, Y.; Purnomo, D.; Darini, M. T.; Cahyani, V. R.

    2018-03-01

    Hydroponic as one of the protected cultivation practices is very important to be developed in Indonesia due to not only the reduction of arable agricultural lands in lines with increasing of residential demand and other public facilities but also due to the negative influences of climate change as well global warming to plant growth. The effects of liquid fertilizer made from goat manure (LFGM) in combination with AB-Mix on three kinds of foliage vegetable growth was examined in hydroponics. The research was conducted by 3 x 4 factorial experiment and arranged in Completely Randomized Design with 3 replications. The first factor was foliage vegetable consisting of 3 levels: Mustard Green, Lettuce, and Red Spinach. The second factor was the mixture composition of nutrient solution consisting of 4 levels: LFGM + AB-Mix (v/v: 1:1), LFGM + AB-Mix (v/v: 1:3), LFGM + AB-Mix (v/v: 3:1), and A/B mix as control. Results indicated that the application of LFGM + AB-Mix (v/v: 1:3) resulted in similar plant growth as control (AB-Mix application), and also resulted in the highest chlorophyll content of Mustard green.

  15. Round table on bio-fuels

    International Nuclear Information System (INIS)

    2005-11-01

    The French ministers of agriculture and of industry have organized a meeting with the main French actors of agriculture, petroleum industry, car making and accessories industry and with professionals of agriculture machines to encourage the development of bio-fuels in France. This meeting took place in Paris in November 21, 2005. Its aim was to favor the partnerships between the different actors and the public authorities in order to reach the ambitious goals of the government of 5.75% of bio-fuels in fossil fuels by 2008, 7% by 2010 and 10% by 2015. The main points discussed by the participants were: the compatibility of automotive fuel standards with the objectives of bio-fuel incorporation, the development of direct incorporation of methanol in gasoline, the ethanol-ETBE partnership, the question of the lower calorific value of ETBE (ethyl tertio butyl ether), the development of new bio-fuels, the development of bio-diesel and the specific case of pure vegetal oils, and the fiscal framework of bio-fuels. This meeting has permitted to reach important improvements with 15 concrete agreements undertaken by the participants. (J.S.)

  16. Extraction and preconcentration of trace Al and Cr from vegetable samples by vortex-assisted ionic liquid-based dispersive liquid-liquid microextraction prior to atomic absorption spectrometric determination.

    Science.gov (United States)

    Altunay, Nail; Yıldırım, Emre; Gürkan, Ramazan

    2018-04-15

    In the study, a simple, and efficient microextraction approach, which is termed as vortex-assisted ionic liquid-based dispersive liquid-liquid microextraction (VA-IL-DLLME), was developed for flame atomic absorption spectrometric analysis of aluminum (Al) and chromium (Cr) in vegetables. The method is based on the formation of anionic chelate complexes of Al(III) and Cr(VI) with o-hydroxy azo dye, at pH 6.5, and then extraction of the hydrophobic ternary complexes formed in presence of cetyltrimethylammonium bromide (CTAB) into a 125 μL volume of 1-butyl-3-methylimidazolium bis(trifluorosulfonyl)imide [C 4 mim][Tf 2 N]) as extraction solvent. Under optimum conditions, the detection limits were 0.02 µg L -1 in linear working range of 0.07-100 µg L -1 for Al(III), and 0.05 µg L -1 in linear working range of 0.2-80 µg L -1 for Cr(VI). After the validation by analysis of a certified reference material (CRM), the method was successfully applied to the determination of Al and Cr in vegetables using standard addition method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A roadmap for biofuels...

    NARCIS (Netherlands)

    Faaij, A.P.C.; Londo, H.M.

    2009-01-01

    Biofuels have been in the eye of the storm, in particular since 2008, when the food crisis was considered by many to be caused by the increased production of biofuels. Heavy criticism in public media made various governments, including the European Commission, reconsider their targets and ambitions

  18. Biofuels for sustainable transportation

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, S.

    2000-05-23

    Biomass is an attractive energy source, and transportation fuels made from biomass offer a number of benefits. Developing the technology to produce and use biofuels will create transportation fuel options that can positively impact the national energy security, the economy, and the environment. Biofuels include ethanol, methanol, biodiesel, biocrude, and methane.

  19. Algal Biofuels | Bioenergy | NREL

    Science.gov (United States)

    biofuels and bioproducts, Algal Research (2016) Process Design and Economics for the Production of Algal cyanobacteria, Nature Plants (2015) Acid-catalyzed algal biomass pretreatment for integrated lipid and nitrogen, we can indefinitely maintain the genetic state of the sample for future research in biofuels

  20. Determination of vegetable oils and fats adulterants in diesel oil by high performance liquid chromatography and multivariate methods.

    Science.gov (United States)

    Brandão, Luiz Filipe Paiva; Braga, Jez Willian Batista; Suarez, Paulo Anselmo Ziani

    2012-02-17

    The current legislation requires the mandatory addition of biodiesel to all Brazilian road diesel oil A (pure diesel) marketed in the country and bans the addition of vegetable oils for this type of diesel. However, cases of irregular addition of vegetable oils directly to the diesel oil may occur, mainly due to the lower cost of these raw materials compared to the final product, biodiesel. In Brazil, the situation is even more critical once the country is one of the largest producers of oleaginous products in the world, especially soybean, and also it has an extensive road network dependent on diesel. Therefore, alternatives to control the quality of diesel have become increasingly necessary. This study proposes an analytical methodology for quality control of diesel with intention to identify and determine adulterations of oils and even fats of vegetable origin. This methodology is based on detection, identification and quantification of triacylglycerols on diesel (main constituents of vegetable oils and fats) by high performance liquid chromatography in reversed phase with UV detection at 205nm associated with multivariate methods. Six different types of oils and fats were studied (soybean, frying oil, corn, cotton, palm oil and babassu) and two methods were developed for data analysis. The first one, based on principal component analysis (PCA), nearest neighbor classification (KNN) and univariate regression, was used for samples adulterated with a single type of oil or fat. In the second method, partial least square regression (PLS) was used for the cases where the adulterants were mixtures of up to three types of oils or fats. In the first method, the techniques of PCA and KNN were correctly classified as 17 out of 18 validation samples on the type of oil or fat present. The concentrations estimated for adulterants showed good agreement with the reference values, with mean errors of prediction (RMSEP) ranging between 0.10 and 0.22% (v/v). The PLS method was

  1. An overview of biofuels

    International Nuclear Information System (INIS)

    Qureshi, I.H.; Ahmad, S.

    2007-01-01

    Biofuels for transport have received considerable attention due to rising oil prices and growing concern about greenhouse gas emissions. Biofuels namely ethanol and esters of fatty acids have the potential to displace a substantial amount of petroleum fuel in the next few decades which will help to conserve fossil fuel resources. Life cycle analyses show that biofuels release lesser amount of greenhouse gases and other air pollutants. Thus biofuels are seen as a pragmatic step towards reducing carbon dioxide emission from transport sector. Biofuels are compatible with petroleum and combustion engines can easily operate with 10% ethanol and 20% biodiesel blended fuel with no modification. However higher concentrations require 'flex-fuel' engines which automatically adjust fuel injection depending upon fuel mix. Biofuels are derived from renewable biomass and can be produced from a variety of feedstocks. The only limiting factors are the availability of cropland, growth of plants and the climate. Countries with warmer climate can get about five times more biofuel crops from each acre of land than cold climate countries. Genetically modified crops and fast growing trees are being developed increase the production of energy crops. (author)

  2. Biofuels: which interest, which perspectives?

    International Nuclear Information System (INIS)

    2006-01-01

    This paper is a synthesis of several studies concerning the production and utilization of bio-fuels: energy balance and greenhouse effect of the various bio-fuel systems; economical analysis and profitability of bio-fuel production; is the valorization of bio-fuel residues and by-products in animal feeding a realistic hypothesis?; assessment of the cost for the community due to tax exemption for bio-fuels

  3. Biofuels derived from corn; Biocombustibles derivados del maiz

    Energy Technology Data Exchange (ETDEWEB)

    Arvizu Fernandez, Jose Luis [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2012-06-22

    The biofuels can be obtained from the biomass, are liquid, solid or gaseous from matter of vegetal or animal origin, by biological, chemical or physical processes and combinations of them. The biofuels appear as an alternating fuels in the transport sector, mainly due to the positive impact of greenhouse gases effect (GHG) and to the increase of oil prices. In theory the use of bioethanol and the biofuels, they not have CO{sub 2} emissions since this it is absorbed in the same amount by the cultures that generate them, as the corn or sugar cane. Our country has a deficit in the food production, mainly in corn, grain that can offer the opportunity not only to continue being the base of the national feeding, but also the raw material to produce bioethanol. The national yields are so diverse that they resemble to those of EUA or Africa, without a doubt this is indicative that is due to devise the way of increase the yields of this appraised culture, reach in average the six tons by hectare, improving the culture practice and access to fertilizers, water, transport, transparent markets and right prices. [Spanish] Los biocombustibles pueden ser obtenidos de la biomasa, son liquidos, solidos o gaseosos provenientes de material vegetal u origen animal, pueden obtenerse mediante procesos biologicos, quimicos o fisicos, y combinaciones de ellos. Se presentan como combustibles alternos en el sector transporte, debido principalmente al impacto positivo de la reduccion de gases de efecto invernadero (GEI) y al aumento de los precios del petroleo. En teoria el uso del bioetanol y los biocombustibles no produce emisiones de CO{sub 2} porque este se absorbe en la misma cantidad a traves de los cultivos que los generan, como el maiz y la cana de azucar. Mexico tiene deficit en la produccion de alimentos, principalmente maiz, grano que puede ofrecer la oportunidad no solo de continuar siendo la base de la alimentacion nacional, sino tambien la materia prima para producir bioetanol

  4. Biofuels - 5 disturbing questions

    International Nuclear Information System (INIS)

    Legalland, J.P.; Lemarchand, J.L.

    2008-01-01

    Initially considered as the supreme weapon against greenhouse gas emissions, biofuels are today hold responsible to all harms of the Earth: leap of agriculture products price, deforestation, food crisis. Considered some time ago as the perfect clean substitute to petroleum, biofuels are now suspected to have harmful effects on the environment. Should it be just an enormous technical, environmental and human swindle? Should we abandon immediately biofuels to protect the earth and fight the threatening again starvation? Should we wait for the second generation of efficient biofuels, made from non food-derived products and cultivation wastes? This book analyses this delicate debate through 5 main questions: do they starve the world? Are they a clean energy source? Do they contribute to deforestation? Are they economically practicable? Is the second generation ready? (J.S.)

  5. Market possibilities for biofuels

    International Nuclear Information System (INIS)

    Hektor, B.

    1992-01-01

    The market for biofuels in Sweden after introduction of a proposed CO 2 -tax on fossil fuels is forecast. The competition between biofuels, fossil fuels and electricity is described for important market segments such as: Paper industry, Sawmills, Other energy-intensive industry, Power and heat producers, small Heat producers, and for Space heating of one-family houses. A market increase of the use of biofuels is probable for the segment small (district) heating centrals, 10 TWh in the next ten year period and even more during a longer period. Other market segments will not be much affected. An increased use of biofuels in paper and pulp industry will not influence the fuel market, since the increase will happen in the industry's normal lumber purchase. (2 figs., 18 tabs.)

  6. The biofuels, situation, perspectives

    International Nuclear Information System (INIS)

    Acket, C.

    2007-03-01

    The climatic change with the fight against the greenhouse effect gases, sees the development of ''clean'' energy sources. Meanwhile the biofuels remain penalized by their high production cost, the interest is increasing. Facing their development ecologists highlight the environmental and social negative impacts of the development of the biofuels. The author aims to take stock on the techniques and the utilizations. (A.L.B.)

  7. Bio-fuel barometer

    International Nuclear Information System (INIS)

    2015-01-01

    After a year of doubt and decline the consumption of bio-fuel resumed a growth in 2014 in Europe: +6.1% compared to 2013, to reach 14 millions tep (Mtep) that is just below the 2012 peak. This increase was mainly due to bio-diesel. By taking into account the energy content and not the volume, the consumption of bio-diesel represented 79.7% of bio-fuel consumption in 2014, that of bio-ethanol only 19.1% and that of biogas 1%. The incorporating rate of bio-fuels in fuels used for transport were 4.6% in 2013 and 4.9% in 2014. The trend is good and the future of bio-fuel seems clearer as the European Union has set a not-so-bad limit of 7% for first generation bio-fuels in order to take into account the CASI effect. The CASI effect shows that an increase of the consumption of first generation bio-fuels (it means bio-fuels produced from food crops like rape, soy, cereals, sugar beet,...) implies in fact a global increase in greenhouse gas release that is due to a compensation phenomenon. More uncultivated lands (like forests, grasslands, bogs are turned into cultivated lands in order to compensate lands used for bio-fuel production. In most European countries the consumption of bio-diesel increased in 2014 while it was a bad year for the European industry of ethanol because ethanol prices dropped by 16 %. Oil companies are now among the most important producers of bio-diesel in Europe.

  8. Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass

    Science.gov (United States)

    Balan, Venkatesh

    2014-01-01

    Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be produced in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36 billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected. PMID:25937989

  9. BIOFUEL PRODUCTION FROM PALM OLEIN BY CATALYTIC CRACKING PROCESS USING ZSM-5 CATALYST

    Directory of Open Access Journals (Sweden)

    Rondang Tambun

    2017-06-01

    Full Text Available The depletion of fossil energy reserves raises the potential in the development of renewable fuels from vegetable oils. Indonesia is the largest palm oil producer in the world, where palm oil can be converted into biofuels such as biogasoline, kerosene and biodiesel. These biofuels are environmentally friendly and free of the content of nitrogen and sulfur through catalytic cracking process. In this research, palm olein is used as feedstock using catalytic cracking process. ZSM-5 is used as a catalyst, which has a surface area of 425 m2/g and Si/Al ratio of 50. Variables varied are the operating temperature of 375 oC - 450 °C and reaction time of 60 minutes - 150 minutes. The result shows that the highest yield of liquid product is 84.82%. This yield is obtained at a temperature of 400 °C and reaction time of 120 minutes. The yield of the liquid product in the operating conditions consisting of C6-C12 amounted to 19.47 %, C14-C16 amounted to 16.56 % and the C18-C28 amounted to 48.80 %.

  10. World Biofuels Study

    Energy Technology Data Exchange (ETDEWEB)

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very

  11. Vitamins in fruits and vegetables of the Amazon. 1. Methods for the determination of β—carotene, tocopherol and ascorbic acid with high performance liquid chromatography (HPLC)

    OpenAIRE

    Marx, F.; Maia, J.G.S.

    1983-01-01

    Summary At the beginning of on inventory of the chemical composition of regional fruits and vegetables of the Amazon, analytical methods were adapted for the high performance liquid chromatography (HPLC) determination of pro-vitamin A (β—carotene), vitamin C (ascorbic acid) and vitamin E (tocopherol) The first analyses indicate as excellent sources of β—carotene, Mauritia flexuosa L., Astrocaryum tucuma Mart. and Cucurbita pepa L.; of asco bic acid Theobroma grandiflorum (Culis ex Spreng.) Sc...

  12. Panorama 2018 - 2017 biofuels scoreboard

    International Nuclear Information System (INIS)

    Boute, Anne; Lorne, Daphne

    2018-01-01

    This note presents some 2017 statistical data about biofuels: consumption, fuel substitution rate, world ethanol and bio-diesel markets, diesel substitutes, French market, R and D investments, political measures for biofuels development

  13. Microalgae for Biofuels and Animal Feeds

    Directory of Open Access Journals (Sweden)

    John Benemann

    2013-11-01

    Full Text Available The potential of microalgae biomass production for low-cost commodities—biofuels and animal feeds—using sunlight and CO2 is reviewed. Microalgae are currently cultivated in relatively small-scale systems, mainly for high value human nutritional products. For commodities, production costs must be decreased by an order of magnitude, and high productivity algal strains must be developed that can be stably cultivated in large open ponds and harvested by low-cost processes. For animal feeds, the algal biomass must be high in digestible protein and long-chain omega-3 fatty acids that can substitute for fish meal and fish oils. Biofuels will require a high content of vegetable oils (preferably triglycerides, hydrocarbons or fermentable carbohydrates. Many different cultivation systems, algal species, harvesting methods, and biomass processing technologies are being developed worldwide. However, only raceway-type open pond systems are suitable for the production of low-cost commodities.

  14. Bio-fuels: European Communities fiscal initiatives

    International Nuclear Information System (INIS)

    Autrand, A.

    1992-01-01

    This paper first reviews the influence that European Communities fiscal policies have had in the past on the development of more environmentally compatible fuels such as unleaded gasoline. It then discusses which directions fiscal policy makers should take in order to create appropriate financial incentives encouraging the production and use of biomass derived fuels - methanol, ethanol and pure and transesterified vegetable oils. An assessment is made of the efficacy of a recent European Communities proposal which calls for the application of excise tax reductions on bio-fuels. Attention is given to the net effects due to reduced sulfur and carbon dioxide emissions characterizing bio-fuels and the increased use of fertilizers necessary to produce biomass fuels

  15. Biofuels: making tough choices

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, Sonja; Dufey, Annie; Vorley, Bill

    2008-02-15

    The jury is still out on biofuels. But one thing at least is certain: serious trade-offs are involved in the production and use of these biomass-derived alternatives to fossil fuels. This has not been lost on the European Union. The year kicked off with an announcement from the EU environment commissioner that it may be better for the EU to miss its target of reaching 10 per cent biofuel content in road fuels by 2020 than to compromise the environment and human wellbeing. The 'decision tree' outlined here can guide the interdependent processes of deliberation and analysis needed for making tough choices in national biofuels development.

  16. Integrated biofuels process synthesis

    DEFF Research Database (Denmark)

    Torres-Ortega, Carlo Edgar; Rong, Ben-Guang

    2017-01-01

    Second and third generation bioethanol and biodiesel are more environmentally friendly fuels than gasoline and petrodiesel, andmore sustainable than first generation biofuels. However, their production processes are more complex and more expensive. In this chapter, we describe a two-stage synthesis......% used for bioethanol process), and steam and electricity from combustion (54%used as electricity) in the bioethanol and biodiesel processes. In the second stage, we saved about 5% in equipment costs and 12% in utility costs for bioethanol separation. This dual synthesis methodology, consisting of a top......-level screening task followed by a down-level intensification task, proved to be an efficient methodology for integrated biofuel process synthesis. The case study illustrates and provides important insights into the optimal synthesis and intensification of biofuel production processes with the proposed synthesis...

  17. Microalgae biofuel potentials (review).

    Science.gov (United States)

    Ghasemi, Y; Rasoul-Amini, S; Naseri, A T; Montazeri-Najafabady, N; Mobasher, M A; Dabbagh, F

    2012-01-01

    With the decrease of fossil based fuels and the environmental impact of them over the planet, it seems necessary to seek the sustainable sources of clean energy. Biofuels, is becoming a worldwide leader in the development of renewable energy resources. It is worthwhile to say that algal biofuel production is thought to help stabilize the concentration of carbon dioxide in the atmosphere and decrease global warming impacts. Also, among algal fuels' attractive characteristics, algal biodiesel is non toxic, with no sulfur, highly biodegradable and relatively harmless to the environment if spilled. Algae are capable of producing in excess of 30 times more oil per acre than corn and soybean crops. Currently, algal biofuel production has not been commercialized due to high costs associated with production, harvesting and oil extraction but the technology is progressing. Extensive research was conducted to determine the utilization of microalgae as an energy source and make algae oil production commercially viable.

  18. Biofuels, poverty, and growth

    DEFF Research Database (Denmark)

    Arndt, Channing; Benfica, Rui; Tarp, Finn

    2010-01-01

    and accrual of land rents to smallholders, compared with the more capital-intensive plantation approach. Moreover, the benefits of outgrower schemes are enhanced if they result in technology spillovers to other crops. These results should not be taken as a green light for unrestrained biofuels development...... Mozambique's annual economic growth by 0.6 percentage points and reduces the incidence of poverty by about 6 percentage points over a 12-year phase-in period. Benefits depend on production technology. An outgrower approach to producing biofuels is more pro-poor, due to the greater use of unskilled labor...

  19. The Brazilian biofuels industry

    Directory of Open Access Journals (Sweden)

    Goldemberg José

    2008-05-01

    Full Text Available Abstract Ethanol is a biofuel that is used as a replacement for approximately 3% of the fossil-based gasoline consumed in the world today. Most of this biofuel is produced from sugarcane in Brazil and corn in the United States. We present here the rationale for the ethanol program in Brazil, its present 'status' and its perspectives. The environmental benefits of the program, particularly the contribution of ethanol to reducing the emission of greenhouse gases, are discussed, as well as the limitations to its expansion.

  20. Outlook for advanced biofuels

    International Nuclear Information System (INIS)

    Hamelinck, Carlo N; Faaij, Andre P.C.

    2006-01-01

    To assess which biofuels have the better potential for the short-term or the longer term (2030), and what developments are necessary to improve the performance of biofuels, the production of four promising biofuels-methanol, ethanol, hydrogen, and synthetic diesel-is systematically analysed. This present paper summarises, normalises and compares earlier reported work. First, the key technologies for the production of these fuels, such as gasification, gas processing, synthesis, hydrolysis, and fermentation, and their improvement options are studied and modelled. Then, the production facility's technological and economic performance is analysed, applying variations in technology and scale. Finally, likely biofuels chains (including distribution to cars, and end-use) are compared on an equal economic basis, such as costs per kilometre driven. Production costs of these fuels range 16-22 Euro /GJ HHV now, down to 9-13 Euro /GJ HHV in future (2030). This performance assumes both certain technological developments as well as the availability of biomass at 3 Euro /GJ HHV . The feedstock costs strongly influence the resulting biofuel costs by 2-3 Euro /GJ fuel for each Euro /GJ HHV feedstock difference. In biomass producing regions such as Latin America or the former USSR, the four fuels could be produced at 7-11 Euro /GJ HHV compared to diesel and gasoline costs of 7 and 8 Euro /GJ (excluding distribution, excise and VAT; at crude oil prices of ∼35 Euro /bbl or 5.7 Euro /GJ). The uncertainties in the biofuels production costs of the four selected biofuels are 15-30%. When applied in cars, biofuels have driving costs in ICEVs of about 0.18-0.24 Euro /km now (fuel excise duty and VAT excluded) and may be about 0.18 in future. The cars' contribution to these costs is much larger than the fuels' contribution. Large-scale gasification, thorough gas cleaning, and micro-biological processes for hydrolysis and fermentation are key major fields for RD and D efforts, next to

  1. Improving EU biofuels policy?

    DEFF Research Database (Denmark)

    Swinbank, Alan; Daugbjerg, Carsten

    2013-01-01

    to be 'like' a compliant biofuel. A more economically rational way to reduce GHG emissions, and one that might attract greater public support, would be for the RED to reward emission reductions along the lines of the FQD. Moreover, this modification would probably make the provisions more acceptable...... in the WTO, as there would be a clearer link between policy measures and the objective of reductions in GHG emissions; and the combination of the revised RED and the FQD would lessen the commercial incentive to import biofuels with modest GHG emission savings, and thus reduce the risk of trade tension....

  2. Washington State Biofuels Industry Development

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Richard [Univ. of Washington, Seattle, WA (United States)

    2017-04-09

    The funding from this research grant enabled us to design, renovate, and equip laboratories to support University of Washington biofuels research program. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.

  3. Life cycle analyses applied to first generation bio-fuels consumed in France

    International Nuclear Information System (INIS)

    2010-01-01

    This rather voluminous publication reports detailed life cycle analyses for the different present bio-fuels channels also named first-generation bio-fuels: bio-ethanol, bio-diesel, pure vegetal oils, and oil. After a recall of the general principles adopted for this life-cycle analysis, it reports the modelling of the different channels (agricultural steps, bio-fuel production steps, Ethyl tert-butyl ether or ETBE steps, vehicles, animal fats and used vegetal oils, soil assignment change). It gives synthetic descriptions of the different production ways (methyl ester from different plants, ethanol from different plants). It reports and compares the results obtained in terms of performance

  4. Technology Roadmaps: Biofuels for Transport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Biofuels could provide up to 27% of total transport fuel worldwide by 2050. The use of transport fuels from biomass, when produced sustainably, can help cut petroleum use and reduce CO2 emissions in the transport sector, especially in heavy transport. Sustainable biofuel technologies, in particular advanced biofuels, will play an important role in achieving this roadmap vision. The roadmap describes the steps necessary to realise this ambitious biofuels target; identifies key actions by different stakeholders, and the role for government policy to adopt measures needed to ensure the sustainable expansion of both conventional and advanced biofuel production.

  5. The biofuels in debate

    International Nuclear Information System (INIS)

    Rigaud, Ch.

    2007-01-01

    As the development of the biofuels is increasing in the world, many voices are beginning to rise to denounce the environmental risks and the competition of the green fuels with the alimentary farming. The debate points out the problems to solve to develop a sustainable channel. (A.L.B.)

  6. Biofuel seeks endorsement

    NARCIS (Netherlands)

    Jongeneel, C.; Rentmeester, S.

    2015-01-01

    Biofuels such as ethanol from sugar cane and cellulose ‘waste’ are theoretically sustainable, as their combustion releases no more CO2 than is absorbed during production. Even so, they are also controversial, because they are believed to be grown at the expense of food crops, or because areas of

  7. Biofuel impacts on water.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  8. The rationality of biofuels

    International Nuclear Information System (INIS)

    Horta Nogueira, Luiz Augusto; Moreira, Jose Roberto; Schuchardt, Ulf; Goldemberg, Jose

    2013-01-01

    In an editorial of a recent issue of a known academic journal, Prof. Hartmut Michel affirmed that “…the production of biofuels constitutes an extremely inefficient land use… We should not grow plants for biofuel production.”, after comparing the area occupied with plants for bioenergy production with the one required for photovoltaic cells to supply the same amount of energy for transportation. This assertion is not correct for all situations and this comparison deserves a more careful analysis, evaluating the actual and prospective technological scenarios and other relevant aspects, such as capacity requirements, energy consumed during the life cycle of energy systems and the associated impacts. In this communication this comparison is revaluated, presenting a different perspective, more favorable for the bioenergy routes. - Highlights: • Energy systems and life cycle impacts are compared under equal conditions. • The comparison is done between biofuels and photovoltaic/battery in mobility uses. • Biofuels are a valuable option when produced sustainably by efficient routes

  9. Bio-fuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    European Union bio-fuel use for transport reached 12 million tonnes of oil equivalent (mtoe) threshold during 2009. The slowdown in the growth of European consumption deepened again. Bio-fuel used in transport only grew by 18.7% between 2008 and 2009, as against 30.3% between 2007 and 2008 and 41.8% between 2006 and 2007. The bio-fuel incorporation rate in all fuels used by transport in the E.U. is unlikely to pass 4% in 2009. We can note that: -) the proportion of bio-fuel in the German fuels market has plummeted since 2007: from 7.3% in 2007 to 5.5% in 2009; -) France stays on course with an incorporation rate of 6.25% in 2009; -) In Spain the incorporation rate reached 3.4% in 2009 while it was 1.9% in 2008. The European bio-diesel industry has had another tough year. European production only rose by 16.6% in 2009 or by about 9 million tonnes which is well below the previous year-on-year growth rate recorded (35.7%). France is leading the production of bio-ethanol fuels in Europe with an output of 1250 million liters in 2009 while the total European production reached 3700 million litters and the world production 74000 million liters. (A.C.)

  10. Making biofuels sustainable

    International Nuclear Information System (INIS)

    Gallagher, Ed

    2008-01-01

    Full text: As the twentieth century drew to a close, there was considerable support for the use of biofuels as a source of renewable energy. To many people, they offered significant savings in greenhouse gas emissions compared to fossil fuels, an opportunity for reduced dependency on oil for transport, and potential as a counter weight to increasing oil prices. They also promised an opportunity for rural economies to benefit from a new market for their products and a chance of narrowing the gap between rich and poor nations. Biofuel development was encouraged by government subsidies, and rapid growth occurred in many parts of the world. Forty per cent of Brazilian sugar cane is used for biofuel production, for example, as is almost a quarter of maize grown in the United States. Although only around 1 per cent of arable land is cultivated to grow feedstock for biofuels, there has been increasing concern over the way a largely unchecked market has developed, and about its social and environmental consequences. Recent research has confirmed that food prices have been driven significantly higher by competition for prime agricultural land and that savings in greenhouse gas emissions are much smaller - and in some cases entirely eliminated - when environmentally important land, such as rainforest, is destroyed to grow biofuels. As a result, many now believe that the economic benefits of biofuels have been obtained at too high a social and environmental price, and they question whether they can be a truly sustainable source of energy. The United Kingdom has always had sustainability at the heart of its biofuel policies and set up the Renewable Fuels Agency to ensure that this goal was met. The direct effects of biofuel production are already being assessed through five measures of environmental performance and two measures of social performance, as well as measures of the energy efficiency of the production processes used and of the greenhouse gas savings achieved

  11. Outlook for advanced biofuels

    NARCIS (Netherlands)

    Hamelinck, Carlo Noël

    2004-01-01

    Modern use of biomass can play an important role in a sustainable energy supply. Biomass abounds in most parts of the world and substantial amounts could be produced at low costs. Motor biofuels seem a sensible application of biomass: they are among the few sustainable alternatives to the

  12. The EU's Biofuel Strategy

    International Nuclear Information System (INIS)

    2006-01-01

    The EU is supporting biofuels, with the aim of reducing greenhouse-gas emission, encouraging the decarbonisation of fuels used in transportation, diversifying energy procurement, offering new earning opportunities in rural areas, and developing long-term replacements for oil. We publish lengthy excerpts from the recent Communication, COM(2006) 34def. which describes the strategy adopted by the Commission [it

  13. Smart choices for biofuels

    Science.gov (United States)

    2009-01-01

    Much of the strong support for biofuels in the United States is premised on the national security advantages of reducing dependence on imported oil. In late 2007, these expected payoffs played a major role in driving an extension and expansion of the...

  14. Biofuels: What Are They and How Can They Improve Practical Work and Discussions?

    Science.gov (United States)

    MacLean, Tristan

    2014-01-01

    This article looks at the potential of bioenergy as a replacement for fossil fuels, the cutting-edge research being undertaken by scientists, and classroom resources available for teaching this topic. There is currently a large programme of scientific research aiming to develop advanced biofuels (replenishable liquid biofuels from non-food plants,…

  15. The blue water footprint and land use of biofuels from algae

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Xu, L.; de Vries, G.J.; Hoekstra, Arjen Ysbert

    2014-01-01

    Biofuels from microalgae are potentially important sources of liquid renewable energy. Algae are not yet produced on a large scale, but research shows promising results. This study assesses the blue water footprint (WF) and land use of algae-based biofuels. It combines the WF concept with an energy

  16. Thermodynamic characterization of bio-fuels: Excess functions for binary mixtures containing ETBE and hydrocarbons

    International Nuclear Information System (INIS)

    Segovia, Jose J.; Villamanan, Rosa M.; Martin, M. Carmen; Chamorro, Cesar R.; Villamanan, Miguel A.

    2010-01-01

    European energy policy is promoting the use of bio-fuels for transportation. Bioethers and bioalcohols are used as blending agents for enhancing the octane number. They make gasoline work harder, help the engine last longer and reduce air pollution. They also cause changes in the fuel properties. Development of renewable fuels needs both knowledge of new thermodynamic data and improvement of clean energy technologies. In this context, the use of ethanol of vegetable origin in its manufacture process, increases the interest of ETBE or bio-ETBE as an oxygenated additive. A complete study of the behaviour of ETBE + hydrocarbons mixtures is presented. Some experimental data concerning vapor-liquid equilibria and heats of mixing were determined in our laboratory. All the techniques have a high accuracy. The data were reduced by well-known models, such as NRTL and used to model the thermodynamic properties.

  17. Biofuels for transportation. From R and D to market

    Energy Technology Data Exchange (ETDEWEB)

    Pilo, C [comp.

    1996-11-01

    The aim of the Workshop was to bring together stakeholders in industry, government and science to identify technical, economic and institutional opportunities and/or barriers to the market penetration of biofuels and to tackle these issues jointly in an international environment. The Workshop was to cover the role of biofuels in replacing fossil fuels and achieving sustainable transportation. It was to be more oriented towards policy issues than towards analyses of scientific and technical details. The Workshop was focused on the conditions in Northern Europe and North America. Three main themes were chosen: THEME 1. Biomass Feedstocks. How do we produce them cost-effectively and for what purpose? THEME 2. Biofuels for Transportation. What will make them technically and economically competitive? THEME 3. Market Penetration of Biofuels. How do we remove barriers? The following biofuels were considered during the Workshop: Alcohols, such as ethanol and methanol. Ethers, such as MTBE (methyl-tertio-butyl-ether) and ETBE (ethyl-tertio-butyl-ether). Vegetable oils and esters, such as VME (vegetable-oil-methylester), RME (rape-oil-methyl-ester) and REE (rape-oil-ethyl-ester)

  18. Thermochemical conversion of microalgal biomass into biofuels: a review.

    Science.gov (United States)

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. [Determination of 51 carbamate pesticide residues in vegetables by liquid chromatography-tandem mass spectrometry based on optimization of QuEChERS sample preparation method].

    Science.gov (United States)

    Wang, Lianzhu; Zhou, Yu; Huang, Xiaoyan; Wang, Ruilong; Lin, Zixu; Chen, Yong; Wang, Dengfei; Lin, Dejuan; Xu, Dunming

    2013-12-01

    The raw extracts of six vegetables (tomato, green bean, shallot, broccoli, ginger and carrot) were analyzed using gas chromatography-mass spectrometry (GC-MS) in full scan mode combined with NIST library search to confirm main matrix compounds. The effects of cleanup and adsorption mechanisms of primary secondary amine (PSA) , octadecylsilane (C18) and PSA + C18 on co-extractives were studied by the weight of evaporation residue for extracts before and after cleanup. The suitability of the two versions of QuEChERS method for sample preparation was evaluated for the extraction of 51 carbamate pesticides in the six vegetables. One of the QuEChERS methods was the original un-buffered method published in 2003, and the other was AOAC Official Method 2007.01 using acetate buffer. As a result, the best effects were obtained from using the combination of C18 and PSA for extract cleanup in vegetables. The acetate-buffered version was suitable for the determination of all pesticides except dioxacarb. Un-buffered QuEChERS method gave satisfactory results for determining dioxacarb. Based on these results, the suitable QuEChERS sample preparation method and liquid chromatography-positive electrospray ionization-tandem mass spectrometry under the optimized conditions were applied to determine the 51 carbamate pesticide residues in six vegetables. The analytes were quantified by matrix-matched standard solution. The recoveries at three levels of 10, 20 and 100 microg/kg spiked in six vegetables ranged from 58.4% to 126% with the relative standard deviations of 3.3%-26%. The limits of quantification (LOQ, S/N > or = 10) were 0.2-10 microg/kg except that the LOQs of cartap and thiofanox were 50 microg/kg. The method is highly efficient, sensitive and suitable for monitoring the 51 carbamate pesticide residues in vegetables.

  20. Recommendations for a sustainable development of biofuels in France; Recommandations pour un developpement durable des biocarburants en France

    Energy Technology Data Exchange (ETDEWEB)

    Douaud, A.; Gruson, J.F

    2006-01-15

    The biofuels are presented as a solution to the greenhouse gases and the petroleum consumption decrease. The development of the biofuels needs an active research of the production, transformation and use costs improvement. It will be necessary to prepare the market of the biofuels to the globalization. Some recommendations are also provided in the domains of the vegetal oil ester, the ethanol for the diesel and for the development of simulation tools to evaluate the costs. (A.L.B.)

  1. Flambeau River Biofuels Demonstration Plant

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Robert J. [Flambeau River Biofuels, Inc., Park Falls, WI (United States)

    2012-07-30

    Flambeau River BioFuels, Inc. (FRB) proposed to construct a demonstration biomass-to-liquids (BTL) biorefinery in Park Falls, Wisconsin. The biorefinery was to be co-located at the existing pulp and paper mill, Flambeau River Papers, and when in full operation would both generate renewable energy – making Flambeau River Papers the first pulp and paper mill in North America to be nearly fossil fuel free – and produce liquid fuels from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for BTL production using forest residuals and wood waste, providing a basis for proliferating BTL conversion technologies throughout the United States. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. FRB planned to replicate this facility at other paper mills after this first demonstration scale plant was operational and had proven technical and economic feasibility.

  2. Utilization of Variable Consumption Biofuel in Diesel Engine

    Science.gov (United States)

    Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.

    2018-01-01

    The depletion of oil fields and the deteriorating environmental situation leads to the need for the search of new alternative sources of energy. Actuality of the article due to the need for greater use of the alternative fuels in internal combustion engines is necessary. The advantages of vegetables origin fuels using as engine fuels are shown. Diesel engine operation on mixtures of petroleum diesel and rapeseed oil is researched. A fuel delivery system of mixture biofuel with a control system of the fuel compound is considered. The results of the system experimental researches of fuel delivery of mixture biofuel are led.

  3. Stimulating learning-by-doing in advanced biofuels: effectiveness of alternative policies

    International Nuclear Information System (INIS)

    Chen Xiaoguang; Khanna, Madhu; Yeh, Sonia

    2012-01-01

    This letter examines the effectiveness of various biofuel and climate policies in reducing future processing costs of cellulosic biofuels due to learning-by-doing. These policies include a biofuel production mandate alone and supplementing the biofuel mandate with other policies, namely a national low carbon fuel standard, a cellulosic biofuel production tax credit or a carbon price policy. We find that the binding biofuel targets considered here can reduce the unit processing cost of cellulosic ethanol by about 30% to 70% between 2015 and 2035 depending on the assumptions about learning rates and initial costs of biofuel production. The cost in 2035 is more sensitive to the speed with which learning occurs and less sensitive to uncertainty in the initial production cost. With learning rates of 5–10%, cellulosic biofuels will still be at least 40% more expensive than liquid fossil fuels in 2035. The addition of supplementary low carbon/tax credit policies to the mandate that enhance incentives for cellulosic biofuels can achieve similar reductions in these costs several years earlier than the mandate alone; the extent of these incentives differs across policies and different kinds of cellulosic biofuels. (letter)

  4. Microalgae: biofuel production

    Directory of Open Access Journals (Sweden)

    Babita Kumari

    2013-04-01

    Full Text Available In the present day, microalgae feedstocks are gaining interest in energy scenario due to their fast growth potential coupled with relatively high lipid, carbohydrate and nutrients contents. All of these properties render them an excellent source for biofuels such as biodiesel, bioethanol and biomethane; as well as a number of other valuable pharmaceutical and nutraceutical products. The present review is a critical appraisal of the commercialization potential of microalgae biofuels. The available literature on various aspects of microalgae for e.g. its cultivation, life cycle assessment, and conceptualization of an algal biorefinery, has been done. The evaluation of available information suggests the operational and maintenance cost along with maximization of oil-rich microalgae production is the key factor for successful commercialization of microalgae-based fuels.

  5. The bio-fuels

    International Nuclear Information System (INIS)

    Levy, R.H.

    1993-02-01

    In France, using fallow soils for energy production may be a solution to agriculture problems. Technical and economical studies of biofuels (ethanol, methanol, ethyl tributyl ether, methyl tributyl ether and methyl ester) are presented with costs of production from the raw material to the end product, characteristics of the end product, engine consumption for pure or mixed fuels, and environmental impacts. For the author, the mixed ethanol process shows no advantages in term of energy dependency (ETBE, MTBE and colza ester give better results), ethanol production uses 90% and colza ester production 53% of the calorific power of the produced biofuels. Commercial balance: damaged, fiscal receipts: reduced, new jobs creation: inferior to 10.000 and the majority outside of the agriculture sphere, environmental impacts: slight diminution of greenhouse gases, but growth of soil and water pollution, all these points are developed by the author. Observations of some contradictors are also given. (A.B.). refs. figs., tabs

  6. Analysis of vitamin K-1 in fruits and vegetables using accelerated solvent extraction and liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization

    DEFF Research Database (Denmark)

    Jäpelt, Rie Bak; Jakobsen, Jette

    2016-01-01

    The objective of this study was to develop a rapid, sensitive, and specific analytical method to study vitamin K-1 in fruits and vegetables. Accelerated solvent extraction and solid phase extraction was used for sample preparation. Quantification was done by liquid chromatography tandem mass...... spectrometry with atmospheric pressure chemical ionization in selected reaction monitoring mode with deuterium-labeled vitamin K1 as an internal standard. The precision was estimated as the pooled estimate of three replicates performed on three different days for spinach, peas, apples, banana, and beetroot...

  7. Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection

    DEFF Research Database (Denmark)

    Justesen, U.; Knuthsen, Pia; Leth, Torben

    1998-01-01

    after acid hydrolysis of freeze-dried food material. Identification was based on retention time, UV and mass spectra by comparison with commercial standards, and the UV peak areas were used for quantitation of the flavonoid contents. Examples of HPLC-MS analyses of orange pulp, tomato, and apple......A high-performance liquid chromatographic (HPLC) separation method viith photo-diode array (PDA) and mass spectrometric (MS) detection was developed to determine and quantify flavonols, flavones, and flavanones in fruits, vegetables and beverages. The compounds were analysed as aglycones, obtained...

  8. 78 FR 34975 - Notice of Contract Proposals (NOCP) for the Advanced Biofuels Payment Program

    Science.gov (United States)

    2013-06-11

    ... Dun and Bradstreet Data Universal Numbering System (DUNS) number, which can be obtained at no cost via... liquid advanced biofuel per year or exceeding 15,900,000 million British Thermal Units of biogas and...

  9. Biofuel market and carbon modeling to analyse French biofuel policy

    International Nuclear Information System (INIS)

    Bernard, F.; Prieur, A.

    2007-01-01

    In order to comply with European Union objectives, France has set up an ambitious biofuel plan. This plan is evaluated on the basis of two criteria: tax exemption on fossil fuels and greenhouse gases (GHG) emission savings. An economic marginal analysis and a life cycle assessment (LCA) are provided using a coupling procedure between a partial agro-industrial equilibrium model and an oil refining optimization model. Thus, we determine the minimum tax exemption needed to place on the market a targeted quantity of biofuel by deducting the biofuel long-run marginal revenue of refiners from the agro-industrial marginal cost of biofuel production. With a clear view of the refiner's economic choices, total pollutant emissions along the biofuel production chains are quantified and used to feed an LCA. The French biofuel plan is evaluated for 2008, 2010 and 2012 using prospective scenarios. Results suggest that biofuel competitiveness depends on crude oil prices and demand for petroleum products and consequently these parameters should be taken into account by authorities to modulate biofuel tax exemption. LCA results show that biofuel production and use, from 'seed to wheel', would facilitate the French Government's compliance with its 'Plan Climat' objectives by reducing up to 5% GHG emissions in the French road transport sector by 2010

  10. Biofuel market and carbon modeling to evaluate French biofuel policy

    International Nuclear Information System (INIS)

    Bernard, F.; Prieur, A.

    2006-10-01

    In order to comply with European objectives, France has set up an ambitious biofuel plan. This plan is evaluated considering two criteria: tax exemption need and GHG emission savings. An economic marginal analysis and a life cycle assessment (LCA) are provided using a coupling procedure between a partial agro-industrial equilibrium model and a refining optimization model. Thus, we are able to determine the minimum tax exemption needed to place on the market a targeted quantity of biofuel by deducing the agro-industrial marginal cost of biofuel production to the biofuel refining long-run marginal revenue. In parallel, a biofuels LCA is carried out using model outputs. Such a method avoid common allocation problems between joint products. The French biofuel plan is evaluated for 2008, 2010 and 2012 using prospective scenarios. Results suggest that biofuel competitiveness depends on crude oil prices and petroleum products demands. Consequently, biofuel tax exemption does not always appear to be necessary. LCA results show that biofuels production and use, from 'seed to wheel', would facilitate the French Government's to compliance with its 'Plan Climat' objectives by reducing up to 5% GHG emissions in the French road transport sector by 2010. (authors)

  11. Bio-fuels - biohazard

    International Nuclear Information System (INIS)

    Slovak, K.

    2008-01-01

    Politicians have a clear explanation for growing commodity prices. It is all the fault of speculators. It is easy to point the finger at an imaginary enemy. It is more difficult and from the point of view of a political career suicidal to admit one's mistakes. And there are reasons for remorse. According to studies prepared by the OECD and the World Bank bio-fuels are to be blame for high food prices. The bio-fuel boom that increases the demand for agro-commodities has been created by politicians offering generous subsidies. And so farming products do not end up on the table, but in the fuel tanks of cars in the form of additives. And their only efficiency is that they make food more expensive. The first relevant indication that environmentalist tendencies in global politics have resulted in shortages and food price increases can be found in a confidential report prepared by the World Bank. Parts of the report were leaked to the media last month. According to this information growing bio-fuel production has resulted in a food price increase by 75%. The theory that this development was caused by speculators and Chinese and Indian demand received a serious blow. And the OECD report definitely contradicted the excuse used by the politicians. According to the report one of the main reasons for growing food prices are generously subsidized bio-fuels. Their share of the increase of demand for agro-commodities in 2005 -2007 was 60% according to the study. (author)

  12. Biofuels barometer: Crops pending

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    The actors and production capacities have changed only little in the biofuel sector from year to another. Nevertheless, it is interesting to take stock of the development of this sector at the end of 2002, so as to update the more complete barometer published in issue 144 of Systemes Solaires. Indeed, European ethanol production grew by 13% and that of bio-diesel by more than 20% in 2001. (authors)

  13. Biofuels and WTO Disciplines

    OpenAIRE

    Brühwiler, Claudia Franziska; Hauser, Heinz

    2008-01-01

    Given the sharp rise in crude oil prices and growing awareness of climate change, the potential of biofuels, particularly of bioethanol, has become an ubiquitous topic of public debate and has induced ambitious policy initiatives. The latter are mostly paired with protectionist measures as the examples of the European Union and the United States show, where domestic producers of energy crops are put at an advantage thanks to subsidisation, direct payments and/or favourable tax schemes.Moreove...

  14. Hawaii Algal Biofuel

    Science.gov (United States)

    2013-03-01

    Spirulina Algea, Swine Manure , and Digested Anaerobic Sludge." Bioresource Technology 102: 8295- 8303. Viets, John W., Narasimhan Sundaram, Bal K. Kaul, and...biofuel source. Dr. Zimmerman noted that since algae decompose easily in landfills, the nutrients produced by anaerobic digestion of biomass can be...resource requirements would be pivotal to the offices of the U.S. Navy Resource entities such as OPNAV. In order for decision makers to digest the

  15. Biofuels from microbes

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, D. [Technische Univ. Muenchen, Freising-Weihenstephan (Germany). Inst. of Resource and Energy Technology; Zverlov, V.V.; Schwarz, W.H. [Technische Univ. Muenchen, Freising-Weihenstephan (Germany). Dept. of Microbiology

    2007-11-15

    Today, biomass covers about 10% of the world's primary energy demand. Against a backdrop of rising crude oil prices, depletion of resources, political instability in producing countries and environmental challenges, besides efficiency and intelligent use, only biomass has the potential to replace the supply of an energy hungry civilisation. Plant biomass is an abundant and renewable source of energy-rich carbohydrates which can be efficiently converted by microbes into biofuels, of which, only bioethanol is produced on an industrial scale today. Biomethane is produced on a large scale, but is not yet utilised for transportation. Biobutanol is on the agenda of several companies and may be used in the near future as a supplement for gasoline, diesel and kerosene, as well as contributing to the partially biological production of butyl-t-butylether, BTBE as does bioethanol today with ETBE. Biohydrogen, biomethanol and microbially made biodiesel still require further development. This paper reviews microbially made biofuels which have potential to replace our present day fuels, either alone, by blending, or by chemical conversion. It also summarises the history of biofuels and provides insight into the actual production in various countries, reviewing their policies and adaptivity to the energy challenges of foreseeable future. (orig.)

  16. Benchmarking biofuels; Biobrandstoffen benchmarken

    Energy Technology Data Exchange (ETDEWEB)

    Croezen, H.; Kampman, B.; Bergsma, G.

    2012-03-15

    A sustainability benchmark for transport biofuels has been developed and used to evaluate the various biofuels currently on the market. For comparison, electric vehicles, hydrogen vehicles and petrol/diesel vehicles were also included. A range of studies as well as growing insight are making it ever clearer that biomass-based transport fuels may have just as big a carbon footprint as fossil fuels like petrol or diesel, or even bigger. At the request of Greenpeace Netherlands, CE Delft has brought together current understanding on the sustainability of fossil fuels, biofuels and electric vehicles, with particular focus on the performance of the respective energy carriers on three sustainability criteria, with the first weighing the heaviest: (1) Greenhouse gas emissions; (2) Land use; and (3) Nutrient consumption [Dutch] Greenpeace Nederland heeft CE Delft gevraagd een duurzaamheidsmeetlat voor biobrandstoffen voor transport te ontwerpen en hierop de verschillende biobrandstoffen te scoren. Voor een vergelijk zijn ook elektrisch rijden, rijden op waterstof en rijden op benzine of diesel opgenomen. Door onderzoek en voortschrijdend inzicht blijkt steeds vaker dat transportbrandstoffen op basis van biomassa soms net zoveel of zelfs meer broeikasgassen veroorzaken dan fossiele brandstoffen als benzine en diesel. CE Delft heeft voor Greenpeace Nederland op een rijtje gezet wat de huidige inzichten zijn over de duurzaamheid van fossiele brandstoffen, biobrandstoffen en elektrisch rijden. Daarbij is gekeken naar de effecten van de brandstoffen op drie duurzaamheidscriteria, waarbij broeikasgasemissies het zwaarst wegen: (1) Broeikasgasemissies; (2) Landgebruik; en (3) Nutriëntengebruik.

  17. Matrix effect in analysis of pesticide residues in fruits and vegetables by high performance liquid chromatography with quadrupole-time of flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    Andoralov A.M.

    2017-03-01

    Full Text Available For modern food safety control are using techniques that allow to determinate a large number of components. So for determination of pesticide residues in fruits and vegetables commonly used methods of gas and liquid chromatography with time-of-flight mass-spectrometric detection. This system allows to carry out quantitative determination several hundreds of pesticides and their identification by the characteristic fragments of the mass spectrum. The main problem when using mass spectrometric detection is a matrix effect, which is caused by the influence of matrix components extracted with pesticides from the sample. In this work, attempts have been made to reduce the influence of the matrix in the analysis of pesticide residues by high performance liquid chromatography with time of flight mass spectrometry (HPLC / TOFMS.

  18. The net cost of biofuels in Thailand. An economic analysis

    International Nuclear Information System (INIS)

    Bell, David R.; Kamens, Richard; Silalertruksa, Thapat; Gheewala, Shabbir H.

    2011-01-01

    Biofuels are expected to represent a growing portion of liquid fuel consumption in Thailand due to environmental and social considerations in conjunction with policy goals supporting their domestic production and consumption. This paper reviews the economic costs associated with biofuel policy implementation in Thailand in the short term target year of 2011. Internal (production) and external (environmental, social, etc.) costs and benefits are evaluated, and, where possible, monetized. Domestic production of biofuel is calculated to be 9.5 billion THB (317 million USD) more expensive than importing the equivalent amount of petroleum. The environmental benefits from GHG savings as well as losses due to increased ground level ozone formation and government expenditure to support the biofuel industry yield a total 'net cost' of 8.6 billion THB or 121 THB (4.04 USD) per capita for the year 2011. This result is contextualized with the (non-monetized) consideration that although biofuels are somewhat more expensive in the short term, their domestic production allows virtually all of the money to stay within the Thai economy as opposed to being sent abroad. This fact, coupled with significant uncertainty in future petroleum prices, could strongly influence the direction of Thai policy with respect to biofuels. (author)

  19. Relative Greenhouse Gas Abatement Cost Competitiveness of Biofuels in Germany

    Directory of Open Access Journals (Sweden)

    Markus Millinger

    2018-03-01

    Full Text Available Transport biofuels derived from biogenic material are used for substituting fossil fuels, thereby abating greenhouse gas (GHG emissions. Numerous competing conversion options exist to produce biofuels, with differing GHG emissions and costs. In this paper, the analysis and modeling of the long-term development of GHG abatement and relative GHG abatement cost competitiveness between crop-based biofuels in Germany are carried out. Presently dominant conventional biofuels and advanced liquid biofuels were found not to be competitive compared to the substantially higher yielding options available: sugar beet-based ethanol for the short- to medium-term least-cost option and substitute natural gas (SNG for the medium to long term. The competitiveness of SNG was found to depend highly on the emissions development of the power mix. Silage maize-based biomethane was found competitive on a land area basis, but not on an energetic basis. Due to land limitations, as well as cost and GHG uncertainty, a stronger focus on the land use of crop-based biofuels should be laid out in policy.

  20. European biofuel policies in retrospect

    International Nuclear Information System (INIS)

    Van Thuijl, E.; Deurwaarder, E.P.

    2006-05-01

    Despite the benefits of the production and use of biofuels in the fields of agriculture, security of energy supply and the environment, in India and surrounding countries, the barriers to the use of biofuels are still substantial. The project ProBios (Promotion of Biofuels for Sustainable Development in South and South East Asia) aims at promoting biofuels in the view of sustainable development in the Southern and South eastern Asian countries. The first stage of this project concerns a study, which will provide a thorough review of the complicated and sector-overarching issue of biofuels in India and surrounding countries. This report describes past experiences with the policy context for a selection of EU countries, with the purpose of identifying conclusions from the European experience that may be valuable for Indian and South East Asian policy makers and other biofuels stakeholders

  1. Ultrahigh-performance liquid chromatography electrospray ionization Q-Orbitrap mass spectrometry for the analysis of 451 pesticide residues in fruits and vegetables: method development and validation.

    Science.gov (United States)

    Wang, Jian; Chow, Willis; Chang, James; Wong, Jon W

    2014-10-22

    This paper presents an application of ultrahigh-performance liquid chromatography electrospray ionization quadrupole Orbitrap high-resolution mass spectrometry (UHPLC/ESI Q-Orbitrap MS) for the determination of 451 pesticide residues in fruits and vegetables. Pesticides were extracted from samples using the QuEChERS (quick, easy, cheap, effective, rugged, and safe) procedure. UHPLC/ESI Q-Orbitrap MS in full MS scan mode acquired full MS data for quantification, and UHPLC/ESI Q-Orbitrap Full MS/dd-MS(2) (i.e., data-dependent scan mode) obtained product ion spectra for identification. UHPLC/ESI Q-Orbitrap MS quantification was achieved using matrix-matched standard calibration curves along with the use of isotopically labeled standards or a chemical analogue as internal standards to achieve optimal method accuracy. The method performance characteristics include overall recovery, intermediate precision, and measurement uncertainty evaluated according to a nested experimental design. For the 10 matrices studied, 94.5% of the pesticides in fruits and 90.7% in vegetables had recoveries between 81 and 110%; 99.3% of the pesticides in fruits and 99.1% of the pesticides in vegetables had an intermediate precision of ≤20%; and 97.8% of the pesticides in fruits and 96.4% of the pesticides in vegetables showed measurement uncertainty of ≤50%. Overall, the UHPLC/ESI Q-Orbitrap MS demonstrated acceptable performance for the quantification of pesticide residues in fruits and vegetables. The UHPLC/ESI Q-Orbitrap Full MS/dd-MS(2) along with library matching showed great potential for identification and is being investigated further for routine practice.

  2. Sustainability development: Biofuels in agriculture

    OpenAIRE

    Cheteni, Priviledge

    2017-01-01

    Biofuels are socially and politically accepted as a form of sustainable energy in numerous countries. However, cases of environmental degradation and land grabs have highlighted the negative effects to their adoption. Smallholder farmers are vital in the development of a biofuel industry. The study sort to assess the implications in the adoption of biofuel crops by smallholder farmers. A semi-structured questionnaire was administered to 129 smallholder farmers who were sampled from the Easter...

  3. Bio-fuels for the gas turbine: A review

    International Nuclear Information System (INIS)

    Gupta, K.K.; Rehman, A.; Sarviya, R.M.

    2010-01-01

    Due to depletion of fossil fuel, bio-fuels have generated a significant interest as an alternative fuel for the future. The use of bio-fuels to fuel gas turbine seems a viable solution for the problems of decreasing fossil-fuel reserves and environmental concerns. Bio-fuels are alternative fuels, made from renewable sources and having environmental benefit. In recent years, the desire for energy independence, foreseen depletion of nonrenewable fuel resources, fluctuating petroleum fuel costs, the necessity of stimulating agriculture based economy, and the reality of climate change have created an interest in the development of bio-fuels. The application of bio-fuels in automobiles and heating applications is increasing day by day. Therefore the use of these fuels in gas turbines would extend this application to aviation field. The impact of costly petroleum-based aviation fuel on the environment is harmful. So the development of alternative fuels in aviation is important and useful. The use of liquid and gaseous fuels from biomass will help to fulfill the Kyoto targets concerning global warming emissions. In addition, to reduce exhaust emission waste gases and syngas, etc., could be used as a potential gas turbine fuel. The term bio-fuel is referred to alternative fuel which is produced from biomass. Such fuels include bio-diesel, bio-ethanol, bio-methanol, pyrolysis oil, biogas, synthetic gas (dimethyl ether), hydrogen, etc. The bio-ethanol and bio-methanol are petrol additive/substitute. Bio-diesel is an environment friendly alternative liquid fuel for the diesel/aviation fuel. The gas turbine develops steady flame during its combustion; this feature gives a flexibility to use alternative fuels. Therefore so the use of different bio-fuels in gas turbine has been investigated by a good number of researchers. The suitability and modifications in the existing systems are also recommended. (author)

  4. Biofuels: from microbes to molecules

    National Research Council Canada - National Science Library

    Lu, Xuefeng

    2014-01-01

    .... The production of different biofuel molecules including hydrogen, methane, ethanol, butanol, higher chain alcohols, isoprenoids and fatty acid derivatives, from genetically engineered microbes...

  5. Biofuel technology handbook. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Rutz, Dominik; Janssen, Rainer

    2008-01-15

    This comprehensive handbook was created in order to promote the production and use of biofuels and to inform politicians, decision makers, biofuel traders and all other relevant stakeholders about the state-of-the-art of biofuels and relevant technologies. The large variety of feedstock types and different conversion technologies are described. Explanations about the most promising bio fuels provide a basis to discuss about the manifold issues of biofuels. The impartial information in this handbook further contributes to diminish existing barriers for the broad use of biofuels. Emphasis of this handbook is on first generation biofuels: bio ethanol, Biodiesel, pure plant oil, and bio methane. It also includes second generation biofuels such as BTL-fuels and bio ethanol from lingo-cellulose as well as bio hydrogen. The whole life cycle of bio fuels is assessed under technical, economical, ecological, and social aspect. Characteristics and applications of bio fuels for transport purposes are demonstrated and evaluated. This is completed by an assessment about the most recent studies on biofuel energy balances. This handbook describes the current discussion about green house gas (GHG) balances and sustainability aspects. GHG calculation methods are presented and potential impacts of biofuel production characterized: deforestation of rainforests and wetlands, loss of biodiversity, water pollution, human health, child labour, and labour conditions.

  6. Developing symbiotic consortia for lignocellulosic biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Zuroff, Trevor R.; Curtis, Wayne R. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Chemical Engineering

    2012-02-15

    The search for petroleum alternatives has motivated intense research into biological breakdown of lignocellulose to produce liquid fuels such as ethanol. Degradation of lignocellulose for biofuel production is a difficult process which is limited by, among other factors, the recalcitrance of lignocellulose and biological toxicity of the products. Consolidated bioprocessing has been suggested as an efficient and economical method of producing low value products from lignocellulose; however, it is not clear whether this would be accomplished more efficiently with a single organism or community of organisms. This review highlights examples of mixtures of microbes in the context of conceptual models for developing symbiotic consortia for biofuel production from lignocellulose. Engineering a symbiosis within consortia is a putative means of improving both process efficiency and stability relative to monoculture. Because microbes often interact and exist attached to surfaces, quorum sensing and biofilm formation are also discussed in terms of consortia development and stability. An engineered, symbiotic culture of multiple organisms may be a means of assembling a novel combination of metabolic capabilities that can efficiently produce biofuel from lignocellulose. (orig.)

  7. Biofuels in Spain: Market penetration analysis and competitiveness in the automotive fuel market

    International Nuclear Information System (INIS)

    Sobrino, Fernando Hernandez; Monroy, Carlos Rodriguez; Perez, Jose Luis Hernandez

    2010-01-01

    For several years the European Union (E.U.) has been promoting the use of biofuels due to their potential benefits such as the reduction of dependence on foreign energy imports (the raw materials can be produced within the E.U.), the more stable fossil fuel prices (they can replace fossil fuels on the market), the greenhouse gas (GHG) reduction (biofuels' raw materials fix CO 2 from the atmosphere) and the fact that they can represent an additional source of income for the primary sector (biofuels' raw materials are vegetables that can be grown and harvested). Despite the public aids (direct and indirect), biofuels are not competitive with fossil fuels at present, but it is possible that in the future the environment conditions change and biofuels might become competitive. It is difficult to assess whether this will happen or not, but it is possible to make an assessment of a future situation. This article presents two analyses with one objective: to determine if biofuels might become competitive in the future. The first analysis examines the dependencies of two quotations which have a strong relationship with fuels: the crude oil quotation and the CO 2 bond quotation. The analysis of these relationships may help to forecast the future competitiveness of biofuels. For instance, biofuels' future competitiveness will be higher if their raw material costs are not related to crude oil quotations or if they are related in a negative way (the higher the crude oil quotations the lower the raw material biofuels' cost). The second analysis focuses on the market penetration of biofuels in the Spanish market. There are data related to biofuels monthly consumption in Spain since 2007 and it is possible to know if biofuels are gaining market quota since then. (author)

  8. Biofuels in Spain: Market penetration analysis and competitiveness in the automotive fuel market

    Energy Technology Data Exchange (ETDEWEB)

    Sobrino, Fernando Hernandez; Monroy, Carlos Rodriguez [Department of Business Administration, School of Industrial Engineering, Universidad Politecnica de Madrid, Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Perez, Jose Luis Hernandez [High School Chemistry Teacher, Madrid (Spain)

    2010-12-15

    For several years the European Union (E.U.) has been promoting the use of biofuels due to their potential benefits such as the reduction of dependence on foreign energy imports (the raw materials can be produced within the E.U.), the more stable fossil fuel prices (they can replace fossil fuels on the market), the greenhouse gas (GHG) reduction (biofuels' raw materials fix CO{sub 2} from the atmosphere) and the fact that they can represent an additional source of income for the primary sector (biofuels' raw materials are vegetables that can be grown and harvested). Despite the public aids (direct and indirect), biofuels are not competitive with fossil fuels at present, but it is possible that in the future the environment conditions change and biofuels might become competitive. It is difficult to assess whether this will happen or not, but it is possible to make an assessment of a future situation. This article presents two analyses with one objective: to determine if biofuels might become competitive in the future. The first analysis examines the dependencies of two quotations which have a strong relationship with fuels: the crude oil quotation and the CO{sub 2} bond quotation. The analysis of these relationships may help to forecast the future competitiveness of biofuels. For instance, biofuels' future competitiveness will be higher if their raw material costs are not related to crude oil quotations or if they are related in a negative way (the higher the crude oil quotations the lower the raw material biofuels' cost). The second analysis focuses on the market penetration of biofuels in the Spanish market. There are data related to biofuels monthly consumption in Spain since 2007 and it is possible to know if biofuels are gaining market quota since then. (author)

  9. Determination of household and industrial chemicals, personal care products and hormones in leafy and root vegetables by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Aparicio, Irene; Martín, Julia; Abril, Concepción; Santos, Juan Luis; Alonso, Esteban

    2018-01-19

    A multiresidue method has been developed for the determination of emerging pollutants in leafy and root vegetables. Selected compounds were 6 perfluoroalkyl compounds (5 perfluorocarboxylic acids and perfluorooctanesulfonic acid), 3 non-ionic surfactants (nonylphenol and nonylphenolethoxylates), 8 anionic surfactants (4 alkylsulfates and 4 linear alkylbenzene sulfonates), 4 preservatives (parabens), 2 biocides (triclosan and triclocarban), 2 plasticizers (bisphenol A and di-(2-ethylhexyl)phthalate), 6 UV-filters (benzophenones) and 4 hormones. The method is based on ultrasound-assisted extraction, clean-up by dispersive solid-phase extraction (d-SPE) and liquid chromatography-tandem mass spectrometry analysis. Due to the diversity of the physico-chemical properties of the target compounds, and to better evaluate the influence of sample treatment variables in extraction efficiencies, Box-Behnken design was applied to optimize extraction solvent volume, number of extraction cycles and d-SPE sorbent amount. Linearity (R 2 ) higher than 0.992, accuracy (expressed as relative recoveries) in the range from 81 to 126%, precision (expressed as relative standard deviation) lower than 19% and limits of detection between 0.025 and 12.5ngg -1 dry weight were achieved. The method was applied to leafy vegetables (lettuce, spinach and chard) and root vegetables (carrot, turnip and potato) from a local market. The highest concentrations corresponded to the surfactants reaching levels up to 114ngg -1 (dry weight), in one of the lettuce samples analyzed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Biofuels versus food production: Does biofuels production increase food prices?

    International Nuclear Information System (INIS)

    Ajanovic, Amela

    2011-01-01

    Rapidly growing fossil energy consumption in the transport sector in the last two centuries caused problems such as increasing greenhouse gas emissions, growing energy dependency and supply insecurity. One approach to solve these problems could be to increase the use of biofuels. Preferred feedstocks for current 1st generation biofuels production are corn, wheat, sugarcane, soybean, rapeseed and sunflowers. The major problem is that these feedstocks are also used for food and feed production. The core objective of this paper is to investigate whether the recent increase of biofuels production had a significant impact on the development of agricultural commodity (feedstock) prices. The most important impact factors like biofuels production, land use, yields, feedstock and crude oil prices are analysed. The major conclusions of this analysis are: In recent years the share of bioenergy-based fuels has increased moderately, but continuously, and so did feedstock production, as well as yields. So far, no significant impact of biofuels production on feedstock prices can be observed. Hence, a co-existence of biofuel and food production seems possible especially for 2nd generation biofuels. However, sustainability criteria should be seriously considered. But even if all crops, forests and grasslands currently not used were used for biofuels production it would be impossible to substitute all fossil fuels used today in transport.

  11. The price for biofuels sustainability

    International Nuclear Information System (INIS)

    Pacini, Henrique; Assunção, Lucas; Dam, Jinke van; Toneto, Rudinei

    2013-01-01

    The production and usage of biofuels has increased worldwide, seeking goals of energy security, low-carbon energy and rural development. As biofuels trade increased, the European Union introduced sustainability regulations in an attempt to reduce the risks associated with biofuels. Producers were then confronted with costs of sustainability certification, in order to access the EU market. Hopes were that sustainably-produced biofuels would be rewarded with higher prices in the EU. Based on a review of recent literature, interviews with traders and price data from Platts, this paper explores whether sustainability premiums emerged and if so, did they represent an attracting feature in the market for sustainable biofuels. This article finds that premiums for ethanol and biodiesel evolved differently between 2011 and 2012, but have been in general very small or inexistent, with certified fuels becoming the new norm in the market. For different reasons, there has been an apparent convergence between biofuel policies in the EU and the US. As market operators perceive a long-term trend for full certification in the biofuels market, producers in developing countries are likely to face additional challenges in terms of finance and capacity to cope with the sustainability requirements. - Highlights: • EU biofuel sustainability rules were once thought to reward compliant producers with price-premiums. • Premiums for certified biofuels, however, have been small for biodiesel and almost non-existent for ethanol. • As sustainable biofuels became the new norm, premiums disappeared almost completely in 2012. • Early stages of supply chains concentrate the highest compliance costs, affecting specially developing country producers. • Producers are now in a market where sustainable biofuels have become the new norm

  12. Liquid biofuel production from volatile fatty acids

    NARCIS (Netherlands)

    Steinbusch, K.J.J.

    2010-01-01

    The production of renewable fuels and chemicals reduces the dependency on fossil fuels and limits the increase of CO2 concentration in the atmosphere only if a sustainable feedstock and an energy efficient process are used. The thesis assesses the possibility to use municipal and industrial waste as

  13. Biofuels and the biorefinery concept

    International Nuclear Information System (INIS)

    Taylor, Gail

    2008-01-01

    Liquid fuels can be made by refining a range of biomass materials, including oil-rich and sugar-rich crops such as oil-seed rape and sugar beet, biomass that consists mainly of plant cell walls (second generation lignocellulosics), macro- and micro-alga, or material that would now be discarded as waste. This can include animal bi-products as well as waste wood and other resources. In the medium-term, plant cell (lignocellulosic) material is likely to be favoured as the feedstock for biorefineries because of its availability. The UK may make use of a number of these options because of its complex agricultural landscape. There are now a range of targets for biofuel use in the UK, although their environmental effects are disputed. The technology of refining these materials is well known. Possible outputs include biodiesel and bioethanol, both of which can be used as transport fuel. Other potential products include hydrogen, polymers and a wide range of value-added chemicals, making this technology important in a post-petrochemical world. Biorefineries could use cogeneration to produce electricity. The paper identifies a range of research and development priorities which must be met if this opportunity is to be exploited fully

  14. Biofuels in Central America

    International Nuclear Information System (INIS)

    Sanders, E.

    2007-08-01

    This report presents the results of an analysis of the biofuel markets in El Salvador, Panama, Costa Rica and Honduras. The aim of this report is to provide insight in the current situation and the expected developments in these markets and thus to provide investors with an image of the opportunities that could be present in this sector. An attempt has been made to provide a clear overview of this sector in the countries concerned. Due to a lack of data this has not been fully accomplished in some cases. [mk] [nl

  15. Biofuels: Project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

  16. Simultaneous Analysis of Malondialdehyde, 4-Hydroxy-2-hexenal, and 4-Hydroxy-2-nonenal in Vegetable Oil by Reversed-Phase High-Performance Liquid Chromatography.

    Science.gov (United States)

    Ma, Lukai; Liu, Guoqin

    2017-12-27

    A group of toxic aldehydes such as, malondialdehyde (MDA), 4-hydroxy-2-hexenal (HHE), and 4-hydroxy-2-nonenal (HNE) have been found in various vegetable oils and oil-based foods. Then simultaneous determination of them holds a great need in both the oil chemistry field and food field. In the present study, a simple and efficient analytical method was successfully developed for the simultaneous separation and detection of MDA, HHE, and HNE in vegetable oils by reversed-phase-high-performance liquid chromatography (RP-HPLC) coupled with photodiode array detector (PAD) at dual-channel detection mode. The effect of various experimental factors on the extraction performance, such as coextraction solvent system, butylated hydroxytoluene addition, and trichloroacetic acid addition were systematically investigated. Results showed that the linear ranges were 0.02-10.00 μg/mL for MDA, 0.02-4.00 μg/mL for HHE, and 0.03-4.00 μg/mL for HNE with the satisfactory correlation coefficient of >0.999 for all detected aldehydes. The limit of detection (LOD) and limit of quantification (LOQ) of MDA, HHE, and HNE were ∼0.021and 0.020 μg/mL, ∼0.009 and 0.020 μg/mL, and ∼0.014 and 0.030 μg/mL, respectively. Their recoveries were 99.64-102.18%, 102.34-104.61%, and 98.87-103.04% for rapeseed oil and 96.38-98.05%, 96.19-101.34%, and 96.86-99.04% for French fries, separately. Under the selected conditions, the developed methods was successfully applied to the simultaneous determination of MDA, HHE, and HNE in different tested vegetable oils. The results indicated that this method could be employed for the quality assessment of vegetable oils.

  17. Investigating biofuels through network analysis

    International Nuclear Information System (INIS)

    Curci, Ylenia; Mongeau Ospina, Christian A.

    2016-01-01

    Biofuel policies are motivated by a plethora of political concerns related to energy security, environmental damages, and support of the agricultural sector. In response to this, much scientific work has chiefly focussed on analysing the biofuel domain and on giving policy advice and recommendations. Although innovation has been acknowledged as one of the key factors in sustainable and cost-effective biofuel development, there is an urgent need to investigate technological trajectories in the biofuel sector by starting from consistent data and appropriate methodological tools. To do so, this work proposes a procedure to select patent data unequivocally related to the investigated sector, it uses co-occurrence of technological terms to compute patent similarity and highlights content and interdependencies of biofuels technological trajectories by revealing hidden topics from unstructured patent text fields. The analysis suggests that there is a breaking trend towards modern generation biofuels and that innovators seem to focus increasingly on the ability of alternative energy sources to adapt to the transport/industrial sector. - Highlights: • Innovative effort is devoted to biofuels additives and modern biofuels technologies. • A breaking trend can be observed from the second half of the last decade. • A patent network is identified via text mining techniques that extract latent topics.

  18. Transporter-mediated biofuel secretion.

    Science.gov (United States)

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-05-07

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as "plug-and-play" biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance.

  19. Assay in engine of agricultural tractor with biofuel

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Reny Adilmar Prestes; Meyer, Wagner [Universidade Estadual de Maringa (DEA/CCA/UEM), Cidade Gaucha, PR (Brazil). Centro de Ciencias Agrarias. Dept. de Engenharia Agricola], E-mail: raplopes@uem.br; Pinheiro Neto, Raimundo; Pinheiro, Andreia Cristina [Universidade Estadual de Maringa (DAG/CCA/UEM), PR (Brazil). Centro de Ciencias Agrarias. Dept. de Agronomia; Laurindo, Jose Carlos [Instituto de Tecnologia do Parana (CERBIO/TECPAR), Curitiba, PR (Brazil). Centro Brasileiro de Referencia em Biocombustiveis; Biazzono, Sergio Luis [Instituto de Tecnologia do Parana (TECPAR), Maringa, PR (Brazil). Inspecao Veicular

    2008-07-01

    The use of biofuel in tractors of diesel engines and agricultural harvester, in the operations of soil preparation and harvest, is a good option of fuel economy for the agriculturist. For a good performance of the machine a good regulation is necessary. The experiment was carried through in the Experimental Farm Iguatemi of the State University of Maringa, Maringa - PR. A tractor Massey Ferguson MF275 was used for the assay connected to be even grating. It carried through if the assays of consumption of diesel (100%) and biofuel (diesel 80% + vegetable oil 20%). To carry through the assay tractor + grating with three openings and without load was used to be even set. The rotation without load and of work was of 1900 rpm and mean speed of 6 km h{sup -1}. The hourly consumption was verified by a test tube and a fluxgate OVAL Flow mate M III - LSF 45L0-M2 connected to data logger CR23X. The hourly consumption was express in L h{sup -1}. The engine of the tractor presented similar behavior of fuel consumption for diesel and biofuel. The mean values of consumption had been inside of the specified one for the manufacturer. Mixture 80% diesel + 20% vegetable oil can be used as biofuel in the engine in study. (author)

  20. Biofuels and environment

    International Nuclear Information System (INIS)

    Wihersaari, M.

    1996-01-01

    The purpose of this work was to produce more information on the environmental impacts of biomass production and use. Energy consumption and environmental impacts of different biomass and fossil fuel production techniques combined with transportation and end use figures are needed for comparing different fuel alternatives to reach a maximum environmental benefits from the total energy system. The energy demand of different biomass production chains was calculated and compared. Special attention was paid to new production techniques, developed in the ongoing Finnish BIOENERGY research programme. The energy consumption and the emissions from biomass production were compared with the corresponding parametres for fossil fuels used in Finland. The use of biomass for energy purposes provides environmental benefits compared to fossile fuels. The most notable ones are very small or none net emissions of greenhouse gases and SO 2 when burning biomass. NO x emissions from the production and transportation chain form a notable part of the total NO x emissons of the bioenergy production and utilization chain, especially for large biomass plants, and therefore attention should be paid to the possibilities to lower these emissions. Biomass fuel production is not free from fossil fuels. About 2-6 per cent of the produced energy is used in the production chain. The amount of used energy rises much higher, if the biofuel is processed to be an alternative for e.g. fossil diesel fuels. The energy demand in the fossil fuel production chain is though greater than in the production chain of basic biofuels. (52 refs.)

  1. Biofuels and algae

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    Bio-fuels based on micro-algae are promising, their licensing for being used in plane fuels in a mix containing 50% of fossil kerosene is expected in the coming months. In United-States research on bio-fuels has been made more important since 2006 when 2 policies were launched: 'Advanced energy initiative' and 'Twenty-in-ten', the latter aiming to develop alternative fuels. In Europe less investment has been made concerning micro-algae fuels but research programs were launched in Spain, United-Kingdom and France. In France 3 important projects were launched: SHAMASH (2006-2010) whose aim is to produce lipidic fuels from micro-algae, ALGOHUB (2008-2013) whose aim is to use micro-algae as a raw material for humane and animal food, medicine and cosmetics, SYMBIOSE (2009-2011) whose aim is the optimization of the production of methane through the anaerobic digestion of micro-algae, SALINALGUE (2010-2016) whose aim is to grow micro-algae for the production of bio-energies and bio-products. (A.C.)

  2. Harnessing biofuels. A global Renaissance in energy production?

    Energy Technology Data Exchange (ETDEWEB)

    Jegannathan, Kenthorai Raman; Chan, Eng-Seng; Ravindra, Pogaku [Centre of Materials and Minerals, School of Engineering and Information Technology, Universiti Malaysia Sabah, 88999 Kota Kinabalu, Sabah (Malaysia)

    2009-10-15

    Biofuel, peoples' long awaiting alternative fuel, is yet to struggle a long way to reach in retail outlet all over the world as an economical and environmental friendly fuel. Biofuels include bioethanol, biodiesel, biogas, bio-synthetic gas (bio-syngas), bio-oil, bio-char, Fischer-Tropsch liquids, and biohydrogen. Among these bioethanol, biodiesel, biogas are predominant which can be produced either using chemical catalyst or biocatalyst from biomass. At present, the conventional process involves the chemical catalyst while a rigorous research is focused on using a biocatalyst. This review brings out the advantages and disadvantages of using different type of catalyst in biofuel production and emphasis on new technologies as an alternative to conventional technologies. (author)

  3. Meeting the global demand for biofuels in 2021 through sustainable land use change policy

    International Nuclear Information System (INIS)

    Goldemberg, José; Mello, Francisco F.C.; Cerri, Carlos E.P.; Davies, Christian A.; Cerri, Carlos C.

    2014-01-01

    The 2013 renewable energy policy mandates adopted in twenty-seven countries will increase the need for liquid biofuels. To achieve this, ethanol produced from corn and sugarcane will need to increase from 80 to approximately 200 billion l in 2021. This could be achieved by increasing the productivity of raw material per hectare, expansion of land into dedicated biofuels, or a combination of both. We show here that appropriate land expansion policies focused on conservationist programs and a scientific basis, are important for sustainable biofuel expansion whilst meeting the increasing demand for food and fiber. The Brazilian approach to biofuel and food security could be followed by other nations to provide a sustainable pathway to renewable energy and food production globally. One sentence summary: Conservationist policy programs with scientific basis are key to drive the expansion of biofuel production and use towards sustainability

  4. Three-dimensional ionic liquid functionalized magnetic graphene oxide nanocomposite for the magnetic dispersive solid phase extraction of 16 polycyclic aromatic hydrocarbons in vegetable oils.

    Science.gov (United States)

    Zhang, Yun; Zhou, Hua; Zhang, Zhe-Hua; Wu, Xiang-Lun; Chen, Wei-Guo; Zhu, Yan; Fang, Chun-Fu; Zhao, Yong-Gang

    2017-03-17

    In this paper, a novel three-dimensional ionic liquid functionalized magnetic graphene oxide nanocomposite (3D-IL@mGO) was prepared, and used as an effective adsorbent for the magnetic dispersive solid phase extraction (MSPE) of 16 polycyclic aromatic hydrocarbons (PAHs) in vegetable oil prior to gas chromatography-mass spectrometry (GC-MS). The properties of 3D-IL@mGO were characterized by scanning electron micrographs (SEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM). The 3D-IL@mGO, functionalized by ionic liquid, exhibited high adsorption toward PAHs. Compared to molecularly imprinted solid phase extraction (MISPE), the MSPE method based on 3D-IL@mGO had less solvent consumption and low cost, and was more efficent to light PAHs in quantitative analysis. Furthermore, the rapid and accurate GC-MS method coupled with 3D-IL@mGO MSPE procedure was successfully applied for the analysis of 16 PAHs in eleven vegetable oil samples from supermarket in Zhejiang Province. The results showed that the concentrations of BaP in 3 out of 11 samples were higher than the legal limit (2.0μg/kg, Commission Regulation 835/2011a), the sum of 8 heavy PAHs (BaA, CHR, BbF, BkF, BaP, IcP, DaA, BgP) in 11 samples was between 3.03μg/kg and 229.5μg/kg. Validation results on linearity, specificity, accuracy, precision and stability, as well as on application to the analysis of PAHs in oil samples demonstrated the applicability to food safety risk monitoring in China. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. International Trade of Biofuels (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2013-05-01

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  6. A simple and selective method for the measurement of azadirachtin and related azadirachtoid levels in fruits and vegetables using liquid chromatography electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Sarais, Giorgia; Caboni, Pierluigi; Sarritzu, Erika; Russo, Mariateresa; Cabras, Paolo

    2008-05-14

    Neem-based insecticides containing azadirachtin and related azadirachtoids are widely used in agriculture. Here, we report an analytical method for the rapid and accurate quantification of the insecticide azadirachtin A and B and other azadirachtoids such as salannin, nimbin, and their deacetylated analogues on tomatoes and peaches. Azadirachtoids were extracted from fruits and vegetables with acetonitrile. Using high-performance liquid chromatography/electrospray ionization tandem mass spectrometer, azadirachtoids were selectively detected monitoring the multiple reaction transitions of sodium adduct precursor ions. For azadirachtin A, calibration was linear over a working range of 1-1000 microg/L with r > 0.996. The limit of detection and limit of quantification for azadirachtin A were 0.4 and 0.8 microg/kg, respectively. The presence of interfering compounds in the peach and tomato extracts was evaluated and found to be minimal. Because of the linear behavior, it was concluded that the multiple reaction transitions of sodium adduct ions can be used for analytical purposes, that is, for the identification and quantification of azadirachtin A and B and related azadirachtoids in fruit and vegetable extracts at trace levels.

  7. Sustainability aspects of biofuel production

    Science.gov (United States)

    Pawłowski, L.; Cel, W.; Wójcik Oliveira, K.

    2018-05-01

    Nowadays, world development depends on the energy supply. The use of fossil fuels leads to two threats: depletion of resources within a single century and climate changes caused by the emission of CO2 from fossil fuels combustion. Widespread application of renewable energy sources, in which biofuels play a major role, is proposed as a counter-measure. The paper made an attempt to evaluate to what extent biofuels meet the criteria of sustainable development. It was shown that excessive development of biofuels may threaten the sustainable development paradigms both in the aspect of: intergenerational equity, leading to an increase of food prices, as well as intergenerational equity, resulting in degradation of the environment. The paper presents the possibility of sustainable biofuels production increase.

  8. Biofuels: policies, standards and technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    Skyrocketing prices of crude oil in the middle of the first decade of the 21st century accompanied by rising prices for food focused political and public attention on the role of biofuels. On the one hand, biofuels were considered as a potential automotive fuel with a bright future, on the other hand, biofuels were accused of competing with food production for land. The truth must lie somewhere in-between and is strongly dependent on the individual circumstance in different countries and regions. As food and energy are closely interconnected and often compete with each other for other resources, such as water, the World Energy Council - following numerous requests of its Member Committees - decided to undertake an independent assessment of biofuels policies, technologies and standards.

  9. Alternative Crops and Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Kenkel, Philip [Oklahoma State Univ., Stillwater, OK (United States); Holcomb, Rodney B. [Oklahoma State Univ., Stillwater, OK (United States)

    2013-03-01

    In order for the biofuel industry to meet the RFS benchmarks for biofuels, new feedstock sources and production systems will have to be identified and evaluated. The Southern Plains has the potential to produce over a billion gallons of biofuels from regionally produced alternative crops, agricultural residues, and animal fats. While information on biofuel conversion processes is available, it is difficult for entrepreneurs, community planners and other interested individuals to determine the feasibility of biofuel processes or to match production alternatives with feed stock availability and community infrastructure. This project facilitates the development of biofuel production from these regionally available feed stocks. Project activities are concentrated in five major areas. The first component focused on demonstrating the supply of biofuel feedstocks. This involves modeling the yield and cost of production of dedicated energy crops at the county level. In 1991 the DOE selected switchgrass as a renewable source to produce transportation fuel after extensive evaluations of many plant species in multiple location (Caddel et al,. 2010). However, data on the yield and cost of production of switchgrass are limited. This deficiency in demonstrating the supply of biofuel feedstocks was addressed by modeling the potential supply and geographic variability of switchgrass yields based on relationship of available switchgrass yields to the yields of other forage crops. This model made it possible to create a database of projected switchgrass yields for five different soil types at the county level. A major advantage of this methodology is that the supply projections can be easily updated as improved varieties of switchgrass are developed and additional yield data becomes available. The modeling techniques are illustrated using the geographic area of Oklahoma. A summary of the regional supply is then provided.

  10. Determination of six parabens residues in fresh-cut vegetables using QuEChERS with multi-walled carbon nanotubes and high performance liquid chromatography-tandem mass spectrometry

    Science.gov (United States)

    In this study, an optimized QuEChERS sample preparation method was developed to analyze residues of six parabens: methyl-, ethyl-, n-propyl-, isopropyl-, n-butyl-, and isobutyl-paraben in five fresh-cut vegetables (potato, broccoli, carrot, celery and cabbage) with high performance liquid chromatogr...

  11. Effect of biofuel on environment

    International Nuclear Information System (INIS)

    Kalam, M.A; Masjuki, H.H.; Maleque, M.A.

    2001-01-01

    Biofuels are alcohols, esters, and other chemical made from cellulosic biomass such as herbaceous and woody plants, agricultural and forestry residues, and a large portion of municipal solid and industrial waste. Biofuels are renewable and mostly suitable for diesel engines due to their similar physiochemical properties as traditional diesel oil. Demand of biofuel is increasing and some European countries have started using biofuel in diesel engine. This interest has been grown in many countries mainly due to fluctuating oil prices because of diminishing availability of conventional sources and polluted environment. However, the use of biofuel for diesel engine would be more beneficial to oil importing countries by saving foreign exchange, because biofuel is domestic renewable fuels. This paper presents the evaluation results of a multi-cylinder diesel engine operated on blends of ten, twenty, thirty, forty and fifty percent of ordinary coconut oil (COCO) with ordinary diesel (OD). The test results from all the COCO blends were compared with OD. The fuels were compared based on the emissions results including, exhaust temperature, NO x , smoke, CO, HC, benzene and polycyclic aromatic hydrocarbon (PAH). Carbon deposit on injector nozzles was also monitored. Exhaust emissions results showed that increasing coconut oil in blend decreases all the exhaust emissions. Carbon deposited on injector nozzles was observed where no hard carbon was found on injector tip when the engine was running on COCO blends. (Author)

  12. Multiclass determination of phytochemicals in vegetables and fruits by ultra high performance liquid chromatography coupled to tandem mass spectrometry.

    Science.gov (United States)

    Alarcón-Flores, María Isabel; Romero-González, Roberto; Vidal, José Luis Martínez; Frenich, Antonia Garrido

    2013-11-15

    In this study a simultaneous determination of several classes of phytochemicals (isoflavones, glucosinolates, flavones, flavonols and phenolic acids) in tomato, broccoli, carrot, eggplant and grape has been carried out by ultra high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). Solid-liquid extraction assisted by rotary agitator was utilised, using a mixture of methanol:water (80:20, v/v) as solvent. The analytical procedure was validated in all the matrices, obtaining recoveries ranging from 60% to 120% with repeatability values (expressed as relative standard deviations, RSDs) lower than 25%. Limits of quantification (LOQs) were always equal or lower than 50μg/kg, except for some glucosinolates (125μg/kg). Finally the method was applied to different matrices such as tomato, broccoli, carrot, grape and eggplant, observing that chlorogenic acid was detected in most of the samples at higher concentrations in relation to the other compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Biofuels: on your marks

    International Nuclear Information System (INIS)

    Scheromm, P.

    1993-01-01

    Biomass fuels are in France: ethanol (from wheat, sugar beets, potatoes, jerusalem artichoke, ligno-cellulose wastes or forests) and its derived ETBE (ethyltertiobutylether), methanol (from petroleum) and its derived MTBE (methyltertiobutylether), vegetable oils and its derived DIESTER (methylester of colza or sunflower). Economic and energy balances are given with environmental impacts. (A.B.). 6 refs

  14. Biofuel from jute stick by pyrolysis technology

    Science.gov (United States)

    Ferdous, J.; Parveen, M.; Islam, M. R.; Haniu, H.; Takai, K.

    2017-06-01

    In this study the conversion of jute stick into biofuels and chemicals by externally heated fixed-bed pyrolysis reactor have been taken into consideration. The solid jute stick was characterized through proximate and ultimate analysis, gross calorific values and thermo-gravimetric analysis to investigate their suitability as feedstock for this consideration. The solid biomass particles were fed into the reactor by gravity feed type reactor feeder. The products were oil, char and gases. The liquid and char products were collected separately while the gas was flared into the atmosphere. The process conditions were varied by fixed-bed temperature; feed stock particle size, N2 gas flow rate and running time. All parameters were found to influence the product yields significantly. The maximum liquid yields were 50 wt% of solid jute stick at reactor temperature 425°C for N2 gas flow rate 6 l/min, feed particle size 1180-1700 µm and running time 30 min. Liquid products obtained at these conditions were characterized by physical properties, chemical analysis and GC-MS techniques. The results show that it is possible to obtained liquid products that are comparable to petroleum fuels and valuable chemical feedstock from the selected biomass if the pyrolysis conditions are chosen accordingly.

  15. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias C.; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  16. Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, Stephen P. [Univ. of California, San Diego, CA (United States)

    2015-12-04

    The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between six academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.

  17. Biofuels feedstock development program

    International Nuclear Information System (INIS)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Martin, S.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1993-11-01

    The Department of Energy's (DOE's) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires

  18. BIOFUEL FROM CORN STOVER

    Directory of Open Access Journals (Sweden)

    Ljiljanka Tomerlin

    2003-12-01

    Full Text Available This paper deals with production of ethyl alcohol (biofuel from corn stover acid hydrolysate by yeasts, respectively at Pichia stipitis y-7124 and Pachysolen tannophilus y-2460 and Candida shehatae y-12856. Since moist corn stover (Hybryds 619 is proving to decomposition by phyllospheric microflora. It was (conserved spattered individually by microbicids: Busan-90, Izosan-G and formalin. In form of prismatic bales, it was left in the open air during 6 months (Octobar - March. At the beginning and after 6 months the microbiological control was carried out. The only one unspattered (control and three stover corn bals being individually spattered by microbicids were fragmented and cooked with sulfur acid. The obtained four acid hydrolysates are complex substratums, containing, apart from the sugars (about 11 g dm-3 pentosa and about 5.4 g dm-3 hexose, decomposite components as lignin, caramel sugars and uronic acids. By controlling the activity of the mentioned yeasts it was confirmed that yeasts Pichia stipitis y-7124 obtained best capability of ethyl alcohol production from corn stover acid hydrolysate at 0.23 vol. % to 0.49 vol. %.

  19. Biofuels and food security

    Directory of Open Access Journals (Sweden)

    Dmitry S. STREBKOV

    2015-03-01

    Full Text Available The major source of energy comes from fossil fuels. The current situation in the field of fuel and energy is becoming more problematic as world population continues to grow because of the limitation of fossil fuels reserve and its pressure on environment. This review aims to find economic, reliable, renewable and non-polluting energy sources to reduce high energy tariffs in Russian Federation. Biofuel is fuel derived directly from plants, or indirectly from agricultural, commercial, domestic, and/or industrial wastes. Other alternative energy sources including solar energy and electric power generation are also discussed. Over 100 Mt of biomass available for energy purposes is produced every year in Russian. One of the downsides of biomass energy is its potential threatens to food security and forage industries. An innovative approach proved that multicomponent fuel (80% diesel oil content for motor and 64% for in stove fuel can remarkably reduce the costs. This paper proposed that the most promising energy model for future is based on direct solar energy conversion and transcontinental terawatt power transmission with the use of resonant wave-guide technology.

  20. Sustainable Biofuels Development Center

    Energy Technology Data Exchange (ETDEWEB)

    Reardon, Kenneth F. [Colorado State Univ., Fort Collins, CO (United States)

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production and utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.

  1. biofuel development in California

    Directory of Open Access Journals (Sweden)

    Varaprasad Bandaru

    2015-07-01

    Full Text Available Biofuels are expected to play a major role in meeting California's long-term energy needs, but many factors influence the commercial viability of the various feedstock and production technology options. We developed a spatially explicit analytic framework that integrates models of plant growth, crop adoption, feedstock location, transportation logistics, economic impact, biorefinery costs and biorefinery energy use and emissions. We used this framework to assess the economic potential of hybrid poplar as a feedstock for jet fuel production in Northern California. Results suggest that the region has sufficient suitable croplands (2.3 million acres and nonarable lands (1.5 million acres for poplar cultivation to produce as much as 2.26 billion gallons of jet fuel annually. However, there are major obstacles to such large-scale production, including, on nonarable lands, low poplar yields and broad spatial distribution and, on croplands, competition with existing crops. We estimated the production cost of jet fuel to be $4.40 to $5.40 per gallon for poplar biomass grown on nonarable lands and $3.60 to $4.50 per gallon for biomass grown on irrigated cropland; the current market price is $2.12 per gallon. Improved poplar yields, use of supplementary feedstocks at the biorefinery and economic supports such as carbon credits could help to overcome these barriers.

  2. O governo e a mídia na configuração do macroambiente para os biocombustíveis líquidos no Brasil Government and media in the configuration of the macroenvironment for liquid biofuels in Brazil

    Directory of Open Access Journals (Sweden)

    Edson Talamini

    2009-04-01

    Full Text Available Este artigo identifica as dimensões nas quais o governo e a mídia do Brasil têm configurado o macroambiente para os biocombustíveis líquidos ao longo do tempo e testam a existência de similaridade entre esses meios de expressão da sociedade na configuração do macroambiente. Para atingir o objetivo, foi realizada uma pesquisa documental a partir das notícias sobre o tema "biocombustíveis líquidos" veiculadas pela mídia escrita e de documentos oficiais do governo brasileiro tratando do mesmo tema. Foram coletados documentos textuais em formato eletrônico para um período de 10 anos (1997 a 2006. A extração do conhecimento dos textos em formato eletrônico foi realizada por meio de mineração em textos, aplicando-se uma estrutura de análise específica contendo as dimensões macroambientais e suas respectivas "palavras-d", que foram definidas a partir das palavras mais frequentes nas áreas do conhecimento relacionadas a cada dimensão. Os resultados indicam que a configuração do macroambiente para os biocombustíveis líquidos pela mídia e pelo governo difere quanto ao uso das dimensões macroambientais. A configuração do macroambiente também apresentou variações ao longo do período analisado, tanto na mídia quanto no governo. Testes de similaridade, aderência e homogeneidade confirmam a existência de diferenças entre a mídia e o governo. As implicações dos resultados encontrados para a atividade de escaneamento macroambiental destinado ao planejamento estratégico das organizações em geral e dos biocombustíveis líquidos em particular são discutidas.This article identifies the dimensions in which the Brazilian government and the media have shaped the macroenvironment for liquid biofuels through time, and tests the similarities among these means of expression of the society in the macroenvironmental setting. It conducts a documental research of the news on liquid biofuels published by the press and of official

  3. Biofuels and sustainability in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Amigun, Bamikole; Stafford, William [Sustainable Energy Futures, Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), 7599 Stellenbosch (South Africa); Musango, Josephine Kaviti [Resource Based Sustainable Development, Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), 7599 Stellenbosch (South Africa)

    2011-02-15

    The combined effects of climate change, the continued volatility of fuel prices, the recent food crisis and global economic turbulence have triggered a sense of urgency among policymakers, industries and development practitioners to find sustainable and viable solutions in the area of biofuels. This sense of urgency is reflected in the rapid expansion of global biofuels production and markets over the past few years. Biofuels development offers developing countries some prospect of self-reliant energy supplies at national and local levels, with potential economic, ecological, social, and security benefits. Forty-two African countries are net oil importers. This makes them particularly vulnerable to volatility in global fuel prices and dependent on foreign exchange to cover their domestic energy needs. The goal therefore is to reduce the high dependence on imported petroleum by developing domestic, renewable energy. But can this objective be achieved while leaving a minimal social and environmental footprint? A fundamental question is if biofuels can be produced with consideration of social, economic and environmental factors without setting unrealistic expectation for an evolving renewable energy industry that holds such great promise. The overall performance of different biofuels in reducing non-renewable energy use and greenhouse gas emissions varies when considering the entire lifecycle from production through to use. The net performance depends on the type of feedstock, the production process and the amount of non-renewable energy needed. This paper presents an overview of the development of biofuels in Africa, and highlights country-specific economic, environmental and social issues. It proposes a combination framework of policy incentives as a function of technology maturity, discusses practices, processes and technologies that can improve efficiency, lower energy and water demand, and further reduce the social and environmental footprint of biofuels

  4. Biofuels and sustainability in Africa

    International Nuclear Information System (INIS)

    Amigun, Bamikole; Stafford, William; Musango, Josephine Kaviti

    2011-01-01

    The combined effects of climate change, the continued volatility of fuel prices, the recent food crisis and global economic turbulence have triggered a sense of urgency among policymakers, industries and development practitioners to find sustainable and viable solutions in the area of biofuels. This sense of urgency is reflected in the rapid expansion of global biofuels production and markets over the past few years. Biofuels development offers developing countries some prospect of self-reliant energy supplies at national and local levels, with potential economic, ecological, social, and security benefits. Forty-two African countries are net oil importers. This makes them particularly vulnerable to volatility in global fuel prices and dependent on foreign exchange to cover their domestic energy needs. The goal therefore is to reduce the high dependence on imported petroleum by developing domestic, renewable energy. But can this objective be achieved while leaving a minimal social and environmental footprint? A fundamental question is if biofuels can be produced with consideration of social, economic and environmental factors without setting unrealistic expectation for an evolving renewable energy industry that holds such great promise. The overall performance of different biofuels in reducing non-renewable energy use and greenhouse gas emissions varies when considering the entire lifecycle from production through to use. The net performance depends on the type of feedstock, the production process and the amount of non-renewable energy needed. This paper presents an overview of the development of biofuels in Africa, and highlights country-specific economic, environmental and social issues. It proposes a combination framework of policy incentives as a function of technology maturity, discusses practices, processes and technologies that can improve efficiency, lower energy and water demand, and further reduce the social and environmental footprint of biofuels

  5. Environmental Impacts and Costs of Hydrotreated Vegetable Oils, Transesterified Lipids and Woody BTL—A Review

    Directory of Open Access Journals (Sweden)

    Andreas Brekke

    2011-05-01

    Full Text Available This article reviews and compares assessments of three biodiesel fuels: (1 transesterified lipids, (2 hydrotreated vegetable oils (HVO, and (3 woody biomass-to-liquid (BTL Fischer-Tropsch diesel and selected feedstock options. The article attempts to rank the environmental performance and costs of fuel and feedstock combinations. Due to inter-study differences in goal and study assumptions, the ranking was mostly qualitative and intra-study results are emphasized. Results indicate that HVO made from wastes or by-products such as tall oil, tallow or used cooking oil outperform transesterified lipids and BTL from woody material, both with respect to environmental life cycle impacts and costs. These feedstock options are, however, of limited availability, and to produce larger volumes of biofuels other raw materials must also be used. BTL from woody biomass seems promising with good environmental performance and the ability not to compete with food production. Production of biofuels from agricultural feedstock sources requires much energy and leads to considerable emissions due to agrochemical inputs. Thus, such biodiesel fuels are ranked lowest in this comparison. Production of feedstock is the most important life cycle stage. Avoiding detrimental land use changes and maintaining good agricultural or forestry management practices are the main challenges to ensure that biofuels can be a sustainable option for the future transport sector.

  6. An economic analysis of a major bio-fuel program undertaken by OECD countries

    International Nuclear Information System (INIS)

    2002-01-01

    Biofuels such as ethanol and bio-diesel are creating a new demand for agricultural output and for agriculture land in Canada. However, the participation of other large countries with a large demand potential is necessary for bio-fuels to have a significant impact on the price of grains and oilseeds. This paper quantified the potential impact that a major bio-fuel program initiated by OECD countries has on grain and oilseed prices. The program was initiated for the period 1999 to 2006. There is considerable interest by Canadian producers to stimulate grain and oilseed prices by increasing demand of biofuels. This renewable energy source produces fewer greenhouse gas emissions than petroleum products. The analysis presented in this paper only considered ethanol from corn or wheat and bio-diesel from vegetable oils. It also focused only on the use of bio-fuels in the OECD transportation sector. The analysis was undertaken with AGLINK, a multi-commodity multi-country policy-specific dynamic model of the international agricultural markets built by the OECD with member countries. It was shown that the increase in world and domestic prices for grains and vegetable oils will remain strong, particularly toward 2006. It was also shown that a major bio-fuel program for all OECD countries would be beneficial to Canadian agriculture. It was concluded that ultimately, an increase in OECD bio-fuels usage has a direct impact on the demand for grains and oilseeds which are important feed-stocks in biofuel production. The analysis presumes an increase in renewable fuel use, but does not consider factors such as financial incentives and regulatory requirements that could bring about this increase. 7 refs., 6 tabs., 4 figs

  7. Small-size biofuel cell on paper.

    Science.gov (United States)

    Zhang, Lingling; Zhou, Ming; Wen, Dan; Bai, Lu; Lou, Baohua; Dong, Shaojun

    2012-05-15

    In this work, we demonstrated a novel paper-based mediator-less and compartment-less biofuel cell (BFC) with small size (1.5 cm × 1.5 cm). Ionic liquid functionalized carbon nanotubes (CNTs-IL) nanocomposite was used as support for both stably confining the anodic biocatalyst (i.e., NAD(+)-dependent glucose dehydrogenase, GDH) for glucose electrooxidation and for facilitating direct electrochemistry of the cathodic biocatalyst (i.e., bilirubin oxidase, BOD) for O(2) electroreduction. Such BFC provided a simple approach to fabricate low-cost and portable power devices on small-size paper, which can harvest energy from a wide range of commercial beverages containing glucose (e.g., Nescafe instant coffee, Maidong vitamin water, Watermelon fresh juice, and Minute Maid grape juice). These made the low-cost paper-based biodevice potential for broad energy applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Assessment of pelletized biofuels

    International Nuclear Information System (INIS)

    Samson, R.; Duxbury, P.; Drisdelle, M.; Lapointe, C.

    2000-04-01

    There has been an increased interest in the development of economical and convenient renewable energy fuels, resulting from concerns about climate change and rising oil prices. An opportunity to use agricultural land as a means of producing renewable fuels in large quantities, relying on wood and agricultural residues only has come up with recent advances in biomass feedstock development and conversion technologies. Increasing carbon storage in the landscape and displacing fossil fuels in combustion applications can be accomplished by using switchgrass and short rotation willow which abate greenhouse gas emissions. The potential of switchgrass and short rotation willow, as well as other biomass residues as new feedstocks for the pellet industry is studied in this document. Higher throughput rates are facilitated by using switchgrass, which shows potential as a pelleting feedstock. In addition, crop drying requires less energy than wood. By taking into consideration energy for switchgrass production, transportation to the conversion facility, preprocessing, pelleting, and marketing, the overall energy balance of switchgrass is 14.5:1. Research on alfalfa pelleting can be applied to switchgrass, as both exhibit a similar behaviour. The length of chop, the application of high temperature steam and the use of a die with a suitable length/diameter ratio are all factors that contribute to the successful pelleting of switchgrass. Switchgrass has a similar combustion efficiency (82 to 84 per cent) to wood (84 to 86 per cent), as determined by combustion trials conducted by the Canada Centre for Mineral and Energy Technology (CANMET) in the Dell-Point close coupled gasifier. The energy content is 96 per cent of the energy of wood pellets on a per tonne basis. Clinker formation was observed, which necessitated some adjustments of the cleaner grate settings. While stimulating rural development and export market opportunities, the high yielding closed loop biofuels show

  9. Dispersive solid phase micro-extraction of mercury(II from environmental water and vegetable samples with ionic liquid modified graphene oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Nasrollahpour Atefeh

    2017-01-01

    Full Text Available A new dispersive solid phase micro-extraction (dispersive-SPME method for separation and preconcentration of mercury(II using ionic liquid modified magnetic reduced graphene oxide (IL-MrGO nanoparticles, prior to the measurement by cold vapour atomic absorption spectrometry (CV-AAS has been developed. The IL-MrGO composite was characterized by Brunauer– Emmett–Teller method (BET for adsorption-desorption measurement, thermogravimetric analysis (TGA, powder X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS. The method is based on the sorption of mercury( II on IL-MrGO nanoparticles due to electrostatic interaction and complex formation of ionic liquid part of IL-MrGO with mercury(II. The effect of experimental parameters for preconcentration of mercury(II, such as solution type, concentration and volume of the eluent, pH, time of the sorption and desorption, amount of the sorbent and coexisting ion concentration have been optimized. Under the optimized conditions, a linear response was obtained in the concentration range of 0.08–10 ng mL-1 with a determination coefficient of 0.9995. The limit of detection (LOD of the method at a signal to noise ratio of 3 was 0.01 ng mL-1. Intra-day and inter-day precisions were obtained equal to 3.4 and 4.5 %, respectively. The dispersive solid phase micro-extraction of mercury(II on IL-MrGO nanoparticles coupled with cold vapour atomic absorption spectrometry was successfully used for extraction and determination of mercury(II in water and vegetable samples.

  10. The second generation biofuels from the biomass

    International Nuclear Information System (INIS)

    2007-01-01

    The author takes stock on the second generation biofuels in the world, the recent technologies, their advantages, the research programs and the economical and environmental impacts of the biofuels development. (A.L.B.)

  11. Automobile industry and new bio-fuel oils: International panorama

    International Nuclear Information System (INIS)

    Hampel, G.

    1992-01-01

    In assessing the technical/economic feasibility of the direct combustion of vegetable oils in diesel type engines, this paper first points out the good results obtained in performance tests on these fuels in Elsberg engines, and their low sulfur and nitrogen oxides and carbon dioxide emission characteristics. It then assesses the improvements that are necessary in the development of marketable bio-fuel oils that conform to European Communities air pollution standards for automobiles. Further efforts must be made to reduce bio-fuel oil smoke emission levels, to compensate for their lower calorific value as compared with conventional diesel fuels, and to make them compatible with automobile finishing materials - paints and plastics. The paper suggests a set of suitable fiscal policies designed to favour the marketing of bio-diesel fuels based on their favourable pollution abating qualities - low greenhouse gas emissions and biodegradability

  12. Biofuels from food processing wastes.

    Science.gov (United States)

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. Copyright © 2016. Published by Elsevier Ltd.

  13. Carbon and energy balances for a range of biofuels options

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, M.A.; Matthews, R.; Mortimer, N.D.

    2003-03-01

    This is the final report of a project to produce a set of baseline energy and carbon balances for a range of electricity, heat and transport fuel production systems based on biomass feedstocks. A list of 18 important biofuel technologies in the UK was selected for study of their energy and carbon balances in a consistent approach. Existing studies on these biofuel options were reviewed and their main features identified in terms of energy input, greenhouse gas emissions (carbon dioxide, methane, nitrous oxide and total), transparency and relevance. Flow charts were produced to represent the key stages of the production of biomass and its conversion to biofuels. Outputs from the study included primary energy input per delivered energy output, carbon dioxide outputs per delivered energy output, methane output per delivered energy output, nitrous oxide output per delivered energy output and total greenhouse gas requirements. The net calorific value of the biofuel is given where relevant. Biofuels studied included: biodiesel from oilseed rape and recycled vegetable oil; combined heat and power (CHP) by combustion of wood chip from forestry residues; CHP by gasification of wood chip from short rotation coppice; electricity from the combustion of miscanthus, straw, wood chip from forestry residues and wood chip from short rotation coppice; electricity from gasification of wood chip from forestry residues and wood chip from short rotation coppice; electricity by pyrolysis of wood chip from forestry residues and wood chip from short rotation coppice; ethanol from lignocellulosics, sugar beet and wheat; heat (small scale) from combustion of wood chip from forestry residues and wood chip from short rotation coppice; and rapeseed oil from oilseed rape.

  14. Microalgae as a raw material for biofuels production.

    Science.gov (United States)

    Gouveia, Luisa; Oliveira, Ana Cristina

    2009-02-01

    Biofuels demand is unquestionable in order to reduce gaseous emissions (fossil CO(2), nitrogen and sulfur oxides) and their purported greenhouse, climatic changes and global warming effects, to face the frequent oil supply crises, as a way to help non-fossil fuel producer countries to reduce energy dependence, contributing to security of supply, promoting environmental sustainability and meeting the EU target of at least of 10% biofuels in the transport sector by 2020. Biodiesel is usually produced from oleaginous crops, such as rapeseed, soybean, sunflower and palm. However, the use of microalgae can be a suitable alternative feedstock for next generation biofuels because certain species contain high amounts of oil, which could be extracted, processed and refined into transportation fuels, using currently available technology; they have fast growth rate, permit the use of non-arable land and non-potable water, use far less water and do not displace food crops cultures; their production is not seasonal and they can be harvested daily. The screening of microalgae (Chlorella vulgaris, Spirulina maxima, Nannochloropsis sp., Neochloris oleabundans, Scenedesmus obliquus and Dunaliella tertiolecta) was done in order to choose the best one(s), in terms of quantity and quality as oil source for biofuel production. Neochloris oleabundans (fresh water microalga) and Nannochloropsis sp. (marine microalga) proved to be suitable as raw materials for biofuel production, due to their high oil content (29.0 and 28.7%, respectively). Both microalgae, when grown under nitrogen shortage, show a great increase (approximately 50%) in oil quantity. If the purpose is to produce biodiesel only from one species, Scenedesmus obliquus presents the most adequate fatty acid profile, namely in terms of linolenic and other polyunsaturated fatty acids. However, the microalgae Neochloris oleabundans, Nannochloropsis sp. and Dunaliella tertiolecta can also be used if associated with other

  15. Evaluation of different hydrophilic stationary phases for the simultaneous determination of iminosugars and other low molecular weight carbohydrates in vegetable extracts by liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Rodríguez-Sánchez, S; Quintanilla-López, J E; Soria, A C; Sanz, M L

    2014-11-01

    Iminosugars are considered potential drug candidates for the treatment of several diseases, mainly as a result of their α-glycosidase inhibition properties. A method by hydrophilic interaction liquid chromatography tandem mass spectrometry has been optimized for the first time for the simultaneous determination of complex mixtures of bioactive iminosugars and other low molecular weight carbohydrates (LMWC) in vegetable extracts. Three hydrophilic stationary phases (sulfoalkylbetaine zwitterionic, polyhydroxyethyl aspartamide and ethylene bridge hybrid (BEH) with trifunctionally bonded amide) were compared under both basic and acidic conditions. The best sensitivity (limits of detection between 0.025 and 0.28ngmL -1 ) and overall chromatographic performance in terms of resolution, peak width and analysis time were obtained with the BEH amide column using 0.1% ammonium hydroxide as a mobile phase additive. The optimized method was applied to the analysis of extracts of hyacinth bulbs, buckwheat seeds and mulberry leaves. Iminosugar and other LMWC structures were tentatively assigned by their high resolution daughter ions mass spectra. Several iminosugars such as glycosyl-fagomine in mulberry extract were also described for the first time. Among the extracts analysed, mulberry showed the widest diversity of iminosugars, whereas the highest content of them was found in hyacinth bulb (2.5mgg -1 ) followed by mulberry (1.95 mgg -1 ). Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Direct determination of fatty acid esters of 3-chloro-1, 2-propanediol in edible vegetable oils by isotope dilution - ultra high performance liquid chromatography - triple quadrupole mass spectrometry.

    Science.gov (United States)

    Li, Heli; Chen, Dawei; Miao, Hong; Zhao, Yunfeng; Shen, Jianzhong; Wu, Yongning

    2015-09-04

    A selective and sensitive ultra-high performance liquid chromatography - triple quadrupole mass spectrometry (UHPLC-MS/MS) method coupled with matrix solid phase dispersion (MSPD) extraction was developed for the direct determination of fatty acid esters of 3-chloro-1,2-propanediol (3-MCPD esters) in edible vegetable oils. The method integrated the isotope dilution technique, MSPD extraction and UHPLC - MS/MS analysis with multi-reaction monitoring mode (MRM). Matrix-matched calibration curves showed good linearity within the range of 0.01-10mgL(-1) with the correlation coefficient not less than 0.999. Limits of detection (LODs) and limit of quantification (LOQs) of the 3-MCPD esters fell into the range of 0.0001-0.02mgkg(-1) and 0.0004-0.05mgkg(-1), respectively. The recoveries for the spiked extra virgin olive oils ranged from 94.4% to 108.3%, with the relative standard deviations (RSD) ranging from 0.6% to 10.5%. The method was applied for the oil sample (T2642) of the official Food Analysis Performance Assessment Scheme (FAPAS) in 2014 and other real samples from supermarket, and the results showed that the present method was comparative to the gas chromatography-mass spectrometry (GC-MS) method based on the improved German Society for Fat Science (DGF) standard method C-III 18 (09) except for palm oil. Copyright © 2015. Published by Elsevier B.V.

  17. PLANTS, SOURCE FOR BIOFUELS

    Directory of Open Access Journals (Sweden)

    Irina Ramona PECINGINĂ

    2016-12-01

    Full Text Available The most affordable alternative energy sources to fossil plants with hydropower are some oils that accumulate in different organs other accumulating carbohydrates with high energy value. They are known worldwide and cultivated a number of plant species entering the oilseeds, which provides significant production of edible oil (soybean, sunflower, etc. Vegetable oils or their product derived biodiesel fuels are potential diesel engines, representing an alternative to fuels. The most promising suitable for the production of oil crops "with short circuit "or biodiesel are fruits and seeds, both herbaceous and tree.

  18. Panorama 2007: Biofuels in Europe

    International Nuclear Information System (INIS)

    Prieur-Vernat, A.; His, St.

    2007-01-01

    The current leader on the world bio-diesel market, Europe is, after the United States and Brazil, one of the regions driving the production and utilization of biofuels. Its ambitious bio-fuel content targets for motor fuels (5.75% by 2010 and 8% by 2015) encourage Member States to significantly develop those pathways. This raises certain questions, especially about available biomass resources. It is likely that, beyond 2010, technologies other than those in existence today, using ligno-cellulosic biomass, will have to be implemented. (author)

  19. Policies promoting Biofuels in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, Kristina [IVL Swedish Environmental Research Inst., Goeteborg (Sweden); Chalmers Univ. of Technology, Div. of Heat and Power Technology., Goeteborg (Sweden)

    2012-07-01

    This report was written as part of a course in Environmental Economics and Policy Instruments at the University of Gothenburg. It aims at summarizing the policy instruments introduced to directly affect the production and use of biofuels in Sweden. Since Sweden is part of the EU also EU policies were included. There are additional policy instruments which affect the production and utilization of biofuels in a more indirect way that are not presented here. The economic analysis in this paper is limited and could be developed from the information presented in order to draw further conclusions on necessary changes in order to reach set targets.

  20. Assessing the environmental sustainability of biofuels.

    Science.gov (United States)

    Kazamia, Elena; Smith, Alison G

    2014-10-01

    Biofuels vary in their potential to reduce greenhouse gas emissions when displacing fossil fuels. Savings depend primarily on the crop used for biofuel production, and on the effect that expanding its cultivation has on land use. Evidence-based policies should be used to ensure that maximal sustainability benefits result from the development of biofuels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Overview on Biofuels from a European Perspective

    Science.gov (United States)

    Ponti, Luigi; Gutierrez, Andrew Paul

    2009-01-01

    In light of the recently developed European Union (EU) Biofuels Strategy, the literature is reviewed to examine (a) the coherency of biofuel production with the EU nonindustrial vision of agriculture, and (b) given its insufficient land base, the implications of a proposed bioenergy pact to grow biofuel crops in the developing world to meet EU…

  2. Biofuels, a bad thing?; Boeser Biokraftstoff?

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, D.; Bensmann, M.

    2008-05-15

    The discussions over biofuels are still going on. Critics claim that biofuels ruin engine components, destroy rainforests and cause high food prices and global hunger. According to this contribution, the Federal government's biofuels policy was wrong and was doomed to fail. (orig.)

  3. Evaluation of biofuels sustainability: can we keep biofuel appropriate and green?

    CSIR Research Space (South Africa)

    Amigun, B

    2009-11-01

    Full Text Available and Industrial Research (CSIR) Pretoria, South Africa bamigun@csir.co.za Outlines • State of biofuels in Africa - Biofuels initiatives in Africa • Barriers to biofuels market penetration and policy incentives to stimulate the market. • Sustainability... are then motivated to put these ideas into practice. The end of Phase I is the political decision to invest money and other resources into biofuel research. Biofuels developmental stages in Africa…explanation © CSIR 2009 www...

  4. Basic data biogas Germany. Solid fuels, biofuels, biogas; Basisdaten Bioenergie Deutschland. Festbrennstoffe, Biokraftstoffe, Biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    The brochure ''Basic data biogas Germany'' gives statistical information about (a) renewable energies: primary energy consumption, power generation, energy supply, avoidance of greenhouse gases; (b) Solid fuels: energetic utilization, wood pellets, energy consumption, comparison to heating oil; (c) Biofuels: consumption, bioethanol, biodiesel, vegetable oils; (d) Biogas: biogas power plants, energy content, production, legal aspects.

  5. Basic data biogas Germany. Solid fuels, biofuels, biogas; Basisdaten Bioenergie Deutschland. Festbrennstoffe - Biokraftstoffe - Biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    The brochure ''Basic data biogas Germany'' gives statistical information about (a) renewable energies: primary energy consumption, power generation, energy supply, avoidance of greenhouse gases; (b) Solid fuels: energetic utilization, wood pellets, energy consumption, comparison to heating oil; (c) Biofuels: consumption, bioethanol, biodiesel, vegetable oils; (d) Biogas: biogas power plants, energy content, production, legal aspects.

  6. Biofuel supply chain, market, and policy analysis

    Science.gov (United States)

    Zhang, Leilei

    Renewable fuel is receiving an increasing attention as a substitute for fossil based energy. The US Department of Energy (DOE) has employed increasing effort on promoting the advanced biofuel productions. Although the advanced biofuel remains at its early stage, it is expected to play an important role in climate policy in the future in the transportation sector. This dissertation studies the emerging biofuel supply chain and markets by analyzing the production cost, and the outcomes of the biofuel market, including blended fuel market price and quantity, biofuel contract price and quantity, profitability of each stakeholder (farmers, biofuel producers, biofuel blenders) in the market. I also address government policy impacts on the emerging biofuel market. The dissertation is composed with three parts, each in a paper format. The first part studies the supply chain of emerging biofuel industry. Two optimization-based models are built to determine the number of facilities to deploy, facility locations, facility capacities, and operational planning within facilities. Cost analyses have been conducted under a variety of biofuel demand scenarios. It is my intention that this model will shed light on biofuel supply chain design considering operational planning under uncertain demand situations. The second part of the dissertation work focuses on analyzing the interaction between the key stakeholders along the supply chain. A bottom-up equilibrium model is built for the emerging biofuel market to study the competition in the advanced biofuel market, explicitly formulating the interactions between farmers, biofuel producers, blenders, and consumers. The model simulates the profit maximization of multiple market entities by incorporating their competitive decisions in farmers' land allocation, biomass transportation, biofuel production, and biofuel blending. As such, the equilibrium model is capable of and appropriate for policy analysis, especially for those policies

  7. Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions.

    Science.gov (United States)

    Woolf, Dominic; Lehmann, Johannes; Fisher, Elizabeth M; Angenent, Largus T

    2014-06-03

    Coproduction of biofuels with biochar (the carbon-rich solid formed during biomass pyrolysis) can provide carbon-negative bioenergy if the biochar is sequestered in soil, where it can improve fertility and thus simultaneously address issues of food security, soil degradation, energy production, and climate change. However, increasing biochar production entails a reduction in bioenergy obtainable per unit biomass feedstock. Quantification of this trade-off for specific biochar-biofuel pathways has been hampered by lack of an accurate-yet-simple model for predicting yields, product compositions, and energy balances from biomass slow pyrolysis. An empirical model of biomass slow pyrolysis was developed and applied to several pathways for biochar coproduction with gaseous and liquid biofuels. Here, we show that biochar production reduces liquid biofuel yield by at least 21 GJ Mg(-1) C (biofuel energy sacrificed per unit mass of biochar C), with methanol synthesis giving this lowest energy penalty. For gaseous-biofuel production, the minimum energy penalty for biochar production is 33 GJ Mg(-1) C. These substitution rates correspond to a wide range of Pareto-optimal system configurations, implying considerable latitude to choose pyrolysis conditions to optimize for desired biochar properties or to modulate energy versus biochar yields in response to fluctuating price differentials for the two commodities.

  8. Biofuelled heating plants

    International Nuclear Information System (INIS)

    Gulliksson, Hans; Wennerstaal, L.; Zethraeus, B.; Johansson, Bert-Aake

    2001-11-01

    The purpose of this report is to serve as a basis to enable establishment and operation of small and medium-sized bio-fuel plants, district heating plants and local district heating plants. Furthermore, the purpose of this report is to serve as a guideline and basis when realizing projects, from the first concept to established plant. Taking into account all the phases, from selection of heating system, fuel type, selection of technical solutions, authorization request or application to operate a plant, planning, construction and buying, inspection, performance test, take-over and control system of the plant. Another purpose of the report is to make sure that best available technology is used and to contribute to continuous development of the technology. The report deals mainly with bio-fuelled plants in the effect range 0.3 to10 MW. The term 'plant' refers to combined power and heating plants as well as 'simpler' district heating plants. The last-mentioned is also often referred to as 'local heating plant'. In this context, the term bio fuel refers to a wide range of fuel types. The term bio fuel includes processed fractions like powders, pellets, and briquettes along with unprocessed fractions, such as by-products from the forest industry; chips and bark. Bio fuels also include straw, energy crops and cereal waste products, but these have not been expressly studied in this report. The report is structured with appendixes regarding the various phases of the projects, with the purpose of serving as a helping handbook, or manual for new establishment, helping out with technical and administrative advice and environmental requirements. Plants of this size are already expanding considerably, and the need for guiding principles for design/technology and environmental requirements is great. These guiding principles should comply with the environmental legislation requirements, and must contain advice and recommendations for bio fuel plants in this effect range, also in

  9. Tailoring next-generation biofuels and their combustion in next-generation engines

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wu, Weihua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Taatjes, Craig A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scheer, Adam Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Kevin M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yu, Eizadora T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); O' Bryan, Greg [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Powell, Amy Jo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gao, Connie W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  10. Transport biofuel yields from food and lignocellulosic C{sub 4} crops

    Energy Technology Data Exchange (ETDEWEB)

    Reijnders, L. [IBED University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam (Netherlands)

    2010-01-15

    In the near future, the lignocellulosic C{sub 4} crops Miscanthus and switchgrass (Panicum virgatum) are unlikely to outcompete sugarcane (Saccharum officinarum) in net energetic yearly yield of transport biofuel ha{sup -1}. This holds both for the thermochemical conversion into liquid hydrocarbons and the enzymatic conversion into ethanol. Currently, Miscanthus and switchgrass would also not seem able to outcompete corn (Zea mays) in net energetic yearly yield of liquid transport biofuel ha{sup -1}, but further development of these lignocellulosic crops may gradually lead to a different outcome. (author)

  11. Estimates of US biofuels consumption, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.

  12. Estimates of US biofuels consumption, 1990

    International Nuclear Information System (INIS)

    1991-10-01

    This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs

  13. Biofuel production by recombinant microorganisms

    Science.gov (United States)

    Liao, James C.; Atsumi, Shota; Cann, Anthony F.

    2017-07-04

    Provided herein are metabolically-modified microorganisms useful for producing biofuels. More specifically, provided herein are methods of producing high alcohols including isobutanol, 1-butanol, 1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol from a suitable substrate.

  14. An Outlook on Microalgal Biofuels

    NARCIS (Netherlands)

    Wijffels, R.H.; Barbosa, M.J.

    2010-01-01

    Microalgae are considered one of the most promising feedstocks for biofuels. The productivity of these photosynthetic microorganisms in converting carbon dioxide into carbon-rich lipids, only a step or two away from biodiesel, greatly exceeds that of agricultural oleaginous crops, without competing

  15. Biofuels for automobiles - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Schaub, G. [Universitaet Karlsruhe, Engler-Bunte-Institut, Karlsruhe (Germany); Vetter, A. [Thueringer Landesanstalt fuer Landwirtschaft, Dornburg (Germany)

    2008-05-15

    Due to increasing oil prices and climate change concerns, biofuels have become more important as potential alternative energy sources. It is an open question as to which types of biofuels have the best yield potentials, characteristic properties and environmental consequences for providing the largest contribution to future energy requirements. Apart from the quality aspects, the question of quantity is very important, i.e., yields of biomass raw materials from agriculture and forestry as well as the conversion efficiencies/yields of the conversion process to automotive fuels. The most widely used biofuel forms today are fatty acid methyl esters and ethanol. However, in the future it is possible that synthetic hydrocarbons and hydrogen, produced via biotechnological or chemical processes may become feasible as fuel sources. Limitations in quantity are caused by net productivities of photosynthesis, which are limited by several factors, e.g., by the supply of water, limited availability of land, and conversion losses. As a consequence, biofuels as they exist can only contribute to a limited extent to securing raw material supplies for energy requirements in the future. Efficiency improvements in processing technologies and changes in consumer behavior and attitude will also be required. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  16. Employment effects of biofuels development

    International Nuclear Information System (INIS)

    Danielsson, B.O.; Hektor, B.

    1992-01-01

    Effects on employment - national and regional - from an expanding market for biofuels in Sweden are estimated in this article. The fuels considered are: Peat, straw, energy crops, silviculture, forestry waste, wood waste, by-products from paper/wood industry and processed fuels from these sources. (22 refs., tabs.)

  17. Cadmium in the biofuel system

    International Nuclear Information System (INIS)

    Aabyhammar, T.; Fahlin, M.; Holmroos, S.

    1993-12-01

    Removal of biofuel depletes the soil of important nutrients. Investigations are being made of possibilities to return most of these nutrients by spreading the ashes remaining after combustion in the forest or on field. Return of ashes implies that both beneficial and harmful substances are returned. This study has been conducted to illustrate that the return of cadmium implies the greatest risk for negative influences. The occurrence, utilization, emissions and effects of cadmium are discussed. The behaviour of cadmium in soil is discussed in detail. Flows and quantities of cadmium in Swedish society are reviewed. Flows and quantities of both total and plant available cadmium in the entire forest and arable areas of Sweden are given. A scenario for a bioenergy system of max 100 TWh is discussed. The cadmium flow in different biofuels and forest raw products, and anticipated amounts of ashes and cadmium concentrations, are calculated. Power production from biofuels is surveyed. Possibilities to clean ashes have been examined in laboratory experiments. Ashes and trace elements occurring as a result of the gasification of biofuels are reviewed. Strategies for handling ashes are discussed. Proposals on continued inputs in both the biological and technical sciences are made. 146 refs, 23 figs, 38 tabs

  18. Biofuels - economic aspects

    Energy Technology Data Exchange (ETDEWEB)

    Festel, G.W. [Festel Capital, Huenenberg (Switzerland)

    2008-05-15

    Assuming an oil price of US$60 per barrel, both biodiesel and bioethanol produced from wheat are not profitable in Europe. The producers' high margins are only due to the current mineral oil tax concessions. At present, biomass-to-liquid (BTL) fuel also cannot be produced competitively. At the assumed oil price, only bioethanol and biobutanol produced on a large scale from lignocellulose-containing raw materials have the potential to be produced competitively. Analyses of the technologies used in this field show that in Europe there are interesting new technological developments for the hydrolysis, fermentation and purification step. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  19. Four myths surrounding U.S. biofuels

    International Nuclear Information System (INIS)

    Wetzstein, M.; Wetzstein, H.

    2011-01-01

    The rapid growth of biofuels has elicited claims and predictions concerning the current and future role of these fuels in the U.S. vehicle-fuel portfolio. These assertions are at times based on a false set of assumptions concerning the biofuel's market related to the petroleum and agricultural commodities markets, and the nonmarket consequences of our automobile driving. As an aid in clarifying these market relations, the following four biofuel myths are presented: (1) biofuels will be adopted because we will soon run out of oil, (2) biofuels will solve the major external costs associated with our automobile driving, (3) biofuels cause food price inflation (the food before fuel issue), and (4) biofuels will become a major vehicle fuel. - Highlights: → Biofuels will be adopted because we will soon run out of oil. → Biofuels will solve the major external costs associated with our automobile driving. → Biofuels cause food price inflation (the food before fuel issue). → Biofuels will become a major vehicle fuel.

  20. Review on biofuel oil and gas production processes from microalgae

    International Nuclear Information System (INIS)

    Amin, Sarmidi

    2009-01-01

    Microalgae, as biomass, are a potential source of renewable energy, and they can be converted into energy such as biofuel oil and gas. This paper presents a brief review on the main conversion processes of microalgae becoming energy. Since microalgae have high water content, not all biomass energy conversion processes can be applied. By using thermochemical processes, oil and gas can be produced, and by using biochemical processes, ethanol and biodiesel can be produced. The properties of the microalgae product are almost similar to those of offish and vegetable oils, and therefore, it can be considered as a substitute of fossil oil.

  1. Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy

    Science.gov (United States)

    Khanna, Madhu; Crago, Christine L.; Black, Mairi

    2011-01-01

    Biofuels have gained increasing attention as an alternative to fossil fuels for several reasons, one of which is their potential to reduce the greenhouse gas (GHG) emissions from the transportation sector. Recent studies have questioned the validity of claims about the potential of biofuels to reduce GHG emissions relative to the liquid fossil fuels they are replacing when emissions owing to direct (DLUC) and indirect land use changes (ILUC) that accompany biofuels are included in the life cycle GHG intensity of biofuels. Studies estimate that the GHG emissions released from ILUC could more than offset the direct GHG savings by producing biofuels and replacing liquid fossil fuels and create a ‘carbon debt’ with a long payback period. The estimates of this payback period, however, vary widely across biofuels from different feedstocks and even for a single biofuel across different modelling assumptions. In the case of corn ethanol, this payback period is found to range from 15 to 200 years. We discuss the challenges in estimating the ILUC effect of a biofuel and differences across biofuels, and its sensitivity to the assumptions and policy scenarios considered by different economic models. We also discuss the implications of ILUC for designing policies that promote biofuels and seek to reduce GHG emissions. In a first-best setting, a global carbon tax is needed to set both DLUC and ILUC emissions to their optimal levels. However, it is unclear whether unilateral GHG mitigation policies, even if they penalize the ILUC-related emissions, would increase social welfare and lead to optimal emission levels. In the absence of a global carbon tax, incentivizing sustainable land use practices through certification standards, government regulations and market-based pressures may be a viable option for reducing ILUC. PMID:22482030

  2. Biofuels – On the way to sustainability?: Opinion

    Directory of Open Access Journals (Sweden)

    Martin Kaltschmitt

    2016-12-01

    Full Text Available Biofuels contribute to cover the strongly increasing energy demand within our global transportation system. The current status of biofuel production can be summarized on a world wide scale as follows [1, 2]: Biofuels contribute to cover the strongly increasing energy demand within our global transportation system. The current status of biofuel production can be summarized on a world wide scale as follows [1, 2]:Bioethanol. About 97 Billion l of ethanol (2,218 PJ were produced in 2015. Roughly 57 % were provided in the US (56.1 Billion l; 1,282 PJ; primarily from corn and 28 % in Brazil (26.8 Billion l; 614 PJ; mainly from sugar cane. The remaining 15 % were produced in Europe and Asia.Biodiesel / HVO. In 2015, ca. 32 Billion l (1,050 PJ Biodiesel were sold. Brazil provided ca. 3.5 Billion l (116 PJ and Germany roughly 3.2 Billion l (105 PJ. The market in North America is dominated by the US with 16 % of the global production (168 PJ. The remaining rest is widely distributed throughout the world and comes from smaller markets like Argentine, Germany, Indonesia and other countries.Other biofuels. To a very minor extend, also bio-methane as well as pure vegetable oil are used. But on a global scale the contribution of these options is negligible.Related to the overall energy demand for transportation purposes this biofuel use of roughly 3.3 EJ (2015 represents a share of less than 3 % [3]. This small share could only be realized over time due to administrative measures implemented by various governments already years ago. There have been manifold communicated reasons to justify these legal measures as well as the resulting financial support from the public purse [4]:Contribution to the reduction of greenhouse gas (GHG emissions;Protection of scarce and finite fossil fuel resources;Domestic energy provision and thus an increased security of fuel supply;Use of agricultural surplus production and thus avoidance of set aside land;Creation of employment

  3. Global Biofuels at the Crossroads: An Overview of Technical, Policy, and Investment Complexities in the Sustainability of Biofuel Development

    Directory of Open Access Journals (Sweden)

    Kathleen Araújo

    2017-03-01

    Full Text Available Biofuels have the potential to alter the transport and agricultural sectors of decarbonizing societies. Yet, the sustainability of these fuels has been questioned in recent years in connection with food versus fuel trade-offs, carbon accounting, and land use. Recognizing the complicated playing field for current decision-makers, we examine the technical attributes, policy, and global investment activity for biofuels (primarily liquids. Differences in feedstock and fuel types are considered, in addition to policy approaches of major producer countries. Issues with recent, policy-driven trade developments are highlighted to emphasize how systemic complexities associated with sustainability must also be managed. We conclude with near-term areas to watch.

  4. Total employment effect of biofuels

    International Nuclear Information System (INIS)

    Stridsberg, S.

    1998-08-01

    The study examined the total employment effect of both direct production of biofuel and energy conversion to heat and electricity, as well as the indirect employment effect arising from investments and other activities in conjunction with the production organization. A secondary effect depending on the increased capital flow is also included in the final result. The scenarios are based on two periods, 1993-2005 and 2005-2020. In the present study, the different fuels and the different applications have been analyzed individually with regard to direct and indirect employment within each separate sector. The greatest employment effect in the production chain is shown for logging residues with 290 full-time jobs/TWh, whereas other biofuels range between 80 and 280 full-time jobs/TWh. In the processing chain, the corresponding range is 200-300 full-time jobs per each additional TWh. Additionally and finally, there are secondary effects that give a total of 650 full-time jobs/TWh. Together with the predicted increase, this suggests that unprocessed fuel will provide an additional 16 000 annual full-time jobs, and that fuel processing will contribute with a further 5 000 full-time jobs. The energy production from the fuels will provide an additional 13 000 full-time jobs. The total figure of 34 000 annual full-time jobs must then be reduced by about 4000 on account of lost jobs, mainly in the oil sector and to some extent in imports of biofuel. In addition, the anticipated increase in capital turnover that occurs within the biofuel sector, will increase full-time jobs up to year 2020. Finally, a discussion is given of the accomplishment of the programmes anticipated by the scenario, where it is noted that processing of biofuel to wafers, pellets or powder places major demands on access to raw material of good quality and that agrarian fuels must be given priority if they are to enter the system sufficiently fast. Straw is already a resource but is still not accepted by

  5. From first generation biofuels to advanced solar biofuels.

    Science.gov (United States)

    Aro, Eva-Mari

    2016-01-01

    Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called "synthetic biology", which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories.

  6. Development of a high performance liquid chromatography tandem mass spectrometry based analysis for the simultaneous quantification of various Alternaria toxins in wine, vegetable juices and fruit juices.

    Science.gov (United States)

    Zwickel, Theresa; Klaffke, Horst; Richards, Keith; Rychlik, Michael

    2016-07-15

    An analytical method based on high performance liquid chromatography (HPLC) and tandem mass spectrometry (MS/MS) detection for the simultaneous quantification of 12 Alternaria toxins in wine, vegetable juices and fruit juices was developed. Excellent chromatographic performance was demonstrated for tenuazonic acid (TeA) in a multi-analyte method. This comprehensive study is also the first to report the determination of TeA, alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (TEN) and altenuene (ALT), altertoxin I (ATX-I), altertoxin II (ATX-II), altenuisol (ATL), iso-altenuene (isoALT), altenuic acid III (AA-III) and the AAL toxins TB1 und TB2 in samples from the German market. Several types of HPLC columns were tested for the liquid chromatographic separation of the toxins of interest that widely differ in their polarities. The focus was on gaining suitable retention while avoiding derivatization steps especially for TeA and AA-III. Three atmospheric pressure ionization techniques used with liquid chromatography (electrospray, chemical and photo ionization) were tested to obtain the best selectivity and sensitivity. Samples were diluted with sodium hydrogen carbonate buffer and extracted on a diatomaceous earth solid phase extraction cartridge. Method validation was carried out by using tomato juice, citrus juice and white wine as blank matrices. Limits of detection ranged from 0.10 to 0.59μgL(-1) and limits of quantification ranged from 0.4-3.1μgL(-1) depending on the toxin and matrix. Recoveries were around 100±9% for all toxins except stemphyltoxin III (STTX-III) and altenusin (ALS) due to instability during sample clean up. Matrix-induced effects leading to ion suppression especially for ATX-I, ATX-II and AA-III were investigated. Relative standard deviations of repeatability (RSDr) and intermediate reproducibility (RSDR) were ≤9.3 and ≤17.1, respectively, for the toxins in different matrices at levels of 5 and 30μgL(-1). Finally, 103

  7. Biological research survey for the efficient conversion of biomass to biofuels.

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Michael Stuart; Andrews, Katherine M. (Computational Biosciences)

    2007-01-01

    The purpose of this four-week late start LDRD was to assess the current status of science and technology with regard to the production of biofuels. The main focus was on production of biodiesel from nonpetroleum sources, mainly vegetable oils and algae, and production of bioethanol from lignocellulosic biomass. One goal was to assess the major technological hurdles for economic production of biofuels for these two approaches. Another goal was to compare the challenges and potential benefits of the two approaches. A third goal was to determine areas of research where Sandia's unique technical capabilities can have a particularly strong impact in these technologies.

  8. Algal biofuels: challenges and opportunities.

    Science.gov (United States)

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Health effects of biofuel exhaust

    OpenAIRE

    Vugt, M.A.T.M. van; Mulderij, M.; Usta, M.; Kadijk, G.; Kooter, I.M.; Krul, C.A.M.

    2009-01-01

    Alternatives to fossil fuels receive a lot of attention. In particular, oil derived of specific crops forms a promising fuel. In order to warrant global expectance of such novel fuels, safety issues associated with combustion of these fuels needs to be assessed. Although only a few public reports exist, recently potential toxic effects associated with biofuels has been published. Here, we report the analysis of a comprehensive study, comparing the toxic effects of conventional diesel, biodies...

  10. Micro-economic modelling of biofuel system in France to determine tax exemption policy under uncertainty

    International Nuclear Information System (INIS)

    Rozakis, S.; Sourie, J.-C.

    2005-01-01

    Liquid biofuel support program launched in 1993 in France is implemented through tax exemptions to biofuels produced by agro-industrial chains. Activity levels are fixed by decree and allocated by the government to the different chains. Based on earmarked budget increase voted in parliament, total quantity of biofuels will be increased by 50% in the horizon 2002-2003. A micro-economic biofuel activity model containing a detailed agricultural sector component, that is represented by 700 farms, is used to estimate costs and surpluses generated by the activity at the national level as well as tax exemption levels. Furthermore, Monte Carlo simulation has been used to search for efficient tax exemptions policies in an uncertain environment, where biofuel profitability is significantly affected by petroleum price and soja cake prices. Results suggest that, for the most efficient units both at the industry level (large size biomass conversion units) and at the agricultural sector level (most productive farms), unitary tax exemptions could be decreased by 10-20% for both biofuels, ethyl ether and methyl ester, with no risk for the viability of any existing chain. (author)

  11. Micro-economic modelling of biofuel system in France to determine tax exemption policy under uncertainty

    International Nuclear Information System (INIS)

    Rozakis, S.; Sourie, J.-C.

    2005-01-01

    Liquid biofuel support program launched in 1993 in France is implemented through tax exemptions to biofuels produced by agro-industrial chains. Activity levels are fixed by decree and allocated by the government to the different chains. Based on earmarked budget increase voted in the parliament, total quantity of biofuels will be increased by 50% in the horizon 2002-2003. A micro-economic biofuel activity model containing a detailed agricultural sector component, that is represented by 700 farms, is used to estimate costs and surpluses generated by the activity at the national level as well as tax exemption levels. Furthermore, Monte Carlo simulation has been used to search for efficient tax exemptions policies in an uncertain environment, where biofuel profitability is significantly affected by petroleum price and soja cake prices. Results suggest that, for the most efficient units both at the industry level (large size biomass conversion units) and at the agricultural sector level (most productive farms), unitary tax exemptions could be decreased by 10-20% for both biofuels, ethyl ether and methyl ester, with no risk for the viability of any existing chain

  12. Byproducts for biofuels; Bijproducten voor biobrandstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Bondt, N.; Meeusen, M.J.G.

    2008-02-15

    This report examines the market for residues from the Dutch food and beverage industry, and the appeal of these residues for the production of bio-ethanol and biodiesel. The firstgeneration technology is readily suited to the conversion of no more than 29% of the 7.5 million tonnes of residues into biofuels. Moreover, when non-technological criteria are also taken into account virtually none of the residues are of interest for conversion into bioethanol, although vegetable and animal fats can be used to produce biodiesel. The economic consequences for sectors such as the animal-feed sector are limited. [Dutch] Dit rapport beschrijft de markt van reststromen uit de Nederlandse voedings- en genotmiddelenindustrie, en de aantrekkelijkheid van deze reststromen voor de productie van bioethanol en biodiesel. De eerstegeneratietechnologie kan slechts 29% van de 7,5 miljoen ton reststromen goed omzetten in biobrandstoffen. Als bovendien rekening wordt gehouden met niet-technische criteria blijken er voor bio-ethanol niet of nauwelijks reststromen interessant te zijn. Voor biodiesel kan wel gebruik worden gemaakt van de plantaardige en dierlijke vetten. De economische gevolgen voor onder meer de diervoedersector zijn beperkt.

  13. Land Clearing and the Biofuel Carbon Debt

    Science.gov (United States)

    Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter

    2008-02-01

    Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.

  14. How policies affect international biofuel price linkages

    International Nuclear Information System (INIS)

    Rajcaniova, Miroslava; Drabik, Dusan; Ciaian, Pavel

    2013-01-01

    We estimate the role of biofuel policies in determining which country is the price leader in world biofuel markets using a cointegration analysis and a Vector Error Correction (VEC) model. Weekly prices are analyzed for the EU, US, and Brazilian ethanol and biodiesel markets in the 2002–2010 and 2005–2010 time periods, respectively. The US blender's tax credit and Brazil's consumer tax exemption are found to play a role in determining the ethanol prices in other countries. For biodiesel, our results demonstrate that EU policies – the consumer tax exemption and blending target – tend to determine the world biodiesel price. - Highlights: • We estimate the role of biofuel policies in determining biofuel prices. • We use a cointegration analysis and the Vector Error Correction (VEC) model. • The biofuel policies in US and Brazil determine the world ethanol prices. • EU biofuel policies tend to form the world biodiesel price

  15. Frames in the Ethiopian Debate on Biofuels

    Directory of Open Access Journals (Sweden)

    Brigitte Portner

    2013-01-01

    Full Text Available Biofuel production, while highly contested, is supported by a number of policies worldwide. Ethiopia was among the first sub-Saharan countries to devise a biofuel policy strategy to guide the associated demand toward sustainable development. In this paper, I discuss Ethiopia’s biofuel policy from an interpretative research position using a frames approach and argue that useful insights can be obtained by paying more attention to national contexts and values represented in the debates on whether biofuel production can or will contribute to sustainable development. To this end, I was able to distinguish three major frames used in the Ethiopian debate on biofuels: an environmental rehabilitation frame, a green revolution frame and a legitimacy frame. The article concludes that actors advocating for frames related to social and human issues have difficulties entering the debate and forming alliances, and that those voices need to be included in order for Ethiopia to develop a sustainable biofuel sector.

  16. Promoting biofuels: Implications for developing countries

    International Nuclear Information System (INIS)

    Peters, Joerg; Thielmann, Sascha

    2008-01-01

    Interest in biofuels is growing worldwide as concerns about the security of energy supply and climate change are moving into the focus of policy makers. With the exception of bioethanol from Brazil, however, production costs of biofuels are typically much higher than those of fossil fuels. As a result, promotion measures such as tax exemptions or blending quotas are indispensable for ascertaining substantial biofuel demand. With particular focus on developing countries, this paper discusses the economic justification of biofuel promotion instruments and investigates their implications. Based on data from India and Tanzania, we find that substantial biofuel usage induces significant financial costs. Furthermore, acreage availability is a binding natural limitation that could also lead to conflicts with food production. Yet, if carefully implemented under the appropriate conditions, biofuel programs might present opportunities for certain developing countries

  17. Vermont Biofuels Initiative: Local Production for Local Use to Supply a Portion of Vermont's Energy Needs

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Scott; Kahler, Ellen

    2009-05-31

    The Vermont Biofuels initiative (VBI) is the Vermont Sustainable Jobs Fund's (VSJF) biomass-to-biofuels market development program. Vermont is a small state with a large petroleum dependency for transportation (18th in per capita petroleum consumption) and home heating (55% of all households use petroleum for heating). The VBI marks the first strategic effort to reduce Vermont's dependency on petroleum through the development of homegrown alternatives. As such, it supports the four key priorities of the U.S. Department of Energy's Multi-year Biomass Plan: 1.) Dramatically reduce dependence on foreign oil; 2.) Promote the use of diverse, domestic and sustainable energy resources; 3.) Reduce carbon emissions from energy production and consumption; 4.) Establish a domestic bioindustry. In 2005 VSJF was awarded with a $496,000 Congressionally directed award from U.S. Senator Patrick Leahy. This award was administered through the U.S. Department of Energy (DE-FG36- 05GO85017, hereafter referred to as DOE FY05) with $396,000 to be used by VSJF for biodiesel development and $100,000 to be used by the Vermont Department of Public Service for methane biodigester projects. The intent and strategic focus of the VBI is similar to another DOE funded organization-the Biofuels Center of North Carolina-in that it is a nonprofit driven, statewide biofuels market development effort. DOE FY05 funds were expensed from 2006 through 2008 for seven projects: 1) a feedstock production, logistics, and biomass conversion research project conducted by the University of Vermont Extension; 2) technical assistance in the form of a safety review and engineering study of State Line Biofuels existing biodiesel production facility; 3) technical assistance in the form of a safety review and engineering study of Borderview Farm's proposed biodiesel production facility; 4) technology and infrastructure purchases for capacity expansion at Green Technologies, LLC, a waste vegetable

  18. Oil price, biofuels and food supply

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Mevel, Simon; Shrestha, Ashish

    2011-01-01

    The price of oil could play a significant role in influencing the expansion of biofuels, but this issue has yet to be fully investigated in the literature. Using a global computable general equilibrium (CGE) model, this study analyzes the impact of oil price on biofuel expansion, and subsequently, on food supply. The study shows that a 65% increase in oil price in 2020 from the 2009 level would increase the global biofuel penetration to 5.4% in 2020 from 2.4% in 2009. If oil prices rise 150% from their 2009 levels by 2020, the resulting penetration of biofuels would be 9%, which is higher than that would be caused by current mandates and targets introduced in more than forty countries around the world. The study also shows that aggregate agricultural output drops due to an oil price increase, but the drop is small in major biofuel producing countries as the expansion of biofuels would partially offset the negative impacts of the oil price increase on agricultural outputs. An increase in oil price would reduce global food supply through direct impacts as well as through the diversion of food commodities and cropland towards the production of biofuels. - Highlights: ► A global CGE model to analyze impacts of oil price on biofuels and food supply. ► Global biofuel penetration increases from 2.4% (2009) to 5.4% (2020) in baseline. ► A 150% rise of oil price boosts biofuels more than current mandates and targets do. ► Biofuels partially offset drops in agricultural outputs caused by oil price rise. ► Biofuels as well as oil price rise negatively affect global food supply.

  19. Biofuels in Italy: obstacles and development opportunities

    International Nuclear Information System (INIS)

    Pignatelli, Vito; Clementi, Chiara

    2006-01-01

    Today biofuels are the sole realistically practical way to reduce CO 2 emissions in the transportation sector. In many countries, including Italy, biofuel production and use are already a reality corresponding to a large agro-industrial production system that uses essentially mature technologies. To significantly lower production costs and optimise land use, Italy needs to develop new, second-generation biofuel production operations that can offer significant opportunities to the nation's agro-industrial sector [it

  20. DLA Energy Biofuel Feedstock Metrics Study

    Science.gov (United States)

    2012-12-11

    moderately/highly in- vasive  Metric 2: Genetically modified organism ( GMO ) hazard, Yes/No and Hazard Category  Metric 3: Species hybridization...4– biofuel distribution Stage # 5– biofuel use Metric 1: State inva- siveness ranking Yes Minimal Minimal No No Metric 2: GMO hazard Yes...may utilize GMO microbial or microalgae species across the applicable biofuel life cycles (stages 1–3). The following consequence Metrics 4–6 then

  1. Strategic niche management for biofuels : analysing past experiments for developing new biofuels policy

    NARCIS (Netherlands)

    Laak, W.W.M.; Raven, R.P.J.M.; Verbong, G.P.J.

    2007-01-01

    Biofuels have gained a lot of attention since the implementation of the 2003 European Directive on biofuels. In the Netherlands the contribution of biofuels is still very limited despite several experiments in the past. This article aims to contribute to the development of successful policies for

  2. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    Energy Technology Data Exchange (ETDEWEB)

    Sastri, B.; Lee, A.

    2008-09-15

    . Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

  3. Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach

    International Nuclear Information System (INIS)

    Subhadra, Bobban G.

    2010-01-01

    Algal biomass can provide viable third generation feedstock for liquid transportation fuel. However, for a mature commercial industry to develop, sustainability as well as technological and economic issues pertinent to algal biofuel sector must be addressed first. This viewpoint focuses on three integrated approaches laid out to meet these challenges. Firstly, an integrated algal biorefinery for sequential biomass processing for multiple high-value products is delineated to bring in the financial sustainability to the algal biofuel production units. Secondly, an integrated renewable energy park (IREP) approach is proposed for amalgamating various renewable energy industries established in different locations. This would aid in synergistic and efficient electricity and liquid biofuel production with zero net carbon emissions while obviating numerous sustainability issues such as productive usage of agricultural land, water, and fossil fuel usage. A 'renewable energy corridor' rich in multiple energy sources needed for algal biofuel production for deploying IREPs in the United States is also illustrated. Finally, the integration of various industries with algal biofuel sector can bring a multitude of sustainable deliverables to society, such as renewable supply of cheap protein supplements, health products and aquafeed ingredients. The benefits, challenges, and policy needs of the IREP approach are also discussed.

  4. Economical analysis of biofuel products and nuclear plant hydrogen

    International Nuclear Information System (INIS)

    Edwaren Liun

    2011-01-01

    The increasing in oil prices over the last six years is unprecedented that should be seen as a spur to increased efficiency. The surge in oil prices on the world market today is driven by strong demand factors in the depletion of world oil reserves. To replace the fuel oil from the bowels of the earth the various alternatives should be considered, including other crops or vegetable oil production of bio-fuels and hydrogen are produced by high temperature nuclear reactors. Biofuels in the form of ethanol made from corn or sugar cane and biodiesel made from palm oil or jatropha. With the latest world oil prices, future fuel vegetable oil and nuclear hydrogen-based energy technologies become popular in various parts of the world. Economics of biodiesel will be changed in accordance with world oil prices and subsidy regulations which apply to fuel products. On the other hand the role of nuclear energy in hydrogen production with the most potential in the techno-economics is a form of high temperature steam electrolysis, using heat and electricity from nuclear reactors. The production cost of biodiesel fuel on the basis of ADO type subsidy is 10.49 US$/MMBTU, while the production cost of hydrogen as an energy carrier of high temperature reactor is 15.30 US$/MMBTU. Thus, both types seem to have strong competitiveness. (author)

  5. PERSPECTIVE: Learning from the Brazilian biofuel experience

    Science.gov (United States)

    Wang, Michael

    2006-11-01

    converting rainforests into sugarcane plantations and (ii) local air pollution problems as a result of burning in plantations before harvest. Also, as interest in biofuels heightens worldwide, environment-conscious practices are needed to avoid adverse environmental effects of biofuel production and use. For instance, if feedstock production (sugarcane in Brazil, corn in the United States, and palm oil in Malaysia [for biodiesel production]) moves into virgin or marginal land, carbon in both soil and vegetation could be decreased and diminish the benefits associated with biofuels, and cause other environmental problems, such as soil erosion. Societies need to pay close attention to these potential detrimental environmental effects to ensure that biofuel production will, indeed, be on a sustainable path. © US Government References [1] Goldemberg J 2006 The ethanol program in Brazil Environ. Res Lett. 1 014008 (doi:10.1088/1748-9326/1/1/014008) Photo of Michael Wang Michael Wang has been working in the Center for Transportation Research of Argonne National Laboratory since 1991. He is the manager of the Systems Assessment Section in the center which evaluates energy and emission effects of advanced vehicle technologies and new transportation fuels. He developed the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model, with which he has conducted several major studies for government agencies and industries. Since 1996, he has examined energy and emission benefits of bio-ethanol. His results for bio-ethanol have been cited by many. Michael Wang received his PhD in environmental science from University of California at Davis.

  6. Climate regulation enhances the value of second generation biofuel technology

    Science.gov (United States)

    Hertel, T. W.; Steinbuks, J.; Tyner, W.

    2014-12-01

    Commercial scale implementation of second generation (2G) biofuels has long been 'just over the horizon - perhaps a decade away'. However, with recent innovations, and higher oil prices, we appear to be on the verge of finally seeing commercial scale implementations of cellulosic to liquid fuel conversion technologies. Interest in this technology derives from many quarters. Environmentalists see this as a way of reducing our carbon footprint, however, absent a global market for carbon emissions, private firms will not factor this into their investment decisions. Those interested in poverty and nutrition see this as a channel for lessening the biofuels' impact on food prices. But what is 2G technology worth to society? How valuable are prospective improvements in this technology? And how are these valuations affected by future uncertainties, including climate regulation, climate change impacts, and energy prices? This paper addresses all of these questions. We employ FABLE, a dynamic optimization model for the world's land resources which characterizes the optimal long run path for protected natural lands, managed forests, crop and livestock land use, energy extraction and biofuels over the period 2005-2105. By running this model twice for each future state of the world - once with 2G biofuels technology available and once without - we measure the contribution of the technology to global welfare. Given the uncertainty in how these technologies are likely to evolve, we consider a range cost estimates - from optimistic to pessimistic. In addition to technological uncertainty, there is great uncertainty in the conditions characterizing our baseline for the 21st century. For each of the 2G technology scenarios, we therefore also consider a range of outcomes for key drivers of global land use, including: population, income, oil prices, climate change impacts and climate regulation. We find that the social valuation of 2G technologies depends critically on climate change

  7. Simultaneous determination of spirotetramat and its four metabolites in fruits and vegetables using a modified quick, easy, cheap, effective, rugged, and safe method and liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Zhu, Yulong; Liu, Xingang; Xu, Jun; Dong, Fengshou; Liang, Xuyang; Li, Minmin; Duan, Lifang; Zheng, Yongquan

    2013-07-19

    A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method for the simultaneous determination of spirotetramat and its four metabolites in fruits (apple, peach) and vegetables (cabbage, tomato, potato, cucumber), based on the use of liquid extraction/partition and dispersive solid phase extraction (dispersive-SPE) followed by ultrahigh-performance chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS), was established. Acidified acetonitrile (containing 1% (v/v) acetic acid) as the extraction solvent and simultaneous liquid-liquid partitioning formed by adding anhydrous magnesium sulfate (MgSO4) and anhydrous sodium acetate (NaOAc). The extract was then cleaned up by dispersive-SPE using graphitized carbon black (GCB) as selective sorbent. Further optimization of sample preparation and determination achieved recoveries of between 82 and 110% for all analytes with RSD values lower than 14% in apple, peach, cabbage, tomato, potato and cucumber at three levels (10, 100 and 1000μg/kg). The method showed excellent linearity (R(2)≥0.9895) for all studied analytes. The determination of the target compounds was achieved in less than 6.0min using an electrospray ionization source in positive mode (ESI+). The method is demonstrated to be convenient and reliable for the routine monitoring of spirotetramat and its metabolites in fruits and vegetables. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. One input-class and two input-class classifications for differentiating olive oil from other edible vegetable oils by use of the normal-phase liquid chromatography fingerprint of the methyl-transesterified fraction.

    Science.gov (United States)

    Jiménez-Carvelo, Ana M; Pérez-Castaño, Estefanía; González-Casado, Antonio; Cuadros-Rodríguez, Luis

    2017-04-15

    A new method for differentiation of olive oil (independently of the quality category) from other vegetable oils (canola, safflower, corn, peanut, seeds, grapeseed, palm, linseed, sesame and soybean) has been developed. The analytical procedure for chromatographic fingerprinting of the methyl-transesterified fraction of each vegetable oil, using normal-phase liquid chromatography, is described and the chemometric strategies applied and discussed. Some chemometric methods, such as k-nearest neighbours (kNN), partial least squared-discriminant analysis (PLS-DA), support vector machine classification analysis (SVM-C), and soft independent modelling of class analogies (SIMCA), were applied to build classification models. Performance of the classification was evaluated and ranked using several classification quality metrics. The discriminant analysis, based on the use of one input-class, (plus a dummy class) was applied for the first time in this study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Strategic niche management for biofuels: Analysing past experiments for developing new biofuel policies

    International Nuclear Information System (INIS)

    Laak, W.W.M. van der; Raven, R.P.J.M.; Verbong, G.P.J.

    2007-01-01

    Biofuels have gained a lot of attention since the implementation of the 2003 European Directive on biofuels. In the Netherlands the contribution of biofuels is still very limited despite several experiments in the past. This article aims to contribute to the development of successful policies for stimulating biofuels by analysing three experiments in depth. The approach of strategic niche management (SNM) is used to explain success and failure of these projects. Based on the analysis as well as recent innovation literature we develop a list of guidelines that is important to consider when developing biofuel policies

  10. Biofuels 2020: Biorefineries based on lignocellulosic materials.

    Science.gov (United States)

    Valdivia, Miguel; Galan, Jose Luis; Laffarga, Joaquina; Ramos, Juan-Luis

    2016-09-01

    The production of liquid biofuels to blend with gasoline is of worldwide importance to secure the energy supply while reducing the use of fossil fuels, supporting the development of rural technology with knowledge-based jobs and mitigating greenhouse gas emissions. Today, engineering for plant construction is accessible and new processes using agricultural residues and municipal solid wastes have reached a good degree of maturity and high conversion yields (almost 90% of polysaccharides are converted into monosaccharides ready for fermentation). For the complete success of the 2G technology, it is still necessary to overcome a number of limitations that prevent a first-of-a-kind plant from operating at nominal capacity. We also claim that the triumph of 2G technology requires the development of favourable logistics to guarantee biomass supply and make all actors (farmers, investors, industrial entrepreneurs, government, others) aware that success relies on agreement advances. The growth of ethanol production for 2020 seems to be secured with a number of 2G plants, but public/private investments are still necessary to enable 2G technology to move on ahead from its very early stages to a more mature consolidated technology. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Round table on bio-fuels; Table ronde sur les biocarburants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-15

    The French ministers of agriculture and of industry have organized a meeting with the main French actors of agriculture, petroleum industry, car making and accessories industry and with professionals of agriculture machines to encourage the development of bio-fuels in France. This meeting took place in Paris in November 21, 2005. Its aim was to favor the partnerships between the different actors and the public authorities in order to reach the ambitious goals of the government of 5.75% of bio-fuels in fossil fuels by 2008, 7% by 2010 and 10% by 2015. The main points discussed by the participants were: the compatibility of automotive fuel standards with the objectives of bio-fuel incorporation, the development of direct incorporation of methanol in gasoline, the ethanol-ETBE partnership, the question of the lower calorific value of ETBE (ethyl tertio butyl ether), the development of new bio-fuels, the development of bio-diesel and the specific case of pure vegetal oils, and the fiscal framework of bio-fuels. This meeting has permitted to reach important improvements with 15 concrete agreements undertaken by the participants. (J.S.)

  12. Driving to destruction. The impacts of Europe's biofuel plans on carbon emissions and land

    International Nuclear Information System (INIS)

    Novis, J.

    2010-11-01

    A new study analyses the likely impacts on land use and greenhouse gas (GHG) emissions of biofuel use by 2020, as projected in recently published National Renewable Energy Action Plans (NREAPs) in 23 EU member states. The analysis includes evidence on size and impacts of 'indirect land use change' (ILUC) resulting from biofuel use. It is the most comprehensive study to date to quantify these effects. Previous attempts were not based on projections from NREAPs and in most cases excluded the effects of indirect land use change. The assessment comes at a key time for EU biofuel policy, with the European Commission due to report on how to address and minimise these emissions by the end of this year. The study reveals that the EU's plans for biofuels will result in the conversion of up to 69,000 square kilometres of land to agricultural use due to ILUC. This will potentially put forests, other natural ecosystems, and poor communities at risk. Land conversion on such a scale will lead to the release of carbon emissions from vegetation and soil, making biofuels more damaging to the climate than the fossil fuels they are designed to replace.

  13. Market analysis biofuels. Implications for the armed forces in the Netherlands

    International Nuclear Information System (INIS)

    De Wilde, H.P.J.; Londo, H.M.

    2009-11-01

    Commercial road fuels are increasingly blended with biofuels. These biofuel blends impose risks for the specific application in the military environment. Therefore the Ministry of Defence has commissioned ECN to provide a market analysis of biofuel (blends) projected to become available up till 2030, with a focus on diesel fuels for ground use. We conclude that the percentage of conventional biodiesel (FAME) in the EU is likely to increase up to around 7% until 2020. It is unlikely that the share of FAME in commercially available diesel blends will increase above 10%. Hydrogenated vegetable oil (HVO) is expected to gain an increasing market share, especially in the time window 2015-2020. After 2020, the fraction of biogenic diesel in blends may further increase. However, this additional demand will most likely be met by the production of advanced high quality 2nd generation BTL diesel, thereby not reducing the fuel quality, also not for military applications. From a global perspective, it is most likely that up to 2030 biodiesel blends will only contain a minor average fraction of diesel from biological origin (below 3%). The main reason is that biofuel substitutes for petrol are expected to maintain their market share of about 80% of the total biofuel production. However, in addition to the EU, biodiesel blends up to 10% may also be introduced in regions with a large biodiesel feedstock supply potential, such as South East Asia, Latin America or Sub-Sahara Africa.

  14. Biofuels and certification. A workshop at the Harvard Kennedy School of Government. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Devereaux, Charan; Lee, Henry

    2009-06-01

    Liquid biofuels can provide a substitute for fossil fuels in the transportation sector. Many countries have mandated the use of biofuels, by creating targets for their use. If not implemented with care, however, actions that increase biofuel production can put upward pressure on food prices, increase greenhouse gas (GHG) emissions, and exacerbate degradation of land, forest, and water sources. A strong global biofuels industry will not emerge unless these environmental and social concerns are addressed. Interested parties around the world are actively debating the design and implementation of policies to meet the biofuel goals, particularly those established in the United States and Europe. In general, policy options for managing the potential risks and benefits of biofuel development should specify not only clear standards governing biofuel content and production processes, but also certification processes for verifying whether particular biofuels meet those standards, and specific metrics or indicators on which to base the certification. Historically, many standards in the energy and environment fields have ultimately been set or supported by governments. Many of the certification processes have been voluntary, carried out by independent third parties. The biofuels case is a young one, however, with questions of goals, standards, certification, and metrics still in interdependent flux. The workshop focused its discussions on certification issues, but found the discussions naturally reaching into ongoing debates regarding possible goals, standards, and metrics. Many countries are proposing that for a biofuel to qualify as contributing to government-mandated targets or goals, it must be certified to meet certain standards. These standards could be limited to the amount of GHG emitted in the production process or could include a number of other environmental sustainability concerns ranging from deforestation and biodiversity to water resources. While the threat to

  15. Producing biofuels using polyketide synthases

    Science.gov (United States)

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  16. Zinc-Laccase Biofuel Cell

    Directory of Open Access Journals (Sweden)

    Abdul Aziz Ahmad

    2011-12-01

    Full Text Available A zinc-laccase biofuel cell adapting the zinc-air cell design features is investigated. A simple cell design configuration is employed: a membraneless single chamber and a freely suspended laccase in a quasi-neutral buffer electrolyte. The cell is characterised according to its open-circuit voltage, polarization profile, power density plot and discharge capacity at constant current. The biocatalytic role of laccase is evident from the polarization profile and power output plot. Performance comparison between a single chamber and dual chamber cell design is also presented. The biofuel cell possessed an open-circuit voltage of 1.2 V and delivered a maximum power density of 0.9 mW/cm2 at current density of 2.5 mA/cm2. These characteristics are comparable to biofuel cell utilising a much more complex system design.KEY WORDS (keyword:  Biofuel cell, Bioelectrochemical cell, Zinc anode, Laccase and Oxidoreductase.ABSTRAK: Sel bio-bahan api zink-laccase dengan adaptasi daripada ciri-ciri rekabentuk sel zink-udara telah dikaji. Sel dengan konfigurasi rekabentuk yang mudah digunapakai: ruangan tunggal tanpa membran dan laccase diampaikan secara bebas di dalam elektrolit pemampan quasi-neutral. Sel dicirikan berdasarkan voltan litar terbuka, profil polarisasi, plot ketumpatan kuasa dan kapasiti discas pada arus malar. Peranan laccase sebagai bio-pemangkin adalah amat ketara daripada profil polarisasi dan plot ketumpatan kuasa. Perbandingan prestasi di antara sel dengan rekabentuk ruangan tunggal and dwi-ruangan turut diketengahkan. Seperti dijangkakan, sel dengan rekabentuk ruangan tunggal menunjukkan kuasa keluaran yang lebih rendah jika dibandingkan dengan rekabentuk dwi-ruangan kemungkinan disebabkan fenomena cas bocor. Sel bio-bahan api ini mempunyai voltan litar terbuka 1.2 V dan memberikan ketumpatan kuasa maksima 0.9 mW/cm2 pada ketumpatan arus 2.5 mA/cm2. Ciri-ciri ini adalah sebanding dengan sel bio-bahan api yang menggunapakai rekabentuk sel

  17. Lignocellulosic biomass-Thermal pretreatment with steam: Pretreatment techniques for biofuels and biorefineries

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2013-01-01

    With the ever rising demand for more energy and the limited availability of depleted world resources, many are beginning to look for alternatives to fossil fuels. Liquid biofuel, in particular, is of key interest to decrease our dependency on fuels produced from imported petroleum. Biomass pre......-treatment remains one of the most pressing challenges in terms of cost-effective production of biofuels. The digestibility of lingo-cellulosic biomass is limited by different factors such as the lignin content, the crystallinity of cellulose, and the available cellulose accessibility to hydrolytic enzymes. A number...

  18. Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from Seaweed Biomass

    Directory of Open Access Journals (Sweden)

    John J. Milledge

    2014-11-01

    Full Text Available The potential of algal biomass as a source of liquid and gaseous biofuels is a highly topical theme, but as yet there is no successful economically viable commercial system producing biofuel. However, the majority of the research has focused on producing fuels from microalgae rather than from macroalgae. This article briefly reviews the methods by which useful energy may be extracted from macroalgae biomass including: direct combustion, pyrolysis, gasification, trans-esterification to biodiesel, hydrothermal liquefaction, fermentation to bioethanol, fermentation to biobutanol and anaerobic digestion, and explores technical and engineering difficulties that remain to be resolved.

  19. Energy Primer: Solar, Water, Wind, and Biofuels.

    Science.gov (United States)

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  20. Montana Advanced Biofuels Great Falls Approval

    Science.gov (United States)

    This November 20, 2015 letter from EPA approves the petition from Montana Advanced Biofuels, LLC, Great Falls facility, regarding ethanol produced through a dry mill process, qualifying under the Clean Air Act for advanced biofuel (D-code 5) and renewable

  1. Increase of the investments for the biofuels

    International Nuclear Information System (INIS)

    Jemain, A.

    2005-01-01

    With the construction for 2007 of six new units of biofuels (three bio-diesel and three bio-ethanol), France is developing its energy policy in favor of the biofuels. This decision benefits Diester and Sofiproteol industries which will invest in the development of their deposits. The enthusiasm is less for the bio-ethanol industries. (A.L.B.)

  2. NREL Algal Biofuels Projects and Partnerships

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-01

    This fact sheet highlights several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process. These projects should serve as a foundation for the research efforts toward algae as a source of fuels and other chemicals.

  3. Sustainable production of grain crops for biofuels

    Science.gov (United States)

    Grain crops of the Gramineae are grown for their edible, starchy seeds. Their grain is used directly for human food, livestock feed, and as raw material for many industries, including biofuels. Using grain crops for non-food uses affects the amount of food available to the world. Grain-based biofuel...

  4. Microalgae for biofuels production and environmental applications ...

    African Journals Online (AJOL)

    This review presents the current classification of biofuels, with special focus on microalgae and their applicability for the production of biodiesel. The paper considered issues related with the processing and culturing of microalgae, for not only those that are involved in biofuel production, but as well as the possibility of their ...

  5. Modifying plants for biofuel and biomaterial production.

    Science.gov (United States)

    Furtado, Agnelo; Lupoi, Jason S; Hoang, Nam V; Healey, Adam; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2014-12-01

    The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Biofuel investment in Tanzania: Omissions in implementation

    International Nuclear Information System (INIS)

    Habib-Mintz, Nazia

    2010-01-01

    Increasing demand for biofuels as a component of climate change mitigation, energy security, and a fossil fuel alternative attracts investors to developing countries like Tanzania. Ample unused land is critical for first generation biofuels production and an important feature to attract foreign direct investments that can contribute towards agricultural modernization and poverty reduction initiatives. Despite the economic justifications, the existing institutional and infrastructural capacities dictate the impacts of biofuels market penetrations. Furthermore, exogenous factors like global recessionary pressure depressed oil prices below the level at which biofuel production were profitable in 2007, making Tanzania's competitiveness and potential benefits questionable. This paper investigates the extent that first generation, jatropha-based biofuels industry development in Tanzania observed during fieldwork in Kisarawe and Bahi may fulfill policy objectives. This paper argues that without strong regulatory frameworks for land, investment management, and rural development, biofuel industrialization could further exacerbate poverty and food insecurity in Tanzania. The paper concludes with policy recommendations for first generation biofuel development while keeping in mind implications of second generation production. Since the topic is broad and multifaceted, a multidisciplinary approach is used that includes political, institutional, and agricultural economics to analyze and conceptualize biofuel industry development and food security.

  7. Global nitrogen requirement for increased biofuel production

    NARCIS (Netherlands)

    Flapper, Joris

    2008-01-01

    Biofuels are thought to be one of the options to substitute fossil fuels and prevent global warming by the greenhouse gas (GHG) effect as they are seen as a renewable form of energy. However, biofuels are almost solely subjected to criticism from an energ

  8. Biofuels in Central America, a real potential for commercial production

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, O.L. (Regional Coordinator Energy and Environmental Partnership with Central America EEP (El Salvador))

    2007-07-01

    The purpose of this paper is to show the current capabilities of the Central American countries regarding the production of biofuels, and the real potential in increasing the volumes produced and the impacts that can be generated if a non sustainable policy is followed for achieving the targets of biofuel production. Due to the world oil price crisis, and the fact that Central American counties are fully dependant on oil imports (just Guatemala and Belize produce little amounts of oil), just to mention, in some countries the imports of oil is equivalent to the 40% of the total exports, the region started to look for massive production of biofuels, something that it is not new for us. The countries have started with programs for producing ethanol from sugar cane, because it is one of the most strongest industries in Central America and they have all the infrastructure and financial sources to develop this project. The ethanol is a biofuel that can be mixed with gasoline or a complete substitute. Another biofuel that is currently under develop, is the production of biodiesel, and the main source for it nowadays is the Palm oil, where Costa Rica, Honduras and Guatemala have already commercial productions of crude palm oil, but the principal use of it is for the food industry, but now it is under assessment for using part of it for biodiesel. EEP is now developing pilot programs for production of biodiesel from a native plant named Jatropha curcas, and up to now we have a commercial plantation in Guatemala, and we started as well in Honduras for start spreading this plantations. In El Salvador we installed a pilot processing plant for biodiesel that can be operated with multiple feed stock, such as Jatropha, palm oil, castor oil, vegetable used oil and others. Currently we have interesting and good results regarding the production of Jatropha, we have developed a methodology for its cropping, harvesting and processing. All the vehicles and equipment involved in the

  9. Coupling of Algal Biofuel Production with Wastewater

    Directory of Open Access Journals (Sweden)

    Neha Chamoli Bhatt

    2014-01-01

    Full Text Available Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  10. Which future for aviation bio-fuels?

    International Nuclear Information System (INIS)

    Botti, Jean; Combarnous, Michel; Jarry, Bruno; Monsan, Pierre; Burzynski, Jean-Pierre; Jeuland, Nicolas; Porot, Pierre; Demoment, Pascale; Gillmann, Marc; Marchand, Philippe; Kuentzmann, Paul; Kurtsoglou, Nicolas; Lombaert-Valot, Isabelle; Pelegrin, Marc; Renvier, Jacques; Rousseau, Julien; Stadler, Thierry; Tremeau, Benoit

    2014-01-01

    This collective report proposes a detailed overview of the evolution of aviation fuels and bio-fuels from technological, regulatory and economic points of view. It also proposes a road-map for possible future evolutions, and outlines the different assessments between American and European countries regarding the predictions for the beginning of industrial production and use of bio-jet-fuel. After having recalled international objectives, an overview of European and French commitments for technological and operational advances, and a discussion of the role of bio-fuels in the carbon cycle, the report presents various technical constraints met in aircraft industry and describes the role bio-fuels may have. The next part proposes an overview of bio-fuels which are industrially produced in the world in 2013. The authors then focus on aviation bio-fuels (main production processes, thermo-chemical processes), discuss the political context, and examine obstacles, partnerships and the role of public authorities

  11. Optimal production scheduling for energy efficiency improvement in biofuel feedstock preprocessing considering work-in-process particle separation

    International Nuclear Information System (INIS)

    Li, Lin; Sun, Zeyi; Yao, Xufeng; Wang, Donghai

    2016-01-01

    Biofuel is considered a promising alternative to traditional liquid transportation fuels. The large-scale substitution of biofuel can greatly enhance global energy security and mitigate greenhouse gas emissions. One major concern of the broad adoption of biofuel is the intensive energy consumption in biofuel manufacturing. This paper focuses on the energy efficiency improvement of biofuel feedstock preprocessing, a major process of cellulosic biofuel manufacturing. An improved scheme of the feedstock preprocessing considering work-in-process particle separation is introduced to reduce energy waste and improve energy efficiency. A scheduling model based on the improved scheme is also developed to identify an optimal production schedule that can minimize the energy consumption of the feedstock preprocessing under production target constraint. A numerical case study is used to illustrate the effectiveness of the proposed method. The research outcome is expected to improve the energy efficiency and enhance the environmental sustainability of biomass feedstock preprocessing. - Highlights: • A novel method to schedule production in biofuel feedstock preprocessing process. • Systems modeling approach is used. • Capable of optimize preprocessing to reduce energy waste and improve energy efficiency. • A numerical case is used to illustrate the effectiveness of the method. • Energy consumption per unit production can be significantly reduced.

  12. Second generation biofuels: Economics and policies

    International Nuclear Information System (INIS)

    Carriquiry, Miguel A.; Du Xiaodong; Timilsina, Govinda R.

    2011-01-01

    This study reviews economics of production of second generation biofuels from various feedstocks, including crop and wood/forestry residues, lignocellulosic energy crops, jatropha, and algae. The study indicates that while second generation biofuels could significantly contribute to the future energy supply mix, cost is a major barrier to its commercial production in the near to medium term. Depending upon type of biofuels, feedstock prices and conversion costs, the cost of cellulosic ethanol is found to be two to three times higher than the current price of gasoline on an energy equivalent basis. The median cost (across the studies reviewed) of biodiesel produced from microalgae, a prospective feedstock, is seven times higher than the current price of diesel, although much higher cost estimates have been reported. As compared with the case of first generation biofuels, in which feedstock can account for over two-thirds of the total costs, the share of feedstock in the total costs is relatively lower (30-50%) in the case of second generation biofuels. While significant cost reductions are needed for both types of second generation biofuels, the critical barriers are at different steps of the production process. For cellulosic ethanol, the biomass conversion costs needs to be reduced. On the other hand, feedstock cost is the main issue for biodiesel. At present, policy instruments, such as fiscal incentives and consumption mandates have in general not differentiated between the first and second generation biofuels except in the cases of the US and EU. The policy regime should be revised to account for the relative merits of different types of biofuels. - Highlights: → Second generation biofuels could significantly contribute to the future energy supply mix. → Cost is a major barrier to its the commercial production in the near to medium term. → The policy regime should be revised to account for the relative merits of different biofuels.

  13. Second generation biofuels: Economics and policies

    Energy Technology Data Exchange (ETDEWEB)

    Carriquiry, Miguel A., E-mail: miguelc@iastate.edu [Center for Agricultural and Rural Development, Iowa State University (United States); Du Xiaodong, E-mail: xdu23@wisc.edu [Department of Agricultural and Applied Economics, University of Wisconsin-Madison (United States); Timilsina, Govinda R., E-mail: gtimilsina@worldbank.org [Development Research Group, The World Bank (United States)

    2011-07-15

    This study reviews economics of production of second generation biofuels from various feedstocks, including crop and wood/forestry residues, lignocellulosic energy crops, jatropha, and algae. The study indicates that while second generation biofuels could significantly contribute to the future energy supply mix, cost is a major barrier to its commercial production in the near to medium term. Depending upon type of biofuels, feedstock prices and conversion costs, the cost of cellulosic ethanol is found to be two to three times higher than the current price of gasoline on an energy equivalent basis. The median cost (across the studies reviewed) of biodiesel produced from microalgae, a prospective feedstock, is seven times higher than the current price of diesel, although much higher cost estimates have been reported. As compared with the case of first generation biofuels, in which feedstock can account for over two-thirds of the total costs, the share of feedstock in the total costs is relatively lower (30-50%) in the case of second generation biofuels. While significant cost reductions are needed for both types of second generation biofuels, the critical barriers are at different steps of the production process. For cellulosic ethanol, the biomass conversion costs needs to be reduced. On the other hand, feedstock cost is the main issue for biodiesel. At present, policy instruments, such as fiscal incentives and consumption mandates have in general not differentiated between the first and second generation biofuels except in the cases of the US and EU. The policy regime should be revised to account for the relative merits of different types of biofuels. - Highlights: > Second generation biofuels could significantly contribute to the future energy supply mix. > Cost is a major barrier to its the commercial production in the near to medium term. > The policy regime should be revised to account for the relative merits of different biofuels.

  14. Ghana's biofuels policy: challenges and the way forward

    Energy Technology Data Exchange (ETDEWEB)

    Antwi, Edward [Kumasi Polytechnic, Mechanical Engineering Department, Box 854, Kumasi (Ghana); Bensah, Edem Cudjoe; Ahiekpor, Julius [Kumasi Polytechnic, Chemical Engineering Department, Box 854, Kumasi (Ghana); Quansah, David Ato [The Energy Centre, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); Arthur, Richard [Koforidua Polytechnic, PMB, Koforidua (Ghana)

    2010-07-01

    Liquid biofuels have come up strongly as possible substitute to conventional fossils fuels and woodfuels apparently because of its perceived environmental benefit, sustainability and recent hikes in petroleum fuel prices. These have led most countries to include biofuels in their energy mix to mitigate climate change effect caused by petroleum fuels and also to ensure energy security. Ghana as a developing country has also identified the potential of biofuels in her energy mix by setting some targets in its Strategic National Energy Policy (SNEP). This paper analyses the implications of the policy as presented in SNEP. It also looks at programmes put in place to achieve the set objectives and the possible challenges that are likely to be faced in their implementation. The paper concludes by calling for strong governmental involvement in achieving the set objectives.

  15. Recent advances on the production and utilization trends of bio-fuels: A global perspective

    International Nuclear Information System (INIS)

    Demirbas, M.F.; Balat, Mustafa

    2006-01-01

    Bio-fuels are important because they replace petroleum fuels. There are many benefits for the environment, economy and consumers in using bio-fuels. Bio-oil can be used as a substitute for fossil fuels to generate heat, power and/or chemicals. Upgrading of bio-oil to a transportation fuel is technically feasible, but needs further development. Bio-fuels are made from biomass through thermochemical processes such as pyrolysis, gasification, liquefaction and supercritical fluid extraction or biochemical. Biochemical conversion of biomass is completed through alcoholic fermentation to produce liquid fuels and anaerobic digestion or fermentation, resulting in biogas. In wood derived pyrolysis oil, specific oxygenated compounds are present in relatively large amounts. Basically, the recovery of pure compounds from the complex bio-oil is technically feasible but probably economically unattractive because of the high costs for recovery of the chemical and its low concentration in the oil

  16. An economic evaluation of alternative biofuel deployment scenarios in the USA

    Directory of Open Access Journals (Sweden)

    Gbadebo Oladosu

    2017-05-01

    Full Text Available Energy market conditions have shifted dramatically since the USA renewable fuel standards (RFS1 in 2005; RFS2 in 2007 were enacted. The USA has transitioned from an increasing dependence on oil imports to abundant domestic oil production. In addition, increases in the use of ethanol, the main biofuel currently produced in the USA, is now limited by the blend wall constraint. Given this, the current study evaluates alternative biofuel deployment scenarios in the USA, accounting for changes in market conditions. The analysis is performed with a general equilibrium model that reflects the structure of the USA biofuel market as the transition to advanced biofuels begins. Results suggest that ethanol consumption would increase, albeit slowly, if current biofuel deployment rates of about 10% are maintained as persistently lower oil prices lead to a gradual increase in the consumption of liquid transportation fuels. Without the blend wall constraint, this study finds that the overall economic impact of a full implementation of the USA RFS2 policy is largely neutral before 2022. However, the economic impacts become slightly negative under the blend wall constraint since more expensive bio-hydrocarbons are needed to meet the RFS2 mandates. Results for a scenario with reduced advanced biofuel deployment based on current policy plans show near neutral economic impacts up to 2027. This scenario is also consistent with another scenario where the volume of bio-hydrocarbons deployed is reduced to adjust for its higher cost and energy content relative to deploying the mandated RFS2 advanced biofuel volumes as ethanol. The important role of technological change is demonstrated under pioneer and accelerated technology scenarios, with the latter leading to neutral or positive economic effects up to 2023 under most blend wall scenarios. All scenarios evaluated in this study are found to have positive long-term benefits for the USA economy.

  17. Biofuels - the UFIP position; Biocarburants - la position de l'UFIP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Since 2003 a directive promote the biofuels use. The industry is then using them in ETBE (Ethyl Tertio Butyl Ether) fuels and in diesel oil of vegetal oils esters EMHV. Meanwhile some of them present technical difficulties and must free themselves from fiscal incentives which make them competitive. For these reasons, the UFIP (french union of petroleum industries) do not agree their obligatory incorporation. (A.L.B.)

  18. Biofuels Program Plan, FY 1992--FY 1996. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This five-year program plan describes the goals and philosophy of the US Department of Energy`s (DOE) Biofuels Systems Division (BSD) program and the BSD`s major research and development (R&D) activities for fiscal years (FY) 1992 through 1996. The plan represents a consensus among government and university researchers, fuel and automotive manufacturers, and current and potential users of alternative fuels and fuel additives produced from biomass. It defines the activities that are necessary to produce versatile, domestic, economical, renewable liquid fuels from biomass feedstocks. The BSD program focuses on the production of alternative liquid fuels for transportation-fuels such as ethanol, methanol, biodiesel, and fuel additives for reformulated gasoline. These fuels can be produced from many plant materials and from a significant portion of the wastes generated by municipalities and industry. Together these raw materials and wastes, or feedstocks, are called biomass.

  19. Preparation of size-controlled magnetite nanoparticles with a graphene and polymeric ionic liquid coating for the quick, easy, cheap, effective, rugged and safe extraction of preservatives from vegetables.

    Science.gov (United States)

    Chen, Yaling; Cao, Shurui; Zhang, Lei; Xi, Cunxian; Li, Xianliang; Chen, Zhiqiong; Wang, Guoming

    2016-05-27

    Size-controlled magnetite nanoparticles (Fe3O4) with 200-1000nm were synthesized by co-precipitation method. Then Fe3O4@SiO2@G@PIL was synthesized and used as modified QuEChERS adsorbent for the determination of preservatives in vegetables. The size of about 200nm of Fe3O4 in Fe3O4@SiO2@G@PIL was selected as optimum size to clean-up. It not only exerted the nanometer features of magnetic nanoparticles, but also displayed the large specific surface area of graphene (G) and the solvent effects of polymeric ionic liquids (PILs). Various experimental parameters have been investigated. Under the optimized conditions, a simple, rapid and effective method for the determination of 20 preservatives residues in vegetables was established by modified QuEChERS to gas chromatography/mass spectrometry (GC-MS) analysis. The good linearity with correlation coefficients (R(2)) of 0.9972-0.9999 was obtained over the range of 0.02-2.00mg/L for 20 preservatives. The detection limits of the proposed method for 20 preservatives ranged from 0.82 to 6.64μg/kg. The adsorbent was successfully applied for extraction and determination of preservatives in vegetable samples, which thus was time-saving with keeping good clean-up performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The influence of biofuels, economic and financial factors on daily returns of commodity futures prices

    International Nuclear Information System (INIS)

    Algieri, Bernardina

    2014-01-01

    Biofuels production has experienced rapid growth worldwide as one of the several strategies to promote green energy economies. Indeed, climate change mitigation and energy security have been frequent rationales behind biofuel policies, but biofuels production could generate negative impacts, such as additional demand for feedstocks, and therefore for land on which to grow them, with a consequent increase in food commodity prices. In this context, this paper examines the effect of biofuels and other economic and financial factors on daily returns of a group of commodity futures prices using Generalized Autoregressive Conditional Heteroskedasticity (GARCH) family models in univariate and multivariate settings. The results show that a complex of drivers are relevant in explaining commodity futures returns; more precisely, the Standard and Poor's (S and P) 500 positively affects commodity markets, while the US/Euro exchange rate brings about a decline in commodity returns. It turns out, in addition, that energy market returns are significant in explaining commodity returns on a daily basis, while monetary liquidity is not. This would imply that biofuel policy should be carefully monitored in order to avoid excessive first-generation subsidization, which would trigger a fuel vs. food conflict. - Highlights: • The effects of biofuels and other economic and financial factors on daily returns of commodity futures prices are examined. • A GARCH methodology in univariate and multivariate settings is adopted. • The results show that a complex of drivers is relevant in explaining commodity futures returns. • Energy market returns play a significant role in pushing commodity returns. • The increase in monetary liquidity does not contribute to changes in futures returns on a daily basis

  1. Indirect land use change and biofuel policy

    International Nuclear Information System (INIS)

    Kocoloski, Matthew; Griffin, W Michael; Matthews, H Scott

    2009-01-01

    Biofuel debates often focus heavily on carbon emissions, with parties arguing for (or against) biofuels solely on the basis of whether the greenhouse gas emissions of biofuels are less than (or greater than) those of gasoline. Recent studies argue that land use change leads to significant greenhouse gas emissions, making some biofuels more carbon intensive than gasoline. We argue that evaluating the suitability and utility of biofuels or any alternative energy source within the limited framework of plus and minus carbon emissions is too narrow an approach. Biofuels have numerous impacts, and policy makers should seek compromises rather than relying solely on carbon emissions to determine policy. Here, we estimate that cellulosic ethanol, despite having potentially higher life cycle CO 2 emissions (including from land use) than gasoline, would still be cost-effective at a CO 2 price of $80 per ton or less, well above estimated CO 2 mitigation costs for many alternatives. As an example of the broader approach to biofuel policy, we suggest the possibility of using the potential cost reductions of cellulosic ethanol relative to gasoline to balance out additional carbon emissions resulting from indirect land use change as an example of ways in which policies could be used to arrive at workable solutions.

  2. Assessment of Peruvian biofuel resources and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Harper, J.P.; Smith, W.; Mariani, E.

    1979-08-01

    Comprehensive assessment of the biofuel potential of Peru is based on: determination of current biofuel utilization practices, evauation of Peruvian biomass productivity, identification of Peruvian agricultural and forestry resources, assessment of resource development and management concerns, identification of market considerations, description of biofuel technological options, and identification of regional biofuel technology applications. Discussion of current biofuel utilization centers on a qualitative description of the main conversion approaches currently being practiced in Peru. Biomass productivity evaluations consider the terrain and soil, and climatic conditions found in Peru. The potential energy from Peruvian agricultural and forestry resources is described quantitatively. Potental regional production of agricultural residues and forest resources that could supply energy are identified. Assessment of resource development and management concerns focuses on harvesting, reforestation, training, and environmental consequences of utilization of forest resources. Market factors assessed include: importation, internal market development, external market development, energy policy and pricing, and transportation. Nine biofuel technology options for Peru are identified: (1) small-to-medium-scale gasification, (2) a wood waste inventory, (3) stationary and mobile charcoal production systems, (4) wood distillation, (5) forest resource development and management, (6) electrical cogeneration, (7) anaerobic digestion technology, (8) development of ethanol production capabilities, and (9) agricultural strategies for fuel production. Applications of these biofuel options are identified for each of the three major regions - nine applications for the Costa Region, eight for the Sierra Region, and ten for the Selva Region.

  3. Biofuels - Illusion or Reality? - The european experience

    International Nuclear Information System (INIS)

    Furfari, A.

    2008-01-01

    Environmental issues, rising prices and security of supply are putting energy at the centre of all attentions. Policy-makers pushed by various stakeholders are struggling to find more sustainable solutions to the world legitimate demand for energy. The transport sector is especially under pressure as it relies for 98% on oil. Despite vast research and development investments, no short-term solutions appeared to be reliable. Thanks to lawmakers support to biofuels, these substitutes for oil are now seen as the potential solution for a sustainable transport. This book analyses the real possibility of biofuels. Does Europe has enough land to produce the needed feedstock? What are the real gains in terms of greenhouse gases emissions and energy efficiency? Are biofuels really a sustainable solution? Will this policy succeed? Are the targets reachable? The reader will find some indications in this book to make up his mind on this complex, multifaceted and highly political subject. Contents: Summary. Introduction. Biofuels in the U.S.A. and Brazil. Do we have enough land in Europe? Biofuels life cycle analysis. Greenhouse gases reduction and efficiency. Case of the glycerin price. Variables affecting biofuels sustainability. Standard for Biofuels. Conclusion. General Bibliography. Annexes. References

  4. Potential of biofuels for shipping. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Florentinus, A.; Hamelinck, C.; Van den Bos, A.; Winkel, R.; Cuijpers, M. [Ecofys Netherlands, Utrecht (Netherlands)

    2012-01-15

    Biofuels could be one of the options to realize a lower carbon intensity in the propulsion of ships and also possibly reduce the effect of ship emissions on local air quality. Therefore, EMSA, the European Maritime Safety Agency, is evaluating if and how biofuels could be used in the shipping sector as an alternative fuel. To determine the potential of biofuels for ships, a clearer picture is needed on technical and organizational limitations of biofuels in ships, both on board of the ship as in the fuel supply chain to the ship. Economic and sustainability analysis of biofuels should be included in this picture, as well as an overview on current and potential policy measures to stimulate the use of biofuels in shipping. Ecofys has determined the potential of biofuels, based on analysis of collected data through literature review, own expertise and experiences, direct communication with EMSA, research publications, market developments based on press and other media, and consultations with relevant stakeholders in the shipping market.

  5. Indirect land use change and biofuel policy

    Science.gov (United States)

    Kocoloski, Matthew; Griffin, W. Michael; Matthews, H. Scott

    2009-09-01

    Biofuel debates often focus heavily on carbon emissions, with parties arguing for (or against) biofuels solely on the basis of whether the greenhouse gas emissions of biofuels are less than (or greater than) those of gasoline. Recent studies argue that land use change leads to significant greenhouse gas emissions, making some biofuels more carbon intensive than gasoline. We argue that evaluating the suitability and utility of biofuels or any alternative energy source within the limited framework of plus and minus carbon emissions is too narrow an approach. Biofuels have numerous impacts, and policy makers should seek compromises rather than relying solely on carbon emissions to determine policy. Here, we estimate that cellulosic ethanol, despite having potentially higher life cycle CO2 emissions (including from land use) than gasoline, would still be cost-effective at a CO2 price of 80 per ton or less, well above estimated CO2 mitigation costs for many alternatives. As an example of the broader approach to biofuel policy, we suggest the possibility of using the potential cost reductions of cellulosic ethanol relative to gasoline to balance out additional carbon emissions resulting from indirect land use change as an example of ways in which policies could be used to arrive at workable solutions.

  6. Global biofuel use, 1850-2000

    Science.gov (United States)

    Fernandes, Suneeta D.; Trautmann, Nina M.; Streets, David G.; Roden, Christoph A.; Bond, Tami C.

    2007-06-01

    This paper presents annual, country-level estimates of biofuel use for the period 1850-2000. We estimate that global biofuel consumption rose from about 1000 Tg in 1850 to 2460 Tg in 2000, an increase of 140%. In the late 19th century, biofuel consumption in North America was very high, ˜220-250 Tg/yr, because widespread land clearing supplied plentiful fuelwood. At that time biofuel use in Western Europe was lower, ˜180-200 Tg/yr. As fossil fuels became available, biofuel use in the developed world fell. Compensating changes in other parts of the world, however, caused global consumption to remain remarkably stable between 1850 and 1950 at ˜1200 ± 200 Tg/yr. It was only after World War II that biofuel use began to increase more rapidly in response to population growth in the developing world. Between 1950 and 2000, biofuel use in Africa, South Asia, and Southeast Asia grew by 170%, 160%, and 130%, respectively.

  7. Opportunity for profitable investments in cellulosic biofuels

    International Nuclear Information System (INIS)

    Babcock, Bruce A.; Marette, Stephan; Treguer, David

    2011-01-01

    Research efforts to allow large-scale conversion of cellulose into biofuels are being undertaken in the US and EU. These efforts are designed to increase logistic and conversion efficiencies, enhancing the economic competitiveness of cellulosic biofuels. However, not enough attention has been paid to the future market conditions for cellulosic biofuels, which will determine whether the necessary private investment will be available to allow a cellulosic biofuels industry to emerge. We examine the future market for cellulosic biofuels, differentiating between cellulosic ethanol and 'drop-in' cellulosic biofuels that can be transported with petroleum fuels and have equivalent energy values. We show that emergence of a cellulosic ethanol industry is unlikely without costly government subsidies, in part because of strong competition from conventional ethanol and limits on ethanol blending. If production costs of drop-in cellulosic biofuels fall enough to become competitive, then their expansion will not necessarily cause feedstock prices to rise. As long as local supplies of feedstocks that have no or low-valued alternative uses exist, then expansion will not cause prices to rise significantly. If cellulosic feedstocks come from dedicated biomass crops, then the supply curves will have a steeper slope because of competition for land. (author)

  8. External noise when using biofuel

    International Nuclear Information System (INIS)

    Kotaleski, J.

    1994-08-01

    The aim of this study has been to cover sources of noise dealing with all steps in a biofuel chain; producing, transporting, storing and firing the biofuel. When the availability of relevant test results from noise surveys is not so good and mostly badly documented, the study has been concentrated on estimation of external noise for planning and design purposes, from a prospective biofuel-fired plant. A synoptic tabulation of estimated acoustic power levels from different noise sources, has been done. The results from measurements of external noise from different existing combined power and heating plants are tabulated. The Nordic model for simulation of external noise has been used for a prospective plant - VEGA - designed by Vattenfall. The aim has been to estimate its noise pollutions at critical points at the nearest residential area (250 m from the fenced industry area). The software - ILYD - is easy to handle, but knowledge about the model is necessary. A requisite for the reliability is the access to measurements or estimations of different sources of noise, at different levels of octaves from 63 to 8000 Hz. The degree of accuracy increases with the number of broad band sources, that are integrated. Using ILYD with available data, a night limit of 40 dB(A) should be possible to fulfill with good degree of accuracy at VEGA, between 10 pm and 7 am, with good planning and under normal operation conditions. A demand for 35 dB(A) as a limit can be harder to fulfill, especially at mornings from 6 to 7. Noise from heavy vehicles within the plant area is classified as industrial noise and not as road traffic noise. This type of noise depends very much on the way of driving and assumed acceleration. Concerning wheel-mounted loaders, they may then only be used during daytime. The simulations show, that even at daytime from 7 to 6 pm, it would be possible to use an acoustically damped chipping machine, inside the power industry area. 31 refs, 13 figs, tabs, 8

  9. Metabolomics of Clostridial Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D [Princeton Univ., NJ (United States); Aristilde, Ludmilla [Cornell Univ., Ithaca, NY (United States); Amador-Noguez, Daniel [Univ. of Wisconsin, Madison, WI (United States)

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars

  10. Recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

    Science.gov (United States)

    Lubieniechi, Simona; Peranantham, Thinesh; Levin, David B

    2013-04-01

    Development of sustainable energy systems based on renewable biomass feedstocks is now a global effort. Lignocellulosic biomass contains polymers of cellulose, hemicellulose, and lignin, bound together in a complex structure. Liquid biofuels, such as ethanol, can be made from biomass via fermentation of sugars derived from the cellulose and hemicellulose within lignocellulosic materials, but pre-treatment of the biomass to release sugars for microbial conversion is a significant barrier to commercial success of lignocellulosic biofuel production. Strategies to reduce the energy and cost inputs required for biomass pre-treatment include genetic modification of plant materials to reduce lignin content. Significant efforts are also underway to create recombinant microorganisms capable of converting sugars derived from lignocellulosic biomass to a variety of biofuels. An alternative strategy to reduce the costs of cellulosic biofuel production is the use of cellulolytic microorganisms capable of direct microbial conversion of ligno-cellulosic biomass to fuels. This paper reviews recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

  11. Long-term developments in the transport sector -- comparing biofuel and hydrogen roadmaps

    Energy Technology Data Exchange (ETDEWEB)

    Uyterlinde, M.A.; Londo, M.; Godfroij, P.; Jeeninga, H.

    2007-07-01

    In view of climate change and declining oil reserves, alternative fuels for transport receive increasing attention. Two promising options are biofuels, of which the market penetration has already started, and hydrogen, which, when used in fuel cell cars, could lead to zero-emission vehicles. This paper draws on the results of two ongoing EU projects in which roadmaps are being developed for respectively biofuels and hydrogen . The most important potential conflict lies in competition for biomass as a feedstock. In this context, the hydrogen-fuel cell route has the advantage of a higher efficiency (in terms of km driven per ha or tonne biomass) than biofuels. Furthermore, hydrogen is more flexible in feedstock, since it can also be produced in a climate-friendly way from fossil resources such as coal. Synergy between biofuels and hydrogen is in gasification technology. This technology is required both for biomass-to-liquids, one of the more promising biofuels, and for hydrogen production from biomass and/or coal. Our analysis indicates that the transportation sector will need both options in the long term: while hydrogen may become dominant for passenger cars, greening of long-distance heavy duty transport will become dependent on a bio-based diesel substitute. (auth)

  12. Contrasts and synergies in different biofuel reports.

    Science.gov (United States)

    Michalopoulos, A; Landeweerd, L; Van der Werf-Kulichova, Z; Puylaert, P G B; Osseweijer, P

    2011-04-06

    The societal debate on biofuels is characterised by increased complexity. This can hinder the effective governance of the field. This paper attempts a quantitative bird's eye meta-analysis of this complexity by mapping different stakeholder perspectives and expected outcomes as seen in the secondary literature on biofuels, along the lines of the People-Planet-Profit framework. Our analysis illustrates the tension between stated and actual drivers of large scale biofuel development, especially for first generation biofuels. Although environmental (Planet) aspects have dominated the biofuel debate, their overall assessment is mostly negative with regard to first generation biofuels. By contrast, economic (Profit) aspects are the only ones that are assessed positively with regard to first generation biofuels. Furthermore, positive and negative assessments of biofuel development are strongly influenced by the differences in focus between different stakeholder clusters. Stakeholders who appear generally supportive to biofuel development (industry) focus relatively more on aspects that are generally assessed as positive (Profit). By contrast, non-supportive stakeholders (NGO's) tend to focus mainly on aspects that are generally assessed as negative (Planet). Moreover, our analysis of reference lists revealed few citations of primary scientific data, and also that intergovernmental organizations produce the most influential publications in the debate. The surprising lack of listed references to scientific (primary) data reveals a need to assess in which arena the transition of scientific data towards secondary publications takes place, and how one can measure its quality. This work should be understood as a first effort to take some control over a complex and contradictory number of publications, and to allow the effective governance of the field through the identification of areas of overlapping consensus and persisting controversy, without reverting to claims on

  13. Associative properties of 137Cs in biofuel ashes

    International Nuclear Information System (INIS)

    Ravila, A.; Holm, E.

    1999-01-01

    The present study aims to reveal how radiocesium is associated to the ash particles derived from biofuel combustion. A sequential extraction procedure was carried out for the characterisation of radiocesium speciation in ash generated by different fuels and burner types. The ash types considered were fly ash and bottom ash collected from Swedish district heating plants using bark wood or peat as fuel. A fraction of the radiocesium in biofuel ash can easily become solubilised and mobilised by water and also, a significant fraction of the radionuclides can be bound to the ash particles in cation-exchangeable forms. Therefore, at using the ash derived from biofuels to recycle mineral nutrients for forestry or short rotation coppicing, radiocesium solubilised and leached from the ash by rains has a potential to rather quickly enter the rooting zone of forest vegetation or energy crops. On the other hand, radiocesium strongly bound to the ash will migrate slowly into the soil column with the successive accumulation of litter and in the process act to maintain the external dose rate at an elevated level for a long time. The results of the sequential extraction procedure and activity determination of the different extracted fractions implies that the bioavailable fraction of radiocesium in ash from bark, wood or peat is in the range between 20-85% of the total ash contents. Peat ash collected from a powder burner strongly retained a large fraction (70-90%) of its radiocesium content while the peat ash from a continuos fluidized bed type burner retained nearly 100% of the radiocesium in the bottom ash and only about 15% in the fly ash

  14. Biofuels development and the policy regime.

    Science.gov (United States)

    Philp, Jim C; Guy, Ken; Ritchie, Rachael J

    2013-01-01

    Any major change to the energy order is certain to provoke both positive and negative societal responses. The current wave of biofuels development ignited controversies that have re-shaped the thinking about their future development. Mistakes were made in the early support for road transport biofuels in Organisation for Economic Co-operation and Development (OECD) countries. This article examines some of the policies that shaped the early development of biofuels and looks to the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Biofuel Cells – Alternative Power Sources

    International Nuclear Information System (INIS)

    Babanova, Sofia; Yolina Hubenova; Mario Mitov

    2009-01-01

    Energy generation from renewable sources and effective waste treatment are two key challenges for the sustainable development. Microbiological (or Bio-) Fuel Cells provide an elegant solution by linking both tasks. Biofuel cells, which can directly generate electricity from biodegradable substances, have rapidly gained increasing research attention. Widely available fuel sources and moderate operational conditions make them promising in renewable energy generation, wastewater treatment, power sources for remote devices, etc. This paper reviews the use of microorganisms as biocatalysts in microbiological fuel cells. The principle of biofuel cells and their construction elements are discussed. Keywords: alternative power sources, biofuel cells, biocatalysts

  16. Session 8: biofuels; Session 8: Les biocarburants

    Energy Technology Data Exchange (ETDEWEB)

    Botte, J.M.

    2006-01-15

    Here are given the summaries of the speeches of Mr Daniel Le Breton (Total): the transports of the future: the role of biofuels; of Mr Pierre Rouveirolles (Renault): the future expectations and needs; of Mr Frederic Monot (IFP): the developments of new generations of biofuels from biomass; of Mr Willem Jan Laan (Unilever): the use of bio resources for food and fuel: a fair competition? All these speeches have been presented at the AFTP yearly days (12-13 october 2005) on the session 8 concerning the biofuels. (O.M.)

  17. Energy balance of solid biofuels

    International Nuclear Information System (INIS)

    Scholz, V.; Berg, W.; Kaulfuss, P.

    1998-01-01

    The input and output of energy are two important factors used to determine the energetic and ecological usefulness of a fuel or its production technology. In this paper, a number of different methods for the production of five biofuels which can be produced in agriculture and forestry are analysed and energetic balances are presented. The results show that the energetic input is relatively low compared to the output, especially for by-products and residual substances such as cereal straw and forest pruning timber (thinning). Whenever fuel crops are cultivated, the energetic efficiency is critically determined by the quantity of nitrogen applied. Depending on the crop and technology, each gigajoule of energy input can provide 7-30 GJ or with by-products up to 50 GJ of thermally utilizable energy without any additional CO 2 pollution. (author)

  18. Response of Sesamum radiatum Schum vegetable and seed yield ...

    African Journals Online (AJOL)

    Response of Sesamum radiatum Schum vegetable and seed yield to phosphorus ... Western region of Nigeria and Research Farm of the Bio-fuel and Alternate ... that 90 kg P2O5 ha-1 was appropriate with basal application of 80 kg N ha-1.

  19. Can the Nigerian biofuel policy and incentives (2007) transform Nigeria into a biofuel economy?

    International Nuclear Information System (INIS)

    Ohimain, Elijah I.

    2013-01-01

    Nigeria's economy is largely dependent on petroleum, yet the country is suffering from fuel supply shortages. In response to the transportation fuel supply difficulties in Nigeria, the country released the Nigerian Biofuel Policy and Incentives in 2007 to create favorable investment climate for the entrance of Nigeria into the biofuel sector. The paper assessed the progress made thus far by Nigeria, 4 years after the Nigerian biofuel was released in an attempt to answer the question whether the policy is adequate to transform Nigeria into a biofuel economy. The study found that little progress has been made, which includes commencement of the construction of 20 bioethanol factories, installation of biofuel handling facilities at two depots (Mosimi and Atlas Cove), and selection of retail outlets for biofuel/conventional fuel mix. The site construction of the announced biofuel projects is now slow and other progress is marginal. We therefore conclude that the Nigerian biofuel policy is unlikely to transform Nigeria into a biofuel economy unless the Government revert and refocus on biofuel and include additional financial incentives such as grants and subsidy to complement the tax waivers (income, import duty, VAT), loans, and insurance cover contained in the policy. - Highlights: ► Nigeria's economy is dependent on petroleum, yet the country is suffering from fuel shortages. ► The Nigerian Biofuel Policy and Incentives was released in 2007. ► Little progress has been made since the policy was released 4 years ago. ► Hence, the policy is unlikely to transform Nigeria into a biofuel economy

  20. Finding the food-fuel balance. Supply and demand dynamics in global vegetable oil markets

    Energy Technology Data Exchange (ETDEWEB)

    Savanti, P.

    2012-10-15

    Demand for vegetable oils for food and biofuel use is expected to increase by an additional 23 million tonnes by 2016; however supply is expected to struggle to keep up with this demand, according to this Rabobank report. Vegetable oil stocks have reached a 38 year low this year due in large part to constraints such as land availability and adverse weather.

  1. Tracking U.S. biofuel innovation through patents

    International Nuclear Information System (INIS)

    Kessler, Jeff; Sperling, Daniel

    2016-01-01

    We use biofuel patents as a proxy for biofuel innovation. Through use of natural language processing and machine-learning algorithms, we expand patent classification capabilities to better explain the history of biofuels innovation. Results indicate that after the initial establishment of the U.S. biofuel industry, there were two surges in biofuel innovation: 1995–2000, characterized by heavy patenting by 1st generation (food-based) biofuel firms; and 2005–2010, characterized by a second surge of innovation by those same large firms, complemented by a large number of biotechnology firms producing a relatively small number of 2nd generation biofuel patents. Our analysis corroborates the widespread understanding that the first surge in biofuel innovation was linked to innovations in agriculture, and that the second surge of biofuel innovation was driven by demand-pull policies mandating and incentivizing biofuels. But the slow emergence of a 2nd generation cellulose-based biofuels industry, far slower than called for by policy, suggests that technology-push policies more focused on R&D and investment may be needed to accelerate the commercialization of 2nd generation biofuels. - Highlights: • Patenting activity closely corresponds to sociotechnical shifts in biofuel innovation. • The Renewable Fuel Standard likely contributed to the rise in biofuel patenting activity after 2005. • 2nd generation biofuel technology innovation appears lacking compared to 1st generation technologies.

  2. The atomization and burning of biofuels in the combustion chambers of gas turbine engines

    Science.gov (United States)

    Maiorova, A. I.; Vasil'ev, A. Yu; Sviridenkov, A. A.; Chelebyan, O. G.

    2017-11-01

    The present work analyzes the effect of physical properties of liquid fuels with high viscosity (including biofuels) on the spray and burning characteristics. The study showed that the spray characteristics behind devices well atomized fuel oil, may significantly deteriorate when using biofuels, until the collapse of the fuel bubble. To avoid this phenomenon it is necessary to carry out the calculation of the fuel film form when designing the nozzles. As a result of this calculation boundary curves in the coordinates of the Reynolds number on fuel - the Laplace number are built, characterizing the transition from sheet breakup to spraying. It is shown that these curves are described by a power function with the same exponent for nozzles of various designs. The swirl of air surrounding the nozzle in the same direction, as the swirl of fuel film, can significantly improve the performance of atomization of highly viscous fuel. Moreover the value of the tangential air velocity has the determining influence on the film shape. For carrying out of hot tests in aviation combustor some embodiments of liquid fuels were proved and the most preferred one was chosen. Fire tests of combustion chamber compartment at conventional fuel has shown comprehensible characteristics, in particular wide side-altars of the stable combustion. The blended biofuel application makes worse combustion stability in comparison with kerosene. A number of measures was recommended to modernize the conventional combustors when using biofuels in gas turbine engines.

  3. Figure 5, Biofuel refinery facility locations

    Data.gov (United States)

    U.S. Environmental Protection Agency — This workbook contains the locations and types of current and anticipated biofuel feedstock processing facilities assumed under the simulated scenarios. This dataset...

  4. IEA Energy Technology Essentials: Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biofuel Production is the topic covered in this edition.

  5. 3 CFR - Biofuels and Rural Economic Development

    Science.gov (United States)

    2010-01-01

    ... biofuels promise to play a key role by providing the Nation with homegrown sustainable energy options and... publish this memorandum in the Federal Register.BARACK OBAMATHE WHITE HOUSE, Washington, May 5, 2009. ...

  6. Third Generation Biofuels via Direct Cellulose Fermentation

    Directory of Open Access Journals (Sweden)

    David B. Levin

    2008-07-01

    Full Text Available Consolidated bioprocessing (CBP is a system in which cellulase production, substrate hydrolysis, and fermentation are accomplished in a single process step by cellulolytic microorganisms. CBP offers the potential for lower biofuel production costs due to simpler feedstock processing, lower energy inputs, and higher conversion efficiencies than separate hydrolysis and fermentation processes, and is an economically attractive near-term goal for “third generation” biofuel production. In this review article, production of third generation biofuels from cellulosic feedstocks will be addressed in respect to the metabolism of cellulolytic bacteria and the development of strategies to increase biofuel yields through metabolic engineering.

  7. Biofuels and bioenergy: processes and technologies

    National Research Council Canada - National Science Library

    Lee, Sunggyu; Shah, Yatish T

    2013-01-01

    ... since the early twentieth century. Up until recently, however, development interest in biofuels had lessened due to the availability of relatively inexpensive fossil energy resources as well as the handling and transportation...

  8. setting sustainable standards for biofuel production

    African Journals Online (AJOL)

    OLAWUYI

    Director for Research, Training and International Development, Institute for Oil, Gas, ..... Table 3 presents the five stages in the product lifecycle for biofuel production ..... Principles on Human Rights Impact Assessments of Trade and Investment.

  9. Biofuels for transportation : a climate perspective

    Science.gov (United States)

    2008-06-01

    As the United States seeks to reduce greenhouse gas (GHG) emissions from motor vehicles and to lessen its dependence on imported oil, biofuels are gaining increasing attention as one possible solution. This paper offers an introduction to the current...

  10. Second generation biofuels, an accelerator of the transition toward an economy driven by energy drawn from hydrogen

    International Nuclear Information System (INIS)

    Delabroy, O.

    2013-01-01

    The growth of the bio economy, especially in transportation, involves developing a bio-fuel industry. First generation bio-fuels were produced from plant sugars like starch or from plant oils. Second generation bio fuels use as raw materials the whole plant and especially agricultural and forestry wastes which extend the resource considerably and limit the competition between food use and fuel use. Second generation bio-fuels can be made with not only biological methods but also biomass-to-liquid processes borrowed from thermochemistry. Players in this field, including 'Air Liquide' company, are drawing up a technical and economic road-map for competitiveness in this emerging branch of industry. Since the thermochemical approach for gasifying a biomass also yields large quantities of hydrogen, the industrialization of this branch and concomitant production of bio-hydrogen at competitive prices provide leverage for accelerating the transition toward using H 2 for transportation

  11. A multi-actor multi-criteria framework to assess the stakeholder support for different biofuel options: The case of Belgium

    International Nuclear Information System (INIS)

    Turcksin, Laurence; Macharis, Cathy; Lebeau, Kenneth; Boureima, Faycal; Van Mierlo, Joeri; Bram, Svend; De Ruyck, Jacques; Mertens, Lara; Jossart, Jean-Marc; Gorissen, Leen; Pelkmans, Luc

    2011-01-01

    The multi-actor multi-criteria analysis (MAMCA) is a methodology to evaluate different policy measures, whereby different stakeholders' opinions are explicitly taken into account. In this paper, the framework is used to assess several biofuel options for Belgium that can contribute to the binding target of 10% renewable fuels in transport by 2020, issued by the Renewable Energy Directive (RED). Four biofuel options (biodiesel, ethanol, biogas and synthetic biodiesel (also referred to as 'biomass-to-liquid' or BTL)) together with a reference fossil fuel option, are evaluated on the aims and objectives of the different stakeholders involved in the biofuel supply chain (feedstock producers, biofuel producers, fuel distributors, end users, vehicle manufacturers, government, NGOs and North-South organizations). Overall, the MAMCA provided insights in the stakeholder's position and possible implementation problems for every biofuel option. As such, it helps decision makers in establishing a supportive policy framework to facilitate implementation and to ensure market success, once they have decided on which biofuel option (or combination of options) to implement. - Research Highlights: → Stakeholder support is an indispensable factor for market success of biofuels. → A MAMCA explicitly includes stakeholder visions in the decision-making process. → The MAMCA shows strengths and weaknesses of alternatives for different stakeholders. →Information on stakeholder's position helps to establish implementation pathways. → Policy makers should focus on combination of biofuel options to reach EU 2020 target.

  12. Near-zero emissions combustor system for syngas and biofuels

    International Nuclear Information System (INIS)

    Yongho, Kim; Rosocha, Louis

    2010-01-01

    research necessary to develop a novel, high-efficiency, low-emissions (near-zero, or as low as reasonably achievable), advanced combustion technology for electricity and heat production from biofuels and fuels derived from MSW. For any type of combustion technology, including the advanced technology of this project, two problems of special interest must be addressed: developing and optimizing the combustion chambers and the systems for igniting and sustaining the fuel-burning process. For MSW in particular, there are new challenges over gaseous or liquid fuels because solid fuels must be ground into fine particulates (∼ 10 (micro)m diameter), fed into the advanced combustor, and combusted under plasma-assisted conditions that are quite different than gaseous or liquid fuels. The principal idea of the combustion chamber design is to use so-called reverse vortex gas flow, which allows efficient cooling of the chamber wall and flame stabilization in the central area of the combustor (Tornado chamber). Considerable progress has been made in design ing an advanced, reverse vortex flow combustion chamber for biofuels, although it was not tested on biofuels and a system that could be fully commercialized has never been completed.

  13. Biofuels: The hidden cause of deforestation?

    OpenAIRE

    Smith, Alison; Lebensohn, Ignacio; Lickacz, Lindsay; Clarke, Louise

    2009-01-01

    The objective of the project is to establish a causal relationship between the biofuel market in the USA and the Amazonic Deforestation. The project parts from an objectivist approach and uses economic as well as environmental theories as a starting point. It attempts to demonstrate that biofuels are not as environmentally friendly as advertised, but instead have a detrimental effect on the Amazon Rainforest. The project utilizes statistics as a main source for empirical data, as well various...

  14. Panorama 2011: Water and bio-fuels

    International Nuclear Information System (INIS)

    Lorne, D.

    2011-01-01

    Nowadays, water is seen as a major sustainability criterion for bio-energies. Although the biofuels being produced by food crops are subject to the same risks as the farming sector as far as water resources are concerned, future sectors have a significant potential to reduce these risks, and this potential needs to be better understood in order for biofuels as a resource and their related technologies to develop properly. (authors)

  15. The impact of extreme drought on the biofuel feedstock production

    Science.gov (United States)

    hussain, M.; Zeri, M.; Bernacchi, C.

    2013-12-01

    Miscanthus (Miscanthus x giganteus) and Switchgrass (Panicum virgatum) have been identified as the primary targets for second-generation cellulosic biofuel crops. Prairie managed for biomass is also considered as one of the alternative to conventional biofuel and promised to provide ecosystem services, including carbon sequestration. These perennial grasses possess a number of traits that make them desirable biofuel crops and can be cultivated on marginal lands or interspersed with maize and soybean in the Corn Belt region. The U.S. Corn Belt region is the world's most productive and expansive maize-growing region, approximately 20% of the world's harvested corn hectares are found in 12 Corn Belt states. The introduction of a second generation cellulosic biofuels for biomass production in a landscape dominated by a grain crop (maize) has potential implications on the carbon and water cycles of the region. This issue is further intensified by the uncertainty in the response of the vegetation to the climate change induced drought periods, as was seen during the extreme droughts of 2011 and 2012 in the Midwest. The 2011 and 2012 growing seasons were considered driest since the 1932 dust bowl period; temperatures exceeded 3.0 °C above the 50- year mean and precipitation deficit reached 50 %. The major objective of this study was to evaluate the drought responses (2011 and 2012) of corn and perennial species at large scale, and to determine the seasonability of carbon and water fluxes in the response of controlling factors. We measured net CO2 ecosystem exchange (NEE) and water fluxes of maize-maize-soybean, and perennial species such as miscanthus, switchgrass and mixture of prairie grasses, using eddy covariance in the University of Illinois energy farm at Urbana, IL. The data presented here were for 5 years (2008- 2012). In the first two years, higher NEE in maize led to large CO2 sequestration. NEE however, decreased in dry years, particularly in 2012. On the other

  16. An assessment of Thailand's biofuel development

    DEFF Research Database (Denmark)

    Kumar, S.; Salam, P. Abdul; Shrestha, Pujan

    2013-01-01

    The paper provides an assessment of first generation biofuel (ethanol and biodiesel) development in Thailand in terms of feedstock used, production trends, planned targets and policies and discusses the biofuel sustainability issues-environmental, socio-economic and food security aspects. The pol......The paper provides an assessment of first generation biofuel (ethanol and biodiesel) development in Thailand in terms of feedstock used, production trends, planned targets and policies and discusses the biofuel sustainability issues-environmental, socio-economic and food security aspects...... to land and water use and food security are important considerations to be addressed for its large scale application. Second generation biofuels derived from agricultural residues perform favorably on environmental and social sustainability issues in comparison to first generation biofuel sources...... as transportation fuel. Alternatively, the same amount of residue could provide 0.8-2.1 billion liters per year of diesel (biomass to Fischer-Tropsch diesel) to potentially offset 6%-15% of national diesel consumption in the transportation sector....

  17. Sustainability of biofuels in Latin America: Risks and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Rainer, E-mail: rainer.janssen@wip-munich.de [WIP Renewable Energies, Sylvensteinstrasse 2, 81369 Munich (Germany); Rutz, Dominik Damian [WIP Renewable Energies, Sylvensteinstrasse 2, 81369 Munich (Germany)

    2011-10-15

    Several Latin American countries are setting up biofuel programmes to establish alternative markets for agricultural commodities. This is mainly triggered by the current success of Brazilian bioethanol production for the domestic market and for export. Furthermore, the global biofuel market is expected to increase due to ambitious biofuel programmes in the EU and in the USA. Colombia, Venezuela, Costa Rica and Guatemala are focusing on bioethanol production from sugarcane whereas biofuel production in Argentina is based on soy biodiesel. Recent developments of the biofuel sector take place extremely rapid especially in Argentina, which became one of the five largest biodiesel producers in the world in 2008. Till date no specific biofuel sustainability certification systems have been implemented in Latin American, as well as on global level. This fact and the predominant use of food crops for biofuel production raise concerns about the sustainability of biofuel production related to environmental and social aspects. This paper provides an overview of the hotspots of conflicts in biofuel production in Latin America. It investigates presently available sustainability tools and initiatives to ensure sustainable biofuel production in Latin America. Finally, it provides an outlook on how to integrate sustainability in the Latin American biofuel sector. - Research Highlights: > This study investigates risks and opportunities of biofuels in Latin America. > Latin American countries are setting up programmes to promote biofuel development. > Strong biofuel sectors provide opportunities for economic development. > Potential negative impact includes deforestation and effects on food security. > Sustainability initiatives exist to minimise negative impact.

  18. Sustainability of biofuels in Latin America: Risks and opportunities

    International Nuclear Information System (INIS)

    Janssen, Rainer; Rutz, Dominik Damian

    2011-01-01

    Several Latin American countries are setting up biofuel programmes to establish alternative markets for agricultural commodities. This is mainly triggered by the current success of Brazilian bioethanol production for the domestic market and for export. Furthermore, the global biofuel market is expected to increase due to ambitious biofuel programmes in the EU and in the USA. Colombia, Venezuela, Costa Rica and Guatemala are focusing on bioethanol production from sugarcane whereas biofuel production in Argentina is based on soy biodiesel. Recent developments of the biofuel sector take place extremely rapid especially in Argentina, which became one of the five largest biodiesel producers in the world in 2008. Till date no specific biofuel sustainability certification systems have been implemented in Latin American, as well as on global level. This fact and the predominant use of food crops for biofuel production raise concerns about the sustainability of biofuel production related to environmental and social aspects. This paper provides an overview of the hotspots of conflicts in biofuel production in Latin America. It investigates presently available sustainability tools and initiatives to ensure sustainable biofuel production in Latin America. Finally, it provides an outlook on how to integrate sustainability in the Latin American biofuel sector. - Research Highlights: → This study investigates risks and opportunities of biofuels in Latin America. → Latin American countries are setting up programmes to promote biofuel development. → Strong biofuel sectors provide opportunities for economic development. → Potential negative impact includes deforestation and effects on food security. → Sustainability initiatives exist to minimise negative impact.

  19. Rapid liquid chromatography–tandem mass spectrometry analysis of 4-hydroxynonenal for the assessment of oxidative degradation and safety of vegetable oils

    International Nuclear Information System (INIS)

    Gabbanini, Simone; Matera, Riccardo; Valvassori, Alice; Valgimigli, Luca

    2015-01-01

    Highlights: • A novel method for the UPLC–MS/MS analysis of 4-HNE is described. • The method allows complete analysis of a vegetable oil in 21 min with LOD ≤ 7 ng g −1 . • Excellent recovery from lipid matrices without deuterium-labeled internal standards. • Requires straightforward sample manipulation and routine equipment. • Allows fast, reliable, cost-effective assessment of safety and quality of oils. - Abstract: A novel method for the UHPLC–MS/MS analysis of (E)-4-hydroxynonenal (4-HNE) is described. The method is based on derivatization of 4-HNE with pentafluorophenylhydrazine (1) or 4-trifluoromethylphenylhydrazine (2) in acetonitrile in the presence of trifluoroacetic acid as catalyst at room temperature and allows complete analysis of one sample of vegetable oil in only 21 min, including sample preparation and chromatography. The method involving hydrazine 1, implemented in an ion trap instrument with analysis of the transition m/z 337 → 154 showed LOD = 10.9 nM, average accuracy of 101% and precision ranging 2.5–4.0% RSD intra-day (2.7–4.1% RSD inter-day), with 4-HNE standard solutions. Average recovery from lipid matrices was 96.3% from vaseline oil, 91.3% from sweet almond oil and 105.3% from olive oil. The method was tested on the assessment of safety and oxidative degradation of seven samples of dietary oil (soybean, mixed seeds, corn, peanut, sunflower, olive) and six cosmetic-grade oils (avocado, blackcurrant, apricot kernel, echium, sesame, wheat germ) and effectively detected increased 4-HNE levels in response to chemical (Fenton reaction), photochemical, or thermal stress and aging, aimed at mimicking typical oxidation associated with storage or industrial processing. The method is a convenient, cost-effective and reliable tool to assess quality and safety of vegetable oils

  20. Rapid liquid chromatography–tandem mass spectrometry analysis of 4-hydroxynonenal for the assessment of oxidative degradation and safety of vegetable oils

    Energy Technology Data Exchange (ETDEWEB)

    Gabbanini, Simone; Matera, Riccardo [BeC S.r.l., R& D Division, Via C. Monteverdi 49, 47122 Forlì (Italy); Valvassori, Alice [University of Bologna, Department of Chemistry “G. Ciamician”, Via S. Giacomo 11, 40126 Bologna (Italy); Valgimigli, Luca, E-mail: luca.valgimigli@unibo.it [University of Bologna, Department of Chemistry “G. Ciamician”, Via S. Giacomo 11, 40126 Bologna (Italy)

    2015-04-15

    Highlights: • A novel method for the UPLC–MS/MS analysis of 4-HNE is described. • The method allows complete analysis of a vegetable oil in 21 min with LOD ≤ 7 ng g{sup −1}. • Excellent recovery from lipid matrices without deuterium-labeled internal standards. • Requires straightforward sample manipulation and routine equipment. • Allows fast, reliable, cost-effective assessment of safety and quality of oils. - Abstract: A novel method for the UHPLC–MS/MS analysis of (E)-4-hydroxynonenal (4-HNE) is described. The method is based on derivatization of 4-HNE with pentafluorophenylhydrazine (1) or 4-trifluoromethylphenylhydrazine (2) in acetonitrile in the presence of trifluoroacetic acid as catalyst at room temperature and allows complete analysis of one sample of vegetable oil in only 21 min, including sample preparation and chromatography. The method involving hydrazine 1, implemented in an ion trap instrument with analysis of the transition m/z 337 → 154 showed LOD = 10.9 nM, average accuracy of 101% and precision ranging 2.5–4.0% RSD intra-day (2.7–4.1% RSD inter-day), with 4-HNE standard solutions. Average recovery from lipid matrices was 96.3% from vaseline oil, 91.3% from sweet almond oil and 105.3% from olive oil. The method was tested on the assessment of safety and oxidative degradation of seven samples of dietary oil (soybean, mixed seeds, corn, peanut, sunflower, olive) and six cosmetic-grade oils (avocado, blackcurrant, apricot kernel, echium, sesame, wheat germ) and effectively detected increased 4-HNE levels in response to chemical (Fenton reaction), photochemical, or thermal stress and aging, aimed at mimicking typical oxidation associated with storage or industrial processing. The method is a convenient, cost-effective and reliable tool to assess quality and safety of vegetable oils.

  1. Biofuel: an alternative to fossil fuel for alleviating world energy and economic crises.

    Science.gov (United States)

    Bhattarai, Keshav; Stalick, Wayne M; McKay, Scott; Geme, Gija; Bhattarai, Nimisha

    2011-01-01

    The time has come when it is desirable to look for alternative energy resources to confront the global energy crisis. Consideration of the increasing environmental problems and the possible crisis of fossil fuel availability at record high prices dictate that some changes will need to occur sooner rather than later. The recent oil spill in the Gulf of Mexico is just another example of the environmental threats that fossil fuels pose. This paper is an attempt to explore various bio-resources such as corn, barley, oat, rice, wheat, sorghum, sugar, safflower, and coniferous and non-coniferous species for the production of biofuels (ethanol and biodiesel). In order to assess the potential production of biofuel, in this paper, countries are organized into three groups based on: (a) geographic areas; (b) economic development; and(c) lending types, as classified by the World Bank. First, the total fossil fuel energy consumption and supply and possible carbon emission from burning fossil fuel is projected for these three groups of countries. Second, the possibility of production of biofuel from grains and vegetative product is projected. Third, a comparison of fossil fuel and biofuel is done to examine energy sustainability issues.

  2. Privileged Biofuels, Marginalized Indigenous Peoples: The Coevolution of Biofuels Development in the Tropics

    Science.gov (United States)

    Montefrio, Marvin Joseph F.

    2012-01-01

    Biofuels development has assumed an important role in integrating Indigenous peoples and other marginalized populations in the production of biofuels for global consumption. By combining the theories of commoditization and the environmental sociology of networks and flows, the author analyzed emerging trends and possible changes in institutions…

  3. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  4. Process modeling and supply chain design for advanced biofuel production based on bio-oil gasification

    Science.gov (United States)

    Li, Qi

    As a potential substitute for petroleum-based fuel, second generation biofuels are playing an increasingly important role due to their economic, environmental, and social benefits. With the rapid development of biofuel industry, there has been an increasing literature on the techno-economic analysis and supply chain design for biofuel production based on a variety of production pathways. A recently proposed production pathway of advanced biofuel is to convert biomass to bio-oil at widely distributed small-scale fast pyrolysis plants, then gasify the bio-oil to syngas and upgrade the syngas to transportation fuels in centralized biorefinery. This thesis aims to investigate two types of assessments on this bio-oil gasification pathway: techno-economic analysis based on process modeling and literature data; supply chain design with a focus on optimal decisions for number of facilities to build, facility capacities and logistic decisions considering uncertainties. A detailed process modeling with corn stover as feedstock and liquid fuels as the final products is presented. Techno-economic analysis of the bio-oil gasification pathway is also discussed to assess the economic feasibility. Some preliminary results show a capital investment of 438 million dollar and minimum fuel selling price (MSP) of $5.6 per gallon of gasoline equivalent. The sensitivity analysis finds that MSP is most sensitive to internal rate of return (IRR), biomass feedstock cost, and fixed capital cost. A two-stage stochastic programming is formulated to solve the supply chain design problem considering uncertainties in biomass availability, technology advancement, and biofuel price. The first-stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants and the centralized biorefinery while the second-stage determines the biomass and biofuel flows. The numerical results and case study illustrate that considering uncertainties can be

  5. Engineering microbes to produce biofuels.

    Science.gov (United States)

    Wackett, Lawrence P

    2011-06-01

    The current biofuels landscape is chaotic. It is controlled by the rules imposed by economic forces and driven by the necessity of finding new sources of energy, particularly motor fuels. The need is bringing forth great creativity in uncovering new candidate fuel molecules that can be made via metabolic engineering. These next generation fuels include long-chain alcohols, terpenoid hydrocarbons, and diesel-length alkanes. Renewable fuels contain carbon derived from carbon dioxide. The carbon dioxide is derived directly by a photosynthetic fuel-producing organism(s) or via intermediary biomass polymers that were previously derived from carbon dioxide. To use the latter economically, biomass depolymerization processes must improve and this is a very active area of research. There are competitive approaches with some groups using enzyme based methods and others using chemical catalysts. With the former, feedstock and end-product toxicity loom as major problems. Advances chiefly rest on the ability to manipulate biological systems. Computational and modular construction approaches are key. For example, novel metabolic networks have been constructed to make long-chain alcohols and hydrocarbons that have superior fuel properties over ethanol. A particularly exciting approach is to implement a direct utilization of solar energy to make a usable fuel. A number of approaches use the components of current biological systems, but re-engineer them for more direct, efficient production of fuels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Biofuels: Project summaries. Research summaries, Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    Domestic transportation fuels are almost exclusively derived from petroleum and account for about two-thirds of total US petroleum consumption. In 1990, more than 40% of the petroleum used domestically was imported. Because the United States has only 5% of the world`s petroleum reserves, and the countries of the Middle East have about 75%, US imports are likely to continue to increase. With our heavy reliance on oil and without suitable substitutes for petroleum-based transportation fuels, the United States is extremely vulnerable, both strategically and economically, to fuel supply disruptions. In addition to strategic and economic affairs, the envirorunental impacts of our use of petroleum are becoming increasingly evident and must be addressed. The US Department of Energy`s (DOE`s) Office of Energy Efficiency and Renewable Energy (EE), through its Biofuels Systems Division (BSD), is addressing these issues. The BSD is aggressively pursuing research on biofuels-liquid and gaseous fuels produced from renewable domestic feedstocks such as forage grasses, oil seeds, short-rotation tree crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams.

  7. Initial development of a blurry injector for biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Claudia Goncalves de; Costa, Fernando de Souza [National Institute for Space Research (INPE) Cachoeira Paulista, SP (Brazil). Associated Lab. of Combustion and Propulsion], Emails: claudia@lcp.inpe.br, fernando@lcp.inpe.br; Couto, Heraldo da Silva [Vale Energy Solution, Sao Jose dos Campos, SP (Brazil)], E-mail: heraldo.couto@vsesa.com.br

    2010-07-01

    The increasing costs of fossil fuels, environmental concerns and stringent regulations on fuel emissions have caused a significant interest on biofuels, especially ethanol and biodiesel. The combustion of liquid fuels in diesel engines, turbines, rocket engines and industrial furnaces depends on the effective atomization to increase the surface area of the fuel and thus to achieve high rates of mixing and evaporation. In order to promote combustion with maximum efficiency and minimum emissions, an injector must create a fuel spray that evaporates and disperses quickly to produce a homogeneous mixture of vaporized fuel and air. Blurry injectors can produce a spray of small droplets of similar sizes, provide excellent vaporization and mixing of fuel with air, low emissions of NO{sub x} and CO, and high efficiency. This work describes the initial development of a blurry injector for biofuels. Theoretical droplet sizes are calculated in terms of feed pressures and mass flow rates of fuel and air. Droplet size distribution and average diameters are measured by a laser system using a diffraction technique. (author)

  8. Residue analysis of four diacylhydrazine insecticides in fruits and vegetables by Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method using ultra-performance liquid chromatography coupled to tandem mass spectrometry.

    Science.gov (United States)

    Liu, Xingang; Xu, Jun; Dong, Fengshou; Li, Yuanbo; Song, Wenchen; Zheng, Yongquan

    2011-08-01

    The new analytical method using Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) procedure for simultaneous determination of diacylhydrazine insecticide residues in fruits and vegetables was developed using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). The four insecticides (tebufenozide, methoxfenozide, chromafenozide, and halofenozide) were extracted from six fruit and vegetable matrices using acetonitrile and subsequently cleaned up using primary secondary amine (PSA) or octadecylsilane (C18) as sorbent prior to UPLC-MS/MS analysis. The determination of the target compounds was achieved in less than 3.0 min using an electrospray ionization source in positive mode (ESI+) for tebufenozide, methoxfenozide, and halofenozide and in negative mode (ESI-) for chromafenozide. The limits of detection were below 0.6 μg kg(-1), while the limit of quantification did not exceed 2 μg kg(-1) in different matrices. The QuEChERS procedure by using two sorbents (PSA and C18) and the matrix-matched standards gave satisfactory recoveries and relative standard deviation (RSD) values in different matrices at four spiked levels (0.01, 0.05, 0.1, and 1 mg kg(-1)). The overall average recoveries for this method in apple, grape, cucumber, tomato, cabbage, and spinach at four levels ranged from 74.2% to 112.5% with RSDs in the range of 1.4-13.8% (n = 5) for all analytes. This study provides a theoretical basis for China to draw up maximum residue limits and analytical method for diacylhydrazine insecticide in vegetables and fruits.

  9. Rapid liquid chromatography-tandem mass spectrometry analysis of 4-hydroxynonenal for the assessment of oxidative degradation and safety of vegetable oils.

    Science.gov (United States)

    Gabbanini, Simone; Matera, Riccardo; Valvassori, Alice; Valgimigli, Luca

    2015-04-15

    A novel method for the UHPLC-MS/MS analysis of (E)-4-hydroxynonenal (4-HNE) is described. The method is based on derivatization of 4-HNE with pentafluorophenylhydrazine (1) or 4-trifluoromethylphenylhydrazine (2) in acetonitrile in the presence of trifluoroacetic acid as catalyst at room temperature and allows complete analysis of one sample of vegetable oil in only 21 min, including sample preparation and chromatography. The method involving hydrazine 1, implemented in an ion trap instrument with analysis of the transition m/z 337→154 showed LOD=10.9 nM, average accuracy of 101% and precision ranging 2.5-4.0% RSD intra-day (2.7-4.1% RSD inter-day), with 4-HNE standard solutions. Average recovery from lipid matrices was 96.3% from vaseline oil, 91.3% from sweet almond oil and 105.3% from olive oil. The method was tested on the assessment of safety and oxidative degradation of seven samples of dietary oil (soybean, mixed seeds, corn, peanut, sunflower, olive) and six cosmetic-grade oils (avocado, blackcurrant, apricot kernel, echium, sesame, wheat germ) and effectively detected increased 4-HNE levels in response to chemical (Fenton reaction), photochemical, or thermal stress and aging, aimed at mimicking typical oxidation associated with storage or industrial processing. The method is a convenient, cost-effective and reliable tool to assess quality and safety of vegetable oils. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Land Use Change under Biofuel Policies and a Tax on Meat and Dairy Products: Considering Complexity in Agricultural Production Chains Matters

    Directory of Open Access Journals (Sweden)

    Ruth Delzeit

    2018-02-01

    Full Text Available Growing demand for meat and dairy products (MDP, biofuels, and scarcity of agricultural land are drivers of global land use competition. Impacts of policies targeting demand for MDP or biofuels have only been analysed separately. We use the computable general equilibrium model DART-BIO to investigate combined effects, since MDP and biofuel production are closely related via feestock use and co-production of animal feed. We implement four scenarios: (a a baseline scenario; (b halving MDP consumption in industrialised countries by a tax; (c abolishing current biofuel policies; and (d no exogenous land use change. We find that a MDP tax and exogenous land use change have larger effects on land use and food markets than biofuel policies. International trade is affected in all scenarios. With respect to combined effects of a MDP tax and biofuel policies, we find decreasing biodiesel but increasing bioethanol production. In addition, the MDP tax decreases the impact of biofuel policies on agricultural markets and land use. Our results highlight the importance of a detailed representation of different vegetable oils used in biodiesel production and related by-products. Finally, since the MDP tax increases the use of fossil fuels, the net climate mitigation potentials of such a tax should be investigated further.

  11. Kuchler Vegetation

    Data.gov (United States)

    California Natural Resource Agency — Digital version of potential natural plant communites as compiled and published on 'Map of the Natural Vegetation of California' by A. W. Kuchler, 1976. Source map...

  12. Wieslander Vegetation

    Data.gov (United States)

    California Natural Resource Agency — Digital version of the 1945 California Vegetation Type Maps by A. E. Wieslander of the U.S. Forest Service. Source scale of maps are 1:100,000. These compiled maps...

  13. Primary productivity and the prospects for biofuels in the United Kingdom

    Science.gov (United States)

    Lawson, G. J.; Callaghan, T. V.

    1983-09-01

    Estimates of land use and plant productivity are combined to predict total annual primary production in the UK as 252 million tonnes dry matter (10.5 t ha-1yr-1). Annual above ground production is predicted to be 165 Mt (6.9 t ha-1yr-1). Within these totals, intensive agriculture contributes 60%, productive woodland 8%, natural vegetation 26% and urban vegetation 5%. However, only 25% of total plant production is cropped by man and animals, and most of this is subsequently discarded as wastes and residues. 2112 PJ of organic material is available for fuel without reducing food or fibre production, but since much of this could not be economically collected, 859 PJ is calculated as a more realistic biofuel contribution by the year 2000. After deducting 50% conversion losses, this could save P1 billion (1979 prices) in oil imports. Short rotation energy plantations, forest residues, coppice woodlands, animal and crop wastes, industrial and domestic wastes, catch crops, natural vegetation and urban vegetation all have immediate or short term potential as biofuel sources. Sensitive planning is required to reduce environmental impact, but in some cases more diverse wildlife habitats may be created.

  14. Upgrading pyrolysis bio-oil to biofuel over bifunctional Co-Zn/HZSM-5 catalyst in supercritical methanol

    International Nuclear Information System (INIS)

    Cheng, Shouyun; Wei, Lin; Julson, James; Muthukumarappan, Kasiviswanathan; Kharel, Parashu Ram

    2017-01-01

    Highlights: • Integration of Co-Zn/HZSM-5 and supercritical methanol was used for bio-oil hydrodeoxygenation. • Co-Zn/HZSM-5 exhibited higher effectiveness than Co/HZSM-5 or Zn/HZSM-5. • 15%Co5%Zn/HZSM-5 produced biofuel with the highest hydrocarbons content at 35.33%. • Loading of Co and/or Zn did not change crystalline structure of HZSM-5. • Hydrogenation and esterification are main reactions in bio-oil hydrodeoxygenation. - Abstract: The role of catalyst is essential in processes of upgrading biomass pyrolysis bio-oil into hydrocarbon biofuel. While the majority of heterogeneous catalytic processes are conducted in the presence of gas (nearly ideal) or liquid phase, a growing number of processes are utilizing supercritical fluids (SCFs) as reaction media. Although hydrodeoxygenation (HDO) is proven a promising process for pyrolysis bio-oil upgrading to hydrocarbon biofuel, catalyst efficiency remains a challenge. Integrating heterogeneous catalysts with SCFs in a bio-oil HDO process was investigated in this study. Bifunctional Co-Zn/HZSM-5 catalysts were firstly used to upgrade bio-oil to biofuel in supercritical methanol. The loading of Co and Zn did not change HZSM-5 crystalline structure. Physicochemical properties of biofuel produced by Co and/or Zn loaded HZSM-5 catalysts such as water content, total acid number, viscosity and higher heating value improved. Bimetallic Co-Zn/HZSM-5 catalysts showed enhanced reactions of decarboxylation and decarbonylation that resulted in higher yields of CO and CO 2 . Bimetallic Co-Zn/HZSM-5 catalysts were more effective for bio-oil HDO than monometallic Co/HZSM-5 or Zn/HZSM-5 catalyst , which was attributed to the synergistic effect of Co and Zn on HZSM-5 support. Bimetallic Co-Zn/HZSM-5 catalysts increased biofuel yields and hydrocarbons contents in biofuels in comparison with monometallic Co/HZSM-5 and Zn/HZSM-5 catalysts. 5%Co15%Zn/HZSM-5 catalyst generated the highest biofuel yield at 22.13 wt.%, and 15%Co5

  15. Cyclodextrin-based miniaturized solid phase extraction for biopesticides analysis in water and vegetable juices samples analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Peng, Li-Qing; Ye, Li-Hong; Cao, Jun; Chang, Yan-Xu; Li, Qin; An, Mingrui; Tan, Zhijing; Xu, Jing-Jing

    2017-07-01

    A cyclodextrin-based miniaturized solid-phase extraction was developed to extract biopesticides from water and vegetable juices. The analytes were detected by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. In the solid-phase extraction (SPE) procedure, the liquid sample solution is passed through a packed column filled with 40mg of HP-β-CD, and then the target analytes are absorbed and finally eluted with methanol-acetic acid (90:10, v/v) into a collection tube. The limits of quantification ranged from 3.73 to 16.51ng/mL for a water matrix, from 2.62 to 13.23ng/mL for an orange juice matrix and from 1.76 to 10.35ng/mL for a tomato juice matrix, respectively. The average recovery values were in the range of 88.3-95.9% for the spiked samples. The established methodology was successfully applied to analyze sanguinarine, berberine, rotenone and osthole in water, orange juice and tomato juice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Synthetic biology and the technicity of biofuels.

    Science.gov (United States)

    Mackenzie, Adrian

    2013-06-01

    The principal existing real-world application of synthetic biology is biofuels. Several 'next generation biofuel' companies-Synthetic Genomics, Amyris and Joule Unlimited Technologies-claim to be using synthetic biology to make biofuels. The irony of this is that highly advanced science and engineering serves the very mundane and familiar realm of transport. Despite their rather prosaic nature, biofuels could offer an interesting way to highlight the novelty of synthetic biology from several angles at once. Drawing on the French philosopher of technology and biology Gilbert Simondon, we can understand biofuels as technical objects whose genesis involves processes of concretisation that negotiate between heterogeneous geographical, biological, technical, scientific and commercial realities. Simondon's notion of technicity, the degree of concretisation of a technical object, usefully conceptualises this relationality. Viewed in terms of technicity, we might understand better how technical entities, elements, and ensembles are coming into being in the name of synthetic biology. The broader argument here is that when we seek to identify the newness of disciplines, their newness might be less epistemic and more logistic. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  17. Perspectives for Sustainable Aviation Biofuels in Brazil

    Directory of Open Access Journals (Sweden)

    Luís A. B. Cortez

    2015-01-01

    Full Text Available The aviation industry has set ambitious goals to reduce carbon emissions in coming decades. The strategy involves the use of sustainable biofuels, aiming to achieve benefits from environmental, social, and economic perspectives. In this context, Brazilian conditions are favorable, with a mature agroindustry that regularly produces automotive biofuel largely adopted by Brazilian road vehicles, while air transportation has been growing at an accelerating pace and a modern aircraft industry is in place. This paper presents the main conclusions and recommendations from a broad assessment of the technological, economic, and sustainability challenges and opportunities associated with the development of drop-in aviation biofuels in Brazil. It was written by a research team that prepared the initial reports and conducted eight workshops with the active participation of more than 30 stakeholders encompassing the private sector, government institutions, NGOs, and academia. The main outcome was a set of guidelines for establishing a new biofuels industry, including recommendations for (a filling the identified research and development knowledge gaps in the production of sustainable feedstock; (b overcoming the barriers in conversion technology, including scaling-up issues; (c promoting greater involvement and interaction between private and government stakeholders; and (d creating a national strategy to promote the development of aviation biofuels.

  18. Beyond commonplace biofuels: Social aspects of ethanol

    International Nuclear Information System (INIS)

    Ribeiro, Barbara Esteves

    2013-01-01

    Biofuels policies and projects may lead to environmental, economic and social impacts. A number of studies point out the need to deliver comprehensive sustainability assessments regarding biofuels, with some presenting analytical frameworks that claim to be exhaustive. However, what is often found in the literature is an overexploitation of environmental and economic concerns, by contrast to a limited appraisal of the social aspects of biofuels. Building on a systematic review of the peer-reviewed literature, this paper discusses the social constraints and strengths of ethanol, with regard to the product's lifecycle stages and the actors involved. Its objective is to contribute to the development of social frameworks to be used in assessing the impact of ethanol. Main findings indicate that ethanol developments can increase the levels of social vulnerability, although there is little evidence in the literature regarding the positive and negative social impacts of 1st-generation ethanol and potential impacts of cellulosic ethanol. Further work is needed on the formulation of social criteria and indicators for a comprehensive sustainability assessment of this biofuel. Policy makers need to internalise the social dimension of ethanol in decision-making to prevent public opposition and irreversible social costs in the future. - Highlights: ► The literature lacks evidence on the social impacts of ethanol. ► Further work is needed on social criteria and indicators for assessment. ► Ethanol developments can increase the levels of social vulnerability. ► Decision-making should internalise the social dimension of biofuels sustainability

  19. Bio-fuel production potential in Romania

    International Nuclear Information System (INIS)

    Laurentiu, F.; Silvian, F.; Dumitru, F.

    2006-01-01

    The paper is based on the ESTO Study: Techno- Economic Feasibility of Large-Scale Production of Bio-Fuels in EU-Candidate Countries. Bio-fuel production has not been taken into account significantly until now in Romania, being limited to small- scale productions of ethanol, used mostly for various industrial purposes. However the climatic conditions and the quality of the soil are very suitable in the country for development of the main crops (wheat, sugar-beet, sunflower and rape-seed) used in bio-ethanol and bio-diesel production. The paper intended to consider a pertinent discussion of the present situation in Romania's agriculture stressing on the following essential items in the estimation of bio-fuels production potential: availability of feed-stock for bio-fuel production; actual productions of bio-fuels; fuel consumption; cost assessment; SWOT approach; expected trends. Our analysis was based on specific agricultural data for the period 1996-2000. An important ethanol potential (due to wheat, sugar-beet and maize cultures), as well as bio-diesel one (due to sun-flower and rape-seed) were predicted for the period 2005-2010 which could be exploited with the support of an important financial and technological effort, mainly from EU countries

  20. Forecast for biofuel trade in Europe

    International Nuclear Information System (INIS)

    Hektor, B.; Vinterbaeck, J.; Toro, A.de; Nilsson, Daniel

    1993-01-01

    One principal general conclusion is that the European biofuel market for the period up to the year 2000 will be competitive, dynamic and affected by technical development and innovations. That leads to the conclusion that prices will go down, which will increase the ability of biofuels to compete in the market. Still, biofuels will generally not be able to compete at the price level of fossil fuels in the world market, but will need support or protection to reach a competitive position. There are several reasons for support, e.g. offsetting the green-house effect and acid rain, conservation of the limited fossil fuel deposits, utilisation of local and domestic energy resources, etc. As energy crops in Europe are at an introductory stage, no large international trade can be expected within the next ten years. In this study it is assumed that some limited protective measures are imposed, which is a possible result of the energy and environmental policy currently discussed for the European Community, EC. The study implies that in the year 2000 it is possible to transport large quantities of biofuels to large energy consumers if taxes and other incentives now under discussion in the EC and national governments are introduced. The study also implies that in the year 2000 it is possible to utilise biofuels primarily in local and national markets. In the latter case, international trade will be reduced to minor spot quantities

  1. Cyanobacterial metabolic engineering for biofuel and chemical production.

    Science.gov (United States)

    Oliver, Neal J; Rabinovitch-Deere, Christine A; Carroll, Austin L; Nozzi, Nicole E; Case, Anna E; Atsumi, Shota

    2016-12-01

    Rising levels of atmospheric CO 2 are contributing to the global greenhouse effect. Large scale use of atmospheric CO 2 may be a sustainable and renewable means of chemical and liquid fuel production to mitigate global climate change. Photosynthetic organisms are an ideal platform for efficient, natural CO 2 conversion to a broad range of chemicals. Cyanobacteria are especially attractive for these purposes, due to their genetic malleability and relatively fast growth rate. Recent years have yielded a range of work in the metabolic engineering of cyanobacteria and have led to greater knowledge of the host metabolism. Understanding of endogenous and heterologous carbon regulation mechanisms leads to the expansion of productive capacity and chemical variety. This review discusses the recent progress in metabolic engineering of cyanobacteria for biofuel and bulk chemical production since 2014. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Characterization of ashes from biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.J.; Hansen, L.A. [Technical Univ. of Denmark. Dept. of Chemical Engineering (Denmark); Soerensen, H.S. [Geological Survey of Denmark and Greenland (Denmark); Hjuler, K. [dk-TEKNIK. Energy and Environment (Denmark)

    1998-02-01

    One motivation for initiating the present project was that the international standard method of estimating the deposit propensity of solid fuels, of which a number of variants exist (e.g. ISO, ASTM, SD, DIN), has shown to be unsuitable for biomass ashes. This goal was addressed by the development of two new methods for the detection of ash fusibility behaviour based on Simultaneous Thermal Analysis (STA) and High Temperature Light Microscopy (HTLM), respectively. The methods were developed specifically for ashes from biofuels, but are suitable for coal ashes as well. They have been tested using simple salt mixtures, geological standards and samples from straw CHP and coal-straw PF combustion plants. All samples were run in a nitrogen atmosphere at a heating rate of 10 deg. C/min. In comparison with the standard method, the new methods are objective and have superior repeatability and sensitivity. Furthermore, the two methods enable the melting behavior to be characterized by a continuous measurement of melt fraction versus temperature. Due to this two-dimensional resolution of the results, the STA and HTLM methods provide more information than the standard method. The study of bottom ash and fly ash as well as deposit samples from straw test firings at the Haslev and Slagelse Combined Heat and Power plants resulted in a better understanding of mineral behaviour during straw grate firing. In these tests a number of straws were fired which had been carefully selected for having different qualities with respect to sort and potassium and chlorine contents. By studying bottom ashes from Slagelse it was found that the melting behaviour correlated with the deposition rate on a probe situated at the outlet part of the combustion zone. (EG)

  3. Import of biofuels and peat

    International Nuclear Information System (INIS)

    Albertsson, N.

    1993-06-01

    In areas neighbouring Sweden, i.e., foremost the Baltic States, it is probable that a large part of the available amounts will be consumed on the domestic market. Studies of the possible use of wood fuel in Estonia, Latvia and Lithuania are being made by the World Bank. Considerable investments will probably be made in the near future to replace existing coal- and oil-fired boiler plants with plants burning wood fuel. Consequently, the opportunities for exports of wood fuel will probably be small. In a global perspective, peat is used only to a limited extent as fuel. In the former Soviet Union alone it is estimated that the amount of peat that is economically feasible to extract is about 166x10 9 tonnes at a moisture content of 40%. Among the most interesting bio products that can be used in energy production from different food processing industries are nut-shells and fruit stones. Some stones, such as those in olives, plums and peaches, are excellent as fuels. The advantage with olive stones, in comparison with chips is that the bulk weight is high and the moisture content is low. Olive stones are thus similar to processed biofuels such as pellets. Due to their high energy content the olive stones can replace coal, which cannot be done by unprocessed fuels without expensive investments in materials handling equipment. Our survey shows that processed forest fuels and crushed olive stones are the products of greatest interest for the Swedish market. It also shows that both chips and peat-based products from the Baltic States are competitive

  4. Competitivity of biofuels in heating

    International Nuclear Information System (INIS)

    Flyktman, M.

    1996-01-01

    The competitivity of indigenous fuels in heating of residential houses in comparison with imported fuels, and both electricity and district heating, has been studied in this research, ordered by the Finnish Ministry of Trade and Industry. Heating plants of residential house scale (20-1000 kW) have been investigated in the research. Only the new heating plants are included in the investigation. The heat generation calculations concerning the residential heating plants have been made for following indigenous fuels: sod peat, fuel-chips, peat and wood pellets, firewood and straw. In addition to these, the calculations have been made for light fuel-oil, electric heating, district heating and natural gas. The local energy tariffs have to be taken into account in electric heating, district heating and natural gas heating. A calculation model, based on flowsheet calculation, forms the main result of the project. By using the model it is possible to update the competitivity data rapidly. Of all the indigenous fuels, sod peat and fuel-chips appeared to be competitive with electric and district heating costs in nearly all scales investigated. The construction of the heat generation costs of solid indigenous fuels differs remarkably from those of electric and district heating. The main part of the heating costs of wood chips and sod peat is formed of fixed costs; i.e. of investment costs and of the costs of heating and control work. The energy costs are the highest costs items in electric an district heating, as well as in the oil heating. It is possible to improve the competitivity of biofuels by developing cheaper boilers and fuel processing and storage devices

  5. Biofuel and Food-Commodity Prices

    Directory of Open Access Journals (Sweden)

    David Zilberman

    2012-09-01

    Full Text Available The paper summarizes key findings of alternative lines of research on the relationship between food and fuel markets, and identifies gaps between two bodies of literature: one that investigates the relationship between food and fuel prices, and another that investigates the impact of the introduction of biofuels on commodity-food prices. The former body of literature suggests that biofuel prices do not affect food-commodity prices, but the latter suggests it does. We try to explain this gap, and then show that although biofuel was an important contributor to the recent food-price inflation of 2001–2008, its effect on food-commodity prices declined after the recession of 2008/09. We also show that the introduction of cross-price elasticity is important when explaining soybean price, but less so when explaining corn prices.

  6. Next generation biofuel engineering in prokaryotes

    Science.gov (United States)

    Gronenberg, Luisa S.; Marcheschi, Ryan J.; Liao, James C.

    2014-01-01

    Next-generation biofuels must be compatible with current transportation infrastructure and be derived from environmentally sustainable resources that do not compete with food crops. Many bacterial species have unique properties advantageous to the production of such next-generation fuels. However, no single species possesses all characteristics necessary to make high quantities of fuels from plant waste or CO2. Species containing a subset of the desired characteristics are used as starting points for engineering organisms with all desired attributes. Metabolic engineering of model organisms has yielded high titer production of advanced fuels, including alcohols, isoprenoids and fatty acid derivatives. Technical developments now allow engineering of native fuel producers, as well as lignocellulolytic and autotrophic bacteria, for the production of biofuels. Continued research on multiple fronts is required to engineer organisms for truly sustainable and economical biofuel production. PMID:23623045

  7. Bio-fuels of the first generation

    International Nuclear Information System (INIS)

    2012-04-01

    After having briefly recalled the objective of use of renewable energies and the role bio-fuels may play, this publication briefly presents various bio-fuels: bio-diesel (from colza, soybean or sunflower oil), and ethanol (from beet, sugar cane, wheat or corn). Some key data regarding bio-fuel production and use in France are briefly commented. The publication outlines strengths (a positive energy assessment, a decreased dependency on imported fossil fuels and a higher supply safety, a diversification of agriculture revenues and prospects, a reduction of greenhouse gas emissions) and weaknesses (uncertainty regarding the evolution of soil use, an environmental impact related to farming methods) of this sector. Actions undertaken by the ADEME in collaboration with other agencies and institutions are briefly overviewed

  8. MAIN TRENDS OF BIOFUELS PRODUCTION IN UKRAINE

    Directory of Open Access Journals (Sweden)

    Myroslav PANCHUK

    2017-12-01

    Full Text Available The analysis of biological resources for biofuels production in Ukraine has been carried out, and it has been shown that usage of alternative energy sources has great potential for substantially improving energy supply of the state and solving environmental problems. The directions of development and new technologies of obtaining motor fuels from biomass are systematized. It has been established that usage of different types of biofuels and their mixtures for feeding internal combustion engines involves application of modified engines in terms of structure and algorithms and usage of traditional designs of cars without significant structural changes. Moreover, the impact of biofuels on the efficient operation of the engine requires further integrated research.

  9. Energy Insecurity: The False Promise of Liquid Biofuels

    Science.gov (United States)

    2013-01-01

    and Gas $2,820 6,229 $0.45 Hydro $216 437 $0.49 Nuclear $2,499 1,451 $1.72 Geothermal $273 36 $7.63 Biomass/fuel $7,761 747 $10.39 Wind $4,986...States for processing.75 A 2010 World Bank analysis revealed that other wealthy countries, includ- ing Saudi Arabia, South Korea, and China , are...and peat lands to make room for oil palms has made Indonesia the world’s third highest producer of CO2, after the United States and China .88 The

  10. Energy, climate change and the opportunity for liquid biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Edgardo Olivares [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico], Emails: egomez@energiabr.org.br, gomez@bioware.com.br; Castaneda Ayarza, Juan Arturo; Zainaghi, Gislaine [Universidade Estadual de Campinas (FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica], Emails: jcastaneda@energiabr.org.br, zainaghi@yahoo.com; Chohfi, Felipe Moreton; Cortez, Luis Augusto Barbosa [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], Emails: fmchohfi@yahoo.com, cortez@reitoria.unicamp.br

    2006-07-01

    This paper provides an overview of the proven influence between anthropogenic actions such as those related with energy production and use on the natural environment. With the adverse perspectives of continued chemical changes occurring worldwide the paper also presents opportunities that can continue to ensure a more sustainable growth in harmony with the environment. A transition for a more efficient and environmentally correct final use of energy is needed in future in such a way as to diminish the conflicts between development and environment. Different scenarios aiming to provide the ideal routes for development to occur addressing sustainability indicators are studied. Some typical options for a more sustainable future include improved energy efficiency, more renewable energy and advanced energy technologies. National programs undertaken in Brazil such as those of the ethanol and bio diesel have a proven impact in the search for a sustainable future worldwide and should be further emphasized in future by means of the ratification of the Kyoto Protocol. (author)

  11. Prospects for the Production of Liquid Biofuels in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Zhelyezna, T.; Geletukha, G. [SEC ' Biomass' , Kiev (Ukraine)

    2006-07-15

    Ukraine is highly dependent on imported energy carriers. Prices of motor fuels permanently trend to rising. On the other hand, Ukraine has all necessary preconditions to start wide production of motor fuels from biomass for internal usage and export abroad. Ukrainian specialists have developed effective technology for production of high-octane oxygen containing admixture to petrol, which is the local analogue of bio-ethanol. For dewatering ethyl alcohol they use azeotropic distillation and adsorption on molecular sieves (zeolites). The technology is implemented at a number of distilleries of Ukraine. Besides, a few enterprises are about to start commercial production of bio-diesel in the country. The main barriers here are absence of clear state policy on the matter, lack of state support and sometimes still old way of thinking.

  12. Biofuels barometer - EurObserv'ER - July 2011

    International Nuclear Information System (INIS)

    2011-07-01

    13,6 % the increase in EU biofuel consumption in 2010. In 2010 biofuel continued to gnaw away at petrol and diesel consumption in the European Union. However its pace backs the assertion that EU biofuel consumption growth slackened off. In the transport sector, it increased by only 1.7 Mtoe compared to 2.7 Mtoe in 2009. The final total biofuel consumption figure for 2010 should hover at around 13,9 Mtoe

  13. Institutional analysis of biofuel production in Northern Ghana

    OpenAIRE

    Kwoyiga, Lydia

    2013-01-01

    The thesis studied the nature of institutional arrangement around biofuel production and how this arrangement has shaped the production outcome of biofuel companies and community development. The study was conducted in two communities of the Yendi Municipal Assembly of the Northern Region of Ghana. In this area, a biofuel company called Biofuel Africa Limited has acquired areas of land and cultivated Jatropha plantations. A total of 32 informants were interviewed to arrive at information ne...

  14. The Roundtable on Sustainable Biofuels: plant scientist input needed.

    Science.gov (United States)

    Haye, Sébastien; Hardtke, Christian S

    2009-08-01

    The Energy Center at the Ecole Polytechnique Fédérale de Lausanne (Swiss federal institute of technology) is coordinating a multi-stakeholder effort, the Roundtable on Sustainable Biofuels (http://energycenter.epfl.ch/biofuels), to develop global standards for sustainable biofuels production and processing. Given that many of the aspects related to biofuel production request a high scientific level of understanding, it is crucial that scientists take part in the discussion.

  15. The effect of native and introduced biofuel crops on the composition of soil biota communities

    Science.gov (United States)

    Frouz, Jan; Hedenec, Petr

    2016-04-01

    Biofuel crops are an accepted alternative to fossil fuels, but little is known about the ecological impact of their production. The aim of this contribution is to study the effect of native (Salix viminalis and Phalaris arundinacea) and introduced (Helianthus tuberosus, Reynoutria sachalinensis and Silphium perfoliatum) biofuel crop plantations on the soil biota in comparison with cultural meadow vegetation used as control. The study was performed as part of a split plot field experiment of the Crop Research Institute in the city of Chomutov (Czech Republic). The composition of the soil meso- and macrofauna community, composition of the cultivable fraction of the soil fungal community, cellulose decomposition (using litter bags), microbial biomass, basal soil respiration and PLFA composition (incl. F/B ratio) were studied in each site. The C:N ratio and content of polyphenols differed among plant species, but these results could not be considered significant between introduced and native plant species. Abundance of the soil meso- and macrofauna was higher in field sites planted with S. viminalis and P. arundinacea than those planted with S. perfoliatum, H. tuberosus and R. sachalinensis. RDA and Monte Carlo Permutation Test showed that the composition of the faunal community differed significantly between various native and introduced plants. Significantly different basal soil respiration was found in sites planted with various energy crops; however, this difference was not significant between native and introduced species. Microbial biomass carbon and cellulose decomposition did not exhibit any statistical differences among the biofuel crops. The largest statistically significant difference we found was in the content of actinobacterial and bacterial (bacteria, G+ bacteria and G- bacteria) PLFA in sites overgrown by P. arundinacea compared to introduced as well as native biofuel crops. In conclusion, certain parameters significantly differ between various native

  16. Biofuel Feedstock Assessment for Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  17. Prospects of using algae in biofuel production

    Directory of Open Access Journals (Sweden)

    Y. I. Maltsev

    2017-08-01

    Full Text Available The development of industry, agriculture and the transport sector is associated with the use of various energy sources. Renewable energy sources, including biofuels, are highly promising in this respect. As shown by a number of scientific studies, a promising source for biofuel production that would meet modern requirements may be algal biomass. After activation of the third generation biodiesel production it was assumed that the algae would become the most advantageous source, because it is not only able to accumulate significant amounts of lipids, but could reduce the of agricultural land involved in biofuel production and improve air quality by sequestering CO2. However, a major problem is presented by the cost of algae biomass cultivation and its processing compared to the production of biodiesel from agricultural crops. In this regard, there are several directions of increasing the efficiency of biodiesel production from algae biomass. The first direction is to increase lipid content in algae cells by means of genetic engineering. The second direction is connected with the stimulation of increased accumulation of lipids by stressing algae. The third direction involves the search for new, promising strains of algae that will be characterized by faster biomass accumulation rate, higher content of TAG and the optimal proportions of accumulated saturated and unsaturated fatty acids compared to the already known strains. Recently, a new approach in the search for biotechnologically valuable strains of algae has been formed on the basis of predictions of capacity for sufficient accumulation of lipids by clarifying the evolutionary relationships within the major taxonomic groups of algae. The outcome of these studies is the rapid cost reduction of biofuel production based on algae biomass. All this emphasizes the priority of any research aimed at both improving the process of production of biofuels from algae, and the search for new sources for

  18. An integrated renewable energy park approach for algal biofuel production in United States

    Energy Technology Data Exchange (ETDEWEB)

    Subhadra, Bobban [Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87131 (United States); Edwards, Mark [Marketing and Sustainability, W.P. Carey School of Business, Arizona State University, Tempe, AZ 85282 (United States)

    2010-09-15

    Algal biomass provides viable third generation feedstock for liquid transportation fuel that does not compete with food crops for cropland. However, fossil energy inputs and intensive water usage diminishes the positive aspects of algal energy production. An integrated renewable energy park (IREP) approach is proposed for aligning renewable energy industries in resource-specific regions in United States for synergistic electricity and liquid biofuel production from algal biomass with net zero carbon emissions. The benefits, challenges and policy needs of this approach are discussed. (author)

  19. An integrated renewable energy park approach for algal biofuel production in United States

    International Nuclear Information System (INIS)

    Subhadra, Bobban; Edwards, Mark

    2010-01-01

    Algal biomass provides viable third generation feedstock for liquid transportation fuel that does not compete with food crops for cropland. However, fossil energy inputs and intensive water usage diminishes the positive aspects of algal energy production. An integrated renewable energy park (IREP) approach is proposed for aligning renewable energy industries in resource-specific regions in United States for synergistic electricity and liquid biofuel production from algal biomass with net zero carbon emissions. The benefits, challenges and policy needs of this approach are discussed.

  20. VEGETATION MAPPING IN WETLANDS

    Directory of Open Access Journals (Sweden)

    F. PEDROTTI

    2004-01-01

    Full Text Available The current work examines the main aspects of wetland vegetation mapping, which can be summarized as analysis of the ecological-vegetational (ecotone gradients; vegetation complexes; relationships between vegetation distribution and geomorphology; vegetation of the hydrographic basin lo which the wetland in question belongs; vegetation monitoring with help of four vegetation maps: phytosociological map of the real and potential vegetation, map of vegetation dynamical tendencies, map of vegetation series.

  1. Assessing the biofuel options for Southern Africa

    CSIR Research Space (South Africa)

    Von Malititz, GP

    2008-11-01

    Full Text Available with nested levels of resource use rights. Despite the fact that this land is under-producing from a commercial agricultural perspective, this does not automatically translate into this land being available for biofuels. Due to the complex nature... the Biofuel yield in l/ha used in table one, using sugar cane and Jatropha as feedstock. These values are therefore not linked to specific country level growth conditions and assume suitable land is available. 3 It is very difficult to estimate total job...

  2. Microspora floccosa; a potential biofuel producer

    International Nuclear Information System (INIS)

    Memon, A.A.S.; Pathan, A.A.

    2016-01-01

    The current study is focused on biofuel production from local specie of algae. Initially samples were observed to identify the algal specie. Afterward oil was extracted from algae by Soxhlet extraction method, retention time was optimized to improve the yield of oil at different intervals. The recovered oil from algae was subjected to qualitative analysis by Gas Chromatography. Four major peaks were appeared on GC chromatogram which correspond to methyl esters of dodecanoic acid, tetradecanoic acid, 8,11,14-Eicosadienoic acid and 9,10-dihydroxy octadecanoic. The results reflect that Microspora floccosa algae considered to be favorable for biofuel production. (author)

  3. Microspora Floccosa; A Potential Biofuel Producer

    Directory of Open Access Journals (Sweden)

    Aisha Abdul Sattar Memon

    2016-06-01

    Full Text Available The current study is focused on biofuel production from local specie of algae. Initially samples were observed to identify the algal specie. Afterward oil was extracted from algae by Soxhlet extraction method, retention time was optimized to improve the yield of oil at different intervals. The recovered oil from algae was subjected to qualitative analysis by Gas Chromatography. Four major peaks were appeared on GC chromatogram which correspond to methyl esters of Dodecanoic acid, Tetradecanoic acid, 8,11,14-Eicosadienoic acid and 9,10-Dihydroxy octadecanoic. The results reflect that Microspora floccosa algae considered to be favorable for biofuel production.

  4. Water use implications of biofuel scenarios

    Science.gov (United States)

    Teter, J.; Mishra, G. S.; Yeh, S.

    2012-12-01

    Existing studies rely upon attributional lifecycle analysis (LCA) approaches to estimate water intensity of biofuels in liters of irrigated/evapotranspiration water consumed for biofuel production. Such approaches can be misleading. From a policy perspective, a better approach is to compare differential water impacts among scenarios on a landscape scale. We address the shortcomings of existing studies by using consequential LCA, and incorporate direct and indirect land use (changes) of biofuel scenarios, marginal vs. average biofuel water use estimates, future climate, and geographic heterogeneity. We use the outputs of a partial equilibrium economic model, climate and soil data, and a process-based crop-soil-climate-water model to estimate differences in green water (GW - directly from precipitation to soil) and blue water (BW - supplied by irrigation) use among three scenarios: (1) business-as-usual (BAU), (2) Renewable Fuels Standard (RFS) mandates, and (3) a national Low Carbon Fuel Standard (LCFS) plus the RFS scenario. We use spatial statistical methods to interpolate key climatic variables using daily climate observations for the contiguous USA. Finally, we use FAO's crop model AquaCrop to estimate the domestic GW and BW impacts of biofuel policies from 2007-2035. We assess the differences among scenarios along the following metrics: (1) crop area expansion at the county level, including prime and marginal lands, (2) crop-specific and overall annual/seasonal water balances including (a) water inflows (irrigation & precipitation), (b) crop-atmosphere interactions: (evaporation & transpiration) and (d) soil-water flows (runoff & soil infiltration), in mm 3 /acre over the relevant time period. The functional unit of analysis is the BW and GW requirements of biofuels (mm3 per Btu biofuel) at the county level. Differential water use impacts among scenarios are a primarily a function of (1) land use conversion, in particular that of formerly uncropped land classes

  5. Gas Emissions in Combustion of Biofuel

    Directory of Open Access Journals (Sweden)

    Vitázek Ivan

    2014-10-01

    Full Text Available Nowadays, biomass or more precisely biofuel is more and more being exploited as a substitute for fossil fuels for heating as well as for example for heating a drying environment. This contribution focuses on assessing a heat source by combusting various types of solid biofuels. It is a boiler VIGAS 25 with AK 2000 regulation for heating a family house. Gaseous emissions were measured using a device TESTO 330-2LL. Firewood, peat briquettes, bark briquettes and hardwood briquettes were burnt. Results of experimental measurements concerning the production of gaseous emissions are processed in tables and graphs depending on boiler performance and combustion time.

  6. Status of advanced biofuels demonstration facilities in 2012. A report to IEA Bioenergy task 39

    Energy Technology Data Exchange (ETDEWEB)

    Bacovsky, Dina; Ludwiczek, Nikolaus; Ognissanto, Monica; Woergetter, Manfred

    2013-03-18

    A number of companies around the world pursue projects to develop and deploy advanced technologies for the production of biofuels. Plenty of options are available, e.g. on which feedstock to use, how to pretreat it and how to convert it, up to which fuel to produce. This report monitors the multi-facetted development, adds transparency to the sector and thus supports the development and deployment of advanced biofuels production technologies. Main pathways under development can be classified into biochemical technologies, thermochemical technologies and chemical technologies. Biochemical technologies are usually based on lignocellulosic feedstock which is pretreated, hydrolysed into sugars and then fermented to ethanol. Alternative biochemical pathways process sugars or gaseous components into methanol, butanol, mixed alcohols, acetic acids, or other chemical building blocks. Most thermochemical technologies use gasification to convert lignocellulosic feedstock into synthesis gas, which can be converted into BtL-Diesel, SNG, DME or mixed alcohols. Alternative thermochemical pathways include pyrolysis of biomass and upgrading of the resulting pyrolysis oil. The most successful chemical pathway is the hydrotreatment of vegetable oil or fats to produce diesel-type hydrocarbons. Other pathways include catalytic decarboxylation, and methanol production from glycerin. This report is based on a database on advanced biofuels projects. The database feeds into an interactive map which is available at http://demoplants.bioenergy2020.eu, and it is updated continuously. The report includes general descriptions of the main advanced biofuels technologies under development, a list of 102 projects that are being pursued worldwide, and detailed descriptions of these projects. All data displayed has been made available by the companies that pursue these projects. For this reason, the list of projects may not be complete, as some companies may still be reluctant to share data. Since

  7. Improving Biofuels Recovery Processes for Energy Efficiency and Sustainability

    Science.gov (United States)

    Biofuels are made from living or recently living organisms. For example, ethanol can be made from fermented plant materials. Biofuels have a number of important benefits when compared to fossil fuels. Biofuels are produced from renewable energy sources such as agricultural resou...

  8. 75 FR 11836 - Bioenergy Program for Advanced Biofuels

    Science.gov (United States)

    2010-03-12

    ... Biofuels AGENCY: Rural Business-Cooperative Service (RBS), USDA. ACTION: Notice of Contract for Proposal... Year 2009 for the Bioenergy Program for Advanced Biofuels under criteria established in the prior NOCP... Bioenergy Program for Advanced Biofuels. In response to the previously published NOCP, approximately $14.5...

  9. A viable technology to generate third-generation biofuel

    DEFF Research Database (Denmark)

    Singh, Anoop; Olsen, Stig Irving; Nigam, Poonam Singh

    2011-01-01

    First generation biofuels are commercialized at large as the production technologies are well developed. However, to grow the raw materials, there is a great need to compromise with food security, which made first generation biofuels not so much promising. The second generation of biofuels does...

  10. Biofuels barometer - EurObserv'ER - July 2016

    International Nuclear Information System (INIS)

    2016-07-01

    The European biofuel market is now regulated by the directive, known as ILUC, whose wording focuses on the environmental impact of first generation biofuel development. This long-awaited clarification has arrived against the backdrop of falling oil prices and shrinking European Union biofuel consumption, which should drop by 1.7% between 2014 and 2015, according to EurObserv'ER

  11. Physics of Fresh Produce Safety: Role of Diffusion and Tissue Reaction in Sanitization of Leafy Green Vegetables with Liquid and Gaseous Ozone-Based Sanitizers.

    Science.gov (United States)

    Shynkaryk, Mykola V; Pyatkovskyy, Taras; Mohamed, Hussein M; Yousef, Ahmed E; Sastry, Sudhir K

    2015-12-01

    Produce safety has received much recent attention, with the emphasis being largely on discovery of how microbes invade produce. However, the sanitization operation deserves more attention than it has received. The ability of a sanitizer to reach the site of pathogens is a fundamental prerequisite for efficacy. This work addresses the transport processes of ozone (gaseous and liquid) sanitizer for decontamination of leafy greens. The liquid sanitizer was ineffective against Escherichia coli K-12 in situations where air bubbles may be trapped within cavities. A model was developed for diffusion of sanitizer into the interior of produce. The reaction rate of ozone with the surface of a lettuce leaf was determined experimentally and was used in a numerical simulation to evaluate ozone concentrations within the produce and to determine the time required to reach different locations. For aqueous ozone, the penetration depth was limited to several millimeters by ozone self-decomposition due to the significant time required for diffusion. In contrast, gaseous sanitizer was able to reach a depth of 100 mm in several minutes without depletion in the absence of reaction with surfaces. However, when the ozone gas reacted with the produce surface, gas concentration was significantly affected. Simulation data were validated experimentally by measuring ozone concentrations at the bottom of a cylinder made of lettuce leaf. The microbiological test confirmed the relationship between ozone transport, its self-decomposition, reaction with surrounding materials, and the degree of inactivation of E. coli K-12. Our study shows that decontamination of fresh produce, through direct contact with the sanitizer, is more feasible with gaseous than with aqueous sanitizers. Therefore, sanitization during a high-speed washing process is effective only for decontaminating the wash water.

  12. Preparation of Biofuel Using Acetylatation of Jojoba Fatty Alcohols and Assessment as a Blend Component in Ultra Low Sulfur Diesel Fuel

    Science.gov (United States)

    The majority of biodiesel fuels are produced from vegetable oils or animal fats by transesterification of oil with alcohol in the presence of a catalyst. In this study, a new class of biofuel is explored by acetylation of fatty alcohols from Jojoba oil. Recently, we reported Jojoba oil methyl este...

  13. Evaluation of the agricultural tractor using biofuel and diesel oil; Avaliacao de um trator agricola utilizando biocombustivel e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Reny Adilmar Prestes; Pinheiro Neto, Raimundo; Meyer, Wagner; Mendonca, Elton Costa de; Roberti, Marcelo [Universidade Estadual de Maringa (UEM), PR (Brazil)], Emails: raplopes@uem.br, rpneto@uem.br

    2009-07-01

    Test with alternative fuels is essential to evaluate the performance of machines and engines. In this paper, the performance of a tractor in chiseling operation was evaluated using oil diesel and biofuel (oil diesel + soybean vegetable oil mixture). Speed of displacement, slip wheels, force traction bar and fuel consumption was evaluated in areas under tillage and no-tillage. The speed of displacement of the set presented similar behavior in tillage and no-tillage. Bigger values mean force in the bar of traction, slip and fuel consumptions had been observed for no-tillage with the tractor operating with diesel. Bigger values mean consumption the biofuel had been observed in areas under tillage. The coverings of the soil had influenced in the values of force bar traction, slip wheels, speed of displacement and fuel consumption. In the studied conditions, the tests demonstrate that the mixture oil diesel + soybean vegetable oil had not influenced in the performance of the tractor. (author)

  14. Vegetative regeneration

    Science.gov (United States)

    George A. Schier; John R. Jones; Robert P. Winokur

    1985-01-01

    Aspen is noted for its ability to regenerate vegetatively by adventitious shoots or suckers that arise on its long lateral roots. It also produces sprouts from stumps and root collars; but they are not common. In a survey of regeneration after clearcutting mature aspen in Utah. Baker (1918b) found that 92% of the shoots originated from roots, 7% from root collars, and...

  15. Understory vegetation

    Science.gov (United States)

    Steve Sutherland; Todd F. Hutchinson; Jennifer L. Windus

    2003-01-01

    This chapter documents patterns of species composition and diversity within the understory vegetation layer and provides a species list for the four study areas in southern Ohio. Within each of 108 plots, we recorded the frequency of all vascular plant species in sixteen 2-m² quadrats. We recorded 297 species, including 187 forbs (176 perennials, 9 annuals, 2...

  16. Polyol-enhanced dispersive liquid-liquid microextraction coupled with gas chromatography and nitrogen phosphorous detection for the determination of organophosphorus pesticides from aqueous samples, fruit juices, and vegetables.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Afshar Mogaddam, Mohammad Reza; Alizadeh Nabil, Ali Akbar

    2015-12-01

    Polyol-enhanced dispersive liquid-liquid microextraction has been proposed for the extraction and preconcentration of some organophosphorus pesticides from different samples. In the present study, a high volume of an aqueous phase containing a polyol (sorbitol) is prepared and then a disperser solvent along with an extraction solvent is rapidly injected into it. Sorbitol showed the best results and it was more effective on the extraction recoveries of the analytes than inorganic salts such as sodium chloride, potassium chloride, and sodium sulfate. Under the optimum extraction conditions, the method showed low limits of detection and quantification within the ranges of 12-56 and 44-162 pg/mL, respectively. Enrichment factors and extraction recoveries were in the ranges of 2799-3033 and 84-92%, respectively. The method precision was evaluated at a concentration of 10 ng/mL of each analyte, and relative standard deviations were found to be less than 5.9% for intraday (n = 6) and less than 7.8% for interday (n = 4). Finally, some aqueous samples were successfully analyzed using the proposed method and four analytes (diazinon, dimethoate, chlorpyrifos, and phosalone) were determined, some of them at ng/mL level. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Glucose-based Biofuel Cells: Nanotechnology as a Vital Science in Biofuel Cells Performance

    OpenAIRE

    Hamideh Aghahosseini; Ali Ramazani; Pegah Azimzadeh Asiabi; Farideh Gouranlou; Fahimeh Hosseini; Aram Rezaei; Bong-Ki Min; Sang Woo Joo

    2016-01-01

    Nanotechnology has opened up new opportunities for the design of nanoscale electronic devices suitable for developing high-performance biofuel cells. Glucose-based biofuel cells as green energy sources can be a powerful tool in the service of small-scale power source technology as it provides a latent potential to supply power for various implantable medical electronic devices. By using physiologically produced glucose as a fuel, the living battery can recharge for continuous production of el...

  18. Enzymatic deconstruction of xylan for biofuel production

    Science.gov (United States)

    DODD, DYLAN; CANN, ISAAC K. O.

    2010-01-01

    The combustion of fossil-derived fuels has a significant impact on atmospheric carbon dioxide (CO2) levels and correspondingly is an important contributor to anthropogenic global climate change. Plants have evolved photosynthetic mechanisms in which solar energy is used to fix CO2 into carbohydrates. Thus, combustion of biofuels, derived from plant biomass, can be considered a potentially carbon neutral process. One of the major limitations for efficient conversion of plant biomass to biofuels is the recalcitrant nature of the plant cell wall, which is composed mostly of lignocellulosic materials (lignin, cellulose, and hemicellulose). The heteropolymer xylan represents the most abundant hemicellulosic polysaccharide and is composed primarily of xylose, arabinose, and glucuronic acid. Microbes have evolved a plethora of enzymatic strategies for hydrolyzing xylan into its constituent sugars for subsequent fermentation to biofuels. Therefore, microorganisms are considered an important source of biocatalysts in the emerging biofuel industry. To produce an optimized enzymatic cocktail for xylan deconstruction, it will be valuable to gain insight at the molecular level of the chemical linkages and the mechanisms by which these enzymes recognize their substrates and catalyze their reactions. Recent advances in genomics, proteomics, and structural biology have revolutionized our understanding of the microbial xylanolytic enzymes. This review focuses on current understanding of the molecular basis for substrate specificity and catalysis by enzymes involved in xylan deconstruction. PMID:20431716

  19. Use of biofuels in road transport decreases

    International Nuclear Information System (INIS)

    Segers, R.

    2011-01-01

    The use of biofuels decreased from 3.5 percent, for all gasoline and diesel used by road transport in 2009, to 2 percent in 2010. Particularly the use of biodiesel decreased, dropping from 3.5 to 1.5 percent. The use of biogasoline remained stable, catering for 3 percent of all gasoline use. [nl

  20. Exploring new strategies for cellulosic biofuels production

    Science.gov (United States)

    Paul Langan; S. Gnankaran; Kirk D. Rector; Norma Pawley; David T. Fox; Dae Won Cho; Kenneth E. Hammel

    2011-01-01

    A research program has been initiated to formulate new strategies for efficient low-cost lignocellulosic biomass processing technologies for the production of biofuels. This article reviews results from initial research into lignocellulosic biomass structure, recalcitrance, and pretreatment. In addition to contributing towards a comprehensive understanding of...

  1. Impact of biofuels on contrail warming

    Science.gov (United States)

    Caiazzo, Fabio; Agarwal, Akshat; Speth, Raymond L.; Barrett, Steven R. H.

    2017-11-01

    Contrails and contrail-cirrus may be the largest source of radiative forcing (RF) attributable to aviation. Biomass-derived alternative jet fuels are a potentially major way to mitigate the climate impacts of aviation by reducing lifecycle CO2 emissions. Given the up to 90% reduction in soot emissions from paraffinic biofuels, the potential for a significant impact on contrail RF due to the reduction in contrail-forming ice nuclei (IN) remains an open question. We simulate contrail formation and evolution to quantify RF over the United States under different emissions scenarios. Replacing conventional jet fuels with paraffinic biofuels generates two competing effects. First, the higher water emissions index results in an increase in contrail occurrence (~ +8%). On the other hand, these contrails are composed of larger diameter crystals (~ +58%) at lower number concentrations (~ -75%), reducing both contrail optical depth (~ -29%) and albedo (~ -32%). The net changes in contrail RF induced by switching to biofuels range from -4% to +18% among a range of assumed ice crystal habits (shapes). In comparison, cleaner burning engines (with no increase in water emissions index) result in changes to net contrail RF ranging between -13% and +5% depending on habit. Thus, we find that even 67% to 75% reductions in aircraft soot emissions are insufficient to substantially reduce warming from contrails, and that the use of biofuels may either increase or decrease contrail warming—contrary to previous expectations of a significant decrease in warming.

  2. Coproduction of bioethanol with other biofuels

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Westermann, Peter

    2007-01-01

    pilot-scale biorefineries for multiple fuel production and also discuss perspectives for further enhancement of biofuel yields from biomass. The major fuels produced in this refinery are ethanol, hydrogen, and methane. We also discuss the applicability of our biorefinery concept as a bolt-on plant...

  3. Electric vehicles need biofuels; Elektroautos brauchen Biotreibstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Tomi

    2008-09-15

    The debate over electromobility is in full swing. The effects on the electric power grid and on the biofuels industry are quire different than expected, even paradox. (orig.) [German] Die Debatte um Elektromobilitaet ist in vollem Gang. Die Auswirkung auf das Stromnetz und auf die Biotreibstoffbranche sind ganz anders, als man denkt. Sie wirken fast schon paradox. (Orig.)

  4. Biorefineries for chemical and biofuel production

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene

    crops for biofuel production is research in biorefineries using a whole-crop approach with the aim of having an optimal use of all the components of the specific crop. Looking at rape as a model crop, the components can be used for i.e. bioethanol, biodiesel, biogas, biohydrogen, feed, food and plant...

  5. Designing Sustainable Supply Chains for Biofuels

    Science.gov (United States)

    Driven by the Energy and Independence Act of 2007 mandate to increase production of alternative fuels and to ensure that this increase causes minimal environmental impact, a project to design sustainable biofuel supply chains has been developed. This effort uses life cycle asses...

  6. Public policy and biofuels: The way forward?

    International Nuclear Information System (INIS)

    Charles, Michael B.; Ryan, Rachel; Ryan, Neal; Oloruntoba, Richard

    2007-01-01

    The use of biofuels has been given much attention by governments around the world, especially in increasingly energy-hungry OECD nations. Proponents have argued that they offer various advantages over hydrocarbon-based fuels, especially with respect to reducing dependence on OPEC-controlled oil, minimizing greenhouse gas (GHG) emissions, and ensuring financial and lifestyle continuity to farmers and agriculturally dependent communities. This paper adds to the continuing technical debate by addressing the issue from a holistic public policy perspective. In particular, it looks at the proposed benefits of biofuels, yet also addresses the implications of increased demand on the global and regional environment, in addition to the economic welfare of developing nations. Furthermore, it posits that short-term reliance on biofuels vis-a-vis other alternative energy sources may potentially inhibit the development and maturation of longer-term technologies that have greater potential to correct the harmful effects of fossil-fuel dependence. In light of this, the manifold policy instruments currently employed or proposed by governments in developed nations to promote biofuels emerge as questionable

  7. Boundless Biofuels? Between Environmental Sustainability and Vulnerability

    NARCIS (Netherlands)

    Mol, A.P.J.

    2007-01-01

    Biofuels currently appear to be one of the major controversies in the agriculture/environment nexus, not unlike genetically modified organisms. While some countries (such as Brazil) have for quite some time supported successful large-scale programmes to improve the production and consumption of

  8. Novel biofuel formulations for enhanced vehicle performance

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Dennis [Michigan State Univ., East Lansing, MI (United States); Narayan, Ramani [Michigan State Univ., East Lansing, MI (United States); Berglund, Kris [Michigan State Univ., East Lansing, MI (United States); Lira, Carl [Michigan State Univ., East Lansing, MI (United States); Schock, Harold [Michigan State Univ., East Lansing, MI (United States); Jaberi, Farhad [Michigan State Univ., East Lansing, MI (United States); Lee, Tonghun [Michigan State Univ., East Lansing, MI (United States); Anderson, James [Michigan State Univ., East Lansing, MI (United States); Wallington, Timothy [Michigan State Univ., East Lansing, MI (United States); Kurtz, Eric [Michigan State Univ., East Lansing, MI (United States); Ruona, Will; Hass, Heinz

    2013-08-30

    This interdisciplinary research program at Michigan State University, in collaboration with Ford Motor Company, has explored the application of tailored or designed biofuels for enhanced vehicle performance and reduced emissions. The project has included a broad range of experimental research, from chemical and biological formation of advanced biofuel components to multicylinder engine testing of blended biofuels to determine engine performance parameters. In addition, the project included computation modeling of biofuel physical and combustion properties, and simulation of advanced combustion modes in model engines and in single cylinder engines. Formation of advanced biofuel components included the fermentation of five-carbon and six-carbon sugars to n-butanol and to butyric acid, two four-carbon building blocks. Chemical transformations include the esterification of the butyric acid produced to make butyrate esters, and the esterification of succinic acid with n-butanol to make dibutyl succinate (DBS) as attractive biofuel components. The conversion of standard biodiesel, made from canola or soy oil, from the methyl ester to the butyl ester (which has better fuel properties), and the ozonolysis of biodiesel and the raw oil to produce nonanoate fuel components were also examined in detail. Physical and combustion properties of these advanced biofuel components were determined during the project. Physical properties such as vapor pressure, heat of evaporation, density, and surface tension, and low temperature properties of cloud point and cold filter plugging point were examined for pure components and for blends of components with biodiesel and standard petroleum diesel. Combustion properties, particularly emission delay that is the key parameter in compression ignition engines, was measured in the MSU Rapid Compression Machine (RCM), an apparatus that was designed and constructed during the project simulating the compression stroke of an internal combustion

  9. Driving biofuels from field to fuel tank.

    Science.gov (United States)

    Gura, Trisha

    2009-07-10

    Rising oil prices, fears of global warming, and instability in oil-producing countries have ignited the rush to produce biofuels from plants. The science is progressing rapidly, driven by favorable policies and generous financing, but many hurdles remain before cars and trucks run on "gasohol" or "grassoline."

  10. 76 FR 7935 - Advanced Biofuel Payment Program

    Science.gov (United States)

    2011-02-11

    ... payments. Application materials may be obtained by contacting one of Rural Development's Energy...) number, which can be obtained at no cost via a toll-free request line at 1-866-705-5711 or online at http... producer'' provisions for determining whether an advanced biofuel producer of biogas or solid advanced...

  11. Characterizing Emissions from the Combustion of Biofuels

    Science.gov (United States)

    Emissions from two biofuels, a soy-based biodiesel and an animal-based biodiesel, were measured and compared to emissions from a distillate petroleum fuel oil. The three fuels were burned in a small fire tube boiler designed for use in institutional, commercial, and light industr...

  12. Biowastes-to-biofuels routes via gasification

    NARCIS (Netherlands)

    Ptasinski, K.J.; Sues Caula, A.; Jurascik, M.; Badeau, J.P.; Levi, A.

    2009-01-01

    Nowadays, biomass has a well-known potential for producing energy calTiers, such as electricity, heat (steam) and transport biofuels. However, biomass availability is rather limited and stochastically distributed. This could be a major problem in demographically dense regions where land is scarce

  13. Grass Pollen Pollution from Biofuels Farming

    Czech Academy of Sciences Publication Activity Database

    Ratajová, A.; Tříska, Jan; Vrchotová, Naděžda; Kolář, L.; Kužel, S.

    2013-01-01

    Roč. 26, č. 4 (2013), s. 199-203 ISSN 2151-321X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : grass pollen pollution * biofuels farming * temperate climate * PK-fertilization * N-fertilization * phenolic Subject RIV: EH - Ecology, Behaviour Impact factor: 0.556, year: 2013

  14. Determination of ametoctradin residue in fruits and vegetables by modified quick, easy, cheap, effective, rugged, and safe method using ultra-performance liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Hu, Mingfeng; Liu, Xingang; Dong, Fengshou; Xu, Jun; Li, Shasha; Xu, Hanqing; Zheng, Yongquan

    2015-05-15

    A rapid, effective and sensitive method to quantitatively determine ametoctradin residue in apple, cucumber, cabbage, tomato and grape was developed and validated using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). The target compound was determined in less than 5.0 min using an electrospray ionisation source in positive mode (ESI+). The limit of detection was below 0.043 μg kg(-1), whereas the limits of quantification did not exceed 0.135 μg kg(-1) in all five matrices. The method showed excellent linearity (R(2)>0.9969) for the target compound. Recovery studies were performed in all matrices at three spiked levels (1, 10 and 100 μg L(-1)). The mean recoveries from five matrices ranged from 81.81% to 100.1%, with intra-day relative standard deviations (RSDr) in the range of 0.65-7.88% for the test compound. This method will be useful for the quick and routine detection of ametoctradin residues in potato, grape, cucumber, apple and tomato. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels

    International Nuclear Information System (INIS)

    Mohr, Alison; Raman, Sujatha

    2013-01-01

    Aims: The emergence of second generation (2G) biofuels is widely seen as a sustainable response to the increasing controversy surrounding the first generation (1G). Yet, sustainability credentials of 2G biofuels are also being questioned. Drawing on work in Science and Technology Studies, we argue that controversies help focus attention on key, often value-related questions that need to be posed to address broader societal concerns. This paper examines lessons drawn from the 1G controversy to assess implications for the sustainability appraisal of 2G biofuels. Scope: We present an overview of key 1G sustainability challenges, assess their relevance for 2G, and highlight the challenges for policy in managing the transition. We address limitations of existing sustainability assessments by exploring where challenges might emerge across the whole system of bioenergy and the wider context of the social system in which bioenergy research and policy are done. Conclusions: Key lessons arising from 1G are potentially relevant to the sustainability appraisal of 2G biofuels depending on the particular circumstances or conditions under which 2G is introduced. We conclude that sustainability challenges commonly categorised as either economic, environmental or social are, in reality, more complexly interconnected (so that an artificial separation of these categories is problematic). - Highlights: • Controversy surrounding 1G biofuels is relevant to sustainability appraisal of 2G. • Challenges for policy in managing the transition to 2G biofuels are highlighted. • A key lesson is that sustainability challenges are complexly interconnected

  16. Glucose-based Biofuel Cells: Nanotechnology as a Vital Science in Biofuel Cells Performance

    Directory of Open Access Journals (Sweden)

    Hamideh Aghahosseini

    2016-07-01

    Full Text Available Nanotechnology has opened up new opportunities for the design of nanoscale electronic devices suitable for developing high-performance biofuel cells. Glucose-based biofuel cells as green energy sources can be a powerful tool in the service of small-scale power source technology as it provides a latent potential to supply power for various implantable medical electronic devices. By using physiologically produced glucose as a fuel, the living battery can recharge for continuous production of electricity. This review article presents how nanoscience, engineering and medicine are combined to assist in the development of renewable glucose-based biofuel cell systems. Here, we review recent advances and applications in both abiotic and enzymatic glucose biofuel cells with emphasis on their “implantable” and “implanted” types. Also the challenges facing the design and application of glucose-based biofuel cells to convert them to promising replacement candidates for non-rechargeable lithium-ion batteries are discussed. Nanotechnology could make glucose-based biofuel cells cheaper, lighter and more efficient and hence it can be a part of the solutions to these challenges.

  17. A modelling approach to estimate the European biofuel production: from crops to biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Clodic, Melissa [Institute National de la Recherche Agronomique (IFP/INRA), Paris (France). Instituto Frances do Petroleo

    2008-07-01

    Today, in the context of energy competition and climate change, biofuels are promoted as a renewable resource to diversify the energy supply. However, biofuel development remains controversial. Here, we will present a way to make an environmental and economic cost and benefit analysis of European biofuels, from the crops until the marketed products, by using a linear programming optimization modelling approach. To make this European biofuel production model, named AGRAF, possible, we decided to use different independent linear programming optimization models which represent the separate parts of the process: European agricultural production, production of transforming industries and refinery production. To model the agricultural and the refining sections, we have chosen to improve existing and experimented models by adding a biofuel production part. For the transforming industry, we will create a new partial equilibrium model which will represent stake holders such as Sofiproteol, Stereos, etc. Data will then be exchanged between the models to coordinate all the biofuel production steps. Here, we will also focus on spatialization in order to meet certain of our requirements, such as the exchange flux analysis or the determination of transport costs, usually important in an industrial optimization model. (author)

  18. Impact of Technology and Feedstock Choice on the Environmental Footprint of Biofuels

    Science.gov (United States)

    Schultz, P. B.; Dodder, R. S.

    2012-12-01

    The implementation of the U.S. Renewable Fuel Standard program (RFS2) has led to a dramatic shift in the use of biofuel in the U.S. transportation system over the last decade. To satisfy this demand, the production of U.S. corn-based ethanol has grown rapidly, with an average increase of over 25% annually from 2002 to 2010. RFS2 requires a similarly steep increase in the production of advanced biofuels, such as cellulosic ethanol. Unlike corn-based ethanol, which is derived from the biochemical fermentation of sugars in wet and dry mills, it is likely that a more diverse suite of technologies will need to be developed to be able to meet the advanced biofuel RFS2 targets, including biochemical as well as thermochemical (e.g., gasification and pyrolysis) approaches. Rather than relying on energy crops, a potential advantage of thermochemical approaches is the ability to use a wider variety of feedstocks, including municipal solid waste and wood waste. In this work, we conduct a system-level analysis to understand how technology and feedstock choice can impact the environmental footprint of biofuels in the U.S. We use a least-cost optimization model of the U.S. energy system to account for interactions between various components of the energy system: industrial, transportation, electric, and residential/commercial sectors. The model was used to understand the scale of feedstock demand required from dedicated energy crops, as well as other biomass feedstocks, in order to meet the RFS2 mandate. On a regional basis, we compare the overall water-consumption and land requirements for biofuels production given a suite of liquid-fuel production technologies. By considering a range of scenarios, we examine how the use of various feedstocks (e.g., agricultural residues, wood wastes, mill residues and municipal wastes) can be used to off-set environmental impacts as compared to relying solely on energy crops.

  19. [Model-based biofuels system analysis: a review].

    Science.gov (United States)

    Chang, Shiyan; Zhang, Xiliang; Zhao, Lili; Ou, Xunmin

    2011-03-01

    Model-based system analysis is an important tool for evaluating the potential and impacts of biofuels, and for drafting biofuels technology roadmaps and targets. The broad reach of the biofuels supply chain requires that biofuels system analyses span a range of disciplines, including agriculture/forestry, energy, economics, and the environment. Here we reviewed various models developed for or applied to modeling biofuels, and presented a critical analysis of Agriculture/Forestry System Models, Energy System Models, Integrated Assessment Models, Micro-level Cost, Energy and Emission Calculation Models, and Specific Macro-level Biofuel Models. We focused on the models' strengths, weaknesses, and applicability, facilitating the selection of a suitable type of model for specific issues. Such an analysis was a prerequisite for future biofuels system modeling, and represented a valuable resource for researchers and policy makers.

  20. Overview of the Estonian Biofuels Association activities

    International Nuclear Information System (INIS)

    Hueues, Meelis

    2000-01-01

    Due to global warming and environment pollution because of widespread use of fossil fuels there are already tendencies to stabilize and decrease the consumption of these energy resources and take into use more renewable energy resources. Estonian Biofuels Association (EBA) is a non-profit association, which was founded on 8. of May 1998 in Tallinn. The EBA is an independent and voluntary alliance of its members. Fields of activity of the EBA are by biofuels research, developing and evaluation to engage environmental, biofuels and energy saving. EBA members are: energy consultants, scientists, as well as fuel suppliers, DH-companies, technology suppliers, energy service companies etc. The members of EBA are involved in different projects in Estonia, where biomass are produced and used for heating, where wood, waste, peat, rape oil and biogas resources are examined and put into use, and also projects which deal with energy saving and environment friendly equipment production for using biofuels. During our short experience we have noticed that people in Estonia have become more aware of biomass and their use, so the development of environment friendly and sustainable energetics will continue in Estonia. Available biofuels in Estonia could compete with fossil fuels if burnt rationally with high technology equipment. EBA members are convinced that biomass have perspective and that they could play an important role in improving Estonian economic and environmental situation. Modem biomass combustion devices are taken into use more the faster general wealth increases and EBA can raise people's awareness of bio fuel subject through special, courses and media. We want Estonian energy policy to develop towards widespread use of renewable energy resources, which would save energy and environment improve nation's foreign trade balance and create jobs mainly in rural areas