WorldWideScience

Sample records for liquid analysis application

  1. Miniaturized preconcentration methods based on liquid-liquid extraction and their application in inorganic ultratrace analysis and speciation: A review

    International Nuclear Information System (INIS)

    Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2009-01-01

    Liquid-liquid extraction (LLE) is widely used as a pre-treatment technique for separation and preconcentration of both organic and inorganic analytes from aqueous samples. Nevertheless, it has several drawbacks, such as emulsion formation or the use of large volumes of solvents, which makes LLE expensive and labour intensive. Therefore, miniaturization of conventional liquid-liquid extraction is needed. The search for alternatives to the conventional LLE using negligible volumes of extractant and the minimum number of steps has driven the development of three new miniaturized methodologies, i.e. single-drop microextraction (SDME), hollow fibre liquid-phase microextraction (HF-LPME) and dispersive liquid-liquid microextraction (DLLME). The aim of this paper is to provide an overview of these novel preconcentration approaches and their potential use in analytical labs involved in inorganic (ultra)trace analysis and speciation. Relevant applications to the determination of metal ions, metalloids, organometals and non-metals are included

  2. Heat transfer analysis of liquid piston compressor for hydrogen applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2015-01-01

    A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...... and through the walls, is investigated and compared with the adiabatic case. The results show that depending on heat transfer correlation, the hydrogen temperature reduces slightly between 0.2% and 0.4% compared to the adiabatic case, at 500bar, due to the large wall resistance and small contact area...... at the interface. Moreover, the results of the sensitivity analysis illustrates that increasing the total heat transfer coefficients at the interface and the wall, together with compression time, play key roles in reducing the hydrogen temperature. Increasing the total heat transfer coefficient at the interface...

  3. Heat Analysis of Liquid piston Compressor for Hydrogen Applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2014-01-01

    A new hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is develo......A new hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model...

  4. Core-Shell Columns in High-Performance Liquid Chromatography: Food Analysis Applications

    OpenAIRE

    Preti, Raffaella

    2016-01-01

    The increased separation efficiency provided by the new technology of column packed with core-shell particles in high-performance liquid chromatography (HPLC) has resulted in their widespread diffusion in several analytical fields: from pharmaceutical, biological, environmental, and toxicological. The present paper presents their most recent applications in food analysis. Their use has proved to be particularly advantageous for the determination of compounds at trace levels or when a large am...

  5. Application in pesticide analysis: Liquid chromatography - A review of the state of science for biomarker discovery and identification

    Science.gov (United States)

    Book Chapter 18, titled Application in pesticide analysis: Liquid chromatography - A review of the state of science for biomarker discovery and identification, will be published in the book titled High Performance Liquid Chromatography in Pesticide Residue Analysis (Part of the C...

  6. Core-Shell Columns in High-Performance Liquid Chromatography: Food Analysis Applications

    Science.gov (United States)

    Preti, Raffaella

    2016-01-01

    The increased separation efficiency provided by the new technology of column packed with core-shell particles in high-performance liquid chromatography (HPLC) has resulted in their widespread diffusion in several analytical fields: from pharmaceutical, biological, environmental, and toxicological. The present paper presents their most recent applications in food analysis. Their use has proved to be particularly advantageous for the determination of compounds at trace levels or when a large amount of samples must be analyzed fast using reliable and solvent-saving apparatus. The literature hereby described shows how the outstanding performances provided by core-shell particles column on a traditional HPLC instruments are comparable to those obtained with a costly UHPLC instrumentation, making this novel column a promising key tool in food analysis. PMID:27143972

  7. Application of mass-spring model in seismic analysis of liquid storage tank

    International Nuclear Information System (INIS)

    Liu Jiayi; Bai Xinran; Li Xiaoxuan

    2013-01-01

    There are many tanks for storing liquid in nuclear power plant. When seismic analysis is performed, swaying of liquid may change the mechanical parameters of those tanks, such as the center of mass and the moment of inertia, etc., so the load due to swaying of liquid can't be neglected. Mass-spring model is a simplified model to calculate the dynamic pressure of liquid in tank under earthquake, which is derived by the theory of Housner and given in the specification of seismic analysis of Safety-Related Nuclear Structures and Commentary-4-98 (ASCE-4-98 for short hereinafter). According to the theory of Housner and ASCE-4-98, the mass-spring 3-D FEM model for storage tank and liquid in it was established, by which the force of stored liquid acted on liquid storage tank in nuclear power plant under horizontal seismic load was calculated. The calculated frequency of liquid swaying and effect of liquid convection on storage tank were compared with those calculated by simplified formula. It is shown that the results of 3-D FEM model are reasonable and reliable. Further more, it is more direct and convenient compared with description in ASCE-4-98 when the mass-spring model is applied to 3-D FEM model for seismic analysis, from which the displacement and stress distributions of the plate-shell elements or the 3-D solid finite elements can be obtained directly from the seismic input model. (authors)

  8. Clinical applications of fast liquid chromatography: a review on the analysis of cardiovascular drugs and their metabolites.

    Science.gov (United States)

    Baranowska, Irena; Magiera, Sylwia; Baranowski, Jacek

    2013-05-15

    One of the major challenges facing the medicine today is developing new therapies that enhance human health. To help address these challenges the utilization of analytical technologies and high-throughput automated platforms has been employed; in order to perform more experiments in a shorter time frame with increased data quality. In the last decade various analytical strategies have been established to enhance separation speed and efficiency in liquid chromatography applications. Liquid chromatography is an increasingly important tool for monitoring drugs and their metabolites. Furthermore, liquid chromatography has played an important role in pharmacokinetics and metabolism studies at these drug development stages since its introduction. This paper provides an overview of current trends in fast chromatography for the analysis of cardiovascular drugs and their metabolites in clinical applications. Current trends in fast liquid chromatographic separations involve monolith technologies, fused-core columns, high-temperature liquid chromatography (HTLC) and ultra-high performance liquid chromatography (UHPLC). The high specificity in combination with high sensitivity makes it an attractive complementary method to traditional methodology used for routine applications. The practical aspects of, recent developments in and the present status of fast chromatography for the analysis of biological fluids for therapeutic drug and metabolite monitoring, pharmacokinetic studies and bioequivalence studies are presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Applications of liquid scintillation tubes

    International Nuclear Information System (INIS)

    Broga, D.W.

    1977-01-01

    A new cocktail containing device for liquid scintillation counting, the scintillation tube, consists of a two-layered plastic bag which is heatsealed after the cocktail and sample have been placed in it. It is then placed in a carrying vial and counted in a conventional liquid scintillation counter. These tubes have proved to be a practical and economical alternative to vials. Some of their advantages are elimination of absorption problems, transparency, lower background and higher counting efficiency, low breakage danger and savings in waste disposal costs. Two applications for which the tubes are particularly suitable are the counting of laboratory swipes and urine analysis. (author)

  10. Application of Chromatographic and Electrophoretic Methods for the Analysis of Imidazolium and Pyridinium Cations as Used in Ionic Liquids

    Directory of Open Access Journals (Sweden)

    P. Stepnowski

    2006-11-01

    Full Text Available Interest in ionic liquids for their potential in different chemical processes isconstantly increasing, as they are claimed to be environmentally benign – excellent, non-volatile solvents for a wide range of applications. The wide applicability of thesecompounds also demands reliable, relatively simple and reproducible analytical techniques.These methods must be applicable not only to different technical or natural matrices but alsoto the very low concentrations that are likely to be present in biological and environmentalsystems. In this review, therefore, methods for separating and analysing imidazolium- andpyridinium-type ionic liquids in aqueous matrices using high performance liquidchromatography (HPLC and capillary electrophoresis (CE are examined. The techniquesfor identifying ionic liquids are meant primarily to track the concentrations of ionic liquidsas residues not only in products and wastes but also in biological or environmental samples.The application of hyphenated techniques in this field is intended to selectively separate thequaternary entity from other cationic and non-ionic species present in the matrix, and toenable its fine-scale quantification. Nowadays, methods developed for cation analysis arebased mostly on reversed-phase high-performance liquid chromatography, ionchromatography, ion-pair chromatography and capillary electrophoresis, where variousbuffered mobile phases are used.

  11. Application of the subchannel analysis code COBRA III C for liquid sodium

    International Nuclear Information System (INIS)

    Nissen, K.L.

    1981-01-01

    The subchannel-analysis code COBRA III C was developed to gain knowledge of mass flow and temperature distribution in rod bundles of light water reactors. A comparison of experimental results for the temperature distribution in a 19 rod bundle with calculations done by the computer program shows the capability of COBRA III C to handle liquid sodium cooling. The code needs sodium properties as well as changed correlations for turbulent mixing and heat transfer at the rod. (orig.) [de

  12. Liquid--liquid extraction of gold with nickel bis(diethyldithiocarbamate) and its application to activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bajo, S.; Wyttenbach, A.

    1977-10-01

    The extraction of Au/sup 3 +/ with nickel bis(diethyldithiocarbamate), Ni((C/sub 2/H/sub 5/)/sub 2/NCS/sub 2/)/sub 2/, is investigated. It is shown that this extraction offers a simple, fast, and selective isolation of Au from a variety of matrices. Applications of this separation scheme to the neutron activation analysis of Sn, Fe/sub 2/O/sub 3/, standard rocks, and biological materials are given. The recovery of Au is quantitative, and there is therefore no need to determine the chemical yield of the separation. The recovered Au is of high radiochemical purity.

  13. Applications of liquid-based separation in conjunction with mass spectrometry to the analysis of forensic evidence.

    Science.gov (United States)

    Moini, Mehdi

    2018-03-12

    In the past few years, there has been a significant effort by the forensic science community to develop new scientific techniques for the analysis of forensic evidence. Forensic chemists have been spearheaded to develop information-rich confirmatory technologies and techniques and apply them to a broad array of forensic challenges. The purpose of these confirmatory techniques is to provide alternatives to presumptive techniques that rely on data such as color changes, pattern matching, or retention time alone, which are prone to more false positives. To this end, the application of separation techniques in conjunction with mass spectrometry has played an important role in the analysis of forensic evidence. Moreover, in the past few years the role of liquid separation techniques, such as liquid chromatography and capillary electrophoresis in conjunction with mass spectrometry, has gained significant tractions and have been applied to a wide range of chemicals, from small molecules such as drugs and explosives, to large molecules such as proteins. For example, proteomics and peptidomics have been used for identification of humans, organs, and bodily fluids. A wide range of HPLC techniques including reversed phase, hydrophilic interaction, mixed-mode, supercritical fluid, multidimensional chromatography, and nanoLC, as well as several modes of capillary electrophoresis mass spectrometry, including capillary zone electrophoresis, partial filling, full filling, and micellar electrokenetic chromatography have been applied to the analysis drugs, explosives, and questioned documents. In this article, we review recent (2015-2017) applications of liquid separation in conjunction with mass spectrometry to the analysis of forensic evidence. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Application of ionic liquids in liquid chromatography and electrodriven separation.

    Science.gov (United States)

    Huang, Yi; Yao, Shun; Song, Hang

    2013-08-01

    Ionic liquids (ILs) are salts in the liquid state at ambient temperature, which are nonvolatile, nonflammable with high thermal stability and dissolve easily for a wide range of inorganic and organic materials. As a kind of potential green solvent, they show high efficiency and selectivity in the field of separation research, especially in instrumental analysis. Thus far, ILs have been successfully applied by many related researchers in high-performance liquid chromatography and capillary electrophoresis as chromatographic stationary phases, mobile phase additives or electroosmotic flow modifiers. This paper provides a detailed review of these applications in the study of natural products, foods, drugs and other fine chemicals. Furthermore, the prospects of ILs in liquid chromatographic and electrodriven techniques are discussed.

  15. Analysis of bank failure: An application of CVAR methodology on liquidity.

    Directory of Open Access Journals (Sweden)

    Mubanga Mpundu

    2017-03-01

    Full Text Available In this paper, balance sheet liquidity data was analyzed comprising of 157 Class I and 234 Class II banks. Class I banks are categorized as those with tier 1 capital in excess of $4 billion and internationally active while Class II banks are the rest. A Cointegrated Vector Autoregressive (CVAR approach was used on balance sheet liquidity data to ascertain the behavior of variables in relation to bank failure. The study also demonstrated the nature of each of the variables containing estimated Basel III and Traditional liquidity measures for Class I and II banks. The estimated Basel III liquidity standards were made up of the Liquidity Coverage Ratio (LCR and the Net Stable Funding Ratio (NSFR while the liquidity measures involved Government Securities Ratio (GSR and Brokered Deposit Ratio (BDR. Results showed that a response of Net Stable Funding Ratio to a shock in Liquidity Coverage Ratio decreased in the first quarter and a steady continuous increase in the next quarters was observed. A shock on the Liquidity Coverage Ratio therefore would cause banks to increase their level of Net Stable Funding Ratio. This explains why the Liquidity Coverage Ratio is considered for a short term stress period of 30 calender days while the Net Stable Funding Ratio will be considered for a longer stress period of 1 year when fully implemented by banks.

  16. The application of three-phase liquid-liquid extraction to the analysis of bismuth and tellurium in sulphide concentrates

    International Nuclear Information System (INIS)

    Nicholas, D.J.

    1976-01-01

    An extraction system consisting of one aqueous and two organic phases is described. Diantipyrylmethane (DAM) is used as the extractant for bismuth and tellurium, which are extracted into the smaller of the two organic phases from nitric acid and perchloric acid respectively. The extraction efficiency is in the range of 90 to 95 per cent, compensation for incomplete extraction being made by the technique of standard addition. Copper, lead, and zinc are not extracted in either procedure. When the solutions contain high concentrations of iron, thioglycolic acid is used as a masking agent for iron in the extraction of bismuth. Atomic-absorption spectrophotometry is used for the analysis of the third phase after it has been diluted with methanol. The precision for bismuth and tellurium is in the range of 3 to 4 per cent. The accuracy, as ascertained from comparative analyses of sulphide concentrates, is good

  17. Analysis of bank failure: An application of CVAR methodology on liquidity.

    OpenAIRE

    Mubanga Mpundu

    2017-01-01

    In this paper, balance sheet liquidity data was analyzed comprising of 157 Class I and 234 Class II banks. Class I banks are categorized as those with tier 1 capital in excess of $4 billion and internationally active while Class II banks are the rest. A Cointegrated Vector Autoregressive (CVAR) approach was used on balance sheet liquidity data to ascertain the behavior of variables in relation to bank failure. The study also demonstrated the nature of each of the variables containing estimate...

  18. The use of ultra-high pressure liquid chromatography with tandem mass spectrometric detection of analysis of agrochemical residues and mycotoxines in food - challenges and applications

    Science.gov (United States)

    In the field of food contaminant analysis, the most significant development of recent years has been the integration of ultra-high pressure liquid chromatography (UHPLC), coupled to tandem quadrupole mass spectrometry (MS/MS), into analytical applications. In this review, we describe the emergence o...

  19. A Bibliometric Analysis of Research on Supported Ionic Liquid Membranes during the 1995–2015 Period: Study of the Main Applications and Trending Topics

    Directory of Open Access Journals (Sweden)

    Ricardo Abejón

    2017-11-01

    Full Text Available A bibliometric analysis based on Scopus database was performed to identify the global research trends related to Supported Ionic Liquid Membranes (SILMs during the time period from 1995 to 2015. This work tries to improve the understanding of the most relevant research topics and applications. The results from the analysis reveal that only after 2005 the research efforts focused on SILMs became significant, since the references found before that year are scarce. The most important research works on the four main application groups for SILMs defined in this work (carbon dioxide separation, other gas phase separations, pervaporation and liquid phase separations were summarized in this paper. Carbon dioxide separation appeared as the application that has received by far the most attention according to the research trends during the analysed period. Comments about other significant applications that are gaining attention, such as the employment of SILMs in analytical tasks or their consideration for the production of fuel cells, have been included.

  20. Stereospecific analysis of sakuranetin by high-performance liquid chromatography: pharmacokinetic and botanical applications.

    Science.gov (United States)

    Takemoto, Jody K; Remsberg, Connie M; Yáñez, Jaime A; Vega-Villa, Karina R; Davies, Neal M

    2008-11-01

    A stereospecific method for analysis of sakuranetin was developed. Separation was accomplished using a Chiralpak AD-RH column with UV (ultraviolet) detection at 288 nm. The stereospecific linear calibration curves ranged from 0.5 to 100 microg/mL. The mean extraction efficiency was >98%. Precision of the assay was Piper aduncum L.).

  1. Sheath liquid interface for the coupling of normal-phase liquid chromatography with electrospray mass spectrometry and its application to the analysis of neoflavonoids.

    Science.gov (United States)

    Charles, Laurence; Laure, Frédéric; Raharivelomanana, Phila; Bianchini, Jean-Pierre

    2005-01-01

    A novel interface that allows normal-phase liquid chromatography to be coupled with electrospray ionization (ESI) is reported. A make-up solution of 60 mM ammonium acetate in methanol, infused at a 5 microl min(-1) flow-rate at the tip of the electrospray probe, provides a sheath liquid which is poorly miscible with the chromatographic effluent, but promotes efficient ionization of the targeted analytes. Protonated molecules generated in the ESI source were subjected to tandem mass spectrometric experiments in a triple-quadrupole mass spectrometer. The main fragmentation reactions were characterized for each analyte and specific mass spectral transitions were used to acquire chromatographic data in the multiple reaction monitoring detection mode. Results obtained during optimization of the sheath liquid composition and flow-rate suggest that the electrospray process was mainly under the control of the make-up solution, and that it forms an external charged layer around a neutral chromatographic mobile phase core. This sheath liquid interface was implemented for the analysis of some neoflavonoid compounds and its performance was evaluated. Limits of detection were established for calophillolide, inophyllum B, inophyllum P and inophyllum C at 100, 25, 15 and 100 ng ml(-1), respectively.

  2. Development of a novel 96-well format for liquid-liquid microextraction and its application in the HPLC analysis of biological samples.

    Science.gov (United States)

    Borijihan, Guirong; Li, Youxin; Gao, Jianguo; Bao, James J

    2014-05-01

    A novel 96-well liquid-liquid microextraction system combined with modern HPLC was developed and used for the simultaneous analysis of 96 biological samples. The system made use of hollow fibers, a 96-well plate, and a plastic base with a center hole and a side hole. One end of the hollow fiber was sealed, while the other end was attached to one of the holes positioned at the center for the plastic base. The needle was inserted into the liquid from inside or outside of the hollow fiber through the center or the side holes, respectively. The system was tested with plasma samples containing three compounds, acidic indomethacin, neutral dexamethasone, and basic propafenone. Some parameters, such as the kind and dimension of hollow fiber, pH and salt concentration of the donor phase, the selection of organic solvent for the acceptor phase, and the extraction time were investigated. Under the optimization conditions, the Log D and drug concentration of indomethacin, dexamethasone, and propafenone in plasma and urine samples were analyzed. Then, the methodology was validated. The results demonstrated that ng/mL levels could be exactly and rapidly analyzed by our system, which was equipped with an auto-injection sampler, making sample analysis more convenient. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Comparative urine analysis by liquid chromatography-mass spectrometry and multivariate statistics : Method development, evaluation, and application to proteinuria

    NARCIS (Netherlands)

    Kemperman, Ramses F. J.; Horvatovich, Peter L.; Hoekman, Berend; Reijmers, Theo H.; Muskiet, Frits A. J.; Bischoff, Rainer

    2007-01-01

    We describe a platform for the comparative profiling of urine using reversed-phase liquid chromatography-mass spectrometry (LC-MS) and multivariate statistical data analysis. Urinary compounds were separated by gradient elution and subsequently detected by electrospray Ion-Trap MS. The lower limit

  4. Direct extraction of genomic DNA from maize with aqueous ionic liquid buffer systems for applications in genetically modified organisms analysis.

    Science.gov (United States)

    Gonzalez García, Eric; Ressmann, Anna K; Gaertner, Peter; Zirbs, Ronald; Mach, Robert L; Krska, Rudolf; Bica, Katharina; Brunner, Kurt

    2014-12-01

    To date, the extraction of genomic DNA is considered a bottleneck in the process of genetically modified organisms (GMOs) detection. Conventional DNA isolation methods are associated with long extraction times and multiple pipetting and centrifugation steps, which makes the entire procedure not only tedious and complicated but also prone to sample cross-contamination. In recent times, ionic liquids have emerged as innovative solvents for biomass processing, due to their outstanding properties for dissolution of biomass and biopolymers. In this study, a novel, easily applicable, and time-efficient method for the direct extraction of genomic DNA from biomass based on aqueous-ionic liquid solutions was developed. The straightforward protocol relies on extraction of maize in a 10 % solution of ionic liquids in aqueous phosphate buffer for 5 min at room temperature, followed by a denaturation step at 95 °C for 10 min and a simple filtration to remove residual biopolymers. A set of 22 ionic liquids was tested in a buffer system and 1-ethyl-3-methylimidazolium dimethylphosphate, as well as the environmentally benign choline formate, were identified as ideal candidates. With this strategy, the quality of the genomic DNA extracted was significantly improved and the extraction protocol was notably simplified compared with a well-established method.

  5. Liquid metals: fundamentals and applications in chemistry.

    Science.gov (United States)

    Daeneke, T; Khoshmanesh, K; Mahmood, N; de Castro, I A; Esrafilzadeh, D; Barrow, S J; Dickey, M D; Kalantar-Zadeh, K

    2018-04-03

    Post-transition elements, together with zinc-group metals and their alloys belong to an emerging class of materials with fascinating characteristics originating from their simultaneous metallic and liquid natures. These metals and alloys are characterised by having low melting points (i.e. between room temperature and 300 °C), making their liquid state accessible to practical applications in various fields of physical chemistry and synthesis. These materials can offer extraordinary capabilities in the synthesis of new materials, catalysis and can also enable novel applications including microfluidics, flexible electronics and drug delivery. However, surprisingly liquid metals have been somewhat neglected by the wider research community. In this review, we provide a comprehensive overview of the fundamentals underlying liquid metal research, including liquid metal synthesis, surface functionalisation and liquid metal enabled chemistry. Furthermore, we discuss phenomena that warrant further investigations in relevant fields and outline how liquid metals can contribute to exciting future applications.

  6. Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code

    International Nuclear Information System (INIS)

    Shi, Chengbin; Cheng, Maosong; Liu, Guimin

    2016-01-01

    Highlights: • New point kinetics and thermo-hydraulics models as well as a numerical method are added into RELAP5 code to be suitable for liquid fueled molten salt reactor. • The extended REALP5 code is verified by the experimental benchmarks of MSRE. • The different transient scenarios of the MSBR are simulated to evaluate performance during the transients. - Abstract: The molten salt reactor (MSR) is one of the six advanced reactor concepts declared by the Generation IV International Forum (GIF), which can be characterized by attractive attributes as inherent safety, economical efficiency, natural resource protection, sustainable development and nuclear non-proliferation. It is important to make system safety analysis for nuclear power plant of MSR. In this paper, in order to developing a system analysis code suitable for liquid fueled molten salt reactors, the point kinetics and thermo-hydraulic models as well as the numerical method in thermal–hydraulic transient code Reactor Excursion and Leak Analysis Program (RELAP5) developed at the Idaho National Engineering Laboratory (INEL) for the U.S. Nuclear Regulatory Commission (NRC) are extended and verified by Molten Salt Reactor Experiment (MSRE) experimental benchmarks. And then, four transient scenarios including the load demand change, the primary flow transient, the secondary flow transient and the reactivity transient of the Molten Salt Breeder Reactor (MSBR) are modeled and simulated so as to evaluate the performance of the reactor during the anticipated transient events using the extended RELAP5 code. The results indicate the extended RELAP5 code is effective and well suited to the liquid fueled molten salt reactor, and the MSBR has strong inherent safety characteristics because of its large negative reactivity coefficient. In the future, the extended RELAP5 code will be used to perform transient safety analysis for a liquid fueled thorium molten salt reactor named TMSR-LF developed by the Center

  7. Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Chengbin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cheng, Maosong, E-mail: mscheng@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Liu, Guimin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-08-15

    Highlights: • New point kinetics and thermo-hydraulics models as well as a numerical method are added into RELAP5 code to be suitable for liquid fueled molten salt reactor. • The extended REALP5 code is verified by the experimental benchmarks of MSRE. • The different transient scenarios of the MSBR are simulated to evaluate performance during the transients. - Abstract: The molten salt reactor (MSR) is one of the six advanced reactor concepts declared by the Generation IV International Forum (GIF), which can be characterized by attractive attributes as inherent safety, economical efficiency, natural resource protection, sustainable development and nuclear non-proliferation. It is important to make system safety analysis for nuclear power plant of MSR. In this paper, in order to developing a system analysis code suitable for liquid fueled molten salt reactors, the point kinetics and thermo-hydraulic models as well as the numerical method in thermal–hydraulic transient code Reactor Excursion and Leak Analysis Program (RELAP5) developed at the Idaho National Engineering Laboratory (INEL) for the U.S. Nuclear Regulatory Commission (NRC) are extended and verified by Molten Salt Reactor Experiment (MSRE) experimental benchmarks. And then, four transient scenarios including the load demand change, the primary flow transient, the secondary flow transient and the reactivity transient of the Molten Salt Breeder Reactor (MSBR) are modeled and simulated so as to evaluate the performance of the reactor during the anticipated transient events using the extended RELAP5 code. The results indicate the extended RELAP5 code is effective and well suited to the liquid fueled molten salt reactor, and the MSBR has strong inherent safety characteristics because of its large negative reactivity coefficient. In the future, the extended RELAP5 code will be used to perform transient safety analysis for a liquid fueled thorium molten salt reactor named TMSR-LF developed by the Center

  8. A simple and sensitive HPLC method for analysis of imipramine in human plasma with UV detection and liquid-liquid extraction: Application in bioequivalence studies.

    Science.gov (United States)

    Rezazadeh, Mahboubeh; Emami, Jaber

    2016-01-01

    High-performance liquid chromatography (HPLC) methods employing ultraviolet (UV) detector are not sufficiently sensitive to measure the low plasma concentrations following single oral dose of imipramine. Therefore, in the present study a simple, rapid and yet sensitive HPLC method with UV detection was developed and validated for quantitation of imipramine in human plasma samples. An efficient liquid-liquid extraction (LLE) of imipramine from plasma with the mixture of hexane/isoamyl alcohol (98:2) and back extraction of the drug in acidic medium concomitant with evaporation of organic phase allowed the use of UV detector to conveniently measure plasma levels of this compound as low level as 3 ng/ml. Separation was achieved on a μ-Bondapak C18 HPLC column using sodium hydrogen phosphate solution (0.01 M)/acetonitrile (60/40 v/v) at pH 3.5 ± 0.1 at 1.5 ml/min. Trimipramine was used as the internal standard for analysis of plasma samples. The retention times for imipramine and trimipramine were 4.3 and 5.2 min, respectively. Calibration curve was linear in the range of 3-40 ng/ml using human plasma with the average extraction recovery of 85 ± 5%. Imipramine was found to be stable in plasma samples with no evidence of degradation during three freeze-thaw cycles and three months storage at -70°C. The current validated method was finally applied in bioequivalence studies of two different imipramine products according to a standard two-way crossover design with a two weeks washout period.

  9. A novel polythiophene – ionic liquid modified clay composite solid phase microextraction fiber: Preparation, characterization and application to pesticide analysis

    International Nuclear Information System (INIS)

    Pelit, Füsun Okçu; Pelit, Levent; Dizdaş, Tuğberk Nail; Aftafa, Can; Ertaş, Hasan; Yalçınkaya, E.E.; Türkmen, Hayati; Ertaş, F.N.

    2015-01-01

    Highlights: • A novel polythiophene – ionic liquid modified clay surface has been prepared. • Polymerization was performed electrochemically on a stainless steel wire. • This material was used as a SPME fiber in head space mode. • This new SPME fiber was applied for analysis of pesticides in juice samples. • Fiber adsorption properties were improved by modification of ionic liquids. - Abstract: This report comprises the novel usage of polythiophene – ionic liquid modified clay surfaces for solid phase microextraction (SPME) fiber production to improve the analysis of pesticides in fruit juice samples. Montmorillonite (Mmt) clay intercalated with ionic liquids (IL) was co-deposited with polythiophene (PTh) polymer coated electrochemically on an SPME fiber. The surface of the fibers were characterized by using scanning electron microscopy (SEM). Operational parameters effecting the extraction efficiency namely; the sample volume and pH, adsorption temperature and time, desorption temperature and time, stirring rate and salt amount were optimized. In order to reveal the major effects, these eight factors were selected and Plackett–Burman Design was constructed. The significant parameters detected; adsorption and temperature along with the stirring rate, were further investigated by Box–Behnken design. Under optimized conditions, calibration graphs were plotted and detection limits were calculated in the range of 0.002–0.667 ng mL −1 . Relative standard deviations were no higher than 18%. Overall results have indicated that this novel PTh-IL-Mmt SPME surface developed by the aid of electrochemical deposition could offer a selective and sensitive head space analysis for the selected pesticide residues

  10. A novel polythiophene – ionic liquid modified clay composite solid phase microextraction fiber: Preparation, characterization and application to pesticide analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pelit, Füsun Okçu, E-mail: fusun.okcu@ege.edu.tr; Pelit, Levent; Dizdaş, Tuğberk Nail; Aftafa, Can; Ertaş, Hasan; Yalçınkaya, E.E.; Türkmen, Hayati; Ertaş, F.N.

    2015-02-15

    Highlights: • A novel polythiophene – ionic liquid modified clay surface has been prepared. • Polymerization was performed electrochemically on a stainless steel wire. • This material was used as a SPME fiber in head space mode. • This new SPME fiber was applied for analysis of pesticides in juice samples. • Fiber adsorption properties were improved by modification of ionic liquids. - Abstract: This report comprises the novel usage of polythiophene – ionic liquid modified clay surfaces for solid phase microextraction (SPME) fiber production to improve the analysis of pesticides in fruit juice samples. Montmorillonite (Mmt) clay intercalated with ionic liquids (IL) was co-deposited with polythiophene (PTh) polymer coated electrochemically on an SPME fiber. The surface of the fibers were characterized by using scanning electron microscopy (SEM). Operational parameters effecting the extraction efficiency namely; the sample volume and pH, adsorption temperature and time, desorption temperature and time, stirring rate and salt amount were optimized. In order to reveal the major effects, these eight factors were selected and Plackett–Burman Design was constructed. The significant parameters detected; adsorption and temperature along with the stirring rate, were further investigated by Box–Behnken design. Under optimized conditions, calibration graphs were plotted and detection limits were calculated in the range of 0.002–0.667 ng mL{sup −1}. Relative standard deviations were no higher than 18%. Overall results have indicated that this novel PTh-IL-Mmt SPME surface developed by the aid of electrochemical deposition could offer a selective and sensitive head space analysis for the selected pesticide residues.

  11. Liquid marbles: Physics and applications

    Indian Academy of Sciences (India)

    Therefore, designing the porosity of the sheath can ... manufactured in the traditional rolling process and those manufactured by the dropping of water droplets onto a ..... Continuous production of liquid marbles would involve heating at low ...

  12. Application of Ionic Liquids in Hydrometallurgy

    Science.gov (United States)

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

    2014-01-01

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864

  13. Liquid Effluents Program mission analysis

    International Nuclear Information System (INIS)

    Lowe, S.S.

    1994-01-01

    Systems engineering is being used to identify work to cleanup the Hanford Site. The systems engineering process transforms an identified mission need into a set of performance parameters and a preferred system configuration. Mission analysis is the first step in the process. Mission analysis supports early decision-making by clearly defining the program objectives, and evaluating the feasibility and risks associated with achieving those objectives. The results of the mission analysis provide a consistent basis for subsequent systems engineering work. A mission analysis was performed earlier for the overall Hanford Site. This work was continued by a ''capstone'' team which developed a top-level functional analysis. Continuing in a top-down manner, systems engineering is now being applied at the program and project levels. A mission analysis was conducted for the Liquid Effluents Program. The results are described herein. This report identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and sources of constraints, estimates the resources to carry out the mission, and establishes measures of success. The mission analysis reflects current program planning for the Liquid Effluents Program as described in Liquid Effluents FY 1995 Multi-Year Program Plan

  14. Liquid decontaminants for nuclear applications

    International Nuclear Information System (INIS)

    Henning, Klaus; Gojowczyk, Peter

    2011-01-01

    Decontaminants used in the nuclear field must meet a variety of requirements. On the one hand, the washing process must remove radioactive contamination and conventional dirt from the items washed. On the other hand, subsequent disposal of the washing water arisings must be feasible by the usual waste disposal pathway. One aspect of particular importance is unproblematic treatment of the radioactively contaminated waste water, as a rule low to medium active, whose final storage must be ensured. Decontaminants must not impair waste treatment processes, such as evaporation, filtration, and centrifuging, as well as further treatment of the concentrates and residues arising which are worked into matrix materials (cementation, bituminization), in drum drying or roller mill drying. For reasons of safety at work and environmental quality, also aspects of human toxicology and ecotoxicology must be taken into account. In this way, handling decontaminants will not jeopardize the health of personnel or cause potential long-term environmental damage. Liquid decontaminants, compared to powders, offer the advantage of automatic dosage. The liquid product is dosed accurately as a function of the washing program used. Liquid decontaminants can be handled safely in hot laundries without causing skin and eye contacts. (orig.)

  15. Trace analysis of three antihistamines in human urine by on-line single drop liquid-liquid-liquid microextraction coupled to sweeping micellar electrokinetic chromatography and its application to pharmacokinetic study.

    Science.gov (United States)

    Gao, Wenhua; Chen, Yunsheng; Chen, Gaopan; Xi, Jing; Chen, Yaowen; Yang, Jianying; Xu, Ning

    2012-09-01

    A rapid and efficient dual preconcentration method of on-line single drop liquid-liquid-liquid microextraction (SD-LLLME) coupled to sweeping micellar electrokinetic chromatography (MEKC) was developed for trace analysis of three antihistamines (mizolastine, chlorpheniramine and pheniramine) in human urine. Three analytes were firstly extracted from donor phase (4 mL urine sample) adjusted to alkaline condition (0.5 M NaOH). The unionized analytes were subsequently extracted into a drop of n-octanol layered over the urine sample, and then into a microdrop of acceptor phase (100 mM H(3)PO(4)) suspended from a capillary inlet. The enriched acceptor phase was on-line injected into capillary with a height difference and then analyzed directly by sweeping MEKC. Good linear relationships were obtained for all analytes in a range of 6.25 × 10(-6) to 2.5 × 10(-4)g/L with correlation coefficients (r) higher than 0.987. The proposed method achieved limits of detections (LOD) varied from 1.2 × 10(-7) to 9.5 × 10(-7)g/L based on a signal-to-noise of 3 (S/N=3) with 751- to 1372-fold increases in detection sensitivity for analytes, and it was successfully applied to the pharmacokinetic study of three antihistamines in human urine after an oral administration. The results demonstrated that this method was a promising combination for the rapid trace analysis of antihistamines in human urine with the advantages of operation simplicity, high enrichment factor and little solvent consumption. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Optimization of a Differential Ion Mobility Spectrometry-Tandem Mass Spectrometry Method for High-Throughput Analysis of Nicotine and Related Compounds: Application to Electronic Cigarette Refill Liquids.

    Science.gov (United States)

    Regueiro, Jorge; Giri, Anupam; Wenzl, Thomas

    2016-06-21

    Fast market penetration of electronic cigarettes is leading to an exponentially growing number of electronic refill liquids with different nicotine contents and an endless list of flavors. Therefore, rapid and simple methods allowing a fast screening of these products are necessary to detect harmful substances which can negatively impact the health of consumers. In this regard, the present work explores the capabilities of differential ion mobility spectrometry coupled to tandem mass spectrometry for high-throughput analysis of nicotine and 11 related compounds in commercial refill liquids for electronic cigarettes. The influence of main factors affecting the ion mobility separation, such as modifier types and concentration, separation voltage, and temperature, was systematically investigated. Despite small molecular weight differences among the studied compounds, a good separation was achieved in the ion mobility cell under the optimized conditions, which involved the use of ethanol as a polar gas-phase chemical modifier. Indeed, differential ion mobility was able to resolve (resolution >4) nicotine from its structural isomer anabasine without the use of any chromatographic separation. The quantitative performance of the proposed method was then evaluated, showing satisfactory precision (RSD ≤ 16%) and recoveries ranging from 85 to 100% for nicotine, and from 84 to 126% for the rest of the target analytes. Several commercial electronic cigarette refill liquids were analyzed to demonstrate the applicability of the method. In some cases, significant differences were found between labeled and measured levels of nicotine. Anatabine, cotinine, myosmine, and nornicotine were also found in some of the analyzed samples.

  17. Application of Ionic Liquids in Hydrometallurgy

    Directory of Open Access Journals (Sweden)

    Jesik Park

    2014-08-01

    Full Text Available Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry.

  18. Liquid Marbles: From Industrial to Medical Applications

    Directory of Open Access Journals (Sweden)

    Roxana-Elena Avrămescu

    2018-05-01

    Full Text Available Liquid marbles are versatile structures demonstrating a pseudo-Leidenfrost wetting regime formed by encapsulating microscale volumes of liquid in a particle shell. The liquid core is completely separated from the exterior through air pockets. The external phase consists of hydrophobic particles, in most cases, or hydrophilic ones distributed as aggregates. Their interesting features arise from the double solid-fluid character. Thus, these interesting formations, also known as “dry waters”, have gained attention in surface science. This review paper summarizes a series of proposed formulations, fabrication techniques and properties, in correlation with already discovered and emerging applications. A short general review of the surface properties of powders (contact angle, superficial tension is proposed, followed by a presentation of liquid marbles’ properties (superficial characteristics, elasticity, self-propulsion etc.. Finally, applications of liquid marbles are discussed, mainly as helpful and yet to be exploited structures in the pharmaceutical and medical field. Innovative pharmaceutical forms (Pickering emulsions are also means of use taken into account as applications which need further investigation.

  19. Environmental application of elemental speciation analysis based on liquid or gas chromatography hyphenated to inductively coupled plasma mass spectrometry-A review

    International Nuclear Information System (INIS)

    Popp, Maximilian; Hann, Stephan; Koellensperger, Gunda

    2010-01-01

    In recent years the number of environmental applications of elemental speciation analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. The analytical characteristics, such as extremely low detection limits (LOD) for almost all elements, the wide linear range, the possibility for multi-elemental analysis and the possibility to apply isotope dilution mass spectrometry (IDMS) make ICP-MS an attractive tool for elemental speciation analysis. Two methodological approaches, i.e. the combination of ICP-MS with high performance liquid chromatography (HPLC) and gas chromatography (GC), dominate the field. Besides the investigation of metals and metalloids and their species (e.g. Sn, Hg, As), representing 'classic' elements in environmental science, more recently other elements (e.g. P, S, Br, I) amenable to ICP-MS determination were addressed. In addition, the introduction of isotope dilution analysis and the development of isotopically labeled species-specific standards have contributed to the success of ICP-MS in the field. The aim of this review is to summarize these developments and to highlight recent trends in the environmental application of ICP-MS coupled to GC and HPLC.

  20. Importance of liquid fragility for energy applications of ionic liquids

    Science.gov (United States)

    Sippel, Pit; Lunkenheimer, Peter; Krohns, Stephan; Thoms, Erik; Loidl, Alois

    Ionic liquids (ILs) are salts that are liquid at ambient temperatures. The strong electrostatic forces between their molecular ions result, e.g., in low volatility and high stability for many members of this huge material class. For this reason they bear a high potential for new advancements in applications, e.g., as electrolytes in energy-storage devices such as supercapacitors or batteries, where the ionic conductivity is an essential figure of merit. Most ILs show dynamic properties typical for glassy matter, which dominate many of their physical properties. An important method to study these dynamical glass-properties is dielectric spectroscopy that can access relaxation times of dynamic processes and the conductivity in a broad frequency and temperature range. In the present contribution, we present results on a large variety of ionic liquids showing that the conductivity of ILs depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility. This work was supported by the Deutsche Forschungsgemeinschaft via Research Unit FOR1394 and by the BMBF via ENREKON 03EK3015.

  1. Supramolecular Liquid Crystal Displays Construction and Applications

    OpenAIRE

    Hoogboom, J.T.V.

    2004-01-01

    This thesis describes chemical methodologies, which can be ued to construct alignment layers for liquid crystal display purposes in a non-clean room environment, by making use of supramolecular chemistry. These techniques are subsequently used to attain control over LCD-properties, both pre- and post-LCD construction. In addition, the thesis describes the application of LCD technology in biosensors.

  2. Supported ionic liquids fundamentals and applications

    CERN Document Server

    Fehrmann, Rasmus; Haumann, Marco

    2013-01-01

    This unique book gives a timely overview about the fundamentals and applications of supported ionic liquids in modern organic synthesis. It introduces the concept and synthesis of SILP materials and presents important applications in the field of catalysis (e.g. hydroformylation, hydrogenation, coupling reactions, fine chemical synthesis) as well as energy technology and gas separation. Written by pioneers in the field, this book is an invaluable reference book for organic chemists in academia or industry.

  3. Application of the Instrumental Neutron Activation Analysis and High Performance Liquid Chromatography (HPLC) in the rare earth elements determination in reference geological materials

    International Nuclear Information System (INIS)

    Figueiredo, Ana M.G.; Moraes, Noemia M.P. de; Shihomatsu, Helena M.

    1997-01-01

    Instrumental Neutron Activation Analysis (INAA) and High Performance Liquid Chromatography (HPLC) were applied to the determination of rare earth elements (REE) in the geological reference materials AGV-1, G-2 and GSP-1 (USGS). Results obtained by both techniques showed good agreement with certified values, giving relative errors less than 10%. The La, Ce, Nd, Sm, Eu, Tb, Yb and Lu REE elements were determined. All the REE except Dy and Y were determined by HPLC. The reference material G94, employed in the International Proficiency Test for Analytical Geochemistry Laboratories (GeoTP1) was analysed. The results obtained are a contribution to REE contents in this sample. The INAA and HPLC application to the determination of REE in this kind of matrix is also discussed. (author). 10 refs., 1 fig., 5 tabs

  4. An improved method for 85Kr analysis by liquid scintillation counting and its application to atmospheric 85Kr determination

    International Nuclear Information System (INIS)

    Momoshima, Noriyuki; Inoue, Fumio; Sugihara, Shinji; Shimada, Jun; Taniguchi, Makoto

    2010-01-01

    Atmospheric 85 Kr concentration at Fukuoka, Japan was determined by an improved 85 Kr analytical method using liquid scintillation counting (LSC). An average value of 1.54 ± 0.05 Bq m -3 was observed in 2008, which is about two times that measured in 1981 at Fukuoka, indicating a 29 mBq y -1 rate of increase as an average for these 27 years. The analytical method developed involves collecting Kr from air using activated charcoal at liquid N 2 temperature and purifying it using He at dry ice temperature, followed by Kr separation by gas chromatography. An overall Kr recovery of 76.4 ± 8.1% was achieved when Kr was analyzed in 500-1000 l of air. The Kr isolated by gas chromatography was collected on silica gel in a quartz glass vial cooled to liquid N 2 temperature and the activity of 85 Kr was measured with a low-background LS counter. The detection limit of 85 Kr activity by the present analytical method is 0.0015 Bq at a 95% confidence level, including all propagation errors, which is equivalent with 85 Kr in 1.3 l of the present air under the analytical conditions of 72.1% counting efficiency, 0.1597 cps background count rate, and 76.4% Kr recovery.

  5. Analysis of spatial and temporal spectra of liquid film surface in annular gas-liquid flow

    Science.gov (United States)

    Alekseenko, Sergey; Cherdantsev, Andrey; Heinz, Oksana; Kharlamov, Sergey; Markovich, Dmitriy

    2013-09-01

    Wavy structure of liquid film in annular gas-liquid flow without liquid entrainment consists of fast long-living primary waves and slow short-living secondary waves. In present paper, results of spectral analysis of this wavy structure are presented. Application of high-speed LIF technique allowed us to perform such analysis in both spatial and temporal domains. Power spectra in both domains are characterized by one-humped shape with long exponential tail. Influence of gas velocity, liquid Reynolds number, liquid viscosity and pipe diameter on frequency of the waves is investigated. When gravity effect is much lesser than the shear stress, similarity of power spectra at different gas velocities is observed. Using combination of spectral analysis and identification of characteristic lines of primary waves, frequency of generation of secondary waves by primary waves is measured.

  6. Applications of low level liquid scintillation counting

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1983-01-01

    Low level liquid scintillation counting is reviewed in terms of its present use and capabilities for measuring low activity samples. New areas of application of the method are discussed with special interest directed to the food industry and environmental monitoring. Advantages offered in the use of a low background liquid scintillation counter for the nuclear power industry and nuclear navy are discussed. Attention is drawn to the need for commercial development of such instrumentation to enable wider use of the method. A user clientele is suggested as is the required technology to create such a counter

  7. Liquid Crystalline Semiconductors Materials, properties and applications

    CERN Document Server

    Kelly, Stephen; O'Neill, Mary

    2013-01-01

    This is an exciting stage in the development of organic electronics. It is no longer an area of purely academic interest as increasingly real applications are being developed, some of which are beginning to come on-stream. Areas that have already been commercially developed or which are under intensive development include organic light emitting diodes (for flat panel displays and solid state lighting), organic photovoltaic cells, organic thin film transistors (for smart tags and flat panel displays) and sensors. Within the family of organic electronic materials, liquid crystals are relative newcomers. The first electronically conducting liquid crystals were reported in 1988 but already a substantial literature has developed. The advantage of liquid crystalline semiconductors is that they have the easy processability of amorphous and polymeric semiconductors but they usually have higher charge carrier mobilities. Their mobilities do not reach the levels seen in crystalline organics but they circumvent all of t...

  8. Liquid-liquid extraction in flow analysis: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre, Cristina I.C.; Santos, Joao L.M. [REQUIMTE, Servico de Quimica-Fisica, Faculdade de Farmacia, Universidade do Porto, R. Anibal Cunha, 164, 4099-030 Porto (Portugal); Lima, Jose L.F.C., E-mail: limajlfc@ff.up.pt [REQUIMTE, Servico de Quimica-Fisica, Faculdade de Farmacia, Universidade do Porto, R. Anibal Cunha, 164, 4099-030 Porto (Portugal); Zagatto, Elias A.G. [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, P.O. Box 96, Piracicaba 13400-970 (Brazil)

    2009-10-12

    Liquid-liquid extractions (LLE) are a common sample pre-treatment in many analytical applications. This review aims at providing a critical overview of the distinct automated continuous flow-based approaches that were developed for liquid-liquid extraction with the purpose of pre-concentration and/or separation of multiple analytes, such as ultra-trace metal and metalloid species, phenolic compounds, surfactants, pharmaceuticals, etc., hyphenated with many detection technique such as UV/vis spectrophotometry, atomic spectrometric detection systems and luminescent detectors, including distinct extraction strategies and applications like single and multiple extraction schemes, wetting film extraction, supported liquid membrane extraction, back extraction, closed-loop systems and the utilisation of zone sampling, chromatomembranes and iterative reversal techniques. The analytical performance of the developed flow-based LLE methods and the influence of flow manifold components such as the segmenter, extraction coil and phase separator, is emphasised and object of discussion. An overall presentation of each system components, selectivity, advantages and shortcomings is carried out and exemplified with selected applications.

  9. High performance liquid chromatographic separation of polycyclic aromatic hydrocarbons on microparticulate pyrrolidone and application to the analysis of shale oil

    International Nuclear Information System (INIS)

    Mourey, T.H.; Siggia, S.; Uden, P.C.; Crowley, R.J.

    1980-01-01

    A chemically bonded pyrrolidone substrate is used for the high performance liquid chromatographic separation of polycyclic aromatic hydrocarbons. The cyclic amide phase interacts electronically with the polycyclic aromatic hydrocarbons in both the normal and reversed phase modes. Separation is effected according to the number of aromatic rings and the type of ring condensation. Information obtained is very different from that observed on hydrocarbon substrates, and thus these phases can be used in a complementary fashion to give a profile of polycyclic aromatics in shale oil samples. 7 figures, 1 table

  10. Nontoxic Ionic Liquid Fuels for Exploration Applications

    Science.gov (United States)

    Coil, Millicent

    2015-01-01

    The toxicity of propellants used in conventional propulsion systems increases not only safety risks to personnel but also costs, due to special handling required during the entire lifetime of the propellants. Orbital Technologies Corporation (ORBITEC) has developed and tested novel nontoxic ionic liquid fuels for propulsion applications. In Phase I of the project, the company demonstrated the feasibility of several ionic liquid formulations that equaled the performance of conventional rocket propellant monomethylhydrazine (MMH) and also provided low volatility and low toxicity. In Phase II, ORBITEC refined the formulations, conducted material property tests, and investigated combustion behavior in droplet and microreactor experiments. The company also explored the effect of injector design on performance and demonstrated the fuels in a small-scale thruster. The ultimate goal is to replace propellants such as MMH with fuels that are simultaneously high-performance and nontoxic. The fuels will have uses in NASA's propulsion applications and also in a range of military and commercial functions.

  11. Highly improved electrocatalytic behavior of sulfite at carbon ionic liquid electrode: Application to the analysis of some real samples

    International Nuclear Information System (INIS)

    Safavi, Afsaneh; Maleki, Norouz; Momeni, Safieh; Tajabadi, Fariba

    2008-01-01

    The electrocatalytic oxidation of sulfite was investigated at carbon ionic liquid electrode (CILE). This electrode is a very good alternative to previously described electrodes because the electrocatalytic effect is achieved without any electrode modification. Comparative experiments were carried out using carbon paste electrode (CPE) and glassy carbon electrode (GCE). At CILE, highly reproducible and well-defined cyclic voltammograms were obtained for sulfite with a peak potential of 0.55 V vs. Ag/AgCl. Sulfite oxidation at CILE does not result in deactivation of the electrode surface. The kinetic parameters for this irreversible heterogeneous electron transfer process were determined. Under optimal experimental conditions, the peak current response increased linearly with sulfite concentration over the range of 6-1000 μM. The detection limit of the method was 4 μM. The method was applied to the determination of sulfite in mineral water, grape juice and non-alcoholic beer samples

  12. Ionic liquid gel materials: applications in green and sustainable chemistry

    OpenAIRE

    Marr, Patricia C.; Marr, Andrew C.

    2016-01-01

    Ionic liquid gel materials offer a way to further utilise ionic liquids in technological applications. Combining the controlled and directed assembly of gels, with the diverse applications of ionic liquids, enables the design of a heady combination of functional tailored materials, leading to the development of task specific / functional ionic liquid gels. This review introduces gels and gel classification, focusing on ionic liquid gels and their potential roles in a more sustainable future. ...

  13. Systemic Liquidity Shocks and Banking Sector Liquidity Characteristics on the Eve of Liquidity Coverage Ratio Application - The Case of the Czech Republic1

    Directory of Open Access Journals (Sweden)

    Brůna Karel

    2016-01-01

    Full Text Available The paper contains an analysis of the economic and regulatory concept of bank liquidity in the context of systemic liquidity shock. A formal model analysis shows that the application of liquidity coverage ratio (LCR based on Basel III will lead to a significant adaptation of banks liquidity management. LCR causes a change in bank’s liquidity allocation and funding to be less effective and more costly and restrictive for providing credits comparing with economic determinants. It is demonstrated that the application of LCR underestimates actual liquidity position of a bank and leads to allocation ineffectiveness. The empirical part contains simulation of impacts of systemic liquidity shock on the banking sector’s ability to withstand the unfavourable credit shock while solvency is maintained. The results confirm the robustness of the Czech banking system ensuing from the systemic surplus of liquidity, high volume of bank capital and its high profitability. The estimations of the VAR model show that the relations between liquidity characteristics of banks, sources of aggregate liquidity shock, interbank market illiquidity and the credit facilities of the Czech National Bank are relatively weak, supporting the conclusion that the banks face liquidity shocks of non-persistent character.

  14. Application of high-performance liquid chromatography-tandem mass spectrometry with a quadrupole/linear ion trap instrument for the analysis of pesticide residues in olive oil.

    Science.gov (United States)

    Hernando, M D; Ferrer, C; Ulaszewska, M; García-Reyes, J F; Molina-Díaz, A; Fernández-Alba, A R

    2007-11-01

    This article describes the development of an enhanced liquid chromatography-mass spectrometry (LC-MS) method for the analysis of pesticides in olive oil. One hundred pesticides belonging to different classes and that are currently used in agriculture have been included in this method. The LC-MS method was developed using a hybrid quadrupole/linear ion trap (QqQ(LIT)) analyzer. Key features of this technique are the rapid scan acquisition times, high specificity and high sensitivity it enables when the multiple reaction monitoring (MRM) mode or the linear ion-trap operational mode is employed. The application of 5 ms dwell times using a linearly accelerating (LINAC) high-pressure collision cell enabled the analysis of a high number of pesticides, with enough data points acquired for optimal peak definition in MRM operation mode and for satisfactory quantitative determinations to be made. The method quantifies over a linear dynamic range of LOQs (0.03-10 microg kg(-1)) up to 500 microg kg(-1). Matrix effects were evaluated by comparing the slopes of matrix-matched and solvent-based calibration curves. Weak suppression or enhancement of signals was observed (ion (EPI) and MS3 were developed.

  15. Aerospace gas/liquid separator for terrestrial applications

    International Nuclear Information System (INIS)

    Mondt, J.F.

    1996-01-01

    The space gas/liquid separator, a key component in the heat transport subsystem of a space reactor power system, was developed to remove helium gas from liquid lithium in zero gravity. Helium is generated from lithium irradiation in the reactor core and would reach saturation in lithium after 48 hours of full power operations. The gas/liquid separator is also applicable for large commercial powerplants to deaerate the water before and after the feedwater heaters. Another terrestrial application is for industrial companies to use the gas/liquid separator and wet chemistry to remove all the gases from the air and only discharge clean air to the atmosphere. An additional application that resulted from this gas/liquid separator technology, was separating liquid carbon dioxide from nitrogen. This application is opposite from the space application in that it is removing a liquid from a gas rather than a gas from a liquid

  16. Applications of liquid phase chromatographies for the analysis of streams arising at the back end of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Deshingkar, D.S.; Yalmali, Vrunda S.; Wattal, P.K.

    2000-06-01

    India has opted for a closed fuel cycle comprising of reprocessing and recycling technology. The back end of such nuclear fuel cycle involves the reprocessing of spent nuclear fuels for recovery of plutonium and depleted uranium by Purex technology. Wastes arising from the reprocessing plant are classified as high, intermediate and low level wastes (HLW, ILW, LLW). HLW is mixture of over 50 elements present in different chemical forms. The accurate analyses of dissolver solution and HLW are the most challenging but essential tasks for reprocessing plant operations and also for further development of treatment methods. Inductively coupled plasma - atomic emission spectroscopy and atomic absorption spectroscopy techniques are suitable for analysis of metallic anions. Ion chromatography has proven capability to analyse number of cations or anions at ppm or even ppb level in single run. The report reviews the literature regarding the title subject. To assess the technical feasibility of ion chromatography for waste analysis, a simulated PHWR-HLW analogue was prepared. The PHWR-HLW analogue and ground water samples were analysed on DIONEX-DX 500 and Metrohm IC. Results obtained clearly demonstrated the usefulness of ion chromatography as vital analytical tool. HLW and other process or waste streams arising at the back end of nuclear fuel cycle can be analysed for alkali, alkaline earth, rare earth and transition metal cations and important anions. Use of fraction collector along with ion chromatography can enhance it's sensitivity to few Bq/ml for radioactive samples. (author)

  17. Corrosion by liquid metals - Application to liquid sodium

    International Nuclear Information System (INIS)

    Lavielle, Lisette.

    1978-10-01

    In this bibliographic review on the corrosion by liquid metals, the first part is devoted to the theoretical aspects of the problem and the second part concerns the corrosion of steels by liquid sodium, as example. Obvious the numerous works now published, the mechanisms are still leaving bad known [fr

  18. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools.

    Science.gov (United States)

    Maton, Cedric; De Vos, Nils; Stevens, Christian V

    2013-07-07

    The increasing amount of papers published on ionic liquids generates an extensive quantity of data. The thermal stability data of divergent ionic liquids are collected in this paper with attention to the experimental set-up. The influence and importance of the latter parameters are broadly addressed. Both ramped temperature and isothermal thermogravimetric analysis are discussed, along with state-of-the-art methods, such as TGA-MS and pyrolysis-GC. The strengths and weaknesses of the different methodologies known to date demonstrate that analysis methods should be in line with the application. The combination of data from advanced analysis methods allows us to obtain in-depth information on the degradation processes. Aided with computational methods, the kinetics and thermodynamics of thermal degradation are revealed piece by piece. The better understanding of the behaviour of ionic liquids at high temperature allows selective and application driven design, as well as mathematical prediction for engineering purposes.

  19. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    Science.gov (United States)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  20. Leveraging liquid dielectrophoresis for microfluidic applications

    International Nuclear Information System (INIS)

    Chugh, Dipankar; Kaler, Karan V I S

    2008-01-01

    Miniaturized fluidic systems have been developed in recent years and offer new and novel means of leveraging the domain of microfluidics for the development of micro-total analysis systems (μTAS). Initially, such systems employed closed microchannels in order to facilitate chip-based biochemical assays, requiring very small quantities of sample and/or reagents and furthermore providing rapid and low-cost analysis on a compact footprint. More recently, advancements in the domain of surface microfluidics have suggested that similar low volume sample handling and manipulation capabilities for bioassays can be attained by leveraging the phenomena of liquid dielectrophoresis and droplet dielectrophoresis (DEP), without the need for separate pumps or valves. Some of the key aspects of this surface microfluidic technology and its capabilities are discussed and highlighted in this paper. We, furthermore, examine the integration and utility of liquid DEP and droplet DEP in providing rapid and automated sample handling and manipulation capabilities on a compact chip-based platform

  1. Liquid effluent retention facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-06-01

    This appendix to the Liquid Effluent Retention Facility Dangerous Waste Permit Application contains pumps, piping, leak detection systems, geomembranes, leachate collection systems, earthworks and floating cover systems

  2. Application of liquid crystals in thermal nondestructive evaluation

    International Nuclear Information System (INIS)

    Panakal, J.P.; Mukherjee, S.; Ghosh, J.K.

    1983-01-01

    In recent years, thermal nondestructive evaluation using Cholestric liquid crystals have found wide applications in industry. Thermography using Cholesteric liquid crystals can be used for detection of nonbonds in metallic composites, hot spots in electronic circuits and preliminary examination of welded pressure vessels. This paper presents the results of experiments on thermography of components using encapsulated liquid crystals. (author)

  3. Applications of ionic liquids in polymer science and technology

    CERN Document Server

    2015-01-01

    This book summarizes the latest knowledge in the science and technology of ionic liquids and polymers in different areas. Ionic liquids (IL) are actively being investigated in polymer science and technology for a number of different applications. In the first part of the book the authors present the particular properties of ionic liquids as speciality solvents. The state-of-the art in the use of ionic liquids in polymer synthesis and modification reactions including polymer recycling is outlined. The second part focuses on the use of ionic liquids as speciality additives such as plasticizers or antistatic agents.  The third part examines the use of ionic liquids in the design of functional polymers (usually called polymeric ionic liquids (PIL) or poly(ionic liquids)). Many important applications in diverse scientific and industrial areas rely on these polymers, like polymer electrolytes in electrochemical devices, building blocks in materials science, nanocomposites, gas membranes, innovative anion sensitive...

  4. Versatile application of indirect Fourier transformation to structure factor analysis: from X-ray diffraction of molecular liquids to small angle scattering of protein solutions.

    Science.gov (United States)

    Fukasawa, Toshiko; Sato, Takaaki

    2011-02-28

    We highlight versatile applicability of a structure-factor indirect Fourier transformation (IFT) technique, hereafter called SQ-IFT. The original IFT aims at the pair distance distribution function, p(r), of colloidal particles from small angle scattering of X-rays (SAXS) and neutrons (SANS), allowing the conversion of the experimental form factor, P(q), into a more intuitive real-space spatial autocorrelation function. Instead, SQ-IFT is an interaction potential model-free approach to the 'effective' or 'experimental' structure factor to yield the pair correlation functions (PCFs), g(r), of colloidal dispersions like globular protein solutions for small-angle scattering data as well as the radial distribution functions (RDFs) of molecular liquids in liquid diffraction (LD) experiments. We show that SQ-IFT yields accurate RDFs of liquid H(2)O and monohydric alcohol reflecting their local intermolecular structures, in which q-weighted structure function, qH(q), conventionally utilized in many LD studies out of necessity of performing direct Fourier transformation, is no longer required. We also show that SQ-IFT applied to theoretically calculated structure factors for uncharged and charged colloidal dispersions almost perfectly reproduces g(r) obtained as a solution of the Ornstein-Zernike (OZ) equation. We further demonstrate the relevance of SQ-IFT in its practical applications, using SANS effective structure factors of lysozyme solutions reported in recent literatures which revealed the equilibrium cluster formation due to coexisting long range electrostatic repulsion and short range attraction between the proteins. Finally, we present SAXS experiments on human serum albumin (HSA) at different ionic strength and protein concentration, in which we discuss the real space picture of spatial distributions of the proteins via the interaction potential model-free route.

  5. Simplified analysis for liquid pathway studies

    International Nuclear Information System (INIS)

    Codell, R.B.

    1984-08-01

    The analysis of the potential contamination of surface water via groundwater contamination from severe nuclear accidents is routinely calculated during licensing reviews. This analysis is facilitated by the methods described in this report, which is codified into a BASIC language computer program, SCREENLP. This program performs simplified calculations for groundwater and surface water transport and calculates population doses to potential users for the contaminated water irrespective of possible mitigation methods. The results are then compared to similar analyses performed using data for the generic sites in NUREG-0440, Liquid Pathway Generic Study, to determine if the site being investigated would pose any unusual liquid pathway hazards

  6. Application of Ionic Liquids in Amperometric Gas Sensors.

    Science.gov (United States)

    Gębicki, Jacek; Kloskowski, Adam; Chrzanowski, Wojciech; Stepnowski, Piotr; Namiesnik, Jacek

    2016-01-01

    This article presents an analysis of available literature data on metrological parameters of the amperometric gas sensors containing ionic liquids as an electrolyte. Four mechanism types of signal generation in amperometric sensors with ionic liquid are described. Moreover, this article describes the influence of selected physico-chemical properties of the ionic liquids on the metrological parameters of these sensors. Some metrological parameters are also compared for amperometric sensors with GDE and SPE electrodes and with ionic liquids for selected analytes.

  7. Ionic liquid and nanoparticle hybrid systems: Emerging applications.

    Science.gov (United States)

    He, Zhiqi; Alexandridis, Paschalis

    2017-06-01

    Having novel electronic and optical properties that emanate from their nano-scale dimensions, nanoparticles are central to numerous applications. Ionic liquids can confer to nanoparticle chemical protection and physicochemical property enhancement through intermolecular interactions and can consequently improve the stability and reusability of nanoparticle for various operations. With an aim to combine the novel properties of nanoparticles and ionic liquids, different structures have been generated, based on a balance of several intermolecular interactions. Such ionic liquid and nanoparticle hybrids are showing great potential in diverse applications. In this review, we first introduce various types of ionic liquid and nanoparticle hybrids, including nanoparticle colloidal dispersions in ionic liquids, ionic liquid-grafted nanoparticles, and nanoparticle-stabilized ionic liquid-based emulsions. Such hybrid materials exhibit interesting synergisms. We then highlight representative applications of ionic liquid and nanoparticle hybrids in the catalysis, electrochemistry and separations fields. Such hybrids can attain better stability and higher efficiency under a broad range of conditions. Novel and enhanced performance can be achieved in these applications by combining desired properties of ionic liquids and of nanoparticles within an appropriate hybrid nanostructure. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A new water-based liquid scintillator and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, M., E-mail: yeh@bnl.gov [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Hans, S.; Beriguete, W.; Rosero, R.; Hu, L.; Hahn, R.L. [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Diwan, M.V.; Jaffe, D.E.; Kettell, S.H.; Littenberg, L. [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2011-12-21

    In this paper we describe a new type of scintillating liquid based on water. We describe the concept, preparation, and properties of this liquid, and how it could be used for a very large, but economical detector. The applications of such a detector range from fundamental physics such as nucleon decay and neutrino physics to physics with broader application such as neutron detection. We briefly describe the scientific requirements of these applications, and how they can be satisfied by the new material.

  9. Design, characterization and applications of new ionic liquid matrices for multifunctional analysis of biomolecules: A novel strategy for pathogenic bacteria biosensing

    International Nuclear Information System (INIS)

    Abdelhamid, Hani Nasser; Khan, M Shahnawaz; Wu, Hui-Fen

    2014-01-01

    Highlights: • Design and characterize novel UV absorbed-ionic liquid matrices series. • Apply the new series for different analytes. • Introduce a novel methodology for pathogenic bacteria biosensing. • Tabulate the physical parameters of the new series. - Abstract: The design, preparation and performance for novel UV-light absorbing (room-temperature) ionic liquid matrices (UV-RTILMs) for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) were reported. A series of UV-RTILMs was prepared by ultrasonication of equimolar of acid (mefenamic acid) and bases (aniline (ANI), pyridine (Pyr), dimethyl aniline (DMANI) and 2-methyl picoline (2-P)). The UV-RTILMs have not only significant absorbance at the desired wavelength (337 nm of the N 2 Laser), but also have available protons that can easily undergo proton transfer reactions to ionize the target molecules. The novel UV-RTILMs have the ability to ionize different and wide classes of compounds such as drugs, carbohydrate, and amino acids. The new UV-RTILMs series have been successfully and selectively applied for biosensing the lysates of pathogenic bacteria in the presence of the cell macromolecules. A new strategy for biosensing pathogens was presented via sensing the pathogens lysate in the cell suspension. The new materials can effectively detect the bacterial toxins without separation or any pretreatment. They offered excellent ionization of labile oligosaccharides with protonated peaks. They could significantly enhance the analyte signals, produce homogeneous spotting, reducing spot-to-spot variation, excellent vacuum stability, higher ion peak intensity, and wide application possibility. The physical parameters such as molar refractivity, molar volume, parachor, surface tension, density and polarizability were calculated and tabulated. The new UV-RTILMs could offer excellent reproducibility and great repeatability and they are promising matrices for wide applications on MALDI-MS

  10. Design, characterization and applications of new ionic liquid matrices for multifunctional analysis of biomolecules: A novel strategy for pathogenic bacteria biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Abdelhamid, Hani Nasser [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); Department of Chemistry, Assuit University, Assuit, 71515 (Egypt); Khan, M Shahnawaz [Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); Wu, Hui-Fen, E-mail: hwu@faculty.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 800, Taiwan (China); Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China)

    2014-05-01

    Highlights: • Design and characterize novel UV absorbed-ionic liquid matrices series. • Apply the new series for different analytes. • Introduce a novel methodology for pathogenic bacteria biosensing. • Tabulate the physical parameters of the new series. - Abstract: The design, preparation and performance for novel UV-light absorbing (room-temperature) ionic liquid matrices (UV-RTILMs) for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) were reported. A series of UV-RTILMs was prepared by ultrasonication of equimolar of acid (mefenamic acid) and bases (aniline (ANI), pyridine (Pyr), dimethyl aniline (DMANI) and 2-methyl picoline (2-P)). The UV-RTILMs have not only significant absorbance at the desired wavelength (337 nm of the N{sub 2} Laser), but also have available protons that can easily undergo proton transfer reactions to ionize the target molecules. The novel UV-RTILMs have the ability to ionize different and wide classes of compounds such as drugs, carbohydrate, and amino acids. The new UV-RTILMs series have been successfully and selectively applied for biosensing the lysates of pathogenic bacteria in the presence of the cell macromolecules. A new strategy for biosensing pathogens was presented via sensing the pathogens lysate in the cell suspension. The new materials can effectively detect the bacterial toxins without separation or any pretreatment. They offered excellent ionization of labile oligosaccharides with protonated peaks. They could significantly enhance the analyte signals, produce homogeneous spotting, reducing spot-to-spot variation, excellent vacuum stability, higher ion peak intensity, and wide application possibility. The physical parameters such as molar refractivity, molar volume, parachor, surface tension, density and polarizability were calculated and tabulated. The new UV-RTILMs could offer excellent reproducibility and great repeatability and they are promising matrices for wide applications on MALDI-MS.

  11. Liquid metal cooling concepts in solar power application

    International Nuclear Information System (INIS)

    Deegan, P.B.; Mangus, J.D.; Whitlow, G.A.

    1978-01-01

    The thermodynamic and thermophysical properties and proven technology of a liquid sodium heat transport system provide numerous advantages and benefits for application in a central receiver solar thermal power plant concept. The major advantages of utilizing liquid sodium are: attainment of high thermodynamic cycle efficiencies, reduced relative costs, and achievement of these goals by the mid-1980's through the utilization of proven liquid metal technology developed in the power industry, without the need for extensive development programs. The utilization of liquid sodium reduces the complexity of the design of these systems, thus providing confidence in system reliability. The implementation of the proven technology in liquid metal systems also provides assurance of reliability. In addition, the ease of transition from liquid metal breeder reactor systems to solar application provides immediate availability of this technology

  12. Alignment technology and applications of liquid crystal devices

    CERN Document Server

    Takatoh, Kohki; Hasegawa, Ray; Koden, Mitsushiro; Itoh, Nobuyuki; Hasegawa, Masaki

    2005-01-01

    Alignment phenomena are characteristic of liquid crystalline materials, and understanding them is critically important in understanding the essential features and behavior of liquid crystals and the performance of Liquid Crystal Devices (LCDs). Furthermore, in LCD production lines, the alignment process is of practical importance. Alignment Technologies and Applications of Liquid Crystal Devices demonstrates both the fundamental and practical aspects of alignment phenomena in liquid crystals. The physical basis of alignment phenomena is first introduced in order to aid the understanding of the various physical phenomena observed in the interface between liquid crystalline materials and alignment layer surfaces. Methods for the characterization of surfaces, which induce the alignment phenomena, and of the alignment layer itself are introduced. These methods are useful for the research of liquid crystalline materials and devices in academic research as well as in industry. In the practical sections, the alignme...

  13. MECHANISM OF LIQUID MEMBRANES AND APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Filiz Nuran ACAR

    2002-02-01

    Full Text Available It has been considerably studied on the recycling of waste materials in the source besides of wastewater treatment in the last years. It has been important developments on the using of semiconductor membranes in the recycling of toxic materials such as heavy metals, intensifying the environment protection measures especially in the west countries. Wastewater treatment has been achieved with liquid membranes as it has been achieved with polymeric membrane systems such as ultrafiltration, microfiltration, electrodialysis. At the same time, liquid membranes are used for removal of metal ions in hydrometallurgy. Liquid membranes are also used in biotechnology, medical areas and gas separation process.

  14. Liquid crystals beyond displays chemistry, physics, and applications

    CERN Document Server

    Li, Quan

    2012-01-01

    The chemistry, physics, and applications of liquid crystals beyond LCDs Liquid Crystals (LCs) combine order and mobility on a molecular and supramolecular level. But while these remarkable states of matter are most commonly associated with visual display technologies, they have important applications for a variety of other fields as well. Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications considers these, bringing together cutting-edge research from some of the most promising areas of LC science. Featuring contributions from respected researchers from around the globe, th

  15. Architecture, Assembly, and Emerging Applications of Branched Functional Polyelectrolytes and Poly(ionic liquid)s.

    Science.gov (United States)

    Xu, Weinan; Ledin, Petr A; Shevchenko, Valery V; Tsukruk, Vladimir V

    2015-06-17

    Branched polyelectrolytes with cylindrical brush, dendritic, hyperbranched, grafted, and star architectures bearing ionizable functional groups possess complex and unique assembly behavior in solution at surfaces and interfaces as compared to their linear counterparts. This review summarizes the recent developments in the introduction of various architectures and understanding of the assembly behavior of branched polyelectrolytes with a focus on functional polyelectrolytes and poly(ionic liquid)s with responsive properties. The branched polyelectrolytes and poly(ionic liquid)s interact electrostatically with small molecules, linear polyelectrolytes, or other branched polyelectrolytes to form assemblies of hybrid nanoparticles, multilayer thin films, responsive microcapsules, and ion-conductive membranes. The branched structures lead to unconventional assemblies and complex hierarchical structures with responsive properties as summarized in this review. Finally, we discuss prospectives for emerging applications of branched polyelectrolytes and poly(ionic liquid)s for energy harvesting and storage, controlled delivery, chemical microreactors, adaptive surfaces, and ion-exchange membranes.

  16. Analysis and optimization of Love wave liquid sensors.

    Science.gov (United States)

    Jakoby, B; Vellekoop, M J

    1998-01-01

    Love wave sensors are highly sensitive microacoustic devices, which are well suited for liquid sensing applications thanks to the shear polarization of the wave. The sensing mechanism thereby relies on the mechanical (or acoustic) interaction of the device with the liquid. The successful utilization of Love wave devices for this purpose requires proper shielding to avoid unwanted electric interaction of the liquid with the wave and the transducers. In this work we describe the effects of this electric interaction and the proper design of a shield to prevent it. We present analysis methods, which illustrate the impact of the interaction and which help to obtain an optimized design of the proposed shield. We also present experimental results for devices that have been fabricated according to these design rules.

  17. Study and development of the laser induced breakdown spectroscopy (LIBS) for the realization of field measurements: application to analysis on-line of metals in liquids

    International Nuclear Information System (INIS)

    Rosado, J.C.D.

    2013-01-01

    Metal contamination of water is a major public health issue. Controls and treatments are more drastic and performed on them for human consumption. It is essential for this to possess reliable and sensitive analytical tools adapted to the existing regulations and flexible enough to use. The technique of 'Laser Induced Breakdown Spectroscopy' (LIBS), proven for the analysis of solids, including exo-terrestrial explorations, this very interesting advantages for liquids including, for example, are multi-character elementary and the possibility of in-situ measurements of water contamination by metals. A first part of this study thesis allowed to explore the potential (LIBS) for the analysis of dissolved metals or suspensions in water. Study has found an important effect related to the particle size in the analysis of suspensions. A second prong is to look at the effects of organic matrix represented by humic acid and those natural minerals represented by the bentonite and alumina particles. The matrix effect observed was corrected by normalization by internal standard. (author) [fr

  18. Novel applications of ionic liquids in materials processing

    International Nuclear Information System (INIS)

    Reddy, Ramana G

    2009-01-01

    Ionic liquids are mixtures of organic and inorganic salts which are liquids at room temperature. Several potential applications of ionic liquids in the field of materials processing are electrowinning and electrodeposition of metals and alloys, electrolysis of active metals at low temperature, liquid-liquid extraction of metals. Results using 1-butyl-3-methylimidazolium chloride with AlCl 3 at low temperatures yielded high purity aluminium deposits (>99.9% pure) and current efficiencies >98%. Titanium and aluminium were co-deposited with/without the addition of TiCl 4 with up to 27 wt% Ti in the deposit with current efficiencies in the range of 78-85 %. Certain ionic liquids are potential replacements for thermal oils and molten salts as heat transfer fluids in solar energy applications due to high thermal stability, very low corrosivity and substantial sensible heat retentivity. The calculated storage densities for several chloride and fluoride ionic liquids are in the range of 160-210 MJ/m 3 . A 3-D mathematical model was developed to simulate the large scale electrowinning of aluminium. Since ionic liquids processing results in their low energy consumption, low pollutant emissions many more materials processing applications are expected in future.

  19. Structural analysis of zwitterionic liquids vs. homologous ionic liquids

    Science.gov (United States)

    Wu, Boning; Kuroda, Kosuke; Takahashi, Kenji; Castner, Edward W.

    2018-05-01

    Zwitterionic liquids (Zw-ILs) have been developed that are homologous to monovalent ionic liquids (ILs) and show great promise for controlled dissolution of cellulosic biomass. Using both high energy X-ray scattering and atomistic molecular simulations, this article compares the bulk liquid structural properties for novel Zw-ILs with their homologous ILs. It is shown that the significant localization of the charges on Zw-ILs leads to charge ordering similar to that observed for conventional ionic liquids with monovalent anions and cations. A low-intensity first sharp diffraction peak in the liquid structure factor S(q) is observed for both the Zw-IL and the IL. This is unexpected since both the Zw-IL and IL have a 2-(2-methoxyethoxy)ethyl (diether) functional group on the cationic imidazolium ring and ether functional groups are known to suppress this peak. Detailed analyses show that this intermediate range order in the liquid structure arises for slightly different reasons in the Zw-IL vs. the IL. For the Zw-IL, the ether tails in the liquid are shown to aggregate into nanoscale domains.

  20. Quantitative determination of trigonelline in mouse serum by means of hydrophilic interaction liquid chromatography-MS/MS analysis: Application to a pharmacokinetic study.

    Science.gov (United States)

    Szczesny, Damian; Bartosińska, Ewa; Jacyna, Julia; Patejko, Małgorzata; Siluk, Danuta; Kaliszan, Roman

    2018-02-01

    Trigonelline is a pyridine alkaloid found in fenugreek seeds and coffee beans. Most of the previous studies are concerned with the quantification of trigonelline along with other constituents in coffee herbs or beverages. Only a few have focused on its determination in animal or human tissues by applying different modes of HPLC with UV or MS detection. The aim of the study was to develop and validate a fast and simple method for trigonelline determination in serum by the use of hydrophilic interaction liquid chromatography (HILIC) with ESI-MS/MS detection. Separation of trigonelline was achieved on a Kinetex HILIC column operated at 35°C with acetonitrile-ammonium formate (10 mm, pH = 3) buffer mixture (55:45, v/v) as the mobile phase. The developed method was successfully applied to determine trigonelline concentration in mouse serum after intravenous administration of 10 mg/kg. The developed assay is sensitive (limit of detection = 1.5 ng/mL, limit of quantification = 5.0 ng/mL) and linear in a concentration range from 5.0 to 250.0 ng/mL. Sample preparation is limited to deproteinization, centrifugation and filtration. The application of the HILIC mode of chromatography with MS detection and selection of deuterated trigonelline as internal standard allowed a rapid and precise method of trigonelline quantification to be to developed. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Design, characterization and applications of new ionic liquid matrices for multifunctional analysis of biomolecules: a novel strategy for pathogenic bacteria biosensing.

    Science.gov (United States)

    Abdelhamid, Hani Nasser; Khan, M Shahnawaz; Wu, Hui-Fen

    2014-05-01

    The design, preparation and performance for novel UV-light absorbing (room-temperature) ionic liquid matrices (UV-RTILMs) for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) were reported. A series of UV-RTILMs was prepared by ultrasonication of equimolar of acid (mefenamic acid) and bases (aniline (ANI), pyridine (Pyr), dimethyl aniline (DMANI) and 2-methyl picoline (2-P)). The UV-RTILMs have not only significant absorbance at the desired wavelength (337 nm of the N2 Laser), but also have available protons that can easily undergo proton transfer reactions to ionize the target molecules. The novel UV-RTILMs have the ability to ionize different and wide classes of compounds such as drugs, carbohydrate, and amino acids. The new UV-RTILMs series have been successfully and selectively applied for biosensing the lysates of pathogenic bacteria in the presence of the cell macromolecules. A new strategy for biosensing pathogens was presented via sensing the pathogens lysate in the cell suspension. The new materials can effectively detect the bacterial toxins without separation or any pretreatment. They offered excellent ionization of labile oligosaccharides with protonated peaks. They could significantly enhance the analyte signals, produce homogeneous spotting, reducing spot-to-spot variation, excellent vacuum stability, higher ion peak intensity, and wide application possibility. The physical parameters such as molar refractivity, molar volume, parachor, surface tension, density and polarizability were calculated and tabulated. The new UV-RTILMs could offer excellent reproducibility and great repeatability and they are promising matrices for wide applications on MALDI-MS. Copyright © 2014. Published by Elsevier B.V.

  2. Design analysis of liquid metal pipe supports

    International Nuclear Information System (INIS)

    Margolin, L.L.; LaSalle, F.R.

    1979-02-01

    Design guidelines pertinent to liquid metal pipe supports are presented. The numerous complex conditions affecting the support stiffness and strength are addressed in detail. Topics covered include modeling of supports for natural frequency and stiffness calculations, support hardware components, formulas for deflection due to torsion, plate bending, and out-of-plane flexibility. A sample analysis and a discussion on stress analysis of supports are included. Also presented are recommendations for design improvements for increasing the stiffness of pipe supports and which were utilized in the FFTF system

  3. [High-performance liquid-liquid chromatography in beverage analysis].

    Science.gov (United States)

    Bricout, J; Koziet, Y; de Carpentrie, B

    1978-01-01

    Liquid liquid chromatography was performed with columns packed with stationary phases chemically bonded to silica microparticules. These columns show a high efficiency and are used very easily. Flavouring compounds like aromatic aldehydes which have a low volatility were analyzed in brandy using a polar phase alkylnitrile. Sapid substances like amarogentin in Gentiana lutea or glyryrrhizin in Glycyrrhiza glabra were determined by reversed phase chromatography. Finally ionizable substances like synthetic dyes can be analyzed by paired ion chromatography witha non polar stationary phase.

  4. Reactor applications of quantitative diffraction analysis

    International Nuclear Information System (INIS)

    Feguson, I.F.

    1976-09-01

    Current work in quantitative diffraction analysis was presented under the main headings of: thermal systems, fast reactor systems, SGHWR applications and irradiation damage. Preliminary results are included on a comparison of various new instrumental methods of boron analysis as well as preliminary new results on Zircaloy corrosion, and materials transfer in liquid sodium. (author)

  5. The zero-multipole summation method for estimating electrostatic interactions in molecular dynamics: Analysis of the accuracy and application to liquid systems

    Science.gov (United States)

    Fukuda, Ikuo; Kamiya, Narutoshi; Nakamura, Haruki

    2014-05-01

    In the preceding paper [I. Fukuda, J. Chem. Phys. 139, 174107 (2013)], the zero-multipole (ZM) summation method was proposed for efficiently evaluating the electrostatic Coulombic interactions of a classical point charge system. The summation takes a simple pairwise form, but prevents the electrically non-neutral multipole states that may artificially be generated by a simple cutoff truncation, which often causes large energetic noises and significant artifacts. The purpose of this paper is to judge the ability of the ZM method by investigating the accuracy, parameter dependencies, and stability in applications to liquid systems. To conduct this, first, the energy-functional error was divided into three terms and each term was analyzed by a theoretical error-bound estimation. This estimation gave us a clear basis of the discussions on the numerical investigations. It also gave a new viewpoint between the excess energy error and the damping effect by the damping parameter. Second, with the aid of these analyses, the ZM method was evaluated based on molecular dynamics (MD) simulations of two fundamental liquid systems, a molten sodium-chlorine ion system and a pure water molecule system. In the ion system, the energy accuracy, compared with the Ewald summation, was better for a larger value of multipole moment l currently induced until l ≲ 3 on average. This accuracy improvement with increasing l is due to the enhancement of the excess-energy accuracy. However, this improvement is wholly effective in the total accuracy if the theoretical moment l is smaller than or equal to a system intrinsic moment L. The simulation results thus indicate L ˜ 3 in this system, and we observed less accuracy in l = 4. We demonstrated the origins of parameter dependencies appearing in the crossing behavior and the oscillations of the energy error curves. With raising the moment l we observed, smaller values of the damping parameter provided more accurate results and smoother

  6. Chiral analysis of bambuterol, its intermediate and active drug in human plasma by liquid chromatography-tandem mass spectrometry: Application to a pharmacokinetic study.

    Science.gov (United States)

    Zhou, Ting; Liu, Shan; Zhao, Ting; Zeng, Jing; He, Mingzhi; Xu, Beining; Qu, Shanshan; Xu, Ling; Tan, Wen

    2015-08-01

    A sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed for simultaneous chiral analysis of an antiasthma drug bambuterol, its key intermediate monocarbamate bambuterol and its active drug terbutaline in human plasma. All samples were extracted with ethyl acetate and separated on an Astec Chirobiotic T column under isocratic elution with a mobile phase consisting of methanol and water with the addition of 20mm ammonium acetate and 0.005% (v/v) formic acid at 0.6mL/min. The analytes were detected by a Xevo TQ-S tandem mass spectrometer with positive electrospray ionization in multiple reaction monitoring mode. The established method has high sensitivity with the lower limit of quantifications of 25.00pg/mL for bambuterol enantiomers, and 50.00pg/mL for monocarbamate bambuterol and terbutaline enantiomers, respectively. The calibration curves for bambuterol enantiomers were linear in the range of 25.00-2500pg/mL, and for monocarbamate bambuterol and terbutaline enantiomers were linear in the range of 50.00-5000pg/mL. The intra- and inter-day precisions were <12.4%. All the analytes were separated in 18.0min. For the first time, the validated method was successfully applied to an enantioselective pharmacokinetic study of rac-bambuterol in 8 healthy volunteers. According to the results, this chiral LC-MS/MS assay provides a suitable and robust method for the enantioselectivity and interaction study of the prodrug bambuterol, the key intermediate monocarbamate bambuterol and its active drug terbutaline in human. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Simultaneous determination of linagliptin and metformin by reverse phase-high performance liquid chromatography method: An application in quantitative analysis of pharmaceutical dosage forms

    Directory of Open Access Journals (Sweden)

    Prathyusha Vemula

    2015-01-01

    Full Text Available To enhance patient compliance toward treatment in diseases like diabetes, usually a combination of drugs is prescribed. Therefore, an anti-diabetic fixed-dose combination of 2.5 mg of linagliptin 500 mg of metformin was taken for simultaneous estimation of both the drugs by reverse phase-high performance liquid chromatography (RP-HPLC method. The present study aimed to develop a simple and sensitive RP-HPLC method for the simultaneous determination of linagliptin and metformin in pharmaceutical dosage forms. The chromatographic separation was designed and evaluated by using linagliptin and metformin working standard and sample solutions in the linearity range. Chromatographic separation was performed on a C 18 column using a mobile phase of 70:30 (v/v mixture of methanol and 0.05 M potassium dihydrogen orthophosphate (pH adjusted to 4.6 with orthophosphoric acid delivered at a flow rate of 0.6 mL/min and UV detection at 267 nm. Linagliptin and metformin shown linearity in the range of 2-12 μg/mL and 400-2400 μg/mL respectively with correlation co-efficient of 0.9996 and 0.9989. The resultant findings analyzed for standard deviation (SD and relative standard deviation to validate the developed method. The retention time of linagliptin and metformin was found to be 6.3 and 4.6 min and separation was complete in <10 min. The method was validated for linearity, accuracy and precision were found to be acceptable over the linearity range of the linagliptin and metformin. The method was found suitable for the routine quantitative analysis of linagliptin and metformin in pharmaceutical dosage forms.

  8. Frontiers in poly(ionic liquid)s: syntheses and applications.

    Science.gov (United States)

    Qian, Wenjing; Texter, John; Yan, Feng

    2017-02-20

    We review recent works on the synthesis and application of poly(ionic liquid)s (PILs). Novel chemical structures, different synthetic strategies and controllable morphologies are introduced as a supplement to PIL systems already reported. The primary properties determining applications, such as ionic conductivity, aqueous solubility, thermodynamic stability and electrochemical/chemical durability, are discussed. Furthermore, the near-term applications of PILs in multiple fields, such as their use in electrochemical energy materials, stimuli-responsive materials, carbon materials, and antimicrobial materials, in catalysis, in sensors, in absorption and in separation materials, as well as several special-interest applications, are described in detail. We also discuss the limitations of PIL applications, efforts to improve PIL physics, and likely future developments.

  9. Liquid phase exfoliated graphene for electronic applications

    Science.gov (United States)

    Sukumaran, Sheena S.; Jinesh, K. B.; Gopchandran, K. G.

    2017-09-01

    Graphene dispersions were prepared using the liquid phase exfoliation method with three different surfactants. One surfactant was used from each of the surfactant types, anionic, cationic, and non-ionic; those used, were sodium dodecylbenzene sulfonate (SDBS), cetyltrimethylammonium bromide (CTAB) and polyvinylpyrrolidone (PVP), respectively. Raman spectroscopy was used to investigate the number of layers and the nature of any defects present in the exfoliated graphene. The yield of graphene was found to be less with the non-ionic surfactant, PVP. The deconvolution of 2D peaks at ~2700 cm-1 indicated that graphene prepared using these surfactants resulted in sheets consisting of few-layer graphene. The ratio of intensity of the D and G bands in the Raman spectra showed that edge defect density is high for samples prepared with SDBS compared to the other two, and is attributed to the smaller size of the graphene sheets, as shown in the electron micrographs. In the case of the dispersion in PVP, it is found that the sizes of the graphene sheets are highly sensitive to the concentration of the surfactant used. Here, we have made an attempt to investigate the local density of states in the graphene sheets by measuring the tunnelling current-voltage characteristics. Graphene layers have shown consistent p-type behaviour when exfoliated with SDBS and n-type behaviour when exfoliated with CTAB, with a larger band gap for graphene exfoliated using CTAB. Hence, in addition to the known advantages of liquid phase exfoliation, we found that by selecting suitable surfactants, to a certain extent it is possible to tune the band gap and determine the type of majority carriers.

  10. Liquid chromatography - mass spectrometry analysis of pharmaceuticals

    International Nuclear Information System (INIS)

    Macasek, F.

    2003-01-01

    The drugs represent mostly non-volatile and thermally labile solutes, often available only in small amounts like it is in case of radiopharmaceuticals. Therefor, the favourable separation techniques for such compounds are HPLC, capillary electrophoresis and also TLC 1. Liquid chromatography with mass spectrometric detector (LC/MS) is especially powerful for their microanalysis. Mass spectrometry separating the ions in high vacuum was presumably used as detector for gas chromatography effluent but the on-line coupling with liquid eluant flow 0.1-1 mL/min is far more challenging. New types of ion sources were constructed for simultaneous removal of solvent and ionisation of solutes at atmospheric pressure (API). At present, a relatively wide choice of successfully designed commercial equipment is available either for small organic molecules and larger biomolecules (Perkin-Elmer, Agilent, Jeol, Bruker Daltonics, ThermoQuest, Shimadzu). The features of the LC/MS systems are presented. LC/MS as a new quality control tool for [F-18]fluorodeoxyglucose (FDG) radiopharmaceutical, which has became the most spread radiopharmaceutical for positron emission tomography (PET), was proposed. Other applications of the LC/MS are reviewed. (author)

  11. Application of liquid-liquid extraction in uranium hydrometallurgy (Paper No. : V-1)

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, T K.S.; Koppiker, K S

    1979-01-01

    Uranium recovery from the ores is carried out exclusively by hydrometallurgical techniques. The initial solubilisation of uranium is achieved by either sodium carbonate or sulphuric acid leaching, the latter being more common. Further purification and upgrading of uranium from the sulphate liquors is carried out by an ion-exchange process. Solid resin type anion exchangers or liquid ion-exchangers are employed. The processing of uranium liquors is, perhaps, the first major application of liquid-liquid extraction in metal recovery. Organophosphoric acids were initially used but later the long-chain aliphatic amines have superseded them. The amine extraction system has been widely studied and several variations are now known. Chloride, nitrate, carbonate or sulphate or acid stripping can be used for getting back the uranium into the aqueous phase. Combination of ion exchange (resin type) and solvent extraction processes called Eluex processes are developed for special applications. Studies have also been made of solvent extraction of uranium from leach pulps instead of clear liquors. Tributylphosphate has found wide application in the refining of uranium concentrates to meet the stringent needs of nuclear purity. liquid-liquid extraction is, perhaps, the only successful technique for the recovery of uranium, as by-product, from wet-process phosphoric acid. This has opened up a new source of uranium.

  12. Application of High-Resolution Ultrasonic Spectroscopy for analysis of complex formulations. Compressibility of solutes and solute particles in liquid mixtures

    International Nuclear Information System (INIS)

    Buckin, V

    2012-01-01

    The paper describes key aspects of interpretation of compressibility of solutes in liquid mixtures obtained through high-resolution measurements of ultrasonic parameters. It examines the fundamental relationships between the characteristics of solutes and the contributions of solutes to compressibility of liquid mixtures expressed through apparent adiabatic compressibility of solutes, and adiabatic compressibility of solute particles. In addition, it analyses relationships between the adiabatic compressibility of solutes and the measured ultrasonic characteristics of mixtures. Especial attention is given to the effects of solvents on the measured adiabatic compressibility of solutes and on concentration increment of ultrasonic velocity of solutes in mixtures.

  13. Application of membrane technologies for liquid radioactive waste processing

    International Nuclear Information System (INIS)

    2004-01-01

    Membrane separation processes have made impressive progress since the first synthesis of membranes almost 40 years ago. This progress was driven by strong technological needs and commercial expectations. As a result the range of successful applications of membranes and membrane processes is continuously broadening. In addition, increasing application of membrane processes and technologies lies in the increasing variations of the nature and characteristics of commercial membranes and membrane apparatus. The objective of the report is to review the information on application of membrane technologies in the processing of liquid radioactive waste. The report covers the various types of membranes, equipment design, range of applications, operational experience and the performance characteristics of different membrane processes. The report aims to provide Member States with basic information on the applicability and limitations of membrane separation technologies for processing liquid radioactive waste streams

  14. Single component, reversible ionic liquids for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Vittoria Blasucci; Ryan Hart; Veronica Llopis Mestre; Dominique Julia Hahne; Melissa Burlager; Hillary Huttenhower; Beng Joo Reginald Thio; Pamela Pollet; Charles L. Liotta; Charles A. Eckert [Georgia Institute of Technology, Atlanta, GA (United States). Chemical & Biomolecular Engineering

    2010-06-15

    Single component, reversible ionic liquids have excellent potential as novel solvents for a variety of energy applications. Our energy industry is faced with many new challenges including increased energy consumption, depleting oil reserves, and increased environmental awareness. We report the use of reversible ionic liquids to solve two energy challenges: extraction of hydrocarbons from contaminated crude oil and carbon capture from power plant flue gas streams. Our reversible solvents are derived from silylated amine molecular liquids which react with carbon dioxide reversibly to form ionic liquids. Here we compare the properties of various silylated amine precursors and their corresponding ionic liquids. We show how the property changes are advantageous in the two aforementioned energy applications. In the case of hydrocarbon purification, we take advantage of the polarity switch between precursor and ionic liquid to enable separations. In carbon capture, our solvents act as dual physical and chemical capture agents for carbon dioxide. Finally, we show the potential economics of scale-up for both processes. 20 refs., 1 fig., 3 tabs.

  15. Cluster analysis for applications

    CERN Document Server

    Anderberg, Michael R

    1973-01-01

    Cluster Analysis for Applications deals with methods and various applications of cluster analysis. Topics covered range from variables and scales to measures of association among variables and among data units. Conceptual problems in cluster analysis are discussed, along with hierarchical and non-hierarchical clustering methods. The necessary elements of data analysis, statistics, cluster analysis, and computer implementation are integrated vertically to cover the complete path from raw data to a finished analysis.Comprised of 10 chapters, this book begins with an introduction to the subject o

  16. Liquidity and liquidity cost vs. bank profitability. A model analysis attempt

    OpenAIRE

    Boguslaw Guzik

    2008-01-01

    The author suggests a “model” of relations between liquidity, costs of liquidity and basic or empirical profitability. The first part of the article present the idea of the model analysis. The author makes an effort to explain the frequent empirical paradox – when an increase of liquidity is accompanied by an increase in profitability. The second part present the model analysis in more detail. The author refers to the economic and econometrical model formation. He suggests using the bank prof...

  17. Applications of liquid state physics to the earth's core

    Science.gov (United States)

    Stevenson, D. J.

    1980-01-01

    New results derived for application to the earth's outer core using the modern theory of liquids and the hard-sphere model of liquid structure are presented. An expression derived in terms of the incompressibility and pressure is valid for a high-pressure liquid near its melting point, provided that the pressure is derived from a strongly repulsive pair potential; a relation derived between the melting point and density leads to a melting curve law of essentially the same form as Lindemann's law. Finally, it is shown that the 'core paradox' of Higgins and Kennedy (1971) can occur only if the Gruneisen parameter is smaller than 2/3, and this constant is larger than this value in any liquid for which the pair potential is strongly repulsive.

  18. Liquid crystals: high technology materials for potential applications

    International Nuclear Information System (INIS)

    Saeed, M.A.; Badaruddin; Rizvi, T.Z.

    1993-01-01

    Liquid crystals have very rapidly emerged as a basis of many high technology fields within the last few decades. These materials because of their intriguing physical properties are regarded as the fourth state of matter. At present the applications of liquid crystals are established in digital display devices, electro-optical switches, optical computing, acousto-optics, thermo-indicators, laser thermo-recording, photo-chemical image recording and optical communication networks. More recently due to the concept of molecularly based electronics (MBE): the logical extreme for miniaturization of electronic device, liquid crystals are foreseen to play a vital role in the future optics based technologies. This paper gives a brief introduction to liquid crystals, the types of meso phases found in these materials together with their applications in research and industry. Some technical details of the construction liquid crystal cells for some typical applications in digital displays and other electro optical devices have also been discussed with special emphasis on relevant physical processes occurring at molecular level. (author)

  19. Failure characteristics analysis and fault diagnosis for liquid rocket engines

    CERN Document Server

    Zhang, Wei

    2016-01-01

    This book concentrates on the subject of health monitoring technology of Liquid Rocket Engine (LRE), including its failure analysis, fault diagnosis and fault prediction. Since no similar issue has been published, the failure pattern and mechanism analysis of the LRE from the system stage are of particular interest to the readers. Furthermore, application cases used to validate the efficacy of the fault diagnosis and prediction methods of the LRE are different from the others. The readers can learn the system stage modeling, analyzing and testing methods of the LRE system as well as corresponding fault diagnosis and prediction methods. This book will benefit researchers and students who are pursuing aerospace technology, fault detection, diagnostics and corresponding applications.

  20. Liquid-state physical chemistry : fundamentals, modeling, and applications

    NARCIS (Netherlands)

    With, de G.

    2013-01-01

    This is the only comprehensive introduction to this central topic and thus a must-have for many chemists, chemical engineers and material scientists. The book describes the behavior of liquids and solutions and their simplest applications in a basic and self-contained way. The author has extensive

  1. Liquid scintillation counting analysis of cadmium-109

    International Nuclear Information System (INIS)

    Robinson, M.K.; Barfuss, D.W.

    1991-01-01

    Recently the authors have used radiolabled cadmium-109 to measure the transport of inorganic cadmium in renal proximal tubules. An anomaly discovered in the liquid scintillation counting analysis of Cd-109 which is not attributable to normal decay; it consists of a significant decrease in the measured count rate of small amounts of sample. The objective is to determine whether the buffer solution used in the membrane transport studies is causing precipitation of the cadmium or whether cadmium is being adsorbed by the glass. It was important to determine whether the procedure could be modified to correct this problem. The problem does not appear to be related to the use of the buffer or to adsorption of Cd onto glass. Correction based on using triated L-glucose in all of these experiments and calculating a correction factor for the concentration of cadmium

  2. A Moving Optical Fibre Technique for Structure Analysis of Heterogenous Products: Application to the Determination of the Bubble-Size Distribution in Liquid Foams

    OpenAIRE

    Bisperink, C. G. J.; Akkerman, J. C.; Prins, A.; Ronteltap, A. D.

    1992-01-01

    The bubble-size distribution in liquid foams measured as a function of time can be used to distinguish between the physical processes that determine the breakdown of foams. A new method based on an optical fibre technique was developed to measure various foam characteristics e.g. the rate of drainage, the rate of foam collapse, the change in gas fraction, interbubble gas diffusion (disproportionation) and the evolution of the bubble - size distribution during the ageing of the foam. The metho...

  3. An improved method for {sup 85}Kr analysis by liquid scintillation counting and its application to atmospheric {sup 85}Kr determination

    Energy Technology Data Exchange (ETDEWEB)

    Momoshima, Noriyuki, E-mail: momoshima.noriyuki.551@m.kyushu-u.ac.j [Radioisotope Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Inoue, Fumio [Graduate School of Science, Kyushu University, 6-10-1Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Sugihara, Shinji [Radioisotope Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Shimada, Jun [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Taniguchi, Makoto [Research Institute for Humanity and Nature, 457-4 Motoyama Kamigamo, Kita-ku, Kyoto 603-8047 (Japan)

    2010-08-15

    Atmospheric {sup 85}Kr concentration at Fukuoka, Japan was determined by an improved {sup 85}Kr analytical method using liquid scintillation counting (LSC). An average value of 1.54 {+-} 0.05 Bq m{sup -3} was observed in 2008, which is about two times that measured in 1981 at Fukuoka, indicating a 29 mBq y{sup -1} rate of increase as an average for these 27 years. The analytical method developed involves collecting Kr from air using activated charcoal at liquid N{sub 2} temperature and purifying it using He at dry ice temperature, followed by Kr separation by gas chromatography. An overall Kr recovery of 76.4 {+-} 8.1% was achieved when Kr was analyzed in 500-1000 l of air. The Kr isolated by gas chromatography was collected on silica gel in a quartz glass vial cooled to liquid N{sub 2} temperature and the activity of {sup 85}Kr was measured with a low-background LS counter. The detection limit of {sup 85}Kr activity by the present analytical method is 0.0015 Bq at a 95% confidence level, including all propagation errors, which is equivalent with {sup 85}Kr in 1.3 l of the present air under the analytical conditions of 72.1% counting efficiency, 0.1597 cps background count rate, and 76.4% Kr recovery.

  4. Highly Sensitive and High-Throughput Analysis of Plant Hormones Using MS-Probe Modification and Liquid Chromatography–Tandem Mass Spectrometry: An Application for Hormone Profiling in Oryza sativa

    Science.gov (United States)

    Kojima, Mikiko; Kamada-Nobusada, Tomoe; Komatsu, Hirokazu; Takei, Kentaro; Kuroha, Takeshi; Mizutani, Masaharu; Ashikari, Motoyuki; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto; Suzuki, Koji; Sakakibara, Hitoshi

    2009-01-01

    We have developed a highly sensitive and high-throughput method for the simultaneous analysis of 43 molecular species of cytokinins, auxins, ABA and gibberellins. This method consists of an automatic liquid handling system for solid phase extraction and ultra-performance liquid chromatography (UPLC) coupled with a tandem quadrupole mass spectrometer (qMS/MS) equipped with an electrospray interface (ESI; UPLC-ESI-qMS/MS). In order to improve the detection limit of negatively charged compounds, such as gibberellins, we chemically derivatized fractions containing auxin, ABA and gibberellins with bromocholine that has a quaternary ammonium functional group. This modification, that we call ‘MS-probe’, makes these hormone derivatives have a positive ion charge and permits all compounds to be measured in the positive ion mode with UPLC-ESI-qMS/MS in a single run. Consequently, quantification limits of gibberellins increased up to 50-fold. Our current method needs 180 plant samples simultaneously. Application of this method to plant hormone profiling enabled us to draw organ distribution maps of hormone species in rice and also to identify interactions among the four major hormones in the rice gibberellin signaling mutants, gid1-3, gid2-1 and slr1. Combining the results of hormone profiling data with transcriptome data in the gibberellin signaling mutants allows us to analyze relationships between changes in gene expression and hormone metabolism. PMID:19369275

  5. Functional analysis and applications

    CERN Document Server

    Siddiqi, Abul Hasan

    2018-01-01

    This self-contained textbook discusses all major topics in functional analysis. Combining classical materials with new methods, it supplies numerous relevant solved examples and problems and discusses the applications of functional analysis in diverse fields. The book is unique in its scope, and a variety of applications of functional analysis and operator-theoretic methods are devoted to each area of application. Each chapter includes a set of problems, some of which are routine and elementary, and some of which are more advanced. The book is primarily intended as a textbook for graduate and advanced undergraduate students in applied mathematics and engineering. It offers several attractive features making it ideally suited for courses on functional analysis intended to provide a basic introduction to the subject and the impact of functional analysis on applied and computational mathematics, nonlinear functional analysis and optimization. It introduces emerging topics like wavelets, Gabor system, inverse pro...

  6. Liquid crystalline epoxy nanocomposite material for dental application.

    Science.gov (United States)

    Tai, Yun-Yuan; Hsu, Sheng-Hao; Chen, Rung-Shu; Su, Wei-Fang; Chen, Min-Huey

    2015-01-01

    Novel liquid crystalline epoxy nanocomposites, which exhibit reduced polymerization shrinkage and effectively bond to tooth structures, can be applied in esthetic dentistry, including core and post systems, direct and indirect restorations, and dental brackets. The purposes of this study were to investigate the properties of liquid crystalline epoxy nanocomposites including biocompatibility, microhardness, and frictional forces of bracket-like blocks with different filler contents for further clinical applications. In this study, we evaluated liquid crystalline epoxy nanocomposite materials that exhibited various filler contents, by assessing their cell activity performance using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and their microhardness with or without thermocycling. We also evaluated the frictional force between bracket-like duplicates and commercially available esthetic bracket systems using Instron 5566. The liquid crystalline epoxy nanocomposite materials showed good biocompatibility. The materials having high filler content demonstrated greater microhardness compared with commercially available bracket materials, before and after the thermocycling treatment. Thus, manufacturing processes are important to reduce frictional force experienced by orthodontic brackets. The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment. Copyright © 2014. Published by Elsevier B.V.

  7. Air assisted dispersive liquid-liquid microextraction with solidification of the floating organic droplets (AA-DLLME-SFO) and UHPLC-PDA method: Application to antibiotics analysis in human plasma of hospital acquired pneumonia patients.

    Science.gov (United States)

    Ferrone, Vincenzo; Cotellese, Roberto; Carlucci, Maura; Di Marco, Lorenzo; Carlucci, Giuseppe

    2018-03-20

    An ultra high-performance liquid chromatographic (UHPLC) method with PDA detection was developed and validated for the simultaneous quantification of metronidazole, meropenem, ciprofloxacin, linezolid and piperacillin in human plasma and applied to patients suffering from hospital acquired pneumonia (HAP). The method uses an air assisted dispersive liquid-liquid microextraction for sample preparation. All parameters in the extraction step, including selection of extractant, amount of extractant, ionic strength, pH, and extraction cycles, were investigated and optimized. Chromatography was carried out using a Poroshell 120 SB C 18 (50 × 2.1 mm I.D. 2.6 μm particle size) column and a gradient mobile phase consisting of ammonium acetate buffer (10 mM, pH 4.0) (eluent A); and a mixture of acetonitrile-methanol in a ratio (80/20)(eluent B). Ulifloxacin was used as internal standard. The method demonstrated good linearity with correlation coefficients, r 2  > 0.9995 for the drugs, as well as high precision (RSD% ≤ 9.87%), accuracy ranged from -8.14% to +8.98. The enrichment factor (EF) obtained ranged within 87 and 121. During the validation, the concentrations of the analytes were found to be stable after 3 freeze-thaw cycles and for at least 24 h after extraction. Subsequently, this method was used to quantify the drugs in patients with HAP in order to establish if the dosage regimen given was sufficient to eradicate the infection at the target site. Copyright © 2017. Published by Elsevier B.V.

  8. A Microwave Tunable Bandpass Filter for Liquid Crystal Applications

    Science.gov (United States)

    Cao, Weiping; Jiang, Di; Liu, Yupeng; Yang, Yuanwang; Gan, Baichuan

    2017-07-01

    In this paper, a novel microwave continuously tunable band-pass filter, based on nematic liquid crystals (LCs), is proposed. It uses liquid crystal (LC) as the electro-optic material to mainly realize frequency shift at microwave band by changing the dielectric anisotropy, when applying the bias voltage. According to simulation results, it achieves 840 MHz offset. Comparing to the existing tunable filter, it has many advantages, such as continuously tunable, miniaturization, low processing costs, low tuning voltage, etc. Thus, it has shown great potentials in frequency domain and practical applications in modern communication.

  9. [Simultaneous analysis of aromatic aldehydes and coumarins with high pressure liquid chromatography. Application to wines and brandies stored in oak barrels].

    Science.gov (United States)

    Salagoity-Auguste, M H; Tricard, C; Sudraud, P

    1987-04-17

    Aromatic aldehydes (vanillin, syringaldehyde, coniferaldehyde and sinapaldehyde) and coumarins (esculetin, umbelliferone, scopoletin and methylumbelliferone) are natural wood compounds. Storage of wines and brandies in oak barrels increases notably aldehydes and coumarins (particularly scopoletin) concentrations. These compounds were separated by high-performance liquid chromatography, on hydrocarbon bonded reversed-phase packings, with a water-acetonitrile elution gradient. They were first extracted from wines and brandies by diethyl ether and then injected on chromatographic column. A double detection was used to determine simultaneously aromatic aldehydes and coumarins by UV absorption and fluorescence respectively.

  10. The liquidity preference theory: a critical analysis

    OpenAIRE

    Giancarlo Bertocco; Andrea Kalajzic

    2014-01-01

    Keynes in the General Theory, explains the monetary nature of the interest rate by means of the liquidity preference theory. The objective of this paper is twofold. First, to point out the limits of the liquidity preference theory. Second, to present an explanation of the monetary nature of the interest rate based on the arguments with which Keynes responded to the criticism levelled at the liquidity preference theory by supporters of the loanable funds theory such as Ohlin and Robertson. It ...

  11. LIQUIDITY ANALYSIS OF STATE BANK OF INDIA

    Directory of Open Access Journals (Sweden)

    Kumar Gandhi R

    2011-12-01

    Full Text Available Modern customer has a high demand for quality of service than he/she had before. There is an urgent need for improving the customer service levels currently provided in the banking industry. Banks need to understand, foresee, the needs and expected levels of customer support which the customer expects when he/she steps into the branch and strive to stand up and excel in providing the service and making banking a truly delightful experience. The banker should change his/her agenda from Customer Satisfaction to Customer delight and then march towards Customer Ecstasy. This will be possible by maintaining the financial soundness of the firm. In this connection it has been given importance through this study. Since most of the Banking slightly deviate into the other areas like insurance, financial services and modern banking services such as Advisory services, Agent for receivables, custodian, instant loan provider, Forfeiter services and factoring services. A conscious attempt has been made to analysis the liquidity of state bank of India (SBI. The present study aimed to understand the financial soundness of the bank, the ratio analysis taken as tool. In this research work the secondary data mainly used, it has been collected in the form of the company manuals, Balance sheets and other documents. The data analyzed by some of the statistical tools such as ANOVA test and Multi variate test is used to analyze the interferences about the operating efficiency.

  12. Liquid-state physical chemistry fundamentals, modeling, and applications

    CERN Document Server

    de With, Gijsbertus

    2013-01-01

    For many processes and applications in science and technology a basic knowledge of liquids and solutions is a must. Gaining a better understanding of the behavior and properties of pure liquids and solutions will help to improve many processes and to advance research in many different areas. This book provides a comprehensive, self-contained and integrated survey of this topic and is a must-have for many chemists, chemical engineers and material scientists, ranging from newcomers in the field to more experienced researchers. The author offers a clear, well-structured didactic approach and provides an overview of the most important types of liquids and solutions. Special topics include chemical reactions, surfaces and phase transitions. Suitable both for introductory as well as intermediate level as more advanced parts are clearly marked. Includes also problems and solutions.

  13. Liquid contrabands classification based on energy dispersive X-ray diffraction and hybrid discriminant analysis

    International Nuclear Information System (INIS)

    YangDai, Tianyi; Zhang, Li

    2016-01-01

    Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.

  14. Liquid contrabands classification based on energy dispersive X-ray diffraction and hybrid discriminant analysis

    Energy Technology Data Exchange (ETDEWEB)

    YangDai, Tianyi [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Zhang, Li, E-mail: zhangli@nuctech.com [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China)

    2016-02-01

    Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.

  15. Liquid contrabands classification based on energy dispersive X-ray diffraction and hybrid discriminant analysis

    Science.gov (United States)

    YangDai, Tianyi; Zhang, Li

    2016-02-01

    Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.

  16. Noise and ac impedance analysis of ion transfer kinetics at the micro liquid/liquid interface

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Oksana; Holub, Karel; Mareček, Vladimír

    2015-01-01

    Roč. 56, JUL 2015 (2015), s. 43-45 ISSN 1388-2481 R&D Projects: GA ČR GA13-04630S Institutional support: RVO:61388955 Keywords : noise analysis * liquid/liquid interface * ion transfer kinetics Subject RIV: CG - Electrochemistry Impact factor: 4.569, year: 2015

  17. Liquid crystalline composites toward organic photovoltaic application (Conference Presentation)

    Science.gov (United States)

    Shimizu, Yo; Sosa-Vargas, Lydia; Shin, Woong; Higuchi, Yumi; Itani, Hiromichi; Kawano, Koki; Dao, Quang Duy; Fujii, Akihiko; Ozaki, Masanori

    2017-02-01

    Liquid crystalline semiconductor is an interesting category of organic electronic materials and also has been extensively studied in terms of "Printed Electronics". For the wider diversity in research toward new applications, one can consider how to use a combination of miscibility and phase separation in liquid crystals. Here we report discotic liquid crystals in making a composite of which structural order is controlled in nano-scale toward photovoltaic applications. Discotic columnar LCs were studied on their resultant molecular order and carrier transport properties. Liquid crystals of phthalocyanine and its analogues which exhibit columnar mesomorphism with high carrier mobility (10-1 cm2/Vs) were examined with making binary phase diagrams and the correlation to carrier transport properties by TOF measurements was discussed. The shape-analogues in chemical structure shows a good miscibility even for the different lattice-type of columnar arrangement and the carrier mobility is mostly decrease except for a case of combination with a metal-free and the metal complex. For the mixtures with non-mesogenic C60 derivatives, one sees a phase-separated structure due to its immiscibility, though the columnar order is remained in a range of component ratio.Especially, in a range of the ratio, it was observed the phase separated C60 derivatives are fused into the matrix of columnar bundles, indicating C60 derivatives could be diffused in columnar arrays in molecular level.

  18. Long term liquidity analysis of the firm

    Directory of Open Access Journals (Sweden)

    Jaroslav Gonos

    2009-09-01

    Full Text Available Liquidity control is a very difficult and important function. If the business is not liquid in the long term, it is under threatof bankruptcy, and on the other hand surplus of the cash in hand threaten its future efficiency, because the cash in hand is a sourceof only limited profitability. Long term liquidity is related to the ability of the short term and long term liabilities payment. Articleis trying to point out to the monitoring and analyzing of the long term liquidity in the concrete business, in this case the printing industrycompany. Hereby at the end of the article mentioned monitored and analyzed liquidity is evaluated in the five years time period.

  19. Seismic analysis of liquid storage container in nuclear reactors

    International Nuclear Information System (INIS)

    Zhang Zhengming; He Shuyan; Xu Ming

    2007-01-01

    Seismic analysis of liquid storage containers is always difficult in the seismic design of nuclear reactor equipment. The main reason is that the liquid will generate significant seismic loads under earthquake. These dynamic liquid loads usually form the main source of the stresses in the container. For this kind of structure-fluid coupling problem, some simplified theoretical methods were usually used previously. But this cannot satisfy the requirements of engineering design. The Finite Element Method, which is now full developed and very useful for the structural analysis, is still not mature for the structure-fluid coupling problem. This paper introduces a method suitable for engineering mechanical analysis. Combining theoretical analysis of the dynamic liquid loads and finite element analysis of the structure together, this method can give practical solutions in the seismic design of liquid storage containers

  20. Microextração em fase líquida (LPME: fundamentos da técnica e aplicações na análise de fármacos em fluidos biológicos Liquid-phase microextraction (LPME: fundamentals and applications to the analysis of drugs in biological samples

    Directory of Open Access Journals (Sweden)

    Anderson Rodrigo Moraes de Oliveira

    2008-01-01

    Full Text Available The analysis of drugs and metabolites in biological fluids usually requires extraction procedures to achieve sample clean-up and analyte preconcentration. Commonly, extraction procedures are performed using liquid-liquid extraction or solid-phase extraction. Nevertheless, these extraction techniques are considered to be time-consuming and require a large amount of organic solvents. On this basis, microextraction techniques have been developed. Among them, liquid-phase microextraction has been standing out. This review describes the liquid-phase microextraction technique based on hollow fibers as a novel and promising alternative in sample preparation prior to chromatographic or electrophoretic analysis. The basic concepts related to this technique and its applicability in extraction of drugs are discussed.

  1. Nanofluid application: liquid sublayer structure and heat transfer mechanism

    International Nuclear Information System (INIS)

    Bang, In Cheol; Chang, Soon Heung

    2005-01-01

    Boiling has important modern applications for macroscopic heat transfer exchangers, such as those in nuclear and fossil power plants, and for microscopic heat transfer devices, such as heat pipes and microchannels for cooling electronic chips. The use of boiling is limited by critical heat flux which is characterized by both its highest efficient heat transport capability and the initiation of surface damage caused by suddenly deteriorating heat transfer. For instance, damage can be directly related to the physical burnout of the materials of a heat exchanger. However, the physical mechanism of this limitation has not been understood clearly. In relation to the mechanisms, there is a general consensus that fully developed nucleate boiling on a heated solid surface is characterized by the existence of a liquid film on the heated solid surface. The occurrence of the boiling limitation, the so-called critical heat flux (CHF) has been linked closely to the behavior of the liquid film. This liquid film is generally referred to as the 'thin liquid layer' or the 'macrolayer' to distinguish it from the microlayer that exists under the base of discrete nucleating bubbles. The question to be answered is whether a stable thin liquid layer under a vapor boiling environment could actually exist. If so, what precisely is the role of such a liquid film in relation to the boiling limitation? Reliable answers will depend on direct experimental observations. Currently, there has been no direct observation of the liquid layer. Numerous subsequent studies have failed to provide a direct confirmation of a stable thin liquid layer under a vapor boiling environment. In 1977, Yu and Mesler offered a hypothesis of the existence of the layer, as illustrated in Figure 1. Katto and Yokoya demonstrated the importance of Yu and Mesler's hypothesis; they used it to show that it is possible to approach the very complicated boiling limitation phenomenon with a relatively simple liquid layer

  2. Inorganic ion exchangers. Application to liquid effluent processing

    International Nuclear Information System (INIS)

    Dozol, M.

    1983-10-01

    Main inorganic ion exchangers used for radioactive liquid effluents presented in this report are: synthetic and natural zeolites, in titanium oxides, titanates, niobates, tantalates, zirconates, some insoluble salts of zirconium, molybdenum and tin, heteropolyacids and polyantimonic acid. Properties of these ion exchangers are described: structure, adsoption, radiation effects and thermal stability, application to waste processing, radioactive waste storage uranium and cesium 137 recovery are evoked [fr

  3. Liquid crystalline epoxy nanocomposite material for dental application

    Directory of Open Access Journals (Sweden)

    Yun-Yuan Tai

    2015-01-01

    Conclusion: The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment.

  4. Liquidity indicator for the Croatian economy – Factor analysis approach

    Directory of Open Access Journals (Sweden)

    Mirjana Čižmešija

    2014-12-01

    Full Text Available Croatian business surveys (BS are conducted in the manufacturing industry, retail trade and construction sector. In all of these sectors, manager´s assessments of liquidity are measured. The aim of the paper was to form a new composite liquidity indicator by including business survey liquidity measures from all three covered economic sectors in the Croatian economy mentioned above. In calculating the leading indicator, a factor analysis approach was used. However, this kind of indicator does not exist in a Croatia or in any other European economy. Furthermore, the issue of Croatian companies´ illiquidity is highly neglected in the literature. The empirical analysis consists of two parts. In the first part the new liquidity indicator was formed using factor analysis. One factor (representing the new liquidity indicator; LI was extracted out of the three liquidity variables in three economic sectors. This factor represents the new liquidity indicator. In the second part, econometric models were applied in order to investigate the forecasting properties of the new business survey liquidity indicator, when predicting the direction of changes in Croatian industrial production. The quarterly data used in the research covered the period from January 2000 to April 2013. Based on econometric analysis, it can be concluded that the LI is a leading indicator of Croatia’s industrial production with better forecasting properties then the standard liquidity indicators (formed in a manufacturing industry.

  5. Application of dispersive solid-phase extraction and ultra-fast liquid chromatography-tandem quadrupole mass spectrometry in food additive residue analysis of red wine.

    Science.gov (United States)

    Chen, Xiao-Hong; Zhao, Yong-Gang; Shen, Hao-Yu; Jin, Mi-Cong

    2012-11-09

    A novel and effective dispersive solid-phase extraction (dSPE) procedure with rapid magnetic separation using ethylenediamine-functionalized magnetic polymer as an adsorbent was developed. The new procedure had excellent clean-up ability for the selective removal of the matrix in red wine. An accurate, simple, and rapid analytical method using ultra-fast liquid chromatography-tandem quadrupole mass spectrometry (UFLC-MS/MS) for the simultaneous determination of nine food additives (i.e., acesulfame, saccharin, sodium cyclamate, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid, and neotame) in red wine was also used and validated. Recoveries ranging from 78.5% to 99.2% with relative standard deviations ranging from 0.46% to 6.3% were obtained using the new method. All target compounds showed good linearities in the tested range with correlation coefficients (r) higher than 0.9993. The limits of quantification for the nine food additives were between 0.10 μg/L and 50.0 μg/L. The proposed dSPE-UFLC-MS/MS method was successfully applied in the food-safety risk monitoring of real red wine in Zhejiang Province, China. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  6. Simple and Sensitive Analysis of Blonanserin and Blonanserin C in Human Plasma by Liquid Chromatography Tandem Mass Spectrometry and Its Application

    Directory of Open Access Journals (Sweden)

    Yunliang Zheng

    2014-01-01

    Full Text Available A highly sensitive, simple, and rapid liquid chromatography tandem mass spectrometry method to simultaneously determine blonanserin and blonanserin C in human plasma with AD-5332 as internal standard (IS was established. A simple direct protein precipitation method was used for the sample pretreatment, and chromatographic separation was performed on a Waters XBridge C8 (4.6×150 mm, 3.5 μm column. The mobile phase consists of a mixture of 10 mM ammonium formate and 0.1% formic acid in water (A and 0.1% formic acid in methanol (B. To quantify blonanserin, blonanserin C, and IS, multiple reaction monitoring (MRM was performed in positive ESI mode. The calibration curve was linear in the concentration range of 0.012–5.78 ng·mL−1 for blonanserin and 0.023–11.57 ng·mL−1 for blonanserin C (r2>0.9990. The intra- and interday precision of three quality control (QC levels in plasma were less than 7.5%. Finally, the current simple, sensitive, and accurate LC-MS/MS method was successfully applied to investigate the pharmacokinetics of blonanserin and blonanserin C in healthy Chinese volunteers.

  7. Application of Silver Ion High-Performance Liquid Chromatography for Quantitative Analysis of Selected n-3 and n-6 PUFA in Oil Supplements.

    Science.gov (United States)

    Czajkowska-Mysłek, Anna; Siekierko, Urszula; Gajewska, Magdalena

    2016-04-01

    The aim of this study was to develop a simple method for simultaneous determination of selected cis/cis PUFA-LNA (18:2), ALA (18:3), GLA (18:3), EPA (20:5), and DHA (22:6) by silver ion high-performance liquid chromatography coupled to a diode array detector (Ag-HPLC-DAD). The separation was performed on three Luna SCX Silver Loaded columns connected in series maintained at 10 °C with isocratic elution by 1% acetonitrile in n-hexane. The applied chromatographic system allowed a baseline separation of standard mixture of n-3 and n-6 fatty acid methyl esters containing LNA, DHA, and EPA and partial separation of ALA and GLA positional isomers. The method was validated by means of linearity, precision, stability, and recovery. Limits of detection (LOD) for considered PUFA standard solutions ranged from 0.27 to 0.43 mg L(-1). The developed method was used to evaluate of n-3 and n-6 fatty acids contents in plant and fish softgel oil capsules, results were compared with reference GC-FID based method.

  8. Cryogenic Liquid Sample Acquisition System for Remote Space Applications

    Science.gov (United States)

    Mahaffy, Paul; Trainer, Melissa; Wegel, Don; Hawk, Douglas; Melek, Tony; Johnson, Christopher; Amato, Michael; Galloway, John

    2013-01-01

    There is a need to acquire autonomously cryogenic hydrocarbon liquid sample from remote planetary locations such as the lakes of Titan for instruments such as mass spectrometers. There are several problems that had to be solved relative to collecting the right amount of cryogenic liquid sample into a warmer spacecraft, such as not allowing the sample to boil off or fractionate too early; controlling the intermediate and final pressures within carefully designed volumes; designing for various particulates and viscosities; designing to thermal, mass, and power-limited spacecraft interfaces; and reducing risk. Prior art inlets for similar instruments in spaceflight were designed primarily for atmospheric gas sampling and are not useful for this front-end application. These cryogenic liquid sample acquisition system designs for remote space applications allow for remote, autonomous, controlled sample collections of a range of challenging cryogenic sample types. The design can control the size of the sample, prevent fractionation, control pressures at various stages, and allow for various liquid sample levels. It is capable of collecting repeated samples autonomously in difficult lowtemperature conditions often found in planetary missions. It is capable of collecting samples for use by instruments from difficult sample types such as cryogenic hydrocarbon (methane, ethane, and propane) mixtures with solid particulates such as found on Titan. The design with a warm actuated valve is compatible with various spacecraft thermal and structural interfaces. The design uses controlled volumes, heaters, inlet and vent tubes, a cryogenic valve seat, inlet screens, temperature and cryogenic liquid sensors, seals, and vents to accomplish its task.

  9. Physical characterization of biomass-based pyrolysis liquids. Application of standard fuel oil analyses

    Energy Technology Data Exchange (ETDEWEB)

    Oasmaa, A; Leppaemaeki, E; Koponen, P; Levander, J; Tapola, E [VTT Energy, Espoo (Finland). Energy Production Technologies

    1998-12-31

    The main purpose of the study was to test the applicability of standard fuel oil methods developed for petroleum-based fuels to pyrolysis liquids. In addition, research on sampling, homogeneity, stability, miscibility and corrosivity was carried out. The standard methods have been tested for several different pyrolysis liquids. Recommendations on sampling, sample size and small modifications of standard methods are presented. In general, most of the methods can be used as such but the accuracy of the analysis can be improved by minor modifications. Fuel oil analyses not suitable for pyrolysis liquids have been identified. Homogeneity of the liquids is the most critical factor in accurate analysis. The presence of air bubbles may disturb in several analyses. Sample preheating and prefiltration should be avoided when possible. The former may cause changes in the composition and structure of the pyrolysis liquid. The latter may remove part of organic material with particles. The size of the sample should be determined on the basis of the homogeneity and the water content of the liquid. The basic analyses of the Technical Research Centre of Finland (VTT) include water, pH, solids, ash, Conradson carbon residue, heating value, CHN, density, viscosity, pourpoint, flash point, and stability. Additional analyses are carried out when needed. (orig.) 53 refs.

  10. Nanoscience with liquid crystals from self-organized nanostructures to applications

    CERN Document Server

    Li, Quan

    2014-01-01

    This book focuses on the exciting topic of nanoscience with liquid crystals: from self-organized nanostructures to applications. The elegant self-organized liquid crystalline nanostructures, the synergetic characteristics of liquid crystals and nanoparticles, liquid crystalline nanomaterials, synthesis of nanomaterials using liquid crystals as templates, nanoconfinement and nanoparticles of liquid crystals are covered and discussed, and the prospect of fabricating functional materials is highlighted. Contributions, collecting the scattered literature of the field from leading and active player

  11. Quantitative analysis of valsartan by two-dimensional liquid chromatography (2D-HPLC) and its application in a bioequivalence study in Chinese volunteers
.

    Science.gov (United States)

    Zhang, Min; Deng, Yang; Cai, Hua-Lin; Fang, Ping-Fei; Yan, Miao; Zhang, Bi-Kui; Wu, Yan-Qin

    2017-04-01

    To develop a sensitive, two-dimensional liquid chromatography (2D-LC) method for determination of valsartan, applied to investigate bioequivalence of two valsartan tablets in Chinese volunteers under fasting condition. A full automatic 2D-HPLC system was used to quantify valsartan in human plasma. The analytes were extracted by protein precipitation, using telmisartan as internal standard. The analytical method was applied in a randomized, crossover bioequivalence study of valsartan tablets; the study enrolled 18 Chinese volunteers (12 were men and 6 were women). The subjects received a single 160-mg dose of test or reference preparation with 7-days of washout under fasting state. Plasma samples were collected, pharmacokinetic parameters were obtained and the bioequivalence was evaluated. The calibration range was 9.2 - 4213.8 ng×mL-1. Inter- and intraprecision was less than 7.0%, and accuracies ranged from 99.5 to 103.8%. The extraction recovery for valsartan varied between 89.3 and 97.8%, and the stability in all conditions was excellent. The 90% CI of AUC0→36h and Cmax were 96.5 - 109.4% and 94.2 - 108.6%, respectively. The relative bioavailability was 103.9 ± 15.7%. No gender difference was observed in pharmacokinetic parameters. A sensitive 2D-HPLC method was established for the estimation of valsartan in human plasma and successfully applied in a bioequivalence study of valsartan, which suggests that these two formulations can be assumed to be bioequivalent.
.

  12. Analysis of fenretinide and its metabolites in human plasma by liquid chromatography-tandem mass spectrometry and its application to clinical pharmacokinetics.

    Science.gov (United States)

    Cho, Hwang Eui; Min, H Kang

    2017-01-05

    A simple and accurate high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the determination of N-(4-hydroxyphenyl)retinamide (fenretinide, 4-HPR) and its metabolites, 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR) and N-(4-methoxyphenyl)retinamide (4-MPR), in human plasma. Plasma samples were prepared using protein precipitation with ethanol. Chromatographic separation of the three analytes and N-(4-ethoxyphenyl)retinamide (4-EPR), an internal standard, was achieved on a Zorbax SB-C18 column (3.5μm, 50×2.1mm) using gradient elution with the mobile phase of 0.1% formic acid in water and acetonitrile (pH* 2.4) at a flow rate of 0.5mL/min. Electrospray ionization (ESI) mass spectrometry was operated in the positive ion mode with multiple reaction monitoring (MRM). The calibration curves obtained were linear over the concentration range of 0.2-50ng/mL with a lower limit of quantification of 0.2ng/mL. The relative standard deviation of intra-day and inter-day precision was below 7.64%, and the accuracy ranged from 94.92 to 105.43%. The extraction recoveries were found to be higher than 90.39% and no matrix effect was observed. The analytes were stable for the durations of the stability studies. The validated method was successfully applied to the analyses of the pharmacokinetic study for patients treated with 4-HPR in a clinical trial. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Emerging Applications of Liquid Crystals Based on Nanotechnology

    Directory of Open Access Journals (Sweden)

    Jung Inn Sohn

    2014-03-01

    Full Text Available Diverse functionalities of liquid crystals (LCs offer enormous opportunities for their potential use in advanced mobile and smart displays, as well as novel non-display applications. Here, we present snapshots of the research carried out on emerging applications of LCs ranging from electronics to holography and self-powered systems. In addition, we will show our recent results focused on the development of new LC applications, such as programmable transistors, a transparent and active-type two-dimensional optical array and self-powered display systems based on LCs, and will briefly discuss their novel concepts and basic operating principles. Our research will give insights not only into comprehensively understanding technical and scientific applications of LCs, but also developing new discoveries of other LC-based devices.

  14. CANDU 6 liquid injection shutdown system waterhammer analysis using PTRAN

    International Nuclear Information System (INIS)

    Ko, Deuk Yoon; Kim, Eun Ki; Ko, Yong Sang; Park, Byung Ho; Kim, Seok Bum

    1996-06-01

    An in-core LOCA could result in flooding of the helium header in the liquid injection shutdown system. Flooding of the helium header will result in severe pressure transients (waterhammer) in the liquid injection shutdown system when the shutdown signal is initiated. To evaluate the impact of the dynamic effects of this event, a pressure transient analysis has been performed. This analysis is performed using PTRAN, which is a computer program based on the method of characteristics. The results of this analysis are used in the stress analysis of the piping and pipe supports to ensure that the liquid injection shutdown system can withstand the pressure transient loadings. This analysis report documents the results of waterhammer analysis performed for the liquid injection shutdown system for the Wolsung nuclear power plant unit 2, 3 and 4. 4 tabs., 11 figs., 15 refs. (Author)

  15. CANDU 6 liquid injection shutdown system waterhammer analysis using PTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Deuk Yoon; Kim, Eun Ki; Ko, Yong Sang; Park, Byung Ho; Kim, Seok Bum [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    An in-core LOCA could result in flooding of the helium header in the liquid injection shutdown system. Flooding of the helium header will result in severe pressure transients (waterhammer) in the liquid injection shutdown system when the shutdown signal is initiated. To evaluate the impact of the dynamic effects of this event, a pressure transient analysis has been performed. This analysis is performed using PTRAN, which is a computer program based on the method of characteristics. The results of this analysis are used in the stress analysis of the piping and pipe supports to ensure that the liquid injection shutdown system can withstand the pressure transient loadings. This analysis report documents the results of waterhammer analysis performed for the liquid injection shutdown system for the Wolsung nuclear power plant unit 2, 3 and 4. 4 tabs., 11 figs., 15 refs. (Author).

  16. Real analysis and applications

    CERN Document Server

    Botelho, Fabio Silva

    2018-01-01

    This textbook introduces readers to real analysis in one and n dimensions. It is divided into two parts: Part I explores real analysis in one variable, starting with key concepts such as the construction of the real number system, metric spaces, and real sequences and series. In turn, Part II addresses the multi-variable aspects of real analysis. Further, the book presents detailed, rigorous proofs of the implicit theorem for the vectorial case by applying the Banach fixed-point theorem and the differential forms concept to surfaces in Rn. It also provides a brief introduction to Riemannian geometry. With its rigorous, elegant proofs, this self-contained work is easy to read, making it suitable for undergraduate and beginning graduate students seeking a deeper understanding of real analysis and applications, and for all those looking for a well-founded, detailed approach to real analysis.

  17. Significant enhancement of 11-Hydroxy-THC detection by formation of picolinic acid esters and application of liquid chromatography/multi stage mass spectrometry (LC-MS(3) ): Application to hair and oral fluid analysis.

    Science.gov (United States)

    Thieme, Detlef; Sachs, Ulf; Sachs, Hans; Moore, Christine

    2015-07-01

    Formation of picolinic acid esters of hydroxylated drugs or their biotransformation products is a promising tool to improve their mass spectrometric ionization efficiency, alter their fragmentation behaviour and enhance sensitivity and specificity of their detection. The procedure was optimized and tested for the detection of cannabinoids, which proved to be most challenging when dealing with alternative specimens, for example hair and oral fluid. In particular, the detection of the THC metabolites hydroxyl-THC and carboxy-THC requires ultimate sensitivity because of their poor incorporation into hair or saliva. Both biotransformation products are widely accepted as incorporation markers to distinguish drug consumption from passive contamination. The derivatization procedure was carried out by adding a mixture of picolinic acid, 4-(dimethylamino)pyridine and 2-methyl-6-nitrobenzoic anhydride in tetrahydrofuran/triethylamine to the dry extraction residues. Resulting derivatives were found to be very stable and could be reconstituted in aqueous or organic buffers and subsequently analyzed by liquid chromatography-mass spectrometry (LC-MS). Owing to the complex consecutive fragmentation patterns, the application of multistage MS3 proved to be extremely useful for a sensitive identification of doubly picolinated hydroxy-THC in complex matrices. The detection limits - estimated by comparison of corresponding signal-to-noise ratios - increased by a factor of 100 following picolination. All other species examined, like cannabinol, THC, cannabidiol, and carboxy-THC, could also be derivatized exhibiting only moderate sensitivity improvements. The assay was systematically tested using hair samples and exemplarily applied to oral fluid. Concentrations of OH-THC identified in THC-positive hair samples ranged from 0.02 to 0.29pg/mg. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Analysis of feeding behavior of Drosophila larvae on liquid food.

    Science.gov (United States)

    Shen, Ping

    2012-05-01

    The food responses of Drosophila larvae offer an excellent opportunity to study the genetic and neural regulation of feeding behavior. Compared with fed larvae, hungry larvae are more likely to display aggressive foraging, rapid food intake, compensatory feeding, and stress-resistant food procurement. Behavioral assays have been developed to quantitatively assess particular aspects of the hunger-driven food response. In combination, these assays help define the specific role of signaling molecules or neurons in the regulation of feeding behavior in foraging larvae. This protocol describes the analysis of larvae feeding on liquid food. The test is designed for quantitative assessment of the food ingestion rate of individual larvae under different energy states. It provides a simple and reliable way to measure the graded modification of the baseline feeding rate of larvae as food deprivation is prolonged. The test is applicable to routine functional testing and larger-scale screening of genetic mutations and biologics that might affect food consumption.

  19. Analysis of Serum Metabolic Profile by Ultra-performance Liquid Chromatography-mass Spectrometry for Biomarkers Discovery: Application in a Pilot Study to Discriminate Patients with Tuberculosis

    Directory of Open Access Journals (Sweden)

    Shuang Feng

    2015-01-01

    Full Text Available Background: Tuberculosis (TB is a chronic wasting inflammatory disease characterized by multisystem involvement, which can cause metabolic derangements in afflicted patients. Metabolic signatures have been exploited in the study of several diseases. However, the serum that is successfully used in TB diagnosis on the basis of metabolic profiling is not by much. Methods: Orthogonal partial least-squares discriminant analysis was capable of distinguishing TB patients from both healthy subjects and patients with conditions other than TB. Therefore, TB-specific metabolic profiling was established. Clusters of potential biomarkers for differentiating TB active from non-TB diseases were identified using Mann-Whitney U-test. Multiple logistic regression analysis of metabolites was calculated to determine the suitable biomarker group that allows the efficient differentiation of patients with TB active from the control subjects. Results: From among 271 participants, 12 metabolites were found to contribute to the distinction between the TB active group and the control groups. These metabolites were mainly involved in the metabolic pathways of the following three biomolecules: Fatty acids, amino acids, and lipids. The receiver operating characteristic curves of 3D, 7D, and 11D-phytanic acid, behenic acid, and threoninyl-γ-glutamate exhibited excellent efficiency with area under the curve (AUC values of 0.904 (95% confidence interval [CI]: 0863-0.944, 0.93 (95% CI: 0.893-0.966, and 0.964 (95% CI: 00.941-0.988, respectively. The largest and smallest resulting AUCs were 0.964 and 0.720, indicating that these biomarkers may be involved in the disease mechanisms. The combination of lysophosphatidylcholine (18:0, behenic acid, threoninyl-γ-glutamate, and presqualene diphosphate was used to represent the most suitable biomarker group for the differentiation of patients with TB active from the control subjects, with an AUC value of 0.991. Conclusion: The

  20. Applications of liquid-phase microextraction in the sample preparation of environmental solid samples.

    Science.gov (United States)

    Prosen, Helena

    2014-05-23

    Solvent extraction remains one of the fundamental sample preparation techniques in the analysis of environmental solid samples, but organic solvents are toxic and environmentally harmful, therefore one of the possible greening directions is its miniaturization. The present review covers the relevant research from the field of application of microextraction to the sample preparation of environmental solid samples (soil, sediments, sewage sludge, dust etc.) published in the last decade. Several innovative liquid-phase microextraction (LPME) techniques that have emerged recently have also been applied as an aid in sample preparation of these samples: single-drop microextraction (SDME), hollow fiber-liquid phase microextraction (HF-LPME), dispersive liquid-liquid microextraction (DLLME). Besides the common organic solvents, surfactants and ionic liquids are also used. However, these techniques have to be combined with another technique to release the analytes from the solid sample into an aqueous solution. In the present review, the published methods were categorized into three groups: LPME in combination with a conventional solvent extraction; LPME in combination with an environmentally friendly extraction; LPME without previous extraction. The applicability of these approaches to the sample preparation for the determination of pollutants in solid environmental samples is discussed, with emphasis on their strengths, weak points and environmental impact.

  1. Applications of Liquid-Phase Microextraction in the Sample Preparation of Environmental Solid Samples

    Directory of Open Access Journals (Sweden)

    Helena Prosen

    2014-05-01

    Full Text Available Solvent extraction remains one of the fundamental sample preparation techniques in the analysis of environmental solid samples, but organic solvents are toxic and environmentally harmful, therefore one of the possible greening directions is its miniaturization. The present review covers the relevant research from the field of application of microextraction to the sample preparation of environmental solid samples (soil, sediments, sewage sludge, dust etc. published in the last decade. Several innovative liquid-phase microextraction (LPME techniques that have emerged recently have also been applied as an aid in sample preparation of these samples: single-drop microextraction (SDME, hollow fiber-liquid phase microextraction (HF-LPME, dispersive liquid-liquid microextraction (DLLME. Besides the common organic solvents, surfactants and ionic liquids are also used. However, these techniques have to be combined with another technique to release the analytes from the solid sample into an aqueous solution. In the present review, the published methods were categorized into three groups: LPME in combination with a conventional solvent extraction; LPME in combination with an environmentally friendly extraction; LPME without previous extraction. The applicability of these approaches to the sample preparation for the determination of pollutants in solid environmental samples is discussed, with emphasis on their strengths, weak points and environmental impact.

  2. Trace element analysis in liquids by proton induced x-ray emission

    International Nuclear Information System (INIS)

    Deconninck, G.

    Proton induced x-ray emission (PIXE) from liquid has been developed for quantitative and simultaneous analysis of trace elements. Liquid drops and trickles are bombarded at atmospheric pressure, x-rays are detected in a non dispersive Si(Li) solid state detector. Absolute determinations are made by comparison with standard solutions. Detection limits in a 5 minutes run are in the ppm range for a single drop (0.05 ml). The application of this technique to the determination of trace elements in biological liquids is investigated (Cr, Mn, Fe, Co, Ni, Cu, Zn, in plant extracts, haemocyanine, albumins...). (author)

  3. Liquid chromatographic analysis of phenobarbitone, ethosuximide ...

    African Journals Online (AJOL)

    A liquid chromatographic method for the simultaneous assay of four anticonvulsant drugs, phenobarbitone, ethosuximide, phenytoin and carbamazepine on a polystyrene-divinyl benzene column is described. The method was developed by the systematic study of different types of co-polymer materials, type and ...

  4. 40 CFR 417.80 - Applicability; description of the manufacture of liquid soaps subcategory.

    Science.gov (United States)

    2010-07-01

    ... manufacture of liquid soaps subcategory. 417.80 Section 417.80 Protection of Environment ENVIRONMENTAL... CATEGORY Manufacture of Liquid Soaps Subcategory § 417.80 Applicability; description of the manufacture of liquid soaps subcategory. The provisions of this subpart are applicable to discharges resulting from the...

  5. Application of genetic algorithms for parameter estimation in liquid chromatography

    International Nuclear Information System (INIS)

    Hernandez Torres, Reynier; Irizar Mesa, Mirtha; Tavares Camara, Leoncio Diogenes

    2012-01-01

    In chromatography, complex inverse problems related to the parameters estimation and process optimization are presented. Metaheuristics methods are known as general purpose approximated algorithms which seek and hopefully find good solutions at a reasonable computational cost. These methods are iterative process to perform a robust search of a solution space. Genetic algorithms are optimization techniques based on the principles of genetics and natural selection. They have demonstrated very good performance as global optimizers in many types of applications, including inverse problems. In this work, the effectiveness of genetic algorithms is investigated to estimate parameters in liquid chromatography

  6. Liquid cooling applications on automotive exterior LED lighting

    Science.gov (United States)

    Aktaş, Mehmet; Şenyüz, Tunç; Şenyıldız, Teoman; Kılıç, Muhsin

    2018-02-01

    In this study cooling of a LED unit with heatsink and liquid cooling block which is used in automotive head lamp applications has been investigated numerically and experimentally. Junction temperature of a LED which is cooled with heatsink and liquid cooling block obtained in the experiment. 23°C is used both in the simulation and the experiment phase. Liquid cooling block material is choosed aluminium (Al) and polyamide. All tests and simulation are performed with three different flow rate. Temperature distribution of the designed product is investigated by doing the numerical simulations with a commercially software. In the simulations, fluid flow is assumed to be steady, incompressible and laminar and 3 dimensional (3D) Navier-Stokes equations are used. According to the calculations it is obtained that junction temperature is higher in the heatsink design compared to block cooled one. By changing the block material, it is desired to investigate the variation on the LED junction temperature. It is found that more efficient cooling can be obtained in block cooling by using less volume and weight. With block cooling lifetime of LED can be increased and flux loss can be decreased with the result of decreased junction temperature.

  7. Liquid metal current collector applications and material compatibility

    International Nuclear Information System (INIS)

    Carr, S.L.; Stevens, H.O.

    1978-01-01

    The objective of this paper has been to summarize briefly the material considerations involved in the development of liquid metal current collectors for homopolar machinery applications. A significant amount of data in this regard has been obtained over the last several years by individual researchers for NaK exposure conditions. However, NaK material compatibility data over the entire time and temperature range of interest is highly desirable. At DTNSRDC, a 300 kW superconducting homopolar motor and generator are under test, both utilizing free surface tongue-and-groove current collectors with NaK as the working fluid. In addition to demonstrating the feasibility of other aspects of machine design, the intention is to use these machines as vehicles for testing of the several liquid metal current collector concepts which are considered worthwhile candidates for incorporation in future full-scale machines. It is likely that the optimal collector approach for a large low speed motor may be quite different from that for a smaller high speed generator, possibly involving the use of different liquid metals

  8. Capillary isotachophoresis for the analysis of ionic liquid entities.

    Science.gov (United States)

    Markowska, Aleksandra; Stepnowski, Piotr

    2010-07-01

    Simple, selective and sensitive isotachophoretic methods for the analysis of ionic liquid (IL) compartments were developed in this study. A leading electrolyte containing 10 mM L-histidine + 10 mM histidine hydrochloride and a terminating electrolyte containing 5 mM glutamic acid + 5 mM L-histidine were selected to separate nitrate(V), chlorate(V), hexafluorophosphate, dicyanimide, trifluoromethanesulfonate, phosphate(V) and bis(trifluoromethanesulfonyl)imide in anionic mode. In contrast, seven short-chain alkylimidazolium, alkylpyrrolidinium, alkylpyridinium and non-chromophoric tetraalkylammonium and tetraalkylphosphonium IL cations were separated with 10 mM potassium hydroxide + 10 mM acetic acid as leading electrolyte, and 10 mM beta-alanine + 10 mM acetate as terminating electrolyte. Both methods were optimized and validated with good analytical performance parameters. LOD was about 3-5 microM, and the repeatability lay in the range of 1.06-5.59%. These methods were evaluated for their applicability to the analysis of soil samples and freshwater contaminated with ILs. In light of hitherto the absence of reports on the determination of non-chromophoric IL cations, this study delivers for the first time a universal method enabling analysis of these species. Moreover, as there is still significant lack of methodologies of IL anion analysis, the obtained results offer an interesting alternative in that matter.

  9. Application of targeted quantitative proteomics analysis in human cerebrospinal fluid using a liquid chromatography matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (LC MALDI TOF/TOF) platform.

    Science.gov (United States)

    Pan, Sheng; Rush, John; Peskind, Elaine R; Galasko, Douglas; Chung, Kathryn; Quinn, Joseph; Jankovic, Joseph; Leverenz, James B; Zabetian, Cyrus; Pan, Catherine; Wang, Yan; Oh, Jung Hun; Gao, Jean; Zhang, Jianpeng; Montine, Thomas; Zhang, Jing

    2008-02-01

    Targeted quantitative proteomics by mass spectrometry aims to selectively detect one or a panel of peptides/proteins in a complex sample and is particularly appealing for novel biomarker verification/validation because it does not require specific antibodies. Here, we demonstrated the application of targeted quantitative proteomics in searching, identifying, and quantifying selected peptides in human cerebrospinal spinal fluid (CSF) using a matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (MALDI TOF/TOF)-based platform. The approach involved two major components: the use of isotopic-labeled synthetic peptides as references for targeted identification and quantification and a highly selective mass spectrometric analysis based on the unique characteristics of the MALDI instrument. The platform provides high confidence for targeted peptide detection in a complex system and can potentially be developed into a high-throughput system. Using the liquid chromatography (LC) MALDI TOF/TOF platform and the complementary identification strategy, we were able to selectively identify and quantify a panel of targeted peptides in the whole proteome of CSF without prior depletion of abundant proteins. The effectiveness and robustness of the approach associated with different sample complexity, sample preparation strategies, as well as mass spectrometric quantification were evaluated. Other issues related to chromatography separation and the feasibility for high-throughput analysis were also discussed. Finally, we applied targeted quantitative proteomics to analyze a subset of previously identified candidate markers in CSF samples of patients with Parkinson's disease (PD) at different stages and Alzheimer's disease (AD) along with normal controls.

  10. Maximum entropy analysis of liquid diffraction data

    International Nuclear Information System (INIS)

    Root, J.H.; Egelstaff, P.A.; Nickel, B.G.

    1986-01-01

    A maximum entropy method for reducing truncation effects in the inverse Fourier transform of structure factor, S(q), to pair correlation function, g(r), is described. The advantages and limitations of the method are explored with the PY hard sphere structure factor as model input data. An example using real data on liquid chlorine, is then presented. It is seen that spurious structure is greatly reduced in comparison to traditional Fourier transform methods. (author)

  11. Phase stability analysis of liquid-liquid equilibrium with stochastic methods

    Directory of Open Access Journals (Sweden)

    G. Nagatani

    2008-09-01

    Full Text Available Minimization of Gibbs free energy using activity coefficient models and nonlinear equation solution techniques is commonly applied to phase stability problems. However, when conventional techniques, such as the Newton-Raphson method, are employed, serious convergence problems may arise. Due to the existence of multiple solutions, several problems can be found in modeling liquid-liquid equilibrium of multicomponent systems, which are highly dependent on the initial guess. In this work phase stability analysis of liquid-liquid equilibrium is investigated using the NRTL model. For this purpose, two distinct stochastic numerical algorithms are employed to minimize the tangent plane distance of Gibbs free energy: a subdivision algorithm that can find all roots of nonlinear equations for liquid-liquid stability analysis and the Simulated Annealing method. Results obtained in this work for the two stochastic algorithms are compared with those of the Interval Newton method from the literature. Several different binary and multicomponent systems from the literature were successfully investigated.

  12. Automated solid-phase extraction-liquid chromatography-tandem mass spectrometry analysis of 6-acetylmorphine in human urine specimens: application for a high-throughput urine analysis laboratory.

    Science.gov (United States)

    Robandt, P V; Bui, H M; Scancella, J M; Klette, K L

    2010-10-01

    An automated solid-phase extraction-liquid chromatography- tandem mass spectrometry (SPE-LC-MS-MS) method using the Spark Holland Symbiosis Pharma SPE-LC coupled to a Waters Quattro Micro MS-MS was developed for the analysis of 6-acetylmorphine (6-AM) in human urine specimens. The method was linear (R² = 0.9983) to 100 ng/mL, with no carryover at 200 ng/mL. Limits of quantification and detection were found to be 2 ng/mL. Interrun precision calculated as percent coefficient of variation (%CV) and evaluated by analyzing five specimens at 10 ng/mL over nine batches (n = 45) was 3.6%. Intrarun precision evaluated from 0 to 100 ng/mL ranged from 1.0 to 4.4%CV. Other opioids (codeine, morphine, oxycodone, oxymorphone, hydromorphone, hydrocodone, and norcodeine) did not interfere in the detection, quantification, or chromatography of 6-AM or the deuterated internal standard. The quantified values for 41 authentic human urine specimens previously found to contain 6-AM by a validated gas chromatography (GC)-MS method were compared to those obtained by the SPE-LC-MS-MS method. The SPE-LC-MS-MS procedure eliminates the human factors of specimen handling, extraction, and derivatization, thereby reducing labor costs and rework resulting from human error or technique issues. The time required for extraction and analysis was reduced by approximately 50% when compared to a validated 6-AM procedure using manual SPE and GC-MS analysis.

  13. Liquid metal reactor applications of the CONTAIN code

    International Nuclear Information System (INIS)

    Carroll, D.E.; Bergeron, K.D.; Gido, R.; Valdez, G.D.; Scholtyssek, W.

    1988-01-01

    The CONTAIN code is the NRC's best-estimate code for the evaluation of the conditions that may exist inside a reactor containment building during a severe accident. Included in the phenomena modeled are thermal-hydraulics, radiant and convective heat transfer, aerosol loading and transient response, fission product transport and heating effects, and interactions of sodium and corium with the containment atmosphere and structures. CONTAIN has been used by groups in Japan and West Germany to assess its ability to analyze accident consequences for liquid metal reactor (LMR) plants. In conjunction with this use, collaborative efforts to improve the modeling have been pursued. This paper summarizes the current state of the version of CONTAIN that has been enhanced with extra capabilities for LMR applications. A description of physical models is presented, followed by a review of validation exercises performed with CONTAIN. Some demonstration calculations of an integrated LMR application are presented

  14. Reactive liquid/liquid extraction of heavy metals from landfill seepage waters. Its characterisation and application

    International Nuclear Information System (INIS)

    Woller, N.

    1994-06-01

    This study demonstrates the applicability of liquid-liquid extraction by means of the commercial complexers LIX26 R and LIX84 R to heavy metal removal from waste waters. The composition of this oil-soluble complex is MeR 2 , where Me denotes Hg 2+ , Cd 2+ , Zn 2+ , Cu 2+ , and Ni 2+ , and R denotes LIX84 R . This composition makes the complex electrically neutral, and all polar groups are located inside the molecule. The extraction efficiency of the complexer LIX84 R for the various metal ions is evident in the succession Cu 2+ , Ni 2+ >> Zn 2+ > Hg 2+ > Cd 2+ . These heavy metal ions are even readily extractable at chloride concentrations of up to 1 mol/l. As the structure of the complexer is that of an oil-soluble surfactant with complexing properties, it accumulates at the phase boundary between oil and water. Measurement of interfacial tension in various solvent systems showed that the polar solvent chloroform permits only a weak accumulation of the complexer (400 nmol/m 2 ), whereas the unpolar solvent kerosine permits greater accumulation specifically on the water side of the phase boundary (1958 nmol/m 2 ). Organic solvents solvate the complexer so well, that it is even removed from the air side of the phase boundary. The differing accumulation of the complexer at the water/oil phase boundary explains the differing increase of phase separation time for polar and unpolar solvents. (orig.) [de

  15. Application of liquid-liquid extraction in separation of rare earths [Paper No. : V-6

    International Nuclear Information System (INIS)

    Deshpande, S.M.; Krishnan, N.P.K.; Murthy, T.K.S.; Swaminathan, T.V.

    1979-01-01

    The rare earths consist of fifteen elements which have very similar chemical properties and are difficult to separate from each other. Since they exist together in all naturally occurring minerals their separation is one of the important and difficult aspects of their technology. Liquid-liquid extraction has proved to be an efficient technique for their separation. The two important extraction systems that find practical and large scale application, the nitric acid + tri-n-butyl phosphate, and mineral acid (particularly hydrochloric acid) + organo phosphoric acid (like di-2-ethyl hexyl phosphoric acid), are briefly reviewed. The factors affecting the extraction and separation of rare earths in the two systems are discussed. On an industrial scale the extraction process is very often employed for an initial concentration of the desired rare earths from complex mixtures. The final purification is generally achieved by the ion exchange method. The utility of the solvent extraction process for the upgrading of selected rare earths-europium, samarium and gadolinium-from a mixed rare earth chloride, derived from monazite, is illustrated by the work carried out in this laboratory and pilot plant operation at the Alwaye plant of M/s. Indian Rare Earths Ltd. (author)

  16. Liquid Crystal Bow-Tie Microstrip antenna for Wireless Communication Applications

    Directory of Open Access Journals (Sweden)

    B.T.P.Madhav

    2014-06-01

    Full Text Available In this paper we presented the design and analysis of Bow-Tie antenna on liquid crystal substrate, which is suitable for the Bluetooth/WLAN-2.4/WiBree/ZigBee applications. The Omni-directional radiation patterns along with moderate gain make the proposed antenna suitable for above mentioned applications. Details of the antenna design and simulated results Return loss, Input impedance, Radiation Patterns, E-Field, H-Field and Current Distributions, VSWR are presented and discussed. The proposed antenna is simulated at 2.4 GHz using Ansoft HFSS-11.

  17. Liquid effluent Sampling and Analysis Plan (SAP) implementation summary report

    International Nuclear Information System (INIS)

    Lueck, K.J.

    1995-01-01

    This report summarizes liquid effluent analytical data collected during the Sampling and Analysis Plan (SAP) Implementation Program, evaluates whether or not the sampling performed meets the requirements of the individual SAPs, compares the results to the WAC 173-200 Ground Water Quality Standards. Presented in the report are results from liquid effluent samples collected (1992-1994) from 18 of the 22 streams identified in the Consent Order (No. DE 91NM-177) requiring SAPs

  18. KSP Polonia Warszawa’s Financial Problems – Analysis of Liquidity and Debt

    Directory of Open Access Journals (Sweden)

    Elżbieta Marcinkowska

    2013-01-01

    Full Text Available Financial liquidity is one of the most important areas of running business operations. Each entity must keep it at an adequate level. Lack of financial liquidity is the main factor leading to bankruptcy of companies. The analysis of liquidity and debt verifies the ability of an entity to pay current liabilities and also confirms the company’s ability to survive on the market. Based on the results of the analysis of liquidity and debt the management should therefore prepare liquidity management strategy. The article is based on the available financial statements of KSP Polonia Warszawa Sportowa Spółka Akcyjna and presents an analysis of its liquidity and debt. The results of this analysis for years 2008-2010were very alarming and indicative of the upcoming bankruptcy of the club. In July this year, an application was filed with the court confirming insolvency of the club and, by virtue of a decision issued by PZPN (Polish Football Association, Polonia Warszawa, so far playing in the Ekstraklasa (Polish top division, will start the next season in the 4th division. It will take the club many years to regain its position.

  19. Liquid Li based neutron source for BNCT and science application

    International Nuclear Information System (INIS)

    Horiike, H.; Murata, I.; Iida, T.; Yoshihashi, S.; Hoashi, E.; Kato, I.; Hashimoto, N.; Kuri, S.; Oshiro, S.

    2015-01-01

    Liquid lithium (Li) is a candidate material for a target of intense neutron source, heat transfer medium in space engines and charges stripper. For a medical application of BNCT, epithermal neutrons with least energetic neutrons and γ-ray are required so as to avoid unnecessary doses to a patient. This is enabled by lithium target irradiated by protons at 2.5 MeV range, with utilizing the threshold reaction of "7Li(p,n)"7Be at 1.88 MeV. In the system, protons at 2.5 MeV penetrate into Li layer by 0.25 mm with dissipating heat load near the surface. To handle it, thin film flow of high velocity is important for stable operation. For the proton accelerator, electrostatic type of the Schnkel or the tandem is planned to be employed. Neutrons generated at 0.6 MeV are gently moderated to epithermal energy while suppressing accompanying γ-ray minimum by the dedicated moderator assembly. - Highlights: • Liquid lithium (Li) is a candidate material for a target of intense neutron source. • An accelerator based neutron source with p-liquid Li target for boron neutron capture therapy is under development in Osaka University, Japan. • In our system, the harmful radiation dose due to rays and fast neutrons will be suppressed very low. • The system performance are very promising as a state of art cancer treatment system. • The project is planned as a joint undertaking between industries and Osaka University.

  20. A single-chip computer analysis system for liquid fluorescence

    International Nuclear Information System (INIS)

    Zhang Yongming; Wu Ruisheng; Li Bin

    1998-01-01

    The single-chip computer analysis system for liquid fluorescence is an intelligent analytic instrument, which is based on the principle that the liquid containing hydrocarbons can give out several characteristic fluorescences when irradiated by strong light. Besides a single-chip computer, the system makes use of the keyboard and the calculation and printing functions of a CASIO printing calculator. It combines optics, mechanism and electronics into one, and is small, light and practical, so it can be used for surface water sample analysis in oil field and impurity analysis of other materials

  1. Sloshing analysis of viscous liquid storage tanks

    International Nuclear Information System (INIS)

    Uras, R.Z.

    1995-01-01

    The effect of viscosity on the sloshing response of tanks containing viscous liquids is studied using the in-house finite element computer code, FLUSTR-ANL. Two different tank sizes each filled at two levels, are modeled, and their dynamic responses under harmonic and seismic ground motions are simulated. The results are presented in terms of the wave height, and pressures at selected nodes and elements in the finite element mesh. The viscosity manifests itself as a damping effect, reducing the amplitudes. Under harmonic excitation, the dynamic response reaches the steady-state faster as the viscosity value becomes larger. The fundamental sloshing frequency for each study case stays virtually unaffected by an increase in viscosity. For the small tank case, a 5% difference is observed in the fundamental frequency of the smallest (1 cP) and the highest (1000 cP) viscosity cases considered in this study. The fundamental frequencies of the large tank are even less sensitive

  2. Structural Analysis of Aromatic Liquid Crystalline Polyesters

    Directory of Open Access Journals (Sweden)

    Arpad Somogyi

    2011-01-01

    Full Text Available Laboratory preparations of liquid crystalline prepolymers, distillates accompanying prepolymers, final polymers, and sublimates accompanying final polymers were examined. NaOD/D2O depolymerization of prepolymers and polymers back to monomers with integration of the 1H NMR spectra showed up to 6% excess of carboxyls over phenol groups, caused partly by loss of the low-boiling comonomer hydroquinone through distillation during prepolymerization and leaving anhydride units in the polymer chain. ESI− MS and MS/MS of hexafluoroisopropanol extracts of the prepolymer detected small molecules including some containing anhydride groups; ESI+ MS showed the presence of small cyclic oligomers. 1H NMR (including TOCSY spectra provided more quantitative analyses of these oligomers. The final polymerization increases the length of the polymer chains and sublimes out the small oligomers. Anhydride linkages remaining in the polymer must make LCP’s more susceptible to degradation by nucleophilic reagents such as water, alkalis, and amines.

  3. An innovative liquid metal design with worldwide application potential

    International Nuclear Information System (INIS)

    Quinn, J.E.; Berglund, R.C.

    1989-01-01

    This paper reports that the United States nuclear program has been faced with major political, economic and technical challenges in recent years. One US program element, the Liquid Metal Reactor, has addressed these challenges in a systematic, focused manner. The result is an innovative modular design incorporating safety features that utilize inherent characteristics. This Advanced Liquid Metal Reactor (ALMR) is based on the PRISM concept, originated by the General Electric Company in 1981. This design should also be attractive in other developed countries that have deployed, and/or are deploying, nuclear power. The design's safety features can achieve neutronic shutdown and decay heat removal without relying on operator action or engineered active safety features. The ALMR utilizes many innovations including: a passive reactor vessel air cooling system for decay heat removal; the use of a sealed reactor assembly; seismic isolation; electromagnetic primary pumps; and an in-vessel fuel transfer machine. The US ALMR design incorporates a metal fuel core as its reference, however, the required safety performance can also be achieved with an oxide core having similar safety features. This flexibility is particularly important when addressing world wide ALMR applications. The reference ALMR reactor module, of which there are nine in a typical 1395 MW e plant, has a -6 meter by -20 meter vessel and a 471 MW thermal output, with a reactor outlet temperature of 485 degrees C and an overall conversion efficiency of 33%. This plant uses a saturated steam cycle and a non-safety grade secondary sodium system

  4. Ionic liquid-induced aggregate formation and their applications.

    Science.gov (United States)

    Dutta, Rupam; Kundu, Sangita; Sarkar, Nilmoni

    2018-06-01

    In the last two decades, researchers have extensively studied highly stable and ordered supramolecular assembly formation using oppositely charged surfactants. Thereafter, surface-active ionic liquids (SAILs), a special class of room temperature ionic liquids (RTILs), replace the surfactants to form various supramolecular aggregates. Therefore, in the last decade, the building blocks of the supramolecular aggregates (micelle, mixed micelle, and vesicular assemblies) have changed from oppositely charged surfactant/surfactant pair to surfactant/SAIL and SAIL/SAIL pair. It is also found that various biomolecules can also interact with SAILs to construct biologically important supramolecular assemblies. The very latest addition to this combination of ion pairs is the dye molecules having a long hydrophobic chain part along with a hydrophilic ionic head group. Thus, dye/surfactant or dye/SAIL pair also produces different assemblies through electrostatic, hydrophobic, and π-π stacking interactions. Vesicles are one of the important self-assemblies which mimic cellular membranes, and thus have biological application as a drug carrier. Moreover, vesicles can act as a suitable microreactor for nanoparticle synthesis.

  5. Analysis of pig serum proteins based on shotgun liquid ...

    African Journals Online (AJOL)

    Recent advances in proteomics technologies have opened up significant opportunities for future applications. We used shotgun liquid chromatography, coupled with tandem mass spectrometry (LC-MS/MS) to determine the proteome profile of healthy pig serum. Samples of venous blood were collected and subjected to ...

  6. Ionic Liquid-Like Pharmaceutical Ingredients and Applications of Ionic Liquids in Medicinal Chemistry: Development, Status and Prospects.

    Science.gov (United States)

    Tang, Jie; Song, Hang; Feng, Xueting; Yohannes, Alula; Yao, Shun

    2018-06-05

    As a new kind of green media and bioactive compounds with special structure, ionic liquids (ILs) are attracting much attention and applied widely in many fields. However, their roles and potential have not been fully recognized by many researchers of medicinal chemistry. Because of obvious differences from other traditional drugs and reagents, their uses and performance together with advantages and disadvantages need to be explored and reviewed in detail. For systematic and explicit description of the relationship between ILs and medicinal chemistry, all of the contents were elucidated and summarized in a series of independent parts. In each part, it started from the research background or a conceptual framework and then specific examples were introduced to illustrate the theme. Finally, the important conclusions were drawn and its future was outlooked after the discussion about related key problems appearing in each mentioned research. Meanwhile, methodologies such as empirical analysis, comparison and induction were applied in different sections to exposit our subject. The whole review was composed of five parts, and 148 papers were cited in total. Related basic information of ionic liquids was provided on the basis of representative references, including their concepts and important characters. Then 82 papers outlined ionic liquid-like active pharmaceutical ingredients, which unfolded with their major biological activities (antimicrobial activity, antibiofilm activity, antitumor activity, anticholinesterase activity and so on). Applications of ionic liquids in synthesis of drugs and pharmaceutical intermediates were elaborated in 92 papers to illustrate the important roles of ILs and their extraordinary properties in this field. Moreover, new technologies (such as immobilization of IL, microwave reaction, solvent-free synthesis, microreactor, etc) were introduced for further innovation. Finally, 26 papers were included to expound the status about the IL

  7. Liquidity Risk Management: An Empirical Analysis on Panel Data Analysis and ISE Banking Sector

    OpenAIRE

    Sibel ÇELİK; Yasemin Deniz AKARIM

    2012-01-01

    In this paper, we test the factors affecting liquidity risk management in banking sector in Turkey by using panel regression analysis. We use the data for 9 commercial banks traded in Istanbul Stock Exchange for the period 1998-2008. In conclusion, we find that risky liquid assets and return on equity variables are negatively related with liquidity risk. However, external financing and return on asset variables are positively related with liquidity risk. This finding is importance for banks s...

  8. Ultrafast and ultrasensitive dielectric liquids/mixtures: Basic measurements and applications

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Faidas, H.; McCorkle, D.L.; Tennessee Univ., Knoxville, TN

    1989-01-01

    Basic properties of cryogenic and room temperature dielectric liquids/mixtures with high electron yields (under irradiation by ionizing particles) and high excess electron drift velocities are discussed. A number of ultrafast and ultrasensitive liquid media -- appropriate for possible use in liquid-filled radiation detectors and other applications -- are identified. 44 refs., 12 figs

  9. Synthesis and application of magnetic deep eutectic solvents: Novel solvents for ultrasound assisted liquid-liquid microextraction of thiophene.

    Science.gov (United States)

    Khezeli, Tahere; Daneshfar, Ali

    2017-09-01

    Two novel magnetic deep eutectic solvents (MDESs), comprised of cheap and simple components named [choline chloride/phenol] [FeCl 4 ] and [choline chloride/ethylene glycol] [FeCl 4 ] were prepared and characterized by CHN elemental analysis, proton nuclear magnetic resonance ( 1 H NMR), vibrating sample magnetometery (VSM), Raman, Fourier transform-infrared (FT-IR) and UV-Vis spectrometery. The extraction efficiency of the prepared MDESs has been investigated in ultrasound assisted liquid-liquid microextraction based MDES (UALLME-MDES). Briefly, MDESs were added to n-heptan containing thiophene. Then, MDESs were dispersed in n-heptane by sonication. After that, microdroplets of MDESs were collected by a magnet and the remained concentration of thiophene in n-heptane phase was analyzed by GC-FID. The results indicated that [choline chloride/phenol] [FeCl 4 ] has higher extraction efficiency than [choline chloride/ethylene glycol] [FeCl 4 ]. This work opens a new way to the application of MDESs. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Liquid Scintillation High Resolution Spectral Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A.

    2010-08-06

    The CIEMAT/NIST and the TDCR methods in liquid scintillation counting are based on the determination of the efficiency for total counting. This paper tries to expand these methods analysing the pulse-height spectrum of radionuclides. To reach this objective we have to generalize the equations used in the model and to analyse the influence of ionization and chemical quench in both spectra and counting efficiency. We present equations to study the influence of different photomultipliers response in systems with one, two or three photomultipliers. We study the effect of the electronic noise discriminator level in both spectra and counting efficiency. The described method permits one to study problems that up to now was not possible to approach, such as the high uncertainty in the standardization of pure beta-ray emitter with low energy when we apply the TDCR method, or the discrepancies in the standardization of some electron capture radionuclides, when the CIEMAT/NIST method is applied. (Author) 107 refs.

  11. Liquid Scintillation High Resolution Spectral Analysis

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.

    2010-01-01

    The CIEMAT/NIST and the TDCR methods in liquid scintillation counting are based on the determination of the efficiency for total counting. This paper tries to expand these methods analysing the pulse-height spectrum of radionuclides. To reach this objective we have to generalize the equations used in the model and to analyse the influence of ionization and chemical quench in both spectra and counting efficiency. We present equations to study the influence of different photomultipliers response in systems with one, two or three photomultipliers. We study the effect of the electronic noise discriminator level in both spectra and counting efficiency. The described method permits one to study problems that up to now was not possible to approach, such as the high uncertainty in the standardization of pure beta-ray emitter with low energy when we apply the TDCR method, or the discrepancies in the standardization of some electron capture radionuclides, when the CIEMAT/NIST method is applied. (Author) 107 refs.

  12. Sight Application Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    Bronevetsky, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-17

    The scale and complexity of scientific applications makes it very difficult to optimize, debug and extend them to support new capabilities. We have developed a tool that supports developers’ efforts to understand the logical flow of their applications and interactions between application components and hardware in a way that scales with application complexity and parallelism.

  13. Experimental design for reflection measurements of highly reactive liquid or solid substances with application to liquid sodium

    International Nuclear Information System (INIS)

    Chan, S.H.; Gossler, A.A.

    1980-01-01

    A versatile goniometer system with associated electronic components and mechanical instruments has been assembled. It is designed to measure spectral, specular reflectances of highly reactive liquid or solid substances over a spectral range of 0.3 to 9 μ and incidence angles of 12 to 30 0 off the normal direction. The capability of measuring reflectances of liquid substances clearly distinguishes this experimental design from conventional systems which are applicable only to solid substances. This design has been used to measure the spectral, specular reflectance of liquid sodium and preliminary results obtained are compared with those of solid sodium measured by other investigators

  14. Application of ionic liquids in electrochemical sensing systems.

    Science.gov (United States)

    Shiddiky, Muhammad J A; Torriero, Angel A J

    2011-01-15

    Since 1992, when the room temperature ionic liquids (ILs) based on the 1-alkyl-3-methylimidazolium cation were reported to provide an attractive combination of an electrochemical solvent and electrolyte, ILs have been widely used in electrodeposition, electrosynthesis, electrocatalysis, electrochemical capacitor, and lithium batteries. However, it has only been in the last few years that electrochemical biosensors based on carbon ionic liquid electrodes (CILEs) and IL-modified macrodisk electrodes have been reported. However, there are still a lot of challenges in achieving IL-based sensitive, selective, and reproducible biosensors for high speed analysis of biological and environmental compounds of interest. This review discusses the principles of operation of electrochemical biosensors based on CILEs and IL/composite-modified macrodisk electrodes. Subsequently, recent developments and major strategies for enhancing sensing performance are discussed. Key challenges and opportunities of IL-based biosensors to further development and use are considered. Emphasis is given to direct electron-transfer reaction and electrocatalysis of hemeproteins and enzyme-modified composite electrodes. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Ultraviolet curing of acrylated liquid natural rubber for surface coating application

    OpenAIRE

    Kannikar Kwanming; Pairote Klinpituksa; Wae-asae Waehamad

    2009-01-01

    Ultraviolet curable acrylated liquid natural rubber was prepared by grafting of photosensitive molecule onto liquid natural rubber for surface coating application. The liquid natural rubber (LNR) was firstly obtained by degradation of natural rubber latex with hydrogen peroxide and cobalt acetylacetonate at 65oC for 72 hrs. The preparation of acrylated natural rubber was carried out by the reaction of acrylic acid and epoxidized liquid natural rubber (ELNR) prior obtained from LNR with formic...

  16. Application of solid-liquid extraction separation in analytical chemistry: Pt. 1

    International Nuclear Information System (INIS)

    Xu Zulan; Dai Lixin

    1985-01-01

    Low m.p. waxes as solid solvents for solid-liquid extraction separation are advanced. Uranium in aqueous phase is extracted by homogeneous organic phase which is composed of waxes and various kinds of extractants. Various parameters of this extraction separation method are studied and compared with one of liquid-liquid extraction. The characteristic of wax as solvent, speciality and applicability of solid-liquid extraction separation method are evaluated

  17. Toxic Compounds Analysis With High Performance Liquid Chromatography Detected By Electro Chemical Detector (Ecd)

    OpenAIRE

    Hideharu Shintaniq

    2014-01-01

    The principal area of application of high performance liquid chromatography-electrochemical detector (HPLC-ECD) has been in the analysis of naturally-occurring analytes, such as catecholamines, and pharmaceuticals in biological samples, HPLC-ECD has also applied to the analysis of pesticides and other analytes of interest to the toxicologist. In this paper, toxic area is described. In these, ammatoxins, aromatic amine, nitro-compounds, algal toxins, fungal toxins, pesticides, veterinary drug ...

  18. Liquid phase microextraction for the analysis of trace elements and their speciation

    International Nuclear Information System (INIS)

    Hu, Bin; He, Man; Chen, Beibei; Xia, Linbo

    2013-01-01

    Trace/ultra-trace elements and their speciation analysis in complex matrices usually require sample preparation procedures to achieve sample clean-up and analyte preconcentration. Sample preparation is often the bottleneck in trace elements and their speciation analysis which has a direct impact on accuracy, precision and limits of detection and is often the rate-determining step of the analytical process. Recent trends in sample preparation include miniaturization, automation, high-throughput performance and reduction in solvent/sample consumption and operation time. Liquid-phase microextraction (LPME) technique as a novel and promising alternative in sample preparation can meet these requirements and has become a very efficient sample preparation technique. This review updates the state of art of LPME for trace elements and their speciation analysis and discusses its promising prospects. The major thrust of the article highlights the applications of LPME including single-drop microextraction (SDME), hollow fiber-liquid phase microextraction (HF-LPME), dispersive liquid liquid microextraction (DLLME) and solidified floating organic drop microextraction (SFODME) to the fields of elemental and their speciation analysis by atomic spectrometry-based methods, especially inductively coupled plasma mass spectrometry. General and specific concepts, different extraction formats and characteristics of LPME are described and compared, along with examples of recent innovations and applications presented to demonstrate its potential for trace elements and their speciation analysis in biological and environmental fields. Moreover, the application potential and an outlook on the combination of LPME and atomic spectrometry-based techniques for inorganic analysis are commentated. - Highlights: • The state of art of LPME for trace elements and their speciation analysis is updated. • Different extraction formats of LPME are described. • The application potential and future

  19. Potential applications of robotics in advanced liquid-metal reactors

    International Nuclear Information System (INIS)

    Carroll, D.G.; Thompson, M.L.

    1990-01-01

    The advanced liquid-metal reactor (ALMR) design includes a range of robots and automation devices. They extend from stationary robots that are a part of the current design to more exotic concepts with mobile, autonomous units, which may become part of the design. Development of robotic application requirements is enhanced by using computer models of work spaces in three dimensions. The primary goals of the more autonomous machines are to: (1) extent and/or enhance one's capabilities in a hazardous environment; some tasks could encounter high temperatures (up to 800 degree F), high radiation (fields up to several hundred thousand roentgens per hour), rooms filled with inert gas and/or sodium aerosol, or combinations of these; (2) reduce operating and maintenance cost through inservice inspection (ISI) of various parts of the reactor, through consideration of as-low-as-reasonably achievable radiation levels, and through automation of some maintenance/processing operations. This paper discusses some applications in the fuel cycle, in refueling operations, and in inspection

  20. Comprehensive two-dimensional liquid chromatographic analysis of poloxamers.

    Science.gov (United States)

    Malik, Muhammad Imran; Lee, Sanghoon; Chang, Taihyun

    2016-04-15

    Poloxamers are low molar mass triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), having number of applications as non-ionic surfactants. Comprehensive one and two-dimensional liquid chromatographic (LC) analysis of these materials is proposed in this study. The separation of oligomers of both types (PEO and PPO) is demonstrated for several commercial poloxamers. This is accomplished at the critical conditions for one of the block while interaction for the other block. Reversed phase LC at CAP of PEO allowed for oligomeric separation of triblock copolymers with regard to PPO block whereas normal phase LC at CAP of PPO renders oligomeric separation with respect to PEO block. The oligomeric separation with regard to PEO and PPO are coupled online (comprehensive 2D-LC) to reveal two-dimensional contour plots by unconventional 2D IC×IC (interaction chromatography) coupling. The study provides chemical composition mapping of both PEO and PPO, equivalent to combined molar mass and chemical composition mapping for several commercial poloxamers. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Quality Analysis of Mobile Applications

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2011-01-01

    Full Text Available Mobile applications are defined and different types of mobile applications are identified. Characteristics of quality are defined and their indicators are constructed to measure levels. Take into account 11 parameters analysis for mobile applications, which are arranged using weights and do a detailed analysis of the system of weights. For SMSEncrypt application performance measurement is done using an aggregate indicator based on the obtained weights system.

  2. Development of Multifunctional Ultra-Nonlinear Liquids and Liquid Crystals for Sensor Protection Applications

    National Research Council Canada - National Science Library

    Khoo, I. C

    2008-01-01

    .... Significant breakthroughs have been achieved in developing supra-nonlinear liquid crystalline films that possess extraordinarily large photorefractive responses, low switching thresholds and useful...

  3. Analysis of chlorpheniramine in human urine samples using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    Mehdi Maham

    2014-09-01

    Full Text Available A simple and environmentally friendly microextraction technique was used for determination of chlorpheniramine (CPM, an antihistamine drug, in human urine samples using dispersive liquid-liquid microextraction (DLLME followed by high performance liquid chromatography with diode array detection (HPLC-DAD. In this extraction technique, an appropriate mixture of acetonitrile (disperser solvent and carbon tetrachloride (extraction solvent was rapidly injected into the urine sample containing the target analyte. Tiny droplets of extractant were formed and dispersed into the sample solution and then sedimented at the bottom of the conical test tube by centrifugation. Under optimal conditions, the calibration curve was linear in the range of 0.055-5.5 µg mL-1, with a detection limit of 16.5 ng mL-1. This proposed method was successfully applied to the analysis of real urine samples. Low consumption of toxic organic solvents, simplicity of operation, low cost and acceptable figures of merit are the main advantages of the proposed technique.

  4. Development and Application of an MSALL-Based Approach for the Quantitative Analysis of Linear Polyethylene Glycols in Rat Plasma by Liquid Chromatography Triple-Quadrupole/Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Zhou, Xiaotong; Meng, Xiangjun; Cheng, Longmei; Su, Chong; Sun, Yantong; Sun, Lingxia; Tang, Zhaohui; Fawcett, John Paul; Yang, Yan; Gu, Jingkai

    2017-05-16

    Polyethylene glycols (PEGs) are synthetic polymers composed of repeating ethylene oxide subunits. They display excellent biocompatibility and are widely used as pharmaceutical excipients. To fully understand the biological fate of PEGs requires accurate and sensitive analytical methods for their quantitation. Application of conventional liquid chromatography-tandem mass spectrometry (LC-MS/MS) is difficult because PEGs have polydisperse molecular weights (MWs) and tend to produce multicharged ions in-source resulting in innumerable precursor ions. As a result, multiple reaction monitoring (MRM) fails to scan all ion pairs so that information on the fate of unselected ions is missed. This Article addresses this problem by application of liquid chromatography-triple-quadrupole/time-of-flight mass spectrometry (LC-Q-TOF MS) based on the MS ALL technique. This technique performs information-independent acquisition by allowing all PEG precursor ions to enter the collision cell (Q2). In-quadrupole collision-induced dissociation (CID) in Q2 then effectively generates several fragments from all PEGs due to the high collision energy (CE). A particular PEG product ion (m/z 133.08592) was found to be common to all linear PEGs and allowed their total quantitation in rat plasma with high sensitivity, excellent linearity and reproducibility. Assay validation showed the method was linear for all linear PEGs over the concentration range 0.05-5.0 μg/mL. The assay was successfully applied to the pharmacokinetic study in rat involving intravenous administration of linear PEG 600, PEG 4000, and PEG 20000. It is anticipated the method will have wide ranging applications and stimulate the development of assays for other pharmaceutical polymers in the future.

  5. Analysis of Simultaneous Gas-Liquid Flow Through an Orifice and Its Application to Flow Metering Etude de l'écoulement simultané d'un mélange gaz-liquide à travers un orifice et son application à la mesure du débit

    Directory of Open Access Journals (Sweden)

    Pascal H.

    2006-11-01

    Full Text Available The purpose of this article is to show a more accurate orifice equation for a two-phase flow, such a compressible mixture of gas and liquid. The orifice equation given here con be used for the measurement of a gas-liquid mixture of fine emulsions by the orificemeter method. From the thermodynamic point of view, an equation of state has been formulated which provides the relationship between the specific mass of the mixture and pressure, under conditions of adiabatic expansion. The results obtained enable the mass flow rates of gas and liquid ta be determined without separation of the phases, provided thot the gas liquid mass ratio is known. The critical pressure ratio corresponding ta sonic velocity is also determined. Cet article présente une relation plus précise pour l'écoulement d'un système à deux phases, tel qu'un mélange compressible gaz-liquide, à travers un diaphragme. Cette relation peut être utilisée pour des mesures de mélanges gaz-liquide très finement divisés, c'est-à-dire des émulsions ou brouillards, par la méthode du diaphragme en paroi mince. Du point de vue thermodynamique, on a formulé une équation d'état donnant la relation entre la masse spécifique du mélange et la pression dans des conditions d'expansion adiabatique. Les résultats obtenus per-mettent de déterminer le débit massique du gaz et du liquide, sans séparation des deux phases, à condition que le rapport de masse gaz-liquide soit connu. On détermine également le rapport de pression critique correspondantà la vitesse du son.

  6. Ultra-high Performance Liquid Chromatography in Steroid Analysis

    OpenAIRE

    Salonen, Fanny

    2017-01-01

    The latest version of liquid chromatography is ultra-high performance (or pressure) chromatography (UHPLC). In the technique, short and narrow-bore columns with particle sizes below 3 µm are used. The extremely high pressure used results in very short analysis times, excellent separation, and good resolution. This makes UHPLC a good choice for steroidal analysis. Steroids are a highly interesting area of study; they can be recognized as biomarkers for several diseases and are a relevant topic...

  7. Direct analysis of prostaglandin-E2 and -D2 produced in an inflammatory cell reaction and its application for activity screening and potency evaluation using turbulent flow chromatography liquid chromatography-high resolution mass spectrometry.

    Science.gov (United States)

    Shin, Jeong-Sook; Peng, Lei; Kang, Kyungsu; Choi, Yongsoo

    2016-09-09

    Direct analysis of prostaglandin-E2 (PGE2) and -D2 (PGD2) produced from a RAW264.7 cell-based reaction was performed by liquid chromatography high-resolution mass spectrometry (LC-HRMS), which was online coupled with turbulent flow chromatography (TFC). The capability of this method to accurately measure PG levels in cell reaction medium containing cytokines or proteins as a reaction byproduct was cross-validated by two conventional methods. Two methods, including an LC-HRMS method after liquid-liquid extraction (LLE) of the sample and a commercial PGE2 enzyme-linked immunosorbent assay (ELISA), showed PGE2 and/or PGD2 levels almost similar to those obtained by TFC LC-HRMS over the reaction time after LPS stimulation. After the cross-validation, significant analytical throughputs, allowing simultaneous screening and potency evaluation of 80 natural products including 60 phytochemicals and 20 natural product extracts for the inhibition of the PGD2 produced in the cell-based inflammatory reaction, were achieved using the TFC LC-HRMS method developed. Among the 60 phytochemicals screened, licochalcone A and formononetin inhibited PGD2 production the most with IC50 values of 126 and 151nM, respectively. For a reference activity, indomethacin and diclofenac were used, measuring IC50 values of 0.64 and 0.21nM, respectively. This method also found a butanol extract of Akebia quinata Decne (AQ) stem as a promising natural product for PGD2 inhibition. Direct and accurate analysis of PGs in the inflammatory cell reaction using the TFC LC-HRMS method developed enables the high-throughput screening and potency evaluation of as many as 320 samples in less than 48h without changing a TFC column. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Ultrasonic level indicator for liquids and its application

    International Nuclear Information System (INIS)

    Kanngiesser, P.

    1976-01-01

    Ultrasonic level indicator for liquids where a piezo-element is used to reverse the piezoelectric effect may be applied in a more versatile way if the indicator is provided with a reflector. It becomes less susceptible to faults and may be used for all liquids, including liquid metals. The piezo-element may then be used at the same time as receiver for ultrasonic waves emitted previously and, in that case, echoed back by the refelctor. (UWI) [de

  9. Theory of simple liquids with applications to soft matter

    CERN Document Server

    Hansen, Jean-Pierre

    2013-01-01

    Comprehensive coverage of topics in the theory of classical liquids Widely regarded as the standard text in its field, Theory of Simple Liquids gives an advanced but self-contained account of liquid state theory within the unifying framework provided by classical statistical mechanics. The structure of this revised and updated Fourth Edition is similar to that of the previous one but there are significant shifts in emphasis and much new material has been added. Major changes and Key Features in content include: Expansion of existing sections on simulation methods, liquid-vapour coexisten

  10. Direct liquid content measurement applicable for He II space cryostats

    International Nuclear Information System (INIS)

    Wanner, M.

    1988-01-01

    A direct calorimetric method for content measurement in the He II cryostat ISO was assessed. A well defined heat pulse into the He II bath causes a small temperature increase which can be measured and directly correlated to the liquid mass through the He II specific heat. To study this method under the potential zero gravity constraints of disconnected liquid volumes a setup was established for investigating heat transfer between separated liquid volumes. The results for different fluid configurations confirm that even for completely disconnected volumes the heat is almost immediately distributed throughout the whole liquid by evaporation and recondensation

  11. Liquid Li based neutron source for BNCT and science application.

    Science.gov (United States)

    Horiike, H; Murata, I; Iida, T; Yoshihashi, S; Hoashi, E; Kato, I; Hashimoto, N; Kuri, S; Oshiro, S

    2015-12-01

    Liquid lithium (Li) is a candidate material for a target of intense neutron source, heat transfer medium in space engines and charges stripper. For a medical application of BNCT, epithermal neutrons with least energetic neutrons and γ-ray are required so as to avoid unnecessary doses to a patient. This is enabled by lithium target irradiated by protons at 2.5 MeV range, with utilizing the threshold reaction of (7)Li(p,n)(7)Be at 1.88 MeV. In the system, protons at 2.5 MeV penetrate into Li layer by 0.25 mm with dissipating heat load near the surface. To handle it, thin film flow of high velocity is important for stable operation. For the proton accelerator, electrostatic type of the Schnkel or the tandem is planned to be employed. Neutrons generated at 0.6 MeV are gently moderated to epithermal energy while suppressing accompanying γ-ray minimum by the dedicated moderator assembly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Application of Ionic Liquids in High Performance Reversed-Phase Chromatography

    Directory of Open Access Journals (Sweden)

    Wentao Bi

    2009-06-01

    Full Text Available Ionic liquids, considered “green” chemicals, are widely used in many areas of analytical chemistry due to their unique properties. Recently, ionic liquids have been used as a kind of novel additive in separation and combined with silica to synthesize new stationary phase as separation media. This review will focus on the properties and mechanisms of ionic liquids and their potential applications as mobile phase modifier and surface-bonded stationary phase in reversed-phase high performance liquid chromatography (RP-HPLC. Ionic liquids demonstrate advantages and potential in chromatographic field.

  13. Evanescent Field Enhancement in Liquid Crystal Optical Fibers: A Field Characteristics Based Analysis

    Directory of Open Access Journals (Sweden)

    P. K. Choudhury

    2013-01-01

    Full Text Available The paper presents the analysis of the electromagnetic wave propagation through liquid crystal optical fibers (LCOFs of two different types—conventional guides loaded with liquid crystals (addressed as LCOFs and those with additional twists due to conducting helical windings (addressed as HCLCOFs. More precisely, the three-layer optical waveguide structures are considered along with its outermost region being loaded with radially anisotropic liquid crystal material and the inner regions being made of usual silica, as used in conventional optical fibers. In addition to that, LCOF with twists introduced in the form of conducting helical windings at the interface of the silica core and the liquid crystal clad is also taken into account. Emphasis has been put on the power confinements by the lower-order TE modes sustained in the different sections of the LCOF structure. The results demonstrate useful applications of these guides in integrated optics as the power sustained in the liquid crystal section by the excited TE modes remains very high. In the case of twisted clad liquid crystal guides, descriptions are limited to the nature of dispersion relation only under the TE mode excitation, and corresponding to the cases of helix orientations being parallel and perpendicular to the optical axis.

  14. Development and application of liquid chromatography coupled to isotope ratio mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lijun

    2014-02-19

    Stable isotope analysis has found widespread applications in various disciplines such as archaeology, geochemistry, biology, food authenticity, and forensic science. Coupling chromatography to isotope ratio mass spectrometry for compound-specific isotope analysis (CSIA) is a trend, as it provides several advantages over bulk isotope analysis, e.g., relatively simple sample preparation, the ability to measure individual compounds in a complex mixture in one run, and the reduced sample size required for precise isotope analysis. Gas chromatography coupled to isotope ratio mass spectrometry (GC/IRMS) has been well-established for compound-specific isotope analysis of volatile organic compounds within the last two decades. However, an interface combining liquid chromatography with isotope ratio mass spectrometry (LC/IRMS) was not commercially available until 2004. The current design of the interface requires using a carbon-free eluent in chromatographic separation. This requirement limits the application of the most frequently used reversed-phase liquid chromatography in CSIA, because the elution strength of water at room temperature is too low to serve as mobile phase in reversed-phase separations. In order to increase the elution strength of water, we propose using high temperature water for chromatographic elution. The polarity of water decreases with an increase of temperature, yielding increased elution strength in reversed-phase columns. Therefore, high temperature water can be used as eluent instead of organic solvent for combining reversed-phase liquid chromatography with isotope ratio mass spectrometry (RPLC/IRMS). Additionally, temperature gradients can replace organic solvent gradients to increase chromatographic resolution. This is very important for LC/IRMS analysis, as precise isotope analysis requires baseline separation of analytes. In this thesis, high-temperature reversed-phase liquid chromatography was coupled to, and for the first time carefully

  15. Development and application of liquid chromatography coupled to isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Zhang, Lijun

    2014-01-01

    Stable isotope analysis has found widespread applications in various disciplines such as archaeology, geochemistry, biology, food authenticity, and forensic science. Coupling chromatography to isotope ratio mass spectrometry for compound-specific isotope analysis (CSIA) is a trend, as it provides several advantages over bulk isotope analysis, e.g., relatively simple sample preparation, the ability to measure individual compounds in a complex mixture in one run, and the reduced sample size required for precise isotope analysis. Gas chromatography coupled to isotope ratio mass spectrometry (GC/IRMS) has been well-established for compound-specific isotope analysis of volatile organic compounds within the last two decades. However, an interface combining liquid chromatography with isotope ratio mass spectrometry (LC/IRMS) was not commercially available until 2004. The current design of the interface requires using a carbon-free eluent in chromatographic separation. This requirement limits the application of the most frequently used reversed-phase liquid chromatography in CSIA, because the elution strength of water at room temperature is too low to serve as mobile phase in reversed-phase separations. In order to increase the elution strength of water, we propose using high temperature water for chromatographic elution. The polarity of water decreases with an increase of temperature, yielding increased elution strength in reversed-phase columns. Therefore, high temperature water can be used as eluent instead of organic solvent for combining reversed-phase liquid chromatography with isotope ratio mass spectrometry (RPLC/IRMS). Additionally, temperature gradients can replace organic solvent gradients to increase chromatographic resolution. This is very important for LC/IRMS analysis, as precise isotope analysis requires baseline separation of analytes. In this thesis, high-temperature reversed-phase liquid chromatography was coupled to, and for the first time carefully

  16. Low level liquid scintillation analysis for environmental and biomedical quantitation

    International Nuclear Information System (INIS)

    Kessler, M.J.

    1991-01-01

    Over the past five years low level liquid scintillation counting has become increasing popular because of the large number of applications which can be performed using this technique. These applications include environmental monitoring ( 3 H, 90 Sr/ 90 Y, etc.), radiocarbon dating (for age determination to 50,000 years), food adulteration studies (alcohol and beverage industries), radon monitoring (air/water), nuclear power plant monitoring (low level 3 H) and metabolism studies (pharmaceutical research). These applications can be performed with either a dedicated low level LSC or using a standard liquid scintillation counter in conjunction with the new technique of time-resolved LSC (TR-LSC). This technique when used on a standard LSC reduces the instrument background without substantially effecting the background, thus increasing the performance (E 2 /B) of the LSC. Data will be presented for each of the applications mentioned above, comparing the standard LSC and the new TR-LSC techniques. The optimization of the samples for each of these applications will be explored in detail with experimental results. In conclusion, by using the TR-LSC technique in conjunction with a standard LSC the performance of the standard LSC can be increased substantially without dedicating the LSC to doing only low level samples

  17. Densities and isothermal compressibilities of ionic liquids - Modelling and application

    DEFF Research Database (Denmark)

    Abildskov, Jens; Ellegaard, Martin Dela; O’Connell, J.P.

    2010-01-01

    Two corresponding-states forms have been developed for direct correlation function integrals in liquids to represent pressure effects on the volume of ionic liquids over wide ranges of temperature and pressure. The correlations can be analytically integrated from a chosen reference density to pro...

  18. APPLICATION OF PULSE COMBUSTION TO INCINERATION OF LIQUID HAZARDOUS WASTE

    Science.gov (United States)

    The report gives results of a study to determine the effect of acoustic pulsations on the steady-state operation of a pulse combustor burning liquid hazardous waste. A horizontal tunnel furnace was retrofitted with a liquid injection pulse combustor that burned No. 2 fuel oil. Th...

  19. Progress of liquid metal technology and application in energy industries

    International Nuclear Information System (INIS)

    Miyazaki, Keiji; Kamei, Mitsuru; Nei, Hiromichi.

    1990-01-01

    Liquid metals are excellent energy transport media, and recently remarkable development has been observed in the technology of handling sodium and the machinery and equipment. In nuclear fusion, the development of the use of lithium as the coolant is advanced. For space technology, attention has been paid from the early stage to various liquid metals. For general industries, liquid metals have been used for high temperature heat pipes and the utilization of solar heat, and mercury vapor turbines were manufactured for trial. Besides, attention is paid anew to liquid metal MHD electric power generation. The development of the NaS batteries for electric cars and electric power storage and the interchange of liquid metal technology with the fields of iron and steel, metallurgy and so on advance. It is expected that liquid metal technology bears future advanced energy engineering while deepening the interchange with other advanced fields also in order to reactivate atomic energy technology. Liquid metals have the features of high electric and thermal conductivities, chemical activity and opaque property as metals, and fluidity and relatively high boiling point and melting point as liquids. FBRs, fusion reactors and the power sources for space use are described. (K.I.)

  20. Variable-focus liquid lens for portable applications

    NARCIS (Netherlands)

    Kuiper, S.; Hendriks, B.H.W.; Huijbregts, L.J.; Hirschberg, A.; Renders, C.A.; As, van M.A.J.; Mouroulis, P.Z.; Smith, W.J.; Johnson, R.B.

    2004-01-01

    The meniscus between two immiscible liquids can be used as an optical lens. A change in curvature of this meniscus by electrowetting leads to a change in focal distance. We demonstrate that two liquids in a tube form a self-centered tunable lens of high optical quality. Several properties were

  1. Polarization-independent nematic liquid crystal waveguides for optofluidic applications

    NARCIS (Netherlands)

    d'Alessandro, A.; Martini, L.; Gilardi, G.; Beccherelli, R.; Asquini, R.

    2015-01-01

    We present the fabrication and the characterization of waveguides made of a nematic liquid crystal infiltrated in poly(dimethylsiloxane) channels. They are made by means of cast and molding technique and patterned using soft photolithography. The orientation of the nematic liquid crystal molecules

  2. SWOT analysis for safer carriage of bulk liquid chemicals in tankers.

    Science.gov (United States)

    Arslan, Ozcan; Er, Ismail Deha

    2008-06-15

    The application of strengths, weaknesses, opportunities and threats (SWOT) analysis to formulation of strategy concerned with the safe carriage of bulk liquid chemicals in maritime tankers was examined in this study. A qualitative investigation using SWOT analysis has been implemented successfully for ships that are designed to carry liquid chemicals in bulk. The originality of this study lies in the use of SWOT analysis as a management tool to formulate strategic action plans for ship management companies, ship masters and officers for the carriage of dangerous goods in bulk. With this transportation-based SWOT analysis, efforts were made to explore the ways and means of converting possible threats into opportunities, and changing weaknesses into strengths; and strategic plans of action were developed for safer tanker operation.

  3. Applications of commercial liquid scintillation counters to radon-222 and radium-226 analyses

    International Nuclear Information System (INIS)

    Gesell, T.F.; Prichard, H.M.; Haygood, J.R.

    1978-01-01

    The ubiquitous commerical liquid scintillation counter offers automatic sample processing, automatic data recording and the prospect of multiple users. With these features in mind we have explored a number of applications of liquid scintillation counters to environmental and health physics problems. One application, the analysis of radon in water has been described elsewhere and is only briefly reviewed. A method for measuring radon in air, two methods for measuring radium in water, and a technique for leak testing radium needles have also been investigated. An ordinary glass scintillation vial is readily converted into a miniature scintillation flask by coating the inside surface with a thin layer in ZnS:Ag phosphor. The lower limit detection is high, about 2 pCi/1 for a 1 hour count, but these flasks have proved to be useful in situations where a larger number of samples must be taken in environments with relatively high levels of radon. One technique for the detection of radium in water uses liquid-liquid extraction to concentrate radon into an organic scintillation fluid, the other involves passing the water sample through an ion exchange resin and then sealing the resin and scintillation fluid in a vial. Both techniques offer the prospect of easy and inexpensive analyses with limits of detection at or below 0.5 pCi/1. Radium needles can be leak tested by placing them in vials containing toluene for a few minutes, adding fluor to the toluene and counting. Preliminary data regarding these several methods are given

  4. Performance analysis of a novel energy storage system based on liquid carbon dioxide

    International Nuclear Information System (INIS)

    Wang, Mingkun; Zhao, Pan; Wu, Yi; Dai, Yiping

    2015-01-01

    Due to the intermittence and fluctuation of wind resource, the increasing penetration level of wind power will bring huge challenges to maintain the stability of power system. Integrating compressed air energy storage (CAES) system with wind farms can weaken this negative effect. However CAES system needs large caverns or mines to store compressed air, which is restricted in application. In this paper, a novel energy storage system based on liquid carbon dioxide is presented. The mathematical models of compressed liquid-carbon dioxide energy storage system are developed. The parametric analysis is conducted to examine the effect of some key thermodynamic parameters on the system performance. Compared with AA-CAES, the liquid carbon dioxide energy storage system has advantages such as a high energy density, high EVR. Moreover, the round trip efficiency of this system can reach about 56.64%, which is acceptable in consideration of the storage volume. Therefore, this proposed system has a good potential for storing wind power in large scale and offers an attractive solution to the challenges of the increasing penetration level of wind power. - Highlights: • A novel energy storage system based on liquid carbon dioxide is presented. • The effects of some key parameters on the system performance are studied. • The operation optimization is conducted by genetic algorithm. • Comparative analysis of AA-CAES and liquid carbon dioxide system is studied.

  5. Ion Density Analysis of Single-Stranded DNA in Liquid Crystal

    Science.gov (United States)

    Iwabata, Kazuki; Seki, Yasutaka; Toizumi, Ryota; Shimada, Yuki; Furue, Hirokazu; Sakaguchi, Kengo

    2013-09-01

    With the widespread use of liquid crystals (LCs) in liquid crystal displays, we have looked into the application of liquid crystals in biotechnology. The purpose of the study described here is to investigate the physical properties of DNA using LCs. Synthetic oligonucleotide molecules were dispersed in MLC6884, the sample injected into antiparallel cells, and the amount of mobile ions was measured. The LC cell doped with oligonucleotide molecules showed a sequence-dependent, specific correlation between oligonucleotide concentration and the amount of mobile ions in the LC cells. In the framework of the Stokes model and polyacrylamide gel electrophoresis (PAGE) analysis, we speculate that this result arises from the difference in ion mobility, which is caused by the shape of the oligonucleotide molecule in the LC.

  6. Chiral analysis of amphetamines in hair by liquid chromatography-tandem mass spectrometry: compliance-monitoring of attention deficit hyperactivity disorder (ADHD) patients under Elvanse® therapy and identification after controlled low-dose application.

    Science.gov (United States)

    Binz, Tina M; Williner, Elena; Strajhar, Petra; Dolder, Patrick C; Liechti, Matthias E; Baumgartner, Markus R; Kraemer, Thomas; Steuer, Andrea E

    2018-02-01

    Amphetamine (AMP) is used as an illicit drug and also for the treatment of attention deficit hyperactivity disorder (ADHD). Respective drugs most often contain the enantiomer (S)-AMP as active compound or (S)-AMP is formed from the prodrug lisdexamfetamine (Elvanse®) whereas the illicit drug is usually traded as racemate ((R/S)-AMP). A differentiation between the use of the medically prescribed drug and the abuse of illicit street amphetamine is of great importance, for example in retrospective consumption monitoring by hair analysis. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the chiral separation and quantitation of (S)- and (R)-AMP in hair was developed. For this purpose, 20 mg hair was extracted and derivatized with N-(2,4-dinitro-5-fluorophenyl)-L(S)-valinamide L(S)-(DNPV) to yield amphetamine diastereomers. Baseline separation of the resulting diastereomers was achieved on a high-pressure liquid-chromatography system (HPLC) coupled to a Sciex QTRAP® 5500 linear ion trap quadrupole mass spectrometer. The method was successfully validated. Analysis of hair samples from nine Elvanse® patients revealed only (S)-AMP in eight cases; one subject showed both enantiomers indicating a (side-) consumption of street amphetamine. The analysis of the 16 amphetamine users' samples showed only racemic amphetamine. Furthermore, it could be shown in a controlled study that (S)-AMP can be detected after administration of even very low doses of lisdexamfetamine and dexamphetamine, which can be of interest in forensic toxicology and especially in drug-facilitated crime (DFC). The method now enables the retrospective compliance-monitoring of ADHD patients and the differentiation between medically prescribed intake of (S)-amphetamine and abuse of illicit street amphetamine. Copyright © 2017 John Wiley & Sons, Ltd.

  7. On the application of the NRTL method to ternary (liquid + liquid) equilibria

    International Nuclear Information System (INIS)

    Alvarez Julia, Jorge; Barrero, Carmen R.; Corso, Maria E.; Grande, Maria del Carmen; Marschoff, Carlos M.

    2005-01-01

    The use of the NRTL method for correlating experimental data in ternary (liquid + liquid) equilibria is considered. It is concluded that parameters obtained by direct correlation techniques have not a direct physical meaning. Also, it is shown that the resulting values for these parameters depend on the number of experimental points considered and on the particular calculation method employed. Thus, it is very risky to employ such parameters in predicting equilibria of other ternary mixtures

  8. Proceedings of the FNCA 2002 workshop on application of electron accelerator. Radiation system for liquid samples

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Kume, Tamikazu

    2003-10-01

    'Forum for Nuclear Cooperation in Asia (FNCA) Workshop on Application of Electron Accelerator' was sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and hosted by Japan Atomic Energy Research Institute (JAERI) and Japan Atomic Industry Forum (JAIF). It was held at the Takasaki Radiation Chemistry Research Establishment (TRCRE), JAERI, Takasaki, Japan from 16 to 20 December 2002. The attendants at the workshop were consisted of 13 experts on application of electron accelerator from each of the participating countries, i.e., China, Indonesia, Korea, Malaysia, the Philippines, Thailand and Vietnam, and 40 participants from Japan. A total of 18 papers including invited papers on liquid waste treatment by electron beam, reviews of the radiation systems, and designing and cost analysis of EB irradiation system were presented. The major areas of interest of FNCA countries for cooperation were identified for application of low energy electron accelerator as liquid, thin film and granules. The gas and wastewater treatments were added to the above major areas. Based on the proposal from the participating countries, discussions were carried out to re-formulate the work plan of the project for three years until FY 2004. All manuscripts submitted by every speaker were included in the proceedings. The 17 of the presented papers are indexed individually. (J.P.N.)

  9. APPLICATION OF A GENERALIZED MAXIMUM LIKELIHOOD METHOD IN THE REDUCTION OF MULTICOMPONENT LIQUID-LIQUID EQUILIBRIUM DATA

    Directory of Open Access Journals (Sweden)

    L. STRAGEVITCH

    1997-03-01

    Full Text Available The equations of the method based on the maximum likelihood principle have been rewritten in a suitable generalized form to allow the use of any number of implicit constraints in the determination of model parameters from experimental data and from the associated experimental uncertainties. In addition to the use of any number of constraints, this method also allows data, with different numbers of constraints, to be reduced simultaneously. Application of the method is illustrated in the reduction of liquid-liquid equilibrium data of binary, ternary and quaternary systems simultaneously

  10. Multimycotoxin LC-MS/MS Analysis in Tea Beverages after Dispersive Liquid-Liquid Microextraction (DLLME).

    Science.gov (United States)

    Pallarés, Noelia; Font, Guillermina; Mañes, Jordi; Ferrer, Emilia

    2017-11-29

    The aim of the present study was to develop a multimycotoxin liquid chromatography tandem mass spectrometry (LC-MS/MS) method with a dispersive liquid-liquid microextraction procedure (DLLME) for the analysis of AFs, 3aDON, 15aDON, NIV, HT-2, T-2, ZEA, OTA, ENNs, and BEA in tea beverages and to evaluate their mycotoxin contents. The proposed method was characterized in terms of linearity, limits of detection (LODs), limits of quantification (LOQs), recoveries, repeatability (intraday precision), reproducibility (interday precision), and matrix effects to check suitability. The results show LODs in the range of 0.05-10 μg/L, LOQs in the range of 0.2-33 μg/L, and recoveries in the range of 65-127% (RSD tea, red tea, green tea, and green mint tea. The results show that, of the analyzed mycotoxins, AFB2, AFG2, 15aDON, AFG1, and ENB were detected in the samples. AFB2 (14.4-32.2 μg/L) and 15aDON (60.5-61 μg/L) presented the highest levels. Green mint tea contained the highest concentration of mycotoxins. The risk assessment study shows that the population is not much exposed to mycotoxins through the consumption of tea beverages.

  11. Survival analysis models and applications

    CERN Document Server

    Liu, Xian

    2012-01-01

    Survival analysis concerns sequential occurrences of events governed by probabilistic laws.  Recent decades have witnessed many applications of survival analysis in various disciplines. This book introduces both classic survival models and theories along with newly developed techniques. Readers will learn how to perform analysis of survival data by following numerous empirical illustrations in SAS. Survival Analysis: Models and Applications: Presents basic techniques before leading onto some of the most advanced topics in survival analysis.Assumes only a minimal knowledge of SAS whilst enablin

  12. LOFT liquid level transducer application techniques and measurement uncertainty

    International Nuclear Information System (INIS)

    Batt, D.L.; Biladeau, G.L.; Goodrich, L.D.; Nightingale, C.M.

    1979-01-01

    A conductivity sensitive liquid level transducer (LLT) has been designed and used successfully for determining whether steam or water is present in the Loss-of-Fluid Tests (LOFT) performed by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory. The presence of steam or water is determined by establishing a discriminator level which is set manually. A computer program establishes the presence or absence of water for each data point taken. In addition to liquid level, the LLT is used for reactor vessel mass and volume calculations. The uncertainty in the liquid level is essentially the spacing of the LLT electrodes

  13. Application of neutron activation analysis

    International Nuclear Information System (INIS)

    Dybczynski, R.

    2001-01-01

    The physical basis and analytical possibilities of neutron activation analysis have been performed. The number of applications in material engineering, geology, cosmology, oncology, criminology, biology, agriculture, environment protection, archaeology, history of art and especially in chemical analysis have been presented. The place of the method among other methods of inorganic quantitative chemical analysis for trace elements determination has been discussed

  14. Stochastic Analysis with Financial Applications

    CERN Document Server

    Kohatsu-Higa, Arturo; Sheu, Shuenn-Jyi

    2011-01-01

    Stochastic analysis has a variety of applications to biological systems as well as physical and engineering problems, and its applications to finance and insurance have bloomed exponentially in recent times. The goal of this book is to present a broad overview of the range of applications of stochastic analysis and some of its recent theoretical developments. This includes numerical simulation, error analysis, parameter estimation, as well as control and robustness properties for stochastic equations. This book also covers the areas of backward stochastic differential equations via the (non-li

  15. Fermionic spin liquid analysis of the paramagnetic state in volborthite

    Science.gov (United States)

    Chern, Li Ern; Schaffer, Robert; Sorn, Sopheak; Kim, Yong Baek

    2017-10-01

    Recently, thermal Hall effect has been observed in the paramagnetic state of volborthite, which consists of distorted kagome layers with S =1 /2 local moments. Despite the appearance of magnetic order below 1 K , the response to external magnetic field and unusual properties of the paramagnetic state above 1 K suggest possible realization of exotic quantum phases. Motivated by these discoveries, we investigate possible spin liquid phases with fermionic spinon excitations in a nonsymmorphic version of the kagome lattice, which belongs to the two-dimensional crystallographic group p 2 g g . This nonsymmorphic structure is consistent with the spin model obtained in the density functional theory calculation. Using projective symmetry group analysis and fermionic parton mean field theory, we identify twelve distinct Z2 spin liquid states, four of which are found to have correspondence in the eight Schwinger boson spin liquid states we classified earlier. We focus on the four fermionic states with bosonic counterpart and find that the spectrum of their corresponding root U (1 ) states features spinon Fermi surface. The existence of spinon Fermi surface in candidate spin liquid states may offer a possible explanation of the finite thermal Hall conductivity observed in volborthite.

  16. Sensory texture analysis of thickened liquids during ingestion.

    Science.gov (United States)

    Chambers, Edgar; Jenkins, Alicia; Mertz Garcia, Jane

    2017-12-01

    Practitioners support the use of thickened liquids for many patients with disordered swallowing. Although physical measures have highlighted differences among products there are questions about the ability of the measures to fully explain the sensory texture effects during swallowing of thickened liquids. This study used a trained sensory panel to describe the textural aspects of liquids during ingestion and swallowing. The lexicon was able to characterize differences in beverages, thickeners, and thickness levels with the most important attribute being viscosity, which loaded heavily in the almost one-dimensional space that resulted from the sensory analysis of these beverages. Other effects, such as slipperiness provided some minimal additional information on the products. Trained sensory panelists were shown to be useful in the measurement of differences in thickened liquid products prescribed for patients with dysphagia. They were able to differentiate products based on perceived differences related to flow speed, viscosity, and other parameters suggesting their use in further studies of swallowing behavior and for development of products for disordered swallowing should be considered. Understanding how these variables might relate to clinical decision making about product selection or modification to best meet the nutritional needs of a person with disordered swallowing could be helpful. This is especially true given the difficulties in measuring texture instrumentally in these products. © 2017 Wiley Periodicals, Inc.

  17. Liquidity Analysis of Innovative and Traditional Businesses in Poland

    Directory of Open Access Journals (Sweden)

    Monika Bolek

    2012-12-01

    Full Text Available This paper analyzes the liquidity of Polish non-financial companies listed on the Warsaw Stock Exchange, dividing them into two groups: companies with the intangible to fixed assets ratio higher than the median, deemed to be innovative businesses, and companies with the intangible to fixed assets ratio lower than the median, deemed to be traditional businesses. Our results show that liquidity management is different in these two groups when analyzing the cash conversion cycle, the current and quick ratios, and liquid assets. The authors use data representing the Polish economy on the assumption that it can be considered a model one for other developing countries. Poland is at the beginning of this road, completing its systemic transformation after 20 years of efforts, as society has been building an innovation-based economy. Skills in the field of financial management will have to be developed as data analysis described in this paper reveals poor liquidity management. The authors will follow the development of the Polish economy (called a European tiger to show how it has changed over time.

  18. (Meth)acrylate liquid crystalline polymers for membrane applications

    Czech Academy of Sciences Publication Activity Database

    Rabie, F.; Sedláková, Zdeňka; Sheth, S.; Marand, E.; Martin, S. M.; Poláková, Lenka

    2015-01-01

    Roč. 132, č. 43 (2015), 42694_1-42694_8 ISSN 0021-8995 Institutional support: RVO:61389013 Keywords : copolymers * liquid crystals * membranes Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.866, year: 2015

  19. An application of extreme value theory in estimating liquidity risk

    Directory of Open Access Journals (Sweden)

    Sonia Benito Muela

    2017-09-01

    Full Text Available The last global financial crisis (2007–2008 has highlighted the weaknesses of value at risk (VaR as a measure of market risk, as this metric by itself does not take liquidity risk into account. To address this problem, the academic literature has proposed incorporating liquidity risk into estimations of market risk by adding the VaR of the spread to the risk price. The parametric model is the standard approach used to estimate liquidity risk. As this approach does not generate reliable VaR estimates, we propose estimating liquidity risk using more sophisticated models based on extreme value theory (EVT. We find that the approach based on conditional extreme value theory outperforms the standard approach in terms of accurate VaR estimates and the market risk capital requirements of the Basel Capital Accord.

  20. Application of microwave irradiation to organic liquid phase reactions

    International Nuclear Information System (INIS)

    Huang Kun; Liu Hua; Ji Xuelin

    1994-01-01

    Microwave irradiation has been used in organic liquid phase reactions to significantly reduce the reaction time and improve the yield. The proposed mechanism, the development of techniques and reactions, such as Diels-Alder, ene, rearrangement reactions etc., are discussed

  1. Application of liquid metals for the extraction of solid metals

    International Nuclear Information System (INIS)

    Borgstedt, H.U.

    1996-01-01

    Liquid metals dissolve several solid metals in considerable amounts at moderate temperatures. The dissolution processes may be based upon simple physical solubility, formation of intermetallic phases. Even chemical reactions are often observed in which non-metallic elements might be involved. Thus, the capacity to dissolve metals and chemical properties of the liquid metals play a role in these processes. Besides the solubility also chemical properties and thermochemical data are of importance. The dissolution of metals in liquid metals can be applied to separate the solutes from other metals or non-metallic phases. Relatively noble metals can be chemically reduced by the liquid phases. Such solution processes can be applied in the extractive metallurgy, for instance to extract metals from metallic waste. The recycling of metals is of high economical and ecological importance. Examples of possible processes are discussed. (author)

  2. Experimental design for reflection measurements of highly reactive liquid or solid substances with application to liquid sodium

    International Nuclear Information System (INIS)

    Chan, S.H.; Gossler, A.A.

    1980-01-01

    This technical report describes the experimental part of a program on thermal radiation properties of reactor materials. A versatile goniometer system with associated electronic components and mechanical instruments has been assembled. It is designed to measure spectral, specular reflectances of highly reactive liquid or solid substances over a spectral range of 0.3 μ to 9 μ and incidence angles of 12 0 to 30 0 off the normal direction. The capability of measuring reflectances of liquid substances clearly distinguishes this experimental design from conventional systems which are applicable only to solid substances. This design has been used to measure the spectral, specular reflectance of liquid sodium and preliminary results obtained are compared with those of solid sodium measured by other investigators

  3. IMS applications analysis

    Energy Technology Data Exchange (ETDEWEB)

    RODACY,PHILIP J.; REBER,STEPHEN D.; SIMONSON,ROBERT J.; HANCE,BRADLEY G.

    2000-03-01

    This report examines the market potential of a miniature, hand-held Ion Mobility Spectrometer. Military and civilian markets are discussed, as well as applications in a variety of diverse fields. The strengths and weaknesses of competing technologies are discussed. An extensive Ion Mobility Spectrometry (IMS) bibliography is included. The conclusions drawn from this study are: (1) There are a number of competing technologies that are capable of detecting explosives, drugs, biological, or chemical agents. The IMS system currently represents the best available compromise regarding sensitivity, specificity, and portability. (2) The military market is not as large as the commercial market, but the military services are more likely to invest R and D funds in the system. (3) Military applications should be addressed before commercial applications are addressed. (4) There is potentially a large commercial market for rugged, hand-held Ion Mobility Spectrometer systems. Commercial users typically do not invest R and D funds in this type of equipment rather, they wait for off-the-shelf availability.

  4. [Preparation and applications of a supported liquid-liquid extraction column with a composite diatomite material].

    Science.gov (United States)

    Bao, Jianmin; Ma, Zhishuang; Sun, Ying; Wang, Yongzun; Li, Youxin

    2012-08-01

    A rapid and special supported liquid-liquid extraction (SLE) column was developed with a composite diatomite material. The SLE column was evaluated by high performance liquid chromatography (HPLC) with acidic, neutral and alkaline compounds dissolved in water. Furthermore, some real complex samples were also analyzed by HPLC with the SLE method. The recoveries of benzoic acid (acidic), p-nitroaniline (alkaline) and 4-hydroxy-benzoic methyl ester (neutral) treated by the SLE column were 90.6%, 98.1% and 97.7%. However, the recoveries of the three compounds treated by traditional liquid-liquid extraction (LLE) method were 71.9%, 81.9% and 83.9%. The results showed that the SLE technique had higher recoveries than the traditional LLE method. The spiked recoveries of the complex samples, such as benzoic acid in Sprite and dexamethasone acetate, chlorphenamine maleate, indomethacin in bovine serum, were between 80% and 110% and the relative standard deviations (RSDs) were less than 15%. For biological specimen, the results could be accepted. Meantime, many disadvantages associated with traditional LLE method, such as emulsion formation, didn't occur using SLE column. The SLE column technique is a good sample preparation method with many advantages, such as rapid, simple, robust, easily automated, high recovery and high-throughput, which would be widely used in the future.

  5. Analysis of aromatic amines in water samples by liquid-liquid-liquid microextraction with hollow fibers and high-performance liquid chromatography.

    Science.gov (United States)

    Zhao, Limian; Zhu, Lingyan; Lee, Hian Kee

    2002-07-19

    Liquid-liquid-liquid microextraction (LLLME) with hollow fibers in high-performance liquid chromatography (HPLC) has been applied as a rapid and sensitive quantitative method for the detection of four aromatic amines (3-nitroaniline, 4-chloroaniline, 4-bromoaniline and 3,4-dichloroaniline) in environmental water samples. The preconcentration procedure was induced by the pH difference inside and outside the hollow fiber. The target compounds were extracted from 4-ml aqueous sample (donor solution, pH approximately 13) through a microfilm of organic solvent (di-n-hexyl ether), immobilized in the pores of a hollow fiber (1.5 cm length x 0.6 mm I.D.), and finally into 4 microl of acid acceptor solution inside the fiber. After a prescribed period of time, the acceptor solution inside the fiber was withdrawn into the microsyringe and directly injected into the HPLC system for analysis. Factors relevant to the extraction procedure were studied. Up to 500-fold enrichment of analytes could be obtained under the optimized conditions (donor solution: 0.1 M sodium hydroxide solution with 20% sodium chloride and 2% acetone; organic phase: di-n-hexyl ether; acceptor solution: 0.5 M hydrochloric acid and 500 mM 18-crown-6 ether; extraction time of 30 min; stirring at 1,000 rev./min). The procedure also served as a sample clean-up step. The influence of humic acid on the extraction efficiency was also investigated, and more than 85% relative recoveries of the analytes at two different concentrations (20 and 100 microg/l) were achieved at various concentration of humic acid. This technique is a low cost, simple and fast approach to the analysis of polar compounds in aqueous samples.

  6. Electrochemical applications of room temperature ionic liquids in nuclear fuel cycle

    International Nuclear Information System (INIS)

    Venkatesan, K.A.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2008-01-01

    Applications of room temperature ionic liquids (RTILs) have invaded all branches of science. They are also receiving an upsurge, in recent years, for possible applications in various stages of nuclear fuel cycle. Ionic liquids are compounds composed entirely of ions existing in liquid state and RTILs are ionic liquids molten at temperatures lower than 373 K. RTILs are generally made up of an organic cation and an inorganic or an organic anion. Room temperature ionic liquids have several fascinating properties, which are unique to a particular combination of cation and anion. The properties such as insignificant vapor pressure, amazing ability to dissolve organic and inorganic compounds, wide electrochemical window are the specific advantages when dealing with application of RTILs for reprocessing of spent nuclear fuel. The ionic liquids are regarded as designer or tailor-made solvents as their properties can be tuned for desired application by appropriate cation-anion combinations. An excellent review by Wilkes describes about the historical perspectives of room temperature ionic liquids, pioneers in that area, events and the products delivered till 2001. Furthermore, several comprehensive reviews have been made on room temperature ionic liquids by various authors

  7. Application of room temperature ionic liquids in advanced fuel cycles RIAR research concept program users

    International Nuclear Information System (INIS)

    Bychkov, Alexander V.; Kormilitsyn, Michael V.; Savochkin, Yuri P.; Osipenko, Alexander G.; Smolensky, Valeri V.; Shadrin, Alexander Yu.; Babain, Vladimir A.

    2005-01-01

    The paper reviews briefly the research program on application of Room Temperature Ionic Liquids (RTILs) in some processes of the nuclear fuel reprocessing, particularly in the uranium-aluminum fuel reprocessing and separation of TPEs and REEs from the PUREX process liquid waste, and approaches to implementation of this program. (author)

  8. 40 CFR 417.160 - Applicability; description of the manufacture of liquid detergents subcategory.

    Science.gov (United States)

    2010-07-01

    ... manufacture of liquid detergents subcategory. 417.160 Section 417.160 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Detergents Subcategory § 417.160 Applicability; description of the...

  9. Quantitative determination of multi markers in five varieties of Withania somnifera using ultra-high performance liquid chromatography with hybrid triple quadrupole linear ion trap mass spectrometer combined with multivariate analysis: Application to pharmaceutical dosage forms.

    Science.gov (United States)

    Chandra, Preeti; Kannujia, Rekha; Saxena, Ankita; Srivastava, Mukesh; Bahadur, Lal; Pal, Mahesh; Singh, Bhim Pratap; Kumar Ojha, Sanjeev; Kumar, Brijesh

    2016-09-10

    An ultra-high performance liquid chromatography electrospray ionization tandem mass spectrometry method has been developed and validated for simultaneous quantification of six major bioactive compounds in five varieties of Withania somnifera in various plant parts (leaf, stem and root). The analysis was accomplished on Waters ACQUITY UPLC BEH C18 column with linear gradient elution of water/formic acid (0.1%) and acetonitrile at a flow rate of 0.3mLmin(-1). The proposed method was validated with acceptable linearity (r(2), 0.9989-0.9998), precision (RSD, 0.16-2.01%), stability (RSD, 1.04-1.62%) and recovery (RSD ≤2.45%), under optimum conditions. The method was also successfully applied for the simultaneous determination of six marker compounds in twenty-six marketed formulations. Hierarchical cluster analysis and principal component analysis were applied to discriminate these twenty-six batches based on characteristics of the bioactive compounds. The results indicated that this method is advance, rapid, sensitive and suitable to reveal the quality of Withania somnifera and also capable of performing quality evaluation of polyherbal formulations having similar markers/raw herbs. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Analysis and Application of Reliability

    International Nuclear Information System (INIS)

    Jeong, Hae Seong; Park, Dong Ho; Kim, Jae Ju

    1999-05-01

    This book tells of analysis and application of reliability, which includes definition, importance and historical background of reliability, function of reliability and failure rate, life distribution and assumption of reliability, reliability of unrepaired system, reliability of repairable system, sampling test of reliability, failure analysis like failure analysis by FEMA and FTA, and cases, accelerated life testing such as basic conception, acceleration and acceleration factor, and analysis of accelerated life testing data, maintenance policy about alternation and inspection.

  11. Application of salting-out effect equation to modelling of liquid-liquid distribution systems

    International Nuclear Information System (INIS)

    Pitsch, H.K.

    1986-03-01

    Physicochemical interpretation of salting-out is reviewed and effects of the medium on liquid-liquid distribution equilibria are described by two non-specific parameters of salting-out agents: total concentration of species in the aqueous phase and water activity. Thus extraction of a given constituent in various media can be forecasted with few data. Different uranyl and technetium (VII) extraction systems are analyzed to show the potentiality of the method. Coextraction of nitric acid and uranyl nitrate by tributyl phosphate is used to show the possibility of modelling complex distribution systems in industrial conditions [fr

  12. Ionic liquids as heat transfer fluids: comparison with known systems, possible applications, advantages and disadvantages

    International Nuclear Information System (INIS)

    Chernikova, E A; Glukhov, L M; Krasovskiy, V G; Kustov, L M; Vorobyeva, M G; Koroteev, A A

    2015-01-01

    The practical aspects and prospects of application of ionic liquids as heat transfer fluids are discussed. The physicochemical properties of ionic liquids (heat capacity, thermal conductivity, thermal and radiation stability, viscosity, density, saturated vapour pressure and corrosion activity) are compared with the properties of some commercial heat transfer fluids. The issues of toxicity of ionic liquids are considered. Much attention is paid to known organosilicon heat transfer fluids, which are considered to have much in common with ionic liquids in the set of properties and are used in the review as reference materials. The bibliography includes 132 references

  13. 3-D seismic response analysis of liquid-tank-foundation system by using BEM-FEM-impedance function combination

    International Nuclear Information System (INIS)

    Cho, Eu-Kyeong; Park, Jung-Il; Lee, Jong-Rim

    1995-01-01

    A new analytic scheme to resolve the liquid-soil-structure interaction problem in cylindrical liquid storage tanks on the deformable soil is presented. Boundary elements and finite elements are combined to simulate the liquid-structure coupling effect while tuned foundation impedance functions (TFIF's) are representing the motion of the rigid foundation block on the flexible soil. Because the coupled dynamic system is expressed explicitly in terms of mass and stiffness, the developed scheme is applicable to any standard dynamic analysis methodologies. (author)

  14. Application of liquid chromatography-electrospray ionization mass spectrometry for study of steroid-converting enzymes.

    Science.gov (United States)

    Miksík, Ivan; Mikulíková, Katerina; Pácha, Jirí; Kucka, Marek; Deyl, Zdenek

    2004-02-05

    A high-performance liquid chromatography-atmospheric pressure ionization-electrospray ionization mass spectrometry (HPLC-API-ESI-MS) method was developed for the analysis of steroids in a study of steroid-converting enzymes. Separations ware done on a Zorbax Eclipse XDB-C18 column (eluted with a linear methanol-water-acetic acid gradient) and identification of the steroids involved was done by API-ESI-MS using positive ion mode and extracted ion analysis. The applicability of the present method for studying steroid metabolism was proven in assaying two steroid-converting enzymes (20beta-hydroxysteroid dehydrogenase and 11beta-hydroxysteroid dehydrogenase) in various biological samples (rat and chicken intestine, chicken oviduct).

  15. Programmable liquid crystal waveplate polarization gratings as elements for polarimetric and interference applications

    Science.gov (United States)

    Moreno, I.; Davis, J. A.

    2010-06-01

    We review the use of a parallel aligned nematic liquid crystal spatial light modulator as a very useful and flexible device for polarimetric and interferometric applications. The device acts as a programmable pixelated waveplate, and the encoding of a linear grating permits its use as a polarization beam splitter. When a grating with a reduced period is encoded, the diffracted beams are spatially separated and the device can be used for polarimetric analysis. On the contrary when a large period grating is displayed, the beams are not spatially separated, and they are useful to realize a common path interferometric system with polarization sensitivity. The flexibility offered by the programmability of the display allows non-conventional uses, including the analysis of light beams with structured spatial polarizations.

  16. Ultra-high performance liquid chromatography with fluorescence detection following salting-out assisted liquid-liquid extraction for the analysis of benzimidazole residues in farm fish samples.

    Science.gov (United States)

    Tejada-Casado, Carmen; Lara, Francisco J; García-Campaña, Ana M; Del Olmo-Iruela, Monsalud

    2018-03-30

    Ultra-high performance liquid chromatography (UHPLC) coupled with fluorescence detection (FL) has been proposed for the first time to determine thirteen benzimidazoles (BZs) in farmed fish samples. In order to optimize the chromatographic separation, parameters such as mobile phase composition and flow rate were carefully studied, establishing a gradient mode with a mobile phase consisted of water (solvent A) and acetonitrile (solvent B) at a flow rate of 0.4 mL/min. The separation was performed on a Zorbax Eclipse Plus RRHD C 18 column (50 × 2.1 mm, 1.8 μm), involving a total analysis time lower than 12 min. Salting-out assisted liquid-liquid extraction (SALLE) was applied as sample treatment to different types of farmed fish (trout, sea bream and sea bass). To obtain satisfactory extraction efficiencies for the studied analytes, several parameters affecting the SALLE procedure were optimized including the amount of sample, type and volume of the extraction solvent, and the nature and amount of the salt used. Characterization of the method in terms of performance characteristics was carried out, obtaining satisfactory results for the linearity (R 2  ≥ 0.997), repeatability (RSD ≤ 6.1%), reproducibility (RSD ≤ 10.8%) and recoveries (R ≥ 79%; RSD ≤ 7.8%). Detection limits between 0.04-29.9 μg kg -1 were obtained, demonstrating the applicability of this fast, simple and environmentally friendly method. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Liquid phase oxidation via heterogeneous catalysis organic synthesis and industrial applications

    CERN Document Server

    Clerici, Mario G

    2013-01-01

    Sets the stage for environmentally friendly industrial organic syntheses From basic principles to new and emerging industrial applications, this book offers comprehensive coverage of heterogeneous liquid-phase selective oxidation catalysis. It fully examines the synthesis, characterization, and application of catalytic materials for environmentally friendly organic syntheses. Readers will find coverage of all the important classes of catalysts, with an emphasis on their stability and reusability. Liquid Phase Oxidation via Heterogeneous Catalysis features contributions from an internation

  18. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine.

    Science.gov (United States)

    Egorova, Ksenia S; Gordeev, Evgeniy G; Ananikov, Valentine P

    2017-05-24

    Ionic liquids are remarkable chemical compounds, which find applications in many areas of modern science. Because of their highly tunable nature and exceptional properties, ionic liquids have become essential players in the fields of synthesis and catalysis, extraction, electrochemistry, analytics, biotechnology, etc. Apart from physical and chemical features of ionic liquids, their high biological activity has been attracting significant attention from biochemists, ecologists, and medical scientists. This Review is dedicated to biological activities of ionic liquids, with a special emphasis on their potential employment in pharmaceutics and medicine. The accumulated data on the biological activity of ionic liquids, including their antimicrobial and cytotoxic properties, are discussed in view of possible applications in drug synthesis and drug delivery systems. Dedicated attention is given to a novel active pharmaceutical ingredient-ionic liquid (API-IL) concept, which suggests using traditional drugs in the form of ionic liquid species. The main aim of this Review is to attract a broad audience of chemical, biological, and medical scientists to study advantages of ionic liquid pharmaceutics. Overall, the discussed data highlight the importance of the research direction defined as "Ioliomics", studies of ions in liquids in modern chemistry, biology, and medicine.

  19. Development of a robust ionic liquid-based dispersive liquid-liquid microextraction against high concentration of salt for preconcentration of trace metals in saline aqueous samples: Application to the determination of Pb and Cd

    International Nuclear Information System (INIS)

    Yousefi, Seyed Reza; Shemirani, Farzaneh

    2010-01-01

    A new ionic liquid-based dispersive liquid-liquid microextraction method was developed for preconcentration and determination of compounds in aqueous samples containing very high salt concentrations. This method can solve the problems associated with the limited application of the conventional IL-based DLLME in these samples. This is believed to arise from dissolving of the ionic liquids in aqueous samples with high salt content. In this method, the robustness of microextraction system against high salt concentration (up to 40%, w/v) is increased by introducing a common ion of the ionic liquid into the sample solution. The proposed method was applied satisfactorily to the preconcentration of lead and cadmium in saline samples. After preconcentration, the settled IL-phase was dissolved in 100 μL ethanol and aspirated into the flame atomic absorption spectrometer (FAAS) using a home-made microsample introduction system. Several variables affecting the microextraction efficiency were investigated and optimized. Under the optimized conditions and preconcentration of only 10 mL of sample, the enhancement factors of 273 and 311 and the detection limits of 0.6 μg L -1 and 0.03 μg L -1 were obtained for lead and cadmium, respectively. Validation of the method was performed by both an analysis of a certified reference material (CRM) and comparison of results with those obtained by ISO standard method.

  20. Bifocal liquid lens zoom objective for mobile phone applications

    Science.gov (United States)

    Wippermann, F. C.; Schreiber, P.; Bräuer, A.; Craen, P.

    2007-02-01

    Miniaturized camera systems are an integral part of today's mobile phones which recently possess auto focus functionality. Commercially available solutions without moving parts have been developed using the electrowetting technology. Here, the contact angle of a drop of a conductive or polar liquid placed on an insulating substrate can be influenced by an electric field. Besides the compensation of the axial image shift due to different object distances, mobile phones with zoom functionality are desired as a next evolutionary step. In classical mechanically compensated zoom lenses two independently driven actuators combined with precision guides are needed leading to a delicate, space consuming and expansive opto-mechanical setup. Liquid lens technology based on the electrowetting effect gives the opportunity to built adaptive lenses without moving parts thus simplifying the mechanical setup. However, with the recent commercially available liquid lens products a completely motionless and continuously adaptive zoom system with market relevant optical performance is not feasible. This is due to the limited change in optical power the liquid lenses can provide and the dispersion of the used materials. As an intermediate step towards a continuously adjustable and motionless zoom lens we propose a bifocal system sufficient for toggling between two effective focal lengths without any moving parts. The system has its mechanical counterpart in a bifocal zoom lens where only one lens group has to be moved. In a liquid lens bifocal zoom two groups of adaptable liquid lenses are required for adjusting the effective focal length and keeping the image location constant. In order to overcome the difficulties in achromatizing the lens we propose a sequential image acquisition algorithm. Here, the full color image is obtained from a sequence of monochrome images (red, green, blue) leading to a simplified optical setup.

  1. Numerical Simulation and Analysis on Liquid Nitrogen Spray Heat Exchanger

    OpenAIRE

    Wenjing Ding; Weiwei Shan; Zijuan; Wang; Chao He

    2017-01-01

    Liquid spray heat exchanger is the critical equipment of temperature regulating system by gaseous nitrogen which realizes the environment temperature in the range of -180 ℃~+180 ℃. Liquid nitrogen is atomized into smaller liquid drops through liquid nitrogen sprayer and then contacts with gaseous nitrogen to be cooled. By adjusting the pressure of liquid nitrogen and gaseous nitrogen, the flowrate of liquid nitrogen is changed to realize the required outlet temperature of heat exchanger. The ...

  2. Functional Analysis in Interdisciplinary Applications

    CERN Document Server

    Nursultanov, Erlan; Ruzhansky, Michael; Sadybekov, Makhmud

    2017-01-01

    This volume presents current research in functional analysis and its applications to a variety of problems in mathematics and mathematical physics. The book contains over forty carefully refereed contributions to the conference “Functional Analysis in Interdisciplinary Applications” (Astana, Kazakhstan, October 2017). Topics covered include the theory of functions and functional spaces; differential equations and boundary value problems; the relationship between differential equations, integral operators and spectral theory; and mathematical methods in physical sciences. Presenting a wide range of topics and results, this book will appeal to anyone working in the subject area, including researchers and students interested to learn more about different aspects and applications of functional analysis.

  3. Real analysis with economic applications

    CERN Document Server

    Ok, Efe A

    2011-01-01

    There are many mathematics textbooks on real analysis, but they focus on topics not readily helpful for studying economic theory or they are inaccessible to most graduate students of economics. Real Analysis with Economic Applications aims to fill this gap by providing an ideal textbook and reference on real analysis tailored specifically to the concerns of such students. The emphasis throughout is on topics directly relevant to economic theory. In addition to addressing the usual topics of real analysis, this book discusses the elements of order theory, convex analysis, optimization, correspondences, linear and nonlinear functional analysis, fixed-point theory, dynamic programming, and calculus of variations. Efe Ok complements the mathematical development with applications that provide concise introductions to various topics from economic theory, including individual decision theory and games, welfare economics, information theory, general equilibrium and finance, and intertemporal economics. Moreover, a...

  4. Ionic liquids as stationary phases for fatty acid analysis by gas chromatography.

    Science.gov (United States)

    Fanali, C; Micalizzi, G; Dugo, P; Mondello, L

    2017-12-04

    The present paper provides an overview of the application of ionic liquid (IL) columns for GC analysis of fatty acid methyl esters (FAMEs). Although their separation can be carried out utilizing GC columns containing polar stationary phases, some ILs have been employed as stationary phases, either commercial or laboratory made, in GC analysis. Monodimensional and bidimensional GC methods have been optimized in order to achieve the best separation especially considering the geometric and positional isomers of unsaturated fatty acids. Several methods for the analysis of trans-fatty acids have also been reported. The use of GC-GC, using either the same IL columns or different columns in the first and second dimensions, allowed the separation of a large number of FAMEs. The application of the IL columns for GC analysis of FAMEs in different types of real samples is described, e.g., oil of different nature (fish, flaxseed, and olive), margarine and butter, biodiesel, milk, bacteria etc.

  5. New liquid scintillators for fiber-optic applications

    International Nuclear Information System (INIS)

    Lutz, S.S.; Franks, L.A.; Flournoy, J.M.; Lyons, P.B.

    1981-01-01

    New long-wavelength-emitting, high-speed, liquid scintillators have been developed and tailored specifically for plasma diagnostic experiments employing fiber optics. These scintillators offer significant advantages over commercially available plastic scintillators in terms of sensitivity and bandwidth. FWHM response times as fast as 350 ps have been measured. Emission spectra, time response data, and relative sensitivity information are presented

  6. Liquid-Phase Electrical Discharges: Fundamental Mechanisms and Applications

    Science.gov (United States)

    Franclemont, Joshua

    The increased demand in alternative energy in recent decades has generated significant interest in cleaner fuel sources including hydrogen and syngas (hydrogen and carbon monoxide). Hydrogen and syngas are both primarily produced through the steam reforming of hydrocarbons, specifically natural gas. Although other processes are known, the cheapest source of these fuels is currently through the heating of natural gas in the presence of steam and a catalyst. However, due to the emissions associated with the steam reforming of natural gas and the lack of low cost, efficient, and reliable onboard hydrogen storage technologies for fuel cell powered vehicles, attention has been focused on plasma-assisted reforming of hydrocarbons. Plasma processes can be implemented onboard and are able to directly reform liquid hydrocarbons and alcohols without external heating or catalysts. In addition to hydrogen and syngas, the plasma-assisted reforming of hydrocarbons and alcohols offers other desirable products such as C2 gases (ethane, ethylene, and acetylene), methanol and ethanol. The primary goal of this study is to investigate the fundamental chemical reactions occurring during plasma-assisted reforming of liquid hydrocarbons and alcohols using streamer-like pulsed electrical discharges. Due to the relatively unexplored field of chemical reactions in liquid plasmas, the focus of this study is on elucidating chemical pathways responsible for the formation of hydrogen, syngas, and other products during the direct reforming of liquid methanol, glycerol, and pentane as model species.

  7. THz spectroscopy of liquidsapplications and future challenges

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Cooke, David; Møller, Uffe

    2009-01-01

    transmission spectroscopy of pressed pellets for the investigation of powder materials and wafer-like samples for spectroscopy of bulk and nanostructured semiconductor materials. Reflection-type spectroscopy is applied using plane interfaces for the study of liquids [1,2,3]. However, quantitative spectroscopy...

  8. Applicability of fan spray nozzles to stripping insoluble gases from viscous liquids

    International Nuclear Information System (INIS)

    Tseng, H.H.; Johnson, E.F.

    1983-08-01

    Fan spray nozzle stripping appears to be a practical technique for separating dilute volatile solutes from nonvolatile solvents. In particular this technique can be used to strip molecular tritium and tritium fluoride at extremely small concentration (in the parts per million range) from molten salts used as blanket materials in a fusion reactor. Under adjusted operating conditions of the fan spray as it leaves the nozzle, a high percentage of the theoretically maximum achievable stripping would take place from the expanding sheet of the fan spray as it leaves the nozzle and before it breaks up. Although the only available experimental data are for aqueous solutions, a new theoretical analysis of the fan spray sheet demonstrates the applicability of this technique to nonaqueous liquids. The equation derived from this analysis relates the theoretically achievable mass transfer efficiency to the properties of the liquid flowing through the fan spray nozzle and to the operating conditions of the nozzle. Any fluid with viscosity higher than or equal to that of water would be expected to follow this equation as long as a fan-shaped sheet is formed under the operating conditions of the nozzle

  9. Potential of capillary-column-switching liquid chromatography-tandem mass spectrometry for the quantitative trace analysis of small molecules. Application to the on-line screening of drugs in water.

    Science.gov (United States)

    Pitarch, Elena; Hernandez, Felix; ten Hove, Jan; Meiring, Hugo; Niesing, Willem; Dijkman, Ellen; Stolker, Linda; Hogendoorn, Elbert

    2004-03-26

    We have investigated the potential of capillary-column-switching liquid chromatography coupled to tandem mass spectrometry (cLC-MS-MS) for the quantitative on-line trace analysis of target compounds in aqueous solutions. The technical design of the nano-scale cLC system developed at our Institute for peptide and protein identification has been tested and evaluated for the direct trace analysis of drugs in water samples. Sulphametoxazole, bezafibrate, metoprolol, carbamazepine and bisoprolol occurring frequently in Dutch waters, were selected as test compounds. Adequate conditions for trapping, elution and MS-MS detection were investigated by employing laboratory made 200 microm i.d. capillary columns packed with 5 microm aqua C18 material. In the final cLC-MS-MS conditions, a 1 cm length trapping column and a 4 cm length analytical column were selected. Under these conditions, the target compounds could be directly determined in water down to a level of around 50 ng/l employing only 25 microl of water sample. Validation was done by recovery experiments in ground-, surface- and drinking-water matrices as well as by the analysis of water samples with incurred residues and previously analyzed with a conventional procedure involving off-line solid-phase extraction and narrow-bore LC with MS-MS detection. The new methodology provided recoveries (50-500 ng/l level) between 50 and 114% with RSDs (n = 3, each level) below 20% for most of the compounds. Despite the somewhat less analytical performance in comparison to the conventional procedure, the on-line approach of the new methodology is very suitable for screening of drugs in aqueous samples.

  10. Treatment systems for liquid wastes generated in chemical analysis laboratories

    International Nuclear Information System (INIS)

    Linda Berrio; Oscar Beltran; Edison Agudelo; Santiago Cardona

    2012-01-01

    Nowadays, handling of liquid wastes from chemical analysis laboratories is posing problems to different public and private organizations because of its requirements of an integrated management. This article reviews various treatment technologies and its removal efficiencies in order to establish criteria for selecting the system and the appropriate variables to achieve research objectives as well as environmental sustainability. Review begins with a description of the problem and continues with the study of treatments for laboratory wastes. These technologies are segregated into physicochemical and biological treatments that comprise a variety of processes, some of which are considered in this review.

  11. Analysis of enterprise financial liquidity on the example of the confectioner's trade

    Directory of Open Access Journals (Sweden)

    Zbigniew Gołaś

    2009-01-01

    Full Text Available The article shows results of the analysis of the financial liquidity of enterprise on the example of Jutrzenka Partnership S.A., recorded on Stock Exchange/Securities Market in Warsaw. The analysis of financial liquidity was carried out for years 2000-2006 with use of the static, dynamic indicators and non-classic financial liquidity measures. The investigated partnership was characterised by well rounded level of financial liquidity in given time. However, the majority of the considered indicators show decreasing level of the financial liquidity, which is caused by stronger character of the financial liquidity management allowing generation of higher flow of income.

  12. Analysis of monomeric and oligomeric organophosphorus flame retardants in fish muscle tissues using liquid chromatography–electrospray ionization tandem mass spectrometry: Application to Nile tilapia (Oreochromis niloticus from an e-waste processing area in northern Vietnam

    Directory of Open Access Journals (Sweden)

    Hidenori Matsukami

    2016-06-01

    Full Text Available Using electrospray ionization tandem mass spectrometry combined with liquid chromatography (LC, a novel analytical method was developed to quantify eight monomeric organophosphorus flame retardants (m-PFRs and three oligomeric organophosphorus flame retardants (o-PFRs in fish muscle samples. The optimization and validation experiments indicate that the developed method can determine accurately the concentrations of analytes in fish muscle samples. The recoveries of analytes in fish muscle samples were in the range of 74–105%. The coefficients of variation of the concentrations of analytes in fish muscle samples were 0.6–8.9%. The concentrations of analytes in procedural blanks were below the limit of quantification (LOQ values. Furthermore, the developed method was applied to the analysis of m-PFRs and o-PFRs in the muscle samples of tilapias collected from an electronic waste (e-waste processing area in northern Vietnam. The concentrations of m-PFRs such as tris(2-chloroethyl phosphate (TCEP, tris(2-chloroisopropyl phosphate (TCIPP, and triphenyl phosphate (TPHP were dominant among the investigated m-PFRs. The respective concentrations of TCEP, TCIPP, and TPHP were up to 160, 300, and 230 ng g−1 lipid weight, respectively, whereas those of o-PFRs were up to 10 ng g−1 lipid weight. The results of this study indicate lower accumulation potential of o-PFRs compared with m-PFRs for the first time.

  13. Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications

    Directory of Open Access Journals (Sweden)

    Xuelin Wang

    2016-11-01

    Full Text Available This article presents an overview on typical properties, technologies, and applications of liquid metal based flexible printed electronics. The core manufacturing material—room-temperature liquid metal, currently mainly represented by gallium and its alloys with the properties of excellent resistivity, enormous bendability, low adhesion, and large surface tension, was focused on in particular. In addition, a series of recently developed printing technologies spanning from personal electronic circuit printing (direct painting or writing, mechanical system printing, mask layer based printing, high-resolution nanoimprinting, etc. to 3D room temperature liquid metal printing is comprehensively reviewed. Applications of these planar or three-dimensional printing technologies and the related liquid metal alloy inks in making flexible electronics, such as electronical components, health care sensors, and other functional devices were discussed. The significantly different adhesions of liquid metal inks on various substrates under different oxidation degrees, weakness of circuits, difficulty of fabricating high-accuracy devices, and low rate of good product—all of which are challenges faced by current liquid metal flexible printed electronics—are discussed. Prospects for liquid metal flexible printed electronics to develop ending user electronics and more extensive applications in the future are given.

  14. Device for detecting the specific gravity of a liquid. [Patent application

    Science.gov (United States)

    Derouin, C.R.; Kerwin, W.J.; McCormick, J.B.; Bobbett, R.E.

    1980-11-18

    A device for detecting the specific gravity of a liquid and a device for detecting the state of charge of a liquid phase electrolyte battery are described. In one embodiment of the present invention, a change in the critical angle of total internal reflection is utilized to determine the index of refraction of the liquid to be measured. It is shown that the index of refraction of the liquid is a function of the specific gravity of the liquid. In applications for measuring the state of charge of a battery, the specific gravity is proportional to the state of charge of the battery. A change in intensity of rays intersecting an interface surface indicates the critical angle which is a direct indication of the specific gravity of the liquid and the state of charge of a battery. In another embodiment, a light beam is projected through a transparent medium and then through a portion of the liquid to be measured. A change in refraction due to a change in the index of refraction of the liquid produces a deflection of the beam which is measured by a detector. The magnitude of deflection of the beam is directly proportional to the specific gravity of the liquid and the state of charge of a battery.

  15. Micro-column plasma emission liquid chromatograph. [Patent application

    Science.gov (United States)

    Gay, D.D.

    1982-08-12

    In a direct current plasma emission spectrometer for use in combination with a microcolumn liquid chromatograph, an improved plasma source unit is claimed. The plasma source unit includes a quartz capillary tube having an inlet means, outlet off gas means and a pair of spaced electrodes defining a plasma region in the tube. The inlet means is connected to and adapted to receive eluant of the liquid chromatograph along with a stream of plasma-forming gas. There is an opening through the wall of the capillary tube penetrating into the plasma region. A soft glass capillary light pipe is disposed at the opening, is connected to the spectrometer, and is adapted to transmit light passing from the plasma region to the spectrometer. There is also a source of electromotive force connected to the electrodes sufficient to initiate and sustain a plasma in the plasma region of the tube.

  16. Novel liquid application systems for poorly soluble drugs

    OpenAIRE

    Luschmann, Christoph Roman

    2015-01-01

    This thesis was focused on the development of efficient novel liquid formulations for poorly water soluble drugs for the treatment of inflammatory ophthalmic diseases. With Restasis® there is currently only one drug product approved by the FDA, in the US only, for the treatment of dry eye syndrome. It still suffers from low bioavailability, bad biocompatibility and thus a low patient compliance, as well as cumbersome manufacturing. Hence, there is a tremendous lack in the options for a causal...

  17. Longitudinal Modes along Thin Piezoelectric Waveguides for Liquid Sensing Applications

    Directory of Open Access Journals (Sweden)

    Cinzia Caliendo

    2015-06-01

    Full Text Available The propagation of longitudinally polarized acoustic modes along thin piezoelectric plates (BN, ZnO, InN, AlN and GaN is theoretically studied, aiming at the design of high frequency electroacoustic devices suitable for work in liquid environments. The investigation of the acoustic field profile across the plate revealed the presence of longitudinally polarized Lamb modes, travelling at velocities close to that of the longitudinal bulk acoustic wave propagating in the same direction. Such waves are suitable for the implementation of high-frequency, low-loss electroacoustic devices operating in liquid environments. The time-averaged power flow density, the phase velocity and the electroacoustic coupling coefficient K2 dispersion curves were studied, for the first (S0 and four higher order (S1, S2, S3, S4 symmetrical modes for different electrical boundary conditions. Two electroacoustic coupling configurations were investigated, based on interdigitated transducers, with or without a metal floating electrode at the opposite plate surface. Enhanced performances, such as a K2 as high as 8.5% and a phase velocity as high as 16,700 m/s, were demostrated for the ZnO- and BN-based waveguides, as an example. The relative velocity changes, and the inertial and viscous sensitivities of the first symmetric and anti-symmetric mode, S0 and A0, propagating along thin plates bordered by a viscous liquid were derived using the perturbation approach. The present study highlights the feasibility of the piezoelectric waveguides to the development of high-frequency, integrated-circuits compatible electroacoustic devices suitable for working in liquid environment.

  18. Applications of Ionic Liquids for the Development of Optical Chemical Sensors and Biosensors.

    Science.gov (United States)

    Muginova, Svetlana V; Myasnikova, Dina A; Kazarian, Sergei G; Shekhovtsova, Tatiana N

    2017-01-01

    This paper reviews the primary literature reporting the use of ionic liquids (ILs) in optical sensing technologies. The optical chemical sensors that have been developed with the assistance of ILs are classified according to the type of resultant material. Key aspects of applying ILs in such sensors are revealed and discussed. They include using ILs as solvents for the synthesis of sensor matrix materials; additives in polymer matrices; matrix materials; modifiers of the surfaces; and multifunctional sensor components. The operational principles, design, texture, and analytical characteristics of the offered sensors for determining CO 2 , O 2 , metal ions, CN - , and various organic compounds are critically discussed. The key advantages and disadvantages of using ILs in optical sensing technologies are defined. Finally, the applicability of the described materials for chemical analysis is evaluated, and possibilities for their further modernization are outlined.

  19. [Application of liquid chromatography-high resolution mass spectrometry in toxicological screening].

    Science.gov (United States)

    Li, Xiao-Wen; Shen, Bao-Hua; Zhuo, Xian-Yi

    2011-10-01

    Due to the diversity of toxicologically relevant substances, the uncertainty of target compounds and the specificity of samples, toxicological screening techniques have always been valued by the forensic toxicologists. Depending on its powerful separation ability, superhigh resolution and accurate mass measurement, combined with the two levels spectrum database matching and abundance ratio of isotope ion, the liquid chromatography-high resolution mass spectrometry (LC-HRMS) analyzers have increasingly advantage in screening and identification of chemical compound. This review focuses on the applications of LC-HRMS in screening and identification of drug-of-abuse, prescription drugs, pesticide and stimulant. The prospect of LC-HRMS in forensic toxicology analysis is also included.

  20. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a

  1. In line digital holography measurement for liquid-liquid flow: application to the characterization of emulsions produced in pulsed column

    International Nuclear Information System (INIS)

    Lamadie, F.

    2013-01-01

    Several processes used in research and industry are based on liquid-liquid extraction, a method designed for selective separation of products in a mixture. In liquid-liquid extraction, two immiscible liquids are contacted: an aqueous phase and an organic phase, one of which generally contains an extractant molecule capable of transferring the desired elements to the other phase. The transfer occurs at the contact surface between the two phases. After transfer, both phases are separated by settling. In practice, these operations are performed in industrial apparatus. In order to optimize the operation of these devices, it's important to determine the fundamental characteristics of the emulsion. These include parameters related to the fluid flow velocity as well as parameters related to fluid mixing such as the interfacial area, hold-up, and size distribution of the droplets population. Numerous imaging techniques can be used to measure these parameters. One of them, digital holography, is well-known for allowing complete reconstruction of information about a 3D flow in a single shot. This PhD work deals with a direct application of digital in line holography to droplets rising in a continuous liquid phase. The droplet size imposes a regime of intermediate-field diffraction hardly explored to date. Acquired diffraction patterns show that the usual dark disk model is not valid and that good agreement is obtained with a mixed model coupling thin lens with opaque disk. Hologram focusing is nevertheless performed with a dedicated automated method. A literature review has been conducted to identify the sharpest auto-focus function for our application. In a second step, in order to measure high retention rates, an inverse problem approach is applied on all the outliers and missing droplets. This hologram restitution treatment has been applied to experimental results with a comparison to independent measurements. The main results obtained with calibrated droplets are

  2. Application of ion exchange in liquid radioactive waste management of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Puskar; Chopra, S K; Sharma, P D [Nuclear Power Corporation, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    The operation of nuclear power plants would necessarily result in generation of gaseous, liquid and solid radioactive wastes. The wastes are treated/conditioned to ensure that the permissible discharge limits laid down by Atomic Energy Regulatory Board of India are complied with. The wastes are segregated on activity levels, types of radioisotopes present and chemical nature of liquid streams. The basic philosophy of various treatment techniques is to concentrate and contain as much activity as possible. It is of utmost importance that the wastes are effectively treated by proven methods/processes. The radiochemical nature of waste generated is one of the parameters to select a treatment/conditioning method. The paper presents an outline of various processes adopted for treatment of liquid waste and ion exchange processes, their application in liquid waste management in detail. Projected quantities of liquid wastes for the current designs are included. (author). 2 tabs.

  3. Perfect additivity of microinterface arrays for liquid-liquid measurements: Application to cadmium ions quantification

    International Nuclear Information System (INIS)

    Mastouri, A.; Peulon, S.; Farcage, D.; Bellakhal, N.; Chaussé, A.

    2014-01-01

    Graphical abstract: - Highlights: • Confirmation of the perfect additivity of micropores independently of the geometry of arrays. • Study of assisted transfer of cadmium ions by 8-HQ at water/1,2-DCE. • Validation by cyclic and square wave voltammetry measurements for high and low concentrations. • Quantification of Cd(II) ions until 11 ppb in very simple conditions. • Highlighting of the very interesting use of arrays in a classical liquid-liquid microinterface device. - Abstract: For the first time, experimental measurements confirm the real additivity of the currents with micropore arrays, independently of the geometry (square, circular or in crosswise), from one single micropore until 256 micropores, in the case of the assisted transfer of cadmium ions by 8-hydroxyquinolinol (8-HQ). This result was obtained for measurements made by cyclic voltammetry at high concentration of cadmium ions (10 −4 M). At lower concentrations (until 10 −6 M), measurements performed by square wave voltammetry confirm also this additivity until 64 micropores. A calibration curve performed with a 64 micropores array allows us, in very simple conditions, the quantification of cadmium ions until 11 ppb (100 nM), which is lower than to the imposed limit for this specie in various fields, and in industrial effluents, in particular. The gain of sensitivity is close to 170 compared to measurements performed with one single micropore, illustrating the real interest of these arrays

  4. A review on the electrochemical applications of room temperature ionic liquids in nuclear fuel cycle

    International Nuclear Information System (INIS)

    Venkatesan, K.A.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2009-01-01

    A mini review on the electrochemical applications of room temperature ionic liquids (RTIL) in nuclear fuel cycle is presented. It is shown that how the fascinating properties of RTIL can be tuned to deliver desirable application in aqueous and non-aqueous reprocessing and in nuclear waste management. (author)

  5. Ionic liquids in separations: applications for pyrolysis oil and emulsion systems

    NARCIS (Netherlands)

    Li, X.

    2017-01-01

    Solvent extraction is one of the main separation techniques and has been developed for a wide range of industrial applications. Ionic liquids (ILs) are often considered as environmentally friendly solvents and have been studied widely in various laboratory applications. Aiming to design effective

  6. Recent advances in the applications of ionic liquids in protein stability and activity: a review.

    Science.gov (United States)

    Patel, Rajan; Kumari, Meena; Khan, Abbul Bashar

    2014-04-01

    Room temperatures ionic liquids are considered as miraculous solvents for biological system. Due to their inimitable properties and large variety of applications, they have been widely used in enzyme catalysis and protein stability and separation. The related information present in the current review is helpful to the researchers working in the field of biotechnology and biochemistry to design or choose an ionic liquid that can serve as a noble and selective solvent for any particular enzymatic reaction, protein preservation and other protein based applications. We have extensively analyzed the methods used for studying the protein-IL interaction which is useful in providing information about structural and conformational dynamics of protein. This can be helpful to develop and understanding about the effect of ionic liquids on stability and activity of proteins. In addition, the affect of physico-chemical properties of ionic liquids, viz. hydrogen bond capacity and hydrophobicity on protein stability are discussed.

  7. Application of Ultra-High-Performance Liquid Chromatography Coupled with LTQ-Orbitrap Mass Spectrometry for the Qualitative and Quantitative Analysis of Polygonum multiflorum Thumb. and Its Processed Products

    Directory of Open Access Journals (Sweden)

    Teng-Hua Wang

    2015-12-01

    Full Text Available In order to quickly and simultaneously obtain the chemical profiles and control the quality of the root of Polygonum multiflorum Thumb. and its processed form, a rapid qualitative and quantitative method, using ultra-high-performance liquid chromatography coupled with electrospray ionization-linear ion trap-Orbitrap hybrid mass spectrometry (UHPLC-LTQ-Orbitrap MSn has been developed. The analysis was performed within 10 min on an AcQuity UPLC™ BEH C18 column with a gradient elution of 0.1% formic acid-acetonitrile at flow rate of 400 μL/min. According to the fragmentation mechanism and high resolution MSn data, a diagnostic ion searching strategy was used for rapid and tentative identification of main phenolic components and 23 compounds were simultaneously identified or tentatively characterized. The difference in chemical profiles between P. multiflorum and its processed preparation were observed by comparing the ions abundances of main constituents in the MS spectra and significant changes of eight metabolite biomarkers were detected in the P. multiflorum samples and their preparations. In addition, four of the representative phenols, namely gallic acid, trans-2,3,5,4′-tetra-hydroxystilbene-2-O-β-d-glucopyranoside, emodin and emodin-8-O-β-d-glucopyranoside were quantified by the validated UHPLC-MS/MS method. These phenols are considered to be major bioactive constituents in P. multiflorum, and are generally regarded as the index for quality assessment of this herb. The method was successfully used to quantify 10 batches of P. multiflorum and 10 batches of processed P. multiflorum. The results demonstrated that the method is simple, rapid, and suitable for the discrimination and quality control of this traditional Chinese herb.

  8. Application of macrophytes as biosorbents for radioactive liquid waste treatment

    International Nuclear Information System (INIS)

    Vieira, Ludmila Cabreira

    2016-01-01

    Radioactive waste as any other type of waste should be treated and disposed adequately. It is necessary to consider its physical, chemical and radiological characteristics for choosing the appropriate action for the treatment and final disposal. Many treatment techniques currently used are economically costly, often invalidating its use and favoring the study of other treatment techniques. One of these techniques is biosorption, which demonstrates high potential when applied to radioactive waste. This technology uses materials of biological origin for removing metals. Among potential biosorbents found, macrophyte aquatics are useful because they may remove uranium present in the liquid radioactive waste at low cost. This study aims to evaluate the biosorption capacity of macrophyte aquatics Pistia stratiotes, Limnobium laevigatum, Lemna sp and Azolla sp in the treatment of liquid radioactive waste. This study was divided into two stages, the first one is characterization and preparation of biosorption and the other is tests, carried out with uranium solutions and real samples. The biomass was tested in its raw form and biosorption assays were performed in polypropylene vials containing 10 ml of solution of uranium or 10ml of radioactive waste and 0.20g of biomass. The behavior of biomass was evaluated by sorption kinetics and isotherm models. The highest sorption capacities found was 162.1 mg / g for the macrophyte Lemna sp and 161.8 mg / g for the Azolla sp. The equilibrium times obtained were 1 hour for Lemna sp, and 30 minutes for Azolla sp. With the real waste, the macrophyte Azolla sp presented a sorption capacity of 2.6 mg / g. These results suggest that Azolla sp has a larger capacity of biosorption, therefore it is more suitable for more detailed studies of treatment of liquid radioactive waste. (author)

  9. Higher-dimensional bosonization and its application to Fermi liquids

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Hendrik

    2012-06-28

    The bosonization scheme presented in this thesis allows to map models of interacting fermions onto equivalent models describing collective bosonic excitations. For simple systems that do not require plenty computational power and optimized algorithms, the positivity of the weight function in the bosonic frame has been confirmed - in particular also for those configurations in which the fermionic representation shows the minus-sign problem. The numerical tests are absolutely elementary and based on the simplest possible regularization scheme. The second part of this thesis presented an analytical study about the non-analytic corrections to thermodynamic quantities in a two-dimensional Fermi liquid. The perturbation theory developed for the exact formulation is by no means more convenient than the well-established fermionic diagram technique. The effective low-energy theory for studying the anomalous contributions to the Fermi liquid was derived focussing on the relevant soft modes of the interaction only. The final effective model took the form of a field theory for a bosonic superfield Ψ interacting in quadratic, cubic, and quartic terms in the action. This field theory turned out nontrivial and was shown to lead to logarithmic divergencies in both spin and charge channels. By means of a combined scheme of ladder diagram summations and renormalization group equations, the logarithmic terms were summed up in the first-loop order, thus yielding the renormalized effective coupling constants of the theory at low temperatures. The fully renormalized action then allowed to conveniently compute the low-temperature limit behavior of the non-analytic corrections to the Fermi-liquid thermodynamic response functions such as the low temperature non-analytic correction δc to the specific heat. The explicit formula for δc is the sum of two contributions - one due to the spin singlet and one due to the spin triplet superconducting excitations. Depending on the values of the

  10. Boiling of superheated liquids near the spinodal: II. Application

    Energy Technology Data Exchange (ETDEWEB)

    Aus der Wiesche, S.; Rembe, C.; Hofer, E.P. [Ulm Univ. (Germany). Dept. of Measurement, Control and Microtechnology

    1999-07-01

    The general theory of boiling near the spinodal as critical phenomenon will be used on the nucleation process of explosive evaporating liquids. In experiments with thermal micro heater the occurrence of the critical opalescence can be demonstrated which is characteristic for phase transitions of second order. In case of water the experiments permit the determination of the gradient energy coefficient {kappa} for nonuniform systems. The homogeneous nucleation rate for extremely superheated water at normal pressure is discussed. It is found that the explosive evaporation starts very closed to the spinodal and leads to spatial extended nuclei in contrast to the conventional nucleation mode. (orig.) With 5 figs., 16 refs.

  11. Boiling of superheated liquids near the spinodal: II Application

    Science.gov (United States)

    aus der Wiesche, S.; Rembe, C.; Hofer, E. P.

    The general theory of boiling near the spinodal as critical phenomenon will be used on the nucleation process of explosive evaporating liquids. In experiments with thermal micro heater the occurrence of the critical opalescence can be demonstrated which is characteristic for phase transitions of second order. In case of water the experiments permit the determination of the gradient energy coefficient κ for nonuniform systems. The homogeneous nucleation rate for extremely superheated water at normal pressure is discussed. It is found that the explosive evaporation starts very closed to the spinodal and leads to spatial extended nuclei in contrast to the conventional nucleation mode.

  12. Liquid steel analysis by laser-induced plasma spectroscopy

    International Nuclear Information System (INIS)

    Gruber, J.

    2002-11-01

    When a nanosecond pulsed laser is focused onto a sample and the intensity exceeds a certain threshold, material is vaporized and a plasma is formed above the sample surface. The laser-light becomes increasingly absorbed by inverse bremsstrahlung and by photo-excitation and photo-ionization of atoms and molecules. The positive feedback, by which the number of energetic electrons for ionization is increased in an avalanche-like manner under the influence of laser-light, is the so-called optical breakdown. Radiating excited atoms and ions within the expanding plasma plume produce a characteristic optical emission spectrum. A spectroscopic analysis of this optical emission of the laser-induced plasma permits a qualitative and quantitative chemical analysis of the investigated sample. This technique is therefore often called laser-induced plasma spectroscopy (LIPS) or laser-induced breakdown spectroscopy (LIBS). LIPS is a fast non-contact technique, by which solid, liquid or gaseous samples can be analyzed with respect to their chemical composition. Hence, it is an appropriate tool for the rapid in-situ analysis of not easily accessible surfaces for process control in industrial environments. In this work, LIPS was studied as a technique to determine the chemical composition of solid and liquid steel. A LIPS set-up was designed and built for the remote and continuous in-situ analysis of the steel melt. Calibration curves were prepared for the LIPS analysis of Cr, Mn, Ni and Cu in solid steel using reference samples with known composition. In laboratory experiments an induction furnace was used to melt steel samples in crucibles, which were placed at a working distance of 1.5 m away from the LIPS apparatus. The response of the LIPS system was monitored on-line during the addition of pure elements to the liquid steel bath within certain concentration ranges (Cr: 0.11 - 13.8 wt%, Cu: 0.044 - 0.54 wt%, Mn: 1.38 - 2.5 wt%, Ni: 0.049 - 5.92 wt%). The analysis of an element

  13. Catalytic applications of immobilized ionic liquids for synthesis of cyclic carbonates from carbon dioxide and epoxides

    International Nuclear Information System (INIS)

    Kim, Dong-Woo; Roshan, Roshith; Tharun, Jose; Cherian, Amal; Park, Dae-Won

    2013-01-01

    The catalytic applicability of ionic liquids immobilized on various support materials such as silica, polystyrene and biopolymers in the cycloaddition of carbon dioxide with epoxides is reviewed in this work. Comparisons of the catalytic efficiency of these various catalysts have been done from the aspect of turnover number and reusability. The studies revealed that ionic liquids or support materials possessing hydrogen bonding capable groups exhibited enhanced catalytic activity towards cyclic carbonate synthesis. Moreover, the increased quest towards environmentally benign materials has renewed the search for biocompatible materials as support for ionic liquids

  14. Applications of Ionic Liquids in Electrochemical Sensors and Biosensors

    Directory of Open Access Journals (Sweden)

    Virendra V. Singh

    2012-01-01

    Full Text Available Ionic liquids (ILs are salt that exist in the liquid phase at and around 298 K and are comprised of a bulky, asymmetric organic cation and the anion usually inorganic ion but some ILs also with organic anion. ILs have attracted much attention as a replacement for traditional organic solvents as they possess many attractive properties. Among these properties, intrinsic ion conductivity, low volatility, high chemical and thermal stability, low combustibility, and wide electrochemical windows are few. Due to negligible or nonzero volatility of these solvents, they are considered “greener” for the environment as they do not evaporate like volatile organic compounds (VOCs. ILs have been widely used in electrodeposition, electrosynthesis, electrocatalysis, electrochemical capacitor, lubricants, plasticizers, solvent, lithium batteries, solvents to manufacture nanomaterials, extraction, gas absorption agents, and so forth. Besides a brief discussion of the introduction, history, and properties of ILs the major purpose of this review paper is to provide an overview on the advantages of ILs for the synthesis of conducting polymer and nanoparticle when compared to conventional media and also to focus on the electrochemical sensors and biosensors based on IL/composite modified macrodisk electrodes. Subsequently, recent developments and major strategies for enhancing sensing performance are discussed.

  15. Chemical treatment of radioactive liquid wastes from medical applications

    International Nuclear Information System (INIS)

    Castillo A, J.

    1995-01-01

    This work is a study about the treatment of the most important radioactive liquid wastes from medical usages, generated in medical institutions with nuclear medicine services. The radionuclides take in account are 32 P, 35 S, 125 I. The treatments developed and improved were specific chemical precipitations for each one of the radionuclides. This work involve to precipitate the radionuclide from the liquid waste, making a chemical compound insoluble in the aqueous phase, for this process the radionuclide stay in the precipitate, lifting the aqueous phase with a very low activity than the begin. The 32 P precipitated in form of Ca 3 32 P O 4 and Ca 2 H 32 P O 4 with a value for Decontamination Factor (DF) at the end of the treatment of 32. The 35 S was precipitated in form of Ba 35 SO 4 with a DF of 26. The 125 I was precipitated in Cu 125 I to obtain a DF of 24. The results of the treatments are between the limits given for the International Atomic Energy Agency and the 10 Code of Federal Regulation 20, for the safety release at the environment. (Author)

  16. Nanofluid of zinc oxide nanoparticles in ionic liquid for single drop liquid microextraction of fungicides in environmental waters prior to high performance liquid chromatographic analysis.

    Science.gov (United States)

    Amde, Meseret; Tan, Zhi-Qiang; Liu, Rui; Liu, Jing-Fu

    2015-05-22

    Using a nanofluid obtained by dispersing ZnO nanoparticles (ZnO NPs) in 1-hexyl-3-methylimidazolium hexafluorophosphate, new single drop microextraction method was developed for simultaneous extraction of three fungicides (chlorothalonil, kresoxim-methyl and famoxadone) in water samples prior to their analysis by high performance liquid chromatography (HPLC-VWD). The parameters affecting the extraction efficiency such as amount of ZnO NPs in the nanofluid, solvent volume, extraction time, stirring rate, pH and ionic strength of the sample solution were optimized. Under the optimized conditions, the limits of detection were in the range of 0.13-0.19ng/mL, the precision of the method assessed with intra-day and inter-day relative standard deviations were water samples including lake water, river water, as well as effluent and influent of wastewater treatment plant, with recoveries in the range of 74.94-96.11% at 5ng/mL spiking level. Besides to being environmental friendly, the high enrichment factor and the data quality obtained with the proposed method demonstrated its potential for application in multi residue analysis of fungicides in actual water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Recent advances in liquid membranes and their applications in nuclear waste processing: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, J P; Iyer, R H [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Membrane extraction, combining the processes of extraction, scrubbing and stripping in a single step, demonstrates the inherent capability of solvent extraction under non-equilibrium conditions. Permeant transport across various liquid membrane (LM) configurations, viz. bulk liquid, emulsion liquid and supported liquid membranes has great potential for applications in the nuclear field particularly in the decontamination of low and medium level radioactive wastes. Potential practical applications of such membranes have also been envisaged in the recovery of metals from hydrometallurgical leach solutions and in plutonium and americium removal from nitric acid waste streams generated by plutonium recovery operations in the PUREX process. Studies carried out have established that minor actinides like uranium, plutonium and americium from process effluents can easily be transported across polymeric and liquid type membranes through the use of specific ionophores dissolved in an appropriate liquid membrane phase. The possibility of the membrane extraction of fission palladium from acidic wastes has also been demonstrated by the use of some soft bases. An overview of these results and also some of the recent radiochemical applications of energy - efficient LM processes including directions for future research are outlined in this paper. (author). 19 refs., 1 fig., 2 tabs.

  18. Liquid metal targets for high-power applications : pulsed heating and shock hydrodynamics

    International Nuclear Information System (INIS)

    Hassanein, A.

    2000-01-01

    Significant interest has recently focused on the use of liquid-metal targets flowing with high velocities for various high-power nuclear and high-energy physics applications such as fusion reactor first-walls, the Spallation Neutron Source, Isotope Separation On Line, and Muon Collider projects. This is because the heat generated in solid targets due to beam or plasma bombardment cannot be removed easily and the resulting thermal shock damage could be a serious lifetime problem for long-term operation. More recently, the use of free or open flying-liquid jets has been proposed for higher-power-density applications. The behavior of a free-moving liquid mercury or gallium jet subjected to proton beam deposition in a strong magnetic field has been modeled and analyzed for the Muon Collider project. Free-liquid-metal jets can offer significant advantages over conventional solid targets, particularly for the more demanding and challenging high-power applications. However, the use of free-moving liquid-metal targets raises a number of new and challenging problems such as instabilities of the jet in a strong magnetic field, induced eddy-current effects on jet shape, thermal-shock formation, and possible jet fragmentation. Problems associated with shock heating of liquid jets in a strong magnetic field are analyzed in this study

  19. A strategy for efficient discovery of new natural compounds by integrating orthogonal column chromatography and liquid chromatography/mass spectrometry analysis: Its application in Panax ginseng, Panax quinquefolium and Panax notoginseng to characterize 437 potential new ginsenosides.

    Science.gov (United States)

    Yang, Wen-zhi; Ye, Min; Qiao, Xue; Liu, Chun-fang; Miao, Wen-juan; Bo, Tao; Tao, Hai-yan; Guo, De-an

    2012-08-20

    To discover new natural compounds from herbal medicines tends to be more and more difficult. In this paper, a strategy integrating orthogonal column chromatography and liquid chromatography/mass spectrometry (LC/MS) analysis was proposed, and was applied for rapid discovery of new ginsenosides from Panax ginseng (PG), Panax quinquefolium (PQ), and Panax notoginseng (PN). The ginsenosides extracts were fractionated by MCI gel×silica gel orthogonal column chromatography. The fractions were then separated on a C(18) HPLC column, eluted with a three-component mobile phase (CH(3)CN/CH(3)OH/3mM CH(3)COONH(4)H(2)O), and detected by electrospray ionization tandem mass spectrometry. The structures of unknown ginsenosides were elucidated by analyzing negative and positive ion mass spectra, which provided complementary information on the sapogenins and oligosaccharide chains, respectively. A total of 623 comprising 437 potential new ginsenosides were characterized from the ethanol extracts of PG, PQ and PN. New acylations, diversified saccharide chains and C-17 side chains constituted novelty of the newly identified ginsenosides. An interpretation guideline was proposed for structural characterization of unknown ginsenosides by LC/MS. To confirm reliability of this strategy, two targeted unknown trace ginsenosides were obtained in pure form by LC/MS-guided isolation. Based on extensive NMR spectroscopic analysis and other techniques, they were identified as 3-O-[6-O-(E)-butenoyl-β-D-glucopyranosyl(1,2)-β-D-glucopyranosyl]-20(S)-protopanaxadiol-20-O-β-D-glucopyranosyl(1,6)-β-D-glucopyranoside (named ginsenoside IV) and 3-O-β-D-glucopyranosyl(1,2)-β-D-glucopyranosyl-3β,12β,20(S),24(R)-tetra hydroxy-dammar-25-ene-20-O-β-D-glucopyranosyl(1,6)-β-D-glucopyranoside (ginsenoside V), respectively. The fully established structures were consistent with the MS-oriented structural elucidation. This study expanded our understanding on ginsenosides of Panax species, and the

  20. Applications of plasma spectrometry and high performance liquid chromatography in environmental and food science

    International Nuclear Information System (INIS)

    Iordache, Andreea-Maria; Biraruti, Elisabeta-Irina; Ionete, Roxana-Elena

    2008-01-01

    Full text: Plasma spectrometry has many applications in food science in analysis of a wide range of samples in the food chain. Food science in the broadest sense can be extended to include soil chemistry, plant uptake and, at the other end of the food chain, studies into the metabolic fate of particular elements or elemental species when the foods are consumed by humans or animals. Inductively Coupled Plasma Mass Spectrometry allows multi-element measurements of most elements in the periodic table. A very sensitive analytical technique for trace analysis of samples can be performed by inductively plasma mass spectrometer with quadrupolar detector using ultrasonic nebulization. High Performance Liquid Chromatography (HPLC) is an analytical technique for the separation and determination of organic and inorganic solutes in any samples especially biological, pharmaceutical, food, environmental. The present paper emphasizes that the future tendencies HPLC-ICP-MS is often the preferred analytical technique for these applications due to the simplicity of the coupling between the HPLC and ICP-MS Varian 820 using ultrasonic nebulization, potential for on-line separations with high species specificity and the capability for optimum limits of detection without the necessity of using complex hydride generation mechanisms. (authors)

  1. Performance of Water-Based Liquid Scintillator: An Independent Analysis

    Directory of Open Access Journals (Sweden)

    D. Beznosko

    2014-01-01

    Full Text Available The water-based liquid scintillator (WbLS is a new material currently under development. It is based on the idea of dissolving the organic scintillator in water using special surfactants. This material strives to achieve the novel detection techniques by combining the Cerenkov rings and scintillation light, as well as the total cost reduction compared to pure liquid scintillator (LS. The independent light yield measurement analysis for the light yield measurements using three different proton beam energies (210 MeV, 475 MeV, and 2000 MeV for water, two different WbLS formulations (0.4% and 0.99%, and pure LS conducted at Brookhaven National Laboratory, USA, is presented. The results show that a goal of ~100 optical photons/MeV, indicated by the simulation to be an optimal light yield for observing both the Cerenkov ring and the scintillation light from the proton decay in a large water detector, has been achieved.

  2. Global analysis studies and applications

    CERN Document Server

    Gliklikh, Yuri; Vershik, A

    1992-01-01

    This volume (a sequel to LNM 1108, 1214, 1334 and 1453) continues the presentation to English speaking readers of the Voronezh University press series on Global Analysis and Its Applications. The papers are selected fromtwo Russian issues entitled "Algebraic questions of Analysis and Topology" and "Nonlinear Operators in Global Analysis". CONTENTS: YuE. Gliklikh: Stochastic analysis, groups of diffeomorphisms and Lagrangian description of viscous incompressible fluid.- A.Ya. Helemskii: From topological homology: algebras with different properties of homological triviality.- V.V. Lychagin, L.V. Zil'bergleit: Duality in stable Spencer cohomologies.- O.R. Musin: On some problems of computational geometry and topology.- V.E. Nazaikinskii, B.Yu. Sternin, V.E.Shatalov: Introduction to Maslov's operational method (non-commutative analysis and differential equations).- Yu.B. Rudyak: The problem of realization of homology classes from Poincare up to the present.- V.G. Zvyagin, N.M. Ratiner: Oriented degree of Fredholm...

  3. Liquid crystal parameter analysis for tunable photonic bandgap fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei

    2010-01-01

    We investigate the tunability of splay-aligned liquid crystals for the use in solid core photonic crystal fibers. Finite element simulations are used to obtain the alignment of the liquid crystals subject to an external electric field. By means of the liquid crystal director field the optical...

  4. Transport of Cryptosporidium parvum oocysts in soil columns following applications of raw and separated liquid slurry

    DEFF Research Database (Denmark)

    Petersen, Heidi Huus; Enemark, Heidi L.; Olsen, Annette

    2012-01-01

    to determine the effectiveness of different slurry separation technologies to remove oocysts and other pathogens, as well as whether application of separated liquid slurry to agricultural land may represent higher risks for ground water contamination as compared to application of raw slurry.......The potential for transport of viable Cryptosporidium parvum oocysts through soil to land drains and groundwater was studied using simulated rainfall and intact soil columns which were applied raw slurry or separated liquid slurry. Following irrigation and weekly samplings over a four week period......, C. parvum oocysts were detected from all soil columns regardless of slurry type and application method although recovery rates were low (liquid slurry leached 73% and 90% more oocysts compared with columns with injected and surface applied raw slurry, respectively...

  5. Transport of Cryptosporidium parvum oocysts in soil columns following applications of raw and separated liquid slurries.

    Science.gov (United States)

    Petersen, Heidi H; Enemark, Heidi L; Olsen, Annette; Amin, M G Mostofa; Dalsgaard, Anders

    2012-09-01

    The potential for the transport of viable Cryptosporidium parvum oocysts through soil to land drains and groundwater was studied using simulated rainfall and intact soil columns which were applied raw slurry or separated liquid slurry. Following irrigation and weekly samplings over a 4-week period, C. parvum oocysts were detected from all soil columns regardless of slurry type and application method, although recovery rates were low (vertical distribution of oocysts, with more oocysts recovered from soil columns added liquid slurry irrespective of the irrigation status. Further studies are needed to determine the effectiveness of different slurry separation technologies to remove oocysts and other pathogens, as well as whether the application of separated liquid slurry to agricultural land may represent higher risks for groundwater contamination compared to application of raw slurry.

  6. Development and application of high performance liquid shielding materials

    International Nuclear Information System (INIS)

    Miura, Toshimasa; Omata, Sadao; Otano, Naoteru; Hirao, Yoshihiro; Kanai, Yasuji

    1998-01-01

    Development of liquid shielding material with good performance for neutron and γ-ray was investigated. Lead, hydrogen and boron were selected as the elements of shielding materials which were made by the ultraviolet curing method. Good performance shielding materials with about 1 mm width to neutron and gamma ray were produced by mixing lead, boron compound and ultraviolet curing monomer with many hydrogens. The shielding performance was the same as a concrete with two times width. The activation was very small such as 1/10 6 -1/10 8 of the standard concrete. The weight and the external appearance did not charged from room temperature to 100degC. Polyfunctional monomer had good thermal resistance. This shielding material was applied to double bending cylindrical duct and annulus ring duct. The results proved the shielding materials developed had good performance. (S.Y.)

  7. Liquid crystal true 3D displays for augmented reality applications

    Science.gov (United States)

    Li, Yan; Liu, Shuxin; Zhou, Pengcheng; Chen, Quanming; Su, Yikai

    2018-02-01

    Augmented reality (AR) technology, which integrates virtual computer-generated information into the real world scene, is believed to be the next-generation human-machine interface. However, most AR products adopt stereoscopic 3D display technique, which causes the accommodation-vergence conflict. To solve this problem, we have proposed two approaches. The first is a multi-planar volumetric display using fast switching polymer-stabilized liquid crystal (PSLC) films. By rapidly switching the films between scattering and transparent states while synchronizing with a high-speed projector, the 2D slices of a 3D volume could be displayed in time sequence. We delved into the research on developing high-performance PSLC films in both normal mode and reverse mode; moreover, we also realized the demonstration of four-depth AR images with correct accommodation cues. For the second approach, we realized a holographic AR display using digital blazed gratings and a 4f system to eliminate zero-order and higher-order noise. With a 4k liquid crystal on silicon device, we achieved a field of view (FOV) of 32 deg. Moreover, we designed a compact waveguidebased holographic 3D display. In the design, there are two holographic optical elements (HOEs), each of which functions as a diffractive grating and a Fresnel lens. Because of the grating effect, holographic 3D image light is coupled into and decoupled out of the waveguide by modifying incident angles. Because of the lens effect, the collimated zero order light is focused at a point, and got filtered out. The optical power of the second HOE also helps enlarge FOV.

  8. Annular dispersed flow analysis model by Lagrangian method and liquid film cell method

    International Nuclear Information System (INIS)

    Matsuura, K.; Kuchinishi, M.; Kataoka, I.; Serizawa, A.

    2003-01-01

    A new annular dispersed flow analysis model was developed. In this model, both droplet behavior and liquid film behavior were simultaneously analyzed. Droplet behavior in turbulent flow was analyzed by the Lagrangian method with refined stochastic model. On the other hand, liquid film behavior was simulated by the boundary condition of moving rough wall and liquid film cell model, which was used to estimate liquid film flow rate. The height of moving rough wall was estimated by disturbance wave height correlation. In each liquid film cell, liquid film flow rate was calculated by considering droplet deposition and entrainment flow rate. Droplet deposition flow rate was calculated by Lagrangian method and entrainment flow rate was calculated by entrainment correlation. For the verification of moving rough wall model, turbulent flow analysis results under the annular flow condition were compared with the experimental data. Agreement between analysis results and experimental results were fairly good. Furthermore annular dispersed flow experiments were analyzed, in order to verify droplet behavior model and the liquid film cell model. The experimental results of radial distribution of droplet mass flux were compared with analysis results. The agreement was good under low liquid flow rate condition and poor under high liquid flow rate condition. But by modifying entrainment rate correlation, the agreement become good even under high liquid flow rate. This means that basic analysis method of droplet and liquid film behavior was right. In future work, verification calculation should be carried out under different experimental condition and entrainment ratio correlation also should be corrected

  9. Group type analysis of asphalt by column liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.; Yang, J.; Xue, Y.; Li, Y. [Chinese Academy of Science, Taiyuan (China)

    2008-07-01

    An improved analysis method for characterization of asphalt was established. The method is based on column chromatography technique. The asphalts were separated into four groups: saturates, aromatics, resins, and asphaltenes, quantitatively. About 0.1 g of sample was required in each analysis. About 20 mL of n-heptanes was used to separate out saturates first. Then about 35 mL of n-heptanes/dichloromethane (.5, v/v) mixture was used to separate out aromatics. About 30 mL of dichloromethane/tetrahydrofuran (1/3, v/v) mixture was used to separate out resin. The quality of the separation was confirmed by infrared spectra (IR) and {sup 1}H NMR analysis. The model compounds, tetracosan for saturates, dibenz(o)anthracen for aromatics, and acetanilide for resins were used for verification. The IR and {sup 1}H NMR analysis of the prepared fractions from the column liquid chromatography were in good agreement that of pure reagents.

  10. CFD analysis of liquid metal cooled rod assembly

    International Nuclear Information System (INIS)

    Son, H.M.; Suh, K.Y.

    2007-01-01

    The model subassembly of the BREST-type reactor core is a pin bundle of square arrangement. In this bundle there are two zones which differ with respect to pin diameters and level of heat production. The model pin bundle contains one spacer grid which is located near the midplane of the rod bundle geometry. The coolant consists of a eutectic alloy of 22% sodium (Na) plus 78% potassium (K). Experiments were performed in order to observe the thermal hydraulic behavior of the liquid metal coolant in the BREST core simulator. Results were obtained for the coolant exit temperatures, central measuring pin simulator external surface temperatures, and coolant velocities at the perimeter of the measuring pin simulator. A computational fluid dynamics (CFD) code is used to simulate the liquid metal flows in subchannels. Semi-fine mesh structures were used to model the flow with reasonable accuracy and speed once rigorous node resolution dependency had been tested. A subchannel analysis code was used to investigate the flows as well. Since the subchannel analysis code is based on a lumped parameter model, it only calculates the subchannel averaged velocity values. The CFD code results were averaged on the subchannel basis to be comparable with the results from the subchannel code. The mixing vane is not considered for the time being so as to simplify the problem and to reduce the computational cost. The two codes showed similar results. The difference between the experimental and computational results is considered to mainly originate from the existence of the mixing vane. (authors)

  11. CFD analysis of liquid metal cooled rod assembly

    Energy Technology Data Exchange (ETDEWEB)

    Son, H.M.; Suh, K.Y. [Seoul National Univ. (Korea, Republic of)

    2007-07-01

    The model subassembly of the BREST-type reactor core is a pin bundle of square arrangement. In this bundle there are two zones which differ with respect to pin diameters and level of heat production. The model pin bundle contains one spacer grid which is located near the midplane of the rod bundle geometry. The coolant consists of a eutectic alloy of 22% sodium (Na) plus 78% potassium (K). Experiments were performed in order to observe the thermal hydraulic behavior of the liquid metal coolant in the BREST core simulator. Results were obtained for the coolant exit temperatures, central measuring pin simulator external surface temperatures, and coolant velocities at the perimeter of the measuring pin simulator. A computational fluid dynamics (CFD) code is used to simulate the liquid metal flows in subchannels. Semi-fine mesh structures were used to model the flow with reasonable accuracy and speed once rigorous node resolution dependency had been tested. A subchannel analysis code was used to investigate the flows as well. Since the subchannel analysis code is based on a lumped parameter model, it only calculates the subchannel averaged velocity values. The CFD code results were averaged on the subchannel basis to be comparable with the results from the subchannel code. The mixing vane is not considered for the time being so as to simplify the problem and to reduce the computational cost. The two codes showed similar results. The difference between the experimental and computational results is considered to mainly originate from the existence of the mixing vane. (authors)

  12. Preparation of [13C3]-melamine and [13C3]-cyanuric acid and their application to the analysis of melamine and cyanuric acid in meat and pet food using liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Varelis, P; Jeskelis, R

    2008-10-01

    For the determination of melamine and cyanuric acid the labelled internal standards [(13)C(3)]-melamine and [(13)C(3)]-cyanuric acid were synthesized using the common substrate [(13)C(3)]-cyanuric chloride by reaction with ammonia and acidified water, respectively. Standards with excellent isotopic and chemical purities were obtained in acceptable yields. These compounds were used to develop an isotope dilution liquid chromatography/mass spectrometry (LC/MS) method to determine melamine and cyanuric acid in catfish, pork, chicken, and pet food. The method involved extraction into aqueous methanol, liquid-liquid extraction and ion exchange solid phase clean-up, with normal phase high-performance liquid chromatography (HPLC) in the so-called hydrophilic interaction mode. The method had a limit of detection (LOD) of 10 microg kg(-1) for both melamine and cyanuric acid in the four foods with a percentage coefficient of variation (CV) of less than 10%. The recovery of the method at this level was in the range of 87-110% and 96-110% for melamine and cyanuric acid, respectively.

  13. Possible applications of crown-ethers to metal extraction using liquid membrane technology - a literature survey

    International Nuclear Information System (INIS)

    Dozol, M.

    1990-01-01

    Ether-crowns, discovered in 1967 by J.C. PEDERSEN, exhibit attractive complexive and extractive properties, enhanced in various fields, such as analytical chemistry, chemical synthesis, field of biology, or extractive chemistry. The investigations carried out on these macrocyclic compounds are continually increasing, as show in international literature. Among the focus of interest, the applications to metal extraction are extensively studied with crown compounds present in liquid phase or impregnated on supports (membranes or resins). The goal of this paper is to describe the application of crown-ethers to metal extraction, using liquid membrane processes. 69 refs

  14. Review of liquid-tank interaction analysis technique

    International Nuclear Information System (INIS)

    1977-12-01

    Based on a literature survey, various models of increasing sophistication and complexity are presented which might be used to assess the liquid tank interaction effects due to sloshing of contained high level radioactive liquid waste in storage tanks at the NFS site. In addition, the effects of liquid damping, tank bending modes, and nonlinearity of the sloshing liquid are discussed. The results of the survey indicate that due to the compexities encountered in adequately modeling the system, due to the approximations which must be made as regards the tank boundary conditions, and due to the assumptions which must be made regarding the liquid waste dynamic character, the liquid tank interaction at NFS can not be adequately theoretically modeled. It is therefore recommended that experimental scale model tests be performed to assess the effects of liquid tank interaction during seismic excitation of the NFS waste tanks

  15. Planning applications in image analysis

    Science.gov (United States)

    Boddy, Mark; White, Jim; Goldman, Robert; Short, Nick, Jr.

    1994-01-01

    We describe two interim results from an ongoing effort to automate the acquisition, analysis, archiving, and distribution of satellite earth science data. Both results are applications of Artificial Intelligence planning research to the automatic generation of processing steps for image analysis tasks. First, we have constructed a linear conditional planner (CPed), used to generate conditional processing plans. Second, we have extended an existing hierarchical planning system to make use of durations, resources, and deadlines, thus supporting the automatic generation of processing steps in time and resource-constrained environments.

  16. Functional analysis theory and applications

    CERN Document Server

    Edwards, RE

    2011-01-01

    ""The book contains an enormous amount of information - mathematical, bibliographical and historical - interwoven with some outstanding heuristic discussions."" - Mathematical Reviews.In this massive graduate-level study, Emeritus Professor Edwards (Australian National University, Canberra) presents a balanced account of both the abstract theory and the applications of linear functional analysis. Written for readers with a basic knowledge of set theory, general topology, and vector spaces, the book includes an abundance of carefully chosen illustrative examples and excellent exercises at the

  17. Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase separations: Two-dimensional liquid chromatography-mass spectrometry vs. liquid chromatography-trapped-ion-mobility-mass spectrometry.

    Science.gov (United States)

    Baglai, Anna; Gargano, Andrea F G; Jordens, Jan; Mengerink, Ynze; Honing, Maarten; van der Wal, Sjoerd; Schoenmakers, Peter J

    2017-12-29

    Recent advancements in separation science have resulted in the commercialization of multidimensional separation systems that provide higher peak capacities and, hence, enable a more-detailed characterization of complex mixtures. In particular, two powerful analytical tools are increasingly used by analytical scientists, namely online comprehensive two-dimensional liquid chromatography (LC×LC, having a second-dimension separation in the liquid phase) and liquid chromatography-ion mobility-spectrometry (LC-IMS, second dimension separation in the gas phase). The goal of the current study was a general assessment of the liquid-chromatography-trapped-ion-mobility-mass spectrometry (LC-TIMS-MS) and comprehensive two-dimensional liquid chromatography-mass spectrometry (LC×LC-MS) platforms for untargeted lipid mapping in human plasma. For the first time trapped-ion-mobility spectrometry (TIMS) was employed for the separation of the major lipid classes and ion-mobility-derived collision-cross-section values were determined for a number of lipid standards. The general effects of a number of influencing parameters have been inspected and possible directions for improvements are discussed. We aimed to provide a general indication and practical guidelines for the analyst to choose an efficient multidimensional separation platform according to the particular requirements of the application. Analysis time, orthogonality, peak capacity, and an indicative measure for the resolving power are discussed as main characteristics for multidimensional separation systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Application of nuclear activation analysis

    International Nuclear Information System (INIS)

    Mamonov, E.I.; Khlystova, A.F.

    1979-01-01

    Consideration is given to the applications of nuclear-activation analysis (NAA) as discussed at the International Conference of 1977. One of the new results in the present-day NAA practices is the growing number of elements detected in samples without using a destructive radiochemical separation. An essential feature in this context is the development of the system automation of control and information NAA operations through the use computers. In biological medicine a multicomponent NAA is employed to determine the concentration of elements in various human organs and objects, in metabolic studies and for diagnostic purposes. In agriculture NAA finds applications in the evaluation of grain protein, analysis of element feed composition, soil and fertilizers. The application of this method to the environmental monitoring is considered with particular reference to the element analysis of water (especially drinking water), air, plant residues. Data are presented for the use of NAA in metallurgy, geology, archaeology and criminal law. Tables are provided to illustrate the uses of NAA in various fields

  19. Application of biosorbents in treatment of the radioactive liquid waste

    International Nuclear Information System (INIS)

    Ferreira, Rafael Vicente de Padua

    2014-01-01

    Radioactive liquid waste containing organic compounds need special attention, because the treatment processes available are expensive and difficult to manage. The biosorption is a potential treatment technique that has been studied in simulated wastes. The biosorption term is used to describe the removal of metals, non-metals and/or radionuclides by a material from a biological source, regardless of its metabolic activity. Among the potential biomasses, agricultural residues have very attractive features, as they allow for the removal of radionuclides present in the waste using a low cost biosorbent. The aim of this study was to evaluate the potential use of different biomass originating from agricultural products (coconut fiber, coffee husk and rice husk) in the treatment of real radioactive liquid organic waste. Experiments with these biomass were made including 1) Preparation, activation and characterization of biomasses; 2) Conducting biosorption assays; and 3) Evaluation of the product of immobilization of biomasses in cement. The biomasses were tested in raw and activated forms. The activation was carried out with diluted HNO 3 and NaOH solutions. Biosorption assays were performed in polyethylene bottles, in which were added 10 mL of radioactive waste or waste dilutions in deionized water with the same pH and 2% of the biomass (w/v). At the end of the experiment, the biomass was separated by filtration and the remaining concentration of radioisotopes in the filtrate was determined by ICP-OES and gamma spectrometry. The studied waste contains natural uranium, americium-241 and cesium-137. The adopted contact times were 30 min, 1, 2 and 4 hours and the concentrations tested ranged between 10% and 100%. The results were evaluated by maximum experimental sorption capacity and isotherm and kinetics ternary models. The highest sorption capacity was observed with raw coffee husk, with approximate values of 2 mg/g of U (total), 40 x 10 -6 mg/g of Am-241 and 50 x10 -9

  20. Application of ionic liquids as an electrolyte additive on the electrochemical behavior of lead acid battery

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Behzad; Mallakpour, Shadpour; Taki, Mahmood [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran)

    2009-02-15

    Ionic liquids (ILs) belong to new branch of salts with unique properties which their applications have been increasing in electrochemical systems especially lithium-ion batteries. In the present work, for the first time, the effects of four ionic liquids as an electrolyte additive in battery's electrolyte were studied on the hydrogen and oxygen evolution overpotential and anodic layer formation on lead-antimony-tin grid alloy of lead acid battery. Cyclic and linear sweep voltammetric methods were used for this study in aqueous sulfuric acid solution. The morphology of grid surface after cyclic redox reaction was studied using scanning electron microscopy. The results show that most of added ionic liquids increase hydrogen overpotential and whereas they have no significant effect on oxygen overpotential. Furthermore ionic liquids increase antimony dissolution that might be related to interaction between Sb{sup 3+} and ionic liquids. Crystalline structure of PbSO{sub 4} layer changed with presence of ionic liquids and larger PbSO{sub 4} crystals were formed with some of them. These additives decrease the porosity of PbSO{sub 4} perm selective membrane layer at the surface of electrode. Also cyclic voltammogram on carbon-PbO paste electrode shows that with the presence of ionic liquids, oxidation and reduction peak current intensively increased. (author)

  1. LIQUID CRYSTALLINE POLYMERS FROM VANILLIC ACID: SYNTHESIS, PROPERTIES, AND APPLICATIONS.

    NARCIS (Netherlands)

    Wilsens, Karel

    2017-01-01

    Thermotropic polyesters are an important class of materials for high erformance applications. Their low melt viscosities, low thermal expansion coefficients, high use temperatures, and ease in processing allow for the production of high strength and high modulus fibers, films, or compression-molded

  2. [Applications of atomic emission spectrum from liquid electrode discharge to metal ion detection].

    Science.gov (United States)

    Mao, Xiu-Ling; Wu, Jian; Ying, Yi-Bin

    2010-02-01

    The fast and precise detection of metal ion is an important research project concerning studies in diverse academic fields and different kinds of detecting technologies. In the present paper, the authors review the research on atomic emission spectrum based on liquid electrode discharge and its applications in the detection of metal ion. In the first part of this paper the principles and characteristics of the methods based on electrochemistry and spectroscopy were introduced. The methods of ion-selective electrode (ISE), anodic stripping voltammetry, atomic emission spectrum and atomic absorption spectrum were included in this part and discussed comparatively. Then the principles and characteristics of liquid electrode spectra for metal ion detection were introduced. The mechanism of the plasma production and the characteristics of the plasma spectrum as well as its advantages compared with other methods were discussed. Secondly, the authors divided the discharge system into two types and named them single liquid-electrode discharge and double-liquid electrode respectively, according to the number of the liquid electrode and the configuration of the discharge system, and the development as well as the present research status of each type was illustrated. Then the characteristics and configurations of the discharge systems including ECGD, SCGD, LS-APGD and capillary discharge were discussed in detail as examples of the two types. By taking advantage of the technology of atomic emission spectrum based on liquid electrode discharge, the detecting limit of heavy metals such as copper, mercury and argent as well as active metal ions including sodium, potass and magnesium can achieve microg x L(-1). Finally, the advantages and problems of the liquid-electrode discharge applied in detection of metal ion were discussed. And the applications of the atomic emission spectrum based on liquid electrode discharge were prospected.

  3. Analysis of monomeric and oligomeric organophosphorus flame retardants in fish muscle tissues using liquid chromatography–electrospray ionization tandem mass spectrometry: Application to Nile tilapia (Oreochromis niloticus) from an e-waste processing area in northern Vietnam

    OpenAIRE

    Matsukami, Hidenori; Suzuki, Go; Tue, Nguyen Minh; Tuyen, Le Huu; Viet, Pham Hung; Takahashi, Shin; Tanabe, Shinsuke; Takigami, Hidetaka

    2016-01-01

    Using electrospray ionization tandem mass spectrometry combined with liquid chromatography (LC), a novel analytical method was developed to quantify eight monomeric organophosphorus flame retardants (m-PFRs) and three oligomeric organophosphorus flame retardants (o-PFRs) in fish muscle samples. The optimization and validation experiments indicate that the developed method can determine accurately the concentrations of analytes in fish muscle samples. The recoveries of analytes in fish muscle ...

  4. Liquid liquid phase distribution equilibria of arsenic and its application to water samples

    International Nuclear Information System (INIS)

    Khan, A.; Ahmed, S.; Rusheed, A.

    1999-01-01

    The presence of arsenic, a toxic element, in the environment, especially in water is a serious pollution problem. The treatment of such contaminated water by ion-exchange or absorption on natural materials is time consuming and/or expensive. The removal of arsenic using 2-benzyl pyridine in benzene and its application to polluted water is described. The present technique reported herein concentrates the arsenic, up to 500 fold or even better. The time required for equilibration is only three minutes or less. No special reagent or solution is required for stripping of arsenic and simple water serves this purpose. The partition coefficients are maximal for concentrated acid solutions which are 10 M HCl +0.1 The presence of arsenic, a toxic element, in the environment, especially in water is a serious pollution problem. The treatment of such contaminated water by ion-exchange or absorption on natural materials is time consuming M KI. Arsenic can be selectively separated from associated copper, cobalt, nickel, iron, chromium and antimony. The method may find its application for the removal/ recovery of arsenic from contaminated soil, residues of incinerator and waste water from smelting of gold, silver and copper ores. (author)

  5. Hollow fiber-based liquid-liquid-liquid micro-extraction with osmosis: II. Application to quantification of endogenous gibberellins in rice plant.

    Science.gov (United States)

    Wu, Qian; Wu, Dapeng; Duan, Chunfeng; Shen, Zheng; Guan, Yafeng

    2012-11-23

    The phenomenon and benefits of osmosis in hollow fiber-based liquid-liquid-liquid micro-extraction (HF-LLLME) were theoretically discussed in part I of this study. In this work, HF-LLLME with osmosis was coupled with high performance liquid chromatography-triple quadrupole mass spectrometry (HPLC-triple quadrupole MS/MS) to analyze eight gibberellins (gibberellin A(1), gibberellin A(3), gibberellin A(4), gibberellin A(7), gibberellin A(8), gibberellin A(9), gibberellin A(19) and gibberellin A(20)) in rice plant samples. According to the theory of HF-LLLME with osmosis, single factor experiments, orthogonal design experiments and mass transfer simulation of extraction process were carried out to select the optimal conditions. Cyclohexanol - n-octanol (1:3, v/v) was selected as organic membrane. Donor phase of 12 mL was adjusted to pH 2 and 20% NaCl (w/v) was added. Acceptor phase with an initial volume of 20 μL was the solution of 0.12 mol L(-1) Na(2)CO(3)-NaHCO(3) buffer (pH 9). Temperature was chosen to be 30 °C and extraction time was selected to be 90 min. Under optimized conditions, this method provided good linearity (r, 0.99552-0.99991) and low limits of detection (0.0016-0.061 ng mL(-1)). Finally, this method was applied to the analysis of endogenous gibberellins from plant extract which was obtained with traditional solvent extraction of rice plant tissues, and the relative recoveries were from 62% to 166%. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Application of dispersive liquid-liquid microextraction for the preconcentration of eight parabens in real samples and their determination by high-performance liquid chromatography.

    Science.gov (United States)

    Shen, Xiong; Liang, Jian; Zheng, Luxia; Lv, Qianzhou; Wang, Hong

    2017-11-01

    A simple and sensitive method for the simultaneous determination of eight parabens in human plasma and urine samples was developed. The samples were preconcentrated using dispersive liquid-liquid microextraction based on the solidification of floating organic drops and determined by high-performance liquid chromatography with ultraviolet detection. The influence of variables affecting the extraction efficiency was investigated and optimized using Placket-Burman design and Box-Behnken design. The optimized values were: 58 μL of 1-decanol (as extraction solvent), 0.65 mL methanol (as disperser solvent), 1.5% w/v NaCl in 5.0 mL of sample solution, pH 10.6, and 4.0 min centrifugation at 4000 rpm. The extract was injected into the high-performance liquid chromatography system for analysis. Under the optimum conditions, the linear ranges for eight parabens in plasma and urine were 1.0-1000 ng/mL, with correlation coefficients above 0.994. The limit of detection was 0.2-0.4 and 0.1-0.4 ng/mL for plasma and urine samples, respectively. Relative recoveries were between 80.3 and 110.7%, while relative standard deviations were less than 5.4%. Finally, the method was applied to analyze the parabens in 98 patients of primary breast cancer. Results showed that parabens existed widely, at least one paraben detected in 96.9% (95/98) of plasma samples and 98.0% (96/98) of urine samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Two-dimensional thermal analysis of liquid hydrogen tank insulation

    Energy Technology Data Exchange (ETDEWEB)

    Babac, Gulru; Sisman, Altug [Istanbul Technical University, Energy Institute, Ayazaga campus, 34469 Maslak, Istanbul (Turkey); Cimen, Tolga [Jaguar and Landrover, Banbury Road, Gaydon, Warwick CV35 0RR (United Kingdom)

    2009-08-15

    Liquid hydrogen (LH{sub 2}) storage has the advantage of high volumetric energy density, while boil-off losses constitute a major disadvantage. To minimize the losses, complicated insulation techniques are necessary. In general, Multi Layer Insulation (MLI) and a Vapor-Cooled Shield (VCS) are used together in LH{sub 2} tanks. In the design of an LH{sub 2} tank with VCS, the main goal is to find the optimum location for the VCS in order to minimize heat leakage. In this study, a 2D thermal model is developed by considering the temperature dependencies of the thermal conductivity and heat capacity of hydrogen gas. The developed model is used to analyze the effects of model considerations on heat leakage predictions. Furthermore, heat leakage in insulation of LH{sub 2} tanks with single and double VCS is analyzed for an automobile application, and the optimum locations of the VCS for minimization of heat leakage are determined for both cases. (author)

  8. Review: Current applications and challenges for liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS).

    Science.gov (United States)

    Godin, Jean-Philippe; McCullagh, James S O

    2011-10-30

    High-precision isotope analysis is recognized as an essential research tool in many fields of study. Until recently, continuous flow isotope ratio mass spectrometry (CF-IRMS) was available via an elemental analyzer or a gas chromatography inlet system for compound-specific analysis of light stable isotopes. In 2004, however, an interface that coupled liquid chromatography with IRMS (LC/IRMS) became commercially available for the first time. This brought the capability for new areas of application, in particular enabling compound-specific δ(13)C analysis of non-volatile, aqueous soluble, compounds from complex mixtures. The interface design brought with it several analytical constraints, however, in particular a lack of compatibility with certain types of chromatography as well as limited flow rates and mobile phase compositions. Routine LC/IRMS methods have, however, been established for measuring the δ(13)C isotopic ratios of underivatized individual compounds for application in archeology, nutrition and physiology, geochemistry, hydrology, soil science and food authenticity. Seven years after its introduction, we review the technical advances and constraints, methodological developments and new applications of liquid chromatography coupled to isotope ratio mass spectrometry. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Seismic analysis of liquid metal reactor piping systems

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1987-01-01

    This paper describes the finite-element numerical algorithm and its applications to LMR piping under seismic excitations. A time-history analysis technique using the implicit temporal integration scheme is addressed. A 3-D pipe element is formulated which has eight degrees of freedom per node (three displacements, three rotations, one membrane displacement, and one bending rotation) to account for the hoop, flexural, rotational, and torsional modes of the piping system. Both geometric and material nonlinearities are considered. This algorithm is unconditionally stable and is particularly suited for the seismic analysis. (orig./GL)

  10. Graphene liquid cells for multi-technique analysis of biological cells in water environment

    Science.gov (United States)

    Matruglio, A.; Zucchiatti, P.; Birarda, G.; Marmiroli, B.; D'Amico, F.; Kocabas, C.; Kiskinova, M.; Vaccari, L.

    2018-05-01

    In-cell exploration of biomolecular constituents is the new frontier of cellular biology that will allow full access to structure-activity correlation of biomolecules, overcoming the limitations imposed by dissecting the cellular milieu. However, the presence of water, which is a very strong IR absorber and incompatible with the vacuum working conditions of all analytical methods using soft x-rays and electrons, poses severe constraint to perform important imaging and spectroscopic analyses under physiological conditions. Recent advances to separate the sample compartment in liquid cell are based on electron and photon transparent but molecular-impermeable graphene membranes. This strategy has opened a unique opportunity to explore technological materials under realistic operation conditions using various types of electron microscopy. However, the widespread of the graphene liquid cell applications is still impeded by the lack of well-established approaches for their massive production. We report on the first preliminary results for the fabrication of reproducible graphene liquid cells appropriate for the analysis of biological specimens in their natural hydrated environment with several crucial analytical techniques, namely FTIR microscopy, Raman spectroscopy, AFM, SEM and TEM.

  11. Liquid Impact Erosion Mechanism and Theoretical Stress Analysis in TiN-Coated Turbine Blade

    International Nuclear Information System (INIS)

    Lee, M. K.; Kim, W. W.; Kim, S. J.; Rhee, C. K.; Kim, Y. S.

    2000-01-01

    Coating of TiN film was done by reactive magnetron sputter ion plating to improve the liquid impact erosion resistance of steam turbine blade materials, 12Cr steel and Stellite 6B, for nuclear power plant application. TiN coated blade materials were initially deformed with depressions due to plastic deformation of the ductile substrate. The increase in the curvature in the depressions induced stress concentration with increasing number of impacts, followed by circumferential fracture of the TiN coating due to the circular propagation of cracks. The liquid impact erosion resistance of the blade materials was greatly improved by TiN coating done with the optimum ion plating condition. Damage decreased with increasing TiN coating thickness. According to the theoretical analysis of stresses generated by liquid impact, TiN coating alleviated the impact stress of 12Cr steel and Stellite 6B due to stress attenuation and stress wave reactions such as reflection and transmission at the coating substrate interface

  12. Application of ionic liquid for extraction and separation of bioactive compounds from plants.

    Science.gov (United States)

    Tang, Baokun; Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-09-01

    In recent years, ionic liquids (ILs), as green and designer solvents, have accelerated research in analytical chemistry. This review highlights some of the unique properties of ILs and provides an overview of the preparation and application of IL or IL-based materials to extract bioactive compounds in plants. IL or IL-based materials in conjunction with liquid-liquid extraction (LLE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), high performance liquid chromatography (HPLC) and solid-phase extraction (SPE) analytical technologies etc., have been applied successfully to the extraction or separation of bioactive compounds from plants. This paper reviews the available data and references to examine the advantages of IL and IL-based materials in these applications. In addition, the main target compounds reviewed in this paper are bioactive compounds with multiple therapeutic effects and pharmacological activities. Based on the importance of the targets, this paper reviews the applications of ILs, IL-based materials or co-working with analytical technologies. The exploitation of new applications of ILs on the extraction of bioactive compounds from plant samples is expected to increase. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Applicability of geometrical optics to in-plane liquid-crystal configurations

    NARCIS (Netherlands)

    Sluijter, M.; Xu, M.; Urbach, H.P.; De Boer, D.K.G.

    2010-01-01

    We study the applicability of geometrical optics to inhomogeneous dielectric nongyrotropic optically anisotropic media typically found in in-plane liquid-crystal configurations with refractive indices no=1.5 and ne=1.7. To this end, we compare the results of advanced ray- and wave-optics simulations

  14. On the applicability of nearly free electron model for resistivity calculations in liquid metals

    International Nuclear Information System (INIS)

    Gorecki, J.; Popielawski, J.

    1982-09-01

    The calculations of resistivity based on the nearly free electron model are presented for many noble and transition liquid metals. The triple ion correlation is included in resistivity formula according to SCQCA approximation. Two different methods for describing the conduction band are used. The problem of applicability of the nearly free electron model for different metals is discussed. (author)

  15. Column liquid chromatography- mass spectrometry: selected techniques in environmental applications for polar pesticides and related compounds.

    NARCIS (Netherlands)

    Slobodnik, J.; van Baar, B.L.M.; Brinkman, U.A.T.

    1995-01-01

    A review covering the field of environmental applications of liquid chromatography-mass spectrometry (LC-MS) is presented. Recent developments and advances are discussed with emphasis on the presently popular thermospray, particle beam and atmospheric pressure ionisation interfaces. Each interface

  16. Network analysis applications in hydrology

    Science.gov (United States)

    Price, Katie

    2017-04-01

    Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain under­explored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five long­term USGS streamflow and water quality gages, allowing network application of long­term flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long­ term and event­based hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwater­surface water interactions.

  17. Fluorinated tolane and dioxane liquid crystals for ferroelectric display applications

    International Nuclear Information System (INIS)

    Chu Chuan Dong

    1994-05-01

    The aim of this thesis was to make low viscosity, low birefringence, large negative dielectric anisotropy liquid-crystalline materials for use in ferroelectric liquid crystal mixtures to be used in high speed display devices. Saturated heterocyclic rings, dioxane and dioxaborinane, were chosen separately to be linked with a difluorophenyl system as the main component of the mesogenic core. In order to optimise the physical properties and to reduce the cost of the chiral materials, the strategy of making dopant-host mixtures was used. In addition to the difluorobiphenyl dioxaborinanes, three types of compounds were prepared possessing difluorophenyl rings and a dioxane ring: (i) difluorophenyl dioxanes and difluorobiphenyl dioxanes with the fluorinated ring in the middle of or at the end of the core; (ii) a number of compounds with linking groups, dimethylene (CH 2 CH 2 ), ester (COO), ethenylene (CH=CH) and ethynylene (C≡C) between adjacent benzene rings or between a dioxane ring and a benzene ring; (iii) difluorobiphenyl dioxanes possessing a chiral aliphatic chain were chosen as chiral dopants whose structure matched those of the host materials. Other compounds which have been synthesised are the difluorotolanes and difluorophenyl-ethynyl compounds, which were targeted because of the low viscosity of the tolane compounds and the negative dielectric anisotropy of the difluorophenyl ring. Fifty-six 2-(2,3-difluorobiphenyl-4'-yl)-1,3-dioxanes (n = 5-9, m = 5-10 or O5-O9; or n = 9, R' = OCH 2 CH(CH 3 )C 4 H 9 ) were prepared. Smectic C and nematic phases were observed for most of the alkyl-alkoxy homologues. Conversely, most of the dialkyl compounds exhibited smectic C, smectic A and nematic phases. The birefringences (Δn) and the dielectric anisotropies (Δε) of a number of materials have been determined. Three 2-(2,3-difluorobiphenyl-4-yl)-5-alkyl-1,3-dioxanes (n = 7, m = O7-O9) were prepared and only exhibit nematic phases. Two difluorophenyl dioxanes were

  18. The applications of electron accelerator. Liquid, thin film and gases

    International Nuclear Information System (INIS)

    Khairul Zaman Hj Mohd Dahlan; Kamaruddin Hashim; Zulkafli Ghazali

    2004-01-01

    As indicated by the results of this study, low energy electron beam accelerator of 200 keV to 500 keV can be utilized to irradiate thin hydrogel film in the range of 60 to 500 μm thickness. However, the industrial applications of this technology will depend on its applications. For thin films, cosmetic use such as faced mask is possible. The production of sago hydrogel for cosmetic used is in the process of commercialization in Malaysia. As for electron beam treatment of industrial wastewater in particular the effluent from the textile industry is still at infancy. Further work is necessary in order to have a base line data before the commercialization is taken place. Malaysia has also embarked on the electron beam treatment of flue gases and has completed the semi-pilot scale study by using 1.0 MeV electron accelerator voltage and 400 cum flue gas generated from diesel generator. This study was conducted together with the TNB Research, the research institute belongs to the electrical power company in Malaysia. For technology transfer and commercialization, MINT is planned to promote this technology to Independent Power Producers (IPP) in Malaysia. (author)

  19. Data acquisition and quantitative analysis of stable hydrogen isotope in liquid and gas in the liquid phase catalytic exchange process

    International Nuclear Information System (INIS)

    Choi, H. J.; Lee, H. S.; Kim, K. R.; Cheong, H. S.; Ahn, D. H.; Lee, S. H.; Paek, S. W.; Kang, H. S.; Kim, J. G.

    2001-01-01

    A pilot plant for the Liquid Phase Catalytic Exchange process was built and has been operating to test the hydrophobic catalyst developed to remove the tritium generated at the CANDU nuclear power plants. The methods of quantitative analysis of hydrogen stable isotope were compared. Infrared spectroscopy was used for the liquid samples, and gas chromatography with hydrogen carrier gas showed the best result for gas samples. Also, a data acquisition system was developed to record the operation parameters. This record was very useful to investigate the causes of the system trip

  20. Ultraviolet curing of acrylated liquid natural rubber for surface coating application

    Directory of Open Access Journals (Sweden)

    Kannikar Kwanming

    2009-01-01

    Full Text Available Ultraviolet curable acrylated liquid natural rubber was prepared by grafting of photosensitive molecule onto liquid natural rubber for surface coating application. The liquid natural rubber (LNR was firstly obtained by degradation of natural rubber latex with hydrogen peroxide and cobalt acetylacetonate at 65oC for 72 hrs. The preparation of acrylated natural rubber was carried out by the reaction of acrylic acid and epoxidized liquid natural rubber (ELNR prior obtained from LNR with formic acid and hydrogen peroxide in the ratio of 2:1 by weight in toluene at 80oC for 6, 9, 12, 18, and 24 hrs. It was found that the percentage of acrylate grafted onto liquid natural rubber depended on the reaction time. Surface coating was performed by using acrylated liquid natural rubber and 1,6-hexanediol diacrylate (HDDA or tripropylene glycol diacrylate (TPGDA as a crosslinker and Irgarcure 184 or Irgarcure 651 as a photoinitiator under UV exposure for 30, 60, and 90 seconds. The hardness test of cured products was investigated using the Pencil hardness test at pencil level of 2B to 6H. It was found that the highest hardness of surface coating was at pencil level of 4H for the product using TPGDA and Irgacure 651 in the ratio of 80:10 parts per hundred of rubber (phr. The cured products were able to resist to 2% H2SO4 and distilled water for more than 24 hrs.

  1. Functional Smart Dispersed Liquid Crystals for Nano- and Biophotonic Applications: Nanoparticles-Assisted Optical Bioimaging

    Directory of Open Access Journals (Sweden)

    N. V. Kamanina

    2016-01-01

    Full Text Available Functional nematic liquid crystal structures doped with nano- and bioobjects have been investigated. The self-assembling features and the photorefractive parameters of the structured liquid crystals have been comparatively studied via microscopy and laser techniques. Fullerene, quantum dots, carbon nanotubes, DNA, and erythrocytes have been considered as the effective nano- and biosensitizers of the LC mesophase. The holographic recording technique based on four-wave mixing of the laser beams has been used to investigate the laser-induced change of the refractive index in the nano- and bioobjects-doped liquid crystal cells. The special accent has been given to novel nanostructured relief with vertically aligned carbon nanotubes at the interface: solid substrate-liquid crystal mesophase. It has been shown that this nanostructured relief influences the orienting ability of the liquid crystal molecules with good advantage. As a result, it provokes the orientation of the DNA. The modified functional liquid crystal materials have been proposed as the perspective systems for both the photonics and biology as well as the medical applications.

  2. Landau-Placzek ratio for heat density dynamics and its application to heat capacity of liquids.

    Science.gov (United States)

    Bryk, Taras; Ruocco, Giancarlo; Scopigno, Tullio

    2013-01-21

    Exact relation for contributions to heat capacity of liquids is obtained from hydrodynamic theory. It is shown from analysis of the long-wavelength limit of heat density autocorrelation functions that the heat capacity of simple liquids is represented as a sum of two contributions due to "phonon-like" collective excitations and heat relaxation. The ratio of both contributions being the analogy of Landau-Placzek ratio for heat processes depends on the specific heats ratio. The theory of heat density autocorrelation functions in liquids is verified by computer simulations. Molecular dynamics simulations for six liquids having the ratio of specific heats γ in the range 1.1-2.3, were used for evaluation of the heat density autocorrelation functions and predicted Landau-Placzek ratio for heat processes. The dependence of contributions from collective excitations and heat relaxation process to specific heat on γ is shown to be in excellent agreement with the theory.

  3. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.

    Science.gov (United States)

    Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano

    2016-01-11

    The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Application of boiling liquid metals in industrial processes

    International Nuclear Information System (INIS)

    Kottowski, H.M.; Savatteri, C.; Mol, M.; Fiebelmann, P.

    1976-01-01

    The successful development of coated particle fuel and of special graphites for the structural components of VHTR-cores has opened up the possibility of an economical nuclear heat source to provide temperatures in excess of 1000 0 C as ''process heat application''. In order to exploit this temperature potential the heat has to be transferred to the appropriate chemical processes and there is little doubt that the only practical way of achieving this on a large scale is by the use of intermediate heat exchanger systems. The aim of the paper is to exhibit a technological possibility, both to substitute the secondary circuit of the sodium cooled reactors and to transfer the heat from the VHTR to the chemical process plant which satisfies the safety requirements and demonstrates technological advantages

  5. Investigation on the applicability of turbulent-Prandtl-number models for liquid lead-bismuth eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); North China University of Water Resources and Electric Power, Zhengzhou, Henan 450011 (China); Huai, Xiulan, E-mail: hxl@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Cai, Jun, E-mail: caijun@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Xunfeng, E-mail: lixunfeng@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Meng, Ruixue, E-mail: mengruixue@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-04-15

    Highlights: ► We examine the applicability of various Pr{sub t} models into the simulation of LBE flow. ► Reynolds analogy suitable for conventional fluids cannot accurately simulate the heat transfer characteristics of LBE flow. ► The different Pr{sub t} model should be selected for the different thermal boundary condition of LBE flow. -- Abstract: With the proposal of Accelerator Driven Sub-critical System (ADS) together with liquid lead-bismuth eutectic (LBE) as coolant for both reactor and spallation target, the use of accurate heat transfer correlation and reliable turbulent-Prandtl-number model of LBE in turbulent flows is essential when designing ADS components of primary loop and heat exchanger of secondary loop. Unlike conventional fluids, there is not an acknowledged turbulent-Prandtl-number model for LBE flows. This paper reviews and assesses the existing turbulent-Pandtl-number models and various heat transfer correlations in circular tubes. Computational fluid dynamics (CFD) analysis is employed to evaluate the applicability of various turbulent-Prandtl-number models for LBE in the circular tube under boundary conditions of constant heat flux and constant wall temperature. Based on the assessment of turbulent-Prandtl-number models, the reliable turbulent-Prandtl-number models are recommended for CFD applications to LBE flows under boundary conditions of constant heat flux and constant wall temperature. The present study indicates that turbulent Prandtl number has a significant difference in turbulent LBE flow between constant-heat-flux and constant-wall-temperature boundary conditions.

  6. Analysis of drugs of abuse in human plasma by dispersive liquid-liquid microextraction and high-performance liquid chromatography.

    Science.gov (United States)

    Fernández, P; Regenjo, M; Bermejo, A M; Fernández, A M; Lorenzo, R A; Carro, A M

    2015-04-01

    Opioids and cocaine are widely used at present, both for recreational purposes and as drugs of abuse. This raises the need to develop new analytical methods specifically designed for the simultaneous detection of several drugs of abuse in biological samples. In this work, dispersive liquid-liquid microextraction (DLLME) was assessed as a new sample treatment for the simultaneous extraction of morphine (MOR), 6-acetylmorphine (6AM), cocaine (COC), benzoylecgonine (BZE) and methadone (MET) from human plasma. Preliminary assays were done before developing an experimental design based on a Uniform Network Doehlert which allowed the optimum extraction conditions to be identified, namely: a volume of extractant solvent (chloroform) and dispersant solvent (acetonitrile) of 220 µl and 3.2 ml, respectively; 0.2 g of NaCl as a salting-out additive; pH 10.6 and ultrasound stirring for 3.5 min. The resulting extracts were analyzed by high-performance liquid chromatography with photodiode array detection (HPLC-PDA), using an XBridge® RP18 column (250 × 4.6 mm i.d., 5 µm particle size). Calibration graphs were linear over the concentration range 0.1-10 µg ml⁻¹, and detection limits ranged from 13.9 to 28.5 ng ml⁻¹. Precision calculated at three different concentration levels in plasma was included in the range 0.1-6.8% RSD. Recoveries of the five drugs were all higher than 84% on average. Finally the proposed method was successfully applied to 22 plasma samples from heroin, cocaine and/or methadone users, and the most frequently detected drug was benzoylecgonine, followed by methadone, cocaine and morphine. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Ionic liquids as transesterification catalysts: applications for the synthesis of linear and cyclic organic carbonates

    Directory of Open Access Journals (Sweden)

    Maurizio Selva

    2016-08-01

    Full Text Available The use of ionic liquids (ILs as organocatalysts is reviewed for transesterification reactions, specifically for the conversion of nontoxic compounds such as dialkyl carbonates to both linear mono-transesterification products or alkylene carbonates. An introductory survey compares pros and cons of classic catalysts based on both acidic and basic systems, to ionic liquids. Then, innovative green syntheses of task-specific ILs and their representative applications are introduced to detail the efficiency and highly selective outcome of ILs-catalyzed transesterification reactions. A mechanistic hypothesis is discussed by the concept of cooperative catalysis based on the dual (electrophilic/nucleophilic activation of reactants.

  8. Development of high performance liquid chromatography method for miconazole analysis in powder sample

    Science.gov (United States)

    Hermawan, D.; Suwandri; Sulaeman, U.; Istiqomah, A.; Aboul-Enein, H. Y.

    2017-02-01

    A simple high performance liquid chromatography (HPLC) method has been developed in this study for the analysis of miconazole, an antifungal drug, in powder sample. The optimized HPLC system using C8 column was achieved using mobile phase composition containing methanol:water (85:15, v/v), a flow rate of 0.8 mL/min, and UV detection at 220 nm. The calibration graph was linear in the range from 10 to 50 mg/L with r 2 of 0.9983. The limit of detection (LOD) and limit of quantitation (LOQ) obtained were 2.24 mg/L and 7.47 mg/L, respectively. The present HPLC method is applicable for the determination of miconazole in the powder sample with a recovery of 101.28 % (RSD = 0.96%, n = 3). The developed HPLC method provides short analysis time, high reproducibility and high sensitivity.

  9. Stability analysis of high temperature superconducting coil in liquid hydrogen

    International Nuclear Information System (INIS)

    Nakayama, T.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2007-01-01

    Recently, it is expected that hydrogen plays an important role in energy source including electric power in near future. Liquid hydrogen has high potential for cooling down superconducting coil wound with high temperature superconductors (HTS), such as BSCCO, YBCO. In this paper, we study stabilities of the coils wound with BSCCO tapes, which are immersed in the liquid hydrogen, and compare stability results with those cooled by liquid helium. We treat a minimum propagation zone (MPZ) theory to evaluate the coil stability considering boiling heat flux of the liquid hydrogen, and specific heat, heat conduction and resistivity of HTS materials as a function of temperature. It is found that the coil cooled by the liquid hydrogen has higher stability margin than that cooled by the liquid helium. We compare the stability margins of both coils wound with Bi-2223/Ag tape and Bi-2212/Ag tape in liquid hydrogen. As a result, it is found that the stability of Bi-2212 coil is equivalent to that of Bi-2223 coil in low and high magnetic field, while the maximum current of Bi-2212 coil exceeds a little bit that of Bi-2223 coil in both magnetic fields

  10. Secondary Flow Patterns of Liquid Ejector with Computational Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kwisung; Yun, Jinwon; Yu, Sangseok [Chungnam National University, Daejeon (Korea, Republic of); Sohn, Inseok [COAVIS, Sejong (Korea, Republic of); Seo, Yongkyo [Korea Automotive Technology Institute, Cheonan (Korea, Republic of)

    2015-02-15

    An ejector is a type of non-powered pump that is used to supply a secondary flow via the ejection of a primary flow. It is utilized in many industrial fields, and is used for fueling the vehicle because of less failures and simple structure. Since most of ejectors in industry are gas-to-gas and liquid to gas ejector, many research activities have been reported in optimization of gas ejector. On the other hand, the liquid ejector is also applied in many industry but few research has been reported. The liquid ejector occurs cavitation, and it causes damage of parts. Cavitation has bees observed at the nozzle throat at the specified pressure. In this study, a two-dimensional axisymmetric simulation of a liquid-liquid ejector was carried out using five different parameters. The angle of the nozzle plays an important role in the cavitation of a liquid ejector, and the performance characteristics of the flow ratio showed that an angle of 35° was the most advantageous. The simulation results showed that the performance of the liquid ejector and the cavitation effect have to be considered simultaneously.

  11. Vibration Reduction of Wind Turbines Using Tuned Liquid Column Damper Using Stochastic Analysis

    International Nuclear Information System (INIS)

    Alkmim, M H; De Morais, M V G; Fabro, A T

    2016-01-01

    Passive energy dissipation systems encompass a range of materials and devices for enhancing damping. They can be used both for natural hazard mitigation and for rehabilitation of aging or deficient structures. Among the current passive energy dissipation systems, tuned liquid column damper (TLCD), a class of passive control that utilizes liquid in a “U” shape reservoir to control structural vibration of the primary system, has been widely researched in a variety of applications. This paper focus in TLCD application for wind turbines presenting the mathematical model as well as the methods used to overcome the nonlinearity embedded in the system. Optimization methods are used to determine optimum parameters of the system. Additionally, a comparative analysis is done considering the equivalent linearized system and the nonlinear system under random excitation with the goal of compare the nonlinear model with the linear equivalent and investigated the effectiveness of the TLCD. The results are shown using two types of random excitation, a white noise and a first order filters spectrum, the latter presents more satisfactory results since the excitation spectrum is physically more realistic than white noise spectrum model. The results indicate that TLCDs at optimal tuning can significantly dissipate energy of the primary structure between 3 to 11%. (paper)

  12. Stock Market Liquidity: Comparative Analysis of Croatian and Regional Markets

    Directory of Open Access Journals (Sweden)

    Vladimir Benić

    2008-12-01

    Full Text Available On the Croatian stock market liquidity has never been in the focus of academic research thus we find it necessary to observe liquidity at the aggregate level. This paper observes multi-dimensional liquidity through the impact of turnover on price change together with several one-dimensional measures. In our empirical research we applythe illiquidity measureto seven different stock markets. We focus on the Croatian stock market as compared to other markets in the Central and Eastern Europe and German market. The results of the research indicate a substantial level of illiquidity in the Croatian and other developing markets.

  13. Edge-plasma analysis for liquid-wall MFE concepts

    International Nuclear Information System (INIS)

    Moir, R.W.; Rensink, M.E.; Rognlien, T.D.

    2001-01-01

    A thick flowing layer of liquid (e.g., flibe - a molten salt, or Sn 80 Li 20 - a liquid metal) protects the structural walls of the magnetic fusion configuration so that they can last the life of the plant even with intense 14 MeV neutron bombardment from the D-T fusion reaction. The surface temperature of the liquid rises as it passes from the inlet nozzles to the exit nozzles due to absorption of line and bremsstrahlung radiation, and neutrons. The surface temperature can be reduced by enhanced turbulent convection of hot surface liquid into the cooler interior. This surface temperature is affected by the temperature of liquid from a heat transport and energy recovery system. The evaporative flux from the wall driven by the surface temperature must also result in an acceptable impurity level in the core plasma. The shielding of the core by the edge plasma is modeled with a 2D-transport code for the DT and impurity ions; these impurity ions are either swept out to the divertor, or diffuse to the hot plasma core. An auxiliary plasma between the edge plasma and the liquid wall may further attenuate evaporating flux of atoms and molecules by ionization near the wall. (author)

  14. Film analysis systems and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yonekura, Y.; Brill, A.B.

    1981-01-01

    The different components that can be used in modern film analysis systems are reviewed. TV camera and charge-coupled device sensors coupled to computers provide low cost systems for applications such as those described. The autoradiography (ARG) method provides an important tool for medical research and is especially useful for the development of new radiopharmaceutical compounds. Biodistribution information is needed for estimation of radiation dose, and for interpretation of the significance of observed patterns. The need for such precise information is heightened when one seeks to elucidate physiological principles/factors in normal and experimental models of disease. The poor spatial resolution achieved with current PET-imaging systems limits the information on radioreceptor mapping, neutrotransmitter, and neuroleptic drug distribution that can be achieved from patient studies. The artful use of ARG in carefully-controlled animal studies will be required to provide the additional information needed to fully understand results obtained with this new important research tool. (ERB)

  15. Film analysis systems and applications

    International Nuclear Information System (INIS)

    Yonekura, Y.; Brill, A.B.

    1981-01-01

    The different components that can be used in modern film analysis systems are reviewed. TV camera and charge-coupled device sensors coupled to computers provide low cost systems for applications such as those described. The autoradiography (ARG) method provides an important tool for medical research and is especially useful for the development of new radiopharmaceutical compounds. Biodistribution information is needed for estimation of radiation dose, and for interpretation of the significance of observed patterns. The need for such precise information is heightened when one seeks to elucidate physiological principles/factors in normal and experimental models of disease. The poor spatial resolution achieved with current PET-imaging systems limits the information on radioreceptor mapping, neutrotransmitter, and neuroleptic drug distribution that can be achieved from patient studies. The artful use of ARG in carefully-controlled animal studies will be required to provide the additional information needed to fully understand results obtained with this new important research tool

  16. A neutron multiplicity analysis method for uranium samples with liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hao, E-mail: zhouhao_ciae@126.com [China Institute of Atomic Energy, P.O.BOX 275-8, Beijing 102413 (China); Lin, Hongtao [Xi' an Reasearch Institute of High-tech, Xi' an, Shaanxi 710025 (China); Liu, Guorong; Li, Jinghuai; Liang, Qinglei; Zhao, Yonggang [China Institute of Atomic Energy, P.O.BOX 275-8, Beijing 102413 (China)

    2015-10-11

    A new neutron multiplicity analysis method for uranium samples with liquid scintillators is introduced. An active well-type fast neutron multiplicity counter has been built, which consists of four BC501A liquid scintillators, a n/γdiscrimination module MPD-4, a multi-stop time to digital convertor MCS6A, and two Am–Li sources. A mathematical model is built to symbolize the detection processes of fission neutrons. Based on this model, equations in the form of R=F*P*Q*T could be achieved, where F indicates the induced fission rate by interrogation sources, P indicates the transfer matrix determined by multiplication process, Q indicates the transfer matrix determined by detection efficiency, T indicates the transfer matrix determined by signal recording process and crosstalk in the counter. Unknown parameters about the item are determined by the solutions of the equations. A {sup 252}Cf source and some low enriched uranium items have been measured. The feasibility of the method is proven by its application to the data analysis of the experiments.

  17. Applications of hydrophobic Pt catalysts in separation of tritium from liquid effluents

    International Nuclear Information System (INIS)

    Ionita, Gheorghe; Popescu, Irina; Stefanescu, Ioan; Varlam, Carmen

    2003-01-01

    Hydrophobic Pt catalysts were first prepared and used in deuterium or tritium separation while after their application was extended to chemical reactions occurring in liquid water or saturated humidity environments. Capillary condensing produced at the contact with liquid water or vapors engenders in classical hydrophilic catalysts a decrease in activity what makes them inefficient. Consequently, liquid water 'repealing' catalysts are to be used allowing, at the same time gaseous reactants and reaction products to diffuse to and fro the catalytic active centers. These catalysts were successfully applied in deuterium enrichment and tritium separation based on hydrogen- liquid water isotopic exchange at both pilot and industrial scale. High activity and a prolonged stability were demonstrated and checked in: - detritiation of the heavy water used as both moderator and coolant in CANDU type reactors; removing of tritium from light water recirculated in nuclear fuel reprocessing facilities; removal and recovery of tritium from atmosphere and tritium processing installations. Due to their incontestable advantages the use of these catalysts was recently extended to other chemical processes occurring in the presence of liquid water or in high humidity environment or else when water occurs as a reaction product, such as catalytic hydrogen - oxygen recombination at room temperature or removal of stable organic pollutants from waste waters

  18. Application of probabilistic risk assessment to advanced liquid metal reactor designs

    International Nuclear Information System (INIS)

    Carroll, W.P.; Temme, M.I.

    1987-01-01

    The United States Department of Energy (US DOE) has been active in the development and application of probabilistic risk assessment methods within its liquid metal breeder reactor development program for the past eleven years. These methods have been applied to comparative risk evaluations, the selection of design features for reactor concepts, the selection and emphasis of research and development programs, and regulatory discussions. The application of probabilistic methods to reactors which are in the conceptual design stage presents unique data base, modeling, and timing challenges, and excellent opportunities to improve the final design. We provide here the background and insights on the experience which the US DOE liquid metal breeder reactor program has had in its application of probabilistic methods to the Clinch River Breeder Reactor Plant project, the Conceptual Design State of the Large Development Plant, and updates on this design. Plans for future applications of probabilistic risk assessment methods are also discussed. The US DOE is embarking on an innovative design program for liquid metal reactors. (author)

  19. HTGR-INTEGRATED COAL TO LIQUIDS PRODUCTION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Anastasia M Gandrik; Rick A Wood

    2010-10-01

    As part of the DOE’s Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to “shift” the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700°C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: • 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal

  20. HTGR-Integrated Coal To Liquids Production Analysis

    International Nuclear Information System (INIS)

    Gandrik, Anastasia M.; Wood, Rick A.

    2010-01-01

    As part of the DOE's Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to 'shift' the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700 C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: (1) 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal consumption by 66

  1. Development and validation of a sensitive liquid chromatographic-tandem mass spectrometric method for the simultaneous analysis of granisetron and 7-hydroxy granisetron in human plasma and urine samples: application in a clinical pharmacokinetic study in pregnant subject.

    Science.gov (United States)

    Zhao, Yang; Chen, Hui-Jun; Caritis, Steve; Venkataramanan, Raman

    2016-02-01

    A liquid chromatography-tandem mass spectrometric method for the quantification of granisetron and its major metabolite, 7-hydroxy granisetron in human plasma and urine samples was developed and validated. Respective stable isotopically labeled granisetron and 7-hydroxy granisetron were used as internal standards (IS). Chromatography was performed using an Xselect HSS T3 analytical column with a mobile phase of 20% acetonitrile in water (containing 0.2 mM ammonium formate and 0.14% formic acid, pH 4) delivered in an isocratic mode. Tandem mass spectrometry operating in positive electrospray ionization mode with multiple reaction monitoring was used for quantification. The standard curves were linear in the concentration ranges of 0.5-100 ng/mL for granisetron and 0.1-100 ng/mL for 7-hydroxy granisetron in human plasma samples, and 2-2000 ng/mL for granisetron and 2-1000 ng/mL for 7-hydroxy granisetron in human urine samples, respectively. The accuracies were >85% and the precision as determined by the coefficient of variations was granisetron or 7-hydroxy granisetron in either plasma or urine samples. Granisetron was stable under various storage and experimental conditions. This validated method was successfully applied to a pharmacokinetic study after intravenous administration of 1 mg granisetron to a pregnant subject. Copyright © 2015 John Wiley & Sons, Ltd.

  2. A comparison of biological effect and spray liquid distribution and deposition for different spray application techniques in different crops

    OpenAIRE

    Larsolle, Anders; Wretblad, Per; Westberg, Carl

    2002-01-01

    The objective of this study was to compare a selection of spray application techniques with different application volumes, with respect to the spray liquid distribution on flat surfaces, the deposition in fully developed crops and the biological effect. The spray application techniques in this study were conventional spray technique with three different nozzles: Teelet XR, Lechler ID and Lurmark DriftBeta, and also AirTec, Danfoil, Hardi Twin, Kyndestoit and Släpduk. The dynamic spray liquid ...

  3. Modeling and techno-economic analysis of shale-to-liquid and coal-to-liquid fuels processes

    International Nuclear Information System (INIS)

    Zhou, Huairong; Yang, Siyu; Xiao, Honghua; Yang, Qingchun; Qian, Yu; Gao, Li

    2016-01-01

    To alleviate the conflict between oil supply and demand, Chinese government has accelerated exploration and exploitation of alternative oil productions. STL (Shale-to-liquid) processes and CTL (coal-to-liquid) processes are promising choices to supply oil. However, few analyses have been made on their energy efficiency and economic performance. This paper conducts a detailed analysis of a STL process and a CTL process based on mathematical modeling and simulation. Analysis shows that low efficiency of the STL process is due to low oil yield of the Fushun-type retorting technology. For the CTL process, the utility system provides near to 34% energy consumption of the total. This is because that CTL technologies are in early development and no heat integration between units is implemented. Economic analysis reveals that the total capital investment of the CTL process is higher than that of the STL process. The production cost of the CTL process is right on the same level as that of the STL process. For better techno-economic performance, it is suggested to develop a new retorting technology of high oil yield for the STL process. The remaining retorting gas should be converted to hydrogen and then used for shale oil hydrogenation. For the CTL process, developing an appropriate heat network is an efficient way to apply heat integration. In addition, the CTL process is intended to be integrated with hydrogen rich gas to adjust H_2/CO for better resource utilization. - Highlights: • Aspen Plus software is used for modeling and simulation of a shale-to-liquid (STL) and a coal-to-liquid (CTL) processes. • Techno-economic analysis of STL and CTL processes is conducted. • Suggestions are given for improving energy efficiency and economic performance of STL and CTL processes.

  4. Organic-resistant screen-printed graphitic electrodes: Application to on-site monitoring of liquid fuels.

    Science.gov (United States)

    Almeida, Eduardo S; Silva, Luiz A J; Sousa, Raquel M F; Richter, Eduardo M; Foster, Christopher W; Banks, Craig E; Munoz, Rodrigo A A

    2016-08-31

    This work presents the potential application of organic-resistant screen-printed graphitic electrodes (SPGEs) for fuel analysis. The required analysis of the antioxidant 2,6-di-tert-butylphenol (2,6-DTBP) in biodiesel and jet fuel is demonstrated as a proof-of-concept. The screen-printing of graphite, Ag/AgCl and insulator inks on a polyester substrate (250 μm thickness) resulted in SPGEs highly compatible with liquid fuels. SPGEs were placed on a batch-injection analysis (BIA) cell, which was filled with a hydroethanolic solution containing 99% v/v ethanol and 0.1 mol L(-1) HClO4 (electrolyte). An electronic micropipette was connected to the cell to perform injections (100 μL) of sample or standard solutions. Over 200 injections can be injected continuously without replacing electrolyte and SPGE strip. Amperometric detection (+1.1 V vs. Ag/AgCl) of 2,6-DTBP provided fast (around 8 s) and precise (RSD = 0.7%, n = 12) determinations using an external calibration curve. The method was applied for the analysis of biodiesel and aviation jet fuel samples and comparable results with liquid and gas chromatographic analyses, typically required for biodiesel and jet fuel samples, were obtained. Hence, these SPGE strips are completely compatible with organic samples and their combination with the BIA cell shows great promise for routine and portable analysis of fuels and other organic liquid samples without requiring sophisticated sample treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Liquid Nitrogen (Oxygen Simulent) Thermodynamic Venting System Test Data Analysis

    Science.gov (United States)

    Hedayat, A.; Nelson, S. L.; Hastings, L. J.; Flachbart, R. H.; Tucker, S. P.

    2005-01-01

    In designing systems for the long-term storage of cryogens in low gravity space environments, one must consider the effects of thermal stratification on excessive tank pressure that will occur due to environmental heat leakage. During low gravity operations, a Thermodynamic Venting System (TVS) concept is expected to maintain tank pressure without propellant resettling. The TVS consists of a recirculation pump, Joule-Thomson (J-T) expansion valve, and a parallel flow concentric tube heat exchanger combined with a longitudinal spray bar. Using a small amount of liquid extracted by the pump and passing it though the J-T valve, then through the heat exchanger, the bulk liquid and ullage are cooled, resulting in lower tank pressure. A series of TVS tests were conducted at the Marshall Space Flight Center using liquid nitrogen as a liquid oxygen simulant. The tests were performed at fill levels of 90%, 50%, and 25% with gaseous nitrogen and helium pressurants, and with a tank pressure control band of 7 kPa. A transient one-dimensional model of the TVS is used to analyze the data. The code is comprised of four models for the heat exchanger, the spray manifold and injector tubes, the recirculation pump, and the tank. The TVS model predicted ullage pressure and temperature and bulk liquid saturation pressure and temperature are compared with data. Details of predictions and comparisons with test data regarding pressure rise and collapse rates will be presented in the final paper.

  6. Hyperbolic Conservation Laws and Related Analysis with Applications

    CERN Document Server

    Holden, Helge; Karlsen, Kenneth

    2014-01-01

    This book presents thirteen papers, representing the most significant advances and current trends in nonlinear hyperbolic conservation laws and related analysis with applications. Topics covered include a survey on multidimensional systems of conservation laws as well as novel results  on liquid crystals, conservation laws with discontinuous flux functions, and applications to sedimentation.  Also included are articles on recent advances in the Euler equations and the Navier-Stokes-Fourier-Poisson system, in addition to new results on collective phenomena described by the Cucker-Smale model.    The Workshop on Hyperbolic Conservation Laws and Related Analysis with Applications at the International Centre for Mathematical Sciences (Edinburgh, UK) held in Edinburgh, September 2011, produced this fine collection of original research and survey articles. Many leading mathematicians attended the event and submitted their contributions for this volume. It is addressed to researchers and graduate students inter...

  7. Structure analysis of turbulent liquid phase by POD and LSE techniques

    Energy Technology Data Exchange (ETDEWEB)

    Munir, S., E-mail: shahzad-munir@comsats.edu.pk; Muthuvalu, M. S.; Siddiqui, M. I. [Department of Fundamental and Applied Science, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Heikal, M. R., E-mail: morgan.heikal@petronas.com.my; Aziz, A. Rashid A., E-mail: morgan.heikal@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia)

    2014-10-24

    In this paper, vortical structures and turbulence characteristics of liquid phase in both single liquid phase and two-phase slug flow in pipes were studied. Two dimensional velocity vector fields of liquid phase were obtained by Particle image velocimetry (PIV). Two cases were considered one single phase liquid flow at 80 l/m and second slug flow by introducing gas at 60 l/m while keeping liquid flow rate same. Proper orthogonal decomposition (POD) and Linear stochastic estimation techniques were used for the extraction of coherent structures and analysis of turbulence in liquid phase for both cases. POD has successfully revealed large energy containing structures. The time dependent POD spatial mode coefficients oscillate with high frequency for high mode numbers. The energy distribution of spatial modes was also achieved. LSE has pointed out the coherent structured for both cases and the reconstructed velocity fields are in well agreement with the instantaneous velocity fields.

  8. Structure analysis of turbulent liquid phase by POD and LSE techniques

    International Nuclear Information System (INIS)

    Munir, S.; Muthuvalu, M. S.; Siddiqui, M. I.; Heikal, M. R.; Aziz, A. Rashid A.

    2014-01-01

    In this paper, vortical structures and turbulence characteristics of liquid phase in both single liquid phase and two-phase slug flow in pipes were studied. Two dimensional velocity vector fields of liquid phase were obtained by Particle image velocimetry (PIV). Two cases were considered one single phase liquid flow at 80 l/m and second slug flow by introducing gas at 60 l/m while keeping liquid flow rate same. Proper orthogonal decomposition (POD) and Linear stochastic estimation techniques were used for the extraction of coherent structures and analysis of turbulence in liquid phase for both cases. POD has successfully revealed large energy containing structures. The time dependent POD spatial mode coefficients oscillate with high frequency for high mode numbers. The energy distribution of spatial modes was also achieved. LSE has pointed out the coherent structured for both cases and the reconstructed velocity fields are in well agreement with the instantaneous velocity fields

  9. Ionic liquids for nano- and microstructures preparation. Part 2: Application in synthesis.

    Science.gov (United States)

    Łuczak, Justyna; Paszkiewicz, Marta; Krukowska, Anna; Malankowska, Anna; Zaleska-Medynska, Adriana

    2016-01-01

    Ionic liquids (ILs) are widely applied to prepare metal nanoparticles and 3D semiconductor microparticles. Generally, they serve as a structuring agent or reaction medium (solvent), however it was also demonstrated that ILs can play a role of a co-solvent, metal precursor, reducing as well as surface modifying agent. The crucial role and possible types of interactions between ILs and growing particles have been presented in the Part 1 of this review paper. Part 2 of the paper gives a comprehensive overview of recent experimental studies dealing with application of ionic liquids for preparation of metal and semiconductor based nano- and microparticles. A wide spectrum of preparation routes using ionic liquids is presented, including precipitation, sol-gel technique, hydrothermal method, nanocasting and ray-mediated methods (microwave, ultrasound, UV-radiation and γ-radiation). It was found that ionic liquids formed of a 1-butyl-3-methylimidazolium [BMIM] combined with tetrafluoroborate [BF4], hexafluorophosphate [PF6], and bis(trifluoromethanesulfonyl)imide [Tf2N] are the most often used ILs in the synthesis of nano- and microparticles, due to their low melting temperature, low viscosity and good transportation properties. Nevertheless, examples of other IL classes with intrinsic nanoparticles stabilizing abilities such as phosphonium and ammonium derivatives are also presented. Experimental data revealed that structure of ILs (both anion and cation type) affects the size and shape of formed metal particles, and in some cases may even determine possibility of particles formation. The nature of the metal precursor determines its affinity to polar or nonpolar domains of ionic liquid, and therefore, the size of the nanoparticles depends on the size of these regions. Ability of ionic liquids to form varied extended interactions with particle precursor as well as other compounds presented in the reaction media (water, organic solvents etc.) provides nano- and

  10. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  11. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    International Nuclear Information System (INIS)

    Coenenberg, J.G.

    1997-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, 'operating' treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  12. Liquid Nitrogen (Oxygen Simulant) Thermodynamic Vent System Test Data Analysis

    Science.gov (United States)

    Hedayat, A.; Nelson, S. L.; Hastings, L. J.; Flachbart, R. H.; Tucker, S. P.

    2005-01-01

    In designing systems for the long-term storage of cryogens in low-gravity (space) environments, one must consider the effects of thermal stratification on tank pressure that will occur due to environmental heat leaks. During low-gravity operations, a Thermodynamic Vent System (TVS) concept is expected to maintain tank pressure without propellant resettling. A series of TVS tests was conducted at NASA Marshall Space Flight Center (MSFC) using liquid nitrogen (LN2) as a liquid oxygen (LO2) simulant. The tests were performed at tank til1 levels of 90%, 50%, and 25%, and with a specified tank pressure control band. A transient one-dimensional TVS performance program is used to analyze and correlate the test data for all three fill levels. Predictions and comparisons of ullage pressure and temperature and bulk liquid saturation pressure and temperature with test data are presented.

  13. Quantitative Analysis of Matrine in Liquid Crystalline Nanoparticles by HPLC

    Directory of Open Access Journals (Sweden)

    Xinsheng Peng

    2014-01-01

    Full Text Available A reversed-phase high-performance liquid chromatographic method has been developed to quantitatively determine matrine in liquid crystal nanoparticles. The chromatographic method is carried out using an isocratic system. The mobile phase was composed of methanol-PBS(pH6.8-triethylamine (50 : 50 : 0.1% with a flow rate of 1 mL/min with SPD-20A UV/vis detector and the detection wavelength was at 220 nm. The linearity of matrine is in the range of 1.6 to 200.0 μg/mL. The regression equation is y=10706x-2959 (R2=1.0. The average recovery is 101.7%; RSD=2.22%  (n=9. This method provides a simple and accurate strategy to determine matrine in liquid crystalline nanoparticle.

  14. Pulsed laser-induced liquid jet: evolution from shock/bubble interaction to neurosurgical application

    Science.gov (United States)

    Nakagawa, A.; Kumabe, T.; Ogawa, Y.; Hirano, T.; Kawaguchi, T.; Ohtani, K.; Nakano, T.; Sato, C.; Yamada, M.; Washio, T.; Arafune, T.; Teppei, T.; Atsushi, K.; Satomi, S.; Takayama, K.; Tominaga, T.

    2017-01-01

    The high-speed liquid (water) jet has distinctive characteristics in surgical applications, such as tissue dissection without thermal damage and small blood vessel preservation, that make it advantageous over more conventional instruments. The continuous pressurized jet has been used since the first medical application of water jets to liver surgery in the 1980s, but exhibited drawbacks partly related to the excess water supply required and unsuitability for application to microsurgical instruments intended for deep, narrow lesions (endoscopic instrumentation and catheters) due to limitations in miniaturization of the device. To solve these issues, we initiated work on the pulsed micro-liquid jet. The idea of the pulsed micro-liquid jet originated from the observation of tissue damage by shock/bubble interactions during extracorporeal shock wave lithotripsy and evolved into experimental application for recanalization of cerebral embolisms in the 1990s. The original method of generating the liquid jet was based on air bubble formation and microexplosives as the shock wave source, and as such could not be applied clinically. The air bubble was replaced by a holmium:yttrium-aluminum-garnet (Ho:YAG) laser-induced bubble. Finally, the system was simplified and the liquid jet was generated via irradiation from the Ho:YAG laser within a liquid-filled tubular structure. A series of investigations revealed that this pulsed laser-induced liquid jet (LILJ) system has equivalent dissection and blood vessel preservation characteristics, but the amount of liquid usage has been reduced to less than 2 μ l per shot and can easily be incorporated into microsurgical, endoscopic, and catheter devices. As a first step in human clinical studies, we have applied the LILJ system for the treatment of skull base tumors through the transsphenoidal approach in 9 patients (7 pituitary adenomas and 2 chordomas), supratentorial glioma (all high grade glioma) in 8 patients, including one with

  15. Recent trends in sorption-based sample preparation and liquid chromatography techniques for food analysis.

    Science.gov (United States)

    V Soares Maciel, Edvaldo; de Toffoli, Ana Lúcia; Lanças, Fernando Mauro

    2018-04-20

    The accelerated rising of the world's population increased the consumption of food, thus demanding more rigors in the control of residue and contaminants in food-based products marketed for human consumption. In view of the complexity of most food matrices, including fruits, vegetables, different types of meat, beverages, among others, a sample preparation step is important to provide more reliable results when combined with HPLC separations. An adequate sample preparation step before the chromatographic analysis is mandatory in obtaining higher precision and accuracy in order to improve the extraction of the target analytes, one of the priorities in analytical chemistry. The recent discovery of new materials such as ionic liquids, graphene-derived materials, molecularly imprinted polymers, restricted access media, magnetic nanoparticles, and carbonaceous nanomaterials, provided high sensitivity and selectivity results in an extensive variety of applications. These materials, as well as their several possible combinations, have been demonstrated to be highly appropriate for the extraction of different analytes in complex samples such as food products. The main characteristics and application of these new materials in food analysis will be presented and discussed in this paper. Another topic discussed in this review covers the main advantages and limitations of sample preparation microtechniques, as well as their off-line and on-line combination with HPLC for food analysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis, characterization and application of 1-butyl-3-methylimidazolium tetrafluoroborate for extractive desulfurization of liquid fuel

    Directory of Open Access Journals (Sweden)

    Swapnil A. Dharaskar

    2016-07-01

    Full Text Available In the present paper the experimental data of extractive desulfurization of liquid fuel using 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM]BF4 have been presented. The data of FTIR, 1H NMR and 13C NMR have been discussed for the molecular confirmation of synthesized [BMIM]BF4. Further, the thermal properties, conductivity, solubility, and viscosity analysis of the [BMIM]BF4 were carried out. The effects of reaction time, reaction temperature, sulfur compounds, and recycling of ionic liquid without regeneration on dibenzothiophene removal of liquid fuel were presented. In extractive desulfurization process, the removal of dibenzothiophene in n-dodecane was 73.02% for mass ratio of 1:1 in 30 min at 30 °C under the mild reaction conditions. The ionic liquids could be reused four times without a significant decrease in activity. Also, the desulfurizations of real fuels, multistage extraction were presented. The data and results provided in the present paper explore the significant insights of imidazoled ILs for extractive desulfurization of liquid fuels.

  17. Numerical issues for liquid-metal boiling transient analysis

    International Nuclear Information System (INIS)

    Rowe, D.S.

    1986-01-01

    The large liquid-to-vapor density ratio of a boiling liquid-metal leads to a very abrupt change of the two-phase mixture density at the inception of boiling. Unfortunately, the strong dependence of mixture density on pressure leads to a key numerical issue that adversely affects the behavior of numerical solutions. The difficulties can be reduced by using techniques that acknowledge this functional behavior at the start of boiling. Some of the methods used include a spatially averaged density function, mathematical smoothing, and under relaxation. Nonequilibrium two-fluid models also seem to offer aid in obtaining reliable numerical solutions. (author)

  18. Pore-scale analysis of the minimum liquid film thickness around elongated bubbles in confined gas-liquid flows

    Science.gov (United States)

    Magnini, M.; Beisel, A. M.; Ferrari, A.; Thome, J. R.

    2017-11-01

    The fluid mechanics of elongated bubbles in confined gas-liquid flows in micro-geometries is important in pore-scale flow processes for enhanced oil recovery and mobilization of colloids in unsaturated soil. The efficiency of such processes is traditionally related to the thickness of the liquid film trapped between the elongated bubble and the pore's wall, which is assumed constant. However, the surface of long bubbles presents undulations in the vicinity of the rear meniscus, which may significantly decrease the local thickness of the liquid film, thus impacting the process of interest. This study presents a systematic analysis of these undulations and the minimum film thickness induced in the range Ca = 0.001- 0.5 and Re = 0.1- 2000 . Pore-scale Computational Fluid Dynamics (CFD) simulations are performed with a self-improved version of the opensource solver ESI OpenFOAM which is based on a Volume of Fluid method to track the gas-liquid interface. A lubrication model based on the extension of the classical axisymmetric Bretherton theory is utilized to better understand the CFD results. The profiles of the rear meniscus of the bubble obtained with the lubrication model agree fairly well with those extracted from the CFD simulations. This study shows that the Weber number of the flow, We = Ca Re , is the parameter that best describes the dynamics of the interfacial waves. When We 0.1, a larger number of wave crests becomes evident on the surface of the rear meniscus of the bubble. The liquid film thickness at the crests of the undulations thins considerably as the Reynolds number is increased, down to less than 60% of the value measured in the flat film region. This may significantly influence important environmental processes, such as the detachment and mobilization of micron-sized pollutants and pathogenic micro-organisms adhering at the pore's wall in unsaturated soil.

  19. Dynamic analysis of a liquid droplet and optimization of helical angles for vortex drainage gas recovery

    Directory of Open Access Journals (Sweden)

    Xiaodong Wu

    2016-10-01

    Full Text Available Downhole vortex drainage gas recovery is a new gas production technology. So far, however, the forces and motions of liquid phase in the swirling flow field of wellbores during its field application have not been figured out. In this paper, the forces of liquid droplets in the swirling flow field of wellbores were analyzed on the basis of two-phase fluid dynamics theories. Then, the motion equations of fluid droplets along axial and radical directions were established. Magnitude comparison was performed on several typical acting forces, including Basset force, virtual mass force, Magnus force, Saffman force and Stokes force. Besides, the formula for calculating the optimal helical angle of vortex tools was established according to the principle that the vertical resultant force on fluid droplets should be the maximum. And afterwards, each acting force was comprehensively analyzed in terms of its origin, characteristics and direction based on the established force analysis model. Magnitude comparison indicates that the forces with less effect can be neglected, including virtual mass force, Basset force and convection volume force. Moreover, the vertically upward centrifugal force component occurs on the fluid droplets in swirling flow field instead of those in the conventional flow field of wellbores, which is favorable for the fluid droplets to move upward. The reliability of optimal helical angle calculation formula was verified by means of case analysis. It is demonstrated that with the decrease of well depth, the fluid-carrying capability of gas and the optimal helical angle increase. The research results in this paper have a guiding significance to the optimization design of downhole vortex tools and the field application of downhole vortex drainage gas recovery technology.

  20. Carbon-nanotube-based liquids: a new class of nanomaterials and their applications

    International Nuclear Information System (INIS)

    Phan, Ngoc Minh; Nguyen, Manh Hong; Phan, Hong Khoi; Bui, Hung Thang

    2014-01-01

    Carbon-nanotube-based liquids—a new class of nanomaterials—have shown many interesting properties and distinctive features offering unprecedented potential for many applications. This paper summarizes the recent progress on the study of the preparation, characterization and properties of carbon-nanotube-based liquids including so-called nanofluids, nanolubricants and different kinds of nanosolutions containing multi-walled carbon nanotubes/single-walled carbon nanotubes/graphene. A broad range of current and future applications of these nanomaterials in the fields of energy saving, power electronic and optoelectronic devices, biotechnology and agriculture are presented. The paper also identifies challenges and opportunities for future research. (paper)

  1. Applications and Properties of Ionic Liquid- Based Gels and Soft Solid Composites

    Science.gov (United States)

    Voss, Bret Alan McGinness

    2011-12-01

    Solid-liquid composites (gels) have a combination of properties that afford new material applications in which high solute diffusion is desirable. These composites have a soft-solid mechanical integrity and will not flow under gravity, but entrain a liquid matrix (i.e. 60-98 mass %) which allows for high diffusion and high reactivity. Room temperature ionic liquid (RTILs) are molten organic salts with a melting point below room temperature and negligible vapor pressure. If the RTILs are used as the liquid component of a gel, then the gel matrix will not evaporate (unlike other organic solvents) and may be used for long term applications. This thesis research applies RTIL gels for two new applications; carbon dioxide/nitrogen separation and chemical warfare agent (CWA) barrier and decontamination. Separating CO2 from the flue gas of coal and gas fired power-plants is an increasingly economically and environmentally important gas separation. In this first study, RTIL gels are cast in a supported membrane and gas permeability and ideal selectivity are measured. The RTIL matrix has an inherent affinity for CO2 and provides a high diffusion, hence high permeability (i.e. 500-700 barrer). The solidifying component is a low molecular-weight organic gelator (LMOG) which through physical bonding interactions (i.e. hydrogen bonding, pi-pi stacking and van der Walls forces) forms an entangled network which provides mechanical stability (i.e. increase trans-membrane pressure required to expel selective material from the support). In these studies two LMOGs and five RTILs are used to make supported gel membranes and determine gas permeability and temperature dependent trends. The second application for RTIL gels is a decontaminating barrier for CWAs and toxic industrial compounds (TICs). In these studies a layer of RTIL gel is applied on top of a substrate contaminated with a CWA simulant (i.e. chloroethylethylsulfide, CEES). The gel performs well as a barrier, preventing CEES

  2. Uncertainty analysis of minimum vessel liquid inventory during a small-break LOCA in a B ampersand W Plant: An application of the CSAU methodology using the RELAP5/MOD3 computer code

    International Nuclear Information System (INIS)

    Ortiz, M.G.; Ghan, L.S.

    1992-12-01

    The Nuclear Regulatory Commission (NRC) revised the emergency core cooling system licensing rule to allow the use of best estimate computer codes, provided the uncertainty of the calculations are quantified and used in the licensing and regulation process. The NRC developed a generic methodology called Code Scaling, Applicability, and Uncertainty (CSAU) to evaluate best estimate code uncertainties. The objective of this work was to adapt and demonstrate the CSAU methodology for a small-break loss-of-coolant accident (SBLOCA) in a Pressurized Water Reactor of Babcock ampersand Wilcox Company lowered loop design using RELAP5/MOD3 as the simulation tool. The CSAU methodology was successfully demonstrated for the new set of variants defined in this project (scenario, plant design, code). However, the robustness of the reactor design to this SBLOCA scenario limits the applicability of the specific results to other plants or scenarios. Several aspects of the code were not exercised because the conditions of the transient never reached enough severity. The plant operator proved to be a determining factor in the course of the transient scenario, and steps were taken to include the operator in the model, simulation, and analyses

  3. An analysis of the falling film gas-liquid reactor

    NARCIS (Netherlands)

    Davis, E.J.; Ouwerkerk-Dijkers, van M.P.; Venkatesh, S.

    1979-01-01

    A mathematical model of the falling film reactor is developed to predict the conversion and temperature distribution in the reactor as a function of the gas and liquid flow rates, physical properties, the feed composition of the reactive gas and carrier gas and other parameters of the system.

  4. Handbook of Fourier analysis & its applications

    CERN Document Server

    Marks, Robert J

    2009-01-01

    Fourier analysis has many scientific applications - in physics, number theory, combinatorics, signal processing, probability theory, statistics, option pricing, cryptography, acoustics, oceanography, optics and diffraction, geometry, and other areas. In signal processing and related fields, Fourier analysis is typically thought of as decomposing a signal into its component frequencies and their amplitudes. This practical, applications-based professional handbook comprehensively covers the theory and applications of Fourier Analysis, spanning topics from engineering mathematics, signal process

  5. Highlights from the Faraday Discussion on Ionic Liquids: From Fundamental Properties to Practical Applications, Cambridge, UK, September 2017.

    Science.gov (United States)

    Aldous, Leigh; Bendova, Magdalena; Gonzalez-Miquel, Maria; Swadźba-Kwaśny, Małgorzata

    2018-05-22

    For the third time, a Faraday Discussion addressed ionic liquids. Encompassing the wealth of research in this field, the contributions ranged from fundamental insights to the diverse applications of ionic liquids. Lively discussions initiated in the lecture hall and during poster sessions then seamlessly continued during the social program.

  6. Stability analysis for single-phase liquid metal rectangular natural circulation loops

    International Nuclear Information System (INIS)

    Lu, Daogang; Zhang, Xun; Guo, Chao

    2014-01-01

    Highlights: • The stability for asymmetric liquid metal natural circulation loops is analyzed. • The Na and NaK loops have higher critical Reynolds number than Pb and LBE loops. • Decreasing the ratio of height to width of loop can increase loop stability. • The length of heater would not affect the loop stability obviously. • Adding the length or heat transfer coefficient of cooler can increase loop stability. - Abstract: Natural circulation systems are preferred in some advanced nuclear power plants as they can simplify the designs and improve the inherent safety. The stability and steady-state characteristics of natural circulation are important for the applications of natural circulation loops (NCLs). A linear stability analysis method was used to study the stability behavior of liquid metal NCLs. The influences of the types of working fluids and loop geometry parameters on the stability of NCLs were evaluated. The liquid sodium (Na) loop and sodium–potassium alloy (NaK) loop would be more stable than lead bismuth eutectics (LBE) loop. The pressure drop could stabilize the loop behavior and also lead an increase of operating temperature for the loop. The NCL with a lower aspect ratio (ratio of vertical center distance between the heating and cooling section to the horizontal length of loop) is supposed to be more stable. It was found that the length of heating section would not have an obvious effect on the stability of NCL. However, the loop behavior could be stabilized by adding the length or heat transfer coefficient of the cooling section

  7. Seismic analysis of liquid metal reactor piping systems

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1987-01-01

    To safely assess the adequacy of the LMR piping, a three-dimensional piping code, SHAPS, has been developed at Argonne National Laboratory. This code was initially intended for calculating hydrodynamic-wave propagation in a complex piping network. It has salient features for treating fluid transients of fluid-structure interactions for piping with in-line components. The code also provides excellent structural capabilities of computing stresses arising from internal pressurization and 3-D flexural motion of the piping system. As part of the development effort, the SHAPS code has been further augmented recently by introducing the capabilities of calculating piping response subjected to seismic excitations. This paper describes the finite-element numerical algorithm and its applications to LMR piping under seismic excitations. A time-history analysis technique using the implicit temporal integration scheme is addressed. A 3-D pipe element is formulated which has eight degrees of freedom per node (three displacements, three rotations, one membrane displacement, and one bending rotation) to account for the hoop, flexural, rotational, and torsional modes of the piping system. Both geometric and material nonlinearities are considered. This algorithm is unconditionally stable and is particularly suited for the seismic analysis

  8. Molecular and Thermodynamic Properties of Zwitterions versus Ionic Liquids: A Comprehensive Computational Analysis to Develop Advanced Separation Processes.

    Science.gov (United States)

    Moreno, Daniel; Gonzalez-Miquel, Maria; Ferro, Victor R; Palomar, Jose

    2018-04-05

    Zwitterion ionic liquids (ZIs) are compounds in which both counterions are covalently tethered, conferring them with unique characteristics; however, most of their properties are still unknown, representing a bottleneck to exploit their practical applications. Herein, the molecular and fluid properties of ZIs and their mixtures were explored by means of quantum chemical analysis based on the density functional theory (DFT) and COSMO-RS method, and compared against homologous ionic liquids (ILs) to provide a comprehensive overview of the effect of the distinct structures on their physicochemical and thermodynamic behavior. Overall, ZIs were revealed as compounds with higher polarity and stronger hydrogen-bonding capacity, implying higher density, viscosity, melting point, and even lower volatility than structurally similar ILs. The phase equilibrium of binary and ternary systems supports stronger attractive interactions between ZIs and polar compounds, whereas higher liquid-liquid immiscibility with nonpolar compounds may be expected. Ultimately, the performance of ZIs in the wider context of separation processes is illustrated, while providing molecular insights to allow their selection and design for relevant applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Selection of flowing liquid lead target structural materials for accelerator driven transmutation applications

    International Nuclear Information System (INIS)

    Park, J.J.; Buksa, J.J.

    1994-01-01

    The beam entry window and container for a liquid lead spallation target will be exposed to high fluxes of protons and neutrons that are both higher in magnitude and energy than have been experienced in proton accelerators and fission reactors, as well as in a corrosive environment. The structural material of the target should have a good compatibility with liquid lead, a sufficient mechanical strength at elevated temperatures, a good performance under an intense irradiation environment, and a low neutron absorption cross section; these factors have been used to rank the applicability of a wide range of materials for structural containment Nb-1Zr has been selected for use as the structural container for the LANL ABC/ATW molten lead target. Corrosion and mass transfer behavior for various candidate structural materials in liquid lead are reviewed, together with the beneficial effects of inhibitors and various coatings to protect substrate against liquid lead corrosion. Mechanical properties of some candidate materials at elevated temperatures and the property changes resulting from 800 MeV proton irradiation are also reviewed

  10. Application of a bistable convection loop to LMFBR [liquid metal fast breeder reactor] emergency core cooling

    International Nuclear Information System (INIS)

    Anand, G.; Christensen, R.N.

    1990-01-01

    The concept of passive safety features for nuclear reactors has been developed in recent years and has gained wide acceptance. A literature survey of current reactors with passive features indicates that these reactors have some passive features but still do not fully meet the design objectives. Consider a current liquid-metal reactor design like PRISM. During normal operation, liquid sodium enters the reactor at ∼395 degree C and exits at ∼550 degree C. In the event of loss of secondary cooling with or without scram, the primary coolant (liquid sodium) initially acts as a heat sink and its temperature increases. For events without scram, the negative reactivity induced by the increase in temperature shuts the reactor down. When the average temperature of the sodium reaches ∼600 to 650 degree C, it overflows from the reactor vessel, activating the auxiliary cooling system. The auxiliary cooling system uses natural circulation of air around the reactor guard vessel. An alternative to the current design incorporates a bistable convection loop (BCL). The incorporation of the BCL concept remarkably improves the safety of the nuclear reactors. Application of the BCL concept to liquid-metal fast breeder reactors is described in this paper

  11. Advancing liquid/liquid extraction through a novel microfluidic device: Theory, instrumentation and applications in gas chromatography

    NARCIS (Netherlands)

    Peroni, D.; van Egmond, W.; Kok, W.T.; Janssen, J.G.M.

    2012-01-01

    A new chip-based liquid-liquid extraction technique for sample preparation of aqueous samples for GC was developed. Extraction is performed in a segmented flow system with additional mixing provided by an etched channel structure. The dimensions of the device are optimized to allow benefiting of the

  12. The high pressure liquid chromatography and its application to the separation of polynuclear aromatic hydrocarbons in atmospheric dust and burning residues

    International Nuclear Information System (INIS)

    Lopez, M.-C.

    1975-09-01

    A new technique of analysis is described: the high speed liquid chromatography or more exactly the high performance liquid chromatography because of the progress achieved on the new packings of the columns. The main types of chromatography, according to the phenomena involved are described: adsorption, partition, ion-exchange and exclusion chromatography. A brief outline is given of the theory for determination of stationary and mobile phases in order to obtain the optimum conditions of separation. Some exemples of possible applications are given, particularly the use of this technique for the separation of polycyclic aromatic hydrocarbons in atmospheric pollution and burning residues [fr

  13. Finite element analysis of heating a non-mixed liquid with non-uniform solar flux through semi-transparent medium

    International Nuclear Information System (INIS)

    Safdari, Y.B.; Sirivatch Shimpalee

    2000-01-01

    It has been shown in an application [1-3), in a solar flux heating of a liquid through a semi-transparent medium, that the far side of the medium receiving solar radiation achieves a higher temperature than the side receiving radiation. In this work, a two-dimensional transient finite element analysis of concentrated solo flux heating of a non-mixed liquid through a semi-transparent medium (such as glass) is carried out. The radiation heat flux is provided by a paraboloidal concentrator which focuses a non-uniform flux on the receiver. Realistic boundary conditions are considered to analyse the heat transfer problem to study the transient temperature distribution in the medium. The effects of a non-mixed liquid and a non-uniform flux show dramatic differences between the present work and the previous works [1-31. A non-mixed liquid causes greater temperature difference in the glass in both radial and axial direction than a mixed liquid used in the previous analysis. Therminol-55 is used as heated liquid for lower flux case, and sodium is used for high flux. The effect of the conductivity difference between the two liquids is studied. Results show that in the case of Therminol-55, the temperature of the liquid-side glass is much higher than that of the sodium case. The temperature distribution will be used to analyse the thermal stresses in the glass to see if fracture will occurs [4) in the glass. (Author)

  14. Analysis of human serum by liquid chromatography-mass spectrometry: improved sample preparation and data analysis.

    Science.gov (United States)

    Govorukhina, N I; Reijmers, T H; Nyangoma, S O; van der Zee, A G J; Jansen, R C; Bischoff, R

    2006-07-07

    Discovery of biomarkers is a fast developing field in proteomics research. Liquid chromatography coupled on line to mass spectrometry (LC-MS) has become a powerful method for the sensitive detection, quantification and identification of proteins and peptides in biological fluids like serum. However, the presence of highly abundant proteins often masks those of lower abundance and thus generally prevents their detection and identification in proteomics studies. To perform future comparative analyses of samples from a serum bank of cervical cancer patients in a longitudinal and cross-sectional manner, methodology based on the depletion of high-abundance proteins followed by tryptic digestion and LC-MS has been developed. Two sample preparation methods were tested in terms of their efficiency to deplete high-abundance serum proteins and how they affect the repeatability of the LC-MS data sets. The first method comprised depletion of human serum albumin (HSA) on a dye ligand chromatographic and immunoglobulin G (IgG) on an immobilized Protein A support followed by tryptic digestion, fractionation by cation-exchange chromatography, trapping on a C18 column and reversed-phase LC-MS. The second method included depletion of the six most abundant serum proteins based on multiple immunoaffinity chromatography followed by tryptic digestion, trapping on a C18 column and reversed-phase LC-MS. Repeatability of the overall procedures was evaluated in terms of retention time and peak area for a selected number of endogenous peptides showing that the second method, besides being less time consuming, gave more repeatable results (retention time: <0.1% RSD; peak area: <30% RSD). Application of an LC-MS component detection algorithm followed by principal component analysis (PCA) enabled discrimination of serum samples that were spiked with horse heart cytochrome C from non-spiked serum and the detection of a concentration trend, which correlated to the amount of spiked horse heart

  15. An empirical analysis of macroeconomic and bank-specific factors affecting liquidity of Indian banks

    Directory of Open Access Journals (Sweden)

    Anamika Singh

    2016-06-01

    Full Text Available This paper investigates bank-specific and macroeconomic factors that determine the liquidity of Indian banks. To explore the association, we perform OLS, fixed effect and random effect estimates on a data set of 59 banks from 2000 to 2013. Studied bank-specific factors include bank size, profitability, cost of funding, capital adequacy and deposits. GDP, inflation and unemployment are the macroeconomic factors considered. We also perform liquidity trend analysis of Indian banks based on ownership. Findings reveal that bank ownership affects liquidity of banks. Based on panel data analysis, we suggest that bank-specific (except cost of funding and macroeconomic (except unemployment factors significantly affect bank liquidity. These include bank size, deposits, profitability, capital adequacy, GDP and inflation. Further, bank size and GDP were found to have a negative effect on bank liquidity. On the other hand, deposits, profitability, capital adequacy and inflation showed a positive effect on bank liquidity. Cost of funding and unemployment showed an insignificant effect on bank liquidity. Our paper highlights new facts for enhanced understanding of liquidity in emerging economies like India.

  16. Quantum spin liquids in the absence of spin-rotation symmetry: Application to herbertsmithite

    Science.gov (United States)

    Dodds, Tyler; Bhattacharjee, Subhro; Kim, Yong Baek

    2013-12-01

    It has been suggested that the nearest-neighbor antiferromagnetic Heisenberg model on the Kagome lattice may be a good starting point for understanding the spin-liquid behavior discovered in herbertsmithite. In this work, we investigate possible quantum spin liquid phases in the presence of spin-rotation symmetry-breaking perturbations such as Dzyaloshinskii-Moriya and Ising interactions, as well as second-neighbor antiferromagnetic Heisenberg interactions. Experiments suggest that such perturbations are likely to be present in herbertsmithite. We use the projective symmetry group analysis within the framework of the slave-fermion construction of quantum spin liquid phases and systematically classify possible spin liquid phases in the presence of perturbations mentioned above. The dynamical spin-structure factor for relevant spin liquid phases is computed and the effect of those perturbations are studied. Our calculations reveal dispersive features in the spin structure factor embedded in a generally diffuse background due to the existence of fractionalized spin-1/2 excitations called spinons. For two of the previously proposed Z2 states, the dispersive features are almost absent, and diffuse scattering dominates over a large energy window throughout the Brillouin zone. This resembles the structure factor observed in recent inelastic neutron-scattering experiments on singlet crystals of herbertsmithite. Furthermore, one of the Z2 states with the spin structure factor with mostly diffuse scattering is gapped, and it may be adiabatically connected to the gapped spin liquid state observed in recent density-matrix renormalization group calculations for the nearest-neighbor antiferromagnetic Heisenberg model. The perturbations mentioned above are found to enhance the diffuse nature of the spin structure factor and reduce the momentum dependencies of the spin gap. We also calculate the electron spin resonance (ESR) absorption spectra that further characterize the role of

  17. Development and validation of a solid-phase extraction method coupled to liquid chromatography with fluorescence detection for the determination of fluoroquinolone residues in powdered infant formulae. Application to the analysis of samples from the Spanish and Latin American market.

    Science.gov (United States)

    Rodriguez, E; Moreno-Bondi, M C; Marazuela, M D

    2008-10-31

    This paper describes a new method for the effective extraction, clean-up and chromatographic analysis of residues of four fluoroquinolones (ciprofloxacin, enrofloxacin, danofloxacin and sarafloxacin) in powdered infant formulae and follow-on preparations. Samples were reconstituted following the manufacturer's recommendations and treated with trichloroacetic acid in methanol 10% (w/v) for deproteinization. Two solid-phase extraction cartridges have been evaluated for sample clean-up and preconcentration, Strata Screen A and Strata X and the later provided the best recoveries for all the analytes tested. Chromatographic analysis has been carried out using a polar endcapped column (AQUA C(18)) and fluorescence detection, with lomefloxacin (LOME) as internal standard. Method validation has been performed according to European Commission Decision 2002/657/EC criteria, in terms of linearity, recovery, precision, specificity, decision limit (CC(alpha)) and detection capability (CC(beta)). Typical recoveries ranged between 70 and 110% at levels below and above the maximum residue limits of the target analytes in bovine milk, with an excellent intralab reproducibility (RSDsmarket, using LC-MS/MS as confirmatory technique.

  18. Solid-phase extraction combined with high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry analysis of pesticides in water: method performance and application in a reconnaissance survey of residues in drinking water in Greater Cairo, Egypt.

    Science.gov (United States)

    Potter, Thomas L; Mohamed, Mahmoud A; Ali, Hannah

    2007-01-24

    Monitoring of water resources for pesticide residues is often needed to ensure that pesticide use does not adversely impact the quality of public water supplies or the environment. In many rural areas and throughout much of the developing world, monitoring is often constrained by lack of testing facilities; thus, collection of samples and shipment to centralized laboratories for analysis is required. The portability, ease of use, and potential to enhance analyte stability make solid-phase extraction (SPE) an attractive technique for handling water samples prior to their shipment. We describe performance of an SPE method targeting a structurally diverse mixture of 25 current-use pesticides and two common degradates in samples of raw and filtered drinking water collected in Greater Cairo, Egypt. SPE was completed in a field laboratory in Egypt, and cartridges were shipped to the United States for elution and high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry analysis. Quantitative and reproducible recovery of 23 of 27 compounds (average = 96%; percent relative standard deviation = 21%) from matrix spikes (1 microg L-1 per component) prepared in the field and from deionized water fortified similarly in the analytical laboratory was obtained. Concurrent analysis of unspiked samples identified four parent compounds and one degradate in drinking water samples. No significant differences were observed between raw and filtered samples. Residue levels in all cases were below drinking water and "harm to aquatic-life" thresholds, indicating that human and ecological risks of pesticide contamination were relatively small; however, the study was limited in scale and scope. Further monitoring is needed to define spatial and temporal variation in residue concentrations. The study has demonstrated the feasibility of performing studies of this type using SPE to extract and preserve samples in the field. The approach should be broadly

  19. Analysis of penicillin G in milk by liquid chromatography.

    Science.gov (United States)

    Boison, J O; Keng, L J; MacNeil, J D

    1994-01-01

    A liquid chromatographic (LC) method that was previously developed for penicillin G residues in animal tissues has been adapted to milk and milk products. After protein precipitation with sodium tungstate, samples are applied to a C18 solid-phase extraction cartridge, from which penicillin is eluted, derivatized with 1,2,4-triazole-mercuric chloride solution, and analyzed by isocratic liquid chromatography (LC) on a C18 column with UV detection at 325 nm. Quantitation is done with reference to penicillin V as an internal standard. Penicillin G recoveries were determined to be > 70% on standards fortified at 3-60 ppb. Accuracy approached 100% using the penicillin V internal standard. The detection limit for penicillin G residues was 3 ppb in fluid milk. Samples may be confirmed by thermospray/LC at concentrations approaching the detection limit of the UV method.

  20. Analysis of the dynamics of liquid aluminium: recurrent relation approach

    International Nuclear Information System (INIS)

    Mokshin, A V; Yulmetyev, R M; Khusnutdinoff, R M; Haenggi, P

    2007-01-01

    By use of the recurrent relation approach (RRA) we study the microscopic dynamics of liquid aluminium at T = 973 K and develop a theoretical model which satisfies all the corresponding sum rules. The investigation covers the inelastic features as well as the crossover of our theory into the hydrodynamical and the free-particle regimes. A comparison between our theoretical results with those following from a generalized hydrodynamical approach is also presented. In addition to this we report the results of our molecular dynamics simulations for liquid aluminium, which are also discussed and compared to experimental data. The results obtained reveal (i) that the microscopical dynamics of density fluctuations is defined mainly by the first four even frequency moments of the dynamic structure factor, and (ii) the inherent relation of the high-frequency collective excitations observed in experimental spectra of dynamic structure factor S(k,ω) with the two-, three- and four-particle correlations

  1. Liquid Chromatography for Analysis of Metformin in Myrmeleon sp.

    OpenAIRE

    Afidatul Muadifah; Hermin Sulistyarti; Sasangka Prasetyawan

    2017-01-01

    Myrmeleon sp is a typical of insect larva which has been used in Indonesia for diabetes treatment. However, there is no sufficient scientific report explaining the bioactive compounds in this insect. Based on our preliminary research, this insect contained metformin, i.e. one of bioactive compounds for the treatment of type-2 diabetes. Therefore, this study is focused on the development of separation technique using high performance liquid chromatography (HPLC) on a reverse phase C-18 column ...

  2. Application of an immobilized ionic liquid for the passive sampling of perfluorinated substances in water.

    Science.gov (United States)

    Wang, Lei; Gong, Xinying; Wang, Ruonan; Gan, Zhiwei; Lu, Yuan; Sun, Hongwen

    2017-09-15

    Ionic liquids have been used to efficiently extract a wide range of polar and nonpolar organic contaminants from water. In this study, imidazole ionic liquids immobilized on silica gel were synthesized through a chemical bonding method, and the immobilized dodecylimidazolium ionic liquid was selected as the receiving phase material in a POCIS (polar organic chemical integrative sampler) like passive sampler to monitor five perfluoroalkyl substances (PFASs) in water. Twenty-one days of integrative accumulation was conducted in laboratory scale experiments, and the accumulated PFASs in the samplers were eluted and analyzed by high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The partitioning coefficients of most PFASs between sampler sorbents and water in the immobilized ionic liquid (IIL)-sampler were higher than those in the HLB-sampler, especially for compounds with shorter alkyl chains. The effects of flow velocity, temperature, dissolved organic matter (DOM) and pH on the uptake of these analytes were also evaluated. Under the experimental conditions, the uptake of PFASs in the IIL-sampler slightly increased with the flow velocity and temperature, while different influences of DOM and pH on the uptake of PFAS homologues with short or long chains were observed. The designed IIL-samplers were applied in the influent and effluent of a wastewater treatment plant. All five PFASs could be accumulated in the samplers, with concentrations ranging from 6.5×10 -3 -3.6×10 -1 nmol/L in the influent and from 1.3×10 -2 -2.2×10 -1 nmol/L in the effluent. The calculated time-weighted average concentrations of most PFASs fit well with the detected concentrations of the active sampling, indicating the applicability of the IIL-sampler in monitoring these compounds in water. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Native Liquid Extraction Surface Analysis Mass Spectrometry: Analysis of Noncovalent Protein Complexes Directly from Dried Substrates

    Science.gov (United States)

    Martin, Nicholas J.; Griffiths, Rian L.; Edwards, Rebecca L.; Cooper, Helen J.

    2015-08-01

    Liquid extraction surface analysis (LESA) mass spectrometry is a promising tool for the analysis of intact proteins from biological substrates. Here, we demonstrate native LESA mass spectrometry of noncovalent protein complexes of myoglobin and hemoglobin from a range of surfaces. Holomyoglobin, in which apomyoglobin is noncovalently bound to the prosthetic heme group, was observed following LESA mass spectrometry of myoglobin dried onto glass and polyvinylidene fluoride surfaces. Tetrameric hemoglobin [(αβ)2 4H] was observed following LESA mass spectrometry of hemoglobin dried onto glass and polyvinylidene fluoride (PVDF) surfaces, and from dried blood spots (DBS) on filter paper. Heme-bound dimers and monomers were also observed. The `contact' LESA approach was particularly suitable for the analysis of hemoglobin tetramers from DBS.

  4. The application of tribology in assessing texture perception of oral liquid medicines.

    Science.gov (United States)

    Batchelor, Hannah; Venables, Rebecca; Marriott, John; Mills, Tom

    2015-02-20

    The palatability of medicines is likely to have a significant impact on patient adherence and consequently, on the safety and efficacy of a medicinal product. Palatability encompasses properties of medicines not limited to taste including swallowability (e.g. size, shape, texture). However, there has been limited work undertaken to measure the texture of medicines and how this may affect palatability and subsequent adherence. Tribology offers an understanding of oral processes and can allow physical properties of materials to be linked to "mouthfeel". This paper describes a preliminary application of tribology to oral liquid medicines and demonstrates that this technique is useful in the development of future oral liquid medicines. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Separation and recovery of ruthenium from radioactive liquid waste for specific medical applications - wealth from waste

    International Nuclear Information System (INIS)

    Pente, A.S.; Ramchandran, M.; Wawale, P.R.; Thorat, Vidya; Gireesan, Prema; Katarni, V.G.; Kumar, Amar; Kaushik, C.P.; Raj, Kanwar

    2010-01-01

    In recent past, 106 Ru has emerged as one of the promising β - emitting radionuclide used in brachytherapy for the treatment of choroidal melanoma and retinoblastoma due to its favorable nuclear decay characteristics. A plaque with low amount of 106 Ru activity of the order of 12 - 26 MBq (0.3 - 0.7 mCi ) is suitable for the above treatment and can be used for an adequate duration of 1-2 years due to suitable half-life (T 1/2 = 1.02 y). In order to undertake the preparation of 106 Ru plaque, an indigenous availability of this radionuclide with acceptable purity was explored from radioactive liquid waste having wide spectrum of fission products in line with wealth from waste strategy. Process methodology has been developed and standardized at Process Control Laboratory of Waste Immobilization Plant (WIP), Trombay for separation of 106 Ru from radioactive liquid waste for intended medical application. (author)

  6. Application of Alkaline Ionic Liquids in the Pretreatment Process of Eucalyptus Kraft Pulping

    Directory of Open Access Journals (Sweden)

    Yi Hou

    2016-09-01

    Full Text Available In order to explore the potential application of green solvent ionic liquids (ILs in the kraft pulping process, eucalyptus wood was pretreated by [Mmim]DMP before normal pulping. The results showed that materials pretreated shortly by the ionic liquid had a higher yield and viscosity coupled with a lower potassium permanganate value and residual lignin content in the pulp, as a result of the cooking process. It was also inferred that alkaline [Mmim]DMP pretreatment could dissolve lignin effectively from fiber to result in a stronger binding force and more entangled properties. Paper tensile and burst strength were improved by about 40% and 60%, respectively. These results provide a new way for eucalyptus to be utilized in the kraft pulping process.

  7. Temperature profiles in a steam-liquid sodium jet. Application to wastage

    International Nuclear Information System (INIS)

    Park, K.H.

    1983-12-01

    The first part of this work presents a certain number of recalls concerning wastage, jets, sonic jets, turbulent jets reactive or not. The aim of this thesis is to group the theoretical formulas concerning gaseous jets in liquids, to determine from experiments the temperature distributions inside the reactive jet, and to establish correlations between the theory and the experiments carried out to obtain a model representative of the temperature distribution in steam jets into liquid sodium. The theoretical development is presented (differential and integral approaches), as also the experiments (JONAS) developed to determine the temperature distribution. The field of validity of experiments and approximations is then defined in view of application to wastage [fr

  8. Microencapsulation of gallium-indium (Ga-In) liquid metal for self-healing applications.

    Science.gov (United States)

    Blaiszik, B J; Jones, A R; Sottos, N R; White, S R

    2014-01-01

    Microcapsules containing a liquid metal alloy core of gallium-indium (Ga-In) are prepared via in situ urea-formaldehyde (UF) microencapsulation. The capsule size, shape, thermal properties, and shell wall thickness are investigated. We prepare ellipsoidal capsules with major and minor diameter aspect ratios ranging from 1.64 to 1.08 and with major diameters ranging from 245 µm to 3 µm. We observe that as the capsule major diameter decreases, the aspect ratio approaches 1. The thermal properties of the prepared microcapsules are investigated by thermogravimetric (TGA) and differential scanning calorimetry (DSC). Microcapsules are shown to survive incorporation into an epoxy matrix and to trigger via mechanical damage to the cured matrix. Microcapsules containing liquid metal cores may have diverse applications ranging from self-healing to contrast enhancement or the demonstration of mechano-adaptive circuitry.

  9. Analytical expressions for thermophysical properties of solid and liquid tungsten relevant for fusion applications

    Directory of Open Access Journals (Sweden)

    P. Tolias

    2017-12-01

    Full Text Available The status of the literature is reviewed for several thermophysical properties of pure solid and liquid tungsten which constitute input for the modelling of intense plasma-surface interaction phenomena that are important for fusion applications. Reliable experimental data are analyzed for the latent heat of fusion, the electrical resistivity, the specific isobaric heat capacity, the thermal conductivity and the mass density from the room temperature up to the boiling point of tungsten as well as for the surface tension and the dynamic viscosity across the liquid state. Analytical expressions of high accuracy are recommended for these thermophysical properties that involved a minimum degree of extrapolations. In particular, extrapolations were only required for the surface tension and viscosity.

  10. Tensorial analysis of Eshelby stresses in 3D supercooled liquids

    Science.gov (United States)

    Lemaître, Anaël

    2015-10-01

    It was recently proposed that the local rearrangements governing relaxation in supercooled liquids impress on the liquid medium long-ranged (Eshelby) stress fluctuations that accumulate over time. From this viewpoint, events must be characterized by elastic dipoles, which are second order tensors, and Eshelby fields are expected to show up in stress and stress increment correlations, which are fourth order tensor fields. We construct here an analytical framework that permits analyzing such tensorial correlations in isotropic media in view of accessing Eshelby fields. Two spherical bases are introduced, which correspond to Cartesian and spherical coordinates for tensors. We show how they can be used to decompose stress correlations and thus test such properties as isotropy and power-law scalings. Eshelby fields and the predicted stress correlations in an infinite medium are shown to belong to an algebra that can conveniently be described using the spherical tensor bases. Using this formalism, we demonstrate that the inherent stress field of 3D supercooled liquids is power law correlated and carries the signature of Eshelby fields, thus supporting the idea that relaxation events give rise to Eshelby stresses that accumulate over time.

  11. Aza-crown ether complex cation ionic liquids: preparation and applications in organic reactions.

    Science.gov (United States)

    Song, Yingying; Cheng, Chen; Jing, Huanwang

    2014-09-26

    Aza-crown ether complex cation ionic liquids (aCECILs) were devised, fabricated, and characterized by using NMR spectroscopy, MS, thermogravimetric differential thermal analysis (TG-DTA), elemental analysis and physical properties. These new and room-temperature ILs were utilized as catalysts in various organic reactions, such as the cycloaddition reaction of CO2 to epoxides, esterification of acetic acid and alcohols, the condensation reaction of aniline and propylene carbonate, and Friedel-Crafts alkylation of indole with aldehydes were investigated carefully. In these reactions, the ionic liquid exhibited cooperative catalytic activity between the anion and cation. In addition, the aza-[18-C-6HK][HSO4]2 was the best acidic catalyst in the reactions of esterification and Friedel-Crafts alkylation under mild reaction conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Analysis of quaternary ammonium and phosphonium ionic liquids by reversed-phase high-performance liquid chromatography with charged aerosol detection and unified calibration.

    Science.gov (United States)

    Stojanovic, Anja; Lämmerhofer, Michael; Kogelnig, Daniel; Schiesel, Simone; Sturm, Martin; Galanski, Markus; Krachler, Regina; Keppler, Bernhard K; Lindner, Wolfgang

    2008-10-31

    Several hydrophobic ionic liquids (ILs) based on long-chain aliphatic ammonium- and phosphonium cations and selected aromatic anions were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC) employing trifluoroacetic acid as ion-pairing additive to the acetonitrile-containing mobile phase and adopting a step-gradient elution mode. The coupling of charged aerosol detection (CAD) for the non-chromophoric aliphatic cations with diode array detection (DAD) for the aromatic anions allowed their simultaneous analysis in a set of new ILs derived from either tricaprylmethylammonium chloride (Aliquat 336) and trihexyltetradecylphosphonium chloride as precursors. Aliquat 336 is a mix of ammonium cations with distinct aliphatic chain lengths. In the course of the studies it turned out that CAD generates an identical detection response for all the distinct aliphatic cations. Due to lack of single component standards of the individual Aliquat 336 cation species, a unified calibration function was established for the quantitative analysis of the quaternary ammonium cations of the ILs. The developed method was validated according to ICH guidelines, which confirmed the validity of the unified calibration. The application of the method revealed molar ratios of cation to anion close to 1 indicating a quantitative exchange of the chloride ions of the precursors by the various aromatic anions in the course of the synthesis of new ILs. Anomalies of CAD observed for the detection of some aromatic anions (thiosalicylate and benzoate) are discussed.

  13. PREFACE: Dielectrics 2009: Measurement Analysis and Applications

    Science.gov (United States)

    Vaughan, Alun; Williams, Graham

    2009-07-01

    The conference Dielectrics 2009: Measurements, Analysis and Applications represents a significant milestone in the evolution of dielectrics research in the UK. It is reasonable to state that the academic study of dielectrics has led to many fundamental advances and that dielectric materials underpin the modern world in devices ranging from field effect transistors, which operate at extremely high fields, albeit low voltages, to the high voltage plants that provide the energy that powers our economy. The origins of the Dielectrics Group of the Institute of Physics (IOP), which organized this conference, can be traced directly back to the early 1960s, when Professor Mansel Davies was conducting research into the dielectric relaxation behaviour of polar liquids and solids at The Edward Davies Chemical Laboratories of the University College of Wales, Aberystwyth. He was already well-known internationally for his studies of molecular structure and bonding of small molecules, using infra-red-spectroscopy, and of the physical properties of hydrogen-bonded liquids and solids, using thermodynamic methods. Dielectric spectroscopy was a fairly new area for him and he realized that opportunities for scientists in the UK to gather together and discuss their research in this developing area of physical chemistry/chemical physics were very limited. He conceived the idea of forming a Dielectrics Discussion Group (DDG), which would act as a meeting point and provide a platform for dielectrics research in the UK and beyond and, as a result, a two-day Meeting was convened in the spring of 1968 at Gregynog Hall of the University of Wales, near Newtown, Montgomeryshire. It was organized by Mansel Davies, Alun Price and Graham Williams, all physical chemists from the UCW, Aberystwyth. Fifty scientists attended, being a mix of physical chemists, theoretical chemists, physicists, electrical engineers, polymer and materials scientists, all from the UK, except Dr Brendan Scaife of Trinity

  14. JANNAF "Test and Evaluation Guidelines for Liquid Rocket Engines": Status and Application

    Science.gov (United States)

    Parkinson, Douglas; VanLerberghe, Wayne M.; Rahman, Shamim A.

    2017-01-01

    For many decades, the U.S. rocket propulsion industrial base has performed remarkably in developing complex liquid rocket engines that can propel critical payloads into service for the nation, as well as transport people and hardware for missions that open the frontiers of space exploration for humanity. This has been possible only at considerable expense given the lack of detailed guidance that captures the essence of successful practices and knowledge accumulated over five decades of liquid rocket engine development. In an effort to provide benchmarks and guidance for the next generation of rocket engineers, the Joint Army Navy NASA Air Force (JANNAF) Interagency Propulsion Committee published a liquid rocket engine (LRE) test and evaluation (T&E) guideline document in 2012 focusing on the development challenges and test verification considerations for liquid rocket engine systems. This document has been well received and applied by many current LRE developers as a benchmark and guidance tool, both for government-driven applications as well as for fully commercial ventures. The USAF Space and Missile Systems Center (SMC) has taken an additional near-term step and is directing activity to adapt and augment the content from the JANNAF LRE T&E guideline into a standard for potential application to future USAF requests for proposals for LRE development initiatives and launch vehicles for national security missions. A draft of this standard was already sent out for review and comment, and is intended to be formally approved and released towards the end of 2017. The acceptance and use of the LRE T&E guideline is possible through broad government and industry participation in the JANNAF liquid propulsion committee and associated panels. The sponsoring JANNAF community is expanding upon this initial baseline version and delving into further critical development aspects of liquid rocket propulsion testing at the integrated stage level as well as engine component level, in

  15. Simultaneous analysis of steviol and steviol glycosides by liquid chromatography with ultraviolet detection on a mixed-mode column: application to Stevia plant material and Stevia-containing dietary supplements.

    Science.gov (United States)

    Jaworska, Karolina; Krynitsky, Alexander J; Rader, Jeanne I

    2012-01-01

    Simultaneous separation of steviol and steviol glycosides is challenging because of differences in their polarity and chemical structure. In this study, simultaneous analysis of steviol and steviol glycosides was achieved by LC with UV detection using a mixed-mode RP weak anion exchange chromatography column. Steviol and seven steviol glycosides were analyzed on an Acclaim Mixed-Mode Wax-1 (Dionex) column with a linear gradient of deionized water adjusted to pH 3.00 with phosphoric acid and acetonitrile. The extraction was performed by sonicating dry plant material at 40 degreesC in acetonitrile-water (30 + 70, v/v). LOQ values (mg/g dry weight of plant material) were rebaudioside B, 0.50; steviol, 0.70, dulcoside A, 1.0; steviolbioside, 1.2; stevioside and rebaudioside C, 2.0; rebaudioside D, 3.3; and rebaudioside A, 5.0. The method demonstrated suitable performance for all analytes tested with respect to accuracy (mean recoveries 95-99%), intraday and interday precision for retention times (0.070-0.28% and 0.33-1.0% RSD, respectively), and linearity. The method was used to authenticate steviol glycosides in several samples of Stevia plant material as well as to quantitate steviol glycosides in dietary supplements containing Stevia.

  16. Refining and end use study of coal liquids II - linear programming analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, C.; Tam, S.

    1995-12-31

    A DOE-funded study is underway to determine the optimum refinery processing schemes for producing transportation fuels that will meet CAAA regulations from direct and indirect coal liquids. The study consists of three major parts: pilot plant testing of critical upgrading processes, linear programming analysis of different processing schemes, and engine emission testing of final products. Currently, fractions of a direct coal liquid produced form bituminous coal are being tested in sequence of pilot plant upgrading processes. This work is discussed in a separate paper. The linear programming model, which is the subject of this paper, has been completed for the petroleum refinery and is being modified to handle coal liquids based on the pilot plant test results. Preliminary coal liquid evaluation studies indicate that, if a refinery expansion scenario is adopted, then the marginal value of the coal liquid (over the base petroleum crude) is $3-4/bbl.

  17. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xianlai; Li, Jinhui, E-mail: jinhui@tsinghua.edu.cn

    2014-04-01

    Highlights: • Manual dismantling is superior in spent high-power LiBs recycling. • Heated ionic liquid can effectively separate Al and cathode materials. • Fourier’s law was adopted to determine the heat transfer mechanism. • The process of spent LiBs recycling with heated ionic liquid dismantling was proposed. - Abstract: Because of the increasing number of electric vehicles, there is an urgent need for effective recycling technologies to recapture the significant amount of valuable metals contained in spent lithium-ion batteries (LiBs). Previous studies have indicated, however, that Al and cathode materials were quite difficult to separate due to the strong binding force supplied by the polyvinylidene fluoride (PVDF), which was employed to bind cathode materials and Al foil. This research devoted to seek a new method of melting the PVDF binder with heated ionic liquid (IL) to separate Al foil and cathode materials from the spent high-power LiBs. Theoretical analysis based on Fourier’s law was adopted to determine the heat transfer mechanism of cathode material and to examine the relationship between heating temperature and retention time. All the experimental and theoretic results show that peel-off rate of cathode materials from Al foil could reach 99% when major process parameters were controlled at 180 °C heating temperature, 300 rpm agitator rotation, and 25 min retention time. The results further imply that the application of IL for recycling Al foil and cathode materials from spent high-power LiBs is highly efficient, regardless of the application source of the LiBs or the types of cathode material. This study endeavors to make a contribution to an environmentally sound and economically viable solution to the challenge of spent LiB recycling.

  18. Liquid chromatography and liquid chromatography-mass spectrometry analysis of donepezil degradation products

    Directory of Open Access Journals (Sweden)

    Mladenović Aleksandar R.

    2015-01-01

    Full Text Available This study describes the investigation of degradation products of donepezil (DP using stability indicating RP-HPLC method for determination of donepezil, which is a centrally acting reversible acetylcholinesterase inhibitor. In order to investigate the stability of drug and formed degradation products, a forced degradation study of drug sample and finished product under different forced degradation conditions has been conducted. Donepezil hydrochloride and donepezil tablets were subjected to stress degradation conditions recommended by International Conference on Harmonization (ICH. Donepezil hydrochloride solutions were subjected to acid and alkali hydrolysis, chemical oxidation and thermal degradation. Significant degradation was observed under alkali hydrolysis and oxidative degradation conditions. Additional degradation products were observed under the conditions of oxidative degradation. The degradation products observed during forced degradation studies were monitored using the high performance liquid chromatography (HPLC method developed. The parent method was modified in order to obtain LC-MS compatible method which was used to identify the degradation products from forced degradation samples using high resolution mass spectrometry. The mass spectrum provided the precise mass from which derived molecular formula of drug substance and degradation products formed and proved the specificity of the method unambiguously. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  19. Feasibility of corona discharge ion mobility spectrometry for direct analysis of samples extracted by dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Jafari, Mohammad T; Riahi, Farhad

    2014-05-23

    The capability of corona discharge ionization ion mobility spectrometry (CD-IMS) for direct analysis of the samples extracted by dispersive liquid-liquid microextraction (DLLME) was investigated and evaluated, for the first time. To that end, an appropriate new injection port was designed and constructed, resulting in possibility of direct injection of the known sample volume, without tedious sample preparation steps (e.g. derivatization, solvent evaporation, and re-solving in another solvent…). Malathion as a test compound was extracted from different matrices by a rapid and convenient DLLME method. The positive ion mobility spectra of the extracted malathion were obtained after direct injection of carbon tetrachloride or methanol solutions. The analyte responses were compared and the statistical results revealed the feasibility of direct analysis of the extracted samples in carbon tetrachloride, resulting in a convenient methodology. The coupled method of DLLME-CD-IMS was exhaustively validated in terms of sensitivity, dynamic range, recovery, and enrichment factor. Finally, various real samples of apple, river and underground water were analyzed, all verifying the feasibility and success of the proposed method for the easy extraction of the analyte using DLLME separation before the direct analysis by CD-IMS. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Improving the Molecular Ion Signal Intensity for In Situ Liquid SIMS Analysis.

    Science.gov (United States)

    Zhou, Yufan; Yao, Juan; Ding, Yuanzhao; Yu, Jiachao; Hua, Xin; Evans, James E; Yu, Xiaofei; Lao, David B; Heldebrant, David J; Nune, Satish K; Cao, Bin; Bowden, Mark E; Yu, Xiao-Ying; Wang, Xue-Lin; Zhu, Zihua

    2016-12-01

    In situ liquid secondary ion mass spectrometry (SIMS) enabled by system for analysis at the liquid vacuum interface (SALVI) has proven to be a promising new tool to provide molecular information at solid-liquid and liquid-vacuum interfaces. However, the initial data showed that useful signals in positive ion spectra are too weak to be meaningful in most cases. In addition, it is difficult to obtain strong negative molecular ion signals when m/z>200. These two drawbacks have been the biggest obstacle towards practical use of this new analytical approach. In this study, we report that strong and reliable positive and negative molecular signals are achievable after optimizing the SIMS experimental conditions. Four model systems, including a 1,8-diazabicycloundec-7-ene (DBU)-base switchable ionic liquid, a live Shewanella oneidensis biofilm, a hydrated mammalian epithelia cell, and an electrolyte popularly used in Li ion batteries were studied. A signal enhancement of about two orders of magnitude was obtained in comparison with non-optimized conditions. Therefore, molecular ion signal intensity has become very acceptable for use of in situ liquid SIMS to study solid-liquid and liquid-vacuum interfaces. Graphical Abstract ᅟ.

  1. Theoretical analysis of the vibration of axisymmetric liquid bridges of arbitrary shape

    Energy Technology Data Exchange (ETDEWEB)

    Montanero, J.M. [Departamento de Electronica e Ingenieria Electromecanica, Universidad de Extremadura, 06071 Badajoz (Spain)

    2003-01-01

    A liquid bridge consists of a mass of liquid sustained by the action of capillary forces between two parallel disks. The dynamics of these liquid columns has been extensively analysed both theoretically and experimentally over the last decades. Many of the studies have focused on the dynamical response of cylindrical liquid bridges subjected to the action of an oscillatory microgravity field due to, for instance, an in-phase vibration of the supporting disks. There have been fewer studies dealing with the vibration of axisymmetric liquid bridges of arbitrary shape. In this paper the dynamics of rotating inviscid axisymmetric liquid bridges is analysed considering the combined effect of residual gravity, the inequality of the disks and the liquid bridge volume. The results are calculated numerically by using the one-dimensional Cosserat model and the full three-dimensional description. The excitation is assumed to be of small amplitude and harmonic, so that the theoretical models are linearized and the analysis is performed in the frequency domain. The details of the numerical methods proposed are discussed. Comparison between the values of the first resonance frequency obtained from both models shows an excellent agreement for long liquid bridges, the discrepancies increasing as the value of the slenderness decreases. (orig.)

  2. Computer-aided thermohydraulic design of TEMA type E shell and tube heat exchangers for use in low pressure, liquid-to-liquid, single phase applications

    Science.gov (United States)

    Kolar, N. J.

    1985-04-01

    Classification, nomenclature, utilization and cost estimating of shell and tube heat exchangers are presented along with an historical overview of various methods currently employed in their design. A procedure for providing preliminary estimates of shell and tube heat exchanger design is developed in detail. The author formulates a computer program which employs this sizing algorithm for low pressure liquid-to-liquid heat exchanger applications. Additionally, problems encountered in the design and manufacture of shell and tube heat exchangers are described along with present methods of solution for each.

  3. Determination of drugs in biological fluids by direct injection of samples for liquid-chromatographic analysis.

    Science.gov (United States)

    Mullett, Wayne M

    2007-03-10

    The analysis of drugs in various biological fluids is an important criterion for the determination of the physiological performance of a drug. After sampling of the biological fluid, the next step in the analytical process is sample preparation. The complexity of biological fluids adds to the challenge of direct determination of the drug by chromatographic analysis, therefore demanding a sample preparation step that is often time-consuming, tedious, and frequently overlooked. However, direct on-line injection methods offer the advantage of reducing sample preparation steps and enabling effective pre-concentration and clean-up of biological fluids. These procedures can be automated and therefore reduce the requirements for handling potentially infectious biomaterial, improve reproducibility, and minimize sample manipulations and potential contamination. The objective of this review is to present an overview of the existing literature with emphasis on advances in automated sample preparation methods for liquid-chromatographic methods. More specifically, this review concentrates on the use of direct injection techniques, such as restricted-access materials, turbulent-flow chromatography and other automated on-line solid-phase extraction (SPE) procedures. It also includes short overviews of emerging automated extraction-phase technologies, such as molecularly imprinted polymers, in-tube solid-phase micro-extraction, and micro-extraction in a packed syringe for a more selective extraction of analytes from complex samples, providing further improvements in the analysis of biological materials. Lastly, the outlook for these methods and potential new applications for these technologies are briefly discussed.

  4. Applications and Mechanisms of Ionic Liquids in Whole-Cell Biotransformation

    Science.gov (United States)

    Fan, Lin-Lin; Li, Hong-Ji; Chen, Qi-He

    2014-01-01

    Ionic liquids (ILs), entirely composed of cations and anions, are liquid solvents at room temperature. They are interesting due to their low vapor pressure, high polarity and thermostability, and also for the possibility to fine-tune their physicochemical properties through modification of the chemical structures of their cations or anions. In recent years, ILs have been widely used in biotechnological fields involving whole-cell biotransformations of biodiesel or biomass, and organic compound synthesis with cells. Research studies in these fields have increased from the past decades and compared to the typical solvents, ILs are the most promising alternative solvents for cell biotransformations. However, there are increasing limitations and new challenges in whole-cell biotransformations with ILs. There is little understanding of the mechanisms of ILs’ interactions with cells, and much remains to be clarified. Further investigations are required to overcome the drawbacks of their applications and to broaden their application spectrum. This work mainly reviews the applications of ILs in whole-cell biotransformations, and the possible mechanisms of ILs in microbial cell biotransformation are proposed and discussed. PMID:25007820

  5. Applications and mechanisms of ionic liquids in whole-cell biotransformation.

    Science.gov (United States)

    Fan, Lin-Lin; Li, Hong-Ji; Chen, Qi-He

    2014-07-09

    Ionic liquids (ILs), entirely composed of cations and anions, are liquid solvents at room temperature. They are interesting due to their low vapor pressure, high polarity and thermostability, and also for the possibility to fine-tune their physicochemical properties through modification of the chemical structures of their cations or anions. In recent years, ILs have been widely used in biotechnological fields involving whole-cell biotransformations of biodiesel or biomass, and organic compound synthesis with cells. Research studies in these fields have increased from the past decades and compared to the typical solvents, ILs are the most promising alternative solvents for cell biotransformations. However, there are increasing limitations and new challenges in whole-cell biotransformations with ILs. There is little understanding of the mechanisms of ILs' interactions with cells, and much remains to be clarified. Further investigations are required to overcome the drawbacks of their applications and to broaden their application spectrum. This work mainly reviews the applications of ILs in whole-cell biotransformations, and the possible mechanisms of ILs in microbial cell biotransformation are proposed and discussed.

  6. Liquid chromatography automatic system with optical activity laser detector and its applications

    International Nuclear Information System (INIS)

    Fajer, V.; Naranjo, S.; Fernandez, H.; Mora, W.; Cepero, T.; Arista, E.; Mesa, G.; Cossio, G.; Arreche, J.; Fonfria, C.; Rodriguez, C.W.

    2009-01-01

    A new liquid chromatographic system with polarimetric detection and a computer program allowing the output of chromatograms to a display on line and electronic data storing was designed, built and put to work. The chromatographic system includes the laser polarimetric detector, having a measuring interval of one second, the chromatographic columns, the continuous flux polarimeter tubes of 50 and 100 mm, the programs for data acquisition, processing and storing, and the technical know-how for its most efficiently application. Thirty minutes is all the time needed to obtain a chromatogram by this method which is reasonably shorter than the time required for any other known comparable technique, and offering, besides, lower operation cost. The combination of molecular exclusion liquid chromatography and laser polarimetric detection has turned into a carbohydrate separation and quantification system of basic importance for the evaluation of plants fluids of industrial interest (sugarcane, agave, vegetable extracts, etc.). It is described here the application of this system as an early or complementary indicator of leaf scald -disease that affects sugarcane plants-. Another application on algae extracts gave good results in the separation and identification of biologically active components. The introduction of this system in several research centers in Cuba and abroad has resulted in practical information for the industry. (Author)

  7. Simplified analysis of trasients in pool type liquid metal reactors

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1987-01-01

    The conceptual design of a liquid metal fast breeder reactor will require a great effort of development in several technical disciplines. One of them is the thermal-hydraulic design of the reactor and of the heat and fluid transport components inside the reactor vessel. A simplified model to calculate the maximum sodium temperatures is presented in this paper. This model can be used to optimize the layout of components inside the reactor vessel and was easily programmed in a small computer. Illustrative calculations of two transients of a typical hot pool type fast reactor are presented and compared with the results of other researchers. (author) [pt

  8. Compensation schemes, liquidity provision, and asset prices: An experimental analysis

    OpenAIRE

    Baghestanian, Sascha; Gortner, Paul; Massenot, Baptiste

    2015-01-01

    In an experimental setting in which investors can entrust their money to traders, we investigate how compensation schemes affect liquidity provision and asset prices. Investors face a trade-off between risk and return. At the benefit of a potentially higher return, they can entrust their money to a trader. However this investment is risky, as the trader might not be trustworthy. Alternatively, they can opt for a safe but low return. We study how subjects solve this trade-off when traders are ...

  9. Use of highly pressurized liquid nitrogen technology for concrete scabbling application at SICN nuclear facility - 59282

    International Nuclear Information System (INIS)

    Moggia, Fabrice; Vaudey, Claire-Emilie; Damerval, Frederique; Varet, Thierry; Toulemonde, Valerie; Richard, Frederic; Anderson, Gary

    2012-01-01

    The decommissioning process is a quite long and complicated stage who may take few years or decades to be achieved. Generally, this process involves the implementation of a large number of technologies dedicated to cutting and decontamination operations. Based on this finding, the Clean- Up Business Unit of AREVA with Air Liquide decided to start the development of a new technology based on the use of liquid nitrogen (-140 deg. C / 3500 bar). The NitroJet R process is a quite interesting and promising technology. It can be used, as we described in this document, for concrete scabbling operations but also for decontamination and cutting applications. The Clean-Up Business Unit, with its partner Air Liquide, realized a complete study of this technology including several tests and optimizations to be able to handle it in a nuclear environment. Thus, we did: - increase of the reliability of the machine, - nuclearization of the system (including the development of efficient shroud system and efficient HP pipes insulation); - development of a dedicated bearer for automatic configuration; - optimization of parameters for D and D applications. As we already mentioned, NitroJet R technology showed promising perspectives as: - economic: increase of rate processing, decrease in site monitoring costs, - environmental: use of an inert gas, no secondary waste generation, non use of chemical, dry process, - social: less strenuous work, decrease of operator dosimetry compatible with ALARA principle The future for the NitroJet R technology will be its implementation in a real high level activity environment. This process will be used in spring 2012 in AREVA nuclear reprocessing facility of La Hague (France) to accomplish concrete scabbling applications. This test will be the last of a long development period before industrial exploitation. (authors)

  10. Gap Analysis: Application to Earned Value Analysis

    OpenAIRE

    Langford, Gary O.; Franck, Raymond (Chip)

    2008-01-01

    Sponsored Report (for Acquisition Research Program) Earned Value is regarded as a useful tool to monitor commercial and defense system acquisitions. This paper applies the theoretical foundations and systematics of Gap Analysis to improve Earned Value Management. As currently implemented, Earned Value inaccurately provides a higher value for the work performed. This preliminary research indicates that Earned Value calculations can be corrected. Value Analysis, properly defined and enacted,...

  11. Optimization of Liquid DiElectroPhoresis (LDEP Digital Microfluidic Transduction for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Hiroyuki Fujita

    2011-06-01

    Full Text Available Digital microfluidic has recently been under intensive study, as an effective method to carry out liquid manipulation in Lab-On-a-Chip (LOC systems. Among droplet actuation forces, ElectroWetting on Dielectric (EWOD and Liquid DiElectroPhoresis (LDEP are powerful tools, used in many LOC platforms. Such digital microfluidic transductions do not require integration of complex mechanical components such as pumps and valves to perform the fluidic operations. However, although LDEP has been proved to be efficient to carry and manipulate biological components in insulating liquids, this microfluidic transduction requires several hundreds of volts at relatively high frequencies (kHz to MHz. With the purpose to develop integrated microsystems µ-TAS (Micro Total Analysis System or Point of Care systems, the goal here is to reduce such high actuation voltage, the power consumption, though using standard dielectric materials. This paper gives key rules to determine the best tradeoff between liquid manipulation efficiency, low-power consumption and robustness of microsystems using LDEP actuation. This study leans on an electromechanical model to describe liquid manipulation that is applied to an experimental setup, and provides precise quantification of both actuation voltage Vth and frequency fc thresholds between EWOD and LDEP regimes. In particular, several parameters will be investigated to quantify Vth and fc, such as the influence of the chip materials, the electrodes size and the device configurations. Compared to current studies in the field, significant reduction of both Vth and fc is achieved by optimization of the aforementioned parameters.

  12. Viscous Potential Flow Analysis of Electroaerodynamic Instability of a Liquid Sheet Sprayed with an Air Stream

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Awasthi

    2013-01-01

    Full Text Available The instability of a thin sheet of viscous and dielectric liquid moving in the same direction as an air stream in the presence of a uniform horizontal electric field has been carried out using viscous potential flow theory. It is observed that aerodynamic-enhanced instability occurs if the Weber number is much less than a critical value related to the ratio of the air and liquid stream velocities, viscosity ratio of two fluids, the electric field, and the dielectric constant values. Liquid viscosity has stabilizing effect in the stability analysis, while air viscosity has destabilizing effect.

  13. Droplet behavior analysis in consideration of droplet entrainment from liquid film in annular dispersed flow

    International Nuclear Information System (INIS)

    Matsuura, Keizo; Otake, Hiroshi; Kataoka, Isao; Serizawa, Akimi

    2000-01-01

    A method of droplet behavior simulation in an annular dispersed flow has been developed. In this method, both droplet deposition and entrainment from liquid film are considered. The Lagrangian method and stochastic model are used to analyze droplet diffusion and deposition behavior in a turbulent flow, and droplet entrainment from liquid film is calculated by an entrainment correlation. For the verification of this method, Gill's experiment is analyzed, in which the transition from annular flow with no entrainment to equilibrium annular dispersed flow was observed. Analysis results can also show the similar transition tendency. The experimental results of radial distribution of droplet mass flux are compared with analysis results. The agreement is good for low liquid flow rate, but entrainment rate must be adjusted for high liquid flow rate, in which gas turbulence is thought to be modified by high droplet density. In future work the effect of high droplet density on turbulence should be considered. (author)

  14. Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen

    International Nuclear Information System (INIS)

    Holst, Bastian; French, Martin; Redmer, Ronald

    2011-01-01

    Using Kubo's linear response theory, we derive expressions for the frequency-dependent electrical conductivity (Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system. These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe significant deviations from the widely used Wiedemann-Franz law, which is strictly valid only for degenerate systems, and give an estimate for its valid scope of application toward lower densities.

  15. Applicability of geometrical optics to in-plane liquid-crystal configurations.

    Science.gov (United States)

    Sluijter, M; Xu, M; Urbach, H P; de Boer, D K G

    2010-02-15

    We study the applicability of geometrical optics to inhomogeneous dielectric nongyrotropic optically anisotropic media typically found in in-plane liquid-crystal configurations with refractive indices n(o)=1.5 and n(e)=1.7. To this end, we compare the results of advanced ray- and wave-optics simulations of the propagation of an incident plane wave to a special anisotropic configuration. Based on the results, we conclude that for a good agreement between ray and wave optics, a maximum change in optical properties should occur over a distance of at least 20 wavelengths.

  16. Porous Metal Filters for Gas and Liquid Applications in the Nuclear Industry

    International Nuclear Information System (INIS)

    Kenneth, Rubow

    2009-01-01

    Sintered metal media are ideally suited for use in the most demanding industrial applications where long life is required and often other media are not cost-effective solution. As examples, filtration technology utilizing sintered metal media provides excellent performance in numerous liquid/solids and gas/solid separation applications found in the handling and processing of fluids containing radioactive materials. Many types of filter media, ranging from single use (disposable) to semi-permanent, are utilized today for separation of particulate matter. However, semi-permanent media are usually cleanable, either on or off-line, and are intended for sustainable, often multi-year, operating life in harsh environments. These harsh environments, which may involve corrosive fluids, high temperatures, high pressures or pressure spikes, often requiring continuous filtration service, are ideally suited for all-metal filtration systems employing semi-permanent sintered metal media. Sintered metal media, usually fabricated into tubular metal elements, have proven high particle removal efficiency and demonstrated reliability that uniquely afford excellent performance for demanding liquid/solids and gas/solids separation processes. The filter element and, in certain cases, the entire filter are weldable; therefore, the inherent sealing eliminates the need for potentially problematic seals. These media provide a positive barrier to ensure particulate removal to protect downstream equipment, for product separation, and/or to meet health, safety and environmental regulations. Typical applications for sintered metal media include: 1) gas and liquid filter systems used in various nuclear and radioactive waste processing applications, 2) an all-metal High Efficiency Particulate Air (HEPA) filter developed under Department of Energy (DOE) funding as an alternative to traditional HEPA filters fabricated with conventional glass fibers used on High Level Waste (HLW) tank ventilation

  17. Application of reverse osmosis to the treatment of liquid effluents produced by nuclear power plants

    International Nuclear Information System (INIS)

    Huet, Y.; Poulat, B.; Menjeaud, C.

    1989-01-01

    Radioactive liquid effluents generated during the operation of PWR nuclear power units are currently treated by two independent systems. The effluents from the reactor coolant system are recycled, unlike the others, which, after treatment, are released into the river or ocean that provides cooling water for the unit. The objective of the treatment of nonrecycled effluents is to separate from them as much of the radioactive particles that they contain as possible, so as to release into the environment a maximum volume of nonradioactive waste, and to be left with only a minimum volume of concentrated waste, containing most of the initial radioactivity, which must be loaded into casks for storage. Membrane-based filtration techniques, because they have excellent separation performances, can logically be used for this decontamination of the liquid effluents. Having developed its own reverse osmosis membrane, a possible application in a nuclear power plant, i.e., integration of a reverse osmosis unit into a radioactive liquid effluent treatment system is presented. (author)

  18. Study of biosorbents application on the treatment of radioactive liquid wastes with americium-241

    International Nuclear Information System (INIS)

    Borba, Tania Regina de

    2010-01-01

    The use of nuclear energy for many different purposes has been intensified and highlighted by the benefits that it provides. Medical diagnosis and therapy, agriculture, industry and electricity generation are examples of its application. However, nuclear energy generates radioactive wastes that require suitable treatment ensuring life and environmental safety. Biosorption and bioaccumulation represent an emergent alternative for the treatment of radioactive liquid wastes, providing volume reduction and physical state change. This work aimed to study biosorbents for the treatment of radioactive liquid wastes contaminated with americium-241 in order to reduce the volume and change the physical state from liquid to solid. The biosorbents evaluated were Saccharomyces cerevisiae immobilized in calcium alginate beads, inactivated and free cells of Saccharomyces cerevisiae, calcium alginate beads, Bacillus subtilis, Cupriavidus metallidurans and Ochrobactrum anthropi. The results were quite satisfactory, achieving 100% in some cases. The technique presented in this work may be useful and viable for implementing at the Waste Management Laboratory of IPEN - CNEN/SP in short term, since it is an easy and low cost method. (author)

  19. Applications of the solvation parameter model in reversed-phase liquid chromatography.

    Science.gov (United States)

    Poole, Colin F; Lenca, Nicole

    2017-02-24

    The solvation parameter model is widely used to provide insight into the retention mechanism in reversed-phase liquid chromatography, for column characterization, and in the development of surrogate chromatographic models for biopartitioning processes. The properties of the separation system are described by five system constants representing all possible intermolecular interactions for neutral molecules. The general model can be extended to include ions and enantiomers by adding new descriptors to encode the specific properties of these compounds. System maps provide a comprehensive overview of the separation system as a function of mobile phase composition and/or temperature for method development. The solvation parameter model has been applied to gradient elution separations but here theory and practice suggest a cautious approach since the interpretation of system and compound properties derived from its use are approximate. A growing application of the solvation parameter model in reversed-phase liquid chromatography is the screening of surrogate chromatographic systems for estimating biopartitioning properties. Throughout the discussion of the above topics success as well as known and likely deficiencies of the solvation parameter model are described with an emphasis on the role of the heterogeneous properties of the interphase region on the interpretation and understanding of the general retention mechanism in reversed-phase liquid chromatography for porous chemically bonded sorbents. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Light Manipulation in Inhomogeneous Liquid Flow and Its Application in Biochemical Sensing

    Directory of Open Access Journals (Sweden)

    Yunfeng Zuo

    2018-04-01

    Full Text Available Light manipulation has always been the fundamental subject in the field of optics since centuries ago. Traditional optical devices are usually designed using glasses and other materials, such as semiconductors and metals. Optofluidics is the combination of microfluidics and optics, which brings a host of new advantages to conventional solid systems. The capabilities of light manipulation and biochemical sensing are inherent alongside the emergence of optofluidics. This new research area promotes advancements in optics, biology, and chemistry. The development of fast, accurate, low-cost, and small-sized biochemical micro-sensors is an urgent demand for real-time monitoring. However, the fluid flow in the on-chip sensor is usually non-uniformed, which is a new and emerging challenge for the accuracy of optical detection. It is significant to reveal the principle of light propagation in an inhomogeneous liquid flow and the interaction between biochemical samples and light in flowing liquids. In this review, we summarize the current state of optofluidic lab-on-a-chip techniques from the perspective of light modulation by the unique dynamic properties of fluid in heterogeneous media, such as diffusion, heat transfer, and centrifugation etc. Furthermore, this review introduces several novel photonic phenomena in an inhomogeneous liquid flow and demonstrates their application in biochemical sensing.

  1. Resolution in QCM Sensors for the Viscosity and Density of Liquids: Application to Lead Acid Batteries

    Directory of Open Access Journals (Sweden)

    Jorge Marcos-Acevedo

    2012-08-01

    Full Text Available In battery applications, particularly in automobiles, submarines and remote communications, the state of charge (SoC is needed in order to manage batteries efficiently. The most widely used physical parameter for this is electrolyte density. However, there is greater dependency between electrolyte viscosity and SoC than that seen for density and SoC. This paper presents a Quartz Crystal Microbalance (QCM sensor for electrolyte density-viscosity product measurements in lead acid batteries. The sensor is calibrated in H2SO4 solutions in the battery electrolyte range to obtain sensitivity, noise and resolution. Also, real-time tests of charge and discharge are conducted placing the quartz crystal inside the battery. At the same time, the present theoretical “resolution limit” to measure the square root of the density-viscosity product ( of a liquid medium or best resolution achievable with a QCM oscillator is determined. Findings show that the resolution limit only depends on the characteristics of the liquid to be studied and not on frequency. The QCM resolution limit for  measurements worsens when the density-viscosity product of the liquid is increased, but it cannot be improved by elevating the work frequency.

  2. Resolution in QCM sensors for the viscosity and density of liquids: application to lead acid batteries.

    Science.gov (United States)

    Cao-Paz, Ana María; Rodríguez-Pardo, Loreto; Fariña, José; Marcos-Acevedo, Jorge

    2012-01-01

    In battery applications, particularly in automobiles, submarines and remote communications, the state of charge (SoC) is needed in order to manage batteries efficiently. The most widely used physical parameter for this is electrolyte density. However, there is greater dependency between electrolyte viscosity and SoC than that seen for density and SoC. This paper presents a Quartz Crystal Microbalance (QCM) sensor for electrolyte density-viscosity product measurements in lead acid batteries. The sensor is calibrated in H(2)SO(4) solutions in the battery electrolyte range to obtain sensitivity, noise and resolution. Also, real-time tests of charge and discharge are conducted placing the quartz crystal inside the battery. At the same time, the present theoretical "resolution limit" to measure the square root of the density-viscosity product [Formula: see text] of a liquid medium or best resolution achievable with a QCM oscillator is determined. Findings show that the resolution limit only depends on the characteristics of the liquid to be studied and not on frequency. The QCM resolution limit for [Formula: see text] measurements worsens when the density-viscosity product of the liquid is increased, but it cannot be improved by elevating the work frequency.

  3. Liquid scintillation alpha counting and spectrometry and its application to bone and tissue samples

    International Nuclear Information System (INIS)

    McDowell, W.J.; Weiss, J.F.

    1976-01-01

    Three methods for determination of alpha-emitting nuclides using liquid scintillation counting are compared, and the pertinent literature is reviewed. Data showing the application of each method to the measurement of plutonium concentration in tissue and bone samples are presented. Counting with a commercial beta-liquid scintillation counter and an aqueous-phase-accepting scintillator is shown to be accurate only in cases where the alpha activity is high (several hundred counts/min or more), only gross alpha counting is desired, and beta-gamma emitters are known to be absent from the sample or present at low levels compared with the alpha activity. Counting with the same equipment and an aqueous immiscible scintillator containing an extractant for the nuclide of interest (extractive scintillator) is shown to allow better control of alpha peak shift due to quenching, a significant reduction of beta-gamma interference, and, usually, a low background. The desirability of using a multichannel pulse-height analyzer in the above two counting methods is stressed. The use of equipment and procedures designed for alpha liquid scintillation counting is shown to allow alpha spectrometry with an energy resolution capability of 200 to 300 keV full-peak-width-at-half-peak-height and a background of 0.3 to 1.0 counts/min, or as low as 0.01 counts/min if pulse-shape discrimination methods are used. Methods for preparing animal bone and tissue samples for assay are described

  4. Analysis from concepts to applications

    CERN Document Server

    Penot, Jean-Paul

    2016-01-01

    This textbook covers the main results and methods of real analysis in a single volume. Taking a progressive approach to equations and transformations, this book starts with the very foundations of real analysis (set theory, order, convergence, and measure theory) before presenting powerful results that can be applied to concrete problems. In addition to classical results of functional analysis, differential calculus and integration, Analysis discusses topics such as convex analysis, dissipative operators and semigroups which are often absent from classical treatises. Acknowledging that analysis has significantly contributed to the understanding and development of the present world, the book further elaborates on techniques which pervade modern civilization, including wavelets in information theory, the Radon transform in medical imaging and partial differential equations in various mechanical and physical phenomena. Advanced undergraduate and graduate students, engineers as well as practitioners wishing to fa...

  5. Fully Automated Laser Ablation Liquid Capture Sample Analysis using NanoElectrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Matthias [ORNL; Ovchinnikova, Olga S [ORNL; Van Berkel, Gary J [ORNL

    2014-01-01

    RATIONALE: Laser ablation provides for the possibility of sampling a large variety of surfaces with high spatial resolution. This type of sampling when employed in conjunction with liquid capture followed by nanoelectrospray ionization provides the opportunity for sensitive and prolonged interrogation of samples by mass spectrometry as well as the ability to analyze surfaces not amenable to direct liquid extraction. METHODS: A fully automated, reflection geometry, laser ablation liquid capture spot sampling system was achieved by incorporating appropriate laser fiber optics and a focusing lens into a commercially available, liquid extraction surface analysis (LESA ) ready Advion TriVersa NanoMate system. RESULTS: Under optimized conditions about 10% of laser ablated material could be captured in a droplet positioned vertically over the ablation region using the NanoMate robot controlled pipette. The sampling spot size area with this laser ablation liquid capture surface analysis (LA/LCSA) mode of operation (typically about 120 m x 160 m) was approximately 50 times smaller than that achievable by direct liquid extraction using LESA (ca. 1 mm diameter liquid extraction spot). The set-up was successfully applied for the analysis of ink on glass and paper as well as the endogenous components in Alstroemeria Yellow King flower petals. In a second mode of operation with a comparable sampling spot size, termed laser ablation/LESA , the laser system was used to drill through, penetrate, or otherwise expose material beneath a solvent resistant surface. Once drilled, LESA was effective in sampling soluble material exposed at that location on the surface. CONCLUSIONS: Incorporating the capability for different laser ablation liquid capture spot sampling modes of operation into a LESA ready Advion TriVersa NanoMate enhanced the spot sampling spatial resolution of this device and broadened the surface types amenable to analysis to include absorbent and solvent resistant

  6. Analysis of short-chain acids from anaerobic bacteria by high-performance liquid chromatography.

    OpenAIRE

    Guerrant, G O; Lambert, M A; Moss, C W

    1982-01-01

    A standard mixture of 25 short-chain fatty acids was resolved by high-performance liquid chromatography, using an Aminex HPX-87 column. The acids produced in culture media by anaerobic bacteria were analyzed by high-performance liquid chromatography after extraction with ether and reextraction into a small volume of 0.1 N NaOH. The presence of fumaric acid in culture extracts of Peptostreptococcus anaerobius was confirmed by gas chromatography-mass spectrometry analysis of the trapped eluent ...

  7. Fourier analysis and its applications

    CERN Document Server

    Folland, Gerald B

    2009-01-01

    This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern ana

  8. Gyroplane for application of liquid products of chemicalixation and its technological parameters justification

    Directory of Open Access Journals (Sweden)

    Z. A. Godzhaev

    2016-01-01

    Full Text Available An aviation treatment of agricultural and forest lands has advantages as against at-ground one on productivity, opportunity to cultivate a field with the humidified soil, to lack of mechanical damages of plants. The authors proved expediency of use of a light aircraft for chemical operations. A gyroplan is perspective easy rotary-wing aircraft for application of liquid products of chemicalixation. It hass properties of a plane and a helicopter. Developed by authors gyroplan has a modular design of the apparatus providing the automated application of liquid producs of chemicalixation with a operating speed of 70-100 km/ha and spreading width of 8 m, high of 1.0-1.5 m, application rate of 10-20 l/ha. Parameters of efficiency of use of the autogyro were established: duration of one flight cycle depending on length of furrow and distance of approach to the cultivated field site; useful loading capacity and application rate. The field area processed by the gyroplan increases with reduction of norm of application which rational values make 10-20 l/ha. With increase in useful loading capacity from 100 to 350 kg gyroplan productivity in flight hour increases by 3 times and more. However, loading capacity is limited by the power of the plantpropulsion unit of an autogyro. The shotest time of flight of an autogyro is 14-46 min and the maximum efficiency of treatment of crops is 37-43 ha/h. These parameters are provided at rational values of length of furrow of 1.0-2.6 km within approach distance to a field of 0.6-1.5 km. For example, if an engine capacity of the plantpropulsion unit of an autogyro equals 150, 200 and 300 h.p., so useful loading capacity usually makes 120, 200 and 350 l respectively.

  9. Introduction to modern liquid chromatography

    National Research Council Canada - National Science Library

    Snyder, Lloyd R; Kirkland, J. J; Dolan, John W

    2010-01-01

    "High-performance liquid chromatography (HPLC) is today the leading technique for chemical analysis and related applications, with an ability to separate, analyze, and/or purify virtually any sample...

  10. Towards Cryogenic Liquid-Vapor Energy Storage Units for space applications

    Science.gov (United States)

    Afonso, Josiana Prado

    With the development of mechanical coolers and very sensitive cryogenic sensors, it could be interesting to use Energy Storage Units (ESU) and turn off the cryocooler to operate in a free micro vibration environment. An ESU would also avoid cryogenic systems oversized to attenuate temperature fluctuations due to thermal load variations which is useful particularly for space applications. In both cases, the temperature drift must remain limited to keep good detector performances. In this thesis, ESUs based on the high latent heat associated to liquid-vapor phase change to store energy have been studied. To limit temperature drifts while keeping small size cell at low temperature, a potential solution consists in splitting the ESU in two volumes: a low temperature cell coupled to a cryocooler cold finger through a thermal heat switch and an expansion volume at room temperature to reduce the temperature increase occurring during liquid evaporation. To obtain a vanishing temperature drift, a new improvement has been tested using two-phase nitrogen: a controlled valve was inserted between the two volumes in order to control the cold cell pressure. In addition, a porous material was used inside the cell to turn the ESU gravity independent and suitable for space applications. In this case, experiments reveal not fully understood results concerning both energy storage and liquid-wall temperature difference. To capture the thermal influence of the porous media, a dedicated cell with poorly conductive lateral wall was built and operated with two-phase helium. After its characterization outside the saturation conditions (conduction, convection), experiments were performed, with and without porous media, heating at the top or the bottom of the cell with various heat fluxes and for different saturation temperatures. In parallel, a model describing the thermal response for a cell containing liquid and vapor with a porous medium heated at the top ("against gravity") was developed

  11. High-performance liquid chromatography coupled with tandem mass spectrometry technology in the analysis of Chinese Medicine Formulas: A bibliometric analysis (1997-2015).

    Science.gov (United States)

    He, Xi-Ran; Li, Chun-Guang; Zhu, Xiao-Shu; Li, Yuan-Qing; Jarouche, Mariam; Bensoussan, Alan; Li, Ping-Ping

    2017-01-01

    There is a recognized challenge in analyzing traditional Chinese medicine formulas because of their complex chemical compositions. The application of modern analytical techniques such as high-performance liquid chromatography coupled with a tandem mass spectrometry has improved the characterization of various compounds from traditional Chinese medicine formulas significantly. This study aims to conduct a bibliometric analysis to recognize the overall trend of high-performance liquid chromatography coupled with tandem mass spectrometry approaches in the analysis of traditional Chinese medicine formulas, its significance and possible underlying interactions between individual herbs in these formulas. Electronic databases were searched systematically, and the identified studies were collected and analyzed using Microsoft Access 2010, Graph Pad 5.0 software and Ucinet software package. 338 publications between 1997 and 2015 were identified, and analyzed in terms of annual growth and accumulated publications, top journals, forms of traditional Chinese medicine preparations and highly studied formulas and single herbs, as well as social network analysis of single herbs. There is a significant increase trend in using high-performance liquid chromatography coupled with tandem mass spectrometry related techniques in analysis of commonly used forms of traditional Chinese medicine formulas in the last 3 years. Stringent quality control is of great significance for the modernization and globalization of traditional Chinese medicine, and this bibliometric analysis provided the first and comprehensive summary within this field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. PREFACE: Functionalized Liquid Liquid Interfaces

    Science.gov (United States)

    Girault, Hubert; Kornyshev, Alexei A.; Monroe, Charles W.; Urbakh, Michael

    2007-09-01

    Most natural processes take place at interfaces. For this reason, surface science has been a focal point of modern research. At solid-liquid interfaces one can induce various species to adsorb or react, and thus may study interactions between the substrate and adsorbates, kinetic processes, optical properties, etc. Liquid-liquid interfaces, formed by immiscible liquids such as water and oil, have a number of distinctive features. Both sides of the interface are amenable to detailed physical and chemical analysis. By chemical or electrochemical means, metal or semiconductor nanoparticles can be formed or localised at the interface. Surfactants can be used to tailor surface properties, and also to place organic molecular or supermolecular constructions at the boundary between the liquids. Electric fields can be used to drive ions from one fluid to another, or even change the shape of the interface itself. In many cases, both liquids are optically transparent, making functionalized liquid-liquid interfaces promising for various optical applications based on the transmission or reflection of light. An advantage common to most of these systems is self-assembly; because a liquid-liquid interface is not mechanically constrained like a solid-liquid interface, it can easily access its most stable state, even after it has been driven far from equilibrium. This special issue focuses on four modes of liquid-liquid interfacial functionalization: the controlled adsorption of molecules or nanoparticles, the formation of adlayers or films, electrowetting, and ion transfer or interface-localized reactions. Interfacial adsorption can be driven electrically, chemically, or mechanically. The liquid-liquid interface can be used to study how anisotropic particles orient at a surface under the influence of a field, how surfactants interact with other adsorbates, and how nanoparticles aggregate; the transparency of the interface also makes the chirality of organic adsorbates amenable to

  13. Development and application of a double-piston configured, total-liquid ventilatory support device.

    Science.gov (United States)

    Meinhardt, J P; Quintel, M; Hirschl, R B

    2000-05-01

    Perfluorocarbon liquid ventilation has been shown to enhance pulmonary mechanics and gas exchange in the setting of respiratory failure. To optimize the total liquid ventilation process, we developed a volume-limited, time-cycled liquid ventilatory support, consisting of an electrically actuated, microprocessor-controlled, double-cylinder, piston pump with two separate limbs for active inspiration and expiration. Prospective, controlled, animal laboratory study, involving sequential application of conventional gas ventilation, partial ventilation (PLV), and total liquid ventilation (TLV). Research facility at a university medical center. A total of 12 normal adult New Zealand rabbits weighing 3.25+/-0.1 kg. Anesthestized rabbits were supported with gas ventilation for 30 mins (respiratory rate, 20 cycles/min; peak inspiratory pressure, 15 cm H2O; end-expiratory pressure, 5 cm H2O), then PLV was established with perflubron (12 mL/kg). After 15 mins, TLV was instituted (tidal volume, 18 mL/kg; respiratory rate, 7 cycles/min; inspiratory/expiratory ratio, 1:2 cycles/min). After 4 hrs of TLV, PLV was re-established. Of 12 animals, nine survived the 4-hr TLV period. During TLV, mean values +/- SEM were as follows: PaO2, 363+/-30 torr; PaCO2, 39+/-1.5 torr; pH, 7.39+/-0.01; static peak inspiratory pressure, 13.2+/-0.2 cm H2O; static endexpiratory pressure, 5.5+/-0.1 cm H2O. No significant changes were observed. When compared with gas ventilation and PLV, significant increases occurred in mean arterial pressure (62.4+/-3.5 torr vs. 74.0+/-1.2 torr) and central venous pressure (5.6+/-0.7 cm H2O vs. 7.8+/-0.2 cm H2O) (p piston pumps with active expiration. Considering the enhanced flow profiles, this device configuration provides advantages over others.

  14. Liquid jet impingement cooling with diamond substrates for extremely high heat flux applications

    International Nuclear Information System (INIS)

    Lienhard V, J.H.

    1993-01-01

    The combination of impinging jets and diamond substrates may provide an effective solution to a class of extremely high heat flux problems in which very localized heat loads must be removed. Some potential applications include the cooling of high-heat-load components in synchrotron x-ray, fusion, and semiconductor laser systems. Impinging liquid jets are a very effective vehicle for removing high heat fluxes. The liquid supply arrangement is relatively simple, and low thermal resistances can be routinely achieved. A jet's cooling ability is a strong function of the size of the cooled area relative to the jet diameter. For relatively large area targets, the critical heat fluxes can approach 20 W/mm 2 . In this situation, burnout usually originates at the outer edge of the cooled region as increasing heat flux inhibits the liquid supply. Limitations from liquid supply are minimized when heating is restricted to the jet stagnation zone. The high stagnation pressure and high velocity gradients appear to suppress critical flux phenomena, and fluxes of up to 400 W/mm 2 have been reached without evidence of burnout. Instead, the restrictions on heat flux are closely related to properties of the cooled target. Target properties become an issue owing to the large temperatures and large temperature gradients that accompany heat fluxes over 100 W/mm 2 . These conditions necessitate a target with both high thermal conductivity to prevent excessive temperatures and good mechanical properties to prevent mechanical failures. Recent developments in synthetic diamond technology present a possible solution to some of the solid-side constraints on heat flux. Polycrystalline diamond foils can now be produced by chemical vapor deposition in reasonable quantity and at reasonable cost. Synthetic single crystal diamonds as large as 1 cm 2 are also available

  15. Fundamentals and applications of systems reliability analysis

    International Nuclear Information System (INIS)

    Boesebeck, K.; Heuser, F.W.; Kotthoff, K.

    1976-01-01

    The lecture gives a survey on the application of methods of reliability analysis to assess the safety of nuclear power plants. Possible statements of reliability analysis in connection with specifications of the atomic licensing procedure are especially dealt with. Existing specifications of safety criteria are additionally discussed with the help of reliability analysis by the example of the reliability analysis of a reactor protection system. Beyond the limited application to single safety systems, the significance of reliability analysis for a closed risk concept is explained in the last part of the lecture. (orig./LH) [de

  16. Separation of Berberine Hydrochloride and Tetrahydropalmatine and Their Quantitative Analysis with Thin Layer Chromatography Involved with Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2015-01-01

    Full Text Available [BMIM]OH was used in mobile and stationary phase of thin layer chromatography (TLC to analyze berberine hydrochloride and tetrahydropalmatine for the first time. Supported imidazole ionic liquid with hydroxide ion on silica gel (SiO2·Im+·OH− was synthesized through simple procedure and characterized by Fourier transform infrared spectroscopy (FT-IR, elemental analysis, and scanning electron microscope (SEM. Moreover, on the plates prepared by SiO2·Im+·OH−, the contents of the above alkaloids in the Chinese patent medicine (CPM of “Stomacheasy” capsule were successfully determined by TLC scanner. The key conditions and chromatographic behaviors were also investigated in detail. According to similar ways, ionic liquids (ILs also can be used in other planar chromatographies in two modes. This study is expected to be helpful in expanding the application of IL and its bonded silica gel in TLC separation field.

  17. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and... liquid tank car tanks. ...

  18. Organic-resistant screen-printed graphitic electrodes: Application to on-site monitoring of liquid fuels

    International Nuclear Information System (INIS)

    Almeida, Eduardo S.; Silva, Luiz A.J.; Sousa, Raquel M.F.; Richter, Eduardo M.; Foster, Christopher W.; Banks, Craig E.; Munoz, Rodrigo A.A.

    2016-01-01

    This work presents the potential application of organic-resistant screen-printed graphitic electrodes (SPGEs) for fuel analysis. The required analysis of the antioxidant 2,6-di-tert-butylphenol (2,6-DTBP) in biodiesel and jet fuel is demonstrated as a proof-of-concept. The screen-printing of graphite, Ag/AgCl and insulator inks on a polyester substrate (250 μm thickness) resulted in SPGEs highly compatible with liquid fuels. SPGEs were placed on a batch-injection analysis (BIA) cell, which was filled with a hydroethanolic solution containing 99% v/v ethanol and 0.1 mol L −1 HClO 4 (electrolyte). An electronic micropipette was connected to the cell to perform injections (100 μL) of sample or standard solutions. Over 200 injections can be injected continuously without replacing electrolyte and SPGE strip. Amperometric detection (+1.1 V vs. Ag/AgCl) of 2,6-DTBP provided fast (around 8 s) and precise (RSD = 0.7%, n = 12) determinations using an external calibration curve. The method was applied for the analysis of biodiesel and aviation jet fuel samples and comparable results with liquid and gas chromatographic analyses, typically required for biodiesel and jet fuel samples, were obtained. Hence, these SPGE strips are completely compatible with organic samples and their combination with the BIA cell shows great promise for routine and portable analysis of fuels and other organic liquid samples without requiring sophisticated sample treatments. - Highlights: • Organic-resistant screen-printed graphitic electrodes (SPGE) for (bio)fuels. • Screen-printing of conductive and insulator inks on thin polyester substrate. • Continuous detection of antioxidants in electrolyte with 99% v/v ethanol. • SPGE coupled with batch-injection analysis allows over 200 injections (100 μL). • Similar results to GC and HPLC analyses of biodiesel and aviation jet fuels.

  19. Organic-resistant screen-printed graphitic electrodes: Application to on-site monitoring of liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Eduardo S.; Silva, Luiz A.J.; Sousa, Raquel M.F.; Richter, Eduardo M. [Universidade Federal de Uberlândia, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Uberlândia, MG, 38408100 (Brazil); Foster, Christopher W.; Banks, Craig E. [Manchester Metropolitan University, Faculty of Science and the Environment, School of Science and the Environment, Division of Chemistry and Environmental Science, Manchester, M1 5GD, England (United Kingdom); Munoz, Rodrigo A.A., E-mail: raamunoz@iqufu.ufu.br [Universidade Federal de Uberlândia, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Uberlândia, MG, 38408100 (Brazil)

    2016-08-31

    This work presents the potential application of organic-resistant screen-printed graphitic electrodes (SPGEs) for fuel analysis. The required analysis of the antioxidant 2,6-di-tert-butylphenol (2,6-DTBP) in biodiesel and jet fuel is demonstrated as a proof-of-concept. The screen-printing of graphite, Ag/AgCl and insulator inks on a polyester substrate (250 μm thickness) resulted in SPGEs highly compatible with liquid fuels. SPGEs were placed on a batch-injection analysis (BIA) cell, which was filled with a hydroethanolic solution containing 99% v/v ethanol and 0.1 mol L{sup −1} HClO{sub 4} (electrolyte). An electronic micropipette was connected to the cell to perform injections (100 μL) of sample or standard solutions. Over 200 injections can be injected continuously without replacing electrolyte and SPGE strip. Amperometric detection (+1.1 V vs. Ag/AgCl) of 2,6-DTBP provided fast (around 8 s) and precise (RSD = 0.7%, n = 12) determinations using an external calibration curve. The method was applied for the analysis of biodiesel and aviation jet fuel samples and comparable results with liquid and gas chromatographic analyses, typically required for biodiesel and jet fuel samples, were obtained. Hence, these SPGE strips are completely compatible with organic samples and their combination with the BIA cell shows great promise for routine and portable analysis of fuels and other organic liquid samples without requiring sophisticated sample treatments. - Highlights: • Organic-resistant screen-printed graphitic electrodes (SPGE) for (bio)fuels. • Screen-printing of conductive and insulator inks on thin polyester substrate. • Continuous detection of antioxidants in electrolyte with 99% v/v ethanol. • SPGE coupled with batch-injection analysis allows over 200 injections (100 μL). • Similar results to GC and HPLC analyses of biodiesel and aviation jet fuels.

  20. Speciation analysis of cobalt in foods by high-performance liquid chromatography and neutron activation analysis

    International Nuclear Information System (INIS)

    Muto, Toshio; Koyama, Motoko

    1994-01-01

    A combined method by coupling high-performance liquid chromatography (HPLC, as a separation method) with neutron activation analysis (as a detection method) have been applied to the speciation analysis of cobalt in daily foods (e.g. egg, fish and milk). Cobalt species including free cobalt, vitamin B 12 and protein-bound cobalt were separated with a preparative HPLC and a centrifuge. Subsequently, the determination of cobalt in the separated species was made by neutron activation analysis. The results showed that the content of the total cobalt in the foods was found to lie in the range 0.4-11ng/g(0.4-11ppb) based on wet weight. The compositions of free cobalt, vitamin B 12 and protein-bound cobalt were ranged 16-43%, 55-73%, 2.3-17%, respectively. These experimental evidences suggest that the combination of HPLC and neutron activation analysis is expected to be a useful tool for speciation analysis of trace elements in biological as well as environmental materials. (author)

  1. Liquid-liquid extraction of cadmium(II by TIOACl (tri-iso-octylammonium chloride ionic liquid and its application to a TIOACl impregnated carbon nanotubes system

    Directory of Open Access Journals (Sweden)

    Alguacil, Francisco J.

    2015-09-01

    Full Text Available The extraction of cadmium(II by the ionic liquid (R3NH+Cl- (R: tri-iso-octyl in Exxsol D100 from hydrochloric acid solution has been investigated. The extraction reaction is exothermic. The numerical analysis of metal distribution data suggests the formation of R3NH+CdCl3− and (R3NH+2CdCl42− species in the organic phase. The results obtained for cadmium(II distribution have been implemented in an impregnated multi-walled carbon nanotubes system. The influence of aqueous solution stirring speed (250–2000 min−1, adsorbent dosage (0.05–0.2 g and temperature (20 °C–60 °C on cadmium adsorption have been investigated.Se ha estudiado la extracción de cadmio(II, de disoluciones en medio HCl, por el líquido iónico (R3NH+Cl- (R: tri-iso-octyl disuelto en Exxsol D100. La reacción de extracción tiene un carácter exotérmico. El análisis numérico de la distribución del metal sugiere la formación de las especies R3NH+CdCl3− y (R3NH+2CdCl42− en la fase orgánica. Estos resultados se han implementado en un sistema que utiliza nanotubos de carbono de pared múltiple impregnados con este líquido iónico. Se han investigado diversas variables experimentales: velocidad de agitación de la disolución acuosa (250–2000 min−1, adición del adsorbente (0,05–0,2 g y temperatura (20–60 °C.

  2. Application of liquid-based cytology preparation in micronucleus assay of exfoliated buccal epithelial cells in road construction workers.

    Science.gov (United States)

    Arul, P

    2017-01-01

    Asphalts are bitumens that consist of complex of hydrocarbon mixtures and it is used mainly in road construction and maintenance. This study was undertaken to evaluate the micronucleus (MN) assay of exfoliated buccal epithelial cells in road construction workers using liquid-based cytology (LBC) preparation. Three different stains (May-Grunwald Giemsa, hematoxylin and eosin, and Papanicolaou) were used to evaluate the frequency of MN in exfoliated buccal epithelial of 100 participants (fifty road construction workers and fifty administrative staff) using LBC preparation. Statistical analysis was performed with Student's t-test, and Proad construction exhibit a higher frequency of MN in exfoliated buccal epithelial cells and they are under the significant risk of cytogenetic damage. LBC preparation has potential application for the evaluation of frequency of MN. This technique may be advocated in those who are occupationally exposed to potentially carcinogenic agents in view of improvement in the smear quality and visualization of cell morphology.

  3. Hydrophilic interaction liquid chromatography in the speciation analysis of selenium.

    Science.gov (United States)

    Sentkowska, Aleksandra; Pyrzynska, Krystyna

    2018-02-01

    The hydrophilic interaction liquid chromatography (HILIC) coupled to mass spectrometry was employed to study retention behavior of selected selenium compounds using two different HILIC stationary phases: silica and zwitterionic. Two organic solvents - acetonitrile and methanol - were compared as a component of mobile phase. Separation parameters such as a content of organic modifier, the eluent pH and inorganic buffer concentration were investigated. Based on all observations, methanol seems to be beneficial for the separation of studied compounds. The optimal HILIC separation method involved silica column and eluent composed of 85% MeOH and CH 3 COONH 4 (8 mM, pH 7) was compared to RP method in terms of time of the single run, the separation efficiency and limit of detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Thermal shock analysis of liquid-mercury spallation target

    CERN Document Server

    Ishikura, S; Futakawa, M; Hino, R; Date, H

    2002-01-01

    The developments of the neutron scattering facilities are carried out under the high-intensity proton accelerator project promoted by JAERI and KEK. To estimate the structural integrity of the heavy liquid-metal (Hg) target used as a spallation neutron source in a MW-class neutron scattering facility, dynamic stress behavior due to the incident of a 1 MW-pulsed proton beam was analyzed by using FEM code. Two-type target containers with semi-cylindrical type and flat-plate type window were used as models for analyses. As a result, it is confirmed that the stress (pressure wave) generated by dynamic thermal shock becomes the largest at the center of window, and the flat-plate type window is more advantageous from the structural viewpoint than the semi-cylindrical type window. It has been understood that the stress generated in the window by the pressure wave can be treated as the secondary stress. (author)

  5. Environmental Application, Fate, Effects, and Concerns of Ionic Liquids: A Review.

    Science.gov (United States)

    Amde, Meseret; Liu, Jing-Fu; Pang, Long

    2015-11-03

    Ionic liquids (ILs) comprise mostly of organic salts with negligible vapor pressure and low flammability that are proposed as replacements for volatile solvents. ILs have been promoted as "green" solvents and widely investigated for their various applications. Although the utility of these chemicals is unquestionable, their toxic effects have attracted great attention. In order to manage their potential hazards and design environmentally benign ILs, understanding their environmental behavior, fate and effects is important. In this review, environmentally relevant issues of ILs, including their environmental application, environmental behavior and toxicity are addressed. In addition, also presented are the influence of ILs on the environmental fate and toxicity of other coexisting contaminants, important routes for designing nontoxic ILs and the techniques that might be adopted for the removal of ILs.

  6. A new chiral residue analysis method for triazole fungicides in water using dispersive liquid-liquid microextraction (DLLME).

    Science.gov (United States)

    Luo, Mai; Liu, Donghui; Zhou, Zhiqiang; Wang, Peng

    2013-09-01

    A rapid, simple, reliable, and environment-friendly method for the residue analysis of the enantiomers of four chiral fungicides including hexaconazole, triadimefon, tebuconazole, and penconazole in water samples was developed by dispersive liquid-liquid microextraction (DLLME) pretreatment followed by chiral high-performance liquid chromatography (HPLC)-DAD detection. The enantiomers were separated on a Chiralpak IC column by HPLC applying n-hexane or petroleum ether as mobile phase and ethanol or isopropanol as modifier. The influences of mobile phase composition and temperature on the resolution were investigated and most of the enantiomers could be completely separated in 20 min under optimized conditions. The thermodynamic parameters indicated that the separation was enthalpy-driven. The elution orders were detected by both circular dichroism detector (CD) and optical rotatory dispersion detector (ORD). Parameters affecting the DLLME performance for pretreatment of the chiral fungicides residue in water samples, such as the extraction and dispersive solvents and their volume, were studied and optimized. Under the optimum microextraction condition the enrichment factors were over 121 and the linearities were 30-1500 µg L(-1) with the correlation coefficients (R(2)) over 0.9988 and the recoveries were between 88.7% and 103.7% at the spiking levels of 0.5, 0.25, and 0.05 mg L(-1) (for each enantiomer) with relative standard deviations varying from 1.38% to 6.70% (n = 6) The limits of detection (LODs) ranged from 8.5 to 29.0 µg L(-1) (S/N = 3). © 2013 Wiley Periodicals, Inc.

  7. Applications of root cause analysis

    International Nuclear Information System (INIS)

    Satterwhite, D.G.; Meale, B.M.; Krantz, E.A.

    1986-01-01

    The underlying causes for the failure of components, the root causes, can be obtained from operational data sources. This information is of value in focusing attention of the industry on the actual causes of component unavailability and, therefore, on the important contributors to plant risk. An application of this methodology to an actual plant system, and the results of this study, are presented in this paper

  8. A systematic review and meta-analysis of pneumonia associated with thin liquid vs. thickened liquid intake in patients who aspirate.

    Science.gov (United States)

    Kaneoka, Asako; Pisegna, Jessica M; Saito, Hiroki; Lo, Melody; Felling, Katey; Haga, Nobuhiko; LaValley, Michael P; Langmore, Susan E

    2017-08-01

    To investigate whether drinking thin liquids with safety strategies increases the risk for pneumonia as compared with thickened liquids in patients who have demonstrated aspiration of thin liquids. Seven electronic databases, one clinical register, and three conference archives were searched. No language or publication date restrictions were imposed. Reference lists were scanned and authors and experts in the field were contacted. A blind review was performed by two reviewers for published or unpublished randomized controlled trials and prospective non-randomized trials comparing the incidence of pneumonia with intake of thin liquids plus safety strategies vs. thickened liquids in adult patients who aspirated on thin liquids. The data were extracted from included studies. Odds ratios (OR) for pneumonia were calculated from the extracted data. Risk of bias was also assessed with the included published trials. Seven studies out of 2465 studies including 650 patients met the inclusion criteria. All of the seven studies excluded patients with more than one known risk factor for pneumonia. Six studies compared thin water protocols to thickened liquids for pneumonia prevention. A meta-analysis was done on the six studies, showing no significant difference for pneumonia risk (OR = 0.82; 95% CI = 0.05-13.42; p = 0.89). There was no significant difference in the risk of pneumonia in aspirating patients who took thin liquids with safety strategies compared with those who took thickened liquids only. This result, however, is generalizable only for patients with low risk of pneumonia.

  9. Improvement of recovery and repeatability in liquid chromatography-mass spectrometry analysis of peptides

    NARCIS (Netherlands)

    van Midwoud, Paul M.; Rieux, Laurent; Bischoff, Rainer; Verpoorte, Elisabeth; Niederlander, Harm A. G.

    2007-01-01

    Poor repeatability of peak areas is a problem frequently encountered in peptide analysis with nanoLiquid Chromatography coupled on-line with Mass Spectrometry (nanoLC-MS). As a result, quantitative analysis will be seriously hampered unless the observed variability can be corrected in some way.

  10. Structural analysis for LMFBR applications

    International Nuclear Information System (INIS)

    1983-01-01

    Firstly, we discuss the use of elastic analysis for structural design of LMFBR components. The elastic analysis methods have been used for structural design of the Fast Breeder Test Reactor as well as the proposed prototype Test Breeder Reactor. The design of Fast Breeder Test Reactor which is nearing completion is the same as that of Rapsodie. Nevertheless, the design had to he checked against the latest design codes available, namely the ASME Code case 1592. This paper however, is confined to Structural analysis of PFBR components. The problems faced in the design of some of the components, in particular, the inner vessel (plenum separator) are discussed. As far as design codes are concerned, we make use of ASME Code Section III and the Code Case N-47, for high temperature design. The problem faced in the use of these rules are also described along with the description of analysis. Studies in the field of cyclic loading include extension of Bree's breakdown and plastic cycling criteria for ratchet free operation to biaxial stress fields. In other fields, namely, inelastic analysis, piping analysis in the creep regime etc. we are only at a start

  11. ANTEO+: A subchannel code for thermal-hydraulic analysis of liquid metal cooled systems

    Energy Technology Data Exchange (ETDEWEB)

    Lodi, F., E-mail: francesco.lodi5@unibo.it [DIN – Laboratory of Montecuccolino, University of Bologna, Via dei Colli 16, 40136 Bologna (Italy); Grasso, G., E-mail: giacomo.grasso@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Mattioli, D., E-mail: davide.mattioli@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Sumini, M., E-mail: marco.sumini@unibo.it [DIN – Laboratory of Montecuccolino, University of Bologna, Via dei Colli 16, 40136 Bologna (Italy)

    2016-05-15

    Highlights: • The code structure is presented in detail. • The performed validation is outlined. • Results are critically discussed assessing code accuracy. • Conclusions are drawn and ground for future work identified. - Abstract: Liquid metal cooled fast reactors are promising options for achieving the high degrees of safety and sustainability demanded by the Generation IV paradigm. Among the critical aspects to be addressed in the design process, thermal-hydraulics is one of the most challenging; in order to embed safety in the core conceptualization, these aspects are to be considered at the very beginning of the design process, and translated in a design perspective. For achieving these objectives the subchannel code ANTEO+ has been conceived, able to simulate pin bundle arrangements cooled by liquid metals. The main purposes of ANTEO+ are simplifying the problem description maintaining the required accuracy, enabling a more transparent interface with the user, and having a clear and identifiable application domain, in order to help the user interpreting the results and, mostly, defining their confidence. Since ANTEO+ relies on empirical correlations, the validation phase is of paramount importance along with a clear discussion on the simplifications adopted in modeling the conservation equations. In the present work a detailed description of ANTEO+ structure is given along with a thorough validation of the main models implemented for flow split, pressure drops and subchannel temperatures. The analysis confirmed the ability of ANTEO+ in reproducing experimental data in its anticipated validity domain, with a relatively high degree of accuracy when compared to other classical subchannel tools like ENERGY-II, COBRA-IV-I-MIT and BRS-TVS.

  12. Two-phase synthesis of hydrophobic ionic liquid-capped gold nanoparticles and their application for sensing cholesterol

    International Nuclear Information System (INIS)

    Dong, Mingjun; Nan, Zhihan; Liu, Panpan; Zhang, Yanjun; Xue, Zhonghua; Lu, Xiaoquan; Liu, Xiuhui

    2014-01-01

    Highlights: • A novel cholesterol biosensor was constructed based on ChOx-IL-capped-AuNPs/GCE. • IL-capped-AuNPs was synthesized using two-phase synthesis and employed as a conducting matrix to immobilize ChOx. • Direct electrochemistry of ChOx on the electrode was obtained. • The ChOx-IL-capped-AuNPs/GCE exhibit remarkable performance for cholesterol detection. - Abstract: A novel scheme for fabrication of hydrophobic ionic liquid-capped gold nanoparticles (IL-capped AuNPs) modified electrode is presented and its application potential for cholesterol biosensor is investigated. Highly stable gold nanoparticles were characterized by UV–vis absorption spectroscopy and transmission electron microscopy (TEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) indicated that IL-capped AuNPs nanocomposites showed excellent electrical conductivity. Furthermore, cholesterol oxidase (ChOx) was directly immobilized on the IL-capped AuNPs nanocomposite, and then the direct electrochemistry of ChOx on the modified glass carbon electrode (GCE) was obtained. As a new platform in cholesterol analysis, ChOx-IL-capped AuNPs/GCE exhibited a linear response to cholesterol in the range of 0.1–50 μM with a detection limit of 0.033 μM. Therefore, hydrophobic ionic liquid-capped gold nanoparticles would serve as a good candidate material to construct the related enzyme biosensors

  13. Room-Temperature Ionic Liquids and Biomembranes: Setting the Stage for Applications in Pharmacology, Biomedicine, and Bionanotechnology.

    Science.gov (United States)

    Benedetto, Antonio; Ballone, Pietro

    2018-03-21

    Empirical evidence and conceptual elaboration reveal and rationalize the remarkable affinity of organic ionic liquids for biomembranes. Cations of the so-called room-temperature ionic liquids (RTILs), in particular, are readily absorbed into the lipid fraction of biomembranes, causing a variety of observable biological effects, including generic cytotoxicity, broad antibacterial potential, and anticancer activity. Chemical physics analysis of model systems made of phospholipid bilayers, RTIL ions, and water confirm and partially explain this evidence, quantifying the mild destabilizing effect of RTILs on the structural, dynamic, and thermodynamic properties of lipids in biomembranes. Our Feature Article presents a brief introduction to these systems and to their roles in biophysics and biotechnology, summarizing recent experimental and computational results on their properties. More importantly, it highlights the many developments in pharmacology, biomedicine, and bionanotechnology expected from the current research effort on this topic. To anticipate future developments, we speculate on (i) potential applications of (magnetic) RTILs to affect and control the rheology of cells and biological tissues, of great relevance for diagnostics and (ii) the use of RTILs to improve the durability, reliability, and output of biomimetic photovoltaic devices.

  14. Real analysis modern techniques and their applications

    CERN Document Server

    Folland, Gerald B

    1999-01-01

    An in-depth look at real analysis and its applications-now expanded and revised.This new edition of the widely used analysis book continues to cover real analysis in greater detail and at a more advanced level than most books on the subject. Encompassing several subjects that underlie much of modern analysis, the book focuses on measure and integration theory, point set topology, and the basics of functional analysis. It illustrates the use of the general theories and introduces readers to other branches of analysis such as Fourier analysis, distribution theory, and probability theory.This edi

  15. Isobaric-isothermal Monte Carlo simulations from first principles: Application to liquid water at ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, M; Siepmann, J I; Kuo, I W; Mundy, C J; VandeVondele, J; Hutter, J; Mohamed, F; Krack, M

    2004-12-02

    A series of first principles Monte Carlo simulations in the isobaric-isothermal ensemble were carried out for liquid water at ambient conditions (T = 298 K and p = 1 atm). The Becke-Lee-Yang-Parr (BLYP) exchange and correlation energy functionals and norm-conserving Goedecker-Teter-Hutter (GTH) pseudopotentials were employed with the CP2K simulation package to examine systems consisting of 64 water molecules. The fluctuations in the system volume encountered in simulations in the isobaric-isothermal ensemble requires a reconsideration of the suitability of the typical charge density cutoff and the regular grid generation method previously used for the computation of the electrostatic energy in first principles simulations in the microcanonical or canonical ensembles. In particular, it is noted that a much higher cutoff is needed and that the most computationally efficient method of creating grids can result in poor simulations. Analysis of the simulation trajectories using a very large charge density cutoff at 1200 Ry and four different grid generation methods point to a substantially underestimated liquid density of about 0.85 g/cm{sup 3} resulting in a somewhat understructured liquid (with a value of about 2.7 for the height of the first peak in the oxygen/oxygen radial distribution function) for BLYP-GTH water at ambient conditions.

  16. Synthesis of Nanomaterials by the Pulsed Plasma in Liquid and their Bio-medical Applications

    Science.gov (United States)

    Omurzak, E.; Abdullaeva, Z.; Satyvaldiev, A.; Zhasnakunov, Z.; Kelgenbaeva, Z.; Akai Tegin, R. Adil; Syrgakbek kyzy, D.; Doolotkeldieva, T.; Bobusheva, S.; Mashimo, T.

    2018-01-01

    Pulsed plasma in liquid is a simple, ecologically friendly, cost-efficient method based on electrical discharge between two metal electrodes submerged into a dielectric liquid. We synthesized carbon-encapsulated Fe (Fe@C) magnetic nanoparticles with low cytotoxicity using pulsed plasma in a liquid. Body-centered cubic Fe core nanoparticles showed good crystalline structures with an average size between 20 and 30 nm were encapsulated in onion-like carbon coatings with a thickness of 2-10 nm. Thermal gravimetric analysis showed a high stability of the as-synthesized samples under thermal treatment and oxidation. Cytotoxicity measurements showed higher cancer cell viability than samples synthesized by different methods. Carbon coated ZnO nanorods with about 20 nm thickness and 150 nm length were synthesized by this method using different surfactant materials such as cetyl trimethylammonium bromide (CTAB) and sodium dodecyl sulphate (SDS). Cu and Ag nanoparticles of about 10 nm in size were also synthesized by the pulsed plasma in aquatic solution of 0.2 % gelatine as surfactant material. These nanoparticles showed high antibacterial activity for Erwinia amylovora and Escherichia coli.

  17. Progress in spatial analysis methods and applications

    CERN Document Server

    Páez, Antonio; Buliung, Ron N; Dall'erba, Sandy

    2010-01-01

    This book brings together developments in spatial analysis techniques, including spatial statistics, econometrics, and spatial visualization, and applications to fields such as regional studies, transportation and land use, population and health.

  18. Discriminant Analysis of Student Loan Applications

    Science.gov (United States)

    Dyl, Edward A.; McGann, Anthony F.

    1977-01-01

    The use of discriminant analysis in identifying potentially "good" versus potentially "bad" student loans is explained. The technique is applied to a sample of 200 student loan applications at the University of Wyoming. (LBH)

  19. Analysis of phenolic acids by ionic liquid-in-water microemulsion liquid chromatography coupled with ultraviolet and electrochemical detector.

    Science.gov (United States)

    Peng, Li-Qing; Cao, Jun; Du, Li-Jing; Zhang, Qi-Dong; Shi, Yu-Tin; Xu, Jing-Jing

    2017-05-26

    An environmentally friendly ionic liquid-in-water (IL/W) microemulsion was established and applied as mobile phase in microemulsion liquid chromatography (MELC) with ultraviolet (UV) detection or electrochemical detector (ECD) for analysis of phenolic compounds in real samples. The optimal condition of the method was using the best composition of microemulsion (0.2% w/v [HMIM]PF 6 , 1.0% w/v SDS, 3.0% w/v n-butanol, 95.8% v/v water, pH 2.5) with UV detection. The validation results indicated that the method provided high degree of sensitivity, precision and accuracy with the low limit of detections ranged from 17.9-238ng/mL, satisfactory mean recovery values in the range of 80.1-105% and good linearity (r 2 >0.9994). Additionally, this method exhibited high selectivity and resolution for the analytes and was more eco-friendly compared with traditional MELC method. Consequently, the established IL/W MELC method was successfully applied to simultaneously separate and determine target compounds in Danshen sample and its preparation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Analysis of ecstasy in oral fluid by ion mobility spectrometry and infrared spectroscopy after liquid-liquid extraction.

    Science.gov (United States)

    Armenta, Sergio; Garrigues, Salvador; de la Guardia, Miguel; Brassier, Judit; Alcalà, Manel; Blanco, Marcelo

    2015-03-06

    We developed and evaluated two different strategies for determining abuse drugs based on (i) the analysis of saliva by ion mobility spectrometry (IMS) after thermal desorption and (ii) the joint use of IMS and infrared (IR) spectroscopy after liquid-liquid microextraction (LLME) to enable the sensitivity-enhanced detection and double confirmation of ecstasy (MDMA) abuse. Both strategies proved effective for the intended purpose. Analysing saliva by IMS after thermal desorption, which provides a limit of detection (LOD) of 160μgL(-1), requires adding 0.2M acetic acid to the sample and using the truncated negative second derivative of the ion mobility spectrum. The joint use of IMS and IR spectroscopy after LLME provides an LOD of 11μgL(-1) with the former technique and 800μgL(-1) with the latter, in addition to a limit of confirmation (LOC) of 1.5mgL(-1). Using IMS after thermal desorption simplifies the operational procedure, and using it jointly with IR spectroscopy after LLME allows double confirmation of MDMA abuse with two techniques based on different principles (viz., IMS drift times and IR spectra). Also, it affords on-site analyses, albeit at a lower throughput. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Overcoming the challenges of conventional dispersive liquid-liquid microextraction: analysis of THMs in chlorinated swimming pools.

    Science.gov (United States)

    Faraji, Hakim; Helalizadeh, Masoumeh; Kordi, Mohammad Reza

    2018-01-01

    A rapid, simple, and sensitive approach to the analysis of trihalomethanes (THMs) in swimming pool water samples has been developed. The main goal of this study was to overcome or to improve the shortcomings of conventional dispersive liquid-liquid microextraction (DLLME) and to maximize the realization of green analytical chemistry principles. The method involves a simple vortex-assisted microextraction step, in the absence of the dispersive solvent, followed by salting-out effect for the elimination of the centrifugation step. A bell-shaped device and a solidifiable solvent were used to simplify the extraction solvent collection after phase separation. Optimization of the independent variables was performed by using chemometric methods in three steps. The method was statistically validated based on authentic guidance documents. The completion time for extraction was less than 8 min, and the limits of detection were in the range between 4 and 72 ng L -1 . Using this method, good linearity and precision were achieved. The results of THMs determination in different real samples showed that in some cases the concentration of total THMs was more than threshold values of THMs determined by accredited healthcare organizations. This method indicated satisfactory analytical figures of merit. Graphical Abstract A novel green microextraction technique for overcoming the challenges of conventional DLLME. The proposed procedure complies with the principles of green/sustainable analytical chemistry, comprising decreasing the sample size, making easy automation of the process, reducing organic waste, diminishing energy consumption, replacing toxic reagents with safer reagents, and enhancing operator safety.

  2. Interface for the rapid analysis of liquid samples by accelerator mass spectrometry

    Science.gov (United States)

    Turteltaub, Kenneth; Ognibene, Ted; Thomas, Avi; Daley, Paul F; Salazar Quintero, Gary A; Bench, Graham

    2014-02-04

    An interface for the analysis of liquid sample having carbon content by an accelerator mass spectrometer including a wire, defects on the wire, a system for moving the wire, a droplet maker for producing droplets of the liquid sample and placing the droplets of the liquid sample on the wire in the defects, a system that converts the carbon content of the droplets of the liquid sample to carbon dioxide gas in a helium stream, and a gas-accepting ion source connected to the accelerator mass spectrometer that receives the carbon dioxide gas of the sample in a helium stream and introduces the carbon dioxide gas of the sample into the accelerator mass spectrometer.

  3. Transmission-lattice based geometric phase analysis for evaluating the dynamic deformation of a liquid surface.

    Science.gov (United States)

    Shi, Wenxiong; Huang, Xianfu; Liu, Zhanwei

    2014-05-05

    Quantitatively measuring a dynamic liquid surface often presents a challenge due to high transparency, fluidity and specular reflection. Here, a novel Transmission-Lattice based Geometric Phase Analysis (TLGPA) method is introduced. In this method, a special lattice is placed underneath a liquid to be tested and, when viewed from above, the phase of the transmission-lattice image is modulated by the deformation of the liquid surface. Combining this with multi-directional Newton iteration algorithms, the dynamic deformation field of the liquid surface can be calculated from the phase variation of a series of transmission-lattice images captured at different moments. The developed method has the advantage of strong self-adaption ability to initial lattice rotational errors and this is discussed in detail. Dynamic 3D ripples formation and propagation was investigated and the results obtained demonstrated the feasibility of the method.

  4. Density-viscosity product of small-volume ionic liquid samples using quartz crystal impedance analysis.

    Science.gov (United States)

    McHale, Glen; Hardacre, Chris; Ge, Rile; Doy, Nicola; Allen, Ray W K; MacInnes, Jordan M; Bown, Mark R; Newton, Michael I

    2008-08-01

    Quartz crystal impedance analysis has been developed as a technique to assess whether room-temperature ionic liquids are Newtonian fluids and as a small-volume method for determining the values of their viscosity-density product, rho eta. Changes in the impedance spectrum of a 5-MHz fundamental frequency quartz crystal induced by a water-miscible room-temperature ionic liquid, 1-butyl-3-methylimiclazolium trifluoromethylsulfonate ([C4mim][OTf]), were measured. From coupled frequency shift and bandwidth changes as the concentration was varied from 0 to 100% ionic liquid, it was determined that this liquid provided a Newtonian response. A second water-immiscible ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4mim][NTf2], with concentration varied using methanol, was tested and also found to provide a Newtonian response. In both cases, the values of the square root of the viscosity-density product deduced from the small-volume quartz crystal technique were consistent with those measured using a viscometer and density meter. The third harmonic of the crystal was found to provide the closest agreement between the two measurement methods; the pure ionic liquids had the largest difference of approximately 10%. In addition, 18 pure ionic liquids were tested, and for 11 of these, good-quality frequency shift and bandwidth data were obtained; these 12 all had a Newtonian response. The frequency shift of the third harmonic was found to vary linearly with square root of viscosity-density product of the pure ionic liquids up to a value of square root(rho eta) approximately 18 kg m(-2) s(-1/2), but with a slope 10% smaller than that predicted by the Kanazawa and Gordon equation. It is envisaged that the quartz crystal technique could be used in a high-throughput microfluidic system for characterizing ionic liquids.

  5. Experimental and numerical analysis for potential heat reuse in liquid cooled data centres

    International Nuclear Information System (INIS)

    Carbó, Andreu; Oró, Eduard; Salom, Jaume; Canuto, Mauro; Macías, Mario; Guitart, Jordi

    2016-01-01

    Highlights: • The potential heat reuse of a liquid data centre has been characterized. • Dynamic behaviours of a liquid cooled data centre have been studied. • A dynamic energy model of liquid cooling data centres is developed. • The dynamic energy model has been validated with experimental data. • Server usage and consumption relation was developed for different IT loads. - Abstract: The rapid increase of data centre industry has stimulated the interest of both researchers and professionals in order to reduce energy consumption and carbon footprint of these unique infrastructures. The implementation of energy efficiency strategies and the use of renewables play an important role to reduce the overall data centre energy demand. Information Technology (IT) equipment produce vast amount of heat which must be removed and therefore waste heat recovery is a likely energy efficiency strategy to be studied in detail. To evaluate the potential of heat reuse a unique liquid cooled data centre test bench was designed and built. An extensive thermal characterization under different scenarios was performed. The effective liquid cooling capacity is affected by the inlet water temperature. The lower the inlet water temperature the higher the liquid cooling capacity; however, the outlet water temperature will be also low. Therefore, the requirements of the heat reuse application play an important role in the optimization of the cooling configuration. The experimental data was then used to validate a dynamic energy model developed in TRNSYS. This model is able to predict the behaviour of liquid cooling data centres and can be used to study the potential compatibility between large data centres with different heat reuse applications. The model also incorporates normalized power consumption profiles for heterogeneous workloads that have been derived from realistic IT loads.

  6. Applications of advances in nonlinear sensitivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Werbos, P J

    1982-01-01

    The following paper summarizes the major properties and applications of a collection of algorithms involving differentiation and optimization at minimum cost. The areas of application include the sensitivity analysis of models, new work in statistical or econometric estimation, optimization, artificial intelligence and neuron modelling.

  7. Ion beam analysis fundamentals and applications

    CERN Document Server

    Nastasi, Michael; Wang, Yongqiang

    2015-01-01

    Ion Beam Analysis: Fundamentals and Applications explains the basic characteristics of ion beams as applied to the analysis of materials, as well as ion beam analysis (IBA) of art/archaeological objects. It focuses on the fundamentals and applications of ion beam methods of materials characterization.The book explains how ions interact with solids and describes what information can be gained. It starts by covering the fundamentals of ion beam analysis, including kinematics, ion stopping, Rutherford backscattering, channeling, elastic recoil detection, particle induced x-ray emission, and nucle

  8. Analysis of mixed data methods & applications

    CERN Document Server

    de Leon, Alexander R

    2013-01-01

    A comprehensive source on mixed data analysis, Analysis of Mixed Data: Methods & Applications summarizes the fundamental developments in the field. Case studies are used extensively throughout the book to illustrate interesting applications from economics, medicine and health, marketing, and genetics. Carefully edited for smooth readability and seamless transitions between chaptersAll chapters follow a common structure, with an introduction and a concluding summary, and include illustrative examples from real-life case studies in developmental toxicolog

  9. TV content analysis techniques and applications

    CERN Document Server

    Kompatsiaris, Yiannis

    2012-01-01

    The rapid advancement of digital multimedia technologies has not only revolutionized the production and distribution of audiovisual content, but also created the need to efficiently analyze TV programs to enable applications for content managers and consumers. Leaving no stone unturned, TV Content Analysis: Techniques and Applications provides a detailed exploration of TV program analysis techniques. Leading researchers and academics from around the world supply scientifically sound treatment of recent developments across the related subject areas--including systems, architectures, algorithms,

  10. Structural analysis for LMFBR applications

    International Nuclear Information System (INIS)

    Vaze, M.K.K.

    1983-01-01

    The use of elastic analysis for structural design of LMFBR components is discussed. The elastic analysis methods have been used for structural design of the Fast Breeder Test Reactor as well as the proposed Prototype Fast Breeder Reactor. The design of Fast Breeder Test Reactor which is nearing completion is same as that of Rapsodie. Nevertheless, the design had to be checked against the latest design codes available, namely the ASME Code case 1592. This paper however, is confined to Structural analysis of PFBR components. The problems faced in the design of some of the components, in particular, the inner vessel (plenum separator) are discussed. As far as design codes are concerned, ASME Code Section III and the Code Case N-47 are used for high temperature design. The problems faced in the use of these rules are also described along with the description of analysis. Studies in the field of cyclic loading include extension of Bree's shakedown and plastic cycling criteria for ratchet free operation to biaxial stress fields

  11. Analysis of gas-liquid metal two-phase flows using a reactor safety analysis code SIMMER-III

    International Nuclear Information System (INIS)

    Suzuki, Tohru; Tobita, Yoshiharu; Kondo, Satoru; Saito, Yasushi; Mishima, Kaichiro

    2003-01-01

    SIMMER-III, a safety analysis code for liquid-metal fast reactors (LMFRs), includes a momentum exchange model based on conventional correlations for ordinary gas-liquid flows, such as an air-water system. From the viewpoint of safety evaluation of core disruptive accidents (CDAs) in LMFRs, we need to confirm that the code can predict the two-phase flow behaviors with high liquid-to-gas density ratios formed during a CDA. In the present study, the momentum exchange model of SIMMER-III was assessed and improved using experimental data of two-phase flows containing liquid metal, on which fundamental information, such as bubble shapes, void fractions and velocity fields, has been lacking. It was found that the original SIMMER-III can suitably represent high liquid-to-gas density ratio flows including ellipsoidal bubbles as seen in lower gas fluxes. In addition, the employment of Kataoka-Ishii's correlation has improved the accuracy of SIMMER-III for gas-liquid metal flows with cap-shape bubbles as identified in higher gas fluxes. Moreover, a new procedure, in which an appropriate drag coefficient can be automatically selected according to bubble shape, was developed. Through this work, the reliability and the precision of SIMMER-III have been much raised with regard to bubbly flows for various liquid-to-gas density ratios

  12. Conceptual safety design analysis of Korea advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Suk, S. D.; Park, C. K.

    1999-01-01

    The national long-term R and D program, updated in 1977, requires Korea Atomic Energy Research Institute (KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor (KALIMER), along with supporting R and D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 Mwe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self-consistent design meeting a set of major safety design requirements for accident prevention. Some of the current emphasis includes those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve extensive supporting R and D programs. This paper summarizes some of the results of conceptual engineering and design analyses performed for the safety of KALIMER in the area of inherent safety, passive decay heat removal, sodium water reaction, and seismic isolation. (author)

  13. Fabrication of an ionic-liquid-based polymer monolithic column and its application in the fractionation of proteins from complex biosamples.

    Science.gov (United States)

    Zhang, Doudou; Zhang, Qian; Bai, Ligai; Han, Dandan; Liu, Haiyan; Yan, Hongyuan

    2018-05-01

    An ionic-liquid-based polymer monolithic column was synthesized by free radical polymerization within the confines of a stainless-steel column (50 mm × 4.6 mm id). In the processes, ionic liquid and stearyl methacrylate were used as dual monomers, ethylene glycol dimethacrylate as the cross-linking agent, and polyethylene glycol 200 and isopropanol as co-porogens. Effects of the prepolymerization solution components on the properties of the resulting monoliths were studied in detail. Scanning electron microscopy, nitrogen adsorption-desorption measurements, and mercury intrusion porosimetry were used to investigate the morphology and pore size distribution of the prepared monoliths, which showed that the homemade ionic-liquid-based monolith column possessed a relatively uniform macropore structure with a total macropore specific surface area of 44.72 m 2 /g. Compared to a non-ionic-liquid-based monolith prepared under the same conditions, the ionic-liquid-based monolith exhibited excellent selectivity and high performance for separating proteins from complex biosamples, such as egg white, snailase, bovine serum albumin digest solution, human plasma, etc., indicating promising applications in the fractionation and analysis of proteins from the complex biosamples in proteomics research. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A liquid crystal polymer membrane MEMS sensor for flow rate and flow direction sensing applications

    International Nuclear Information System (INIS)

    Kottapalli, A G P; Tan, C W; Olfatnia, M; Miao, J M; Barbastathis, G; Triantafyllou, M

    2011-01-01

    The paper reports the design, fabrication and experimental results of a liquid crystal polymer (LCP) membrane-based pressure sensor for flow rate and flow direction sensing applications. Elaborate experimental testing results demonstrating the sensors' performance as an airflow sensor have been illustrated and validated with theory. MEMS sensors using LCP as a membrane structural material show higher sensitivity and reliability over silicon counterparts. The developed device is highly robust for harsh environment applications such as atmospheric wind flow monitoring and underwater flow sensing. A simple, low-cost and repeatable fabrication scheme has been developed employing low temperatures. The main features of the sensor developed in this work are a LCP membrane with integrated thin film gold piezoresistors deposited on it. The sensor developed demonstrates a good sensitivity of 3.695 mV (ms −1 ) −1 , large operating range (0.1 to >10 ms −1 ) and good accuracy in measuring airflow with an average error of only 3.6% full-scale in comparison with theory. Various feasible applications of the developed sensor have been demonstrated with experimental results. The sensor was tested for two other applications—in clinical diagnosis for breath rate, breath velocity monitoring, and in underwater applications for object detection by sensing near-field spatial flow pressure

  15. Aspects of matrix effects in applications of liquid chromatography-mass spectrometry to forensic and clinical toxicology--a review.

    Science.gov (United States)

    Peters, Frank T; Remane, Daniela

    2012-06-01

    In the last decade, liquid chromatography coupled to (tandem) mass spectrometry (LC-MS(-MS)) has become a versatile technique with many routine applications in clinical and forensic toxicology. However, it is well-known that ionization in LC-MS(-MS) is prone to so-called matrix effects, i.e., alteration in response due to the presence of co-eluting compounds that may increase (ion enhancement) or reduce (ion suppression) ionization of the analyte. Since the first reports on such matrix effects, numerous papers have been published on this matter and the subject has been reviewed several times. However, none of the existing reviews has specifically addressed aspects of matrix effects of particular interest and relevance to clinical and forensic toxicology, for example matrix effects in methods for multi-analyte or systematic toxicological analysis or matrix effects in (alternative) matrices almost exclusively analyzed in clinical and forensic toxicology, for example meconium, hair, oral fluid, or decomposed samples in postmortem toxicology. This review article will therefore focus on these issues, critically discussing experiments and results of matrix effects in LC-MS(-MS) applications in clinical and forensic toxicology. Moreover, it provides guidance on performance of studies on matrix effects in LC-MS(-MS) procedures in systematic toxicological analysis and postmortem toxicology.

  16. Application of inertial sensors for motion analysis

    Directory of Open Access Journals (Sweden)

    Ferenc Soha

    2012-06-01

    Full Text Available This paper presents our results on the application of various inertial sensors for motion analysis. After the introduction of different sensor types (accelerometer, gyroscope, magnetic field sensor, we discuss the possible data collection and transfer techniques using embedded signal processing and wireless data communication methods [1,2]. Special consideration is given to the interpretation of accelerometer readings, which contains both the static and dynamic components, and is affected by the orientation and rotation of the sensor. We will demonstrate the possibility to decompose these components for quasiperiodic motions. Finally we will demonstrate the application of commercially available devices (Wii sensor, Kinect sensor, mobile phone for motion analysis applications.

  17. Mathematical analysis, approximation theory and their applications

    CERN Document Server

    Gupta, Vijay

    2016-01-01

    Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.

  18. Liquid membrane extraction techniques for trace metal analysis and speciation in environmental and biological matrices

    Energy Technology Data Exchange (ETDEWEB)

    Ndungu, Kuria

    1999-04-01

    In this thesis, liquid-membrane-based methods for the analysis of trace metal species in samples of environmental and biological origin were developed. By incorporating extracting reagents in the membrane liquid, trace metal ions were selectively separated from humic-rich natural waters and urine samples, prior to their determination using various instrumental techniques. The extractions were performed in closed flow systems thus allowing easy automation of both the sample clean-up and enrichment. An acidic organophosphorus reagent (DEHPA) and a basic tetraalkylammonium reagent (Aliquat-336) were used as extractants in the membrane liquid to selectively extract and enrich cationic and anionic metal species respectively. A speciation method for chromium species was developed that allowed the determination of cationic Cr(III) species and anionic CR(VI) species in natural water samples without the need of a chromatographic separation step prior to their detection. SLM was also coupled on-line to potentiometric stripping analysis providing a fast and sensitive method for analysis of Pb in urine samples. A microporous membrane liquid-liquid extraction (MMLLE) method was developed for the determination of organotin compounds in natural waters that reduced the number of manual steps involved in the LLE of organotin compounds prior to their CC separation. Clean extracts obtained after running unfiltered humic-rich river water samples through the MMLLE flow system allowed selective determination of all the organotin compounds in a single run using GC-MS in the selected ion monitoring mode (SIM) 171 refs, 9 figs, 4 tabs

  19. The application of polyelectrolytes to improve liquid radwaste treatment system radionuclide removal efficiency

    International Nuclear Information System (INIS)

    Homyk, W.A.; Spall, M.J.; Vance, J.N.

    1990-01-01

    At nuclear plants, miscellaneous waste water treated in the liquid radwaste processing system contains a significant fraction of suspended particulate materials ranging in size from a few microns down to the submicron region. The fewer particles that typically exist as colloids are generally negatively charged by virtue of inorganic and organic anions absorbed onto the particle surfaces. Because many of the radionuclides exist as colloids and resist agglomeration and settling they are not easily removed by mechanical filtration or ion exchange processes. The colloidal materials will easily pass through most filters with conventional pore size ratings and through most ion exchange media. This leads to poor decontamination Factors (dFs) and higher radionuclide releases to the environment. A laboratory-scale testing program was conducted at Indian Point Unit No. 2 to determine the effectiveness of the use of organic polyelectrolytes to destabilize colloidal suspensions in liquid radwaste. Destabilizing colloidal suspensions will improve the removal efficiencies of the suspended material by typical filtration and ion exchange processes. The increased removal efficiencies will provide increased dFs in the liquid radwaste treatment system. The testing focused on identifying the specific organic polyelectrolytes and the associated dosages which would be effective in destabilizing the colloidal suspensions on actual waste water samples. The testing also examined the filtration characteristics of the water source to determine filter parameters such as: body feed material, body feed dosages, specific flow rates, etc., which would provide the basis for the design of filtration systems for these applications. The testing effort and the major conclusions from this investigation are given. 4 refs., 8 figs., 2 tabs

  20. SYNTHESE D’EXTRACTANTS ACIDES HEXADECYL- ET DECYLAMINOBIMETHYLENEDIPHOSPHONIQUES APPLICATION A L’EXTRACTION LIQUIDE-LIQUIDE DE Ni (II

    Directory of Open Access Journals (Sweden)

    M.A DIDI

    2007-06-01

    Après purification puis caractérisation des produits, nous avons réalisé divers tests d’extraction liquide - liquide de Ni (II en milieu sulfaté. Le temps d’équilibre déterminé par étude cinétique a été fixé à 40 minutes. Les paramètres changeant tels la température ( T = 20°C, 30°C et 50°C, le rapport du nombre de moles (n extractant / n métal (Q =1 à 6 et le rapport des volumes (Vaq / Vorg= 1, 2, 3 et 4 ont permis de maximiser le rendement d’extraction qui est de 46% avec le HABMP et de 44% pour le DADMP et ceci pour des extractions à un seul plateau.

  1. Influence of ZnO nanostructures in liquid crystal interfaces for bistable switching applications

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Kaushik, E-mail: kaushikpal@whu.edu.cn [School of Power and Mechanical Engineering, Wuhan University, 8 East Lake South Road, Wuhan 430072 (China); Zhan, Bihong, E-mail: bihong_zhan@whu.edu.cn [School of Power and Mechanical Engineering, Wuhan University, 8 East Lake South Road, Wuhan 430072 (China); Madhu Mohan, M.L.N. [Liquid Crystal Research Laboratory (LCRL), Bannari Amman Institute of Technology, Sathyamangalam 638 401 (India); Schirhagl, Romana [University Medical Center Groningen, Department of BioMedical Engineering, Ant. Deusinglaan 1, 9713 AV Groningen (Netherlands); Wang, Guoping, E-mail: guopingwang@whu.edu.cn [School of Power and Mechanical Engineering, Wuhan University, 8 East Lake South Road, Wuhan 430072 (China)

    2015-12-01

    Graphical abstract: - Highlights: • One step bench top novel synthesis and growth dynamics of ZnO structures are successfully performed. • Nanostructures dispersing liquid crystals (NDLC) is recently found to have significant influence on the nucleation and growth of many functional nanocrystals (NCs), and provide a fundamental approach to modify the crystallographic phase, size, morphology, and electronic configuration of nanomaterials. • Electro-optical switching application ensures the bright field droplet design marble pattern of smectic G phase, nematic and most significant twist nematic phase pattern are obtained. • Spontaneous polarization, rotational viscosity and response time study, exploring smart applications in LCD technology. - Abstract: The controlled fabrication of nanometer-scale objects is without doubt one of the central issues in current science and technology. In this article, we exhibit a simple, one-step bench top synthesis of zinc oxide nano-tetrapods and nano-spheres which were tailored by the facial growth of nano-wires (diameter ≈ 24 nm; length ≈ 118 nm) and nano-cubes (≈395 nm edge) to nano-sphere (diameter ≈ 585 nm) appeaded. The possibilities of inexpensive, simple solvo-chemical synthesis of nanostructures were considered. In this article, a successful attempt has been made that ZnO nano-structures dispersed on well aligned hydrogen bonded liquid crystals (HBLC) comprising azelaic acid (AC) with p-n-alkyloxy benzoic acid (nBAO) by varying the respective alkyloxy carbon number (n = 5). The dispersion of nanomaterials with HBLC is an effective route to enhance the existing functionalities. A series of these composite materials were analyzed by polarizing optical microscope's electro-optical switching. An interesting feature of AC + nBAO is the inducement of tilted smectic G phase with increasing carbon chain length. Phase diagrams of the above hybrid ZnO nanomaterial influenced LC complex and pure LC were

  2. Applications of noise analysis to nuclear safety

    International Nuclear Information System (INIS)

    Aguilar Martinez, Omar

    2000-01-01

    Noise Analysis techniques (analysis of the fluctuation of physical parameters) have been successfully applied to the operational vigilance of the technical equipment that plays a decisive role in the production cycle of a very complex industry. Although fluctuation measurements in nuclear installations started almost at the start of the nuclear era (see works by Feynman and Rossi on the development of neutron methodology), only recently have neutron noise diagnostic applications begun to be a part of the standard procedures for the performance of some modern nuclear installations. Following the relevant technical advances made in information sciences and analogical electronics, measuring the fluctuation of physical parameters has become a very effective tool for detecting, guarding and following up possible defects in a nuclear system. As the processing techniques for the fluctuation of a nuclear reactor's physical-neutron parameters have evolved (temporal and frequency analysis, multi-parameter self -regression analysis, etc.), the applications of the theory of non-lineal dynamics and chaos theory have progressed by focusing on the problem from another perspective. This work reports on those nuclear applications of noise analysis that increase nuclear safety in all types of nuclear facilities and that have been carried out by the author over the last decade, such as: -Void Force Critical Set Applications (Zero Power Reactor Applications, Central Institute of Physical Research, Budapest, Hungary); -Research Reactor Applications (Triga Mark III Reactor, National Institute of Nuclear Research, ININ, Mexico); -Power Reactor Applications in a Nuclear Power Plant (First Circuit of Block II, Paks Nuclear Center, Hungary); -Second Loop applications in a Nuclear Power Plant (Block I Paks Nuclear Center, Hungary; Block II Kalinin Nuclear Center, Russia); -Shield System Applications for the Transport of Radioisotopes (Nuclear Technology Center, Havana, Cuba) New trends in

  3. Development of a new extraction method based on counter current salting-out homogenous liquid-liquid extraction followed by dispersive liquid-liquid microextraction: Application for the extraction and preconcentration of widely used pesticides from fruit juices.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Feriduni, Behruz; Mogaddam, Mohammad Reza Afshar

    2016-01-01

    In this paper, a new extraction method based on counter current salting-out homogenous liquid-liquid extraction (CCSHLLE) followed by dispersive liquid-liquid microextraction (DLLME) has been developed for the extraction and preconcentration of widely used pesticides in fruit juice samples prior to their analysis by gas chromatography-flame ionization detection (GC-FID). In this method, initially, sodium chloride as a separation reagent is filled into a small column and a mixture of water (or fruit juice) and acetonitrile is passed through the column. By passing the mixture sodium chloride is dissolved and the fine droplets of acetonitrile are formed due to salting-out effect. The produced droplets go up through the remained mixture and collect as a separated layer. Then, the collected organic phase (acetonitrile) is removed with a syringe and mixed with 1,1,2,2-tetrachloroethane (extraction solvent at µL level). In the second step, for further enrichment of the analytes the above mixture is injected into 5 mL de-ionized water placed in a test tube with conical bottom in order to dissolve acetonitrile into water and to achieve a sedimented phase at µL-level volume containing the enriched analytes. Under the optimal extraction conditions (extraction solvent, 1.5 mL acetonitrile; pH, 7; flow rate, 0.5 mL min(-1); preconcentration solvent, 20 µL 1,1,2,2-tetrachloroethane; NaCl concentration; 5%, w/w; and centrifugation rate and time, 5000 rpm and 5 min, respectively), the extraction recoveries and enrichment factors ranged from 87% to 96% and 544 to 600, respectively. Repeatability of the proposed method, expressed as relative standard deviations, ranged from 2% to 6% for intra-day (n=6, C=250 or 500 µg L(-1)) and inter-days (n=4, C=250 or 500 µg L(-1)) precisions. Limits of detection are obtained between 2 and 12 µg L(-1). Finally, the proposed method is applied for the determination of the target pesticide residues in the juice samples. Copyright © 2015

  4. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment.

    Science.gov (United States)

    Tong, Juan; Chen, Yinguang

    2009-07-01

    In previous publications we reported that by controlling the pH at 10.0 the accumulation of short-chain fatty acids (SCFA) during waste activated sludge (WAS) fermentation was remarkably improved [Yuan, H., Chen, Y., Zhang, H., Jiang, S., Zhou, Q., Gu, G., 2006. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ. Sci. Technol. 40, 2025-2029], but significant ammonium nitrogen (NH(4)-N) and soluble ortho-phosphorus (SOP) were released [Chen, Y., Jiang, S., Yuan, H., Zhou, Q., Gu, G., 2007. Hydrolysis and acidification of waste activated sludge at different pHs. Water Res. 41, 683-689]. This paper investigated the simultaneous recovery of NH(4)-N and SOP from WAS alkaline fermentation liquid and the application of the fermentation liquid as an additional carbon source for municipal wastewater biological nitrogen and phosphorus removal. The central composite design (CCD) of the response surface methodology (RSM) was employed to optimize and model the simultaneous NH(4)-N and SOP recovery from WAS alkaline fermentation liquid. Under the optimum conditions, the predicted and experimental recovery efficiency was respectively 73.4 and 75.7% with NH(4)-N, and 82.0 and 83.2% with SOP, which suggested that the developed models described the experiments well. After NH(4)-N and SOP recovery, the alkaline fermentation liquid was added to municipal wastewater, and the influence of volume ratio of fermentation liquid to municipal wastewater (FL/MW) on biological nitrogen and phosphorus removal was investigated. The addition of fermentation liquid didn't significantly affect nitrification. Both SOP and total nitrogen (TN) removal were increased with fermentation liquid, but there was no significant increase at FL/MW greater than 1/35. Compared to the blank test, the removal efficiency of SOP and TN at FL/MW=1/35 was improved from 44.0 to 92.9%, and 63.3 to 83.2%, respectively. The enhancement of phosphorus and nitrogen

  5. Wavelet analysis and its applications an introduction

    CERN Document Server

    Yajnik, Archit

    2013-01-01

    "Wavelet analysis and its applications: an introduction" demonstrates the consequences of Fourier analysis and introduces the concept of wavelet followed by applications lucidly. While dealing with one dimension signals, sometimes they are required to be oversampled. A novel technique of oversampling the digital signal is introduced in this book alongwith necessary illustrations. The technique of feature extraction in the development of optical character recognition software for any natural language alongwith wavelet based feature extraction technique is demonstrated using multiresolution analysis of wavelet in the book.

  6. Commercial application of fault tree analysis

    International Nuclear Information System (INIS)

    Crosetti, P.A.; Bruce, R.A.

    1970-01-01

    The potential for general application of Fault Tree Analysis to commercial products appears attractive based not only on the successful extension from the aerospace safety technology to the nuclear reactor reliability and availability technology, but also because combinatorial hazards are common to commercial operations and therefore lend themselves readily to evaluation by Fault Tree Analysis. It appears reasonable to conclude that the technique has application within the commercial industrial community where the occurrence of a specified consequence or final event would be of sufficient concern to management to justify such a rigorous analysis as an aid to decision making. (U.S.)

  7. Design and Analysis of Web Application Frameworks

    DEFF Research Database (Denmark)

    Schwarz, Mathias Romme

    -state manipulation vulnerabilities. The hypothesis of this dissertation is that we can design frameworks and static analyses that aid the programmer to avoid such errors. First, we present the JWIG web application framework for writing secure and maintainable web applications. We discuss how this framework solves...... some of the common errors through an API that is designed to be safe by default. Second, we present a novel technique for checking HTML validity for output that is generated by web applications. Through string analysis, we approximate the output of web applications as context-free grammars. We model......Numerous web application frameworks have been developed in recent years. These frameworks enable programmers to reuse common components and to avoid typical pitfalls in web application development. Although such frameworks help the programmer to avoid many common errors, we nd...

  8. In-liquid arc plasma jet and its application to phenol degradation

    KAUST Repository

    Liu, Jing-Lin Lin

    2018-02-07

    We present a new method for achieving chemical reactions induced by plasmas with liquids—an in-liquid arc plasma jet system—designed to have a few advantages over the existing methods. High-speed imaging and optical emission spectroscopy were adopted to highlight the physical aspects of the in-liquid arc plasma jet system, and the feasibility of the system was investigated in a wastewater treatment case with phenol as the model contaminant. We found that the specific energy input is a reasonable parameter by which to characterize the overall process. The phenol removal reaction could be modeled as a pseudo-first-order reaction, and the reaction constant became smaller as the phenol concentration increased. However, complete decomposition of the phenol into water and carbon dioxide required very high energy because the final intermediate, oxalic acid, is relatively stable. Detailed chemical and physical analyses, including byproducts, ions, solution acidity, and conductivity, were conducted to evaluate this new method for use in the appropriate applications.

  9. Physical Characteristics of Tetrahydroxy and Acylated Derivatives of Jojoba Liquid Wax in Lubricant Applications.

    Science.gov (United States)

    Harry-O'kuru, Rogers E; Biresaw, Girma; Gordon, Sherald; Xu, Jingyuan

    2018-01-01

    Jojoba liquid wax is a mixture of esters of long-chain fatty acids and fatty alcohols mainly C38:2-C46:2. The oil exhibits excellent emolliency on the skin and, therefore, is a component in many personal care cosmetic formulations. The virgin oil is a component of the seed of the jojoba ( Simmondsia chinensis ) plant which occurs naturally in the Sonora Desert in the United States and northwestern Mexico as well as in the northeastern Sahara desert. The seed contains 50-60% oil by dry weight. The plant has been introduced into Australia, Argentina, and Israel for commercial production of the jojoba oil. As a natural lubricant, we are seeking to explore its potential as a renewable industrial lubricant additive. Thus, we have chemically modified the carbon-carbon double bonds in the oil structure in order to improve its already good resistance to air oxidation so as to enhance its utility as well as its shelf life in nonpersonal care applications. To achieve this goal, we have hydroxylated its -C=C- bonds. Acylation of the resulting hydroxyl moieties has generated short-chain vicinal acyl substituents on the oil which keep the wax liquid, improving its cold flow properties and also protecting it from auto-oxidation and rancidity.

  10. Physical Characteristics of Tetrahydroxy and Acylated Derivatives of Jojoba Liquid Wax in Lubricant Applications

    Directory of Open Access Journals (Sweden)

    Rogers E. Harry-O’kuru

    2018-01-01

    Full Text Available Jojoba liquid wax is a mixture of esters of long-chain fatty acids and fatty alcohols mainly C38:2–C46:2. The oil exhibits excellent emolliency on the skin and, therefore, is a component in many personal care cosmetic formulations. The virgin oil is a component of the seed of the jojoba (Simmondsia chinensis plant which occurs naturally in the Sonora Desert in the United States and northwestern Mexico as well as in the northeastern Sahara desert. The seed contains 50–60% oil by dry weight. The plant has been introduced into Australia, Argentina, and Israel for commercial production of the jojoba oil. As a natural lubricant, we are seeking to explore its potential as a renewable industrial lubricant additive. Thus, we have chemically modified the carbon-carbon double bonds in the oil structure in order to improve its already good resistance to air oxidation so as to enhance its utility as well as its shelf life in nonpersonal care applications. To achieve this goal, we have hydroxylated its –C=C– bonds. Acylation of the resulting hydroxyl moieties has generated short-chain vicinal acyl substituents on the oil which keep the wax liquid, improving its cold flow properties and also protecting it from auto-oxidation and rancidity.

  11. On the application of accelerated molecular dynamics to liquid water simulations.

    Science.gov (United States)

    de Oliveira, César Augusto F; Hamelberg, Donald; McCammon, J Andrew

    2006-11-16

    Our group recently proposed a robust bias potential function that can be used in an efficient all-atom accelerated molecular dynamics (MD) approach to simulate the transition of high energy barriers without any advance knowledge of the potential-energy landscape. The main idea is to modify the potential-energy surface by adding a bias, or boost, potential in regions close to the local minima, such that all transitions rates are increased. By applying the accelerated MD simulation method to liquid water, we observed that this new simulation technique accelerates the molecular motion without losing its microscopic structure and equilibrium properties. Our results showed that the application of a small boost energy on the potential-energy surface significantly reduces the statistical inefficiency of the simulation while keeping all the other calculated properties unchanged. On the other hand, although aggressive acceleration of the dynamics simulation increases the self-diffusion coefficient of water molecules greatly and dramatically reduces the correlation time of the simulation, configurations representative of the true structure of liquid water are poorly sampled. Our results also showed the strength and robustness of this simulation technique, which confirm this approach as a very useful and promising tool to extend the time scale of the all-atom simulations of biological system with explicit solvent models. However, we should keep in mind that there is a compromise between the strength of the boost applied in the simulation and the reproduction of the ensemble average properties.

  12. Conventional OTSG development for heavy liquid fuel firing in thermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Setchfield, W.P. [Mitchell Engineers Ltd., Glasgow, Scotland (United Kingdom); Roset, J.N. [Total S.A., Paris (France); Schaffer, M. [Total E and P Canada Ltd., Calgary, AB (Canada); O' Connor, D. [MEG Energy Inc., Calgary, AB (Canada); Kense, K. [TIW Western Inc., Calgary, AB (Canada)

    2008-10-15

    The demand for natural gas is expected to increase as a result of future expansion in Canadian extra heavy oil in-situ thermal production, such as steam assisted gravity drainage or SAGD projects. Natural gas is the current predominant fuel utilized for the associated steam generation. Potential natural gas shortages and related price volatility require that operators consider alternative fuels for the projected growth of in-situ thermal production in Alberta. This paper targeted the use of bitumen from upstream sites and derivative residues from upgrading activities as the most convenient alternative fuel sources for thermal operators of established horizontal type gas fired once through steam generators (OTSGs). The paper presented the methodology, the issues associated with bitumen or residue burning and the related technical solutions in developing a multi-fuel OTSG product. The paper provided background information on conventional OTSG design development, conventional OTSG existing deign, and general description of conventional OTSG. The paper also described the configuration of a radiant furnace, convection module, and theories and definitions such as heavy liquid fuels. A description and application of the equipment and processes as well as a presentation of the data and results was then offered. The multi fuel OTSG design is considered to be a practical and workable product capable of firing heavy liquid fuels. However, the design changes have had a significant impact when compared with conventional OTSG boilers. 11 figs.

  13. Application of Liquid Hydrogen with SMES for Efficient Use of Renewable Energy in the Energy Internet

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-02-01

    Full Text Available Considering that generally frequency instability problems occur due to abrupt variations in load demand growth and power variations generated by different renewable energy sources (RESs, the application of superconducting magnetic energy storage (SMES may become crucial due to its rapid response features. In this paper, liquid hydrogen with SMES (LIQHYSMES is proposed to play a role in the future energy internet in terms of its combination of the SMES and the liquid hydrogen storage unit, which can help to overcome the capacity limit and high investment cost disadvantages of SMES. The generalized predictive control (GPC algorithm is presented to be appreciatively used to eliminate the frequency deviations of the isolated micro energy grid including the LIQHYSMES and RESs. A benchmark micro energy grid with distributed generators (DGs, electrical vehicle (EV stations, smart loads and a LIQHYSMES unit is modeled in the Matlab/Simulink environment. The simulation results show that the proposed GPC strategy can reschedule the active power output of each component to maintain the stability of the grid. In addition, in order to improve the performance of the SMES, a detailed optimization design of the superconducting coil is conducted, and the optimized SMES unit can offer better technical advantages in damping the frequency fluctuations.

  14. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose

    Directory of Open Access Journals (Sweden)

    Marta Ferreiro-González

    2016-05-01

    Full Text Available Arsonists usually use an accelerant in order to start or accelerate a fire. The most widely used analytical method to determine the presence of such accelerants consists of a pre-concentration step of the ignitable liquid residues followed by chromatographic analysis. A rapid analytical method based on headspace-mass spectrometry electronic nose (E-Nose has been developed for the analysis of Ignitable Liquid Residues (ILRs. The working conditions for the E-Nose analytical procedure were optimized by studying different fire debris samples. The optimized experimental variables were related to headspace generation, specifically, incubation temperature and incubation time. The optimal conditions were 115 °C and 10 min for these two parameters. Chemometric tools such as hierarchical cluster analysis (HCA and linear discriminant analysis (LDA were applied to the MS data (45–200 m/z to establish the most suitable spectroscopic signals for the discrimination of several ignitable liquids. The optimized method was applied to a set of fire debris samples. In order to simulate post-burn samples several ignitable liquids (gasoline, diesel, citronella, kerosene, paraffin were used to ignite different substrates (wood, cotton, cork, paper and paperboard. A full discrimination was obtained on using discriminant analysis. This method reported here can be considered as a green technique for fire debris analyses.

  15. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose

    Science.gov (United States)

    Ferreiro-González, Marta; Barbero, Gerardo F.; Palma, Miguel; Ayuso, Jesús; Álvarez, José A.; Barroso, Carmelo G.

    2016-01-01

    Arsonists usually use an accelerant in order to start or accelerate a fire. The most widely used analytical method to determine the presence of such accelerants consists of a pre-concentration step of the ignitable liquid residues followed by chromatographic analysis. A rapid analytical method based on headspace-mass spectrometry electronic nose (E-Nose) has been developed for the analysis of Ignitable Liquid Residues (ILRs). The working conditions for the E-Nose analytical procedure were optimized by studying different fire debris samples. The optimized experimental variables were related to headspace generation, specifically, incubation temperature and incubation time. The optimal conditions were 115 °C and 10 min for these two parameters. Chemometric tools such as hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA) were applied to the MS data (45–200 m/z) to establish the most suitable spectroscopic signals for the discrimination of several ignitable liquids. The optimized method was applied to a set of fire debris samples. In order to simulate post-burn samples several ignitable liquids (gasoline, diesel, citronella, kerosene, paraffin) were used to ignite different substrates (wood, cotton, cork, paper and paperboard). A full discrimination was obtained on using discriminant analysis. This method reported here can be considered as a green technique for fire debris analyses. PMID:27187407

  16. Analysis of symptoms and their potential associations with e-liquids' components: a social media study.

    Science.gov (United States)

    Li, Qiudan; Zhan, Yongcheng; Wang, Lei; Leischow, Scott J; Zeng, Daniel Dajun

    2016-07-30

    The electronic cigarette (e-cigarette) market has grown rapidly in recent years. However, causes of e-cigarette related symptoms among users and their impact on health remain uncertain. This research aims to mine the potential relationships between symptoms and e-liquid components, such as propylene glycol (PG), vegetable glycerine (VG), flavor extracts, and nicotine, using user-generated data collected from Reddit. A total of 3605 e-liquid related posts from January 1st, 2011 to June 30th, 2015 were collected from Reddit. Then the patterns of VG/PG distribution among different flavors were analyzed. Next, the relationship between throat hit, which was a typical symptom of e-cigarette use, and e-liquid components was studied. Finally, other symptoms were examined based on e-liquid components and user sentiment. We discovered 3 main sets of findings: 1) We identified three groups of flavors in terms of VG/PG ratios. Fruits, cream, and nuts flavors were similar. Sweet, menthol, and seasonings flavors were classified into one group. Tobacco and beverages flavors were the third group. 2) Throat hit was analyzed and we found that menthol and tobacco flavors, as well as high ratios of PG and nicotine level, could produce more throat hit. 3) A total of 9 systems of 25 symptoms were identified and analyzed. Components including VG/PG ratio, flavor, and nicotine could be possible reasons for these symptoms. E-liquid components shown to be associated with e-cigarette use symptomology were VG/PG ratios, flavors, and nicotine levels. Future analysis could be conducted based on the structure of e-liquid components categories built in this study. Information revealed in this study could be utilized by e-cigarette users to understand the relationship between e-liquid type and symptoms experienced, by vendors to choose appropriate recipes of e-liquid, and by policy makers to develop new regulations.

  17. Functional analysis, spectral theory, and applications

    CERN Document Server

    Einsiedler, Manfred

    2017-01-01

    This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.

  18. Liquid theory with high accuracy and broad applicability: Coupling parameter series expansion and non hard sphere perturbation strategy

    Directory of Open Access Journals (Sweden)

    Shiqi Zhou

    2011-12-01

    Full Text Available Thermodynamic and structural properties of liquids are of fundamental interest in physics, chemistry, and biology, and perturbation approach has been fundamental to liquid theoretical approaches since the dawn of modern statistical mechanics and remains so to this day. Although thermodynamic perturbation theory (TPT is widely used in the chemical physics community, one of the most popular versions of the TPT, i.e. Zwanzig (Zwanzig, R. W. J. Chem. Phys. 1954, 22, 1420-1426 1st-order high temperature series expansion (HTSE TPT and its 2nd-order counterpart under a macroscopic compressibility approximation of Barker-Henderson (Barker, J. A.; Henderson, D. J. Chem. Phys. 1967, 47, 2856-2861, have some serious shortcomings: (i the nth-order term of the HTSE is involved with reference fluid distribution functions of order up to 2n, and the higher-order terms hence progressively become more complicated and numerically inaccessible; (ii the performance of the HTSE rapidly deteriorates and the calculated results become even qualitatively incorrect as the temperature of interest decreases. This account deals with the developments that we have made over the last five years or so to advance a coupling parameter series expansion (CPSE and a non hard sphere (HS perturbation strategy that has scored some of its greatest successes in overcoming the above-mentioned difficulties. In this account (i we expatiate on implementation details of our schemes: how input information indispensable to high-order truncation of the CPSE in both the HS and non HS perturbation schemes is calculated by an Ornstein-Zernike integral equation theory; how high-order thermodynamic quantities, such as critical parameters and excess constant volume heat capacity, are extracted from the resulting excess Helmholtz free energy with irregular and inevitable numerical errors; how to select reference potential in the non HS perturbation scheme. (ii We give a quantitative analysis on why

  19. Development and validation of reverse phase high performance liquid chromatography for citral analysis from essential oils.

    Science.gov (United States)

    Gaonkar, Roopa; Yallappa, S; Dhananjaya, B L; Hegde, Gurumurthy

    2016-11-15

    Citral is a widely used monoterpene aldehyde in aromatherapy, food and pesticide industries. A new validated reverse phase high performance liquid chromatography (RP - HPLC) procedure for the detection and quantification of cis-trans isomers of citral was developed. The RP-HPLC analysis was carried out using Enable C - 18G column (250×4.6mm, 5μ), with acetonitrile and water (70: 30) mobile phase in isocratic mode at 1mL/min flow. A photodiode array (PDA) detector was set at 233nm for the detection of citral. The method showed linearity, selectivity and accuracy for citral in the range of 3-100μg/mL. In order to compare the new RP-HPLC method with the available methods, one of the commercially available essential oil from Cymbopogon flexuosus was analyzed using new RP-HPLC method and the same was analyzed using GC-MS for the comparison of the method for the detection of citral. The GC-MS analysis was done using mass selective detector (MSD) showed citral content to be of 72.76%; wherein the new method showed to contain that same at 74.98%. To prove the application of the new method, essential oils were extracted from lemongrass, lemon leaves and mosambi peels by steam distillation. The citral content present in the essential and also in the condensate was analyzed. The method was found to be suitable for the analysis of citral in essential oils and water based citral formulations with a very good resolution of its components geranial and neral. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Core analysis: new features and applications

    International Nuclear Information System (INIS)

    Edenius, M.; Kurcyusz, E.; Molina, D.; Wiksell, G.

    1995-01-01

    Today, core analysis may be performed with sophisticated software capable of both steady state and transient analysis using a common methodology for BWRs and PWRs. General trends in core analysis software development are: improved accuracy, automated engineering functions; three-dimensional transient capability; graphical user interfaces. As a demonstration of such software, new features of Studsvik-CMS (Core management system) and examples of applications are discussed in this article. 2 figs., 8 refs