WorldWideScience

Sample records for lipopolysaccharide induced fever

  1. Repeated lipopolysaccharide administration produces tolerance to anorexia and fever but not to inhibition of thirst in rat.

    Science.gov (United States)

    Nava, F; Carta, G

    2000-11-01

    In 24 h water and food deprived rats, a single lipopolysaccharide treatment (0.25, 0.50 and 1 mg/kg, i.p.) induced inhibition of thirst and hunger as well as fever. Moreover, the same treatment increased serum cytokines, plasma nitrite/nitrate and corticosterone and urinary prostaglandin levels. In another group of 24 h water and food deprived rats, a repeated lipopolysaccharide treatment (0.25, 0. 50 and 1 mg/kg, i.p.), given at 0, 2, 6, 12 and 24 h, induced tolerance to inhibition of food intake and fever, but not to antidipsogenic effect. Moreover, the same repeated treatment stopped the increase in serum cytokines, plasma corticosterone and urinary prostaglandin concentrations and failed to reduce plasma nitrite/nitrate levels. This data, together with the evidence that a pretreatment with N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME) (5 and 10 microg per rat) reverses the antidipsogenic effects in lipopolysaccharide tolerant rats, suggests that the persistent reduction of water intake after a repeated lipopolysaccharide treatment is due to the antidipsogenic action of nitric oxide in the brain.

  2. Pattern differences in experimental fevers induced by endotoxin, endogenous pyrogen, and prostaglandins.

    Science.gov (United States)

    Morimoto, A; Nakamori, T; Watanabe, T; Ono, T; Murakami, N

    1988-04-01

    To distinguish pattern differences in experimentally induced fevers, we investigated febrile responses induced by intravenous (IV), intracerebroventricular (ICV), and intra-preoptic/anterior hypothalamic (POA) administration of bacterial endotoxin (lipopolysaccharide, LPS), endogenous pyrogen (EP), human recombinant interleukin-1 alpha (IL-1), and prostaglandins E2 and F2 alpha (PGE2 and PGF2 alpha). Intravenous LPS, EP, or IL-1 in high concentrations caused biphasic fever. In low concentrations, they induced only the first phase of fever. Latency to onset and time to first peak of fever induced by IV injection of LPS or EP were almost the same as those after ICV or POA injection of PGE2. Fever induced by ICV or POA administration of LPS, EP, IL-1, or PGF2 alpha had a long latency to onset and a prolonged time course. There were significant differences among the latencies to fever onset exhibited by groups that received ICV or POA injections of LPS, EP, or PGF2 alpha and by groups given IV injections of LPS or EP and ICV or POA injections of PGE2. Present observations indicate different patterns of fever produced by several kinds of pyrogens when given by various routes. These results permit us to consider the possibility that there are several mediators or multiprocesses underlying the pathogenesis of fever.

  3. Sickness behaviour after lipopolysaccharide treatment in ghrelin deficient mice

    OpenAIRE

    Szentirmai, Éva; Krueger, James M.

    2013-01-01

    Ghrelin is an orexigenic hormone produced mainly by the gastrointestinal system and the brain. Much evidence also indicates a role for ghrelin in sleep and thermoregulation. Further, ghrelin was recently implicated in immune system modulation. Administration of bacterial lipopolysaccharide (LPS) induces fever, anorexia, and increased non-rapid-eye movement sleep (NREMS) and these actions are mediated primarily by proinflammatory cytokines. Ghrelin reduces LPS-induced fever, ...

  4. The Neurokinin-1 Receptor Contributes to the Early Phase of Lipopolysaccharide-Induced Fever via Stimulation of Peripheral Cyclooxygenase-2 Protein Expression in Mice

    Directory of Open Access Journals (Sweden)

    Eszter Pakai

    2018-02-01

    Full Text Available Neurokinin (NK signaling is involved in various inflammatory processes. A common manifestation of systemic inflammation is fever, which is usually induced in animal models with the administration of bacterial lipopolysaccharide (LPS. A role for the NK1 receptor was shown in LPS-induced fever, but the underlying mechanisms of how the NK1 receptor contributes to febrile response, especially in the early phase, have remained unknown. We administered LPS (120 µg/kg, intraperitoneally to mice with the Tacr1 gene, i.e., the gene encoding the NK1 receptor, either present (Tacr1+/+ or absent (Tacr1−/− and measured their thermoregulatory responses, serum cytokine levels, tissue cyclooxygenase-2 (COX-2 expression, and prostaglandin (PG E2 concentration. We found that the LPS-induced febrile response was attenuated in Tacr1−/− compared to their Tacr1+/+ littermates starting from 40 min postinfusion. The febrigenic effect of intracerebroventricularly administered PGE2 was not suppressed in the Tacr1−/− mice. Serum concentration of pyrogenic cytokines did not differ between Tacr1−/− and Tacr1+/+ at 40 min post-LPS infusion. Administration of LPS resulted in amplification of COX-2 mRNA expression in the lungs, liver, and brain of the mice, which was statistically indistinguishable between the genotypes. In contrast, the LPS-induced augmentation of COX-2 protein expression was attenuated in the lungs and tended to be suppressed in the liver of Tacr1−/− mice compared with Tacr1+/+ mice. The Tacr1+/+ mice responded to LPS with a significant surge of PGE2 production in the lungs, whereas Tacr1−/− mice did not. In conclusion, the NK1 receptor is necessary for normal fever genesis. Our results suggest that the NK1 receptor contributes to the early phase of LPS-induced fever by enhancing COX-2 protein expression in the periphery. These findings advance the understanding of the crosstalk between NK signaling and the “cytokine-COX-2

  5. Evidence of substance P autocrine circuitry that involves TNF-α, IL-6, and PGE2 in endogenous pyrogen-induced fever.

    Science.gov (United States)

    Brito, Haissa Oliveira; Barbosa, Felipe L; Reis, Renata Cristiane Dos; Fraga, Daniel; Borges, Beatriz S; Franco, Celia R C; Zampronio, Aleksander Roberto

    2016-04-15

    Substance P (SP) is involved in fever that is induced by lipopolysaccharide (LPS) but not by interleukin-1β or macrophage inflammatory protein-1α. Intracerebroventricular (i.c.v.) administration of the neurokinin-1 (NK1) receptor antagonist SR140333B in rats reduced fever that was induced by an i.c.v. injection of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandin E2 (PGE2), corticotropin-releasing factor (CRF), endothelin-1 (ET-1), and morphine (MOR). Furthermore, an i.c.v. injection of SP induced a febrile response that was inhibited by indomethacin concomitant with an increase in PGE2 levels in cerebrospinal fluid. Lipopolysaccharide and PGE2 caused higher expression and internalization of NK1 receptors in the hypothalamus which were prevented by SR140333B. These data suggest that SP is an important mediator of fever, in which it induces a prostaglandin-dependent response and is released after TNF-α, IL-6, PGE2, CRF, endogenous opioids, and ET-1. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Agmatine attenuates stress- and lipopolysaccharide-induced fever in rats

    Science.gov (United States)

    Aricioglu, Feyza; Regunathan, Soundar

    2010-01-01

    Physiological stress evokes a number of responses, including a rise in body temperature, which has been suggested to be the result of an elevation in the thermoregulatory set point. This response seems to share similar mechanisms with infectious fever. The aim of the present study was to investigate the effect of agmatine on different models of stressors [(restraint and lipopolysaccaride (LPS)] on body temperature. Rats were either restrained for 4 h or injected with LPS, both of these stressors caused an increase in body temperature. While agmatine itself had no effect on body temperature, treatment with agmatine (20, 40, 80 mg/kg intraperitoneally) dose dependently inhibited stress- and LPS-induced hyperthermia. When agmatine (80 mg/kg) was administered 30 min later than LPS (500 μg/kg) it also inhibited LPS-induced hyperthermia although the effect became significant only at later time points and lower maximal response compared to simultaneous administration. To determine if the decrease in body temperature is associated with an anti-inflammatory effect of agmatine, the nitrite/nitrate levels in plasma was measured. Agmatine treatment inhibited LPS-induced production of nitrates dose dependently. As an endogenous molecule, agmatine has the capacity to inhibit stress- and LPS-induced increases in body temperature. PMID:15936786

  7. Effects of Bai-Hu decoction on fever induced by lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Li-Long Jia

    2013-03-01

    Full Text Available This study was designed to investigate the antifebrile effect and mechanisms of Bai-Hu decoction (BHD, a traditional Chinese medical (TCM prescription. The rabbits used in this study received an intravenous injection of lipopolysaccharide (LPS after being orally administered with BHD, ibuprofen, or saline, and their rectal temperatures were monitored by a copper–constantan thermocouple. Concentrations of interleukin-1 beta (IL-1β and tumor necrosis factor alpha (TNF-α in serum and hypothalamus were assayed using the commercially available rabbit IL-1β and TNF-α enzyme-linked immunosorbent assay kits following the manufacturer’s instructions. The BHD treatment group exhibited a significant fall in body temperature in both peaks compared with the LPS group (p<0.05. BHD reduced the concentrations of IL-1β and TNF-α in serum, and of TNF-α in hypothalamus to control the febrile responses at 1 hour. Besides the levels of IL-1β in hypothalamus and serum, the concentration of TNF-α in hypothalamus was decreased remarkably in the BHD group than in the LPS group at 3 hours. The main findings, the partial mechanisms of BHD in reducing biphasic fever elicited by LPS, were that treatments with the crude extract of BHD could remarkably reduce the increased concentrations of IL-1β and TNF-α, not only in serum but also in hypothalamus. The results indicated that BHD would be a valuable candidate for further investigation as a traditional antifebrile and anti-inflammatory natural drug.

  8. Puerarin exerts antipyretic effect on lipopolysaccharide-induced fever in rats involving inhibition of pyrogen production from macrophages.

    Science.gov (United States)

    Yao, Xiu-Juan; Yin, Ji-Ai; Xia, Yu-Feng; Wei, Zhi-Feng; Luo, Yu-Bin; Liu, Mei; Feleder, Carlos; Dai, Yue

    2012-05-07

    Puerarin is the most abundant isoflavonoid in Radix Puerariae (Gegen), which has been prescribed as a medicinal herb for treating fever in China for a long history. The present study aimed at evaluating the antipyretic effect of puerarin and revealing the related mechanisms. Lipopolysaccharide (LPS)-induced fever in rats was used to assess the antipyretic effect of puerarin. After an intraperitoneal injection of LPS (100μg/kg), body temperature was tested every 30min up to 8h. Different doses of puerarin (25, 50, 100mg/kg) were intraperitoneally administered 30min before LPS injection. In vitro, LPS-stimulated RAW 264.7 cells were treated with various concentrations of puerarin (25-200μM). The pyrogenic mediators, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandin E(2) (PGE(2)) and nitric oxide (NO), were examined on both transcription and expression levels. Furthermore, the influences of the activation of nuclear factor-kappa B (NF-κB) and the phosphorylation of mitogen-activated protein kinases (MAPKs) by puerarin were assayed by western blot. The intraperitoneal administration of puerarin at test doses clearly demonstrated apparent antipyretic effect through the declines in body temperature elevated by LPS in rats. The in vitro data showed that puerarin inhibited the production of IL-1β, TNF-α, IL-6, PGE(2) and NO; moreover, the RT-PCR analysis and the western blot analysis indicated that puerarin regulated the transcriptional level via suppression of NF-κB activation and blockade of MAPK signal pathway. In summary, the antipyretic property of puerarin might result, at least in part, from an inhibition of endogenous pyrogen production and expression. Taken in this sense, our findings provide an explanation for puerarin acting as an important constituent in Gegen, thus, provide scientific basis for the wide use of Radix Puerariae in China as a traditional antipyretic. Copyright © 2012 Elsevier Ireland

  9. Attenuation of methamphetamine-induced nigrostriatal dopaminergic neurotoxicity in mice by lipopolysaccharide pretreatment.

    Science.gov (United States)

    Lin, Yin Chiu; Kuo, Yu-Min; Liao, Pao-Chi; Cherng, Chianfang G; Su, Su-Wen; Yu, Lung

    2007-04-30

    Immunological activation has been proposed to play a role in methamphetamine-induced dopaminergic terminal damage. In this study, we examined the roles of lipopolysaccharide, a pro-inflammatory and inflammatory factor, treatment in modulating the methamphetamine-induced nigrostriatal dopamine neurotoxicity. Lipopolysaccharide pretreatment did not affect the basal body temperature or methamphetamine-elicited hyperthermia three days later. Such systemic lipopolysaccharide treatment mitigated methamphetamine-induced striatal dopamine and 3,4-dihydroxyphenylacetic acid depletions in a dose-dependent manner. As the most potent dose (1 mg/kg) of lipopolysaccharide was administered two weeks, one day before or after the methamphetamine dosing regimen, methamphetamine-induced striatal dopamine and 3,4-dihydroxyphenylacetic acid depletions remained unaltered. Moreover, systemic lipopolysaccharide pretreatment (1 mg/kg) attenuated local methamphetamine infusion-produced dopamine and 3,4-dihydroxyphenylacetic acid depletions in the striatum, indicating that the protective effect of lipopolysaccharide is less likely due to interrupted peripheral distribution or metabolism of methamphetamine. We concluded a critical time window for systemic lipopolysaccharide pretreatment in exerting effective protection against methamphetamine-induced nigrostriatal dopamine neurotoxicity.

  10. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    International Nuclear Information System (INIS)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung; Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang; Kim, Won

    2014-01-01

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  11. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Lee, Sik [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2014-08-08

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  12. Lipopolysaccharide-induced neuronal activation in the paraventricular and dorsomedial hypothalamus depends on ambient temperature.

    Directory of Open Access Journals (Sweden)

    Samuel P Wanner

    Full Text Available Systemic inflammatory response syndrome is associated with either fever or hypothermia, but the mechanisms responsible for switching from one to the other are unknown. In experimental animals, systemic inflammation is often induced by bacterial lipopolysaccharide (LPS. To identify the diencephalic and brainstem structures involved in the fever-hypothermia switch, we studied the expression of c-Fos protein, a marker of neuronal activation, in rats treated with the same high dose of LPS (0.5 mg/kg, intravenously either in a thermoneutral (30 °C or cool (24 °C environment. At 30 °C, LPS caused fever; at 24 °C, the same dose caused profound hypothermia. Both fever and hypothermia were associated with the induction of c-Fos in many brain areas, including several structures of the anterior preoptic, paraventricular, lateral, and dorsal hypothalamus, the bed nucleus of the stria terminalis, the posterior pretectal nucleus, ventrolateral periaqueductal gray, lateral parabrachial nucleus, area postrema, and nucleus of the solitary tract. Every brain area studied showed a comparable response to LPS at the two different ambient temperatures used, with the exception of two areas: the dorsomedial hypothalamic nucleus (DMH, which we studied together with the adjacent dorsal hypothalamic area (DA, and the paraventricular hypothalamic nucleus (PVH. Both structures had much stronger c-Fos expression during LPS hypothermia than during fever. We propose that PVH and DMH/DA neurons are involved in a circuit, which - depending on the ambient temperature - determines whether the thermoregulatory response to bacterial LPS will be fever or hypothermia.

  13. Mechanism of fever induction in rabbits.

    Science.gov (United States)

    Siegert, R; Philipp-Dormston, W K; Radsak, K; Menzel, H

    1976-01-01

    Three exogenous pyrogens (Escherichia coli lipopolysaccharide, synthetic double-stranded ribonucleic acid. Newcastle disease virus) were compared with respect to their mechanisms of fever induction in rabbits. All inducers stimulated the production of an endogenous pyrogen demonstrated in the blood as well as prostaglandins of the E group, and of cyclic adenosine 3',5'-monophosphate in the cerebrospinal fluid. The concentrations of these compounds were elevated approximately twofold as compared to the controls. Independently of the mode of induction, the fever reaction could be prevented by pretreatment with 5 mg of cycloheximide per kg, although the three fever mediators were induced as in febrile animals. Consequently, at least one additional fever mediator that is sensitive to a 30 to 50% inhibition of protein synthesis by cycloheximide has to be postulated. The comparable reactions of the rabbits after administration of different pyrogens argues for a similar fever mechanism. In contrast to fever induction there was no stimulation of endogenous pyrogen, prostaglandins of the E group, and cyclic adenosine 3',5'-monophosphate in hyperthermia as a consequence of exposure of the animals to exogenous overheating. Furthermore, hyperthermia could not be prevented by cycloheximide. PMID:185148

  14. Allicin Protects against Lipopolysaccharide-Induced Acute Lung ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of allicin, an active component of garlic, on lipopolysaccharide (LPS)- induced acute lung injury. Methods: Wistar rats were subjected to LPS intravenous injection with or without allicin treatment to induce acute lung injury (ALI) model. Also, A549 cells were stimulated with LPS in the ...

  15. Mechanisms of fever production and lysis: lessons from experimental LPS fever.

    Science.gov (United States)

    Roth, Joachim; Blatteis, Clark M

    2014-10-01

    Fever is a cardinal symptom of infectious or inflammatory insults, but it can also arise from noninfectious causes. The fever-inducing agent that has been used most frequently in experimental studies designed to characterize the physiological, immunological and neuroendocrine processes and to identify the neuronal circuits that underlie the manifestation of the febrile response is lipopolysaccharide (LPS). Our knowledge of the mechanisms of fever production and lysis is largely based on this model. Fever is usually initiated in the periphery of the challenged host by the immediate activation of the innate immune system by LPS, specifically of the complement (C) cascade and Toll-like receptors. The first results in the immediate generation of the C component C5a and the subsequent rapid production of prostaglandin E2 (PGE2). The second, occurring after some delay, induces the further production of PGE2 by induction of its synthesizing enzymes and transcription and translation of proinflammatory cytokines. The Kupffer cells (Kc) of the liver seem to be essential for these initial processes. The subsequent transfer of the pyrogenic message from the periphery to the brain is achieved by neuronal and humoral mechanisms. These pathways subserve the genesis of early (neuronal signals) and late (humoral signals) phases of the characteristically biphasic febrile response to LPS. During the course of fever, counterinflammatory factors, "endogenous antipyretics," are elaborated peripherally and centrally to limit fever in strength and duration. The multiple interacting pro- and antipyretic signals and their mechanistic effects that underlie endotoxic fever are the subjects of this review.

  16. Female Sex Hormones Influence the Febrile Response Induced by Lipopolysaccharide, Cytokines and Prostaglandins but not by Interleukin-1β in Rats.

    Science.gov (United States)

    Brito, H O; Radulski, D R; Wilhelms, D B; Stojakovic, A; Brito, L M O; Engblom, D; Franco, C R C; Zampronio, A R

    2016-10-01

    There are differences in the immune response, and particularly fever, between males and females. In the present study, we investigated how the febrile responses induced by lipopolysaccharide (LPS) and different endogenous pyrogens were affected by female gonadal hormones. The febrile response to i.p. injection of LPS (50 μg/kg) was 40% lower in female rats compared to male or ovariectomised (OVX) female rats. Accordingly, oestrogen replacement in OVX animals reduced LPS-induced fever. Treatment with the prostaglandin synthesis inhibitor indomethacin (2 mg/kg, i.p. 30 min before) reduced the febrile response induced by LPS in both OVX (88%) and sham-operated (71%) rats. In line with the enhanced fever in OVX rats, there was increased expression of cyclooxygenase-2 (COX-2) in the hypothalamus and elevated levels of prostaglandin E 2 (PGE 2 ). In addition, OVX rats were hyper-responsive to PGE 2 injected i.c.v. By contrast to the enhanced fever in response to LPS and PGE 2 , the febrile response induced by i.c.v. injection of interleukin (IL)-1β was unaffected by ovariectomy, whereas the responses induced by tumour necrosis factor (TNF)-α and macrophage inflammatory protein (MIP)-1α were completely abrogated. These results suggest that the mediators involved in the febrile response in females are similar to males, although the reduction of female hormones may decrease the responsiveness of some mediators such as TNF-α and MIP-1α. Compensatory mechanisms may be activated in females after ovariectomy such as an augmented synthesis of COX-2 and PGE 2 . © 2016 British Society for Neuroendocrinology.

  17. Reactive oxygen species are involved in lipopolysaccharide-induced intrauterine growth restriction and skeletal development retardation in mice.

    Science.gov (United States)

    Xu, De-Xiang; Chen, Yuan-Hua; Zhao, Lei; Wang, Hua; Wei, Wei

    2006-12-01

    Maternal infection is a cause of adverse developmental outcomes including embryonic resorption, intrauterine fetal death, and preterm labor. Lipopolysaccharide-induced developmental toxicity at early gestational stages has been well characterized. The purpose of the present study was to investigate the effects of maternal lipopolysaccharide exposure at late gestational stages on intrauterine fetal growth and skeletal development and to assess the potential role of reactive oxygen species in lipopolysaccharide-induced intrauterine fetal growth restriction and skeletal development retardation. The timed pregnant CD-1 mice were intraperitoneally injected with lipopolysaccharide (25 to 75 microg/kg per day) on gestational day 15 to 17. To investigate the role of reactive oxygen species on lipopolysaccharide-induced intrauterine fetal growth restriction and skeletal development retardation, the pregnant mice were injected with alpha-phenyl-N-t-butylnitrone (100 mg/kg, intraperitoneally) at 30 minutes before lipopolysaccharide (75 microg/kg per day, intraperitoneally), followed by an additional dose of alpha-phenyl-N-t-butylnitrone (50 mg/kg, intraperitoneally) at 3 hours after lipopolysaccharide. The number of live fetuses, dead fetuses, and resorption sites was counted on gestational day 18. Live fetuses in each litter were weighed. Crown-rump and tail lengths were examined and skeletal development was evaluated. Maternal lipopolysaccharide exposure significantly increased fetal mortality, reduced fetal weight and crown-rump and tail lengths of live fetuses, and retarded skeletal ossification in caudal vertebrae, anterior and posterior phalanges, and supraoccipital bone in a dose-dependent manner. Alpha-phenyl-N-t-butylnitrone, a free radical spin-trapping agent, almost completely blocked lipopolysaccharide-induced fetal death (63.2% in lipopolysaccharide group versus 6.5% in alpha-phenyl-N-t-butylnitrone + lipopolysaccharide group, P intrauterine growth restriction

  18. Monoacylglycerol Lipase Regulates Fever Response.

    Directory of Open Access Journals (Sweden)

    Manuel Sanchez-Alavez

    Full Text Available Cyclooxygenase inhibitors such as ibuprofen have been used for decades to control fever through reducing the levels of the pyrogenic lipid transmitter prostaglandin E2 (PGE2. Historically, phospholipases have been considered to be the primary generator of the arachidonic acid (AA precursor pool for generating PGE2 and other eicosanoids. However, recent studies have demonstrated that monoacyglycerol lipase (MAGL, through hydrolysis of the endocannabinoid 2-arachidonoylglycerol, provides a major source of AA for PGE2 synthesis in the mammalian brain under basal and neuroinflammatory states. We show here that either genetic or pharmacological ablation of MAGL leads to significantly reduced fever responses in both centrally or peripherally-administered lipopolysaccharide or interleukin-1β-induced fever models in mice. We also show that a cannabinoid CB1 receptor antagonist does not attenuate these anti-pyrogenic effects of MAGL inhibitors. Thus, much like traditional nonsteroidal anti-inflammatory drugs, MAGL inhibitors can control fever, but appear to do so through restricted control over prostaglandin production in the nervous system.

  19. LIPOPOLYSACCHARIDE INDUCES THE PRODUCTION OF DIAGNOSTIC MONOCLONAL ANTIBODY BY HYBRIDOMA CELLS AGAINST CONGENITAL ADRENAL HYPERPLASIA

    Directory of Open Access Journals (Sweden)

    GEK KEE CHUA

    2017-11-01

    Full Text Available The purpose of this research is to screen and identify the potential inducers in maximizing the production of monoclonal antibody by hybridoma 192 cell line for Congenital Adrenal Hyperplasia diagnostic. There are nine inducers used in this research, namely lysozyme, aldolase, sodium butyrate, sodium phosphate, potassium phosphate, dimethyl sulfoxide, lipopolysaccharide, essential amino acids, and nonessential amino acids. Hybridoma 192 cell was cultured in 5% CO2 incubator at 37°C and ˃80% humidity in the medium with different concentrations of inducer agents. The inducers were added at the beginning of the culture and the samples were taken after 72 h of culture. The performance of these inducer agents was assessed based on the maximum monoclonal antibody titer achieved using Enzyme-linked Immunosorbent Assay. Lipopolysaccharide was found to increase the maximum monoclonal antibody titer when supplemented at 8 to 12 µg/mL. After optimization using one-factor central composite design at this range, the optimum point was determined to be 8 µg/mL. Verification experiments shows that lipopolysaccharide enhanced the average specific monoclonal antibody production rate by 56% relative to control. In conclusion, lipopolysaccharide at 8 µg/mL is able to increase the monoclonal antibody specific production of hybridoma 192 cell line.

  20. [Enzyme-linked immunosorbent assay (ELISA) for detection of antibodies to Salmonella Typhi lipopolysaccharide O and capsular polysaccharide Vi antigens in persons from outbreak of typhoid fever].

    Science.gov (United States)

    Rastawicki, Waldemar; Kałużewski, Stanisław

    2015-01-01

    The laboratory diagnosis of typhoid fever is dependent upon either isolation of S. Typhi from a clinical sample or the detection of raised titers of serum antibodies in the Widal test or the passive hemagglutination assay (PHA). In this study we evaluated the usefulness of ELISA for detection of antibodies to S. Typhi lipopolysaccharide O and capsular polysaccharide Vi antigens in the sera of persons from outbreak of typhoid fever. Fifteen serum samples from patients with laboratory confirmed typhoid fever and 140 sera from persons suspected for contact with typhoid fever patients from outbreak in 1974/75 in Poland were tested by ELISA. Additionally, as the control group, we tested 115 sera from blood donors for the presence of S. Typhi anti-LPS and anti-Vi antibodies. Anti-LPS and anti-Vi antibodies were detected in 80% and 53.3% of sera obtained from patients with laboratory confirmed typhoid fever, respectively. The high percentages of positive results in ELISA were also noted in the group of persons suspected for contact with typhoid fever patients (51.4% and 45%) but not in the group of blood donors (7.8% and 6.1%, respectively). The ELISA could be a useful tool for the serological diagnosis of typhoid fever in patients who have clinical symptoms but are culture negative, especially during massive outbreaks of typhoid fever.

  1. Effect of methanolic extract of Asparagus racemosus Willd. on lipopolysaccharide induced-oxidative stress in rats.

    Science.gov (United States)

    Ahmad, Mohammad Parwez; Hussain, Arshad; Siddiqui, Hefazat Hussain; Wahab, Shadma; Adak, Manoranjan

    2015-03-01

    Lipopolysaccharide (LPS) induced oxidative stress and impairment of normal physiological function generally categorized by increased anxiety and reduced mobility. Therefore, the present study was to find out the effect Methanolic extract of Asparagus racemosus (MEAR ) in lipopolysaccharide (LPS)-induced oxidative stress in rats . LPS-induced oxidative stress in rats was measured by locomotor activity by photoactometer test, anxiety with elevated plus maze test and also studied the oxidative stress markers, nitric oxide and cytokines. The obtained data shows that LPS markedly exhausted (pAsparagus racemosus Willd. is a functionally newer type of cerebroprotective agent.

  2. Infection, fever, and exogenous and endogenous pyrogens: some concepts have changed.

    Science.gov (United States)

    Dinarello, Charles A

    2004-01-01

    For many years, it was thought that bacterial products caused fever via the intermediate production of a host-derived, fever-producing molecule, called endogenous pyrogen (EP). Bacterial products and other fever-producing substances were termed exogenous pyrogens. It was considered highly unlikely that exogenous pyrogens caused fever by acting directly on the hypothalamic thermoregulatory center since there were countless fever-producing microbial products, mostly large molecules, with no common physical structure. In vivo and in vitro, lipopolysaccharides (LPSs) and other microbial products induced EP, subsequently shown to be interleukin-1 (IL-1). The concept of the 'endogenous pyrogen' cause of fever gained considerable support when pure, recombinant IL-1 produced fever in humans and in animals at subnanomolar concentrations. Subsequently, recombinant tumor necrosis factor-alpha (TNF-alpha), IL-6 and other cytokines were also shown to cause fever and EPs are now termed pyrogenic cytokines. However, the concept was challenged when specific blockade of either IL-1 or TNF activity did not diminish the febrile response to LPS, to other microbial products or to natural infections in animals and in humans. During infection, fever could occur independently of IL-1 or TNF activity. The cytokine-like property of Toll-like receptor (TLR) signal transduction provides an explanation by which any microbial product can cause fever by engaging its specific TLR on the vascular network supplying the thermoregulatory center in the anterior hypothalamus. Since fever induced by IL-1, TNF-alpha, IL-6 or TLR ligands requires cyclooxygenase-2, production of prostaglandin E2 (PGE2) and activation of hypothalamic PGE2 receptors provides a unifying mechanism for fever by endogenous and exogenous pyrogens. Thus, fever is the result of either cytokine receptor or TLR triggering; in autoimmune diseases, fever is mostly cytokine mediated whereas both cytokine and TLR account for fever during

  3. Lipopolysaccharide-induced acute renal failure in conscious rats

    DEFF Research Database (Denmark)

    Jonassen, Thomas E N; Graebe, Martin; Promeneur, Dominique

    2002-01-01

    In conscious, chronically instrumented rats we examined 1) renal tubular functional changes involved in lipopolysaccharide (LPS)-induced acute renal failure; 2) the effects of LPS on the expression of selected renal tubular water and sodium transporters; and 3) effects of milrinone......-alpha and lactate, inhibited the LPS-induced tachycardia, and exacerbated the acute LPS-induced fall in GFR. Furthermore, Ro-20-1724-treated rats were unable to maintain MAP. We conclude 1) PDE3 or PDE4 inhibition exacerbates LPS-induced renal failure in conscious rats; and 2) LPS treated rats develop an escape......, a phosphodiesterase type 3 (PDE3) inhibitor, and Ro-20-1724, a PDE4 inhibitor, on LPS-induced changes in renal function. Intravenous infusion of LPS (4 mg/kg b.wt. over 1 h) caused an immediate decrease in glomerular filtration rate (GFR) and proximal tubular outflow without changes in mean arterial pressure (MAP...

  4. Sickness behaviour after lipopolysaccharide treatment in ghrelin deficient mice.

    Science.gov (United States)

    Szentirmai, Éva; Krueger, James M

    2014-02-01

    Ghrelin is an orexigenic hormone produced mainly by the gastrointestinal system and the brain. Much evidence also indicates a role for ghrelin in sleep and thermoregulation. Further, ghrelin was recently implicated in immune system modulation. Administration of bacterial lipopolysaccharide (LPS) induces fever, anorexia, and increased non-rapid-eye movement sleep (NREMS) and these actions are mediated primarily by proinflammatory cytokines. Ghrelin reduces LPS-induced fever, suppresses circulating levels of proinflammatory cytokines and reduces the severity and mortality of various models of experimental endotoxemia. In the present study, we determined the role of intact ghrelin signaling in LPS-induced sleep, feeding, and thermoregulatory responses in mice. Sleep-wake activity was determined after intraperitoneal, dark onset administration of 0.4, 2 and 10 μg LPS in preproghrelin knockout (KO) and wild-type (WT) mice. In addition, body temperature, motor activity and changes in 24-h food intake and body weight were measured. LPS induced dose-dependent increases in NREMS, and suppressed rapid-eye movement sleep, electroencephalographic slow-wave activity, motor activity, food intake and body weight in both Ppg KO and WT mice. Body temperature changes showed a biphasic pattern with a decrease during the dark period followed by an increase in the light phase. The effects of the low and middle doses of LPS were indistinguishable between the two genotypes. Administration of 10 μg LPS, however, induced significantly larger changes in NREMS and wakefulness amounts, body temperature, food intake and body weight in the Ppg KO mice. These findings support a role for ghrelin as an endogenous modulator of inflammatory responses and a central component of arousal and feeding circuits. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Alpha-lipoic acid protects mitochondrial enzymes and attenuates lipopolysaccharide-induced hypothermia in mice

    Science.gov (United States)

    Abstract: Hypothermia is a key symptom of sepsis and the mechanism(s) leading to hypothermia during sepsis is largely unknown. To investigate a potential mechanism and find an effective treatment for hypothermia in sepsis, we induced hypothermia in mice by lipopolysaccharide (LP...

  6. Effects of lidocaine on lipopolysaccharide-induced synovitis in horses

    OpenAIRE

    Campebell,R.C.; Peiró,J.R.; Valadão,C.A.A.; Santana,A.E.; Cunha,F.Q.

    2004-01-01

    Lidocaine (100mg 2%) injected into the carpal joint was used to evaluate the inflammatory response induced by injection (1.5ng) of intra-articular E. coli lipopolysaccharide (LPS) endotoxin. Seventeen male Mangalarga horses aged two to three years were divided into three groups and in all animals was injected 0.9% saline (SAL) in the left carpus (LC), and in the right carpus (RC) one of the following combinations were injected: group A (n=6) LPS plus SAL; group B (n=6) LPS plus lidocaine; gro...

  7. Dipyrone metabolite 4-MAA induces hypothermia and inhibits PGE2 -dependent and -independent fever while 4-AA only blocks PGE2 -dependent fever.

    Science.gov (United States)

    Malvar, David do C; Aguiar, Fernando A; Vaz, Artur de L L; Assis, Débora C R; de Melo, Miriam C C; Jabor, Valquíria A P; Kalapothakis, Evanguedes; Ferreira, Sérgio H; Clososki, Giuliano C; de Souza, Glória E P

    2014-08-01

    The antipyretic and hypothermic prodrug dipyrone prevents PGE2 -dependent and -independent fever induced by LPS from Escherichia coli and Tityus serrulatus venom (Tsv) respectively. We aimed to identify the dipyrone metabolites responsible for the antipyretic and hypothermic effects. Male Wistar rats were treated i.p. with indomethacin (2 mg·kg(-1) ), dipyrone, 4-methylaminoantipyrine (4-MAA), 4-aminoantipyrine (4-AA) (60-360 mg·kg(-1) ), 4-formylaminoantipyrine, 4-acethylaminoantipyrine (120-360 mg·kg(-1) ) or vehicle 30 min before i.p. injection of LPS (50 μg·kg(-1) ), Tsv (150 μg·kg(-1) ) or saline. Rectal temperatures were measured by tele-thermometry and dipyrone metabolite concentrations determined in the plasma, CSF and hypothalamus by LC-MS/MS. PGE2 concentrations were determined in the CSF and hypothalamus by elisa. In contrast to LPS, Tsv-induced fever was not followed by increased PGE2 in the CSF or hypothalamus. The antipyretic time-course of 4-MAA and 4-AA on LPS-induced fever overlapped with the period of the highest concentrations of 4-MAA and 4-AA in the hypothalamus, CSF and plasma. These metabolites reduced LPS-induced fever and the PGE2 increase in the plasma, CSF and hypothalamus. Only 4-MAA inhibited Tsv-induced fever. The higher doses of dipyrone and 4-MAA also induced hypothermia. The presence of 4-MAA and 4-AA in the CSF and hypothalamus was associated with PGE2 synthesis inhibition and a decrease in LPS-induced fever. 4-MAA was also shown to be an antipyretic metabolite for PGE2 -independent fever induced by Tsv suggesting that it is responsible for the additional antipyretic mechanism of dipyrone. Moreover, 4-MAA is the hypothermic metabolite of dipyrone. © 2014 The British Pharmacological Society.

  8. Simple, rapid, and affordable point-of-care test for the serodiagnosis of typhoid fever

    NARCIS (Netherlands)

    Pastoor, Rob; Hatta, Mochammad; Abdoel, Theresia H.; Smits, Henk L.

    2008-01-01

    We developed a point-of-care test for the serodiagnosis of typhoid fever in the format of an immunochromatographic lateral flow assay. The flow assay for typhoid fever is based on the detection of Salmonella enterica serotype Typhi lipopolysaccharide-specific immunoglobulin M (IgM) antibodies. The

  9. Atomic force microscopy observation of lipopolysaccharide-induced cardiomyocyte cytoskeleton reorganization.

    Science.gov (United States)

    Wang, Liqun; Chen, Tangting; Zhou, Xiang; Huang, Qiaobing; Jin, Chunhua

    2013-08-01

    We applied atomic force microscopy (AFM) to observe lipopolysaccharide (LPS)-induced intracellular cytoskeleton reorganization in primary cardiomyocytes from neonatal mouse. The nonionic detergent Triton X-100 was used to remove the membrane, soluble proteins, and organelles from the cell. The remaining cytoskeleton can then be directly visualized by AFM. Using three-dimensional technique of AFM, we were able to quantify the changes of cytoskeleton by the "density" and total "volume" of the cytoskeleton fibers. Compared to the control group, the density of cytoskeleton was remarkably decreased and the volume of cytoskeleton was significantly increased after LPS treatment, which suggests that LPS may induce the cytoskeleton reorganization and change the cardiomyocyte morphology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Cerium dioxide nanoparticles do not modulate the lipopolysaccharide-induced inflammatory response in human monocytes

    Directory of Open Access Journals (Sweden)

    Hussain S

    2012-03-01

    Full Text Available Salik Hussain1,*, Faris Al-Nsour1,*, Annette B Rice1, Jamie Marshburn1, Zhaoxia Ji2, Jeffery I Zink2, Brenda Yingling1, Nigel J Walker3, Stavros Garantziotis11Clinical Research Unit, National Institute of Environmental Health Sciences/National Institute of Health, Research Triangle Park, NC, 2UC Center for Environmental Implications of Nanotechnology University of California, Los Angeles, CA, 3Division of National Toxicology Program, National Institute of Environmental Health Sciences/National Institute of Health, Research Triangle Park, NC, USA*Both are principal authorsBackground: Cerium dioxide (CeO2 nanoparticles have potential therapeutic applications and are widely used for industrial purposes. However, the effects of these nanoparticles on primary human cells are largely unknown. The ability of nanoparticles to exacerbate pre-existing inflammatory disorders is not well documented for engineered nanoparticles, and is certainly lacking for CeO2 nanoparticles. We investigated the inflammation-modulating effects of CeO2 nanoparticles at noncytotoxic concentrations in human peripheral blood monocytes.Methods: CD14+ cells were isolated from peripheral blood samples of human volunteers. Cells were exposed to either 0.5 or 1 µg/mL of CeO2 nanoparticles over a period of 24 or 48 hours with or without lipopolysaccharide (10 ng/mL prestimulation. Modulation of the inflammatory response was studied by measuring secreted tumor necrosis factor-alpha, interleukin-1beta, macrophage chemotactic protein-1, interferon-gamma, and interferon gamma-induced protein 10.Results: CeO2 nanoparticle suspensions were thoroughly characterized using dynamic light scattering analysis (194 nm hydrodynamic diameter, zeta potential analysis (-14 mV, and transmission electron microscopy (irregular-shaped particles. Transmission electron microscopy of CD14+ cells exposed to CeO2 nanoparticles revealed that these nanoparticles were efficiently internalized by monocytes and

  11. Murine P-glycoprotein deficiency alters intestinal injury repair and blunts lipopolysaccharide-induced radioprotection.

    Science.gov (United States)

    Staley, Elizabeth M; Yarbrough, Vanisha R; Schoeb, Trenton R; Daft, Joseph G; Tanner, Scott M; Steverson, Dennis; Lorenz, Robin G

    2012-09-01

    P-glycoprotein (P-gp) has been reported to increase stem cell proliferation and regulate apoptosis. Absence of P-gp results in decreased repair of intestinal epithelial cells after chemical injury. To further explore the mechanisms involved in the effects of P-gp on intestinal injury and repair, we used the well-characterized radiation injury model. In this model, injury repair is mediated by production of prostaglandins (PGE(2)) and lipopolysaccharide (LPS) has been shown to confer radioprotection. B6.mdr1a(-/-) mice and wild-type controls were subjected to 12 Gy total body X-ray irradiation and surviving crypts in the proximal jejunum and distal colon were evaluated 3.5 days after irradiation. B6.mdr1a(-/-) mice exhibited normal baseline stem cell proliferation and COX dependent crypt regeneration after irradiation. However, radiation induced apoptosis was increased and LPS-induced radioprotection was blunted in the C57BL6.mdr1a(-/-) distal colon, compared to B6 wild-type controls. The LPS treatment induced gene expression of the radioprotective cytokine IL-1α, in B6 wild-type controls but not in B6.mdr1a(-/-) animals. Lipopolysaccharid-induced radioprotection was absent in IL-1R1(-/-) animals, indicating a role for IL-1α in radioprotection, and demonstrating that P-gp deficiency interferes with IL-1α gene expression in response to systemic exposure to LPS.

  12. RNA interference prevents lipopolysaccharide-induced preprotachykinin gene expression

    International Nuclear Information System (INIS)

    Lai, Y.-L.; Yu, S.C.; Chen, M.-J.

    2003-01-01

    We showed previously that lipopolysaccharide (LPS) induces noncholinergic airway hyperreactivity to capsaicin via an upregulation of tachykinin synthesis. This study was designed to test whether double-stranded preprotachykinin (ds PPT) RNA, RNA interference (RNAi), prevents the LPS-induced alterations. First, cultured primary nodose ganglial cells of newborn Brown-Norway rats were divided into four groups: control; LPS; LPS+RNAi; and LPS+RNAi+liposome. Second, young Brown-Norway rats for the in vivo study were divided into three groups (control; LPS; and LPS+RNAi), and ds PPT RNA was microinjected bilaterally into the nodose ganglia in the LPS+RNAi group. Then, ganglial cells were collected from the culture whereas the nodose ganglia and lungs were sampled from the animals, and PPT mRNA and substance P (SP) levels were analyzed. Also, airway reactivity to capsaicin was performed in vivo. LPS induced significant increases in PPT mRNA and SP levels in vitro and in vivo and an increase in airway reactivity to capsaicin in vivo. However, ds PPT RNA, but not scrambled RNA, prevented all LPS-induced alterations. The effect of ds PPT RNA was not enhanced by liposome in vitro. Therefore, we demonstrated that the local application of RNAi prevents effectively the activation of the noncholinergic system modulating the lungs/airways

  13. Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells

    International Nuclear Information System (INIS)

    Islam, Shamima; Hassan, Ferdaus; Tumurkhuu, Gantsetseg; Dagvadorj, Jargalsaikhan; Koide, Naoki; Naiki, Yoshikazu; Mori, Isamu; Yoshida, Tomoaki; Yokochi, Takashi

    2007-01-01

    Lipopolysaccharide (LPS) is a potent bone resorbing factor. The effect of LPS on osteoclast formation was examined by using murine RAW 264.7 macrophage cells. LPS-induced the formation of multinucleated giant cells (MGC) in RAW 264.7 cells 3 days after the exposure. MGCs were positive for tartrate-resistant acid phosphatase (TRAP) activity. Further, MGC formed resorption pits on calcium-phosphate thin film that is a substrate for osteoclasts. Therefore, LPS was suggested to induce osteoclast formation in RAW 264.7 cells. LPS-induced osteoclast formation was abolished by anti-tumor necrosis factor (TNF)-α antibody, but not antibodies to macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-κB ligand (RANKL). TNF-α might play a critical role in LPS-induced osteoclast formation in RAW 264.7 cells. Inhibitors of NF-κB and stress activated protein kinase (SAPK/JNK) prevented the LPS-induced osteoclast formation. The detailed mechanism of LPS-induced osteoclast formation is discussed

  14. Serratia marcescens Induces Apoptotic Cell Death in Host Immune Cells via a Lipopolysaccharide- and Flagella-dependent Mechanism*

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Imamura, Katsutoshi; Takano, Shinya; Usui, Kimihito; Suzuki, Kazushi; Hamamoto, Hiroshi; Watanabe, Takeshi; Sekimizu, Kazuhisa

    2012-01-01

    Injection of Serratia marcescens into the blood (hemolymph) of the silkworm, Bombyx mori, induced the activation of c-Jun NH2-terminal kinase (JNK), followed by caspase activation and apoptosis of blood cells (hemocytes). This process impaired the innate immune response in which pathogen cell wall components, such as glucan, stimulate hemocytes, leading to the activation of insect cytokine paralytic peptide. S. marcescens induced apoptotic cell death of silkworm hemocytes and mouse peritoneal macrophages in vitro. We searched for S. marcescens transposon mutants with attenuated ability to induce apoptosis of silkworm hemocytes. Among the genes identified, disruption mutants of wecA (a gene involved in lipopolysaccharide O-antigen synthesis), and flhD and fliR (essential genes in flagella synthesis) showed reduced motility and impaired induction of mouse macrophage cell death. These findings suggest that S. marcescens induces apoptosis of host immune cells via lipopolysaccharide- and flagella-dependent motility, leading to the suppression of host innate immunity. PMID:22859304

  15. Coxiella burnetii Lipopolysaccharide: What Do We Know?

    Directory of Open Access Journals (Sweden)

    Prasad Abnave

    2017-11-01

    Full Text Available A small gram-negative bacterium, Coxiella burnetii (C. burnetii, is responsible for a zoonosis called Q fever. C. burnetii is an intracellular bacterium that can survive inside microbicidal cells like monocytes and macrophages by hijacking several functions of the immune system. Among several virulence factors, the lipopolysaccharide (LPS of C. burnetii is one of the major factors involved in this immune hijacking because of its atypical composition and structure. Thus, the aim of this mini-review is to summarize the repressive effects of C. burnetii LPS on the antibacterial immunity of cells.

  16. Coxiella burnetii Lipopolysaccharide: What Do We Know?

    Science.gov (United States)

    Abnave, Prasad; Muracciole, Xavier; Ghigo, Eric

    2017-01-01

    A small gram-negative bacterium, Coxiella burnetii (C. burnetii), is responsible for a zoonosis called Q fever. C. burnetii is an intracellular bacterium that can survive inside microbicidal cells like monocytes and macrophages by hijacking several functions of the immune system. Among several virulence factors, the lipopolysaccharide (LPS) of C. burnetii is one of the major factors involved in this immune hijacking because of its atypical composition and structure. Thus, the aim of this mini-review is to summarize the repressive effects of C. burnetii LPS on the antibacterial immunity of cells. PMID:29168790

  17. Calcium hydroxide suppresses Porphyromonas endodontalis lipopolysaccharide-induced bone destruction.

    Science.gov (United States)

    Guo, J; Yang, D; Okamura, H; Teramachi, J; Ochiai, K; Qiu, L; Haneji, T

    2014-05-01

    Porphyromonas endodontalis and its main virulence factor, lipopolysaccharide (LPS), are associated with the development of periapical diseases and alveolar bone loss. Calcium hydroxide is commonly used for endodontic therapy. However, the effects of calcium hydroxide on the virulence of P. endodontalis LPS and the mechanism of P. endodontalis LPS-induced bone destruction are not clear. Calcium hydroxide rescued the P. endodontalis LPS-suppressed viability of MC3T3-E1 cells and activity of nuclear factor-κB (NF-κB) in these cells, resulting in the reduced expression of interleukin-6 and tumor necrosis factor-α. In addition, calcium hydroxide inhibited P. endodontalis LPS-induced osteoclastogenesis by decreasing the activities of NF-κB, p38, and ERK1/2 and the expression of nuclear factor of activated T-cell cytoplasmic 1 in RAW264.7 cells. Calcium hydroxide also rescued the P. endodontalis LPS-induced osteoclastogenesis and bone destruction in mouse calvaria. Taken together, our present results indicate that calcium hydroxide suppressed bone destruction by attenuating the virulence of P. endodontalis LPS on bone cells.

  18. Lipopolysaccharide induces autotaxin expression in human monocytic THP-1 cells

    International Nuclear Information System (INIS)

    Li Song; Zhang Junjie

    2009-01-01

    Autotaxin (ATX) is a secreted enzyme with lysophospholipase D (lysoPLD) activity, which converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), a bioactive phospholipid involved in numerous biological activities, including cell proliferation, differentiation, and migration. In the present study, we found that bacterial lipopolysaccharide (LPS), a well-known initiator of the inflammatory response, induced ATX expression in monocytic THP-1 cells. The activation of PKR, JNK, and p38 MAPK was required for the ATX induction. The LPS-induced ATX in THP-1 cells was characterized as the β isoform. In the presence of LPC, ATX could promote the migrations of THP-1 and Jurkat cells, which was inhibited by pertussis toxin (PTX), an inhibitor of Gi-mediated LPA receptor signaling. In summary, LPS induces ATX expression in THP-1 cells via a PKR, JNK and p38 MAPK-mediated mechanism, and the ATX induction is likely to enhance immune cell migration in proinflammatory response by regulating LPA levels in the microenvironment.

  19. Modulation of lipopolysaccharide-induced chorioamnionitis by Ureaplasma parvum in sheep.

    Science.gov (United States)

    Snyder, Candice C; Wolfe, Katherine B; Gisslen, Tate; Knox, Christine L; Kemp, Matthew W; Kramer, Boris W; Newnham, John P; Jobe, Alan H; Kallapur, Suhas G

    2013-05-01

    Ureaplasma colonization in the setting of polymicrobial flora is common in women with chorioamnionitis, and is a risk factor for preterm delivery and neonatal morbidity. We hypothesized that Ureaplasma colonization of amniotic fluid would modulate chorioamnionitis induced by Escherichia coli lipopolysaccharide (LPS). Sheep received intraamniotic (IA) injections of media (control) or live Ureaplasma either 7 or 70 days before delivery. Another group received IA LPS 2 days before delivery. To test for interactions, U parvum-exposed animals were challenged with IA LPS, and delivered 2 days later. All animals were delivered preterm at 125 ± 1 day of gestation. Both IA Ureaplasma and LPS induced leukocyte infiltration of chorioamnion. LPS greatly increased the expression of proinflammatory cytokines and myeloperoxidase in leukocytes, while Ureaplasma alone caused modest responses. Interestingly, 7-day but not 70-day Ureaplasma exposure significantly down-regulated LPS-induced proinflammatory cytokines and myeloperoxidase expression in the chorioamnion. Acute (7-day) U parvum exposure can suppress LPS-induced chorioamnionitis. Copyright © 2013 Mosby, Inc. All rights reserved.

  20. [Drug-induced fever: a diagnosis to remember].

    Science.gov (United States)

    Vodovar, D; Le Beller, C; Lillo-Le-Louet, A; Hanslik, T; Megarbane, B

    2014-03-01

    Drug fever (DF) is a febrile reaction induced by a drug without additional clinical features like skin eruption. This adverse drug reaction is probably common but under diagnosed. While its outcome is generally favourable, DF generates unnecessary diagnostic procedures as well as hospitalisations or hospitalisation prolongations. Clinical presentation and biological findings are not specific. Fever is generally well tolerated but may be accompanied by general symptoms mimicking sepsis. Moderate biological disorders could be expected, including elevation or decrease in white blood cell count, eosinophilia, liver cytolysis, and increased C-reactive protein. An infection should be systematically ruled out. Clinical or biological signs of severity should question DF diagnosis. When DF is suspected, the involved drug(s) should be stopped after a reliable assessment of imputability. Antibiotics represent the most often implicated drugs. Fever disappearance after discontinuing the suspected drug is the cornerstone of DF diagnosis. Before stopping the administration of the suspected drug(s), a risk/benefit ratio assessment is necessary. Consistently, it may be complicated to stop an antimicrobial drug when treating an infection or an immunosuppressive drug if required. Copyright © 2013. Published by Elsevier SAS.

  1. Protective effects of kaempferol on lipopolysaccharide-induced mastitis in mice.

    Science.gov (United States)

    Cao, Rongfeng; Fu, Kaiqiang; Lv, Xiaopei; Li, Weishi; Zhang, Naisheng

    2014-10-01

    Kaempferol isolated from the root of Zingiberaceae plants galangal and other Chinese herbal medicines have been reported to have anti-inflammatory properties. However, the anti-inflammatory effects of kaempferol on lipopolysaccharide (LPS)-induced mastitis are unknown and their underlying molecular mechanisms remain to be explored. The aim of this study was to evaluate the effects of kaempferol on LPS-induced mouse mastitis. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. Kaempferol was injected 1 h before and 12 h after induction of LPS intraperitoneally. The present results showed that kaempferol markedly reduced infiltration of neutrophilic granulocyte, activation of myeloperoxidase (MPO), expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner, which were increased in LPS-induced mouse mastitis. Furthermore, kaempferol suppressed the phosphorylation of nuclear factor-κB (NF-κB) p65 subunit and the degradation of its inhibitor IκBα. All results suggest that anti-inflammatory effects of kaempferol against the LPS-induced mastitis possibly through inhibition of the NF-κB signaling pathway. Kaempferol may be a potential therapeutic agent for mastitis.

  2. Dexmedetomidine reduces lipopolysaccharide induced neuroinflammation, sickness behavior, and anhedonia.

    Directory of Open Access Journals (Sweden)

    Ching-Hua Yeh

    Full Text Available Peripheral innate immune response may induce sickness behavior through activating microglia, excessive cytokines production, and neuroinflammation. Dexmedetomidine (Dex has anti-inflammatory effect. We investigated the effects of Dex on lipopolysaccharide (LPS-induced neuroinflammation and sickness behavior in mice.BALB/c mice were intraperitoneally (i.p. injected with Dex (50 ug/kg or vehicle. One hour later, the mice were injected (i.p. with Escherichia coli LPS (0.33 mg/kg or saline (n = 6 in each group. We analyzed the food and water intake, body weight loss, and sucrose preference of the mice for 24h. We also determined microglia activation and cytokines expression in the brains of the mice. In vitro, we determine cytokines expression in LPS-treated BV-2 microglial cells with or without Dex treatment.In the Dex-pretreated mice, LPS-induced sickness behavior (anorexia, weight loss, and social withdrawal were attenuated and microglial activation was lower than vehicle control. The mRNA expression of TNF-α, MCP-1, indoleamine 2, 3 dioxygenase (IDO, caspase-3, and iNOS were increased in the brain of LPS-challenged mice, which were reduced by Dex but not vehicle.Dexmedetomidine diminished LPS-induced neuroinflammation in the mouse brain and modulated the cytokine-associated changes in sickness behavior.

  3. Monocytes can be induced by lipopolysaccharide-triggered T lymphocytes to express functional factor VII/VIIa protease activity

    OpenAIRE

    1984-01-01

    In the present study we demonstrate that human monocytes can be induced by the model stimulus, lipopolysaccharide (LPS), to produce and assemble on their surface functional Factor VII/VIIa. This protease was not induced in relatively purified monocytes alone following exposure to LPS; but was induced in the presence of Leu-3a positive helper/inducer T cells. The Factor VII/VIIa protease activity represented 35-40% of the potential initiating activity for the extrinsic coagulation pathway and ...

  4. Blastogenic response of bovine lymphocytes to Brucella abortus lipopolysaccharide.

    OpenAIRE

    Baldwin, C L; Winter, A J

    1985-01-01

    Brucella abortus lipopolysaccharide was tested in a blastogenesis assay with unfractionated and nylon wool-separated peripheral blood lymphocytes of Brucella-naive cattle and cattle immunized with B. abortus. Our results indicated that in cattle the lipopolysaccharide of B. abortus is not a B-cell mitogen. In immunized animals it stimulated predominantly nylon wool-adherent cells. The lipopolysaccharide of Escherichia coli O128:B12, in contrast, induced a substantially greater proliferative r...

  5. Fish can show emotional fever: stress-induced hyperthermia in zebrafish.

    Science.gov (United States)

    Rey, Sonia; Huntingford, Felicity A; Boltaña, Sebastian; Vargas, Reynaldo; Knowles, Toby G; Mackenzie, Simon

    2015-11-22

    Whether fishes are sentient beings remains an unresolved and controversial question. Among characteristics thought to reflect a low level of sentience in fishes is an inability to show stress-induced hyperthermia (SIH), a transient rise in body temperature shown in response to a variety of stressors. This is a real fever response, so is often referred to as 'emotional fever'. It has been suggested that the capacity for emotional fever evolved only in amniotes (mammals, birds and reptiles), in association with the evolution of consciousness in these groups. According to this view, lack of emotional fever in fishes reflects a lack of consciousness. We report here on a study in which six zebrafish groups with access to a temperature gradient were either left as undisturbed controls or subjected to a short period of confinement. The results were striking: compared to controls, stressed zebrafish spent significantly more time at higher temperatures, achieving an estimated rise in body temperature of about 2-4°C. Thus, zebrafish clearly have the capacity to show emotional fever. While the link between emotion and consciousness is still debated, this finding removes a key argument for lack of consciousness in fishes. © 2015 The Authors.

  6. CHARACTERIZATION OF AN INTRAVENOUS LIPOPOLYSACCHARIDE INFLAMMATION MODEL IN BROILER CHICKENS

    OpenAIRE

    De Boever , Sandra; Croubels , Siska; Meyer , Evelyne; Sys , Stanislas; Beyaert , Rudi; Ducatelle , Richard; De Backer , Patrick

    2009-01-01

    Abstract Intravenous administration of lipopolysaccharide (LPS) from Escherichia coli O127:B8 at a dose of 1,500,000 units/kg BW evoked a hypothermic response followed by a fever phase in five week old broiler chickens. The hypothermic phase coincided with a severe decrease in blood pressure. We assume that this decrease in blood pressure is, at least partly, responsible for the hypothermic phase of the body temperature curve. LPS administration also caused a decrease in circulatin...

  7. A novel podocyte gene, semaphorin 3G, protects glomerular podocyte from lipopolysaccharide-induced inflammation.

    Science.gov (United States)

    Ishibashi, Ryoichi; Takemoto, Minoru; Akimoto, Yoshihiro; Ishikawa, Takahiro; He, Peng; Maezawa, Yoshiro; Sakamoto, Kenichi; Tsurutani, Yuya; Ide, Shintaro; Ide, Kana; Kawamura, Harukiyo; Kobayashi, Kazuki; Tokuyama, Hirotake; Tryggvason, Karl; Betsholtz, Christer; Yokote, Koutaro

    2016-05-16

    Kidney diseases including diabetic nephropathy have become huge medical problems, although its precise mechanisms are still far from understood. In order to increase our knowledge about the patho-physiology of kidney, we have previously identified >300 kidney glomerulus-enriched transcripts through large-scale sequencing and microarray profiling of the mouse glomerular transcriptome. One of the glomerulus-specific transcripts identified was semaphorin 3G (Sema3G) which belongs to the semaphorin family. The aim of this study was to analyze both the in vivo and in vitro functions of Sema3G in the kidney. Sema3G was expressed in glomerular podocytes. Although Sema3G knockout mice did not show obvious glomerular defects, ultrastructural analyses revealed partially aberrant podocyte foot processes structures. When these mice were injected with lipopolysaccharide to induce acute inflammation or streptozotocin to induce diabetes, the lack of Sema3G resulted in increased albuminuria. The lack of Sema3G in podocytes also enhanced the expression of inflammatory cytokines including chemokine ligand 2 and interleukin 6. On the other hand, the presence of Sema3G attenuated their expression through the inhibition of lipopolysaccharide-induced Toll like receptor 4 signaling. Taken together, our results surmise that the Sema3G protein is secreted by podocytes and protects podocytes from inflammatory kidney diseases and diabetic nephropathy.

  8. Inhibitory Effects of Ketamine on Lipopolysaccharide-Induced Microglial Activation

    Directory of Open Access Journals (Sweden)

    Yi Chang

    2009-01-01

    Full Text Available Microglia activated in response to brain injury release neurotoxic factors including nitric oxide (NO and proinflammatory cytokines such as tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β. Ketamine, an anesthetic induction agent, is generally reserved for use in patients with severe hypotension or respiratory depression. In this study, we found that ketamine (100 and 250 μM concentration-dependently inhibited lipopolysaccharide (LPS-induced NO and IL-1β release in primary cultured microglia. However, ketamine (100 and 250 μM did not significantly inhibit the LPS-induced TNF-α production in microglia, except at the higher concentration (500 μM. Further study of the molecular mechanisms revealed that ketamine markedly inhibited extracellular signal-regulated kinase (ERK1/2 phosphorylation but not c-Jun N-terminal kinase or p38 mitogen-activated protein kinase stimulated by LPS in microglia. These results suggest that microglial inactivation by ketamine is at least partially due to inhibition of ERK1/2 phosphorylation.

  9. Persistence of yellow fever vaccine-induced antibodies after solid organ transplantation.

    Science.gov (United States)

    Wyplosz, B; Burdet, C; François, H; Durrbach, A; Duclos-Vallée, J C; Mamzer-Bruneel, M-F; Poujol, P; Launay, O; Samuel, D; Vittecoq, D; Consigny, P H

    2013-09-01

    Immunization using live attenuated vaccines represents a contra-indication after solid organ transplantation (SOT): consequently, transplant candidates planning to travel in countries where yellow fever is endemic should be vaccinated prior to transplantation. The persistence of yellow fever vaccine-induced antibodies after transplantation has not been studied yet. We measured yellow-fever neutralizing antibodies in 53 SOT recipients vaccinated prior to transplantation (including 29 kidney recipients and 18 liver recipients). All but one (98%) had protective titers of antibodies after a median duration of 3 years (min.: 0.8, max.: 21) after transplantation. The median antibody level was 40 U/L (interquartile range: 40-80). For the 46 patients with a known or estimated date of vaccination, yellow-fever antibodies were still detectable after a median time of 13 years (range: 2-32 years) post-immunization. Our data suggest there is long-term persistence of antibodies to yellow fever in SOT recipients who have been vaccinated prior to transplantation. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.

  10. Cytokine and acute phase protein gene expression in liver biopsies from dairy cows with a lipopolysaccharide - induced mastitis

    DEFF Research Database (Denmark)

    Vels, J; Røntved, Christine M.; Bjerring, Martin

    2009-01-01

    A minimally invasive liver biopsy technique was tested for its applicability to study the hepatic acute phase response (APR) in dairy cows with Escherichia coli lipopolysaccharide (LPS)-induced mastitis. The hepatic mRNA expression profiles of the inflammatory cytokines, tumor necrosis factor (TNF......, a minimally invasive liver biopsy technique can be used for studying the hepatic APR in diseased cattle. Lipopolysaccharide-induced mastitis resulted in a time-dependent production of inflammatory cytokines and SAA and Hp in the liver of dairy cows.......- ), IL-1β, IL-6, and IL-10, and the acute phase proteins serum amyloid A isoform 3 (SAA3), haptoglobin (Hp), and 1-acid glycoprotein (AGP) were determined by real-time reverse transcription-PCR. Fourteen primiparous cows in mid lactation were challenged with 200 µg of LPS (n = 8) or NaCl solution (n = 6...

  11. Cardiac-Specific Overexpression of Catalase Attenuates Lipopolysaccharide-Induced Myocardial Contractile Dysfunction: Role of Autophagy

    OpenAIRE

    Turdi, Subat; Han, Xuefeng; Huff, Anna F.; Roe, Nathan D.; Hu, Nan; Gao, Feng; Ren, Jun

    2012-01-01

    Lipopolysaccharide (LPS) from Gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complication in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged ...

  12. [Establishment of a D-galactosamine/lipopolysaccharide induced acute-on-chronic liver failure model in rats].

    Science.gov (United States)

    Liu, Xu-hua; Chen, Yu; Wang, Tai-ling; Lu, Jun; Zhang, Li-jie; Song, Chen-zhao; Zhang, Jing; Duan, Zhong-ping

    2007-10-01

    To establish a practical and reproducible animal model of human acute-on-chronic liver failure for further study of the pathophysiological mechanism of acute-on-chronic liver failure and for drug screening and evaluation in its treatment. Immunological hepatic fibrosis was induced by human serum albumin in Wistar rats. In rats with early-stage cirrhosis (fibrosis stage IV), D-galactosamine and lipopolysaccharide were administered. Mortality and survival time were recorded in 20 rats. Ten rats were sacrificed at 4, 8, and 12 hours. Liver function tests and plasma cytokine levels were measured after D-galactosamine/lipopolysaccharide administration and liver pathology was studied. Cell apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Most of the rats treated with human albumin developed cirrhosis and fibrosis, and 90% of them died from acute liver failure after administration of D-galactosamine/lipopolysaccharide, with a mean survival time of (16.1+/-3.7) hours. Liver histopathology showed massive or submassive necrosis of the regenerated nodules, while fibrosis septa were intact. Liver function tests were compatible with massive necrosis of hepatocytes. Plasma level of TNFalpha increased significantly, parallel with the degree of the hepatocytes apoptosis. Plasma IL-10 levels increased similarly as seen in patients with acute-on-chronic liver failure. We established an animal model of acute-on-chronic liver failure by treating rats with human serum albumin and later with D-galactosamine and lipopolysaccharide. TNFalpha-mediated liver cell apoptoses plays a very important role in the pathogenesis of acute liver failure.

  13. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-{kappa}{beta} and myosin light-chain kinase pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China); Li, Jianguo, E-mail: 2010lijianguo@sina.cn [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Carbachol reduced the lipopolysaccharide-induced intestinal barrier breakdown. Black-Right-Pointing-Pointer Carbachol ameliorated the lipopolysaccharide-induced ileal tight junction damage. Black-Right-Pointing-Pointer Carbachol prevented the LPS-induced NF-{kappa}{beta} and myosin light-chain kinase activation. Black-Right-Pointing-Pointer Carbachol exerted its beneficial effects in an {alpha}7 nicotinic receptor-dependent manner. -- Abstract: Carbachol is a cholinergic agonist that protects the intestines after trauma or burn injury. The present study determines the beneficial effects of carbachol and the mechanisms by which it ameliorates the lipopolysaccharide (LPS)-induced intestinal barrier breakdown. Rats were injected intraperitoneally with 10 mg/kg LPS. Results showed that the gut barrier permeability was reduced, the ultrastructural disruption of tight junctions (TJs) was prevented, the redistribution of zonula occludens-1 and claudin-2 proteins was partially reversed, and the nuclear factor-kappa beta (NF-{kappa}{beta}) and myosin light-chain kinase (MLCK) activation in the intestinal epithelium were suppressed after carbachol administration in LPS-exposed rats. Pretreatment with the {alpha}7 nicotinic acetylcholine receptor ({alpha}7nAchR) antagonist {alpha}-bungarotoxin blocked the protective action of carbachol. These results suggested that carbachol treatment can protect LPS-induced intestinal barrier dysfunction. Carbachol exerts its beneficial effect on the amelioration of the TJ damage by inhibiting the NF-{kappa}{beta} and MLCK pathways in an {alpha}7nAchR-dependent manner.

  14. Interleukin-10 Protection against Lipopolysaccharide-Induced Neuro-Inflammation and Neurotoxicity in Ventral Mesencephalic Cultures

    OpenAIRE

    Yan Zhu; Xiao Chen; Zhan Liu; Yu-Ping Peng; Yi-Hua Qiu

    2015-01-01

    Interleukin (IL)-10, an anti-inflammatory cytokine, is expressed in the brain and can inhibit microglial activation. Herein, we utilized lipopolysaccharide (LPS)-induced inflammatory Parkinson?s disease (PD) cell model to determine whether microglia and astrocytes are necessary targets for IL-10 neuroprotection. Primary ventral mesencephalic (VM) cultures with different composition of neurons, microglia and astrocytes were prepared. The cells were exposed to IL-10 (15, 50 or 150 ng/mL) 1 h pr...

  15. Okra (Abelmoschus esculentus Linn) inhibits lipopolysaccharide ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research June 2017; 16 (6): 1285-1292 ... lipopolysaccharide-induced inflammatory mediators in .... Multiple comparison of data was carried out by one-way. ANOVA followed by Bonferroni post-tests. P <.

  16. Inhibition of endogenous pyrogen-induced fever by a muramyl dipeptide derivative.

    Science.gov (United States)

    Parant, M; Riveau, G; Parant, F; Chedid, L

    1984-09-01

    N-acetylmuramyl-L-alanyl-D-isoglutamine, or muramyl dipeptide (MDP), is a synthetic immunoadjuvant analogue of a bacterial peptidoglycan subunit that has a definite pyrogenic effect in the rabbit. Some adjuvant-active derivatives such as murabutide [MDP(Gln)-OnBu] or murametide [MDP(Gln)-OMe] are not pyrogenic. Murabutide did not stimulate human or rabbit cells to release endogenous pyrogen (EP), but murametide induced EP production at the same dosage levels as MDP. Moreover, plasma from rabbits treated with murametide transferred into untreated recipients elicited a febrile response typical of EP fever and comparable with that induced by plasma from MDP-treated animals. Murametide not only inhibited the central effect of EP that is generated but also the effect of an extra dose of EP administered later by the intravenous route. Moreover, pretreatment of rabbits with murametide decreased fever responses induced by certain high-molecular-weight exogenous pyrogens as mediated through the production of EP.

  17. Paeonol attenuates lipopolysaccharide-induced depressive-like behavior in mice.

    Science.gov (United States)

    Tao, Weiwei; Wang, Hanqing; Su, Qiang; Chen, Yanyan; Xue, Wenda; Xia, Baomei; Duan, Jinao; Chen, Gang

    2016-04-30

    The present study was designed to detect the anti-depressant effects of paeonol and the possible mechanisms in the lipopolysaccharide-induced depressive-like behavior. Open-field test(OFT), tail suspension test(TST) and forced swimming test(FST) were used to evaluate the behavioral activity. The contents of 5-hydroxytryptamine (5-HT) and norepinephrine (NE) in mice hippocampus were determined by HPLC-ECD. Serum interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α levels were evaluated by enzyme-linked immunosorbent assay (ELISA). Our results showed that LPS significantly decreased the levels of 5-HT and NE in the hippocampus. LPS also reduced open-field activity, as well as increased immobility duration in FST and TST. Paeonol administration could effectively reverse the alterations in the concentrations of 5-HT, NE and reduce the IL-6 and TNF-α levels. Moreover, paeonol effectively downregulated brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB) and Nuclear factor-κB (NF-κB) in hippocampal. In conclusion, paeonol administration exhibited significant antidepressant-like effects in mice with LPS-induced depression. Copyright © 2016. Published by Elsevier Ireland Ltd.

  18. Attenuation of Neuroinflammatory Responses in Lipopolysaccharide ...

    African Journals Online (AJOL)

    Chenopodiaceae) extract on neuroinflammatory responses induced by lipopolysaccharide (LPS) in BV-2 microglial cells and its antioxidant effects. Methods: Biochemical studies carried out include 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyl-tetrazolium ...

  19. Glucocorticoid inhibition of leptin- and lipopolysaccharide-induced interleukin-6 production in obesity.

    Science.gov (United States)

    Huang, Chun-Jung; Acevedo, Edmund O; Mari, David C; Randazzo, Christopher; Shibata, Yoshimi

    2014-01-01

    Obesity is considered a chronic inflammatory condition that enhances the risk of numerous inflammatory diseases, including diabetes and cardiovascular disease. Glucocorticoids (GCs) and synthetic therapeutic GCs are anti-inflammatory agents, but the exact functions of GCs in obesity-related inflammation are unknown. Therefore, the objective of this study was to examine the inhibitory effect of an exogenous GC (dexamethasone, DEX) on leptin- and lipopolysaccharide (LPS)-induced IL-6 production by peripheral blood mononuclear cells (PBMCs) ex vivo in obese subjects compared to normal-weight subjects. Blood samples were drawn from 14 obese (BMI>30 kg/m(2)) and 14 normal-weight (BMIobese subjects showed greater leptin- and LPS-induced IL-6 production compared to normal-weight subjects. The suppressive effect of DEX on leptin- and LPS-induced IL-6 production (IC50) was not different between the two groups. However, the IC50 of DEX for LPS-induced was correlated with BMI, waist circumference, and hip circumference. These findings suggest that reduced GC sensitivity may be an important mechanism in the up-regulation of selected obese inflammation. Published by Elsevier Inc.

  20. Melatonin protects against myocardial hypertrophy induced by lipopolysaccharide.

    Science.gov (United States)

    Lu, Qi; Yi, Xin; Cheng, Xiang; Sun, Xiaohui; Yang, Xiangjun

    2015-04-01

    Melatonin is thought to have the ability of antiatherogenic, antioxidant, and vasodilatory. It is not only a promising protective in acute myocardial infarction but is also a useful tool in the treatment of pathological remodeling. However, its role in myocardial hypertrophy remains unclear. In this study, we investigated the protective effects of melatonin on myocardial hypertrophy induced by lipopolysaccharide (LPS) and to identify their precise mechanisms. The cultured myocardial cell was divided into six groups: control group, LPS group, LPS + ethanol (4%), LPS + melatonin (1.5 mg/ml) group, LPS + melatonin (3 mg/ml) group, and LPS + melatonin (6 mg/ml) group. The morphologic change of myocardial cell was observed by inverted phase contrast microscope. The protein level of myocardial cell was measured by Coomassie brilliant blue protein kit. The secretion level of tumor necrosis factor-α (TNF-α) was evaluated by enzyme-linked immunosorbent assay (ELISA). Ca(2+) transient in Fura-2/AM-loaded cells was measured by Till image system. The expression of Ca(2+)/calmodulin-dependent kinase II (CaMKII) and calcineurin (CaN) was measured by Western blot analysis. Our data demonstrated that LPS induced myocardial hypertrophy, promoted the secretion levels of TNF-α, and increased Ca(2+) transient level and the expression of CaMKII and CaN. Administration of melatonin 30 min prior to LPS stimulation dose-dependently attenuated myocardial hypertrophy. In conclusion, the results revealed that melatonin had the potential to protect against myocardial hypertrophy induced by LPS in vitro through downregulation of the TNF-α expression and retains the intracellular Ca(2+) homeostasis.

  1. Riboflavin attenuates lipopolysaccharide-induced lung injury in rats.

    Science.gov (United States)

    Al-Harbi, Naif O; Imam, Faisal; Nadeem, Ahmed; Al-Harbi, Mohammed M; Korashy, Hesham M; Sayed-Ahmed, Mohammed M; Hafez, Mohamed M; Al-Shabanah, Othman A; Nagi, Mahmoud N; Bahashwan, Saleh

    2015-01-01

    Riboflavin (vitamin B2) is an easily absorbed micronutrient with a key role in maintaining health in humans and animals. It is the central component of the cofactors flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) and is therefore required by all flavoproteins. Riboflavin also works as an antioxidant by scavenging free radicals. The present study was designed to evaluate the effects of riboflavin against acute lungs injury induced by the administration of a single intranasal dose (20 μg/rat) of lipopolysaccharides (LPS) in experimental rats. Administration of LPS resulted in marked increase in malondialdehyde (MDA) level (p riboflavin in a dose-dependent manner (30 and 100 mg/kg, respectively). Riboflavin (100 mg/kg, p.o.) showed similar protective effects as dexamethasone (1 mg/kg, p.o.). Administration of LPS showed marked cellular changes including interstitial edema, hemorrhage, infiltration of PMNs, etc., which were reversed by riboflavin administration. Histopathological examinations showed normal morphological structures of lungs tissue in the control group. These biochemical and histopathological examination were appended with iNOS and CAT gene expression. The iNOS mRNA expression was increased significantly (p riboflavin significantly (p riboflavin caused a protective effect against LPS-induced ALI. These results suggest that riboflavin may be used to protect against toxic effect of LPS in lungs.

  2. Ficolins do not alter host immune responses to lipopolysaccharide-induced inflammation in vivo

    DEFF Research Database (Denmark)

    Genster, Ninette; Østrup, Olga; Schjalm, Camilla

    2017-01-01

    . Yet, the contribution of ficolins to inflammatory disease processes remains elusive. To address this, we investigated ficolin deficient mice during a lipopolysaccharide (LPS)-induced model of systemic inflammation. Although murine serum ficolin was shown to bind LPS in vitro, there was no difference...... an unaltered spleen transcriptome profile in ficolin deficient mice compared to wildtype mice. Collectively, results from this study demonstrate that ficolins are not involved in host response to LPS-induced systemic inflammation.......Ficolins are a family of pattern recognition molecules that are capable of activating the lectin pathway of complement. A limited number of reports have demonstrated a protective role of ficolins in animal models of infection. In addition, an immune modulatory role of ficolins has been suggested...

  3. Lipopolysaccharide-induced Pulpitis Up-regulates TRPV1 in Trigeminal Ganglia

    Science.gov (United States)

    Chung, M.-K.; Lee, J.; Duraes, G.; Ro, J.Y.

    2011-01-01

    Tooth pain often accompanies pulpitis. Accumulation of lipopolysaccharides (LPS), a product of Gram-negative bacteria, is associated with painful clinical symptoms. However, the mechanisms underlying LPS-induced tooth pain are not clearly understood. TRPV1 is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and hyperalgesia under inflammation or injury. Although TRPV1 is expressed in pulpal afferents, it is not known whether the application of LPS to teeth modulates TRPV1 in trigeminal nociceptors. By assessing the levels of protein and transcript of TRPV1 in mouse trigeminal ganglia, we demonstrate that dentinal application of LPS increases the expression of TRPV1. Our results suggest that the up-regulation of TRPV1 in trigeminal nociceptors following bacterial infection could contribute to hyperalgesia under pulpitis conditions. PMID:21712529

  4. Minocycline protects against lipopolysaccharide-induced cognitive impairment in mice.

    Science.gov (United States)

    Hou, Yue; Xie, Guanbo; Liu, Xia; Li, Guoxun; Jia, Congcong; Xu, Jinghua; Wang, Bing

    2016-03-01

    The role of glial cells, especially microglia and astrocytes, in neuroinflammation and cognition has been studied intensively. Lipopolysaccharide (LPS), a commonly used inducer of neuroinflammation, can cause cognitive impairment. Minocycline is known to possess potent neuroprotective activity, but its effect on LPS-induced cognitive impairment is unknown. This study aims to investigate the effects of minocycline on LPS-induced cognitive impairment and glial cell activation in mice. Behavioral tests were conducted for cognitive function, immunohistochemistry for microglial and astrocyte response, and quantitative PCR for mRNA expression of proinflammatory cytokines. Minocycline significantly reversed the decreased spontaneous alternation induced by intrahippocampal administration of LPS in the Y-maze task. In the Morris water maze place navigation test, minocycline decreased the escape latency and distance traveled compared to LPS-treated mice. In the probe test, minocycline-treated mice spent more time in the target quadrant and crossed the platform area more frequently than animals in the LPS-treated group. Minocycline produced a significant decrease in the number of Iba-1- and GFAP-positive hippocampal cells compared to the LPS-treated group. Minocycline-treated mice had significantly reduced hippocampal TNF-α and IL-1β mRNA levels compared with LPS-treated animals. Minocycline caused a significant increase in hippocampal BDNF expression compared to the LPS-treated group. Minocycline can attenuate LPS-induced cognitive impairments in mice. This effect may be associated with its action to suppress the activation of microglia and astrocytes and to normalize BDNF expression. Since neuroinflammatory processes and cognitive impairments are implicated in neurodegenerative disorders, minocycline may be a promising candidate for treating such diseases.

  5. Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment.

    Science.gov (United States)

    Vasconcelos, Andrea R; Yshii, Lidia M; Viel, Tania A; Buck, Hudson S; Mattson, Mark P; Scavone, Cristoforo; Kawamoto, Elisa M

    2014-05-06

    Systemic bacterial infections often result in enduring cognitive impairment and are a risk factor for dementia. There are currently no effective treatments for infection-induced cognitive impairment. Previous studies have shown that intermittent fasting (IF) can increase the resistance of neurons to injury and disease by stimulating adaptive cellular stress responses. However, the impact of IF on the cognitive sequelae of systemic and brain inflammation is unknown. Rats on IF for 30 days received 1 mg/kg of lipopolysaccharide (LPS) or saline intravenously. Half of the rats were subjected to behavioral tests and the other half were euthanized two hours after LPS administration and the hippocampus was dissected and frozen for analyses. Here, we report that IF ameliorates cognitive deficits in a rat model of sepsis by a mechanism involving NF-κB activation, suppression of the expression of pro-inflammatory cytokines, and enhancement of neurotrophic support. Treatment of rats with LPS resulted in deficits in cognitive performance in the Barnes maze and inhibitory avoidance tests, without changing locomotor activity, that were ameliorated in rats that had been maintained on the IF diet. IF also resulted in reduced levels of mRNAs encoding the LPS receptor TLR4 and inducible nitric oxide synthase (iNOS) in the hippocampus. Moreover, IF prevented LPS-induced elevation of IL-1α, IL-1β and TNF-α levels, and prevented the LPS-induced reduction of BDNF levels in the hippocampus. IF also significantly attenuated LPS-induced elevations of serum IL-1β, IFN-γ, RANTES, TNF-α and IL-6 levels. Taken together, our results suggest that IF induces adaptive responses in the brain and periphery that can suppress inflammation and preserve cognitive function in an animal model of systemic bacterial infection.

  6. Modulation of immune response by bacterial lipopolysaccharides

    Directory of Open Access Journals (Sweden)

    Gustavo Aldapa-Vega

    2016-08-01

    Full Text Available Lipopolysaccharide (LPS is a molecule that is profusely found on the outer membrane of Gram-negative bacteria and is also a potent stimulator of the immune response. As the main molecule on the bacterial surface, is also the most biologically active. The immune response of the host is activated by the recognition of LPS through Toll-like receptor 4 (TLR4 and this receptor-ligand interaction is closely linked to LPS structure. Microorganisms have evolved systems to control the expression and structure of LPS, producing structural variants that are used for modulating the host immune responses during infection. Examples of this include Helicobacter pylori, Francisella tularensis, Chlamydia trachomatis and Salmonella spp. High concentrations of LPS can cause fever, increased heart rate and lead to septic shock and death. However, at relatively low concentrations some LPS are highly active immunomodulators, which can induce non-specific resistance to invading microorganisms. The elucidation of the molecular and cellular mechanisms involved in the recognition of LPS and its structural variants has been fundamental to understand inflammation and is currently a pivotal field of research to understand the innate immune response, inflammation, the complex host-pathogen relationship and has important implications for the rational development of new immunomodulators and adjuvants.

  7. Lipopolysaccharide aggravated DOI-induced Tourette syndrome: elaboration for recurrence of Tourette syndrome.

    Science.gov (United States)

    Hongyan, Long; Zhenyang, Si; Chunyan, Wang; Qingqing, Pan

    2017-12-01

    Tourette syndrome (TS) is a neurological disorder characterized by highest familial recurrence rate among neuropsychiatric diseases with complicated inheritance. Recurrence of Tourette syndrome was frequently observed in clinical. Unexpectedly, the mechanism of recurrence of Tourette syndrome was failure to elucidate. Here, we first shown that lipopolysaccharide(LPS) may played an important role in the recurrence of Tourette syndrome. The TS model in rats was induced by DOI (the selective 5-HT2A/2C agonist 1-(2, 5-dimethoxy-4-iodophenyl) -2- aminopropane). The rats were randomly divided into 4 groups:(1)Control;(2) Control + LPS; (2)TS; (3)TS + LPS. The results demonstrated that the LPS treatment significantly increased stereotypic score and autonomic activity. LPS treatment also significantly increased inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in serum and striatum. Also, highly expressed TLR4, MyD88, P-NF-κBp65, P-IκBα in TS rats were increased respectively by LPS treatment as indicted in western blot analysis and immunohistochemistry analysis. Thus, it was supposed that lipopolysaccharide(LPS) may played an important role in the recurrence of Tourette syndrome and its mechanism was related to TLR/NF-κB pathway.

  8. Serodiagnosis of Acute Typhoid Fever in Nigerian Pediatric Cases by Detection of Serum IgA and IgG Against Hemolysin E and Lipopolysaccharide.

    Science.gov (United States)

    Davies, D Huw; Jain, Aarti; Nakajima, Rie; Liang, Li; Jasinskis, Algis; Supnet, Medalyn; Felgner, Philip L; Teng, Andy; Pablo, Jozelyn; Molina, Douglas M; Obaro, Stephen K

    2016-08-03

    Inexpensive, easy-to-use, and highly sensitive diagnostic tests are currently unavailable for typhoid fever. To identify candidate serodiagnostic markers, we have probed microarrays displaying the full Salmonella enterica serovar Typhi (S. Typhi) proteome of 4,352 different proteins + lipopolysaccharides (LPSs), with sera from Nigerian pediatric typhoid and other febrile cases, Nigerian healthy controls, and healthy U.S. adults. Nigerian antibody profiles were broad (∼500 seropositive antigens) and mainly low level, with a small number of stronger "hits," whereas the profile in U.S. adults was typhoid cases. The response to LPS was also a strong discriminator of healthy controls and typhoid, although LPS did not discriminate between typhoid and nontyphoidal Salmonella (NTS) disease. As a first step toward the development of a point-of-care diagnostic, t1477 and LPS were evaluated on immunostrips. Both provided good discrimination between healthy controls and typhoid/NTS disease. Such a test could provide a useful screen for salmonellosis (typhoid and NTS disease) in suspected pediatric cases that present with undefined febrile disease. © The American Society of Tropical Medicine and Hygiene.

  9. Thymoquinone restores liver fibrosis and improves oxidative stress status in a lipopolysaccharide-induced inflammation model in rats

    OpenAIRE

    Asgharzadeh, Fereshteh; Bargi, Rahimeh; Beheshti, Farimah; Hosseini, Mahmoud; Farzadnia, Mehdi; Khazaei, Majid

    2017-01-01

    Objective: Liver fibrosis is the primary sign of chronic liver injury induced by various causes. Thymoquinone (TQ) is the major ingredient of Nigella sativa with several beneficial effects on the body. In the present study, we aimed to investigate the effect of TQ on liver fibrosis in a lipopolysaccharide (LPS)-induced inflammation in male rats. Materials and methods: Fifty male Wistar rats were randomly divided into five groups (n=10 in each group) as follow: (1) control; (2) LPS (1 mg/kg/da...

  10. Lipopolysaccharide induces amyloid formation of antimicrobial peptide HAL-2.

    Science.gov (United States)

    Wang, Jiarong; Li, Yan; Wang, Xiaoming; Chen, Wei; Sun, Hongbin; Wang, Junfeng

    2014-11-01

    Lipopolysaccharide (LPS), the important component of the outer membrane of Gram-negative bacteria, contributes to the integrity of the outer membrane and protects the cell against bactericidal agents, including antimicrobial peptides. However, the mechanisms of interaction between antimicrobial peptides and LPS are not clearly understood. Halictines-2 (HAL-2), one of the novel antimicrobial peptides, was isolated from the venom of the eusocial bee Halictus sexcinctus. HAL-2 has exhibited potent antimicrobial activity against Gram-positive and Gram-negative bacteria and even against cancer cells. Here, we studied the interactions between HAL-2 and LPS to elucidate the antibacterial mechanism of HAL-2 in vitro. Our results show that HAL-2 adopts a significant degree of β-strand structure in the presence of LPS. LPS is capable of inducing HAL-2 amyloid formation, which may play a vital role in its antimicrobial activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Compound edaravone alleviates lipopolysaccharide (LPS)-induced acute lung injury in mice.

    Science.gov (United States)

    Zhang, Zhengping; Luo, Zhaowen; Bi, Aijing; Yang, Weidong; An, Wenji; Dong, Xiaoliang; Chen, Rong; Yang, Shibao; Tang, Huifang; Han, Xiaodong; Luo, Lan

    2017-09-15

    Acute lung injury (ALI) represents an unmet medical need with an urgency to develop effective pharmacotherapies. Compound edaravone, a combination of edaravone and borneol, has been developed for treatment of ischemia stroke in clinical phase III study. The purpose of the present study is to investigate the anti-inflammatory effect of compound edaravone on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 cells and the therapeutic efficacy on LPS-induced ALI in mice. Edaravone and compound edaravone concentration-dependently decreased LPS-induced interleukin-6 (IL-6) production and cyclooxygenase-2 (COX-2) expression in RAW264.7 cells. The efficiency of compound edaravone was stronger than edaravone alone. In the animal study, compound edaravone was injected intravenously to mice after intratracheal instillation of LPS. It remarkably alleviated LPS-induced lung injury including pulmonary histological abnormalities, polymorphonuclear leukocyte (PMN) infiltration and extravasation. Further study demonstrated that compound edaravone suppressed LPS-induced TNF-α and IL-6 increase in mouse serum and bronchoalveolar lavage (BAL) fluid, and inhibited LPS-induced nuclear factor-κB (NF-κB) activation and COX-2 expression in mice lung tissues. Importantly, our findings demonstrated that the compound edaravone showed a stronger protective effect against mouse ALI than edaravone alone, which suggested the synergies between edaravone and borneol. In conclusion, compound edaravone could be a potential novel therapeutic drug for ALI treatment and borneol might produce a synergism with edaravone. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bacterial lipopolysaccharide-induced systemic inflammation alters perfusion of white matter-rich regions without altering flow in brain-irrigating arteries: Relationship to blood-brain barrier breakdown?

    Science.gov (United States)

    Dhaya, Ibtihel; Griton, Marion; Raffard, Gérard; Amri, Mohamed; Hiba, Bassem; Konsman, Jan Pieter

    2018-01-15

    To better understand brain dysfunction during sepsis, cerebral arterial blood flow was assessed with Phase Contrast Magnetic Resonance Imaging, perfusion with Arterial Spin Labeling and structure with diffusion-weighted Magnetic Resonance Imaging in rats after intraperitoneal administration of bacterial lipopolysaccharides. Although cerebral arterial flow was not altered, perfusion of the corpus callosum region and diffusion parallel to its fibers were higher after lipopolysaccharide administration as compared to saline injection. In parallel, lipopolysaccharide induced perivascular immunoglobulin-immunoreactivity in white matter. These findings indicate that systemic inflammation can result in increased perfusion, blood-brain barrier breakdown and altered water diffusion in white matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Pathogenic Mechanisms Involved in the Hematological Alterations of Arenavirus-induced Hemorrhagic Fevers

    Directory of Open Access Journals (Sweden)

    Roberto G. Pozner

    2013-01-01

    Full Text Available Viral hemorrhagic fevers (VHFs caused by arenaviruses are acute diseases characterized by fever, headache, general malaise, impaired cellular immunity, eventual neurologic involvement, and hemostatic alterations that may ultimately lead to shock and death. The causes of the bleeding are still poorly understood. However, it is generally accepted that these causes are associated to some degree with impaired hemostasis, endothelial cell dysfunction and low platelet counts or function. In this article, we present the current knowledge about the hematological alterations present in VHF induced by arenaviruses, including new aspects on the underlying pathogenic mechanisms.

  14. Survey of innate immune responses to Burkholderia pseudomallei in human blood identifies a central role for lipopolysaccharide.

    Directory of Open Access Journals (Sweden)

    Narisara Chantratita

    Full Text Available B. pseudomallei is a gram-negative bacterium that causes the tropical infection melioidosis. In northeast Thailand, mortality from melioidosis approaches 40%. As exemplified by the lipopolysaccharide-Toll-like receptor 4 interaction, innate immune responses to invading bacteria are precipitated by activation of host pathogen recognition receptors by pathogen associated molecular patterns. Human melioidosis is characterized by up-regulation of pathogen recognition receptors and pro-inflammatory cytokine release. In contrast to many gram-negative pathogens, however, the lipopolysaccharide of B. pseudomallei is considered only weakly inflammatory. We conducted a study in 300 healthy Thai subjects to investigate the ex vivo human blood response to various bacterial pathogen associated molecular patterns, including lipopolysaccharide from several bacteria, and to two heat-killed B. pseudomallei isolates. We measured cytokine levels after stimulation of fresh whole blood with a panel of stimuli. We found that age, sex, and white blood cell count modulate the innate immune response to B. pseudomallei. We further observed that, in comparison to other stimuli, the innate immune response to B. pseudomallei is most highly correlated with the response to lipopolysaccharide. The magnitude of cytokine responses induced by B. pseudomallei lipopolysaccharide was significantly greater than those induced by lipopolysaccharide from Escherichia coli and comparable to many responses induced by lipopolysaccharide from Salmonella minnesota despite lower amounts of lipid A in the B. pseudomallei lipopolysaccharide preparation. In human monocytes stimulated with B. pseudomallei, addition of polymyxin B or a TLR4/MD-2 neutralizing antibody inhibited the majority of TNF-α production. Challenging existing views, our data indicate that the innate immune response to B. pseudomallei in human blood is largely driven by lipopolysaccharide, and that the response to B

  15. Expression of macrophage migration inhibitory factor and CD74 in the inner ear and middle ear in lipopolysaccharide-induced otitis media.

    Science.gov (United States)

    Ishihara, Hisashi; Kariya, Shin; Okano, Mitsuhiro; Zhao, Pengfei; Maeda, Yukihide; Nishizaki, Kazunori

    2016-10-01

    Significant expression of macrophage migration inhibitory factor and its receptor (CD74) was observed in both the middle ear and inner ear in experimental otitis media in mice. Modulation of macrophage migration inhibitory factor and its signaling pathway might be useful in the management of inner ear inflammation due to otitis media. Inner ear dysfunction secondary to otitis media has been reported. However, the specific mechanisms involved are not clearly understood. The aim of this study is to investigate the expression of macrophage migration inhibitory factor and CD74 in the middle ear and inner ear in lipopolysaccharide-induced otitis media. BALB/c mice received a transtympanic injection of either lipopolysaccharide or phosphate-buffered saline (PBS). The mice were sacrificed 24 h after injection, and temporal bones were processed for polymerase chain reaction (PCR) analysis, histologic examination, and immunohistochemistry. PCR examination revealed that the lipopolysaccharide-injected mice showed a significant up-regulation of macrophage migration inhibitory factor in both the middle ear and inner ear as compared with the PBS-injected control mice. The immunohistochemical study showed positive reactions for macrophage migration inhibitory factor and CD74 in infiltrating inflammatory cells, middle ear mucosa, and inner ear in the lipopolysaccharide-injected mice.

  16. Body temperature changes during simulated bacterial infection in a songbird: fever at night and hypothermia during the day.

    Science.gov (United States)

    Sköld-Chiriac, Sandra; Nord, Andreas; Tobler, Michael; Nilsson, Jan-Åke; Hasselquist, Dennis

    2015-09-01

    Although fever (a closely regulated increase in body temperature in response to infection) typically is beneficial, it is energetically costly and may induce detrimentally high body temperatures. This can increase the susceptibility to energetic bottlenecks and risks of overheating in some organisms. Accordingly, it could be particularly interesting to study fever in small birds, which have comparatively high metabolic rates and high, variable body temperatures. We therefore investigated two aspects of fever and other sickness behaviours (circadian variation, dose dependence) in a small songbird, the zebra finch. We injected lipopolysaccharide (LPS) at the beginning of either the day or the night, and subsequently monitored body temperature, body mass change and food intake for the duration of the response. We found pronounced circadian variation in the body temperature response to LPS injection, manifested by (dose-dependent) hypothermia during the day but fever at night. This resulted in body temperature during the peak response being relatively similar during the day and night. Day-to-night differences might be explained in the context of circadian variation in body temperature: songbirds have a high daytime body temperature that is augmented by substantial heat production peaks during activity. This might require a trade-off between the benefit of fever and the risk of overheating. In contrast, at night, when body temperature is typically lower and less variable, fever can be used to mitigate infection. We suggest that the change in body temperature during infection in small songbirds is context dependent and regulated to promote survival according to individual demands at the time of infection. © 2015. Published by The Company of Biologists Ltd.

  17. Benzoxazole derivatives suppress lipopolysaccharide-induced mast cell activation.

    Science.gov (United States)

    Cho, Kyung-Ah; Park, Minhwa; Kim, Yu-Hee; Choo, Hea-Young Park; Lee, Kyung Ho

    2018-05-01

    Mast cells are central regulators of allergic inflammation that function by releasing various proallergic inflammatory mediators, including histamine, eicosanoids and proinflammatory cytokines. Occasionally, bacterial infections may initiate or worsen allergic inflammation. A number of studies have indicated that activation of lipoxygenase in mast cells positive regulates allergic inflammatory responses by generating leukotrienes and proinflammatory cytokines. In the present study, the effects of benzoxazole derivatives on the lipopolysaccharide (LPS)‑induced expression of proinflammatory cytokines, production of histamine and surface expression of co‑stimulatory molecules on bone marrow-derived mast cells (BMMCs) were studied. The benzoxazole derivatives significantly reduced the expression of interleukin (IL)‑1β, IL‑6, IL‑13, tumor necrosis factor‑α, perilipin (PLIN) 2, and PLIN3 in BMMCs treated with LPS. Furthermore, histamine production was suppressed in BMMCs treated with LPS, or treated with phorbol-12-myristate-13-acetate/ionomycin. Benzoxazole derivatives marginally affected the surface expression of cluster of differentiation (CD)80 and CD86 on BMMCs in the presence of LPS, although LPS alone did not increase the expression of those proteins. Therefore, benzoxazole derivatives inhibited the secretion of proinflammatory cytokines in mast cells and may be potential candidate anti‑allergic agents to suppress mast cell activation.

  18. Obeticholic acid protects mice against lipopolysaccharide-induced liver injury and inflammation.

    Science.gov (United States)

    Xiong, Xi; Ren, Yuqian; Cui, Yun; Li, Rui; Wang, Chunxia; Zhang, Yucai

    2017-12-01

    Cholestasis, as a main manifestation, induces liver injury during sepsis. The farnesoid X receptor (FXR) plays an important role in regulating bile acid homeostasis. Whether FXR activation by its agonist obeticholic acid (OCA) is contributed to improve sepsis-induced liver injury remains unknown. The aim of the present study was to investigate the effect of OCA on lipopolysaccharide (LPS)-induced acute liver injury in mice. 8-week old male C57BL/6J mice were randomly divided into control group, LPS group, oral OCA group and LPS plus oral OCA (LPS + OCA) group. The serum and livers were collected for further analysis. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bile acid (TBA) and total bilirubin (TBIL) were measured at indicated time after LPS administration. Liver sections were stained with hematoxylin & eosin (H&E). Orally OCA pretreatment stimulated the expression of FXR and BSEP in livers and protected mice from LPS-induced hepatocyte apoptosis and inflammatory infiltration. Consistently, LPS-induced higher serum levels of ALT, AST, TBA and TBIL were significantly reversed by OCA administration. Meanwhile, the mRNA levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α) and IL-6 were decreased in livers of mice in LPS + OCA group compared with LPS group. Further investigation indicated that the higher expression of ATF4 and LC3II/I were associated with the protective effect of OCA on LPS-induced liver injury. Orally OCA pretreatment protects mice from LPS-induced liver injury possibly contributed by improved bile acid homeostasis, decreased inflammatory factors and ATF4-mediated autophagy activity in hepatocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Porphyromonas endodontalis lipopolysaccharides induce RANKL by mouse osteoblast in a way different from that of Escherichia coli lipopolysaccharide.

    Science.gov (United States)

    Tang, Yin; Sun, Feifei; Li, Xiaoting; Zhou, Yuan; Yin, Shihai; Zhou, Xuedong

    2011-12-01

    Porphyromonas endodontalis lipopolysaccharide (LPS) has been shown to have a high positive rate in infected root canals and symptomatic apical periodontitis. It may play an integral role as a potent stimulator of inflammatory cytokines involved in apical lesions. The receptor activator of nuclear factor-κB ligand (RANKL) has been proven to be the key regulator of bone remodeling. This study investigated P. endodontalis LPS-induced RANKL production and LPS signaling in mouse osteoblasts. LPS-induced RANKL production in mouse osteoblast MC3T3-E1 cells was measured by Western blot and real-time polymerase chain reaction, and the Toll-like receptors (TLRs) were determined by the blocking test using anti-TLRs antibodies. In addition, specific inhibitors were used to analyze the intracellular signaling pathways. Escherichia coli LPS was used as the control. Both of the anti-TLR2 and anti-TLR4 antibodies significantly (P endodontalis LPS; only anti-TLR2 antibody had a significant (P endodontalis LPS-infected osteoblasts (P endodontalis LPS has the ability to promote the expression of RANKL in mouse osteoblasts, and this induction was mainly through the TLR2/4-JNK signaling pathway, a situation quite different from that of typical bacterial endotoxin (E. coli LPS). Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Anti-Inflammatory Effects of Angelica sinensis (Oliv. Diels Water Extract on RAW 264.7 Induced with Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Young-Jin Kim

    2018-05-01

    Full Text Available The dry root of Angelica sinensis (Oliv. Diels, also known as “female ginseng”, is a popular herbal drug amongst women, used to treat a variety of health issues and cardiovascular diseases. The aim of this study is to evaluate the detailed molecular mechanism for anti-inflammatory effects of Angelica sinensis root water extract (ASW. The anti-inflammatory effect of ASW on lipopolysaccharide (LPS-induced RAW 264.7 mouse macrophages was evaluated by the tetrazolium-based colorimetric assay (MTT, Griess reagent assay, multiplex cytokine assay, real time reverse transcription polymerase chain reaction (RT-PCR, and Fluo-4 calcium assay. ASW restored cell viability in RAW 264.7 at concentrations of up to 200 µg/mL. ASW showed notable anti-inflammatory effects. ASW exhibited IC50 = 954.3, 387.3, 191.7, 317.8, 1267.0, 347.0, 110.1, 573.6, 1171.0, 732.6, 980.8, 125.0, and 257.0 µg/mL for interleukin (IL-6, tumor necrosis factor (TNF-α, monocyte chemotactic activating factor (MCP-1, regulated on activation, normal T cell expressed and secreted (RANTES, granulocyte colony-stimulating factor (G-CSF, granulocyte macrophage colony-stimulating factor (GM-CSF, vascular endothelial growth factor (VEGF, lipopolysaccharide-induced CXC chemokine (LIX, macrophage inflammatory protein (MIP-1α, MIP-1β, MIP-2, IL-10, and intracellular calcium, respectively. Additionally, ASW inhibited the LPS-induced production of nitric oxide and the LPS-induced mRNA expression of CHOP (GADD153, Janus kinase 2 (JAK2, signal transducers and activators of transcription 1 (STAT1, first apoptosis signal receptor (FAS, and c-Fos, NOS2, and PTGS2 (COX2 in RAW 264.7 significantly (p < 0.05. Data suggest that ASW exerts an anti-inflammatory effect on LPS-induced RAW 264.7 via NO-bursting/calcium-mediated JAK-STAT pathway.

  1. Guillain-Barré syndrome- and Miller Fisher syndrome-associated Campylobacter jejuni lipopolysaccharides induce anti-GM1 and anti-GQ1b Antibodies in rabbits.

    NARCIS (Netherlands)

    M.A. de Klerk; H.P. Endtz (Hubert); B.C. Jacobs (Bart); J.D. Laman (Jon); F.G.A. van der Meché (Frans); P.A. van Doorn (Pieter); C.W. Ang (Wim)

    2001-01-01

    textabstractCampylobacter jejuni infections are thought to induce antiganglioside antibodies in patients with Guillain-Barre syndrome (GBS) and Miller Fisher syndrome (MFS) by molecular mimicry between C. jejuni lipopolysaccharides (LPS) and gangliosides. We used

  2. Modulation of lipopolysaccharide-induced chorioamnionitis in fetal sheep by maternal betamethasone.

    Science.gov (United States)

    Wolfe, Katherine B; Snyder, Candice C; Gisslen, Tate; Kemp, Matthew W; Newnham, John P; Kramer, Boris W; Jobe, Alan H; Kallapur, Suhas

    2013-12-01

    We tested the hypothesis that the order of exposure to maternal betamethasone and intra-amniotic (IA) lipopolysaccharide (LPS) will differentially modulate inflammation in the chorioamnion. Time-mated Merino ewes with singleton fetuses received saline alone, IA LPS alone, maternal betamethasone before LPS, or betamethasone after LPS. We assessed inflammatory markers in the chorioamnion and the amniotic fluid. Inflammatory cell infiltration, expression of myeloperoxidase, serum amyloid A3 (acute phase reactant) in the chorioamnion, and levels of interleukin (IL)-8 in the amniotic fluid increased 7 days after LPS exposure. Betamethasone prior to LPS decreased infiltration of the inflammatory cells, CD3+ T cells, and decreased the levels of IL-1β and IL-8 in the amniotic fluid. Betamethasone 7 days prior to LPS exposure suppressed LPS-induced inflammation. The markers of inflammation largely had returned to the baseline 14 days after LPS exposure.

  3. Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice

    Energy Technology Data Exchange (ETDEWEB)

    Mirrione, M.M.; Mirrione, M.M.; Konomosa, D.K.; Ioradanis, G.; Dewey, S.L.; Agzzid, A.; Heppnerd, F.L.; Tsirka, St.E.

    2010-04-01

    Activated microglia have been associated with neurodegeneration in patients and in animal models of Temporal Lobe Epilepsy (TLE), however their precise functions as neurotoxic or neuroprotective is a topic of significant investigation. To explore this, we examined the effects of pilocarpine-induced seizures in transgenic mice where microglia/macrophages were conditionally ablated. We found that unilateral ablation of microglia from the dorsal hippocampus did not alter acute seizure sensitivity. However, when this procedure was coupled with lipopolysaccharide (LPS) preconditioning (1 mg/kg given 24 h prior to acute seizure), we observed a significant pro-convulsant phenomenon. This effect was associated with lower metabolic activation in the ipsilateral hippocampus during acute seizures, and could be attributed to activity in the mossy fiber pathway. These findings reveal that preconditioning with LPS 24 h prior to seizure induction may have a protective effect which is abolished by unilateral hippocampal microglia/macrophage ablation.

  4. Leptin potentiates Prevotella intermedia lipopolysaccharide-induced production of TNF-alpha in monocyte-derived macrophages.

    Science.gov (United States)

    Kim, Sung-Jo

    2010-06-01

    In addition to regulating body weight, leptin is also recognized for its role in the regulation of immune function and inflammation. The purpose of this study was to investigate the effect of leptin on Prevotella (P.) intermedia lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-alpha production in differentiated THP-1 cells, a human monocytic cell line. LPS from P. intermedia ATCC 25611 was prepared by the standard hot phenol-water method. THP-1 cells were incubated in the medium supplemented with phorbol myristate acetate to induce differentiation into macrophage-like cells. The amount of TNF-alpha and interleukin-8 secreted into the culture medium was determined by enzyme-linked immunosorbent assay (ELISA). TNF-alpha and Ob-R mRNA expression levels were determined by semi-quantitative reverse transcription-polymerase chain reaction analysis. Leptin enhanced P. intermedia LPS-induced TNF-alpha production in a dose-dependent manner. Leptin modulated P. intermedia LPS-induced TNF-alpha expression predominantly at the transcriptional level. Effect of leptin on P. intermedia LPS-induced TNF-alpha production was not mediated by the leptin receptor. The ability of leptin to enhance P. intermedia LPS-induced TNF-alpha production may be important in the establishment of chronic lesion accompanied by osseous tissue destruction observed in inflammatory periodontal disease.

  5. Dynamic Regulation of Delta-Opioid Receptor in Rat Trigeminal Ganglion Neurons by Lipopolysaccharide-induced Acute Pulpitis.

    Science.gov (United States)

    Huang, Jin; Lv, Yiheng; Fu, Yunjie; Ren, Lili; Wang, Pan; Liu, Baozhu; Huang, Keqiang; Bi, Jing

    2015-12-01

    Delta-opioid receptor (DOR) and its endogenous ligands distribute in trigeminal system and play a very important role in modulating peripheral inflammatory pain. DOR activation can trigger p44/42 mitogen-activated protein kinase (ERK1/2) and Akt signaling pathways, which participate in anti-inflammatory and neuroprotective effects. In this study, our purpose was to determine the dynamic changes of DOR in trigeminal ganglion (TG) neurons during the process of acute dental pulp inflammation and elucidate its possible mechanism. Forty rats were used to generate lipopolysaccharide-induced acute pulpitis animal models at 6, 12, and 24 hours and sham-operated groups. Acute pulpitis was confirmed by hematoxylin-eosin staining, and TG neuron activation was determined by anti-c-Fos immunohistochemistry. DOR protein and gene expression in TG was investigated by immunohistochemistry, Western blotting, and real-time polymerase chain reaction, and DOR expression in trigeminal nerves and dental pulp was also determined by immunohistochemistry. To further investigate the mechanism of DOR modulating acute inflammation, the change of pErk1/2 and pAkt in TG was examined by immunohistochemistry. Lipopolysaccharide could successfully induce acute pulpitis and activated TG neurons. Acute pulpitis could dynamically increase DOR protein and gene expression at 6, 12, and 24 hours in TG, and DOR dimerization was significantly increased at 12 and 24 hours. Acute pulpitis also induced the dynamic change of DOR protein in trigeminal nerve and dental pulp. Furthermore, ERK1/2 and Akt signaling pathways were inhibited in TG after acute pulpitis. Increased DOR expression and dimerization may play important roles in peripheral acute inflammatory pain. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China); Qiao, Juan, E-mail: qjuan@tsinghua.edu.cn [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Lu, Yun, E-mail: luyun@tsinghua.edu.cn [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China)

    2016-02-13

    Highlights: • Chlorination is effective to reduce the inflammation inducing capacity of LPS in lung. • LAL-detected endotoxin activity is not correlated to the potency of inflammation induction. • Alkyl chain of LPS was chlorinated in chlorination process. • LPS aggregate size decreases after chlorination. - Abstract: Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies.

  7. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination

    International Nuclear Information System (INIS)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-01-01

    Highlights: • Chlorination is effective to reduce the inflammation inducing capacity of LPS in lung. • LAL-detected endotoxin activity is not correlated to the potency of inflammation induction. • Alkyl chain of LPS was chlorinated in chlorination process. • LPS aggregate size decreases after chlorination. - Abstract: Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies.

  8. In vivo evaluation of antipyretic effects of homoeopathic ultrahigh dilutions of Typhoidinum on baker's yeast-induced fever in comparison with Paracetamol

    Directory of Open Access Journals (Sweden)

    Saeed Ahmad

    2017-01-01

    Full Text Available Introduction: Homoeopathy is a widely used, controversial alternative system of medicine. It is assumed that homoeopathic medicines are slower in action and does not work in acute conditions such as ‘fever’. The study aims to estimate the effectiveness of some homoeopathic remedies in fever and to compare their effects with Paracetamol. Materials and Methods: Baker's yeast fever model of rabbits was used in the study. Rabbits were divided into four different groups (n = 6. Rectal temperature was measured before and after fever induction hourly. After fever induction, medicines were administered orally. Paracetamol and Typhoidinum in 200C and 1M potencies were given orally. ANOVA followed by post hoc test was used for statistical analysis of results. The results were considered statistically significant at P ≤ 0.05. Results: Fever was induced in all the rabbits after 4 h of baker's yeast administration. The results of the study revealed the significant effectiveness of Typhoidinum in 200C and 1M potencies in baker's yeast-induced fever (P = 0.05. Typhoidinum in both potencies showed less significant results as compared to Paracetamol. However, all the medicines’ effects were significant compared to the negative control. Conclusion: Typhoidinum 200C and 1M worked against baker's yeast-induced fever. However, the results were slower and less significant than Paracetamol that might be due to lack of similarity of remedy picture and disease picture.

  9. Aloin Suppresses Lipopolysaccharide-Induced Inflammatory Response and Apoptosis by Inhibiting the Activation of NF-κB

    Directory of Open Access Journals (Sweden)

    Xuan Luo

    2018-02-01

    Full Text Available Numerous herbal-derived natural products are excellent anti-inflammatory agents. Several studies have reported that aloin, the major anthraquinone glycoside obtained from the Aloe species, exhibits anti-inflammatory activity. However, the molecular mechanism of this activity is not well understood. In this report, we found that aloin suppresses lipopolysaccharide-induced pro-inflammatory cytokine secretion and nitric oxide production, and downregulates the expression of tumor necrosis factor alpha (TNF-α, interleukin 6 (IL-6, inducible nitric oxide synthase (iNOS, and cyclooxygenase-2 (COX-2. Aloin inhibits the phosphorylation and acetylation of the NF-κB p65 subunit by suppressing the upstream kinases p38 and Msk1, preventing LPS-induced p65 translocation to the nucleus. We have also shown that aloin inhibits LPS-induced caspase-3 activation and apoptotic cell death. Collectively, these findings suggest that aloin effectively suppresses the inflammatory response, primarily through the inhibition of NF-κB signaling.

  10. Equine colostral carbohydrates reduce lipopolysaccharide-induced inflammatory responses in equine peripheral blood mononuclear cells.

    Science.gov (United States)

    Vendrig, J C; Coffeng, L E; Fink-Gremmels, J

    2012-12-01

    Increasing evidence suggests that reactions to lipopolysaccharide (LPS), particularly in the gut, can be partly or completely mitigated by colostrum- and milk-derived oligosaccharides. Confirmation of this hypothesis could lead to the development of new therapeutic concepts. To demonstrate the influence of equine colostral carbohydrates on the inflammatory response in an in vitro model with equine peripheral blood mononuclear cells (PBMCs). Carbohydrates were extracted from mare colostrum, and then evaluated for their influence on LPS-induced inflammatory responses in PBMCs isolated from the same mares, mRNA expression of tumour necrosis factor-alpha, interleukin-6 and interleukin-10 was measured as well as the protein levels of tumour necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10). Equine colostral carbohydrates significantly reduced LPS-induced TNF-alpha protein at both times measured and significantly reduced LPS-induced TNF-alpha, IL-6 and IL-10 mRNA expression by PBMCs. Moreover, cell viability significantly increased in the presence of high concentrations of colostral carbohydrates. Carbohydrates derived from equine colostrum reduce LPS-induced inflammatory responses of equine PBMCs. Colostrum and milk-derived carbohydrates are promising candidates for new concepts in preventive and regenerative medicine.

  11. Continuous fever-range heat stress induces thermotolerance in odontoblast-lineage cells.

    Science.gov (United States)

    Morotomi, Takahiko; Kitamura, Chiaki; Okinaga, Toshinori; Nishihara, Tatsuji; Sakagami, Ryuji; Anan, Hisashi

    2014-07-01

    Heat shock during restorative procedures can trigger damage to the pulpodentin complex. While severe heat shock has toxic effects, fever-range heat stress exerts beneficial effects on several cells and tissues. In this study, we examined whether continuous fever-range heat stress (CFHS) has beneficial effects on thermotolerance in the rat clonal dental pulp cell line with odontoblastic properties, KN-3. KN-3 cells were cultured at 41°C for various periods, and the expression level of several proteins was assessed by Western blot analysis. After pre-heat-treatment at 41°C for various periods, KN-3 cells were exposed to lethal severe heat shock (LSHS) at 49°C for 10min, and cell viability was examined using the MTS assay. Additionally, the expression level of odontoblast differentiation makers in surviving cells was examined by Western blot analysis. CFHS increased the expression levels of several heat shock proteins (HSPs) in KN-3 cells, and induced transient cell cycle arrest. KN-3 cells, not pre-heated or exposed to CFHS for 1 or 3h, died after exposure to LSHS. In contrast, KN-3 cells exposed to CFHS for 12h were transiently lower on day 1, but increased on day 3 after LSHS. The surviving cells expressed odontoblast differentiation markers, dentine sialoprotein and dentine matrix protein-1. These results suggest that CFHS for 12h improves tolerance to LSHS by inducing HSPs expression and cell cycle arrest in KN-3 cells. The appropriate pretreatment with continuous fever-range heat stress can provide protection against lethal heat shock in KN-3 cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The effects of fisetin on lipopolysaccharide-induced depressive-like behavior in mice.

    Science.gov (United States)

    Yu, Xuefeng; Jiang, Xi; Zhang, Xiangming; Chen, Ziwei; Xu, Lexing; Chen, Lei; Wang, Guokang; Pan, Jianchun

    2016-10-01

    Major depressive disorder (MDD) involves a series of pathological changes including the inflammation and increased cytokine levels. Fisetin, a natural flavonoid, has anti-inflammatory and antioxidant, and also has been shown in our previous studies to exert anti-depressant-like properties. The present study aimed to investigate the effect of fisetin on lipopolysaccharide (LPS)-induced depressive-like behavior and inflammation in mice. The results suggested that the immobility time in the forced swimming test (FST) and tail suspension test (TST) were increased at 6 h, 12 h and 24 h after LPS injection (0.83 mg/kg). However, only the group of 24 h treatment did not show any effect on locomotion counts. Pretreatment with fisetin at doses of 20, 40 and 80 mg/kg (p.o.) for 7 days reversed LPS-induced alterations of the immobility time in both of these two tests. Further neurochemical assays suggested that pretreatment with fisetin reversed LPS-induced overexpression of pro-inflammatory cytokine (IL-1β, IL-6 and TNF-α) in the hippocampus and the prefrontal cortex (PFC). Moreover, higher dose of fisetin effectively antagonized iNOS mRNA expression and nitrite levels via the modulation of NF-κB in the hippocampus and PFC. Taken together, fisetin may be an effective therapeutic agent for LPS-induced depressive-like behaviors, which is due to its anti-inflammatory property.

  13. Endogenous opioids: role in prostaglandin-dependent and -independent fever.

    Science.gov (United States)

    Fraga, Daniel; Machado, Renes R; Fernandes, Luíz C; Souza, Glória E P; Zampronio, Aleksander R

    2008-02-01

    This study evaluated the participation of mu-opioid-receptor activation in body temperature (T(b)) during normal and febrile conditions (including activation of heat conservation mechanisms) and in different pathways of LPS-induced fever. The intracerebroventricular treatment of male Wistar rats with the selective opioid mu-receptor-antagonist cyclic d-Phe-Cys-Try-d-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP; 0.1-1.0 microg) reduced fever induced by LPS (5.0 microg/kg) but did not change T(b) at ambient temperatures of either 20 degrees C or 28 degrees C. The subcutaneous, intracerebroventricular, and intrahypothalamic injection of morphine (1.0-10.0 mg/kg, 3.0-30.0 microg, and 1-100 ng, respectively) produced a dose-dependent increase in T(b). Intracerebroventricular morphine also produced a peripheral vasoconstriction. Both effects were abolished by CTAP. CTAP (1.0 microg icv) reduced the fever induced by intracerebroventricular administration of TNF-alpha (250 ng), IL-6 (300 ng), CRF (2.5 microg), endothelin-1 (1.0 pmol), and macrophage inflammatory protein (500 pg) and the first phase of the fever induced by PGF(2alpha) (500.0 ng) but not the fever induced by IL-1beta (3.12 ng) or PGE(2) (125.0 ng) or the second phase of the fever induced by PGF(2alpha). Morphine-induced fever was not modified by the cyclooxygenase (COX) inhibitor indomethacin (2.0 mg/kg). In addition, morphine injection did not induce the expression of COX-2 in the hypothalamus, and CTAP did not modify PGE(2) levels in cerebrospinal fluid or COX-2 expression in the hypothalamus after LPS injection. In conclusion, our results suggest that LPS and endogenous pyrogens (except IL-1beta and prostaglandins) recruit the opioid system to cause a mu-receptor-mediated fever.

  14. Spred-2 deficiency exacerbates lipopolysaccharide-induced acute lung inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Yang Xu

    Full Text Available BACKGROUND: Acute respiratory distress syndrome (ARDS is a severe and life-threatening acute lung injury (ALI that is caused by noxious stimuli and pathogens. ALI is characterized by marked acute inflammation with elevated alveolar cytokine levels. Mitogen-activated protein kinase (MAPK pathways are involved in cytokine production, but the mechanisms that regulate these pathways remain poorly characterized. Here, we focused on the role of Sprouty-related EVH1-domain-containing protein (Spred-2, a negative regulator of the Ras-Raf-extracellular signal-regulated kinase (ERK-MAPK pathway, in lipopolysaccharide (LPS-induced acute lung inflammation. METHODS: Wild-type (WT mice and Spred-2(-/- mice were exposed to intratracheal LPS (50 µg in 50 µL PBS to induce pulmonary inflammation. After LPS-injection, the lungs were harvested to assess leukocyte infiltration, cytokine and chemokine production, ERK-MAPK activation and immunopathology. For ex vivo experiments, alveolar macrophages were harvested from untreated WT and Spred-2(-/- mice and stimulated with LPS. In in vitro experiments, specific knock down of Spred-2 by siRNA or overexpression of Spred-2 by transfection with a plasmid encoding the Spred-2 sense sequence was introduced into murine RAW264.7 macrophage cells or MLE-12 lung epithelial cells. RESULTS: LPS-induced acute lung inflammation was significantly exacerbated in Spred-2(-/- mice compared with WT mice, as indicated by the numbers of infiltrating leukocytes, levels of alveolar TNF-α, CXCL2 and CCL2 in a later phase, and lung pathology. U0126, a selective MEK/ERK inhibitor, reduced the augmented LPS-induced inflammation in Spred-2(-/- mice. Specific knock down of Spred-2 augmented LPS-induced cytokine and chemokine responses in RAW264.7 cells and MLE-12 cells, whereas Spred-2 overexpression decreased this response in RAW264.7 cells. CONCLUSIONS: The ERK-MAPK pathway is involved in LPS-induced acute lung inflammation. Spred-2 controls

  15. Protective Effects of Edaravone in Adult Rats with Surgery and Lipopolysaccharide Administration-Induced Cognitive Function Impairment.

    Directory of Open Access Journals (Sweden)

    Peiqi Wang

    Full Text Available Postoperative cognitive dysfunction (POCD is a clinical syndrome characterized by cognitive declines in patients after surgery. Previous studies have suggested that surgery contributed to such impairment. It has been proven that neuroinflammation may exacerbate surgery-induced cognitive impairment in aged rats. The free radical scavenger edaravone has high blood brain barrier permeability, and was demonstrated to effectively remove free radicals from the brain and alleviate the development of POCD in patients undergoing carotid endarterectomy, suggesting its potential role in preventing POCD. For this reason, this study was designed to determine whether edaravone is protective against POCD through its inhibitory effects on inflammatory cytokines and oxidative stress. First, Sprague Dawley adult male rats were administered 3 mg/kg edaravone intraperitoneally after undergoing a unilateral nephrectomy combined with lipopolysaccharide injection. Second, behavioral parameters related to cognitive function were recorded by fear conditioning and Morris Water Maze tests. Last, superoxide dismutase activities and malondialdehyde levels were measured in the hippocampi and prefrontal cortex on postoperative days 3 and 7, and microglial (Iba1 activation, p-Akt and p-mTOR protein expression, and synaptic function (synapsin 1 were also examined 3 and 7 days after surgery. Rats that underwent surgery plus lipopolysaccharide administration showed significant impairments in spatial and working memory, accompanied by significant reductions in hippocampal-dependent and independent fear responses. All impairments were attenuated by treatment with edaravone. Moreover, an abnormal decrease in superoxide dismutase activation, abnormal increase in malondialdehyde levels, significant increase in microglial reactivity, downregulation of p-Akt and p-mTOR protein expression, and a statistically significant decrease in synapsin-1 were observed in the hippocampi and

  16. Protective Effects of Edaravone in Adult Rats with Surgery and Lipopolysaccharide Administration-Induced Cognitive Function Impairment.

    Science.gov (United States)

    Wang, Peiqi; Cao, Jiangbei; Liu, Na; Ma, Li; Zhou, Xueyue; Zhang, Hong; Wang, Yongan

    2016-01-01

    Postoperative cognitive dysfunction (POCD) is a clinical syndrome characterized by cognitive declines in patients after surgery. Previous studies have suggested that surgery contributed to such impairment. It has been proven that neuroinflammation may exacerbate surgery-induced cognitive impairment in aged rats. The free radical scavenger edaravone has high blood brain barrier permeability, and was demonstrated to effectively remove free radicals from the brain and alleviate the development of POCD in patients undergoing carotid endarterectomy, suggesting its potential role in preventing POCD. For this reason, this study was designed to determine whether edaravone is protective against POCD through its inhibitory effects on inflammatory cytokines and oxidative stress. First, Sprague Dawley adult male rats were administered 3 mg/kg edaravone intraperitoneally after undergoing a unilateral nephrectomy combined with lipopolysaccharide injection. Second, behavioral parameters related to cognitive function were recorded by fear conditioning and Morris Water Maze tests. Last, superoxide dismutase activities and malondialdehyde levels were measured in the hippocampi and prefrontal cortex on postoperative days 3 and 7, and microglial (Iba1) activation, p-Akt and p-mTOR protein expression, and synaptic function (synapsin 1) were also examined 3 and 7 days after surgery. Rats that underwent surgery plus lipopolysaccharide administration showed significant impairments in spatial and working memory, accompanied by significant reductions in hippocampal-dependent and independent fear responses. All impairments were attenuated by treatment with edaravone. Moreover, an abnormal decrease in superoxide dismutase activation, abnormal increase in malondialdehyde levels, significant increase in microglial reactivity, downregulation of p-Akt and p-mTOR protein expression, and a statistically significant decrease in synapsin-1 were observed in the hippocampi and prefrontal cortices of

  17. 12-oxo-phytodienoic acid, a plant-derived oxylipin, attenuates lipopolysaccharide-induced inflammation in microglia

    Energy Technology Data Exchange (ETDEWEB)

    Taki-Nakano, Nozomi [Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); Advanced Drug Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505 (Japan); Kotera, Jun [Advanced Drug Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505 (Japan); Ohta, Hiroyuki, E-mail: ohta.h.ab@m.titech.ac.jp [Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan)

    2016-05-13

    Jasmonates are plant lipid–derived oxylipins that act as key signaling compounds in plant immunity, germination, and development. Although some physiological activities of natural jasmonates in mammalian cells have been investigated, their anti-inflammatory actions in mammalian cells remain unclear. Here, we investigated whether jasmonates protect mouse microglial MG5 cells against lipopolysaccharide (LPS)–induced inflammation. Among the jasmonates tested, only 12-oxo-phytodienoic acid (OPDA) suppressed LPS-induced expression of the typical inflammatory cytokines interleukin-6 and tumor necrosis factor α. In addition, only OPDA reduced LPS-induced nitric oxide production through a decrease in the level of inducible nitric oxide synthase. Further mechanistic studies showed that OPDA suppressed neuroinflammation by inhibiting nuclear factor κB and p38 mitogen-activated protein kinase signaling in LPS-activated MG5 cells. In addition, OPDA induced expression of suppressor of cytokine signaling-1 (SOCS-1), a negative regulator of inflammation, in MG5 cells. Finally, we found that the nuclear factor erythroid 2-related factor 2 signaling cascade induced by OPDA is not involved in the anti-inflammatory effects of OPDA. These results demonstrate that OPDA inhibited LPS-induced cell inflammation in mouse microglial cells via multiple pathways, including suppression of nuclear factor κB, inhibition of p38, and activation of SOCS-1 signaling. -- Highlights: •OPDA attenuates LPS-induced inflammatory cytokines such as IL-6 and TNF-α. •OPDA reduces LPS-induced iNOS expression and NO production. •OPDA suppresses NF-κB and p38 pathways and activates SOCS-1 signaling.

  18. 12-oxo-phytodienoic acid, a plant-derived oxylipin, attenuates lipopolysaccharide-induced inflammation in microglia

    International Nuclear Information System (INIS)

    Taki-Nakano, Nozomi; Kotera, Jun; Ohta, Hiroyuki

    2016-01-01

    Jasmonates are plant lipid–derived oxylipins that act as key signaling compounds in plant immunity, germination, and development. Although some physiological activities of natural jasmonates in mammalian cells have been investigated, their anti-inflammatory actions in mammalian cells remain unclear. Here, we investigated whether jasmonates protect mouse microglial MG5 cells against lipopolysaccharide (LPS)–induced inflammation. Among the jasmonates tested, only 12-oxo-phytodienoic acid (OPDA) suppressed LPS-induced expression of the typical inflammatory cytokines interleukin-6 and tumor necrosis factor α. In addition, only OPDA reduced LPS-induced nitric oxide production through a decrease in the level of inducible nitric oxide synthase. Further mechanistic studies showed that OPDA suppressed neuroinflammation by inhibiting nuclear factor κB and p38 mitogen-activated protein kinase signaling in LPS-activated MG5 cells. In addition, OPDA induced expression of suppressor of cytokine signaling-1 (SOCS-1), a negative regulator of inflammation, in MG5 cells. Finally, we found that the nuclear factor erythroid 2-related factor 2 signaling cascade induced by OPDA is not involved in the anti-inflammatory effects of OPDA. These results demonstrate that OPDA inhibited LPS-induced cell inflammation in mouse microglial cells via multiple pathways, including suppression of nuclear factor κB, inhibition of p38, and activation of SOCS-1 signaling. -- Highlights: •OPDA attenuates LPS-induced inflammatory cytokines such as IL-6 and TNF-α. •OPDA reduces LPS-induced iNOS expression and NO production. •OPDA suppresses NF-κB and p38 pathways and activates SOCS-1 signaling.

  19. Vildagliptin ameliorates pulmonary fibrosis in lipopolysaccharide-induced lung injury by inhibiting endothelial-to-mesenchymal transition.

    Science.gov (United States)

    Suzuki, Toshio; Tada, Yuji; Gladson, Santhi; Nishimura, Rintaro; Shimomura, Iwao; Karasawa, Satoshi; Tatsumi, Koichiro; West, James

    2017-10-16

    Pulmonary fibrosis is a late manifestation of acute respiratory distress syndrome (ARDS). Sepsis is a major cause of ARDS, and its pathogenesis includes endotoxin-induced vascular injury. Recently, endothelial-to-mesenchymal transition (EndMT) was shown to play an important role in pulmonary fibrosis. On the other hand, dipeptidyl peptidase (DPP)-4 was reported to improve vascular dysfunction in an experimental sepsis model, although whether DPP-4 affects EndMT and fibrosis initiation during lipopolysaccharide (LPS)-induced lung injury is unclear. The aim of this study was to investigate the anti-EndMT effects of the DPP-4 inhibitor vildagliptin in pulmonary fibrosis after systemic endotoxemic injury. A septic lung injury model was established by intraperitoneal injection of lipopolysaccharide (LPS) in eight-week-old male mice (5 mg/kg for five consecutive days). The mice were then treated with vehicle or vildagliptin (intraperitoneally, 10 mg/kg, once daily for 14 consecutive days from 1 day before the first administration of LPS.). Flow cytometry, immunohistochemical staining, and quantitative polymerase chain reaction (qPCR) analysis was used to assess cell dynamics and EndMT function in lung samples from the mice. Lung tissue samples from treated mice revealed obvious inflammatory reactions and typical interstitial fibrosis 2 days and 28 days after LPS challenge. Quantitative flow cytometric analysis showed that the number of pulmonary vascular endothelial cells (PVECs) expressing alpha-smooth muscle actin (α-SMA) or S100 calcium-binding protein A4 (S100A4) increased 28 days after LPS challenge. Similar increases in expression were also confirmed by qPCR of mRNA from isolated PVECs. EndMT cells had higher proliferative activity and migration activity than mesenchymal cells. All of these changes were alleviated by intraperitoneal injection of vildagliptin. Interestingly, vildagliptin and linagliptin significantly attenuated EndMT in the absence of immune

  20. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    International Nuclear Information System (INIS)

    Yoo, Seong Ho; Abdelmegeed, Mohamed A.; Song, Byoung-Joon

    2013-01-01

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI

  1. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seong Ho, E-mail: yoosh@snu.ac.kr [Seoul National University Hospital, Biomedical Research Institute and Institute of Forensic Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Abdelmegeed, Mohamed A. [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States); Song, Byoung-Joon, E-mail: bj.song@nih.gov [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States)

    2013-07-05

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI.

  2. Effects of a bacterial lipopolysaccharide on the reproductive functions of rabbit does.

    Science.gov (United States)

    Brecchia, G; Menchetti, L; Cardinali, R; Castellini, C; Polisca, A; Zerani, M; Maranesi, M; Boiti, C

    2014-06-30

    Systemic and local infections and inflammations are known to cause infertility in humans and animals. However, the mechanisms by which infection/inflammation induces infertility are only partially known. The objectives of this study were: (i) to provide models of systemic (acute) and local (sub-acute) inflammation by intra-peritoneal injection or intra-cervical deposition of lipopolysaccharide (LPS) in the rabbit and (ii) to assess their effects on uterine tissues and sperm transport in the genital tract of rabbit does. Intra-peritoneal administration of different doses of LPS induced systemic effects such as fever, anorexia and changes in white blood cells (WBC) count. In our study, LPS inoculation (100μg/kg) produced an inflammation-like status that lasted for about 3 days, with minimal distress for the animals. Intra-peritoneal administration of LPS 60h before artificial insemination induced a rapid increase of IL-1β concentrations. The intra-cervical inoculation of LPS did not show any systemic effects, as confirmed by the lack of changes in body temperature, feed intake and WBC count. Histological examination of uterine tissues showed an endometritis-like inflammation status in LPS-treated does, more severe in those inoculated intra-cervically. The number of spermatozoa recovered from uterine horns and oviducts of intra-cervically treated does was less than that retrieved from intra-peritoneally treated animals and controls. These results suggest (i) that sub-acute or acute inflammation may cause infertility by compromising the uterine environment and/or impairing sperm transport and (ii) that the LPS-induced -infection/inflammation experimental model is useful for studying the mechanisms involved in reproductive dysfunctions in the rabbit. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Prenatal lipopolysaccharide induces hypothalamic dopaminergic hypoactivity and autistic-like behaviors: Repetitive self-grooming and stereotypies.

    Science.gov (United States)

    Kirsten, Thiago B; Bernardi, Maria M

    2017-07-28

    Previous investigations by our group have shown that prenatal exposure to lipopolysaccharide (LPS), which mimics infection by gram-negative bacteria, induces social, cognitive, and communication deficits. For a complete screening of autistic-like behaviors, the objective of this study was to evaluate if our rat model also induces restricted and repetitive stereotyped behaviors. Thus, we studied the self-grooming microstructure. We also studied the neurochemistry of hypothalamus and frontal cortex, which are brain areas related to autism to better understand central mechanisms involved in our model. Prenatal LPS exposure on gestational day 9.5 increased the head washing episodes (frequency and time), as well as the total self-grooming. However, body grooming, paw/leg licking, tail/genital grooming, and circling behavior/tail chasing did not vary significantly among the groups. Moreover, prenatal LPS induced dopaminergic hypoactivity (HVA metabolite and turnover) in the hypothalamus. Therefore, our rat model induced restricted and repetitive stereotyped behaviors and the other main symptoms of autism experimentally studied in rodent models and also found in patients. The hypothalamic dopaminergic impairments seem to be associated with the autistic-like behaviors. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Circulating interleukin-6 induces fever through a STAT3-linked activation of COX-2 in the brain.

    Science.gov (United States)

    Rummel, Christoph; Sachot, Christelle; Poole, Stephen; Luheshi, Giamal N

    2006-11-01

    Interleukin (IL)-6 is an important humoral mediator of fever following infection and inflammation and satisfies a number of criteria for a circulating pyrogen. However, evidence supporting such a role is diminished by the moderate or even absent ability of the recombinant protein to induce fever and activate the cyclooxygenase-2 (COX-2) pathway in the brain, a prerequisite step in the initiation and maintenance of fever. In the present study, we investigated the role of endogenous circulating IL-6 in a rodent model of localized inflammation, by neutralizing its action using a specific antiserum (IL-6AS). Rats were injected with LPS (100 microg/kg) or saline into a preformed air pouch in combination with an intraperitoneal injection of either normal sheep serum or IL-6AS (1.8 ml/rat). LPS induced a febrile response, which was accompanied by a significant rise in plasma IL-6 and nuclear STAT3 translocation in endothelial cells throughout the brain 2 h after treatment, including areas surrounding the sensory circumventricular organs and the median preoptic area (MnPO), important regions in mediating fever. These responses were abolished in the presence of the IL-6AS, which also significantly inhibited the LPS-induced upregulation of mRNA expression or immunoreactivity (IR) of the inducible form of COX, the rate-limiting enzyme for PGE2-synthesis. Interestingly, nuclear signal transducer and activator of transcription (STAT)3-positive cells colocalized with COX-2-IR, signifying that IL-6-activated cells are directly involved in PGE2 production. These observations suggest that IL-6 is an important circulating pyrogen that activates the COX-2-pathway in cerebral microvasculature, most likely through a STAT3-dependent pathway.

  5. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination.

    Science.gov (United States)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-02-13

    Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Valproic acid potentiates curcumin-mediated neuroprotection in Lipopolysaccharide induced rats

    Directory of Open Access Journals (Sweden)

    Amira eZaky

    2014-10-01

    Full Text Available The etiology of neuroinflammation is complex and comprises multifactorial, involving both genetic and environmental factors during which diverse genetic and epigenetic modulations are implicated. Curcumin (Cur, and valproic acid (VPA, histone deacetylase 1 inhibitor, have neuroprotective effects. The present study was designed with an aim to investigate the ability of co-treatment of both compounds (Cur or VPA (200mg/kg for four weeks to augment neuroprotection and enhance brain recovery from intra-peritoneal (IP injection of (250 µg/kg lipopolysaccharide (LPS-stimulated neuroinflammatory condition on rat brain cortex. Cortex activation and the effects of combined treatment and production of proinflammatory mediators, COX-2, APE1 and nitric oxide/iNOS were investigated. Neuroinflammation development was assessed by histological analyses and by investigating associated indices (BACE1, APP, PSEN-1 and PSEN-2. Furthermore we measured the expression profile of let-7 miRNAs members a, b, c, e and f in all groups, a highly abundant regulator of gene expression in the CNS. Protein and mRNA levels of neuroinflammation markers COX-2, BACE1, APP and iNOS were also attenuated by combined therapy. On the other hand, assessment of the indicated five let-7 members, showed distinct expression profile pattern in the different groups. Let-7 a, b and c disappeared in the induced group, an effect that was partially suppressed by co-addition of either Cur or VPA. These data suggest that the combined treatment induced significantly the expression of the five members when compared to rats treated with Cur or VPA only as well as to self-recovery group, which indicates a possible benefit from the synergistic effect of Cur-VPA combination as therapeutic agents for neuroinflammation and its associated disorders. The mechanism elucidated here highlights the particular drug-induced expression profile of let-7 family as new targets for future pharmacological development.

  7. Methyl jasmonate attenuated lipopolysaccharide-induced depressive-like behaviour in mice.

    Science.gov (United States)

    Adebesin, Adaeze; Adeoluwa, Olusegun A; Eduviere, Anthony T; Umukoro, Solomon

    2017-11-01

    Depression is a recurrent neuropsychiatric disorder that affects millions of individuals worldwide and impact negatively on the patients' social functions and quality of life. Studies have shown that i.p injection of lipopolysaccharide (LPS) induces depressive-like behavior in rodents via induction of oxidative stress and neuroinflammation. Methyl jasmonate (MJ), an isolated compound from jasmine plant has gained reputation in aromatherapy for treatment of depression, nervousness and memory deficits. This study was designed to evaluate the effects of MJ on LPS-induced depressive-like behavior in mice. Mice were given MJ (5-20 mg/kg), imipramine (10 mg/kg) or vehicle (10 mL/kg) intraperitoneally for 7 consecutive days. On day 7, treatment was carried out 30 min prior to i.p injection of LPS (830 μg/kg). Twenty four hours after LPS administration, tail suspension, forced swim and sucrose preference tests were carried out. Thereafter, serum corticosterone levels were determined using ELISA. The levels of malondialdehyde (MDA), glutathione (GSH) and tumor necrosis factor-alpha (TNF-α) were determined in brain tissue homogenates. LPS significantly increased immobility time in the tail suspension and forced swim tests when compared with vehicle (p < 0.05), which indicates depressive-like syndromes. However, the increased immobility time was significantly reduced by MJ (5-20 mg/kg) when compared with LPS-treated group. LPS administration also altered the levels of MDA, GSH, corticosterone and TNF alpha in mice, which was significantly reversed by MJ. These findings suggest that attenuation of LPS-induced depressive-like behavior by MJ may be related to suppression of oxidative stress and release of TNF alpha. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Protective effects of agmatine against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure in mice.

    Science.gov (United States)

    El-Agamy, Dina S; Makled, Mirhan N; Gamil, Nareman M

    2014-06-01

    Fulminant hepatic failure (FHF) is a life-threatening syndrome characterized by massive hepatic necrosis and high mortality. There is no effective therapy for the disease other than liver transplantation. This study aimed to investigate the effect of agmatine, inducible nitric oxide synthase (iNOS) inhibitor, on D-galactosamine and lipopolysaccharide (GalN/LPS)-induced FHF in mice and explore its possible mechanism(s). Male Swiss albino mice were injected with a single dose agmatine (14 mg/kg, IP) 8 h prior to challenge with a single intraperitoneal injection of both GalN (800 mg/kg) and LPS (50 μg/kg). Agmatine significantly attenuated all GalN/LPS-induced biochemical and pathological changes in liver. It prevented the increase of serum transaminases and alkaline phosphatase (ALP). In addition, agmatine markedly attenuated GalN/LPS-induced necrosis and inflammation. Agmatine significantly reduced oxidative stress and enhanced antioxidant enzymes. Importantly, agmatine decreased total nitric oxide (NO) and pro-inflammatory cytokine, tumor necrosis factor-alpha (TNF-α). These findings reveal that agmatine has hepatoprotective effects against GalN/LPS-induced FHF in mice that may be related to its ability to suppress oxidative stress, NO synthesis and TNF-α production. Therefore, agmatine may serve as a novel therapeutic strategy for hepatic inflammatory diseases.

  9. Copper sulfate pentahydrate reduced epithelial cytotoxicity induced by lipopolysaccharide from enterogenic bacteria.

    Science.gov (United States)

    Feyzi, Adel; Delkhosh, Aref; Nasrabadi, Hamid Tayefi; Cheraghi, Omid; Khakpour, Mansour; Barekati-Mowahed, Mazyar; Soltani, Sina; Mohammadi, Seyede Momeneh; Kazemi, Masoumeh; Hassanpour, Mehdi; Rezabakhsh, Aysa; Maleki-Dizaji, Nasrin; Rahbarghazi, Reza; Namdarian, Reza

    2017-05-01

    The over usage of multiple antibiotics contributes to the emergence of a whole range of antibiotic-resistant strains of bacteria causing enterogenic infections in poultry science. Therefore, finding an appropriate alternative natural substance carrying an antibacterial capacity would be immensely beneficial. It has been previously discovered that the different types of cupric salts, especially copper sulfate pentahydrate (CuSO 4 ·5H 2 O), to carry a potent bactericidal capacity. We investigated the neutralizing effect of CuSO 4 ·5H 2 O (6.25μg/ml) on the reactive oxygen species generation, and expression of MyD88, an essential adaptor protein of Toll-like receptor, and NF-κB in three intestinal epithelial cell lines exposed to 50ng/ml lipopolysaccharide. In order to find the optimal cupric sulfate concentration without enteritis-inducing toxicity, broiler chickens were initially fed with water containing 0.4, 0.5, and 1mg/l during a period of 4days. After determination of appropriate dosage, two broiler chickens and turkey flocks with enteritis were fed with cupric compound for 4days. We found that cupric sulfate can lessen the cytotoxic effect of lipopolysaccharide by reducing the reactive oxygen species content (psulfate. The copper sulfate in doses lower than 0.4mg/ml expressed no cytotoxic effect on the liver, kidney, and the intestinal tract while a concentration of 0.5 and 1mg/ml contributed to a moderate to severe tissue injuries. Pearson Chi-Square analysis revealed the copper cation significantly diminished the rate of mortality during 4-day feeding of broiler chicken and turkey with enteritis (p=0.000). Thus, the results briefed above all confirm the potent anti-bactericidal feature of cupric sulfate during the course of enteritis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Fluctuations in brain temperature induced by lipopolysaccharides: central and peripheral contributions.

    Science.gov (United States)

    Tang, Jeremy S; Kiyatkin, Eugene A

    2010-01-01

    In this study, we examined changes in central (anterior-preoptic hypothalamus) and peripheral (temporal muscle and facial skin) temperatures in freely moving rats following intravenous administration of bacterial lipopolysaccharides (LPS) at low doses (1 and 10 μg/kg) at thermoneutral conditions (28°C). Recordings were made with high temporal resolution (5-s bin) and the effects of LPS were compared with those induced by a tail-pinch, a standard arousing somato-sensory stimulus. At each dose, LPS moderately elevated brain, muscle, and skin temperatures. In contrast to rapid, monophasic and relatively short hyperthermic responses induced by a tail-pinch, LPS-induced increases in brain and muscle temperatures occurred with ~40 min onset latencies, showed three not clearly defined phases, were slightly larger with the 10 μm/kg dose, and maintained for the entire 4-hour post-injection recording duration. Based on dynamics of brain-muscle and skin-muscle temperature differentials, it appears that the hyperthermic response induced by LPS at the lowest dose originates from enhanced peripheral heat production, with no evidence of brain metabolic activation and skin vasoconstriction. While peripheral heat production also appears to determine the first phase of brain and body temperature elevation with LPS at 10 μg/kg, a further prolonged increase in brain-muscle differentials (onset at ~100 min) suggests metabolic brain activation as a factor contributing to brain and body hyperthermia. At this dose, skin temperature increase was weaker than in temporal muscle, suggesting vasoconstriction as another contributor to brain/body hyperthermia. Therefore, although both LPS at low doses and salient sensory stimuli moderately increase brain and body temperatures, these hyperthermic responses have important qualitative differences, reflecting unique underlying mechanisms.

  11. Possible Mechanisms Involved in Attenuation of Lipopolysaccharide-Induced Memory Deficits by Methyl Jasmonate in Mice.

    Science.gov (United States)

    Eduviere, Anthony Taghogho; Umukoro, Solomon; Adeoluwa, Olusegun A; Omogbiya, Itivere Adrian; Aluko, Oritoke Modupe

    2016-12-01

    This present study was carried out to investigate the likely mechanisms by which methyl jasmonate (MJ), 'an agent widely used in aromatherapy for neurological disorders, attenuates lipopolysaccharide (LPS)-induced memory deficits in mice. Mice were given intraperitoneal administration of LPS (250 µg/kg) alone or in combination with MJ (10-40 mg/kg), donepezil, DP (1 mg/kg), or vehicle for 7 successive days. Thereafter, memory was assessed using object recognition test (ORT). Acetylcholinesterase and myeloperoxidase activities were estimated in brain tissue homogenates. Brain levels of nitric oxide and markers of oxidative stress as well as histopathologic changes of the prefrontal cortex and cornu ammonis 1 (CA1) of the hippocampal region were also assessed. MJ (10-40 mg/kg) attenuated LPS-induced memory impairment in ORT. Moreover, the increased brain activities of acetylcholinesterase and myeloperoxidase enzymes were suppressed by MJ when compared with control (p memory deficits via mechanisms related to inhibition of acetylcholinesterase, myeloperoxidase, oxidative stress and neuronal degeneration.

  12. Atorvastatin reduces lipopolysaccharide-induced expression of cyclooxygenase-2 in human pulmonary epithelial cells

    Directory of Open Access Journals (Sweden)

    Chen Ping

    2005-04-01

    Full Text Available Abstract Objective To explore the effects of atorvastatin on expression of cyclooxygenase-2 (COX-2 in human pulmonary epithelial cells (A549. Methods A549 cells were incubated in DMEM medium containing lipopolysaccharide (LPS in the presence or absence of atorvastatin. After incubation, the medium was collected and the amount of prostaglandin E2 (PGE2 was measured by enzyme-linked immunosorbent assay (ELISA. The cells were harvested, and COX-2 mRNA and protein were analyzed by RT-PCR and western-blot respectively. Results LPS increased the expression of COX-2 mRNA and production of PGE2 in a dose- and time-dependent manner in A549. Induction of COX-2 mRNA and protein by LPS were inhibited by atorvastatin in a dose-dependent manner. Atorvastatin also significantly decreased LPS-induced production of PGE2. There was a positive correlation between reduced of COX-2 mRNA and decreased of PGE2 (r = 0.947, P Conclusion Atorvastatin down-regulates LPS-induced expression of the COX-2 and consequently inhibits production of PGE2 in cultured A549 cells.

  13. A Fermented Whole Grain Prevents Lipopolysaccharides-Induced Dysfunction in Human Endothelial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Laura Giusti

    2017-01-01

    Full Text Available Endogenous and exogenous signals derived by the gut microbiota such as lipopolysaccharides (LPS orchestrate inflammatory responses contributing to development of the endothelial dysfunction associated with atherosclerosis in obesity, metabolic syndrome, and diabetes. Endothelial progenitor cells (EPCs, bone marrow derived stem cells, promote recovery of damaged endothelium playing a pivotal role in cardiovascular repair. Since healthy nutrition improves EPCs functions, we evaluated the effect of a fermented grain, Lisosan G (LG, on early EPCs exposed to LPS. The potential protective effect of LG against LPS-induced alterations was evaluated as cell viability, adhesiveness, ROS production, gene expression, and NF-kB signaling pathway activation. Our results showed that LPS treatment did not affect EPCs viability and adhesiveness but induced endothelial alterations via activation of NF-kB signaling. LG protects EPCs from inflammation as well as from LPS-induced oxidative and endoplasmic reticulum (ER stress reducing ROS levels, downregulating proinflammatory and proapoptotic factors, and strengthening antioxidant defense. Moreover, LG pretreatment prevented NF-kB translocation from the cytoplasm into the nucleus caused by LPS exposure. In human EPCs, LPS increases ROS and upregulates proinflammatory tone, proapoptotic factors, and antioxidants. LG protects EPCs exposed to LPS reducing ROS, downregulating proinflammatory and proapoptotic factors, and strengthening antioxidant defenses possibly by inhibiting NF-κB nuclear translocation.

  14. Interleukin-10 Protection against Lipopolysaccharide-Induced Neuro-Inflammation and Neurotoxicity in Ventral Mesencephalic Cultures.

    Science.gov (United States)

    Zhu, Yan; Chen, Xiao; Liu, Zhan; Peng, Yu-Ping; Qiu, Yi-Hua

    2015-12-28

    Interleukin (IL)-10, an anti-inflammatory cytokine, is expressed in the brain and can inhibit microglial activation. Herein, we utilized lipopolysaccharide (LPS)-induced inflammatory Parkinson's disease (PD) cell model to determine whether microglia and astrocytes are necessary targets for IL-10 neuroprotection. Primary ventral mesencephalic (VM) cultures with different composition of neurons, microglia and astrocytes were prepared. The cells were exposed to IL-10 (15, 50 or 150 ng/mL) 1 h prior to LPS (50 ng/mL) treatment. LPS induced dopaminergic and non-dopaminergic neuronal loss in VM cultures, VM neuron-enriched cultures, and neuron-microglia co-cultures, but not in neuron-astrocyte co-cultures. IL-10 reduced LPS-induced neuronal loss particularly in single VM neuron cultures. Pro-inflammatory mediators (TNF-α, IL-1β, inducible nitric oxide synthase and cyclooxygenase-2) were upregulated in both neuron-microglia and neuron-astrocyte co-cultures by LPS. In contrast, neurotrophic factors (brain-derived neurotrophic factor, insulin-like growth factor-1 or glial cell-derived neurotrophic factor) were downregulated in neuron-microglia co-cultures, but upregulated in neuron-astrocyte co-cultures by LPS. IL-10 reduced both the increase in production of the pro-inflammatory mediators and the decrease in production of the neurotrophic factors induced by LPS. These results suggest that astrocytes can balance LPS neurotoxicity by releasing more neurotrophic factors and that IL-10 exerts neuroprotective property by an extensive action including direct on neurons and indirect via inhibiting microglial activation.

  15. Protective effects of agmatine on lipopolysaccharide-injured microglia and inducible nitric oxide synthase activity.

    Science.gov (United States)

    Ahn, Soo Kyung; Hong, Samin; Park, Yu Mi; Choi, Ja Yong; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2012-12-17

    Proinflammatory factors released from activated microglia contribute to maintaining homeostasis against various noxious stimuli in the central nervous system. If excessive, however, they may initiate a pathologic neuroinflammatory process. In this investigation, we evaluated whether agmatine, a primary polyamine known to protect neurons, reduces lipopolysaccharide (LPS)-induced damage to microglia in vitro and in vivo. For in vitro study, BV2-immortalized murine microglia were exposed to LPS with agmatine treatment. After 24hours, cell viability and the amount of nitrite generated were determined. For in vivo study, LPS was microinjected into the corpus callosum of adult male albino mice. Agmatine was intraperitoneally administered at the time of injury. Brains were evaluated 24hours after LPS microinjection to check for immunoreactivity with a microglial marker of ionized calcium binding adaptor molecule 1 (Iba1) and inducible nitric oxide synthase (iNOS). Using western blot analysis, protein expression of iNOS as well as that of the proinflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β, was determined. Agmatine significantly reduced the LPS-induced BV2 microglial cytotoxicity from over 80% to less than 60% (pAgmatine also decreased the activities of microglia and iNOS induced by LPS microinjection into corpus callosum. Our findings reveal that agmatine attenuates LPS-induced microglial damage and suggest that agmatine may serve as a novel therapeutic strategy for neuroinflammatory diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Comparative Evaluation of Tubex TF (Inhibition Magnetic Binding Immunoassay) for Typhoid Fever in Endemic Area.

    Science.gov (United States)

    Khanna, Ashish; Khanna, Menka; Gill, Karamjit Singh

    2015-11-01

    Typhoid fever remains a significant health problem in endemic countries like India. Various serological tests for the diagnosis of typhoid fever are available commercially. We assessed the usefulness of rapid test based on magnetic particle separation to detect Immunoglobulin against Salmonella typhi O9 lipopolysaccharide. Aim of this study was to compare the sensitivity and specificity of widal test, typhidot and tubex TF test for the diagnosis of typhoid fever in an endemic country like India. Serum samples collected from 50 patients of typhoid fever, 50 patients of non typhoid fever and 100 normal healthy individuals residing in Amritsar were subjected to widal test, typhidot test and tubex TF test as per manufacturer's instructions. Data collected was assessed to find sensitivity and specificity of these tests in an endemic area. Significant widal test results were found positive in 68% of patients of typhoid fever and only 4% of non typhoid fever patients. Typhidot (IgM or IgG) was positive in 72% of typhoid fever patients and 10% and 6% in non typhoid fever and normal healthy individuals respectively. Tubex TF showed higher sensitivity of 76% and specificity of 96-99% which was higher than typhidot and comparable to widal test. This was the first evaluation of rapid tubex TF test in northern India. In countries which can afford high cost of test, tubex TF should be recommended for the diagnosis in acute stage of the disease in clinical setting. However, there is urgent need for a highly specific and sensitive test for the diagnosis of typhoid fever in clinical settings in endemic areas.

  17. The effect of Porphyromonas gingivalis lipopolysaccharide on pregnancy in the rat

    NARCIS (Netherlands)

    Kunnen, A; van Pampus, M G; Aarnoudse, J G; van der Schans, C P; Abbas, F; Faas, M M

    OBJECTIVE: Periodontitis, mostly associated with Porphyromonas gingivalis, has frequently been related to adverse pregnancy outcomes. We therefore investigated whether lipopolysaccharides of P. gingivalis (Pg-LPS) induced pregnancy complications in the rat. METHODS: Experiment 1: pregnant rats (day

  18. Acute Neuroinflammatory Response in the Substantia Nigra Pars Compacta of Rats after a Local Injection of Lipopolysaccharide

    Science.gov (United States)

    Gonzalez-Barrios, Juan A.; Gutierrez-Castillo, Maria E.

    2018-01-01

    Models of Parkinson's disease with neurotoxins have shown that microglial activation does not evoke a typical inflammatory response in the substantia nigra, questioning whether neuroinflammation leads to neurodegeneration. To address this issue, the archetypal inflammatory stimulus, lipopolysaccharide (LPS), was injected into the rat substantia nigra. LPS induced fever, sickness behavior, and microglial activation (OX42 immunoreactivity), followed by astrocyte activation and leukocyte infiltration (GFAP and CD45 immunoreactivities). During the acute phase of neuroinflammation, pro- and anti-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-4, and IL-10) responded differentially at mRNA and protein level. Increased NO production and lipid peroxidation occurred at 168 h after LPS injection. At this time, evidence of neurodegeneration could be seen, entailing decreased tyrosine hydroxylase (TH) immunoreactivity, irregular body contour, and prolongation discontinuity of TH+ cells, as well as apparent phagocytosis of TH+ cells by OX42+ cells. Altogether, these results show that LPS evokes a typical inflammatory response in the substantia nigra that is followed by dopaminergic neurodegeneration. PMID:29854828

  19. Acute Neuroinflammatory Response in the Substantia Nigra Pars Compacta of Rats after a Local Injection of Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Yazmin M. Flores-Martinez

    2018-01-01

    Full Text Available Models of Parkinson’s disease with neurotoxins have shown that microglial activation does not evoke a typical inflammatory response in the substantia nigra, questioning whether neuroinflammation leads to neurodegeneration. To address this issue, the archetypal inflammatory stimulus, lipopolysaccharide (LPS, was injected into the rat substantia nigra. LPS induced fever, sickness behavior, and microglial activation (OX42 immunoreactivity, followed by astrocyte activation and leukocyte infiltration (GFAP and CD45 immunoreactivities. During the acute phase of neuroinflammation, pro- and anti-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-4, and IL-10 responded differentially at mRNA and protein level. Increased NO production and lipid peroxidation occurred at 168 h after LPS injection. At this time, evidence of neurodegeneration could be seen, entailing decreased tyrosine hydroxylase (TH immunoreactivity, irregular body contour, and prolongation discontinuity of TH+ cells, as well as apparent phagocytosis of TH+ cells by OX42+ cells. Altogether, these results show that LPS evokes a typical inflammatory response in the substantia nigra that is followed by dopaminergic neurodegeneration.

  20. Acanthopanax trifoliatus inhibits lipopolysaccharide-induced inflammatory response in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Tzu-Mei Chien

    2015-10-01

    Full Text Available Acanthopanax trifoliatus is a well-known herb that is used for the treatment of bruising, neuralgia, impotence, and gout in Taiwan. This herb exhibits multifunctional activities, including anticancer, anti-inflammation, and antioxidant effects. This paper investigated the in vitro and in vivo anti-inflammatory effect of A. trifoliatus. High-performance liquid chromatography analysis established the fingerprint chromatogram of the ethyl acetate fraction of A. trifoliatus (EAAT. The anti-inflammatory effect of EAAT was detected using lipopolysaccharide (LPS stimulation of the mouse macrophage cell line RAW264.7 in vitro and LPS-induced lung injury in vivo. The effects of EAAT on LPS-induced production of inflammatory mediators in RAW264.7 murine macrophages and the mouse model were measured using enzyme-linked immunosorbent assay and Western blot. EAAT attenuated the production of LPS-induced nitric oxide (NO, tumor necrosis factor-alpha, interleukin-1β (IL-1β, and IL-6 in vitro and in vivo. Pretreatment with EAAT markedly reduced LPS-induced histological alterations in lung tissues. Furthermore, EAAT significantly reduced the number of total cells and protein concentration levels in the bronchoalveolar lavage fluid. Western blotting test results revealed that EAAT blocked protein expression of inducible NO synthase, cyclooxygenase-2, phosphorylation of Nuclear factor-kappa-B Inhibitor alpha (IκB-α protein, and mitogen-activated protein kinases in LPS-stimulated RAW264.7 cells as well as LPS-induced lung injury. This study suggests that A. trifoliatus may be a potential therapeutic candidate for the treatment of inflammatory diseases.

  1. Sarcandra glabra combined with lycopene protect rats from lipopolysaccharide induced acute lung injury via reducing inflammatory response.

    Science.gov (United States)

    Liu, Tian-Yin; Chen, Shi-Biao

    2016-12-01

    Sarcandra glabra (Chinese name, Zhongjiefeng) is an important herb widely used in traditional Chinese medicine. Lycopene has been shown to be a powerful antioxidant. This study aims to test the hypothesis that Sarcandra glabra combined with lycopene protect rats from lipopolysaccharide (LPS) induced acute lung injury (ALI). Metabolomics approach combined with pathological inspection, serum biochemistry examination, enzyme-linked immunosorbent assay and western blotting were used to explore the protective effects of Sarcandra glabra and lycopene on LPS-induced ALI, and to elucidate the underlying mechanisms. Results showed that Sarcandra glabra and lycopene could significantly ameliorate LPS-induced histopathological injuries, improve the anti-oxidative activities of rats, decrease the levels of TNF-α and IL-6, suppress the activations of MAPK and transcription factor NF-κB and reverse the disturbed metabolism towards the normal status. Taken together, this integrated study revealed that Sarcandra glabra combined with lycopene had great potential in protecting rats from LPS-induced ALI, which would be helpful to guide the clinical medication. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Chondroitin Sulfate-Rich Extract of Skate Cartilage Attenuates Lipopolysaccharide-Induced Liver Damage in Mice.

    Science.gov (United States)

    Song, Yeong Ok; Kim, Mijeong; Woo, Minji; Baek, Jang-Mi; Kang, Keon-Hee; Kim, Sang-Ho; Roh, Seong-Soo; Park, Chan Hum; Jeong, Kap-Seop; Noh, Jeong-Sook

    2017-06-15

    The protective effects of a chondroitin sulfate-rich extract (CSE) from skate cartilage against lipopolysaccharide (LPS)-induced hepatic damage were investigated, and its mechanism of action was compared with that of chondroitin sulfate (CS) from shark cartilage. ICR mice were orally administrated 200 mg/kg body weight (BW) of CS or 400 mg/kg BW of CSE for 3 consecutive days, followed by a one-time intraperitoneal injection of LPS (20 mg/kg BW). The experimental groups were vehicle treatment without LPS injection (NC group), vehicle treatment with LPS injection (LPS group), CS pretreatment with LPS injection (CS group), and CSE pretreatment with LPS injection (CSE group). Hepatic antioxidant enzyme expression levels in the CS and CSE groups were increased relative to those in the LPS group. In LPS-insulted hepatic tissue, inflammatory factors were augmented relative to those in the NC group, but were significantly suppressed by pretreatment with CS or CSE. Moreover, CS and CSE alleviated the LPS-induced apoptotic factors and mitogen-activated protein kinase (MAPK). In addition, CS and CSE effectively decreased the serum lipid concentrations and downregulated hepatic sterol regulatory element-binding proteins expression. In conclusion, the skate CSE could protect against LPS-induced hepatic dyslipidemia, oxidative stress, inflammation, and apoptosis, probably through the regulation of MAPK signaling.

  3. Rabdosia japonica var. glaucocalyx Flavonoids Fraction Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Chun-jun Chu

    2014-01-01

    Full Text Available Rabdosia japonica var. glaucocalyx (Maxim. Hara, belonging to the Labiatae family, is widely used as an anti-inflammatory and antitumor drug for the treatment of different inflammations and cancers. Aim of the Study. To investigate therapeutic effects and possible mechanism of the flavonoids fraction of Rabdosia japonica var. glaucocalyx (Maxim. Hara (RJFs in acute lung injury (ALI mice induced by lipopolysaccharide (LPS. Materials and Methods. Mice were orally administrated with RJFs (6.4, 12.8, and 25.6 mg/kg per day for 7 days, consecutively, before LPS challenge. Lung specimens and the bronchoalveolar lavage fluid (BALF were isolated for histopathological examinations and biochemical analysis. The level of complement 3 (C3 in serum was quantified by a sandwich ELISA kit. Results. RJFs significantly attenuated LPS-induced ALI via reducing productions of the level of inflammatory mediators (TNF-α, IL-6, and IL-1β, and significantly reduced complement deposition with decreasing the level of C3 in serum, which was exhibited together with the lowered myeloperoxidase (MPO activity and nitric oxide (NO and protein concentration in BALF. Conclusions. RJFs significantly attenuate LPS-induced ALI via reducing productions of proinflammatory mediators, decreasing the level of complement, and reducing radicals.

  4. Intervention effect and dose-dependent response of tanreqing injection on airway inflammation in lipopolysaccharide-induced rats.

    Science.gov (United States)

    Dong, Shoujin; Zhong, Yunqing; Yang, Kun; Xiong, Xiaoling; Mao, Bing

    2013-08-01

    To assess the effect of Tanreqing injection on airway inflammation in rats. A rat model of airway inflammation was generated with lipopolysaccharide (LPS). Tanreqing injection was given by intratracheal instillation, and bronchoalveolar lavage fluid (BALF) from the right lung was collected. BALF total cell and neutrophil counts were then determined. In addition, BALF levels of inflammatory cytokines interleukin-13, cytokine-induced neutrophil chemoat-tractant-1, and tumor necrosis factor-alpha were measured using enzyme linked immunosorbent assay. The middle lobe of the right lung was stained with hematoxylin-eosin and histological changes examined. LPS increased airway inflammation, decreased BALF inflammatory cell count, inflammatory cytokine levels, and suppressed leukocyte influx of the lung. The LPS-induced airway inflammation peaked at 24 h, decreased beginning at 48 h, and had decreased markedly by 96 h. Tanreqing injection contains anti-inflammatory properties, and inhibits airway inflammation in a dose-dependent manner.

  5. Prophylactic first-line antibiotics reduce infectious fever and shorten hospital stay during chemotherapy-induced agranulocytosis in childhood acute myeloid leukemia.

    Science.gov (United States)

    Feng, Xiaoqin; Ruan, Yongsheng; He, Yuelin; Zhang, Yuming; Wu, Xuedong; Liu, Huayin; Liu, Xuan; He, Lan; Li, Chunfu

    2014-01-01

    There exists few pediatric data on the safety and efficacy of prophylactic antibiotics during chemotherapy-induced agranulocytosis. We prospectively studied the incidence of infection-related fever in 38 children, aged 2-16 years, with acute myeloid leukemia (AML) over 121 chemotherapy treatment cycles. A prophylactic group (n = 18) was given either vancomycin/cefepime (400 mg/m(2), q12 h/50 mg/kg, q12 h) or piperacillin/tazobactam (110 mg/kg, q12 h). Control patients (n = 20) received no preventive antibiotics. The prophylactic group (59 treatment cycles) experienced fever less frequently than the control group (0.4 vs. 0.9 events; p chemotherapy-induced agranulocytosis can effectively reduce the incidence of infectious fever and can shorten the average length of hospital stay, improving treatment success and quality of life. © 2014 S. Karger AG, Basel.

  6. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    International Nuclear Information System (INIS)

    Zhao, Z.G.; Zhang, L.L.; Niu, C.Y.; Zhang, J.

    2014-01-01

    The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL) on lipopolysaccharide (LPS)-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg) was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg) was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1), myeloperoxidase (MPO), and Na + -K + -ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na + -K + -ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na + -K + -ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis

  7. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.; Jiang, Y. [Southern Medical University, Nanfang Hospital, Department of Anesthesia, Guangzhou, China, Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou (China); Tang, Y.; Chen, B. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China); Sun, X. [Laboratory of Traditional Chinese Medicine Syndrome, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Su, L.; Liu, Z. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China)

    2013-06-25

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.

  8. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    International Nuclear Information System (INIS)

    Tang, J.; Jiang, Y.; Tang, Y.; Chen, B.; Sun, X.; Su, L.; Liu, Z.

    2013-01-01

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries

  9. Piperine Augments the Protective Effect of Curcumin Against Lipopolysaccharide-Induced Neurobehavioral and Neurochemical Deficits in Mice.

    Science.gov (United States)

    Jangra, Ashok; Kwatra, Mohit; Singh, Tavleen; Pant, Rajat; Kushwah, Pawan; Sharma, Yogita; Saroha, Babita; Datusalia, Ashok Kumar; Bezbaruah, Babul Kumar

    2016-06-01

    The aim of the present study was to investigate the protective effects of curcumin alone and in combination with piperine against lipopolysaccharide (LPS)-induced neurobehavioral and neurochemical deficits in the mice hippocampus. Mice were treated with curcumin (100, 200, and 400 mg/kg, p.o.) and piperine (20 mg/kg, p.o.) for 7 days followed by LPS (0.83 mg/kg, i.p.) administration. Animals exhibited anxiety and depressive-like phenotype after 3 and 24 h of LPS exposure, respectively. LPS administration increased the oxido-nitrosative stress as evident by elevated levels of malondialdehyde, nitrite, and depletion of glutathione level in the hippocampus. Furthermore, we found raised level of pro-inflammatory cytokines (IL-1β and TNF-α) in the hippocampus of LPS-treated mice. Pretreatment with curcumin alleviated LPS-induced neurobehavioral and neurochemical deficits. Furthermore, co-administration of curcumin with piperine significantly potentiated the neuroprotective effect of curcumin. These results demonstrate that piperine enhanced the neuroprotective effect of curcumin against LPS-induced neurobehavioral and neurochemical deficits.

  10. A possible mechanism of maxillofacial abscess formation: involvement of Porphyromonas endodontalis lipopolysaccharide via the expression of inflammatory cytokines.

    Science.gov (United States)

    Murakami, Y; Hanazawa, S; Tanaka, S; Iwahashi, H; Yamamoto, Y; Fujisawa, S

    2001-12-01

    In a previous study, we developed a specific monoclonal antibody against Porphyromonas endodontalis lipopolysaccharide, and demonstrated that this lipopolysaccharide was detected in bacterially infected root canal fluid. We suggest here that P. endodontalis lipopolysaccharide in the infectious materials plays a stimulatory role in maxillofacial abscess formation via the expression of inflammatory cytokines. Our epidemiological study showed that this lipopolysaccharide was detected in significant levels the infectious material of patients with periapical periodontitis and odontogenic abscesses. Interestingly, infectious material-induced expression of tumor necrosis factor-alpha, interleukin-1beta, or neutrophil chemoattractant KC genes in mouse macrophages, was significantly neutralized by monoclonal antibody against the lipopolysaccharide. In addition, we also detected a significant amount of tumor necrosis factor-alpha in the infectious material. These results suggest that P. endodontalis lipopolysaccharide plays an important role in the pathogenic mechanism of maxillofacial abscess formation via the expression of inflammatory cytokines.

  11. Cordycepin alleviates lipopolysaccharide-induced acute lung injury via Nrf2/HO-1 pathway.

    Science.gov (United States)

    Qing, Rui; Huang, Zezhi; Tang, Yufei; Xiang, Qingke; Yang, Fan

    2018-04-24

    The present study is to investigate the protective effect of cordycepin on inflammatory reactions in rats with acute lung injury (ALI) induced by lipopolysaccharide (LPS), as well as the underlying mechanism. Wistar rat model of ALI was induced by intravenous injection of LPS (30 mg/kg body weight). One hour later, intravenous injection of cordycepin (1, 10 or 30 mg/kg body weight) was administered. The wet-to-dry weight ratio of lung tissues and myeloperoxidase activity in the lung tissues were measured. The contents of nitrite and nitrate were measured by reduction method, while chemiluminescence was used to determine the content of superoxide. Quantitative real-time polymerase chain reaction and Western blotting were used to determine the expression of mRNA and protein, respectively. Colorimetry was performed to determine the enzymatic activity of heme oxygenase-1 (HO-1). Nuclear translocation of Nrf2 was identified by Western blotting. The plasma contents of cytokines were measured by enzyme-linked immunosorbent assay. Cordycepin enhanced the expression and enzymatic activity of HO-1 in ALI rats, and activated Nrf2 by inducing the translocation of Nrf2 from cytoplasm to nucleus. In addition, cordycepin regulated the secretion of TNF-α, IL-6 and IL-10 via HO-1, and suppressed inflammation in lung tissues of ALI rats by inducing the expression of HO-1. HO-1 played important roles in the down-regulation of superoxide levels in lung tissues by cordycepin, and HO-1 expression induced by cordycepin affected nitrite and nitrate concentrations in plasma and iNOS protein expression in lung tissues. Cordycepin showed protective effect on injuries in lung tissues. The present study demonstrates that cordycepin alleviates inflammation induced by LPS via the activation of Nrf2 and up-regulation of HO-1 expression. Copyright © 2018. Published by Elsevier B.V.

  12. Transcriptional profiles of Rel/NF-κB, inhibitor of NF-κB (IκB), and lipopolysaccharide-induced TNF-α factor (LITAF) in the lipopolysaccharide (LPS) and two Vibrio sp.-exposed intertidal copepod, Tigriopus japonicus.

    Science.gov (United States)

    Kim, Bo-Mi; Jeong, Chang-Bum; Rhee, Jae-Sung; Lee, Jae-Seong

    2014-02-01

    The immune system and the role of immunity-related genes have rarely been studied in copepods, even though copepods have a primitive immune response system and also have a potential in pathogen transport higher trophic levels. In this study, we firstly cloned and characterized three core immune genes such as nuclear factor κB (NF-κB), inhibitor of NF-κB (IκB), and lipopolysaccharide-induced TNF-α factor (LITAF) genes in the intertidal copepod Tigriopus japonicus. Several in silico analyses based on conserved domains, motifs, and phylogenetic relationships were supporting their annotations. To investigate the immune-related role of three genes, we exposed lipopolysaccharide (LPS) and two Vibrio sp. to T. japonicus. After exposure of different concentrations of LPS and two Vibrio sp., transcripts of TJ-IκB and TJ-LITAF genes were significantly elevated during the time course in a dose-dependent manner, while TJ-NF-κB transcripts were not significantly changed during exposure. These findings demonstrated that the copepod T. japonicus has a conserved immunity against infection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Genistein suppresses Prevotella intermedia lipopolysaccharide-induced inflammatory response in macrophages and attenuates alveolar bone loss in ligature-induced periodontitis.

    Science.gov (United States)

    Choi, Eun-Young; Bae, Seung Han; Ha, Min Hee; Choe, So-Hui; Hyeon, Jin-Yi; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2016-02-01

    Genistein is a major isoflavone subclass of flavonoids found in soybean and a potent tyrosine kinase inhibitor. The present study aimed to assess the effect of genistein on the production of proinflammatory mediators in murine macrophages stimulated with lipopolysaccharide (LPS) isolated from Prevotella intermedia, a pathogen associated with different forms of periodontal disease, and to evaluate its possible influence on alveolar bone loss in ligature-induced periodontitis using micro-computed tomography (micro-CT) analysis as well. LPS was isolated from P. intermedia ATCC 25611 by using the standard hot phenol-water method. Culture supernatants were analyzed for nitric oxide (NO) and interleukin-6 (IL-6). Inducible NO synthase (iNOS) protein expression was evaluated by immunoblot analysis. Real-time PCR was carried out to measure iNOS and IL-6 mRNA expression. In addition, effect of genistein on alveolar bone loss was evaluated in a rat model of experimental periodontitis using micro-CT analysis. Genistein significantly attenuated P. intermedia LPS-induced production of iNOS-derived NO and IL-6 with attendant decrease in their mRNA expression in RAW264.7 cells. In addition, when genistein was administered to rats, decreases in alveolar bone height and bone volume fraction induced by ligature placement were significantly inhibited. Genistein administration also prevented ligature-induced alterations in the microstructural parameters of trabecular bone, including trabecular thickness, trabecular separation, bone mineral density and structure model index. While additional studies are required, we suggest that genistein could be utilized for the therapy of human periodontitis in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Glucose availability enhances lipopolysaccharide production and immunogenicity in the opportunistic pathogen Acinetobacter baumannii.

    Science.gov (United States)

    Rossi, Elio; Longo, Francesca; Barbagallo, Marialuisa; Peano, Clelia; Consolandi, Clarissa; Pietrelli, Alessandro; Jaillon, Sebastian; Garlanda, Cecilia; Landini, Paolo

    2016-01-01

    Acinetobacter baumannii can cause sepsis with high mortality rates. We investigated whether glucose sensing might play a role in A. baumannii pathogenesis. We carried out transcriptome analysis and extracellular polysaccharide determination in an A. baumannii clinical isolate grown on complex medium with or without glucose supplementation, and assessed its ability to induce production of inflammatory cytokines in human macrophages. Growth in glucose-supplemented medium strongly enhanced A. baumannii sugar anabolism, resulting in increasing lipopolysaccharide biosynthesis. In addition, glucose induced active shedding of lipopolysaccharide, in turn triggering a strong induction of inflammatory cytokines in human macrophages. Finally, hemolytic activity was strongly enhanced by growth in glucose-supplemented medium. We propose that sensing of exogenous glucose might trigger A. baumannii pathogenesis during sepsis.

  15. Interleukin-10 Protection against Lipopolysaccharide-Induced Neuro-Inflammation and Neurotoxicity in Ventral Mesencephalic Cultures

    Directory of Open Access Journals (Sweden)

    Yan Zhu

    2015-12-01

    Full Text Available Interleukin (IL-10, an anti-inflammatory cytokine, is expressed in the brain and can inhibit microglial activation. Herein, we utilized lipopolysaccharide (LPS-induced inflammatory Parkinson’s disease (PD cell model to determine whether microglia and astrocytes are necessary targets for IL-10 neuroprotection. Primary ventral mesencephalic (VM cultures with different composition of neurons, microglia and astrocytes were prepared. The cells were exposed to IL-10 (15, 50 or 150 ng/mL 1 h prior to LPS (50 ng/mL treatment. LPS induced dopaminergic and non-dopaminergic neuronal loss in VM cultures, VM neuron-enriched cultures, and neuron-microglia co-cultures, but not in neuron-astrocyte co-cultures. IL-10 reduced LPS-induced neuronal loss particularly in single VM neuron cultures. Pro-inflammatory mediators (TNF-α, IL-1β, inducible nitric oxide synthase and cyclooxygenase-2 were upregulated in both neuron-microglia and neuron-astrocyte co-cultures by LPS. In contrast, neurotrophic factors (brain-derived neurotrophic factor, insulin-like growth factor-1 or glial cell-derived neurotrophic factor were downregulated in neuron-microglia co-cultures, but upregulated in neuron-astrocyte co-cultures by LPS. IL-10 reduced both the increase in production of the pro-inflammatory mediators and the decrease in production of the neurotrophic factors induced by LPS. These results suggest that astrocytes can balance LPS neurotoxicity by releasing more neurotrophic factors and that IL-10 exerts neuroprotective property by an extensive action including direct on neurons and indirect via inhibiting microglial activation.

  16. Lipopolysaccharide-induced dopaminergic cell death in rat midbrain slice cultures: role of inducible nitric oxide synthase and protection by indomethacin.

    Science.gov (United States)

    Shibata, Haruki; Katsuki, Hiroshi; Nishiwaki, Mayumi; Kume, Toshiaki; Kaneko, Shuji; Akaike, Akinori

    2003-09-01

    Glial cell activation associated with inflammatory reaction may contribute to pathogenic processes of neurodegenerative disorders, through production of several cytotoxic molecules. We investigated the consequences of glial activation by interferon-gamma (IFN-gamma)/lipopolysaccharide (LPS) in rat midbrain slice cultures. Application of IFN-gamma followed by LPS caused dopaminergic cell death and accompanying increases in nitrite production and lactate dehydrogenase release. Aminoguanidine, an inhibitor of inducible nitric oxide synthase (iNOS), or SB203580, an inhibitor of p38 mitogen-activated protein kinase, prevented dopaminergic cell loss as well as nitrite production. SB203580 also suppressed expression of iNOS and cyclooxygenase-2 (COX-2) induced by IFN-gamma/LPS. A COX inhibitor indomethacin protected dopaminergic neurons from IFN-gamma/LPS-induced injury, whereas selective COX-2 inhibitors such as NS-398 and nimesulide did not. Notably, indomethacin was able to attenuate neurotoxicity of a nitric oxide (NO) donor. Neutralizing antibodies against tumour necrosis factor-alpha and interleukin-1beta did not inhibit dopaminergic cell death caused by IFN-gamma/LPS, although combined application of these antibodies blocked lactate dehydrogenase release and decrease in the number of non-dopaminergic neurons. These results indicate that iNOS-derived NO plays a crucial role in IFN-gamma/LPS-induced dopaminergic cell death, and that indomethacin exerts protective effect by mechanisms probably related to NO neurotoxicity rather than through COX inhibition.

  17. Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide

    International Nuclear Information System (INIS)

    Huang, Chunrong; Zheng, Haichong; He, Wanmei; Lu, Guifang; Li, Xia; Deng, Yubin; Zeng, Mian

    2016-01-01

    Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activated the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI. -- Graphical abstract: Ghrelin ameliorates the human alveolar epithelial A549 cells apoptosis induced by lipopolysaccharide partly through activating the PI3K/Akt and ERK pathway. Display Omitted -- Highlights: •It has been observed that LPS insult significantly increased apoptosis in A549 cells. •Both Akt and ERK signaling are critical adapter molecules to mediate the ghrelin-mediated proliferative effect. •Ghrelin may have a therapeutic effect in the prevention of LPS-induced apoptosis.

  18. Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chunrong; Zheng, Haichong; He, Wanmei; Lu, Guifang; Li, Xia [Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080 (China); Deng, Yubin, E-mail: dengyub@mail.sysu.edu.cn [Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080 (China); Zeng, Mian, E-mail: zengmian2004@163.com [Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080 (China)

    2016-05-20

    Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activated the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI. -- Graphical abstract: Ghrelin ameliorates the human alveolar epithelial A549 cells apoptosis induced by lipopolysaccharide partly through activating the PI3K/Akt and ERK pathway. Display Omitted -- Highlights: •It has been observed that LPS insult significantly increased apoptosis in A549 cells. •Both Akt and ERK signaling are critical adapter molecules to mediate the ghrelin-mediated proliferative effect. •Ghrelin may have a therapeutic effect in the prevention of LPS-induced apoptosis.

  19. Antioxidant properties of lutein contribute to the protection against lipopolysaccharide-induced uveitis in mice

    Directory of Open Access Journals (Sweden)

    Yao Xin-Sheng

    2011-10-01

    Full Text Available Abstract Background Lutein is an important eye-protective nutrient. This study investigates the protective effects and mechanisms of lutein on lipopolysaccharides (LPS-induced uveitis in mice. Methods Lutein, suspended in drinking water at a final concentration of 12.5 and 25 mg/mL, was administered to mice at 0.1 mL/10 g body weight for five consecutive days. Control and model group received drinking water only. Uveitis was induced by injecting LPS (100 mg per mouse into the footpad in the model and lutein groups on day 5 after the last drug administration. Eyes of the mice were collected 24 hours after the LPS injection for the detection of indicators using commercial kits and reverse transcription-polymerase chain reaction. Results LPS-induced uveitis was confirmed by significant pathological damage and increased the nitric oxide level in eye tissue of BALB/C mice 24 hours after the footpad injection. The elevated nitric oxide level was significantly reduced by oral administration of lutein (125 and 500 mg/kg/d for five days before LPS injection. Moreover, lutein decreased the malondialdehyde content, increased the oxygen radical absorbance capacity level, glutathione, the vitamin C contents and total superoxide dismutase (SOD and glutathione peroxidase (GPx activities. Lutein further increased expressions of copper-zinc SOD, manganese SOD and GPx mRNA. Conclusion The antioxidant properties of lutein contribute to the protection against LPS-induced uveitis, partially through the intervention of inflammation process.

  20. Fatty Acid Oxidation Compensates for Lipopolysaccharide-Induced Warburg Effect in Glucose-Deprived Monocytes

    Directory of Open Access Journals (Sweden)

    Nora Raulien

    2017-05-01

    Full Text Available Monocytes enter sites of microbial or sterile inflammation as the first line of defense of the immune system and initiate pro-inflammatory effector mechanisms. We show that activation with bacterial lipopolysaccharide (LPS induces them to undergo a metabolic shift toward aerobic glycolysis, similar to the Warburg effect observed in cancer cells. At sites of inflammation, however, glucose concentrations are often drastically decreased, which prompted us to study monocyte function under conditions of glucose deprivation and abrogated Warburg effect. Experiments using the Seahorse Extracellular Flux Analyzer revealed that limited glucose supply shifts monocyte metabolism toward oxidative phosphorylation, fueled largely by fatty acid oxidation at the expense of lipid droplets. While this metabolic state appears to provide sufficient energy to sustain functional properties like cytokine secretion, migration, and phagocytosis, it cannot prevent a rise in the AMP/ATP ratio and a decreased respiratory burst. The molecular trigger mediating the metabolic shift and the functional consequences is activation of AMP-activated protein kinase (AMPK. Taken together, our results indicate that monocytes are sufficiently metabolically flexible to perform pro-inflammatory functions at sites of inflammation despite glucose deprivation and inhibition of the LPS-induced Warburg effect. AMPK seems to play a pivotal role in orchestrating these processes during glucose deprivation in monocytes.

  1. Bursopentin (BP5 protects dendritic cells from lipopolysaccharide-induced oxidative stress for immunosuppression.

    Directory of Open Access Journals (Sweden)

    Tao Qin

    Full Text Available Dendritic cells (DCs play a vital role in the regulation of immune-mediated inflammatory diseases. Thus, DCs have been regarded as a major target for the development of immunomodulators. However, oxidative stress could disturb inflammatory regulation in DCs. Here, we examined the effect of bursopentine (BP5, a novel pentapeptide isolated from chicken bursa of fabricius, on the protection of DCs against oxidative stress for immunosuppression. BP5 showed potent protective effects against the lipopolysaccharide (LPS-induced oxidative stress in DCs, including nitric oxide, reactive oxygen species and lipid peroxidation. Furthermore, BP5 elevated the level of cellular reductive status through increasing the reduced glutathione (GSH and the GSH/GSSG ratio. Concomitant with these, the activities of several antioxidative redox enzymes, including glutathione peroxidase (GPx, catalase (CAT and superoxide dismutase (SOD, were obviously enhanced. BP5 also suppressed submucosal DC maturation in the LPS-stimulated intestinal epithelial cells (ECs/DCs coculture system. Finally, we found that heme oxygenase 1 (HO-1 was remarkably upregulated by BP5 in the LPS-induced DCs, and played an important role in the suppression of oxidative stress and DC maturation. These results suggested that BP5 could protect the LPS-activated DCs against oxidative stress and have potential applications in DC-related inflammatory responses.

  2. Characterization of a lipopolysaccharide mutant of Leptospira derived by growth in the presence of an anti-lipopolysaccharide monoclonal antibody

    NARCIS (Netherlands)

    Zapata, Sonia; Trueba, Gabriel; Bulach, Dieter M.; Boucher, David; Adler, Ben; Hartskeerl, Rudy

    2010-01-01

    A lipopolysaccharide mutant of Leptospira interrogans (LaiMut) was obtained by growth in the presence of an agglutinating monoclonal antibody (mAb) against lipopolysaccharide. Agglutination reactions with anti-lipopolysaccharide mAbs and polyclonal antibodies showed that LaiMut had lost some

  3. Plumbagin, a vitamin K3 analogue, abrogates lipopolysaccharide-induced oxidative stress, inflammation and endotoxic shock via NF-κB suppression.

    Science.gov (United States)

    Checker, Rahul; Patwardhan, Raghavendra S; Sharma, Deepak; Menon, Jisha; Thoh, Maikho; Sandur, Santosh K; Sainis, Krishna B; Poduval, T B

    2014-04-01

    Plumbagin has been reported to modulate cellular redox status and suppress NF-κB. In the present study, we investigated the effect of plumbagin on lipopolysaccharide (LPS)-induced endotoxic shock, oxidative stress and inflammatory parameters in vitro and in vivo. Plumbagin inhibited LPS-induced nitric oxide, TNF-α, IL-6 and prostaglandin-E2 production in a concentration-dependent manner in RAW 264.7 cells without inducing any cell death. Plumbagin modulated cellular redox status in RAW cells. Plumbagin treatment significantly reduced MAPkinase and NF-κB activation in macrophages. Plumbagin prevented mice from endotoxic shock-associated mortality and decreased serum levels of pro-inflammatory markers. Plumbagin administration ameliorated LPS-induced oxidative stress in peritoneal macrophages and splenocytes. Plumbagin also attenuated endotoxic shock-associated changes in liver and lung histopathology and decreased the activation of ERK and NF-κB in liver. These findings demonstrate the efficacy of plumbagin in preventing LPS-induced endotoxemia and also provide mechanistic insights into the anti-inflammatory effects of plumbagin.

  4. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    Directory of Open Access Journals (Sweden)

    Z.G. Zhao

    2014-02-01

    Full Text Available The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL on lipopolysaccharide (LPS-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1, myeloperoxidase (MPO, and Na+-K+-ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT and aspartate aminotransferase (AST in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na+-K+-ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na+-K+-ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis.

  5. Involvement of interleukin‑23 induced by Porphyromonas endodontalis lipopolysaccharide in osteoclastogenesis.

    Science.gov (United States)

    Ma, Nan; Yang, Di; Okamura, Hirohiko; Teramachi, Jumpei; Hasegawa, Tomokazu; Qiu, Lihong; Haneji, Tatsuji

    2017-02-01

    Periapical lesions are characterized by the destruction of periapical bone, and occur as a result of local inflammatory responses to root canal infection by microorganisms including Porphyromonas endodontalis (P. endodontalis). P. endodontalis and its primary virulence factor, lipopolysaccharide (LPS), are associated with the development of periapical lesions and alveolar bone loss. Interleukin‑23 (IL‑23) is critical in the initiation and progression of periodontal disease via effects on peripheral bone metabolism. The present study investigated the expression of IL‑23 in tissue where a periapical lesion was present, and the effect of P. endodontalis LPS on the expression of IL‑23 in periodontal ligament (PDL) cells. Reverse transcription‑ quantitative polymerase chain reaction and immunohistochemistry revealed increased levels of IL‑23 expression in tissue with periapical lesions compared with healthy PDL tissue. Treatment with P. endodontalis LPS increased the expression of IL‑23 in the SH‑9 human PDL cell line. BAY11‑7082, a nuclear factor κB inhibitor, suppressed P. endodontalis LPS‑induced IL‑23 expression in SH‑9 cells. Treatment of RAW264.7 cells with conditioned medium from P. endodontalis LPS‑treated SH‑9 cells promoted osteoclastogenesis. By contrast, RAW264.7 cells treated with conditioned medium from IL‑23‑knockdown SH‑9 cells underwent reduced levels of osteoclastogenesis. The results of the present study indicated that the expression of IL‑23 in PDL cells induced by P. endodontalis LPS treatment may be involved in the progression of periapical lesions via stimulation of the osteoclastogenesis process.

  6. Involvement of interleukin-23 induced by Porphyromonas endodontalis lipopolysaccharide in osteoclastogenesis

    Science.gov (United States)

    Ma, Nan; Yang, Di; Okamura, Hirohiko; Teramachi, Jumpei; Hasegawa, Tomokazu; Qiu, Lihong; Haneji, Tatsuji

    2017-01-01

    Periapical lesions are characterized by the destruction of periapical bone, and occur as a result of local inflammatory responses to root canal infection by microorganisms including Porphyromonas endodontalis (P. endodontalis). P. endodontalis and its primary virulence factor, lipopolysaccharide (LPS), are associated with the development of periapical lesions and alveolar bone loss. Interleukin-23 (IL-23) is critical in the initiation and progression of periodontal disease via effects on peripheral bone metabolism. The present study investigated the expression of IL-23 in tissue where a periapical lesion was present, and the effect of P. endodontalis LPS on the expression of IL-23 in periodontal ligament (PDL) cells. Reverse transcription- quantitative polymerase chain reaction and immunohistochemistry revealed increased levels of IL-23 expression in tissue with periapical lesions compared with healthy PDL tissue. Treatment with P. endodontalis LPS increased the expression of IL-23 in the SH-9 human PDL cell line. BAY11-7082, a nuclear factor κB inhibitor, suppressed P. endodontalis LPS-induced IL-23 expression in SH-9 cells. Treatment of RAW264.7 cells with conditioned medium from P. endodontalis LPS-treated SH-9 cells promoted osteoclastogenesis. By contrast, RAW264.7 cells treated with conditioned medium from IL-23-knockdown SH-9 cells underwent reduced levels of osteoclastogenesis. The results of the present study indicated that the expression of IL-23 in PDL cells induced by P. endodontalis LPS treatment may be involved in the progression of periapical lesions via stimulation of the osteoclastogenesis process. PMID:28000855

  7. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Z.G.; Zhang, L.L.; Niu, C.Y.; Zhang, J. [Institute of Microcirculation, Hebei North University, Zhangjiakou, China, Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei (China)

    2014-02-17

    The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL) on lipopolysaccharide (LPS)-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg) was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg) was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1), myeloperoxidase (MPO), and Na{sup +}-K{sup +}-ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na{sup +}-K{sup +}-ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na{sup +}-K{sup +}-ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis.

  8. Deer Bone Oil Extract Suppresses Lipopolysaccharide-Induced Inflammatory Responses in RAW264.7 Cells.

    Science.gov (United States)

    Choi, Hyeon-Son; Im, Suji; Park, Yooheon; Hong, Ki-Bae; Suh, Hyung Joo

    2016-01-01

    The aim of this study was to investigate the effect of deer bone oil extract (DBOE) on lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 cells. DBOE was fractionated by liquid-liquid extraction to obtain two fractions: methanol fraction (DBO-M) and hexane fraction (DBO-H). TLC showed that DBO-M had relatively more hydrophilic lipid complexes, including unsaturated fatty acids, than DBOE and DBO-H. The relative compositions of tetradecenoyl carnitine, α-linoleic acid, and palmitoleic acid increased in the DBO-M fraction by 61, 38, and 32%, respectively, compared with DBOE. The concentration of sugar moieties was 3-fold higher in the DBO-M fraction than DBOE and DBO-H. DBO-M significantly decreased LPS-induced nitric oxide (NO) production in RAW264.7 cells in a dose-dependent manner. This DBO-M-mediated decrease in NO production was due to downregulation of mRNA and protein levels of inducible nitric oxide synthase (iNOS). In addition, mRNA expression of pro-inflammatory mediators, such as cyclooxygenase (COX-2), interleukin (IL)-1β, and IL-12β, was suppressed by DBO-M. Our data showed that DBO-M, which has relatively higher sugar content than DBOE and DBO-H, could play an important role in suppressing inflammatory responses by controlling pro-inflammatory cytokines and mediators.

  9. STUDIES ON TUBERCULIN FEVER

    Science.gov (United States)

    Hall, Charles H.; Atkins, Elisha

    1959-01-01

    Evidence has been presented that the fever elicited by intravenous administration of old tuberculin (O.T.) in BCG-infected rabbits is a specific property of this hypersensitivity system and is probably not due to contamination of tuberculin with bacterial endotoxins. Daily injections of O.T. in sensitized animals resulted in a rapid tolerance to its pyrogenic effect. Tuberculin tolerance can be differentiated from that occurring with endotoxins and was invariably associated with the development of a negative skin test. The mechanism of this tolerance would thus appear to be desensitization. A circulating pyrogen found during tuberculin fever was indistinguishable in its biologic effects from endogenous pyrogens obtained in several other types of experimental fever. This material produced fevers in normal recipients and therefore may be clearly differentiated from O.T. itself which was pyrogenic only to sensitized animals. Since the titer of serum pyrogen was directly proportional to the degree of fever induced by injection of O.T. in the donor animals, a causal relation is suggested. On the basis of these findings, it is postulated that tuberculin fever is due to a circulating endogenous pyrogen released by a specific action of O.T. on sensitized cells of the host. PMID:13641561

  10. 18F-FDG PET Reveals Fronto-temporal Dysfunction in Children with Fever-Induced Refractory Epileptic Encephalopathy

    International Nuclear Information System (INIS)

    Mazzuca, M.; Dulac, O.; Chiron, C.; Jambaque, I.; Hertz-Pannier, L.; Bouilleret, V.; Archambaud, F.; Rodrigo, S.; Dulac, O.; Chiron, C.; Jambaque, I.; Hertz-Pannier, L.; Bouilleret, V.; Archambaud, F.; Rodrigo, S.; Chiron, C.; Hertz-Pannier, L.; Rodrigo, S.; Dulac, O.; Chiron, C.; Caviness, V.

    2011-01-01

    Fever-induced refractory epileptic encephalopathy in school-age children (FIRES) is a recently described epileptic entity whose etiology remains unknown. Brain abnormalities shown by MRI are usually limited to mesial-temporal structures and do not account for the catastrophic neuro-psychologic findings. Methods: We conducted FIRES studies in 8 patients, aged 6-13 y, using 18 F-FDG PET to disclose eventual neo-cortical dysfunction. Voxel-based analyses of cerebral glucose metabolism were performed using statistical parametric mapping and an age-matched control group. Results: Group analysis revealed a widespread inter-ictal hypo-metabolic network including the temporo-parietal and orbito-frontal cortices bilaterally. The individual analyses in patients identified hypo-metabolic areas corresponding to the predominant electroencephalograph foci and neuro-psychologic deficits involving language, behavior, and memory. Conclusion: Despite clinical heterogeneity, 18 F-FDG PET reveals a common network dysfunction in patients with sequelae due to fever-induced refractory epileptic encephalopathy. (authors)

  11. Improved Hepatoprotective Effect of Liposome-Encapsulated Astaxanthin in Lipopolysaccharide-Induced Acute Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Chun-Hung Chiu

    2016-07-01

    Full Text Available Lipopolysaccharide (LPS-induced acute hepatotoxicity is significantly associated with oxidative stress. Astaxanthin (AST, a xanthophyll carotenoid, is well known for its potent antioxidant capacity. However, its drawbacks of poor aqueous solubility and low bioavailability have limited its utility. Liposome encapsulation is considered as an effective alternative use for the improvement of bioavailability of the hydrophobic compound. We hypothesized that AST encapsulated within liposomes (LA apparently shows improved stability and transportability compared to that of free AST. To investigate whether LA administration can efficiently prevent the LPS-induced acute hepatotoxicity, male Sprague-Dawley rats (n = six per group were orally administered liposome-encapsulated AST at 2, 5 or 10 mg/kg-day (LA-2, LA-5, and LA-10 for seven days and then were LPS-challenged (i.p., 5 mg/kg. The LA-10 administered group, but not the other groups, exhibited a significant amelioration of serum glutamic pyruvic transaminase (GPT, glutamic oxaloacetic transaminase (GOT, blood urea nitrogen (BUN, creatinine (CRE, hepatic malondialdehyde (MDA and glutathione peroxidase (GSH-Px, IL-6, and hepatic nuclear NF-κB and inducible nitric oxide synthase (iNOS, suggesting that LA at a 10 mg/kg-day dosage renders hepatoprotective effects. Moreover, the protective effects were even superior to that of positive control N-acetylcysteine (NAC, 200 mg/kg-day. Histopathologically, NAC, free AST, LA-2 and LA-5 partially, but LA-10 completely, alleviated the acute inflammatory status. These results indicate that hydrophobic AST after being properly encapsulated by liposomes improves bioavailability and can also function as potential drug delivery system in treating hepatotoxicity.

  12. Static Magnetic Field Attenuates Lipopolysaccharide-Induced Inflammation in Pulp Cells by Affecting Cell Membrane Stability

    Directory of Open Access Journals (Sweden)

    Sung-Chih Hsieh

    2015-01-01

    Full Text Available One of the causes of dental pulpitis is lipopolysaccharide- (LPS- induced inflammatory response. Following pulp tissue inflammation, odontoblasts, dental pulp cells (DPCs, and dental pulp stem cells (DPSCs will activate and repair damaged tissue to maintain homeostasis. However, when LPS infection is too serious, dental repair is impossible and disease may progress to irreversible pulpitis. Therefore, the aim of this study was to examine whether static magnetic field (SMF can attenuate inflammatory response of dental pulp cells challenged with LPS. In methodology, dental pulp cells were isolated from extracted teeth. The population of DPSCs in the cultured DPCs was identified by phenotypes and multilineage differentiation. The effects of 0.4 T SMF on DPCs were observed through MTT assay and fluorescent anisotropy assay. Our results showed that the SMF exposure had no effect on surface markers or multilineage differentiation capability. However, SMF exposure increases cell viability by 15%. In addition, SMF increased cell membrane rigidity which is directly related to higher fluorescent anisotropy. In the LPS-challenged condition, DPCs treated with SMF demonstrated a higher tolerance to LPS-induced inflammatory response when compared to untreated controls. According to these results, we suggest that 0.4 T SMF attenuates LPS-induced inflammatory response to DPCs by changing cell membrane stability.

  13. Neocryptotanshinone inhibits lipopolysaccharide-induced inflammation in RAW264.7 macrophages by suppression of NF-κB and iNOS signaling pathways

    Directory of Open Access Journals (Sweden)

    Chuanhong Wu

    2015-07-01

    Full Text Available Neocryptotanshinone (NCTS is a natural product isolated from traditional Chinese herb Salvia miltiorrhiza Bunge. In this study, we investigated its anti-inflammatory effects in lipopolysaccharide (LPS-stimulated mouse macrophage (RAW264.7 cells. MTT results showed that NCTS partly reversed LPS-induced cytotoxicity. Real-time PCR results showed that NCTS suppressed LPS-induced mRNA expression of inflammatory cytokines, including tumor necrosis factor α (TNFα, interleukin-6 (IL-6 and interleukin-1β (IL-1β. Moreover, NCTS could decrease LPS-induced nitric oxide (NO production. Western blotting results showed that NCTS could down-regulate LPS-induced expression of inducible nitric oxide synthase (iNOS, p-IκBα, p-IKKβ and p-NF-κB p65 without affecting cyclooxygenase-2 (COX-2. In addition, NCTS inhibited LPS-induced p-NF-κB p65 nuclear translocation. In conclusion, these data demonstrated that NCTS showed anti-inflammatory effect by suppression of NF-κB and iNOS signaling pathways.

  14. ORIGINAL ARTICLE

    African Journals Online (AJOL)

    User

    pendula (Annonaceae), on lipopolysaccharide-induced fever in rats. Department of ... At 300 mg kg-1, all extracts exhibited activities higher than that of Acetylsalicyclic acid (Aspirin) whose per- .... -α and IL-β (Aronoff and Nelson, 2001).

  15. Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB.

    Science.gov (United States)

    Sun, Qi; Chen, Ling; Gao, Mengyu; Jiang, Wenwen; Shao, Fangxian; Li, Jingjing; Wang, Jun; Kou, Junping; Yu, Boyang

    2012-01-01

    Acute lung injury is still a significant clinical problem with a high mortality rate and there are few effective therapies in clinic. Here, we studied the inhibitory effect of ruscogenin, an anti-inflammatory and anti-thrombotic natural product, on lipopolysaccharide (LPS)-induced acute lung injury in mice basing on our previous studies. The results showed that a single oral administration of ruscogenin significantly decreased lung wet to dry weight (W/D) ratio at doses of 0.3, 1.0 and 3.0 mg/kg 1 h prior to LPS challenge (30 mg/kg, intravenous injection). Histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells were also attenuated by ruscogenin. In addition, ruscogenin markedly decreased LPS-induced myeloperoxidase (MPO) activity and nitrate/nitrite content, and also downregulated expression of tissue factor (TF), inducible NO synthase (iNOS) and nuclear factor (NF)-κB p-p65 (Ser 536) in the lung tissue at three doses. Furthermore, ruscogenin reduced plasma TF procoagulant activity and nitrate/nitrite content in LPS-induced ALI mice. These findings confirmed that ruscogenin significantly attenuate LPS-induced acute lung injury via inhibiting expressions of TF and iNOS and NF-κB p65 activation, indicating it as a potential therapeutic agent for ALI or sepsis. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Cardiac-Specific Overexpression of Catalase Attenuates Lipopolysaccharide-Induced Myocardial Contractile Dysfunction: Role of Autophagy

    Science.gov (United States)

    Turdi, Subat; Han, Xuefeng; Huff, Anna F.; Roe, Nathan D.; Hu, Nan; Gao, Feng; Ren, Jun

    2012-01-01

    Lipopolysaccharide (LPS) from Gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complication in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity and carbonyl formation. Kaplan-Meier curve was constructed for survival following LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice following LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O2−, and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury following LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by antioxidant NAC and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. PMID:22902401

  17. Resveratrol Protects Dopamine Neurons Against Lipopolysaccharide-Induced Neurotoxicity through Its Anti-Inflammatory Actions

    Science.gov (United States)

    Zhang, Feng; Shi, Jing-Shan; Zhou, Hui; Wilson, Belinda; Hong, Jau-Shyong

    2010-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by a progressive loss of dopamine (DA) neurons in the substantia nigra. Accumulating evidence indicates that inhibition of microglia-mediated neuroinflammation may become a reliable protective strategy for PD. Resveratrol, a nonflavonoid polyphenol naturally found in red wine and grapes, has been known to possess antioxidant, anticancer, and anti-inflammatory properties. Although recent studies have shown that resveratrol provided neuroprotective effects against ischemia, seizure, and neurodegenerative disorders, the mechanisms underlying its beneficial effects on dopaminergic neurodegeneration are poorly defined. In this study, rat primary midbrain neuron-glia cultures were used to elucidate the molecular mechanisms underlying resveratrol-mediated neuroprotection. The results clearly demonstrated that resveratrol protected DA neurons against lipopolysaccharide (LPS)-induced neurotoxicity in concentration- and time-dependent manners through the inhibition of microglial activation and the subsequent reduction of proinflammatory factor release. Mechanistically, resveratrol-mediated neuroprotection was attributed to the inhibition of NADPH oxidase. This conclusion is supported by the following observations. First, resveratrol reduced NADPH oxidase-mediated generation of reactive oxygen species. Second, LPS-induced translocation of NADPH oxidase cytosolic subunit p47 to the cell membrane was significantly attenuated by resveratrol. Third and most importantly, resveratrol failed to exhibit neuroprotection in cultures from NADPH oxidase-deficient mice. Furthermore, this neuroprotection was also related to an attenuation of the activation of mitogen-activated protein kinases and nuclear factor-κB signaling pathways in microglia. These findings suggest that resveratrol exerts neuroprotection against LPS-induced dopaminergic neurodegeneration, and NADPH oxidase may be a major player

  18. Tri-phasic fever in dengue fever.

    Science.gov (United States)

    D, Pradeepa H; Rao, Sathish B; B, Ganaraj; Bhat, Gopalakrishna; M, Chakrapani

    2018-04-01

    Dengue fever is an acute febrile illness with a duration of 2-12 days. Our observational study observed the 24-h continuous tympanic temperature pattern of 15 patients with dengue fever and compared this with 26 others with fever due to a non-dengue aetiology. A tri-phasic fever pattern was seen among two-thirds of dengue fever patients, but in only one with an inflammatory disease. One-third of dengue fever patients exhibited a single peak temperature. Continuous temperature monitoring and temperature pattern analysis in clinical settings can aid in the early differentiation of dengue fever from non-dengue aetiology.

  19. Pharmacologic studies on ET-26 hydrochloride in a rat model of lipopolysaccharide-induced sepsis.

    Science.gov (United States)

    Wang, Bin; Jiang, Junli; Yang, Jun; Chen, Jun; Zhu, Zhaoqiong; Liu, Jin; Zhang, Wensheng

    2017-11-15

    ET-26 hydrochloride (ET-26 HCl) is a promising sedation-hypnotic compound with stable hemodynamic features that elicits virtually no adrenocortical suppression. However, whether it preserves better pharmacologic characteristics in a rat model of sepsis is not known. This study compared the survival rate, levels of corticosterone and pro-inflammatory cytokines, and histologic injury in the lungs and kidneys of rats suffering from sepsis treated with ET-26 HCl, etomidate, or normal saline (NS). Rats were given lipopolysaccharide (1mg/kg body weight, i.v.) to establish a sepsis model. Thirty minutes after lipopolysaccharide administration, ET-26 HCl, etomidate or NS were given as a bolus injection at equivalent doses. Plasma levels of corticosterone, interleukin-1β, interleukin-6, interleukin-10, and tumor necrosis factor-α were measured 1, 2, 4, 6 and 24h after administration. Histologic injury was observed at the time of death or 24h after drug administration. The survival rate for rats in the etomidate, ET-26 HCl and NS groups was 40%, 90% and 90%, respectively. Corticosterone concentrations in the etomidate group were lower than those in the other groups 1h after administration of hypnotic compounds. Concentrations of pro-inflammatory cytokines in the ET-26 HCl group and NS group were not significantly different, but were significantly lower than those in the etomidate group. The injury scores of kidneys and lungs in the etomidate group were higher than those in ET-26 HCl and NS groups. ET-26 HCl showed virtually no suppression of corticosterone synthesis, lower concentrations of pro-inflammatory cytokines, higher survival rate, and less organ injury in rats suffering from sepsis compared with the etomidate group. It may be safer to induce anesthesia using ET-26 HCl, rather than etomidate, in patients suffering from sepsis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. COL-3, a chemically modified tetracycline, inhibits lipopolysaccharide-induced microglia activation and cytokine expression in the brain.

    Directory of Open Access Journals (Sweden)

    Rawan Abdulhameed Edan

    Full Text Available Microglia activation results in release of proinflammatory molecules including cytokines, which contribute to neuronal damage in the central nervous system (CNS if not controlled. Tetracycline antibiotics such as minocycline inhibit microglial activation and cytokine expression during CNS inflammation. In the present study we found that administration of chemically modified tetracycline-3 (COL-3, inhibits lipopolysaccharide (LPS-induced microglial and p38 MAPK activation, as well as the increase in TNF-α, but not IL-1β expression, in the brains of BALB/c mice. COL-3 has been described to have no antibacterial activity. We observed that COL-3 had no activity against a Gram-negative bacteria, Escherichia coli; however surprisingly, COL-3 had antibacterial activity against a Gram-positive bacteria Staphylococcus aureus, with a minimum inhibitory concentration of 1 mg/ml. Our data show that COL-3 has some antibacterial activity against S. aureus, inhibits LPS-induced neuroinflammation, and displays potential as a therapeutic agent for treatment of conditions involving CNS inflammation.

  1. STUDIES ON THE PATHOGENESIS OF FEVER WITH INFLUENZAL VIRUSES

    Science.gov (United States)

    Atkins, Elisha; Huang, Wei Cheng

    1958-01-01

    A substance with pyrogenic properties appears in the blood streams of rabbits made febrile by the intravenous inoculation of the PR8 strain of influenza A and Newcastle disease viruses (NDV). By means of a technique involving passive transfer of sera from animals given virus to recipient rabbits, the titer of circulating pyrogen was found to be closely correlated with the course of fever produced by virus. Certain properties of the pyrogen are described which differentiate it from the originally injected virus and suggest that the induced pyrogen is of endogenous origin. These properties resemble those of endogenous pyrogens occurring in other forms of experimental fever. The source of virus-induced pyrogen is unknown. In vitro incubation of virus with various constituents of the circulation did not result in the appearance of endogenous pyrogen. Granulocytopenia induced by HN2 failed to influence either fever or the production of endogenous pyrogen in rabbits injected with NDV. Similarly, the intraperitoneal inoculation of NDV into prepared exudates did not modify the febrile response. These findings do not lend support to the possibility that the polymorphonuclear leukocyte is a significant source of endogenous pyrogen in virus-induced fever. It is concluded that the liberation of an endogenous pyrogen from some as yet undefined source is an essential step in the pathogenesis of fever caused by the influenza group of viruses. PMID:13513908

  2. DHA suppresses Prevotella intermedia lipopolysaccharide-induced production of proinflammatory mediators in murine macrophages.

    Science.gov (United States)

    Choi, Eun-Young; Jin, Ji-Young; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2014-04-14

    Several reports have indicated that dietary intake of DHA is associated with lower prevalence of periodontitis. In the present study, we investigated the effect of DHA on the production of proinflammatory mediators in murine macrophage-like RAW264.7 cells stimulated with lipopolysaccharide (LPS) isolated from Prevotella intermedia, a pathogen implicated in inflammatory periodontal disease, and its mechanisms of action. LPS was isolated from lyophilised P. intermedia ATCC 25,611 cells using the standard hot-phenol-water protocol. Culture supernatants were collected and assayed for NO, IL-1β and IL-6. Real-time PCR analysis was carried out to detect the expression of inducible NO synthase (iNOS), IL-1β, IL-6 and haeme oxygenase-1 (HO-1) mRNA. Immunoblot analysis was carried out to quantify the expression of iNOS and HO-1 protein and concentrations of signalling proteins. DNA-binding activities of NF-κB subunits were determined using an ELISA-based assay kit. DHA significantly attenuated the production of NO, IL-1β and IL-6 at both gene transcription and translation levels in P. intermedia LPS-activated RAW264.7 cells. DHA induced the expression of HO-1 in cells treated with P. intermedia LPS. Selective inhibition of HO-1 activity by tin protoporphyrin IX significantly mitigated the inhibitory effects of DHA on LPS-induced NO production. DHA significantly attenuated the phosphorylation of c-Jun N-terminal kinase induced by LPS. In addition, DHA suppressed the transcriptional activity of NF-κB by regulating the nuclear translocation and DNA-binding activity of NF-κB p50 subunit and inhibited the phosphorylation of signal transducer and activator of transcription 1. Further in vivo studies are needed to better evaluate the potential of DHA in humans as a therapeutic agent to treat periodontal disease.

  3. Fever-Induced Brugada Syndrome

    Directory of Open Access Journals (Sweden)

    Sandhya Manohar MD

    2015-03-01

    Full Text Available Brugada syndrome is increasingly recognized as a cause of sudden cardiac death. Many of these patients do not get diagnosed due its dynamic and often hidden nature. We have come a long way in understanding the disease process, and its electrophysiology appears to be intimately linked with sodium channel mutations or disorders. The cardiac rhythm in these patients can deteriorate into fatal ventricular arrhythmias. This makes it important for the clinician to be aware of the conditions in which arrhythmogenicity of Brugada syndrome is revealed or even potentiated. We present such an instance where our patient’s Brugada syndrome was unmasked by fever.

  4. Structural and functional peculiarities of the lipopolysaccharide of Azospirillum brasilense SR55, isolated from the roots of Triticum durum.

    Science.gov (United States)

    Boyko, Alevtina S; Konnova, Svetlana A; Fedonenko, Yulia P; Zdorovenko, Evelina L; Smol'kina, Olga N; Kachala, Vadim V; Ignatov, Vladimir V

    2011-10-20

    Azospirillum brasilense SR55, isolated from the rhizosphere of Triticum durum, was classified as serogroup II on the basis of serological tests. Such serogroup affiliation is uncharacteristic of wheat-associated Azospirillum species. The lipid A of A. brasilense SR55 lipopolysaccharide contained 3-hydroxytetradecanoic, 3-hydroxyhexadecanoic, hexadecanoic and octadecenoic fatty acids. The structure of the lipopolysaccharide's O polysaccharide was established, with the branched octasaccharide repeating unit being represented by l-rhamnose, l-3-O-Me-rhamnose, d-galactose and d-glucuronic acid. The SR55 lipopolysaccharide induced deformations of wheat root hairs. The lipopolysaccharide was not involved in bacterial cell aggregation, but its use to pretreat wheat roots was conducive to cell adsorption. This study shows that Azospirillum bacteria can utilise their own lipopolysaccharide as a carbon source, which may give them an advantage in competitive natural environments. Copyright © 2011 Elsevier GmbH. All rights reserved.

  5. Pseudomonas aeruginosa lipopolysaccharide induces CF-like alteration of protein secretion by human tracheal gland cells.

    Science.gov (United States)

    Kammouni, W; Figarella, C; Baeza, N; Marchand, S; Merten, M D

    1997-12-18

    Human tracheal gland (HTG) serous cells are now believed to play a major role in the physiopathology of cystic fibrosis. Because of the persistent inflammation and the specific infection by Pseudomonas aeruginosa in the lung, we looked for the action of the lipopolysaccharide (LPS) of this bacteria on human tracheal gland cells in culture by studying the secretion of the secretory leukocyte proteinase inhibitor (SLPI) which is a specific serous secretory marker of these cells. Treatment with Pseudomonas aeruginosa LPS resulted in a significant dose-dependent increase in the basal production of SLPI (+ 250 +/- 25%) whilst the SLPI transcript mRNA levels remained unchanged. This LPS-induced increase in secretion was inhibited by glucocorticoides. Furthermore, LPS treatment of HTG cells induces a loss of responsiveness to carbachol and isoproterenol but not to adenosine triphosphate. These findings indicate that HTG cells treated by Pseudomonas aeruginosa LPS have the same behavior as those previously observed with CF-HTG cells. Exploration by using reverse transcriptase polymerase chain reaction amplification showed that LPS downregulated cystic fibrosis transmembrane conductance regulator (CFTR) mRNA expression in HTG cells indicative of a link between CFTR function and consequent CF-like alteration in protein secretory process.

  6. Involvement of interleukin-23 induced by Porphyromonas endodontalis lipopolysaccharide in osteoclastogenesis

    OpenAIRE

    Ma, Nan; Yang, Di; Okamura, Hirohiko; Teramachi, Jumpei; Hasegawa, Tomokazu; Qiu, Lihong; Haneji, Tatsuji

    2016-01-01

    Periapical lesions are characterized by the destruction of periapical bone, and occur as a result of local inflammatory responses to root canal infection by microorganisms including Porphyromonas endodontalis (P. endodontalis). P. endodontalis and its primary virulence factor, lipopolysaccharide (LPS), are associated with the development of periapical lesions and alveolar bone loss. Interleukin-23 (IL-23) is critical in the initiation and progression of periodontal disease via effects on peri...

  7. Lipopolysaccharide-binding protein and leptin are associated with stress-induced interleukin-6 cytokine expression ex vivo in obesity.

    Science.gov (United States)

    Huang, Chun-Jung; Stewart, Jennifer K; Shibata, Yoshimi; Slusher, Aaron L; Acevedo, Edmund O

    2015-05-01

    Obesity is associated with enhanced inflammation and mental stress, but limited information has addressed the potential additive effect of psychological stress on obesity-associated inflammation. This study examined whether obese subjects would elicit a greater host immune response (IL-6 mRNA and cytokine) to lipopolysaccharide (LPS) in response to mental stress. Blood samples for LPS-stimulated IL-6 mRNA and cytokine were collected prior to and following mental stress. Results showed that obese subjects elicited a greater LPS-induced IL-6 along with its mRNA expression following mental stress compared to normal-weight subjects. Stress-induced IL-6 cytokine response to LPS was correlated with the baseline levels of plasma LPS binding protein (LBP) and leptin. These findings are consistent with the idea that endogenous inflammatory agents (e.g., LBP and leptin), often elevated with obesity, enhance inflammatory responses to psychological stress. © 2014 Society for Psychophysiological Research.

  8. Maturation of human dendritic cells by monocyte-conditioned medium is dependent upon trace amounts of lipopolysaccharide inducing tumour necrosis factor alpha

    DEFF Research Database (Denmark)

    Nersting, Jacob; Svenson, Morten; Andersen, Vagn

    2003-01-01

    We investigated the ability of monocyte-conditioned medium (MCM), generated by monocytes cultured on plastic-immobilised immunoglobulin, to stimulate maturation of human monocyte-derived dendritic cells (DC). Earlier reports suggest that MCM is a strong inducer of irreversible DC maturation......, whereas we find, that adding a small amount of lipopolysaccharide (LPS) to the MCM-generating cultures is required for the production of a DC-stimulatory MCM. Moreover, compared with addition of LPS directly to the DC cultures, stimulation via MCM cultures increases by several fold the DC...

  9. Protective role of benfotiamine, a fat-soluble vitamin B1 analogue, in lipopolysaccharide-induced cytotoxic signals in murine macrophages.

    Science.gov (United States)

    Yadav, Umesh C S; Kalariya, Nilesh M; Srivastava, Satish K; Ramana, Kota V

    2010-05-15

    This study was designed to investigate the molecular mechanisms by which benfotiamine, a lipid-soluble analogue of vitamin B1, affects lipopolysaccharide (LPS)-induced inflammatory signals leading to cytotoxicity in the mouse macrophage cell line RAW264.7. Benfotiamine prevented LPS-induced apoptosis, expression of the Bcl-2 family of proapoptotic proteins, caspase-3 activation, and PARP cleavage and altered mitochondrial membrane potential and release of cytochrome c and apoptosis-inducing factor and phosphorylation and subsequent activation of p38-MAPK, stress-activated kinases (SAPK/JNK), protein kinase C, and cytoplasmic phospholipase A2 in RAW cells. Further, phosphorylation and degradation of inhibitory kappaB and consequent activation and nuclear translocation of the redox-sensitive transcription factor NF-kappaB were significantly prevented by benfotiamine. The LPS-induced increased expression of cytokines and chemokines and the inflammatory marker proteins iNOS and COX-2 and their metabolic products NO and PGE(2) was also blocked significantly. Thus, our results elucidate the molecular mechanism of the anti-inflammatory action of benfotiamine in LPS-induced inflammation in murine macrophages. Benfotiamine suppresses oxidative stress-induced NF-kappaB activation and prevents bacterial endotoxin-induced inflammation, indicating that vitamin B1 supplementation could be beneficial in the treatment of inflammatory diseases. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Sargachromenol from Sargassum micracanthum Inhibits the Lipopolysaccharide-Induced Production of Inflammatory Mediators in RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Eun-Jin Yang

    2013-01-01

    Full Text Available During our ongoing screening program designed to determine the anti-inflammatory potential of natural compounds, we isolated sargachromenol from Sargassum micracanthum. In the present study, we investigated the anti-inflammatory effects of sargachromenol on lipopolysaccharide (LPS-induced inflammation in murine RAW 264.7 macrophage cells and the underlying mechanisms. Sargachromenol significantly inhibited the LPS-induced production of nitric oxide (NO and prostaglandin E2 (PGE2 in a dose-dependent manner. It also significantly inhibited the protein expression of inducible NO synthase (iNOS and cyclooxygenase-2 (COX-2 in a dose-dependent manner in LPS-stimulated macrophage cells. Further analyses showed that sargachromenol decreased the cytoplasmic loss of inhibitor κBα (IκBα protein. These results suggest that sargachromenol may exert its anti-inflammatory effects on LPS-stimulated macrophage cells by inhibiting the activation of the NF-κB signaling pathway. In conclusion, to our knowledge, this is the first study to show that sargachromenol isolated from S. micracanthum has an effective anti-inflammatory activity. Therefore, sargachromenol might be useful for cosmetic, food, or medical applications requiring anti-inflammatory properties.

  11. Effects of a Natural Prolyl Oligopeptidase Inhibitor, Rosmarinic Acid, on Lipopolysaccharide-Induced Acute Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Miaomiao Wei

    2012-03-01

    Full Text Available Rosmarinic acid (RA, a polyphenolic phytochemical, is a natural prolyl oligopeptidase inhibitor. In the present study, we found that RA exerted potent anti-inflammatory effects in in vivo models of acute lung injury (ALI induced by lipopolysaccharide (LPS. Mice were pretreated with RA one hour before challenge with a dose of 0.5 mg/kg LPS. Twenty-four hours after LPS was given, bronchoalveolar lavage fluid (BALF was obtained to measure pro-inflammatory mediator and total cell counts. RA significantly decreased the production of LPS-induced TNF-a, IL-6, and IL-1β compare with the LPS group. When pretreated with RA (5, 10, or 20 mg/kg the lung wet-to-dry weight (W/D ratio of the lung tissue and the number of total cells, neutrophils and macrophages in the BALF were decreased significantly. Furthermore, RA may enhance oxidase dimutase (SOD activity during the inflammatory response to LPS-induced ALI. And we further demonstrated that RA exerts anti-inflammation effect in vivo models of ALI through suppresses ERK/MAPK signaling in a dose dependent manner. These studies have important implications for RA administration as a potential treatment for ALI.

  12. Fisetin Alleviates Lipopolysaccharide-Induced Acute Lung Injury via TLR4-Mediated NF-κB Signaling Pathway in Rats.

    Science.gov (United States)

    Feng, Guang; Jiang, Ze-Yu; Sun, Bo; Fu, Jie; Li, Tian-Zuo

    2016-02-01

    Acute lung injury (ALI), a common component of systemic inflammatory disease, is a life-threatening condition without many effective treatments. Fisetin, a natural flavonoid from fruits and vegetables, was reported to have wide pharmacological properties such as anti-inflammatory, antioxidant, and anticancer activities. The aim of this study was to detect the effects of fisetin on lipopolysaccharide (LPS)-induced acute lung injury and investigate the potential mechanism. Fisetin was injected (1, 2, and 4 mg/kg, i.v.) 30 min before LPS administration (5 mg/kg, i.v.). Our results showed that fisetin effectively reduced the inflammatory cytokine release and total protein in bronchoalveolar lavage fluids (BALF), decreased the lung wet/dry ratios, and obviously improved the pulmonary histology in LPS-induced ALI. Furthermore, fisetin inhibited LPS-induced increases of neutrophils and macrophage infiltration and attenuated MPO activity in lung tissues. Additionally, fisetin could significantly inhibit the Toll-like receptor 4 (TLR4) expression and the activation of NF-κB in lung tissues. Our data indicates that fisetin has a protective effect against LPS-induced ALI via suppression of TLR4-mediated NF-κB signaling pathways, and fisetin may be a promising candidate for LPS-induced ALI treatment.

  13. Alleviation of lipopolysaccharide/d-galactosamine-induced liver injury in leukocyte cell-derived chemotaxin 2 deficient mice

    Directory of Open Access Journals (Sweden)

    Akinori Okumura

    2017-12-01

    Full Text Available Leukocyte cell-derived chemotaxin 2 (LECT2 is a secreted pleiotropic protein that is mainly produced by the liver. We have previously shown that LECT2 plays an important role in the pathogenesis of inflammatory liver diseases. Lipopolysaccharide/d-galactosamine (LPS/d-GalN-induced acute liver injury is a known animal model of fulminant hepatic failure. Here we found that this hepatic injury was alleviated in LECT2-deficient mice. The levels of TNF-α and IFN-γ, which mediate this hepatitis, had significantly decreased in these mice, with the decrease in IFN-γ production notably greater than that in TNF-α. We therefore analyzed IFN-γ-producing cells in liver mononuclear cells. Flow cytometric analysis showed significantly reduced IFN-γ production in hepatic NK and NKT cells in LECT2-deficient mice compared with in wild-type mice. We also demonstrated a decrease in IFN-γ production in LECT2-deficient mice after systemic administration of recombinant IL-12, which is known to induce IFN-γ in NK and NKT cells. These results indicate that a decrease of IFN-γ production in NK and NKT cells was involved in the alleviation of LPS/d-GalN-induced liver injury in LECT2-deficient mice.

  14. Elevated VGKC-Complex Antibodies in a Boy with Fever-Induced Refractory Epileptic Encephalopathy in School-Age Children (FIRES)

    Science.gov (United States)

    Illingworth, Marjorie A.; Hanrahan, Donncha; Anderson, Claire E.; O'Kane, Kathryn; Anderson, Jennifer; Casey, Maureen; de Sousa, Carlos; Cross, J. Helen; Wright, Sukvhir; Dale, Russell C.; Vincent, Angela; Kurian, Manju A.

    2011-01-01

    Fever-induced refractory epileptic encephalopathy in school-age children (FIRES) is a clinically recognized epileptic encephalopathy of unknown aetiology. Presentation in previously healthy children is characterized by febrile status epilepticus. A pharmacoresistant epilepsy ensues, occurring in parallel with dramatic cognitive decline and…

  15. Impact of lipopolysaccharide-induced acute inflammation on baroreflex-controlled sympathetic arterial pressure regulation.

    Directory of Open Access Journals (Sweden)

    Takeshi Tohyama

    Full Text Available Lipopolysaccharide (LPS induces acute inflammation, activates sympathetic nerve activity (SNA and alters hemodynamics. Since the arterial baroreflex is a negative feedback system to stabilize arterial pressure (AP, examining the arterial baroreflex function is a prerequisite to understanding complex hemodynamics under LPS challenge. We investigated the impact of LPS-induced acute inflammation on SNA and AP regulation by performing baroreflex open-loop analysis.Ten anesthetized Sprague-Dawley rats were used. Acute inflammation was induced by an intravenous injection of LPS (60 μg/kg. We isolated the carotid sinuses from the systemic circulation and controlled carotid sinus pressure (CSP by a servo-controlled piston pump. We matched CSP to AP to establish the baroreflex closed-loop condition, whereas we decoupled CSP from AP to establish the baroreflex open-loop condition and changed CSP stepwise to evaluate the baroreflex open-loop function. We recorded splanchnic SNA and hemodynamic parameters under baroreflex open- and closed-loop conditions at baseline and at 60 and 120 min after LPS injection.In the baroreflex closed-loop condition, SNA continued to increase after LPS injection, reaching three-fold the baseline value at 120 min (baseline: 94.7 ± 3.6 vs. 120 min: 283.9 ± 31.9 a.u.. In contrast, AP increased initially (until 75 min, then declined to the baseline level. In the baroreflex open-loop condition, LPS reset the neural arc (CSP-SNA relationship upward to higher SNA, while shifted the peripheral arc (SNA-AP relationship downward at 120 min after the injection. As a result, the operating point determined by the intersection between function curves of neural arc and peripheral arc showed marked sympatho-excitation without substantial changes in AP.LPS-induced acute inflammation markedly increased SNA via resetting of the baroreflex neural arc, and suppressed the peripheral arc. The balance between the augmented neural arc and

  16. Impact of lipopolysaccharide-induced acute inflammation on baroreflex-controlled sympathetic arterial pressure regulation.

    Science.gov (United States)

    Tohyama, Takeshi; Saku, Keita; Kawada, Toru; Kishi, Takuya; Yoshida, Keimei; Nishikawa, Takuya; Mannoji, Hiroshi; Kamada, Kazuhiro; Sunagawa, Kenji; Tsutsui, Hiroyuki

    2018-01-01

    Lipopolysaccharide (LPS) induces acute inflammation, activates sympathetic nerve activity (SNA) and alters hemodynamics. Since the arterial baroreflex is a negative feedback system to stabilize arterial pressure (AP), examining the arterial baroreflex function is a prerequisite to understanding complex hemodynamics under LPS challenge. We investigated the impact of LPS-induced acute inflammation on SNA and AP regulation by performing baroreflex open-loop analysis. Ten anesthetized Sprague-Dawley rats were used. Acute inflammation was induced by an intravenous injection of LPS (60 μg/kg). We isolated the carotid sinuses from the systemic circulation and controlled carotid sinus pressure (CSP) by a servo-controlled piston pump. We matched CSP to AP to establish the baroreflex closed-loop condition, whereas we decoupled CSP from AP to establish the baroreflex open-loop condition and changed CSP stepwise to evaluate the baroreflex open-loop function. We recorded splanchnic SNA and hemodynamic parameters under baroreflex open- and closed-loop conditions at baseline and at 60 and 120 min after LPS injection. In the baroreflex closed-loop condition, SNA continued to increase after LPS injection, reaching three-fold the baseline value at 120 min (baseline: 94.7 ± 3.6 vs. 120 min: 283.9 ± 31.9 a.u.). In contrast, AP increased initially (until 75 min), then declined to the baseline level. In the baroreflex open-loop condition, LPS reset the neural arc (CSP-SNA relationship) upward to higher SNA, while shifted the peripheral arc (SNA-AP relationship) downward at 120 min after the injection. As a result, the operating point determined by the intersection between function curves of neural arc and peripheral arc showed marked sympatho-excitation without substantial changes in AP. LPS-induced acute inflammation markedly increased SNA via resetting of the baroreflex neural arc, and suppressed the peripheral arc. The balance between the augmented neural arc and suppressed

  17. Cardiac-specific overexpression of catalase attenuates lipopolysaccharide-induced myocardial contractile dysfunction: role of autophagy.

    Science.gov (United States)

    Turdi, Subat; Han, Xuefeng; Huff, Anna F; Roe, Nathan D; Hu, Nan; Gao, Feng; Ren, Jun

    2012-09-15

    Lipopolysaccharide (LPS) from gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complications in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis, and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity, and carbonyl formation. A Kaplan-Meier curve was constructed for survival after LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice after LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O(2)(-), and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury after LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by the antioxidant N-acetylcysteine and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Role of inducible nitric oxide synthase-derived nitric oxide in lipopolysaccharide plus interferon-γ-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Zeidler, Patti C.; Millecchia, Lyndell M.; Castranova, Vincent

    2004-01-01

    Exposure of mice to lipopolysaccharide (LPS) plus interferon-γ (IFN-γ) increases nitric oxide (NO) production, which is proposed to play a role in the resulting pulmonary damage and inflammation. To determine the role of inducible nitric oxide synthase (iNOS)-induced NO in this lung reaction, the responses of inducible nitric oxide synthase knockout (iNOS KO) versus C57BL/6J wild-type (WT) mice to aspirated LPS + IFN-γ were compared. Male mice (8-10 weeks) were exposed to LPS (1.2 mg/kg) + IFN-γ (5000 U/mouse) or saline. At 24 or 72 h postexposure, lungs were lavaged with saline and the acellular fluid from the first bronchoalveolar lavage (BAL) was analyzed for total antioxidant capacity (TAC), lactate dehydrogenase (LDH) activity, albumin, tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein-2 (MIP-2). The cellular fraction of the total BAL was used to determine alveolar macrophage (AM) and polymorphonuclear leukocyte (PMN) counts, and AM zymosan-stimulated chemiluminescence (AM-CL). Pulmonary responses 24 h postexposure to LPS + IFN-γ were characterized by significantly decreased TAC, increased BAL AMs and PMNs, LDH, albumin, TNF-α, and MIP-2, and enhanced AM-CL to the same extent in both WT and iNOS KO mice. Responses 72 h postexposure were similar; however, significant differences were found between WT and iNOS KO mice. iNOS KO mice demonstrated a greater decline in total antioxidant capacity, greater BAL PMNs, LDH, albumin, TNF-α, and MIP-2, and an enhanced AM-CL compared to the WT. These data suggest that the role of iNOS-derived NO in the pulmonary response to LPS + IFN-γ is anti-inflammatory, and this becomes evident over time

  19. Genetic mechanisms of Coxiella burnetii lipopolysaccharide phase variation.

    Science.gov (United States)

    Beare, Paul A; Jeffrey, Brendan M; Long, Carrie M; Martens, Craig M; Heinzen, Robert A

    2018-03-01

    Coxiella burnetii is an intracellular pathogen that causes human Q fever, a disease that normally presents as a severe flu-like illness. Due to high infectivity and disease severity, the pathogen is considered a risk group 3 organism. Full-length lipopolysaccharide (LPS) is required for full virulence and disease by C. burnetii and is the only virulence factor currently defined by infection of an immunocompetent animal. Transition of virulent phase I bacteria with smooth LPS, to avirulent phase II bacteria with rough LPS, occurs during in vitro passage. Semi-rough intermediate forms are also observed. Here, the genetic basis of LPS phase conversion was investigated to obtain a more complete understanding of C. burnetii pathogenesis. Whole genome sequencing of strains producing intermediate and/or phase II LPS identified several common mutations in predicted LPS biosynthesis genes. After passage in broth culture for 30 weeks, phase I strains from different genomic groups exhibited similar phase transition kinetics and elevation of mutations in LPS biosynthesis genes. Targeted mutagenesis and genetic complementation using a new C. burnetii nutritional selection system based on lysine auxotrophy confirmed that six of the mutated genes were necessary for production of phase I LPS. Disruption of two of these genes in a C. burnetii phase I strain resulted in production of phase II LPS, suggesting inhibition of the encoded enzymes could represent a new therapeutic strategy for treatment of Q fever. Additionally, targeted mutagenesis of genes encoding LPS biosynthesis enzymes can now be used to construct new phase II strains from different genomic groups for use in pathogen-host studies at a risk group 2 level.

  20. Dopamine inhibits lipopolysaccharide-induced nitric oxide production through the formation of dopamine quinone in murine microglia BV-2 cells

    Directory of Open Access Journals (Sweden)

    Yasuhiro Yoshioka

    2016-02-01

    Full Text Available Dopamine (DA has been suggested to modulate functions of glial cells including microglial cells. To reveal the regulatory role of DA in microglial function, in the present study, we investigated the effect of DA on lipopolysaccharide (LPS-induced nitric oxide (NO production in murine microglial cell line BV-2. Pretreatment with DA for 24 h concentration-dependently attenuated LPS-induced NO production in BV-2 cells. The inhibitory effect of DA on LPS-induced NO production was not inhibited by SCH-23390 and sulpiride, D1-like and D2-like DA receptor antagonists, respectively. In addition, pretreatment with (−-(6aR,12bR-4,6,6a,7,8,12b-Hexahydro-7-methylindolo[4,3-a]phenanthridin (CY 208–243 and bromocriptine, D1-like and D2-like DA receptor agonists, respectively, did not affect the LPS-induced NO production. N-Acetylcysteine, which inhibits DA oxidation, completely inhibited the effect of DA. Tyrosinase, which catalyzes the oxidation of DA to DA quionone (DAQ, accelerated the inhibitory effect of DA on LPS-induced NO production. These results suggest that DA attenuates LPS-induced NO production through the formation of DAQ in BV-2 cells.

  1. Effect of azithromycin on Prevotella intermedia lipopolysaccharide-induced production of interleukin-6 in murine macrophages.

    Science.gov (United States)

    Choi, Eun-Young; Jin, Ji-Young; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2014-04-15

    Interleukin-6 (IL-6) is a key proinflammatory cytokine which plays a central role in the pathogenesis of periodontal disease. Host modulatory agents targeting at inhibiting IL-6, therefore, appear to be beneficial in slowing the progression of periodontal disease and potentially reducing destructive aspects of the host response. The present study was designed to investigate the effect of the macrolide antibiotic azithromycin on IL-6 generation in murine macrophages treated with lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen implicated in inflammatory periodontal disease, and its mechanisms of action. Azithromycin significantly suppressed IL-6 production as well as its mRNA expression in P. intermedia LPS-activated RAW264.7 cells. LPS-induced activation of JNK and p38 was not affected by azithromycin treatment. Azithromycin failed to prevent P. intermedia LPS from degrading IκB-α. Instead, azithromycin significantly diminished nuclear translocation and DNA binding activity of NF-κB p50 subunit induced with LPS. Azithromycin inhibited P. intermedia LPS-induced STAT1 and STAT3 phosphorylation. In addition, azithromycin up-regulated the mRNA level of SOCS1 in cells treated with LPS. In conclusion, azithromycin significantly attenuated P. intermedia LPS-induced production of IL-6 in murine macrophages via inhibition of NF-κB, STAT1 and STAT3 activation, which is possibly related to the activation of SOCS1 signaling. Further in vivo studies are required to better evaluate the potential of azithromycin in the treatment of periodontal disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A low-level diode laser therapy reduces the lipopolysaccharide (LPS)-induced periodontal ligament cell inflammation

    International Nuclear Information System (INIS)

    Huang, T H; Chen, C C; Liu, S L; Lu, Y C; Kao, C T

    2014-01-01

    The purpose of this study was to investigate the cytologic effects of inflammatory periodontal ligament cells in vitro after low-level laser therapy. Human periodontal ligament cells were cultured, exposed to lipopolysaccharide and subjected to low-level laser treatment of 5 J cm −2 or 10 J cm −2 using a 920 nm diode laser. A periodontal ligament cell attachment was observed under a microscope, and the cell viability was quantified by a mitochondrial colorimetric assay. Lipopolysaccharide-treated periodontal ligament cells were irradiated with the low-level laser, and the expression levels of several inflammatory markers, iNOS, TNF-α and IL-1, and pErk kinase, were analyzed by reverse transcription polymerase chain reaction and western blot. The data were collected and analyzed by one-way analysis of variance; p < 0.05 indicated a statistically significant difference. The low-level laser treatment of periodontal ligament cells increased their ability to attach and survive. After irradiation, the expression levels of iNOS, TNF-α and IL-1 in lipopolysaccharide-exposed periodontal ligament cells decreased over time (p < 0.05). In periodontal ligament cells, low-level diode laser treatment increased the cells’ proliferative ability and decreased the expression of the examined inflammatory mediators. (letters)

  3. Dengue-yellow fever sera cross-reactivity; challenges for diagnosis

    OpenAIRE

    Houghton-Triviño, Natalia; Montaña, Diana; Castellanos, Jaime

    2008-01-01

    Objective The Flavivirus genera share epitopes inducing cross-reactive antibodies leading to great difficulty in differentially diagnosing flaviviral infections. This work was aimed at evaluating the complexity of dengue and yellow fever serological differential diagnosis. Material and methods Dengue antibody capture ELISA and a yellow fever neutralisation test were carried out on 13 serum samples obtained from yellow fever patients, 20 acute serum samples from dengue patients and 19 voluntan...

  4. STUDIES ON THE PATHOGENESIS OF FEVER

    Science.gov (United States)

    Atkins, Elisha; Wood, W. Barry

    1955-01-01

    Further studies have been made of a pyrogenic substance which appears in the circulation of rabbits during the course of experimental fever induced by injection of typhoid vaccine. With the use of a passive transfer method and pyrogen-tolerant recipients, the biological properties of this substance have been differentiated from those of the uncleared vaccine in the circulation. The newly identified factor resembles leucocytic pyrogen in the rapidity with which it produces fever and in its failure to exhibit cross-tolerance with bacterial pyrogen. This striking similarity of properties suggests that the circulating factor is of endogenous origin and may arise from cell injury. A close correlation between its presence in the circulation and the existence of fever has been demonstrated. The possible relationship of these findings to the pathogenesis of fever is evident. PMID:13271667

  5. Anti-inflammatory effects of eugenol on lipopolysaccharide-induced inflammatory reaction in acute lung injury via regulating inflammation and redox status.

    Science.gov (United States)

    Huang, Xianfeng; Liu, Yuanyuan; Lu, Yingxun; Ma, Chunhua

    2015-05-01

    Acute lung injury (ALI) represents a clinical syndrome that results from complex responses of the lung to a multitude of direct and indirect insults. This study aims to evaluate the possible mechanisms responsible for the anti-inflammatory effects of eugenol (EUL) on lipopolysaccharide (LPS)-induced inflammatory reaction in ALI. ALI was induced in mice by intratracheal instillation of LPS (0.5 mg/kg), and EUL (5, and 10 mg/kg) was injected intraperitoneally 1h prior to LPS administration. After 6h, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. The findings suggest that the protective mechanism of EUL may be attributed partly to decreased production of proinflammatory cytokines through the regulating inflammation and redox status. The results support that use of EUL is beneficial in the treatment of ALI. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The alpha2-adrenoreceptor agonist dexmedetomidine protects against lipopolysaccharide-induced apoptosis via inhibition of gap junctions in lung fibroblasts.

    Science.gov (United States)

    Zhang, Yuan; Tan, Xiaoming; Xue, Lianfang

    2018-01-01

    The α2-adrenoceptor inducer dexmedetomidine protects against acute lung injury (ALI), but the mechanism of this effect is largely unknown. The present study investigated the effect of dexmedetomidine on apoptosis induced by lipopolysaccharide (LPS) and the relationship between this effect and gap junction intercellular communication in human lung fibroblast cell line. Flow cytometry was used to detect apoptosis induced by LPS. Parachute dye coupling assay was used to measure gap junction function, and western blot analysis was used to determine the expression levels of connexin43 (Cx43). The results revealed that exposure of human lung fibroblast cell line to LPS for 24 h increased the apoptosis, and pretreatment of dexmedetomidine and 18α-GA significantly reduced LPS-induced apoptosis. Dexmedetomidine exposure for 1 h inhibited gap junction function mainly via a decrease in Cx43 protein levels in human lung fibroblast cell line. These results demonstrated that the inhibition of gap junction intercellular communication by dexmedetomidine affected the LPS-induced apoptosis through inhibition of gap junction function by reducing Cx43 protein levels. The present study provides evidence of a novel mechanism underlying the effects of analgesics in counteracting ALI. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Potential role of an antimicrobial peptide, KLK in inhibiting lipopolysaccharide-induced macrophage inflammation.

    Directory of Open Access Journals (Sweden)

    Pornpimon Jantaruk

    Full Text Available Antimicrobial peptides (AMPs are attractive alternatives to antibiotics. Due to their immune modulatory properties, AMPs are at present emerging as promising agents for controlling inflammatory-mediated diseases. In this study, anti-inflammatory potential of an antimicrobial peptide, KLK (KLKLLLLLKLK and its analogs was evaluated in lipopolysaccharide (LPS-induced RAW 264.7 macrophages. The results herein demonstrated that KLK peptide as well as its analogs significantly inhibited the pro-inflammatory mediator nitric oxide (NO, interleukin-1β (IL-1β and tumor necrosis factor-α (TNF-α production in LPS-stimulated RAW 264.7 macrophages in dose-dependent manners, and such inhibitory effects were not due to direct cytotoxicity. When considering inhibition potency, KLK among the test peptides exhibited the most effective activity. The inhibitory activity of KLK peptide also extended to include suppression of LPS-induced production of prostaglandin E2 (PGE2. KLK significantly decreased mRNA and protein expression of inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 as well as mRNA expression of IL-1β and TNF-α. Moreover, KLK inhibited nuclear translocation of nuclear factor-κB (NF-κB p65 and blocked degradation and phosphorylation of inhibitor of κB (IκB. Taken together, these results suggested that the KLK peptide inhibited inflammatory response through the down-regulation of NF-κB mediated activation in macrophages. Since peptide analogs with different amino acid sequences and arrangement were investigated for their anti-inflammatory activities, the residues/structures required for activity were also discussed. Our findings therefore proved anti-inflammatory potential of the KLK peptide and provide direct evidence for therapeutic application of KLK as a novel anti-inflammatory agent.

  8. Anti-inflammatory effect of Heliotropium indicum Linn on lipopolysaccharide-induced uveitis in New Zealand white rabbits.

    Science.gov (United States)

    Kyei, Samuel; Koffuor, George Asumeng; Ramkissoon, Paul; Ameyaw, Elvis Ofori; Asiamah, Emmanuel Akomanin

    2016-01-01

    To investigate the anti-inflammatory effect of an aqueous whole plant extract of Heliotropium indicum (HIE) on endotoxin-induced uveitis in New Zealand white rabbits. Clinical signs of uveitis including flares, iris hyperemia and miosis, were sought for and scored in 1.0 mg/kg lipopolysaccharide (LPS) -induced uveitic rabbits treated orally with HIE (30-300 mg/kg), prednisolone (30 mg/kg), or normal saline (10 mL/kg). The number of polymorphonuclear neutrophils infiltrating, the protein concentration, as well as levels of tumor necrosis factor-α (TNF-α), prostaglandin E2 (PGE2), and monocyte chemmoattrant protein-1 (MCP-1) in the aqueous humor after the various treatments were also determined. A histopathological study of the anterior uveal was performed. The extract and prednisolone-treatment significantly reduced (P≤0.001) both the clinical scores of inflammation (1.0-1.8 compared to 4.40±0.40 in the normal saline-treated rabbits) and inflammatory cells infiltration. The level of protein, and the concentrations of TNF-α, PGE2 and MCP-1 in the aqueous humor were also significantly reduced (P≤0.001). Histopathological studies showed normal uveal morphology in the HIE and prednisolone-treated rabbits while normal saline-treated rabbits showed marked infiltration of inflammatory cells. The HIE exhibits anti-inflammatory effect on LPS-induced uveitis possibly by reducing the production of pro-inflammatory mediators.

  9. Hydroalcoholic extract of Stevia rebaudiana bert. leaves and stevioside ameliorates lipopolysaccharide induced acute liver injury in rats.

    Science.gov (United States)

    S, Latha; Chaudhary, Sheetal; R S, Ray

    2017-11-01

    Oxidative stress and hepatic inflammatory response is primarily implicated in the pathogenesis of LPS induced acute liver injury. Stevioside, a diterpenoidal glycoside isolated from the Stevia rebaudiana leaves, exerts potent anti-oxidant, anti-inflammatory and immunomodulatory activities. The present study was aimed to investigate the hepatoprotective effect of hydroalcoholic extract of Stevia rebaudiana leaves (STE EXT) and its major phytochemical constituent, stevioside (STE) in LPS induced acute liver injury. The hepatoprotective activity of STE EXT (500mg/kg p.o) and STE (250mg/kg p.o) was investigated in lipopolysaccharide (LPS 5mg/kg i.p.) induced acute liver injury in male wistar rats. Our results revealed that both STE EXT and STE treatment ameliorated LPS induced hepatic oxidative stress, evident from altered levels of reduced SOD, Catalase, GSH, MDA, NO. Histopathological observations revealed that both STE EXT and STE attenuated LPS induced structural changes and hepatocellular apoptosis providing additional evidence for its hepatoprotective effect. Further, STE EXT and STE significantly restored the elevated serum and tissue levels of AST and ALT in LPS treated rats. Furthermore, both STE EXT and STE rescued hepatocellular dysfunctions to normal by altering the level of proinflammatory cytokines such as TNF-α, IL-1β and IL-6 exhibiting its anti-inflammatory potential. In conclusion, both STE EXT and STE demonstrated excellent hepatoprotective effects against endotoxemia induced acute liver injury possibly through suppression of hepatic inflammatory response and oxidative stress, attributing to its medicinal importance in treating various liver ailments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Effects of anti-inflammatory drugs on fever and neutrophilia induced by Clostridium difficile toxin B

    Directory of Open Access Journals (Sweden)

    R. A. Cardoso

    1996-01-01

    Full Text Available This study investigated the ability of Clostridium difficile toxin B, isolated from the VPI 10463 strain, to induce fever and neutrophilia in rats. Intravenous injection of toxin B (0.005–0.5 μg/kg evoked a dose-dependent increase in body temperature. The febrile response to 0.5 μg/kg of the toxin started in 2.5 h, peaked at 5 h, and subsided fully within 24 h. Toxin B also induced a dosedependent neutrophilia. Pretreatment with indomethacin (2 mg/kg, i.p. did not affect the neutrophilia induced by toxin B, but significantly reduced the febrile response measured 4 to 8 h after toxin B injection. Dexamethasone (0.5 mg/ kg also markedly diminished the febrile response induced by toxin B. These results show that Clostridium difficile toxin B induced a febrile response susceptible to inhibition by dexamethasone and indomethacin. Furthermore, they suggest that prostaglandins are not involved in the neutrophilia caused by this toxin.

  11. 17DD yellow fever vaccine

    Science.gov (United States)

    Martins, Reinaldo M.; Maia, Maria de Lourdes S.; Farias, Roberto Henrique G.; Camacho, Luiz Antonio B.; Freire, Marcos S.; Galler, Ricardo; Yamamura, Anna Maya Yoshida; Almeida, Luiz Fernando C.; Lima, Sheila Maria B.; Nogueira, Rita Maria R.; Sá, Gloria Regina S.; Hokama, Darcy A.; de Carvalho, Ricardo; Freire, Ricardo Aguiar V.; Filho, Edson Pereira; Leal, Maria da Luz Fernandes; Homma, Akira

    2013-01-01

    Objective: To verify if the Bio-Manguinhos 17DD yellow fever vaccine (17DD-YFV) used in lower doses is as immunogenic and safe as the current formulation. Results: Doses from 27,476 IU to 587 IU induced similar seroconversion rates and neutralizing antibodies geometric mean titers (GMTs). Immunity of those who seroconverted to YF was maintained for 10 mo. Reactogenicity was low for all groups. Methods: Young and healthy adult males (n = 900) were recruited and randomized into 6 groups, to receive de-escalating doses of 17DD-YFV, from 27,476 IU to 31 IU. Blood samples were collected before vaccination (for neutralization tests to yellow fever, serology for dengue and clinical chemistry), 3 to 7 d after vaccination (for viremia and clinical chemistry) and 30 d after vaccination (for new yellow fever serology and clinical chemistry). Adverse events diaries were filled out by volunteers during 10 d after vaccination. Volunteers were retested for yellow fever and dengue antibodies 10 mo later. Seropositivity for dengue was found in 87.6% of volunteers before vaccination, but this had no significant influence on conclusions. Conclusion: In young healthy adults Bio-Manguinhos/Fiocruz yellow fever vaccine can be used in much lower doses than usual. International Register ISRCTN 38082350. PMID:23364472

  12. Zinc prevents sickness behavior induced by lipopolysaccharides after a stress challenge in rats.

    Directory of Open Access Journals (Sweden)

    Thiago B Kirsten

    Full Text Available Sickness behavior is considered part of the specific beneficial adaptive behavioral and neuroimmune changes that occur in individuals in response to infectious/inflammatory processes. However, in dangerous and stressful situations, sickness behavior should be momentarily abrogated to prioritize survival behaviors, such as fight or flight. Taking this assumption into account, we experimentally induced sickness behavior in rats using lipopolysaccharides (LPS, an endotoxin that mimics infection by gram-negative bacteria, and then exposed these rats to a restraint stress challenge. Zinc has been shown to play a regulatory role in the immune and nervous systems. Therefore, the objective of this study was to examine the effects of zinc treatment on the sickness response of stress-challenged rats. We evaluated 22-kHz ultrasonic vocalizations, open-field behavior, tumor necrosis factor α (TNF-α, corticosterone, and brain-derived neurotrophic factor (BDNF plasma levels. LPS administration induced sickness behavior in rats compared to controls, i.e., decreases in the distance traveled, average velocity, rearing frequency, self-grooming, and number of vocalizations, as well as an increase in the plasma levels of TNF-α, compared with controls after a stressor challenge. LPS also decreased BDNF expression but did not influence anxiety parameters. Zinc treatment was able to prevent sickness behavior in LPS-exposed rats after the stress challenge, restoring exploratory/motor behaviors, communication, and TNF-α levels similar to those of the control group. Thus, zinc treatment appears to be beneficial for sick animals when they are facing risky/stressful situations.

  13. Dietary broccoli mildly improves neuroinflammation in aged mice but does not reduce lipopolysaccharide-induced sickness behavior.

    Science.gov (United States)

    Townsend, Brigitte E; Chen, Yung-Ju; Jeffery, Elizabeth H; Johnson, Rodney W

    2014-11-01

    Aging is associated with oxidative stress and heightened inflammatory response to infection. Dietary interventions to reduce these changes are therefore desirable. Broccoli contains glucoraphanin, which is converted to sulforaphane (SFN) by plant myrosinase during cooking preparation or digestion. Sulforaphane increases antioxidant enzymes including NAD(P)H quinone oxidoreductase and heme oxygenase I and inhibits inflammatory cytokines. We hypothesized that dietary broccoli would support an antioxidant response in brain and periphery of aged mice and inhibit lipopolysaccharide (LPS)-induced inflammation and sickness. Young adult and aged mice were fed control or 10% broccoli diet for 28 days before an intraperitoneal LPS injection. Social interactions were assessed 2, 4, 8, and 24 hours after LPS, and mRNA was quantified in liver and brain at 24 hours. Dietary broccoli did not ameliorate LPS-induced decrease in social interactions in young or aged mice. Interleukin-1β (IL-1β) expression was unaffected by broccoli consumption but was induced by LPS in brain and liver of adult and aged mice. In addition, IL-1β was elevated in brain of aged mice without LPS. Broccoli consumption decreased age-elevated cytochrome b-245 β, an oxidative stress marker, and reduced glial activation markers in aged mice. Collectively, these data suggest that 10% broccoli diet provides a modest reduction in age-related oxidative stress and glial reactivity, but is insufficient to inhibit LPS-induced inflammation. Thus, it is likely that SFN would need to be provided in supplement form to control the inflammatory response to LPS. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Effect of influenza-induced fever on human bioimpedance values.

    Directory of Open Access Journals (Sweden)

    Elisabetta Marini

    Full Text Available Bioelectrical impedance analysis (BIA is a widely used technique to assess body composition and nutritional status. While bioelectrical values are affected by diverse variables, there has been little research on validation of BIA in acute illness, especially to understand prognostic significance. Here we report the use of BIA in acute febrile states induced by influenza.Bioimpedance studies were conducted during an H1N1 influenza A outbreak in Venezuelan Amerindian villages from the Amazonas. Measurements were performed on 52 subjects between 1 and 40 years of age, and 7 children were re-examined after starting Oseltamivir treatment. Bioelectrical Impedance Vector Analysis (BIVA and permutation tests were applied.For the entire sample, febrile individuals showed a tendency toward greater reactance (p=0.058 and phase angle (p=0.037 than afebrile individuals, while resistance and impedance were similar in the two groups. Individuals with repeated measurements showed significant differences in bioimpedance values associated with fever, including increased reactance (p<0.001 and phase angle (p=0.007, and decreased resistance (p=0.007 and impedance (p<0.001.There are bioelectrical variations induced by influenza that can be related to dehydration, with lower extracellular to intracellular water ratio in febrile individuals, or a direct thermal effect. Caution is recommended when interpreting bioimpedance results in febrile states.

  15. Lipopolysaccharide-Induced Behavioral Alterations Are Alleviated by Sodium Phenylbutyrate via Attenuation of Oxidative Stress and Neuroinflammatory Cascade.

    Science.gov (United States)

    Jangra, Ashok; Sriram, Chandra Shaker; Lahkar, Mangala

    2016-08-01

    Oxido-nitrosative stress, neuroinflammation, and reduced level of neurotrophins are implicated in the pathophysiology of anxiety and depressive illness. A few recent studies have revealed the role of endoplasmic reticulum (ER) stress in the pathophysiology of stress and depression. The aim of the present study is to investigate the neuroprotective potential of sodium phenylbutyrate (SPB), an ER stress inhibitor against lipopolysaccharide (LPS)-induced anxiety and depressive-like behavior in Swiss albino mice. Anxiety and depressive-like behavior was induced by LPS (0.83 mg/kg; i.p.) administration. Various behavioral tests were conducted to evaluate the anxiety and depressive-like behavior in mice. Real-time PCR was employed for the detection and expression of ER stress markers (78-kDa glucose-regulated protein (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)). Pretreatment with SPB significantly ameliorated the LPS-induced anxiety and depressive-like behavior as revealed by behavioral paradigm results. LPS-induced oxidative stress was ameliorated by SPB pretreatment in hippocampus (HC) and prefrontal cortex (PFC) region. Neuroinflammation was significantly reduced by SPB pretreatment in LPS-treated mice as evident from reduction in proinflammatory cytokines (IL-1β and TNF-α). Importantly, LPS administration significantly up-regulated the GRP78 mRNA expression level in the HC which suggests the involvement of unfolded protein response (UPR) in LPS-evoked behavioral anomalies. These results highlight the neuroprotective potential of SPB in LPS-induced anxiety and depressive illness model which may be partially due to inhibition of oxidative stress-neuroinflammatory cascade.

  16. Effect of acupuncture on Lipopolysaccharide-induced anxiety-like behavioral changes: involvement of serotonin system in dorsal Raphe nucleus.

    Science.gov (United States)

    Yang, Tae Young; Jang, Eun Young; Ryu, Yeonhee; Lee, Gyu Won; Lee, Eun Byeol; Chang, Suchan; Lee, Jong Han; Koo, Jin Suk; Yang, Chae Ha; Kim, Hee Young

    2017-12-11

    Acupuncture has been used as a common therapeutic tool in many disorders including anxiety and depression. Serotonin transporter (SERT) plays an important role in the pathology of anxiety and other mood disorders. The aim of this study was to evaluate the effects of acupuncture on lipopolysaccharide (LPS)-induced anxiety-like behaviors and SERT in the dorsal raphe nuclei (DRN). Rats were given acupuncture at ST41 (Jiexi), LI11 (Quchi) or SI3 (Houxi) acupoint in LPS-treated rats. Anxiety-like behaviors of elevated plus maze (EPM) and open field test (OFT) were measured and expressions of SERT and/or c-Fos were also examined in the DRN using immunohistochemistry. The results showed that 1) acupuncture at ST41 acupoint, but neither LI11 nor SI3, significantly attenuated LPS-induced anxiety-like behaviors in EPM and OFT, 2) acupuncture at ST41 decreased SERT expression increased by LPS in the DRN. Our results suggest that acupuncture can ameliorate anxiety-like behaviors, possibly through regulation of SERT in the DRN.

  17. The role of lipopolysaccharide injected systemically in the reactivation of collagen-induced arthritis in mice

    Science.gov (United States)

    Yoshino, Shin; Ohsawa, Motoyasu

    2000-01-01

    We investigated the role of bacterial lipopolysaccharide (LPS) in the reactivation of autoimmune disease by using collagen-induced arthritis (CIA) in mice in which autoimmunity to the joint cartilage component type II collagen (CII) was involved.CIA was induced by immunization with CII emulsified with complete Freund's adjuvant at the base of the tail (day 0) followed by a booster injection on day 21. Varying doses of LPS from E. coli were i.p. injected on day 50.Arthritis began to develop on day 25 after immunization with CII and reached a peak on day 35. Thereafter, arthritis subsided gradually but moderate joint inflammation was still observed on day 50. An i.p. injection of LPS on day 50 markedly reactivated arthritis on a dose-related fashion. Histologically, on day 55, there were marked oedema of synovium which had proliferated by the day of LPS injection, new formation of fibrin, and intense infiltration of neutrophils accompanied with a large number of mononuclear cells. The reactivation of CIA by LPS was associated with increases in anti-CII IgG and IgG2a antibodies as well as various cytokines including IL-12, IFN-γ, IL-1β, and TNF-α. LPS from S. enteritidis, S. typhimurium, and K. neumoniae and its component, lipid A from E. coli also reactivated the disease. Polymyxin B sulphate suppressed LPS- or lipid A-induced reactivation of CIA.These results suggest that LPS may play an important role in the reactivation of autoimmune joint inflammatory diseases such as rheumatoid arthritis in humans. PMID:10742285

  18. Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-κB pathways.

    Science.gov (United States)

    Peng, Shuang; Hang, Nan; Liu, Wen; Guo, Wenjie; Jiang, Chunhong; Yang, Xiaoling; Xu, Qiang; Sun, Yang

    2016-05-01

    Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a severe, life-threatening medical condition characterized by widespread inflammation in the lungs, and is a significant source of morbidity and mortality in the patient population. New therapies for the treatment of ALI are desperately needed. In the present study, we examined the effect of andrographolide sulfonate, a water-soluble form of andrographolide (trade name: Xi-Yan-Ping Injection), on lipopolysaccharide (LPS)-induced ALI and inflammation. Andrographolide sulfonate was administered by intraperitoneal injection to mice with LPS-induced ALI. LPS-induced airway inflammatory cell recruitment and lung histological alterations were significantly ameliorated by andrographolide sulfonate. Protein levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) and serum were reduced by andrographolide sulfonate administration. mRNA levels of pro-inflammatory cytokines in lung tissue were also suppressed. Moreover, andrographolide sulfonate markedly suppressed the activation of mitogen-activated protein kinase (MAPK) as well as p65 subunit of nuclear factor-κB (NF-κB). In summary, these results suggest that andrographolide sulfonate ameliorated LPS-induced ALI in mice by inhibiting NF-κB and MAPK-mediated inflammatory responses. Our study shows that water-soluble andrographolide sulfonate may represent a new therapeutic approach for treating inflammatory lung disorders.

  19. Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-κB pathways

    Directory of Open Access Journals (Sweden)

    Shuang Peng

    2016-05-01

    Full Text Available Acute lung injury (ALI or acute respiratory distress syndrome (ARDS is a severe, life-threatening medical condition characterized by widespread inflammation in the lungs, and is a significant source of morbidity and mortality in the patient population. New therapies for the treatment of ALI are desperately needed. In the present study, we examined the effect of andrographolide sulfonate, a water-soluble form of andrographolide (trade name: Xi-Yan-Ping Injection, on lipopolysaccharide (LPS-induced ALI and inflammation. Andrographolide sulfonate was administered by intraperitoneal injection to mice with LPS-induced ALI. LPS-induced airway inflammatory cell recruitment and lung histological alterations were significantly ameliorated by andrographolide sulfonate. Protein levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF and serum were reduced by andrographolide sulfonate administration. mRNA levels of pro-inflammatory cytokines in lung tissue were also suppressed. Moreover, andrographolide sulfonate markedly suppressed the activation of mitogen-activated protein kinase (MAPK as well as p65 subunit of nuclear factor-κB (NF-κB. In summary, these results suggest that andrographolide sulfonate ameliorated LPS-induced ALI in mice by inhibiting NF-κB and MAPK-mediated inflammatory responses. Our study shows that water-soluble andrographolide sulfonate may represent a new therapeutic approach for treating inflammatory lung disorders.

  20. TLR4-NOX4-AP-1 signaling mediates lipopolysaccharide-induced CXCR6 expression in human aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Patel, Devang N.; Bailey, Steven R.; Gresham, John K.; Schuchman, David B.; Shelhamer, James H.; Goldstein, Barry J.; Foxwell, Brian M.; Stemerman, Michael B.; Maranchie, Jodi K.; Valente, Anthony J.; Mummidi, Srinivas; Chandrasekar, Bysani

    2006-01-01

    CXCL16 is a transmembrane non-ELR CXC chemokine that signals via CXCR6 to induce aortic smooth muscle cell (ASMC) proliferation. While bacterial lipopolysaccharide (LPS) has been shown to stimulate CXCL16 expression in SMC, its effects on CXCR6 are not known. Here, we demonstrate that LPS upregulates CXCR6 mRNA, protein, and surface expression in human ASMC. Inhibition of TLR4 with neutralizing antibodies or specific siRNA interference blocked LPS-mediated CXCR6 expression. LPS stimulated both AP-1 (c-Fos, c-Jun) and NF-κB (p50 and p65) activation, but only inhibition of AP-1 attenuated LPS-induced CXCR6 expression. Using dominant negative expression vectors and siRNA interference, we demonstrate that LPS induces AP-1 activation via MyD88, TRAF6, ERK1/2, and JNK signaling pathways. Furthermore, the flavoprotein inhibitor diphenyleniodonium chloride significantly attenuated LPS-mediated AP-1-dependent CXCR6 expression, as did inhibition of NOX4 NADPH oxidase by siRNA. Finally, CXCR6 knockdown inhibited CXCL16-induced ASMC proliferation. These results demonstrate that LPS-TLR4-NOX4-AP-1 signaling can induce CXCR6 expression in ASMC, and suggest that the CXCL16-CXCR6 axis may be an important proinflammatory pathway in the pathogenesis of atherosclerosis

  1. Thymoquinone restores liver fibrosis and improves oxidative stress status in a lipopolysaccharide-induced inflammation model in rats

    Directory of Open Access Journals (Sweden)

    Fereshteh Asgharzadeh

    2017-10-01

    Full Text Available Objective: Liver fibrosis is the primary sign of chronic liver injury induced by various causes. Thymoquinone (TQ is the major ingredient of Nigella sativa with several beneficial effects on the body. In the present study, we aimed to investigate the effect of TQ on liver fibrosis in a lipopolysaccharide (LPS-induced inflammation in male rats. Materials and methods: Fifty male Wistar rats were randomly divided into five groups (n=10 in each group as follow: (1 control; (2 LPS (1 mg/kg/day; i.p; (3 LPS+TQ 2 mg/kg/day (i.p (LPs+TQ2; (4 LPS+TQ 5 mg/kg/day (LPS+TQ5; (5 LPS+ TQ 10 mg/kg/day (LPS+ TQ10. After three weeks, blood samples were taken for evaluation of liver function tests. Then, the livers were harvested for histological evaluation of fibrosis and collagen content and measurement of oxidative stress markers including malondialdehyde (MDA, total thiol groups, superoxide dismutase (SOD and catalase activity in tissue homogenates. Results: LPS group showed higher levels of fibrosis and collagen content stained by Masson’s trichrome in liver tissue with impaired liver function test and increased oxidative stress markers (p

  2. Anti-inflammatory effect of Heliotropium indicum Linn on lipopolysaccharide-induced uveitis in New Zealand white rabbits

    Directory of Open Access Journals (Sweden)

    Samuel Kyei

    2016-04-01

    Full Text Available AIM: To investigate the anti-inflammatory effect of an aqueous whole plant extract of Heliotropium indicum (HIE on endotoxin-induced uveitis in New Zealand white rabbits. METHODS: Clinical signs of uveitis including flares, iris hyperemia and miosis, were sought for and scored in 1.0 mg/kg lipopolysaccharide (LPS -induced uveitic rabbits treated orally with HIE (30-300 mg/kg, prednisolone (30 mg/kg, or normal saline (10 mL/kg. The number of polymorphonuclear neutrophils infiltrating, the protein concentration, as well as levels of tumor necrosis factor-α (TNF-α, prostaglandin E2 (PGE2, and monocyte chemmoattrant protein-1 (MCP-1 in the aqueous humor after the various treatments were also determined. A histopathological study of the anterior uveal was performed. RESULTS: The extract and prednisolone-treatment significantly reduced (P≤0.001 both the clinical scores of inflammation (1.0-1.8 compared to 4.40±0.40 in the normal saline-treated rabbits and inflammatory cells infiltration. The level of protein, and the concentrations of TNF-α, PGE2 and MCP-1 in the aqueous humor were also significantly reduced (P≤0.001. Histopathological studies showed normal uveal morphology in the HIE and prednisolone-treated rabbits while normal saline-treated rabbits showed marked infiltration of inflammatory cells. CONCLUSION: The HIE exhibits anti-inflammatory effect on LPS-induced uveitis possibly by reducing the production of pro-inflammatory mediators.

  3. The value of 99Tcm-HSA in monitoring acute lung injury induced by lipopolysaccharide in rats

    International Nuclear Information System (INIS)

    Fu Zhanli; Zhang Chunli; Wang Rongfu; Zhang Shengsuo; Xue Yun

    2005-01-01

    To evaluate the value of 99 Tc m labeled human serum albumin ( 99 Tc m -HSA) in monitoring acute lung injury (ALI) induced by lipopolysaccharide (LPS) in rats, twenty adult Wistar rats are given 99 Tc m -HSA intravenously, and are randomly divided into four groups 30 min later. The control and LPS group are given intravenous injection of 0.9% saline and LPS 8 mg/kg respectively. The ketamine and aminoguanidine group are given intraperitoneal injection of ketamine 4 mg/kg and aminoguanidine 20 mg/kg respectively just 30 min after administration of LPS 8 mg/kg. All of the four group rats are killed by blood letting at 3 h post-injection of 99 Tc m -HSA. Pulmonary permeability index (PPI) and the ratio of lung wet weight and dry weight (W/D) is calculated. The results of PPI and W/D in control and LPS group are 95.58 ± 11.32 and 5.38 ± 0.24, 6.61 ± 0.18 and 4.19 ± 0.11, respectively. The PPI and W/D in LPS group are much higher than that in the control group (P 0.05). So 99 tc m -HSA is an effective tracer in monitoring ALI induced by LPS in rats. (authors)

  4. Dopamine mediated iron release from ferritin is enhanced at higher temperatures: Possible implications for fever-induced Parkinson's disease

    International Nuclear Information System (INIS)

    Babincova, Melania; Babinec, Peter

    2005-01-01

    A new molecular mechanism is proposed to explain the pathogenesis of fever-induced Parkinson's disease. This proposal is based on dopamine and 6-hydroxydopamine-mediated free iron release from ferritin magnetic nanoparticles, which is enhanced at higher temperatures, and which may lead to substantial peroxidation and injury of lipid biomembranes of the substantia nigra in the brain

  5. Psychogenic fever: how psychological stress affects body temperature in the clinical population.

    Science.gov (United States)

    Oka, Takakazu

    2015-01-01

    Psychogenic fever is a stress-related, psychosomatic disease especially seen in young women. Some patients develop extremely high core body temperature (Tc) (up to 41°C) when they are exposed to emotional events, whereas others show persistent low-grade high Tc (37-38°C) during situations of chronic stress. The mechanism for psychogenic fever is not yet fully understood. However, clinical case reports demonstrate that psychogenic fever is not attenuated by antipyretic drugs, but by psychotropic drugs that display anxiolytic and sedative properties, or by resolving patients' difficulties via natural means or psychotherapy. Animal studies have demonstrated that psychological stress increases Tc via mechanisms distinct from infectious fever (which requires proinflammatory mediators) and that the sympathetic nervous system, particularly β3-adrenoceptor-mediated non-shivering thermogenesis in brown adipose tissue, plays an important role in the development of psychological stress-induced hyperthermia. Acute psychological stress induces a transient, monophasic increase in Tc. In contrast, repeated stress induces anticipatory hyperthermia, reduces diurnal changes in Tc, or slightly increases Tc throughout the day. Chronically stressed animals also display an enhanced hyperthermic response to a novel stress, while past fearful experiences induce conditioned hyperthermia to the fear context. The high Tc that psychogenic fever patients develop may be a complex of these diverse kinds of hyperthermic responses.

  6. Protective Effects of Hydrogen-Rich Saline Against Lipopolysaccharide-Induced Alveolar Epithelial-to-Mesenchymal Transition and Pulmonary Fibrosis.

    Science.gov (United States)

    Dong, Wen-Wen; Zhang, Yun-Qian; Zhu, Xiao-Yan; Mao, Yan-Fei; Sun, Xue-Jun; Liu, Yu-Jian; Jiang, Lai

    2017-05-19

    BACKGROUND Fibrotic change is one of the important reasons for the poor prognosis of patients with acute respiratory distress syndrome (ARDS). The present study investigated the effects of hydrogen-rich saline, a selective hydroxyl radical scavenger, on lipopolysaccharide (LPS)-induced pulmonary fibrosis. MATERIAL AND METHODS Male ICR mice were divided randomly into 5 groups: Control, LPS-treated plus vehicle treatment, and LPS-treated plus hydrogen-rich saline (2.5, 5, or 10 ml/kg) treatment. Twenty-eight days later, fibrosis was assessed by determination of collagen deposition, hydroxyproline, and type I collagen levels. Development of epithelial-to-mesenchymal transition (EMT) was identified by examining protein expressions of E-cadherin and α-smooth muscle actin (α-SMA). Transforming growth factor (TGF)-β1 content, total antioxidant capacity (T-AOC), malondialdehyde (MDA) content, catalase (CAT), and superoxide dismutase (SOD) activity were determined. RESULTS Mice exhibited increases in collagen deposition, hydroxyproline, type I collagen contents, and TGF-β1 production in lung tissues after LPS treatment. LPS-induced lung fibrosis was associated with increased expression of α-SMA, as well as decreased expression of E-cadherin. In addition, LPS treatment increased MDA levels but decreased T-AOC, CAT, and SOD activities in lung tissues, indicating that LPS induced pulmonary oxidative stress. Hydrogen-rich saline treatment at doses of 2.5, 5, or 10 ml/kg significantly attenuated LPS-induced pulmonary fibrosis. LPS-induced loss of E-cadherin in lung tissues was largely reversed, whereas the acquisition of α-SMA was dramatically decreased by hydrogen-rich saline treatment. In addition, hydrogen-rich saline treatment significantly attenuated LPS-induced oxidative stress. CONCLUSIONS Hydrogen-rich saline may protect against LPS-induced EMT and pulmonary fibrosis through suppressing oxidative stress.

  7. Yellow Fever

    Science.gov (United States)

    ... Testing Vaccine Information Testing for Vaccine Adverse Events Yellow fever Vaccine Continuing Education Course Yellow Fever Home Prevention Vaccine Vaccine Recommendations Reactions to Yellow Fever Vacine Yellow Fever Vaccine, Pregnancy, & ... Transmission Symptoms, Diagnosis, & Treatment Maps Africa ...

  8. Enrofloxacin in therapeutic doses alters cytokine production by porcine PBMCs induced by lipopolysaccharide.

    Science.gov (United States)

    Pomorska-Mól, Małgorzata; Czyżewska-Dors, Ewelina; Kwit, Krzysztof; Pejsak, Zygmunt

    2017-07-01

    The effect of enrofloxacin on cytokine secretion by porcine peripheral blood mononuclear cells (PBMCs) was studied. Twenty 8-20-week-old pigs were randomly divided into two groups: control (C, n = 10) and experimental (E, n = 10) were used. Pigs from group E received enrofloxacin at therapeutic dose for 5 consecutive days. Blood samples were collected at 0 (before antibiotic administration), 2, 4 (during antibiotic therapy) 6, 9, 14 21, 35, 49, and 63 d of study (after treatment). PBMCs of pigs from both groups were incubated with or without lipopolysaccharide (LPS). Ex vivo production on interleukin (IL)-4, IL-6, IL-10, INF-γ, and TNF-α were analyzed using ELISA assay. Intramuscular administration of enrofloxacin to healthy pigs for 5 consecutive days induced a transitory reduction of the ex vivo response of PBMCs to LPS in terms of IL-6 and TNF-α secretion. The level of IL-6 returned to day 0 level shortly after end of treatment, while the TNF-α production remained reduced 10 d after the end of treatment. Our results indicate that enrofloxacin given in vivo in therapeutic doses has an immunomodulatory effect through its capacity to inhibit ex vivo secretion of IL-6 and TNF-α by porcine PBMC after LPS stimulation.

  9. Structure of bacterial lipopolysaccharides.

    Science.gov (United States)

    Caroff, Martine; Karibian, Doris

    2003-11-14

    Bacterial lipopolysaccharides are the major components of the outer surface of Gram-negative bacteria They are often of interest in medicine for their immunomodulatory properties. In small amounts they can be beneficial, but in larger amounts they may cause endotoxic shock. Although they share a common architecture, their structural details exert a strong influence on their activity. These molecules comprise: a lipid moiety, called lipid A, which is considered to be the endotoxic component, a glycosidic part consisting of a core of approximately 10 monosaccharides and, in "smooth-type" lipopolysaccharides, a third region, named O-chain, consisting of repetitive subunits of one to eight monosaccharides responsible for much of the immunospecificity of the bacterial cell.

  10. Fucofuroeckol-A from Eisenia bicyclis Inhibits Inflammation in Lipopolysaccharide-Induced Mouse Macrophages via Downregulation of the MAPK/NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Lee

    2016-01-01

    Full Text Available Fucofuroeckol-A (FF isolated from an edible perennial brown seaweed Eisenia bicyclis was shown to be potent anti-inflammatory agents. FF suppressed the production of nitric oxide (NO and prostaglandin E2 (PGE2 and the expression of inducible nitric oxide synthase and cyclooxygenase-2 dose dependently in lipopolysaccharide- (LPS- induced RAW 264.7 mouse macrophages. An enzyme-linked immunosorbent assay and cytometric bead array assay demonstrated that FF significantly reduced the production of proinflammatory cytokines, such as interleukin-6 and tumor necrosis factor-α, and that of the monocyte chemoattractant protein-1. Moreover, FF reduced the activation of nuclear factor κB (NF-κB and mitogen-activated protein kinases (MAPKs. These results strongly suggest that the inhibitory effects of fucofuroeckol-A from E. bicyclis on LPS-induced NO and PGE2 production might be due to the suppression of the NF-κB and MAPK signaling pathway.

  11. Polysaccharide peptide induces a tumor necrosis factor-α-dependent drop of body temperature in rats.

    Science.gov (United States)

    Jedrzejewski, Tomasz; Piotrowski, Jakub; Wrotek, Sylwia; Kozak, Wieslaw

    2014-08-01

    Polysaccharide peptide (PSP) extracted from the Coriolus versicolor mushroom is frequently suggested as an adjunct to the chemo- or radiotherapy in cancer patients. It improves quality of the patients' life by decreasing pain, fatigue, loss of appetite, nausea, and vomiting. However, the effect of PSP on body temperature has not thus far been studied, although it is well known that treatment with other polysaccharide adjuvants, such as lipopolysaccharides, may induce fever. The aim of the present study, therefore, was to investigate the influence of PSP on temperature regulation in rats. We report that intraperitoneal injection of PSP provoked a dose-dependent decrease of temperature in male Wistar rats equipped with biotelemetry devices to monitor deep body temperature (Tb). The response was rapid (i.e., with latency of 15-20min), transient (lasting up to 5h post-injection), and accompanied by a significant elevation of the blood tumor necrosis factor-α (TNF-α) level. Pretreatment of the rats with anti-TNF-α antibody prevented the PSP-induced drop in Tb. Based on these data, we conclude that rats may develop an anapyrexia-like response to the injection of peptidopolysaccharide rather than fever, and the response was TNF-α-dependent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. LFG-500, a newly synthesized flavonoid, attenuates lipopolysaccharide-induced acute lung injury and inflammation in mice.

    Science.gov (United States)

    Li, Chenglin; Yang, Dan; Cao, Xin; Wang, Fan; Jiang, Haijing; Guo, Hao; Du, Lei; Guo, Qinglong; Yin, Xiaoxing

    2016-08-01

    Acute lung injury (ALI) often causes significant morbidity and mortality worldwide. Improved treatment and effective strategies are still required for ALI patients. Our previous studies demonstrated that LFG-500, a novel synthesized flavonoid, has potent anti-cancer activities, while its anti-inflammatory effect has not been revealed. In the present study, the in vivo protective effect of LFG-500 on the amelioration of lipopolysaccharide (LPS)-induced ALI and inflammation was detected. LFG-500 attenuated LPS-induced histological alterations, suppressed the infiltration of inflammatory cells in lung tissues and bronchoalveolar lavage fluid, as well as inhibited the secretion of several inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 in lung tissues after LPS challenge. In addition, the in vitro effects and mechanisms were studied in LPS stimulated RAW 264.7 cells and THP-1 cells. LFG-500 significantly decreased the secretion and expression of TNF-α, IL-1β, and IL-6 through inhibiting the transcriptional activation of NF-κB. Moreover, overexpression of NF-κB p65 reversed the inhibitory effect of LFG-500 on LPS-induced NF-κB activation and inflammatory cytokine secretion. Further elucidation of the mechanism revealed that p38 and JNK MAPK pathways were involved in the anti-inflammation effect of LFG-500, through which LFG-500 inhibited the classical IKK-dependent pathway and led to inactivation of NF-κB. More importantly, LFG-500 suppressed the expression and nuclear localization of NF-κB in LPS-induced ALI mice. Taken together, these results demonstrated that LFG-500 could attenuate LPS-induced ALI and inflammation by suppressing NF-κB activation, which provides new evidence for the anti-inflammation activity of LFG-500. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Receptor Interacting Protein 3-Mediated Necroptosis Promotes Lipopolysaccharide-Induced Inflammation and Acute Respiratory Distress Syndrome in Mice.

    Directory of Open Access Journals (Sweden)

    Linlin Wang

    Full Text Available Necrosis amplifies inflammation and plays important roles in acute respiratory distress syndrome (ARDS. Necroptosis is a newly identified programmed necrosis that is mediated by receptor interacting protein 3 (RIP3. However, the potential involvement and impact of necroptosis in lipopolysaccharide (LPS-induced ARDS remains unknown. We therefore explored the role and mechanism of RIP3-mediated necroptosis in LPS-induced ARDS. Mice were instilled with increasing doses of LPS intratracheally to induce different degrees of ARDS. Lung tissues were harvested for histological and TUNEL staining and western blot for RIP3, p-RIP3, X-linked inhibitor of apoptosis protein (XIAP, mixed lineage kinase domain-like protein (MLKL, total and cleaved caspases-3/8. Then, wild-type and RIP3 knock-out mice were induced ARDS with 30 mg/kg LPS. Pulmonary cellular necrosis was labeled by the propidium Iodide (PI staining. Levels of TNF-a, Interleukin (IL-1β, IL-6, IL-1α, IL-10 and HMGB1, tissue myeloperoxidase (MPO activity, neutrophil counts and total protein concentration were measured. Results showed that in high dose LPS (30mg/kg and 40mg/kg -induced severe ARDS, RIP3 protein was increased significantly, accompanied by increases of p-RIP3 and MLKL, while in low dose LPS (10mg/kg and 20mg/kg -induced mild ARDS, apoptosis was remarkably increased. In LPS-induced severe ARDS, RIP3 knock-out alleviated the hypothermia symptom, increased survival rate and ameliorated the lung tissue injury RIP3 depletion also attenuated LPS-induced increase in IL-1α/β, IL-6 and HMGB1 release, decreased tissue MPO activity, and reduced neutrophil influx and total protein concentration in BALF in severe ARDS. Further, RIP3 depletion reduced the necrotic cells in the lung and decreased the expression of MLKL, but had no impact on cleaved caspase-3 in LPS-induced ARDS. It is concluded that RIP3-mediated necroptosis is a major mechanism of enhanced inflammation and lung tissue injury in

  14. Fever

    Directory of Open Access Journals (Sweden)

    Tamas Bartfai

    2010-01-01

    Full Text Available Measurement of body temperature remains one of the most common ways to assess health. An increase in temperature above what is considered to be a normal value is inevitably regarded as a sure sign of disease and referred to with one simple word: fever. In this review, we summarize how research on fever allowed the identification of the exogenous and endogenous molecules and pathways mediating the fever response. We also show how temperature elevation is common to different pathologies and how the molecular components of the fever-generation pathway represent drug targets for antipyretics, such as acetylsalicylic acid, the first “blockbuster drug”. We also show how fever research provided new insights into temperature and energy homeostasis, and into treatment of infection and inflammation.

  15. Beneficial effect of honokiol on lipopolysaccharide induced anxiety-like behavior and liver damage in mice.

    Science.gov (United States)

    Sulakhiya, Kunjbihari; Kumar, Parveen; Gurjar, Satendra S; Barua, Chandana C; Hazarika, Naba K

    2015-02-26

    Anxiety disorders are commonly occurring co-morbid neuropsychiatric disorders with chronic inflammatory conditions such as live damage. Numerous studies revealed that peripheral inflammation, oxidative stress and brain derived neurotrophic factor (BDNF) play important roles in the pathophysiology of anxiety disorders. Honokiol (HNK) is a polyphenol, possessing multiple biological activities including antioxidant, anti-inflammatory, anxiolytic, antidepressant and hepatoprotection. The present study was designed to investigate the effect of HNK, in lipopolysaccharide (LPS)-induced anxiety-like behavior and liver damage in mice. Mice (n=6-10/group) were pre-treated with different doses of HNK (2.5 and 5mg/kg; i.p.) for two days, and challenged with saline or LPS (0.83mg/kg; i.p.) on third day. Anxiety-like behavior was monitored using elevated plus maze (EPM) and open field test (OFT). Animals were sacrificed to evaluate various biochemical parameters in plasma and liver. HNK pre-treatment provided significant (P<0.01) protection against LPS-induced reduction in body weight, food and water intake in mice. HNK at higher dose significantly (P<0.05) attenuated LPS-induced anxiety-like behavior by increasing the number of entries and time spent in open arm in EPM test, and by increasing the frequency in central zone in OFT. HNK pre-treatment ameliorated LPS-induced peripheral inflammation by reducing plasma IL-1β, IL-6, TNF-α level, and also improved the plasma BDNF level, prevented liver damage via attenuating transaminases (AST, ALT), liver oxidative stress and TNF-α activity in LPS challenged mice. In conclusion, the current investigation suggests that HNK provided beneficial effect against LPS-induced anxiety-like behavior and liver damage which may be governed by inhibition of cytokines production, oxidative stress and depletion of plasma BDNF level. Our result suggests that HNK could be a therapeutic approach for the treatment of anxiety and other

  16. Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages

    International Nuclear Information System (INIS)

    Fernandes, Cláudia A.; Fievez, Laurence; Neyrinck, Audrey M.; Delzenne, Nathalie M.; Bureau, Fabrice; Vanbever, Rita

    2012-01-01

    Highlights: ► Lipopolysaccharide-stimulated macrophages were treated with cambinol and sirtinol. ► Cambinol and sirtinol decreased lipopolysaccharide-induced cytokines. ► Cambinol decreased NF-κB activity but had no impact on p38 MAPK activation. ► Sirtuins are an interesting target for the treatment of inflammatory diseases. -- Abstract: In several inflammatory conditions such as rheumatoid arthritis or sepsis, the regulatory mechanisms of inflammation are inefficient and the excessive inflammatory response leads to damage to the host. Sirtuins are class III histone deacetylases that modulate the activity of several transcription factors that are implicated in immune responses. In this study, we evaluated the impact of sirtuin inhibition on the activation of lipopolysaccharide (LPS)-stimulated J774 macrophages by assessing the production of inflammatory cytokines. The pharmacologic inhibition of sirtuins decreased the production of tumour necrosis factor-alpha (TNF-α) interleukin 6 (IL-6) and Rantes. The reduction of cytokine production was associated with decreased nuclear factor kappa B (NF-κB) activity and inhibitor kappa B alpha (IκBα) phosphorylation while no impact was observed on the phosphorylation status of p38 mitogen-activated kinase (p38 MAPK). This work shows that sirtuin pharmacologic inhibitors are a promising tool for the treatment of inflammatory conditions.

  17. Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of GABA transporter 2

    Directory of Open Access Journals (Sweden)

    Miwa Masaya

    2011-11-01

    Full Text Available Abstract Background Betaine (glycine betaine or trimethylglycine plays important roles as an osmolyte and a methyl donor in animals. While betaine is reported to suppress expression of proinflammatory molecules and reduce oxidative stress in aged rat kidney, the effects of betaine on the central nervous system are not well known. In this study, we investigated the effects of betaine on lipopolysaccharide (LPS-induced memory impairment and on mRNA expression levels of proinflammatory molecules, glial markers, and GABA transporter 2 (GAT2, a betaine/GABA transporter. Methods Mice were continuously treated with betaine for 13 days starting 1 day before they were injected with LPS, or received subacute or acute administration of betaine shortly before or after LPS injection. Then, their memory function was evaluated using Y-maze and novel object recognition tests 7 and 10-12 days after LPS injection (30 μg/mouse, i.c.v., respectively. In addition, mRNA expression levels in hippocampus were measured by real-time RT-PCR at different time points. Results Repeated administration of betaine (0.163 mmol/kg, s.c. prevented LPS-induced memory impairment. GAT2 mRNA levels were significantly increased in hippocampus 24 hr after LPS injection, and administration of betaine blocked this increase. However, betaine did not affect LPS-induced increases in levels of mRNA related to inflammatory responses. Both subacute administration (1 hr before, and 1 and 24 hr after LPS injection and acute administration (1 hr after LPS injection of betaine also prevented LPS-induced memory impairment in the Y-maze test. Conclusions These data suggest that betaine has protective effects against LPS-induced memory impairment and that prevention of LPS-induced changes in GAT2 mRNA expression is crucial to this ameliorating effect.

  18. Docosahexaenoic acid ester of phloridzin inhibit lipopolysaccharide-induced inflammation in THP-1 differentiated macrophages.

    Science.gov (United States)

    Sekhon-Loodu, Satvir; Ziaullah; Rupasinghe, H P Vasantha

    2015-03-01

    Phloridzin or phlorizin (PZ) is a predominant phenolic compound found in apple and also used in various natural health products. Phloridzin shows poor absorption and cellular uptake due to its hydrophilic nature. The aim was to investigate and compare the effect of docosahexaenoic acid (DHA) ester of PZ (PZ-DHA) and its parent compounds (phloridzin and DHA), phloretin (the aglycone of PZ) and cyclooxygenase inhibitory drugs (diclofenac and nimesulide) on production of pro-inflammatory biomarkers in inflammation-induced macrophages by lipopolysaccharide (LPS)-stimulation. Human THP-1 monocytes were seeded in 24-well plates (5×10(5)/well) and treated with phorbol 12-myristate 13-acetate (PMA, 0.1μg/mL) for 48h to induce macrophage differentiation. After 48h, the differentiated macrophages were washed with Hank's buffer and treated with various concentrations of test compounds for 4h, followed by the LPS-stimulation (18h). Pre-exposure of PZ-DHA ester was more effective in reducing tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) protein levels compared to DHA and nimesulide. However, diclofenac was the most effective in reducing prostaglandin (PGE2) level by depicting a dose-dependent response. However, PZ-DHA ester and DHA were the most effective in inhibiting the activation of nuclear factor-kappa B (NF-κB) among other test compounds. Our results suggest that PZ-DHA ester might possess potential therapeutic activity to treat inflammation related disorders such as type 2 diabetes, asthma, atherosclerosis and inflammatory bowel disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Typhoid fever as a triggering factor in acute and intractable bronchial asthma attack.

    Science.gov (United States)

    Wardhana; Surachmanto, Eko E; Datau, E A

    2013-10-01

    Typhoid fever is an enteric infection caused by Salmonella typhi. In Indonesia, typhoid fever is endemic with high incidence of the disease. In daily practice we frequently have patients with bronchial asthma, and it is becoming worse when these patients get typhoid fever. After oral ingestion, Salmonella typhi invades the the intestine mucosa after conducted by microbial binding to epithelial cells, destroying the microfold cells (M cell) then passed through the lamina propria and detected by dendritic cells (DC) which express a variety of pathogen recognition receptors on the surfaces, including Toll-Like Receptor (TLR). expressed on macrophages and on intestinal epithelial cells inducing degradation of IB, and translocation of NF-B (Nuclear Factor-Kappa Beta). This process initiates the induction of pro-inflammatory gene expression profile adhesion molecules, chemokines, adhesion molecules, and other proteins that induce and perpetuate the inflammation in host cells then will induce acute ant intractable attack of bronchial asthma. The role of typhoid fever in bronchial asthma, especially in persons with acute attack of bronchial asthma, is not well understood. In this article, we will discuss the role of typhoid fever in the bronchial asthma patients which may cause bronchial asthma significantly become more severe even triggering the acute and intractable attack of bronchial asthma. This fact makes an important point, to treat completely the typhoid fever in patients with bronchial asthma.

  20. Anti-inflammatory homoeopathic drug dilutions restrain lipopolysaccharide-induced release of pro-inflammatory cytokines: In vitro and in vivo evidence

    Directory of Open Access Journals (Sweden)

    Umesh B Mahajan

    2017-01-01

    Full Text Available Context: The lipopolysaccharide (LPS-induced cytokine release and oxidative stress are validated experimental parameters used to test anti-inflammatory activity. We investigated the effects of homoeopathic mother tinctures, 6 CH, 30 CH and 200 CH dilutions of Arnica montana, Thuja occidentalis and Bryonia alba against LPS (1 μg/ml-induced cytokine release from RAW-264.7 cells and human whole-blood culture. Materials and Methods: For in vivo evaluations, mice were orally treated with 0.1 ml drug dilutions twice a day for 5 days followed by an intraperitoneal injection of 0.5 mg/kg LPS. After 24 h, the mice were sacrificed and serum levels of pro-inflammatory cytokines and nitric oxide were determined. The extent of oxidative stress was determined in the liver homogenates as contents of reduced glutathione, malondialdehyde, superoxide dismutase and catalase. Results: The tested drug dilutions significantly reduced in vitro LPS-induced release of tumour necrosis factor-α, interleukin-1 (IL-1 and IL-6 from the RAW-264.7 cells and human whole blood culture. Similar suppression of cytokines was evident in mice serum samples. These drugs also protected mice from the LPS-induced oxidative stress in liver tissue. Conclusions: Our findings substantiate the protective effects of Arnica, Thuja and Bryonia homoeopathic dilutions against LPS-induced cytokine elevations and oxidative stress. This study authenticates the claims of anti-inflammatory efficacy of these homoeopathic drugs.

  1. Folic acid protects against lipopolysaccharide-induced preterm delivery and intrauterine growth restriction through its anti-inflammatory effect in mice.

    Directory of Open Access Journals (Sweden)

    Mei Zhao

    Full Text Available Increasing evidence demonstrates that maternal folic acid (FA supplementation during pregnancy reduces the risk of neural tube defects, but whether FA prevents preterm delivery and intrauterine growth restriction (IUGR remains obscure. Previous studies showed that maternal lipopolysaccharide (LPS exposure induces preterm delivery, fetal death and IUGR in rodent animals. The aim of this study was to investigate the effects of FA on LPS-induced preterm delivery, fetal death and IUGR in mice. Some pregnant mice were orally administered with FA (0.6, 3 or 15 mg/kg 1 h before LPS injection. As expected, a high dose of LPS (300 μg/kg, i.p. on gestational day 15 (GD15 caused 100% of dams to deliver before GD18 and 89.3% of fetuses dead. A low dose of LPS (75 μg/kg, i.p. daily from GD15 to GD17 resulted in IUGR. Interestingly, pretreatment with FA prevented LPS-induced preterm delivery and fetal death. In addition, FA significantly attenuated LPS-induced IUGR. Further experiments showed that FA inhibited LPS-induced activation of nuclear factor kappa B (NF-κB in mouse placentas. Moreover, FA suppressed LPS-induced NF-κB activation in human trophoblast cell line JEG-3. Correspondingly, FA significantly attenuated LPS-induced upregulation of cyclooxygenase (COX-2 in mouse placentas. In addition, FA significantly reduced the levels of interleukin (IL-6 and keratinocyte-derived cytokine (KC in amniotic fluid of LPS-treated mice. Collectively, maternal FA supplementation during pregnancy protects against LPS-induced preterm delivery, fetal death and IUGR through its anti-inflammatory effects.

  2. Pre-treatment with Toll-like receptor 4 antagonist inhibits lipopolysaccharide-induced preterm uterine contractility, cytokines, and prostaglandins in rhesus monkeys

    Science.gov (United States)

    Adams Waldorf, Kristina M.; Persing, David; Novy, Miles J.; Sadowsky, Drew W.; Gravett, Michael G.

    2009-01-01

    Intra-uterine infection, which occurs in the majority of early preterm births, triggers an immune response culminating in preterm labor. We hypothesized that blockade of lipopolysaccharide (LPS)-induced immune responses by a Toll-like receptor 4 antagonist (TLR4A) would prevent elevations in amniotic fluid (AF) cytokines, prostaglandins, and uterine contractility. Chronically catheterized rhesus monkeys at 128-147 days gestation received intra-amniotic infusions of either: 1) saline (n=6), 2) LPS (0.15-10μg; n=4), or 3) TLR4A pre-treatment with LPS (10 μg) one hour later (n=4). AF cytokines, prostaglandins, and uterine contractility were compared using oneway ANOVA with Bonferroni-adjusted pairwise comparisons. Compared to saline controls, LPS induced significant elevations in AF IL-8, TNF-α, PGE2, PGF2α, and uterine contractility (p<0.05). In contrast, TLR4A pre-treatment inhibited LPS-induced uterine activity and was associated with significantly lower AF IL-8, TNF-α, PGE2, and PGF2α versus LPS alone (p<0.05). Toll-like receptor antagonists, together with antibiotics, may delay or prevent infection-associated preterm birth. PMID:18187405

  3. Stimulated synthesis of plasma protein species in Q fever and endotoxemia

    Energy Technology Data Exchange (ETDEWEB)

    Picking, W.D.; Ershadi, M.; Hackstadt, T.; Paretsky, D.

    1987-05-01

    Q fever stimulates hepatic transcription and translation. Products of stimulated transcription have been identified, but not of translation. Protein (Pr) synthesis and rPr S6 phosphorylation correlated. The authors now report stimulated synthesis of plasma Pr species in early febrile responses to Q fever and Coxiella burnetii lipopolysaccharide (LPS). Guinea pigs received 400 g LPS intraperitoneally and 7 hr later 250 Ci L-(TVS)met, then sacrificed 3 hr later. Plasma Pr sp act (cpm/mg Pr) increased 2.3X over controls (N). Exptl plasma Pr PAGE autorads showed intensified Pr bands at M/sub r/ 55K. Guinea pigs infected with C. burnetii (Inf) received 400 Ci (TVS)met 84 hr p.i. and were sacrificed 3 hr later. Inf plasma Pr 1D-PAGE showed bands at 55K similar to that found with LPS, with lower albumin concn. Coomassie stain and autorads of 2-D PAGEs showed intensified or new acidic peptide species in Inf plasma. PAGE autorads in vitro translations using liver mRNA and ribosomes showed major species in Inf systems at 49K (4+) and 62K (2+) compared to N. The data indicate acute phase protein induction by LPS or rickettsial infection.

  4. Stimulated synthesis of plasma protein species in Q fever and endotoxemia

    International Nuclear Information System (INIS)

    Picking, W.D.; Ershadi, M.; Hackstadt, T.; Paretsky, D.

    1987-01-01

    Q fever stimulates hepatic transcription and translation. Products of stimulated transcription have been identified, but not of translation. Protein (Pr) synthesis and rPr S6 phosphorylation correlated. The authors now report stimulated synthesis of plasma Pr species in early febrile responses to Q fever and Coxiella burnetii lipopolysaccharide (LPS). Guinea pigs received 400 μg LPS intraperitoneally and 7 hr later 250 μCi L-[ 35 S]met, then sacrificed 3 hr later. Plasma Pr sp act (cpm/mg Pr) increased 2.3X over controls (N). Exptl plasma Pr PAGE autorads showed intensified Pr bands at M/sub r/ 55K. Guinea pigs infected with C. burnetii (Inf) received 400 μCi [ 35 S]met 84 hr p.i. and were sacrificed 3 hr later. Inf plasma Pr 1D-PAGE showed bands at 55K similar to that found with LPS, with lower albumin concn. Coomassie stain and autorads of 2-D PAGEs showed intensified or new acidic peptide species in Inf plasma. PAGE autorads in vitro translations using liver mRNA and ribosomes showed major species in Inf systems at 49K (4+) and 62K (2+) compared to N. The data indicate acute phase protein induction by LPS or rickettsial infection

  5. Modification of Salmonella Lipopolysaccharides Prevents the Outer Membrane Penetration of Novobiocin

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, Thatyane M.; Martynowycz, Michael W.; Andreev, Konstantin; Kuzmenko, Ivan; Nikaido, Hiroshi; Gidalevitz, David

    2015-12-01

    Small hydrophilic antibiotics traverse the outer membrane of Gram-negative bacteria through porin channels. Large lipophilic agents traverse the outer membrane through its bilayer, containing a majority of lipopolysaccharides in its outer leaflet. Genes controlled by the two-component regulatory system PhoPQ modify lipopolysaccharides. We isolate lipopolysaccharides from isogenic mutants of Salmonella sp., one lacking the modification, the other fully modified. These lipopolysaccharides were reconstituted asmonolayers at the air-water interface, and their properties, aswell as their interaction with a large lipophilic drug, novobiocin, was studied. X-ray reflectivity showed that the drug penetrated the monolayer of the unmodified lipopolysaccharides reaching the hydrophobic region,butwas prevented fromthis penetration intothemodified lipopolysaccharides.Results correlatewith behavior of bacterial cells, which become resistant to antibiotics after PhoPQ-regulated modifications. Grazing incidence x-ray diffraction showed that novobiocin produced a striking increase in crystalline coherence length, and the size of the near-crystalline domains.

  6. High Glucose and Lipopolysaccharide Prime NLRP3 Inflammasome via ROS/TXNIP Pathway in Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Hong Feng

    2016-01-01

    Full Text Available While inflammation is considered a central component in the development in diabetic nephropathy, the mechanism remains unclear. The NLRP3 inflammasome acts as both a sensor and a regulator of the inflammatory response. The NLRP3 inflammasome responds to exogenous and endogenous danger signals, resulting in cleavage of procaspase-1 and activation of cytokines IL-1β, IL-18, and IL-33, ultimately triggering an inflammatory cascade reaction. This study observed the expression of NLRP3 inflammasome signaling stimulated by high glucose, lipopolysaccharide, and reactive oxygen species (ROS inhibitor N-acetyl-L-cysteine in glomerular mesangial cells, aiming to elucidate the mechanism by which the NLRP3 inflammasome signaling pathway may contribute to diabetic nephropathy. We found that the expression of thioredoxin-interacting protein (TXNIP, NLRP3, and IL-1β was observed by immunohistochemistry in vivo. Simultaneously, the mRNA and protein levels of TXNIP, NLRP3, procaspase-1, and IL-1β were significantly induced by high glucose concentration and lipopolysaccharide in a dose-dependent and time-dependent manner in vitro. This induction by both high glucose and lipopolysaccharide was significantly inhibited by N-acetyl-L-cysteine. Our results firstly reveal that high glucose and lipopolysaccharide activate ROS/TXNIP/ NLRP3/IL-1β inflammasome signaling in glomerular mesangial cells, suggesting a mechanism by which inflammation may contribute to the development of diabetic nephropathy.

  7. Sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation will increase in lipopolysaccharide-induced inflammation in vitro model.

    Science.gov (United States)

    Zuo, Wen-Qi; Hu, Yu-Juan; Yang, Yang; Zhao, Xue-Yan; Zhang, Yuan-Yuan; Kong, Wen; Kong, Wei-Jia

    2015-05-29

    With the increasing popularity of mobile phones, the potential hazards of radiofrequency electromagnetic radiation (RF-EMR) on the auditory system remain unclear. Apart from RF-EMR, humans are also exposed to various physical and chemical factors. We established a lipopolysaccharide (LPS)-induced inflammation in vitro model to investigate whether the possible sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation (at specific absorption rates: 2, 4 W/kg) will increase. Spiral ganglion neurons (SGN) were obtained from neonatal (1- to 3-day-old) Sprague Dawley® (SD) rats. After the SGN were treated with different concentrations (0, 20, 40, 50, 100, 200, and 400 μg/ml) of LPS, the Cell Counting Kit-8 (CCK-8) and alkaline comet assay were used to quantify cellular activity and DNA damage, respectively. The SGN were treated with the moderate LPS concentrations before RF-EMR exposure. After 24 h intermittent exposure at an absorption rate of 2 and 4 W/kg, DNA damage was examined by alkaline comet assay, ultrastructure changes were detected by transmission electron microscopy, and expression of the autophagy markers LC3-II and Beclin1 were examined by immunofluorescence and confocal laser scanning microscopy. Reactive oxygen species (ROS) production was quantified by the dichlorofluorescin-diacetate assay. LPS (100 μg/ml) induced DNA damage and suppressed cellular activity (P 0.05); therefore, 40 μg/ml was used to pretreat the concentration before exposure to RF-EMR. RF-EMR could not directly induce DNA damage. However, the 4 W/kg combined with LPS (40 μg/ml) group showed mitochondria vacuoles, karyopyknosis, presence of lysosomes and autophagosome, and increasing expression of LC3-II and Beclin1. The ROS values significantly increased in the 4 W/kg exposure, 4 W/kg combined with LPS (40 μg/ml) exposure, and H2O2 groups (P spiral ganglion neurons, but it could cause the changes of cellular ultrastructure at special SAR 4

  8. Oryza sativa (Rice) Hull Extract Inhibits Lipopolysaccharide-Induced Inflammatory Response in RAW264.7 Macrophages by Suppressing Extracellular Signal-regulated Kinase, c-Jun N-terminal Kinase, and Nuclear Factor-κB Activation.

    Science.gov (United States)

    Ha, Sang Keun; Sung, Jeehye; Choi, Inwook; Kim, Yoonsook

    2016-01-01

    Rice ( Oryza sativa ) is a major cereal crop in many Asian countries and an important staple food source. Rice hulls have been reported to possess antioxidant activities. In this study, we evaluated the antiinflammatory effects of rice hull extract and associated signal transduction mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We found that rice hull extract inhibited nitric oxide (NO) and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively. The release of interleukin-1β and tumor necrosis factor-α was also reduced in a dose-dependent manner. Furthermore, rice hull extract attenuated the activation of nuclear factor-kappa B (NF-κB), as well as the phosphorylation of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), in LPS-stimulated RAW264.7 cells. This suggests that rice hull extract decreases the production of inflammatory mediators by downregulating ERK and JNK and the NF-κB signal pathway in RAW 264.7 cells. Rice hull extract inhibits the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages.Rice hull extract inhibited nitric oxide and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively.Rice hull extract exerted anti-inflammatory effect through inhibition of nuclear factor-kappa B, extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways.Rice hull extract may provide a potential therapeutic approach for inflammatory diseases. Abbreviations used: COX-2: cyclooxygenase-2, ERK: extracellular signal-regulated kinase, IκB: inhibitory kappa B, IL-1β: interleukin-1β, iNOS: inducible NO synthase, JNK: c-Jun N-terminal kinase, LPS: lipopolysaccharide, MAPKs: mitogen-activated protein kinases, NF-κB: nuclear factor-κB, NO: nitric oxide, PGE2: prostaglandin E2, RHE: rice hull extract, ROS: reactive oxygen species

  9. Rat bite fever without fever.

    Science.gov (United States)

    Stehle, P; Dubuis, O; So, A; Dudler, J

    2003-09-01

    Rat bite fever is a rarely reported acute febrile bacterial illness caused by Streptobacillus moniliformis or Spirillum minus following a rat bite. It is classically characterised by abrupt onset of fever with rigors, myalgias, headache, and the appearance of a generalised maculopapular petechial skin rash. Polyarthritis complicates the course of the disease in up to 50% of infected patients, and numerous hurdles can make the diagnosis particularly difficult in the absence of fever or rash, as in the present case. A high degree of awareness is necessary to make the correct diagnosis in such cases. Diagnosis has important prognostic implications as the disease is potentially lethal, but easily treatable.

  10. Dengue fever (image)

    Science.gov (United States)

    Dengue fever, or West Nile fever, is a mild viral illness transmitted by mosquitoes which causes fever, ... second exposure to the virus can result in Dengue hemorrhagic fever, a life-threatening illness.

  11. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue; Wang, Xiaoxuan [Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Zheng, Ming, E-mail: zhengm@bjmu.edu.cn [Department of Physiology and Pathophysiology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191 (China); Luan, Qing Xian, E-mail: kqluanqx@126.com [Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2016-09-10

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatment with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. - Highlights: • Inflammation is thought to promote pathogenic changes in periodontitis. • We investigated mtROS as a regulator of inflammation in gingival fibroblasts. • Targeted antioxidants were used to inhibit mtROS production after LPS challenge. • Inhibiting mtROS generation suppressed the secretion of pro-inflammatory cytokines. • JNK, p38, IKK, and NF-κB were shown to act as transducers of mtROS signaling.

  12. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts

    International Nuclear Information System (INIS)

    Li, Xue; Wang, Xiaoxuan; Zheng, Ming; Luan, Qing Xian

    2016-01-01

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatment with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. - Highlights: • Inflammation is thought to promote pathogenic changes in periodontitis. • We investigated mtROS as a regulator of inflammation in gingival fibroblasts. • Targeted antioxidants were used to inhibit mtROS production after LPS challenge. • Inhibiting mtROS generation suppressed the secretion of pro-inflammatory cytokines. • JNK, p38, IKK, and NF-κB were shown to act as transducers of mtROS signaling.

  13. Lipopolysaccharide Antigens of Pseudomonas aeruginosa and Design of Novel Vaccines.

    Science.gov (United States)

    1987-09-01

    Studies on the Lipopolysaccharide Antigens of Seven Immunotypes of P a_ n , SELAQ, Proc. 3 VL Seminario Latinoamericano J1 Quimica , pp. 143-159 (1979). 7...Bioolymers, 19 (1980) 1801-1814. 74" , 8. Derek Horton and David A. Riley, Phosphorus-31 Nuclear Magnetic Resonance Spectroscopy of Lipopolysaccharides...Amer. Chem. Soc., 87 (1965), 1345-1353. 40. D. Horton and D. A. Riley, "Phosphorus-31 Nuclear Magnetic Resonance Spectroscopy of Lipopolysaccharides

  14. Hemorrhagic fever with renal syndrome and coexisting hantavirus pulmonary syndrome

    Directory of Open Access Journals (Sweden)

    Young Min Hong

    2012-06-01

    Full Text Available Hemorrhagic fever with renal syndrome (HFRS is an acute viral disease with fever, hemorrhage and renal failure caused by hantavirus infection. Hantavirus induces HFRS or hantavirus pulmonary syndrome (HPS. HPS progression to a life-threatening pulmonary disease is found primarily in the USA and very rarely in South Korea. Here, we report a case of HFRS and coexisting HPS.

  15. Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Claudia A. [Universite catholique de Louvain, Louvain Drug Research Institute (LDRI), Pharmaceutics and Drug Delivery Research Group, Brussels B-1200 (Belgium); Fievez, Laurence [University of Liege, GIGA-Research, Laboratory of Cellular and Molecular Immunology, Liege B-4000 (Belgium); Neyrinck, Audrey M.; Delzenne, Nathalie M. [Universite catholique de Louvain, LDRI, Metabolism and Nutrition Research Group, Brussels B-1200 (Belgium); Bureau, Fabrice [University of Liege, GIGA-Research, Laboratory of Cellular and Molecular Immunology, Liege B-4000 (Belgium); Vanbever, Rita, E-mail: rita.vanbever@uclouvain.be [Universite catholique de Louvain, Louvain Drug Research Institute (LDRI), Pharmaceutics and Drug Delivery Research Group, Brussels B-1200 (Belgium)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer Lipopolysaccharide-stimulated macrophages were treated with cambinol and sirtinol. Black-Right-Pointing-Pointer Cambinol and sirtinol decreased lipopolysaccharide-induced cytokines. Black-Right-Pointing-Pointer Cambinol decreased NF-{kappa}B activity but had no impact on p38 MAPK activation. Black-Right-Pointing-Pointer Sirtuins are an interesting target for the treatment of inflammatory diseases. -- Abstract: In several inflammatory conditions such as rheumatoid arthritis or sepsis, the regulatory mechanisms of inflammation are inefficient and the excessive inflammatory response leads to damage to the host. Sirtuins are class III histone deacetylases that modulate the activity of several transcription factors that are implicated in immune responses. In this study, we evaluated the impact of sirtuin inhibition on the activation of lipopolysaccharide (LPS)-stimulated J774 macrophages by assessing the production of inflammatory cytokines. The pharmacologic inhibition of sirtuins decreased the production of tumour necrosis factor-alpha (TNF-{alpha}) interleukin 6 (IL-6) and Rantes. The reduction of cytokine production was associated with decreased nuclear factor kappa B (NF-{kappa}B) activity and inhibitor kappa B alpha (I{kappa}B{alpha}) phosphorylation while no impact was observed on the phosphorylation status of p38 mitogen-activated kinase (p38 MAPK). This work shows that sirtuin pharmacologic inhibitors are a promising tool for the treatment of inflammatory conditions.

  16. Dietary Supplementation with Lactobacillus casei Alleviates Lipopolysaccharide-Induced Liver Injury in a Porcine Model

    Directory of Open Access Journals (Sweden)

    Di Zhao

    2017-11-01

    Full Text Available This study aims to determine whether Lactobacillus casei (L. casei could relieve liver injury in piglets challenged with lipopolysaccharide (LPS. Piglets were randomly allocated into one of the three groups: control, LPS, and L. casei. The control and LPS groups were fed a corn- and soybean meal-based diet, whereas the L. casei group was fed the basal diet supplemented with 6 × 106 cfu/g L. casei. On Day 31 of the trial, piglets in the LPS and L. casei groups received intraperitoneal administration of LPS (100 µg/kg body weight, while the control group received the same volume of saline. Blood and liver samples were collected for analysis. Results showed that L. casei supplementation decreased the feed/gain ratio (p = 0.027 and diarrhea incidence (p < 0.001, and attenuated LPS-induced liver histomorphological abnormalities. Compared with the control group, LPS challenge dramatically increased glutamyl transpeptidase activity (p = 0.001 in plasma as well as the concentrations of Interleukin 6 (IL-6 (p = 0.048, Tumor necrosis factor-alpha (TNF-α (p = 0.041, and Malondialdehyde (MDA (p = 0.001 in the liver, while decreasing the hepatic SOD activity. LPS also increased (p < 0.05 the mRNA levels for IL-6, IL-8, TNF-α, Toll-like receptors 4 (TLR4, Nuclear factor κB (NF-κB and Heat shock protein 70 (HSP70 in the liver. The adverse effects of LPS challenge were ameliorated by L. casei supplementation. In conclusion, dietary L. casei alleviates LPS-induced liver injury via reducing pro-inflammatory cytokines and increasing anti-oxidative capacity.

  17. Hemorrhagic Fever with Renal Syndrome (Korean Hemorrhagic Fever).

    Science.gov (United States)

    1986-07-23

    fever , chills, nausea, headache and muscle ache in July 1985. One day after admission he developed petechial haemorrhage over his body and limbs and in...ftOA179 565 NENORNAGIC FEVER WI TH RENAL SYNDOMNE (KOREAN HEMORRHAIC FEVER )(U) KOREN UNIV SEOUL COLL OF MEDICINE N N LEE 23 JUL " DAD7-94-G-4616...34,, , " S , S S .S =. 5 5 . S S S * B M Lfl IC) uIeuCc FVM WITH RENAL SYNDR~OME (KOREAN EMORRHAGIC FEVER ) ANNUAL AND FINAL REPORT S HO WANG LIZB N.D. 5

  18. Administration of Protein kinase D1 induce an immunomodulatory effect on lipopolysaccharide-induced intestinal inflammation in a co-culture model of intestinal epithelial Caco-2 cells and RAW 264.7 macrophage cells

    DEFF Research Database (Denmark)

    Nielsen, Ditte Søvsø Gundelund; Fredborg, Marlene; Andersen, Vibeke

    2017-01-01

    the effects of human PKD1 in relation to intestinal inflammation, using a co-culture model of intestinal epithelial Caco-2 cells and RAW264.7 macrophages. An inflammatory response was induced in the macrophages by lipopolysaccharide (LPS), upregulating the expression of tumour necrosis factor alpha (TNF......-α), interleukin- (IL-) 1β, and IL-6 besides increasing the secretion of TNF-α protein. The effect of administering PKD1 to Caco-2 was evaluated in relation to both amelioration of inflammation and the ability to suppress inflammation initiation. Administration of PKD1 (10–100 ng/ml) following induction...

  19. Phenylpropanoid Defences in Nicotiana tabacum Cells: Overlapping Metabolomes Indicate Common Aspects to Priming Responses Induced by Lipopolysaccharides, Chitosan and Flagellin-22.

    Directory of Open Access Journals (Sweden)

    Msizi I Mhlongo

    Full Text Available Plants have evolved both constitutive and inducible defence strategies to cope with different biotic stimuli and stresses. Exposure of a plant to a challenging stress can lead to a primed state that allows it to launch a more rapid and stronger defence. Here we applied a metabolomic approach to study and compare the responses induced in Nicotiana tabacum cells by microbe-associated molecular pattern (MAMP molecules, namely lipopolysaccharides (LPS, chitosan (CHT and flagellin-22 (FLG22. Early response metabolites, extracted with methanol, were analysed by UHPLC-MS/MS. Using multivariate statistical tools the metabolic profiles induced by these elicitors were analysed. In the metabolic fingerprint of these agents a total of 19 cinnamic acid derivatives conjugated to quinic acids (chlorogenic acids, shikimic acid, tyramine, polyamines or glucose were found as discriminant biomarkers. In addition, treatment with the phytohormones salicylic acid (SA, methyljasmonic acid (MJ and abscisic acid (ABA resulted in differentially-induced phenylpropanoid pathway metabolites. The results indicate that the phenylpropanoid pathway is activated by these elicitors while hydroxycinnamic acid derivatives are commonly associated with the metabolic response to the MAMPs, and that the activated responses are modulated by both SA and MJ, with ABA not playing a role.

  20. Suppression of the lipopolysaccharide-induced expression of MARCKS-related protein (MRP) affects transmigration in activated RAW264.7 cells.

    Science.gov (United States)

    Chun, Kwang-Rok; Bae, Eun Mi; Kim, Jae-Kwan; Suk, Kyoungho; Lee, Won-Ha

    2009-01-01

    The molecular action mechanism of MRP, one of the protein kinase C (PKC) substrates, has been under intense investigation, but reports on its role in macrophage function remain controversial. The treatment of macrophage cell lines with bacterial lipopolysaccharide (LPS) induced a high level of MRP expression suggesting that MRP plays a role in the function of activated macrophages. In order to investigate the role of MRP in activated RAW264.7 cells, we stably transfected MRP-specific shRNA expression constructs and tested for alterations in macrophage-related functions. The down-regulation of MRP expression resulted in a marked reduction in chemotaxis toward MCP-1 or extracellular matrix proteins. Furthermore, pharmacological inhibitors of PKC significantly inhibited the chemotaxis in RAW264.7 cells. These data reveals the pivotal role of MRP in the transmigration of activated RAW264.7 cells.

  1. Gomisin N ameliorates lipopolysaccharide-induced depressive-like behaviors by attenuating inflammation in the hypothalamic paraventricular nucleus and central nucleus of the amygdala in mice

    Directory of Open Access Journals (Sweden)

    Ryota Araki

    2016-10-01

    Full Text Available Emotional impairments such as depressive symptoms often develop in patients with sustained and systemic immune activation. The objective of this study is to investigate the effect of gomisin N, a dibenzocyclooctadiene lignan isolated from the dried fruits of Schisandra chinensis (Turcz. Baill., which exhibited inhibitory effects of the bacterial endotoxin lipopolysaccharide (LPS-induced NO production in a screening assay, on inflammation-induced depressive symptoms. We examined the effects of gomisin N on inflammation induced by LPS in murine microglial BV-2 cells and on LPS-induced behavioral changes in mice. Gomisin N inhibited LPS-induced expression of mRNAs for inflammation-related genes (inducible nitric oxide synthase (iNOS, cyclooxygenase (COX-2, interleukin (IL-1β, IL-6 and tumor necrosis factor (TNF-α in BV-2 cells. Administration of gomisin N attenuated LPS-induced expression of mRNAs for inflammation-related genes, increases in the number of c-Fos immunopositive cells in the hypothalamus and amygdala, depressive-like behavior in the forced swim test and exploratory behavior deficits 24 h after LPS administration in mice. These results suggest that gomisin N might ameliorate LPS-induced depressive-like behaviors through inhibition of inflammatory responses and neural activation in the hypothalamus and amygdala.

  2. Prenatal zinc prevents communication impairments and BDNF disturbance in a rat model of autism induced by prenatal lipopolysaccharide exposure.

    Science.gov (United States)

    Kirsten, Thiago B; Queiroz-Hazarbassanov, Nicolle; Bernardi, Maria M; Felicio, Luciano F

    2015-06-01

    Aims: Previous investigations by our group have shown that prenatal exposure to lipopolysaccharide (LPS),which mimics infections by Gram-negative bacteria, induced autistic-like behavior. No effective treatment yet exists for autism. Therefore, we used our rat model to test a possible treatment for autism.We selected zinc as the prenatal treatment to prevent or ease the impairments induced by LPS because LPS induces hypozincaemia.Materials and methods:We evaluated the effects of LPS and zinc on female reproductive performance. Communication,which is impaired in autism,was tested in pups by ultrasonic vocalizations. Plasma levels of brain-derived neurotrophic factor (BDNF) were determined because it has been considered an autism important biomarker.Key findings: Prenatal LPS exposure reduced offspring number and treatment with zinc prevented this reduction.Moreover, pups that were prenatally exposed to LPS spent longer periods without calling their mothers, and posttreatment with zinc prevented this impairment induced by LPS to the same levels as controls. Prenatal LPS also increased BDNF levels in adult offspring, and posttreatment with zinc reduced the elevation of BDNF to the same levels as controls.Significance: BDNF hyperactivity was also found in several studies of autistic patients. Together with our previous studies, our model of prenatal LPS induced autistic-like behavioral, brain, and immune disturbances. This suggests that it is a valid rat model of autism. Prenatal zinc prevented reproductive, communication, and BDNF impairments.The present study revealed a potential beneficial effect of prenatal zinc administration for the prevention of autism with regard to the BDNF pathway.

  3. Mangiferin inhibits lipopolysaccharide-induced production of interleukin-6 in human oral epithelial cells by suppressing toll-like receptor signaling.

    Science.gov (United States)

    Li, Hao; Wang, Qi; Chen, Xinmin; Ding, Yi; Li, Wei

    2016-11-01

    Oral epithelial cells have currently been found to play an important role in inflammatory modulation in periodontitis. Mangiferin is a natural glucosylxanthone with anti-inflammatory activity. The aim of this study was to investigate the regulatory effect of mangiferin on lipopolysaccharide (LPS)-induced production of proinflammatory cytokine interleukin-6 (IL-6) in oral epithelial cells and the underlying mechanisms. The levels of LPS-induced IL-6 production in OKF6/TERT-2 oral keratinocytes were detected using enzyme-linked immunosorbent assay (ELISA). The expression of Toll-like receptor (TLR) 2 and TLR4 was determined using western blot analysis. And the phosphorylation of TLR downstream nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) was examined using cell-based protein phosphorylation ELISA kits. We found that mangiferin reduced LPS-upregulated IL-6 production in OKF6/TERT-2 cells. Additionally, mangiferin inhibited LPS-induced TLR2 and TLR4 overexpression, and suppressed the phosphorylation of NF-κB, p38 MAPK and JNK. Moreover, mangiferin repressed IL-6 production and TLR signaling activation in a dose-dependent manner after 24h treatment. Mangiferin decreases LPS-induced production of IL-6 in human oral epithelial cells by suppressing TLR signaling, and this glucosylxanthone may have potential for the treatment of periodontitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Ginger and Zingerone Ameliorate Lipopolysaccharide-Induced Acute Systemic Inflammation in Mice, Assessed by Nuclear Factor-κB Bioluminescent Imaging.

    Science.gov (United States)

    Hsiang, Chien-Yun; Cheng, Hui-Man; Lo, Hsin-Yi; Li, Chia-Cheng; Chou, Pei-Chi; Lee, Yu-Chen; Ho, Tin-Yun

    2015-07-08

    Ginger is a commonly used spice in cooking. In this study, we comprehensively evaluated the anti-inflammatory activities of ginger and its component zingerone in lipopolysaccharide (LPS)-induced acute systemic inflammation in mice via nuclear factor-κB (NF-κB) bioluminescent imaging. Ginger and zingerone significantly suppressed LPS-induced NF-κB activities in cells in a dose-dependent manner, and the maximal inhibition (84.5% ± 3.5% and 96.2% ± 0.6%) was observed at 100 μg/mL ginger and zingerone, respectively. Moreover, dietary ginger and zingerone significantly reduced LPS-induced proinflammatory cytokine production in sera by 62.9% ± 18.2% and 81.3% ± 6.2%, respectively, and NF-κB bioluminescent signals in whole body by 26.9% ± 14.3% and 38.5% ± 6.2%, respectively. In addition, ginger and zingerone suppressed LPS-induced NF-κB-driven luminescent intensities in most organs, and the maximal inhibition by ginger and zingerone was observed in small intestine. Immunohistochemical staining further showed that ginger and zingerone decreased interleukin-1β (IL-1β)-, CD11b-, and p65-positive areas in jejunum. In conclusion, our findings suggested that ginger and zingerone were likely to be broad-spectrum anti-inflammatory agents in most organs that suppressed the activation of NF-κB, the production of IL-1β, and the infiltration of inflammatory cells in mice.

  5. Effects of aging on endotoxin tolerance induced by lipopolysaccharides derived from Porphyromonas gingivalis and Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Ying Sun

    Full Text Available Periodontitis is a bacterially induced chronic inflammatory disease. Exposure of the host to periodontal pathogens and their virulence factors induces a state of hyporesponsiveness to subsequent stimulations, termed endotoxin tolerance. Aging has a profound effect on immune response to bacteria challenge. The aim of this study was to explore the effects of aging on endotoxin tolerance induced by Porphyromonas gingivalis (P. gingivalis lipopolysaccharide (LPS and Escherichia coli (E. coli LPS in murine peritoneal macrophages.We studied the cytokine production (TNF-α and IL-10 and Toll-like receptor 2, 4 (TLR2, 4 gene and protein expressions in peritoneal macrophages from young (2-month-old and middle-aged (12-month-old ICR mice following single or repeated P. gingivalis LPS or E. coli LPS stimulation. Pretreatment of peritoneal macrophages with P. gingivalis LPS or E. coli LPS resulted in a reduction in TNF-α production and an increase in IL-10 production upon secondary stimulation (p<0.05, and the markedly lower levels of TNF-α and higher levels of IL-10 were observed in macrophages from young mice compared with those from middle-aged mice (p<0.05. In addition, LPS restimulations also led to the significantly lower expression levels of TLR2, 4 mRNA and protein in macrophages from young mice (p<0.05.Repeated LPS stimulations triggered endotoxin tolerance in peritoneal macrophages and the ability to develop tolerance in young mice was more excellent. The impaired ability to develop endotoxin tolerance resulted from aging might be related to TLR2, 4 and might lead to the incontrollable periodontal inflammation in older adults.

  6. Transcriptome signature identifies distinct cervical pathways induced in lipopolysaccharide-mediated preterm birth.

    Science.gov (United States)

    Willcockson, Alexandra R; Nandu, Tulip; Liu, Cheuk-Lun; Nallasamy, Shanmugasundaram; Kraus, W Lee; Mahendroo, Mala

    2018-03-01

    With half a million babies born preterm each year in the USA and about 15 million worldwide, preterm birth (PTB) remains a global health issue. Preterm birth is a primary cause of infant morbidity and mortality and can impact lives long past infancy. The fact that there are numerous, and many currently unidentified, etiologies of PTB has hindered development of tools for risk evaluation and preventative therapies. Infection is estimated to be involved in nearly 40% of PTBs of known etiology; therefore, understanding how infection-mediated inflammation alters the cervical milieu and leads to preterm tissue biomechanical changes are questions of interest. Using RNA-seq, we identified enrichment of components involved in inflammasome activation and unique proteases in the mouse cervix during lipopolysaccharide (LPS)-mediated PTB and not physiologically at term before labor. Despite transcriptional induction of inflammasome components, there was no evidence of functional activation based on assessment of mature IL1B and IL18 proteins. The increased transcription of proteases that target both elastic fibers and collagen and concentration of myeloid-derived cells capable of protease synthesis in the cervical stroma support the structural disruption of elastic fibers as a functional output of protease activity. The recent demonstration that elastic fibers contribute to the biomechanical function of the pregnant cervix suggests their protease-induced disruption in the infection model of LPS-mediated PTB and may contribute to premature loss of mechanical competency and preterm delivery. Collectively, the transcriptomics and ultrastructural data provide new insights into the distinct mechanisms of premature cervical remodeling in response to infection.

  7. Dopamine-dependent neurotoxicity of lipopolysaccharide in substantia nigra.

    Science.gov (United States)

    De Pablos, Rocío M; Herrera, Antonio J; Villarán, Ruth F; Cano, Josefina; Machado, Alberto

    2005-03-01

    Intranigral injection of lipopolysaccharide (LPS), a potent inductor of inflammation, induces degeneration of dopaminergic neurons, along with an inflammatory process that features activation of microglial cells and loss of astrocytes. To test the involvement of dopamine (DA) in this degeneration induced by LPS, we treated albino Wistar rats with different concentrations of alpha-methyl-p-tyrosine (alpha-MPT), an inhibitor of tyrosine hydroxylase (TH) activity. Results showed that alpha-MPT prevented LPS-induced loss of TH immunostaining and expression of mRNA for TH and DA transporter; it also prevented substantial activation of microglial cells. Loss of the astroglial population, a marker of damage in our model, was also prevented. This protective effect resulted from inhibition of TH and the consequent decrease in DA concentration, because treatment with L-DOPA/benserazide, which bypasses TH inhibition induced by alpha-MPT, reversed the protective effect produced by this drug. These results point out the important contribution of DA to the vulnerability and degeneration of dopaminergic neurons of the substantia nigra. Knowledge about the involvement of DA in this process may lead to the possibility of new protection strategies against this important degenerative process.

  8. Oxidative stress and sodium methyldithiocarbamate-induced modulation of the macrophage response to lipopolysaccharide in vivo.

    Science.gov (United States)

    Pruett, Stephen B; Cheng, Bing; Fan, Ruping; Tan, Wei; Sebastian, Thomas

    2009-06-01

    Sodium methyldithiocarbamate (SMD) is the third most abundantly used conventional pesticide in the United States, and hundreds of thousands of persons are exposed to this compound or its major breakdown product, methylisothiocyanate, at levels greater than recommended by the Environmental Protection Agency. A previous study suggests three mechanisms of action involved to some degree in the inhibition of inflammation and decreased resistance to infection caused by exposure of mice to the compound. One of these mechanisms is oxidative stress. The purpose of the present study was to confirm that this mechanism is involved in the effects of SMD on cytokine production by peritoneal macrophages and to further characterize its role in altered cytokine production. Results indicated that SMD significantly decreased the intracellular concentration of reduced glutathione (GSH), suggesting oxidative stress. This was further indicated by the upregulation of genes involved in the "response to oxidative stress" as determined by microarray analysis. These effects were associated with the inhibition of lipopolysaccharide (LPS)-induced production of several proinflammatory cytokines. Experimental depletion of GSH with buthionine sulfoximine (BSO) partially prevented the decrease in LPS-induced interleukin (IL)-6 production caused by SMD and completely prevented the decrease in IL-12. In contrast, BSO plus SMD substantially enhanced the production of IL-10. These results along with results from a previous study are consistent with the hypothesis that SMD causes oxidative stress, which contributes to modulation of cytokine production. However, oxidative stress alone cannot explain the increased IL-10 production caused by SMD.

  9. 1,5-Anhydro-D-fructose attenuates lipopolysaccharide-induced cytokine release via suppression of NF-κB p65 phosphorylation

    International Nuclear Information System (INIS)

    Meng Xiaojie; Kawahara, Ko-ichi; Nawa, Yuko; Miura, Naoki; Shrestha, Binita; Tancharoen, Salunya; Sameshima, Hisayo; Hashiguchi, Teruto; Maruyama, Ikuro

    2009-01-01

    Lipopolysaccharide (LPS) stimulates macrophages by activating NF-κB, which contributes to the release of tumor necrosis factor (TNF)-α and interleukin (IL)-6. 1,5-anhydro-D-fructose (1,5-AF), a monosaccharide formed from starch and glycogen, exhibits anti-oxidant activity and enhances insulin secretion. This study examined the effects of 1,5-AF on LPS-induced inflammatory reactions and elucidated its molecular mechanisms. Before LPS challenge, mice were pretreated with 1,5-AF (38.5 mg/kg). We found that 1,5-AF pretreatment attenuated cytokine release into the serum, including TNF-α, IL-6 and macrophage chemoattractant protein (MCP)-1. Furthermore, pretreatment with 1,5-AF (500 μg/ml) attenuated cytokine release, and 1,5-AF directly inhibited the nuclear translocalization of the NF-κB p65 subunit in LPS-stimulated murine macrophage-like RAW264.7 cells. This inhibition was responsible for decreased LPS-induced phosphorylation on Ser536 of the NF-κB p65 subunit, which is a posttranslational modification involved in the non-canonical pathway. Collectively, these findings indicate that the anti-inflammatory activity of 1,5-AF occurs via inactivation of NF-κB.

  10. Effect of threonine on secretory immune system using a chicken intestinal ex vivo model with lipopolysaccharide challenge

    Science.gov (United States)

    Secretory IgA (sIgA) and its transcytosis receptor, polymeric immunoglobulin receptor (pIgR), along with mucus, form the first lines of intestinal defense. Threonine (Thr) is a major constituent component of intestinal mucins and IgA, which are highly secreted under lipopolysaccharide (LPS) induced ...

  11. Selol, an organic selenium donor, prevents lipopolysaccharide-induced oxidative stress and inflammatory reaction in the rat brain.

    Science.gov (United States)

    Dominiak, Agnieszka; Wilkaniec, Anna; Jęśko, Henryk; Czapski, Grzegorz A; Lenkiewicz, Anna M; Kurek, Eliza; Wroczyński, Piotr; Adamczyk, Agata

    2017-09-01

    Neuroinflammation and oxidative stress are key intertwined pathological factors in many neurological, particularly neurodegenerative diseases, such as Alzheimer's and Parkinson's disorders as well as autism. The present study was conducted to evaluate the protective effects of Selol, an organic selenium donor, against lipopolysaccharide (LPS)-mediated inflammation in rat brain. The results demonstrated that the peripheral administration of LPS in a dose of 100 μg/kg b.w. evoked typical pathological reaction known as systemic inflammatory response. Moreover, we observed elevated blood levels of thiobarbituric acid-reactive substances (TBARS), a marker of oxidative stress, as well as increased concentration of tumor necrosis factor-α (TNF-α) in LPS-treated animals. Selol significantly prevented these LPS-evoked changes. Subsequently, Selol protected against LPS-induced up-regulation of proinflammatory cytokines (Tnfa, Ifng, Il6) in rat brain cortex. The molecular mechanisms through which Selol prevented the neuroinflammation were associated with the inhibition of oxidized glutathione (GSSG) accumulation and with an increase of glutathione-associated enzymes: glutathione peroxidase (Se-GPx), glutathione reductase (GR) as well as thioredoxin reductase (TrxR) activity and expression. Finally, we observed that Selol administration effectively protected against LPS-induced changes in the expression of brain-derived neurotrophic factor (Bdnf). In conclusion, our studies indicated that Selol effectively protects against LPS-induced neuroinflammation by inhibiting pro-inflammatory cytokine release, by boosting antioxidant systems, and by augmenting BDNF level. Therefore, Selol could be a multi-potent and effective drug useful in the treatment and prevention of brain disorders associated with neuroinflammation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effect of penehyclidine hydrochloride on β-arrestin-1 expression in lipopolysaccharide-induced human pulmonary microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, J. [Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei (China); Xiao, F. [Department of Osteology, Pu Ai Hospital, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhang, Z.Z.; Wang, Y.P.; Chen, K.; Wang, Y.L. [Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei (China)

    2013-12-02

    β-arrestins are expressed proteins that were first described, and are well-known, as negative regulators of G protein-coupled receptor signaling. Penehyclidine hydrochloride (PHC) is a new anti-cholinergic drug that can inhibit biomembrane lipid peroxidation, and decrease cytokines and oxyradicals. However, to date, no reports on the effects of PHC on β-arrestin-1 in cells have been published. The aim of this study was to investigate the effect of PHC on β-arrestin-1 expression in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMEC). Cultured HPMEC were pretreated with PHC, followed by LPS treatment. Muscarinic receptor mRNAs were assayed by real-time quantitative PCR. Cell viability was assayed by the methyl thiazolyl tetrazolium (MTT) conversion test. The dose and time effects of PHC on β-arrestin-1 expression in LPS-induced HPMEC were determined by Western blot analysis. Cell malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were measured. It was found that the M{sub 3} receptor was the one most highly expressed, and was activated 5 min after LPS challenge. Furthermore, 2 μg/mL PHC significantly upregulated expression of β-arrestin-1 within 10 to 15 min. Compared with the control group, MDA levels in cells were remarkably increased and SOD activities were significantly decreased in LPS pretreated cells, while PHC markedly decreased MDA levels and increased SOD activities. We conclude that PHC attenuated ROS injury by upregulating β-arrestin-1 expression, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced pulmonary microvascular endothelial cell injury.

  13. Effect of penehyclidine hydrochloride on β-arrestin-1 expression in lipopolysaccharide-induced human pulmonary microvascular endothelial cells

    International Nuclear Information System (INIS)

    Zhan, J.; Xiao, F.; Zhang, Z.Z.; Wang, Y.P.; Chen, K.; Wang, Y.L.

    2013-01-01

    β-arrestins are expressed proteins that were first described, and are well-known, as negative regulators of G protein-coupled receptor signaling. Penehyclidine hydrochloride (PHC) is a new anti-cholinergic drug that can inhibit biomembrane lipid peroxidation, and decrease cytokines and oxyradicals. However, to date, no reports on the effects of PHC on β-arrestin-1 in cells have been published. The aim of this study was to investigate the effect of PHC on β-arrestin-1 expression in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMEC). Cultured HPMEC were pretreated with PHC, followed by LPS treatment. Muscarinic receptor mRNAs were assayed by real-time quantitative PCR. Cell viability was assayed by the methyl thiazolyl tetrazolium (MTT) conversion test. The dose and time effects of PHC on β-arrestin-1 expression in LPS-induced HPMEC were determined by Western blot analysis. Cell malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were measured. It was found that the M 3 receptor was the one most highly expressed, and was activated 5 min after LPS challenge. Furthermore, 2 μg/mL PHC significantly upregulated expression of β-arrestin-1 within 10 to 15 min. Compared with the control group, MDA levels in cells were remarkably increased and SOD activities were significantly decreased in LPS pretreated cells, while PHC markedly decreased MDA levels and increased SOD activities. We conclude that PHC attenuated ROS injury by upregulating β-arrestin-1 expression, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced pulmonary microvascular endothelial cell injury

  14. Activation of the cholinergic anti-inflammatory pathway by nicotine ameliorates lipopolysaccharide-induced preeclampsia-like symptoms in pregnant rats.

    Science.gov (United States)

    Liu, Yuanyuan; Yang, Jinying; Bao, Junjie; Li, Xiaolan; Ye, Aihua; Zhang, Guozheng; Liu, Huishu

    2017-01-01

    Preeclampsia (PE) exerts a more intense systemic inflammatory response than normal pregnancy. Recently, the role of the cholinergic anti-inflammatory pathway (CAP) in regulating inflammation has been extensively studied. The aim of this study was to investigate the effect of nicotine, a selective cholinergic agonist, on lipopolysaccharide (LPS)-induced preeclampsia-like symptoms in pregnant rats and to determine the molecular mechanism underlying it. Rats were administered LPS (1.0 μg/kg) via tail vein injection on gestational day 14 to induce preeclampsia-like symptoms. Nicotine (1.0 mg/kg/d) and α-bungarotoxin (1.0 μg/kg/d) were injected subcutaneously into the rats from gestational day 14-19. Clinical symptoms were recorded. Serum and placentas were collected to determine cytokine levels using Luminex. The mRNA and protein expression levels of α7 nicotinic acetylcholine receptor (α7nAChR) were determined using Real time-PCR and Western blot analysis. Immunohistochemistry was performed to determine the level of activation of nuclear factor-κB (NF-κB) in placentas. Nicotine significantly ameliorated LPS-induced preeclampsia-like symptoms in pregnant rats (P preeclampsia (P preeclampsia rats. Our findings suggest that the activation of α7nAChR by nicotine attenuates preeclampsia-like symptoms, and this protective effect is likely the result of the inhibition of inflammation via the NF-κB p65 pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Typhoid fever with severe abdominal pain: diagnosis and clinical findings using abdomen ultrasonogram, hematology-cell analysis and the Widal test.

    Science.gov (United States)

    Arjunan, Maripandi; Al-Salamah, Ali A

    2010-10-04

    A six-year-old boy with high-grade fever and abdominal pain in the epigastric region was examined with ultrasonogram of the abdomen. Hematology-cell analysis, serology (Widal test), urine analysis, and blood cultures were also performed. The ultrasonogram was helpful for the identification of multiple organ involvement with Salmonella typhi. The results revealed mild hepatosplenomegaly, minimal ascitis, and mesenteric lympoadenopathy. Hematological analysis showed a white blood count of 6,300 cells mL-1; a red blood cell count of 4.54 million/cu mm. The erythrocyte sedimentation rate (ESR) was 24 mm/1 hr; hemoglobin level of 11.5 g/dl; and a platelet count of 206,000 cells/mL. The patient's serum was agglutinated with lipopolysaccharide (TO), the titre value was 1:320 dilution, and flagellar antigen (TH) titre was 1:640. The patient was diagnosed with typhoid fever. Ceftriaxone was given intravenously for five days and the patient fully recovered.

  16. Rab39a interacts with phosphatidylinositol 3-kinase and negatively regulates autophagy induced by lipopolysaccharide stimulation in macrophages.

    Directory of Open Access Journals (Sweden)

    Shintaro Seto

    Full Text Available Rab39a has pleiotropic functions in phagosome maturation, inflammatory activation and neuritogenesis. Here, we characterized Rab39a function in membrane trafficking of phagocytosis and autophagy induction in macrophages. Rab39a localized to the periphery of LAMP2-positive vesicles and showed the similar kinetics on the phagosome to that of LAMP1. The depletion of Rab39a did not influence the localization of LAMP2 to the phagosome, but it augments the autophagosome formation and LC3 processing by lipopolysaccharide (LPS stimulation. The augmentation of autophagosome formation in Rab39a-knockdown macrophages was suppressed by Atg5 depletion or an inhibitor for phosphatidylinostol 3-kinase (PI3K. Immunoprecipitation analysis revealed that Rab39a interacts with PI3K and that the amino acid residues from 34(th to 41(st in Rab39a were indispensable for this interaction. These results suggest that Rab39a negatively regulates the LPS-induced autophagy in macrophages.

  17. Effect of Egg White Combined with Chalcanthite on Lipopolysaccharide induced Inflammatory Cytokine Expression in RAW 264.7 cells

    Directory of Open Access Journals (Sweden)

    Choi Eun-A

    2012-03-01

    Full Text Available Historically, mineral compound herbal medicines have long been used in treatments of immune-related diseases in Korea, China and other Asian countries. In this study, we inv-estigated the anti-inflammatory effect of egg white combined with chalcanthite (IS4 on lipopolysaccharide (LPS-stimulated RAW 264.7 cells. RAW 264.7 cells cultured with LPS and various con-centrations of IS4 were analyzed to determine the production of pro-inflammatory cytokines and mediators by using enzyme-linked immune sorbent assays (ELISAs. IS4 concentration inhibited the production of interleukin-1beta (IL-1β, interleukin-6 (IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF induced by LPS. IS4 at high concentrations (25 and 50`㎍/ml inhibited, in concentration-dependent manner, the expression of tumor necrosis factor-alpha (TNF–α stimulated by LPS. IS4 has shown an anti-inflammatory effect in RAW 264.7 cells.

  18. NCX 4040, a nitric oxide-donating aspirin derivative, inhibits Prevotella intermedia lipopolysaccharide-induced production of proinflammatory mediators in murine macrophages.

    Science.gov (United States)

    Choi, Eun-Young; Choe, So-Hui; Hyeon, Jin-Yi; Park, Hae Ryoun; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2015-12-05

    In this study, the effects and underlying mechanisms of NCX 4040, a nitric oxide (NO)-donating aspirin derivative, on the production of proinflammatory mediators were examined using murine macrophages exposed to lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen implicated in the etiology of periodontal disease. NCX 4040 significantly reduced P. intermedia LPS-induced production of inducible NO synthase (iNOS)-derived NO, IL-1β and IL-6 as well as their mRNA expression in RAW264.7 cells. Notably, NCX 4040 was much more effective than the parental compound aspirin in reducing LPS-induced production of inflammatory mediators. NCX 4040 induced the expression of heme oxygenase-1 (HO-1) in cells treated with P. intermedia LPS, and the suppressive effect of NCX 4040 on LPS-induced NO production was significantly reversed by SnPP, a competitive HO-1 inhibitor. NCX 4040 did not influence LPS-induced phosphorylation of JNK and p38. IκB-α degradation as well as nuclear translocation and DNA-binding activities of NF-κB p65 and p50 subunits induced by P. intermedia LPS were significantly reduced by NCX 4040. Besides, LPS-induced phosphorylation of STAT1 and STAT3 was significantly down-regulated by NCX 4040. Further, NCX 4040 elevated the SOCS1 mRNA in cells stimulated with LPS. This study indicates that NCX 4040 inhibits P. intermedia LPS-induced production of NO, IL-1β and IL-6 in murine macrophages through anti-inflammatory HO-1 induction and suppression of NF-κB, STAT1 and STAT3 activation, which is associated with the activation of SOCS1 signaling. NCX 4040 could potentially be a promising tool in the treatment of periodontal disease, although further studies are required to verify this. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. HemoHIM, a herbal preparation, alleviates airway inflammation caused by cigarette smoke and lipopolysaccharide

    OpenAIRE

    Shin, Na-Rae; Kim, Sung-Ho; Ko, Je-Won; Park, Sung-Hyeuk; Lee, In-Chul; Ryu, Jung-Min; Kim, Jong-Choon; Shin, In-Sik

    2017-01-01

    HemoHIM, herbal preparation has designed for immune system recovery. We investigated the anti-inflammatory effect of HemoHIM on cigarette smoke (CS) and lipopolysaccharide (LPS) induced chronic obstructive pulmonary disease (COPD) mouse model. To induce COPD, C57BL/6 mice were exposed to CS for 1 h per day (eight cigarettes per day) for 4 weeks and intranasally received LPS on day 26. HemoHIM was administrated to mice at a dose of 50 or 100 mg/kg 1h before CS exposure. HemoHIM reduced the inf...

  20. Slit2 ameliorates renal inflammation and fibrosis after hypoxia-and lipopolysaccharide-induced epithelial cells injury in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiangjun [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Yao, Qisheng, E-mail: yymcyqs@126.com [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Sun, Xinbo; Gong, Xiaoxin; Yang, Yong; Chen, Congbo [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Shan, Guang [Department of Urology, Renmin Hospital of Wuhan University, Hubei (China)

    2017-03-01

    Hypoxic acute kidney injury (AKI) is often incompletely repaired and leads to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. The Slit2 family of secreted glycoproteins is expressed in the kidney, it has been shown to exert an anti-inflammatory activity and prevent ischemic renal injury in vivo. However, whether Slit2 reduces renal fibrosis and inflammation after hypoxic and inflammatory epithelial cells injury in vitro remains unknown. In this study, we aimed to evaluate whether Slit2 ameliorated fibrosis and inflammation in two renal epithelial cells line challenged with hypoxia and lipopolysaccharide (LPS). Renal epithelial cells were treated with hypoxia and LPS to induce cell injury. Hoechst staining and Western blot analysis was conducted to examine epithelial cells injury. Immunofluorescence staining and Western blot analysis was performed to evaluate tubulointerstitial fibrosis. Real-time polymerase chain reaction (PCR) tested the inflammatory factor interleukin (IL)−1β and tumor necrosis factor (TNF)-α, and Western blot analysis determined the hypoxia-inducible factor (HIF)−1α, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Results revealed that hypoxia induced epithelial cells apoptosis, inflammatory factor IL-1β and TNF-α release and tubulointerstitial fibrosis. LPS could exacerbate hypoxia -induced epithelial cells apoptosis, IL-1β and TNF-α release and fibrosis. Slit2 reduced the expression of fibronectin, the rate of epithelial cell apoptosis, and the expression of inflammatory factor. Slit2 could also inhibit the expression of TLR4 and NF-κB, but not the expression of HIF-1α. Therefore, Slit2 attenuated inflammation and fibrosis after LPS- and hypoxia-induced epithelial cells injury via the TLR4/NF-κB signaling pathway, but not depending on the HIF-1α signaling pathway. - Highlights: • Slit2 ameliorates inflammation after hypoxia-and LPS-induced epithelial cells injury

  1. Serology of Typhoid Fever in an Area of Endemicity and Its Relevance to Diagnosis

    Science.gov (United States)

    House, Deborah; Wain, John; Ho, Vo A.; Diep, To S.; Chinh, Nguyen T.; Bay, Phan V.; Vinh, Ha; Duc, Minh; Parry, Christopher M.; Dougan, Gordon; White, Nicholas J.; Hien, Tran Tinh; Farrar, Jeremy J.

    2001-01-01

    Currently, the laboratory diagnosis of typhoid fever is dependent upon either the isolation of Salmonella enterica subsp. enterica serotype Typhi from a clinical sample or the detection of raised titers of agglutinating serum antibodies against the lipopolysaccharide (LPS) (O) or flagellum (H) antigens of serotype Typhi (the Widal test). In this study, the serum antibody responses to the LPS and flagellum antigens of serotype Typhi were investigated with individuals from a region of Vietnam in which typhoid is endemic, and their usefulness for the diagnosis of typhoid fever was evaluated. The antibody responses to both antigens were highly variable among individuals infected with serotype Typhi, and elevated antibody titers were also detected in a high proportion of serum samples from healthy subjects from the community. In-house enzyme-linked immunosorbent assays (ELISAs) for the detection of specific classes of anti-LPS and antiflagellum antibodies were compared with other serologically based tests for the diagnosis of typhoid fever (Widal TO and TH, anti-serotype Typhi immunoglobulin M [IgM] dipstick, and IDeaL TUBEX). At a specificity of ≥0.93, the sensitivities of the different tests were 0.75, 0.55, and 0.52 for the anti-LPS IgM, IgG, and IgA ELISAs, respectively; 0.28 for the antiflagellum IgG ELISA; 0.47 and 0.32 for the Widal TO and TH tests, respectively; and 0.77 for the anti-serotype Typhi IgM dipstick assay. The specificity of the IDeaL TUBEX was below 0.90 (sensitivity, 0.87; specificity, 0.76). The serological assays based on the detection of IgM antibodies against either serotype Typhi LPS (ELISA) or whole bacteria (dipstick) had a significantly higher sensitivity than the Widal TO test when used with a single acute-phase serum sample (P ≤ 0.007). These tests could be of use for the diagnosis of typhoid fever in patients who have clinical typhoid fever but are culture negative or in regions where bacterial culturing facilities are not available

  2. Asiatic Acid Exhibits Anti-inflammatory and Antioxidant Activities against Lipopolysaccharide and d-Galactosamine-Induced Fulminant Hepatic Failure

    Directory of Open Access Journals (Sweden)

    Hongming Lv

    2017-07-01

    Full Text Available Inflammation and oxidative stress are essential for the pathogenesis of fulminant hepatic failure (FHF. Asiatic acid (AA, which is a pentacyclic triterpene that widely occurs in various vegetables and fruits, has been reported to possess antioxidant and anti-inflammatory properties. In this study, we investigated the protective effects of AA against lipopolysaccharide (LPS and d-galactosamine (GalN-induced FHF and the underlying molecular mechanisms. Our findings suggested that AA treatment effectively protected against LPS/d-GalN-induced FHF by lessening the lethality; decreasing the alanine transaminase and aspartate aminotransferase levels, interleukin (IL-1β, IL-6, and tumor necrosis factor-α production, malondialdehyde formation, myeloperoxidase level and reactive oxygen species generation (i.e., H2O2, NO, and O2−, and increasing the glutathione and superoxide dismutase contents. Moreover, AA treatment significantly inhibited mitogen-activated protein kinase (MAPK and nuclear factor-kappa B (NF-κB signaling pathway activation via the partial induction of programmed cell death 4 (PDCD4 protein expressions, which are involved in inflammatory responses. Furthermore, AA treatment dramatically induced the expression of the glutamate-cysteine ligase modifier subunit, the glutamate-cysteine ligase catalytic subunit, heme oxygenase-1, and NAD (P H: quinoneoxidoreductase 1 (NQO1, which are largely dependent on activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2 through the induction of AMP-activated protein kinase (AMPK and glycogen synthase kinase-3β (GSK3β phosphorylation. Accordingly, AA exhibited protective roles against LPS/d-GalN-induced FHF by inhibiting oxidative stress and inflammation. The underlying mechanism may be associated with the inhibition of MAPK and NF-κB activation via the partial induction of PDCD4 and upregulation of Nrf2 in an AMPK/GSK3β pathway activation-dependent manner.

  3. DMPD: Structural and functional analyses of bacterial lipopolysaccharides. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12106784 Structural and functional analyses of bacterial lipopolysaccharides. Carof...html) (.csml) Show Structural and functional analyses of bacterial lipopolysaccharides. PubmedID 12106784 Title Structural and functi...onal analyses of bacterial lipopolysaccharides. Authors

  4. Effects of propofol on lipopolysaccharide-induced expression and release of HMGB1 in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.; Wei, X.Y.; Liu, B.; Wang, L.J.; Jiang, L.H. [Department of Anesthesiology, the Third Affiliated Hospital, Zhengzhou University, Zhengzhou (China)

    2015-02-24

    This study aimed to determine the effects of different concentrations of propofol (2,6-diisopropylphenol) on lipopolysaccharide (LPS)-induced expression and release of high-mobility group box 1 protein (HMGB1) in mouse macrophages. Mouse macrophage cell line RAW264.7 cells were randomly divided into 5 treatment groups. Expression levels of HMGB1 mRNA were detected using RT-PCR, and cell culture supernatant HMGB1 protein levels were detected using enzyme-linked immunosorbent assay (ELISA). Translocation of HMGB1 from the nucleus to the cytoplasm in macrophages was observed by Western blotting and activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus was detected using ELISA. HMGB1 mRNA expression levels increased significantly in the cell culture supernatant and in cells after 24 h of stimulating RAW264.7 cells with LPS (500 ng/mL). However, HMGB1 mRNA expression levels in the P2 and P3 groups, which received 500 ng/mL LPS with 25 or 50 μmol/mL propofol, respectively, were significantly lower than those in the group receiving LPS stimulation (P<0.05). After stimulation by LPS, HMGB1 protein levels were reduced significantly in the nucleus but were increased in the cytoplasm (P<0.05). Simultaneously, the activity of NF-κB was enhanced significantly (P<0.05). After propofol intervention, HMGB1 translocation from the nucleus to the cytoplasm and NF-κB activity were inhibited significantly (each P<0.05). Thus, propofol can inhibit the LPS-induced expression and release of HMGB1 by inhibiting HMGB1 translocation and NF-κB activity in RAW264.7 cells, suggesting propofol may be protective in patients with sepsis.

  5. Innate immune activation by inhaled lipopolysaccharide, independent of oxidative stress, exacerbates silica-induced pulmonary fibrosis in mice.

    Directory of Open Access Journals (Sweden)

    David M Brass

    Full Text Available Acute exacerbations of pulmonary fibrosis are characterized by rapid decrements in lung function. Environmental factors that may contribute to acute exacerbations remain poorly understood. We have previously demonstrated that exposure to inhaled lipopolysaccharide (LPS induces expression of genes associated with fibrosis. To address whether exposure to LPS could exacerbate fibrosis, we exposed male C57BL/6 mice to crystalline silica, or vehicle, followed 28 days later by LPS or saline inhalation. We observed that mice receiving both silica and LPS had significantly more total inflammatory cells, more whole lung lavage MCP-1, MIP-2, KC and IL-1β, more evidence of oxidative stress and more total lung hydroxyproline than mice receiving either LPS alone, or silica alone. Blocking oxidative stress with N-acetylcysteine attenuated whole lung inflammation but had no effect on total lung hydroxyproline. These observations suggest that exposure to innate immune stimuli, such as LPS in the environment, may exacerbate stable pulmonary fibrosis via mechanisms that are independent of inflammation and oxidative stress.

  6. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit.

    Science.gov (United States)

    Banks, William A; Gray, Alicia M; Erickson, Michelle A; Salameh, Therese S; Damodarasamy, Mamatha; Sheibani, Nader; Meabon, James S; Wing, Emily E; Morofuji, Yoichi; Cook, David G; Reed, May J

    2015-11-25

    Disruption of the blood-brain barrier (BBB) occurs in many diseases and is often mediated by inflammatory and neuroimmune mechanisms. Inflammation is well established as a cause of BBB disruption, but many mechanistic questions remain. We used lipopolysaccharide (LPS) to induce inflammation and BBB disruption in mice. BBB disruption was measured using (14)C-sucrose and radioactively labeled albumin. Brain cytokine responses were measured using multiplex technology and dependence on cyclooxygenase (COX) and oxidative stress determined by treatments with indomethacin and N-acetylcysteine. Astrocyte and microglia/macrophage responses were measured using brain immunohistochemistry. In vitro studies used Transwell cultures of primary brain endothelial cells co- or tri-cultured with astrocytes and pericytes to measure effects of LPS on transendothelial electrical resistance (TEER), cellular distribution of tight junction proteins, and permeability to (14)C-sucrose and radioactive albumin. In comparison to LPS-induced weight loss, the BBB was relatively resistant to LPS-induced disruption. Disruption occurred only with the highest dose of LPS and was most evident in the frontal cortex, thalamus, pons-medulla, and cerebellum with no disruption in the hypothalamus. The in vitro and in vivo patterns of LPS-induced disruption as measured with (14)C-sucrose, radioactive albumin, and TEER suggested involvement of both paracellular and transcytotic pathways. Disruption as measured with albumin and (14)C-sucrose, but not TEER, was blocked by indomethacin. N-acetylcysteine did not affect disruption. In vivo, the measures of neuroinflammation induced by LPS were mainly not reversed by indomethacin. In vitro, the effects on LPS and indomethacin were not altered when brain endothelial cells (BECs) were cultured with astrocytes or pericytes. The BBB is relatively resistant to LPS-induced disruption with some brain regions more vulnerable than others. LPS-induced disruption appears is

  7. Fever

    Science.gov (United States)

    ... also cause fevers. Some examples are: Arthritis or connective tissue illnesses such as rheumatoid arthritis and systemic lupus erythematosus Ulcerative colitis and Crohn disease Vasculitis or periarteritis nodosa The first symptom of a cancer may be a fever. This is particularly true ...

  8. Role of Muramyl Dipeptide in Lipopolysaccharide-Mediated Biological Activity and Osteoclast Activity

    Directory of Open Access Journals (Sweden)

    Hideki Kitaura

    2018-01-01

    Full Text Available Lipopolysaccharide (LPS is an endotoxin and bacterial cell wall component that is capable of inducing inflammation and immunological activity. Muramyl dipeptide (MDP, the minimal essential structural unit responsible for the immunological activity of peptidoglycans, is another inflammation-inducing molecule that is ubiquitously expressed by bacteria. Several studies have shown that inflammation-related biological activities were synergistically induced by interactions between LPS and MDP. MDP synergistically enhances production of proinflammatory cytokines that are induced by LPS exposure. Injection of MDP induces lethal shock in mice challenged with LPS. LPS also induces osteoclast formation and pathological bone resorption; MDP enhances LPS induction of both processes. Furthermore, MDP enhances the LPS-induced receptor activator of NF-κB ligand (RANKL expression and toll-like receptor 4 (TLR4 expression both in vivo and in vitro. Additionally, MDP enhances LPS-induced mitogen-activated protein kinase (MAPK signaling in stromal cells. Taken together, these findings suggest that MDP plays an important role in LPS-induced biological activities. This review discusses the role of MDP in LPS-mediated biological activities, primarily in relation to osteoclastogenesis.

  9. Preventative effect of OMZ-SPT on lipopolysaccharide-induced acute lung injury and inflammation via nuclear factor-kappa B signaling in mice

    International Nuclear Information System (INIS)

    Wang, Ting; Hou, Wanru; Fu, Zhou

    2017-01-01

    Acute lung injury (ALI) is an early pathophysiologic change in acute respiratory distress syndrome and its management can be challenging. Omalizumab (Xolair™) is a recombinant DNA-derived, humanized antibody. OMZ-SPT is a polypeptide on the heavy chain of omalizumab monoclonal antibody. Here, we found that intramuscular administration of OMZ-SPT significantly improved survival and attenuated lung inflammation in female C57BL/6 mice suffering from lipopolysaccharide (LPS)-induced ALI. We also demonstrated that OMZ-SPT can inhibit expression of the inflammatory cytokines tumor necrosis factor-α, interleukin-1β and interleukin-6 by ELISA in mice suffering from LPS-induced ALI and a mouse macrophage line (RAW264.7 cells). In addition, we showed that OMZ-SPT inhibited LPS-induced activation of nuclear factor-kappa B (NF-κB) signaling and total expression of NF-κB by western blotting. These data suggest that OMZ-SPT could be a novel therapeutic choice for ALI. - Highlights: • OMZ-SPT is a polypeptide on the heavy chain of omalizumab monoclonal antibody. • Omalizumab (Xolair™) have anti-inflammatory effects. • OMZ-SPT can inhibit inflammatory responses and lung injury in LPS-induced ALI mice. • Protective effect of OMZ-SPT on ALI is due to inhibition of NF-κB signaling. • OMZ-SPT could be a novel therapeutic choice for ALI.

  10. Involvement of JNK and NF-κB pathways in lipopolysaccharide (LPS)-induced BAG3 expression in human monocytic cells.

    Science.gov (United States)

    Wang, Hua-Qin; Meng, Xin; Liu, Bao-Qin; Li, Chao; Gao, Yan-Yan; Niu, Xiao-Fang; Li, Ning; Guan, Yifu; Du, Zhen-Xian

    2012-01-01

    Lipopolysaccharide (LPS) is an outer-membrane glycolipid component of Gram-negative bacteria known for its fervent ability to activate monocytic cells and for its potent proinflammatory capabilities. Bcl-2-associated athanogene 3 (BAG3) is a survival protein that has been shown to be stimulated during cell response to stressful conditions, such as exposure to high temperature, heavy metals, proteasome inhibition, and human immunodeficiency virus 1 (HIV-1) infection. In addition, BAG3 regulates replication of Varicella-Zoster Virus (VZV) and Herpes Simplex Virus (HSV) replication, suggesting that BAG3 could participate in the host response to infection. In the current study, we found that LPS increased the expression of BAG3 in a dose- and time-dependent manner. Actinomycin D completely blocked the LPS-induced BAG3 accumulation, as well as LPS activated the proximal promoter of BAG3 gene, supported that the induction by LPS occurred at the level of gene transcription. LPS-induced BAG3 expression was blocked by JNK or NF-κB inhibition, suggesting that JNK and NF-κB pathways participated in BAG3 induction by LPS. In addition, we also found that induction of BAG3 was implicated in monocytic cell adhesion to extracellular matrix induced by LPS. Overall, the data support that BAG3 is induced by LPS via JNK and NF-κB-dependent signals, and involved in monocytic cell-extracellular matrix interaction, suggesting that BAG3 may have a role in the host response to LPS stimulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Pretreatment of Sialic Acid Efficiently Prevents Lipopolysaccharide-Induced Acute Renal Failure and Suppresses TLR4/gp91-Mediated Apoptotic Signaling

    Directory of Open Access Journals (Sweden)

    Shih-Ping Hsu

    2016-05-01

    Full Text Available Background/Aims: Lipopolysaccharides (LPS binding to Toll-like receptor 4 (TLR4 activate NADPH oxidase gp91 subunit-mediated inflammation and oxidative damage. Recognizing the high binding affinity of sialic acid (SA with LPS, we further explored the preventive potential of SA pretreatment on LPS-evoked acute renal failure (ARF. Methods: We determined the effect of intravenous SA 30 min before LPS-induced injury in urethane-anesthetized female Wistar rats by evaluating kidney reactive oxygen species (ROS responses, renal and systemic hemodynamics, renal function, histopathology, and molecular mechanisms. Results: LPS time-dependently reduced arterial blood pressure, renal microcirculation, and increased blood urea nitrogen and creatinine in the rats. LPS enhanced monocyte/macrophage infiltration and ROS production, and subsequently impaired kidneys with the enhancement of TLR4/NADPH oxidase gp91/Caspase 3/poly-(ADP-ribose-polymerase (PARP-mediated apoptosis in the kidneys. SA pretreatment effectively alleviated LPS-induced ARF. The levels of LPS-increased ED-1 infiltration and ROS production in the kidney were significantly depressed by SA pretreatment. Furthermore, SA pretreatment significantly depressed TLR4 activation, gp91 expression, and Caspase 3/PARP induced apoptosis in the kidneys. Conclusion: We suggest that pretreatment of SA significantly and preventively attenuated LPS-induced detrimental effects on systemic and renal hemodynamics, renal ROS production and renal function, as well as, LPS-activated TLR4/gp91/Caspase3 mediated apoptosis signaling.

  12. DMPD: Lipopolysaccharide-binding molecules: transporters, blockers and sensors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15241548 Lipopolysaccharide-binding molecules: transporters, blockers and sensors. ...binding molecules: transporters, blockers and sensors. PubmedID 15241548 Title Lipopolysaccharide-binding molecules: transport...Chaby R. Cell Mol Life Sci. 2004 Jul;61(14):1697-713. (.png) (.svg) (.html) (.csml) Show Lipopolysaccharide-

  13. Bigelovii A Protects against Lipopolysaccharide-Induced Acute Lung Injury by Blocking NF-κB and CCAAT/Enhancer-Binding Protein δ Pathways

    Directory of Open Access Journals (Sweden)

    Chunguang Yan

    2016-01-01

    Full Text Available Optimal methods are applied to acute lung injury (ALI and the acute respiratory distress syndrome (ARDS, but the mortality rate is still high. Accordingly, further studies dedicated to identify novel therapeutic approaches to ALI are urgently needed. Bigelovii A is a new natural product and may exhibit anti-inflammatory activity. Therefore, we sought to investigate its effect on lipopolysaccharide- (LPS- induced ALI and the underlying mechanisms. We found that LPS-induced ALI was significantly alleviated by Bigelovii A treatment, characterized by reduction of proinflammatory mediator production, neutrophil infiltration, and lung permeability. Furthermore, Bigelovii A also downregulated LPS-stimulated inflammatory mediator expressions in vitro. Moreover, both NF-κB and CCAAT/enhancer-binding protein δ (C/EBPδ activation were obviously attenuated by Bigelovii A treatment. Additionally, phosphorylation of both p38 MAPK and ERK1/2 (upstream signals of C/EBPδ activation in response to LPS challenge was also inhibited by Bigelovii A. Therefore, Bigelovii A could attenuate LPS-induced inflammation by suppression of NF-κB, inflammatory mediators, and p38 MAPK/ERK1/2—C/EBPδ, inflammatory mediators signaling pathways, which provide a novel theoretical basis for the possible application of Bigelovii A in clinic.

  14. Alkaloids from piper longum protect dopaminergic neurons against inflammation-mediated damage induced by intranigral injection of lipopolysaccharide.

    Science.gov (United States)

    He, Huan; Guo, Wei-Wei; Xu, Rong-Rong; Chen, Xiao-Qing; Zhang, Nan; Wu, Xia; Wang, Xiao-Min

    2016-10-24

    Alkaloids from Piper longum (PLA), extracted from P. longum, have potent anti-inflammatory effects. The aim of this study was to investigate whether PLA could protect dopaminergic neurons against inflammation-mediated damage by inhibiting microglial activation using a lipopolysaccharide (LPS)-induced dopaminergic neuronal damage rat model. The animal behaviors of rotational behavior, rotarod test and open-field test were investigated. The survival ratio of dopaminergic neurons and microglial activation were examined. The dopamine (DA) and its metabolite were detected by high performance liquid chromatography (HPLC). The effects of PLA on the expression of interleukin (IL)-6, interleukin (IL)-1β and tumor necrosis factor (TNF)-α were detected by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) and nitric oxide (NO) were also estimated. We showed that the survival ratio of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the substantia nigra pars compacta (SNpc) and DA content in the striatum were reduced after a single intranigral dose of LPS (10 μg) treatment. The survival rate of TH-ir neurons in the SNpc and DA levels in the striatum were significantly improved after treatment with PLA for 6 weeks. The over-activated microglial cells were suppressed by PLA treatment. We also observed that the levels of inflammatory cytokines, including TNF-α, IL-6 and IL-1β were decreased and the excessive production of ROS and NO were abolished after PLA treatment. Therefore, the behavioral dysfunctions induced by LPS were improved after PLA treatment. This study suggests that PLA plays a significant role in protecting dopaminergic neurons against inflammatory reaction induced damage.

  15. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    Science.gov (United States)

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling.

  16. Brucella abortus Induces the Premature Death of Human Neutrophils through the Action of Its Lipopolysaccharide

    Science.gov (United States)

    Barquero-Calvo, Elías; Mora-Cartín, Ricardo; Arce-Gorvel, Vilma; de Diego, Juana L.; Chacón-Díaz, Carlos; Chaves-Olarte, Esteban; Guzmán-Verri, Caterina; Buret, Andre G.; Gorvel, Jean-Pierre; Moreno, Edgardo

    2015-01-01

    Most bacterial infections induce the activation of polymorphonuclear neutrophils (PMNs), enhance their microbicidal function, and promote the survival of these leukocytes for protracted periods of time. Brucella abortus is a stealthy pathogen that evades innate immunity, barely activates PMNs, and resists the killing mechanisms of these phagocytes. Intriguing clinical signs observed during brucellosis are the low numbers of Brucella infected PMNs in the target organs and neutropenia in a proportion of the patients; features that deserve further attention. Here we demonstrate that B. abortus prematurely kills human PMNs in a dose-dependent and cell-specific manner. Death of PMNs is concomitant with the intracellular Brucella lipopolysaccharide (Br-LPS) release within vacuoles. This molecule and its lipid A reproduce the premature cell death of PMNs, a phenomenon associated to the low production of proinflammatory cytokines. Blocking of CD14 but not TLR4 prevents the Br-LPS-induced cell death. The PMNs cell death departs from necrosis, NETosis and classical apoptosis. The mechanism of PMN cell death is linked to the activation of NADPH-oxidase and a modest but steadily increase of ROS mediators. These effectors generate DNA damage, recruitments of check point kinase 1, caspases 5 and to minor extent of caspase 4, RIP1 and Ca++ release. The production of IL-1β by PMNs was barely stimulated by B. abortus infection or Br-LPS treatment. Likewise, inhibition of caspase 1 did not hamper the Br-LPS induced PMN cell death, suggesting that the inflammasome pathway was not involved. Although activation of caspases 8 and 9 was observed, they did not seem to participate in the initial triggering mechanisms, since inhibition of these caspases scarcely blocked PMN cell death. These findings suggest a mechanism for neutropenia in chronic brucellosis and reveal a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN. PMID:25946018

  17. Lipopolysaccharide induces proliferation and osteogenic differentiation of adipose-derived mesenchymal stromal cells in vitro via TLR4 activation

    Energy Technology Data Exchange (ETDEWEB)

    Herzmann, Nicole; Salamon, Achim [Department of Cell Biology, University Medicine Rostock, Schillingallee 69, D-18057 Rostock (Germany); Fiedler, Tomas [Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Schillingallee 70, D-18057 Rostock (Germany); Peters, Kirsten, E-mail: kirsten.peters@med.uni-rostock.de [Department of Cell Biology, University Medicine Rostock, Schillingallee 69, D-18057 Rostock (Germany)

    2017-01-01

    Multipotent mesenchymal stromal cells (MSC) are capable of multi-lineage differentiation and support regenerative processes. In bacterial infections, resident MSC can come intocontact with and need to react to bacterial components. Lipopolysaccharide (LPS), a typical structure of Gram-negative bacteria, increases the proliferation and osteogenic differentiation of MSC. LPS is usually recognized by the toll-like receptor (TLR) 4 and induces pro-inflammatory reactions in numerous cell types. In this study, we quantified the protein expression of TLR4 and CD14 on adipose-derived MSC (adMSC) in osteogenic differentiation and investigated the effect of TLR4 activation by LPS on NF-κB activation, proliferation and osteogenic differentiation of adMSC. We found that TLR4 is expressed on adMSC whereas CD14 is not, and that osteogenic differentiation induced an increase of the amount of TLR4 protein whereas LPS stimulation did not. Moreover, we could show that NF-κB activation via TLR4 occurs upon LPS treatment. Furthermore, we were able to show that competitive inhibition of TLR4 completely abolished the stimulatory effect of LPS on the proliferation and osteogenic differentiation of adMSC. In addition, the inhibition of TLR4 leads to the complete absence of osteogenic differentiation of adMSC, even when osteogenically stimulated. Thus, we conclude that LPS induces proliferation and osteogenic differentiation of adMSC in vitro through the activation of TLR4 and that the TLR4 receptor seems to play a role during osteogenic differentiation of adMSC.

  18. The Lipopolysaccharide-Induced Metabolome Signature in Arabidopsis thaliana Reveals Dynamic Reprogramming of Phytoalexin and Phytoanticipin Pathways.

    Directory of Open Access Journals (Sweden)

    Tarryn Finnegan

    Full Text Available Lipopolysaccharides (LPSs, as MAMP molecules, trigger the activation of signal transduction pathways involved in defence. Currently, plant metabolomics is providing new dimensions into understanding the intracellular adaptive responses to external stimuli. The effect of LPS on the metabolomes of Arabidopsis thaliana cells and leaf tissue was investigated over a 24 h period. Cellular metabolites and those secreted into the medium were extracted with methanol and liquid chromatography coupled to mass spectrometry was used for quantitative and qualitative analyses. Multivariate statistical data analyses were used to extract interpretable information from the generated multidimensional LC-MS data. The results show that LPS perception triggered differential changes in the metabolomes of cells and leaves, leading to variation in the biosynthesis of specialised secondary metabolites. Time-dependent changes in metabolite profiles were observed and biomarkers associated with the LPS-induced response were tentatively identified. These include the phytohormones salicylic acid and jasmonic acid, and also the associated methyl esters and sugar conjugates. The induced defensive state resulted in increases in indole-and other glucosinolates, indole derivatives, camalexin as well as cinnamic acid derivatives and other phenylpropanoids. These annotated metabolites indicate dynamic reprogramming of metabolic pathways that are functionally related towards creating an enhanced defensive capacity. The results reveal new insights into the mode of action of LPS as an activator of plant innate immunity, broadens knowledge about the defence metabolite pathways involved in Arabidopsis responses to LPS, and identifies specialised metabolites of functional importance that can be employed to enhance immunity against pathogen infection.

  19. The Lipopolysaccharide-Induced Metabolome Signature in Arabidopsis thaliana Reveals Dynamic Reprogramming of Phytoalexin and Phytoanticipin Pathways

    Science.gov (United States)

    Finnegan, Tarryn; Steenkamp, Paul A.; Piater, Lizelle A.

    2016-01-01

    Lipopolysaccharides (LPSs), as MAMP molecules, trigger the activation of signal transduction pathways involved in defence. Currently, plant metabolomics is providing new dimensions into understanding the intracellular adaptive responses to external stimuli. The effect of LPS on the metabolomes of Arabidopsis thaliana cells and leaf tissue was investigated over a 24 h period. Cellular metabolites and those secreted into the medium were extracted with methanol and liquid chromatography coupled to mass spectrometry was used for quantitative and qualitative analyses. Multivariate statistical data analyses were used to extract interpretable information from the generated multidimensional LC-MS data. The results show that LPS perception triggered differential changes in the metabolomes of cells and leaves, leading to variation in the biosynthesis of specialised secondary metabolites. Time-dependent changes in metabolite profiles were observed and biomarkers associated with the LPS-induced response were tentatively identified. These include the phytohormones salicylic acid and jasmonic acid, and also the associated methyl esters and sugar conjugates. The induced defensive state resulted in increases in indole—and other glucosinolates, indole derivatives, camalexin as well as cinnamic acid derivatives and other phenylpropanoids. These annotated metabolites indicate dynamic reprogramming of metabolic pathways that are functionally related towards creating an enhanced defensive capacity. The results reveal new insights into the mode of action of LPS as an activator of plant innate immunity, broadens knowledge about the defence metabolite pathways involved in Arabidopsis responses to LPS, and identifies specialised metabolites of functional importance that can be employed to enhance immunity against pathogen infection. PMID:27656890

  20. A Q fever case mimicking crimean-congo haemorrhagic fever

    Directory of Open Access Journals (Sweden)

    O Karabay

    2011-01-01

    Full Text Available Coxiella burnetii is the bacterium that causes Q fever. Human infection is mainly transmitted from cattle, goats and sheep. The disease is usually self-limited. Pneumonia and hepatitis are the most common clinical manifestations. In this study, we present a case of Q fever from the western part of Turkey mimicking Crimean-Congo haemorrhagic fever (CCHF in terms of clinical and laboratory findings.

  1. 5-Methoxyl Aesculetin Abrogates Lipopolysaccharide-Induced Inflammation by Suppressing MAPK and AP-1 Pathways in RAW 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Lei Wu

    2016-03-01

    Full Text Available For the first time, a pale amorphous coumarin derivative, 5-methoxyl aesculetin (MOA, was isolated from the dried bark of Fraxinus rhynchophylla Hance (Oleaceae. MOA modulates cytokine expression in lipopolysaccharide (LPS-treated RAW 264.7 macrophages, but the precise mechanisms are still not fully understood. We determined the effects of MOA on the production of inflammatory mediators and pro-inflammatory cytokines in the LPS-induced inflammatory responses of RAW 264.7 macrophages. MOA significantly inhibited the LPS-induced production of nitric oxide (NO, prostaglandin E2 (PGE2, tumor necrosis factor-α (TNF-α, interleukin-6, and interleukin-1β. It also effectively attenuated inducible nitric oxide (NO synthase, cyclooxygenase-2, and TNF-α mRNA expression and significantly decreased the levels of intracellular reactive oxygen species. It inhibited phosphorylation of the extracellular signal-regulated kinase (ERK1/2, thus blocking nuclear translocation of activation protein (AP-1. In a molecular docking study, MOA was shown to target the binding site of ERK via the formation of three hydrogen bonds with two residues of the kinase, which is sufficient for the inhibition of ERK. These results suggest that the anti-inflammatory effects of MOA in RAW 264.7 macrophages derive from its ability to block both the activation of mitogen-activated protein kinases (MAPKs and one of their downstream transcription factors, activator protein-1 (AP-1. Our observations support the need for further research into MOA as a promising therapeutic agent in inflammatory diseases.

  2. 5-Methoxyl Aesculetin Abrogates Lipopolysaccharide-Induced Inflammation by Suppressing MAPK and AP-1 Pathways in RAW 264.7 Cells

    Science.gov (United States)

    Wu, Lei; Li, Xueqin; Wu, Haifeng; Long, Wei; Jiang, Xiaojian; Shen, Ting; Qiang, Qian; Si, Chuanling; Wang, Xinfeng; Jiang, Yunyao; Hu, Weicheng

    2016-01-01

    For the first time, a pale amorphous coumarin derivative, 5-methoxyl aesculetin (MOA), was isolated from the dried bark of Fraxinus rhynchophylla Hance (Oleaceae). MOA modulates cytokine expression in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages, but the precise mechanisms are still not fully understood. We determined the effects of MOA on the production of inflammatory mediators and pro-inflammatory cytokines in the LPS-induced inflammatory responses of RAW 264.7 macrophages. MOA significantly inhibited the LPS-induced production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin-6, and interleukin-1β. It also effectively attenuated inducible nitric oxide (NO) synthase, cyclooxygenase-2, and TNF-α mRNA expression and significantly decreased the levels of intracellular reactive oxygen species. It inhibited phosphorylation of the extracellular signal-regulated kinase (ERK1/2), thus blocking nuclear translocation of activation protein (AP)-1. In a molecular docking study, MOA was shown to target the binding site of ERK via the formation of three hydrogen bonds with two residues of the kinase, which is sufficient for the inhibition of ERK. These results suggest that the anti-inflammatory effects of MOA in RAW 264.7 macrophages derive from its ability to block both the activation of mitogen-activated protein kinases (MAPKs) and one of their downstream transcription factors, activator protein-1 (AP-1). Our observations support the need for further research into MOA as a promising therapeutic agent in inflammatory diseases. PMID:26938526

  3. Thymoquinone restores liver fibrosis and improves oxidative stress status in a lipopolysaccharide-induced inflammation model in rats.

    Science.gov (United States)

    Asgharzadeh, Fereshteh; Bargi, Rahimeh; Beheshti, Farimah; Hosseini, Mahmoud; Farzadnia, Mehdi; Khazaei, Majid

    2017-01-01

    Liver fibrosis is the primary sign of chronic liver injury induced by various causes. Thymoquinone (TQ) is the major ingredient of Nigella sativa with several beneficial effects on the body. In the present study, we aimed to investigate the effect of TQ on liver fibrosis in a lipopolysaccharide (LPS)-induced inflammation in male rats. Fifty male Wistar rats were randomly divided into five groups (n=10 in each group) as follow: (1) control; (2) LPS (1 mg/kg/day; i.p); (3) LPS+TQ 2 mg/kg/day (i.p) (LPs+TQ2); (4) LPS+TQ 5 mg/kg/day (LPS+TQ5); (5) LPS+ TQ 10 mg/kg/day (LPS+ TQ10). After three weeks, blood samples were taken for evaluation of liver function tests. Then, the livers were harvested for histological evaluation of fibrosis and collagen content and measurement of oxidative stress markers including malondialdehyde (MDA), total thiol groups, superoxide dismutase (SOD) and catalase activity in tissue homogenates. LPS group showed higher levels of fibrosis and collagen content stained by Masson's trichrome in liver tissue with impaired liver function test and increased oxidative stress markers (pliver fibrosis, improved liver function tests and increased the levels of anti-oxidative enzymes (SOD and catalase), while reduced MDA concentration (pliver fibrosis possibly through affecting oxidative stress status. It seems that administration of TQ can be considered as a part of liver fibrosis management.

  4. Human adipose-derived mesenchymal stem cell-conditioned media suppresses inflammatory bone loss in a lipopolysaccharide-induced murine model.

    Science.gov (United States)

    Li, Yu; Gao, Xin; Wang, Jinbing

    2018-02-01

    Conditioned media (CM) from mesenchymal stem cells (MSCs) contains various cytokines, growth factors and microRNAs, which may serve important roles in modulating the inflammatory process. However, the effect of MSC-CM on inflammatory bone loss remains unknown. The present study investigated the effects of conditioned media from human adipose-derived mesenchymal stem cells (AMSC-CM) on the prevention of lipopolysaccharide (LPS)-mediated bone loss in mice. To investigate the underlying mechanisms of this effect, the effects of AMSC-CM on serum levels of inflammation-associated cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6 and IL-10] in LPS-treated mice, in addition to their mRNA expression in LPS-treated macrophages, was investigated. Micro-computed tomography and histological analysis revealed that AMSC-CM administration effectively inhibited LPS-induced bone destruction in vivo . ELISA analysis indicated that AMSC-CM significantly reduced the serum levels of proinflammatory cytokines (TNF-α, IL-1 and IL-6) in LPS-treated mice. Furthermore, AMSC-CM treatment significantly decreased the mRNA expression levels of TNF-α, IL-1 and IL-6 in macrophages treated with LPS. These findings indicate that AMSC-CM inhibits LPS-induced bone loss by decreasing the production of proinflammatory cytokines, suggesting that the use of AMSC-CM may be a potential therapeutic strategy for the treatment of inflammatory bone loss.

  5. AWRK6, A Synthetic Cationic Peptide Derived from Antimicrobial Peptide Dybowskin-2CDYa, Inhibits Lipopolysaccharide-Induced Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Qiuyu Wang

    2018-02-01

    Full Text Available Lipopolysaccharides (LPS are major outer membrane components of Gram-negative bacteria and produce strong inflammatory responses in animals. Most antibiotics have shown little clinical anti-endotoxin activity while some antimicrobial peptides have proved to be effective in blocking LPS. Here, the anti-LPS activity of the synthetic peptide AWRK6, which is derived from antimicrobial peptide dybowskin-2CDYa, has been investigated in vitro and in vivo. The positively charged α-helical AWRK6 was found to be effective in blocking the binding of LBP (LPS binding protein with LPS in vitro using ELISA. In a murine endotoxemia model, AWRK6 offered satisfactory protection efficiency against endotoxemia death, and the serum levels of LPS, IL-1β, IL-6, and TNF-α were found to be attenuated using ELISA. Further, histopathological analysis suggested that AWRK6 could improve the healing of liver and lung injury in endotoxemia mice. The results of real-time PCR and Western blotting showed that AWRK6 significantly reversed LPS-induced TLR4 overexpression and IκB depression, as well as the enhanced IκB phosphorylation. Additionally, AWRK6 did not produce any significant toxicity in vivo and in vitro. In summary, AWRK6 showed efficacious protection from LPS challenges in vivo and in vitro, by blocking LPS binding to LBP, without obvious toxicity, providing a promising strategy against LPS-induced inflammatory responses.

  6. κ-Carrageenan Enhances Lipopolysaccharide-Induced Interleukin-8 Secretion by Stimulating the Bcl10-NF-κB Pathway in HT-29 Cells and Aggravates C. freundii-Induced Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2017-01-01

    Full Text Available Background. The dietary usage of carrageenan as common food additive has increased observably over the last 50 years. But there is substantial controversy about its safety. Methods. We investigated whether the κ-carrageenan could enhance lipopolysaccharide-induced IL-8 expression by studying its actions on the TLR4-NF-κB pathway. The aggravating effect of κ-carrageenan on Citrobacter freundii DBS100-induced intestinal inflammation was also investigated in a mouse model. Results. Our data show that κ-carrageenan pretreatment promoted LPS-induced IL-8 expression in HT-29 cells. Although CD14, MD-2, and TLR4 were upregulated, the binding of LPS was not enhanced. However, the pathway of Bcl10-NF-κB was triggered. Interestingly, κ-carrageenan competitively blocked the binding of FITC-LPS. Furthermore, pretreatment with κ-carrageenan for one week previous to gavage with C. freundii DBS100 markedly aggravated weight loss, mortality, and colonic damage. The secretion of cytokines was unbalanced and the ratio of Tregs was decreased significantly. In addition, κ-carrageenan, together with C. freundii DBS100, enhanced the transcription and secretion of TLR4 and NF-κB. Conclusions. κ-Carrageenan can synergistically activate LPS-induced inflammatory through the Bcl10-NF-κB pathway, as indicated by its aggravation of C. freundii DBS100-induced colitis in mice. General Significance. Our results suggest that κ-carrageenan serves as a potential inflammatory agent that magnifies existing intestinal inflammation.

  7. Effect of caffeic acid phenethyl ester on Prevotella intermedia lipopolysaccharide-induced production of proinflammatory mediators in murine macrophages.

    Science.gov (United States)

    Choi, E-Y; Choe, S-H; Hyeon, J-Y; Choi, J-I; Choi, I S; Kim, S-J

    2015-12-01

    Caffeic acid phenethyl ester (CAPE) has numerous potentially beneficial properties, including antioxidant, immunomodulatory and anti-inflammatory activities. However, the effect of CAPE on periodontal disease has not been studied before. This study was designed to investigate the efficacy of CAPE in ameliorating the production of proinflammatory mediators in macrophages activated by lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen implicated in periodontal disease. LPS from P. intermedia ATCC 25611 was isolated by using the standard hot phenol-water method. Culture supernatants were assayed for nitric oxide (NO), interleukin (IL)-1β and IL-6. We used real-time polymerase chain reaction to quantify inducible NO synthase, IL-1β, IL-6, heme oxygenase (HO)-1 and suppressors of cytokine signaling (SOCS) 1 mRNA expression. HO-1 protein expression and levels of signaling proteins were assessed by immunoblot analysis. DNA-binding activities of NF-κB subunits were analyzed by using the enzyme-linked immunosorbent assay-based kits. CAPE exerted significant inhibitory effects on P. intermedia LPS-induced production of NO, IL-1β and IL-6 as well as their mRNA expression in RAW264.7 cells. CAPE-induced HO-1 expression in cells activated with P. intermedia LPS, and selective inhibition of HO-1 activity by tin protoporphyrin IX attenuated the inhibitory effect of CAPE on LPS-induced NO production. CAPE did not interfere with IκB-α degradation induced by P. intermedia LPS. Instead, CAPE decreased nuclear translocation of NF-κB p65 and p50 subunits induced with LPS, and lessened LPS-induced p50 binding activity. Further, CAPE showed strong inhibitory effects on LPS-induced signal transducer and activator of transcription 1 and 3 phosphorylation. Besides, CAPE significantly elevated SOCS1 mRNA expression in P. intermedia LPS-stimulated cells. Modulation of host response by CAPE may represent an attractive strategy towards the treatment of periodontal disease

  8. The role of lipopolysaccharide in infectious bone resorption of periapical lesion.

    Science.gov (United States)

    Hong, Chi-Yuan; Lin, Sze-Kwan; Kok, Sang-Heng; Cheng, Shih-Jung; Lee, Ming-Shu; Wang, Tong-Mei; Chen, Chuan-Shuo; Lin, Li-Deh; Wang, Juo-Song

    2004-03-01

    The role of lipopolysaccharide (LPS) in periapical lesion-induced bone resorption was investigated. Polymyxin B (PMB), a specific inhibitor of LPS, was evaluated to treat the apical lesion. Lipopolysaccharide isolated from two common endodontic pathogens, Fusobacterium nucleatum and Porphyromonas endodontalis, stimulated mouse macrophage (J774) to release interleukin-1alpha (IL-1 alpha) and tumor necrosis factor-alpha (TNF-alpha) in a time-dependent manner. Combination of LPS further enhanced the stimulation. PMB inhibited these effects significantly. LPS also stimulated matrix metalloproteinase-1 (MMP-1) gene expression in J774, whereas anti-IL-1 alpha and anti-TNF-alpha antibodies, as well as PMB, diminished this effect. A disease model of periapical lesion was established in Wistar rat. Administration of PMB reduced the extent of lesion-associated bone resorption by 76% to approximately 80%, and simultaneously reduced the numbers of MMP-1-producing macrophages. It is suggested that LPS released from the infected root canal triggers the synthesis of IL-1 alpha and TNF-alpha from macrophages. These pro-inflammatory cytokines up-regulate the production of MMP-1 by macrophages to promote periapical bone resorption.

  9. Site of action of calcium channel blockers in inhibiting endogenous pyrogen fever in rats.

    Science.gov (United States)

    Stitt, J T; Shimada, S G

    1991-09-01

    We have demonstrated that the Ca2+ channel blocker verapamil, administered intravenously, exerts an antipyretic effect on the febrile responses of rats to intravenously injected endogenous pyrogen (EP). We have also shown that the same intravenous dose of verapamil is ineffective in blocking fevers induced by the microinjection of exogenous prostaglandin E (PGE) into the organum vasculosum laminae terminalis (OVLT) of rats. Experiments were conducted to determine whether the site of this verapamil antipyresis was in the OVLT itself. The febrile responses of six male Sprague-Dawley rats to EP were determined at thermoneutrality. Verapamil (10 micrograms/rat) was microinjected directly into the OVLT, and the febrile responses to the EP dose were redetermined 15-30 min later. In every case the EP fevers were attenuated after verapamil pretreatment. Intra-OVLT injections of verapamil alone were without effect on body temperature. When the same dose of verapamil was injected into the OVLT 15 min before the injection of PGE into the same site, it had no effect on the ensuing PGE-induced fever. In view of the fact that less than 1/250th of the effective systemic dose of verapamil, when injected into the OVLT, was equally effective in blocking the EP fevers, we conclude that verapamil acts within the OVLT to block fever rather than peripherally. Furthermore, because verapamil administered into the OVLT does not block PGE fevers, it is unlikely that PGE produces fever by acting as a Ca2+ ionophore on hypothalamic neurons.

  10. Placental-mediated increased cytokine response to lipopolysaccharides: a potential mechanism for enhanced inflammation susceptibility of the preterm fetus

    Directory of Open Access Journals (Sweden)

    Ross MG

    2012-07-01

    vehicle. Conversely, interleukin-6 release from e20 explants was not significantly different compared with vehicle, and tumor necrosis alpha release was only 2-fold higher (P < 0.05 versus vehicle following exposure to lipopolysaccharide. Phosphorylated NFκB protein expression was significantly increased in the nuclear fraction from placental explants exposed to lipopolysaccharide at both e16 and e20, although TLR4 protein expression was unaffected.Conclusion: Lipopolysaccharide induces higher interleukin-6 and tumor necrosis alpha expression at e16 versus e20, suggesting that preterm placentas may have a greater placental cytokine response to lipopolysaccharide infection. Furthermore, increased phosphorylated NFκB indicates that placental cytokine induction may occur by activation of the TLR4 pathway.Keywords: cytokines, lipopolysaccharide, NFκB, placenta, rat pregnancy

  11. Curcumin Attenuates Lipopolysaccharide-Induced Hepatic Lipid Metabolism Disorder by Modification of m6 A RNA Methylation in Piglets.

    Science.gov (United States)

    Lu, Na; Li, Xingmei; Yu, Jiayao; Li, Yi; Wang, Chao; Zhang, Lili; Wang, Tian; Zhong, Xiang

    2018-01-01

    N 6 -methyladenosine (m 6 A) regulates gene expression and affects cellular metabolism. In this study, we checked whether the regulation of lipid metabolism by curcumin is associated with m 6 A RNA methylation. We investigated the effects of dietary curcumin supplementation on lipopolysaccharide (LPS)-induced liver injury and lipid metabolism disorder, and on m 6 A RNA methylation in weaned piglets. A total of 24 Duroc × Large White × Landrace piglets were randomly assigned to control, LPS, and CurL (LPS challenge and 200 mg/kg dietary curcumin) groups (n = 8/group). The results showed that curcumin reduced the increase in relative liver weight as well as the concentrations of aspartate aminotransferase and lactate dehydrogenase induced by LPS injection in the plasma and liver of weaning piglets (p < 0.05). The amounts of total cholesterol and triacylglycerols were decreased by curcumin compared to that by the LPS injection (p < 0.05). Additionally, curcumin reduced the expression of Bcl-2 and Bax mRNA, whereas it increased the p53 mRNA level in the liver (p < 0.05). Curcumin inhibited the enhancement of SREBP-1c and SCD-1 mRNA levels induced by LPS in the liver. Notably, dietary curcumin affected the expression of METTL3, METTL14, ALKBH5, FTO, and YTHDF2 mRNA, and increased the abundance of m 6 A in the liver of piglets. In conclusion, the protective effect of curcumin in LPS-induced liver injury and hepatic lipid metabolism disruption might be due to the increase in m 6 A RNA methylation. Our study provides mechanistic insights into the effect of curcumin in protecting against hepatic injury during inflammation and metabolic diseases. © 2018 AOCS.

  12. Lipopolysaccharide-induced expression of cell surface receptors and cell activation of neutrophils and monocytes in whole human blood

    Directory of Open Access Journals (Sweden)

    N.E. Gomes

    2010-09-01

    Full Text Available Lipopolysaccharide (LPS activates neutrophils and monocytes, inducing a wide array of biological activities. LPS rough (R and smooth (S forms signal through Toll-like receptor 4 (TLR4, but differ in their requirement for CD14. Since the R-form LPS can interact with TLR4 independent of CD14 and the differential expression of CD14 on neutrophils and monocytes, we used the S-form LPS from Salmonella abortus equi and the R-form LPS from Salmonella minnesota mutants to evaluate LPS-induced activation of human neutrophils and monocytes in whole blood from healthy volunteers. Expression of cell surface receptors and reactive oxygen species (ROS and nitric oxide (NO generation were measured by flow cytometry in whole blood monocytes and neutrophils. The oxidative burst was quantified by measuring the oxidation of 2',7'-dichlorofluorescein diacetate and the NO production was quantified by measuring the oxidation of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. A small increase of TLR4 expression by monocytes was observed after 6 h of LPS stimulation. Monocyte CD14 modulation by LPS was biphasic, with an initial 30% increase followed by a 40% decrease in expression after 6 h of incubation. Expression of CD11b was rapidly up-regulated, doubling after 5 min on monocytes, while down-regulation of CXCR2 was observed on neutrophils, reaching a 50% reduction after 6 h. LPS induced low production of ROS and NO. This study shows a complex LPS-induced cell surface receptor modulation on human monocytes and neutrophils, with up- and down-regulation depending on the receptor. R- and S-form LPS activate human neutrophils similarly, despite the low CD14 expression, if the stimulation occurs in whole blood.

  13. Modulation of macrophage Ia expression by lipopolysaccharide: Stem cell requirements, accessory lymphocyte involvement, and IA-inducing factor production

    International Nuclear Information System (INIS)

    Wentworth, P.A.; Ziegler, H.K.

    1989-01-01

    The mechanism of induction of murine macrophage Ia expression by lipopolysaccharide (LPS) was studied. Intraperitoneal injection of 1 microgram of LPS resulted in a 3- to 10-fold increase in the number of IA-positive peritoneal macrophages (flow cytometry and immunofluorescence) and a 6-to 16-fold increase by radioimmunoassay. The isolated lipid A moiety of LPS was a potent inducer of macrophage Ia expression. Ia induction required a functional myelopoietic system as indicated by the finding that the response to LPS was eliminated in irradiated (900 rads) mice and reinstated by reconstitution with bone marrow cells. Comparison of LPS-induced Ia expression in normal and LPS-primed mice revealed a faster secondary response to LPS. The memory response could be adoptively transferred to normal mice with nonadherent spleen cells prepared 60 days after LPS injection. Spleen cells prepared 5 days after LPS injection caused Ia induction in LPS-nonresponder mice; such induction was not observed in irradiated (900 rads) recipients. The cell responsible for this phenomenon was identified as a Thy-1+, immunoglobulin-negative nonadherent cell. The biosynthesis and expression of Ia were not increased by direct exposure of macrophages to LPS in vitro. Small amounts of LPS inhibited Ia induction by gamma interferon. LPS showed positive regulatory effects on Ia expression by delaying the loss of Ia expression on cultured macrophages and by stimulating the production of Ia-inducing factors. Supernatants from cultured spleen cells stimulated with LPS in vitro contained antiviral and Ia-inducing activity that was acid labile, indicating that the active factor is gamma interferon. We conclude that induction of Ia expression by LPS in vivo is a bone-marrow-dependent, radiation-sensitive process which involves the stimulation of a gamma interferon-producing accessory lymphocyte and a delay in Ia turnover

  14. The nonstructural protein NSs induces a variable antibody response in domestic ruminants naturally infected with Rift Valley fever virus.

    Science.gov (United States)

    Fernandez, José-Carlos; Billecocq, Agnès; Durand, Jean Paul; Cêtre-Sossah, Catherine; Cardinale, Eric; Marianneau, Philippe; Pépin, Michel; Tordo, Noël; Bouloy, Michèle

    2012-01-01

    Rift Valley fever (RVF) is an emerging zoonosis in Africa which has spread to Egypt, the Arabian Peninsula, Madagascar, and Comoros. RVF virus (RVFV) (Bunyaviridae family, Phlebovirus genus) causes a wide range of symptoms in humans, from benign fever to fatal hemorrhagic fever. Ruminants are severely affected by the disease, which leads to a high rate of mortality in young animals and to abortions and teratogenesis in pregnant females. Diagnostic tests include virus isolation and genome or antibody detection. During RVFV infection, the nucleoprotein encapsidating the tripartite RNA genome is expressed in large amounts and raises a robust antibody response, while the envelope glycoproteins elicit neutralizing antibodies which play a major role in protection. Much less is known about the antigenicity/immunogenicity of the nonstructural protein NSs, which is a major virulence factor. Here we have developed a competitive enzyme-linked immunosorbent assay (ELISA) enabling detection of low levels of NSs-specific antibodies in naturally infected or vaccinated ruminants. Detection of the NSs antibodies was validated by Western blotting. Altogether, our data showed that the NSs antibodies were detected in only 55% of animals naturally infected by RVFV, indicating that NSs does not induce a consistently high immune response. These results are discussed in light of differentiation between infected and vaccinated animals (DIVA) tests distinguishing naturally infected animals and those vaccinated with NSs-defective vaccines.

  15. Effects of intermittent fasting on age-related changes on Na,K-ATPase activity and oxidative status induced by lipopolysaccharide in rat hippocampus.

    Science.gov (United States)

    Vasconcelos, Andrea Rodrigues; Kinoshita, Paula Fernanda; Yshii, Lidia Mitiko; Marques Orellana, Ana Maria; Böhmer, Ana Elisa; de Sá Lima, Larissa; Alves, Rosana; Andreotti, Diana Zukas; Marcourakis, Tania; Scavone, Cristoforo; Kawamoto, Elisa Mitiko

    2015-05-01

    Chronic neuroinflammation is a common characteristic of neurodegenerative diseases, and lipopolysaccharide (LPS) signaling is linked to glutamate-nitric oxide-Na,K-ATPase isoforms pathway in central nervous system (CNS) and also causes neuroinflammation. Intermittent fasting (IF) induces adaptive responses in the brain that can suppress inflammation, but the age-related effect of IF on LPS modulatory influence on nitric oxide-Na,K-ATPase isoforms is unknown. This work compared the effects of LPS on the activity of α1,α2,3 Na,K-ATPase, nitric oxide synthase gene expression and/or activity, cyclic guanosine monophosphate, 3-nitrotyrosine-containing proteins, and levels of thiobarbituric acid-reactive substances in CNS of young and older rats submitted to the IF protocol for 30 days. LPS induced an age-related effect in neuronal nitric oxide synthase activity, cyclic guanosine monophosphate, and levels of thiobarbituric acid-reactive substances in rat hippocampus that was linked to changes in α2,3-Na,K-ATPase activity, 3-nitrotyrosine proteins, and inducible nitric oxide synthase gene expression. IF induced adaptative cellular stress-response signaling pathways reverting LPS effects in rat hippocampus of young and older rats. The results suggest that IF in both ages would reduce the risk for deficits on brain function and neurodegenerative disorders linked to inflammatory response in the CNS. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida.

    Science.gov (United States)

    Reitz, M; Rudolph, K; Schröder, I; Hoffmann-Hergarten, S; Hallmann, J; Sikora, R A

    2000-08-01

    Recent studies have shown that living and heat-killed cells of the rhizobacterium Rhizobium etli strain G12 induce in potato roots systemic resistance to infection by the potato cyst nematode Globodera pallida. To better understand the mechanisms of induced resistance, we focused on identifying the inducing agent. Since heat-stable bacterial surface carbohydrates such as exopolysaccharides (EPS) and lipopolysaccharides (LPS) are essential for recognition in the symbiotic interaction between Rhizobium and legumes, their role in the R. etli-potato interaction was studied. EPS and LPS were extracted from bacterial cultures, applied to potato roots, and tested for activity as an inducer of plant resistance to the plant-parasitic nematode. Whereas EPS did not affect G. pallida infection, LPS reduced nematode infection significantly in concentrations as low as 1 and 0.1 mg ml(-1). Split-root experiments, guaranteeing a spatial separation of inducing agent and challenging pathogen, showed that soil treatments of one half of the root system with LPS resulted in a highly significant (up to 37%) systemic induced reduction of G. pallida infection of potato roots in the other half. The results clearly showed that LPS of R. etli G12 act as the inducing agent of systemic resistance in potato roots.

  17. Effects of lipopolysaccharide-induced inflammation on expression of growth-associated genes by corticospinal neurons

    Directory of Open Access Journals (Sweden)

    Lieberman AR

    2006-01-01

    Full Text Available Abstract Background Inflammation around cell bodies of primary sensory neurons and retinal ganglion cells enhances expression of neuronal growth-associated genes and stimulates axonal regeneration. We have asked if inflammation would have similar effects on corticospinal neurons, which normally show little response to spinal cord injury. Lipopolysaccharide (LPS was applied onto the pial surface of the motor cortex of adult rats with or without concomitant injury of the corticospinal tract at C4. Inflammation around corticospinal tract cell bodies in the motor cortex was assessed by immunohistochemistry for OX42 (a microglia and macrophage marker. Expression of growth-associated genes c-jun, ATF3, SCG10 and GAP-43 was investigated by immunohistochemistry or in situ hybridisation. Results Application of LPS induced a gradient of inflammation through the full depth of the motor cortex and promoted c-Jun and SCG10 expression for up to 2 weeks, and GAP-43 upregulation for 3 days by many corticospinal neurons, but had very limited effects on neuronal ATF3 expression. However, many glial cells in the subcortical white matter upregulated ATF3. LPS did not promote sprouting of anterogradely labelled corticospinal axons, which did not grow into or beyond a cervical lesion site. Conclusion Inflammation produced by topical application of LPS promoted increased expression of some growth-associated genes in the cell bodies of corticospinal neurons, but was insufficient to promote regeneration of the corticospinal tract.

  18. Ebselen suppresses inflammation induced by Helicobacter pylori lipopolysaccharide via the p38 mitogen-activated protein kinase signaling pathway.

    Science.gov (United States)

    Xu, Ling; Gong, Changguo; Li, Guangming; Wei, Jue; Wang, Ting; Meng, Wenying; Shi, Min; Wang, Yugang

    2018-05-01

    Ebselen is a seleno-organic compound that has been demonstrated to have antioxidant and anti-inflammatory properties. A previous study determined that ebselen inhibits airway inflammation induced by inhalational lipopolysaccharide (LPS), however, the underlying molecular mechanism remains to be elucidated. The present study investigated the effect of ebselen on the glutathione peroxidase (GPX)‑reactive oxygen species (ROS) pathway and interleukin‑8 (IL‑8) expression induced by Helicobacter pylori LPS in gastric cancer (GC) cells. Cells were treated with 200 ng/ml H. pylori‑LPS in the presence or absence of ebselen for various durations and concentrations (µmol/l). The expression of toll‑like receptor 4 (TLR4), GPX2, GPX4, p38 mitogen‑activated protein kinase (p38 MAPK), phosphorylated‑p38 MAPK, ROS production and IL‑8 expression were detected with western blotting or ELISA. The present study revealed that TLR4 expression was upregulated; however, GPX2 and GPX4 expression was reduced following treatment with H. pylori LPS, which led to increased ROS production, subsequently altering the IL‑8 expression level in GC cells. Additionally, it was determined that ebselen prevented the reduction in GPX2/4 levels induced by H. pylori LPS, however, TLR4 expression was not affected. Ebselen may also block the expression of IL‑8 by inhibiting phosphorylation of p38 MAPK. These data suggest ebselen may inhibit ROS production triggered by H. pylori LPS treatment via GPX2/4 instead of TLR4 signaling and reduce phosphorylation of p38 MAPK, resulting in altered production of IL‑8. Ebselen may, therefore, be a potential therapeutic agent to mediate H. pylori LPS-induced cell damage.

  19. Anti-Inflammatory and Osteoprotective Effects of Cannabinoid-2 Receptor Agonist HU-308 in a Rat Model of Lipopolysaccharide-Induced Periodontitis.

    Science.gov (United States)

    Ossola, Cesar A; Surkin, Pablo N; Mohn, Claudia E; Elverdin, Juan C; Fernández-Solari, Javier

    2016-06-01

    Anti-inflammatory and immunologic properties of cannabinoids have been reported in several tissues. Expression of cannabinoid receptor Type 2 was reported in osteoblasts and osteoclasts, suggesting a key role in bone metabolism. The aim of this study is to assess the effect of treatment with cannabinoid-2 receptor agonist HU-308 in the oral health of rats subjected to lipopolysaccharide (LPS)-induced periodontitis. Twenty-four rats were distributed in four groups (six rats per group): 1) control rats; 2) sham rats; 3) rats submitted to experimental periodontitis (LPS); and 4) rats submitted to experimental periodontitis and treated with HU-308 (LPS+HU). In groups LPS and LPS+HU, periodontitis was induced by LPS (1 mg/mL) injected into the gingival tissue (GT) of maxillary and mandibular first molars and into the interdental space between the first and second molars, 3 days per week for 6 weeks. In group LPS+HU, HU-308 (500 ng/mL) was applied topically to the GT daily. Alveolar bone loss resulting from LPS-induced periodontitis was significantly attenuated with HU-308 treatment (LPS+HU), measured by macroscopic and histologic examination. Treatment also reduced gingival production of inflammatory mediators augmented in LPS-injected rats, such as: 1) inducible nitric oxide (iNOS) activity (LPS: 90.18 ± 36.51 pmol/minute/mg protein versus LPS+HU: 16.37 ± 4.73 pmol/minute/mg protein; P periodontitis on the salivary secretory response to pilocarpine. Moreover, iNOS activity and PGE2 content, which were increased by LPS-induced periodontitis in the submandibular gland, returned to control values after HU-308 treatment. This study demonstrates anti-inflammatory, osteoprotective, and prohomeostatic effects of HU-308 in oral tissues of rats with LPS-induced periodontitis.

  20. Curcumin attenuates lipopolysaccharide/d-galactosamine-induced acute liver injury by activating Nrf2 nuclear translocation and inhibiting NF-kB activation.

    Science.gov (United States)

    Xie, Yi-Lian; Chu, Jin-Guo; Jian, Xiao-Min; Dong, Jin-Zhong; Wang, Li-Ping; Li, Guo-Xiang; Yang, Nai-Bin

    2017-07-01

    Curcumin, a polyphenol in curry spice isolated from the rhizome of turmeric, has been reported to possess versatile biological properties including anti-inflammatory, anti-oxidant, antifibrotic, and anticancer activities. In this study, the hepatoprotective effect of curcumin was investigated in lipopolysaccharide (LPS)/d-galactosamine (d-GalN)-induced acute liver injury (ALI) in rats. Experimental ALI was induced with an intraperitoneal (ip) injection of sterile 0.9% sodium chloride (NaCl) solution containing 8μg LPS and 800mg/kg d-GalN. Curcumin was administered once daily starting three days prior to LPS/d-GalN treatment. Results indicated that curcumin could attenuate hepatic pathological damage, decrease serum ALT and AST levels, and reduce malondialdehyde (MDA) content in experimental ALI rats. Moreover, higher dosages of curcumin pretreatment inhibited NF-κB activation and reduced serum TNF-α and liver TNF-α levels induced by LPS/d-GalN ip injection. Furthermore, we found that curcumin up-regulated the expression of nuclear Nrf2 and Nrf2-dependent antioxidant defense genes including heme oxygenase-1 (HO-1), glutamate-cysteine ligase (GCLC), NAD(P)H dehydrogenase, and quinone (NQO-1) in a dose-dependent manner. Our results showed that curcumin protected experimental animals against LPS/d-GalN-induced ALI through activation of Nrf2 nuclear translocation and inhibition of NF-κB activation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Sirtuin 1 regulates matrix metalloproteinase-13 expression induced by Porphyromonas endodontalis lipopolysaccharide via targeting nuclear factor–κB in osteoblasts

    Science.gov (United States)

    Qu, Liu; Yu, Yaqiong; Qiu, Lihong; Yang, Di; Yan, Lu; Guo, Jiajie; Jahan, Rabita

    2017-01-01

    ABSTRACT Porphyromonas endodontalis lipopolysaccharide (P.e LPS) is an important initiating factor for periapical inflammation and bone destruction. Matrix metalloproteinase-13 (MMP-13) has been shown to participate in the formation and diffusion of periapical bone lesion in chronic apical periodontitis. Sirtuin 1 (SIRT1) is a key regulator of inflammation in mammalian cells which suppresses the release of inflammatory mediators. This study aimed to explore the role of SIRT1 in regulating MMP-13 expression induced by P.e LPS in osteoblasts. P.e LPS stimulated MMP-13 expression in MC3T3-E1 cells. Knockdown of SIRT1 reinforced the increase of MMP-13mRNA expression induced by P.e LPS. SIRT1 activator resveratrol significantly reduced the expression of MMP-13 and SIRT1 inhibitor EX-527 enhanced the expression of MMP-13. Moreover, SIRT1 activation with resveratrol inhibited acetylation of NF-κB p65 and NF-κB transcriptional activity, which were enhanced by P.e LPS. In addition, NF-κB p65 was involved in P.e LPS-induced MMP-13 expression via directly binding to the MMP-13 promoter. However, SIRT1 activation significantly interfered with this binding. These findings strongly suggest that P.e LPS induces MMP-13 expression in osteoblasts, and SIRT1 suppresses this expression of MMP-13 through targeting NF-κB p65. This provides new insights into understanding the actions of SIRT1 on anti-inflammatory and anti-bone resorption activity. PMID:28473882

  2. Sirtuin 1 regulates matrix metalloproteinase-13 expression induced by Porphyromonas endodontalis lipopolysaccharide via targeting nuclear factor-κB in osteoblasts.

    Science.gov (United States)

    Qu, Liu; Yu, Yaqiong; Qiu, Lihong; Yang, Di; Yan, Lu; Guo, Jiajie; Jahan, Rabita

    2017-01-01

    Porphyromonas endodontalis lipopolysaccharide (P.e LPS) is an important initiating factor for periapical inflammation and bone destruction. Matrix metalloproteinase-13 (MMP-13) has been shown to participate in the formation and diffusion of periapical bone lesion in chronic apical periodontitis. Sirtuin 1 (SIRT1) is a key regulator of inflammation in mammalian cells which suppresses the release of inflammatory mediators. This study aimed to explore the role of SIRT1 in regulating MMP-13 expression induced by P.e LPS in osteoblasts. P.e LPS stimulated MMP-13 expression in MC3T3-E1 cells. Knockdown of SIRT1 reinforced the increase of MMP-13mRNA expression induced by P.e LPS. SIRT1 activator resveratrol significantly reduced the expression of MMP-13 and SIRT1 inhibitor EX-527 enhanced the expression of MMP-13. Moreover, SIRT1 activation with resveratrol inhibited acetylation of NF-κB p65 and NF-κB transcriptional activity, which were enhanced by P.e LPS. In addition, NF-κB p65 was involved in P.e LPS-induced MMP-13 expression via directly binding to the MMP-13 promoter. However, SIRT1 activation significantly interfered with this binding. These findings strongly suggest that P.e LPS induces MMP-13 expression in osteoblasts, and SIRT1 suppresses this expression of MMP-13 through targeting NF-κB p65. This provides new insights into understanding the actions of SIRT1 on anti-inflammatory and anti-bone resorption activity.

  3. Multifocal choroiditis following simultaneous hepatitis A, typhoid, and yellow fever vaccination

    Directory of Open Access Journals (Sweden)

    Escott S

    2013-02-01

    Full Text Available Sarah Escott, Ahmad B Tarabishy, Frederick H DavidorfHavener Eye Institute, The Ohio State University, Columbus, OH, USAAbstract: The paper describes the first reported case of multifocal choroiditis following simultaneous hepatitis-A, typhoid, and yellow fever vaccinations. A 33-year-old male developed sudden onset of flashing lights and floaters in his right eye 3 weeks following hepatitis A, typhoid, and yellow fever vaccinations. Fundus examination and angiography confirmed the presence of multiple peripheral chorioretinal lesions. These lesions demonstrated characteristic morphologic changes over a period of 8 weeks which were consistent with a diagnosis of self-resolving multifocal choroiditis. Vaccine-induced intraocular inflammation has been described infrequently. We demonstrate the first case of self-resolving multifocal choroiditis following simultaneous administration of hepatitis A, yellow fever, and typhoid immunizations.Keywords: multifocal choroiditis, vaccination, hepatitis A, typhoid, yellow fever

  4. RGD-tagged helical rosette nanotubes aggravate acute lipopolysaccharide-induced lung inflammation

    Directory of Open Access Journals (Sweden)

    Suri SS

    2011-12-01

    Full Text Available Sarabjeet Singh Suri1, Steven Mills1, Gurpreet Kaur Aulakh1, Felaniaina Rakotondradany2, Hicham Fenniri2, Baljit Singh11Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon; 2National Institute for Nanotechnology and Department of Chemistry, Edmonton, CanadaAbstract: Rosette nanotubes (RNT are a novel class of self-assembled biocompatible nanotubes that offer a built-in strategy for engineering structure and function through covalent tagging of synthetic self-assembling modules (G∧C motif. In this report, the G∧C motif was tagged with peptide Arg-Gly-Asp-Ser-Lys (RGDSK-G∧C and amino acid Lys (K-G∧C which, upon co-assembly, generate RNTs featuring RGDSK and K on their surface in predefined molar ratios. These hybrid RNTs, referred to as Kx/RGDSKy-RNT, where x and y refer to the molar ratios of K-G∧C and RGDSK–G∧C, were designed to target neutrophil integrins. A mouse model was used to investigate the effects of intravenous Kx/RGDSKy-RNT on acute lipopolysaccharide (LPS-induced lung inflammation. Healthy male C57BL/6 mice were treated intranasally with Escherichia coli LPS 80 µg and/or intravenously with K90/RGDSK10-RNT. Here we provide the first evidence that intravenous administration of K90/RGDSK10-RNT aggravates the proinflammatory effect of LPS in the mouse. LPS and K90/RGDSK10-RNT treatment groups showed significantly increased infiltration of polymorphonuclear cells in bronchoalveolar lavage fluid at all time points compared with the saline control. The combined effect of LPS and K90/RGDSK10-RNT was more pronounced than LPS alone, as shown by a significant increase in the expression of interleukin-1ß, MCP-1, MIP-1, and KC-1 in the bronchoalveolar lavage fluid and myeloperoxidase activity in the lung tissues. We conclude that K90/RGDSK10-RNT promotes acute lung inflammation, and when used along with LPS, leads to exaggerated immune response in the lung.Keywords: RGD peptide, helical rosette

  5. [Surveillance data on typhoid fever and paratyphoid fever in 2015, China].

    Science.gov (United States)

    Liu, F F; Zhao, S L; Chen, Q; Chang, Z R; Zhang, J; Zheng, Y M; Luo, L; Ran, L; Liao, Q H

    2017-06-10

    Objective: Through analyzing the surveillance data on typhoid fever and paratyphoid fever in 2015 to understand the related epidemiological features and most possible clustering areas of high incidence. Methods: Individual data was collected from the passive surveillance program and analyzed by descriptive statistic method. Characteristics on seasonal, regional and distribution of the diseases were described. Spatial-temporal clustering characteristics were estimated, under the retrospective space-time method. Results: A total of 8 850 typhoid fever cases were reported from the surveillance system, with incidence rate as 0.65/100 000. The number of paratyphoid fever cases was 2 794, with incidence rate as 0.21/100 000. Both cases of typhoid fever and paratyphoid fever occurred all year round, with high epidemic season from May to October. Most cases involved farmers (39.68 % ), children (15.89 % ) and students (12.01 % ). Children under 5 years showed the highest incidence rate. Retrospective space-time analysis for provinces with high incidence rates would include Yunnan, Guangxi, Guizhou, Hunan and Guangdong, indicating the first and second class clusters were mainly distributed near the bordering adjacent districts and counties among the provinces. Conclusion: In 2015, the prevalence rates of typhoid fever and paratyphoid fever were low, however with regional high prevalence areas. Cross regional transmission existed among provinces with high incidence rates which might be responsible for the clusters to appear in these areas.

  6. Yellow fever

    Science.gov (United States)

    ... to thrive. Blood tests can confirm the diagnosis. Treatment There is no specific treatment for yellow fever. ... SJ, Endy TP, Rothman AL, Barrett AD. Flaviviruses (dengue, yellow fever, Japanese encephalitis, West Nile encephalitis, St. ...

  7. Curcumin Prevents Acute Neuroinflammation and Long-Term Memory Impairment Induced by Systemic Lipopolysaccharide in Mice

    Directory of Open Access Journals (Sweden)

    Vincenzo Sorrenti

    2018-03-01

    Full Text Available Systemic lipopolysaccharide (LPS induces an acute inflammatory response in the central nervous system (CNS (“neuroinflammation” characterized by altered functions of microglial cells, the major resident immune cells of the CNS, and an increased inflammatory profile that can result in long-term neuronal cell damage and severe behavioral and cognitive consequences. Curcumin, a natural compound, exerts CNS anti-inflammatory and neuroprotective functions mainly after chronic treatment. However, its effect after acute treatment has not been well investigated. In the present study, we provide evidence that 50 mg/kg of curcumin, orally administered for 2 consecutive days before a single intraperitoneal injection of a high dose of LPS (5 mg/kg in young adult mice prevents the CNS immune response. Curcumin, able to enter brain tissue in biologically relevant concentrations, reduced acute and transient microglia activation, pro-inflammatory mediator production, and the behavioral symptoms of sickness. In addition, short-term treatment with curcumin, administered at the time of LPS challenge, anticipated the recovery from memory impairments observed 1 month after the inflammatory stimulus, when mice had completely recovered from the acute neuroinflammation. Together, these results suggest that the preventive effect of curcumin in inhibiting the acute effects of neuroinflammation could be of value in reducing the long-term consequences of brain inflammation, including cognitive deficits such as memory dysfunction.

  8. Salidroside attenuates inflammatory responses by suppressing nuclear factor-κB and mitogen activated protein kinases activation in lipopolysaccharide-induced mastitis in mice.

    Science.gov (United States)

    Li, Depeng; Fu, Yunhe; Zhang, Wen; Su, Gaoli; Liu, Bo; Guo, Mengyao; Li, Fengyang; Liang, Dejie; Liu, Zhicheng; Zhang, Xichen; Cao, Yongguo; Zhang, Naisheng; Yang, Zhengtao

    2013-01-01

    Mastitis is defined as inflammation of the mammary gland in domestic dairy animals and humans. Salidroside, a major component isolated from Rhodiola rosea L., has potent anti-inflammatory properties, but whether it can be used in mastitis treatment has not yet been investigated. The aim of this study was to assess the protective effects of salidroside against lipopolysaccharide (LPS)-induced mastitis in mice and the mechanism of action. We used a mouse mastitis model in which mammary gland inflammation was induced by LPS challenge. Salidroside administered 1 h before LPS infusion significantly attenuated inflammatory cell infiltration, reduced the activity of myeloperoxidase in mammary tissue, and decreased the concentration of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 in a dose-dependent manner. Further studies revealed that salidroside down-regulated phosphorylation of LPS-induced nuclear transcription factor-kappaB (NF-κB) p65 and inhibitor of NF-κB α (IκBα) in the NF-κB signal pathway, and suppressed phosphorylation of p38, extracellular signal-regulated kinase (ERK) and c-jun NH(2)-terminal kinase (JNK) in MAPKs signal pathways. This study demonstrates that salidroside is an effective suppressor of inflammation and may be a candidate for the prophylaxis of mastitis.

  9. An inactivated cell-culture vaccine against yellow fever.

    Science.gov (United States)

    Monath, Thomas P; Fowler, Elizabeth; Johnson, Casey T; Balser, John; Morin, Merribeth J; Sisti, Maggie; Trent, Dennis W

    2011-04-07

    Yellow fever is a lethal viral hemorrhagic fever occurring in Africa and South America. A highly effective live vaccine (17D) is widely used for travelers to and residents of areas in which yellow fever is endemic, but the vaccine can cause serious adverse events, including viscerotropic disease, which is associated with a high rate of death. A safer, nonreplicating vaccine is needed. In a double-blind, placebo-controlled, dose-escalation, phase 1 study of 60 healthy subjects between 18 and 49 years of age, we investigated the safety and immunogenicity of XRX-001 purified whole-virus, β-propiolactone-inactivated yellow fever vaccine produced in Vero cell cultures and adsorbed to aluminum hydroxide (alum) adjuvant. On two visits 21 days apart, subjects received intramuscular injections of vaccine that contained 0.48 μg or 4.8 μg of antigen. Levels of neutralizing antibodies were measured at baseline and on days 21, 31, and 42. The vaccine induced the development of neutralizing antibodies in 100% of subjects receiving 4.8 μg of antigen in each injection and in 88% of subjects receiving 0.48 μg of antigen in each injection. Antibody levels increased by day 10 after the second injection, at which time levels were significantly higher with the 4.8-μg formulation than with the 0.48-μg formulation (geometric mean titer, 146 vs. 39; Pvaccine groups than in the placebo group: mild pain, tenderness, and (much less frequently) itching at the injection site. One case of urticaria was observed on day 3 after the second dose of 4.8 μg of vaccine. A two-dose regimen of the XRX-001 vaccine, containing inactivated yellow fever antigen with an alum adjuvant, induced neutralizing antibodies in a high percentage of subjects. XRX-001 has the potential to be a safer alternative to live attenuated 17D vaccine. (Funded by Xcellerex; ClinicalTrials.gov number, NCT00995865.).

  10. Typhoid fever

    Science.gov (United States)

    Typhoid fever is an infection that causes diarrhea and a rash . It is most commonly caused due to ... in their stools for years, spreading the disease. Typhoid fever is common in developing countries. Most cases in ...

  11. Short communication: Camel milk ameliorates inflammatory responses and oxidative stress and downregulates mitogen-activated protein kinase signaling pathways in lipopolysaccharide-induced acute respiratory distress syndrome in rats.

    Science.gov (United States)

    Zhu, Wei-Wei; Kong, Gui-Qing; Ma, Ming-Ming; Li, Yan; Huang, Xiao; Wang, Li-Peng; Peng, Zhen-Yi; Zhang, Xiao-Hua; Liu, Xiang-Yong; Wang, Xiao-Zhi

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is a complex syndrome disorder with high mortality rate. Camel milk (CM) contains antiinflammatory and antioxidant properties and protects against numerous diseases. This study aimed to demonstrate the function of CM in lipopolysaccharide (LPS)-induced ARDS in rats. Camel milk reduced the lung wet:dry weight ratio and significantly reduced LPS-induced increases in neutrophil infiltration, interstitial and intra-alveolar edema, thickness of the alveolar wall, and lung injury scores of lung tissues. It also had antiinflammatory and antioxidant effects on LPS-induced ARDS. After LPS stimulation, the levels of proinflammatory cytokines (tumor necrosis factor-α, IL-10, and IL-1β) in serum and oxidative stress markers (malondialdehyde, myeloperoxidase, and total antioxidant capacity) in lung tissue were notably attenuated by CM. Camel milk also downregulated mitogen-activated protein kinase signaling pathways. Given these results, CM is a potential complementary food for ARDS treatment. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Fever in Infants and Children

    Science.gov (United States)

    ... or higher that is unresponsive to fever-reducing medicine?YesNoDoes your child have a low-grade fever (up to 101°) ... fever, give your child a nonaspirin fever-reducing medicine. Call your child’s doctor after 24 hours if the fever continues ...

  13. Vagotomy attenuates brain cytokines and sleep induced by peripherally administered tumor necrosis factor-α and lipopolysaccharide in mice.

    Science.gov (United States)

    Zielinski, Mark R; Dunbrasky, Danielle L; Taishi, Ping; Souza, Gianne; Krueger, James M

    2013-08-01

    Systemic tumor necrosis factor-α (TNF-α) is linked to sleep and sleep altering pathologies in humans. Evidence from animals indicates that systemic and brain TNF-α have a role in regulating sleep. In animals, TNF-α or lipopolysaccharide (LPS) enhance brain pro-inflammatory cytokine expression and sleep after central or peripheral administration. Vagotomy blocks enhanced sleep induced by systemic TNF-α and LPS in rats, suggesting that vagal afferent stimulation by TNF-α enhances pro-inflammatory cytokines in sleep-related brain areas. However, the effects of systemic TNF-α on brain cytokine expression and mouse sleep remain unknown. We investigated the role of vagal afferents on brain cytokines and sleep after systemically applied TNF-α or LPS in mice. Spontaneous sleep was similar in vagotomized and sham-operated controls. Vagotomy attenuated TNF-α- and LPS-enhanced non-rapid eye movement sleep (NREMS); these effects were more evident after lower doses of these substances. Vagotomy did not affect rapid eye movement sleep responses to these substances. NREMS electroencephalogram delta power (0.5-4 Hz range) was suppressed after peripheral TNF-α or LPS injections, although vagotomy did not affect these responses. Compared to sham-operated controls, vagotomy did not affect liver cytokines. However, vagotomy attenuated interleukin-1 beta (IL-1β) and TNF-α mRNA brain levels after TNF-α, but not after LPS, compared to the sham-operated controls. We conclude that vagal afferents mediate peripheral TNF-α-induced brain TNF-α and IL-1β mRNA expressions to affect sleep. We also conclude that vagal afferents alter sleep induced by peripheral pro-inflammatory stimuli in mice similar to those occurring in other species.

  14. Corn Silk Extract and Its Bioactive Peptide Ameliorated Lipopolysaccharide-Induced Inflammation in Mice via the Nuclear Factor-κB Signaling Pathway.

    Science.gov (United States)

    Ho, Tin-Yun; Li, Chia-Cheng; Lo, Hsin-Yi; Chen, Feng-Yuan; Hsiang, Chien-Yun

    2017-02-01

    Bioactive peptides derived from foods have shown beneficial anti-inflammatory potential. Inhibitory κB kinase-β (IKKβ) plays a crucial role in the activation of nuclear factor-κB (NF-κB), a transcription factor involved in inflammation. Here we applied proteomic and bioinformatics approaches to identify anti-inflammatory peptides that target IKKβ from corn silk. Corn silk extract significantly suppressed lipopolysaccharide (LPS)-induced NF-κB activities [(1.7 ± 0.2)-fold vs (3.0 ± 0.6)-fold, p corn silk also suppressed LPS-induced NF-κB activities [(1.1 ± 0.3)-fold vs 3.3 ± 0.5 fold, p corn silk extract and trypsin hydrolysate significantly inhibited LPS-induced interleukin-1β (IL-1β) production by 58.3 ± 4.5 and 55.1 ± 7.4%, respectively. A novel peptide, FK2, docked into the ATP-binding pocket of IKKβ, was further identified from trypsin hydrolysis of corn silk. FK2 inhibited IKKβ activities, IκB phosphorylation, and subsequent NF-κB activation [(2.3 ± 0.4)-fold vs (5.5 ± 0.4)-fold, p corn silk displayed anti-inflammatory abilities. In addition, we first identified an anti-inflammatory peptide FK2 from corn silk. Moreover, the anti-inflammatory effect of FK2 might be through IKKβ-NF-κB signaling pathways.

  15. Bee Venom Inhibits Porphyromonas gingivalis Lipopolysaccharides-Induced Pro-Inflammatory Cytokines through Suppression of NF-κB and AP-1 Signaling Pathways.

    Science.gov (United States)

    Kim, Woon-Hae; An, Hyun-Jin; Kim, Jung-Yeon; Gwon, Mi-Gyeong; Gu, Hyemin; Park, Jae-Bok; Sung, Woo Jung; Kwon, Yong-Chul; Park, Kyung-Duck; Han, Sang Mi; Park, Kwan-Kyu

    2016-11-10

    Periodontitis is a chronic inflammatory disease that leads to destruction of tooth supporting tissues. Porphyromonas gingivalis ( P. gingivalis ), especially its lipopolysaccharides (LPS), is one of major pathogens that cause periodontitis. Bee venom (BV) has been widely used as a traditional medicine for various diseases. Previous studies have demonstrated the anti-inflammatory, anti-bacterial effects of BV. However, a direct role and cellular mechanism of BV on periodontitis-like human keratinocytes have not been explored. Therefore, we investigated the anti-inflammatory mechanism of BV against P. gingivalis LPS (PgLPS)-induced HaCaT human keratinocyte cell line. The anti-inflammatory effect of BV was demonstrated by various molecular biological methods. The results showed that PgLPS increased the expression of Toll-like receptor (TLR)-4 and pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, and interferon (IFN)-γ. In addition, PgLPS induced activation of the signaling pathways of inflammatory cytokines-related transcription factors, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein 1 (AP-1). BV effectively inhibited those pro-inflammatory cytokines through suppression of NF-κB and AP-1 signaling pathways. These results suggest that administration of BV attenuates PgLPS-induced inflammatory responses. Furthermore, BV may be a useful treatment to anti-inflammatory therapy for periodontitis.

  16. Anamnestic immune response to dengue and decreased severity of yellow fever

    Directory of Open Access Journals (Sweden)

    Ricardo O Izurieta

    2009-01-01

    Full Text Available A protective immunity against yellow fever, from cross-reactive dengue antibodies, has been hypothesized as an explanation for the absence of yellow fever in Southern Asia where dengue immunity is almost universal. This study evaluates the association between protective immunity from cross-reactive dengue antibodies with yellow fever infection and severity of the disease. The study population consisted of military personnel of a jungle garrison and its detachments located in the Ecuadorian Amazonian rainforest. The cross-sectional study employed interviews as well as seroepidemiological methods. Humoral immune response to yellow fever, Mayaro, Venezuelan equine encephalitis, Oropouche, and dengue 2 infections was assessed by evaluating IgM and IgG specific antibodies. Log-linear regression analysis was used to evaluate age and presence of antibodies, against dengue type 2 virus, as predictors of yellow fever infection or severe disease. During the seroepidemiological survey, presence of dengue antibodies among yellow fever cases were observed in 77.3% cases from the coastal region, where dengue is endemic, 14.3% cases from the Amazon and 16.7 % cases from the Andean region. Dengue cross-reactive antibodies were not significantly associated with yellow fever infection but significantly associated with severity of the disease. The findings of this study suggest that previous exposure to dengue infection may have induced an anamnestic immune response that did not prevent yellow fever infection but greatly reduced the severity of the disease.

  17. Lipopolysaccharide induces the migration of human dental pulp cells by up-regulating miR-146a.

    Science.gov (United States)

    Wang, Min-Ching; Hung, Pei-Shih; Tu, Hsi-Feng; Shih, Wen-Yu; Li, Wan-Chun; Chang, Kuo-Wei

    2012-12-01

    MicroRNAs are small noncoding RNAs that play crucial roles in regulating normal and pathologic functions. Bacterial lipopolysaccharide (LPS) is one of the key regulators of pulpal pathogenesis. This study investigated how LPS regulates microRNA expression and affects the phenotype of human dental pulp cells (DPCs). Primary DPCs were established and immortalized to achieve immortalized DPCs (I-DPCs). DPCs and I-DPCs were treated with LPS and examined to identify changes in microRNA expression, cell proliferation, and cell migration. Quantitative reverse-transcriptase polymerase chain reaction was used to detect changes in gene expression. Exogenous miR-146a expression was performed transfection with pre-mir-146a mimic. Knockdown of interleukin receptor-associated kinase (IRAK1) and tumor necrosis factor receptor-associated factor 6 (TRAF6) expression was performed by small interference oligonucleotide transfection. Western blot analysis was used to detect changes in the expression of the IRAK1 and TRAF6 proteins. The differentiation of DPCs was induced by osteogenic medium. I-DPCs had a higher level of human telomerase reverse transcriptase gene than the parental DPCs. Up-regulation of miR-146a expression and an increase in migration was induced by LPS treatment of DPCs and I-DPCs. Exogenous miR-146a expression increased the migration of DPCs and I-DPCs and down-regulated the expression of IRAK1 and TRAF6. Knockdown of IRAK1 and/or TRAF6 increased the migration of DPCs. The results suggested that LPS is able to increase the migration of DPCs by modulating the miR-146a-TRAF6/IRAK1 regulatory cascade. Copyright © 2012 American Association of Endodontists. All rights reserved.

  18. IL-12 Inhibits Lipopolysaccharide Stimulated Osteoclastogenesis in Mice

    Directory of Open Access Journals (Sweden)

    Masako Yoshimatsu

    2015-01-01

    Full Text Available Lipopolysaccharide (LPS is related to osteoclastogenesis in osteolytic diseases. Interleukin- (IL- 12 is an inflammatory cytokine that plays a critical role in host defense. In this study, we investigated the effects of IL-12 on LPS-induced osteoclastogenesis. LPS was administered with or without IL-12 into the supracalvariae of mice, and alterations in the calvarial suture were evaluated histochemically. The number of osteoclasts in the calvarial suture and the mRNA level of tartrate-resistant acid phosphatase (TRAP, an osteoclast marker, were lower in mice administered LPS with IL-12 than in mice administered LPS alone. The serum level of tartrate-resistant acid phosphatase 5b (TRACP 5b, a bone resorption marker, was also lower in mice administered LPS with IL-12 than in mice administered LPS alone. These results revealed that IL-12 might inhibit LPS-induced osteoclastogenesis and bone resorption. In TdT-mediated dUTP-biotin nick end-labeling (TUNEL assays, apoptotic changes in cells were recognized in the calvarial suture in mice administered LPS with IL-12. Furthermore, the mRNA levels of both Fas and FasL were increased in mice administered LPS with IL-12. Taken together, the findings demonstrate that LPS-induced osteoclastogenesis is inhibited by IL-12 and that this might arise through apoptotic changes in osteoclastogenesis-related cells induced by Fas/FasL interactions.

  19. MyD88 But Not TRIF Is Essential for Osteoclastogenesis Induced by Lipopolysaccharide, Diacyl Lipopeptide, and IL-1α

    Science.gov (United States)

    Sato, Nobuaki; Takahashi, Naoyuki; Suda, Koji; Nakamura, Midori; Yamaki, Mariko; Ninomiya, Tadashi; Kobayashi, Yasuhiro; Takada, Haruhiko; Shibata, Kenichiro; Yamamoto, Masahiro; Takeda, Kiyoshi; Akira, Shizuo; Noguchi, Toshihide; Udagawa, Nobuyuki

    2004-01-01

    Myeloid differentiation factor 88 (MyD88) plays essential roles in the signaling of the Toll/interleukin (IL)-1 receptor family. Toll–IL-1 receptor domain-containing adaptor inducing interferon-β (TRIF)-mediated signals are involved in lipopolysaccharide (LPS)-induced MyD88-independent pathways. Using MyD88-deficient (MyD88−/−) mice and TRIF-deficient (TRIF−/−) mice, we examined roles of MyD88 and TRIF in osteoclast differentiation and function. LPS, diacyl lipopeptide, and IL-1α stimulated osteoclastogenesis in cocultures of osteoblasts and hemopoietic cells obtained from TRIF−/− mice, but not MyD88−/− mice. These factors stimulated receptor activator of nuclear factor-κB ligand mRNA expression in TRIF−/− osteoblasts, but not MyD88−/− osteoblasts. LPS stimulated IL-6 production in TRIF−/− osteoblasts, but not TRIF−/− macrophages. LPS and IL-1α enhanced the survival of TRIF−/− osteoclasts, but not MyD88−/− osteoclasts. Diacyl lipopeptide did not support the survival of osteoclasts because of the lack of Toll-like receptor (TLR)6 in osteoclasts. Macrophages expressed both TRIF and TRIF-related adaptor molecule (TRAM) mRNA, whereas osteoblasts and osteoclasts expressed only TRIF mRNA. Bone histomorphometry showed that MyD88−/− mice exhibited osteopenia with reduced bone resorption and formation. These results suggest that the MyD88-mediated signal is essential for the osteoclastogenesis and function induced by IL-1 and TLR ligands, and that MyD88 is physiologically involved in bone turnover. PMID:15353553

  20. Dengue fever

    African Journals Online (AJOL)

    symptoms and research has been limited to studies ... severity and problems with vaccination (4). History of ... Americas in 1970s reduced the spread of dengue fever. After this .... Reiter P. Yellow fever and dengue: a threat to Europe? 9.

  1. Effect of anti-podoplanin antibody administration during lipopolysaccharide-induced lung injury in mice.

    Science.gov (United States)

    Lax, Sian; Rayes, Julie; Thickett, David R; Watson, Steve P

    2017-01-01

    Acute respiratory distress syndrome (ARDS) is a devastating pulmonary condition in the critically ill patient. A therapeutic intervention is yet to be found that can prevent progression to ARDS. We recently demonstrated that the interaction between podoplanin expressed on inflammatory alveolar macrophages (iAMs) and its endogenous ligand, platelet C-type lectin-like 2 (CLEC-2), protects against exaggerated lung inflammation during a mouse model of ARDS. In this study, we aim to investigate the therapeutic use of a crosslinking/activating anti-podoplanin antibody (α-PDPN, clone 8.1.1) during lipopolysaccharide (LPS)-induced lung inflammation in mice. Intravenous administration of α-PDPN was performed 6 hours after intratracheal LPS in wildtype, C57Bl/6 mice. Lung function decline was measured by pulse oximetry as well as markers of local inflammation including bronchoalveolar lavage neutrophilia and cytokine/chemokine expression. In parallel, alveolar macrophages were isolated and cultured in vitro from haematopoietic-specific podoplanin-deficient mice (Pdpn fl/fl VAV1cre + ) and floxed-only controls treated with or without LPS in the presence or absence of α-PDPN. Lung function decline as well as alveolar neutrophil recruitment was significantly decreased in mice treated with the crosslinking/activating α-PDPN in vivo. Furthermore, we demonstrate that, in vitro, activation of podoplanin on iAMs regulates their secretion of proinflammatory cytokines and chemokines. These data confirm the importance of the CLEC-2-podoplanin pathway during intratracheal (IT)-LPS and demonstrate the beneficial effect of targeting podoplanin during IT-LPS in mice possibly via modulation of local cytokine/chemokine expression. Moreover, these data suggest that podoplanin-targeted therapies may have a beneficial effect in patients at risk of developing ARDS.

  2. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-κB activation

    Science.gov (United States)

    Tanaka, S; Nishiumi, S; Nishida, M; Mizushina, Y; Kobayashi, K; Masuda, A; Fujita, T; Morita, Y; Mizuno, S; Kutsumi, H; Azuma, T; Yoshida, M

    2010-01-01

    Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-α-evoked translocation of nuclear factor (NF)-κB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-κB and production of TNF-α in mouse macrophage RAW264·7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-α level and inhibited the LPS-evoked nuclear translocation of NF-κB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS. PMID:20030669

  3. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-kappaB activation.

    Science.gov (United States)

    Tanaka, S; Nishiumi, S; Nishida, M; Mizushina, Y; Kobayashi, K; Masuda, A; Fujita, T; Morita, Y; Mizuno, S; Kutsumi, H; Azuma, T; Yoshida, M

    2010-05-01

    Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-alpha-evoked translocation of nuclear factor (NF)-kappaB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-kappaB and production of TNF-alpha in mouse macrophage RAW264.7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-alpha level and inhibited the LPS-evoked nuclear translocation of NF-kappaB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS.

  4. Single-wall carbon nanohorns inhibited activation of microglia induced by lipopolysaccharide through blocking of Sirt3

    Science.gov (United States)

    Li, Lihong; Zhang, Jinqian; Yang, Yang; Wang, Qiang; Gao, Li; Yang, Yanlong; Chang, Tao; Zhang, Xingye; Xiang, Guoan; Cao, Yongmei; Shi, Zujin; Zhao, Ming; Gao, Guodong

    2013-02-01

    Single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate in cytotoxic levels within organs of various animal models and cell types, which emerge as a wide range of promising biomedical imaging. Septic encephalopathy (SE) is an early sign of sepsis and associated with an increased rate of morbidity and mortality. Microglia activation plays an important role in neuroinflammation, which contributes to neuronal damage. Inhibition of microglia activation may have therapeutic benefits, which can alleviate the progression of neurodegeneration. Therefore, we investigated the functional changes of mice microglia cell lines pre-treated with or without lipopolysaccharide (LPS) induced by SWNHs. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of microglia cell lines in mice (N9 and BV2) pre-treated with or without LPS had been performed. Our results indicate that the particle diameter of SWNHs in water is between 342 to 712 nm. The images in scanning electron microscope showed that SWNHs on polystyrene surface are individual particles. LPS induced activation of mice microglia, promoted its growth and proliferation, and inhibited its apoptosis. SWNHs inhibited proliferation, delayed mitotic entry, and promoted apoptosis of mice microglia cells. The effects followed gradually increasing cultured time and concentrations of SWNHs, especially in cells pre-treated with LPS. SWNHs induced a significantly increase in G1 phase and inhibition of S phase of mice microglia cells in a dose-manner dependent of SWNHs, especially in cells pre-treated with LPS. The transmission electron microscope images showed that individual spherical SWNH particles smaller than 100 nm in diameters were localized inside lysosomes of mice microglia cells. SWNHs inhibited mitotic entry, growth and proliferation of mice microglia cells, and promoted its apoptosis, especially in cells pre-treated with LPS. SWNHs inhibited expression

  5. Extract of corn silk (stigma of Zea mays) inhibits the tumour necrosis factor-alpha- and bacterial lipopolysaccharide-induced cell adhesion and ICAM-1 expression.

    Science.gov (United States)

    Habtemariam, S

    1998-05-01

    Treatment of human endothelial cells with cytokines such as tumour necrosis factor-alpha (TNF) or E. coli lipopolysaccharide (LPS) induces the expression of several adhesion molecules and enhances leukocyte adhesion to endothelial cell surface. Interfering with this leukocyte adhesion or adhesion molecules upregulation is an important therapeutic target for the treatment of bacterial sepsis and various inflammatory diseases. In the course of screening marketed European anti-inflammatory herbal drugs for TNF antagonistic activity, a crude ethanolic extract of corn silk (stigma of Zea mays) exhibited significant activity. The extract at concentrations of 9-250 micrograms/ml effectively inhibited the TNF- and LPS-induced adhesiveness of EAhy 926 endothelial cells to monocytic U937 cells. Similar concentration ranges of corn silk extract did also block the TNF and LPS but not the phorbol 12-myristate 13-acetate-induced ICAM-1 expression on EAhy 926 endothelial cell surface. The extract did not alter the production of TNF by LPS-activated macrophages and failed to inhibit the cytotoxic activity of TNF. It is concluded that corn silk possesses important therapeutic potential for TNF- and LPS-mediated leukocyte adhesion and trafficking.

  6. Pyrogenicity of interferon and its inducer in rabbits.

    Science.gov (United States)

    Won, S J; Lin, M T

    1988-03-01

    The effects of intracerebral administration of interferon (IFN) or its inducer polyriboinosinic acid-polyribocytidylic acid (poly I:C) on thermoregulatory responses were assessed in conscious rabbits. Administration of IFN (10(2)-10(6) IU) or poly I:C (0.012-12 micrograms) into the preoptic anterior hypothalamus or the third cerebral ventricle caused a dose-dependent fever in rabbits at three ambient temperatures (Ta) tested. In the cold (Ta = 8 degrees C), the fever was due to increased metabolism, whereas in the heat (Ta = 32 degrees C) the fever was due to a reduction in respiratory evaporative heat loss and ear skin blood flow. At the moderate environmental temperature (Ta = 22 degrees C), the fever was due to increased metabolism and cutaneous vasoconstriction. Compared with the febrile responses induced by cerebroventricular route injection of IFN or poly I:C, the hypothalamic route of injection required a much lower dose of IFN or poly I:C to produce a similar fever. Furthermore, the fever induced by intrahypothalamic injection of IFN or poly I:C was reduced by pretreatment of animals with a systemic dose of indomethacin (an inhibitor of all prostaglandins formation) or cycloheximide (an inhibitor of protein synthesis). The data indicate that IFN or its inducer may act through the endogenous release of a prostaglandin or a protein factor of an unknown chemical nature in the preoptic anterior hypothalamic region to induce fever in rabbits. The fever induced by IFN or its inducer is brought about by a decrease in heat loss and/or an increase in heat production in rabbits.

  7. Fever with Rashes.

    Science.gov (United States)

    Soman, Letha

    2018-07-01

    Fever with rashes is one of the commonest clinical problems a general practitioner or pediatrician has to face in day-to-day clinical practice. It can be a mild viral illness or a life-threatening illness like meningococcemia or Dengue hemorrhagic fever or it can be one with a lifelong consequence like Kawasaki disease. It is very important to arrive at a clinical diagnosis as early as possible with the minimum investigational facilities. The common causes associated with fever and rashes are infections, viral followed by other infections. There can be so many non-infectious causes also for fever and rashes like auto immune diseases, drug allergies etc. The type of rashes, their appearance in relation to the fever and pattern of spread to different parts of body and the disappearance, all will help in making a diagnosis. Often the diagnosis is clinical. In certain situations laboratory work up becomes essential.

  8. Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces IL-1beta, TNF-alpha and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS.

    Science.gov (United States)

    Diya Zhang; Lili Chen; Shenglai Li; Zhiyuan Gu; Jie Yan

    2008-04-01

    Lipopolysaccharide (LPS) derived from the periodontal pathogen Porphyromonas gingivalis has been shown to differ from enterobacterial LPS in structure and function; therefore, the Toll-like receptors (TLRs) and the intracellular inflammatory signaling pathways are accordingly different. To elucidate the signal transduction pathway of P. gingivalis, LPS-induced pro-inflammatory cytokine production in the human monocytic cell line THP-1 was measured by ELISA, and the TLRs were determined by the blocking test using anti-TLRs antibodies. In addition, specific inhibitors as well as Phospho-ELISA kits were used to analyze the intracellular signaling pathways. Escherichia coli LPS was used as the control. In this study, P. gingivalis LPS showed the ability to induce cytokine production in THP-1 cells and its induction was significantly (P THP-1 cells, and that the TLR2-JNK pathway might play a significant role in P. gingivalis LPS-induced chronic inflammatory periodontal disease.

  9. Rocky Mountain spotted fever

    Science.gov (United States)

    ... spotted fever on the foot Rocky Mountain spotted fever, petechial rash Antibodies Deer and dog tick References McElligott SC, Kihiczak GG, Schwartz RA. Rocky Mountain spotted fever and other rickettsial infections. In: Lebwohl MG, Heymann ...

  10. Characterization of Rift Valley fever virus MP-12 strain encoding NSs of Punta Toro virus or sandfly fever Sicilian virus.

    Science.gov (United States)

    Lihoradova, Olga A; Indran, Sabarish V; Kalveram, Birte; Lokugamage, Nandadeva; Head, Jennifer A; Gong, Bin; Tigabu, Bersabeh; Juelich, Terry L; Freiberg, Alexander N; Ikegami, Tetsuro

    2013-01-01

    Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) is a mosquito-borne zoonotic pathogen which can cause hemorrhagic fever, neurological disorders or blindness in humans, and a high rate of abortion in ruminants. MP-12 strain, a live-attenuated candidate vaccine, is attenuated in the M- and L-segments, but the S-segment retains the virulent phenotype. MP-12 was manufactured as an Investigational New Drug vaccine by using MRC-5 cells and encodes a functional NSs gene, the major virulence factor of RVFV which 1) induces a shutoff of the host transcription, 2) inhibits interferon (IFN)-β promoter activation, and 3) promotes the degradation of dsRNA-dependent protein kinase (PKR). MP-12 lacks a marker for differentiation of infected from vaccinated animals (DIVA). Although MP-12 lacking NSs works for DIVA, it does not replicate efficiently in type-I IFN-competent MRC-5 cells, while the use of type-I IFN-incompetent cells may negatively affect its genetic stability. To generate modified MP-12 vaccine candidates encoding a DIVA marker, while still replicating efficiently in MRC-5 cells, we generated recombinant MP-12 encoding Punta Toro virus Adames strain NSs (rMP12-PTNSs) or Sandfly fever Sicilian virus NSs (rMP12-SFSNSs) in place of MP-12 NSs. We have demonstrated that those recombinant MP-12 viruses inhibit IFN-β mRNA synthesis, yet do not promote the degradation of PKR. The rMP12-PTNSs, but not rMP12-SFSNSs, replicated more efficiently than recombinant MP-12 lacking NSs in MRC-5 cells. Mice vaccinated with rMP12-PTNSs or rMP12-SFSNSs induced neutralizing antibodies at a level equivalent to those vaccinated with MP-12, and were efficiently protected from wild-type RVFV challenge. The rMP12-PTNSs and rMP12-SFSNSs did not induce antibodies cross-reactive to anti-RVFV NSs antibody and are therefore applicable to DIVA. Thus, rMP12-PTNSs is highly efficacious, replicates efficiently in MRC-5 cells, and encodes a DIVA marker, all of which are

  11. Curcumin Protects against 1-Methyl-4-phenylpyridinium Ion- and Lipopolysaccharide-Induced Cytotoxicities in the Mouse Mesencephalic Astrocyte via Inhibiting the Cytochrome P450 2E1

    Directory of Open Access Journals (Sweden)

    Hai-Yan Gui

    2013-01-01

    Full Text Available Curcumin is extracted from the rhizomes of the ginger family plant Curcuma longa L., which has a good protection for liver, kidney, and immune system. However, there is little information about its contribution in protection of astrocytes recently. The present study was undertaken to elucidate the protective effect of curcumin, an herbal antioxidant, on 1-methyl-4-phenylpyridinium ion- (MPP+- and lipopolysaccharide- (LPS- induced cytotoxicities, as well as the underlying mechanisms by using primary mouse mesencephalic astrocytes. The results showed that curcumin protected the mesencephalic astrocytes from MPP+- and LPS-induced toxicities along with reducing reactive oxygen species (P<0.05 and maleic dialdehyde (P<0.05 sufficiently. Moreover, curcumin significantly inhibited the cytochrome P450 2E1 (CYP2E1 expression (P<0.01 at mRNA level, P<0.05 at protein level and its activity (P<0.05 sufficiently induced by MPP+ and LPS in the mouse mesencephalic astrocytes. And curcumin as well as diallyl sulphide, a CYP2E1 positive inhibitor, ameliorated MPP+- and LPS-induced mouse mesencephalic astrocytes damage. Accordingly, curcumin protects against MPP+- and LPS-induced cytotoxicities in the mouse mesencephalic astrocyte via inhibiting the CYP2E1 expression and activity.

  12. Bioactive Components from Qingwen Baidu Decoction against LPS-Induced Acute Lung Injury in Rats

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2017-04-01

    Full Text Available Qingwen Baidu Decoction (QBD is an extraordinarily “cold” formula. It was traditionally used to cure epidemic hemorrhagic fever, intestinal typhoid fever, influenza, sepsis and so on. The purpose of this study was to discover relationships between the change of the constituents in different extracts of QBD and the pharmacological effect in a rat model of acute lung injury (ALI induced by lipopolysaccharide (LPS. The study aimed to discover the changes in constituents of different QBD extracts and the pharmacological effects on acute lung injury (ALI induced by LPS. The results demonstrated that high dose and middle dose of QBD had significantly potent anti-inflammatory effects and reduced pulmonary edema caused by ALI in rats (p < 0.05. To explore the underlying constituents of QBD, we assessed its influence of six different QBD extracts on ALI and analyzed the different constituents in the corresponding HPLC chromatograms by a Principal Component Analysis (PCA method. The results showed that the pharmacological effect of QBD was related to the polarity of its extracts, and the medium polarity extracts E2 and E5 in particular displayed much better protective effects against ALI than other groups. Moreover, HPLC-DAD-ESI-MSn and PCA analysis showed that verbascoside and angoroside C played a key role in reducing pulmonary edema. In addition, the current study revealed that ethyl gallate, pentagalloylglucose, galloyl paeoniflorin, mudanpioside C and harpagoside can treat ALI mainly by reducing the total cells and infiltration of activated polymorphonuclear leukocytes (PMNs.

  13. Anti-lipopolysaccharide toxin therapy for whole body X-irradiation overdose

    Energy Technology Data Exchange (ETDEWEB)

    Gaffin, S.L.; Wells, M.; Jordan, J.P.

    1985-09-01

    Death in humans from ionising radiation overexposure in the 3-8 Gy (300-800 rad) range is in part due to the toxaemia caused by the entry of gram-negative bacteria and/or their lipopolysaccharide toxin (LPS) into the blood circulation through the walls of partially denuded gut. Anti-LPS hyperimmune equine plasma was evaluated for its ability to lower irradiation-induced lethality. Mice were irradiated with 6.3 Gy (630 rad) and six days later received equine Anti-LPS hyperimmune plasma, control plasma or saline. Mortalities in the three groups were 58%, 92% and 79% (p < 0.01) respectively. Thus Anti-LPS may prove useful as an adjunct to conventional therapy in treating radiation sickness.

  14. Anti-lipopolysaccharide toxin therapy for whole body X-irradiation overdose

    International Nuclear Information System (INIS)

    Gaffin, S.L.; Wells, M.; Jordan, J.P.

    1985-01-01

    Death in humans from ionising radiation overexposure in the 3-8 Gy (300-800 rad) range is in part due to the toxaemia caused by the entry of gram-negative bacteria and/or their lipopolysaccharide toxin (LPS) into the blood circulation through the walls of partially denuded gut. Anti-LPS hyperimmune equine plasma was evaluated for its ability to lower irradiation-induced lethality. Mice were irradiated with 6.3 Gy (630 rad) and six days later received equine Anti-LPS hyperimmune plasma, control plasma or saline. Mortalities in the three groups were 58%, 92% and 79% (p<0.01) respectively. Thus Anti-LPS may prove useful as an adjunct to conventional therapy in treating radiation sickness. (author)

  15. Lipopolysaccharides of the cyanobacterium Microcystis aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Raziuddin, S.; Siegelman, H.W.; Tornabene, T.G.

    1983-01-01

    Lipopolysaccharides (LPS) of two isolates of Microcystis aeruginosa were extracted with phenol/water and purified. Cesium chloride gradient ultracentrifugation of these preparations yielded only one fraction. The LPS contained significant amounts of 3-deoxy-D-manno-octulosonic acid, glucose, 3-deoxy sugars, glucosamine, fatty acids, fatty acid esters, hexoses, and phosphate. Heptose, a characteristic sugar component of the polysaccharide moiety of LPS of most gram-negative bacteria was absent. Lipopolysaccharides and lipid A hydrolysate of LPS preparations were active in mouse lethality and Limulus lysate gelation. The lipid A moiety was slightly less active in toxicity and Limulus lysate gelation assay than the intact LPS. The LPS and lipid A moiety of the two isolates of M. aeruginosa were less active in toxicity in mice and Limulus test than LPS of Salmonella abortus equi. 37 references, 1 figure, 3 tables.

  16. The influence of different fever definitions on diagnostics and treatment after diagnosis of fever in chemotherapy-induced neutropenia in children with cancer.

    Directory of Open Access Journals (Sweden)

    Stéphanie Wagner

    Full Text Available There is no evidence-based definition of the temperature limit defining fever (TLDF in children with neutropenia. Lowering the TLDF is known to increase the number of episodes of fever in neutropenia (FN. This study aimed to investigate the influence of a lower versus standard TLDF on diagnostics and therapy.In a single pediatric cancer center using a high standard TLDF (39°C tympanic-temperature patients were observed prospectively (NCT01683370. The effect of applying lower TLDFs (range 37.5°C to 38.9°C versus 39.0°C on these measures was simulated in silicon.In reality, 45 FN episodes were diagnosed. Of 3391 temperatures measured, 193 were ≥39.0°C, and 937 ≥38.0°C. For persisting fever ≥24 hours, additional blood cultures were taken in 31 (69% episodes in reality. This number decreased to 22 (49% when applying 39.0°C, and increased to 33 for 38.0°C (73%; plus 11 episodes; plus 24%. For persisting fever ≥48 hours, i.v.-antibiotics were escalated in 25 (56% episodes. This number decreased to 15 (33% when applying 39.0°C, and increased to 26 for 38.0°C (58%; plus 11 episodes; plus 24%. For persisting fever ≥120 hours, i.v.-antifungals were added in 4 (9% episodes. This number increased to 6 (13% by virtually applying 39.0°C, and to 11 for 38.0°C (24%; plus 5 episodes; plus 11%. The median length of stay was 5.7 days (range, 0.8 to 43.4. In 43 episodes with hospital discharge beyond 24 hours, applying 38.0°C led to discharge delay by ≥12 hours in 24 episodes (56%; 95% CI, 40 to 71, with a median delay of 13 hours, and a cumulative delay of 68 days.Applying a low versus standard TLDF led to relevant increases of diagnostics, antimicrobial therapy, and length of stay. The differences between management in reality versus simply applying 39.0° as TLDF reflect the important impact of clinical assessment.

  17. The influence of different fever definitions on diagnostics and treatment after diagnosis of fever in chemotherapy-induced neutropenia in children with cancer.

    Science.gov (United States)

    Wagner, Stéphanie; Brack, Eva K; Stutz-Grunder, Eveline; Agyeman, Philipp; Leibundgut, Kurt; Teuffel, Oliver; Ammann, Roland A

    2018-01-01

    There is no evidence-based definition of the temperature limit defining fever (TLDF) in children with neutropenia. Lowering the TLDF is known to increase the number of episodes of fever in neutropenia (FN). This study aimed to investigate the influence of a lower versus standard TLDF on diagnostics and therapy. In a single pediatric cancer center using a high standard TLDF (39°C tympanic-temperature) patients were observed prospectively (NCT01683370). The effect of applying lower TLDFs (range 37.5°C to 38.9°C) versus 39.0°C on these measures was simulated in silicon. In reality, 45 FN episodes were diagnosed. Of 3391 temperatures measured, 193 were ≥39.0°C, and 937 ≥38.0°C. For persisting fever ≥24 hours, additional blood cultures were taken in 31 (69%) episodes in reality. This number decreased to 22 (49%) when applying 39.0°C, and increased to 33 for 38.0°C (73%; plus 11 episodes; plus 24%). For persisting fever ≥48 hours, i.v.-antibiotics were escalated in 25 (56%) episodes. This number decreased to 15 (33%) when applying 39.0°C, and increased to 26 for 38.0°C (58%; plus 11 episodes; plus 24%). For persisting fever ≥120 hours, i.v.-antifungals were added in 4 (9%) episodes. This number increased to 6 (13%) by virtually applying 39.0°C, and to 11 for 38.0°C (24%; plus 5 episodes; plus 11%). The median length of stay was 5.7 days (range, 0.8 to 43.4). In 43 episodes with hospital discharge beyond 24 hours, applying 38.0°C led to discharge delay by ≥12 hours in 24 episodes (56%; 95% CI, 40 to 71), with a median delay of 13 hours, and a cumulative delay of 68 days. Applying a low versus standard TLDF led to relevant increases of diagnostics, antimicrobial therapy, and length of stay. The differences between management in reality versus simply applying 39.0° as TLDF reflect the important impact of clinical assessment.

  18. [Marburg and Ebola hemorrhagic fevers--pathogens, epidemiology and therapy].

    Science.gov (United States)

    Stock, Ingo

    2014-09-01

    Marburg and Ebola hemorrhagic fevers are severe, systemic viral diseases affecting humans and non-human primates. They are characterized by multiple symptoms such as hemorrhages, fever, headache, muscle and abdominal pain, chills, sore throat, nausea, vomiting and diarrhea. Elevated liver-associated enzyme levels and coagulopathy are also associated with these diseases. Marburg and Ebola hemorrhagic fevers are caused by (Lake victoria) Marburg virus and different species of Ebola viruses, respectively. They are enveloped, single-stranded RNA viruses and belong to the family of filoviridae. Case fatality rates of filovirus disease outbreaks are among the highest reported for any human pathogen, ranging from 25 to 90% or more. Outbreaks of Marburg and Ebola hemorrhagic fever occur in certain regions of equatorial Africa at irregular intervals. Since 2000, the number of outbreaks has increased. In 2014, the biggest outbreak of a filovirus-induced hemorrhagic fever that has been documented so far occurred from March to July 2014 in Guinea, Sierra Leone, Liberia and Nigeria. The outbreak was caused by a new variant of Zaire Ebola-Virus, affected more than 2600 people (stated 20 August) and was associated with case-fatality rates of up to 67% (Guinea). Treatment of Marburg and Ebola hemorrhagic fevers is symptomatic and supportive, licensed antiviral agents are currently not available. Recently, BCX4430, a promising synthetic adenosine analogue with high in vitro and in vivo activity against filoviruses and other RNA viruses, has been described. BCX4430 inhibits viral RNA polymerase activity and protects cynomolgus macaques from Marburg virus infection when administered as late as 48 hours after infection. Nucleic acid-based products, recombinant vaccines and antibodies appear to be less suitable for the treatment of Marburg and Ebola hemorrhagic fevers.

  19. Arctigenin inhibits lipopolysaccharide-induced iNOS expression in RAW264.7 cells through suppressing JAK-STAT signal pathway.

    Science.gov (United States)

    Kou, Xianjuan; Qi, Shimei; Dai, Wuxing; Luo, Lan; Yin, Zhimin

    2011-08-01

    Arctigenin has been demonstrated to have an anti-inflammatory function, but the precise mechanisms of its action remain to be fully defined. In the present study, we determined the effects of arctigenin on lipopolysaccharide (LPS)-induced production of proinflammatory mediators and the underlying mechanisms involved in RAW264.7 cells. Our results indicated that arctigenin exerted its anti-inflammatory effect by inhibiting ROS-dependent STAT signaling through its antioxidant activity. Arctigenin also significantly reduced the phosphorylation of STAT1 and STAT 3 as well as JAK2 in LPS-stimulated RAW264.7 cells. The inhibitions of STAT1 and STAT 3 by arctigenin prevented their translocation to the nucleus and consequently inhibited expression of iNOS, thereby suppressing the expression of inflammation-associated genes, such as IL-1β, IL-6 and MCP-1, whose promoters contain STAT-binding elements. However, COX-2 expression was slightly inhibited at higher drug concentrations (50 μM). Our data demonstrate that arctigenin inhibits iNOS expression via suppressing JAK-STAT signaling pathway in macrophages. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  20. Paricalcitol attenuates lipopolysaccharide-induced inflammation and apoptosis in proximal tubular cells through the prostaglandin E₂ receptor EP4

    Directory of Open Access Journals (Sweden)

    Yu Ah Hong

    2017-06-01

    Full Text Available Background: Vitamin D is considered to exert a protective effect on various renal diseases but its underlying molecular mechanism remains poorly understood. This study aimed to determine whether paricalcitol attenuates inflammation and apoptosis during lipopolysaccharide (LPS-induced renal proximal tubular cell injury through the prostaglandin E₂ (PGE₂ receptor EP4. Methods: Human renal tubular epithelial (HK-2 cells were pretreated with paricalcitol (2 ng/mL for 1 hour and exposed to LPS (1 μg/mL. The effects of paricalcitol pretreatment in relation to an EP4 blockade using AH-23848 or EP4 small interfering RNA (siRNA were investigated. Results: The expression of cyclooxygenase-2, PGE₂, and EP4 were significantly increased in LPS-exposed HK-2 cells treated with paricalcitol compared with cells exposed to LPS only. Paricalcitol prevented cell death induced by LPS exposure, and the cotreatment of AH-23848 or EP4 siRNA offset these cell-protective effects. The phosphorylation and nuclear translocation of p65 nuclear factor-kappaB (NF-κB were decreased and the phosphorylation of Akt was increased in LPS-exposed cells with paricalcitol treatment. AH-23848 or EP4 siRNA inhibited the suppressive effects of paricalcitol on p65 NF-κB nuclear translocation and the activation of Akt. The production of proinflammatory cytokines and the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells were attenuated by paricalcitol in LPS exposed HK-2 cells. The cotreatment with an EP4 antagonist abolished these anti-inflammatory and antiapoptotic effects. Conclusion: EP4 plays a pivotal role in anti-inflammatory and antiapoptotic effects through Akt and NF-κB signaling after paricalcitol pretreatment in LPS-induced renal proximal tubule cell injury.

  1. Yellow fever: epidemiology and prevention.

    Science.gov (United States)

    Barnett, Elizabeth D

    2007-03-15

    Yellow fever continues to occur in regions of Africa and South America, despite the availability of effective vaccines. Recently, some cases of severe neurologic disease and multiorgan system disease have been described in individuals who received yellow fever vaccine. These events have focused attention on the need to define criteria for judicious use of yellow fever vaccine and to describe the spectrum of adverse events that may be associated with yellow fever vaccine. Describing host factors that would increase risk of these events and identifying potential treatment modalities for yellow fever and yellow fever vaccine-associated adverse events are subjects of intense investigation.

  2. African Swine Fever Virus Biology and Vaccine Approaches.

    Science.gov (United States)

    Revilla, Yolanda; Pérez-Núñez, Daniel; Richt, Juergen A

    2018-01-01

    African swine fever (ASF) is an acute and often fatal disease affecting domestic pigs and wild boar, with severe economic consequences for affected countries. ASF is endemic in sub-Saharan Africa and the island of Sardinia, Italy. Since 2007, the virus emerged in the republic of Georgia, and since then spread throughout the Caucasus region and Russia. Outbreaks have also been reported in Belarus, Ukraine, Lithuania, Latvia, Estonia, Romania, Moldova, Czech Republic, and Poland, threatening neighboring West European countries. The causative agent, the African swine fever virus (ASFV), is a large, enveloped, double-stranded DNA virus that enters the cell by macropinocytosis and a clathrin-dependent mechanism. African Swine Fever Virus is able to interfere with various cellular signaling pathways resulting in immunomodulation, thus making the development of an efficacious vaccine very challenging. Inactivated preparations of African Swine Fever Virus do not confer protection, and the role of antibodies in protection remains unclear. The use of live-attenuated vaccines, although rendering suitable levels of protection, presents difficulties due to safety and side effects in the vaccinated animals. Several African Swine Fever Virus proteins have been reported to induce neutralizing antibodies in immunized pigs, and vaccination strategies based on DNA vaccines and recombinant proteins have also been explored, however, without being very successful. The complexity of the virus particle and the ability of the virus to modulate host immune responses are most likely the reason for this failure. Furthermore, no permanent cell lines able to sustain productive virus infection by both virulent and naturally attenuated African Swine Fever Virus strains exist so far, thus impairing basic research and the commercial production of attenuated vaccine candidates. © 2018 Elsevier Inc. All rights reserved.

  3. Calcitonin protects chondrocytes from lipopolysaccharide-induced apoptosis and inflammatory response through MAPK/Wnt/NF-κB pathways.

    Science.gov (United States)

    Zhang, Lai-Bo; Man, Zhen-Tao; Li, Wei; Zhang, Wei; Wang, Xian-Quan; Sun, Shui

    2017-07-01

    Calcitonin (CT) is an anti-absorbent, which has long been used for treatment of osteoporosis. However, little information is available about the effects of CT on osteoarthritis (OA). This study was mainly aimed to explore the effects of CT on the treatment of OA, as well as the underlying mechanisms. Chondrocytes were isolated from immature mice and then were incubated with lipopolysaccharide (LPS), CT, small interfering (si) RNA against bone morphogenetic protein (BMP)-2, and/or the inhibitors of MAPK/Wnt/NF-κB pathway. Thereafter, cell viability, apoptosis, nitric oxide (NO) and inflammatory factors productions, and expression levels of cartilage synthesis protein key factors, cartilage-derived morphogenetic protein (CDMP) 1, SRY (sex-determining region Y)-box 9 protein (SOX9), and MAPK/Wnt/NF-κB pathways key factors were determined. CT significantly reversed LPS-induced cell viability decrease, apoptosis increase, the inflammatory factors and NO secretion, the abnormally expression of cartilage synthesis proteins and the activation of MAPK/Wnt/NF-κB pathways (Ppathways statistically further increased the levels of CDMP1 and SOX9 (Ppathways, and could partially abolish CT-modulated the expression changes in CDMP1 and SOX9, and MAPK/Wnt/NF-κB pathways key factors (Ppathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Study of monocyte membrane proteome perturbation during lipopolysaccharide-induced tolerance using iTRAQ-based quantitative proteomic approach

    KAUST Repository

    Zhang, Huoming

    2010-07-02

    Human monocytes\\' exposure to low-level lipopolysaccharide (LPS) induces temporary monocytic insensitivity to subsequent LPS challenge. The underlying mechanism of this phenomenon could have important clinical utilities in preventing and/or treating severe infections. In this study, we used an iTRAQ-based quantitative proteomic approach to comprehensively characterize the membrane proteomes of monocytes before and after LPS exposure. We identified a total of 1651 proteins, of which 53.6% were membrane proteins. Ninety-four percent of the proteins were quantified and 255 proteins were shown to be tightly regulated by LPS. Subcellular location analysis revealed organelle-specific response to LPS exposure: more than 90% of identified mitochondrial membrane proteins were significant downregulated, whereas the majority of proteins from other organelles such as ER, Golgi and ribosome were upregulated. Moreover, we found that the expression of most receptors potentially involved in LPS signal pathway (CD14, toll-like receptor 4, CD11/CD18 complex) were substantially decreased, while the expression of molecules involved in LPS neutralization were enhanced after LPS challenge. Together, these findings could be of significance in understanding the mechanism of LPS tolerance and provide values for designing new approaches for regulating monocytic responses in sepsis patients.

  5. Study of monocyte membrane proteome perturbation during lipopolysaccharide-induced tolerance using iTRAQ-based quantitative proteomic approach

    KAUST Repository

    Zhang, Huoming; Zhao, Changqing; Li, Xin; Zhu, Yi; Gan, Chee Sian; Wang, Yong; Ravasi, Timothy; Qian, Pei-Yuan; Wong, Siew Cheng; Sze, Siu Kwan

    2010-01-01

    Human monocytes' exposure to low-level lipopolysaccharide (LPS) induces temporary monocytic insensitivity to subsequent LPS challenge. The underlying mechanism of this phenomenon could have important clinical utilities in preventing and/or treating severe infections. In this study, we used an iTRAQ-based quantitative proteomic approach to comprehensively characterize the membrane proteomes of monocytes before and after LPS exposure. We identified a total of 1651 proteins, of which 53.6% were membrane proteins. Ninety-four percent of the proteins were quantified and 255 proteins were shown to be tightly regulated by LPS. Subcellular location analysis revealed organelle-specific response to LPS exposure: more than 90% of identified mitochondrial membrane proteins were significant downregulated, whereas the majority of proteins from other organelles such as ER, Golgi and ribosome were upregulated. Moreover, we found that the expression of most receptors potentially involved in LPS signal pathway (CD14, toll-like receptor 4, CD11/CD18 complex) were substantially decreased, while the expression of molecules involved in LPS neutralization were enhanced after LPS challenge. Together, these findings could be of significance in understanding the mechanism of LPS tolerance and provide values for designing new approaches for regulating monocytic responses in sepsis patients.

  6. Hypoactivity of the central dopaminergic system and autistic-like behavior induced by a single early prenatal exposure to lipopolysaccharide.

    Science.gov (United States)

    Kirsten, Thiago B; Chaves-Kirsten, Gabriela P; Chaible, Lucas M; Silva, Ana C; Martins, Daniel O; Britto, Luiz R G; Dagli, Maria L Z; Torrão, Andrea S; Palermo-Neto, João; Bernardi, Maria M

    2012-10-01

    The aim of the present study was to evaluate the behavioral patterns associated with autism and the prevalence of these behaviors in males and females, to verify whether our model of lipopolysaccharide (LPS) administration represents an experimental model of autism. For this, we prenatally exposed Wistar rats to LPS (100 μg/kg, intraperitoneally, on gestational day 9.5), which mimics infection by gram-negative bacteria. Furthermore, because the exact mechanisms by which autism develops are still unknown, we investigated the neurological mechanisms that might underlie the behavioral alterations that were observed. Because we previously had demonstrated that prenatal LPS decreases striatal dopamine (DA) and metabolite levels, the striatal dopaminergic system (tyrosine hydroxylase [TH] and DA receptors D1a and D2) and glial cells (astrocytes and microglia) were analyzed by using immunohistochemistry, immunoblotting, and real-time PCR. Our results show that prenatal LPS exposure impaired communication (ultrasonic vocalizations) in male pups and learning and memory (T-maze spontaneous alternation) in male adults, as well as inducing repetitive/restricted behavior, but did not change social interactions in either infancy (play behavior) or adulthood in females. Moreover, although the expression of DA receptors was unchanged, the experimental animals exhibited reduced striatal TH levels, indicating that reduced DA synthesis impaired the striatal dopaminergic system. The expression of glial cell markers was not increased, which suggests that prenatal LPS did not induce permanent neuroinflammation in the striatum. Together with our previous finding of social impairments in males, the present findings demonstrate that prenatal LPS induced autism-like effects and also a hypoactivation of the dopaminergic system. Copyright © 2012 Wiley Periodicals, Inc.

  7. Protective effects of telmisartan and tempol on lipopolysaccharide-induced cognitive impairment, neuroinflammation, and amyloidogenesis: possible role of brain-derived neurotrophic factor.

    Science.gov (United States)

    Khallaf, Waleed A I; Messiha, Basim A S; Abo-Youssef, Amira M H; El-Sayed, Nesrine S

    2017-07-01

    Angiotensin II has pro-inflammatory and pro-oxidant potentials. We investigated the possible protective effects of the Angiotensin II receptor blocker telmisartan, compared with the superoxide scavenger tempol, on lipopolysaccharide (LPS)-induced cognitive decline and amyloidogenesis. Briefly, mice were allocated into a normal control group, an LPS control group, a tempol treatment group, and 2 telmisartan treatment groups. A behavioral study was conducted followed by a biochemical study via assessment of brain levels of beta amyloid (Aβ) and brain-derived neurotropic factor (BDNF) as amyloidogenesis and neuroplasticity markers, tumor necrosis factor alpha (TNF-α), nitric oxide end products (NOx), neuronal and inducible nitric oxide synthase (nNOS and iNOS) as inflammatory markers, and superoxide dismutase (SOD), malondialdehyde (MDA), glutathione reduced (GSH), and nitrotyrosine (NT) as oxido-nitrosative stress markers. Finally, histopathological examination of cerebral cortex, hippocampus, and cerebellum sections was performed using routine and special Congo red stains. Tempol and telmisartan improved cognition, decreased brain Aβ deposition and BDNF depletion, decreased TNF-α, NOx, nNOS, iNOS, MDA, and NT brain levels, and increased brain SOD and GSH contents, parallel to confirmatory histopathological evidences. In conclusion, tempol and telmisartan are promising drugs in managing cognitive impairment and amyloidogenesis, at least via upregulation of BDNF with inhibition of neuroinflammation and oxido-nitrosative stress.

  8. Sex influences in behavior and brain inflammatory and oxidative alterations in mice submitted to lipopolysaccharide-induced inflammatory model of depression.

    Science.gov (United States)

    Mello, Bruna Stefânia Ferreira; Chaves Filho, Adriano José Maia; Custódio, Charllyany Sabino; Cordeiro, Rafaela Carneiro; Miyajima, Fabio; de Sousa, Francisca Cléa Florenço; Vasconcelos, Silvânia Maria Mendes; de Lucena, David Freitas; Macedo, Danielle

    2018-07-15

    Peripheral inflammation induced by lipopolysaccharide (LPS) causes a behavioral syndrome with translational relevance for depression. This mental disorder is twice more frequent among women. Despite this, the majority of experimental studies investigating the neurobiological effects of inflammatory models of depression have been performed in males. Here, we sought to determine sex influences in behavioral and oxidative changes in brain regions implicated in the pathophysiology of mood disorders (hypothalamus, hippocampus and prefrontal cortex - PFC) in adult mice 24 h post LPS challenge. Myeloperoxidase (MPO) activity and interleukin (IL)-1β levels were measured as parameters of active inflammation, while reduced glutathione (GSH) and lipid peroxidation as parameters of oxidative imbalance. We observed that male mice presented behavioral despair, while females anxiety-like alterations. Both sexes were vulnerable to LPS-induced anhedonia. Both sexes presented increased MPO activity in the PFC, while male only in the hippocampus. IL-1β increased in the PFC and hypothalamus of animals of both sexes, while in the hippocampus a relative increase of this cytokine in males compared to females was detected. GSH levels were decreased in all brain areas investigated in animals of both sexes, while increased lipid peroxidation was observed in the hypothalamus of females and in the hippocampus of males after LPS exposure. Therefore, the present study gives additional evidence of sex influence in LPS-induced behavioral alterations and, for the first time, in the oxidative changes in brain areas relevant for mood regulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Q fever in Greenland

    DEFF Research Database (Denmark)

    Koch, Anders; Svendsen, Claus Bo; Christensen, Jens Jorgen

    2010-01-01

    We report a patient with Q fever endocarditis in a settlement in eastern Greenland (Isortoq, Ammassalik area). Likely animal sources include sled dogs and seals. Q fever may be underdiagnosed in Arctic areas but may also represent an emerging infection.......We report a patient with Q fever endocarditis in a settlement in eastern Greenland (Isortoq, Ammassalik area). Likely animal sources include sled dogs and seals. Q fever may be underdiagnosed in Arctic areas but may also represent an emerging infection....

  10. Resveratrol protects from lipopolysaccharide-induced inflammation in the uterus and prevents experimental preterm birth.

    Science.gov (United States)

    Bariani, María Victoria; Correa, Fernando; Leishman, Emma; Domínguez Rubio, Ana Paula; Arias, Andreína; Stern, Aníbal; Bradshaw, Heather B; Franchi, Ana María

    2017-08-01

    Is resveratrol able to prevent the lipopolysaccharide (LPS)-induced preterm labor in 15-day pregnant BALB/c mice? Resveratrol prevented the LPS-induced onset of preterm labor in 64% of the cases and showed anti-inflammatory and tocolytic effects by downregulating COX-2 and iNOS expression and NOS activity, and by changing the uterine prostaglandin and endocannabinoid profiling. Genital tract infections by Gram-negative bacteria are a common complication in human pregnancy and have been shown to increase risk of preterm delivery. Bacterial LPS elicits a strong maternal inflammatory response that results in preterm delivery and fetal death in a murine model endotoxin-induced preterm labor. An in vivo animal study was conducted. On Day 15 of pregnancy, mice received at 8:00 h a dose of vehicle (40% ethanol in saline solution) or resveratrol (3 mg/kg in vehicle) via oral gavage followed by two doses of LPS or vehicle administered intraperitoneally (i.p.), the first one at 10:00 h (0.17 mg/kg in 0.1 ml of sterile saline solution) and the second at 13:00 h (0.5 mg/kg in 0.1 ml of sterile saline solution). The mice were closely observed for any signs of morbidity (piloerection, decreased movement, and diarrhea), vaginal bleeding or preterm delivery. The beginning of preterm delivery was defined by early delivery of the first pup. Normal term labor occurs on Day 19 of gestation. Time of labor, pregnancy outcome and morphological features were evaluated after LPS and/or resveratrol administration. Uterine stripes were collected 5 h after the last LPS injection and prostaglandin and endocannabinoid profiling was analyzed by mass spectrometry. Nitric oxide synthase (NOS) activity was measured by radioconversion assay. Cyclooxygenase-2 (Cox-2) and 15-hydroxyprostaglandin dehydrogenase (15-Pgdh) mRNA levels were analyzed by RT-PCR whilst the protein expression of inducible nitric oxide synthase (iNOS), COX-1 and COX-2 were studied by western blot. In vivo treatment of 15-day

  11. Drug fever and acute inflammation from hypercytokinemia triggered by dipeptidyl peptidase-4 inhibitor vildagliptin.

    Science.gov (United States)

    Anno, Takatoshi; Kaneto, Hideaki; Kawasaki, Fumiko; Shigemoto, Ryo; Aoyama, Yumi; Kaku, Kohei; Okimoto, Niro

    2018-04-01

    A 69-year-old man started taking the dipeptidyl peptidase-4 inhibitor, vildagliptin. One week later, C-reactive protein and plasma immunoglobulin E levels were markedly elevated, and the vildagliptin was stopped. After the patient's laboratory findings were normalized, we decided to restart vildagliptin with the patient's agreement. The next day, he had a high fever, and C-reactive protein and procalcitonin levels were elevated. Although we failed to find a focus of infection, we started antibiotics therapy. Two days later, the high fever had improved, and the C-reactive protein level had decreased. A drug lymphocyte stimulation test showed a positive result for vildagliptin. We examined various kinds of cytokine and infection markers just before and after the treatment with vildagliptin. Finally, we diagnosed the patient with vildagliptin-induced drug fever, probably based on the increase of various inflammatory cytokine levels and the response to this. Taken together, we should be aware of the possibility of vildagliptin inducing drug fever and/or acute inflammation. © 2018 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  12. Sodium butyrate attenuates soybean oil-based lipid emulsion-induced increase in intestinal permeability of lipopolysaccharide by modulation of P-glycoprotein in Caco-2 cells

    International Nuclear Information System (INIS)

    Yan, Jun-Kai; Gong, Zi-Zhen; Zhang, Tian; Cai, Wei

    2017-01-01

    Down-regulation of intestinal P-glycoprotein (P-gp) by soybean oil-based lipid emulsion (SOLE) may cause elevated intestinal permeability of lipopolysaccharide (LPS) in patients with total parenteral nutrition, but the appropriate preventative treatment is currently limited. Recently, sodium butyrate (NaBut) has been demonstrated to regulate the expression of P-gp. Therefore, this study aimed to address whether treatment with NaBut could attenuate SOLE-induced increase in intestinal permeability of LPS by modulation of P-gp in vitro. Caco-2 cells were exposed to SOLE with or without NaBut. SOLE-induced down-regulation of P-gp was significantly attenuated by co-incubation with NaBut. Nuclear recruitment of FOXO 3a in response to NaBut was involved in P-gp regulation. Transport studies revealed that SOLE-induced increase in permeability of LPS was significantly attenuated by co-incubation with NaBut. Collectively, our results suggested that NaBut may be a potentially useful medication to prevent SOLE-induced increase in intestinal permeability of LPS. - Highlights: • Caco-2 cells were used as models for studying parenteral nutrition in vitro. • NaBut restored SOLE-induced down-regulation of P-gp in Caco-2 cells. • Regulation of P-gp by NaBut was mediated via nuclear recruitment of FOXO 3a. • NaBut modulated the permeability of LPS by P-gp function, not barrier function.

  13. Association of IDDM and attenuated response of 2',5'-oligoadenylate synthetase to yellow fever vaccine

    DEFF Research Database (Denmark)

    Bonnevie-Nielsen, V; Larsen, M L; Frifelt, J J

    1989-01-01

    Basal and yellow fever vaccination-induced 2',5'-oligoadenylate synthetase (2',5'A) activity was determined in blood mononuclear cells (peripheral blood lymphocytes [PBLs]) from insulin-dependent diabetes mellitus (IDDM) and matched control subjects. The live attenuated yellow fever vaccine...... represented a primary stimulus in all subjects. First, basal 2',5'A activity increased severalfold in response to yellow fever vaccination. In IDDM subjects, this increase was significantly lower (P = .025). Second, the 2',5'A activity increased proportionately to the higher basal 2',5'A activity in IDDM...

  14. Mouse precision-cut liver slices as an ex vivo model to study idiosyncratic drug-induced liver injury.

    Science.gov (United States)

    Hadi, Mackenzie; Chen, Yixi; Starokozhko, Viktoriia; Merema, Marjolijn T; Groothuis, Geny M M

    2012-09-17

    Idiosyncratic drug-induced liver injury (IDILI) has been the top reason for withdrawing drugs from the market or for black box warnings. IDILI may arise from the interaction of a drug's reactive metabolite with a mild inflammation that renders the liver more sensitive to injury resulting in increased toxicity (inflammatory stress hypothesis). Aiming to develop a robust ex vivo screening method to study inflammatory stress-related IDILI mechanisms and to find biomarkers that can detect or predict IDILI, mouse precision-cut liver slices (mPCLS) were coincubated for 24 h with IDILI-related drugs and lipopolysaccharide. Lipopolysaccharide exacerbated ketoconazole (15 μM) and clozapine (45 μM) toxicity but not their non-IDILI-related comparators, voriconazole (1500 μM) and olanzapine (45 μM). However, the other IDILI-related drugs tested [diclofenac (200 μM), carbamazepine (400 μM), and troglitazone (30 μM)] did not cause synergistic toxicity with lipopolysaccharide after 24 h of incubation. Lipopolysaccharide further decreased the reduced glutathione levels caused by ketoconazole or clozapine in mPCLS after 24 h of incubation, which was not the case for the other drugs. Lipopolysaccharide significantly increased nitric oxide (NO), cytokine, and chemokine release into the mPCLS media, while the treatment with the drugs alone did not cause any substantial change. All seven drugs drastically reduced lipopolysaccharide-induced NO production. Interestingly, only ketoconazole and clozapine increased the lipopolysaccharide-induced granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) release. Pilot experiments showed that diclofenac and troglitazone, but not carbamazepine, demonstrated synergistic toxicity with lipopolysaccharide after a longer incubation of 48 h in mPCLS. In conclusion, we have developed an ex vivo model to detect inflammatory stress-related liver toxicity and identified ketoconazole, clozapine

  15. Antibody response to the lipopolysaccharide and protein antigens of Salmonella typhi during typhoid infection

    International Nuclear Information System (INIS)

    Tsang, R.S.W.; Chau, P.Y.; Lam, S.K.

    1981-01-01

    Serum antibody responses to the lipopolysaccharide and protein antigens of S. typhi in typhoid patients were studied using a solid-phase radioimmunoassay technique with 125 I labelled anti-immunoglobulin antibody. Sera from 24 adult typhoid patients and 20 non-typhoid adult controls were compared. As a group, sera from typhoid patients showed increased IgA, IgG and IgM immunoglobulin levels and gave significantly higher anti-LPS and anti-protein antibody titres in all three major immunoglobulin classes than did non-typhoid controls. Levels of antibodies against LPS or protein in sera of typhoid patients were highly variable with a skew distribution. A good correlation was found between antibody titres to the LPS antigen and those to a protein antigen. No correlation, however, was found between the anti-LPS antibody titres measured by radioimmunoassay and the anti-O antibody titres measured by the Widal agglutination test. Titration of anti-LPS or anti-protein antibodies by radioimmunoassay was found to be more sensitive and specific than Widal test for the serological diagnosis of typhoid fever. The advantages of measuring antibody response by radioimmunoassay over conventional Widal test are discussed. (author)

  16. Antioxidant Activity of Inulin and Its Role in the Prevention of Human Colonic Muscle Cell Impairment Induced by Lipopolysaccharide Mucosal Exposure

    Science.gov (United States)

    Guarino, Michele Pier Luca; Locato, Vittoria; Cocca, Silvia; Cimini, Sara; Palma, Rossella; Alloni, Rossana; De Gara, Laura; Cicala, Michele

    2014-01-01

    Background Fructans, such as inulin, are dietary fibers which stimulate gastro-intestinal (GI) function acting as prebiotics. Lipopolysaccharide (LPS) impairs GI motility, through production of reactive oxygen species. The antioxidant activity of various fructans was tested and the protective effect of inulin on colonic smooth muscle cell (SMC) impairment, induced by exposure of human mucosa to LPS, was assessed in an ex vivo experimental model. Methods The antioxidant capacity of fructans was measured in an in vitro system that simulates cooking and digestion processes. Human colonic mucosa and submucosa, obtained from disease-free margins of resected segments for cancer, were sealed between two chambers, with the mucosal side facing upwards with Krebs solution with or without purified LPS from a pathogenic strain of Escherichia coli (O111:B4) and inulin (Frutafit IQ), and the submucosal side facing downwards into Krebs solution. The solutions on the submucosal side were collected following mucosal exposure to Krebs in the absence (N-undernatant) or presence of LPS (LPS-undernatant) or LPS+inulin (LPS+INU-undernatant). Undernatants were tested for their antioxidant activity and the effects on SMCs contractility. Inulin protective effects on mucosa and submucosa layers were assessed measuring the protein oxidation level in the experimental conditions analyzed. Results Antioxidant activity of inulin, which was significantly higher compared to simple sugars, remained unaltered despite cooking and digestion processes. Inulin protected the mucosal and submucosal layers against protein oxidation. Following exposure to LPS-undernatant, a significant decrease in maximal acetylcholine (Ach)-induced contraction was observed when compared to the contraction induced in cells incubated with the N-undernatant (4±1% vs 25±5% respectively, PInulin (35±5%). Conclusions Inulin protects the human colon mucosa from LPS-induced damage and this effect appears to be related to the

  17. Effects of acteoside on lipopolysaccharide-induced inflammation in acute lung injury via regulation of NF-κB pathway in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Wang; Chunhua, Ma, E-mail: machunhuabest@126.com; Shumin, Wang, E-mail: wangshuminch@126.com

    2015-06-01

    The purpose of the present study was to investigate the protective role of acteoside (AC) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). BalB/c mice intraperitoneally received AC (30, and 60 mg/kg) or dexamethasone (2 mg/kg) 2 h prior to or after intratracheal instillation of LPS. Treatment with AC significantly decreased lung wet-to-dry weight (W/D) ratio and lung myeloperoxidase (MPO) activity and ameliorated LPS-induced lung histopathological changes. In addition, AC increased super oxide dismutase (SOD) level and inhibited malondialdehyde (MDA) content, total cell and neutrophil infiltrations, and levels of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) in LPS-stimulated mice. Furthermore, we demonstrated that AC inhibited the phosphorylation of IκBα, nuclear factor-κB (NF-κB) p65, inhibitor of nuclear factor kappa-B kinase-α (IKK-α) and inhibitor of nuclear factor kappa-B kinase-β (IKKβ) in LPS-induced inflammation in A549 cells. Our data suggested that LPS evoked the inflammatory response in lung epithelial cells A549. The experimental results indicated that the protective mechanism of AC might be attributed partly to the inhibition of proinflammatory cytokine production and NF-κB activation. - Highlights: • Acteoside inhibited inflammation in LPS-induced lung injury in mice. • Acteoside inhibited inflammation in lung epithelial cells A549. • Acteoside inhibited NF-kB activation in LPS-induced mice and lung epithelial cells A549.

  18. The Protective Effects of the Supercritical-Carbon Dioxide Fluid Extract of Chrysanthemum indicum against Lipopolysaccharide-Induced Acute Lung Injury in Mice via Modulating Toll-Like Receptor 4 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xiao-Li Wu

    2014-01-01

    Full Text Available The supercritical-carbon dioxide fluid extract of Chrysanthemum indicum Linné. (CFE has been demonstrated to be effective in suppressing inflammation. The aim of this study is to investigate the preventive action and underlying mechanisms of CFE on acute lung injury (ALI induced by lipopolysaccharide (LPS in mice. ALI was induced by intratracheal instillation of LPS into lung, and dexamethasone was used as a positive control. Results revealed that pretreatment with CFE abated LPS-induced lung histopathologic changes, reduced the wet/dry ratio and proinflammatory cytokines productions (TNF-α, IL-1β, and IL-6, inhibited inflammatory cells migrations and protein leakages, suppressed the levels of MPO and MDA, and upregulated the abilities of antioxidative enzymes (SOD, CAT, and GPx. Furthermore, the pretreatment with CFE downregulated the activations of NF-κB and the expressions of TLR4/MyD88. These results suggested that CFE exerted potential protective effects against LPS-induced ALI in mice and was a potential therapeutic drug for ALI. Its mechanisms were at least partially associated with the modulations of TLR4 signaling pathways.

  19. DMPD: CD14 and other recognition molecules for lipopolysaccharide: a review. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 7542643 CD14 and other recognition molecules for lipopolysaccharide: a review. Kiel...her recognition molecules for lipopolysaccharide: a review. PubmedID 7542643 Title CD14 and other recognitio...n molecules for lipopolysaccharide: a review. Authors Kielian TL, Blecha F. Publi

  20. Discriminating fever behavior in house flies.

    Directory of Open Access Journals (Sweden)

    Robert D Anderson

    Full Text Available Fever has generally been shown to benefit infected hosts. However, fever temperatures also carry costs. While endotherms are able to limit fever costs physiologically, the means by which behavioral thermoregulators constrain these costs are less understood. Here we investigated the behavioral fever response of house flies (Musca domestica L. challenged with different doses of the fungal entomopathogen, Beauveria bassiana. Infected flies invoked a behavioral fever selecting the hottest temperature early in the day and then moving to cooler temperatures as the day progressed. In addition, flies infected with a higher dose of fungus exhibited more intense fever responses. These variable patterns of fever are consistent with the observation that higher fever temperatures had greater impact on fungal growth. The results demonstrate the capacity of insects to modulate the degree and duration of the fever response depending on the severity of the pathogen challenge and in so doing, balance the costs and benefits of fever.

  1. The effects of a novel botanical agent on lipopolysaccharide-induced alveolar bone loss in rats.

    Science.gov (United States)

    Lee, Bo-Ah; Lee, Hwa-Sun; Jung, Young-Suk; Kim, Se-Won; Lee, Yong-Wook; Chang, Sun-Hwa; Chung, Hyun-Ju; Kim, Ok-Su; Kim, Young-Joon

    2013-08-01

    The development of host-modulatory agents with low risk of adverse effects has been needed to treat periodontitis, a chronic inflammatory disease. A botanical mixture of extracts from two natural substances, Panax notoginseng and Rehmannia glutinosa Libosch, was developed as a novel botanical agent synthesized with anti-inflammatory effect. The aim of this study is to evaluate the effects of the botanical mixture on the release of inflammatory cytokines and its inhibitory effect on lipopolysaccharide (LPS)-induced alveolar bone loss (ABL) in a rat model. Cytotoxicity was assessed by 3-(4,5-dimethylthiazol-2yl)-5(3-carboxymethoxyphenol)-2-(4-sulfophenyl)-2H-tetrazolium assay using human gingival fibroblast (hGF) and human periodontal ligament (hPDL) cells. Human acute monocytic leukemia cell line and hGF cells were cultured to assay tumor necrosis factor (TNF)-α and interleukin (IL)-6, respectively. Microcomputed tomography analysis and immunofluoresence analysis were performed to evaluate the efficacy of the botanical mixture to inhibit the destruction of alveolar bone and connective tissue in a rat model. The botanical mixture is cytotoxic at concentrations exceeding 2.5 mg/mL (P botanical mixture to be used in all subsequent in vitro and in vivo experiments. The botanical mixture reduced the release of TNF-α and IL-6 from human monocytic cells and hGF cells in a dose-dependent manner (P botanical mixture significantly reduced the alveolar bone loss in a rat model (P botanical mixture, matrix metalloproteinase (MMP)-9 was detected along the alveolar bone crest (ABC), but not around the gingival connective tissue, while in the group with LPS-induced ABL, pronounced expression of MMP-9 around the ABC, periodontal ligament, and gingival connective tissue was found. The botanical mixture showed a potential adjunctive effect in the treatment of periodontitis. However, the present findings are obtained in vitro and in a rat model, so further clinical study is needed

  2. Dietary l-threonine supplementation attenuates lipopolysaccharide-induced inflammatory responses and intestinal barrier damage of broiler chickens at an early age.

    Science.gov (United States)

    Chen, Yueping; Zhang, Hao; Cheng, Yefei; Li, Yue; Wen, Chao; Zhou, Yanmin

    2018-06-01

    This study was conducted to investigate the protective effects of l-threonine (l-Thr) supplementation on growth performance, inflammatory responses and intestinal barrier function of young broilers challenged with lipopolysaccharide (LPS). A total of 144 1-d-old male chicks were allocated to one of three treatments: non-challenged broilers fed a basal diet (control group), LPS-challenged broilers fed a basal diet without l-Thr supplementation and LPS-challenged broilers fed a basal diet supplemented with 3·0 g/kg l-Thr. LPS challenge was performed intraperitoneally at 17, 19 and 21 d of age, whereas the control group received physiological saline injection. Compared with the control group, LPS challenge impaired growth performance of broilers, and l-Thr administration reversed LPS-induced increase in feed/gain ratio. LPS challenge elevated blood cell counts related to inflammation, and pro-inflammatory cytokine concentrations in serum (IL-1β and TNF-α), spleen (IL-1β and TNF-α) and intestinal mucosa (jejunal interferon-γ (IFN-γ) and ileal IL-1β). The concentrations of intestinal cytokines in LPS-challenged broilers were reduced by l-Thr supplementation. LPS administration increased circulating d-lactic acid concentration, whereas it reduced villus height, the ratio between villus height and crypt depth and goblet density in both jejunum and ileum. LPS-induced decreases in jejunal villus height, intestinal villus height:crypt depth ratio and ileal goblet cell density were reversed with l-Thr supplementation. Similarly, LPS-induced alterations in the intestinal mRNA abundances of genes related to intestinal inflammation and barrier function (jejunal toll-like receptor 4, IFN- γ and claudin-3, and ileal IL-1 β and zonula occludens-1) were normalised with l-Thr administration. It can be concluded that l-Thr supplementation could attenuate LPS-induced inflammatory responses and intestinal barrier damage of young broilers.

  3. Ebola hemorrhagic fever outbreaks: strategies for effective epidemic management, containment and control

    OpenAIRE

    Matua, Gerald Amandu; Wal, Dirk Mostert Van der; Locsin, Rozzano C.

    2015-01-01

    Ebola hemorrhagic fever, caused by the highly virulent RNA virus of the filoviridae family, has become one of the world's most feared pathogens. The virus induces acute fever and death, often associated with hemorrhagic symptoms in up to 90% of infected patients. The known sub-types of the virus are Zaire, Sudan, Taï Forest, Bundibugyo and Reston Ebola viruses. In the past, outbreaks were limited to the East and Central African tropical belt with the exception of Ebola Reston outbreaks that o...

  4. Saccharomyces boulardii inhibits lipopolysaccharide-induced activation of human dendritic cells and T cell proliferation

    Science.gov (United States)

    Thomas, S; Przesdzing, I; Metzke, D; Schmitz, J; Radbruch, A; Baumgart, D C

    2009-01-01

    Saccharomyces boulardii (Sb) is a probiotic yeast preparation that has demonstrated efficacy in inflammatory and infectious disorders of the gastrointestinal tract in controlled clinical trials. Although patients clearly benefit from treatment with Sb, little is known on how Sb unfolds its anti-inflammatory properties in humans. Dendritic cells (DC) balance tolerance and immunity and are involved critically in the control of T cell activation. Thus, they are believed to have a pivotal role in the initiation and perpetuation of chronic inflammatory disorders, not only in the gut. We therefore decided to investigate if Sb modulates DC function. Culture of primary (native, non-monocyte-derived) human myeloid CD1c+CD11c+CD123– DC (mDC) in the presence of Sb culture supernatant (active component molecular weight < 3 kDa, as evaluated by membrane partition chromatography) reduced significantly expression of the co-stimulatory molecules CD40 and CD80 (P < 0·01) and the DC mobilization marker CC-chemokine receptor CCR7 (CD197) (P < 0·001) induced by the prototypical microbial antigen lipopolysaccharide (LPS). Moreover, secretion of key proinflammatory cytokines such as tumour necrosis factor-α and interleukin (IL)-6 were notably reduced, while the secretion of anti-inflammatory IL-10 increased. Finally, Sb supernatant inhibited the proliferation of naive T cells in a mixed lymphocyte reaction with mDC. In summary, our data suggest that Sb may exhibit part of its anti-inflammatory potential through modulation of DC phenotype, function and migration by inhibition of their immune response to bacterial microbial surrogate antigens such as LPS. PMID:19161443

  5. Effect of Kramecyne on the Inflammatory Response in Lipopolysaccharide-Stimulated Peritoneal Macrophages

    Science.gov (United States)

    Sánchez-Miranda, E.; Lemus-Bautista, J.; Pérez, S.; Pérez-Ramos, J.

    2013-01-01

    Kramecyne is a new peroxide, it was isolated from Krameria cytisoides, methanol extract, and this plant was mostly found in North and South America. This compound showed potent anti-inflammatory activity; however, the mechanisms by which this compound exerts its anti-inflammatory effect are not well understood. In this study, we examined the effects of kramecyne on inflammatory responses in mouse lipopolysaccharide- (LPS-) induced peritoneal macrophages. Our findings indicate that kramecyne inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin- (IL-) 6. During the inflammatory process, levels of cyclooxygenase- (COX-) 2, nitric oxide synthase (iNOS), and nitric oxide (NO) increased in mouse peritoneal macrophages; however, kramecyne suppressed them significantly. These results provide novel insights into the anti-inflammatory actions and support its potential use in the treatment of inflammatory diseases. PMID:23573152

  6. Inhibition of Lipopolysaccharide-Induced Neuroinflammatory Events ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research October 2014; 13 (10): 1615-1620. ISSN: 1596-5996 ... LPS-induced excessive production of inflammatory mediator such as iNOS was also ... several studies have reported antioxidant, antiallergic ...

  7. Lipopolysaccharide-induced pulmonary inflammation is not accompanied by a release of anandamide into the lavage fluid or a down-regulation of the activity of fatty acid amide hydrolase

    DEFF Research Database (Denmark)

    Holt, S.; J. Fowler, C.; Rocksén, D.

    2004-01-01

    The effect of lipopolysaccharide inhalation upon lung anandamide levels, anandamide synthetic enzymes and fatty acid amide hydrolase has been investigated. Lipopolysaccharide exposure produced a dramatic extravasation of neutrophils and release of tumour necrosis factor a into the bronchoalveolar......-acyltransferase and N-acylphosphatidylethanolamine phospholipase D and the activity of fatty acid amide hydrolase in lung membrane fractions did not change significantly following the exposure to lipopolysaccharide. The non-selective fatty acid amide hydrolase inhibitor phenylmethylsulfonyl fluoride was a less potent...... inhibitor of lung fatty acid amide hydrolase than expected from the literature, and a dose of 30 mg/kg i.p. of this compound, which produced a complete inhibition of brain anandamide metabolism, only partially inhibited the lung metabolic activity....

  8. Oropouche Fever: A Review.

    Science.gov (United States)

    Sakkas, Hercules; Bozidis, Petros; Franks, Ashley; Papadopoulou, Chrissanthy

    2018-04-04

    Oropouche fever is an emerging zoonotic disease caused by Oropouche virus (OROV), an arthropod transmitted Orthobunyavirus circulating in South and Central America. During the last 60 years, more than 30 epidemics and over half a million clinical cases attributed to OROV infection have been reported in Brazil, Peru, Panama, Trinidad and Tobago. OROV fever is considered the second most frequent arboviral febrile disease in Brazil after dengue fever. OROV is transmitted through both urban and sylvatic transmission cycles, with the primary vector in the urban cycle being the anthropophilic biting midge Culicoides paraensis . Currently, there is no evidence of direct human-to-human OROV transmission. OROV fever is usually either undiagnosed due to its mild, self-limited manifestations or misdiagnosed because its clinical characteristics are similar to dengue, chikungunya, Zika and yellow fever, including malaria as well. At present, there is no specific antiviral treatment, and in the absence of a vaccine for effective prophylaxis of human populations in endemic areas, the disease prevention relies solely on vector control strategies and personal protection measures. OROV fever is considered to have the potential to spread across the American continent and under favorable climatic conditions may expand its geographic distribution to other continents. In view of OROV's emergence, increased interest for formerly neglected tropical diseases and within the One Health concept, the existing knowledge and gaps of knowledge on OROV fever are reviewed.

  9. Travelers' Health: Typhoid and Paratyphoid Fever

    Science.gov (United States)

    ... days should raise suspicion of typhoid or paratyphoid fever. Typhoid fever is a nationally notifiable disease. TREATMENT Specific ... typhoid-fever Table 3-21. Vaccines to prevent typhoid fever VACCINA- TION AGE (y) DOSE, MODE OF ADMINISTRA- ...

  10. A framework to identify gene expression profiles in a model of inflammation induced by lipopolysaccharide after treatment with thalidomide

    Directory of Open Access Journals (Sweden)

    Paiva Renata T

    2012-06-01

    Full Text Available Abstract Background Thalidomide is an anti-inflammatory and anti-angiogenic drug currently used for the treatment of several diseases, including erythema nodosum leprosum, which occurs in patients with lepromatous leprosy. In this research, we use DNA microarray analysis to identify the impact of thalidomide on gene expression responses in human cells after lipopolysaccharide (LPS stimulation. We employed a two-stage framework. Initially, we identified 1584 altered genes in response to LPS. Modulation of this set of genes was then analyzed in the LPS stimulated cells treated with thalidomide. Results We identified 64 genes with altered expression induced by thalidomide using the rank product method. In addition, the lists of up-regulated and down-regulated genes were investigated by means of bioinformatics functional analysis, which allowed for the identification of biological processes affected by thalidomide. Confirmatory analysis was done in five of the identified genes using real time PCR. Conclusions The results showed some genes that can further our understanding of the biological mechanisms in the action of thalidomide. Of the five genes evaluated with real time PCR, three were down regulated and two were up regulated confirming the initial results of the microarray analysis.

  11. Alpinetin attenuates inflammatory responses by interfering toll-like receptor 4/nuclear factor kappa B signaling pathway in lipopolysaccharide-induced mastitis in mice.

    Science.gov (United States)

    Chen, Haijin; Mo, Xiaodong; Yu, Jinlong; Huang, Zonghai

    2013-09-01

    Alpinetin, a novel plant flavonoid derived from Alpinia katsumadai Hayata, has been reported to exhibit anti-inflammatory properties. However, the effect of alpinetin on mastitis has not been investigated. The aim of this study was to investigate the protective effect of alpinetin against lipopolysaccharide (LPS)-induced mastitis and to clarify the possible mechanism. In the present study, primary mouse mammary epithelial cells and an LPS-induced mouse mastitis model were used to investigate the effect of alpinetin on mastitis and the possible mechanism. In vivo, we observed that alpinetin significantly attenuated the infiltration of neutrophilic granulocytes, and the activation of myeloperoxidase; down-regulated the level of pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6; inhibited the phosphorylation of IκB-α, NF-κB p65 and the expression of TLR4, caused by LPS. In vitro, we also observed that alpinetin inhibited the expression of TLR4 and the production of TNF-α, IL-1β and IL-6 in LPS-stimulated primary mouse mammary epithelial cells. However, alpinetin could not inhibit the production of IL-1β and IL-6 in TNF-α-stimulated primary mouse mammary epithelial cells. In conclusion, our results suggest that the anti-inflammatory effects of alpinetin against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB signaling pathways. Alpinetin may be a promising potential therapeutic reagent for mastitis treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Anthocyanins Downregulate Lipopolysaccharide-Induced Inflammatory Responses in BV2 Microglial Cells by Suppressing the NF-κB and Akt/MAPKs Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Yung Hyun Choi

    2013-01-01

    Full Text Available Anthocyanins are naturally occurring polyphenols that impart bright color to fruits, vegetables and plants and have a variety of protective properties, which have generally been attributed to their antioxidant capacity. However, little is known about the molecular mechanisms underlying anti-inflammatory effects of anthocyanins related to neurodegenerative diseases. Therefore, we determined whether anthocyanins isolated from black soybean seed coats would inhibit pro-inflammatory mediators and cytokines in lipopolysaccharide (LPS-stimulated murine BV2 microglial cells. Our results showed that anthocyanins significantly inhibited LPS-induced pro-inflammatory mediators, such as nitric oxide (NO and prostaglandin E2, and pro-inflammatory cytokines including tumor necrosis factor (TNF-α and interleukin (IL-1β, without significant cytotoxicity. Anthocyanins also downregulated excessive expression of inducible NO synthase, cyclooxygenase-2, TNF-α, and IL-1β in LPS-stimulated BV2 cells. Moreover, anthocyanins inhibited nuclear translocation of nuclear factor-kappa B (NF-κB by reducing inhibitor of NF-κB alpha degradation as well as phosphorylating extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, and Akt. These findings suggest that anthocyanins may offer substantial therapeutic potential for treating inflammatory and neurodegenerative diseases accompanied by microglial activation.

  13. Shiga toxin 1 induces on lipopolysaccharide-treated astrocytes the release of tumor necrosis factor-alpha that alter brain-like endothelium integrity.

    Directory of Open Access Journals (Sweden)

    Verónica I Landoni

    Full Text Available The hemolytic uremic syndrome (HUS is characterized by hemolytic anemia, thrombocytopenia and renal dysfunction. The typical form of HUS is generally associated with infections by Gram-negative Shiga toxin (Stx-producing Escherichia coli (STEC. Endothelial dysfunction induced by Stx is central, but bacterial lipopolysaccharide (LPS and neutrophils (PMN contribute to the pathophysiology. Although renal failure is characteristic of this syndrome, neurological complications occur in severe cases and is usually associated with death. Impaired blood-brain barrier (BBB is associated with damage to cerebral endothelial cells (ECs that comprise the BBB. Astrocytes (ASTs are inflammatory cells in the brain and determine the BBB function. ASTs are in close proximity to ECs, hence the study of the effects of Stx1 and LPS on ASTs, and the influence of their response on ECs is essential. We have previously demonstrated that Stx1 and LPS induced activation of rat ASTs and the release of inflammatory factors such as TNF-α, nitric oxide and chemokines. Here, we demonstrate that rat ASTs-derived factors alter permeability of ECs with brain properties (HUVECd; suggesting that functional properties of BBB could also be affected. Additionally, these factors activate HUVECd and render them into a proagregant state promoting PMN and platelets adhesion. Moreover, these effects were dependent on ASTs secreted-TNF-α. Stx1 and LPS-induced ASTs response could influence brain ECs integrity and BBB function once Stx and factors associated to the STEC infection reach the brain parenchyma and therefore contribute to the development of the neuropathology observed in HUS.

  14. Shiga Toxin 1 Induces on Lipopolysaccharide-Treated Astrocytes the Release of Tumor Necrosis Factor-alpha that Alter Brain-Like Endothelium Integrity

    Science.gov (United States)

    Landoni, Verónica I.; Schierloh, Pablo; de Campos Nebel, Marcelo; Fernández, Gabriela C.; Calatayud, Cecilia; Lapponi, María J.; Isturiz, Martín A.

    2012-01-01

    The hemolytic uremic syndrome (HUS) is characterized by hemolytic anemia, thrombocytopenia and renal dysfunction. The typical form of HUS is generally associated with infections by Gram-negative Shiga toxin (Stx)-producing Escherichia coli (STEC). Endothelial dysfunction induced by Stx is central, but bacterial lipopolysaccharide (LPS) and neutrophils (PMN) contribute to the pathophysiology. Although renal failure is characteristic of this syndrome, neurological complications occur in severe cases and is usually associated with death. Impaired blood-brain barrier (BBB) is associated with damage to cerebral endothelial cells (ECs) that comprise the BBB. Astrocytes (ASTs) are inflammatory cells in the brain and determine the BBB function. ASTs are in close proximity to ECs, hence the study of the effects of Stx1 and LPS on ASTs, and the influence of their response on ECs is essential. We have previously demonstrated that Stx1 and LPS induced activation of rat ASTs and the release of inflammatory factors such as TNF-α, nitric oxide and chemokines. Here, we demonstrate that rat ASTs-derived factors alter permeability of ECs with brain properties (HUVECd); suggesting that functional properties of BBB could also be affected. Additionally, these factors activate HUVECd and render them into a proagregant state promoting PMN and platelets adhesion. Moreover, these effects were dependent on ASTs secreted-TNF-α. Stx1 and LPS-induced ASTs response could influence brain ECs integrity and BBB function once Stx and factors associated to the STEC infection reach the brain parenchyma and therefore contribute to the development of the neuropathology observed in HUS. PMID:22479186

  15. Carbon monoxide-releasing molecule-3 suppresses Prevotella intermedia lipopolysaccharide-induced production of nitric oxide and interleukin-1β in murine macrophages.

    Science.gov (United States)

    Choi, Eun-Young; Choe, So-Hui; Hyeon, Jin-Yi; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2015-10-05

    This study was performed to analyze the effect of carbon monoxide (CO)-releasing molecule-3 (CORM-3) in alleviating the production of proinflammatory mediators in macrophages treated with lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen associated with periodontal disease, and its possible mechanisms of action. LPS was isolated using the hot phenol-water method. Culture supernatants were assayed for nitric oxide (NO) and interleukin-1β (IL-1β). Gene expression was quantified by real-time PCR, and protein expression by immunoblotting. DNA-binding activities of NF-κB subunits were determined using an ELISA-based kit. CORM-3 suppressed the production of inducible NO synthase (iNOS)-derived NO and IL-1β at both gene transcription and translation levels in P. intermedia LPS-activated RAW264.7 cells. CORM-3 enhanced heme oxygenase-1 (HO-1) expression in cells stimulated with P. intermedia LPS, and inhibition of HO-1 activity by SnPP notably reversed the suppressive effect of CORM-3 on LPS-induced production of NO. LPS-induced phosphorylation of p38 and JNK was not affected by CORM-3. CORM-3 did not influence P. intermedia LPS-induced degradation of IκB-α. Instead, nuclear translocation of NF-κB p65 and p50 subunits was blocked by CORM-3 in LPS-treated cells. In addition, CORM-3 reduced LPS-induced p65 and p50 binding to DNA. Besides, CORM-3 significantly suppressed P. intermedia LPS-induced phosphorylation of STAT1. Overall, this study indicates that CORM-3 suppresses the production of NO and IL-1β in P. intermedia LPS-activated murine macrophages via HO-1 induction and inhibition of NF-κB and STAT1 pathways. The modulation of host inflammatory response by CORM-3 would be an attractive therapeutic approach to attenuate the progression of periodontal disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. NNDSS - Table II. Salmonellosis (excluding typhoid fever and paratyphoid fever) to Shigellosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Salmonellosis (excluding typhoid fever and paratyphoid fever) to Shigellosis - 2018. In this Table, provisional cases of selected notifiable...

  17. "Rickettsia amblyommii" induces cross protection against lethal Rocky Mountain spotted fever in a guinea pig model.

    Science.gov (United States)

    Blanton, Lucas S; Mendell, Nicole L; Walker, David H; Bouyer, Donald H

    2014-08-01

    Rocky Mountain spotted fever (RMSF) is a severe illness caused by Rickettsia rickettsii for which there is no available vaccine. We hypothesize that exposure to the highly prevalent, relatively nonpathogenic "Rickettsia amblyommii" protects against R. rickettsii challenge. To test this hypothesis, guinea pigs were inoculated with "R. amblyommii." After inoculation, the animals showed no signs of illness. When later challenged with lethal doses of R. rickettsii, those previously exposed to "R. amblyommii" remained well, whereas unimmunized controls developed severe illness and died. We conclude that "R. amblyommii" induces an immune response that protects from illness and death in the guinea pig model of RMSF. These results provide a basis for exploring the use of low-virulence rickettsiae as a platform to develop live attenuated vaccine candidates to prevent severe rickettsioses.

  18. Smooth and rough Proteus mirabilis lipopolysaccharides studied by total internal reflection ellipsometry

    International Nuclear Information System (INIS)

    Gleńska-Olender, J.; Dworecki, K.; Sęk, S.; Kwinkowski, M.; Kaca, W.

    2013-01-01

    Total internal reflection ellipsometry (TIRE), a label-free optical detection technique for studying interactions between biomolecules, was used to examine the adsorption of various forms of lipopolysaccharides (LPSs) isolated from Proteus mirabilis S1959, R110, and R45 strains on a gold surface. The thickness of the adsorbed layers was determined by TIRE, with the average values for S1959, R110, and R45 LPS layers being 78 ± 5, 39 ± 3, and 12 ± 2 nm, respectively. The thickness of LPS layers corresponds to the presence and length of O-specific parts in P. mirabilis LPS molecules. Atomic force microscopy was used as a complementary technique for visualizing lipopolysaccharides on the surface. Force measurements seem to confirm the data obtained from TIRE experiments. - Highlights: • Proteus mirabilis lipopolysaccharides were adsorbed on the gold surface. • Thickness of adsorbed layers was determined by total internal reflection ellipsometry. • Atomic force microscopy was used to visualize lipopolysaccharide build-up on gold surface. • Time is important in the evolution of biomolecular film thickness created on gold surface

  19. Smooth and rough Proteus mirabilis lipopolysaccharides studied by total internal reflection ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Gleńska-Olender, J., E-mail: joannaglenska@wp.pl [Institute of Biology, Jan Kochanowski University, 25-406 Kielce (Poland); Świętokrzyski Biobank, Regional Science and Technology Center, 26-060 Chęciny (Poland); Dworecki, K. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Sęk, S. [Department of Chemistry, University of Warsaw, 02-093 Warsaw (Poland); Kwinkowski, M.; Kaca, W. [Institute of Biology, Jan Kochanowski University, 25-406 Kielce (Poland)

    2013-12-02

    Total internal reflection ellipsometry (TIRE), a label-free optical detection technique for studying interactions between biomolecules, was used to examine the adsorption of various forms of lipopolysaccharides (LPSs) isolated from Proteus mirabilis S1959, R110, and R45 strains on a gold surface. The thickness of the adsorbed layers was determined by TIRE, with the average values for S1959, R110, and R45 LPS layers being 78 ± 5, 39 ± 3, and 12 ± 2 nm, respectively. The thickness of LPS layers corresponds to the presence and length of O-specific parts in P. mirabilis LPS molecules. Atomic force microscopy was used as a complementary technique for visualizing lipopolysaccharides on the surface. Force measurements seem to confirm the data obtained from TIRE experiments. - Highlights: • Proteus mirabilis lipopolysaccharides were adsorbed on the gold surface. • Thickness of adsorbed layers was determined by total internal reflection ellipsometry. • Atomic force microscopy was used to visualize lipopolysaccharide build-up on gold surface. • Time is important in the evolution of biomolecular film thickness created on gold surface.

  20. Autism, fever, epigenetics and the locus coeruleus.

    Science.gov (United States)

    Mehler, Mark F; Purpura, Dominick P

    2009-03-01

    Some children with autism spectrum disorders (ASD) exhibit improved behaviors and enhanced communication during febrile episodes. We hypothesize that febrigenesis and the behavioral-state changes associated with fever in autism depend upon selective normalization of key components of a functionally impaired locus coeruleus-noradrenergic (LC-NA) system. We posit that autistic behaviors result from developmental dysregulation of LC-NA system specification and neural network deployment and modulation linked to the core behavioral features of autism. Fever transiently restores the modulatory functions of the LC-NA system and ameliorates autistic behaviors. Fever-induced reversibility of autism suggests preserved functional integrity of widespread neural networks subserving the LC-NA system and specifically the subsystems involved in mediating the cognitive and behavioral repertoires compromised in ASD. Alterations of complex gene-environmental interactions and associated epigenetic mechanisms during seminal developmental critical periods are viewed as instrumental in LC-NA dysregulation as emphasized by the timing and severity of prenatal maternal stressors on autism prevalence. Our hypothesis has implications for a rational approach to further interrogate the interdisciplinary etiology of ASD and for designing novel biological detection systems and therapeutic agents that target the LC-NA system's diverse network of pre- and postsynaptic receptors, intracellular signaling pathways and dynamic epigenetic remodeling processes involved in their regulation and functional plasticity.

  1. Rat bite fever.

    NARCIS (Netherlands)

    Gaastra, W.; Boot, R.G.A.; Ho, H.; Lipman, L.J.A.

    2009-01-01

    Rat bite fever (RBF) is a bacterial zoonosis for which two causal bacterial species have been identified: Streptobacillis moniliformis and Spirillum minus. Haverhill fever (HF) is a form of S. moniliformis infection believed to develop after ingestion of contaminated food or water. Here the

  2. Oropouche Fever: A Review

    Directory of Open Access Journals (Sweden)

    Hercules Sakkas

    2018-04-01

    Full Text Available Oropouche fever is an emerging zoonotic disease caused by Oropouche virus (OROV, an arthropod transmitted Orthobunyavirus circulating in South and Central America. During the last 60 years, more than 30 epidemics and over half a million clinical cases attributed to OROV infection have been reported in Brazil, Peru, Panama, Trinidad and Tobago. OROV fever is considered the second most frequent arboviral febrile disease in Brazil after dengue fever. OROV is transmitted through both urban and sylvatic transmission cycles, with the primary vector in the urban cycle being the anthropophilic biting midge Culicoides paraensis. Currently, there is no evidence of direct human-to-human OROV transmission. OROV fever is usually either undiagnosed due to its mild, self-limited manifestations or misdiagnosed because its clinical characteristics are similar to dengue, chikungunya, Zika and yellow fever, including malaria as well. At present, there is no specific antiviral treatment, and in the absence of a vaccine for effective prophylaxis of human populations in endemic areas, the disease prevention relies solely on vector control strategies and personal protection measures. OROV fever is considered to have the potential to spread across the American continent and under favorable climatic conditions may expand its geographic distribution to other continents. In view of OROV’s emergence, increased interest for formerly neglected tropical diseases and within the One Health concept, the existing knowledge and gaps of knowledge on OROV fever are reviewed.

  3. The Anti-Inflammatory Effect of Human Telomerase-Derived Peptide on P. gingivalis Lipopolysaccharide-Induced Inflammatory Cytokine Production and Its Mechanism in Human Dental Pulp Cells

    Directory of Open Access Journals (Sweden)

    Yoo-Jin Ko

    2015-01-01

    Full Text Available Porphyromonas gingivalis is considered with inducing pulpal inflammation and has lipopolysaccharide (LPS as an inflammatory stimulator. GV1001 peptide has anticancer and anti-inflammation activity due to inhibiting activation of signaling molecules after penetration into the various types of cells. Therefore, this study examined inhibitory effect of GV1001 on dental pulp cells (hDPCs stimulated by P. gingivalis LPS. The intracellular distribution of GV1001 was analyzed by confocal microscopy. Real-time RT-PCR was performed to determine the expression levels of TNF-α and IL-6 cytokines. The role of signaling by MAP kinases (ERK and p38 was explored using Western blot analysis. The effect of GV1001 peptide on hDPCs viability was measured by MTT assay. GV1001 was predominantly located in hDPC cytoplasm. The peptide inhibited P. gingivalis LPS-induced TNF-α and IL-6 production in hDPCs without significant cytotoxicity. Furthermore, GV1001 treatment markedly inhibited the phosphorylation of MAP kinases (ERK and p38 in LPS-stimulated hDPCs. GV1001 may prevent P. gingivalis LPS-induced inflammation of apical tissue. Also, these findings provide mechanistic insight into how GV1001 peptide causes anti-inflammatory actions in LPS-stimulated pulpitis without significantly affecting cell viability.

  4. ETIOLOGY OF OROYA FEVER

    Science.gov (United States)

    Noguchi, Hideyo

    1926-01-01

    The experiments reported here were carried on in the main with passage strains of Bartonella bacilliformis, and the results indicate that the virulence of the organism has been considerably enhanced by passage through susceptible animals. While the animals of the earlier experimental series showed no anemia, some of the present group manifested a definite reduction in the number of red cells and in hemoglobin, and in one instance (M. rhesus 25) anemia was of the extreme type so often associated with Oroya fever in man. The anemic condition appeared to be secondary in character, however, nucleated red cells being few in number. In this animal also Bartonella bacilliformis was readily demonstrated in the erythrocytes by means of stained smears, though the number of cells invaded by the parasites was by no means so great as in the human infection. In most instances of experimental Bartonella infection so far induced the demonstration of the parasites by ordinary routine examination of stained film preparations is possible only when the titer of the blood exceeds 1:1,000. Prolonged search of many slides has not been attempted, however. The number of microorganisms in the blood, as shown by culture tests of ascending dilutions, was in most instances highest (1:100,000 to 1:10,000,000) during the early period of the infection coincident usually with the period of highest fever, falling to a titer of 1:10 during the last half of the disease. In one of the fatally infected monkeys, however, the titer increased from 1:10 on the 4th day to 1:1,000,000 on the 24th day. The titer of the blood was equally great in Monkeys 5 and 6, although the former was inoculated locally, the other intravenously and intraperitoneally. The largest proportion of infected red cells was found in Monkey 25, while the blood titer, as shown by culture test, was highest in Monkey 7. The febrile reaction varied in the animals of this series from a severe continuous fever of 104–105°F., lasting 2 to

  5. Role of human amnion-derived mesenchymal stem cells in promoting osteogenic differentiation by influencing p38 MAPK signaling in lipopolysaccharide -induced human bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Wang, Yuli; Wu, Hongxia; Shen, Ming; Ding, Siyang; Miao, Jing; Chen, Ning

    2017-01-01

    Periodontitis is a chronic inflammatory disease induced by bacterial pathogens, which not only affect connective tissue attachments but also cause alveolar bone loss. In this study, we investigated the anti-inflammatory effects of Human amnion-derived mesenchymal stem cells (HAMSCs) on human bone marrow mesenchymal stem cells (HBMSCs) under lipopolysaccharide (LPS)-induced inflammatory conditions. Proliferation levels were measured by flow cytometry and immunofluorescence staining of 5-ethynyl-2′-deoxyuridine (EdU). Osteoblastic differentiation and mineralization were investigated using chromogenic alkaline phosphatase activity (ALP) activity substrate assays, Alizarin red S staining, and RT-PCR analysis of HBMSCs osteogenic marker expression. Oxidative stress induced by LPS was investigated by assaying reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity. Here, we demonstrated that HAMSCs increased the proliferation, osteoblastic differentiation, and SOD activity of LPS-induced HBMSCs, and down-regulated the ROS level. Moreover, our results suggested that the activation of p38 MAPK signal transduction pathway is essential for reversing the LPS-induced bone-destructive processes. SB203580, a selective inhibitor of p38 MAPK signaling, significantly suppressed the anti-inflammatory effects in HAMSCs. In conclusion, HAMSCs show a strong potential in treating inflammation-induced bone loss by influencing p38 MAPK signaling. - Highlights: • LPS inhibites osteogenic differentiation in HBMSCs via suppression of p38 MAPK signaling pathway. • HAMSCs promote LPS-induced HBMSCs osteogenic differentiation through p38 MAPK signaling pathway. • HAMSCs reverse LPS-induced oxidative stress in LPS-induced HBMSCs through p38 MAPK signaling pathway.

  6. The 2007–2010 Q fever epidemic in The Netherlands: characteristics of notified acute Q fever patients and the association with dairy goat farming.

    Science.gov (United States)

    Dijkstra, Frederika; van der Hoek, Wim; Wijers, Nancy; Schimmer, Barbara; Rietveld, Ariene; Wijkmans, Clementine J; Vellema, Piet; Schneeberger, Peter M

    2012-02-01

    We describe the Q fever epidemic in the Netherlands with emphasis on the epidemiological characteristics of acute Q fever patients and the association with veterinary factors. Data from 3264 notifications for acute Q fever in the period from 2007 through 2009 were analysed. The patients most affected were men, smokers and persons aged 40–60 years. Pneumonia was the most common clinical presentation (62% in 2007 and 2008). Only 3.2% of the patients were working in the agriculture sector and 0.5% in the meat-processing industry including abattoirs. Dairy goat farms with Coxiella burnetii-induced abortion waves were mainly located in the same area where human cases occurred. Airborne transmission of contaminated dust particles from commercial dairy goat farms in densely populated areas has probably caused this epidemic. In 2010, there was a sharp decline in the number of notified cases following the implementation of control measures on dairy goat and sheep farms such as vaccination, hygiene measures and culling of pregnant animals on infected farms. In combination with a rise in the human population with antibodies against C. burnetii, these have most likely ended the outbreak. Development of chronic Q fever in infected patients remains an important problem for years to come.

  7. Yellow Fever Vaccine: What You Need to Know

    Science.gov (United States)

    ... How can I prevent yellow fever? Yellow fever vaccine Yellow fever vaccine can prevent yellow fever. Yellow fever vaccine ... such as those containing DEET. 3 Yellow fever vaccine Yellow fever vaccine is a live, weakened virus. It is ...

  8. Psychosis in dengue fever

    OpenAIRE

    Suprakash Chaudhury; Biswajit Jagtap; Deepak Kumar Ghosh

    2017-01-01

    An 18-year-old male student developed abnormal behavior while undergoing treatment for dengue fever. He was ill-kempt, irritable and had auditory and visual hallucinations and vague persecutory delusions in clear sensorium with impaired insight. The psychotic episode had a temporal correlation with dengue fever. Psychiatric comorbidities of dengue fever including mania, anxiety, depression, and catatonia are mentioned in literature but the literature on the psychosis following dengue is spars...

  9. Induced hypernatraemia is protective in acute lung injury.

    Science.gov (United States)

    Bihari, Shailesh; Dixon, Dani-Louise; Lawrence, Mark D; Bersten, Andrew D

    2016-06-15

    Sucrose induced hyperosmolarity is lung protective but the safety of administering hyperosmolar sucrose in patients is unknown. Hypertonic saline is commonly used to produce hyperosmolarity aimed at reducing intra cranial pressure in patients with intracranial pathology. Therefore we studied the protective effects of 20% saline in a lipopolysaccharide lung injury rat model. 20% saline was also compared with other commonly used fluids. Following lipopolysaccharide-induced acute lung injury, male Sprague Dawley rats received either 20% hypertonic saline, 0.9% saline, 4% albumin, 20% albumin, 5% glucose or 20% albumin with 5% glucose, i.v. During 2h of non-injurious mechanical ventilation parameters of acute lung injury were assessed. Hypertonic saline resulted in hypernatraemia (160 (1) mmol/l, mean (SD)) maintained through 2h of ventilation, and in amelioration of lung oedema, myeloperoxidase, bronchoalveolar cell infiltrate, total soluble protein and inflammatory cytokines, and lung histological injury score, compared with positive control and all other fluids (p ≤ 0.001). Lung physiology was maintained (conserved PaO2, elastance), associated with preservation of alveolar surfactant (p ≤ 0.0001). Independent of fluid or sodium load, induced hypernatraemia is lung protective in lipopolysaccharide-induced acute lung injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Glaucocalyxin B Alleviates Lipopolysaccharide-Induced Parkinson’s Disease by Inhibiting TLR/NF-κB and Activating Nrf2/HO-1 Pathway

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2017-12-01

    Full Text Available Background/Aims: Parkinson’s disease (PD is a common neurodegenerative disease in the old population, characterized by dopaminergic neuron loss, inflammation and oxidative stress injury in the substantia nigra. Glaucocalyxin B (GLB, an ent-kauranoid diterpenoid isolated from Rabdosia japonica, has anti-inflammation and anti-tumor effects. However, its effects on PD remain unclear. Methods: PD was introduced in rats via injection of lipopolysaccharide (LPS into cerebral corpus striatum, and GLB was given intracerebroventricularly to these rats. Their walking, climbing and sensory states were detected by Stepping, Whisker and Cylinder Tests. The expression of tyrosine hydroxylase (TH, glial fibrillary acidic protein (GFAP, CD11b and ionized calcium binding adaptor molecule (IBA-1 were detected by immunohischemical staining. The levels of a series of inflammatory factors, oxidative stress-related factors and apoptosis-related factors were measured by real-time PCR, immunoblotting and ELISA. In addition, Toll-like receptor (TLR/nuclear factor kappa B (NF-κB and nuclear factor erythroid 2-related factor 2 (Nrf2/heme oxygenase (HO-1 pathways were investigated to illustrate the underlying mechanism. In vitro, microglial cells exposed to LPS were treated with GLB. Results: The injection of LPS caused walking, climbing and sensory disturbances in rats, induced inflammation, oxidative stress response and apoptosis, and activated TLR/NF-κB and Nrf2/ HO-1 pathways in the cerebral tissue. GLB administration attenuated LPS-induced alterations. The TLR/NF-κB pathway was deactivated and Nrf2/HO-1 was activated after application of GLB. In vitro, cytotoxic effects induced by the conditioned medium derived from microglial cells exposed to LPS in PC12 cells were attenuated by GLB. Conclusion: GLB suppresses LPS-induced PD symptoms by modification of TLR/NF-κB and Nrf2/HO-1 pathways in vivo and in vitro.

  11. The role of the hemostatic system in murine liver injury induced by coexposure to lipopolysaccharide and trovafloxacin, a drug with idiosyncratic liability

    International Nuclear Information System (INIS)

    Shaw, Patrick J.; Fullerton, Aaron M.; Scott, Michael A.; Ganey, Patricia E.; Roth, Robert A.

    2009-01-01

    The use of the fluoroquinolone antibiotic trovafloxacin (TVX) was severely restricted in 1999 due to its association with idiosyncratic hepatotoxicity. Previously, we reported that a nontoxic dose of TVX interacts with a nontoxic dose of lipopolysaccharide (LPS) to cause robust hepatocellular injury in mice. This interaction with LPS was not seen in mice treated with levofloxacin (LVX), a fluoroquinolone not associated with hepatotoxicity in people. TVX/LPS-coexposure caused an increase in plasma alanine aminotransferase (ALT) activity as early as 4.5 h after LPS administration which progressed through 15 h. We examined the role of the hemostatic system in TVX/LPS-induced liver injury. At the onset of liver injury, coexposure to TVX/LPS, but not exposure to TVX, LVX, LPS or LVX/LPS, caused increased plasma concentration of thrombin-antithrombin dimers and decreased plasma circulating fibrinogen. LPS treatment induced a small increase in plasma plasminogen activator inhibitor-1 (PAI-1) concentration, and TVX pretreatment enhanced this effect. TVX/LPS coexposure also resulted in hepatic fibrin deposition. Anticoagulant heparin administration reduced TVX/LPS-induced hepatic fibrin deposition and liver injury. PAI-1 -/- mice treated with TVX/LPS exhibited similar fibrin deposition to wild-type mice but had significantly reduced hepatocellular injury. PAI-1 -/- mice, but not heparin-treated mice, had reduced plasma concentrations of several cytokines compared to TVX/LPS-treated controls. In summary, TVX/LPS-coexposure caused an imbalance in the hemostatic system, resulting in thrombin activation increased, plasma concentration of PAI-1 and hepatic fibrin deposition. Both thrombin activation and PAI-1 play critical roles in the progression of TVX/LPS-induced liver injury, but through different modes of action.

  12. Effect of (social) media on the political figure fever model: Jokowi-fever model

    Science.gov (United States)

    Yong, Benny; Samat, Nor Azah

    2016-02-01

    In recent years, political figures begin to utilize social media as one of alternative to engage in communication with their supporters. Publics referred to Jokowi, one of the candidates in Indonesia presidential election in 2014, as the first politician in Indonesia to truly understand the power of social media. Social media is very important in shaping public opinion. In this paper, effect of social media on the Jokowi-fever model in a closed population will be discussed. Supporter population is divided into three class sub-population, i.e susceptible supporters, Jokowi infected supporters, and recovered supporters. For case no positive media, there are two equilibrium points; the Jokowi-fever free equilibrium point in which it locally stable if basic reproductive ratio less than one and the Jokowi-fever endemic equilibrium point in which it locally stable if basic reproductive ratio greater than one. For case no negative media, there is only the Jokowi-fever endemic equilibrium point in which it locally stable if the condition is satisfied. Generally, for case positive media proportion is positive, there is no Jokowi-fever free equilibrium point. The numerical result shows that social media gives significantly effect on Jokowi-fever model, a sharp increase or a sharp decrease in the number of Jokowi infected supporters. It is also shown that the boredom rate is one of the sensitive parameters in the Jokowi-fever model; it affects the number of Jokowi infected supporters.

  13. Single-cell and population NF-κB dynamic responses depend on lipopolysaccharide preparation.

    Directory of Open Access Journals (Sweden)

    Miriam V Gutschow

    Full Text Available Lipopolysaccharide (LPS, found in the outer membrane of gram-negative bacteria, elicits a strong response from the transcription factor family Nuclear factor (NF-κB via Toll-like receptor (TLR 4. The cellular response to lipopolysaccharide varies depending on the source and preparation of the ligand, however. Our goal was to compare single-cell NF-κB dynamics across multiple sources and concentrations of LPS.Using live-cell fluorescence microscopy, we determined the NF-κB activation dynamics of hundreds of single cells expressing a p65-dsRed fusion protein. We used computational image analysis to measure the nuclear localization of the fusion protein in the cells over time. The concentration range spanned up to nine orders of magnitude for three E. coli LPS preparations. We find that the LPS preparations induce markedly different responses, even accounting for potency differences. We also find that the ability of soluble TNF receptor to affect NF-κB dynamics varies strikingly across the three preparations.Our work strongly suggests that the cellular response to LPS is highly sensitive to the source and preparation of the ligand. We therefore caution that conclusions drawn from experiments using one preparation may not be applicable to LPS in general.

  14. Association between nasal shedding and fever that influenza A (H3N2) induces in dogs.

    Science.gov (United States)

    Song, Daesub; Moon, Hyoungjoon; Jung, Kwonil; Yeom, Minjoo; Kim, Hyekwon; Han, Sangyoon; An, Dongjun; Oh, Jinsik; Kim, Jongman; Park, Bongkyun; Kang, Bokyu

    2011-01-05

    Avian origin canine influenza virus was reported in Korea. The dog to dog contact transmission of the avian origin canine influenza virus (CIV) H3N2 and CIV H3N8 was shown by experimental contact transmission. This study was focused on viral excretion and fever in order to elucidate the epidemiological associations which might be helpful to control the disease transmissions in CIV outbreak in dogs. An influenza seronegative 10-week-old Beagle dog was experimentally inoculated with the canine influenza virus A/canine/01/2007, subtype H3N2. Eight hours after inoculation, the infected dog was cohoused with seven uninfected Beagle dogs. Clinical signs including fever were recorded for 14 days post inoculation. The infected dog and four of seven contact dogs in the study showed clinical signs (sneezing, nasal discharge and coughing) during the study. Viral shedding occurred in all of the animals tested and began on 1 to 6 DPI in dogs with clinical signs. Elevated body temperatures above 39.5 °C (geometric mean temperature of 39.86 °C ± 0.49) were observed in all symptomatic dogs. The mean viral titer during fever was 2.99 log EID₅₀/ml, which was significantly higher than the viral titer detected in the non fever. The data show that contact dogs with a canine influenza infected dog shed different levels of virus in their nasal excretions and demonstrate that clinical signs, including fever, significantly correlate with the viral shedding.

  15. Association between nasal shedding and fever that influenza A (H3N2 induces in dogs

    Directory of Open Access Journals (Sweden)

    Oh Jinsik

    2011-01-01

    Full Text Available Abstract Background Avian origin canine influenza virus was reported in Korea. The dog to dog contact transmission of the avian origin canine influenza virus (CIV H3N2 and CIV H3N8 was shown by experimental contact transmission. This study was focused on viral excretion and fever in order to elucidate the epidemiological associations which might be helpful to control the disease transmissions in CIV outbreak in dogs. Methods An influenza seronegative 10-week-old Beagle dog was experimentally inoculated with the canine influenza virus A/canine/01/2007, subtype H3N2. Eight hours after inoculation, the infected dog was cohoused with seven uninfected Beagle dogs. Clinical signs including fever were recorded for 14 days post inoculation. Results The infected dog and four of seven contact dogs in the study showed clinical signs (sneezing, nasal discharge and coughing during the study. Viral shedding occurred in all of the animals tested and began on 1 to 6 DPI in dogs with clinical signs. Elevated body temperatures above 39.5°C (geometric mean temperature of 39.86°C±0.49 were observed in all symptomatic dogs. The mean viral titer during fever was 2.99 log EID50/ml, which was significantly higher than the viral titer detected in the non fever. Conclusions The data show that contact dogs with a canine influenza infected dog shed different levels of virus in their nasal excretions and demonstrate that clinical signs, including fever, significantly correlate with the viral shedding.

  16. Curcumin protects dopaminergic neurons against inflammation-mediated damage and improves motor dysfunction induced by single intranigral lipopolysaccharide injection.

    Science.gov (United States)

    Sharma, Neha; Sharma, Sheetal; Nehru, Bimla

    2017-06-01

    Various studies have indicated a lower incidence and prevalence of neurological conditions in people consuming curcumin. The ability of curcumin to target multiple cascades, simultaneously, could be held responsible for its neuroprotective effects. The present study was designed to investigate the potential of curcumin in minimizing microglia-mediated damage in lipopolysaccharide (LPS) induced model of PD. Altered microglial functions and increased inflammatory profile of the CNS have severe behavioral consequences. In the current investigation, a single injection of LPS (5 ug/5 µl PBS) was injected into the substantia nigra (SN) of rats, and curcumin [40 mg/kg b.wt (i.p.)] was administered daily for a period of 21 days. LPS triggered an inflammatory response characterized by glial activation [Iba-1 and glial fibrillary acidic protein (GFAP)] and pro-inflammatory cytokine production (TNF-α and IL-1β) leading to extensive dopaminergic loss and behavioral abnormality in rats. The behavioral observations, biochemical markers, quantification of dopamine and its metabolites (DOPAC and HVA) using HPLC followed by IHC of tyrosine hydroxylase (TH) were evaluated after 21 days of LPS injection. Curcumin supplementation prevented dopaminergic degeneration in LPS-treated animals by normalizing the altered levels of biomarkers. Also, a significant improvement in TH levels as well as behavioral parameters (actophotometer, rotarod, beam walking and grid walking tests) were seen in LPS injected rats. Curcumin shielded the dopaminergic neurons against LPS-induced inflammatory response, which was associated with suppression of glial activation (microglia and astrocytes) and transcription factor NF-κB as depicted from RT-PCR and EMSA assay. Curcumin also suppressed microglial NADPH oxidase activation as observed from NADPH oxidase activity. The results suggested that one of the important mechanisms by which curcumin mediates its protective effects in the LPS-induced PD

  17. Agmatine ameliorates lipopolysaccharide induced depressive-like behaviour in mice by targeting the underlying inflammatory and oxido-nitrosative mediators.

    Science.gov (United States)

    Gawali, Nitin B; Bulani, Vipin D; Chowdhury, Amrita A; Deshpande, Padmini S; Nagmoti, Dnyaneshwar M; Juvekar, Archana R

    2016-10-01

    Experimental and clinical evidence indicates that pro-inflammatory cytokines, oxidative stress and brain-derived neurotrophic factor (BDNF) signalling mechanisms play a role in the pathophysiology of depression. Agmatine is a neurotransmitter and/or neuromodulator that has emerged as a potential agent to manage diverse central nervous system disorders. Agmatine has been shown to exert antidepressant-like effect. The present study investigated ability of agmatine to abolish the depressive-like behaviour induced by the administration of the lipopolysaccharide (LPS) in mice. Agmatine (20 and 40mg/kg) was administered daily for 7days, then the mice were challenged with saline or LPS (0.83mg/kg; i.p.) on the 7th day. After 24h of LPS administration we tested mice for depressive-like behaviour. LPS treated animals presented an increase in immobility time in the forced-swim test (FST), tail suspension test (TST) which was reversed by agmatine pre-treatment (20 and 40mg/kg). Oxidative/nitrosative stress evoked by LPS was ameliorated by both doses of agmatine in hippocampus (HC) and prefrontal cortex (PFC). Administration of LPS caused an increase in interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), whereas BDNF was down regulated in the HC. Agmatine pre-treatment at 40mg/kg ameliorated LPS-induced neuroinflammation by attenuating brain IL-1β and TNF-α level. In addition, agmatine pre-treatment also up-regulated the BDNF level in the HC. The present study shows that pre-treatment of agmatine is able to abolish the behavioural responses in the FST and TST elicited by the LPS-induced model of depression that may depend on the inhibition of pro-inflammatory mediators, reduction of oxidative stress as well as activation neuroplasticity-related signalling in mice, suggesting that agmatine may constitute an monotherapy/adjuvant for the management of depression associated with inflammation. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Correlation of salivary immunoglobulin A against lipopolysaccharide of Porphyromonas gingivalis with clinical periodontal parameters

    Directory of Open Access Journals (Sweden)

    Pushpa S Pudakalkatti

    2015-01-01

    Full Text Available Background: A major challenge in clinical periodontics is to find a reliable molecular marker of periodontal tissue destruction. Aim: The aim of the present study was to assess, whether any correlation exists between salivary immunoglobulin A (IgA level against lipopolysaccharide of Porphyromonas gingivalis and clinical periodontal parameters (probing depth and clinical attachment loss. Materials and Methods: Totally, 30 patients with chronic periodontitis were included for the study based on clinical examination. Unstimulated saliva was collected from each study subject. Probing depth and clinical attachment loss were recorded in all selected subjects using University of North Carolina-15 periodontal probe. Extraction and purification of lipopolysaccharide were done from the standard strain of P. gingivalis (ATCC 33277. Enzyme linked immunosorbent assay (ELISA was used to detect the level of IgA antibodies against lipopolysaccharide of P. gingivalis in the saliva of each subject by coating wells of ELISA kit with extracted lipopolysaccharide antigen. Statistical Analysis: The correlation between salivary IgA and clinical periodontal parameters was checked using Karl Pearson′s correlation coefficient method and regression analysis. Results: The significant correlation was observed between salivary IgA level and clinical periodontal parameters in chronic periodontitis patients. Conclusion: A significant strong correlation was observed between salivary IgA against lipopolysaccharide of P. gingivalis and clinical periodontal parameters which suggest that salivary IgA level against lipopolysaccharide of P. gingivalis can be used to predict the severity of periodontal destruction in chronic periodontitis patients.

  19. Yellow fever: an update.

    Science.gov (United States)

    Monath, T P

    2001-08-01

    Yellow fever, the original viral haemorrhagic fever, was one of the most feared lethal diseases before the development of an effective vaccine. Today the disease still affects as many as 200,000 persons annually in tropical regions of Africa and South America, and poses a significant hazard to unvaccinated travellers to these areas. Yellow fever is transmitted in a cycle involving monkeys and mosquitoes, but human beings can also serve as the viraemic host for mosquito infection. Recent increases in the density and distribution of the urban mosquito vector, Aedes aegypti, as well as the rise in air travel increase the risk of introduction and spread of yellow fever to North and Central America, the Caribbean and Asia. Here I review the clinical features of the disease, its pathogenesis and pathophysiology. The disease mechanisms are poorly understood and have not been the subject of modern clinical research. Since there is no specific treatment, and management of patients with the disease is extremely problematic, the emphasis is on preventative vaccination. As a zoonosis, yellow fever cannot be eradicated, but reduction of the human disease burden is achievable through routine childhood vaccination in endemic countries, with a low cost for the benefits obtained. The biological characteristics, safety, and efficacy of live attenuated, yellow fever 17D vaccine are reviewed. New applications of yellow fever 17D virus as a vector for foreign genes hold considerable promise as a means of developing new vaccines against other viruses, and possibly against cancers.

  20. Safety of Therapeutic Fever Induction in Cancer Patients Using Approved PAMP Drugs

    Directory of Open Access Journals (Sweden)

    Uwe Rudolf Max Reuter

    2018-04-01

    Full Text Available William Coley, between 1895 and 1936, treated hundreds of cancer patients using infusions of fever inducing bacerial extracts. Similar experiments were done by Klyuyeva and co-workers in the 1940ies in Russia using trypanosoma extracts. Many remissions and cures were reported. We have conjectured that pathogen associated molecular pattern substances (PAMP are the molecular explanation for the beneficial treatments in both groups. We could show that a combination of PAMP can eradicate solid tumours in cancer mice if applied several times. Accordingly, we suggested to combine PAMP containing approved drugs to treat cancer patients using a protocol similar to the old fever induction regimen. In this retrospective phase-1 study we report on the fever induction capacity and safety of applications of bacterial extracts, combinations of bacterial extracts with approved drugs, and combinations of approved drugs in 131 mainly cancer patients. Adverse reactions were those which can be expected during a feverish infection and mild. Over 523 fever inductions, no severe adverse reaction was observed.

  1. Innate immune responses induced by lipopolysaccharide and lipoteichoic acid in primary goat mammary epithelial cells.

    Science.gov (United States)

    Bulgari, Omar; Dong, Xianwen; Roca, Alfred L; Caroli, Anna M; Loor, Juan J

    2017-01-01

    Innate immune responses induced by in vitro stimulation of primary mammary epithelial cells (MEC) using Gram-negative lipopolysaccharide (LPS) and Gram-positive lipoteichoic acid (LTA) bacterial cell wall components are well- characterized in bovine species. The objective of the current study was to characterize the downstream regulation of the inflammatory response induced by Toll-like receptors in primary goat MEC (pgMEC). We performed quantitative real-time RT-PCR (qPCR) to measure mRNA levels of 9 genes involved in transcriptional regulation or antibacterial activity: Toll-like receptor 2 ( TLR2 ), Toll-like receptor 4 ( TLR4 ), prostaglandin-endoperoxide synthase 2 ( PTGS2 ), interferon induced protein with tetratricopeptide repeats 3 ( IFIT3 ), interferon regulatory factor 3 ( IRF3 ), myeloid differentiation primary response 88 ( MYD88 ), nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 ( NFKB1 ), Toll interacting protein ( TOLLIP ), and lactoferrin ( LTF ). Furthermore, we analyzed 7 cytokines involved in Toll-like receptor signaling pathways: C-C motif chemokine ligand 2 ( CCL2 ), C-C motif chemokine ligand 5 ( CCL5 ), C-X-C motif chemokine ligand 6 ( CXCL6 ), interleukin 8 ( CXCL8 ), interleukin 1 beta ( IL1B ), interleukin 6 ( IL6 ), and tumor necrosis factor alpha ( TNF ). Stimulation of pgMEC with LPS for 3 h led to an increase in expression of CCL2 , CXCL6 , IL6 , CXCL8 , PTGS2 , IFIT3 , MYD88 , NFKB1 , and TLR4 ( P  < 0.05). Except for IL6 , and PTGS2 , the same genes had greater expression than controls at 6 h post-LPS ( P  < 0.05). Expression of CCL5 , PTGS2 , IFIT3 , NFKB1 , TLR4 , and TOLLIP was greater than controls after 3 h of incubation with LTA ( P  < 0.05). Compared to controls, stimulation with LTA for 6 h led to greater expression of PTGS2 , IFIT3 , NFKB1 , and TOLLIP ( P  < 0.05) whereas the expression of CXCL6 , CXCL8 , and TLR4 was lower ( P  < 0.05). At 3 h incubation with both toxins

  2. The cross wavelet analysis of dengue fever variability influenced by meteorological conditions

    Science.gov (United States)

    Lin, Yuan-Chien; Yu, Hwa-Lung; Lee, Chieh-Han

    2015-04-01

    The multiyear variation of meteorological conditions induced by climate change causes the changing diffusion pattern of infectious disease and serious epidemic situation. Among them, dengue fever is one of the most serious vector-borne diseases distributed in tropical and sub-tropical regions. Dengue virus is transmitted by several species of mosquito and causing lots amount of human deaths every year around the world. The objective of this study is to investigate the impact of meteorological variables to the temporal variation of dengue fever epidemic in southern Taiwan. Several extreme and average indices of meteorological variables, i.e. temperature and humidity, were used for this analysis, including averaged, maximum and minimum temperature, and average rainfall, maximum 1-hr rainfall, and maximum 24-hr rainfall. This study plans to identify and quantify the nonlinear relationship of meteorological variables and dengue fever epidemic, finding the non-stationary time-frequency relationship and phase lag effects of those time series from 1998-2011 by using cross wavelet method. Results show that meteorological variables all have a significant time-frequency correlation region to dengue fever epidemic in frequency about one year (52 weeks). The associated phases can range from 0 to 90 degrees (0-13 weeks lag from meteorological factors to dengue incidences). Keywords: dengue fever, cross wavelet analysis, meteorological factor

  3. Lipopolysaccharide-induced inflammation attenuates taste progenitor cell proliferation and shortens the life span of taste bud cells

    Directory of Open Access Journals (Sweden)

    Brand Joseph

    2010-06-01

    Full Text Available Abstract Background The mammalian taste bud, a complex collection of taste sensory cells, supporting cells, and immature basal cells, is the structural unit for detecting taste stimuli in the oral cavity. Even though the cells of the taste bud undergo constant turnover, the structural homeostasis of the bud is maintained by balancing cell proliferation and cell death. Compared with nongustatory lingual epithelial cells, taste cells express higher levels of several inflammatory receptors and signalling proteins. Whether inflammation, an underlying condition in some diseases associated with taste disorders, interferes with taste cell renewal and turnover is unknown. Here we report the effects of lipopolysaccharide (LPS-induced inflammation on taste progenitor cell proliferation and taste bud cell turnover in mouse taste tissues. Results Intraperitoneal injection of LPS rapidly induced expression of several inflammatory cytokines, including tumor necrosis factor (TNF-α, interferon (IFN-γ, and interleukin (IL-6, in mouse circumvallate and foliate papillae. TNF-α and IFN-γ immunoreactivities were preferentially localized to subsets of cells in taste buds. LPS-induced inflammation significantly reduced the number of 5-bromo-2'-deoxyuridine (BrdU-labeled newborn taste bud cells 1-3 days after LPS injection, suggesting an inhibition of taste bud cell renewal. BrdU pulse-chase experiments showed that BrdU-labeled taste cells had a shorter average life span in LPS-treated mice than in controls. To investigate whether LPS inhibits taste cell renewal by suppressing taste progenitor cell proliferation, we studied the expression of Ki67, a cell proliferation marker. Quantitative real-time RT-PCR revealed that LPS markedly reduced Ki67 mRNA levels in circumvallate and foliate epithelia. Immunofluorescent staining using anti-Ki67 antibodies showed that LPS decreased the number of Ki67-positive cells in the basal regions surrounding circumvallate taste buds

  4. Lipopolysaccharide-induced inflammation attenuates taste progenitor cell proliferation and shortens the life span of taste bud cells.

    Science.gov (United States)

    Cohn, Zachary J; Kim, Agnes; Huang, Liquan; Brand, Joseph; Wang, Hong

    2010-06-10

    The mammalian taste bud, a complex collection of taste sensory cells, supporting cells, and immature basal cells, is the structural unit for detecting taste stimuli in the oral cavity. Even though the cells of the taste bud undergo constant turnover, the structural homeostasis of the bud is maintained by balancing cell proliferation and cell death. Compared with nongustatory lingual epithelial cells, taste cells express higher levels of several inflammatory receptors and signalling proteins. Whether inflammation, an underlying condition in some diseases associated with taste disorders, interferes with taste cell renewal and turnover is unknown. Here we report the effects of lipopolysaccharide (LPS)-induced inflammation on taste progenitor cell proliferation and taste bud cell turnover in mouse taste tissues. Intraperitoneal injection of LPS rapidly induced expression of several inflammatory cytokines, including tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, and interleukin (IL)-6, in mouse circumvallate and foliate papillae. TNF-alpha and IFN-gamma immunoreactivities were preferentially localized to subsets of cells in taste buds. LPS-induced inflammation significantly reduced the number of 5-bromo-2'-deoxyuridine (BrdU)-labeled newborn taste bud cells 1-3 days after LPS injection, suggesting an inhibition of taste bud cell renewal. BrdU pulse-chase experiments showed that BrdU-labeled taste cells had a shorter average life span in LPS-treated mice than in controls. To investigate whether LPS inhibits taste cell renewal by suppressing taste progenitor cell proliferation, we studied the expression of Ki67, a cell proliferation marker. Quantitative real-time RT-PCR revealed that LPS markedly reduced Ki67 mRNA levels in circumvallate and foliate epithelia. Immunofluorescent staining using anti-Ki67 antibodies showed that LPS decreased the number of Ki67-positive cells in the basal regions surrounding circumvallate taste buds, the niche for taste progenitor

  5. Recurrent exposure to subclinical lipopolysaccharide increases mortality and induces cardiac fibrosis in mice.

    Directory of Open Access Journals (Sweden)

    Wilbur Y W Lew

    Full Text Available BACKGROUND: Circulating subclinical lipopolysaccharide (LPS occurs in health and disease. Ingesting high fatty meals increases LPS that cause metabolic endotoxemia. Subclinical LPS in periodontal disease may impair endothelial function. The heart may be targeted as cardiac cells express TLR4, the LPS receptor. It was hypothesized that recurrent exposure to subclinical LPS increases mortality and causes cardiac fibrosis. METHODS: C57Bl/6 mice were injected with intraperitoneal saline (control, low dose LPS (0.1 or 1 mg/kg, or moderate dose LPS (10 or 20 mg/kg, once a week for 3 months. Left ventricular (LV function (echocardiography, hemodynamics (tail cuff pressure and electrocardiograms (telemetry were measured. Cardiac fibrosis was assessed by picrosirius red staining and LV expression of fibrosis related genes (QRT-PCR. Adult cardiac fibroblasts were isolated and exposed to LPS. RESULTS: LPS injections transiently increased heart rate and blood pressure (<6 hours and mildly decreased LV function with full recovery by 24 hours. Mice tolerated weekly LPS for 2-3 months with no change in activity, appearance, appetite, weight, blood pressure, LV function, oximetry, or blood chemistries. Mortality increased after 60-90 days with moderate, but not low dose LPS. Arrhythmias occurred a few hours before death. LV collagen fraction area increased dose-dependently from 3.0±0.5% (SEM in the saline control group, to 5.6±0.5% with low dose LPS and 9.7±0.9% with moderate dose LPS (P<0.05 moderate vs low dose LPS, and each LPS dose vs control. LPS increased LV expression of collagen Iα1, collagen IIIα1, MMP2, MMP9, TIMP1, periostin and IL-6 (P<0.05 moderate vs low dose LPS and vs control. LPS increased α-SMA immunostaining of myofibroblasts. LPS dose-dependently increased IL-6 in isolated adult cardiac fibroblasts. CONCLUSIONS: Recurrent exposure to subclinical LPS increases mortality and induces cardiac fibrosis.

  6. Oil field and freshwater isolates of Shewanella putrefaciens have lipopolysaccharide polyacrylamide gel profiles characteristic of marine bacteria

    International Nuclear Information System (INIS)

    Pickard, C.; Foght, J.M.; Pickard, M.A.; Westlake, D.W.S.

    1993-01-01

    The lipopolysaccharide structure of oil field and freshwater isolates of bacteria that reduce ferric iron, recently classified as strains of Shewanella putrefaciens, was analyzed using polyacrylamide gel electrophoresis and a lipopolysaccharide-specific silver-staining procedure. The results demonstrate that all the oil field and freshwater isolates examined exhibited the more hydrophobic R-type lipopolysaccharide, which has been found to be characteristic of Gram-negative marine bacteria. This hydrophobic lipopolysaccharide would confer an advantage on bacteria involved in hydrocarbon degradation by assisting their association with the surface of oil droplets. 15 refs., 1 fig

  7. Typhoid fever

    DEFF Research Database (Denmark)

    Wain, John; Hendriksen, Rene S.; Mikoleit, Matthew L.

    2015-01-01

    Control of typhoid fever relies on clinical information, diagnosis, and an understanding for the epidemiology of the disease. Despite the breadth of work done so far, much is not known about the biology of this human-adapted bacterial pathogen and the complexity of the disease in endemic areas...... with shifting trends in enteric fever. This knowledge is crucial, both to control the disease and to manage cases. Additionally, salmonella serovars that cause human infection can change over time and location. In areas of Asia, multidrug-resistant Salmonella enterica serovar Typhi (S Typhi) has been the main...... cause of enteric fever, but now S Typhi is being displaced by infections with drug-resistant S enterica serovar Paratyphi A. New conjugate vaccines are imminent and new treatments have been promised, but the engagement of local medical and public health institutions in endemic areas is needed to allow...

  8. Oropouche Fever: A Review

    OpenAIRE

    Hercules Sakkas; Petros Bozidis; Ashley Franks; Chrissanthy Papadopoulou

    2018-01-01

    Oropouche fever is an emerging zoonotic disease caused by Oropouche virus (OROV), an arthropod transmitted Orthobunyavirus circulating in South and Central America. During the last 60 years, more than 30 epidemics and over half a million clinical cases attributed to OROV infection have been reported in Brazil, Peru, Panama, Trinidad and Tobago. OROV fever is considered the second most frequent arboviral febrile disease in Brazil after dengue fever. OROV is transmitted through both urban and s...

  9. Assessment of Free Radical Scavenging Activity of Dimethylglycine Sodium Salt and Its Role in Providing Protection against Lipopolysaccharide-Induced Oxidative Stress in Mice.

    Science.gov (United States)

    Bai, Kaiwen; Xu, Wen; Zhang, Jingfei; Kou, Tao; Niu, Yu; Wan, Xiaoli; Zhang, Lili; Wang, Chao; Wang, Tian

    2016-01-01

    In the present study, the free radical scavenging activities (against 1,1-diphenyl-2-pierylhydrazy (DPPH), 2,2'-Azinobis-(3-ethylbenzthiazoline-6- sulphonate) (ABTS+), Hydrogen peroxide (H2O2)) of dimethylglycine sodium salt (DMG-Na) were measured and compared with those of Trolox (6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid), a commonly used antioxidant. The radical scavenging activities of DMG-Na were found to be the highest at 40 mg/ml. In Experiment 2, gastric intubation in mice with 12 mg DMG-Na/0.3 ml sterile saline solution significantly increased (P DMG-Na/0.3 ml sterile saline solution, which showed the highest antioxidant capacity, was further studied using a mice model. In Experiment 3, the mice CL (CON+ lipopolysaccharide (LPS)) group showed a significant decrease (P DMG+LPS) group showed a significant decrease (P DMG-Na could protect against the LPS-induced oxidative stress by enhancing the free radical scavenging capacity, and increasing the activity of antioxidant defense system.

  10. NSs protein of severe fever with thrombocytopenia syndrome virus suppresses interferon production through different mechanism than Rift Valley fever virus.

    Science.gov (United States)

    Zhang, S; Zheng, B; Wang, T; Li, A; Wan, J; Qu, J; Li, C H; Li, D; Liang, M

    Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly identified Phlebovirus that causes severe fever with thrombocytopenia syndrome. Our study demonstrated that SFTSV NSs functioned as IFN antagonist mainly by suppressing TBK1/IKKε-IRF3 signaling pathway. NSs interacted with and relocalized TANK-binding kinase 1 (TBK1) into NSs-induced cytoplasmic structures and this interaction could effectively inhibit downstream phosphorylation and dimerization of interferon regulatory factor 3 (IRF3), resulting in the suppression of antiviral signaling and IFN induction. Functional sites of SFTSV NSs binding with TBK1 were then studied and results showed that NSs had lost their IFN-inhibiting activity after deleting the 25 amino acids in N-terminal. Furthermore, the mechanism of Rift Valley fever virus (RVFV) NSs blocking IFN-β response were also investigated. Preliminary results showed that RVFV NSs proteins could neither interact nor co-localize with TBK1 in cytoplasm, but suppressed its expression levels, phosphorylation and dimerization of IRF3 in the subsequent steps, resulting in inhibition of the IFN-β production. Altogether, our data demonstrated the probable mechanism used by SFTSV to inhibit IFN responses which was different from RVFV and pointed toward a novel mechanism for RVFV suppressing IFN responses.

  11. Antioxidant activity of inulin and its role in the prevention of human colonic muscle cell impairment induced by lipopolysaccharide mucosal exposure.

    Directory of Open Access Journals (Sweden)

    Valentina Pasqualetti

    Full Text Available BACKGROUND: Fructans, such as inulin, are dietary fibers which stimulate gastro-intestinal (GI function acting as prebiotics. Lipopolysaccharide (LPS impairs GI motility, through production of reactive oxygen species. The antioxidant activity of various fructans was tested and the protective effect of inulin on colonic smooth muscle cell (SMC impairment, induced by exposure of human mucosa to LPS, was assessed in an ex vivo experimental model. METHODS: The antioxidant capacity of fructans was measured in an in vitro system that simulates cooking and digestion processes. Human colonic mucosa and submucosa, obtained from disease-free margins of resected segments for cancer, were sealed between two chambers, with the mucosal side facing upwards with Krebs solution with or without purified LPS from a pathogenic strain of Escherichia coli (O111:B4 and inulin (Frutafit IQ, and the submucosal side facing downwards into Krebs solution. The solutions on the submucosal side were collected following mucosal exposure to Krebs in the absence (N-undernatant or presence of LPS (LPS-undernatant or LPS+inulin (LPS+INU-undernatant. Undernatants were tested for their antioxidant activity and the effects on SMCs contractility. Inulin protective effects on mucosa and submucosa layers were assessed measuring the protein oxidation level in the experimental conditions analyzed. RESULTS: Antioxidant activity of inulin, which was significantly higher compared to simple sugars, remained unaltered despite cooking and digestion processes. Inulin protected the mucosal and submucosal layers against protein oxidation. Following exposure to LPS-undernatant, a significant decrease in maximal acetylcholine (Ach-induced contraction was observed when compared to the contraction induced in cells incubated with the N-undernatant (4±1% vs 25±5% respectively, P<0.005 and this effect was completely prevented by pre-incubation of LPS with Inulin (35±5%. CONCLUSIONS: Inulin protects

  12. Picfeltarraenin IA inhibits lipopolysaccharide-induced inflammatory cytokine production by the nuclear factor-κB pathway in human pulmonary epithelial A549 cells.

    Science.gov (United States)

    Shi, Rong; Wang, Qing; Ouyang, Yang; Wang, Qian; Xiong, Xudong

    2016-02-01

    The present study aimed to investigate the effect of picfeltarraenin IA (IA) on respiratory inflammation by analyzing its effect on interleukin (IL)-8 and prostaglandin E2 (PGE2) production. The expression of cyclooxygenase 2 (COX2) in human pulmonary adenocarcinoma epithelial A549 cells in culture was also examined. Human pulmonary epithelial A549 cells and the human monocytic leukemia THP-1 cell line were used in the current study. Cell viability was measured using a methylthiazol tetrazolium assay. The production of IL-8 and PGE2 was investigated using an enzyme-linked immunosorbent assay. The expression of COX2 and nuclear factor-κB (NF-κB)-p65 was examined using western blot analysis. Treatment with lipopolysaccharide (LPS; 10 µg/ml) resulted in the increased production of IL-8 and PGE2, and the increased expression of COX2 in the A549 cells. Furthermore, IA (0.1-10 µmol/l) significantly inhibited PGE2 production and COX2 expression in cells with LPS-induced IL-8, in a concentration-dependent manner. The results suggested that IA downregulates LPS-induced COX2 expression, and inhibits IL-8 and PGE2 production in pulmonary epithelial cells. Additionally, IA was observed to suppress the expression of COX2 in THP-1 cells, and also to regulate the expression of COX2 via the NF-κB pathway in the A549 cells, but not in the THP-1 cells. These results indicate that IA regulates LPS-induced cytokine release in A549 cells via the NF-κB pathway.

  13. [Inhibitory effects of pseudolaric acid B on inflammatory response and M1 phenotype polarization in RAW264.7 macrophages induced by lipopolysaccharide].

    Science.gov (United States)

    Li, Yuxiu; Li, Tan; Ji, Wenjie; Li, Xiao; Ma, Yongqiang; Zhao, Jihong; Zhou, Xin; Li, Yuming

    2016-05-01

    To investigate the effects of pseudolaric acid B (PLAB) on the inflammatory response and M1 phenotype polarization in RAW264.7 cells induced by lipopolysaccharide (LPS) and the related mechanisms. The inflammatory model in vitro was made using RAW264.7 cells stimulated by LPS, and then was treated with 0.5 μmol/L PLAB and 1 μmol/L GW9662, a peroxisome proliferators-activated receptor γ (PPARγ) antagonist. The cell cycle was tested by flow cytometry. The mRNA expressions of PPARγ and M1 phenotype markers interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α) were measured by real-time PCR. The expression levels of signal molecules involved in nuclear factor-κB (NF-κB) signal pathway were detected by Western blotting. PLAB markedly decreased the expressions of IL-1β and TNF-α mRNAs induced by LPS and increased PPARγ mRNA level. Moreover, the expressions of NF-κB p65, pNF-κB p65, IKKα, IKKβ, pIKKα/β, IκBα and pIκBα decreased in PLAB-treated cells. Meanwhile, RAW264.7 cells were arrested in G0 and G2 phase after the treatment with PLAB. However, the effects of PLAB on RAW264.7 cells could be reversed by GW9662 obviously. PLAB could inhibit the inflammatory response and M1 phenotype polarization in RAW264.7 cells induced by LPS via modulating cell cycle and NF-κB/PPARγ signal pathway.

  14. Dissection of antibody specificities induced by yellow fever vaccination.

    Directory of Open Access Journals (Sweden)

    Oksana Vratskikh

    Full Text Available The live attenuated yellow fever (YF vaccine has an excellent record of efficacy and one dose provides long-lasting immunity, which in many cases may last a lifetime. Vaccination stimulates strong innate and adaptive immune responses, and neutralizing antibodies are considered to be the major effectors that correlate with protection from disease. Similar to other flaviviruses, such antibodies are primarily induced by the viral envelope protein E, which consists of three distinct domains (DI, II, and III and is presented at the surface of mature flavivirions in an icosahedral arrangement. In general, the dominance and individual variation of antibodies to different domains of viral surface proteins and their impact on neutralizing activity are aspects of humoral immunity that are not well understood. To gain insight into these phenomena, we established a platform of immunoassays using recombinant proteins and protein domains that allowed us to dissect and quantify fine specificities of the polyclonal antibody response after YF vaccination in a panel of 51 vaccinees as well as determine their contribution to virus neutralization by serum depletion analyses. Our data revealed a high degree of individual variation in antibody specificities present in post-vaccination sera and differences in the contribution of different antibody subsets to virus neutralization. Irrespective of individual variation, a substantial proportion of neutralizing activity appeared to be due to antibodies directed to complex quaternary epitopes displayed on the virion surface only but not on monomeric E. On the other hand, DIII-specific antibodies (presumed to have the highest neutralizing activity as well as broadly flavivirus cross-reactive antibodies were absent or present at very low titers. These data provide new information on the fine specificity as well as variability of antibody responses after YF vaccination that are consistent with a strong influence of individual

  15. Lithotrites and postoperative fever

    DEFF Research Database (Denmark)

    Chu, David I; Lipkin, Michael E; Wang, Agnes J

    2013-01-01

    OBJECTIVE: To compare the risks of fever from different lithotrites after percutaneous nephrolithotomy (PNL). MATERIALS AND METHODS: The Clinical Research Office of the Endourological Society (CROES) PNL database is a prospective, multi-institutional, international PNL registry. Of 5,803 total...... with fever [Odds Ratio (OR) 1.17, p = 0.413], while diabetes (OR 1.32, p = 0.048), positive urine culture (OR 2.08, p PNL...... fever was not significantly different among the various lithotrites used in the CROES PNL study....

  16. Familial Mediterranean Fever

    Directory of Open Access Journals (Sweden)

    Adem Kucuk

    2014-01-01

    Full Text Available Familial Mediterranean Fever is an autosomal recessive inherited disease with a course of autoinflammation, which is characterized by the episodes of fever and serositis. It affects the populations from Mediterranean basin. Genetic mutation of the disease is on MEFV gene located on short arm of Chromosome 16. The disease is diagnosed based on clinical evaluation. Amyloidosis is the most important complication. The only agent that decreases the development of amyloidosis and the frequency and severity of the episodes is colchicine, which has been used for about 40 years. In this review, we aimed to discuss especially the most recent advances about Familial Mediterranean Fever which is commonly seen in our population.

  17. Allergies and Hay Fever

    Science.gov (United States)

    ... ENTCareers Marketplace Find an ENT Doctor Near You Allergies and Hay Fever Allergies and Hay Fever Patient ... life more enjoyable. Why does the body develop allergies? Allergy symptoms appear when the immune system reacts ...

  18. Context dependency and generality of fever in insects

    Science.gov (United States)

    Stahlschmidt, Z. R.; Adamo, S. A.

    2013-07-01

    Fever can reduce mortality in infected animals. Yet, despite its fitness-enhancing qualities, fever often varies among animals. We used several approaches to examine this variation in insects. Texas field crickets ( Gryllus texensis) exhibited a modest fever (1 °C increase in preferred body temperature, T pref) after injection of prostaglandin, which putatively mediates fever in both vertebrates and invertebrates, but they did not exhibit fever during chronic exposure to heat-killed bacteria. Further, chronic food limitation and mating status did not affect T pref or the expression of behavioural fever, suggesting limited context dependency of fever in G. texensis. Our meta-analysis of behavioural fever studies indicated that behavioural fever occurs in many insects, but it is not ubiquitous. Thus, both empirical and meta-analytical results suggest that the fever response in insects `is widespread, although certainly not inevitable' (Moore 2002). We highlight the need for future work focusing on standardizing an experimental protocol to measure behavioural fever, understanding the specific mechanism(s) underlying fever in insects, and examining whether ecological or physiological costs often outweigh the benefits of fever and can explain the sporadic nature of fever in insects.

  19. Interaction in endothelium of non-muscular myosin light-chain kinase and the NF-κB pathway is critical to lipopolysaccharide-induced vascular hyporeactivity.

    Science.gov (United States)

    Recoquillon, Sylvain; Carusio, Nunzia; Lagrue-Lakhal, Anne-Hélène; Tual-Chalot, Simon; Filippelli, Amelia; Andriantsitohaina, Ramaroson; Martinez, M Carmen

    2015-10-01

    During sepsis, endothelial barrier dysfunction contributes to cardiovascular failure, mainly through the release of oxidative metabolites by penetrant leukocytes. We reported the non-muscular isoform of myosin light chain kinase (nmMLCK) playing a pivotal role in endotoxin shock injury associated with oxidative and nitrative stresses, and vascular hyporeactivity. The present study was aimed at understanding the molecular mechanism of lipopolysaccharide (LPS)-induced vascular alterations as well as studying a probable functional association of nmMLCK with nuclear factor κ-light-chain enhancer of activated B cells (NF-κB). Aortic rings from mice were exposed in vitro to LPS and, then, vascular reactivity was measured. Human aortic endothelial cells (HAoECs) were incubated with LPS, and interaction of nmMLCK with NF-κB was analysed. We provide evidence that nmMLCK deletion prevents vascular hyporeactivity induced by in vitro LPS treatment but not endothelial dysfunction in the aorta. Deletion of nmMLCK inhibits LPS-induced NF-κB activation and increases nitric oxide (NO) release via induction of inducible NO synthase (iNOS) within the vascular wall. Also, removal of endothelium prevented both NF-κB and iNOS expression in aortic rings. Among the proinflammatory factors released by LPS-treated endothelial cells, interleukin-6 accounts for the induction of iNOS on smooth muscle cells in response to LPS. Of particular interest is the demonstration that, in HAoECs, LPS-induced NF-κB activation occurs via increased MLCK activity sensitive to the MLCK inhibitor, ML-7, and physical interactions between nmMLCK and NF-κB. We report for the first time on NF-κB as a novel partner of nmMLCK within endothelial cells. The present study demonstrates a pivotal role of nmMLCK in vascular inflammatory pathologies. © 2015 Authors; published by Portland Press Limited.

  20. Antimicrobial resistance problems in typhoid fever

    Science.gov (United States)

    Saragih, R. H.; Purba, G. C. F.

    2018-03-01

    Typhoid fever (enteric fever) remains a burden in developing countries and a major health problem in Southern and Southeastern Asia. Salmonella typhi (S. typhi), the causative agent of typhoid fever, is a gram-negative, motile, rod-shaped, facultative anaerobe and solely a human pathogen with no animal reservoir. Infection of S. typhi can cause fever, abdominal pain and many worsenonspecific symptoms, including gastrointestinal symptoms suchas nausea, vomiting, constipation, and diarrhea. Chloramphenicol, ampicillin,and cotrimoxazole were the first-recommended antibiotics in treating typhoid fever. In the last two decades though, these three traditional drugs started to show resistance and developed multidrug resistance (MDR) S. typhi strains. In many parts of the world, the changing modes ofpresentation and the development of MDR have made typhoid fever increasingly difficult to treat.The use of first-line antimicrobials had been recommended to be fluoroquinolone as a replacement. However, this wassoonfollowedbyreportsof isolates ofS. typhi showing resistancetofluoroquinolones as well. These antimicrobial resistance problems in typhoid fever have been an alarming situation ever since and need to be taken seriously or else typhoid fever will no longer be taken care completely by administering antibiotics.

  1. Ulinastatin suppresses lipopolysaccharide induced neuro-inflammation through the downregulation of nuclear factor-κB in SD rat hippocampal astrocyte

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuting; Zhao, Lei; Fu, Huiqun [Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, 100053 Beijing (China); Wu, Yan [Department of Anatomy, Capital Medical University, 100069 Beijing (China); Wang, Tianlong, E-mail: litingliting258@163.com [Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, 100053 Beijing (China)

    2015-03-20

    Astrocyte activation plays a pivotal role in neuroinflammation, which contributes to neuronal damage, so the inhibition of astrocyte activation may alleviate the progression of neurodegeneration. Recent studies have proved that urinary trypsin inhibitor ulinastatin could inhibit NF-kB activation. In our study, the inhibitory effects of ulinastatin on the production of pro-inflammatory mediators were investigated in lipopolysaccharide (LPS)-reduced primary astrocyte. Our results showed that ulinastatin significantly inhibited LPS-induced astrogliosis, which is measured by MTT and BrdU. Ulinastatin decreased the production of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-1β, it significantly decreased both the mRNA and the protein levels of these pro-inflammatory cytokines and also increased the protein levels of IκB-α binded to NF-κB, which blocked NF-κB translocation to the nucleus and prevented its activity. Our results suggest that ulinastatin is able to inhibit neuroinflammation by interfering with NF-κB signaling. The study provides direct evidence of potential therapy methods of ulinastatin for the treatment of neuroinflammatory diseases. - Highlights: • The anti-inflammatory effect of UTI on hippocampal astrocyte. • UTI showed protective effect on neuroinflammation by the downregulation of NF-κB. • UTI led to expression of cytokines decreased in concentration and time dependence.

  2. Ulinastatin suppresses lipopolysaccharide induced neuro-inflammation through the downregulation of nuclear factor-κB in SD rat hippocampal astrocyte

    International Nuclear Information System (INIS)

    Li, Yuting; Zhao, Lei; Fu, Huiqun; Wu, Yan; Wang, Tianlong

    2015-01-01

    Astrocyte activation plays a pivotal role in neuroinflammation, which contributes to neuronal damage, so the inhibition of astrocyte activation may alleviate the progression of neurodegeneration. Recent studies have proved that urinary trypsin inhibitor ulinastatin could inhibit NF-kB activation. In our study, the inhibitory effects of ulinastatin on the production of pro-inflammatory mediators were investigated in lipopolysaccharide (LPS)-reduced primary astrocyte. Our results showed that ulinastatin significantly inhibited LPS-induced astrogliosis, which is measured by MTT and BrdU. Ulinastatin decreased the production of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-1β, it significantly decreased both the mRNA and the protein levels of these pro-inflammatory cytokines and also increased the protein levels of IκB-α binded to NF-κB, which blocked NF-κB translocation to the nucleus and prevented its activity. Our results suggest that ulinastatin is able to inhibit neuroinflammation by interfering with NF-κB signaling. The study provides direct evidence of potential therapy methods of ulinastatin for the treatment of neuroinflammatory diseases. - Highlights: • The anti-inflammatory effect of UTI on hippocampal astrocyte. • UTI showed protective effect on neuroinflammation by the downregulation of NF-κB. • UTI led to expression of cytokines decreased in concentration and time dependence

  3. Deletion of the thymidine kinase gene induces complete attenuation of the Georgia isolate of African swine fever virus

    Science.gov (United States)

    African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal viral disease of domestic pigs. There are no vaccines to control Africa swine fever (ASF). Experimental vaccines have been developed using genetically modified live attenuated ASFVs obtained by specifically de...

  4. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKKϵ-IRF3 axis activation.

    Science.gov (United States)

    Tsukamoto, Hiroki; Takeuchi, Shino; Kubota, Kanae; Kobayashi, Yohei; Kozakai, Sao; Ukai, Ippo; Shichiku, Ayumi; Okubo, Misaki; Numasaki, Muneo; Kanemitsu, Yoshitomi; Matsumoto, Yotaro; Nochi, Tomonori; Watanabe, Kouichi; Aso, Hisashi; Tomioka, Yoshihisa

    2018-05-14

    Toll-like receptor 4 (TLR4) is an indispensable immune receptor for lipopolysaccharide (LPS), a major component of the Gram-negative bacterial cell wall. Following LPS stimulation, TLR4 transmits the signal from the cell surface and becomes internalized in an endosome. However, the spatial regulation of TLR4 signaling is not fully understood. Here, we investigated the mechanisms of LPS-induced TLR4 internalization and clarified the roles of the extracellular LPS-binding molecules, LPS-binding protein (LBP), and glycerophosphatidylinositol-anchored protein (CD14). LPS stimulation of CD14-expressing cells induced TLR4 internalization in the presence of serum, and an inhibitory anti-LBP mAb blocked its internalization. Addition of LBP to serum-free cultures restored LPS-induced TLR4 internalization to comparable levels of serum. The secretory form of the CD14 (sCD14) induced internalization but required a much higher concentration than LBP. An inhibitory anti-sCD14 mAb was ineffective for serum-mediated internalization. LBP lacking the domain for LPS transfer to CD14 and a CD14 mutant with reduced LPS binding both attenuated TLR4 internalization. Accordingly, LBP is an essential serum molecule for TLR4 internalization, and its LPS transfer to membrane-anchored CD14 (mCD14) is a prerequisite. LBP induced the LPS-stimulated phosphorylation of TBK1, IKKϵ, and IRF3, leading to IFN-β expression. However, LPS-stimulated late activation of NFκB or necroptosis were not affected. Collectively, our results indicate that LBP controls LPS-induced TLR4 internalization, which induces TLR adaptor molecule 1 (TRIF)-dependent activation of the TBK1-IKKϵ-IRF3-IFN-β pathway. In summary, we showed that LBP-mediated LPS transfer to mCD14 is required for serum-dependent TLR4 internalization and activation of the TRIF pathway. Copyright © 2018, The American Society for Biochemistry and Molecular Biology.

  5. Ganoderma lucidum Polysaccharides Reduce Lipopolysaccharide-Induced Interleukin-1β Expression in Cultured Smooth Muscle Cells and in Thoracic Aortas in Mice

    Directory of Open Access Journals (Sweden)

    Chan-Jung Liang

    2014-01-01

    Full Text Available The expression of inflammatory cytokines on vascular walls is a critical event in vascular diseases and inflammation. The aim of the present study was to examine the effects of an extract of Ganoderma lucidum (Reishi polysaccharides (EORPs, which is effective against immunological disorders, on interleukin- (IL- 1β expression by human aortic smooth muscle cells (HASMCs and the underlying mechanism. The lipopolysaccharide- (LPS- induced IL-1β expression was significantly reduced when HASMCs were pretreated with EORP by Western blot and immunofluorescent staining. Pretreatment with 10 μg/mL EORP decreased LPS-induced ERK, p38, JNK, and Akt phosphorylation. But the increase in IL-1β expression with LPS treatment was only inhibited by pretreatment with the ERK1/2 inhibitor, while the JNK and p38 inhibitors had no effect. In addition, EORP reduced the phosphorylation and nuclear translocation of nuclear factor- (NF- κB p65 in LPS-treated HASMCs. Furthermore, in vivo, IL-1β expression was strongly expressed in thoracic aortas in LPS-treated mice. Oral administration of EORP decreased IL-1β expression. The level of IL-1β expression in LPS-treated or in LPS/EORP-treated group was very low and was similar to that of the saline-treated group in toll-like receptor 4-deficient (TLR4−/− mice. These findings suggest that EORP has the anti-inflammatory property and could prove useful in the prevention of vascular diseases and inflammatory responses.

  6. Study of Nitric Oxide production by murine peritoneal macrophages induced by Brucella Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Kavoosi G

    2001-07-01

    Full Text Available Brueclla is a gram negative bacteria that causes Brucellosis. Lipopolysaccharide (LPS ", the pathogenic agent of Brucella is composed of O-chain, core oligosaccharide and lipid A. in addition, the structural and biological properties of different LPS extracted from different strains are not identical. The first defense system against LPS is nonspecific immunity that causes macrophage activation. Activated macrophages produce oxygen and nitrogen radicals that enhance the protection against intracellular pathogens.In this experiment LPS was extracted by hot phenol- water procedure and the effect of various LPSs on nitric oxide prodution by peritoneal mouse macrophages was examined.Our results demonstrated that the effect of LPS on nitric oxide production is concentration-dependent we observed the maximum response in concentration of 10-20 microgram per milliliter. Also our results demonstrate that LPS extracted from vaccine Brucella abortus (S 19 had a highe effect on nitric oxide production than the LPS from other strains

  7. Studies on the pathogenesis of fever with influenzal viruses. I. The appearance of an endogenous pyrogen in the blood following intravenous injection of virus.

    Science.gov (United States)

    ATKINS, E; HUANG, W C

    1958-03-01

    A substance with pyrogenic properties appears in the blood streams of rabbits made febrile by the intravenous inoculation of the PR8 strain of influenza A and Newcastle disease viruses (NDV). By means of a technique involving passive transfer of sera from animals given virus to recipient rabbits, the titer of circulating pyrogen was found to be closely correlated with the course of fever produced by virus. Certain properties of the pyrogen are described which differentiate it from the originally injected virus and suggest that the induced pyrogen is of endogenous origin. These properties resemble those of endogenous pyrogens occurring in other forms of experimental fever. The source of virus-induced pyrogen is unknown. In vitro incubation of virus with various constituents of the circulation did not result in the appearance of endogenous pyrogen. Granulocytopenia induced by HN(2) failed to influence either fever or the production of endogenous pyrogen in rabbits injected with NDV. Similarly, the intraperitoneal inoculation of NDV into prepared exudates did not modify the febrile response. These findings do not lend support to the possibility that the polymorphonuclear leukocyte is a significant source of endogenous pyrogen in virus-induced fever. It is concluded that the liberation of an endogenous pyrogen from some as yet undefined source is an essential step in the pathogenesis of fever caused by the influenza group of viruses.

  8. Rosiglitazone, a Peroxisome Proliferator-Activated Receptor (PPAR)-γ Agonist, Attenuates Inflammation Via NF-κB Inhibition in Lipopolysaccharide-Induced Peritonitis.

    Science.gov (United States)

    Zhang, Yun-Fang; Zou, Xun-Liang; Wu, Jun; Yu, Xue-Qing; Yang, Xiao

    2015-12-01

    We assessed the anti-inflammatory effect of peroxisome proliferator-activated receptor (PPAR)-γ agonist, rosiglitazone, in a lipopolysaccharide (LPS)-induced peritonitis rat model. LPS was intraperitoneally injected into rats to establish peritonitis model. Male Sprague-Dawley (SD) rats were assigned to normal saline (the solvent of LPS), LPS, rosiglitazone plus LPS, and rosiglitazone alone. A simple peritoneal equilibrium test was performed with 20 ml 4.25 % peritoneal dialysis fluid. We measured the leukocyte count in dialysate and ultrafiltration volume. Peritoneal membrane histochemical staining was performed, and peritoneal thickness was assessed. CD40 and intercellular adhesion molecule-1 messenger RNA (ICAM-1 mRNA) levels in rat visceral peritoneum were detected by reverse transcription (RT)-PCR. IL-6 in rat peritoneal dialysis effluent was measured using enzyme-linked immunosorbent assay. The phosphorylation of NF-κB-p65 and IκBα was analyzed by Western blot. LPS administration resulted in increased peritoneal thickness and decreased ultrafiltration volume. Rosiglitazone pretreatment significantly decreased peritoneal thickness. In addition to CD40 and ICAM-1 mRNA expression, the IL-6, p-p65, and p-IκBα protein expressions were enhanced in LPS-administered animals. Rosiglitazone pretreatment significantly decreased ICAM-1 mRNA upregulation, secretion of IL-6 protein, and phosphorylation of NF-κB-p65 and IκBα without decreasing CD40 mRNA expression. Rosiglitazone has a protective effect in peritonitis, simultaneously decreasing NF-κB phosphorylation, suggesting that NF-κB signaling pathway mediated peritoneal inflammation induced by LPS. PPAR-γ might be considered a potential therapeutic target against peritonitis.

  9. Hemorrhagic Fevers - Multiple Languages

    Science.gov (United States)

    ... dialect) (繁體中文) Expand Section Vaccine Information Statement (VIS) -- Yellow Fever Vaccine: What You Need to Know - English PDF Vaccine Information Statement (VIS) -- Yellow Fever Vaccine: What You Need to Know - 繁體中文 (Chinese, Traditional ( ...

  10. A Standardized Traditional Chinese Medicine Preparation Named Yejuhua Capsule Ameliorates Lipopolysaccharide-Induced Acute Lung Injury in Mice via Downregulating Toll-Like Receptor 4/Nuclear Factor-κB

    Directory of Open Access Journals (Sweden)

    Chu-Wen Li

    2015-01-01

    Full Text Available A standardized traditional Chinese medicine preparation named Yejuhua capsule (YJH has been clinically used in treatments of various acute respiratory system diseases with high efficacy and low toxicity. In this study, we were aiming to evaluate potential effects and to elucidate underlying mechanisms of YJH against lipopolysaccharide- (LPS- induced acute lung injury (ALI in mice. Moreover, the chemical analysis and chromatographic fingerprint study were performed for quality evaluation and control of this drug. ALI was induced by intratracheal instillation of LPS (5 mg/kg into the lung in mice and dexamethasone (5 mg/kg, p.o. was used as a positive control drug. Results demonstrated that pretreatments with YJH (85, 170, and 340 mg/kg, p.o. effectively abated LPS-induced histopathologic changes, attenuated the vascular permeability enhancement and edema, inhibited inflammatory cells migrations and protein leakages, suppressed the ability of myeloperoxidase, declined proinflammatory cytokines productions, and downregulated activations of nuclear factor-κB (NF-κB and expressions of toll-like receptor 4 (TLR4. This study demonstrated that YJH exerted potential protective effects against LPS-induced ALI in mice and supported that YJH was a potential therapeutic drug for ALI in clinic. And its mechanisms were at least partially associated with downregulations of TLR4/NF-κB pathways.

  11. Need yellow fever vaccine? Plan ahead

    Science.gov (United States)

    ... Submit What's this? Submit Button Past Emails Need yellow fever vaccine? Plan ahead. Language: English (US) Español (Spanish) ... none were from the United States). What is yellow fever? Yellow fever is caused by a virus that ...

  12. Bacterial lipopolysaccharide promotes profibrotic activation of intestinal fibroblasts.

    LENUS (Irish Health Repository)

    Burke, J P

    2012-02-01

    BACKGROUND: Fibroblasts play a critical role in intestinal wound healing. Lipopolysaccharide (LPS) is a cell wall component of commensal gut bacteria. The effects of LPS on intestinal fibroblast activation were characterized. METHODS: Expression of the LPS receptor, toll-like receptor (TLR) 4, was assessed in cultured primary human intestinal fibroblasts using flow cytometry and confocal microscopy. Fibroblasts were treated with LPS and\\/or transforming growth factor (TGF) beta1. Nuclear factor kappaB (NFkappaB) pathway activation was assessed by inhibitory kappaBalpha (IkappaBalpha) degradation and NFkappaB promoter activity. Fibroblast contractility was measured using a fibroblast-populated collagen lattice. Smad-7, a negative regulator of TGF-beta1 signalling, and connective tissue growth factor (CTGF) expression were assessed using reverse transcriptase-polymerase chain reaction and western blot. The NFkappaB pathway was inhibited by IkappaBalpha transfection. RESULTS: TLR-4 was present on the surface of intestinal fibroblasts. LPS treatment of fibroblasts induced IkappaBalpha degradation, enhanced NFkappaB promoter activity and increased collagen contraction. Pretreatment with LPS (before TGF-beta1) significantly increased CTGF production relative to treatment with TGF-beta1 alone. LPS reduced whereas TGF-beta1 increased smad-7 expression. Transfection with an IkappaBalpha plasmid enhanced basal smad-7 expression. CONCLUSION: Intestinal fibroblasts express TLR-4 and respond to LPS by activating NFkappaB and inducing collagen contraction. LPS acts in concert with TGF-beta1 to induce CTGF. LPS reduces the expression of the TGF-beta1 inhibitor, smad-7.

  13. Rocky Mountain Spotted Fever

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Rocky Mountain Spotted Fever Credit: CDC A male cayenne tick, Amblyomma cajennense, ... and New Mexico. Why Is the Study of Rocky Mountain Spotted Fever a Priority for NIAID? Tickborne diseases are becoming ...

  14. Dengue fever: a Wikipedia clinical review

    OpenAIRE

    Heilman, James M; Wolff, Jacob De; Beards, Graham M; Basden, Brian J

    2014-01-01

    Dengue fever, also known as breakbone fever, is a mosquito-borne infectious tropical disease caused by the dengue virus. Symptoms include fever, headache, muscle and joint pains, and a characteristic skin rash that is similar to measles. In a small proportion of cases, the disease develops into life-threatening dengue hemorrhagic fever, which results in bleeding, thrombocytopenia, and leakage of blood plasma, or into dengue shock syndrome, in which dangerously low blood pressure occurs. Treat...

  15. Lassa fever or lassa hemorrhagic fever risk to humans from rodent-borne zoonoses.

    Science.gov (United States)

    El-Bahnasawy, Mamdouh M; Megahed, Laila Abdel-Mawla; Abdalla Saleh, Hala Ahmed; Morsy, Tosson A

    2015-04-01

    Viral hemorrhagic fevers (VHFs) typically manifest as rapidly progressing acute febrile syndromes with profound hemorrhagic manifestations and very high fatality rates. Lassa fever, an acute hemorrhagic fever characterized by fever, muscle aches, sore throat, nausea, vomiting, diarrhea and chest and abdominal pain. Rodents are important reservoirs of rodent-borne zoonosis worldwide. Transmission rodents to humans occur by aerosol spread, either from the genus Mastomys rodents' excreta (multimammate rat) or through the close contact with infected patients (nosocomial infection). Other rodents of the genera Rattus, Mus, Lemniscomys, and Praomys are incriminated rodents hosts. Now one may ask do the rodents' ectoparasites play a role in Lassa virus zoonotic transmission. This paper summarized the update knowledge on LHV; hopping it might be useful to the clinicians, nursing staff, laboratories' personals as well as those concerned zoonoses from rodents and rodent control.

  16. Lipopolysaccharide impairs hepatocyte ureagenesis from ammonia: involvement of mitochondrial aquaporin-8.

    Science.gov (United States)

    Soria, Leandro R; Marrone, Julieta; Molinas, Sara M; Lehmann, Guillermo L; Calamita, Giuseppe; Marinelli, Raúl A

    2014-05-02

    We recently reported that hepatocyte mitochondrial aquaporin-8 (mtAQP8) channels facilitate the uptake of ammonia and its metabolism into urea. Here we studied the effect of bacterial lipopolysaccharides (LPS) on ammonia-derived ureagenesis. In LPS-treated rats, hepatic mtAQP8 protein expression and diffusional ammonia permeability (measured utilizing ammonia analogues) of liver inner mitochondrial membranes were downregulated. NMR studies using 15N-labeled ammonia indicated that basal and glucagon-induced ureagenesis from ammonia were significantly reduced in hepatocytes from LPS-treated rats. Our data suggest that hepatocyte mtAQP8-mediated ammonia removal via ureagenesis is impaired by LPS, a mechanism potentially relevant to the molecular pathogenesis of defective hepatic ammonia detoxification in sepsis. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Treating viral hemorrhagic fever.

    NARCIS (Netherlands)

    Mairuhu, A.T.; Brandjes, D.P.; Gorp, E. van

    2003-01-01

    Viral hemorrhagic fevers are illnesses associated with a number of geographically restricted, mostly tropical areas. Over recent decades a number of new hemorrhagic fever viruses have emerged. Advances in our understanding of the pathophysiology of these diseases have improved our initial supportive

  18. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS

    Directory of Open Access Journals (Sweden)

    REYHANEH SEPEHR

    2013-07-01

    Full Text Available Reactive oxygen species (ROS have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI in adults and bronchopulmonary dysplasia (BPD in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD, referred to as NADH redox ratio (NADH RR has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2 pups, hyperoxic (90% O2 pups, pups treated with LPS (normoxic + LPS, and pups treated with LPS and hyperoxia (hyperoxic + LPS. Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~ 31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure.

  19. Lipopolysaccharide recognition, internalisation, signalling and other cellular effects

    NARCIS (Netherlands)

    Diks, S. H.; van Deventer, S. J.; Peppelenbosch, M. P.

    2001-01-01

    Despite the importance of bacterial lipopolysaccharide (LPS) in infection and inflammation, many aspects of LPS action remain poorly understood. Especially, the mechanisms by which cells recognise and react to endotoxins or endotoxin-containing particles and how cellular responses are translated

  20. PATHOGENETIC MECHANISMS IN EXPERIMENTAL IMMUNE FEVER

    Science.gov (United States)

    Root, Richard K.; Wolff, Sheldon M.

    1968-01-01

    When rabbits sensitized to human serum albumin (HSA) are challenged intravenously with specific antigen, fever develops and two transferable pyrogens can be demonstrated in the circulation. The first appears prior to the development of fever and has properties consistent with soluble antigen-antibody complexes. These have been shown to be pyrogenic when prepared in vitro and to produce a state of febrile tolerance when repeatedly administered. The second pyrogen, demonstrable during fever in donor rabbits, appears to be similar to endogenous pyrogen described in other experimental fevers. It is postulated that the formation of antigen-antibody complexes constitutes an important initial phase of the febrile reaction in this type of immune fever. PMID:4873023

  1. Phylogeny of Yellow Fever Virus, Uganda, 2016.

    Science.gov (United States)

    Hughes, Holly R; Kayiwa, John; Mossel, Eric C; Lutwama, Julius; Staples, J Erin; Lambert, Amy J

    2018-08-17

    In April 2016, a yellow fever outbreak was detected in Uganda. Removal of contaminating ribosomal RNA in a clinical sample improved the sensitivity of next-generation sequencing. Molecular analyses determined the Uganda yellow fever outbreak was distinct from the concurrent yellow fever outbreak in Angola, improving our understanding of yellow fever epidemiology.

  2. Rocky Mountain spotted fever in Argentina.

    Science.gov (United States)

    Paddock, Christopher D; Fernandez, Susana; Echenique, Gustavo A; Sumner, John W; Reeves, Will K; Zaki, Sherif R; Remondegui, Carlos E

    2008-04-01

    We describe the first molecular confirmation of Rickettsia rickettsii, the cause of Rocky Mountain spotted fever (RMSF), from a tick vector, Amblyomma cajennense, and from a cluster of fatal spotted fever cases in Argentina. Questing A. cajennense ticks were collected at or near sites of presumed or confirmed cases of spotted fever rickettsiosis in Jujuy Province and evaluated by polymerase chain reaction assays for spotted fever group rickettsiae. DNA of R. rickettsii was amplified from a pool of A. cajennense ticks and from tissues of one of four patients who died during 2003-2004 after illnesses characterized by high fever, severe headache, myalgias, and petechial rash. The diagnosis of spotted fever rickettsiosis was confirmed in the other patients by indirect immunofluorescence antibody and immunohistochemical staining techniques. These findings show the existence of RMSF in Argentina and emphasize the need for clinicians throughout the Americas to consider RMSF in patients with febrile rash illnesses.

  3. Rheumatic fever prophylaxis in South Africa - is bicillin 1,2 million ...

    African Journals Online (AJOL)

    1993-09-30

    Sep 30, 1993 ... inducing loss of the organism's hyaluronic acid capsule and. M-proteins'6.21 Rheumatogenic strains of GABHS tend to· be highly virulent."·'6 It is therefore possible that serum penicillin concentrations below the MBCs for GABHS might be effective in secondary prophylaxis of rheumatic fever. Ginsburg et al.

  4. Ocular Penetration and Anti-inflammatory Activity of Ketorolac 0.45% and Bromfenac 0.09% Against Lipopolysaccharide-Induced Inflammation

    Science.gov (United States)

    Galindo, Danielle; Villanueva, Linda; Nguyen, Cathy; Patel, Milan; Borbridge, Lisa; Attar, Mayssa; Schiffman, Rhett M.; Hollander, David A.

    2011-01-01

    Abstract Purpose Anti-inflammatory activity of topical nonsteroidal anti-inflammatory drugs is mediated by suppression of cyclooxygenase (COX) isoenzymes. This study compared ocular penetration and inflammation suppression of topical ketorolac 0.45% and bromfenac 0.09% ophthalmic solutions in a rabbit model. Methods At hour 0, 36 rabbits received ketorolac 0.45%, bromfenac 0.09%, or an artificial tear 3 times once every 20 min. Half of the rabbits in each group then received intravenous injections of lipopolysaccharide (LPS) and fluorescein isothiocyanate (FITC)–dextran at hour 1, and the other half at hour 10. Aqueous and iris-ciliary body (ICB) samples were collected in the former group at hour 2 (peak) and in the latter group at hour 11 (trough) An additional group of 6 animals received only FITC-dextran, and samples were collected 1 h later. Peak and trough nonsteroidal anti-inflammatory drug concentrations were compared with previously determined half-maximal inhibitory concentrations (IC50) for COX isoenzymes. Results Peak and trough aqueous and ICB concentrations of ketorolac were at least 7-fold or greater than those of bromfenac. At peak levels, both ketorolac 0.45% and bromfenac 0.09% significantly inhibited LPS-induced aqueous prostaglandin E2 and FITC-dextran elevation (P < 0.01). At trough, both study drugs significantly inhibited LPS-induced aqueous prostaglandin E2 elevation (P < 0.05), but only ketorolac 0.45% significantly reduced LPS-induced aqueous FITC-dextran elevation (P < 0.01). Aqueous and ICB ketorolac concentrations exceeded its IC50 for COX-1 and COX-2 at peak and trough. Aqueous and ICB bromfenac levels exceeded its IC50 for COX-2 at peak and trough, but not for COX-1 at trough aqueous levels and peak and trough ICB levels. Conclusions Both ketorolac 0.45% and bromfenac 0.09% effectively suppressed inflammation at peak. At trough, only ketorolac 0.45% effectively suppressed inflammation as measured by FITC

  5. Dengue fever: a Wikipedia clinical review.

    Science.gov (United States)

    Heilman, James M; De Wolff, Jacob; Beards, Graham M; Basden, Brian J

    2014-01-01

    Dengue fever, also known as breakbone fever, is a mosquito-borne infectious tropical disease caused by the dengue virus. Symptoms include fever, headache, muscle and joint pains, and a characteristic skin rash that is similar to measles. In a small proportion of cases, the disease develops into life-threatening dengue hemorrhagic fever, which results in bleeding, thrombocytopenia, and leakage of blood plasma, or into dengue shock syndrome, in which dangerously low blood pressure occurs. Treatment of acute dengue fever is supportive, with either oral or intravenous rehydration for mild or moderate disease and use of intravenous fluids and blood transfusion for more severe cases. Along with attempts to eliminate the mosquito vector, work is ongoing to develop a vaccine and medications targeted directly at the virus.

  6. Endogenous expression pattern of resolvin D1 in a rat model of self-resolution of lipopolysaccharide-induced acute respiratory distress syndrome and inflammation.

    Science.gov (United States)

    Sun, Wei; Wang, Zai-ping; Gui, Ping; Xia, Weiyi; Xia, Zhengyuan; Zhang, Xing-cai; Deng, Qing-zhu; Xuan, Wei; Marie, Christelle; Wang, Lin-lin; Wu, Qing-ping; Wang, Tingting; Lin, Yun

    2014-11-01

    Resolvin D1 (RvD1), an endogenous lipid mediator derived from docosahexaenoic acid, has been reported to promote a biphasic activity in anti-inflammatory response and regulate inflammatory resolution. The present study aimed to determine the endogenous expression pattern of RvD1 in a rat model of self-resolution of lipopolysaccharide (LPS)-induced acute respiratory distress syndrome (ARDS) and inflammation. The ARDS model was induced by administrating LPS (2mg/kg) via tracheotomy in 138 male Sprague-Dawley rats. At specified time points, lung injury and inflammation were respectively assessed by lung histology and analysis of bronchoalveolar lavage fluid and cytokine levels. The expression of endogenous RvD1 was detected by high performance liquid chromatography and tandem mass spectrometry. The results showed that histological lung injury peaked between 6h (LPS6h) and day 3, followed by recovery over 4-10 days after LPS administration. Lung tissue polymorph nuclear cell (PMN) was significantly increased at LPS6h, and peaked between 6h to day 2. The levels of interleukin (IL)-6 and IL-10 were significantly increased at LPS6h and remained higher over day 10 as compared to baseline. Intriguingly, the endogenous RvD1 expression was decreased gradually during the first 3 days, followed by almost completely recovery over days 9-10. The finding indicated that endogenous RvD1 underwent a decrease in expression followed by gradual increase that was basically coincident with the lung injury recovery in a rat model of self-resolution LPS-induced ARDS and inflammation. Our results may help define the optimal therapeutic window for endogenous RvD1 to prevent or treat LPS-induced ARDS and inflammation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Essential oil from leaves of Liquidambar formosana ameliorates inflammatory response in lipopolysaccharide-activated mouse macrophages.

    Science.gov (United States)

    Hua, Kuo-Feng; Yang, Tzu-Jung; Chiu, Huan-Wen; Ho, Chen-Lung

    2014-06-01

    The essential oil from Liquidambar formosana leaves (EOLF) was demonstrated to exhibit anti-inflammatory activity in mouse macrophages. EOLF reduced nitrite oxide generation, secretion levels of tumor necrosis factor-alpha and interleukin-6, and expression levels of prointerleukin-beta, inducible nitric oxide synthase, and cyclooxygenase-2 in lipopolysaccharide (LPS)-activated mouse macrophages. EOLF also reduced NLRP3 inflammasome-derived interleukin-1beta secretion. The underlying mechanisms for the EOLF-mediated anti-inflammatory activity were (1) reduction of LPS-induced reactive oxygen species generation; (2) reduction of LPS-induced activation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38 MAP kinase; (3) reduction of LPS-induced nuclear factor-kappaBeta activation. Furthermore, 25 compounds were identified in the EOLF using GC-FID and GC-MS and the major compounds were terpinen-4-ol (32.0%), beta-pinene (18.0%), gamma-terpinene (13.8%), and alpha-terpinene (9.7%). We found that LPS-induced nitrite oxide generation was inhibited significantly by terpinen-4-ol. Our results indicated that EOLF has anti-inflammatory activity and may provide a molecular rationale for future therapeutic interventions in immune modulation.

  8. HemoHIM, a herbal preparation, alleviates airway inflammation caused by cigarette smoke and lipopolysaccharide.

    Science.gov (United States)

    Shin, Na-Rae; Kim, Sung-Ho; Ko, Je-Won; Park, Sung-Hyeuk; Lee, In-Chul; Ryu, Jung-Min; Kim, Jong-Choon; Shin, In-Sik

    2017-03-01

    HemoHIM, herbal preparation has designed for immune system recovery. We investigated the anti-inflammatory effect of HemoHIM on cigarette smoke (CS) and lipopolysaccharide (LPS) induced chronic obstructive pulmonary disease (COPD) mouse model. To induce COPD, C57BL/6 mice were exposed to CS for 1 h per day (eight cigarettes per day) for 4 weeks and intranasally received LPS on day 26. HemoHIM was administrated to mice at a dose of 50 or 100 mg/kg 1h before CS exposure. HemoHIM reduced the inflammatory cell count and levels of tumor necrosis factor receptor (TNF)-α, interleukin (IL)-6 and IL-1β in the broncho-alveolar lavage fluid (BALF) induced by CS+LPS exposure. HemoHIM decreased the inflammatory cell infiltration in the airway and inhibited the expression of iNOS and MMP-9 and phosphorylation of Erk in lung tissue exposed to CS+LPS. In summary, our results indicate that HemoHIM inhibited a reduction in the lung inflammatory response on CS and LPS induced lung inflammation via the Erk pathway. Therefore, we suggest that HemoHIM has the potential to treat pulmonary inflammatory disease such as COPD.

  9. Heme oxygenase-1 induction alters chemokine regulation and ameliorates human immunodeficiency virus-type-1 infection in lipopolysaccharide-stimulated macrophages

    International Nuclear Information System (INIS)

    Zhou, Zhao-Hua; Kumari, Namita; Nekhai, Sergei; Clouse, Kathleen A.; Wahl, Larry M.; Yamada, Kenneth M.; Dhawan, Subhash

    2013-01-01

    Highlights: •Lipopolysaccharide stimulation of heme oxygenase-1 (HO-1) ameliorated HIV-1 infection of primary human macrophages. •The partial protection by HO-1 against HIV infection was associated with induction of chemokines such as MIP1α and MIP1β. •This mechanism explains lipopolysaccharide-stimulated HO-1-mediated inhibition of HIV-1 infection of macrophages. -- Abstract: We have elucidated a putative mechanism for the host resistance against HIV-1 infection of primary human monocyte-derived macrophages (MDM) stimulated with lipopolysaccharide (LPS). We show that LPS-activated MDM both inhibited HIV-1 entry into the cells and were refractory to post-entry productive viral replication. LPS-treated cells were virtually negative for mature virions as revealed by transmission electron microscopy. LPS activation of MDM markedly enhanced the expression of heme oxygenase-1 (HO-1), a potent inducible cytoprotective enzyme. Increased HO-1 expression was accompanied by elevated production of macrophage inflammatory chemokines (MIP1α and MIP1β) by LPS-activated MDM, significantly decreased surface chemokine receptor-5 (CCR-5) expression, and substantially reduced virus replication. Treatment of cells with HO-1 inhibitor SnPP IX (tin protoporphyrin IX) attenuated the LPS-mediated responses, HIV-1 replication and secretion of MIP1α, MIP1β, and LD78β chemokines with little change in surface CCR-5 expression. These results identify a novel role for HO-1 in the modulation of host immune response against HIV infection of MDM

  10. Effects of alterations of the E. coli lipopolysaccharide layer on membrane permeabilization events induced by Cecropin A.

    Science.gov (United States)

    Agrawal, Anurag; Weisshaar, James C

    2018-04-22

    The outermost layer of Gram negative bacteria is composed of a lipopolysaccharide (LPS) network that forms a dense protective hydrophilic barrier against entry of hydrophobic drugs. At low μM concentrations, a large family of cationic polypeptides known as antimicrobial peptides (AMPs) are able to penetrate the LPS layer and permeabilize the outer membrane (OM) and the cytoplasmic membrane (CM), causing cell death. Cecropin A is a well-studied cationic AMP from moth. Here a battery of time-resolved, single-cell microscopy experiments explores how deletion of sugar layers and/or phosphoryl negative charges from the core oligosaccharide layer (core OS) of K12 E. coli alters the timing of OM and CM permeabilization induced by Cecropin A. Deletion of sugar layers, or phosphoryl charges, or both from the core OS shortens the time to the onset of OM permeabilization to periplasmic GFP and also the lag time between OM permeabilization and CM permeabilization. Meanwhile, the 12-h minimum inhibitory concentration (MIC) changes only twofold with core OS alterations. The results suggest a two-step model in which the core oligosaccharide layers act as a kinetic barrier to penetration of Cecropin A to the lipid A outer leaflet of the OM. Once a threshold concentration has built up at the lipid A leaflet, nucleation occurs and the OM is locally permeabilized to GFP and, by inference, to Cecropin A. Whenever Cecropin A permeabilizes the OM, CM permeabilization always follows, and cell growth subsequently halts and never recovers on the 45 min observation timescale. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Systemic administration of lipopolysaccharide increases the expression of aquaporin-4 in the rat anterior pituitary gland.

    Science.gov (United States)

    Kuwahara-Otani, Sachi; Maeda, Seishi; Tanaka, Koichi; Hayakawa, Tetsu; Seki, Makoto

    2013-01-01

    We investigated the effects of lipopolysaccharide (LPS)-induced endotoxemia on the expression of aquaporin-4 (AQP4) in the rat anterior pituitary gland, using the real-time polymerase chain reaction and immunohistochemistry. After intraperitoneal injection of LPS, the level of AQP4 mRNA doubled at 2, 4 and 8 hr. Immunohistochemical analysis showed an increase with time in AQP4 immunostaining in folliculo-stellate cells following LPS injection; the intensity of immunoreactivity peaked at 8 hr. At the same time, some cyst-like structures, formed by AQP4-positive cells, were observed. These findings indicate that LPS induces the expression of AQP4 in the anterior pituitary gland. The present results should provide an important key to elucidate the pathogenesis of the anterior pituitary gland during endotoxemia.

  12. Portulaca oleracea L. prevents lipopolysaccharide-induced passive avoidance learning and memory and TNF-α impairments in hippocampus of rat.

    Science.gov (United States)

    Noorbakhshnia, Maryam; Karimi-Zandi, Leila

    2017-02-01

    There is a growing body of evidence that neuroinflammation can impair memory. It has been indicated that Portulaca oleracea Linn. (POL), possess anti-inflammatory activity and might improve memory disruption caused by inflammation. In this study the effect of pre-treatment with the hydro-alcoholic extract of POL on memory retrieval investigated in lipopolysaccharide (LPS) treated rats. Male Wistar rats (200-220g) received either a control diet or a diet containing of POL (400mg/kg, p.o.) for 14days. Then, they received injections of either saline or LPS (1mg/kg, i.p.). In all the experimental groups, 4h following the last injection, passive avoidance learning (PAL) and memory test was performed. The retention test was done 24h after the training and then the animals were sacrificed. Hippocampal TNF-α levels measured using ELISA as one criteria of LPS-induced neuroinflammation. The results indicated that LPS significantly impaired PAL and memory and increased TNF-α levels in hippocampus tissue. Pre-treatment with POL improved memory in control rats and prevented memory and TNF-α deterioration in LPS treated rats. Taken together, the results of this study suggest that the hydro-alcoholic extract of POL may improve memory deficits in LPS treated rats, possibly via inhibition of TNF-α and anti-inflammatory activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. [Hydroxyurea-induced pneumonia].

    Science.gov (United States)

    Girard, A; Ricordel, C; Poullot, E; Claeyssen, V; Decaux, O; Desrues, B; Delaval, P; Jouneau, S

    2014-05-01

    Hydroxyurea is an antimetabolite drug used in the treatment of myeloproliferative disorders. Common adverse effects include haematological, gastrointestinal cutaneous manifestations, and fever. Hydroxyurea-induced pneumonitis is unusual. A female patient was treated with hydroxyurea for polycythemia vera. She was admitted 20 days after commencing treatment with a high fever, productive cough, clear sputum and nausea. A chest CT-scan showed diffuse ground-glass opacities. Microbiological investigations were negative. The symptoms disappeared a few days after discontinuation of the drug and rechallenge led to a relapse of symptoms. Our case and 15 earlier cases of hydroxyurea-induced pneumonitis are reviewed. Two patterns of this disease may exist: an acute febrile form occurring within 1 month of introduction of hydroxyurea and a subacute form without fever. Even if uncommon, one should be aware of this complication of hydroxyurea. Copyright © 2013. Published by Elsevier Masson SAS.

  14. Effects of lipopolysaccharide infusion on arterial levels and transcerebral exchange kinetics of glutamate and glycine in healthy humans

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Taudorf, Sarah; Bailey, Damian M

    2012-01-01

    was calculated by multiplying CBF with the arterial to jugular venous differences. LPS induced a systemic inflammatory response with fever, neutrocytosis, and elevated arterial levels of tumour necrosis factor-α. This was associated with a decrease in the arterial levels of both glutamate and glycine; however...

  15. Review of current typhoid fever vaccines, cross-protection against paratyphoid fever, and the European guidelines.

    Science.gov (United States)

    Zuckerman, Jane N; Hatz, Christoph; Kantele, Anu

    2017-10-01

    Typhoid and paratyphoid fever remain a global health problem, which - in non-endemic countries - are mainly seen in travelers, particularly in VFRs (visiting friends and relatives), with occasional local outbreaks occurring. A rise in anti-microbial resistance emphasizes the role of preventive measures, especially vaccinations against typhoid and paratyphoid fever for travelers visiting endemic countries. Areas covered: This state-of-the-art review recapitulates the epidemiology and mechanisms of disease of typhoid and paratyphoid fever, depicts the perspective of non-endemic countries and travelers (VFRs), and collectively presents current European recommendations for typhoid fever vaccination. We provide a brief overview of available (and developmental) vaccines in Europe, present current data on cross-protection to S. Paratyphi, and aim to provide a background for typhoid vaccine decision-making in travelers. Expert commentary: European recommendations are not harmonized. Experts must assess vaccination of travelers based on current country-specific recommendations. Travel health practitioners should be aware of the issues surrounding vaccination of travelers and be motivated to increase awareness of typhoid and paratyphoid fever risks.

  16. Role of TLR4/NADPH oxidase/ROS-activated p38 MAPK in VCAM-1 expression induced by lipopolysaccharide in human renal mesangial cells

    Directory of Open Access Journals (Sweden)

    Lee I-Ta

    2012-11-01

    Full Text Available Abstract Background In bacteria-induced glomerulonephritis, Toll-like receptor 4 (TLR4 activation by lipopolysaccharide (LPS, a key component of the outer membranes of Gram-negative bacteria can increase oxidative stress and the expression of vascular cell adhesion molecule-1 (VCAM-1, which recruits leukocytes to the glomerular mesangium. However, the mechanisms underlying VCAM-1 expression induced by LPS are still unclear in human renal mesangial cells (HRMCs. Results We demonstrated that LPS induced VCAM-1 mRNA and protein levels associated with an increase in the promoter activity of VCAM-1, determined by Western blot, RT-PCR, and promoter assay. LPS-induced responses were inhibited by transfection with siRNAs of TLR4, myeloid differentiation factor 88 (MyD88, Nox2, Nox4, p47phox, c-Src, p38 MAPK, activating transcription factor 2 (ATF2, and p300 or pretreatment with the inhibitors of reactive oxygen species (ROS, edaravone, NADPH oxidase [apocynin (APO or diphenyleneiodonium chloride (DPI], c-Src (PP1, p38 MAPK (SB202190, and p300 (GR343. LPS induced NADPH oxidase activation, ROS production, and p47phox translocation from the cytosol to the membrane, which were reduced by PP1 or c-Src siRNA. We observed that LPS induced TLR4, MyD88, c-Src, and p47phox complex formation determined by co-immunoprecipitation and Western blot. We further demonstrated that LPS stimulated ATF2 and p300 phosphorylation and complex formation via a c-Src/NADPH oxidase/ROS/p38 MAPK pathway. Up-regulation of VCAM-1 led to enhancing monocyte adhesion to HRMCs challenged with LPS, which was inhibited by siRNAs of c-Src, p47phox, p38 MAPK, ATF2, and p300 or pretreatment with an anti-VCAM-1 neutralizing antibody. Conclusions In HRMCs, LPS-induced VCAM-1 expression was, at least in part, mediated through a TLR4/MyD88/ c-Src/NADPH oxidase/ROS/p38 MAPK-dependent p300 and ATF2 pathway associated with recruitment of monocyte adhesion to kidney. Blockade of these pathways may

  17. Lipopolysaccharide-induced inhibition of transcription of tlr4 in vitro is reversed by dexamethasone and correlates with presence of conserved NFκB binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Camila P., E-mail: mila_bonin@yahoo.com.br [Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900 (Brazil); Baccarin, Raquel Y.A., E-mail: baccarin@usp.br [Department of Clinics, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-900 (Brazil); Nostell, Katarina, E-mail: katarina.nostell@slu.se [Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 750 07 Uppsala (Sweden); Nahum, Laila A., E-mail: laila@nahum.com.br [Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002 (Brazil); Faculdade Infórium de Tecnologia, Belo Horizonte 30130-180 (Brazil); Fossum, Caroline, E-mail: caroline.fossum@bvf.slu.se [Department of Biomedicine and Veterinary Public Health, Section for Immunology, Swedish University of Agricultural Sciences, BMC, Box 588, SE 751 23 Uppsala (Sweden); Camargo, Maristela M. de, E-mail: mmcamar@usp.br [Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900 (Brazil)

    2013-03-08

    Highlights: ► Chimpanzees, horses and humans have regions of similarity on TLR4 and MD2 promoters. ► Rodents have few regions of similarity on TLR4 promoter when compared to primates. ► Conserved NFkB binding sites were found in the promoters of TLR4 and MD2. ► LPS-induced inhibition of TLR4 transcription is reversed by dexamethasone. ► LPS-induced transcription of MD2 is inhibited by dexamethasone. -- Abstract: Engagement of Toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS) is a master trigger of the deleterious effects of septic shock. Horses and humans are considered the most sensitive species to septic shock, but the mechanisms explaining these phenomena remain elusive. Analysis of tlr4 promoters revealed high similarity among LPS-sensitive species (human, chimpanzee, and horse) and low similarity with LPS-resistant species (mouse and rat). Four conserved nuclear factor kappa B (NFκB) binding sites were found in the tlr4 promoter and two in the md2 promoter sequences that are likely to be targets for dexamethasone regulation. In vitro treatment of equine peripheral blood mononuclear cells (eqPBMC) with LPS decreased transcripts of tlr4 and increased transcription of md2 (myeloid differentiation factor 2) and cd14 (cluster of differentiation 14). Treatment with dexamethasone rescued transcription of tlr4 after LPS inhibition. LPS-induced transcription of md2 was inhibited in the presence of dexamethasone. Dexamethasone alone did not affect transcription of tlr4 and md2.

  18. Central Administration of Lipopolysaccharide Induces Depressive-like Behavior in Vivo and Activates Brain Indoleamine 2,3 Dioxygenase In Murine Organotypic Hippocampal Slice Cultures

    Directory of Open Access Journals (Sweden)

    Kavelaars Annemieke

    2010-08-01

    Full Text Available Abstract Background Transient stimulation of the innate immune system by an intraperitoneal injection of lipopolysaccharide (LPS activates peripheral and central expression of the tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO which mediates depressive-like behavior. It is unknown whether direct activation of the brain with LPS is sufficient to activate IDO and induce depressive-like behavior. Methods Sickness and depressive-like behavior in C57BL/6J mice were assessed by social exploration and the forced swim test, respectively. Expression of cytokines and IDO mRNA was measured by real-time RT-PCR and cytokine protein was measured by enzyme-linked immunosorbent assays (ELISAs. Enzymatic activity of IDO was estimated as the amount of kynurenine produced from tryptophan as determined by high pressure liquid chromatography (HPLC with electrochemical detection. Results Intracerebroventricular (i.c.v. administration of LPS (100 ng increased steady-state transcripts of TNFα, IL-6 and the inducible isoform of nitric oxide synthase (iNOS in the hippocampus in the absence of any change in IFNγ mRNA. LPS also increased IDO expression and induced depressive-like behavior, as measured by increased duration of immobility in the forced swim test. The regulation of IDO expression was investigated using in situ organotypic hippocampal slice cultures (OHSCs derived from brains of newborn C57BL/6J mice. In accordance with the in vivo data, addition of LPS (10 ng/ml to the medium of OHSCs induced steady-state expression of mRNA transcripts for IDO that peaked at 6 h and translated into increased IDO enzymatic activity within 8 h post-LPS. This activation of IDO by direct application of LPS was preceded by synthesis and secretion of TNFα and IL-6 protein and activation of iNOS while IFNγ expression was undetectable. Conclusion These data establish that activation of the innate immune system in the brain is sufficient to activate IDO and induce

  19. Typhoid fever: case report and literature review.

    Science.gov (United States)

    Sanhueza Palma, Natalia Carolina; Farías Molina, Solange; Calzadilla Riveras, Jeannette; Hermoso, Amalia

    2016-06-21

    Typhoid fever remains a major health problem worldwide, in contrast to Chile, where this disease is an isolated finding. Clinical presentation is varied, mainly presenting with fever, malaise, abdominal discomfort, and nonspecific symptoms often confused with other causes of febrile syndrome. We report a six-year-old, male patient presenting with fever of two weeks associated with gastrointestinal symptoms, malaise, hepatomegaly and elevated liver enzymes. Differential diagnoses were considered and a Widal reaction and two blood cultures were requested; both came back positive, confirming the diagnosis of typhoid fever caused by Salmonella typhi. Prior to diagnosis confirmation, empirical treatment was initiated with ceftriaxone and metronidazole, with partial response; then drug therapy was adjusted according to ciprofloxacin susceptibility testing with a favorable clinical response. We discuss diagnostic methods and treatment of enteric fever with special emphasis on typhoid fever.

  20. Aconitum pseudo-laeve var. erectum Inhibits Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclastogenesis via the c-Fos/nuclear Factor of Activated T-Cells, Cytoplasmic 1 Signaling Pathway and Prevents Lipopolysaccharide-Induced Bone Loss in Mice

    Directory of Open Access Journals (Sweden)

    Jong Min Baek

    2014-08-01

    Full Text Available Aconitum pseudo-laeve var. erectum (APE has been widely shown in herbal medicine to have a therapeutic effect on inflammatory conditions. However, there has been no evidence on whether the extract of APE is involved in the biological bone metabolism process, particularly osteoclast-mediated bone resorption. In this study, we confirmed that the administration of APE could restore normal skeletal conditions in a murine model of lipopolysaccharide (LPS-induced bone loss via a decrease in the receptor activator of nuclear factor kappa-B ligand (RANKL/osteoprotegerin (OPG ratio and osteoclast number. We then investigated the effect of APE on the RANKL-induced formation and function of osteoclasts to elucidate its underlying molecular mechanisms. APE suppressed the formation of tartrate-resistant acid phosphatase (TRAP-positive cells, as well as the bone-resorbing activity of mature osteoclasts. Furthermore, APE attenuated nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1 and c-Fos without affecting any early signal pathway of osteoclastogenesis. Subsequently, APE significantly downregulated the expression of various genes exclusively expressed in osteoclasts. These results demonstrate that APE restores LPS-induced bone loss through a decrease of the serum RANKL/OPG ratio, and inhibits osteoclast differentiation and function, suggesting the promise of APE as a potential cure for various osteoclast-associated bone diseases.

  1. Garcinia kola extract reduced lipopolysaccharide activation of ...

    African Journals Online (AJOL)

    The effect of Garcinia kola heckel seed extract on the promonocytic cell line U937 activated by lipopolysaccharide (LPS) was investigated. 200 l of U937 cells maintained in culture at 5 x 105 cells per ml was delivered into wells of a culture plate according to groups. Cells were pre-treated with 20 l of 100 ng/ml phorbol ...

  2. CAREGIVERS' KNOWLEDGE AND HOME MANAGEMENT OF FEVER IN CHILDREN.

    Science.gov (United States)

    Koech, P J; Onyango, F E; Jowi, C

    2014-05-01

    Fever is one of the most common complaints presented to the Paediatric Emergency Unit (PEU). It is a sign that there is an underlying pathologic process, the most common being infection. Many childhood illnesses are accompanied by fever, many of which are treated at home prior to presentation to hospital. Most febrile episodes are benign. Caregivers are the primary contacts to children with fever. Adequate caregivers' knowledge and proper management of fever at home leads to better management of febrile illnesses and reduces complications. To determine the caregivers' knowledge and practices regarding fever in children. A cross-sectional study. Peadiatric Emergency Unit at Kenyatta National Hospital (KNH) SUBJECTS: Two hundred and fifty caregivers of children under 12 years presenting with fever in August to October 2011 to the PEU. Three quarters of the caregivers' defined fever correctly. Their knowledge on the normal body was at 47.6%. Infection was cited as the leading cause of fever (95.2%). Brain damage (77.6%) and dehydration (65.6%) were viewed as the most common complication. Fever was treated at home by 97.2% of caregivers, most of them used medication. Fever was defined correctly by 75.2% of the study participants and a majority of them used touch to detect fever. Fever was managed at home with medications. Public Health Education should be implemented in order to enlighten caregivers on fever and advocate for the use of a clinical thermometer to monitor fever at home.

  3. Identification of factors for physicians to facilitate early differential diagnosis of scrub typhus, murine typhus, and Q fever from dengue fever in Taiwan.

    Science.gov (United States)

    Chang, Ko; Lee, Nan-Yao; Ko, Wen-Chien; Tsai, Jih-Jin; Lin, Wei-Ru; Chen, Tun-Chieh; Lu, Po-Liang; Chen, Yen-Hsu

    2017-02-01

    Dengue fever, rickettsial diseases, and Q fever are acute febrile illnesses with similar manifestations in tropical areas. Early differential diagnosis of scrub typhus, murine typhus, and Q fever from dengue fever may be made by understanding the distinguishing clinical characteristics and the significance of demographic and weather factors. We conducted a retrospective study to identify clinical, demographic, and meteorological characteristics of 454 dengue fever, 178 scrub typhus, 143 Q fever, and 81 murine typhus cases in three Taiwan hospitals. Case numbers of murine typhus and Q fever correlated significantly with temperature and rainfall; the scrub typhus case number was only significantly related with temperature. Neither temperature nor rainfall correlated with the case number of dengue fever. The rarity of dengue fever cases from January to June in Taiwan may be a helpful clue for diagnosis in the area. A male predominance was observed, as the male-to-female rate was 2.1 for murine typhus and 7.4 for Q fever. Multivariate analysis revealed the following six important factors for differentiating the rickettsial diseases and Q fever group from the dengue fever group: fever ≥8 days, alanine aminotransferase > aspartate aminotransferase, platelets >63,000/mL, C-reactive protein >31.9 mg/L, absence of bone pain, and absence of a bleeding syndrome. Understanding the rarity of dengue in the first half of a year in Taiwan and the six differentiating factors may help facilitate the early differential diagnosis of rickettsial diseases and Q fever from dengue fever, permitting early antibiotic treatment. Copyright © 2015. Published by Elsevier B.V.

  4. A polysaccharide isolated from the liquid culture of Lentinus edodes (Shiitake) mushroom mycelia containing black rice bran protects mice against a Salmonella lipopolysaccharide-induced endotoxemia.

    Science.gov (United States)

    Kim, Sung Phil; Park, Sun Ok; Lee, Sang Jong; Nam, Seok Hyun; Friedman, Mendel

    2013-11-20

    Endotoxemia (sepsis, septic shock) is an inflammatory, virulent disease that results mainly from bacterial infection. The present study investigates the inhibitory effect of a bioprocessed polysaccharide (BPP) isolated from the edible Lentinus edodes liquid mycelial mushroom culture supplemented with black rice bran against murine endotoxemia induced by the Salmonella lipopolysaccharide and d-galactosamine (LPS/GalN). BPP was obtained after dialysis against water using a cellulose tube with a molecular weight cutoff of 10000. BPP eluted as a single peak on an HPLC chromatogram. Acid hydrolysis of BPP showed the presence of the following sugars: fucose, galactose, galactosamine, glucose, glucosamine, mannose, rhamnose, and xylose. Treatment of BPP with β-glucanase reduced its immunostimulating activity, suggesting that the polysaccharide has a β-glucan structure. Pretreatment of mice with BPP via oral or intraperitoneal (ip) administration for 2 weeks resulted in the suppression of LPS/GalN-induced catalase, superoxide dismutase (SOD), and transaminase (GOT/GPT) liver enzymes, amelioration of necrotic liver lesions, and reduction of tumor necrosis factor α (TNF-α) and nitrite serum levels as well as myeloperoxidase (MPO) activity, an index of necrotic injury. Immunostimulating macrophage activity was up to 5.4-fold greater than that observed with the culture without the rice bran. BPP also extended the lifespan of the toxemic mice. These positive results with inflammation biomarkers and lifespan studies suggest that the BPP can protect mice against LPS/GalN-induced liver, lung, and kidney injuries and inflammation by blocking oxidative stress and TNF-α production, thus increasing the survival of the toxic shock-induced mice. The polysaccharide has the potential to serve as a new functional food.

  5. Perinatal Yellow Fever: A Case Report.

    Science.gov (United States)

    Diniz, Lilian Martins Oliveira; Romanelli, Roberta Maia Castro; de Carvalho, Andréa Lucchesi; Teixeira, Daniela Caldas; de Carvalho, Luis Fernando Andrade; Cury, Verônica Ferreira; Filho, Marcelo Pereira Lima; Perígolo, Graciele; Heringer, Tiago Pires

    2018-04-09

    An outbreak of yellow fever in Brazil made it possible to assess different presentations of disease such as perinatal transmission. A pregnant woman was admitted to hospital with yellow fever symptoms. She was submitted to cesarean section and died due to fulminant hepatitis. On the 6th day the newborn developed liver failure and died 13 days later. Yellow fever PCR was positive for both.

  6. Cerebral Metabolic Changes Related to Oxidative Metabolism in a Model of Bacterial Meningitis Induced by Lipopolysaccharide

    DEFF Research Database (Denmark)

    Munk, Michael; Rom Poulsen, Frantz; Larsen, Lykke

    2018-01-01

    BACKGROUND: Cerebral mitochondrial dysfunction is prominent in the pathophysiology of severe bacterial meningitis. In the present study, we hypothesize that the metabolic changes seen after intracisternal lipopolysaccharide (LPS) injection in a piglet model of meningitis is compatible...... with mitochondrial dysfunction and resembles the metabolic patterns seen in patients with bacterial meningitis. METHODS: Eight pigs received LPS injection in cisterna magna, and four pigs received NaCl in cisterna magna as a control. Biochemical variables related to energy metabolism were monitored by intracerebral...... dysfunction with increasing cerebral LPR due to increased lactate and normal pyruvate, PbtO2, and ICP. The metabolic pattern resembles the one observed in patients with bacterial meningitis. Metabolic monitoring in these patients is feasible to monitor for cerebral metabolic derangements otherwise missed...

  7. Educational Fever and South Korean Higher Education

    Directory of Open Access Journals (Sweden)

    Jeong-Kyu Lee

    2006-05-01

    Full Text Available This paper examines the influence of educational fever on the development of the Republic of Korea education and economy in the context of the cultural history of this country. In order to examine this study, the author explains the concept of educational fever and discusses the relation between Confucianism and education zeal. Educational fever and human capitalization in South Korean higher education are analyzed from a comparative viewpoint. The study evaluates the effects and problems of education fever this country’s current higher education, and it concludes that Koreans’ educational fever has been a core factor by which to achieve the development of the national economy as well as the rapid expansion of higher education.

  8. Crocin Suppresses LPS-Stimulated Expression of Inducible Nitric Oxide Synthase by Upregulation of Heme Oxygenase-1 via Calcium/Calmodulin-Dependent Protein Kinase 4

    Directory of Open Access Journals (Sweden)

    Ji-Hee Kim

    2014-01-01

    Full Text Available Crocin is a water-soluble carotenoid pigment that is primarily used in various cuisines as a seasoning and coloring agent, as well as in traditional medicines for the treatment of edema, fever, and hepatic disorder. In this study, we demonstrated that crocin markedly induces the expression of heme oxygenase-1 (HO-1 which leads to an anti-inflammatory response. Crocin inhibited inducible nitric oxide synthase (iNOS expression and nitric oxide production via downregulation of nuclear factor kappa B activity in lipopolysaccharide- (LPS- stimulated RAW 264.7 macrophages. These effects were abrogated by blocking of HO-1 expression or activity. Crocin also induced Ca2+ mobilization from intracellular pools and phosphorylation of Ca2+/calmodulin-dependent protein kinase 4 (CAMK4. CAMK4 knockdown and kinase-dead mutant inhibited crocin-mediated HO-1 expression, Nrf2 activation, and phosphorylation of Akt, indicating that HO-1 expression is mediated by CAMK4 and that Akt is a downstream mediator of CAMK4 in crocin signaling. Moreover, crocin-mediated suppression of iNOS expression was blocked by CAMK4 inhibition. Overall, these results suggest that crocin suppresses LPS-stimulated expression of iNOS by inducing HO-1 expression via Ca2+/calmodulin-CAMK4-PI3K/Akt-Nrf2 signaling cascades. Our findings provide a novel molecular mechanism for the inhibitory effects of crocin against endotoxin-mediated inflammation.

  9. Autoinflammatory Diseases with Periodic Fevers.

    Science.gov (United States)

    Sag, Erdal; Bilginer, Yelda; Ozen, Seza

    2017-07-01

    One purpose of this review was to raise awareness for the new autoinflammatory syndromes. These diseases are increasingly recognized and are in the differential diagnosis of many disease states. We also aimed to review the latest recommendations for the diagnosis, management, and treatment of these patients. Familial Mediterranean fever (FMF), cryopyrin-associated periodic syndrome (CAPS), tumor necrosis factor receptor-associated periodic fever syndrome (TRAPS), and hyperimmunoglobulinemia D and periodic fever syndrome/mevalonate kinase deficiency (HIDS/MVKD) are the more common autoinflammatory diseases that are characterized by periodic fevers and attacks of inflammation. Recently much collaborative work has been done to understand the characteristics of these patients and to develop recommendations to guide the physicians in the care of these patients. These recent recommendations will be summarized for all four diseases. FMF is the most common periodic fever disease. We need to further understand the pathogenesis and the role of single mutations in the disease. Recently, the management and treatment of the disease have been nicely reviewed. CAPS is another interesting disease associated with severe complications. Anti-interleukin-1 (anti-IL-1) treatment provides cure for these patients. TRAPS is characterized by the longest delay in diagnosis; thus, both pediatricians and internists should be aware of the characteristic features and the follow-up of these patients. HIDS/MVKD is another autoinflammatory diseases characterized with fever attacks. The spectrum of disease manifestation is rather large in this disease, and we need further research on biomarkers for the optimal management of these patients.

  10. Anti-inflammation effect of methyl salicylate 2-O-β-D-lactoside on adjuvant induced-arthritis rats and lipopolysaccharide (LPS)-treated murine macrophages RAW264.7 cells.

    Science.gov (United States)

    Zhang, Xue; Sun, Jialin; Xin, Wenyu; Li, Yongjie; Ni, Lin; Ma, Xiaowei; Zhang, Dan; Zhang, Dongming; Zhang, Tiantai; Du, Guanhua

    2015-03-01

    Methyl salicylate 2-O-β-D-lactoside (MSL) is a derivative of natural salicylate isolated from Gaultheria yunnanensis (Franch.) Rehder, which is widely used for treating rheumatoid arthritis (RA), swelling and pain. The aim of the present study was to investigate the effect of MSL on the progression of adjuvant-induced arthritis (AIA) in rat in vivo and explore the anti-inflammatory effects and mechanism of MSL in lipopolysaccharide (LPS)-treated murine macrophages RAW264.7 cells in vitro. Our results showed that MSL significantly inhibited the arthritis progression in AIA rats, decreasing the right hind paw swelling and ankle diameter, attenuating histopathological changes and suppressing the plasma levels of TNF-α and IL-1β in AIA rats. Besides, MSL had potent anti-inflammatory effects on the LPS-activated RAW264.7. MSL dose-dependently inhibited the activity of COX-1, and COX-2. Moreover, MSL prominently inhibited LPS-induced activation of MAPK in RAW264.7 cells by blocking phosphorylation of p38 and ERK. Our study suggests that MSL may be effective in the treatment of inflammatory diseases by inhibiting the pro-inflammatory cytokine production and regulating the MAPK signal pathway. Copyright © 2015. Published by Elsevier B.V.

  11. Use of inflammatory molecules to predict the occurrence of fever in onco-hematological patients with neutropenia

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, A.F. Tibúrcio; Nobre, V.; Neuenschwander, L.C. [Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Teixeira, A.L. [Laboratório de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Xavier, S.G.; Paula, F.D.F. [Departamento de Propedêutica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Teixeira, M.M. [Laboratório de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Teixeira, J.C.A.; Bittencourt, H. [Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2013-02-01

    Febrile neutropenia remains a frequent complication in onco-hematological patients, and changes in the circulating level of inflammatory molecules (IM) may precede the occurrence of fever. The present observational prospective study was carried out to evaluate the behavior of plasma tumor necrosis factor alpha (TNF-α), soluble TNF-α I and II receptors (sTNFRI and sTNFRII), monocyte chemoattractant protein-1 [MCP-1 or chemokine (c-c motif) ligand 2 (CCL2)], macrophage inflammatory protein-1α (MIP-1α or CCL3), eotaxin (CCL11), interleukin-8 (IL-8 or CXCL8), and interferon-inducible protein-10 (IP-10 or CXCL10) in 32 episodes of neutropenia in 26 onco-hematological patients. IM were tested on enrollment and 24-48 h before the onset of fever and within 24 h of the first occurrence of fever. Eight of 32 episodes of neutropenia did not present fever (control group) and the patients underwent IM tests on three different occasions. sTNFRI levels, measured a median of 11 h (1-15) before the onset of fever, were significantly higher in patients presenting fever during follow-up compared to controls (P = 0.02). Similar results were observed for sTNFRI and CCL2 levels (P = 0.04 for both) in non-transplanted patients. A cut-off of 1514 pg/mL for sTNFRI was able to discriminate between neutropenic patients with or without fever during follow-up, with 65% sensitivity, 87% specificity, and 93% positive predictive value. Measurement of the levels of plasma sTNFRI can be used to predict the occurrence of fever in neutropenic patients.

  12. Use of inflammatory molecules to predict the occurrence of fever in onco-hematological patients with neutropenia

    Directory of Open Access Journals (Sweden)

    A.F. Tiburcio Ribeiro

    2013-02-01

    Full Text Available Febrile neutropenia remains a frequent complication in onco-hematological patients, and changes in the circulating level of inflammatory molecules (IM may precede the occurrence of fever. The present observational prospective study was carried out to evaluate the behavior of plasma tumor necrosis factor alpha (TNF-α, soluble TNF-α I and II receptors (sTNFRI and sTNFRII, monocyte chemoattractant protein-1 [MCP-1 or chemokine (c-c motif ligand 2 (CCL2], macrophage inflammatory protein-1α (MIP-1α or CCL3, eotaxin (CCL11, interleukin-8 (IL-8 or CXCL8, and interferon-inducible protein-10 (IP-10 or CXCL10 in 32 episodes of neutropenia in 26 onco-hematological patients. IM were tested on enrollment and 24-48 h before the onset of fever and within 24 h of the first occurrence of fever. Eight of 32 episodes of neutropenia did not present fever (control group and the patients underwent IM tests on three different occasions. sTNFRI levels, measured a median of 11 h (1-15 before the onset of fever, were significantly higher in patients presenting fever during follow-up compared to controls (P = 0.02. Similar results were observed for sTNFRI and CCL2 levels (P = 0.04 for both in non-transplanted patients. A cut-off of 1514 pg/mL for sTNFRI was able to discriminate between neutropenic patients with or without fever during follow-up, with 65% sensitivity, 87% specificity, and 93% positive predictive value. Measurement of the levels of plasma sTNFRI can be used to predict the occurrence of fever in neutropenic patients.

  13. PET imaging of TSPO in a rat model of local neuroinflammation induced by intracerebral injection of lipopolysaccharide

    International Nuclear Information System (INIS)

    Ory, Dieter; Planas, Anna; Dresselaers, Tom; Gsell, Willy; Postnov, Andrey; Celen, Sofie; Casteels, Cindy; Himmelreich, Uwe; Debyser, Zeger; Van Laere, Koen; Verbruggen, Alfons; Bormans, Guy

    2015-01-01

    Objective: The goal of this study was to measure functional and structural aspects of local neuroinflammation induced by intracerebral injection of lipopolysaccharide (LPS) in rats using TSPO microPET imaging with [ 18 F]DPA-714, magnetic resonance imaging (MRI), in vitro autoradiography and immunohistochemistry (IHC) in order to characterize a small animal model for screening of new PET tracers targeting neuroinflammation. Methods: Rats were injected stereotactically with LPS (50 μg) in the right striatum and with saline in the left striatum. [ 18 F]DPA-714 microPET, MRI, in vitro autoradiography and IHC studies were performed at different time points after LPS injection for 1 month. Results: Analysis of the microPET data demonstrated high uptake of the tracer in the LPS injected site with an affected-to-non-affected side-binding potential ratio (BP right-to-left ) of 3.0 at 3 days after LPS injection. This BP ratio decreased gradually over time to 0.9 at 30 days after LPS injection. In vitro autoradiography ([ 18 F]DPA-714) and IHC (CD68, GFAP and TSPO) confirmed local neuroinflammation in this model. Dynamic contrast enhanced (DCE) MRI demonstrated BBB breakdown near the LPS injection site at day 1, which gradually resolved over time and was absent at 1 month after LPS injection. Conclusion: The LPS model is useful for first screening of newly developed tracers because of the easy design and the robust, unilateral inflammatory reaction allowing the use of the contralateral region as control. Additionally, this model can be used to test and follow up the benefits of anti-inflammatory therapies by non-invasive imaging

  14. ERYTHEMA NODOSUM AND PROLONGED FEVER ASSOCIATED TO SECONDARY HYPERPARATHYROIDISM

    Directory of Open Access Journals (Sweden)

    Galimberti R

    2005-08-01

    Full Text Available SUMMARYSecondary hyperparathyroidism is one of the main deragements caused by chronic renal failure, and parathyroid hormone is considered one of the toxins of the uremic syndrome. Prolonged fever due to primary hyperparathyroidism have already been described in the literature but not yet as induced by secondary hyperparathyroidism. In this case report a patient suffering from an erythema nodosum and prolonged fever associated to secondary hyperparathyroidism that disappeared through subtotal parathyroidectomy is presented.RESUMENEl hiperparatiroidismo secundario es uno de los principales disturbios causados por la insuficiencia renal crónica, y la paratohormona es considerada una de las toxinas del sindrome urémico. El sindrome febril prolongado secundario a hiperparatiroidismo primario ya ha sido descripto en la literatura, aunque no lo ha sido aun el inducido por hiperparatiroidismo secundario. En el presente reporte se presenta un caso de eritema nodoso y sindrome febril prolongado asociado a hiperparatiroidismo secundario y que resolvió luego de efectuada una paratiroidectomía subtotal.

  15. Effect of nitric oxide-releasing derivative of indomethacin on Prevotella intermedia lipopolysaccharide-induced production of proinflammatory mediators in murine macrophages.

    Science.gov (United States)

    Choe, So-Hui; Choi, Eun-Young; Hyeon, Jin-Yi; Choi, In Soon; Kim, Sung-Jo

    2017-10-14

    The purpose of this study was to investigate the influences of NCX 2121, a nitric oxide (NO)-releasing derivative of indomethacin, upon the generation of proinflammatory mediators using murine macrophages activated by lipopolysaccharide (LPS) isolated from Prevotella intermedia, which is one of the pathogens implicated in periodontal diseases. Inducible NO synthase (iNOS)-derived NO, IL-1β and IL-6 as well as their relevant mRNA were significantly attenuated by NCX 2121 in RAW264.7 cells activated by P. intermedia LPS. NCX 2121 was much more effective than the parental compound indomethacin in reducing these proinflammatory mediators. NCX 2121 triggered induction of heme oxygenase-1 (HO-1) in cells exposed to P. intermedia LPS, and its inhibitory influence upon P. intermedia LPS-elicited NO generation was notably blocked by SnPP treatment. NCX 2121 attenuated NF-κB-dependent SEAP release induced by P. intermedia LPS. NCX 2121 did not display inhibitory action towards IκB-α degradation triggered by LPS. Instead, it significantly diminished nuclear translocation as well as DNA-binding action of NF-κB p50 subunit elicited by P. intermedia LPS. Further, NCX 2121 significantly up-regulated SOCS1 mRNA expression in cells challenged with P. intermedia LPS. In summary, NCX 2121 down-regulates P. intermedia LPS-elicited generation of NO, IL-1β and IL-6 in murine macrophages in a mechanism that involves anti-inflammatory HO-1 induction as well as decrement of NF-κB activation, which may be associated with SOCS1 expression. NCX 2121 may have potential benefits as a host immunomodulatory agent for the therapy of periodontal disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Protective Effect of Casperome®, an Orally Bioavailable Frankincense Extract, on Lipopolysaccharide- Induced Systemic Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Konstantin Loeser

    2018-04-01

    Full Text Available Introduction: Despite recent advances in critical care, sepsis remains a crucial cause of morbidity and mortality in intensive care units. Therefore, the identification of new therapeutic strategies is of great importance. Since ancient times, frankincense is used in traditional medicine for the treatment of chronic inflammatory disorders such as rheumatoid arthritis. Thus, the present study intends to evaluate if Casperome® (Casp, an orally bioavailable soy lecithin-based formulation of standardized frankincense extract, is able to ameliorate systemic effects and organ damages induced by severe systemic inflammation using a murine model of sepsis, i.e., intraperitoneal administration of lipopolysaccharides (LPS.Methods: Male 60-day-old mice were assigned to six treatment groups: (1 control, (2 LPS, (3 soy lecithin (blank lecithin without frankincense extract, (4 Casp, (5 soy lecithin plus LPS, or (6 Casp plus LPS. Soy lecithin and Casp were given 3 h prior to LPS treatment; 24 h after LPS administration, animals were sacrificed and health status and serum cytokine levels were evaluated. Additionally, parameters representing liver damage or liver function and indicating oxidative stress in different organs were determined. Furthermore, markers for apoptosis and immune cell redistribution were assessed by immunohistochemistry in liver and spleen.Results: LPS treatment caused a decrease in body temperature, blood glucose levels, liver glycogen content, and biotransformation capacity along with an increase in serum cytokine levels and oxidative stress in various organs. Additionally, apoptotic processes were increased in spleen besides a pronounced immune cell infiltration in both liver and spleen. Pretreatment with Casp significantly improved health status, blood glucose values, and body temperature of the animals, while serum levels of pro-inflammatory cytokines and oxidative stress in all organs tested were significantly diminished. Finally

  17. Chemical composition of lipopolysaccharides isolated from various endophytic nitrogen-fixing bacteria of the genus Herbaspirillum.

    Science.gov (United States)

    Serrato, R V; Sassaki, G L; Cruz, L M; Carlson, R W; Muszyński, A; Monteiro, R A; Pedrosa, F O; Souza, E M; Iacomini, M

    2010-04-01

    Bacteria from the genus Herbaspirillum are endophytes responsible for nitrogen fixation in gramineous plants of economic importance such as maize, sugarcane, sorghum, rice, and wheat. Some species are known to produce plant growth substances. In contrast, Herbaspirillum rubrisubalbicans strains are known to be mild plant pathogens. The molecular communication between the plant and the microbes might involve lipopolysaccharides present in the outer membrane of these gram-negative bacteria. Phenol-water extraction was used to obtain lipopolysaccharides from 7 strains of Herbaspirillum seropedicae (SmR1, Z67, Z78, ZA95, and M2) and H. rubrisubalbicans (M1 and M4). The electrophoretic profiles and chemical composition of the lipopolysaccharides obtained in the phenol and aqueous extracts were shown herein.

  18. Peripheral and central mediators of lipopolysaccharide induced suppression of defensive rage behavior in the cat.

    Science.gov (United States)

    Bhatt, S; Bhatt, R S; Zalcman, S S; Siegel, A

    2009-11-10

    Based upon recent findings in our laboratory that cytokines microinjected into the medial hypothalamus or periaqueductal gray (PAG) powerfully modulate defensive rage behavior in cat, the present study determined the effects of peripherally released cytokines following lipopolysaccharide (LPS) challenge upon defensive rage. The study involved initial identification of the effects of peripheral administration of LPS upon defensive rage by electrical stimulation from PAG and subsequent determination of the peripheral and central mechanisms governing this process. The results revealed significant elevation in response latencies for defensive rage from 60 to 300 min, post LPS injection, with no detectable signs of sickness behavior present at 60 min. In contrast, head turning behavior elicited by stimulation of adjoining midbrain sites was not affected by LPS administration, suggesting a specificity of the effects of LPS upon defensive rage. Direct administration of LPS into the medial hypothalamus had no effect on defensive rage, suggesting that the effects of LPS were mediated by peripheral cytokines rather than by any direct actions upon hypothalamic neurons. Complete blockade of the suppressive effects of LPS by peripheral pretreatment with an Anti-tumor necrosis factor-alpha (TNFalpha) antibody but not with an anti- interleukin-1 (IL-1) antibody demonstrated that the effects of LPS were mediated through TNF-alpha rather than through an IL-1 mechanism. A determination of the central mechanisms governing LPS suppression revealed that pretreatment of the medial hypothalamus with PGE(2) or 5-HT(1A) receptor antagonists each completely blocked the suppressive effects of LPS, while microinjections of a TNF-alpha antibody into the medial hypothalamus were ineffective. Microinjections of -Iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) benzamide monohydrochloride (p-MPPI) into lateral hypothalamus (to test for anatomical specificity) had no effect upon

  19. Glycyrrhetinic acid attenuates lipopolysaccharide-induced fulminant hepatic failure in D-galactosamine-sensitized mice by up-regulating expression of interleukin-1 receptor-associated kinase-M

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xinru [Department of Pharmacology, Chongqing Medical University, Chongqing 400016 (China); Gong, Xia [Department of Anatomy, Chongqing Medical University, Chongqing 400016 (China); Zhang, Li; Jiang, Rong [Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016 (China); Kuang, Ge [Department of Pharmacology, Chongqing Medical University, Chongqing 400016 (China); Wang, Bin [Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chen, Xinyu [Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021 (China); Wan, Jingyuan, E-mail: jywan@cqmu.edu.cn [Department of Pharmacology, Chongqing Medical University, Chongqing 400016 (China)

    2017-04-01

    Glycyrrhetinic acid (GA), the main active ingredient of licorice, reportedly has anti-inflammatory and hepatoprotective properties, but its molecular mechanisms remain be elusive. In the present study, Balb/c mice were pretreated with GA (10, 30, or 100 mg/kg) 1 h before lipopolysaccharide (LPS)/D-galactosamine (D-GalN) administration. In other in vitro experiment, RAW264.7 macrophages were pretreated with GA before LPS exposure. The mortality, hepatic tissue histology, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed. Toll like receptor 4 (TLR4), interleukin-1 receptor-associated kinases (IRAKs), activation of mitogen-activated protein kinases (MAPKs) and NF-κB, and production of TNF-α were assessed by flow cytometry, western blotting, and enzyme-linked immunosorbent assay (ELISA), respectively. Our results showed that pretreatment with GA protected mice against LPS/D-GalN-induced fulminant hepatic failure (FHF), including a dose-dependent alleviation of mortality and ALT/AST elevation, ameliorating hepatic pathological damage, and decreasing TNF-α release. Moreover, GA inhibited LPS-induced activation of MAPKs and NF-κB in response to LPS, but the expression of TLR4 was not affected in vivo and in vitro. Notably, GA pretreatment in vivo suppressed IRAK-1 activity while inducing IRAK-M expression. Silencing of IRAK-M expression with siRNA blocked these beneficial effects of GA on the activation of MAPKs and NF-κB as well as TNF-α production in LPS-primed macrophages. Taken together, we conclude that GA could prevent LPS/D-GalN-induced FHF. The underlying mechanisms may be related to up-regulation of IRAK-M, which in turn caused deactivation of IRAK-1 and subsequent MAPKs and NF-κB, resulting in inhibiting TNF-α production. - Highlights: • Glycyrrhetinic acid protected from LPS/D-GalN-induced liver injury in mice. • Glycyrrhetinic acid inhibited LPS-induced TNF-α production in vivo and in vitro. • Glycyrrhetinic

  20. Hyperreactivity of Blood Leukocytes in Patients with NAFLD to Ex Vivo Lipopolysaccharide Treatment Is Modulated by Metformin and Phosphatidylcholine but Not by Alpha Ketoglutarate.

    Directory of Open Access Journals (Sweden)

    Agnieszka Zwolak

    Full Text Available Toll-like receptor 4 and proinflammatory cytokines play a central role in the progression of nonalcoholic fatty liver disease. We investigated IL-1, IL-6 and TNFα production and toll-like receptor 4 in both--obese and lean patients with non-alcoholic fatty liver disease who met different sets of metabolic syndrome criteria and linked the results with the disease burden.95 subjects were divided into four groups depending on the following criteria: presence or absence of metabolic syndrome and/or non-alcoholic fatty liver disease, glucose tolerance (prediabetes or normoglycemia and BMI value (obese or lean. We determined the levels of IL-1β, IL-6, TNFα, and monocyte toll-like receptor 4 expression in fresh blood as well as in blood cultures treated with lipopolysaccharide with or without metformin, alphaketoglutarate or phosphatidylcholine supplementation.The blood leukocytes of patients with non-alcoholic fatty liver disease are hypersensitive to lipopolysaccharide treatment and produce elevated levels of pro-inflammatory cytokines in response to ex vivo treatment with lipopolysaccharide. Moreover, they overexpress toll-like receptor-4. Hyperreactivity was typical mainly for obese patients with non-alcoholic fatty liver disease together with metabolic syndrome and decreased with the severity of disease. Metformin was the most effective in attenuation of hyperreactivity in all groups of patients with non-alcoholic fatty liver disease, but in obese patients the effectiveness of metformin was weaker than in lean. The reduction of cytokine level by metformin was accompanied by the decrease in toll-like receptor-4 expression. phosphatidylcholine also attenuated hyperreactivity to lipopolysaccharide but mainly in obese patients. Alpha ketoglutarate did not modulate cytokines' level and toll-like receptor 4 expression in non-alcoholic fatty liver disease patients.Metformin and phosphatidylcholine attenuated lipopolysaccharide induced toll

  1. A Systematic Scoping Study of the Socio-Economic Impact of Rift Valley Fever

    NARCIS (Netherlands)

    Peyre, M.; Chevalier, V.; Abdo-Salem, S.; Velthuis, A.; Antoine-Moussiaux, N.; Thiry, E.; Roger, F.

    2015-01-01

    Rift Valley fever (RVF) is a severe mosquito-borne disease affecting humans and domestic ruminants. RVF virus has been reported in most African countries, as well as in the Arabic Peninsula. This paper reviews the different types of socio-economic impact induced by RVF disease and the attempts to

  2. Fatal Yellow Fever in Travelers to Brazil, 2018.

    Science.gov (United States)

    Hamer, Davidson H; Angelo, Kristina; Caumes, Eric; van Genderen, Perry J J; Florescu, Simin A; Popescu, Corneliu P; Perret, Cecilia; McBride, Angela; Checkley, Anna; Ryan, Jenny; Cetron, Martin; Schlagenhauf, Patricia

    2018-03-23

    Yellow fever virus is a mosquito-borne flavivirus that causes yellow fever, an acute infectious disease that occurs in South America and sub-Saharan Africa. Most patients with yellow fever are asymptomatic, but among the 15% who develop severe illness, the case fatality rate is 20%-60%. Effective live-attenuated virus vaccines are available that protect against yellow fever (1). An outbreak of yellow fever began in Brazil in December 2016; since July 2017, cases in both humans and nonhuman primates have been reported from the states of São Paulo, Minas Gerais, and Rio de Janeiro, including cases occurring near large urban centers in these states (2). On January 16, 2018, the World Health Organization updated yellow fever vaccination recommendations for Brazil to include all persons traveling to or living in Espírito Santo, São Paulo, and Rio de Janeiro states, and certain cities in Bahia state, in addition to areas where vaccination had been recommended before the recent outbreak (3). Since January 2018, 10 travel-related cases of yellow fever, including four deaths, have been reported in international travelers returning from Brazil. None of the 10 travelers had received yellow fever vaccination.

  3. Ebselen Is a Potential Anti-Osteoporosis Agent by Suppressing Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclast Differentiation In vitro and Lipopolysaccharide-Induced Inflammatory Bone Destruction In vivo.

    Science.gov (United States)

    Baek, Jong Min; Kim, Ju-Young; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su

    2016-01-01

    Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in an osteoblast/osteoclast co-culture by regulating the ratio of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin secreted by osteoblasts. In addition, ebselen treatment in the early stage of osteoclast differentiation inhibited RANKL-dependent osteoclastogenesis by decreasing the phosphorylation of IκB, PI3K, and Akt in early signaling pathways and by subsequently inducing c-Fos and nuclear factor of activated T-cells c1. Further, ebselen induced apoptosis of osteoclasts in the late stage of osteoclast differentiation. In addition, ebselen treatment suppressed filamentous actin ring formation and bone resorption activity of mature osteoclasts. Reflecting these in vitro effects, administration of ebselen recovered bone loss and its µ-CT parameters in lipopolysaccharide-mediated mouse model. Histological analysis confirmed that ebselen prevented trabecular bone matrix degradation and osteoclast formation in the bone tissues. Finally, it was proved that the anti-osteoclastogenic action of ebselen is achieved through targeting N-methyl-D-aspartate (NMDA) receptor. These results indicate that ebselen is a potentially safe drug for treating metabolic bone diseases such as osteoporosis.

  4. Citric acid effects on brain and liver oxidative stress in lipopolysaccharide-treated mice.

    Science.gov (United States)

    Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Morsy, Safaa M Youssef; Omara, Enayat A; Sleem, Amany A

    2014-05-01

    Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1-2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1-2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1-2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation.

  5. Dengue fever outbreak: a clinical management experience

    International Nuclear Information System (INIS)

    Ahmed, S.; Illyas, M.

    2008-01-01

    To determine the frequency of dengue as a cause of fever and compare the clinical and haematological characteristics of Dengue-probable and Dengue-proven cases. All patients with age above 14 years, who were either hospitalized or treated in medical outdoor clinic due to acute febrile illness, were evaluated for clinical features of Dengue Fever (DF), Dengue haemorrhagic fever (DHF) and Dengue Shock Syndrome (DSS). Patients showing typical clinical features and haematological findings suggestive of Dengue fever (As per WHO criteria) were evaluated in detail for comparison of probable and confirmed cases of Dengue fever. All other cases of acute febrile illness, not showing clinical features or haematological abnormalities of Dengue fever, were excluded. The clinical and laboratory features were recorded on SPSS 11.0 programme and graded where required, for descriptive and statistical analysis. Out of 5200 patients with febrile illness, 107 (2%) presented with typical features of DF, 40/107 (37%) were Dengue-proven while 67/107 (63%) were Dengue-probable. Out of Dengue-proven cases, 38 were of DF and 2 were of DHF. Day 1 temperature ranged from 99-105 degreeC (mean 101 degree C). Chills and rigors were noticed in 86 (80%), myalgia in 67%, headache in 54%, pharyngitis in 35%, rash in 28%, and bleeding manifestations in 2% cases. Hepatomegaly in 1(0.5%), lymphadenopathy in 1 (0.5%) and splenomegaly in 12 (11.2%) cases. Leucopoenia (count 40 U/L in 57% cases. Frequency of clinically suspected dengue virus infection was 107 (2%), while confirmed dengue fever cases were 40 (0.8%) out of 5200 fever cases. Fever with chills and rigors, body aches, headache, myalgia, rash, haemorrhagic manifestations, platelet count, total leukocyte count, and ALT, are parameters to screen the cases of suspected dengue virus infection, the diagnosis cannot be confirmed unless supported by molecular studies or dengue specific IgM. (author)

  6. Q fever: a new ocular manifestation

    Directory of Open Access Journals (Sweden)

    Udaondo P

    2011-09-01

    Full Text Available P Udaondo1,3, S Garcia-Delpech1,2, D Salom1,2, M Garcia-Pous1, M Diaz-Llopis1,21Department of Ophthalmology, Nuevo Hospital Universitario y Politecnico La Fe, Valencia, Spain; 2Faculty of Medicine, Universitat de València, Valencia, Spain; 3Universidad Cardenal Herrera CEU, Valencia, SpainAbstract: Q Fever is a zoonosis caused by Coxiella burnetii. Ocular manifestations are rare in this infection. We describe the case of a man complaining of an intense retro-orbital headache, fever, arthralgia, and bilateral loss of vision, who showed an anterior uveitis accompanied by exudative bilateral inferior retinal detachment and optic disk edema. At the beginning, a Vogt–Koyanagi–Harada (VKH syndrome was suspected, but the patient was diagnosed with Q fever and treatment with doxycycline was initiated, with complete resolution after 2 weeks. We wondered if Q fever could unleash VKH syndrome or simulate a VKH syndrome by a similar immunological process.Keywords: Q fever, Vogt–Koyanagi–Harada syndrome, panuveitis, exudative retinal detachment

  7. Preparation of a lipopolysaccharide from ''Escherichia coli 0111a, 0111b, K58: H21'' bacterial wall, labeled with carbon-14

    International Nuclear Information System (INIS)

    Garcia Pineda, D.; Solano, M.A.

    1980-01-01

    A brief description is made of the morphological and chemical structure of lipopolysaccharides, as well as its occurence in nature and its mechanisms of action. It is emphasized the usefulness of the labelled lipopolysaccharide for actual biochemical and biomedical research. The method for the labelling, isolation and purification of carbon-14 lipopolysaccharide is described. (auth.)

  8. NSs protein of rift valley fever virus induces the specific degradation of the double-stranded RNA-dependent protein kinase.

    Science.gov (United States)

    Habjan, Matthias; Pichlmair, Andreas; Elliott, Richard M; Overby, Anna K; Glatter, Timo; Gstaiger, Matthias; Superti-Furga, Giulio; Unger, Hermann; Weber, Friedemann

    2009-05-01

    Rift Valley fever virus (RVFV) continues to cause large outbreaks of acute febrile and often fatal illness among humans and domesticated animals in Africa, Saudi Arabia, and Yemen. The high pathogenicity of this bunyavirus is mainly due to the viral protein NSs, which was shown to prevent transcriptional induction of the antivirally active type I interferons (alpha/beta interferon [IFN-alpha/beta]). Viruses lacking the NSs gene induce synthesis of IFNs and are therefore attenuated, whereas the noninducing wild-type RVFV strains can only be inhibited by pretreatment with IFN. We demonstrate here in vitro and in vivo that a substantial part of the antiviral activity of IFN against RVFV is due to a double-stranded RNA-dependent protein kinase (PKR). PKR-mediated virus inhibition, however, was much more pronounced for the strain Clone 13 with NSs deleted than for the NSs-expressing strain ZH548. In vivo, Clone 13 was nonpathogenic for wild-type (wt) mice but could regain pathogenicity if mice lacked the PKR gene. ZH548, in contrast, killed both wt and PKR knockout mice indiscriminately. ZH548 was largely resistant to the antiviral properties of PKR because RVFV NSs triggered the specific degradation of PKR via the proteasome. The NSs proteins of the related but less virulent sandfly fever Sicilian virus and La Crosse virus, in contrast, had no such anti-PKR activity despite being efficient suppressors of IFN induction. Our data suggest that RVFV NSs has gained an additional anti-IFN function that may explain the extraordinary pathogenicity of this virus.

  9. Coxiella burnetii Shedding Routes and Antibody Response after Outbreaks of Q Fever-Induced Abortion in Dairy Goat Herds▿

    OpenAIRE

    Rousset, Elodie; Berri, Mustapha; Durand, Benoit; Dufour, Philippe; Prigent, Myriam; Delcroix, Thibault; Touratier, Anne; Rodolakis, Annie

    2008-01-01

    Q fever is a zoonosis caused by Coxiella burnetii, a bacterium largely carried by ruminants and shed into milk, vaginal mucus, and feces. The main potential hazard to humans and animals is due to shedding of bacteria that can then persist in the environment and be aerosolized. The purpose of this study was to evaluate shedding after an outbreak of Q fever abortion in goat herds and to assess the relationship with the occurrence of abortions and antibody responses. Aborting and nonaborting goa...

  10. Rift Valley Fever.

    Science.gov (United States)

    Hartman, Amy

    2017-06-01

    Rift Valley fever (RVF) is a severe veterinary disease of livestock that also causes moderate to severe illness in people. The life cycle of RVF is complex and involves mosquitoes, livestock, people, and the environment. RVF virus is transmitted from either mosquitoes or farm animals to humans, but is generally not transmitted from person to person. People can develop different diseases after infection, including febrile illness, ocular disease, hemorrhagic fever, or encephalitis. There is a significant risk for emergence of RVF into new locations, which would affect human health and livestock industries. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Inhibition of Phosphodiesterase 4 by FCPR03 Alleviates Lipopolysaccharide-Induced Depressive-Like Behaviors in Mice: Involvement of p38 and JNK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Hui Yu

    2018-02-01

    Full Text Available Inflammatory responses induced by peripheral administration of lipopolysaccharide (LPS triggers depressive-like behavioral syndrome in rodents. Inhibition of phosphodiesterase 4 (PDE4 produces a robust anti-inflammatory effect in inflammatory cells. Unfortunately, archetypal PDE4 inhibitors cause intolerable gastrointestinal side-effects, such as vomiting and nausea. N-isopropyl-3-(cyclopropylmethoxy-4-difluoromethoxy benzamide (FCPR03 is a novel, selective PDE4 inhibitor with little, or no, emetic potency. Our previous studies show that FCPR03 is effective in attenuating neuroinflammation in mice treated with LPS. However, whether FCPR03 could exert antidepressant-like effect induced by LPS is largely unknown. In the present study, mice injected intraperitoneally (i.p. with LPS was established as an in vivo animal model of depression. The antidepressant-like activities of FCPR03 were evaluated using a tail suspension test, forced swimming test, and sucrose preference test. We demonstrated that administration of FCPR03 (1 mg/kg produced antidepressant-like effects in mice challenged by LPS, as evidenced by decreases in the duration of immobility in the forced swim and tail suspension tests, while no significant changes in locomotor activity were observed. FCPR03 also increased sucrose preference in mice treated with LPS. In addition, treatment with FCPR03 abolished the downregulation of brain-derived neurotrophic factor induced by LPS and decreased the level of corticosterone in plasma. Meanwhile, periphery immune challenge by LPS induced enhanced phosphorylation of p38-mitogen activated protein kinase (p38 and c-Jun N-terminal kinase (JNK in both the cerebral cortex and hippocampus in mice. Interestingly, treatment with FCPR03 significantly blocked the role of LPS and reduced the levels of phosphorylated p38 and JNK. Collectively, these results indicate that FCPR03 shows antidepressant-like effects in mice challenged by LPS, and the p38/JNK

  12. [Effect of NF-κB on the expression of interleukin-6 induced by lipopolysaccharides of Porphyromonas endodontalis in MC3T3-E1 cells].

    Science.gov (United States)

    Yu, Ya-qiong; Guo, Jia-jie; Qiu, Li-hong; Lv, You; Jia, Ge; Guo, Yan

    2013-08-01

    To investigate the effect of NF-κB signaling on the expression of interleukin-6(IL-6) induced by lipopolysaccharides(LPS) extracted from Porphyromonas endodontalis(P.e) in MC3T3-El cells. MC3T3-E1 cells were pretreated with BAY-117082 for 1 h, and then were treated with 10 mg/L P.e-LPS for different times. The translocation of NF-κB was observed by immunofluorescence. The expression of IL-6 was detected by reverse transcription polymerse chain reaction (RT-PCR) and enzyme-linked immuno sorbent assay (ELISA). Statistical analysis was performed using multi-way ANOVA and Dunnett's t test with SPSS 13.0 software package. The staining of NF-κB was mostly in cytoplasm in untreated cells. Rapid translocation of NF-κB into nucleus was observed in the cells stimulated for 30 min and mostly relocalization of NF-κB from nucleus to cytoplasm was observed after 60 min. Pretreatment with 10 μmol/L BAY-117082 for 1h significantly inhibited P.e-LPS-induced translocation of NF-κB .The mRNA and proteins of IL-6 decreased significantly after pretreatment with 10 μmol/L BAY-117082 and the expression of IL-6 proteins was reduced from (774.983±6.585) ng/L to (377.384±14.620) ng/L (P<0.01). The group of treatment with BAY-117082 alone had no significant difference from the blank control group. P.e-LPS can induce translocation of NF-κB in mouse osteoblast MC3T3-El, and P.e-LPS may induce the expression of IL-6 in mouse osteoblast through the signaling of NF-κB.

  13. The Non-structural Protein of Crimean-Congo Hemorrhagic Fever Virus Disrupts the Mitochondrial Membrane Potential and Induces Apoptosis*

    Science.gov (United States)

    Barnwal, Bhaskar; Karlberg, Helen; Mirazimi, Ali; Tan, Yee-Joo

    2016-01-01

    Viruses have developed distinct strategies to overcome the host defense system. Regulation of apoptosis in response to viral infection is important for virus survival and dissemination. Like other viruses, Crimean-Congo hemorrhagic fever virus (CCHFV) is known to regulate apoptosis. This study, for the first time, suggests that the non-structural protein NSs of CCHFV, a member of the genus Nairovirus, induces apoptosis. In this report, we demonstrated the expression of CCHFV NSs, which contains 150 amino acid residues, in CCHFV-infected cells. CCHFV NSs undergoes active degradation during infection. We further demonstrated that ectopic expression of CCHFV NSs induces apoptosis, as reflected by caspase-3/7 activity and cleaved poly(ADP-ribose) polymerase, in different cell lines that support CCHFV replication. Using specific inhibitors, we showed that CCHFV NSs induces apoptosis via both intrinsic and extrinsic pathways. The minimal active region of the CCHFV NSs protein was determined to be 93–140 amino acid residues. Using alanine scanning, we demonstrated that Leu-127 and Leu-135 are the key residues for NSs-induced apoptosis. Interestingly, CCHFV NSs co-localizes in mitochondria and also disrupts the mitochondrial membrane potential. We also demonstrated that Leu-127 and Leu-135 are important residues for disruption of the mitochondrial membrane potential by NSs. Therefore, these results indicate that the C terminus of CCHFV NSs triggers mitochondrial membrane permeabilization, leading to activation of caspases, which, ultimately, leads to apoptosis. Given that multiple factors contribute to apoptosis during CCHFV infection, further studies are needed to define the involvement of CCHFV NSs in regulating apoptosis in infected cells. PMID:26574543

  14. Conserved Fever Pathways across Vertebrates: A Herpesvirus Expressed Decoy TNF-α Receptor Delays Behavioral Fever in Fish.

    Science.gov (United States)

    Rakus, Krzysztof; Ronsmans, Maygane; Forlenza, Maria; Boutier, Maxime; Piazzon, M Carla; Jazowiecka-Rakus, Joanna; Gatherer, Derek; Athanasiadis, Alekos; Farnir, Frédéric; Davison, Andrew J; Boudinot, Pierre; Michiels, Thomas; Wiegertjes, Geert F; Vanderplasschen, Alain

    2017-02-08

    Both endotherms and ectotherms (e.g., fish) increase their body temperature to limit pathogen infection. Ectotherms do so by moving to warmer places, hence the term "behavioral fever." We studied the manifestation of behavioral fever in the common carp infected by cyprinid herpesvirus 3, a native carp pathogen. Carp maintained at 24°C died from the infection, whereas those housed in multi-chamber tanks encompassing a 24°C-32°C gradient migrated transiently to the warmest compartment and survived as a consequence. Behavioral fever manifested only at advanced stages of infection. Consistent with this, expression of CyHV-3 ORF12, encoding a soluble decoy receptor for TNF-α, delayed the manifestation of behavioral fever and promoted CyHV-3 replication in the context of a temperature gradient. Injection of anti-TNF-α neutralizing antibodies suppressed behavioral fever, and decreased fish survival in response to infection. This study provides a unique example of how viruses have evolved to alter host behavior to increase fitness. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Rocky Mountain spotted fever, Colombia.

    Science.gov (United States)

    Hidalgo, Marylin; Orejuela, Leonora; Fuya, Patricia; Carrillo, Pilar; Hernandez, Jorge; Parra, Edgar; Keng, Colette; Small, Melissa; Olano, Juan P; Bouyer, Donald; Castaneda, Elizabeth; Walker, David; Valbuena, Gustavo

    2007-07-01

    We investigated 2 fatal cases of Rocky Mountain spotted fever that occurred in 2003 and 2004 near the same locality in Colombia where the disease was first reported in the 1930s. A retrospective serosurvey of febrile patients showed that > 21% of the serum samples had antibodies aaainst spotted fever group rickettsiae.

  16. Fever in pregnancy and the risk of congenital malformations

    DEFF Research Database (Denmark)

    Sass, L; Urhoj, S K; Kjærgaard, J

    2017-01-01

    Background: In a variety of animal species, hyperthermia in pregnancy has been recognized as teratogenic. Hyperthermia interferes with protein synthesis via heat-shock proteins, which can entail membrane disruption, cell death, vascular disruption, and placental infarction. This can induce severe....... Congenital malformations within the first three and a half years of life were categorized according to EUROCAT's classification criteria. Logistic regression models were used to estimate the associations between fever in first trimester and overall congenital malformations and congenital malformations...

  17. Paediatric fever management: continuing education for clinical nurses.

    Science.gov (United States)

    Walsh, Anne M; Edwards, Helen E; Courtney, Mary D; Wilson, Jenny E; Monaghan, Sarah J

    2006-01-01

    This study examined the influence of level of practice, additional paediatric education and length of paediatric and current experience on nurses' knowledge of and beliefs about fever and fever management. Fifty-one nurses from medical wards in an Australian metropolitan paediatric hospital completed a self-report descriptive survey. Knowledge of fever management was mediocre (Mean 12.4, SD 2.18 on 20 items). Nurses practicing at a higher level and those with between one and four years paediatric or current experience were more knowledgeable than novices or more experienced nurses. Negative beliefs that would impact nursing practice were identified. Interestingly, beliefs about fever, antipyretic use in fever management and febrile seizures were similar; they were not influenced by nurses' knowledge, experience, education or level of practice. Paediatric nurses are not expert fever managers. Knowledge deficits and negative attitudes influence their practice irrespective of additional paediatric education, paediatric or current experience or level of practice. Continuing education is therefore needed for all paediatric nurses to ensure the latest clear evidence available in the literature for best practice in fever management is applied.

  18. Peroxisome proliferator-activated receptor δ inhibits Porphyromonas gingivalis lipopolysaccharide-induced activation of matrix metalloproteinase-2 by downregulating NADPH oxidase 4 in human gingival fibroblasts.

    Science.gov (United States)

    Yoo, T; Ham, S A; Hwang, J S; Lee, W J; Paek, K S; Oh, J W; Kim, J H; Do, J T; Han, C W; Kim, J H; Seo, H G

    2016-10-01

    We investigated the roles of peroxisome proliferator-activated receptor δ (PPARδ) in Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS)-induced activation of matrix metalloproteinase 2 (MMP-2). In human gingival fibroblasts (HGFs), activation of PPARδ by GW501516, a specific ligand of PPARδ, inhibited Pg-LPS-induced activation of MMP-2 and generation of reactive oxygen species (ROS), which was associated with reduced expression of NADPH oxidase 4 (Nox4). These effects were significantly smaller in the presence of small interfering RNA targeting PPARδ or the specific PPARδ inhibitor GSK0660, indicating that PPARδ is involved in these events. In addition, modulation of Nox4 expression by small interfering RNA influenced the effect of PPARδ on MMP-2 activity, suggesting a mechanism in which Nox4-derived ROS modulates MMP-2 activity. Furthermore, c-Jun N-terminal kinase and p38, but not extracellular signal-regulated kinase, mediated PPARδ-dependent inhibition of MMP-2 activity in HGFs treated with Pg-LPS. Concomitantly, PPARδ-mediated inhibition of MMP-2 activity was associated with the restoration of types I and III collagen to levels approaching those in HGFs not treated with Pg-LPS. These results indicate that PPARδ-mediated downregulation of Nox4 modulates cellular redox status, which in turn plays a critical role in extracellular matrix homeostasis through ROS-dependent regulation of MMP-2 activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Cyclooxygenase-2 mediates the febrile response of mice to interleukin-1beta.

    Science.gov (United States)

    Li, S; Ballou, L R; Morham, S G; Blatteis, C M

    2001-08-10

    Various lines of evidence have implicated cyclooxygenase (COX)-2 as a modulator of the fever induced by the exogenous pyrogen lipopolysaccharide (LPS). Thus, treatment with specific inhibitors of COX-2 suppresses the febrile response without affecting basal body (core) temperature (T(c)). Furthermore, COX-2 gene-ablated mice are unable to develop a febrile response to intraperitoneal (i.p.) LPS, whereas their COX-1-deficient counterparts produce fevers not different from their wild-type (WT) controls. To extend the apparently critical role of COX-2 for LPS-induced fevers to fevers produced by endogenous pyrogens, we studied the thermal responses of COX-1- and COX-2 congenitally deficient mice to i.p. and intracerebroventricular (i.c.v.) injections of recombinant murine (rm) interleukin (IL)-1beta. We also assessed the effects of one selective COX-1 inhibitor, SC-560, and two selective COX-2 inhibitors, nimesulide (NIM) and dimethylfuranone (DFU), on the febrile responses of WT and COX-1(-/-) mice to LPS and rmIL-1beta, i.p. Finally, we verified the integrity of the animals' responses to PGE2, i.c.v. I.p. and i.c.v. rmIL-1beta induced similar fevers in WT and COX-1 knockout mice, but provoked no rise in the T(c)s of COX-2 null mutants. The fever produced in WT mice by i.p. LPS was not affected by SC-560, but it was attenuated and abolished by NIM and DFU, respectively, while that caused by i.p. rmIL-1beta was converted into a T(c) fall by DFU. There were no differences in the responses to i.c.v. PGE2 among the WT and COX knockout mice. These results, therefore, further support the notion that the production of PGE2 in response to pyrogens is critically dependent on COX-2 expression.

  20. Increase in covalent binding of 5-hydroxydiclofenac to hepatic tissues in rats co-treated with lipopolysaccharide and diclofenac: involvement in the onset of diclofenac-induced idiosyncratic hepatotoxicity.

    Science.gov (United States)

    Kishida, Tomoyuki; Onozato, Tomoya; Kanazawa, Toru; Tanaka, Satoru; Kuroda, Junji

    2012-01-01

    Diclofenac (DCF), a nonsteroidal anti-inflammatory drug, is well known to induce idiosyncratic hepatotoxicity. Although there remains much to be elucidated about its onset mechanism, it is widely accepted as a hypothesis that idiosyncratic hepatotoxicity arises from a specific immune response to a hapten formed by covalent binding of drugs or their reactive metabolites to hepatic tissues. In this study, we investigated the effects of covalent binding of DCF reactive metabolites to hepatic tissues using a rat model of liver injury induced by co-treatment with lipopolysaccharide (LPS) at a non-hepatotoxic dose. In studies done in vitro using hepatic microsomes prepared from rats treated with LPS alone, 4'- and 5-hydroxylation activities on DCF metabolism and adducts of reactive metabolites to dansyl glutathione (dGSH) were markedly decreased associated with a decrease in total P450 content. However, in studies done in vivo, the LPS/DCF co-treatment significantly increased adducts of 5-hydroxydiclofenac (5-OH-DCF) to rat hepatic tissues and delayed the elimination of 5-OH-DCF from plasma. Furthermore, we investigated the effects of co-treatment on hepatic GSH level in rats. A decrease of hepatic GSH was observed with the LPS/DCF co-treatment but not with LPS or DCF alone. The results suggest that covalent binding of reactive metabolites via 5-OH-DCF to hepatic tissues may play an important role in the onset of DCF-induced idiosyncratic hepatotoxicity, especially under decreased GSH conditions.