WorldWideScience

Sample records for lipozyme im-catalyzed interesterification

  1. Lipozyme IM-catalyzed interesterification for the production of margarine fats in a 1 kg scale stirred tank reactor

    DEFF Research Database (Denmark)

    Zhang, Hong; Xu, Xuebing; Mu, Huiling

    2000-01-01

    Lipozyme IM-catalyzed interesterification of the oil blend between palm stearin and coconut oil (75/25 w/w) was studied for the production of margarine fats in a 1 kg scale batch stirred tank reactor. Parameters such as lipase load, water content, temperature, and reaction time were investigated...

  2. Production of specifically structured lipids by enzymatic interesterification in a pilot enzyme bed reactor: process optimization by response surface methodology

    DEFF Research Database (Denmark)

    Xu, Xuebing; Mu, Huiling; Høy, Carl-Erik

    1999-01-01

    Pilot production of specifically structured lipids by Lipozyme IM-catalyzed interesterification was carried out in a continuous enzyme bed reactor without the use of solvent. Medium chain triacylglycerols and oleic acid were used as model substrates. Response surface methodology was applied...... and the production of mono-incorporated and di-incorporated structured lipids with multiple regression and backward elimination. The coefficient of determination (R2) for the incorporation was 0.93, and that for the di-incorporated products was 0.94. The optimal conditions were flow rate, 2 ml/min; temperature, 65...

  3. Production of specific-structured lipids by enzymatic interesterification in a pilot continuous enzyme bed reactor

    DEFF Research Database (Denmark)

    Xu, Xuebing; Balchen, Steen; Høy, Carl-Erik

    1998-01-01

    Production of specific-structured lipids (interesterified lipids with a specific structure) by enzymatic interesterification was carried out in a continuous enzyme bed pilot scale reactor. Commercial immobilized lipase (Lipozyme IM) was used and investigations of acyl migration, pressure drop...

  4. Enzymatic interesterification of butterfat with rapeseed oil in a continuous packed bed reactor

    DEFF Research Database (Denmark)

    Rønne, Torben Harald; Yang, Tiankui; Mu, Huiling

    2005-01-01

    , whereafter it dramatically decreased over the next 10 days to an activity level of 40%. In general, the study shows no significant difference for butterfat interesterification in terms of enzyme behavior from normal vegetable oils and fats even though it contains short-chain fatty acids and cholesterol......Lipase-catalyzed interesterification of butterfat blended with rapeseed oil (70/30, w/w) was investigated both in batch and in continuous reactions. Six commercially available immobilized lipases were screened in batch experiments, and the lipases, Lipozyme TL IM and Lipozyme RM IM, were chosen...

  5. Monitoring lipase-catalyzed interesterification for bulky fats modification with FT-IR/NIR spectroscopy

    DEFF Research Database (Denmark)

    Chang, Tinghong; Lai, Xuxin; Zhang, Hong

    2005-01-01

    This work demonstrates the application of FT-IR and FT-NIR spectroscopy to monitor the enzymatic interesterification process for bulky fat modification. The reaction was conducted between palm stearin and coconut oil (70/30, w/w) with the catalysis of Lipozyme TL IM at 70°C in a batch reactor...

  6. Monitoring lipase-catalyzed butterfat interesterification with rapesee oil by Fourier transform near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Zhang, Hong; Mu, Huiling; Xu, Xuebing

    2006-01-01

    This work demonstrates the application of FT-NIR spectroscopy to monitor the enzymatic interesterification process for butterfat modification. The reactions were catalyzed by Lipozyme TL IM at 70 C for the blend of butterfat/rapeseed oil (70/30, w/w) in a packed-bed reactor. The blend and intere...

  7. Production of margarine fats by enzymatic interesterification with silica-granulated Thermomyces lanuginosa lipase in a large-scale study

    DEFF Research Database (Denmark)

    Zhang, Hong; Xu, Xuebing; Nilsson, Jörgen

    2001-01-01

    Interesterification of a blend of palm stearin and coconut oil (75:25, w/w), catalyzed by an immobilized Thermomyces lanuginosa lipase by silica granulation, Lipozyme TL IM, was studied for production of margarine fats in a 1- or 300-kg pilot-scale batch-stirred tank reactor. Parameters...

  8. Enzymatic interesterification of palm stearin and coconut oil by a dual lipase system

    DEFF Research Database (Denmark)

    Ibrahim, Nuzul Amri Bin; Guo, Zheng; Xu, Xuebing

    2008-01-01

    greater than 100% over the theoretical value when the reaction proceeds for 2 h. The co-immobilization action of the carrier of the immobilized lipases towards the free lipase was proposed as being one of the reasons leading to the synergistic effect and this has been experimentally verified by a reaction......Enzymatic interesterification of palm stearin with coconut oil was conducted by applying a dual lipase system in comparison with individual lipase-catalyzed reactions. The results indicated that a synergistic effect occurred for many lipase combinations, but largely depending on the lipase species...... mixed and their ratios. The combination of Lipozyme TL IM and RM IM was found to generate a positive synergistic action at all test mixing ratios. Only equivalent amount mixtures of Lipozyme TL IM with Novozym 435 or Lipozyme RM IM with Novozym 435 produced a significant synergistic effect as well...

  9. Triglyceride selectivity of immobilized Thermomyces lanuginosa lipase in interesterification

    DEFF Research Database (Denmark)

    Rønne, Torben Harald; Pedersen, Lars S.; Xu, Xuebing

    2005-01-01

    from tri-C4:0 to tri-C20:0, except for tri-C6:0, and in a series of unsaturated FA from tri-C18:1 to tri-C18:3. The quantification was performed by HPLC, and different methods of selectivity evaluation were used. None of the methods used showed any significant differences between the performances......The triglyceride (fatty acid) selectivity of an immobilized lipase from Thermomyces lanuginosa (Lipozyme TL IM) was investigated in lipase-catalyzed interesterification reactions between two mono-acid TG in n-hexane. Tristearin (tri-C18:0) was used as a reference in a series of TG with saturated FA...

  10. Structured Triacylglycerol of Palm-based Margarine Fat by Enzymatic Interesterification

    DEFF Research Database (Denmark)

    Ibrahim, Nuzul Amri Bin

    2008-01-01

    blends containing palm stearin (PS) (60 to 90%), palm kernel oil (PKO) (10 to 40%) and fish oil (FO) (0 to 10%) were interesterified by Lipozyme TL IM (Thermomyces lanuginosa) using a continuous packed bed reactor (PBR). FO in the blend had a similar effect as PKO on solid fat content (SFC...... PBR for enzymatic interesterification of sunflower oil and fish oil blend. The pre-column functions as a protector of the enzyme bed to prolong the lifespan of the enzyme. Deactivation kinetic of enzymes subjected to interesterification using a pre-column was compared against without a pre......-column. The deactivation rate of enzyme bed without a pre-column was 7.4 times faster than the one with a pre-column, where the half-life were 8 and 58 days respectively....

  11. Human Milk Fat Substitute Produced by Enzymatic Interesterification of Vegetable Oil Blend

    Directory of Open Access Journals (Sweden)

    Semra Turan

    2007-01-01

    Full Text Available Palm oil, palm kernel oil, olive oil, sunflower oil, and marine oil blend, formulated in the mass ratio of 4.0:3.5:1.0:1.5:0.2, was subjected to interesterification catalyzed by lipase from Thermomyces lanuginosa (Lipozyme® TL IM for obtaining a product that contains similar triacylglycerol (TAG structure to that of human milk fat (HMF. Reactions were carried out in a double jacketed glass vessel equipped with magnetic stirrer at 60 °C for 2, 4, 6, 8, 12 and 24 h. The blend was analyzed for fatty acid composition of both total fatty acids and those at the sn-2 position after pancreatic lipase hydrolysis. After interesterification, TAGs were purified by thin layer chromatography and TAG species were determined according to the carbon number (CN by high-temperature gas chromatography. Enzymatic interesterification generated significant differences for all TAG species from CN30 to CN54. Concentrations of some TAG species (CN30, 32, 34, 36, 38, 50, 52 and 54 decreased, while some (CN40 to 48 increased after 24 h. TAG species with higher CN reached maximum levels at the end of 6 h of reaction time. The predominant TAGs of the reaction product after 24 h were CN46, 48, 50, 52 and 54 with ratios of 13.8, 18.2, 13.9, 17.8, and 12.1 %, respectively. These TAG species contain mainly 1,3-diunsaturated-2-saturated structure, like HMF.

  12. Pilot batch production of cocoa butter-like fats from chinese vegetable tallow by enzymatic interesterification

    DEFF Research Database (Denmark)

    Xu, Xuebing; Hu, X.; Balchen, Steen

    1997-01-01

    -8%. And about 90% of the present PPP and PPSt triglycerides were separated from the product. Under above parameters, the final pilot products had similar compositions to those of cocoa butter. In this research, IPPL showed initial interesterification activity at the similar level as Lipozyme IM from Novo......There is a long term interest of lipase applications in lipid modifications because of the inherent advantages over chemical methods such as more specific reactions involved, less energy used, moderate reaction conditions and so on. In this work, cocoa butter-like fats (CBF) were produced using....../w) 1.3-1.7/1, hexane/substrates(v/w): 1.0:1-1.2:1. Based on the pilot batch plant, the total process is following: substrates, drying, reaction, filtration, fractionation, neutralisation, de-solventization and drying, and product. The fractionation process reduced the free fatty acid content to 5...

  13. Influence of enzymatic and chemical interesterification on crystallisation properties of refined, bleached and deodourised (RBD) palm oil and RBD palm kernel oil blends.

    Science.gov (United States)

    Norizzah, Abd Rashid; Nur Azimah, Kamarulzaman; Zaliha, Omar

    2018-04-01

    Interesterification reaction involves rearrangement of the fatty acid radicals on the glycerol backbone, either randomly (chemical interesterification) or regioselectivity (enzymatic interesterification). Refined, bleached and deodourised palm oil (RBDPO) and palm kernel oil (RBDPKO) were blended in ratios from 25:75 to 75:25 (wt/wt). All blends were subjected to enzymatic (EI) and chemical interesterification (CI) using Lipozyme TL IM (4% w/w) and sodium methoxide (0.2% m/m) as the catalysts, respectively. The effect of EI and CI on the triacylglycerol (TAG) composition, thermal behaviour, polymorphism, crystal morphology and crystallisation kinetics were studied. The aim of this research is to characterise the nature of crystals in food product for certain desired structure. The crystallisation behaviour discussed in this study involves microstructure (PLM), polymorphism (XRD), thermal properties and crystallisation kinetics by DSC. The alteration in TAG composition was greater after CI as compared to EI with the reduction of LaLaLa (from 11.00% to 5.15%) and POO (from 14.28% to 4.87%). The DSC complete melting and crystallisation temperature of blend with 75% PO increased after CI, from 39.58 °C to 41.67 °C and from -30.84 °C to -28.33 °C, respectively. EI contributed to finer crystals than CI. However, the β' and β polymorph mixture and crystallisation kinetics (n = 2) of PO-PKO blends did not change after CI and EI. The knowledge on controlling crystallisation of RBDPO and RBDPKO blends is vital for proper processing condition like margarine production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Applications of immobilized Thermomyces lanuginosa lipase in interesterification

    DEFF Research Database (Denmark)

    Yang, Tiankui; Fruekilde, Maj-Britt; Xu, Xuebing

    2003-01-01

    (RSM). Thermomyces lanuginosa lipase had an activity similar to that of immobilized Rhizomucor miehei lipase (Lipozyme RM IM) in the glycerolysis of sunflower oil, but the former had higher activity at a low reaction temperature (5degreesC). Thermomyces lanuginosa lipase was found to have much lower...... catalytic activity than Lipozyme RM IM in the acidolysis of sunflower oil with caprylic acid. However, the activity of T. lanuginosa lipase was only slightly lower than that of Lipozyme RM IM in the ester-ester exchange between tripalmitin (PPP) and the ethyl esters of EPA and DHA (EE). For this reason...

  15. Comparison of Chemical and Enzymatic Interesterification of Fully Hydrogenated Soybean Oil and Walnut Oil to Produce a Fat Base with Adequate Nutritional and Physical Characteristics

    Directory of Open Access Journals (Sweden)

    Mariel Farfán

    2015-01-01

    Full Text Available The optimal physical, chemical and nutritional properties of natural lipids depend on the structure and composition of triacylglycerols. However, they are not always mutually compatible. Lipid modification is a good way to give them specific functionalities, increase their oxidative stability, or improve their nutritional value. As such, chemical and enzymatic interesterification may be used to modify them and produce structured lipids. In accordance, the aim of this study is to compare chemical and enzymatic interesterifi cation of binary blends of fully hydrogenated soybean oil and walnut oil, using sodium methoxide or Lipozyme TL IM, respectively, to produce a fat base with adequate nutritional and physical characteristics. Three different mass ratios of fully hydrogenated soybean oil and walnut oil blends (20:80, 40:60 and 60:40 were interesterified and evaluated. Total interesterification was determined by the stabilization of the solid fat content. Chemical reaction of the 20:80 blend was completed in 10 min and of the 40:60 and 60:40 blends in 15 min. Enzymatically interesterified blends were stabilized in 120 min at all of the mass ratios. Complete interesterification significantly reduced the solid fat content of the blends at any composition. Chemical and enzymatically interesterified fully hydrogenated blend of soybean and walnut oil at mass ratio of 40:60 showed the plastic curve of an all-purpose-type shortening rich in polyunsaturated fatty acids, with a high linolenic acid (C18:3n3 content and with zero trans-fatty acids.

  16. Modification of margarine fats by enzymatic interesterification:

    DEFF Research Database (Denmark)

    Zhang, Hong; Pedersen, Lars Saaby; Kristensen, Dorther

    2004-01-01

    to the equilibrium state, and (iii) the reaction rate constant value (k). SFC0 and ΔSFC were related to only the types of blends and the blend ratios. The rate constant k was related to lipase activity on a given oil blend. Evaluation of the model was carried out with two groups of oil blends, i.e., palm stearin/coconut...... oil in weight ratios of 90:10, 80:20, and 70:30, and soybean oil/fully hydrogenated soybean oil in weight ratios of 80:20, 65:35, and 50:50. Correlation coefficients higher than 0.99 between the experimental and predicted values were observed for SFC at temperatures above 30°C. The model is useful...... for predicting changes in the SFC during lipase-catalyzed interesterification with a selected group of oil blends. It also can be used to control the process when particular SFC values are targeted....

  17. The properties of the mixture of beef tallow and rapeseed oil with a high content of tallow after chemical and enzymatic interesterification

    Directory of Open Access Journals (Sweden)

    Gruczynska, Eliza

    2005-12-01

    Full Text Available A mixture of beef tallow with rapeseed oil (3:1 wt/wt was interesterified using sodium metoxide or immobilized lipases from Rhizomucor miehei (Lipozyme IM and Candida antarctica (Novozym 435 as catalysts. Chemical interesterifications were carried out at 60 and 90 ºC for 0.5 and 1.5 h using 0.4, 0.6 and 1.0 wt-% CH3ONa. Depending on the catalyst used enzymatic interesterifications were carried out at 60 ºC for 8 h (Lipozyme IM or at 80 ºC for 4 h (Novozym 435. The catalysts doses were kept constant (8 % but the water content in catalysts varied from 2 to 10 %. The starting mixture and the interesterified products were separated by column chromatography into a pure triacylglycerol fraction and a non-triacylglycerol fraction, which contained free fatty acids, mono- and diacylglycerols. It was found that the concentrations of free fatty acids and partial acylglycerols increased after interesterification. The slip melting points and solid fat contents of the triacylglycerol fractions isolated from interesterified fats were lower when compared with nonesterified blends. The sn-2 and sn-1,3 distributions of fatty acids in the triacylglycerol fractions before and after interesterification were determined.These distributions were random after chemical interesterification and near random when Novozym 435 was used. When Lipozyme IM was used, the fatty acid composition at the sn-2 position remained practically unchanged compared with the starting blend. The interesterified fats and isolated triacylglycerols had reduced oxidative stability, as assessed by Rancimat induction times. The addition of 0.02 % of BHA or BHT to the interesterified fats improved their stabilitie.Una mezcla de sebo con aceite de colza (3:1 p/p fue interesterificada usando metóxido de sodio y lipasas inmovilizadas de Rhizomucor miehei (Lipozyme IM and Candida antarctica (Novozym 435 como catalizadores. La interesterificación química se llevó a cabo a 60 ºC y 90

  18. Interesterification of rapeseed oil catalyzed by tin octoate

    International Nuclear Information System (INIS)

    Galia, Alessandro; Centineo, Alessio; Saracco, Guido; Schiavo, Benedetto; Scialdone, Onofrio

    2014-01-01

    The interesterification of rapeseed oil was performed for the first time by using tin octoate as Lewis acid homogeneous catalysts and methyl or ethyl acetate as acyl acceptors in a batch reactor, within the temperature range 393–483 K. The yields in fatty acid ethyl esters (FAEE) and triacetin (TA) after 20 h of reaction time increased from 8% and 2%–to 61% and 22%, respectively, when the reaction temperature increased from 423 to 483 K. An optimum value of 40 for the acyl acceptor to oil molar ratio was found to be necessary to match good fatty acid alkyl ester yields with high enough reaction rate. The rate of generation of esters was significantly higher when methyl acetate was used as acyl acceptor instead of its ethyl homologue. The collected results suggest that tin octoate can be used as effective catalyst for the interesterification of rapeseed oil with methyl or ethyl acetate being highly soluble in the reaction system, less expensive than enzymes and allowing the operator to work under milder conditions than supercritical interesterification processes. - Highlights: • We study the interesterification of rapeseed oil catalyzed by tin(II) octoate. • Tin(II) octoate is an effective homogeneous catalyst at 483 K. • The acyl acceptor to oil molar ratio must be optimized. • Higher rate of reaction is obtained with methyl acetate as acyl acceptor

  19. Functional palm oil-based margarine by enzymatic interesterification

    DEFF Research Database (Denmark)

    Ibrahim, Nuzul Amri Bin; Xu, Xuebing

    Palm stearin, palm kernel and fish oils were blended to a various composition ratios and enzymatically interesterified by Lipozyme TL IM lipase (Thermomyces lanuginosa) using a continuous packed bed reactor. The ratio of the oils ranged from 60-90%, 10-40% and 0-10% respectively. The enzyme was a...

  20. Synthesis of structured triacylglycerols containing medium-chain and long-chain fatty acids by interesterification with a stereoespecific lipase from Mucor miehei.

    Directory of Open Access Journals (Sweden)

    Nieto, Susana

    1999-06-01

    Full Text Available The preparation of structured triacylglycerols sn-1, sn-3 dilauryl, sn-2 eicosapentaenoyl glycerol and sn-1, sn-3 dilauryl, sn-2 docosahexaenoyl glycerol by enzymatic interesterification under restricted water availability is described. Laurie acid, one of the substrates for interesterification, was obtained by the controlled hydrolysis of coconut oil by a non-specific lipase obtained from Candida cylindracea. The fatty acid was separated from the hydrolysis products by silverresin column chromatography and converted to methyl ester, sn-2 Eicosapentaenoyl glycerol and sn-2 docosahexaenoyl glycerol were prepared by the hydrolysis of fish oil by the sn-1, sn-3 stereospecific immobilized lipase Lipozyme IM-20 obtained from Mucor miehei as described in the accompanying paper. The interesterification was carried out in a water jacketed glass reactor and the triacylglycerol products were separated and recovered through aluminum oxide column chromatography The interesterification procedure described allows to obtain In laboratory scale structured triacylglycerols containing medium-chain fatty acids at the sn-1 and sn-3 positions and long-chain polyunsaturated fatty acid from marine origin at the sn-2 glycerol position.

    Se describe la preparación de triacilgliceroles estructurados sn-1, sn-3 dilauril, sn-2 ecosapentaenoil glicerol y sn-1, sn-3 diiauril, sn-2 docosahexaenoil glicerol por interesterificación enzimática bajo disponibilidad de agua reducida. Acido láurico, uno de los sustratos para la interesterificación, se obtuvo mediante hidrólisis controlada del aceite de coco por una lipasa no-específica obtenida de Candida cylindracea. Los ácidos grasos se separaron de los productos de hidrólisis mediante cromatografía en columna de resina de plata y convertidos en sus esteres metílicos, sn-2 Eicosapentaenoil glicerol y sn-2 docosahexaenoil glicerol se prepararon mediante hidrólisis de aceite de pescado por la sn-1, sn

  1. Radiochemical methods for studying lipase-catalyzed interesterification of lipids

    International Nuclear Information System (INIS)

    Schuch, R.; Mukherjee, K.D.

    1987-01-01

    Reactions involving lipase-catalyzed interesterification of lipids, which are of commendable interest in biotechnology, have been monitored and assayed by radiochemical methods using 14 C-labeled substrates. Medium chain (C 12 plus C 14 ) triacylglycerols were reacted in the presence of an immobilized lipase from Mucor miehei and hexane at 45 0 C with methyl [1- 14 C]oleate, [1- 14 C]oleic acid, [carboxyl- 14 C]trioleoylglycerol, [1- 14 C]octadecenyl alcohol, and [U- 14 C]glycerol, each of known specific activity. The reactions were monitored and the rate of interesterification determined by radio thin layer chromatography from the incorporation of radioactivity into acyl moieties of triacylglycerols (from methyl oleate, oleic acid, and trioleoylglycerol), alkyl moieties of wax esters (from octadecenyl alcohol), and into glycerol backbone of monoacylglycerols and diacylglycerols (from glycerol). (orig.)

  2. Chemical interesterification of soybean oil and fully hydrogenated soybean oil: Influence of the reaction time

    International Nuclear Information System (INIS)

    Ribeiro, Ana Paula Badan; Masuchi, Monise Helen; Grimaldi, Renato; Goncalves, Lireny Aparecida Guaraldo

    2009-01-01

    Chemical interesterification is an important alternative to produce zero trans fats. In practice, however, excessive reaction times are used to ensure complete randomization. This work evaluated the influence of the reaction time on the interesterification of soybean oil/fully hydrogenated soybean oil blend, carried out in the following conditions: 100 deg C, 500 rpm stirring speed, 0.4% (w/w) sodium methoxide catalyst. The triacylglycerol composition, solid fat content and melting point analysis showed that the reaction was very fast, reaching the equilibrium within 5 min. This result suggests the interesterification can be performed in substantially lower times, with reduction in process costs. (author)

  3. Transesterification catalyzed by Lipozyme TLIM for biodiesel production from low cost feedstock

    Science.gov (United States)

    Halim, Siti Fatimah Abdul; Hassan, Hamizura; Amri, Nurulhuda; Bashah, Nur Alwani Ali

    2015-05-01

    The development of new strategies to efficiently synthesize biodiesel is of extreme important. This is because biodiesel has been accepted worldwide as an alternative fuel for diesel engines. Biodiesel as alkyl ester derived from vegetable oil has considerable advantages in terms of environmental protection. The diminishing petroleum reserves are the major driving force for researchers to look for better strategies in producing biodiesel. The main hurdle to commercialization of biodiesel is the cost of the raw material. Biodiesel is usually produced from food-grade vegetable oil that is more expensive than diesel fuel. Therefore, biodiesel produced from food-grade vegetable oil is currently not economically feasible. Use of an inexpensive raw material such as waste cooking palm oil and non edible oil sea mango are an attractive option to lower the cost of biodiesel. This study addresses an alternative method for biodiesel production which is to use an enzymatic approach in producing biodiesel fuel from low cost feedstock waste cooking palm oil and unrefined sea mango oil using immobilized lipase Lipozyme TL IM. tert-butanol was used as the reaction medium, which eliminated both negative effects caused by excessive methanol and glycerol as the byproduct. Two variables which is methanol to oil molar ratio and enzyme loading were examine in a batch system. Transesterification of waste cooking palm oil reach 65% FAME yield (methanol to oil molar ratio 6:1 and 10% Novozyme 435 based on oil weight), while transesterification of sea mango oil can reach 90% FAME yield (methanol to oil molar ratio 6:1 and 10% Lipozyme TLIM based on oil weight).

  4. Production of specific structured lipids by enzymatic interesterification: optimization of the reaction by response surface design

    DEFF Research Database (Denmark)

    Xu, Xuebing; Skands, Anja Rebecca Havegaard; Adler-Nissen, Jens

    1998-01-01

    Rapeseed oil and capric acid were interesterified in solvent-free media catalyzed by Lipozyme IM (Rhizomucor miehei) to produce specific-structured lipids (SSLs). The process was optimized by response surface design concerning the effects of acyl migration and the by-products of diacylglycerols...

  5. Enzymatic interesterification on the physicochemical properties of Moringa oleifera seed oil blended with palm olein and virgin coconut oil

    Directory of Open Access Journals (Sweden)

    Dollah, S.

    2015-06-01

    Full Text Available The enzymatic interesterification (IE of palm olein (PO and virgin coconut oil (VCO with the high oleic acid (86% Moringa oleifera seed oil (MoO could yield a good source of oleic acid fat stock that may contain desirable nutritional and physical properties. Lipozyme RMIM resulted in different functionalities for the MoO/PO and MoO/VCO blends due to inherent changes in triacylglycerol (TAG compositions which, in turn, led to different trends in DSC thermograms and solid fat contents (SFC. The enzymatic IE of MoO/VCO increased U2S and S2U (up to 20% medium and long chain, MLCT while it decreased U3 (triunsaturated and S3 (trisaturated TAGs. The IE of the MoO/PO blends increased U2S and S3 (MMP, myristic, myristic, palmitic and decreased S2U, resulting in a lowering of melting points and SFC for MoO/VCO, while showing an increase in them for MoO/PO. A 2.55% increase in S3 after 24 h MoO/PO 30:70 IE revealed a 6.5% harder oil at 10 °C which may imply a wider application compared to the original liquid oils. Novel MLCTs with improved nutritional and physical properties were generated in the MoO/VCO blends after IE due to the incorporation of oleic acid and medium chain fatty acids. MoO/PO 50:50 and 70:30 w/w after 12 h IE and MoO/VCO 30:70 are suitable for incorporation into the fat phase in ice-cream formulations while, the spreadability and plasticity of MoO/VCO 70:30 improved at low temperatures. Both interesterified blends could be used as high oleic acid frying oils.La interesterificación enzimática (IE de la oleína de palma (PO, aceite de coco virgen (VCO con alto contenido en ácido oleico (86% y aceites de semilla de Moringa oleífera (MOO podría ser una buena fuente de ácido oleico con propiedades nutricionales y físicas deseables. La lipozyme RMIM produce diferentes funcionalidades para las mezclas MoO/PO y MoO/ VCO debido a los cambios inherentes en la composición de triacilgliceroles (TAG que, a su vez, dieron lugar a diferentes

  6. Pilot scale intensification of rubber seed (Hevea brasiliensis) oil via chemical interesterification using hydrodynamic cavitation technology.

    Science.gov (United States)

    Bokhari, Awais; Yusup, Suzana; Chuah, Lai Fatt; Klemeš, Jiří Jaromír; Asif, Saira; Ali, Basit; Akbar, Majid Majeed; Kamil, Ruzaimah Nik M

    2017-10-01

    Chemical interesterification of rubber seed oil has been investigated for four different designed orifice devices in a pilot scale hydrodynamic cavitation (HC) system. Upstream pressure within 1-3.5bar induced cavities to intensify the process. An optimal orifice plate geometry was considered as plate with 1mm dia hole having 21 holes at 3bar inlet pressure. The optimisation results of interesterification were revealed by response surface methodology; methyl acetate to oil molar ratio of 14:1, catalyst amount of 0.75wt.% and reaction time of 20min at 50°C. HC is compared to mechanical stirring (MS) at optimised values. The reaction rate constant and the frequency factor of HC were 3.4-fold shorter and 3.2-fold higher than MS. The interesterified product was characterised by following EN 14214 and ASTM D 6751 international standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Optimization of oligoglycerol fatty acid esters preparation catalyzed by Lipozyme 435

    Directory of Open Access Journals (Sweden)

    Wan, F. L.

    2015-09-01

    Full Text Available Oli goglycerol fatty acid esters (OGEs are an important kind of polyglycerol fatty acid esters (PGEs which have been widely used as emulsifiers in food, medicine and cosmetic industries. The aim of this study was to investigate the preparation of OGEs by the esterification of olig oglycerol with linoleic acid in a solvent- free system using Lipozyme 435 as the catalyst. The effects of substrate molar ratio, reaction time, reaction temperature, enzyme dosage, and water addition on the efficiency of esterification (EE were studied. Single factor experiments and response surface methodology (RSM were employed to optimize the reaction parameters. The optimum conditions were obtained as follows: reaction time 4.52 h, reaction temperature 90 °C, enzyme dosage 2 wt% (based on the total substrate mass, the molar ratio of oligoglycerol to linoleic acid 1.59:1 and no water addition. Under these conditions, the experimental EE (95.82±0.22% fitted well with that predicted by RSM (96.15%. Similar results were obtained when the process was scaled up to a production of 500 g in a pilot bubble column reactor (BCR. The enzyme maintained 98.2% of the relative activity after 10 batches of reaction in the BCR. Electro spray ionization mass spectrum was employed to rapidly analyze the esterification products, and most species of OGEs have been identified.Los ésteres grasos de oligoglicerol (OGEs son una clase importante de ésteres de ácidos grasos de poliglicerol (PGE que han sido ampliamente utilizados como emulsionantes en alimentación, medicina y en la industria cosmética. El objetivo de este estudio fue investigar la preparación de OGEs mediante la esterificación de oligoglicerol con ácido linoleico en un sistema libre de disolvente utilizando Lipozyme 435 como catalizador. Se estudiaron los efectos en la eficiencia de esterificación (EE de la relación molar de sustratos, de los tiempos de reacción, las temperaturas de reacción, la dosis de la

  8. Estudo do comportamento da lipase comercial Lipozyme RM IM em reações de esterificação para obtenção de biodiesel

    Directory of Open Access Journals (Sweden)

    Erika C. G. Aguieiras

    2013-01-01

    Full Text Available The aim of this work was to study monoalkyl ester synthesis catalyzed by immobilized lipase Lipozyme RM IM via the esterification reaction. Yields of over 90% were obtained with butanol in esterification reactions with oleic acid. In the reactions with deodorizer distillates of vegetable oils and butanol, the conversion obtained was greater than 80% after 2.5 h. For the esterification reaction of palm fatty acid deodorizer distillate (PFAD and butanol, seven reuse cycles of Lipozyme RM IM were carried out and the final conversion was 42% lower than the initial conversion.

  9. Enzymatic interesterification of vegetable oil/ fish oil blend for margarine production

    DEFF Research Database (Denmark)

    Ibrahim, Nuzul Amri Bin; Xu, Xuebing

    the desired properties. In this study, palm stearin (PS), palm kernel oil (PKO) and fish oil (FO) are blended and modified by enzymatic interesterification. PS functioned as the hard stock, PKO as the soft oil and FO as a source for eicosapentaenoic acid (EPA)/ docosahexaenoic acid (DHA). The purpose...... cause the product to be susceptible to oxidation due to the presence of high content of polyunsaturated fatty acids. Furthermore, FO could also influence the melting properties of the product. Therefore, in addition to determining the fatty acid position on the glycerol backbone, it is also pertinent...

  10. Production of structured lipids: acyl migration during enzymatic interesterification and downstream processing

    DEFF Research Database (Denmark)

    Xu, Xuebing

    1997-01-01

    Production of structured lipids by lipase-catalyzed interesterification attracts great interests recently. Structured lipids are defined, in this article, as triacylglycerols which contain both medium or short chain fatty acids and long chain fatty acids, each groups locating specifically in the sn......-2 position or sn-1,3 positions of glycerol backbone. These kinds of lipids are reported to be promising for both enteral and parenteral nutrition. However, acyl migration occurs in the reaction stage and downstream purification process. This side-reaction causes by-products which are harmful...

  11. Production of specific-structured lipids by enzymatic interesterification: elucidation of acyl migration by response surface design

    DEFF Research Database (Denmark)

    Xu, Xuebing; Skands, Anja; Høy, Carl-Erik

    1998-01-01

    Production of specific-structured lipids (SSL) by lipase-catalyzed interesterification has been attracting more and more attention recently. However, it was found that acyl migration occurs during the reaction and causes the production of by-products. In this paper, the elucidation of acyl...

  12. Parameters affecting diacylglycerol formation during the production of specific-structured lipids by lipase-catalyzed interesterification

    DEFF Research Database (Denmark)

    Xu, Xuebing; Mu, Huiling; Skands, Anja

    1999-01-01

    Diacylglycerols (DAGs) are important intermediates in lipase-catalyzed interesterification, but a high DAG concentration in the reaction mixture results in a high DAG content in the final product. We have previously shown that a high DAG concentration in the reaction mixture increases the degree ...

  13. Interesterification reaction activity, fatty acid composition and selectivity ratio of soybean oil

    Directory of Open Access Journals (Sweden)

    El-Shattory, Y.

    1998-12-01

    Full Text Available The interesterification reaction was carried out by adding oleic acid to soybean oil by ratio 1:2 w/w under different conditions of temperature, stirring and catalyst percentages. Assessment of the interesterification of oils was reported by determination of saponification value, iodine value and fatty acids composition. This study showed that linolenic acid which is responsible for flavour instability of soybean oil and consider as primary factor contributing to deterioration of this oil could be reduced to less than or equals 3%.

    Se han llevado a cabo reacciones de interesterificación mediante la adición de ácido oleico a aceite de soja en la relación 1:2 w/w bajo diferentes condiciones de temperatura, agitación y porcentaje de catalizador. La evaluación de la interesterificación de los aceites se realizó por determinación del índice de saponificación, el índice de iodo y la composición en ácidos grasos. Este estudio mostró que el ácido linolénico, que es responsable de la inestabilidad del flavor del aceite de soja y considerado como factor primario que contribuye a la deterioración de este aceite, podría ser reducido a cantidades menores o iguales al 3%.

  14. Assessing the reaction conditions to mediate the milkfat-soybean oil enzymatic interesterification

    Directory of Open Access Journals (Sweden)

    Ariela Veloso de Paula

    Full Text Available Summary A food grade lipase from Rhizopus oryzae immobilized on a hybrid polysiloxane-polyvinyl alcohol matrix (SiO2-PVA was used as the biocatalyst to mediate the interesterification reactions of a blend containing 65% milkfat and 35% soybean oil. All the reactions occurred in an inert nitrogen atmosphere in cylindrical glass reactors (80 mL with 40 g of the milkfat-soybean oil blend. The influence of the following variables was evaluated: biocatalyst loading (250-1500 activity units per gram of blend, biocatalyst moisture content (5-20%, temperature (45-60 °C and incubation time (2-48 h. The reactions were monitored by determining the free fatty acid content, triacylglycerol (TAGs composition in carbon species, and the consistency of the interesterified (IE products. The reaction conditions were set based on the parameters that provided a high interesterification yield and good consistency of the final product within the ideal range (200 to 800 gf cm-2. Hence the best results were obtained using a biocatalyst loading of 500 U g-1 of blend with 10% moisture content at 45 °C for 4 h. Under these conditions the consistency of the interesterified product was 539.7 ± 38 gf cm-2. The results demonstrated the potential of the immobilized lipase to alter the TAGs profile of the milkfat-soybean oil blend, allowing for the production of structured lipids.

  15. Optimization of diacylglycerol production by glycerolysis of fish oil catalyzed by Lipozyme TL IM with Tween 65.

    Science.gov (United States)

    Monte Blanco, S F M; Santos, J S; Feltes, M M C; Dors, G; Licodiedoff, S; Lerin, L A; de Oliveira, D; Ninow, J L; Furigo, A

    2015-12-01

    The diacylglycerols (DAG) are emulsifiers with high added value used as functional additives in food, medicine, and cosmetic industries. In glycerolysis of oils for the production of DAG, the immiscibility between the substrates (glycerol and oil phases) has to be overcome, for example, by the addition of a food grade surfactant like Tween 65. The main objective of this work was to optimize the process conditions for obtaining diacylglycerols rich in the omega-3 eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, through the enzymatic glycerolysis of fish oil, in systems with Tween 65 and without this surfactant, using Lipozyme TL(®) IM as biocatalyst. The experiments were performed according to predetermined conditions varying the temperature, enzyme load, the oil to glycerol molar ratio and, when added, the surfactant load. After 6 h of reaction, it was possible to produce up to 20.76 and 13.76% of diacylglycerols from fish oil in the reactions with and without Tween 65, respectively.

  16. Kinetics and Optimization of Lipophilic Kojic Acid Derivative Synthesis in Polar Aprotic Solvent Using Lipozyme RMIM and Its Rheological Study

    Directory of Open Access Journals (Sweden)

    Nurazwa Ishak

    2018-02-01

    Full Text Available The synthesis of kojic acid derivative (KAD from kojic and palmitic acid (C16:0 in the presence of immobilized lipase from Rhizomucor miehei (commercially known as Lipozyme RMIM, was studied using a shake flask system. Kojic acid is a polyfunctional heterocycles that acts as a source of nucleophile in this reaction allowing the formation of a lipophilic KAD. In this study, the source of biocatalyst, Lipozyme RMIM, was derived from the lipase of Rhizomucor miehei immobilized on weak anion exchange macro-porous Duolite ES 562 by the adsorption technique. The effects of solvents, enzyme loading, reaction temperature, and substrate molar ratio on the reaction rate were investigated. In one-factor-at-a-time (OFAT experiments, a high reaction rate (30.6 × 10−3 M·min−1 of KAD synthesis was recorded using acetone, enzyme loading of 1.25% (w/v, reaction time of 12 h, temperature of 50 °C and substrate molar ratio of 5:1. Thereafter, a yield of KAD synthesis was optimized via the response surface methodology (RSM whereby the optimized molar ratio (fatty acid: kojic acid, enzyme loading, reaction temperature and reaction time were 6.74, 1.97% (w/v, 45.9 °C, and 20 h respectively, giving a high yield of KAD (64.47%. This condition was reevaluated in a 0.5 L stirred tank reactor (STR where the agitation effects of two impellers; Rushton turbine (RT and pitch-blade turbine (PBT, were investigated. In the STR, a very high yield of KAD synthesis (84.12% was achieved using RT at 250 rpm, which was higher than the shake flask, thus indicating better mixing quality in STR. In a rheological study, a pseudoplastic behavior of KAD mixture was proposed for potential application in lotion formulation.

  17. Kinetics and Optimization of Lipophilic Kojic Acid Derivative Synthesis in Polar Aprotic Solvent Using Lipozyme RMIM and Its Rheological Study.

    Science.gov (United States)

    Ishak, Nurazwa; Lajis, Ahmad Firdaus B; Mohamad, Rosfarizan; Ariff, Arbakariya B; Mohamed, Mohd Shamzi; Halim, Murni; Wasoh, Helmi

    2018-02-24

    The synthesis of kojic acid derivative (KAD) from kojic and palmitic acid (C16:0) in the presence of immobilized lipase from Rhizomucor miehei (commercially known as Lipozyme RMIM), was studied using a shake flask system. Kojic acid is a polyfunctional heterocycles that acts as a source of nucleophile in this reaction allowing the formation of a lipophilic KAD. In this study, the source of biocatalyst, Lipozyme RMIM, was derived from the lipase of Rhizomucor miehei immobilized on weak anion exchange macro-porous Duolite ES 562 by the adsorption technique. The effects of solvents, enzyme loading, reaction temperature, and substrate molar ratio on the reaction rate were investigated. In one-factor-at-a-time (OFAT) experiments, a high reaction rate (30.6 × 10 -3 M·min -1 ) of KAD synthesis was recorded using acetone, enzyme loading of 1.25% ( w / v ), reaction time of 12 h, temperature of 50 °C and substrate molar ratio of 5:1. Thereafter, a yield of KAD synthesis was optimized via the response surface methodology (RSM) whereby the optimized molar ratio (fatty acid: kojic acid), enzyme loading, reaction temperature and reaction time were 6.74, 1.97% ( w / v ), 45.9 °C, and 20 h respectively, giving a high yield of KAD (64.47%). This condition was reevaluated in a 0.5 L stirred tank reactor (STR) where the agitation effects of two impellers; Rushton turbine (RT) and pitch-blade turbine (PBT), were investigated. In the STR, a very high yield of KAD synthesis (84.12%) was achieved using RT at 250 rpm, which was higher than the shake flask, thus indicating better mixing quality in STR. In a rheological study, a pseudoplastic behavior of KAD mixture was proposed for potential application in lotion formulation.

  18. Effect of micella interesterification on fatty acids composition and volatile components of soybean and rapeseed oils

    Directory of Open Access Journals (Sweden)

    Afifi, Sherine M.

    2000-10-01

    Full Text Available Micella interesterification of soybean and rapeseed oils was carried out using 0.2, 0.4 and 0.6 percentages of nickel catalyst, each at different temperatures of 60, 90 and 120ºC for 2, 4, and 6 hours. The proposed interesterification reaction conditions to obtain an oil with low linoleic acid level were 0.2 % nickel catalyst at 120ºC for 4 hours, 0.4% nickel catalyst at 90ºC for 4 hours and 0.6% at 60ºC for 4 hours. Fatty acid composition and chemical analysis of the interesterified and non-esterified oils were estimated. Selected samples undergo heating at 180ºC for 4 hours determining the volatile components. The appearance of some components supported the interesterification process for modification of fatty acid constituents of the oils.Se ha llevado a cabo la interesterificación en fase miscelar de aceites de soja y de colza usando un 0.2%, 0.4% y 0.6% de níquel como catalizador, a diferentes temperaturas (60, 90 y 120ºC durante 2, 4 y 6 horas. Las condiciones de reacción de interesterificación propuestas para obtener un aceite con niveles de ácidos linolénicos bajos fueron 0.2 % de níquel a 120ºC durante 4 horas, 0.4 % de níquel a 90ºC durante 4 horas y 0.6 % a 60ºC durante 4 horas. Se han estimado la composición en ácidos grasos y el análisis químico de los aceites interesterificados y no-esterificados. Las muestras seleccionadas se sometieron a calentamiento a 180ºC durante 4 horas determinando los componentes volátiles. La aparición de algunos componentes apoyó el proceso de interesterificación por modificación de los ácidos grasos constituyentes de los aceites.

  19. Optimization of 2-ethylhexyl palmitate production using lipozyme RM IM as catalyst in a solvent-free system.

    Science.gov (United States)

    Richetti, Aline; Leite, Selma G F; Antunes, Octávio A C; de Souza, Andrea L F; Lerin, Lindomar A; Dallago, Rogério M; Paroul, Natalia; Di Luccio, Marco; Oliveira, J Vladimir; Treichel, Helen; de Oliveira, Débora

    2010-04-01

    This work reports the application of a lipase in the 2-ethylhexyl palmitate esterification in a solvent-free system with an immobilized lipase (Lipozyme RM IM). A sequential strategy was used applying two experimental designs to optimize the 2-ethylhexyl palmitate production. An empirical model was then built so as to assess the effects of process variables on the reaction conversion. Afterwards, the operating conditions that optimized 2-ethylhexyl palmitate production were established as being acid/alcohol molar ratio 1:3, temperature of 70 degrees C, stirring rate of 150 rpm, 10 wt.% of enzyme, leading to a reaction conversion as high as 95%. From this point, a kinetic study was carried out evaluating the effect of acid:alcohol molar ratio, the enzyme concentration and the temperature on product conversion. The results obtained in this step permit to verify that an excess of alcohol (acid to alcohol molar ratio of 1:6), relatively low enzyme concentration (10 wt.%) and temperature of 70 degrees C, led to conversions next to 100%.

  20. Incorporation of medium chain fatty acids into fish oil triglycerides by chemical and enzymatic interesterification

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available Structured triglycerides (STs containing both medium-chain fatty acids (MCFA and polyunsaturated fatty acids (PUFA in the same molecule offer nutritional and therapeutic benefits. The aim of this work was to establish the incorporation of MCFA into fish oil triglycerides (TAGs, while maintaining substantial levels of docosahexaenoic and eicosapentaenoic acids. The effects of different acyl donors (capric acid methyl ester/MeC10 or medium chain triglyceride/TCM and of the catalyst (chemical or enzymatic on the fatty acid composition of the reaction product were studied. The fatty acid composition of the fish oil TAG was modified after interesterification to contain MCFA, and it depended on the catalyst and on the substrates. Thermograms obtained by Differential Scanning Calorimetry (DSC showed that interesterification promoted noteworthy changes in the melting profile of the samples. STs of clinical nutrition interest containing both EPA and DHA obtained from fish oil along with MCFA were successfully produced.

    Triglicéridos estructurados (SL conteniendo ácidos grasos de cadena media (MCFA y ácidos grasos poliinsaturados (PUFA en la misma molécula de glicerol tienen ventajas nutricionales y terapéuticas. Se establece la incorporación de MCFA a los triglicéridos (TAGs de aceite de pescado, conservando un contenido considerable de ácidos docosahexaenóico (DHA y eicosapentaenóico (EPA. El efecto de diferentes acil donadores (éster metílico de ácido cáprico/MeC10 o triglicéridos de cadena media/TCM y de catalizador (químico o enzimático sobre la composición del producto de las reacciones fue estudiado. La composición de ácidos grasos de los TAGs del aceite de pescado fue modificada después de las reacciones para contener MCFA y dependió del catalizador y de los substratos. Los termogramas obtenidos por Calorimetría Diferencial de Barrido (DSC indicaron que la interesterificación provocó alteraciones considerables de

  1. The effect of interesterification on the bioavailability of fatty acids in structured lipids.

    Science.gov (United States)

    Farfán, M; Villalón, M J; Ortíz, M E; Nieto, S; Bouchon, P

    2013-08-15

    Fatty acid (FA) profile is a critical factor in the nutritional properties of fats, but, stereochemistry may also play a fundamental role in the rate and extent to which FAs are absorbed and become available. To better understand this phenomenon, we evaluated the bioavailability of FAs in linseed-oil and palm-stearin blends compared to their interesterified mix, using a sn-1,3 stereospecific lipase, to determine if there was any difference in terms of FA availability when using this technology. Test meals were fed through an intragastric feeding tube on Sprague-Dawley male rats after 18 h fasting. Postprandial blood samples were collected after meal or physiological serum (control) administration and the FA profile of plasma lipids was determined. Results showed that modification of the melting profile through interesterification, without altering the bioavailability determined by sn-2 stereochemistry, could delay lipid absorption at the beginning, but had no effect on total lipid absorption. Copyright © 2013. Published by Elsevier Ltd.

  2. Pilot batch production of specific-structured lipids by lipase-catalyzed interesterification: preliminary study on incorporation and acyl migration

    DEFF Research Database (Denmark)

    Xu, Xuebing; Balchen, Steen; Høy, Carl-Erik

    1998-01-01

    Effects of water content, reaction time and their relationships in the production of two types of specific-structured lipids (sn-MLM- and sn-LML-types: L-long chain fatty acids; M-medium chain fatty acids) by lipase-catalyzed interesterification in a solvent-free system were studied...... of two totally position-opposed lipids can be observed. Presumably these are caused by the different chain length of the fatty acids. The relationships between reaction time and water content are inverse and give a quantitative prediction of incorporation and acyl migration in selected reaction...

  3. Otimização da reação de interesterificação química do óleo de palma Optimization of the cemical interesterification reaction of palm oil

    OpenAIRE

    Renato Grimaldi; Lireny Aparecida Guaraldo Gonçalves; Marlene Yumi Ando

    2005-01-01

    The Brazilian market has been showing a growing concern with nutritional values of oil components of foods. Chemical interesterification is a promising alternative to the current processes of modifying the consistency of oils. Chemical interesterification of deodorized palm oil was studied on a laboratory scale. The best results were obtained with 0.4% MeONa and heating for 20 min at 100 °C. These conditions are based on the largest variation in triacylglycerols as compared to a control. ...

  4. INTERESTERIFIKASI ENZIMATIS MINYAK IKAN DENGAN ASAM LAURAT UNTUK SINTESIS LIPID TERSTRUKTUR [Enzymatic Interesterification of Fish Oil with Lauric Acid for the Synthesis of Structured Lipid

    OpenAIRE

    Edy Subroto1); Chusnul Hidayat2); Supriyadi2)

    2008-01-01

    Structured lipid (SL) containing of medium chain fatty acid (MCFA) at outer position and polyunsaturated fatty acid (PUFA) at sn-2 position has superior dietary and absorption characteristics. The most methods for the enzymatic synthesis of SL were through two steps process, so that it was inefficient. Caprilic acid was usually used as a source of MCFA. In this research, SL was synthesized by enzymatic interesterification between fish oil and lauric acid. The specific lipase from Mucor miehei...

  5. INTERESTERIFIKASI ENZIMATIS PALM STEARIN DAN MINYAK IKAN LEMURU UNTUK MEMBUAT LEMAK MARGARIN [Enzymatic Interesterification of Palm Stearin and Sardine oil to Produce Margarine-fat

    Directory of Open Access Journals (Sweden)

    Pudji Hastuti

    2003-04-01

    Full Text Available Enzymatic interesterification of Palm Stearin (PS and Sardine Oil (SO as source of Eicosa Pentaenoic Acid (EPA and Docosa Hexaenoic Acid (DHA have been of interest to modify the physical properties of the triglyceride. An attempt to enzymatic-restructure PS and SO to form Structured Lipid (SL which is suitable for margarine was investigated using immobilized lipase from Rhizomucor miehei and that from Candida antartica. The effect of reaction time course, ratio of PS/SO and ratio of enzyme/substrate were studied in the present study. At the end of interesterification, the enzyme was filtered from the reaction mixture through a filter paper. The Solid Fat Index (SFI was determined by dillatometry. The Slip Melting Point (SMP was determined by capillary tube method. Both of interesterification catalyzed by immobilized sn 1,3 specific lipase from R.miehei,and non specific lipase from C.antartica were found to decrease the SFI value at 10; 21.1 and 33.3°C. The SMP value was decrease from 58-50°C to 37-39°C. The change of these parameters were slightly faster in the reaction which catalyzed by lipase from R miehei than lipase from C.antartica . The more the utilization of the enzyme the faster the change were occurred, especially the increase of enzyme utilization from 2.5% to 5%, which decrease the SFI value at 33,30C. The decrease of the PS/SO ratio resulted in the decrease of SFI and SMP values. It was found that the most suitable SFI and SMP value for margarine fat is the SL formed by carrying out the enzymatic-interesterification of PS/SO with the ratio of 40/60 using enzyme 2.5% of the total fat, for 8 hours at 60°C.

  6. Production of structured lipid with a low omega-6/omega-3 fatty acids ratio by enzymatic interesterification

    International Nuclear Information System (INIS)

    Ilyasoglu, H.

    2017-01-01

    A structured lipid (SL) constituting omega fatty acids was synthesized by using linseed and grape seed oils as substrates via a lipase-catalyzed reaction. Lipozyme® TL IM was used as a biocatalyst. Good quadratic models predicting the incorporation of omega fatty acids were achieved via the Response surface methodology (RSM). The optimal conditions for targeted omega-6/omega-3 fatty acid ratio (2:1) were obtained at a substrate molar ratio 1.4, time 8.4 h, and enzyme amount 6.4%. The SL contained linoleic acid (43 g 100g-1), which was mainly located in the sn-2 position (40 g 100g-1). α-Linoleic acid, and α-linolenic acid at the sn-2 position were 22 g 100g-1, and 11 g 100g-1, respectively. The oxidative stability of the SL, and SL with antioxidants was also investigated. The produced SL may be proposed as a source of a balanced intake of omega fatty acids and an ingredient in functional food formulations. [es

  7. PEMBUATAN BAHAN BAKU SPREADS KAYA KAROTEN DARI MINYAK SAWIT MERAH MELALUI INTERESTERIFIKASI ENZIMATIK MENGGUNAKAN REAKTOR BATCH [Preparation of Red Palm Oil Based-Spreads Stock Rich in Carotene Through Enzymatic Interesterification in Batch-type Reactor

    Directory of Open Access Journals (Sweden)

    Nur Wulandari1,2

    2012-12-01

    Full Text Available Enzymatic interesterification of red palm oil (a mixture of red palm olein/RPO and red palm stearin/RPS in 1:1 weight ratio and coconut oil (CNO blends of varying proportions using a non-specific immobilized Candida antartica lipase (Novozyme 435 was studied for the preparation of spread stock. The interesterification reaction was held in a batch-type reactor. Two substrate blends were chosen for the production of spread stock i.e. 77.5:22,5 and 82.5:17.5 (RPO/RPS:CNO, by weight through enzymatic interesterification in three different reaction times (2, 4, and 6 hours. The interesterification reactions were conducted at 60°C, 200 rpm agitation speed and 10% of Novozyme 435. The interesterified products were evaluated for their physical characteristics (slip melting point or SMP and solid fat content or SFC and chemical characteristics (carotene retention, moisture content, and free fatty acid/FFA content. All of the interesterified products had lower SFC and SMP as compared to the initial blends. The SMP and SFC increased in longer reaction times. The SMP ranged from 30.8°C to 34.9°C. The carotene retention ranged from 74.80% to 81.08%, while the moisture content and FFA content increased in longer reaction times. The interesterified products had desirable physical properties for possible use as a spread stock rich in carotene.

  8. Covalent immobilization of lipase onto aminopropyl-functionalized hydroxyapatite-encapsulated-γ-Fe2O3 nanoparticles: A magnetic biocatalyst for interesterification of soybean oil.

    Science.gov (United States)

    Xie, Wenlei; Zang, Xuezhen

    2017-07-15

    Hydroxyapatite-encapsulated γ-Fe 2 O 3 nanoparticles were prepared, and lipase from Candida rugosa was then covalently bound onto the magnetic materials via covalent linkages. The magnetic carrier and immobilized lipase were characterized by enzyme activity assays, XRD, FT-IR, TEM, VSM and N 2 adsorption-desorption techniques. Results demonstrated that γ-Fe 2 O 3 nanoparticles were coated with the hydroxyapatite, and the lipase was indeed tethered to the magnetic carriers without damage to their structure. The immobilized lipase showed a strong magnetic responsiveness and displayed high catalytic activities towards the interesterification of soybean oil. The interesterified products were evaluated for their total fatty acid (FA) composition, slip melting point (SMP), iodine value, triacylglycerols (TAGs) profile and FA composition at sn-2 position in TAGs. The FA positional distributions and TAG species significantly changed after the enzymatic interesterification. Besides this, the interesterified products showed an obvious reduction in their SMP in comparison with the physical blends. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. INTERESTERIFIKASI ENZIMATIS MINYAK IKAN DENGAN ASAM LAURAT UNTUK SINTESIS LIPID TERSTRUKTUR [Enzymatic Interesterification of Fish Oil with Lauric Acid for the Synthesis of Structured Lipid

    Directory of Open Access Journals (Sweden)

    Edy Subroto1

    2008-12-01

    Full Text Available Structured lipid (SL containing of medium chain fatty acid (MCFA at outer position and polyunsaturated fatty acid (PUFA at sn-2 position has superior dietary and absorption characteristics. The most methods for the enzymatic synthesis of SL were through two steps process, so that it was inefficient. Caprilic acid was usually used as a source of MCFA. In this research, SL was synthesized by enzymatic interesterification between fish oil and lauric acid. The specific lipase from Mucor miehei was used as catalyzed. Factors, such as the incubation time, substrate mole ratio, and reaction temperature were evaluated. The incorporation and the position of lauric acid on glycerol backbone and glyceride profile were determined. The results showed that SL containing of lauric acid at the outer position and PUFA at sn-2 was successfully synthesized, and it was done through one step process. From regiospecific determination, it showed that the position of lauric acid incorporation was only at the sn-1 and sn-3. Only 0.87% of lauric acid was incorporated at the sn-2. The optimum time and temperature of the reaction, and the substrate mole ratio were 12 h, 50C and 1:10, respectively, in which the incorporation of lauric acid was 62.8% (mol. Glyceride profile was affected by incubation time, substrate mole ratio and reaction temperature. Triglyceride concentration decreased with an increase in the incubation time (> 12 h. In contrast, the diglyceride concentration increased at longer incubation time (> 12 h. Beside, triglyceride concentration increased with an increase in substrate mole ratio to 1:10, but it decreased when mole ratio of substrate was 1:15. At higher temperature (50C, triglyceride decreased with an increase in the reaction temperature. In summary, the SL was successfully synthesized by the interesterification of fish oil and lauric acid using specific lipase of Mucor miehei.

  10. Otimização da reação de interesterificação química do óleo de palma Optimization of the cemical interesterification reaction of palm oil

    Directory of Open Access Journals (Sweden)

    Renato Grimaldi

    2005-08-01

    Full Text Available The Brazilian market has been showing a growing concern with nutritional values of oil components of foods. Chemical interesterification is a promising alternative to the current processes of modifying the consistency of oils. Chemical interesterification of deodorized palm oil was studied on a laboratory scale. The best results were obtained with 0.4% MeONa and heating for 20 min at 100 °C. These conditions are based on the largest variation in triacylglycerols as compared to a control. The trisaturated values varied from 6.2 to 9.9%, showing that the consistency of the oil improved for it to be used in margarines, without the formation of trans isomers.

  11. Nutritional enrichment of vegetable oils with long-chain n-3 fatty acids through enzymatic interesterification with a new vegetable lipase

    Directory of Open Access Journals (Sweden)

    Sousa, J. S.

    2015-06-01

    Full Text Available The aim of the present work was to produce vegetable oils enriched with long-chain n-3 fatty acids of nutraceutical interest, through an enzyme-catalyzed interesterification with a new lipase, from physic nut (Jatropha curcas L.. The Vegetable Lipase Powder (biocatalyst called VLP, which has never been applied in functional foods, was obtained from the physic nut seed, and efficiently hydrolyzed the 95% of waste fish oil in 24 h. Urea precipitation was used to concentrate polyunsaturated fatty acids (PUFA and was further interesterified with oils of different sources by means of enzymatic catalysis. After the interesterification reaction, which was also catalyzed by the VLP, the PUFA content in coconut oil increased almost ten-fold from 1.8% to 17.7%. In palm oil, the PUFA content increased two-fold from 10.5% to 21.8%, while in olive oil the level of PUFA increased from 8.6% to 21.3%. The mixture of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA (3.7% to 3.9% was incorporated into the triacylglycerol fraction of each of the coconut, palm and olive oils. Through the hydroesterification (hydrolysis followed by interesterification all the interesterified vegetable oils tested presented sufficient EPA and DHA levels to satisfy the levels recommended for intake by human adults in one tablespoon.El objetivo del presente trabajo fue producir aceites vegetales enriquecidos con ácidos grasos n-3 de cadena larga de interés nutraceutico, por interesterificación catalizada mediante una nueva lipasa, una enzima de semilla de Jatropha curcas L. La lipasa vegetal en polvo (biocatalizador llamada VLP, nunca ha sido aplicada en alimentos funcionales, se obtuvo mediante procedimientos físicos con semillas de nueces, e hidrolizó eficientemente el 95% de aceites de residuos de pescado en 24 h. La precipitación con urea se utilizó para concentrar los ácidos grasos poliinsaturados (PUFA que fueron posteriormente interesterificados con aceites de

  12. Interesterification of engkabang (Shorea macrophylla) fat--canola oil blend with lipase from Candida antarctica to simulate the properties of lard.

    Science.gov (United States)

    Illiyin, Mohamed Roslan Nur; Marikkar, Jalaldeen Mohamed Nazrim; Loke, Mei Key; Shuhaimi, Musthafa; Mahiran, Basri; Miskandar, Mat Saari

    2014-01-01

    A study was carried out to compare the composition and thermal properties of lard (LD) and engkabang fat (EF) - canola oil (CaO) blend interesterified with Candida antartica lipase (C. antartica). A fat blend EF-4 (40% EF in CaO) was prepared and interesterified using C. antartica lipase at 60°C for different time intervals (6 h, 12 h and 24 h) with 200 rpm agitation. The fat blends before and after interesterification were compared to LD with respect to their slip melting points (SMP), fatty acid and triacyglycerol (TAG) compositions, melting, solidification and polymorphic properties. Result showed that the slip melting point (SMP) of the fat blend interesterified for 6 h was the closest to that of LD. The solid fat content (SFC) values of fat blends interesterified for 12 and 24 h were found to become equal to those of LD within the temperature range of 0 to 20°C. In addition, all three interesterified blends had SFC values similar to those of LD within the temperature range of 30-40°C. According to thermal analysis, the transition of the fat blend interesterified for 24 h appearing at -2.39°C was similar to the low melting thermal transition of LD and the transition of the fat blend interesterified for 12 h appearing at 26.25°C was similar to the high melting thermal transition of LD. However, there is no compatibility between LD and all three interesterified blends with regard to polymorphic behaviour.

  13. 利用脂肪酶催化酯交换制备棕榈油基人造奶油基料%Preparation of Palm Oil Base for Margarine by Interesterification

    Institute of Scientific and Technical Information of China (English)

    鲁玉侠; 李香莉; 黄广灿; 赵亚妮; 邵志琳

    2012-01-01

    文章考察了Lipozyme TL IM脂肪酶在无溶剂条件下,催化棕榈油硬脂与棕榈油软脂的酯交换。混合油为棕榈油硬脂和棕榈油软脂的比例为75∶25,脂肪酶的添加量为油重量的4%,酶催化反应的操作温度为70℃,反应时间为20 h。酯交换产物的氧化稳定性更高,SFC35℃降低了24.79%,改善了酯交换油的打发性,提高了人造黄油的可操作性及口感。%A study was carried out on the transesterification between palm oil stearine fraction and palm oil olein fraction that catalized by Lipozyme TL IM under no solvent condition.The ratio of palm oil stearine fraction to palm oil olein fraction in the oil mixture was 75:25,the content of lipase 4 % based on the oil weight,the operation temperature of enzyme catalytic reaction was 70 ℃ and reaction time last for 20 h.The oxidization stability of transesterification product was much higher,the SFC35 ℃decreased 24.79 %,the whipping property of transesterification oil increased the operability and mouth feel of margarine.

  14. Production of structured lipids in a packed-bed reactor with Thermomyces lanuginosa lipase

    DEFF Research Database (Denmark)

    Xu, Xuebing; Porsgaard, Trine; Zhang, Hong

    2002-01-01

    Lipase-catalyzed interesterification between fish oil and medium-chain TAG has been investigated in a packed-bed reactor with a commercially immobilized enzyme. The enzyme, a Thermomyces lanuginosa lipase immobilized on silica by granulation (Lipozyme TL IM; Novozymes A/S, Bagsvaerd, Denmark), ha...

  15. Parameters affecting incorporation and by-product formation during the production of structured phospholipids by lipase-catalyzed acidolysis in solvent free system

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Mu, Huiling; Xu, Xuebing

    2005-01-01

    By-product formation is a serious problem in the lipase-catalyzed acyl exchange of phospholipids (PL). By-products are formed due to parallel hydrolysis reactions and acyl migration in the reaction system. A clear elucidation of these side reactions is important for practical operation in order...... to minimize by-products during reaction. In the present study we examined the Lipozyme RM IM-catalyzed acidolysis for the production of structured phospholipids between phosphatidylcholine (PC) and caprylic acid in the solvent free system. A five-factor response surface design was used to evaluate...

  16. Synthesis of structured triacylglycerols containing caproic acid by lipase-catalyzed acidolysis: Optimization by response surface methodology

    DEFF Research Database (Denmark)

    Zhou, D.Q.; Xu, Xuebing; Mu, Huiling

    2001-01-01

    Production in a batch reactor with a solvent-free system of structured triacylglycerols containing short-chain fatty acids by Lipozyme RM IM-catalyzed acidolysis between rapeseed oil and caproic acid was optimized using response surface methodology (RSM). Reaction time (t(r)), substrate ratio (S......-r = 2-6 mol/mol; and W-c = 2-12 wt %. The biocatalyst was Lipozyme RM IM, in which Rhizomucor miehei lipase is immobilized on a resin. The incorporation of caproic acid into rapeseed oil was the main monitoring response. In addition, the contents of mono-incorporated structured triacylglycerols and di......-incorporated structured triacylglycerols were also evaluated. The optimal reaction conditions for the incorporation of caproic acid and the content of di-incorporated structured triacylglycerols were as follows: t(r) = 17 h; 8, = 5; E-1 = 14 wt %; W-c = 10 wt %; T-e = 65 degreesC. At these conditions, products with 55...

  17. Production of structured lipid with a low omega-6/omega-3 fatty acids ratio by enzymatic interesterification; Producción de lípidos estructurados con una baja relación de ácidos grasos omega-6/omega-3 mediante interesterificación enzimática.

    Energy Technology Data Exchange (ETDEWEB)

    Ilyasoglu, H.

    2017-07-01

    A structured lipid (SL) constituting omega fatty acids was synthesized by using linseed and grape seed oils as substrates via a lipase-catalyzed reaction. Lipozyme® TL IM was used as a biocatalyst. Good quadratic models predicting the incorporation of omega fatty acids were achieved via the Response surface methodology (RSM). The optimal conditions for targeted omega-6/omega-3 fatty acid ratio (2:1) were obtained at a substrate molar ratio 1.4, time 8.4 h, and enzyme amount 6.4%. The SL contained linoleic acid (43 g 100g-1), which was mainly located in the sn-2 position (40 g 100g-1). α-Linoleic acid, and α-linolenic acid at the sn-2 position were 22 g 100g-1, and 11 g 100g-1, respectively. The oxidative stability of the SL, and SL with antioxidants was also investigated. The produced SL may be proposed as a source of a balanced intake of omega fatty acids and an ingredient in functional food formulations. [Spanish] Se sintetizaron lípidos estructurados (SL), formados por ácidos grasos omega, utilizando aceites de linaza y semillas de uva como sustratos a través de una reacción catalizada por lipasa. Se utilizó Lipozyme® TL IM como biocatalizador. Los buenos modelos cuadráticos que predecían la incorporación de los ácidos grasos omega se lograron a través de la metodología de superficie de respuesta (RSM). Se obtuvieron las condiciones óptimas para una proporción de ácidos grasos omega-6/omega-3 (2:1) con una relación molar de sustrato 1:4, tiempo de 8,4 h, y cantidad de enzima 6,4%. El SL contenía ácido linoleico (43 g·100 g-1), que se localizaba principalmente en la posición sn-2 (40 g·100 g-1). El ácido α-linoleico y el ácido α-linolénico en la posición sn-2 fueron de 22 g·100 g-1y 11 g·100 g-1, respectivamente. También se investigó la estabilidad oxidativa del SL y SL con antioxidantes. El SL producido puede ser propuesto como una fuente para una ingesta equilibrada de ácidos grasos omega y un ingrediente en las formulaciones

  18. Enzymatic modification of egg lecithin to improve properties.

    Science.gov (United States)

    Asomaning, Justice; Curtis, Jonathan M

    2017-04-01

    This research studied the enzymatic modification of egg yolk phospholipids and its effect on physicochemical properties. Egg yolk lipids were extracted with food grade ethanol and egg phospholipids (ePL) produced by deoiling with acetone. Vegetable oils were used to interesterify ePL utilizing Lipozyme®: sn-1,3 specific lipase. The enzymatic interesterification resulted in a single phase liquid product, whereas simple blending of the ePL and vegetable oil resulted in a product with two phases. In addition solid fat content decreased by 50% at -10°C and 94% at 35°C when compared with egg yolk lipids extract. A decrease in melting temperature resulted from the interesterification process. Interesterification improved emulsion stability index when used as an emulsifier in oil-in-water emulsion and compared to the native and soy lecithin. Enzyme reusability test showed retention of 63% activity after 10 cycles. Overall, the properties of native egg phospholipids were significantly enhanced in a potentially useful manner through interesterification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Kinetics and Specificity of Lipozyme-Catalysed Oil Hydrolysis in Supercritical CO2

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena; Zarevúcka, Marie; Bernášek, Prokop; Stamenič, M.

    2008-01-01

    Roč. 86, č. 7 (2008), s. 673-681 ISSN 0263-8762 R&D Projects: GA ČR GA104/06/1174; GA MŠk OC D30.001 Grant - others:BEMUSAG(XE) G1MA/CT/2002/0419 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40550506 Keywords : blackcurrant seed oil * enzymatic hydrolysis * supercritical CO2 Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.989, year: 2008

  20. Potential use of avocado oil on structured lipids MLM-type production catalysed by commercial immobilised lipases.

    Science.gov (United States)

    Caballero, Eduardo; Soto, Carmen; Olivares, Araceli; Altamirano, Claudia

    2014-01-01

    Structured Lipids are generally constituents of functional foods. Growing demands for SL are based on a fuller understanding of nutritional requirements, lipid metabolism, and improved methods to produce them. Specifically, this work was aimed to add value to avocado oil by producing dietary triacylglycerols (TAG) containing medium-chain fatty acids (M) at positions sn-1,3 and long-chain fatty acids (L) at position sn-2. These MLM-type structured lipids (SL) were produced by interesterification of caprylic acid (CA) (C8:0) and avocado oil (content of C18:1). The regiospecific sn-1,3 commercial lipases Lipozyme RM IM and TL IM were used as biocatalysts to probe the potential of avocado oil to produce SL. Reactions were performed at 30-50°C for 24 h in solvent-free media with a substrate molar ratio of 1∶2 (TAG:CA) and 4-10% w/w enzyme content. The lowest incorporation of CA (1.1% mol) resulted from Lipozyme RM IM that was incubated at 50°C. The maximum incorporation of CA into sn-1,3 positions of TAG was 29.2% mol. This result was obtained at 30°C with 10% w/w Lipozyme TL IM, which is the highest values obtained in solvent-free medium until now for structured lipids of low-calories. This strategy opens a new market to added value products based on avocado oil.

  1. Enzymatically interesterified fats based on mutton tallow and walnut oil suitable for cosmetic emulsions.

    Science.gov (United States)

    Kowalska, M; Mendrycka, M; Zbikowska, A; Stawarz, S

    2015-02-01

    Formation of emulsion systems based on interesterified fats was the objective of the study. Enzymatic interesterification was carried out between enzymatic mutton tallow and walnut oil in the proportions 2 : 3 (w/w) to produce fats not available in nature. At the beginning of the interesterification process, the balance between the interesterification and fat hydrolysis was intentionally disturbed by adding more water to the catalyst (Lipozyme IR MR) of the reaction to produce more of the polar fraction monoacylglycerols [MAGs] and diacylglycerols [DAGs]. To obtain a greater quantity of MAGs and DAGs in the reaction environment via hydrolysis, water was added (11, 13, 14, 16 w-%) to the enzymatic preparation. The obtained fats were used to form emulsions. The emulsions were evaluated with respect to sensory and skin moisturizing properties by 83 respondents. Determination of emulsion stability using temperature and centrifugal tests was carried out. Morphology and the type of emulsions were determined. The respondents described the skin to which the emulsions in testing were applied as smooth, pleasant to touch and adequately moisturized. The work has demonstrated that interesterification of a mutton tallow and walnut oil blend resulted in new fats with very interesting characteristics of triacylglycerols that are not present in the environment. The results of the present work indicate the possibility of application of fats with the largest quantity of MAGs and DAGs as a fat base of emulsions in the cosmetic industries. The hypothesis assumed in this work of producing additional quantities of MAGs and DAGs (in the process of enzymatic interesterification) responsible for the stability of the system was confirmed. It should be pointed out that the emulsions based on interesterified fats exhibited a greater level of moisturization of the skin than the emulsions containing non-interesterified fat. Also, in the respondents' opinion, the emulsion containing fat, which

  2. Kinetic Study for the Ethanolysis of Fish Oil Catalyzed by Lipozyme (R) 435 in Different Reaction Media.

    Czech Academy of Sciences Publication Activity Database

    Bucio, S.L.; Soalesa, A.G.; Sanz, M.T.; Melgosa, R.; Beltrán, S.; Sovová, Helena

    2015-01-01

    Roč. 64, č. 4 (2015), s. 431-441 ISSN 1345-8957 Grant - others:MINECO(ES) CTQ2012-39131-C02-01 Institutional support: RVO:67985858 Keywords : fish oil * ethanolysis * kinetic parameters * lipase Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.108, year: 2015

  3. Potential Use of Avocado Oil on Structured Lipids MLM-Type Production Catalysed by Commercial Immobilised Lipases

    Science.gov (United States)

    Caballero, Eduardo; Soto, Carmen; Olivares, Araceli; Altamirano, Claudia

    2014-01-01

    Structured Lipids are generally constituents of functional foods. Growing demands for SL are based on a fuller understanding of nutritional requirements, lipid metabolism, and improved methods to produce them. Specifically, this work was aimed to add value to avocado oil by producing dietary triacylglycerols (TAG) containing medium-chain fatty acids (M) at positions sn-1,3 and long-chain fatty acids (L) at position sn-2. These MLM-type structured lipids (SL) were produced by interesterification of caprylic acid (CA) (C8:0) and avocado oil (content of C18:1). The regiospecific sn-1,3 commercial lipases Lipozyme RM IM and TL IM were used as biocatalysts to probe the potential of avocado oil to produce SL. Reactions were performed at 30–50°C for 24 h in solvent-free media with a substrate molar ratio of 1∶2 (TAG:CA) and 4–10% w/w enzyme content. The lowest incorporation of CA (1.1% mol) resulted from Lipozyme RM IM that was incubated at 50°C. The maximum incorporation of CA into sn-1,3 positions of TAG was 29.2% mol. This result was obtained at 30°C with 10% w/w Lipozyme TL IM, which is the highest values obtained in solvent-free medium until now for structured lipids of low-calories. This strategy opens a new market to added value products based on avocado oil. PMID:25248107

  4. Potential use of avocado oil on structured lipids MLM-type production catalysed by commercial immobilised lipases.

    Directory of Open Access Journals (Sweden)

    Eduardo Caballero

    Full Text Available Structured Lipids are generally constituents of functional foods. Growing demands for SL are based on a fuller understanding of nutritional requirements, lipid metabolism, and improved methods to produce them. Specifically, this work was aimed to add value to avocado oil by producing dietary triacylglycerols (TAG containing medium-chain fatty acids (M at positions sn-1,3 and long-chain fatty acids (L at position sn-2. These MLM-type structured lipids (SL were produced by interesterification of caprylic acid (CA (C8:0 and avocado oil (content of C18:1. The regiospecific sn-1,3 commercial lipases Lipozyme RM IM and TL IM were used as biocatalysts to probe the potential of avocado oil to produce SL. Reactions were performed at 30-50°C for 24 h in solvent-free media with a substrate molar ratio of 1∶2 (TAG:CA and 4-10% w/w enzyme content. The lowest incorporation of CA (1.1% mol resulted from Lipozyme RM IM that was incubated at 50°C. The maximum incorporation of CA into sn-1,3 positions of TAG was 29.2% mol. This result was obtained at 30°C with 10% w/w Lipozyme TL IM, which is the highest values obtained in solvent-free medium until now for structured lipids of low-calories. This strategy opens a new market to added value products based on avocado oil.

  5. Human milk fat substitute from butterfat: production by enzymatic interesterification and evaluation of oxidative stability

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Xu, Xuebing; Zhang, Long

    2010-01-01

    Recent data have suggested that the fatty acid composition and molecular structure of fats in infant formulas should be as similar to human milk fat as possible to obtain optimal fat and calcium absorption from the infant formula. This work investigated the possibilities of using enzyme technology...... and butterfat as a material to produce a fat similar to human milk fat with respect to the above parameters. Moreover, the oxidative stability of the enzyme modified human milk fat substitute (HMFS) was compared to the fat blend used for the production of HMFS. Using a combination of enzyme technology......, fractionation and batch deodorization and with butterfat in combination with soybean oil and rapeseed oil as raw materials it was possible to produce HMFS with a molecular structure and fatty acid composition that was very similar to that of human milk fat. The oxidative stability of the HMFS oil was lower than...

  6. Effects of Degree of Enzymatic Interesterification on the Physical Properties of Margarine Fats: Solid Fat Content, Crystallization Behavior, Crystal Morphology, and Crystal Network

    DEFF Research Database (Denmark)

    Zhang, Hong; Smith, Paul; Adler-Nissen, Jens

    2004-01-01

    In this study enzymatic-interesterified margarine fats with different conversion degrees were produced in a packed-bed reactor. The effects of conversion degree on the formation of free fatty acids and diacyglycerols, solid fat content, crystallization behavior, microstructure, and crystal network...... °C with increasing conversion degree. Increased conversion degree from the blend to products, measured by X-ray with addition of 50% of rapeseed oil for dilution, caused the content of â to decrease from 100% to 33%, and 30% and eventually to pure ⢠crystal. However, double chain packing...

  7. Proposed kinetic mechanism of biodiesel production through lipase catalysed interesterification with a methyl acetate acyl acceptor and ionic liquid BMIM PF6 co-solvent

    Energy Technology Data Exchange (ETDEWEB)

    Ruzich, Nicholas Ivan; Bassi, A.S.

    2011-02-15

    As the depletion of fossil resources continues, the demand for environmentally friendly sources of energy as biodiesel is increasing. Biodiesel is the resulting fatty acid methyl ester (FAME) from an esterification reaction. To enhance this reaction lipase catalysts and ionic liquids can also used. The aim of this study was to develop a kinetic model of this reaction and to determine the effect of ionic liquids. The esterification reaction was conducted in a jacketed reactor under constant temperature in presence of ionic liquid and with the use of lipase to start the reaction; samples were analyzed with a high-performance liquid chromatography. A kinetic model was developed and results indicated that ionic liquids tend to limit mass transfer and thus reduce initial reaction rates; the authors proposed to increase the flow rate of the reaction mixture to overcome this issue. This study successfully investigated the reaction of lipase-catalyzed biodiesel production and developed its kinetic model.

  8. Influência das variáveis de processo na alcoólise enzimática de óleo de mamona Evaluation of the influence of process variables on enzimatic alcoholysis of castor oil

    Directory of Open Access Journals (Sweden)

    D. Oliveira

    2004-06-01

    Full Text Available O potencial de aplicação de lipases em processos biotecnológicos para a modificação de óleos e gorduras tem sido objeto de grande interesse nos meios científico, econômico e industrial nos últimos anos. Além da atividade de hidrólise de ésteres, as lipases podem catalisar uma grande variedade de reações de esterificação, transesterificação e poliesterificação. A transesterificação inclui acidólise, interesterificação e alcoólise. Neste trabalho reações de alcoólise de óleo de mamona para produção de ésteres de ácidos graxos foram estudadas devido a sua importância na obtenção de, por exemplo, agentes de antifricção, emulsificantes, intermediários para produzir uma numerosa quantidade de oleoquímicos e combustível alternativo ao diesel e/ou aditivo ao diesel de petróleo (biodiesel. Neste contexto, foi estudada a etanólise enzimática de óleo de mamona com lipase comercial (Lipozyme IM usando n-hexano como solvente. Os experimentos foram realizados variando a temperatura, as concentrações de água e enzima no meio reacional e a razão molar óleo-etanol, de acordo com um planejamento de experimentos pré-estabelecidos. Um modelo empírico foi utilizado para avaliar a influência das variáveis de processo no rendimento e, desta forma, as condições de operação que maximizam a produção de ésteres foram estabelecidas para a enzima utilizada.The use of lipases as biocatalysts in ester synthesis has been the object of growing interest. In addition to glycerol ester hydrolysis, lipases can catalyze a wide variety of esterification, transesterification and polyesterification reactions. The transesterification includes acidolysis, interesterification and alcoholysis. We consider in this report the application of lipases in the alcoholysis of brazilian vegetable oil in the production of fatty acid esters due to its importance as, for example, antifriction agents, food preservatives, emulsifiers and

  9. Improved enzymatic production of phenolated glycerides through alkyl phenolate intermediate

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Feddern, Vivian; Glasius, Marianne

    2011-01-01

    This work reported a novel approach for synthesis of dihydrocaffoylated glycerides, consisting of 2 steps: enzymatic synthesis of octyl dihydrocaffeate (as a synthetic intermediate) from octanol and dihydrocaffeic acid (DHCA), and enzymatic interesterification of triglycerides with octyl dihydroc......This work reported a novel approach for synthesis of dihydrocaffoylated glycerides, consisting of 2 steps: enzymatic synthesis of octyl dihydrocaffeate (as a synthetic intermediate) from octanol and dihydrocaffeic acid (DHCA), and enzymatic interesterification of triglycerides with octyl...

  10. Production of Biodiesel from Acid Oil via a Two-Step Enzymatic Transesterification.

    Science.gov (United States)

    Choi, Nakyung; Lee, Jeom-Sig; Kwak, Jieun; Lee, Junsoo; Kim, In-Hwan

    2016-11-01

    A two-step enzymatic transesterification process in a solvent-free system has been developed as a novel approach to the production of biodiesel using acid oil from rice bran oil soapstock. The acid oil consisted of 53.7 wt% fatty acids, 2.4 wt% monoacylglycerols, 9.1 wt% diacylglycerols, 28.8 wt% triacylglycerols, and 6.0 wt% others. Three immobilized lipases were evaluated as potential biocatalysts, including Novozym 435 from Candida antarctica, Lipozyme RM IM from Rhizomucor miehei, and Lipozyme TL IM from Thermomyces lanuginosus. The effects of molar ratio of acid oil to ethanol, temperature, and enzyme loading were investigated to determine the optimum conditions for the transesterification with the three immobilized lipases. The optimum conditions of the three immobilized lipases were a molar ratio of 1:5 (acid oil to ethanol), the temperature range of 30-40°C, and the enzyme loading range of 5-10%. The two-step transesterification was then conducted under the optimum conditions of each lipase. The stepwise use of Novozym 435 and Lipozyme TL IM or Lipozyme RM IM and Lipozyme TL IM resulted in similar or higher levels of yield to the individual lipases. The maximum yields obtained in both stepwise uses were ca. 92%.

  11. Determination of SFC, FFA, and equivalent reaction time for enzymatically interestified oils using NIRS

    DEFF Research Database (Denmark)

    Houmøller, Lars P.; Kristensen, Dorthe; Rosager, Helle

    2007-01-01

    The use of near infrared spectroscopy (NIRS) for rapid determination of the degree of interesterification of blends of palm stearin, coconut oil, and rapeseed oil obtained using an immobilized Thermomyces lanuginosa lipase at 70 ◦C was investigated. Interesterification was carried out by applying...... that NIRS could be used to replace the traditional methods for determining FFA and SFC in vegetable oils.It was possible to monitor the activity of the immobilized enzyme for interesterification of margarine oils by predicting the equivalent reaction time in a batch reactor from NIR spectra. Root mean...... square errors of prediction for two different oil blends interesterified for 300 and 170 min were 21 and 12 min, respectively....

  12. Antioxidant Potential and Modulatory Effects of Restructured Lipids from the Amazonian Palms on Liver Cells

    Directory of Open Access Journals (Sweden)

    Andrea de Oliveira Falcão

    2017-01-01

    Full Text Available Enzymatic interesterification is used to manipulate oil and fat in order to obtain improved restructured lipids with desired technological properties. However, with raw materials containing significant amounts of bioactive compounds, the influence of this enzymatic process on the bioactivity of the final product is still not clear. Thus, the aim of this study is to evaluate the antioxidant potential and modulatory effects of two raw materials from the Amazonian area, buriti oil and murumuru fat, before and after lipase interesterification, on human hepatoma cells (HepG2. The results indicate that minor bioactive compounds naturally found in the raw materials and their antioxidant capacity are preserved after enzymatic interesterification, and that the restructured lipids modulate HepG2 endogenous antioxidant enzyme.

  13. Lipídios modificados obtidos a partir de gordura do leite, óleo de girassol e ésteres de fitosteróis para aplicação em spreads Modified lipids obtained from milk fat, sunflower oil, and phytosterol esters for application in tablespreads

    Directory of Open Access Journals (Sweden)

    Juliana Neves Rodrigues Ract

    2008-01-01

    Full Text Available The objective of this paper was to evaluate the modifications in milkfat properties with the addition of sunflower oil (SO and phytosterol esters (PE and chemical interesterification. Fatty acid composition, softening point and consistency were determined. The saturation degree of milkfat decreased with the addition of SO and PE. Consequently, milkfat presented lower softening point and consistency. Chemical interesterification caused an increase in softening point due to the formation of higher amounts of trissaturated triacylglycerols with rearrangement. The incorporation of unsaturated fatty acids from SO and PE by milkfat triacylglycerols after chemical reaction caused linearization of consistency curves.

  14. Interesterificação química: alternativa para obtenção de gorduras zero trans Chemical interresterification: alternative to production of zero trans fats

    Directory of Open Access Journals (Sweden)

    Ana Paula Badan Ribeiro

    2007-10-01

    Full Text Available The function of lipids in human nutrition has been intensively debated in the last decade.This context reinforces the concern about controlling the trans fat ingestion, due to its negative implications on health. Interesterification provides an important alternative to modify the consistency of oils and fats without causing formation of trans isomers. This article reports research done towards production of zero trans fats by chemical interesterification, for different industrial purposes. Aspects related to the effect of trans fats on diet, their impact on health and modifications in Brazilian legislation are also covered.

  15. Lipídios estruturados obtidos a partir da mistura de gordura de frango, sua estearina e triacilgliceróis de cadeia média: II- pontos de amolecimento e fusão Structured lipids from chicken fat, its stearin, and medium chain triacyglycerol blends: II- softening and melting points

    Directory of Open Access Journals (Sweden)

    Ming Chih Chiu

    2008-01-01

    Full Text Available The aim of the present work is to investigate the effects of blending and chemical interesterification reactions on the softening and melting behavior of chicken fat, its stearin and medium chain triacylglycerols, and blends thereof in various ratios. Chemical interesterification is a promising alternative to the current processes of modifying the physical properties of fats. In the experimental design 7 samples corresponding to 7 different blend proportions were used. The results were represented in triangular diagrams. The addition of stearin influenced the softening and melting points. The mixture response surface methodology proved to be an extremely useful tool for the optimization of the fat mixtures.

  16. Oxidative stability during storage of structured lipids produced from fish oil and caprylic acid

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Xu, Xuebing; Timm Heinrich, Maike

    2004-01-01

    Structured lipids produced by enzymatic or chemical methods for different applications have been receiving considerable attention. The oxidative stability of a randomized structured lipid (RFO), produced by chemical interesterification from fish oil (FO) and tricaprylin, and a specific structured...... lipid (SFO), produced by enzymatic interesterification from the same oil and caprylic acid, was compared with the stability of FO. Oils were stored at 2degreesC for 11 wk followed by storage at 20degreesC for 6 wk. In addition, the antioxidative effect of adding the metal chelators EDTA or citric acid...

  17. A novel and robust recombinant Pichia pastoris yeast whole cell biocatalyst with intracellular overexpression of a Thermomyces lanuginosus lipase: preparation, characterization and application in biodiesel production.

    Science.gov (United States)

    Yan, Jinyong; Zheng, Xianliang; Li, Shengying

    2014-01-01

    A novel and robust recombinant Pichia pastoris yeast whole cell catalyst (WCC) with functional intracellular expression of Thermomyces lanuginosus lipase (Tll) was constructed and characterized for biodiesel production from waste cooking oils. This permeabilized WCC was able to convert waste cooking oils to biodiesel with 82% yield within 84 h at 6% dosage whole cells. The WCC showed two fold catalytic activity of 0.73 U/mg DCW compared to its commercial counterpart Lipozyme TLIM (immobilized Tll). Short chain alcohol tolerance of this WCC was significantly improved compared to Lipozyme TLIM. This beneficial property enabled it to catalyze biodiesel production efficiently with one step addition of methanol. The reusability of this biocatalyst retained 78% activity after three batch cycles. This easily prepared and cost-effective WCC showed better catalytic performance than Lipozyme TLIM with respect to biodiesel yield and productivity, thus suggesting a promising cost-effective biocatalyst for biodiesel production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications

    OpenAIRE

    Borrelli, Grazia M.; Trono, Daniela

    2015-01-01

    Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile bioc...

  19. Polysaccharide esters and their use as binders in coatings

    NARCIS (Netherlands)

    Oostveen, E.A.; Weijnen, J.; Haveren, van J.; Gillard, M.

    2003-01-01

    The invention relates to a polyester obtainable by transesterification or interesterification of: (i) inulin of general formula G(F)n or an acyl ester thereof, wherein G represents a glucose moiety, F represents a fructose moiety, and n is at least 2, and(ii) a drying oil, a semi-drying oil or

  20. Air-drying paint compositions comprising carbohydrate-based polyesters and polyester preparation

    NARCIS (Netherlands)

    Oostveen, E.A.; Weijnen, J.; Haveren, van J.; Gillard, M.

    2003-01-01

    The invention relates to a polyester obtainable by transesterification or interesterification of:(i) a carbohydrate or an acyl ester thereof, (ii) an alkyl ester of a drying fatty acid, semi-drying fatty acid or mixture thereof; and (iii) an alkyl ester of a non aromatic polycarboxylic acid. The

  1. STUDYING OF INFLUENCE OF BIOFUEL MOTOR QUALITIES ON POWER AND ECOLOGICAL CHARACTERISTICS OF THE DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Levterov, A.

    2012-06-01

    Full Text Available The results of bench tests of D21A (2 Ч 10,5/12 diesel engine at its operation on mixed diesel fuel with improved qualities (Euro and the biofuel synthesized by the way of ethanol intereste-rification of rapeseed oil are offered.

  2. ENZYMATIC BIODIESEL SYNTHESIS FROM ACID OIL USING A LIPASE MIXTURE

    Directory of Open Access Journals (Sweden)

    Kelly C. N. R. Pedro

    Full Text Available The conventional biodiesel production process has some disadvantages. It is necessary to use refined vegetable oils with low free fatty acids (FFAs content. An alternative route is to use low-cost acid oils in an enzymatic process. The use of lipases allows simultaneous esterification of FFAs and transesterification of triglycerides present in raw material forming alkyl esters. The aim of this work was to study the production of biodiesel using soybean oils with different acid contents (Acid Value of 8.5, 50, 90 and ethanol catalyzed by commercial immobilized lipases (Novozym 435, Lipozyme RM IM and Lipozyme TL IM. A significant decrease of acid value was observed mainly with Novozym 435 and Lipozyme RM IM. The use of a mixture of two immobilized lipases was also investigated to decrease catalyst cost and increase the amount of ester produced. The three commercial immobilized lipases were mixed in a dual system and tested for biodiesel synthesis from acid oil (AV of 8.5, 50 and 90. A positive synergistic effect occurred mainly for Lipozyme TL IM (1,3-specific lipase and Novozym 435 (non-specific lipase blend. The ester content doubled when this lipase mixture was used in ethanolysis of acid oil with AV of 90.

  3. Synthesis of chromatographic standards and establishment of a method for the quantification of the fatty ester composition of biodiesel from babassu oil

    International Nuclear Information System (INIS)

    Urioste, Daniele; Castro, Matheus B.A.; Biaggio, Francisco C.; Castro, Heizir F. de

    2008-01-01

    Several alkyl esters were synthesized, purified, characterized by 1 H NMR and employed as standards for establishing chromatographic methods to monitor their formation in the synthesis of biodiesel. The efficiency of the chromatographic methods was confirmed with the products of enzymatic transesterification of babassu oil with different alcohols (C 2 to C 4 ), using Lipozyme as catalyst. (author)

  4. Lipase-catalyzed acyl exchange of soybean phosphatidylcholine in n-hexane: a critical evaluation of both acyl incorporation and product recovery

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Mu, Huiling; Xu, Xuebing

    2005-01-01

    by hydrolysis, which led to the low yields. The biocatalyst used was the commercial immobilized lipase Lipozyme TL IM and substrates used were phosphatidylcholine (PC) from soybean and caprylic acid. A response surface design was used to evaluate the influence of selected parameters and their relationships...

  5. Evaluation of the Optimal Reaction Conditions for the Methanolysis and Ethanolysis of Castor Oil Catalyzed by Immobilized Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles Allan; Al-Kabalawi, Ibrahim; Errico, Massimiliano

    This study aims to compare the efficiency of the transesterification of castor oil with methanol and ethanol as part of the biodiesel production, using immobilized enzyme Lipozyme IM as catalyst. Different reaction conditions were evaluated and optimized, including the reaction temperature, alcohol...

  6. Triacylglycerol composition, physico-chemical characteristics and oxidative stability of interesterified canola oil and fully hydrogenated cottonseed oil blends.

    Science.gov (United States)

    Imran, Muhammad; Nadeem, Muhammad

    2015-10-29

    Partial hydrogenation process is used worldwide to produce shortening, baking, and pastry margarines for food applications. However, demand for such products is decreased during last decade due to their possible links to consumer health and disease. This has raised the need to replace hydrogenation with alternative acceptable interesterification process which has advantage in context of modifying the physico-chemical properties of edible fat-based products. Therefore, the main mandate of research was the development of functional fat through chemical interesterification of canola oil (CaO) and fully hydrogenated cottonseed oil (FHCSO) mixtures. Blends were prepared in the proportions of 75:25 (T1), 50:50 (T2) and 25:75 (T3) of CaO:FHCSO (w/w). Interesterification was performed using sodium methoxide (0.2 %) as catalyst at 120 °C, under reduced pressure and constant agitation for 60 minutes. The non-interesterified and interesterified CaO:FHCSO blends were evaluated for triacylglycerol (TAG) composition, physico-chemical characteristics, oxidative stability and consumer acceptability at 0, 30 and 60 days of storage interval. The oleic acid (58.3 ± 0.6 %) was predominantly present in CaO while the contents of stearic acid (72 ± 0.8 %) were significantly higher in FHCSO. Maximum trisaturated (S3) contents (63.9 ± 0.5 %) were found in T3 while monounsaturated (S2U), diunsaturated (U2S) and triunsaturated (U3) contents were quite low in T2 and T3 before interesterification. A marked reduction in S3 and U3 contents with concomitant increase in S2U and U2S contents was observed for all CaO:FHCSO blends on interesterification. During storage, the changes in S3, S2U and U2S contents were not found significant (p ≥ 0.05). However, maximum decrease 13 %, 7.5 and 5.6 % in U3 contents for T1, T2 and T3 was noted after 60-days of interesterification, respectively. The Lovibond color R, melting point, refractive index, specific gravity, peroxide and free

  7. Butter blend containing fish oil improves the level of n-3 fatty acids in biological tissues of hamster

    DEFF Research Database (Denmark)

    Porsgaard, Trine; Overgaard, Jesper; Krogh, Anne Louise

    2007-01-01

    Many studies have shown beneficial effects of long chain n-3 polyunsaturated fatty acids (PUFA) on human health. Regardless of the positive effects of n-3 PUFA, the intake of these fatty acids remains low. An approach to increase the intake of n-3 PUFA in the population is to incorporate fish oil...... Syrian hamsters received hamster feed blended with one of the three butter products. After 6 weeks of feeding, the fatty acid compositions of plasma, erythrocytes, liver, brain, and visceral fat were determined. The intake of butter product with fish oil resulted in a higher level of n-3 PUFA in plasma...... into food. In the present study, fish oil was incorporated into butter blends by enzymatic interesterification. The aim of the study was to investigate the effects of this butter product in comparison with a commercial butter blend and a product produced by interesterification but without fish oil. Golden...

  8. Activity and stability of immobilized lipases in lipase-catalyzed modification of peanut oil

    OpenAIRE

    Soumanou Mohamed M.; Edorh Aleodjrodo P.; Bornscheuer Uwe T.

    2004-01-01

    Fatty acid release during lipolysis of peanut oil using microbial free and immobilized lipases in aqueous media was developed. Immobilized lipase from Rhizomucor miehei (RML) gave the best result from its ability to clive different fatty acids from peanut oil in such media. In organic solvent, interesterification of peanut oil with tricaprylin using immobilized lipases from RML, Chromobacterium viscosum (CVL) and Candida rugosa (CRL) was performed. The best substrate molar ratio of tricapryli...

  9. Absorption and isomerization of caffeoylquinic acids from different foods using ileostomist volunteers.

    Science.gov (United States)

    Erk, T; Renouf, M; Williamson, G; Melcher, R; Steiling, H; Richling, E

    2014-02-01

    Polyphenols are thought to play important roles in human nutrition and health but these health effects are dependent on their bioavailability. This study is one of a series with the aim of determining possible effects of food matrices on caffeoylquinic acid (CQA) bioavailability using ileostomy volunteers. After a CQA-free diet, ileostomists consumed coffee (746 μmol total CQA), and CQAs in excreted ileal fluid were subsequently identified and quantified with HPLC-diode array detection and HPLC-ESI-MS/MS. In our previous studies, other food sources such as cloudy apple juice (CAJ) (358 μmol CQA) and apple smoothie (AS) (335 μmol CQA) were investigated with the same model. Interesterification of CQA from both apple matrices was observed during gastrointestinal passage, whereas CQA consumed in coffee was not influenced by interesterification reactions. In total, 74.3, 22.4, and 23.8 % of the CQA from CAJ, AS, and coffee, respectively, were absorbed or degraded. Our results show that variations in food matrices and variations in phenolic composition have a major influence on intestinal bioavailability and interesterification of the investigated subclass of polyphenols, the CQAs.

  10. Optimization of the Hydrolysis of Safflower Oil for the Production of Linoleic Acid, Used as Flavor Precursor

    Directory of Open Access Journals (Sweden)

    Marya Aziz

    2015-01-01

    Full Text Available Commercial lipases, from porcine pancreas (PPL, Candida rugosa (CRL, and Thermomyces lanuginosus (Lipozyme TL IM, were investigated in terms of their efficiency for the hydrolysis of safflower oil (SO for the liberation of free linoleic acid (LA, used as a flavor precursor. Although PPL, under the optimized conditions, showed a high degree of hydrolysis (91.6%, its low tolerance towards higher substrate concentrations could limit its use for SO hydrolysis. In comparison to the other investigated lipases, Lipozyme TL IM required higher amount of enzyme and an additional 3 h of reaction time to achieve its maximum degree of SO hydrolysis (90.2%. On the basis of the experimental findings, CRL was selected as the most appropriate biocatalyst, with 84.1% degree of hydrolysis. The chromatographic analyses showed that the CRL-hydrolyzed SO is composed mainly of free LA.

  11. Optimization of the Hydrolysis of Safflower Oil for the Production of Linoleic Acid, Used as Flavor Precursor.

    Science.gov (United States)

    Aziz, Marya; Husson, Florence; Kermasha, Selim

    2015-01-01

    Commercial lipases, from porcine pancreas (PPL), Candida rugosa (CRL), and Thermomyces lanuginosus (Lipozyme TL IM), were investigated in terms of their efficiency for the hydrolysis of safflower oil (SO) for the liberation of free linoleic acid (LA), used as a flavor precursor. Although PPL, under the optimized conditions, showed a high degree of hydrolysis (91.6%), its low tolerance towards higher substrate concentrations could limit its use for SO hydrolysis. In comparison to the other investigated lipases, Lipozyme TL IM required higher amount of enzyme and an additional 3 h of reaction time to achieve its maximum degree of SO hydrolysis (90.2%). On the basis of the experimental findings, CRL was selected as the most appropriate biocatalyst, with 84.1% degree of hydrolysis. The chromatographic analyses showed that the CRL-hydrolyzed SO is composed mainly of free LA.

  12. Enzymatic Biodiesel Synthesis Using a Byproduct Obtained from Palm Oil Refining

    Directory of Open Access Journals (Sweden)

    Igor Nascentes dos Santos Corrêa

    2011-01-01

    Full Text Available An alternative route to produce biodiesel is based on esterification of free fatty acids present in byproducts obtained from vegetable oil refining, such as palm oil fatty acid distillate (PFAD. PFAD is a byproduct of the production of edible palm oil, which contains 96 wt.% of free fatty acids. The purpose of this work was to study biodiesel synthesis via esterification of PFAD with methanol and ethanol, catalyzed by commercial immobilized lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM, in a solvent-free system. The effects of reaction parameters such as type of lipase, enzyme amount, type of alcohol, alcohol amount, and enzyme reuse were studied. Fatty acid conversion of 93% was obtained after 2.5 h of esterification reaction between PFAD and ethanol using 1.0 wt.% of Novozym 435 at 60°C.

  13. Solvent-free enzymatic synthesis of feruloylated structured lipids by the transesterification of ethyl ferulate with castor oil.

    Science.gov (United States)

    Sun, Shangde; Zhu, Sha; Bi, Yanlan

    2014-09-01

    A novel enzymatic route of feruloylated structured lipids synthesis by the transesterification of ethyl ferulate (EF) with castor oil, in solvent-free system, was investigated. The transesterification reactions were catalysed by Novozym 435, Lipozyme RMIM, and Lipozyme TLIM, among which Novozym 435 showed the best catalysis performance. Effects of feruloyl donors, reaction variables, and ethanol removal on the transesterification were also studied. High EF conversion (∼100%) was obtained under the following conditions: enzyme load 20% (w/w, relative to the weight of substrates), reaction temperature 90 °C, substrate molar ratio 1:1 (EF/castor oil), 72 h, vacuum pressure 10 mmHg, and 200 rpm. Under these conditions, the transesterification product consisted of 62.6% lipophilic feruloylated structured lipids and 37.3% hydrophilic feruloylated lipids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase

    International Nuclear Information System (INIS)

    Yuecel, Yasin; Demir, Cevdet; Dizge, Nadir; Keskinler, Buelent

    2011-01-01

    Lipase enzyme from Aspergillus oryzae (EC 3.1.1.3) was immobilized onto a micro porous polymeric matrix which contains aldehyde functional groups and methyl esters of long chain fatty acids (biodiesel) were synthesized by transesterification of crude canola oil using immobilized lipase. Micro porous polymeric matrix was synthesized from styrene-divinylbenzene (STY-DVB) copolymers by using high internal phase emulsion technique and two different lipases, Lipozyme TL-100L ® and Novozym 388 ® , were used for immobilization by both physical adsorption and covalent attachment. Biodiesel production was carried out with semi-continuous operation. Methanol was added into the reactor by three successive additions of 1:4 M equivalent of methanol to avoid enzyme inhibition. The transesterification reaction conditions were as follows: oil/alcohol molar ratio 1:4; temperature 40 o C and total reaction time 6 h. Lipozyme TL-100L ® lipase provided the highest yield of fatty acid methyl esters as 92%. Operational stability was determined with immobilized lipase and it indicated that a small enzyme deactivation occurred after used repeatedly for 10 consecutive batches with each of 24 h. Since the process is yet effective and enzyme does not leak out from the polymer, the method can be proposed for industrial applications. -- Research highlights: → Lipozyme TL-100L and Novozym 388 were immobilized onto micro porous polymeric matrix by both physical adsorption and covalent linking. → Immobilized enzymes were used for synthesis of fatty acid methyl esters by transesterification of canola oil and methanol using semi-continuous operation system. → According to chromatographic analysis, Lipase Lipozyme TL-100L resulted in the highest yield of methyl ester as 92%.

  15. Specific-structured lipids: nutritional perspectives and production potentials

    DEFF Research Database (Denmark)

    Xu, Xuebing; Høy, Carl-Erik; Balchen, Steen

    1997-01-01

    Structured lipids are referring to any triacylglycerols containing both long chain fatty acids (mostly essential fatty acids) and medium or short chain fatty acids. In case of specific-structured lipids (SSLs), each group of fatty acids locates specifically at sn-2 or -1.3 positions of the glycerol...... backbone. Recently the nutritional perspectives of this kind of lipids attract many interests. This causes an increasing interest in the production of them by lipase-catalyzed interesterification. One of the advantages of lipase method over chemical ones is that SSLs can be produced with particular fatty...

  16. Enzymatic production of alkyl esters through alcoholysis: A critical evaluation of lipases and alcohols

    DEFF Research Database (Denmark)

    Li, Deng; Xu, Xuebing; Gudmundur G, Haraldsson

    2005-01-01

    This paper focuses on a detailed evaluation of commercially available immobilized lipases and simple monohydric alcohols for the production of alkyl esters from sunflower oil by enzymatic alcoholysis. Six lipases were tested with seven alcohols, including straight and branched-chain primary...... in an increased degree of conversion for all lipases except Novozym 435. The secondary alcohol 2-propanol significantly reduced the alcoholysis reaction with all lipases; however, the branch-chain isobutanol was more advantageous than linear 1-butanol for Novozym 435, Lipozyme RM IM, and Lipase PS-C. Many...

  17. Síntese do butirato de n-butila empregando lipase microbiana imobilizada em copolímero de estireno-divinilbenzeno Synthesis of butyl butyrate by microbial lipase immobilized onto styrene-divinylbenzene copolymer

    Directory of Open Access Journals (Sweden)

    Pedro Carlos de Oliveira

    2000-10-01

    Full Text Available This work investigates the reaction parameters of an immobilized lipase in the esterification reaction of n-butanol and butyric acid. Microbial lipase from Candida rugosa was immobilized onto styrene-divinylbenzene copolymer (STY-DVB and subsequently introduced in an organic medium containing substrates in appropriate concentrations. Heptane was selected as solvent on the basis of its compatibility with the resin and the enzyme. The influence of molar ratio of acid to alcohol, amount of immobilized lipase and temperature on the butyl butyrate formation was determined. The results were compared with those achieved with free lipase and Lipozyme (commercially immobilized lipase under the same operational conditions.

  18. Otimização da esterificação de ácido hexanóico com n-butanol empregando lipase (Termomyces lanuginosus imobilizada em gelatina

    Directory of Open Access Journals (Sweden)

    Everton Skoronski

    2013-01-01

    Full Text Available The application of Lipozyme (Termomyces lanuginosus immobilized in gelatin gel in aliphatic ester synthesis was investigated taking the esterification of hexanoic acid with n-butanol as a model reaction. Conditions were optimized by factorial design and the highest conversion was obtained under the following conditions: molar ratio alcohol: acid of 2:1, reaction time of 48 h and biocatalyst weight of 7.0 g. Under these conditions the esterification yield was around 98 %. The operational stability of the immobilized lipase was assessed and results showed that after 12 batch runs, the enzyme showed no significant loss of activity.

  19. ESolvent-free, enzyme-catalyzed biodiesel production from mango, neem, and shea oils via response surface methodology

    OpenAIRE

    Nde, Divine Bup; Astete, Carlos; Boldor, Dorin

    2015-01-01

    Mango, neem and shea kernels produce non-conventional oils whose potentials are not fully exploited. To give an added value to these oils, they were transesterified into biodiesel in a solvent-free system using immobilized enzyme lipozyme from Mucor miehei. The Doehlert experimental design was used to evaluate the methyl ester (ME) yields as influenced by enzyme concentration?EC, temperature?T, added water content?AWC, and reaction time?RT. Biodiesel yields were quantified by 1H NMR spectrosc...

  20. Activity and stability of immobilized lipases in lipase-catalyzed modification of peanut oil

    Directory of Open Access Journals (Sweden)

    Soumanou Mohamed M.

    2004-11-01

    Full Text Available Fatty acid release during lipolysis of peanut oil using microbial free and immobilized lipases in aqueous media was developed. Immobilized lipase from Rhizomucor miehei (RML gave the best result from its ability to clive different fatty acids from peanut oil in such media. In organic solvent, interesterification of peanut oil with tricaprylin using immobilized lipases from RML, Chromobacterium viscosum (CVL and Candida rugosa (CRL was performed. The best substrate molar ratio of tricaprylin to peanut oil found was in the range 0.7 to 0.8. Using substrate molar ratio 0.7, high amount of structured triglyceride ST (about 35% MLM, 44% LML triglyceride fractions was obtained with lipase from RML in n-hexane. The results found in solvent free system were in some cases quite similar to that obtained in organic solvent. In nine successive batch interesterification in solvent free medium using immobilized RML and CRL, no significant loss of amount of both produced triacylglycerol fractions until batch 7 was observed with RML.

  1. Potential plant oil feedstock for lipase-catalyzed biodiesel production in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Winayanuwattikun, Pakorn; Kaewpiboon, Chutima; Piriyakananon, Kingkaew; Tantong, Supalak; Thakernkarnkit, Weerasak; Yongvanich, Tikamporn [Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Biofuel Production by Biocatalyst Research Unit, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Chulalaksananukul, Warawut [Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Biofuel Production by Biocatalyst Research Unit, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2008-12-15

    Twenty-seven types of plants found to contain more than 25% of oil (w/w) were selectively examined from 44 species. Saponification number (SN), iodine value (IV), cetane number (CN) and viscosity ({eta}) of fatty acid methyl esters (FAMEs) of oils were empirically determined, and they varied from 182 to 262, 3.60 to 142.70, 39.32 to 65.80 and 2.29 to 3.95, respectively. Fatty acid compositions, IV, CN and {eta} were used to predict the quality of FAMEs for use as biodiesel. FAMEs of plant oils of 15 species were found to be most suitable for use as biodiesel by meeting the major specification of biodiesel standards of Thailand, USA and European Standard Organization. The oils from these 15 species were further investigated for the conversion efficiency of biodiesel in lipase-catalyzed transesterification reaction with Novozyme 435 and Lipozyme RM IM. Oils of four species, palm (Elaeis guineensis), physic nut (Jatropha curcas), papaya (Carica papaya) and rambutan (Nephelium lappaceum), can be highly converted to biodiesel by transesterification using Novozyme 435- or Lipozyme RM IM-immobilized lipase as catalyst. Therefore, these selected plants would be economically considered as the feedstock for biodiesel production by biocatalyst. (author)

  2. Synthesis and concentration of 2-monoacylglycerols rich in polyunsaturated fatty acids.

    Science.gov (United States)

    Zhang, Yu; Wang, Xiaosan; Xie, Dan; Zou, Shuo; Jin, Qingzhe; Wang, Xingguo

    2018-06-01

    Polyunsaturated fatty acids (PUFA) in 2-monoacylglycerols form exhibit various biological activities and have potential applications in food and pharmaceuticals. Preparation of 2-monoacylglycerols was conducted by enzymatic enthanolysis. The effects of lipase type, substrate weight ratio, reaction time and lipase load on the 2-monoacylglycerols content in the crude product were investigated. Lipozyme 435 behaved as 1,3-specific and high-catalytic-activity lipase in this reaction. Under the optimal conditions (ethanol:oil = 3:1 (w/w), 8% Lipozyme 435, 3 h), 27% 2-monoacylglycerols were obtained. After solvent extraction of 2-monoacylglycerols, the abilities of low temperature crystallization and molecular distillation to concentrate 2-PUFA-monoacylglycerols were compared. Low temperature crystallization concentrated 81.13% and 74.29% PUFA by acetonitrile and hexane, respectively, with over 90% in 2-monoacylglycerol forms. Conversely, molecular distillation yielded a PUFA concentration of 72% but decreased the 2-monoacylglycerols content to 69.81%. Thus, the method including enzymatic ethanolysis and low temperature crystallization is suitable for preparation of 2-monoacylglycerols rich in PUFA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Lipase-catalyzed synthesis of palmitanilide: Kinetic model and antimicrobial activity study.

    Science.gov (United States)

    Liu, Kuan-Miao; Liu, Kuan-Ju

    2016-01-01

    Enzymatic syntheses of fatty acid anilides are important owing to their wide range of industrial applications in detergents, shampoo, cosmetics, and surfactant formulations. The amidation reaction of Mucor miehei lipase Lipozyme IM20 was investigated for direct amidation of triacylglycerol in organic solvents. The process parameters (reaction temperature, substrate molar ratio, enzyme amount) were optimized to achieve the highest yield of anilide. The maximum yield of palmitanilide (88.9%) was achieved after 24 h of reaction at 40 °C at an enzyme concentration of 1.4% (70 mg). Kinetics of lipase-catalyzed amidation of aniline with tripalmitin has been investigated. The reaction rate could be described in terms of the Michaelis-Menten equation with a Ping-Pong Bi-Bi mechanism and competitive inhibition by both the substrates. The kinetic constants were estimated by using non-linear regression method using enzyme kinetic modules. The enzyme operational stability study showed that Lipozyme IM20 retained 38.1% of the initial activity for the synthesis of palmitanilide (even after repeated use for 48 h). Palmitanilide, a fatty acid amide, exhibited potent antimicrobial activity toward Bacillus cereus. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Potential plant oil feedstock for lipase-catalyzed biodiesel production in Thailand

    International Nuclear Information System (INIS)

    Winayanuwattikun, Pakorn; Kaewpiboon, Chutima; Piriyakananon, Kingkaew; Tantong, Supalak; Thakernkarnkit, Weerasak; Chulalaksananukul, Warawut; Yongvanich, Tikamporn

    2008-01-01

    Twenty-seven types of plants found to contain more than 25% of oil (w/w) were selectively examined from 44 species. Saponification number (SN), iodine value (IV), cetane number (CN) and viscosity (η) of fatty acid methyl esters (FAMEs) of oils were empirically determined, and they varied from 182 to 262, 3.60 to 142.70, 39.32 to 65.80 and 2.29 to 3.95, respectively. Fatty acid compositions, IV, CN and η were used to predict the quality of FAMEs for use as biodiesel. FAMEs of plant oils of 15 species were found to be most suitable for use as biodiesel by meeting the major specification of biodiesel standards of Thailand, USA and European Standard Organization. The oils from these 15 species were further investigated for the conversion efficiency of biodiesel in lipase-catalyzed transesterification reaction with Novozyme 435 and Lipozyme RM IM. Oils of four species, palm (Elaeis guineensis), physic nut (Jatropha curcas), papaya (Carica papaya) and rambutan (Nephelium lappaceum), can be highly converted to biodiesel by transesterification using Novozyme 435- or Lipozyme RM IM-immobilized lipase as catalyst. Therefore, these selected plants would be economically considered as the feedstock for biodiesel production by biocatalyst

  5. Estolides Synthesis Catalyzed by Immobilized Lipases

    Directory of Open Access Journals (Sweden)

    Erika C. G. Aguieiras

    2011-01-01

    Full Text Available Estolides are vegetable-oil-based lubricants obtained from oleic acid or any source of hydroxy fatty acids. In this work, the estolides synthesis from oleic acid and methyl ricinoleate (biodiesel from castor oil, using immobilized commercial lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM in a solvent-free medium was investigated. Acid value was used to monitor the reaction progress by determining the consumption of acid present in the medium. Novozym 435 showed the best performance. Water removal improved the conversion. Novozym 435 was more active at atmospheric pressure. Novozym 435 was reused four times with conversion reaching 15% after the fourth reaction at 80°C. Estolides produced under the reaction conditions used in this work presented good properties, such as, low temperature properties as pour point (−24°C, viscosity (23.9 cSt at 40°C and 5.2 cSt at 100°C, and viscosity index (153.

  6. Efficient production of biodiesel from waste grease: one-pot esterification and transesterification with tandem lipases.

    Science.gov (United States)

    Yan, Jinyong; Li, Aitao; Xu, Yi; Ngo, Thao P N; Phua, Szechao; Li, Zhi

    2012-11-01

    A novel concept and efficient method for producing biodiesel (FAME) from grease (15-40wt% free fatty acid, FFA) were developed by using tandem lipases for one-pot esterification of FFA and transesterification of triglyceride with methanol in a solvent-free system. Combining immobilized Candida antarctica lipase B (CALB) (Novozyme 435) favoring the esterification and immobilized Thermomyces lanuginosus lipase (TLL) (Lipozyme TLIM) preferring the transesterification at 2:8 (wt/wt) gave FAME in 80% yield, being better than that with Novozyme 435 or Lipozyme TLIM. Recombinant Escherichia coli (Calb/Tll) co-expressing CALB and TLL was engineered as a more efficient tandem-lipases system. Using wet or dry cells (4wt%) gave FAME in 87% or 95% yield, which is much better than that with E. coli cells expressing either CALB or TLL alone. Cells of E. coli (Calb/Tll) were recycled for five times and retained 75% productivity, thus being practical for producing biodiesel from grease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Effect of randomization of mixtures of butter oil and vegetable oil on absorption and lipid metabolism in rats

    DEFF Research Database (Denmark)

    Becker, C.; Lund, Pia; Hølmer, Gunhild Kofoed

    2001-01-01

    of the dietary fats compared. Data on the fate of such lipids beyond the bloodstream is rather scarce and animal model studies are needed. Aim of the study To compare the metabolism of butter oil and mixtures of butter and rapeseed oil, native or randomized, in a model. The regiospecific fatty acid distribution...... present in dietary fats was followed through absorption, chylomicron formation, and deposition in adipose tissue and in different liver lipids (triacylglycerols, phospholipids, and cholesterol esters). Methods Rats were fed for 6 weeks from weaning either butter oil (BO), a butteroil- rapeseed oil mixture...... (interesterification) of butter oil with rapeseed oil (65:35 w/w) for use as edible fat did not have any impact on the fatty acid composition beyond the chylomicron step when compared to the native mixture....

  8. Future prospects for palm oil refining and modifications

    Directory of Open Access Journals (Sweden)

    Gibon Véronique

    2009-07-01

    Full Text Available Palm oil is rich in minor components that impart unique nutritional properties and need to be preserved. In this context, refining technologies have been improved, with the dual temperature deodorizer, the double condensing unit and the ice condensing system. The DOBI is a good tool to assess quality of the crude palm oil and its ability to be properly refined. Specially refined oils open a market for new high quality products (golden palm oil, red palm oil, white soaps, etc.. Palm oil is a good candidate for the multi-step dry fractionation process, aiming to the production of commodity oils and specialty fats (cocoa butter replacers. New technological developments allow quality and yield improvements. Palm oil and fractions are also valuable feedstock for enzymatic interesterification in which applications are for commodity oil (low-trans margarines and shortenings and for special products (cocoa butter equivalents, infant formulation, ….

  9. PEMBUATAN LEMAK KAKAO RENDAH KALORI DENGAN MINYAK KELAPA (COCONUT OIL MELALUI REAKSI INTERESTERIFIKASI

    Directory of Open Access Journals (Sweden)

    Lelya Hilda

    2016-02-01

    Full Text Available Cacao fat has long chain fatty acids was high mainly palmitic and stearic can be improved their character by adding of palm oil to obtain cocoa fat was low calories. The addition of coconut oil can be done only up to 20%, which is the ratio (90:10 and (80:20 cocoa fat and coconut oil with solid fat content of 5:53 and 4:58 with a melting point 33.6 ° C and 32.8oC (32oC-35oC melting point cacao fat. The process was be done by interesterification reaction produces cocoa fat that free of trans fatty acids . Keywords: long chain fatty acaid, low calory, solid fat content, melting point

  10. Technical aspects of trans reduction in margarines

    Directory of Open Access Journals (Sweden)

    Van Duijn Gerrit

    2000-01-01

    Full Text Available The opinion of nutritional science on the effect of trans fatty acids on blood cholesterol has drastically changed during the last decade. As a reaction to these new findings, the European margarine industry decided in the mid nineties to eliminate trans containing components from their margarine fat phase compositions. This excluded practically the use of partially hydrogenated oils and fats. Trans-free margarines have been introduced with optimised fat crystal structures stabilising a maximum of water in oil emulsion with a minimum of solid fat phase. These fat crystal structures are formed by fat phase components obtained from interesterification and/or fractionation of non-hydrogenated and/or fully hydrogenated feedstocks.

  11. Aplicação de lipases microbianas na obtenção de concentrados de ácidos graxos poliinsaturados

    Directory of Open Access Journals (Sweden)

    Carvalho Patrícia de Oliveira

    2003-01-01

    Full Text Available Several polyunsaturated fatty acids (PUFA belonging to the ômega 6 series, such as cis-6,9,12 gamma-linolenic acid, as well as those of the ômega 3 series, such as cis-5,8,11,14,17-eicosapentaenoic acid and cis-4,7,10,13,16,19-docosahexaenoic acid are of considerable interest due to their nutritional and therapeutic properties. Methods used for the concentration of PUFA from natural sources include urea adduct formation, solvent winterization, supercritical fluid extraction and lipase-catalyzed reaction. Lipases are known to have little reactivity on PUFA and these acids can be enriched by selective hydrolysis, direct esterification of glycerol with PUFA and interesterification. Since lipase reactions are advantageous with respect to fatty acid, positional specificities and mild incubation condition, these enzymes are considered to be suitable for the production of PUFA concentrates for medical purposes.

  12. Oxidative stability of structured lipids containing C18:0, C18:1, C18:2, C18:3 or CLA in sn 2-position - as bulk lipids and in milk drinks

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Nielsen, Nina Skall; Xu, Xuebing

    2004-01-01

    In this study, we compared the oxidative stability of a specific structured lipid (SL) containing conjugated linoleic acid (CLA) in the sn2-position with SL containing other C18 fatty acids of different degree of unsaturation (stearic, oleic, linoleic or linolenic acid). SL was produced...... by enzymatic interesterification with caprylic acid. Oxidative stability was compared in the five lipids themselves and in milk drinks containing 5% of the different SL. During storage, samples were taken for chemical and physical analyses. Moreover, sensory assessments were performed on milk drinks....... The oxidative stability of our SL was very different when comparing (a) bulk lipids and milk drink and (b) the five different batches of each product. SL based on oleic acid was the most unstable as bulk lipid, while SL based on linoleic acid was the most unstable in milk drink. SL based on CLA was the second...

  13. Storage stability of margarines produced from enzymatically interesterified fats compared to those prepared by conventional methods - Chemical properties

    DEFF Research Database (Denmark)

    Zhang, Hong; Jacobsen, Charlotte; Pedersen, Lars Saaby

    2006-01-01

    margarines in a pilot plant. Storage stability studies were carried out at storage temperatures of 5 and 25øC for 12wk. Margarines from the enzymatically interesterified fats were compared to the margarines produced by the conventional methods (chemical interesterification and physical blending......In this study, four margarine hardstocks were produced, two from enzymatically interesterified fats at 80 and 100% conversion, one from chemically randomized fat and one from physically mixed fat. These four hardstocks, blended with 50% sunflower oil, were mainly used for the production of table...... interesterified fat had higher PV in weeks4, 8 and10 than the margarines produced from the enzymatically interesterified fats and the physically blended fat. These differences were not caused by different contents of tocopherols in the hardstocks. The differences between the processes for chemical and enzymatic...

  14. Propiedades de los aceites vegetales modificados por hidrogenacion, interesterificación y fraccionamiento

    Directory of Open Access Journals (Sweden)

    Grompone, M. A.

    1992-12-01

    Full Text Available The advent of techniques of chemical processing (hydrogenation and interesterification and physical processing (fractionation provides the manufacturer the capacity of modifying one or many physicochemical properties of an oil or fat. In the present paper the influence of the chemical interesterification and thermal fractionation without solvent on the physical properties (melting point, solid fat index of the products obtained by partial hydrogenation of soybean oil is studied. Properties of mixtures of partially hydrogenated soybean oil and totally hydrogenated coconut oil are also determined. The examples studied show that knowing the changes produced by current modification methods is useful to design fatty products for specific purposes.

    El advenimiento de técnicas de procesamiento químico (hidrogenación e interesterificación y físico (fraccionamiento proveen al industrial de la capacidad de modificar una o varias de las propiedades fisicoquímicas de una grasa o aceite. En este trabajo se estudia de un modo sistemático la influencia de la interesterificación química y del fraccionamiento térmico sin solventes sobre las propiedades físicas (punto de fusión, índice de grasa sólida de los productos obtenidos por hidrogenación parcial de aceite de soya. También se determinan las propiedades de mezclas de aceite de soya parcialmente hidrogenado con aceite de coco totalmente hidrogenado. Los ejemplos estudiados muestran que el conocimiento de los cambios ocasionados por los procesos de modificación corrientes son útiles para diseñar productos grasos para fines específicos.

  15. Preparation of (S)-1-Halo-2-octanols Using Ionic Liquids and Biocatalysts.

    Science.gov (United States)

    Oromí-Farrús, Mireia; Eras, Jordi; Sala, Núria; Torres, Mercè; Canela, Ramon

    2009-10-23

    Preparation of (S)-1-chloro-2-octanol and (S)-1-bromo-2-octanol was carried out by the enzymatic hydrolysis of halohydrin palmitates using biocatalysts. Halohydrin palmitates were prepared by various methods from palmitic acid and 1,2-octanediol. A tandem hydrolysis was carried out using lipases from Candida antarctica (Novozym 435), Rhizomucor miehei (Lipozyme IM), and "resting cells" from a Rhizopus oryzae strain that was not mycotoxigenic. The influence of the enzyme and the reaction medium on the selective hydrolysis of isomeric mixtures of halohydrin esters is described. Novozym 435 allowed preparation of (S)-1-chloro-2-octanol and (S)-1-bromo-2-octanol after 1-3 h of reaction at 40 degrees C in [BMIM][PF(6)].

  16. Selective biocatalytic acylation studies on 5′-O-(4,4′-Dimethoxytrityl)-2′,3′-Secouridine

    DEFF Research Database (Denmark)

    Singh, Sunil K.; Reddy, L. Chandrashekhar; Srivastava, Smriti

    2012-01-01

    Lipozyme® TL IM (Theremomyces lanuginosus lipase immobilized on silica) in toluene catalyzes the acylation of the 2( )'-OH over the 3( )'-OH group in 5( )'-O-(4,4( )'-dimethoxytrityl)-2( )',3( )'-secouridine (5( )'-O-DMT-2( )',3( )'-secouridine) in a highly selective fashion in moderate to almost...... quantitative yields. The turn over during benzoyl transfer reactions mediated by vinyl benzoate or benzoic anhydride was faster than in acyl transfer reactions with vinyl acetate or C(1) to C(5) acid anhydrides; except in the case of butanoic anhydride. The 2( )'-O-benzoyl-5( )'-O-DMT-2( )',3( )'-secouridine...

  17. Combining regio- and enantioselectivity of lipases for the preparation of (R)-4-chloro-2-butanol.

    Science.gov (United States)

    Méndez, Jonh J; Oromi, Mireia; Cervero, Maria; Balcells, Mercè; Torres, Mercè; Canela, Ramon

    2007-01-01

    Preparation of 98% ee (R)-4-chloro-2-butanol was carried out by the enzymatic hydrolysis of chlorohydrin esters, using fungal resting cells and commercial enzymes. Hydrolyzes were carried out using lipases from Candida antarctica (Novozym 435), C. rugosa, Rhizomucor miehei (Lipozyme IM), Burkolia cepacia, and resting cells of Rhizopus oryzae and Aspergillus flavus. The influence of the enzyme, the solvent, the temperature, and the alkyl chain length on the selectivity of hydrolyzes of isomeric mixtures of chlorohydrin esters is described. Regioselectivity was higher than 95% for some of the tested lipases. Novozym 435 allowed preparation of the (R)-4-chloro-2-butanol after 15 min of reaction at 30-40 degrees C. (c) 2006 Wiley-Liss, Inc.

  18. The synthesis of amphipathic prodrugs of 1,2-diol drugs with saccharide conjugates by high regioselective enzymatic protocol.

    Science.gov (United States)

    Quan, Jing; Chen, Zhichun; Han, Chengyou; Lin, Xianfu

    2007-02-15

    A facile, high regioselective enzymatic synthesis approach for the preparation of amphipathic prodrugs with saccharides of mephenesin and chlorphenesin was developed. Firstly, transesterification of two drugs with divinyl dicarboxylates with different carbon chain length was performed under the catalysis of Candida antarctica lipase acrylic resin and Lipozyme in anhydrous acetone at 50 degrees C, respectively. A series of lipophilic derivatives with vinyl groups of mephenesin and chlorphenesin were prepared. The influences of different organic solvents, enzyme sources, reaction time, and the acylation reagents on the synthesis of vinyl esters were investigated. And then, protease-catalyzed high regioselective acylation of D-glucose and D-mannose with vinyl esters of mephenesin and chlorphenesin gave drug-saccharide derivatives in good yields. The studies of lipophilicity and hydrolysis in vitro of prodrugs verified that drug-saccharide derivatives had amphipathic properties, and both lipophilic and amphipathic drug derivatives had obvious controlled release characteristics.

  19. Performance of structured lipids incorporating selected phenolic and ascorbic acids.

    Science.gov (United States)

    Gruczynska, Eliza; Przybylski, Roman; Aladedunye, Felix

    2015-04-15

    Conditions applied during frying require antioxidant which is stable at these conditions and provides protection for frying oil and fried food. Novel structured lipids containing nutraceuticals and antioxidants were formed by enzymatic transesterification, exploring canola oil and naturally occurring antioxidants such as ascorbic and selected phenolic acids as substrates. Lipozyme RM IM lipase from Rhizomucor miehei was used as biocatalyst. Frying performance and oxidative stability of the final transesterification products were evaluated. The novel lipids showed significantly improved frying performance compared to canola oil. Oxidative stability assessment of the structured lipids showed significant improvement in resistance to oxidative deterioration compared to original canola oil. Interestingly, the presence of ascorbic acid in an acylglycerol structure protected α-tocopherol against thermal degradation, which was not observed for the phenolic acids. Developed structured lipids containing nutraceuticals and antioxidants may directly affect nutritional properties of lipids also offering nutraceutical ingredients for food formulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Chemical catalysis in biodiesel production (I): enzymatic catalysis processes

    International Nuclear Information System (INIS)

    Jachmarian, I.; Dobroyan, M.; Veira, J.; Vieitez, I.; Mottini, M.; Segura, N.; Grompone, M.

    2009-01-01

    There are some well known advantages related with the substitution of chemical catalysis by enzymatic catalysis processes.Some commercial immobilized lipases are useful for the catalysis of bio diesel reaction, which permits the achievement of high conversions and the recovery of high purity products, like a high quality glycerine. The main disadvantage of this alternative method is related with the last inactivation of the enzyme (by both the effect of the alcohol and the absorption of glycerol on catalyst surface), which added to the high cost of the catalyst, produces an unfavourable economical balance of the entire process. In the work the efficiency of two commercial immobilized lipases (Lipozyme TL IM y Novozyme 435 NNovozymes-Dinamarca) in the catalysis of the continuous transesterification of sunflower oil with different alcohols was studied. The intersolubility of the different mixturesinvolving reactans (S oil/alkyl esters/alcohol) and products (P mixtures with a higher content of 1% of glycerol,while for ethanol homogeneous mixtures were obtained at 12% of glycerol (44.44 12).Using and ethanolic substrate at the proportion S=19:75:6 and Lipozyme TL IM, it was possible to achieve a 98% of convertion to the corresponding biodiesel.When Novozymes 435 catalyzed the process it was possible to increase the oil concentration in the substrateaccording to proportion S=35:30:35, and a 78% conversion was obtained. The productivity shown by the firt enzyme was 70mg biodiesel g enzime-1, hora-1 while with the second one the productivity increased to 230. Results suggested that the convenient adjustement of substrate composition with the addition of biodiesel to reactants offers an efficient method for maximizing the enzyme productivity, hence improving the profitability of the enzymatic catalyzed process. (author)

  1. Enzymatic synthesis of farnesyl laurate in organic solvent: initial water activity, kinetics mechanism, optimization of continuous operation using packed bed reactor and mass transfer studies.

    Science.gov (United States)

    Rahman, N K; Kamaruddin, A H; Uzir, M H

    2011-08-01

    The influence of water activity and water content was investigated with farnesyl laurate synthesis catalyzed by Lipozyme RM IM. Lipozyme RM IM activity depended strongly on initial water activity value. The best results were achieved for a reaction medium with an initial water activity of 0.11 since it gives the best conversion value of 96.80%. The rate constants obtained in the kinetics study using Ping-Pong-Bi-Bi and Ordered-Bi-Bi mechanisms with dead-end complex inhibition of lauric acid were compared. The corresponding parameters were found to obey the Ordered-Bi-Bi mechanism with dead-end complex inhibition of lauric acid. Kinetic parameters were calculated based on this model as follows: V (max) = 5.80 mmol l(-1) min(-1) g enzyme(-1), K (m,A) = 0.70 mmol l(-1) g enzyme(-1), K (m,B) = 115.48 mmol l(-1) g enzyme(-1), K (i) = 11.25 mmol l(-1) g enzyme(-1). The optimum conditions for the esterification of farnesol with lauric acid in a continuous packed bed reactor were found as the following: 18.18 cm packed bed height and 0.9 ml/min substrate flow rate. The optimum molar conversion of lauric acid to farnesyl laurate was 98.07 ± 0.82%. The effect of mass transfer in the packed bed reactor has also been studied using two models for cases of reaction limited and mass transfer limited. A very good agreement between the mass transfer limited model and the experimental data obtained indicating that the esterification in a packed bed reactor was mass transfer limited.

  2. Solvent-free lipase catalysed synthesis of diacylgycerols as low-calorie food ingredients

    Directory of Open Access Journals (Sweden)

    Luis eVazquez

    2016-02-01

    Full Text Available Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short and medium chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its re-synthesis in the enterocyte and its metabolism and absorption by the enterocyte are limited in comparison with the TAG, reducing chylomicron formation. In this work these two effects were combined to synthesize short and medium chain 1,3 diacylglycerols, leading to a product with great potential as for their low-calorie properties. Lipase catalysed transesterification reactions were performed between short and medium chain fatty acid ethyl esters and glycerol. Different variables were investigated such as the type of biocatalyst, the molar ratio FAEE:glycerol, the adsorption of glycerol on silica gel or the addition of lecithin. Best reaction conditions were evaluated considering the conversion intopercentage of 1,3-DAG produced and the reaction rate. Except Novozym 435 (Candida antarctica, other lipases required the adsorption of glycerol on silica gel to form acylglycerols. Lipases that gave the best results with adsorption were Novozym 435 and Lipozyme RM IM (Rhizomucor miehei with 52% and 60.7% of DAG at 32 h, respectively. Because of its specificity for sn-1 and sn-3 positions, lipases leading to a higher proportion of 1,3-DAG vs 1,2-DAG were Lipozyme RM IM (39.8% and 20.9%, respectively and Lipase PLG (Alcaligenes sp. (35.9% and 19.3%, respectively. By adding 1% (w/w of lecithin to the reaction with Novozym 435 and raw glycerol the reaction rate was considerably increased from 41.7% to 52.8% DAG at 24 h.

  3. Solvent-Free Lipase-Catalyzed Synthesis of Diacylgycerols as Low-Calorie Food Ingredients.

    Science.gov (United States)

    Vázquez, Luis; González, Noemí; Reglero, Guillermo; Torres, Carlos

    2016-01-01

    Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short- and medium-chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its resynthesis in the enterocyte. In this work, these two effects were combined to synthesize short- and medium-chain 1,3-diacylglycerols, leading to a product with great potential as for their low-calorie properties. Lipase-catalyzed transesterification reactions were performed between short- and medium-chain fatty acid ethyl esters and glycerol. Different variables were investigated, such as the type of biocatalyst, the molar ratio FAEE:glycerol, the adsorption of glycerol on silica gel, or the addition of lecithin. Best reaction conditions were evaluated considering the percentage of 1,3-DAG produced and the reaction rate. Except Novozym 435 (Candida antarctica), other lipases required the adsorption of glycerol on silica gel to form acylglycerols. Lipases that gave the best results with adsorption were Novozym 435 and Lipozyme RM IM (Rhizomucor miehei) with 52 and 60.7% DAG at 32 h, respectively. Because of its specificity for sn-1 and sn-3 positions, lipases leading to a higher proportion of 1,3-DAG vs. 1,2-DAG were Lipozyme RM IM (39.8 and 20.9%, respectively) and Lipase PLG (Alcaligenes sp.) (35.9 and 19.3%, respectively). By adding 1% (w/w) of lecithin to the reaction with Novozym 435 and raw glycerol, the reaction rate was considerably increased from 41.7 to 52.8% DAG at 24 h.

  4. ESolvent-free, enzyme-catalyzed biodiesel production from mango, neem, and shea oils via response surface methodology.

    Science.gov (United States)

    Nde, Divine Bup; Astete, Carlos; Boldor, Dorin

    2015-12-01

    Mango, neem and shea kernels produce non-conventional oils whose potentials are not fully exploited. To give an added value to these oils, they were transesterified into biodiesel in a solvent-free system using immobilized enzyme lipozyme from Mucor miehei. The Doehlert experimental design was used to evaluate the methyl ester (ME) yields as influenced by enzyme concentration-EC, temperature-T, added water content-AWC, and reaction time-RT. Biodiesel yields were quantified by (1)H NMR spectroscopy and subsequently modeled by a second order polynomial equation with interactions. Lipozyme enzymes were more tolerant to high temperatures in neem and shea oils reaction media compared to that of mango oil. The optimum reaction conditions EC, T, AWC, and RT assuring near complete conversion were as follows: mango oil 7.25 %, 36.6 °C, 10.9 %, 36.4 h; neem oil EC = 7.19 %, T = 45.7 °C, AWC = 8.43 %, RT = 25.08 h; and shea oil EC = 4.43 %, T = 45.65 °C, AWC = 6.21 % and RT = 25.08 h. Validation experiments of these optimum conditions gave ME yields of 98.1 ± 1.0, 98.5 ± 1.6 and 99.3 ± 0.4 % for mango, neem and shea oils, respectively, which all met ASTM biodiesel standards.

  5. Utilization of immobilized lipases as catalysts in the transesterification of non-edible vegetable oils with ethanol

    Directory of Open Access Journals (Sweden)

    P. C. Tiosso

    2014-12-01

    Full Text Available This work reports the use of commercially available immobilized lipase preparations (Novozym® 435 and Lipozyme TL IM, both from Novozymes, and Lipase PS IM from Amano as catalysts in the transesterification reaction of different alkyl-chain triglycerides with ethanol. The ethanolysis of native oils from Brazilian Amazon plants andiroba (Carapa guianensis, babassu (Orbignya sp., jatropa (Jatropha curcas, and palm (Elaeis sp. was studied in a solvent-free system. In a typical reaction, the immobilized preparations were added to the mixture of vegetable oil-to-ethanol in a molar ratio of 1:9. The reactions were performed at 50 ºC for a maximum period of 48 h. Under the conditions used, all the immobilized lipase preparations were able to generate the main esters of fatty acids present in the tested feedstocks, and both the reaction rate and ester yield were dependent on the source of lipase and vegetable oil. The viscosity values for the samples obtained in each reaction displayed a consistent reduction in relation to their original feedstocks, which also confirms the high conversion of triglycerides to ethyl esters (99.8-74.0%. The best performances were obtained with Amano PS IM and Novozym® 435, with the biodiesel samples from the babassu and jatropha oils exhibiting viscosity values in accordance with those predicted by the technical standards of ASTM D6751 (1.9-6.0 mm²/s. Lipozyme TL IM displayed an unsatisfactory performance, indicating that the conditions of the transesterification reaction should be improved. This comparative study using different catalysts and several vegetable oil sources with varying fatty acid compositions is particularly important for all tropical countries with a diversity of native vegetable oil sources.

  6. Distribuição estereoespecífica de lipídios estruturados a partir de gorduras de palma, palmiste e triacilgliceróis de cadeia média Stereospecific distribution of structured lipids obtained from palm oil, palm kernel oil, and medium chain triacylglycerols

    Directory of Open Access Journals (Sweden)

    Denise D'Agostini

    2002-09-01

    Full Text Available Por meio de interesterificação química foram sintetizados lipídios estruturados a partir das gorduras de palma, palmiste e triacilgliceróis de cadeia média. O objetivo deste trabalho foi verificar a distribuição estereoespecífica dos ácidos graxos nos lipídios estruturados. Foi possível comprovar a ocorrência da interesterificação através da hidrólise enzimática, que permitiu conhecer a composição dos ácidos graxos em posições específicas dos triacilgliceróis. Foram estudadas 10 amostras, representadas por 3 amostras individuais, 3 misturas binárias e 4 misturas ternárias. As amostras foram submetidas à hidrólise com lipase pancreática suína à temperatura de 40 ºC e posteriormente analisadas por cromatografia gasosa quanto à composição em ácidos graxos na posição sn-2. A partir dos resultados foram calculados os grupos de triacilgliceróis nas amostras individuais e nas misturas antes e após a reação de interesterificação, utilizando as teorias 1,3-random 2-random e 1,2,3-random. Os resultados demonstraram que antes do rearranjo ao acaso houve preferência do ácido oléico pela posição sn-2, enquanto que os ácidos palmítico e esteárico distribuíram-se principalmente pelas posições sn-1 e sn-3. Nos lipídios estruturados, os ácidos graxos saturados aumentaram sua participação na posição central do triacilglicerol, enquanto que os ácidos graxos insaturados apresentaram diminuição nesta mesma posição.Structured lipids were synthesized by chemical interesterification from palm oil, palm kernel oil, and medium chain triacylglycerols. The objective of this study was to verify the fatty acids positional distribution in the structured lipids. It was possible to confirm the interesterification occurrence through enzymatic hydrolysis, which allowed to know the fatty acids composition in specific positions of the triacylglycerols. Ten samples composed by three individual samples, three binary

  7. Consistencia de lípidos estructurados a partir de aceite de pescado y grasa de palmiste

    Directory of Open Access Journals (Sweden)

    Gioielli, Luiz Antonio

    2003-06-01

    Full Text Available Through interesterification of oils and fats is possible to obtain structured lipids (SL, which are considered functional foods, due their potential effects on the prevention of diseases. For this reason, there is great interest in the production of SL. The objective of this paper was to obtain structured lipids from chemical interesterification from palm kernel fat and fish oil and to analyse the interactions that occur in the binary mixtures of these lipids. Six samples consisting of two individual samples and four binary mixtures were studied. The samples were analyzed for fatty acid composition and consistency at the range temperature from 5 to 25ºC. A mathematical model of multiple regression of the quadratic type was applied. The results showed that the interactions between the two components were significant. The consistency depended on the palm kernel fat and on the binary interactions between palm kernel fat and fish oil. The negative coefficients to the consistency showed an antagonic effect which is characteristic of eutectic interactions between fats.Por medio de la interesterificación de mezclas de aceites y grasas, es posible obtener lípidos estructurados (SL, los cuales son considerados como alimentos funcionales por presentar gran potencial en la prevención de diversas enfermedades. Por esta razón, existe un gran interés en la producción de SL. El objetivo de este trabajo fue obtener lípidos estructurados por interesterificación química a partir de grasa de palmiste y aceite de pescado y analizar las interacciones que ocurrieron en las mezclas binárias de los lípidos. Fueron estudiadas seis muestras, representadas por dos muestras individuales y cuatro mezclas binárias. Las muestras fueron analizadas en cuanto a su composición de ácidos grasos y consistencia en el rango de temperaturas de 5 a 25ºC. Se aplicó un modelo de regresión múltiple del tipo cuadrático. Los resultados demostraron que las

  8. Theoretical aspects of methyl acetate and methanol activation on MgO(100) and (501) catalyst surfaces with application in FAME production

    Energy Technology Data Exchange (ETDEWEB)

    Man, Isabela-Costinela, E-mail: isabela.man@g.unibuc.ro [University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, 4-12 Regina Elisabeta Av., S3, 030018 Bucharest (Romania); Romanian Academy, ‘C.D. Nenitzescu’ Center of Organic Chemistry, 202B Spl. Independentei, 060023 Bucharest (Romania); Soriga, Stefan Gabriel [University Politehnica of Bucharest, Centre for Technology Transfer in the Process Industries, 1, Gh. Polizu Street, Building A, Room A056, RO-011061 Bucharest (Romania); Parvulescu, Vasile [University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, 4-12 Regina Elisabeta Av., S3, 030018 Bucharest (Romania)

    2017-01-15

    Highlights: • Energetics of C−O and C−H bond dissociation and formation of MeOAc on MgO(100) indicate that the bond formations are favorable. • Energetics of C−O and C−H bond dissociation and formation of MeOAc on MgO(501) indicate that the C−O bond dissociation and C−H bond formations are favorable. • The coadsorbed MeOH facilitate O−H bond dissociation of MeOH compared to isolated molecule. • Provide further understanding of reactivity of MgO surfaces with application in transesterification and interesterification reactions. - Abstract: Density functional theory (DFT) calculations were carried out to study the activation of methyl acetate and methanol on MgO(100) and MgO(501) surfaces and integrated in the context of transesterification, interesterification and glycerolysis reactions used in biodiesel industry. First results indicate the importance of including of dispersion forces in the calculations. On MgO(100) the reverse reactions steps of C−O and C−H dissociations and on MgO(501) the same reverse reaction step of C−H dissociations of methyl acetate are energetically favorable, while the dissociation of C−O bond into methoxide and acetate fragments on the edge of MgO(501) was found to be exothermic with a low activation energy. For methanol, the dissociation of O−H bond on MgO(100) surface in the presence of the second coadsorbed methanol molecule becomes more energetically favoured compared to the isolated molecule, due to the fact that the methoxide fragment is stabilized by intermolecular hydrogen bonding. This is reflected by the decrease of the activation energy of the forward reaction step and the increase of the activation energy of the backward reaction step, increasing the probability to have dissociated molecules among the undissociated ones. These results represent a step forward for better understanding from atomistic point of view the paths of these reactions on these surfaces for the corresponding catalytic

  9. Thanks to literature and fellow scientists*

    Directory of Open Access Journals (Sweden)

    Dijkstra Albert J.

    2010-01-01

    Full Text Available Formal training has the disadvantage that trainees may simply accept what they are taught without questioning it, unlike the autodidact who can only learn by asking questions all the time. Sometimes, he will not get an answer and that need not be because the question is stupid, but may be because his peers are used to there being no satisfactory answer and have simply accepted the conventional mythology without further question. So it is about time to ask some assorted questions and where possible, suggest how to find an answer: 1 Why does the composition of the solvent used to extract oil from oilseeds affect the amount of oil being extracted and its phosphatide content? 2 Why does a heat treatment (Alcon, Exergy, expander increase the phosphatide content of the crude oil and decrease its non-hydratable phosphatide (NHP content? 3 Why does water degumming of crude oil remove relatively more magnesium than calcium? 4 What is the mechanism of phosphatide removal by silica hydrogel and why is it enhanced by simultaneous soap removal? 5 What is the mechanism of NHP-removal during alkali neutralisation? 6 Could it be that the Long Mix neutralisation process as used in the US leads to insufficient removal of the pro-oxidants copper and iron and that this explains why oil tends to less stable in the US than in Europe, especially when it contains linolenic acid? 7 Could different deodorisation conditions explain this geographically determined anomaly? 8 What happens during flavour reversion? 9 Why is walnut oil more stable in the nut than in the bottle? 10 How much oil is lost by saponification or hydrolysis during refining? 11 What is the mechanism of colour fixation? 12 Does the activity of interesterification catalysts depend on their counter cation? 13 What is the chemical nature of the colour formed on interesterification catalyst activation? 14 What is crystal memory? Does it exist? However, we should not forget the Dutch proverb that:

  10. Glycerolysis of sardine oil catalyzed by a water dependent lipase in different tert-alcohols as reaction medium

    Directory of Open Access Journals (Sweden)

    Solaesa, Á. G.

    2015-12-01

    Full Text Available The production of monoacylglycerol rich in polyunsaturated fatty acids (PUFA via enzymatic glycerolysis of sardine oil in a homogeneous system was evaluated. Reactions were conducted in two different tert-alcohols. Based on the phase equilibrium data, the amount of solvent added to create a homogeneous system has been calculated and optimized. The immobilized lipase used in this work was Lipozyme RM IM from Rhizomucor miehei, a water dependent lipase. The amount of water added as well as other reaction parameters were studied to evaluate the optimum conditions for monoacylglycerol obtencion. An initial reactant mole ratio glycerol to sardine oil 3:1, 12 wt% of water based on glycerol content and 10 wt% of lipase loading (based on weight of reactants, achieved a MAG yield of around 70%, with nearly 28 wt% PUFA, with low free fatty acid content (lower than 18 wt%.En este trabajo se ha estudiado la producción de monoacilglicéridos, ricos en ácidos grasos poliinsaturados (AGPI, mediante glicerolisis enzimática de aceite de sardina. La reacción se ha llevado a cabo en dos tert-alcoholes para conseguir de esta forma un medio homogéneo de reacción. La cantidad de disolvente añadida al medio de reacción se ha optimizado y calculado en base al equilibrio de fases de los componentes del sistema. La lipasa empleada como biocatalizador ha sido la enzima inmovilizada Lipozyme RM IM de Rhizomucor miehei, una lipasa dependiente de agua. Se ha estudiado el efecto de distintos parámetros cinéticos, así como de la cantidad de agua añadida al medio de reacción, en la producción de monoacilglicéridos. De los resultados obtenidos, se puede concluir que, para una relación molar inicial de reactantes glicerol:aceite de sardina de 3:1, un 12 % en peso de agua en base al glicerol y un 10 % en peso de lipasa, en base al peso de reactantes; se puede llegar a conseguir un rendimiento en monoacilglicéridos alrededor del 70 % en peso, con casi un 28 % en

  11. Producción de lípidos estructurados por transesterificación enzimática del aceite de soja y aceite de palmiste en reactor de lecho empacado

    Directory of Open Access Journals (Sweden)

    Perea Villamil, Aide

    2008-12-01

    Full Text Available Enzymatic synthesis of structured lipids by transesterification of soybean oil with palm kernel oil was evaluated in a packed-bed reactor with a capacity for 500g of enzyme loading. Lipozyme RM-IM was used as catalyst. Substrate blends were passed through the enzyme bed at different flow rates. Transesterification reached a level of 19.6 %, with a maximum calculated productivity of 2344 kg of transesterified oil/kg of immobilized enzyme, a flow rate of 9,36 kg oil/kg enzyme/h. The triacylglycerols formed in major proportion were C40:2, C42:2, C42:3, C44:2, C44:3, C50:3 and C50:4. Stereoespecific analysis of the fat before and after transesterification shows a slight migration of acyl groups. The products obtained by this technology can be applied in the formulation of lipid emulsions for enteral and parenteral nutrition and the food industry.Se evaluó la síntesis enzimática de lípidos estructura-dos por transesterificación de aceite de soja con aceite de palmiste en un reactor de lecho empacado (PBR con capacidad para 500 gramos de enzima, utilizando como catalizador Lipozyme RM-IM. La mezcla de sustratos se hizo pasar a través del lecho de enzima a 70 °C y diferentes flujos de aceite. A un flujo de 9.36 kg aceite/kg enzima/h se alcanzó un grado transesterificación de 19.6 % con una productividad máxima calculada de 2344 kg aceite/kg enzima. Los triacilgliceroles que se formaron en mayor proporción fueron el C40:2, C42:2, C42:3, C44:2, C44:3, C50:3 y C50:4. El análisis estereoespecífico de la mezcla grasa antes y después de la transesterificación indicó baja migración de grupos acilo. Los productos obtenidos pueden tener aplicación en la formulación de emulsiones lípidicas para nutrición enteral y parenteral y en la industria de alimentos.

  12. Short term and dosage influences of palm based medium- and long-chain triacylglycerols on body fat and blood parameters in C57BL/6J mice.

    Science.gov (United States)

    Lee, Yee-Ying; Tang, Teck-Kim; Ab Karim, Nur Azwani; Alitheen, Noorjahan Banu Mohamed; Lai, Oi-Ming

    2014-01-01

    Structured lipid medium- and long-chain triacylglycerols (MLCT) are claimed to be able to manage obesity. The present study investigated the body fat influence of enzymatically interesterifed palm-based medium- and long-chain triacylglycerols (P-MLCT) on diet-induced obesity (DIO) C57BL/6J mice compared with commercial MLCT oil (C-MLCT) and a control, which was the non enzymatically modified palm kernel and palm oil blend (PKO-PO blend). It also investigated the low fat and high fat effects of P-MLCT. DIO C57BL/6J mice were fed ad libitum with low fat (7%) and high fat (30%) experimental diets for 8 weeks before being sacrificed to obtain blood serum for analysis. From the results, there is a trend that P-MLCT fed mice were found to have the lowest body weight, body weight gain, total fat pad accumulation (perirenal, retroperitoneal, epididymal and mesenteric), total triglyceride levels and efficiency in controlling blood glucose level, compared with C-MLCT and the PKO-PO blend in both low fat and high fat diets. Nevertheless, the PKO-PO blend and P-MLCT caused significantly (P < 0.05) higher total cholesterol levels compared to C-MLCT. P-MLCT present in low fat and high fat dosage were shown to be able to suppress body fat accumulation. This effect is more prominent with the low fat dosage.

  13. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications.

    Science.gov (United States)

    Borrelli, Grazia M; Trono, Daniela

    2015-09-01

    Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes.

  14. Effects of flavonoid glycosides obtained from a Ginkgo biloba extract fraction on the physical and oxidative stabilities of oil-in-water emulsions prepared from a stripped structured lipid with a low omega-6 to omega-3 ratio.

    Science.gov (United States)

    Yang, Dan; Wang, Xiang-Yu; Gan, Lu-Jing; Zhang, Hua; Shin, Jung-Ah; Lee, Ki-Teak; Hong, Soon-Taek

    2015-05-01

    In this study, we have produced a structured lipid with a low ω6/ω3 ratio by lipase-catalysed interesterification with perilla and grape seed oils (1:3, wt/wt). A Ginkgo biloba leaf extract was fractionated in a column packed with HP-20 resin, producing a flavonoid glycoside fraction (FA) and a biflavone fraction (FB). FA exhibited higher antioxidant capacity than FB, showing 58.4 mmol gallic acid equivalent (GAE)/g-of-total-phenol-content, 58.8 mg quercetin equivalent (QUE)/g-of-total-flavonoid-content, 4.5 mmol trolox/g-of-trolox-equivalent antioxidant capacity, 0.14 mg extract/mL-of-free-radical-scavenging-activity (DPPH assay, IC50), and 2.3 mmol Fe2SO4 · 7H2O/g-of-ferric-reducing-antioxidant-power. The oil-in-water emulsion containing the stripped structured lipid as an oil phase with FA exhibited the highest stability and the lowest oil globule diameters (d43 and d32), where the aggregation was unnoticeable by Turbiscan and particle size analyses during 30 days of storage. Furthermore, FA was effective in retarding the oxidation of the emulsions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Physico-chemical properties of Moringa oleifera seed oil enzymatically interesterified with palm stearin and palm kernel oil and its potential application in food.

    Science.gov (United States)

    Dollah, Sarafhana; Abdulkarim, Sabo Mohammed; Ahmad, Siti Hajar; Khoramnia, Anahita; Mohd Ghazali, Hasanah

    2016-08-01

    High oleic acid Moringa oleifera seed oil (MoO) has been rarely applied in food products due to the low melting point and lack of plasticity. Enzymatic interesterification (EIE) of MoO with palm stearin (PS) and palm kernel oil (PKO) could yield harder fat stocks that may impart desirable nutritional and physical properties. Blends of MoO and PS or PKO were examined for triacylglycerol (TAG) composition, thermal properties and solid fat content (SFC). EIE caused rearrangement of TAGs, reduction of U3 and increase of U2 S in MoO/PS blends while reduction of U3 and S3 following increase of S2 U and U2 S in MoO/PKO blends (U, unsaturated and S, saturated fatty acids). SFC measurements revealed a wide range of plasticity, enhancements of spreadability, mouthfeel and cooling effect for interesterified MoO/PS, indicating the possible application of these blends in margarines. However, interesterified MoO/PKO was not suitable in margarine application, while ice-cream may be formulated from these blends. A soft margarine formulated from MoO/PS 70:30 revealed high oxidative stability during 8 weeks storage with no significant changes in peroxide and p-anisidine values. EIE of fats with MoO allowed nutritional and oxidative stable plastic fats to be obtained, suitable for possible use in industrial food applications. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Interactions in interesterified palm and palm kernel oils mixtures. II – Microscopy and Differential Scanning Calorimetry

    Directory of Open Access Journals (Sweden)

    Grimaldi, Renato

    2001-12-01

    Full Text Available Palm oil (PO and palm kernel oil (PKO compositions (100/0, 80/20, 60/40, 50/50, 40/60, 20/80 and 0/100 were interesterified in laboratory scale under predetermined conditions (0.4% sodium metoxide, 20 minutes, 100ºC. The fourteen samples, before and after interesterification, were characterized by Polarized Light Microscopy and Differential Scanning Calorimetry (DSC. Results showed the effect of various factors on the form and width of crystals. The mean area of crystals revealed the increase of crystals when PKO was added, with values varying from 2.7 x 10E3 µm2 to PO and 1.8 x 10E6 µm2 to PKO. After interesterification, the crystal widths were lower at PO/PKO 100/0, 80/20, 60/40, 20/80 fractions and were higher to anothers. The beta-prime polimorphic form was observed in the pure palm oil sample. The results showed in melting curves, onset values from –19.6ºC to more unsaturated peaks until 20.7ºC to more saturated ones. The higher values to more saturated peak in a melting curve to palm oil, 38.7 J.g-1 before and 48.4 J.g-1 after interesterification, showed a mores table saturated group. I n a genera l way, t h e interesterification promoted an increase of crystallization rate and a better compatibility between PO/PKO fractions.Fueron interesterificados en el laboratorio mezclas de aceite de palma (PO y aceite de palmiste (PKO en diferentes proporciones (100/0, 80/20, 60/40, 50/50, 40/60, 20/80 y 0/100 bajo condiciones predeterminadas (0.4% metoxido de sodio, 20 minutos, 100ºC. Las catorce muestras fueron caracterizadas antes y después de la interesterificación por Microscopía de Luz Polarizada y por Calorimetría Diferencial de Barrido (DSC. Los resultados mostraron el efecto de varios factores sobre la forma y anchura de los cristales. El área media de los cristales revela el aumento de tamaño de los mismos cuando aumenta la proporción de PKO, con valores que varían entre 2.7 x 10E3 µm2 para PO y 1.8 x 10E

  17. Modification of oligo-Ricinoleic Acid and Its Derivatives with 10-Undecenoic Acid via Lipase-Catalyzed Esterification

    Directory of Open Access Journals (Sweden)

    M. Claudia Montiel

    2012-04-01

    Full Text Available Lipases were employed under solvent-free conditions to conjugate oligo-ricinoleic acid derivatives with 10-undecenoic acid, to incorporate a reactive terminal double bond into the resultant product. First, undecenoic acid was covalently attached to oligo-ricinoleic acid using immobilized Candida antarctica lipase (CAL at a 30% yield. Thirty percent conversion also occurred for CAL-catalyzed esterification between undecenoic acid and biocatalytically-prepared polyglycerol polyricinoleate (PGPR, with attachment of undecenoic acid occurring primarily at free hydroxyls of the polyglycerol moiety. The synthesis of oligo-ricinoleyl-, undecenoyl- structured triacylglycerols comprised two steps. The first step, the 1,3-selective lipase-catalyzed interesterification of castor oil with undecenoic acid, occurred successfully. The second step, the CAL-catalyzed reaction between ricinoleyl-, undecenoyl structured TAG and ricinoleic acid, yielded approximately 10% of the desired structured triacylglycerols (TAG; however, a significant portion of the ricinoleic acid underwent self-polymerization as a side-reaction. The employment of gel permeation chromatography, normal phase HPLC, NMR, and acid value measurements was effective for characterizing the reaction pathways and products that formed.

  18. Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications.

    Science.gov (United States)

    Pehlivanoğlu, Halime; Demirci, Mehmet; Toker, Omer Said; Konar, Nevzat; Karasu, Salih; Sagdic, Osman

    2018-05-24

    Oils and fats are widely used in the food formulations in order to improve nutritional and some quality characteristics of food products. Solid fats produced from oils by hydrogenization, interesterification, and fractionation processes are widely used in different foodstuffs for these aims. In recent years, consumer awareness of relation between diet and health has increased which can cause worry about solid fat including products in terms of their high saturated fatty acid and trans fatty acid contents. Therefore, different attempts have been carried out to find alternative ways to produce solid fat with low saturated fatty acid content. One of the promising ways is using oleogels, structuring oils with oleogelators. In this review, history, raw materials and production methods of the oleogels and their functions in oleogel quality were mentioned. Moreover, studies related with oleogel usage in different products were summarized and positive and negative aspects of oleogel were also mentioned. Considering the results of the related studies, it can be concluded that oleogels can be used in the formulation of bakery products, breakfast spreads, margarines, chocolates and chocolate-derived products and some of the meat products.

  19. Stability of immobilized Rhizomucor miehei lipase for the synthesis of pentyl octanoate in a continuous packed bed bioreactor

    Directory of Open Access Journals (Sweden)

    E. Skoronski

    2014-09-01

    Full Text Available The enzymatic synthesis of organic compounds in continuous bioreactors is an efficient way to obtain industrially important chemicals. However, few works have focused on the study of the operational conditions and the bioprocess performance. In this work, the aliphatic ester pentyl octanoate was obtained by direct esterification using a continuous packed bed bioreactor containing the immobilized enzyme Lipozyme® RM IM as catalyst. Enzymatic deactivation was evaluated under different conditions for the operational parameters substrate/enzyme ratio (5.00, 1.67, 0.83 and 0.55 mmol substrate∙min-1∙g-1enzyme and temperature (30, 40, 50 and 60 °C. The optimal condition was observed at 30 ºC, which gave the minimum enzymatic deactivation rate and the maximum conversion to the desired product, yielding approximately 60 mmols of ester for an enzyme loading of 0.5 g into the bioreactor. A first-order deactivation model showed good agreement with the experimental data.

  20. Synthesis and emulsifying properties of carbohydrate fatty acid esters produced from Agave tequilana fructans by enzymatic acylation.

    Science.gov (United States)

    Casas-Godoy, Leticia; Arrizon, Javier; Arrieta-Baez, Daniel; Plou, Francisco J; Sandoval, Georgina

    2016-08-01

    Carbohydrate fatty acid esters are non-ionic surfactants with a broad spectrum of applications. These molecules are generally synthesized using short carbohydrates or linear fructans; however in this research carbohydrate fatty acid esters were produced for the first time with branched fructans from Agave tequilana. Using immobilized lipases we successfully acylated A. tequilana fructans with vinyl laurate, obtaining products with different degrees of polymerization (DP). Lipozyme 435 was the most efficient lipase to catalyze the transesterification reaction. HPLC and ESI-MS analysis proved the presence of a mixture of acylated products as a result of the chemical complexity of fructans in the A. tequilana. The ESI-MS spectra showed a molecular mass shift between 183 and 366g/mol for fructooligosaccharides with a DP lower than 6, which indicated the presence of Agave fructans that had been mono- and diacylated with lauric acid. The carbohydrate fatty acid esters (CFAE) obtained showed good emulsifying properties in W/O emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Enzymatic production of sterculic acid from the novel Phoenix tree seed oil: Optimization and kinetic study

    International Nuclear Information System (INIS)

    Hou, X.; Sun, S.

    2017-01-01

    Phoenix tree (Firmiana simplex) seed oil is a novel oil which is rich in sterculic acid. Sterculic acid, a cyclopropene fatty acid, can be used as the inhibitor of the stearoyl-CoA desaturase system and mammary carcinomas growth. In this work, Lipozyme TLIM-catalyzed hydrolysis of the novel Phoenix tree seed oil was used to prepare sterculic acid. High temperature GC-FID and the degree of hydrolysis (DH) were used to monitor the reaction progress. Effects of reaction variables on the hydrolysis were evaluated and optimized using response surface methodology. Results showed that sterculic acid can be successfully prepared from the novel seed oil, and the effect of reaction variables on the hydrolysis decreased in the order of reaction time > enzyme load > temperature. A high yield of fatty acids (DH, 98.2±0.8%) can be obtained under optimized conditions (45 ºC, mass ratio of water to oil 10:1, enzyme load 10%, and 18 h). The Arrhenius equation for the hydrolysis was LnV0 = 9.12 − 4721/T. The activation energy was 39.25KJ/mol. The kinetic values for Vmax, K/m were 0.232mol/(L∙min) and 0.084 mol/L, respectively. [es

  2. Evaluation of the Optimal Reaction Conditions for the Methanolysis and Ethanolysis of Castor Oil Catalyzed by Immobilized Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles Allan; Al-Kabalawi, Ibrahim F.; Errico, Massimiliano

    :1 methanol-to-oil molar ratio, 5 wt% of enzymes, 7.5 wt% of water, 50 wt% n-hexane, at 50 °C. The fatty acid methyl esters content was 96.8 % and 1.0 % FFA. Regarding the reactions with ethanol, 98.0 % fatty acid ethyl ester was obtained and 1.3 % FFA, when the reaction was carried out at 60 °C, 4:1 ethanol......As an alternative to the use of chemical catalysts, immobilized enzyme Lipozyme 435 was evaluated as catalyst for biodiesel production, comparing its efficiency in the castor oil transesterification with methanol and ethanol. Different reaction conditions were assessed and optimized, including...... the reaction temperature (35 – 60 °C), alcohol-to-oil molar ratio (from 3:1 to 6:1), amount of catalyst (from 3 to 15 wt% by weight of oil), addition of water (0 – 15 wt%), and use of n-hexane as a solvent (0 – 75 wt%). For the transesterification with methanol, the optimal reaction conditions were 3...

  3. Enzymatic Synthesis of Fatty Hydroxamic Acid Derivatives Based on Palm Kernel Oil

    Directory of Open Access Journals (Sweden)

    Sidik Silong

    2011-08-01

    Full Text Available Fatty hydroxamic acid derivatives were synthesized using Lipozyme TL IM catalyst at biphasic medium as the palm kernel oil was dissolved in hexane and hydroxylamine derivatives were dissolved in water: (1 N-methyl fatty hydroxamic acids (MFHAs; (2 N-isopropyl fatty hydroxamic acids (IPFHAs and (3 N-benzyl fatty hydroxamic acids (BFHAs were synthesized by reaction of palm kernel oil and N-methyl hydroxylamine (N-MHA, N-isopropyl hydroxylamine (N-IPHA and N-benzyl hydroxylamine (N-BHA, respectively. Finally, after separation the products were characterized by color testing, elemental analysis, FT-IR and 1H-NMR spectroscopy. For achieving the highest conversion percentage of product the optimum molar ratio of reactants was obtained by changing the ratio of reactants while other reaction parameters were kept constant. For synthesis of MFHAs the optimum mol ratio of N-MHA/palm kernel oil = 6/1 and the highest conversion was 77.8%, for synthesis of IPFHAs the optimum mol ratio of N-IPHA/palm kernel oil = 7/1 and the highest conversion was 65.4% and for synthesis of BFHAs the optimum mol ratio of N-BHA/palm kernel oil = 7/1 and the highest conversion was 61.7%.

  4. Production of wax esters via microbial oil synthesis from food industry waste and by-product streams.

    Science.gov (United States)

    Papadaki, Aikaterini; Mallouchos, Athanasios; Efthymiou, Maria-Nefeli; Gardeli, Chryssavgi; Kopsahelis, Nikolaos; Aguieiras, Erika C G; Freire, Denise M G; Papanikolaou, Seraphim; Koutinas, Apostolis A

    2017-12-01

    The production of wax esters using microbial oils was demonstrated in this study. Microbial oils produced from food waste and by-product streams by three oleaginous yeasts were converted into wax esters via enzymatic catalysis. Palm oil was initially used to evaluate the influence of temperature and enzyme activity on wax ester synthesis catalysed by Novozyme 435 and Lipozyme lipases using cetyl, oleyl and behenyl alcohols. The highest conversion yields (up to 79.6%) were achieved using 4U/g of Novozyme 435 at 70°C. Transesterification of microbial oils to behenyl and cetyl esters was achieved at conversion yields up to 87.3% and 69.1%, respectively. Novozyme 435 was efficiently reused for six and three cycles during palm esters and microbial esters synthesis, respectively. The physicochemical properties of microbial oil derived behenyl esters were comparable to natural waxes. Wax esters from microbial oils have potential applications in cosmetics, chemical and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Acidolysis of terebinth fruit oil with palmitic and caprylic acids in a recirculating packed bed reactor: optimization using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Koçak, D.; Keskin, H.; Fadiloglu, S.; Gögüs, F.

    2016-07-01

    The acidolysis reaction of terebinth fruit oil with caprylic and palmitic acid has been investigated. The reaction was catalyzed by lipase (Lipozyme IM from Rhizomucormiehei) and carried out in recirculating packed bed reactor. The effects of reaction parameters have been analyzed using response surface methodology. Reaction time (3.5–6.5 h), enzyme load (10–20%), substrate flow rate (4–8 mL·min−1 ) and substrate mole ratios (Terebinth oil : Palmitic acid : Caprylic acid, 1:1.83:1.22–1:3.07:2.05) were evaluated. The optimum reaction conditions were 5.9 h reaction time, 10% enzyme load, 4 mL·min−1 substrate flow rate and 1:3.10:2.07 substrate mole ratio. The structured lipid obtained at these optimum conditions had 52.23% desired triacylglycerols and a lower caloric value than that of terebinth fruit oil. The melting characteristics and microstructure of the structured lipid were similar to those of commercial margarine fat extracts. The results showed that the structured lipid had the highest oxidative stability among the studied fats. (Author)

  6. Hidrólisis del aceite de coco (Cocos nucífera L mediante enzimas estereoespecíficas y sin especificidad posicional.

    Directory of Open Access Journals (Sweden)

    Rodríguez, R.

    1997-02-01

    Full Text Available The characteristic fatty acid composition of coconut oil provides mainly short- and medium- chain fatty acids when incorporated to the diet. These fatty acids have nutritional advantages because their metabolic disposition allows the rapid obtention of energy, mainly at the hepatic level. The obtention of short- and medium- chain fatty acids from coconut oil as substrate, may be of importance because the different nutritional, pharmacological, and technological uses of these fatty acids. In the present work, the effect of two type of lipases on the hydrolysis of coconut oil was studied; a lipase obtained from Candida cylindracea showing no positional specificity, and a lipase from Mucor miehei with sn-1',3' specificity in its free and immobilized form (Lipozyme IM-20. The lipase from Candida cylindracea allows the hydrolysis of 85%-90% of the triacylglycerols after 47-50 hours, the fatty acid composition of the hydrolyzate being similar to the composition of the oil. The remaining monoacylglycerols show a prevalent composition of short- (C6-C8 -and medium- chain (C10-C14 fatty acids. Lipase from Mucor miehei allows 65% of hydrolysis, which is obtained after 30 hours of incubation when the free form of the lipase is assayed, and after 10 hours for the immobilized form (Lipozyme IM-20. The fatty acid composition of the hydrolyzate is similar for the two enzymes and different to the composition of the oil, being C8-C14 the most prevalent fatty acids. The remaining monoacylglycerol, as product of the action of both forms of the enzyme, is almost enterely composed by lauric acid (C12:0, implicating that the sn-2' position is the most favoured for this fatty acid in the coconut oil triacylglycerols. The usefulness of lipases for the obtention of especific fractions of some fatty acids is discussed. The utility of the lipase from Mucor miehei for the obtention enriched fractions of lauric acid, which can be liberated after

  7. Identification of tocopherols, tocotrienols, and their fatty acid esters in residues and distillates of structured lipids purified by short-path distillation.

    Science.gov (United States)

    Zou, Long; Akoh, Casimir C

    2013-01-09

    The fate of endogenous vitamin E isomers during production and purification of structured lipids (SLs) was investigated. Two SLs involving tripalmitin, stearidonic acid soybean oil, and docosahexaenoic acid were synthesized by transesterification catalyzed by Novozym 435 (NSL) and acidolysis by Lipozyme TL IM (LDHA) and purified by short-path distillation (SPD). The electron impact and chemical ionization mass spectra of tocopheryl and tocotrienyl fatty acid esters in the distillates measured by GC-MS in synchronous scan/SIM mode demonstrated that these esters were formed during acidolysis as well as transesterification. The predominant esters were tocopheryl palmitate, tocopheryl oleate, and tocopheryl linoleate homologues, and no tocopheryl or tocotrienyl linolenate, stearidonate, or docosahexaenoate was found. Meanwhile, none of these esters were detected in the residues for either NSL or LDHA. Less than 50% of vitamin E isomers were present in residues after SPD. This loss played a major role in the rapid oxidative deterioration of SLs from previous studies with less contribution from the formation of tocopheryl and tocotrienyl esters. The lost tocopherols and tocotrienols present at high concentration in the distillates may be recovered and used to improve the oxidative stability of SLs.

  8. Lípidos estructurados obtenidos por interesterificación química y enzimática a partir de aceite de pescado y grasa de palmiste

    Directory of Open Access Journals (Sweden)

    Gioielli, Luiz Antonio

    2003-06-01

    Full Text Available Through the structured lipids is possible to obtain fatty acids which are used as nourishings or therapeutics on specific diseases or on abnormal metabolic conditions. They are also synthesized to improve or alter the physic and/or chemical characteristics of the triacylglycerols. The objective of this study was to obtain structured lipids by chemical and enzymatic interesterification from palm kernel fat and fish oil. The samples were analyzed for the solid fat content at the temperatures from 10 to 30 ºC. A mathematical model of multiple regression of the quadratic type was applied. The solid fat content depended on the palm kernel fat and on the binary interactions between palm kernel fat and fish oil. The negative coefficients to the solid fat content showed an antagonic effect, which is characteristic of eutectic interactions between fats. The solid fat content after chemical and enzymatic interesterification was very similar.A través de los lípidos estructurados es posible obtener ácidos grasos para fines nutritivos y terapéuticos, usados en enfermedades específicas o en condiciones metabólicas anormales. Los lípidos estructurados, también pueden ser sintetizados para mejorar o alterar las caracteristicas físicas y/o químicas de los triacilgliceroles. El objetivo del trabajo fue obtener lípidos estructurados por interesterificación química y enzimática a partir de grasa de palmiste y aceite de pescado. Fueron estudiadas seis muestras, representadas por dos muestras individuales y cuatro mezclas binárias. Las muestras fueron analizadas en cuanto el contenido de grasa sólida en la faja de temperaturas de 10 a 30 ºC. Se aplicó un modelo de regresión múltiple del tipo cuadrático. Fueron obtenidos lípidos estructurados que presentaron un comportamiento físico plástico, aumentando sus características de aplicación. Los resultados obtenidos en la interesterificación química como en la enzimática demostraron que

  9. Investigation of Lipid Metabolism by a New Structured Lipid with Medium- and Long-Chain Triacylglycerols from Cinnamomum camphora Seed Oil in Healthy C57BL/6J Mice.

    Science.gov (United States)

    Hu, Jiang-Ning; Shen, Jin-Rong; Xiong, Chao-Yue; Zhu, Xue-Mei; Deng, Ze-Yuan

    2018-02-28

    In the present study, a new structured lipid with medium- and long-chain triacylglycerols (MLCTs) was synthesized from camellia oil (CO) and Cinnamomum camphora seed oil (CCSO) by enzymatic interesterification. Meanwhile, the antiobesity effects of structured lipid were investigated through observing the changes of enzymes related to lipid mobilization in healthy C57BL/6J mice. Results showed that after synthesis, the major triacylgeride (TAG) species of intesterificated product changed to LaCC/CLaC (12.6 ± 0.46%), LaCO/LCL (21.7 ± 0.76%), CCO/LaCL (14.2 ± 0.55%), COO/OCO (10.8 ± 0.43%), and OOO (18.6 ± 0.64%). Through second-stage molecular distillation, the purity of interesterified product (MLCT) achieved 95.6%. Later, male C57BL/6J mice were applied to study whether the new structured lipid with MLCT has the efficacy of preventing the formation of obesity or not. After feeding with different diets for 6 weeks, MLCTs could reduce body weight and fat deposition in adipose tissue, lower plasma triacylglycerols (TG) (0.89 ± 0.16 mmol/L), plasma total cholesterol (TC) (4.03 ± 0.08 mmol/L), and hepatic lipids (382 ± 34.2 mg/mice) by 28.8%, 16.0%, and 30.5%, respectively, when compared to the control 2 group. This was also accompanied by increasing fecal lipids (113%) and the level of enzymes including cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), hormone-sensitive lipase (HSL), and adipose triglyceride lipase (ATGL) related to lipid mobilization in MLCT group. From the results, it can be concluded that MLCT reduced body fat deposition probably by modulating enzymes related to lipid mobilization in C57BL/6J mice.

  10. Selective deuteration for molecular insights into the digestion of medium chain triglycerides.

    Science.gov (United States)

    Salentinig, Stefan; Yepuri, Nageshwar Rao; Hawley, Adrian; Boyd, Ben J; Gilbert, Elliot; Darwish, Tamim A

    2015-09-01

    Medium chain triglycerides (MCTs) are a unique form of dietary fat that have a wide range of health benefits. They are molecules with a glycerol backbone esterified with medium chain (6-12 carbon atoms) fatty acids on the two outer (sn-1 and sn-3) and the middle (sn-2) positions. During lipid digestion in the gastrointestinal tract, pancreatic lipase stereoselectively hydrolyses the ester bonds of these triglycerides on the sn-1 and sn-3 positions resulting in sn-2 monoglyceride and fatty acids as major products. However, the sn-2 monoglycerides are thermodynamically less stable than their sn-1/3 counterparts. Isomerization or fatty acid migration from the sn-2 monoglyceride to sn-1/3 monoglyceride may occur spontaneously and would lead to glycerol and fatty acid as final products. Here, tricaprin (C10) with selectively deuterated fatty acid chains was used for the first time to monitor chain migration and the stereoselectivity of the pancreatic lipase-catalyzed hydrolysis of ester bonds. The intermediate and final digestion products were studied using NMR and mass spectrometry under biologically relevant conditions. The hydrolysis of the sn-2 monocaprin to glycerol and capric acid did not occur within biologically relevant timescales and fatty acid migration occurs only in limited amounts as a result of the presence of undigested diglyceride species over long periods of time in the digestion medium. The slow kinetics for the exchange of the sn-2 fatty acid chain and the stereoselectivity of pancreatic lipase on MCTs is relevant for industrial processes that involve enzymatic interesterification and the production of high-value products such as specific structured triacylglycerols, confectionery fats and nutritional products. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Grazia M. Borrelli

    2015-09-01

    Full Text Available Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes.

  12. Determination of the conjugated linoleic acid-containing triacylglycerols in New Zealand bovine milk fat.

    Science.gov (United States)

    Robinson, N P; MacGibbon, A K

    2000-07-01

    Reversed-phase high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection at 233 nm was used to separate, quantify, and identify the triacylglycerols (TAG) of milk fat that contain conjugated linoleic acid (CLA). The absorbance at 233 nm was substantially due to CLA-TAG (chromatography of some representative TAG devoid of CLA, such as tripalmitin and triolein, showed poor responses at 233 nm, 1/800th that of CLA-TAG). A CLA molar extinction coefficient at 233 nm of 23,360 L mol(-1) cm(-1) and an HPLC UV response factor were obtained from a commercially available cis-9,trans-11-CLA standard. This molar extinction coefficient was only 86% of reported literature values. Summation of all chromatographic peaks absorbing at 233 nm using the corrected response factor gave good agreement with independent determinations of total CLA by gas chromatography and UV spectrophotometry. This agreement allowed quantification of individual CLA-TAG peaks in the HPLC separation of a typical New Zealand bovine milk fat. Three CLA-containing TAG, CLA-dipalmitin, CLA-oleoyl-palmitin and CLA-diolein, were prepared by interesterification of tripalmitin with the respective fatty acid methyl esters and used to assign individual peaks in the reversed-phase chromatography of total milk fat, of which CLA-oleoyl-palmitin was coincident with the largest UV peak. Band fractions from argentation thin-layer chromatography of total milk fat were similarly employed to identify five predominant CLA-TAG groups in total milk fat: CLA-disaturates, CLA-oleoyl-saturates, CLA-vaccenyl-saturates, CLA-vaccenyl-olein, and CLA-diolein.

  13. Acidolysis of terebinth fruit oil with palmitic and caprylic acids in a recirculating packed bed reactor: optimization using response surface methodology

    Directory of Open Access Journals (Sweden)

    Koçak Yanık, D.

    2016-06-01

    Full Text Available The acidolysis reaction of terebinth fruit oil with caprylic and palmitic acid has been investigated. The reaction was catalyzed by lipase (Lipozyme IM from Rhizomucormiehei and carried out in recirculating packed bed reactor. The effects of reaction parameters have been analyzed using response surface methodology. Reaction time (3.5–6.5 h, enzyme load (10–20%, substrate flow rate (4–8 mL·min-1 and substrate mole ratios (Terebinth oil : Palmitic acid : Caprylic acid, 1:1.83:1.22–1:3.07:2.05 were evaluated. The optimum reaction conditions were 5.9 h reaction time, 10% enzyme load, 4 mL·min-1 substrate flow rate and 1:3.10:2.07 substrate mole ratio. The structured lipid obtained at these optimum conditions had 52.23% desired triacylglycerols and a lower caloric value than that of terebinth fruit oil. The melting characteristics and microstructure of the structured lipid were similar to those of commercial margarine fat extracts. The results showed that the structured lipid had the highest oxidative stability among the studied fats.Se ha investigado la reacción de acidolisis del aceite de pistacho con los ácidoscaprílico y palmítico. La reacción fue catalizada por la lipasa Lipozyme IM de Rhizomucormiehei y realizada mediante recirculación del reactor de lecho compacto. Los efectos de los parámetros de la reacción han sido analizados mediante el uso de la metodología de superficie de respuesta. El tiempo de reacción (3.5 hasta 6.5 h, la carga de enzima (10–20%, el caudal de sustrato (4–8 mL·min-1 relaciones molares de los sustrato (aceite de pistacho: ácido palmítico: ácido caprílico, 1: 1,83: 1,22–1: 3,07: 2,05 fueron evaluados. Las condiciones óptimas de reacción fueron 5,9 h de tiempo de reacción, el 10% de carga de la enzima, 4 mL·min-1 de caudal de sustrato y 1: 3,10: 2,07 de relación molar de sustratos. Los lípidos estructurados obtenidos en las condiciones óptimas tenías 52,23% de triacilgliceroles

  14. Enzymatic production of sterculic acid from the novel Phoenix tree seed oil: Optimization and kinetic study; Producción enzimática de ácido estercúlico a partir del nuevo aceite de semillas del árbol fenix: optimización y estudio cinético

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X.; Sun, S.

    2017-07-01

    Phoenix tree (Firmiana simplex) seed oil is a novel oil which is rich in sterculic acid. Sterculic acid, a cyclopropene fatty acid, can be used as the inhibitor of the stearoyl-CoA desaturase system and mammary carcinomas growth. In this work, Lipozyme TLIM-catalyzed hydrolysis of the novel Phoenix tree seed oil was used to prepare sterculic acid. High temperature GC-FID and the degree of hydrolysis (DH) were used to monitor the reaction progress. Effects of reaction variables on the hydrolysis were evaluated and optimized using response surface methodology. Results showed that sterculic acid can be successfully prepared from the novel seed oil, and the effect of reaction variables on the hydrolysis decreased in the order of reaction time > enzyme load > temperature. A high yield of fatty acids (DH, 98.2±0.8%) can be obtained under optimized conditions (45 ºC, mass ratio of water to oil 10:1, enzyme load 10%, and 18 h). The Arrhenius equation for the hydrolysis was LnV0 = 9.12 − 4721/T. The activation energy was 39.25KJ/mol. The kinetic values for Vmax, K/m were 0.232mol/(L∙min) and 0.084 mol/L, respectively. [Spanish] El aceite de semilla del árbol fenix (Firmiana simplex) es un nuevo tipo de aceite rico en ácido estercúlico. Este es un ácido graso ciclopropeno, que se puede utilizar como inhibidor del sistema de estearoyl-CoA desaturasa y del crecimiento de los carcinomas mamarios. En este trabajo, se utilizó la hidrólisis catalizada por Lipozyme TLIM del nuevo aceite de semilla de árbol fenix para preparar ácido estercúlico. Se utilizaron GC-FID a alta temperatura y el grado de hidrólisis (DH) para monitorizar el progreso de la reacción. Los efectos de las variables de reacción de hidrólisis se evaluaron y optimizaron utilizando la metodología de superficie de respuesta. Los resultados mostraron que el ácido estercúlico puede prepararse con éxito a partir del nuevo aceite de semilla, y el efecto de las variables de reacción en la hidr

  15. Preparation of sn-2 long-chain polyunsaturated monoacylglycerols from fish oil by hydrolysis with a stereospecific lipase from mucor miehei

    Directory of Open Access Journals (Sweden)

    Nieto, Susana

    1999-04-01

    Full Text Available The preparation of sn-2 eicosapentaenoyi glycerol and sn-2 docosahexaenoyi glycerol by the hydrolysis of fish oil by the sn-1, sn-3 stereo-specific immobilised lipase (Lipozyme IM-20 from mucor miehei is described. Monoacylglycerols obtained after the enzymatic hydrolysis were separated by silver nitrate-coated silicic acid column chromatography Both monoacylglycerols can be individually separated in almost pure form by elution from the column with a solvent mixture. The preparation of sn-2 substituted monoacylglycerols from marine origin allows their utilization as substrates for the synthesis of structured long-chain polyunsaturated fatty acid-containing triacylglycerols at specific positions.

    Se describe la preparación de sn-2 eicosapentaenoil glicerol y sn-2 docosahexaenoil glicerol mediante la hidrólisis de aceite de pescado por lipasa inmovilizada sn-1, sn-3 estereoespecífica (Lipozime IM-20 de mucor miehei. Los monoacilgliceroles obtenidos después de la hidrólisis enzimática se separaron por cromatografía en columna de ácido silícico impregnado de nitrato de plata. Ambos monoacilgliceroles pueden ser individualmente separados en forma casi pura por elución de la columna con una mezcla de solvente. La preparación de sn-2 monoacilgliceroles sustituidos de origen marino permite su utilización como sustratos para la síntesis de triacilgliceroles que contienen ácidos grasos poliinsaturados de cadena larga en posiciones específicas.

  16. APA-style human milk fat analogue from silkworm pupae oil: Enzymatic production and improving storage stability using alkyl caffeates.

    Science.gov (United States)

    Liu, Xi; Wang, Xudong; Pang, Na; Zhu, Weijie; Zhao, Xingyu; Wang, Fangqin; Wu, Fuan; Wang, Jun

    2015-12-08

    Silkworm pupae oil derived from reeling waste is a rich source of α-linolenic acid (ALA), which has multipal applications. ALAs were added in sn-1, 3 positions in a triacylglycerol (TAG) to produce an APA-human milk fat analogues (APA-HMFAs, A: α-linolenic acid, P: palmitic acid). The optimum condition is that tripalmitin to free fatty acids of 1:12 (mole ratio) at 65 °C for 48 h using lipase Lipozyme RM IM. Results show that, the major TAG species that comprised APA-HMFAs were rich in ALA and palmitic acid, which contained 64.52% total unsaturated fatty acids (UFAs) and 97.05% PA at the sn-2 position. The melting point of APA was -27.5 °C which is much lower than tripalmitin (40.5 °C) indicating more plastic character. In addition, the practical application of alkyl caffeates as liposoluble antioxidants in APA was developed. Alkyl caffeate showed a superior IC50 (1.25-1.66 μg/mL) compared to butyl hydroxy anisd (1.67 μg/mL) and L-ascorbic acid-6-palmitate (L-AP) (1.87 μg/mL) in DPPH analysis. The addition of ethyl caffeate to oil achieved a higher UFAs content (73.58%) at high temperatures. Overall, APA was obtained from silkworm pupae oil successfully, and the addition of caffeates extended storage ranges for APA-HMFAs.

  17. Adsorptive control of water in esterification with immobilized enzymes: II. fixed-bed reactor behavior.

    Science.gov (United States)

    Mensah, P; Gainer, J L; Carta, G

    1998-11-20

    Experimental and theoretical studies are conducted to understand the dynamic behavior of a continuous-flow fixed-bed reactor in which an esterification is catalyzed by an immobilized enzyme in an organic solvent medium. The experimental system consists of a commercial immobilized lipase preparation known as Lipozyme as the biocatalyst, with propionic acid and isoamyl alcohol (dissolved in hexane) as the reaction substrates. A complex dynamic behavior is observed experimentally as a result of the simultaneous occurrence of reaction and adsorption phenomena. Both propionic acid and water are adsorbed by the biocatalyst resulting in lower reaction rates. In addition, an excessive accumulation of water in the reactor leads to a rapid irreversible inactivation of the enzyme. A model based on previously-obtained adsorption isotherms and kinetic expressions, as well as on adsorption rate measurements obtained in this work, is used to predict the concentration and thermodynamic activity of water along the reactor length. The model successfully predicts the dynamic behavior of the reactor and shows that a maximum thermodynamic activity of water occurs at a point at some distance from the reactor entrance. A cation exchange resin in sodium form, packed in the reactor as a selective water adsorbent together with the catalyst particles, is shown to be an effective means for preventing an excessive accumulation of water formed in the reaction. Its use results in longer cycle times and greater productivity. As predicted by the model, the experimental results show that the water adsorbed on the catalyst and on the ion exchange resin can be removed with isoamyl alcohol with no apparent loss in enzyme activity. Copyright 1998 John Wiley & Sons, Inc.

  18. Structure-guided modification of Rhizomucor miehei lipase for production of structured lipids.

    Directory of Open Access Journals (Sweden)

    Jun-Hui Zhang

    Full Text Available To improve the performance of yeast surface-displayed Rhizomucor miehei lipase (RML in the production of human milk fat substitute (HMFS, we mutated amino acids in the lipase substrate-binding pocket based on protein hydrophobicity, to improve esterification activity. Five mutants: Asn87Ile, Asn87Ile/Asp91Val, His108Leu/Lys109Ile, Asp256Ile/His257Leu, and His108Leu/Lys109Ile/Asp256Ile/His257Leu were obtained and their hydrolytic and esterification activities were assayed. Using Discovery Studio 3.1 to build models and calculate the binding energy between lipase and substrates, compared to wild-type, the mutant Asp256Ile/His257Leu was found to have significantly lower energy when oleic acid (3.97 KJ/mol decrease and tripalmitin (7.55 KJ/mol decrease were substrates. This result was in accordance with the esterification activity of Asp256Ile/His257Leu (2.37-fold of wild-type. The four mutants were also evaluated for the production of HMFS in organic solvent and in a solvent-free system. Asp256Ile/His257Leu had an oleic acid incorporation of 28.27% for catalyzing tripalmitin and oleic acid, and 53.18% for the reaction of palm oil with oleic acid. The efficiency of Asp256Ile/His257Leu was 1.82-fold and 1.65-fold that of the wild-type enzyme for the two reactions. The oleic acid incorporation of Asp256Ile/His257Leu was similar to commercial Lipozyme RM IM for palm oil acidolysis with oleic acid. Yeast surface-displayed RML mutant Asp256Ile/His257Leu is a potential, economically feasible catalyst for the production of structured lipids.

  19. Structure-guided modification of Rhizomucor miehei lipase for production of structured lipids.

    Science.gov (United States)

    Zhang, Jun-Hui; Jiang, Yu-Yan; Lin, Ying; Sun, Yu-Fei; Zheng, Sui-Ping; Han, Shuang-Yan

    2013-01-01

    To improve the performance of yeast surface-displayed Rhizomucor miehei lipase (RML) in the production of human milk fat substitute (HMFS), we mutated amino acids in the lipase substrate-binding pocket based on protein hydrophobicity, to improve esterification activity. Five mutants: Asn87Ile, Asn87Ile/Asp91Val, His108Leu/Lys109Ile, Asp256Ile/His257Leu, and His108Leu/Lys109Ile/Asp256Ile/His257Leu were obtained and their hydrolytic and esterification activities were assayed. Using Discovery Studio 3.1 to build models and calculate the binding energy between lipase and substrates, compared to wild-type, the mutant Asp256Ile/His257Leu was found to have significantly lower energy when oleic acid (3.97 KJ/mol decrease) and tripalmitin (7.55 KJ/mol decrease) were substrates. This result was in accordance with the esterification activity of Asp256Ile/His257Leu (2.37-fold of wild-type). The four mutants were also evaluated for the production of HMFS in organic solvent and in a solvent-free system. Asp256Ile/His257Leu had an oleic acid incorporation of 28.27% for catalyzing tripalmitin and oleic acid, and 53.18% for the reaction of palm oil with oleic acid. The efficiency of Asp256Ile/His257Leu was 1.82-fold and 1.65-fold that of the wild-type enzyme for the two reactions. The oleic acid incorporation of Asp256Ile/His257Leu was similar to commercial Lipozyme RM IM for palm oil acidolysis with oleic acid. Yeast surface-displayed RML mutant Asp256Ile/His257Leu is a potential, economically feasible catalyst for the production of structured lipids.

  20. Hidrogenación e interesterificación del aceite de castaña de Brasil (Bertholletia excelsa

    Directory of Open Access Journals (Sweden)

    Polakiewicz, Bronislaw

    2001-08-01

    Full Text Available Brazil nut oil (ACB was hydrogenated in a 1L Parr reactor, with Ni as catalyst, at the following process conditions: 175ºC, 3 atm, 60 min (GH1, 150ºC, 1 atm, 30 min (GH2 and 125ºC, 1 atm, 30 min (GH3. Different proportions of blends with ACB and GH1 and GH2 were prepared. These mixtures were interesterified at laboratory scale (0.75% of sodium metoxide, 60 min, 60-65ºC. Linoleic selectivity (Sl was 3.87 (GH1, 17.46 (GH2 and 17.46 (GH3. Linolenic selectivity (Sln was 2.3 for every reaction. It was observed different results for starting and interesterificated blends for the physical properties, for these parameters and for the interesterified fats, were applied a multiple regression. Results showed that consistency and solid fat content (SFC were dependent on the hydrogenated fats. Significant interactions were, in general, for the interesterified blends of ACB/GH1 and GH1/GH2, only for the consistency and not for the other properties.El aceite de castaña de Brasil (ACB fue hidrogenado, en un reactor Parr de 1 L, catalizador a base de Ni, y bajo las siguientes condiciones de proceso: 175ºC, 3 atm, 60 min (GH1, 150ºC, 1 atm, 30 min (GH2 y 125ºC, 1 atm, 30 min (GH3. Con las grasas resultantes se prepararon mezclas en diferentes proporciones de ACB con GH1 y GH2. Estas fueron interesterificadas a escala de laboratorio con 0.75% de metóxido de sodio, 60 min, 60-65ºC. En la hidrogenación la selectividad linoleica (Sl fue 3.87 (GH1, 17.46 (GH2 y 8.45 (GH3 y la selectividad linolénica (Sln fue 2.3 para las tres reacciones. A los parámetros de las propiedades físicas de los productos interesterificados, se aplicó un modelo de regresión múltiple. Los resultados mostraron que la consistencia y el contenido en grasa sólida dependían de la grasa hidrogenada, e indicaron que las interacciones fueron en general, significativas para las mezclas interesterificadas de ACB/GH1 y GH1/GH2 en cuanto a la consistencia, pero no en las

  1. Naturaleza fractal en redes de cristales de grasas

    Directory of Open Access Journals (Sweden)

    Gómez Herrera, C.

    2004-06-01

    Full Text Available The determination of the mechanical and rheological characteris­tics of several plastic fats requires a detailed understanding of the microstructure of the fat crystal network aggregates. The (or A fractal approach is useful for the characterization of this micros­tructure. This review begins with information on fractality and statistical self-similar structure. Estimations for fractal dimension by means of equations relating the volume fraction of solid fat to shear elastic modulus G' in linear region are described. The influence of interesterification on fractal dimension decrease (from 2, 46 to 2 ,15 for butterfat-canola oil blends is notable . This influence is not significant for fat blends without butterfat. The need for an increase in research concerning the relationship between fractality and rheology in plastic fats is emphasized.La determinación de las características mecánicas y reológicas de ciertas grasas plásticas requiere conocimientos detallados sobre las microestructuras de los agregados que forman la red de cristales grasos. El estudio de la naturaleza fractal de estas microestructuras resulta útil para su carac­terización. Este artículo de información se inicia con descripciones de la dimensión fractal y de la "autosimilitud estadística". A continuación se describe el cálculo de la dimensión fractal mediante ecuaciones que relacionan la fracción en volumen de grasa sólida con el módulo de recuperación (G' dentro de un comportamiento viscoelástico lineal. Se destaca la influencia que la interesterificación ejerce sobre la dimensión fractal de una mezcla de grasa láctea y aceite de canola (que pasa de 2,64 a 2,15. Esta influencia no se presenta en mezclas sin grasa láctea. Se insiste sobre la necesidad de incrementar las investi­gaciones sobre la relación entre reología y estructura fractal en grasas plásticas.

  2. Production of structured lipids by acidolysis of an EPA-enriched fish oil and caprylic acid in a packed bed reactor: analysis of three different operation modes.

    Science.gov (United States)

    González Moreno, P A; Robles Medina, A; Camacho Rubio, F; Camacho Páez, B; Molina Grima, E

    2004-01-01

    Structured triacylglycerols (ST) enriched in eicosapentaenoic acid (EPA) in position 2 of the triacylglycerol (TAG) backbone were synthesized by acidolysis of a commercially available EPA-rich oil (EPAX4510, 40% EPA) and caprylic acid (CA), catalyzed by the 1,3-specific immobilized lipase Lipozyme IM. The reaction was carried out in a packed bed reactor (PBR) operating in two ways: (1) by recirculating the reaction mixture from the exit of the bed to the substrate reservoir (discontinuous mode) and (2) in continuous mode, directing the product mixture leaving the PBR to a product reservoir. By operating in these two ways and using a simple kinetic model, representative values for the apparent kinetic constants (kX) for each fatty acid (native, Li or odd, M) were obtained. The kinetic model assumes that the rate of incorporation of a fatty acid into TAG per amount of enzyme, rX (mole/(h g lipase)) is proportional to the extent of the deviation from the equilibrium for each fatty acid (i.e., the difference of concentration between the fatty acid in the triacylglycerol and the concentration of the same fatty acid in the triacylglycerol once the equilibrium of the acidolysis reaction is reached). The model allows comparing the two operating modes through the processing intensity, defined as mLt/(V[TG]0) and mL/(q[TG]0), for the discontinuous and continuous operation modes, respectively. In discontinuous mode, ST with 59.5% CA and 9.6% EPA were obtained. In contrast, a ST with 51% CA and 19.6% EPA were obtained when using the continuous operation mode. To enhance the CA incorporation when operating in continuous mode, a two-step acidolysis reaction was performed (third operation mode). This continuous two-step process yields a ST with a 64% CA and a 15% EPA. Finally, after purifying the above ST in a preparative silica gel column, impregnated with boric acid, a ST with 66.9% CA and 19.6% EPA was obtained. The analysis by reverse phase and Ag+ liquid chromatography of

  3. Lipase catalyzed ester synthesis for food processing industries

    Directory of Open Access Journals (Sweden)

    Aravindan Rajendran

    2009-02-01

    Full Text Available Lipases are one of the most important industrial biocatalyst which catalyzes the hydrolysis of lipids. It can also reverse the reaction at minimum water activity. Because of this pliable nature, it is widely exploited to catalyze the diverse bioconversion reactions, such as hydrolysis, esterification, interesterification, alcoholysis, acidolysis and aminolysis. The property to synthesize the esters from the fatty acids and glycerol promotes its use in various ester synthesis. The esters synthesized by lipase finds applications in numerous fields such as biodiesel production, resolution of the recemic drugs, fat and lipid modification, flavour synthesis, synthesis of enantiopure pharmaceuticals and nutraceuticals. It plays a crucial role in the food processing industries since the process is unaffected by the unwanted side products. Lipase modifications such as the surfactant coating, molecular imprinting to suit for the non-aqueous ester synthesis have also been reported. This review deals with lipase catalyzed ester synthesis, esterification strategies, optimum conditions and their applications in food processing industries.Lipases são catalizadores industriais dos mais importantes, os quais catalizam a hidrólise de lipídeos. Também podem reverter a reação a um mínimo de atividade de água. Devido sua natureza flexível, é amplamente explorada para catalizar uma diversidade de reações de bioconversão como hidrólise, esterificação, interesterificação, alcoólise, acidólise e aminólise. A propriedade de síntese de esteres a partir de ácidos graxos e glicerol promoveu seu uso em várias sínteses de esteres. Os esteres sintetizados por lipases encontram aplicação em numerosos campos como a produção de biodiesel, resolução de drogas racêmicas, modificação de gorduras e lipídios, sintese de aromas, síntese de produtos farmacêuticos enantiopuro e nutracêuticos. As lipases possuem um papel crucial nas indústrias de

  4. Alternativas para a agregação de valor aos resíduos da industrialização de peixe Alternatives for adding value for the fish processing wastes

    Directory of Open Access Journals (Sweden)

    Maria M. C. Feltes

    2010-01-01

    further be stabilized by means of interesterification reactions, considering that the structured triglycerides thus obtained can be used in animal feeding, with nutritional advantages over original oils. The fish wastes can be applied as a substrate for the production of texturized proteins, protein concentrate, mechanically deboned meat, surimi, reestructured products or even oil, used for human feeding. The conversion of the extracted oil into biodiesel is another proposal of particular interest in the field of alternative fuels.

  5. Lípidos estructurados obtenidos por interesterificación de las mezclas binarias y ternarias de las grasas de palma, semilla de palma y triglicéridos de cadena media

    Directory of Open Access Journals (Sweden)

    Sotero Solis, Víctor Erasmo

    2001-08-01

    Full Text Available Structured lipids are modified triacylglycerols to alter the fatty acid composition and/or their distribution into the glycerol molecules, by using enzymatic or chemical methods. Some of them can be classified as functional foods or nutraceuticals because they are directly associated to the prevention and treatment of many diseases. The objectives of this paper were to obtain and to characterize structured lipids by chemical interesterification of binary and ternary mixtures of vegetable fats (palm and palm kernel and medium chain triacylglycerols (Trigliceril CM. Ten samples consisting of three individual samples, three binary mixtures, and four ternary mixtures were studied. The fatty acid composition, solid fat content and consistency at the temperatures from 10ºC to 35ºC were analysed. A mathematical model of multiple regression of the special cubic type was applied, and from the significant coefficients triangular diagrams were confectioned, which indicate curves of levels. The results showed that the interactions between the three components were not significant. The solid fat content depended on the palm and palm kernel fats, and on the binary interactions between them. The negative coefficients for the interactions showed an antagonic effect, which is characteristic of eutectic interactions between fats.Los lípidos estructurados son triglicéridos modificados por la alteración de su composición en cuanto a los ácidos grasos y/o su distribución en las moléculas de glicerol, por métodos químicos o enzimáticos. Son obtenidos por interesterificación química o enzimática. Algunos de estos lípidos pueden ser clasificados como alimentos funcionales o nutracéuticos, por estar directamente asociados a la prevención o tratamiento de diversas enfermedades. Los objetivos de este trabajo fueron el de obtener y caracterizar los lípidos estructurados por medio de la interesterificación química de las mezclas binarias y ternarias

  6. Are ionic liquids extremophiles cell wall breakers? Esther Gutiérrez, M. Ángeles Sanromán, Ana Rodríguez, Francisco J. Deive * Department of Chemical Engineering, University of Vigo, 36310, Vigo, Spain * Corresponding author: Tel.: +34986818723; E-mail address: deive@uvigo.es

    Directory of Open Access Journals (Sweden)

    Esther Gutiérrez

    2014-06-01

    Full Text Available The increasing interest in the development of more competitive biotechnological processes is demanding the development of new downstream strategies to maximize product recovery and foster the economic feasibility and robustness of any desired process. From a biotechnological point of view, lipase production is considered one of the three most important bioprocesses in terms of enzyme sales. During the last years, lipolytic enzymes applications have been broaden to sectors ranging from the petrochemical, pharmaceutical, food and paper to waste management industries, as a result of a close collaboration between academics and industry (Houde et al., 2004. The interest on triacylglycerol hydrolases or lipases (EC 3.1.1.3 lies in the fact that they play a crucial role in biocatalysis of a plethora of chemical reactions, such as hydrolysis, interesterification, esterification, alcoholysis, acidolysis and aminolysis. Their reputation is built largely on their distinctive features, namely, they are quite stable and active in organic solvents, they do not require cofactors, they exhibit a high degree of chemo-, enantio- and regioselectivity, and they possess a wide range of substrate specificity. These features make these enzymes trade to be a well-known billion dollar business (Jaeger and Reetz, 1998; Hasan et al., 2006. However, there are concerns related to the stability of these enzymes at the operating conditions usually employed in biocatalysis. This problem can be circumvented by using extremozymes, whose naturally developed resistance to drastic reaction conditions (like resistance to denaturalization by chemical agents and by extreme values of temperature, pH and salinity turns out to be their main appeal. One of the main limitations observed for the industrial implementation of the processes to produce this kind of enzymes lies in the high costs of downstream operations which represent more than 50-80% of the total processing cost. Surprisingly